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PREFACI

This book is intended to serve as a text for the course in analysis that is usuall
taken by advanced undergraduates or by first-year students who study math:
matics.

The present edition covers essentially the same topics as the second on:
with some additions, a few minor omissions, and considerable rearrangement.
hope that these changes will make the material more accessible amd more attra
tive to the students who take such a course. ‘

Experience has convinced me that it is pedagogically unsound (thoug
logically correct) to start off with the construction of the real numbers from th
rational ones. At the beginning, most students simply fail to appreciate the nec
for doing this. Accordingly, the real number system is introduced as an orderc
field with the least-upper-bound property, and a few interesting applications «
this property are quickly made. However, Dedekind’s construction is not omi
ted. It is now in an Appendix to Chapter 1, where it may be studied and enjoyt
whenever the time seems ripe.

The material on functions of several variables is almost completely r
written, with many details filled in, and with more examples and more motiv:
tion. The proof of the inverse function theorem—the key item in Chapter 9—
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simplified by means of the fixed point theorem about contraction mappings.
Differential forms are discussed in much greater detail. Several applications of
Stokes’ theorem are included.

As regards other changes, the chapter on the Riemann-Stieltjes integral
has been trimmed a bit, a short do-it-yourself section on the gamma function
has been added to Chapter 8, and there is a large number of new exercises, most
of them with fairly detailed hints.

1 have also included several references to articles appearing in the American
Mathematical Monthly and in Mathematics Magazine, in the hope that students
will develop the habit of looking into the journal literature. Most of these
references were kindly supplied by R. B. Burckel. :

Over the years, many people, students as well as teachers, have sent me
corrections, criticisms, and other comments concerning the previous editions
of this book. 1 have appreciated these, and I take this opportunity to express
my sincere thanks to all who have written me.

WALTER RUDIN

1

THE REAL AND COMPLEX NUMBER SYSTEMS

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (such as convergence,
continuity, differentiation, and integration) must be ba‘sed_ on an accu.rately
defined number concept. We shall not, however, enter into any dlSCHSS'l(E)ﬂ .o.f
the axioms that govern the arithmetic of the integers, but assume familiarity
with the rational numbers (i.e., the numbers of the form m/n, where m and n
are integers and n # 0). .

The rational number system is inadequate for many purposes, both as a
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12:)
For instance, there is no rational p such that p* = 2. (We §hali prove thl's:
presently.) This leads to the introduction of so-called “|rranona.l numbers
which are often written as infinite decimal expansions and are considered to be
“approximated” by the corresponding finite decimals. Thus the sequence

» 1, 1.4, 1.41, 1.414, 1.4142, ... i
“tends to \/ 2. But unless the irrational number \/ 2 has been clearly defined,
the question must arise: Just what is it that this sequence “tends to™?
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This sort of question can be answered as soon as the so-cafled “real
number system” is constructed.

1.1 Example We now show that the equation
(1 pr=2

is not satisfied by any rational p. 1f there were such a p, we could write p = mfn
where m and n are integers that are not both even. Let us assume ‘this is done.
Then (1) implies

@) m? = 2n?,

This shows that 2 is even. Hence m is even (if m were odd, m* would be odd),
and so m? is divisible by 4. It follows that the right side of (2) is divisible by 4,
so that n? is even, which implies that » is even.

The assumption that (1) holds thus leads to the conclusion that both m
and n are even, contrary to our choice of m and n. Hence (1) is impossible for
rational p.

We now examine this situation a little more closely. Let A be the set of
all positive rationals p such that p* < 2 and let B consist of all positive rationals
p such that p? > 2. We shall show that A contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A4 we can find a rational g in A such that
p < g, and for every p in B we can find a rational ¢ in B such thatg < p.

To do this, we associate with each rational p > 0 the number

2.2 2p42
3) ey P TE_PT L
=7 p+2 p+2
Then
2
@ g2 =2
(r +2)?

If pis in A then p* —2 <0, (3) shows that g > p, and (4) shows that
g* < 2. Thus g isin 4. .

If p is in B then p? — 2 > 0, (3) shows that 0 < g < p, and (4) shows that
g* > 2. Thusqisin B. - '

1.2_ Remark The purpose of the above discussion has been to show that the
ratlonal_ number system has certain gaps, in spite of the fact that between any
two rationals there is another: If r < s then r < (r + 5)/2 < 5. The real number

sysFem fills these gaps. This is the principal reason for the fundamental role
which it plays in analysis. '
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In order to elucidate its structure, as well as that of the complex numbers,
we start with a brief discussion of the general concepts of ordered set and field.

Here is some of the standard set-theoretic terminology that will be used
throughout this book. '

1.3 Definitions If A is any set (whose elements may be numbers or any other
objects), we write x € A to indicate that x is a member (or an element) of A.

If x is not a2 member of A, we write: x ¢ A

The set which contains no element will be called the empty set. If a set has
at least one element, it is called nonempty. .

If A and B are sets, and if every element of 4 is an element of B, we say
that A is a subset of B, and write 4 = B, or B o A. If, in addition, there is an
element of B which is not in A4, then A is said to be a proper subset of B. Note
that A = A for every set A.

If A Band Bc A, we write A = B. Otherwise 4 # B.

1.4 Definition Throughout Chap. 1, the set of all rational numbers will be
denoted by Q.

ORDERED SETS

1.5 Definition Let S beaset. Anorderon Sisa relation, deaoted by <, with
the following two properties:

(i) 1fxe S and y € S then one and only one of the statements

X<y, x =Y, y<x
is true.

l(ii) Ifx,y,ze S, ifx <y and y < z, then x < z.

The statement “x < y” may be read as “x is less than y” or “‘x is smaller
than y” or “x precedes y". :

It is often convenient to write y > x in place of x <.

The notation x < y indicates that x <y orx =y, without specifying which
of these two is to hold. In other words, x <y is the negation of x > y.

1.6 Definition An ordered sef is a set S in which an order is defined.
For example, Q is an ordered setif r <5 is defined to mean that s —ris a
positive rational number.

1.7 Definition Suppose § is an ordered set, and E < S. If there exisis a
B € S such that x < f for every x € E, we say that E is bounded above, and call
B an upper bound of E.

Lower bounds are defined in the same way (with > in place of <).



4 PRINCIPLES OF MATHEMATICAL ANALYSIS

1.8 Definition Suppose S is an ordered set, E < S, and E is bounded above.
Suppose there exists an a € S with the following properties:

(i) ais an upper bound of E.
(ii) If y < = then y is not an upper bound of E.

Then « is called the least upper bound of E [that there is at most one such
a is clear from (ii)} or the supremum of E, and we write

o = sup E.

The greatest lower bound, or infimum, of a set E which is bounded below
is defined in the same manner: The statement

¢ =inf E

means that « is a lower bound of E and that no f§ with f§ > « is a lower bound
of E.

1.9 Examples

(a) Consider the sets 4 and B of Example 1.1 as subsets of the ordered
set 0. The set 4 is bounded above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, 4 has
no least upper bound in Q.

Similarly, B is bounded below: The set of all lower bounds of B
consists of 4 and of all r e @ with r < 0. Since A has no lasgest member,
B has no greatest lower bound in Q. ‘ .

(b) If a = sup E exists, then « may or may not be a member of E. For
instance, let E, be the set of all re @ with r < 0. Let E, be the set of all
re Q@ with r 0. Then

sup E, =sup E, =0,

and0¢E1,0eEz. !
(c) Let E consist of all numbers 1fn, where n=1, 2, 3,.... Then
sup E = 1, which is in E, and inf E = 0, which is not in E.

1.10 Definition An ordered set S is said to have the least-upper-bound property
if the following is true: : '
If E < S, E is not empty, and E is bounded above, then sup E exists in S.
Example 1.9(a) shows that Q does not have the least-upper-bound property.
We shail now show that there is a close relation between greatest lower
bounds and least upper bounds, and that every ordered set with the least-upper-
bound property also has the greatest-lower-bound property.

THE REAL AND COMPLEX NUMBER SYSTEMS 5

1.11 Theorem Suppose S is an ordered set with the least-upper-bound property,
B < 8, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then :
o=suplL
exists in S, and o = inf B.
In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of
“ exactly those y € S which satisfy the inequality y < x for every x € B, we

see that every x € B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S§;
call it a.

If v < a then (see Definition 1.8) y is not an upper bound of L,
hence y ¢ B. It follows that & < x for every x € B. Thus x e L.

If « < f then B ¢ L, since a is an upper bound of L.

We have shown that ae L but ¢ L if f > a. In other words, «
is a lower bound of B, but § is not if § > «. This means that o = inf B.

FIELDS
1.12 Definition A field is a set F with two operations, called addition and

multiplication, which satisfy the following so-called “field axioms’ (A), (M),
and (D):

.{A) Axioms for addition

(A1) If xe Fand ye F, then their sum x +y isin F.

(A2) Addition is commutative: x +y =y + x for all x, ye F.

(A3) Addition is associative: {(x + ) + z=x + (v +z)forallx,y,ze F.
(A4) F contains an element 0 such that 0 + x = x for every x e F.

(A5) To every xe€F corresponds an element —x g F such that

x+(—x)=0.

(M) Axioms for multiplication

(M1) If xe Fand yeF, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx foralix, yeF.

(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, ze F.
(M4) F contains an element 1 # 0 such that 1x = x for every x € F.
(M5) If xe F and x # 0 then there exists an element 1/x € F such that

x-(jx)=1
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(D) The distributive law

x(y+2y=xy+xz
holds for all x, y, z€ F.

1.13 : Remarks

(@) One usually writes (in any field)

x
X—=p= x+y+z xpz, x*, 53, 2x, 3x, . ..
¥y

in place of
1
x+(_y)’x'(;)1("+J’)+Z,(xy)2,xx,xxx,x+x,x+x+x,.,,,

(6) The field axioms clearly hold in @, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field.

{c) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of Q are consequences of the field axioms: once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

1.14 Proposition The axioms for addition imply the following statements.

@ Ifx+y=x+ztheny=-z:.
& Ifx+y=xtheny=0.
(€ Ifx+y=0theny= —x.
d) ~(-x)=x

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence is assumed in (A4), and that (c) does the same
for (A35). ’

Proof If x+y=x + z, the axioms (A) give

y=0+4+y=(—x+x)+y=—=x+(x+y) ‘
=—Xx+(x+2)=(—x+x)+z=0+z=12
This proves (a). Take z =0 in (a) to obtain (b). Take z= —x in {a) to
obtain (c). ‘
Since ~x + x =0, () (with —x in place of x) gives (d).
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1.15 Proposition The axioms for multiplication imply the following statements.
(@) Ifx+#0andxy=xztheny=z. '
(#) Ifx#0andxy=xtheny=1.
(¢) Ifx#0andxy=1theny=1/x.
(d) If x#0 then 1{(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.i6 . Proposition The field axioms imply the following sralenllenrs, for any x, ¥,
zeF.

(@) 0x=0.

b)) Ifx+0andy+#0 then xy #0.

(©) (—x)y= —(xy)=x(-y)

d) (—x}—»)=xy

Proof Ox + Ox = (0 4 0)x = Ox. Hence 1.14(b) implies that Ox =0, and

a) holds. '
( Next, assume x # 0, y # 0,.but xy = 0. Then (a) gives

1AW
= ()G =G Go-e
¥ \x ¥ \x
a contradiction. Thus (b) holds.
The first equality in (¢) comes from
(= +xp=(-x+x)p=0=0

combined with 1.14(c); the other half of (c) is proved in the same way.
Finally,
(—x0)(=») = —[x(=p)] = —[-()] = xy

by (c) and 1.14(d).

1.17 Definition An ordered field is a field F which is also an ordered set, such
that

(i) x+y<x+zifx,y,zeFandy<z,
(i) xy>0ifxeF,yeF,x>0,andy>0.

If x > 0, we call x positive; if x <0, x is negative.

For example, @ is an ordered field. . N .

All the familiar rules for working with inequalities apply in every order_ed
field: Multiplication by positive [negative] quantities preserves [Teverses] in-
equalities, no square is negative, etc. The following proposition lists some of

these.
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1.18 Proposition The following statements are true in every ordered field.

(a) If x>0 then —x <0, and vice versa.

b} Ifx>0andy <z then xy <xz.

(¢} Ifx<0Oandy <z then xy>|xz.

(d) If x #0 then x* > 0. In parficular, 1 > 0.
(&) fO<x<ythenQ<lfy<j/x.

Proof

(@ Ifx>0then 0= —x+ x> —x +0,so that —x <0. If x <0 then’

0= —Xtx<-—x+ 0, so that —x > 0. This proves (a).
(b) Since z>y, we have z—y>y—y=0, hence x(z — ) >0, and
therefore ’

X2=x(z—p) +xp>0+xy=xy.
(c) By (a), (b), and Proposition 1.16(c),

=~z - P =(=x}z -~ y) >0,
so that x(z — y) < 0, hence xz < xy.
{d) If x>0, part (ii) of Definition 1.17 gives x> >0. If x <0, then
—x >0, hence (—x)*>0. But x?=(—-x)?, by Propositi 1.
Mt e ¥, by f oposition 1.16(d).
(e_) Iijy >0andv <0, then yv <0. Buty-(1/y) =1 > 0. Hence 1/y > 0.
leew:s_e: 1/x > 0. If we multiply both sides of the inequality x < y by
the positive quantity (1/x)(1/y), we obtain 1fy < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an ordered field R which has the least-upper-bound
property. _ ‘
Moreover, R contains Q as a subfield.

‘ 'The second_stgtemcnt means that Q < R and that the operations of
addition and multiplication in R, when applied to members of , coincide with

the usu'al. operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers. :
The _proof of Theo.rem 1.19 is rather long and a bit tedious and is therefore
presented in an Appendix to Chap. 1. The proof actually constructs R from Q.
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The next theorem could be extracted from this construction with very
little extra effort. However, we prefer to derive it from Theorem 1.19 since this
provides a good illustration of what one can do with the least-upper-bound

property.

1.20 Theorem
{a) IfxeR,yeR,and x>0, then there is a positive integer 1 such that
nx > y.
(#) Ifxe R ye R andx <y, thenthereexisisapée Q such that x < p <y.

Part (a) is usually referred to as the archimedean property of R. Part (b)
may be stated by saying that Q is dense in R: Between any two real numbers
there is a rational one.

Proof
(a) Let A be the set of all nx, where » runs through the positive integers.

If (a) were false, then y would be'an upper bound of 4. But then 4 has a
feast upper bound in R. Put x =sup A. Since x>0, 0« —x <a, and
& — x is not an upper bound of 4. Hence a — x < mix for some positive
integer m. But then a < (m + 1)x € A4, which is impossible, since x is an

upper bound of 4.
(6) Since x <y, we have y —x > 0, and {a) furnishes a positive integer

71 such that
ny—xy=>1

Apply (a) 2gain, to obtain positive integers n1, and m, such that m, > nx,’
my > —nx. Then
—imy < HX < my.

Hence there is an integer m (with —m, < m < m,) such that

m—1<ux <m.

1f we combine these inequalities, we obtain

nx<m<l4+nx <ny

Since 1 > 0, it follows that
X < — <y
n

This proves (b), with p = m/n.
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We shall now prove the existence of nth roots of positive reals. This
proof will show how the difficulty pointed out in the Introduction (irration-
ality of ﬁ) can be handled in R.

1.21 Theorem For every real x >0 and every integer n >0 there is one
and only one positive real y such that y" = x.

This number y is written 2/x or x/".

Proof That there is at most one such y is clear, since 0 < Y1 <y, implies”

Vi <¥;- ‘

Let E be the set consisting of all positive real numbers ¢ such that
" < x.

If t=x/(1 + x) then 0 < r<1. Hence {" <t < x. Thus re E, and
E is not empty.

If t>1+xthen "> (> x, so that t¢ E. Thus 1 + x is an upper
bound of E.

Hence Theorem 1.19 implies the existence of
y =sup E,
To prove that 3" = x we will show that each of the inequalities " < x
and 3" > x leads to a contradiction.
The identity " —~a"=(G —a)d"" '+ 8" %a+ - +a" ) yields
the inequality
b"—a" < (b —amb"!
when0 <a<b.
Assume 3" < x. Choose hsothatt </ <1 and
x—y
h < s
n(y + 1)yt
Puta=y b=y +h Then

(+hy =y <hn(y+ b <hn(y+ 1) ' <x -y

Thus () + i) < x, and y + he E. Since y + h >y, this cdnt;adicts the

fact that y is an ypper bound of E.
Assume )* > x. Put

—x
(Lo
Then 0 < k <y. If t = y — k, we conclude that
YV —1"<y —(y—k<kny =y —x
Thus "> x, and t¢ E. It follows that y — k is an upper bound of E.
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But y — k <y, which contradicts the fact that y is the least upper bound
of E.
Hence y* = x, and the proof is complete.

Corollary If a and b are positive real numbers and n is a positive integer, then

(ab)l{n — al,fubl,'n.

Proof Puta=a'"", f=5"" Then
ab = o"f" = ()",

since niultiplication is commutative. [Axiom (M2) in Definition 1.12.]
The uniqueness assertion of Theorem 1.21 shows therefore that

(ab)lln = aﬁ — al!nbljn_

1.22 Decimals We conclude this section by pointing out the relation between
real numbers and decimals.

Let x > O bereal. Let n, be the largest integer such that n, < x. (Note that
the existence of 11, depends on the archimedean property of R.) Having chosen

g, Mgy - - - » M1, let i, be the largest integer such that
T
e+ —+ """+
710 10%

Let E be the set of these numbers

Hy My
—_4 = k=0,1,2,...).
(5) Hg + i + + IoF ( )
Then x = sup £. The decimal expansion of x is
(6) ' Ro MMty "’ ‘
Conversely, for any infinite decimal (6) the set E of numbers (5) is bounded
above, and (6) is the decimal expansion of sup E.
Since we shall never use decimals, we do not enter into a detailed
discussion.

THE EXTENDED REAL NUMBER SYSTEM

1.23 Definition The extended real number system consists of the real field R
and two symbols, 4+ oo and —oo. We preserve the original order in R, and
define '

—0<x<+®
for every xe R.
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It is then clear that + oo is an upper bound of every subset of the extended
real number system, and that every nonempty subset has a least upper bound.
If, for example, E is a nonempty set of real numbers which is not bounded
above in R, then sup E = + co in the extended real number system.

Exactly the same remarks apply to lower bounds. '

The extended real number system does not form a field, but it is customary
to make the following conventions:

{a) If xis real then
X + o = 4w, X — 00 = —o0, — = =0

(# fx>0thenx:(+00)= +00,x-(~00)=—c0.
{(c) Ifx<Othenx-(+00)=—0,x {~-0)=+0w0.

When it is desired to make the distinction between real numbers on the
one hand and the symbols + co and — co on the other quite exphclt the former
are called finite.

THE COMPLEX FIELD

1.24 Definition A complex number is an ordered pair (a, b) of real numbers.
“Ordered’’ means that (g, &) and (b, a) are regarded as distinct if a # b.

Let x = (a, b), ¥y = (¢, d) be two complex numbers.. We write x =y if and
only if @ = ¢ and b = d. (Note that this definition is not entirely superfiuous;
think of equality of rational numbers, represented as quotients of integers.) We
define '

x+y=(a+eb+d)

= (ac — bd, ad + bc).

1.25 Theorem These definitions of addition and multiplication turn the set of
all complex numbers into a field, with (0, 0) and (1, 0) in the role of 0 and 1.

Proof We simply verify the field axioms, as listed in Definition 1.12.
(Of course, we use the field structure of R) '

Let x = (a, b), y = (¢, d), z = (¢, f).
(Al) is clear.
(A2) x+y=(@a+eb+d=(c+adtb)=y+x
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(A3) (x+Mtz=(@+cb+d}+(ef)

=@tc+edb+dtf)

=(@b+(c+ed+f)=x+(y+2)
(A4) x+0={a, )+ (0,00 =(a, b)=x
(A5) Put —-x=(—a, —b). Then x +{—x)=(0,0) =0.
(M1I) is clear.
(M2) xy = (ac — bd, ad + bc) = (ca — db, da + cb) =
(M3) (xp)z = (ac — bd, ad + bc)e, f)

= (ace — bde — adf - bcf, acf — bdf + ade + bce)
= (a, b}(ce — df, cf + de) = x(yz).

(M4) 1x=(1,0)a, b)=(a, b)=x.
(M5) If x # 0 then (a, b) # (0, 0), which means that at least one of the
real numbers a, b is different from 0. Hence a* + b > 0, by Proposition
1.18(d), and we can define

= (@ )
x \@+b a4+

Then
1 a -b
x-;=(a,b)(az rae i +b’)=(1’0)‘= L.
(D) x(y+2)=(a,b)c+ed+f)
= (ac + ae — bd — bf, ad + af + bc + be)
= (g¢c ~ bd, ad + be) + (ae — b, af + be)

= xy + Xz.

1.26 Theorem For any real numbers a and b we have
(2,0) + (5,0) = (a+b,0), (a,0)b, 0) = (ab, 0).

The proof is trivial.

Theorem 1.26 shows that the complex numbers of the form (a, 0) have the
same arithmetic properties as the corresponding real numbers a. We can there-
fore identify (a, 0) with . This identification gives us the real field as a subfield
of the complex field.

The reader may have noticed that we have defined the complex numbers
without any reference to the mysterious square root of —1. We now show that
the notation (a, b) is equivalent to the more customary a + bi.

1.27 Definition i = (0, 1).
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1.28 Theorem %= —1.
Proof iZ=(0,1)0,1)=(~1,0)= —1.

1.29 Theorem If a and b are real, then (a, b) = a + bi.
Proof
a+bi=(a0)+ (b, 0)0, 1)
= {a, 0) -+ (0, b) = (a, b).

1.30 Definition If a, b are real and z = a + bi, then the complex number
Z = a - bi is calied the conjugate of z. The numbers a and b are the real part
and the imaginary part of z, respectively.

We shall occasionally write

a = Re(z), b = Im{z).

1.31 Theorem If z and w are complex, then

(a) Z"'_W =Z+ W’

b zw=z-w,

(&) z+Z=2Re(z),z—Z=2iIm(z),

(d) zZ is real and positive (except when z = ().

Proof (a), (b), and (c) are quite trivial. To prove (d), write z = a + bi,
and note that zZ = a* + b%.

132 Definition If z is a complex number, its absolute value |z| is the non-
negative square root of zZ; that is, |z]| = (z2)"/2.

The existence (and unigueness} of |z| follows from Theorem 1.2{ and
part (d) of Theorem 1.31. ’

Note that when x is real, then X = x, hence |x| =./x*. Thus |x| =x
ifx>0, [x] = —xifx <0.

1.33 Theorem Let z and w be complex numbers. Then

(@ {z| >0unlessz=0, |0] =0,
&y |z] =z,

(© |zw] = |z{|wl,

(@) |Rez|<|z],

@ lz+w|giz| +]wl|.
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Proof (a) and (b) are trivial. Put z=a + bk w=c +di, with a, b, c, d
real. Then
[zw|? = (ac — bd)? + (ad + bc)* = (@* + b)c* + d%) = |z]?|w]?
~or |zw]? = (|z]|w])*. Now (c) follows from the uniqueness assertion of

Theorem 1.21.
To prove (d), note that a* < a* + b7, hence

la| =/a% < /a* + b
‘To prove (e), note that Zw is the conjugate of zw, so that zw + Zw =
2 Re (zw). Hence
lz+w|P=(z+wWE+ W) =22+ 2V +2Zw+ wW

=|z|2 + 2 Re (zW) + |{w|?

< |z)? + 2]zw]| + |w|?

=|z)2 + 2]z| [w| + [w|® = (Iz] + W)™
Now (e) follows by taking squafﬁ roots.

1.34 Notation Ifx,,..., x, are complex numbers, we write
n
xl +X2+ s +X,,= ij'
J=1

We conclude this section with an impbrtant inequality, usually known as
the Schwarz inequality.

1.35 Theorem If a,, ..., a,and by, ..., b, are complex numbers, then
n 2 n 3 n 5
Y a;b| <% lal 2 151
ji=1 J=1 i=1

Proof Put A =Z|a;|% B=Z|b;|% C =Za;b; (in all sums in this proof,
j runs over the values 1, ..., n). If B= 0,then b, = --- = b, =0, and the
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we

havel
'Y |Ba,— Cb,|* = Y. (Ba; — Cb;}(Ba; — Cb))
=B*Y |a;|® —BCY a;b; — BCY a;b; + [CI2 ) 15;]*
= B4 — B|C|?
= B(4B - | C}?).
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Since each term in the first sum is nonnegative, we see that
B(AB - |C|H = 0.
Since B > 0, it follows that AB — | C|? = 0. This is the desired inequality.

EUCLIDEAN SPACES

1.36 Definitions For each positive integer k, let R* be the set of all ordered
k-tuples '

X= (xl,xz, tery .&k),
where x,, ..., x, are real numbers, called the coordinates of x. The elements of

R* are called points, or vectors, especially when k > 1. We shall denote vectors
by boldfaced letters. 1fy = (yy, ..., y,) and if « is a real number, put

X+yYy=0+2,..0 X%+ W)
aX = (axy, ..., 0x)
so that x + y& R* and oxe R*, This defines addition of vectors, as well as
multiplication of a vector by a real number (a scalar). These two operations
satisfy the commutative, associative, and distributive laws (the proof is trivial,
in view of the analogous laws for the real numbers) and make R* into a vector
space over the real field. The zero element of R* (sometimes called the origin or
the null vector) is the point 0, all of whose coordinates are 0.
We also define the so-called ““inner product’ {or scalar preduct) of x and
y by
K
XxX'y= ‘leIYi
and the norm of x by

Xl =7 = (347)

The structure now defined (the vector space R* with the above inner
product and norm) is called euclidean k-space.

1.37 Theorem Suppose x,y,z€ R, and o is real. Then

(@) x| 2>0;
& |x|=0ifandonlyif x=0;
() fox| = || [x];

@ |x-yl < |x]]yl;
(&) Ix+y| <Ix| +1yl;
() Ix—z|<|x—y| +|y—z|.
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Proof (a), (b), and (¢) are obvious, and (d) i3 an immediate consequence
of the Schwarz inequality. By (d) we have

Ix+y?=(x+y)-(x+Y)
=X-X+2X-Y+Yy'y
< Ix|*+21x| |yl + Iy]?
= (x| + [y])%

so that (e) is proved. Finally, (/) follows from (e) if we replace x by
x—yandybyy—z

1.38 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to
regard R* as a metric space.

R! (the set of all real numbers) is usually called the line, or the real line.
Likewise, &? is called the plane, or the complex plane (compare Definitions 1.24
and 1.36). In these iwo cases the norm is just the absolute value of the corre-
sponding real or complex number.

APPENDIX

Theorem 1.19 will be proved in this appendix by constructing R from Q. We
shall divide the construction into several steps.

Step 1 The members of R will be certain subsets of @, called cuts. A cutis,
by definition, any set o = @ with the following three properties.

{I) ais not empty, and a # Q.
() Ifpea,qe@,and g <p, thengea.
(III) If pea, then p < r for some rea.

The letters p, g, r, ... will aiways denote rational numbers, and «, §, 7, ...
will denote cuts.

Note that {I11) simply says that a has no largest member; (11) implies two
facts which will be used freely:

' Ifpeaand g¢ athenp <q.
Ifr¢aand r<sthen séa.

Step 2 Define “‘x < #” to mean: « is a proper subset of .

Let us check that this meets the requirements of Definition 1.5.

Ifa < P and B < y it is clear that @ < y. (A proper subset of a proper sub-
set is a proper subset.) It is also clear that at most one of the three relations

a<pf, «=p  f<a
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can hold for any pair a, §. To show that at least one holds, assume that the
first two fail. Then « is not a subset of §. Hence there is a p e« with p ¢ f.
“If g€ B, it follows that ¢ < p (since p ¢ f), hence gea, by (ID. Thus f <o
Since fi # a, we conclude: f < a. ‘ :
Thus R is now an ordered set.

Step 3 The ordered set R has the least-upper-bound property.

To prove this, let 4 be a nonempty subset of R, and assume that ferR
is an upper bound of A. Define y to be the union of alla € A. In other words,
pey if and only if p € a for some e A. We shall prove that y € R and that
¥ = sup 4.

Since A is not empty, there exists an ao € A. This « is not empty. Since
a4y < 7, 7 is not empty. Next, y < B (since o < f for every a € A), and therefore
v # Q. Thus y satisfies property (I). To prove (1I) and (IiI), pick pe y. Then
pew, for some a, € A. If ¢ <p, then g€ oy, hence g € y; this proves (an. If
r € &, is so chosen that r > p, we see that r € y (since a; v}, and therefore ¢
satisfies (I1I).

Thus vy e R.

It is clear that a < y for every a € A. )

Suppose & < y. Then there is an s€ y and that s ¢é. Sincesey, sea
for some o € A. Hence 8 < «, and J is not an upper bound of 4.

This gives the desired result: y = sup 4.

Step4 Ifae Rand f € R we define o + f§ to be the set of all sums r + 5, where
recandsef.

" We define 0* to be the set of all negative rational numbers. Itis clear that
0* is a cut. We verify that the axioms for addition (see Definition 1.12} hold in
R, with 0% playing the role of 0. :

(A1) We have to show that o + f is a cut. It is clear that « + Bisa
nonempty subset of Q. Take r'¢«, 5'¢ B. Then r' +5 >r+s for all
choices of rea, sef. Thus r' +s ¢a+ f. It follows that o + § has
property (I).

Pick pea +p. Then p=r+s, with reqa, sefi. If g<p, then
g—s<r, s0 g—sea, and g=(¢—s5)+sea+p. Thus (II) holds.
Choose tea so that t>7. Then p <t+ysand ¢t +see+ . Thus (I1)
holds. .

(A2} «+ Bisthesetofallr + s, withree,sef. By the same definition,
B+aisthesct ofall s+ r. Since r +s=s+rforallre @, se 0, we
havea + f=f + .

(A3) As above, this follows from the associative law in Q.

(A4) Ifreaandse0* thenr +5<r hencer +sea Thusa +0*ca.
To obtain the opposite inclusion, pick p € «, and pick r € a, r > p. Then
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p—red* and p=r+(p—r)ea+ 0% Thus ¥ < o« + 0*, We conclude
that o + 0* = a.

(A5} Fix ae R. Let g be the set of all p with the following property:

There exists r > 0 such that —p — r ¢ a.

In other words, some rational number smaller than —p fails to
be in a.

We show that B e R and that « + ff = 0*,

Ifs¢oaand p= —~s5—1, then —p —1¢ua, hence pe f. So fis not
empty. If ge«, then —g ¢ fi. So ff # Q. Hence f satisfies (I).

Pick pe B, and pick r>0, so that —p —r¢a. If g<p, then
—q—r>—p—r, hence —q—ré¢a. Thus gef, and (II) holds. Put
t=p+(r/2). Then t>p, and —t —(r/2) = —p —r ¢, so that rep.
Hence B satisfies (I11).

We have.proved that f e R,

If reaand se ff, then —sé a, hence r< —s, r+ 5 <0. Thus
o+ fc0*, g .

To prove the opposite inclusion, pick v € 0%, put w = —pf2. Then
w >0, and there is an integer # such that nwe o but (n + Dw ¢ 2. (Note
that this depends on the fact that @ has the archimedean property!) Put

= —(n + 2)w. Then pe f§, since —p —w ¢ a, and

vt=nw+pea+f.
Thus 0* ca + B.
We conclude that o« + f§ = 0%,
This f will of course be denoted by —a.

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A)
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can
prove one of the requirements of Definition 1.17:

Ifa, f,yeRand f <y, thenoa + f <o+ 7.

Indeed, it is obvious from the definition of + in Rthat « + f c &« + y; if
we had a + ff = a + y, the cancellation law (Proposition 1.14) would imply
p=r

It also follows that o > 0* if and only if —o < 0*,

Step 6 Multiplication is a little more bothersome than addition in the present
context, since products of negative rationals are positive. For this reason we
confine ourselves first to R*, the set of all « & R with « > 0*.

Ifee R* and f & R*, we define aff to be the set of all p such that p < rs
for some choice of rea, sef, r > 0,5 > 0.

We define 1* to be the set of all g < 1.
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Then the axioms (M) and ( D) of Definition 1.12 hold, with R* in place of F,

and with 1* in the role of 1.
The proofs are so similar to the ones given in detail in Step 4 that we omit

them.
Note, in particutar, that the second requirement of Definition 1.17 holds:

If & > 0* and B > 0* then af > 0*.

Step 7 We complete the definition of multiplication by setting a0* = 0*a = (%,
and by sstting
(—aji~f) ifa<0* f<0¥%
af = {—[(~x)f] ifax<O% B>0%,
\—fz-(-B)] #a>0% <0
The products on the right were defined in Step 6.
Having proved (in Step 6) thar the axioms (M) hold in R*, it is now
perfectly simple to prove them in R, by repeated application of the identity

7 = —(—7v) which is part of Proposition 1.14. (Seec Step 5.)
The proof of the distributive law

a(ﬁ-!::J)=aﬂ+a7
breaks into cases. For instance, suppose & > 0%, f <0* f+ v > 0* Then
y = (f + y) + (—B). and (since we already know that the distributive law holds
in R") :
ay=alf +7y) + (-5
Bula-{(—f) = —{&f). Thus
af +ay =a(ff + 7).

The other cases arc handied in thc same way.
We have now completed the proof that R is an ordered field with the least-

upper-bound property.

Stem 8 We assaciate with each re © the set r* which consisis of all pe &~

LAt
= pod

such that p < r. Itis clear that each r* is a cut; that is, r* € K. These cuis satisiy

the following relations:

(@ r*+s*=(+s"
By r*s* =(s)* ‘
{(¢) r*<s*ifandonlyifr<s.

To prove (a), choose per* +s*. Then p=u+uv, where u <r, v <s.
Hance p < r + 5, which says that p e (r + 5)*.
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Conversely, suppose pe(r - s)* Then p<r+s Choose r so that

A2=r+s5—p, put
rr=r—t,8=s5—1

Then r'er*, 5'es*, and p =+’ + &', so that per* + s5*,

This proves (@). The proof of () is similar,

If r < 5 then r e s*, but r ¢ r*; hence r* < s5*.

If r* < s*, then there is a p es* such that pér*. Hence r<p<s, so
that r <s.

This proves {c}.

Step @ We saw in Step § that the repiacement of the rational numbers 7 by the
corresponding “rational cuts” r* & R preserves sums, products, and order. Thi$
fact may be expressed by saying that the ordered fielé O is isomorphic to the
ordered field O* whose elements are the rational cuis. Of course, r* iz by no
means the same as r, but the properties we are concerned with (arithmetic ang
order) are the same in the two fields.

It is this identification of Q with Q% which allows us to regard Q as a
subfield of R.

The second part of Theorem 1.19 is to pe undersiood in terms of this
identificatior.. Note that the same phenomenon occurs whan the real numbers
are regarded as a subfield of the complex field, and it also occurs at & much
more eiementary level, when the integers are identified with a certain subset of Q.

It is a fact, which we will not prove here, that any two ordered fields with
the least-upper-bound proper:y are isomorphic. The first part of Theorem 1.1¢
therefore characterizes the reai fieid R completely.

The books by Landau and Thurston cited in the Bibliography arc eatircly
devoted to number systems. Chapter 1 of Knopp’s book contains a more
leisurely description of how R can be obtained from Q. Another construction,
in which each real number is defined to be an equivalence ciass of Cauciry
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book
by Hewitt and Stromberg,

The cuts in £ which we used here were invented by Dedekind. The
construction of R from @ by means of Cauchy seguences 15 due 1o Canior.
Both Cantor and Dedekind published their constructions in 1§72.

EXERCISES

Unless the contrary is explicitly stated, all numbers that are mentioned in these exer-
cises are understood to be real.

1. If r is rational (r £ 0) and x is irrational, prove that r 4 x and rx are irrational.
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. Fix b>1, y >0, and prove that there is a unigue real x
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Prove that there is no rational number whose square js 12.

Prove Proposition 1.15.

Let E be a nonempty subset of an ordered set; suppose « is a lower bound of E
and f is an upper bound of E. Prove that o < B.

Let A4 be a nonempty set of real numbers which is bounded below. Let — A4 be
the set of all numbers —x, where x € A. Prove that

inf A = —sup{— A).

Fix b > 1.
(a) If m, n, p, g are integers, 1 > 0, g > 0, and r = mfn = p/g, prove that

(bm)!!n — (bp l,'f_r‘

Hence it makes sense to define b7 = (b™)!=,
(b} Prove that 5 ~* = p’b* if r and ¢ are rational.
{c) If x is real, define B{x) to be the set of all numbers b, where ¢ is rational and
¢ < x. Prove that
b =sup B(r)
when r is rationzl. Hence it makes sense to define
5% = sup B(x)

for everv real x.

{d) Prove that *** = p=b* for all real x and ¥

such that 5* =y, by
completing the following outfine. (This x is called the logarithm of v 1o the base b)
(a} For any positive integer n, 6" — 1 =unlb—1).

(&) Hence b~ 1 = n{pt= — 1),

(@ Iit>1andn>@G—1jr— 1), then b/n <.

(d) If w ic such that b* < ¥, then &%+ < y for sufficiently large n; to see this,
apply part (c) with f=y- b~

lej ¥ 5% >3 then Lrm > o for sufficiently large ».

{f) Let A4 be the set of ail w such that b” <y, and show that x = sup A satisfies
b=y,

(g) Prove that this x is unique.

Suppos-: 7T=g ba w=¢+di. Define z<w if a<e, and also i a =¢ but
b << d. Prove that this turns the set of ali complex numbers into an ordered set.
{This type cf crder relation is called a dictionary order, or lexicographic order, for
obvious reasons.) Does this ordered set have the least-upper-bound property ?
Suppose z=a+ bi, w=u+ v, and

TR L PP T
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Prove that z2 = wif ¢ = 0 and that (£)* = wif 0 < 0. Conclude that every complex
number (with one exception!) has two complex square roots.

If z is a complex number, prove that there exists an r >0 a‘pd a complex number
w with |wi = 1 such that z =rw. Are w and r aiways uniquely deiermined by z?
If z,, ..., z. are complex, prove that

fzstza 4+ oz <o 4+ 2]+ + lzﬂl‘
If x, y are complex, prove that
flxl = ¥l < fx— ]
If z is a2 complex number such that {z| = 1, that is, such that zZ7 = 1, compute
11z 11— 72
Under what conditions does equality hold in the Schwarz inequality ?
Suppose k 23, x.ye RY, ix—y| =d>0, and r > 0. Prove:
{a) If 2r > d, there are infimitely many z € R* such that -

jz—x|=jz—y|=r

(k) If 2r =4, there is exactly one such z,
{c} If 2r < d, there is no such z.
How must these staterents be modified if kis 2 or 1?

Prove that

Ix +y]2 +ix—y]* =2{x|* + 2]y
if xe R* and y € R*. Interpret this geometrically, as a statement about parallel-
ograms,

If k=2 and x e R*, prove that there exists ye Rt such that y 20 but x -y =0.

Is this also true if k=17
Suppose a€ R*, b € R*. Find c & R* and r > O'such that

Ix—a| =2{x—b|
it and oniy if {(x—¢f =r. _
(Solution: 3¢ =4b—a, 3r=2}b—al.)
With reference to the Appendix, suppose that property (III) were omitted from the
definition of a cut. Keep the same definitions of order and addition. Show that
the resulting ordered set has the least-upper-bound property, that dddition saiisiies
axioms (Al} to (A4) (with a slightly different zero-element!) but that (AS) faiis.
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BASIC TOPOLOGY

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

We begin this section with a definition of the function concept.

2.3 Definition  Consider two s¢ts .4 and B, whose elements may be zny objects
whatsoever, and suppose that with each element x of 4 there is associated, in
some manner, an element of B, which we denote by f(x). Then fis said to be a
JSunction from A to B (or a mapping of A into B). The set A is called the domain

of £ (we also say fis defined on A), and the elements f(x} are called the vafes -

of /. The sct of ali values of /is called the range of f,

2.2 Definition Let 4 and B be two sets and let f be a mapping of 4 into B.
If £ = 4, /(E) is defined to te the set of all elements f(x), for x € E. We call
J(E) the image of E under £. In this notation, f(4) is the range of £, It is clear
that f(4) < B. If f(4) = B, we say that f maps A onto B. (Note that, according
to this usage, onte is more specific than info.)

If E < B, f~Y(E) denotes the set of all x € 4 such that f(x) e E. We call
S~ (E) the inverse image of E under f. If ye B, f~(y) is the set of all x& A
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such that f(x) =y. If, for each y € B, f~Y(y) consists of at most one element
of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may
also be expressed as follows: fis a -1 mapping of 4 into B provided that
S{x1) # f(x;) whenever x; # x,, x; € 4, x, € A.

(The notation x;  x, means that x; and x, are distinct elements; other-
wise we write x, = x,.)

2.3 Definition If there exists a 1-1 mapping of 4 onto B, we say that 4 and B
can be put in 1-1 correspondence, or that A and B have the same cardingl nunber,
or. briefly. that 4 and B are equivalent, and we write A ~ B. This relation
ciearly has the foliowing propertics:

It is refiexive: 4 ~ A.
It is symmetiic: If A ~ B, then B ~ A.
It is transitive: If 4 ~ B and B~ C. then A ~ C.

Any relation with these three properties is called an equivalence relation.

2.4 Definition For any positive integer n, let J, be the set whose elements are
the tegers 1, 2, ..., n; let J be the set consisting of all positive integers. For any
set 4, we say:

(@) Ais finite if A ~ J, for some n (the empty set is also considered to be
finite). -

(6) A is infinite if A is not finite.

() A is countable if A ~ J.

(d) A is uncountable if A is neither finite nor countable.

(e} A i1s-ai most couniable if A 1s finite or countable,

Countable sets are sometimes called enumerable, or denumerable.

For two finite sets 4 and B, we evidently have 4 ~ B if and only if A and
F.contain the same number of elements. For infinite sets, however, the idea of
“having the same number of siements™ becomes quite vagire, whereas the notion
of 1-1 correspondence retains its clarity.

2.5 Example Let A be the set of all integers. Then A is countable. For,
consider the following arrangement of the sets 4 and J;

A 0
1

IIM =
=
o
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We can, in this example, even give an explicit formula for & function f
from J to A which sets up a 1-1 correspondence:

no
5 (n even),

f=
m 2

(n odd).

2.6 Remark A finite set cannot be equivalent to one of its proper subsets.
That this is, however. possible -for .infinite sets, is shown.by Example 2.5, in
-which J 15 a proper subsei of A.
In fact, we could replace Definition 2.4(}) by the statement A is infinite if
A 1s equivalent to one of its proper subsets.
2.7 Detinition Bv a sequence, we mean a functicn f defined on the set J of ali
positive integers. If f(n} = x,,, for neJ, it is customary to denote the sequence
J by the syinbol {x,}, or somstimes by x,, x,, x5, .... The values of f, that is,
the elements x,, are called the terms of the sequence. If 4isasetandif x,e A
for all n e J, then {x_} is said to be a sequence in A, or a sequence of elements of A.
Note that the terms x;, x5, x5, ... of a sequence need not be distinct.
Since every countable set is the range of a 1-1 function defined on J, we
may regard every countable set as the range of a sequence of distinct terms.
Speaking more Joosely, we may say that the elements of any countable set can
be “arranged in 2 sequence.” -
Sometimes it is convenient to replace J in this definition by the set of all
noanegative integers, ie., to start with O rather than with 1.

2.8 Theorem Everv infinite subset of a countable set A is countable.

Proof Suppose E < 4, and £ is infinite. Arrange the eiemenis x of 4 in

a sequence {x,} of distinct elements, Construct a sequence {n,} as follows:

Let n, be the smallest posmve integer such that x,, € E. Having
ehosen ny, o, Moy (kK =2,3,4,...). let n, be the smallest mtege: greater
than ®,_, such that v, e E. o

Putting f(k) = x,,k (k =1,2,3,...), we obtain a i-1 correspondence
between F and J.

The theorem shows that, roughly speaking, countable sets represent
the *smaliest™ infinity: No uncountable set can be a subset of a countable
set.

2.9 Definition Let 4 and Q be sets, and suppose that with each element « of
A there is associated a subset of () which we denote by E,.
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The set whose elements are the sets £, will be denoted by {E,}. Instead
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or
a family of sets.

The union of the sets E, is defined to be the set 5 sifch that x € Sif and only
if x € E, for at least one « € 4. We use the notation

1) S=|JE,.
xed
If 4 consists of the integers 1, 2, ..., n, one usually writes
o s=UE,
or l
(3) S=E,vE,u-ukE,.

If A is the set of all-positive integers, the nsnal notation is
- ]
1G] S={J E,.
m=1

The symbol oo in {4) merely indicates that the union of a countable col-
lection of sets is taken, and should not be confused with the symbols + oo, — oo,
introduced in Definition 1.23.

The intersection of the sets E, is defined to be the set P such that x e P if
and only if x € E, for every o € A. We use the notation

) P=(}E,
ae A
or
(6} P=(NE,=E nE,n:"nE,
m=1 )
or
) P=(\E,,
m=1

as for unions. If A ~ B is not empty, we say that 4 and B intersect; otherwise
they are disjoint.
2.10 Examples

(a) Suppose E, consists of 1,2,3 and E, consists of 2,34, Then
E, u E, consists of 1, 2, 3, 4, whereas E, n E, consists of 2, 3,
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{#) Let 4 be the set of real numbers x such that 0 < x < 1. For every
x e A4, let E_ be the set of real numbers y such that 0 < y < x. Then

(§)] E.cE ifandonlyif 0<x<z<1;
(i) U E. =E;

xed
(iii) N E. is empty;

xed

(i) and (ii) are clear. To prove (iii), we note that for every y > 0, y¢ E,
if x <y Hencey&(\eeu Es-

2.11 Remarks Many properties of unions and intersections are quite similar
" to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols £ and IT were written in place

of {J and ).

The commutative and associative laws are trivial;

(8 - AuB=BuAd; AnB=BnA.
(9 AuvBuC=Au(BuC); AnBnC=An(BnC)

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) AnBuUC) =(AnBudnC).

To prove this, let the left and right members of (10) be denoted by E and F,
respactively.

Suppose xsE, Then xeAd and xe Bu C, thatis, xe B or x e C (pos-
sibly both). Hence xe A n Borxe A n C, sothat xe F. Thus Ec F.

Ncat, suppose xcF. ThenxeAnBorxeAn C. Thatis, xe 4, and
xeBuC HencexeAn{(Bu ) sothat Fc E.

1t follows that E = F, -

We list a few more relations which are easily verified:

{(i1) ' Ac 40U B,

(12) AnBc A

If 0 denotes the empty set, then

{13) AuD=A, An0d=0
If A = B, then

(14) AuB=B, AnB=A
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2.12 Theorem Let{E},n=1,23,..., beasequence of countable sets, and put

(15) S=1\JE,.
Then S is countable.

Proof Let every set E, be arranged in a scqucncer {xu) k=1,2,3,...,
and consider the infinite array

(16)

in which the elements of E, form the nth row. The array contains all
elements of S. As indicated by the arrows, these elements can be
arranged in 2 sequence :

(17 Xins Xaps X125 Xa1s X220 X133 X415 X325 Xa3, X145 ...

If any two of the sets £, have elements in commaon, these will appear more
than once in (17). Hence there is a subset T of the set of all positive
integers such that S~ T, which shows that § is at most countable
(Theorem 2.8). Since E, c S, and E, is infinite, § is infinite, and thus
countable.

Corollary Suppose A is at most caumable and, for every x€ A, B is at most
countable. Put
T={JB,.

e d
Then T is at most countable.

For T is equivalent to a subset of (1 5‘1

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples
(@y,...,a,), whereay e A(k =1,...,n), and the elements ay, ..., a, need not be
distinci. Then B, is countable. '

Proof That B, is countable is evident, since B, = 4. Suppose B,_, is
countable (n = 2, 3, 4, ...). The elements of B, are of the form

(18) (b,a) (beB,_, acd).

For every fixed b, the set of pairs (b, ) is equivalent to 4, and hence
countable. Thus B, is the union of a countable set of countable sets. By
Theorem 2.12, B, is countable. '

The theorem follows by induction.
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Corollary The set of all rational numbers is countable.

Proof We apply Theorem 2.13, with n = 2, noting that every rational r
is of the form b/a, where a and b are integers. The set of pairs (g, b), and
therefore the set of fractions b/e, is countable.

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.14 Theorem Ler 4 be the set of all sequences whose elementis arc the digits 0

and \. This set A is uncountable.
The elements of 4 are sequences like 1,0,0,1,0, 1,1, 1,....

Proof Lef £ be a countable subset of 4, and let E consist of the se-
QUERCES Sy, Sg. 53 - .-+ We construct a sequence s as follows. If the nth
digit in 5, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s differs from every member of E in at least one place; hence
s ¢ E. Bui clearly 5 4, so that E is a proper subset of 4.

We have shown that every countable subset of 4 is a proper subset
of A. I1 foliows that 4 is uncountable (for otherwise 4 would be a proper
subset of 4, which is absurd).

The idea of the above proof was first used by Cantor, and is called Cantor’s
dingenal process; for, if the sequences s,, 5, §3, . - - are placed in an array like

(16), it is the elements on the diagonal which are involved in the construction of

the naw sequence.

Readers who are familiar with the binary representation of the real
numbers (base 2 instead of 10} will notice that Theorem 2.14 implies that. the
sct of all real numbers i¢ uncountable, We shall give 2 second proof of this

fact in Theorem 2.43.

METRIC SPACES

215 Definifion A set X. whose elements we shall calt poinzs, is said to be a
metric space if with any two points p and g of X there is associated a reai
number d(p, q), called the distance from p to g, such that '

(@ d(p,g)>0ifp#gq;d(p.p)=0

(b) d(p,q)=d(g, p);

(&) d(p.q) <d(p,r)+dir,q) foranyreX.

Any function with these three properties is called a distance function, ot
a metric,
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2.16 Examples The most important examples of metric spaces, from our
standpoint, are the euclidean spaces R, especially R' (the real line) and R? (the
complex plane); the distance in R* is defined by

(19) d(x,y) = |x - y] (x,y € RY.

By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19).

{t is imnportant to observe that every subset ¥ of a metric space X is a metric
space in its own right, with the same distance function. For it is clear that if
conditions (a) to {¢) of Definition 2.15 hold for pgre X, they also hold if we
restrict p, g, r to lie in Y.

Thus every. subset of a euciidean space is-a metric space. Other examples
are the spaces €(K) and Z?(n), whlch are dlscussed in Chaps. 7 and 11, respec-
tively.

2.17 Definifion By the segment (a, £} we mean the set of all real numbers »
such that g < x < b. .

By the interval [a, b) we mean the set of all real numbers x such that
agsxgsh

Occasionally we shall alsc encounter “half-open intervals™ [a, b) and {a, 5];
the first consists of ail x such that @ < x < b, the second of ali x such that
a<x<b

Ifa, <b;fori=1,...,k, theset of all points x = (x,, ..., x;) in R* whose
coordinates satisfy the inequalities a; < x; < b; (1 £i< k) is called a k-cell.
Thus a l-cell is an interval, a 2-cell is a rectangle, ete.

If x € R* and r > 0, the open (or closed) ball B with center at x and radius r
is defined to be the set of aii y € R such that {y — x| <r(or |y —xi< ).

We call a set E = R* convex if

AX+(i—-Ayek

whenever xe E,ye E,and 0 < A < 1.
For example, balls are comvex. For if |y —~x|<r, {z—-x]| <r, and

. O<A<l.wehave

liy + (1 = Dz - x| = | Ay — %) + (1 — Dz —x)]|
<Aly-x|+(1-ADlz—x| <ir+ (1 =2
=r.

The same proof applies to closed balls. It is also easy to see that k-cells are
convex.
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2.18 Definition Let X be a metric space. All points and sets mentioned below
are understood to be elements and subsets of X,

(@) A neighborhood of p is a set N,(p) consisting of all g such that
d(p, g) < r,for some r > 0. The number r is calied the radius of N.(p).

(b) A point p is a limit point of the set E if every neighborhood of P
contains a point ¢ # p such that g E.

(¢) If peE and pis not a limit point of E, then p is called an isolated
point of E.

(d) E'is closed if every limit point of E is a point of E.

(¢} A point 7 is 2n fzeerior point of E if there'is a neighborhood N of p
such that N « E. i :

(f) Eis open if every point of E is an interior point of E,

(g} The complement of E (denoted by E°) is the set of all points PEX
such that p ¢ £. B

(hy E is perfeet if E is closed and if svery point of E is a limit point
of E.

({} Eis bounded if there is a real number M and-a point ¢ € X such that
dp.qy< M forallpeE.

U} Eis dense in X' if every point of X is a limit point of E, or a point of
E (or both). ' '

Let us note that in K* neighborhoods are segments, whereas in R? neigh-
borhoods are interiors of circles.
2.19 Theorem Every neighborhood is an open set.

Proof Consider & neighborhood £ = N,(p), ard let ¢ be any peint of E.
Then there is a positive real number % such that

dip.qy=r—h,_
For all points s such that d(g, s) < h, we have then
dp,s)<dp, ) +dg,sy<r—h+h=r,
so that s E, Thus g 1s an interior poini of E.
220 Toneorem If p is a iimii point of a set E, then every neighborhood of p
contains infinitely many points of E.

Proof Suppose there is a neighborhood N of p which contains only a
finite number of points of £, Let g,,...,q, be those points of N n E,
which are distinct from p, and put

r= min d(p,q,)

l<mzn
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fwe use this notation to denote the smallest of the numbers dip.q), ...,
d(p, g,)]. The minimum of a finite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point ¢ of E such that g#p,
so that p is not a limit point of E. This contradiction establishes the
theorem.

Coroliary A finite point set has no limit points.

221 Examples Lot us consider the following subsets of R*:

(@) The set of all complex z such that lz] < L.
() The set of all complex z such that |z| < 1.
{c) A nonempty finite set.
(d) The set of all integers.

“(e) The set consisting of the numbers ijn(n = i, 2, 3,...}. Letus note
that this set £ has a limit point (namely, z = 0) but that no point of £ is
a limit point of E; we wish to stress the difference between having a limit
point and containing one. : '

(f} The set of all compiex numbers (that is, K2).
(9) The segment (g, b).

Let us note that (d), (e), (g) can be regarded also as subsets of R,
Some properties of these sets are tabulated below:

Closed Open Perfect Bounded

(a) No Yes No Yes
()] "~ Yes No Yes Yes
(o) "~ Yes- No No Yes
{d Yes  No No No
@ No No No Yes
(f) Yes Yes Yes No
{(9) No No Yes

o o

In {g}, we I=fi the second entry blank. The reason is that the segmeni
(a, b) is not open if we regard it as a subset of R2, but it is an open subsat of R,

222 Theorem Let{E,} be a(finite or infinite) collection of sets E,. Then
(20) (Y £ =N,

Proof Let A and B be the left and right members of (20). If xe A, then
x¢J, E,, hence x ¢ E, for any «, hence x e EZ for every «, so that x e E¢.
Thus A < B,
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Conversely, if xe B, thenx¢€ E< for every o, hence x ¢ E_ for any «,
hence x ¢, E., so that x € (U E2)°. Thus Bc 4.
It follows that A = B.

223 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x & E. Then x¢ E°, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° ~ N is empty, that is, N c E. Thus x is an interior point of E,

and F is opea.

Next, supposc £ is open. Let x be a iimit point of E¢. Then every

neighborhood of x contains a point of E¢, so that x is not an interior point
of £ Since £ is open, this means that x € E°. It follows that £° is closed.

foy

Coroliary 4 sei Fis closed if and only if its complement is open.

2.24 Theorem

(a) For any coilection Gz} of open sets, . G is open.

(#) For any collection {F,} of closed sets, "\, F, is closed.

{¢) For any finite collection Gy, ..., G, of open sets, (7=, G is open.
(d} " For any finite collection Fy, ..., F, of closed sets,\ }{-, F; is closed.

Proof Put G =lJ.G.. If x€G, then x € G, for some . Since x is an
intsrior point of G,, x is also an interior point of G, and G is open. This

proves {a)
By Theorem 2.22, _
@1 (ﬂ “) =UEX
-3 -4

and F¢ is open, by Theorem 2.23. Hence (@) implies that (21} is open so

that M. F. s closed.
Next, pui H = (W=, G;. For any x < H,.there exist neighborhoods

N
. Fa. ot

N, of x, with radii r;, SuUci that N, oG =1, ..
r=min{r, ..., 1),

and let N be the neighborhood of x of radius r. Then N=G fori=1,
...,msothat Nc H, and H is open.
By taking compiements, (d) follows from (¢):

(U R) = A
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2.25 Examples In parts (c) and (@) of the preceding theorem, the finiteness of
11
the collections is esseatial. For let G, be the segment (— = '-!) n=1273..)

Then G, is an open subset of R'. Put G = )%, G,. Then G consists of a single
point {namely, x = 0) and is therefore not an open subset of R'.

Thus the intersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

2.26 Definition If X is a metric space, if £ = X, and if E" denotes the set of
all imit points of E in X, then the closure of Eis the set E=E U E'.

2.27 Theorem If X is a metric space and E c X, then

(a} E is closed, -
(3) E =Eifandonly if E is closed,
(9 E < F for every closed set F < X such that E « F.

By (a) and (¢), E 15 the smallest closed subset of X that contains E.

Proof

(@) Ifpe Xandp¢ E then p is neither a point of £ nor a iimit poini of E.
"Hence p has a neighborhood which does not intersect £. The complemeni
of E is therefore open. Hence E is closed.

()) If E=E, (a) implies that E is closed. If E is closed, then £'c E
[by Definitions 2.18(d) and 2.26), hence E = E.

(¢) If Fisclosed and F = E, then £ o F', hence F > E'. Thus F> E.

228 Theorem Let E be a nonempty set of real numbers which is bounded above.
Lety=supE. Thenyz E. Hence ye E if E is closed.

Compare thic with {he exampies in Sec. 1.9.

Proof If yeE then yecE. Assume y ¢ E. For every & > 0 there exists
then a point x € E such that y — # < x < y, for otherwise y — & would be
an upper bound of E. Thus y i3 alimit point of £. Hence y € E.

2.29 Remark Suppose E < ¥ « X, where X is a metric space. To say that £
is an open subset of X means that to each point p € E there is associated a
positive number r such that the conditions d{(p,q) <r,q€ X imply that ge E.
But we have already observed (Sec. 2.16) that Y is also a metric space, 50 that
our definitions may equally well be made within ¥. To be quite explicit, let us
say that E is open refative 19 ¥ if to each p € E there is associated an r > 0 such
that g € E whenever d(p,q) <r and ge Y. Example 2.21(g) showed that a set
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

2.30 Theorem Suppose Yc X. A subset E of Y is open relative to Y if and
only if E = Y n G for some open subset G of X.

Proof Suppose E is open relative to ¥. To each p ¢ E there is a positive
number r, such that the conditions d(p,q) <r,,qe ¥ imply that g€ E.
Let V, be the sct of all g € X such that d(p, g) <r,, and define
G=UV,.
peE

Then G is an open subset of X, by Theorems 2.19 and 2.24.

Since pe V, forallpe E, itisclearthat Ec G n Y.

By our choice of V,, we have ¥, n Y « E for every p € E, so that
Gn Yc E. Thus E =G n ¥, and one half of the theorem is proved.
_ Conversely, if G is open in X and E=G n ¥, every pe E has a
neighborhood V, = G. Then V, n Y < E, so that E is open relative to Y.

COMPACT SETS

2.31 Definition By an open cover of a set E in a metric space X we mean a
collection {G,} of open subsets of X such that E < |J, G..

2.32 Definition A subset K of a metric space X is said to be compact if every
~ open cover of K contains a finite subcover.
More explicitly, the requirement is that if {G,} is an open cover of X, then
there are finitely many indices «,, ..., &, such that

KcG,u-udg,,.

The notion of compactness is of great importance in analysis, especially
in connection with continuity (Chap. 4).

It is clear that every finite set is compact. The existence of a farge class of
infinite compact sets in R* will follow from Theorem 2.41.

We observed earlier (in Sec. 2.29) that if £ < ¥ < X, then E may be open
relative to Y without being open relative to X. The property of being open thus
depends on the space in which £ is embedded. The same is true of the property
of being closed.

Compactness, however, behaves better, as we shall now see. To formu-
late the next theorem, let us say, temporarily, that K is compact relative to X if
the requirements of Definition 2.32 are met.
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233 Theorem Suppose K< Y < X. Then K is compact relative to X if and
only if K is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-
pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and is a closed subset of itself), it does make sense to talk of compact metric
spaces.

Proof Suppose X is compact relative to X, and let {V,} be a collection
of sets, open relative to Y, such that K« |, V,. By theorem 2.30, there
are sets G,, open relative to X, such that ¥, = Y n G,, for all &; and since
K is compact relative to X, we have '

{22) KcG, uugG,,
for some choice of finitely many indices a,, ..., «,. Since K< Y, (22)
implies _

23) KeV, u-uV,,.

This proves that X is compact relative to Y.

Conversely, suppose K is compact relative to Y, let {G,} be a col-
lection of open subsets of X which covers X, and put V, = ¥ n G,. Then
(23) will hold for some choice of «,,...,q,; and since V, < G,, (23)
implies (22).

This completes the proof,

2,34 Theorem Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove
that the complement of K is an open subset of X.

Suppose pe X, p¢ K. If ge K, let V, and W, be neighborhoods of p
and ¢, respectively, of radius less than $d(p, g) [see Definition 2.18(a)].
Since K is compact, there are finitely many points g,, ..., ¢, in KX such that

KcW,u-uW, =W

V=V, n--n~V,, then Vis a neighborhood of p which does not
intersect W. Hence V = K, so that p is an interior point of K¢ The
theorem follows.

235 Theorem Closed subsels of compact sets are compact.

Proof Suppose F < K < X, Fis closed (relative to X), and K is compact.
Let {¥,} be an open cover of F. If Fis adjoined to {V,}, we obtain an
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open cover Q of K. Since K is compact, there is a finite subcollection @
of § which covers K, and hence F. If F¢ is a member of @, we may remove

it from @ and still retain an open cover of F. We have thus shown that a
finite subcollection of {V,} covers F.

Corollary If F is closed and K is compact, then F K is compact.

Proof Theorems 2.24(6) and 2.34 show that Fn K is closed; since
Fn K = K, Theorem 2.35 shows that F n K is compact.

2.36 Theorem If{K,} is a collection of compact subsets of a metric space X such

that the intersection of every finite subcollection of {K,} is nonempty, then [} K,
is nonempty.

Proof Fix a member X, of {K.} and put G, = K{. Assume that no point
of K; belongs to every K,. Then the sets G, form an open cover of K;;
and since K, is compact, there are finitely many indices «,, ..., «, such
that X, < G,, u *** v G,,. But this means that '

KinK, n-nk,,

is empty, in contradiction to our hypothesis.

Corollary If {K,} is a sequence of nonempty compact sets such that K, > K, 41
{(n=1,2,3 .., thenNT K, is not empty.

2.37 . Theorem If E is an infinite subset of a compact set K, then E has a limit
point in K. ‘

Proof If no point of K were a limit point of E, then each g € K would
have a neighborhood ¥, which contains at most one point of E (namely,
g, if ge E). It is clear that no finite subcollection of {V} can cover £;

and the same is true of K, since E = K. This contradicts the compactness
of K. '

238 Theorem If {I) is a sequence of intervals in R', such that I, > 1,4,
(n=1,223,...), then NT I, is not empty.

Proof If I, =I[a,, b,], let E be the set of all a,. Then E is nonempty and
bounded above (by b,). Let x be the sup of E. If m and n are positive
integers, then

an = am+n = bmhl Sbms

so that x < b, for each m. Since it is obvious that a, < x, we see that
xel, form=1,2173,....
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239 Theorem Let k be a positive integer. If {1,} is a sequence of k-cells such
that[,o1,,,(n=1,2,3,...), then AT I, is not empty.
Proof Let 7, consist of all points x = (xy, ..., X;) such that
a,.'jéxjéb,.,; (1 ﬁjSk,fT:l, 2; 31-"),

and put I, ; = [a,; b,;}. For each j, the sequence {I,;} satisfies the
hypotheses of Theorem 2.38. Hence there are real numbers x}(1 <j < k)

such that )
) a;<xtsb,; (U<j<kin=123..).
Setting x* = (x%, ..., xy), we sec that x* e[, for n = 1,2,3,.... The

theorem follows.

2.40 Theorem Every k-cell is compact.

Proof Let [ be a k-cell, consisting of all points X = (x;, ..., xx) such
thatg; <x; < b; (1 £j = k). Put

d = Iil {b; — aj)z}uz.

Then |x —y} <d,ifxelyel

Suppose, to get a contradiction, that there exists an open cover {G,}
of I which contains no finite subcover of 1. Put ¢; =(a; + b)){2. The
intervals [g;, ¢;] and {c;, b;] then determine 2% k-cells ; whose unionis I.
At least one of these sets (;, call it I;, cannot be covered by any finite
subcollection of {G,} (otherwise I could be so covered). We next subdivide
1, and continue the process. We obtain a sequence {I.} with the following
properties:

(@ I =L .
(b) I, is not covered by any finite subcollection of {G,};
() ifxel,andyel, then |x —y} <27"4.

By («) and Theorem 2.39, there is a point x* which lies in every [,.
For some a, x*eG,. Since G, is open, there exists r>0 such that
|y — x*} < r implies that y € G,. If n is so large that 27" < r (there is
such an a, for otherwise 2" < &/r for all positive integers n, which is
absurd since R is archimedean), then (¢) implies that 1, = G,, which con-
tradicts (b).

This completes the proof.

The equivalence of (@) and (b) in the next theorem is known as the Heine-
Borel theorem.
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2.41 Theorem Ifa set E in R* has one of the following three properties, then it
has the other two: '

(@) Eis closed and bounded.

& Eis compact. ,

{¢) Every infinite subset of E has a limit point in E.

Proef If (2) holds, ther E = I for some k-cell 1, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (¢). It

remains to be shown that (¢) implies ().
If E is not bounded, then E contains points x, with

I, >n  (1=1,2,3..).

Thf: se:t S consisting of these points X, is infinite and clearly has no Hmit
point in R, hence has none in E. Thus (¢) implies that £ is bounded.

If Eis not closed, then there is a point x, € R* which is a limit point .

of E but not a point of E. For n=1,2,3,..., there are points x, € E
such that [x, — x4| < l/n. Let § be the set of these points x,. Then S is
infinite (otherwise |x, — x,! would have a constant positive value, for
infinitely many #), S has x, as a limit point, and S has no other limit
point in R*. Forifye R* y # x,, then '

|%, = ¥| = {% —¥| — | X, — Xo|

for all but finitely many »; this shows that y is not a limit point of §
(Theorem 2.20).

Thus S has no limit point in £; hence E must be closed if {c) holds.

'We should remark, at this point, that () and (c) are equivalent in any
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c).
Examples are furnished by Exercise 16 and by the space .#2, which is dis-
cussed in Chap. 11.

2.42 Theorem (Weierstrass) ZEvery bounded infinite subset of R¥ has a limit
point in R,

Proof Being bounded, the set £ in question is a subset of a k-cell J = R*,
By Tocorem 240 s compact. and so £ hay 2 Hmit peint in 7, by
Theorem 2.37. )
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PERFECT SETS

2.43 Theorem Let P be a nonempty perfect set in R*. Then P is uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by x;, Xz, X3, .... We shall construct a
sequence {¥,} of neighborhoods, as follows.

Let ¥, be any neighborhood of x,. If ¥; consists of all y € Rk such
that |y — x,| < r, the closure ¥; of ¥y is the set of all y e R* such that

y-x|<r

Suppose V, has been constructed, so that ¥, n P is not empty. Since
every point of P is a limit point of P, there is a neighborhood V., such
that () V., < V,, (i) x, ¢ V,;,, (iii) Va4y n P is not empty. By (iii),
V, ., satisfies our induction hypothesis, and the construction can proceed.

Put X, = 7, n P. Since ¥, is closed and bounded, ¥, is compact.
Since x, ¢ K, .,, no point of P lies in ¥ K,. Since K, = P, this implies
that N* K, is empty. But each K, is nonempty, by (iil), and K, 2 K, ,,
by (i); this contradicts the Corollary to Theorem 2.36.

Corollary Every interval [a, b] (a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

244 The Cantor set The set which we are now going to construct shows
that there exist perfect sets in R which contain no segment.

Let E, be the interval [0, 1]. Remove the segment (3, %), and let E, be
the union of the intervals

0, 4] [3, 1].

Remove the middie thirds of these intervals, and let E, be the union of the
intervals

0,463,315 3L 5 1]
Continuing in this way, we obtain a sequence of compact sets £,, such that

(@ Ey=E;2E;> 7
(b) E, is the union of 2* intervais, each of length 37",

The set

=0
p R
P =

1 4n

i
n=1

is calied the Canror ser. P is cleariy compact. and Theorem 2.36 shows that £
is 1ot empty.
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No segment of the form

(24) (3k+l 3k+2)’

™ 73
where k and m are positive integers, has a point in common with P. Since every
segment (2, f) contains a segment of the form (24), if

- - ﬁ_a
ITm< s
6 .

P contzins no segment.

To show that P is perfect, it is enough to show that P contains no isolated
point. Let x € P, and let S be any segment containing x. Let I, be that interval
of E, which contains x. Choose n large enough, so that I, =« S. Let x, be an
endpomt of I, such that x, # x. -

1t follows from the construction of P that x, € P. Hence x is a limit point
of P, and P is perfect.

One of the most interesting propertles of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. 11).

CONNECTED SETS

2.45 Definition Two subsets 4 and B of a metric space X are said to be
separated if both A ~ B and A ~ B are empty, i.e., if no point of A lies in the
closure of B and no point of B lies in the-closure of 4.

A set E c X is said to be comnected if E is not a union of two nonempty
separated sets.

2,46 Remark Separated sets are of course disjoint, but disjoint sets need not
be separated. For example, the interval [0, 1] and the segment (1, 2) are not
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and
(1. 2) are separated.

The connected subsets of the line have a particularly simple structure:

2.47 Theorem A subset E of the real line R is connected if and only if it has the
following property: If xe E, ve E, and x < z < y, then ze E.

Proof If there exist x € E. y € E, and some z € (x, y) such that z € E, then
FE=A4.u B, where

A, =En{—-=.z}, B.=£n{z, x)
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Since x € 4, and y € B,, 4 and B are nonempty. Since 4, « (—cc, z) and
B, c (z, ), they are separated. Hence E is not connected.

To prove the converse, suppose E is not connected. Then there are
nonempty separated sets 4 and B such that A v B = E. Pick xe 4, ye B,
and assume (without loss of generality) that x < y. Define

z =sup (4 n [x, ¥

By Theorem 2.28, z € A; hence z ¢ B. In particular, x £ z < ).

If z¢ A, it follows that x<z < yand z ¢ E.

if ze A, then z ¢ B, hence there exists z; such that z < z, <y and
z,¢B. Thenx <z <yandz ¢E

EXERCISES

. Let Aj_, A;, AS, -

. Prove that the empty set is a subset of every set.
. A complex number z is said to be algebraic if there are integers go, .. .,

a,, not all
zero, such that

doZ"+ @z Vb a2+ 2. =0,

Prove that the set of all algebraic numbers is countable. Hinr: For every positive
integer N there are only finitely many equations with

n- ,aul T lﬂxl et ian' =N

. Prove that there exist real numbers which are not algebraic.

. Is the set of all irrational real numbers countable ?

. Construct a bounded set of real numbers with exactly three limit points.

. Let E’ be the set of al! limit points of a set E. Prove that E' is closed. Prove that

E and E have the same limit points. (Recall that E=E u E'.}) Do Eand E"aiways
have the same limit points?

be subsets of a metric space.

(@) If B, =i, 4., prove that B, = Jl-, Ay, forn=1,2,3, ...

(b) Xf B =, A;, prove that B> |, 4,.

Show, by an example, that this inclusion ¢can be proper.

. Is every point of every open set E < R? a limit point of £? Answer the same

question for closed sets in R*.

. Let E° denote the set of all interior points of a set E. [See Definition 2.18(¢);

E* is called the interior of E.}

(g} Prove that E° is always open.

{b) Prove that E is open if and only if E* = E.

{¢ f G < Eand G is open, prove that G < E°,

(d) Prove that the complement of £° is the ciosure of the complement of E.
ie) Do £ and £ abways have the same interiors?

(/) Do E and E7 always have the same closures?
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Let X be an infinite set. For pe X and ¢ € X, define
1 (ifp#gq)
0 (fp=g).
Frove ibai this is & metiic. Which subsets of the resulting metric space are open?

Which are closed? Which are compact ?
For x € R! and y € R*, define

d(p,q)= {

diix, y) =(x- >
di(x, ) =V]x—>l,
ds(x, y) =|x* — ¥*],
da(x, ¥} =|x—2y|,

v lx—yl
ds(x, yj = T ="

Determine, for each of these, whether it is a metric or not.

Let K< R consist of 0 and the numbers I/, for n=1,2, 3, .... Prove that Kis
compact directly from the definition (without using the Heine-Borel theorem).
Construct a compact set of real numbers whose limit points form a countable set.
Give an example of an open cover of the segment (0, 1) which has no finite sub-
COVET.

Show that Theorem 2.36 and its Corollary become false (in R*, for example) if the
word “compact” is replaced by “closed” or by “bounded.”

Regard Q, the set of all rational numbers, as a metric space, with dip,.g)=ip—qg]|.
Let E be the set of all pe Q such that 2 < p* <3, Show that £ is closed and
bounded in Q, but that E is not compact. Is E open in Q7

Let E be the set of all x & f0. 11 whose decimal expansion contains only the digits
4 and 7. Is E countable? Is E dense in [0, 11? Is E compact? Is E perfect?

Is there a nonempty perfect set in K which contains no rational number?

(@) If A and B are disjoint closed sets in some metric space X, prove that they
are separated.

{5} Prove the same for disjoint open sets.

(¢) Fix p= X, 8 >0, define A 10 be the set of all ¢ € X for which d(p. ¢) < 8, define
B similariy, with > in place of <., Prove that 4 and B are separated.

{d) Prove that every connected metric space with at jeast two points is uncount-
able. Hinr: Use{c).

Are closures and interiors of connected sets aiways connected ? (Look at subsets
of R}

Let 4 and B be saparated subsets of some R*. supposea s 4. b< B, and define

piti={i—rm~rb

a

LB =g nE. 'Thusre .4, 1f and only i p{ty € 4]

23.

B

26.
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{a) Prove that 4, and B, arc separated subsets of R*.

(b) Prove that there exists fo € (0, 1) such that p(te) € AV B.

{c) Prove that every convex subset of R* is connected.

A metric space is called separable if it contains a countable dense subset. Show
that R* is separabie. AHinr: Consider the set of points which have only rasional
coordinates.

A collection {¥.} of open subsets of X is said to be a base for X if the following
is true: For every xe X and every open set G < X such that x € G, we have
xe V. < G for some a. In other words, every open set in X is the union of a
subcollection of {¥.}.

Prove that every separable metric space has a countable base, Hint: Take

all neighborhoods with rational radius and center in some countable dense subset
of X.
Let X be a metric space in which every infinite subset has a limit point. Prove that
X is separable. Hint: Fix 8 >0, and pick x, € X. Having chosen x;, ..., x;€ X,
choose x;+; € X, if possible, so that d(x:, x;+1) = Sfori=1,...,/. Show that
this process must stop after a finite number of steps, and that X can therefore be
covered by finitely many neighborhoods of radius 8 Taked=1/n(n=1,2,3,..0
and consider the centers of the corresponding neighborhoods.

Prove that every compact metric space K has a countable base. and that X is
therefore separable. Hint: For every positive integer », there are finitely many
neighborhoods of radius 1/n whose union covers K.

Let X be a metric space in which every infinite subset has a limit point. Prove
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It
follows that every opeﬁ cover of X has a countable subcover {G... n=1,2. 3, ....
If no finite subcoilection of {G,} covers X, then the complement F of &y v - G,
is nonempty for each #. but [\ F, is empty. If Eis a set which contains a point
from each F,, consider a limit point of E. and obtain a contradiction.

. Define a point p in a metric space X to be a condensarion point ofaset £E= Xif

every neighborhiood of p contains uncountably many points of E.

Suppose E = R*, E Is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many points of £
are not in P. In other words, show that P< n E is at moest counable. Hint: Let
¥, be a countable base of R, let i" be the union of those ¥, for which E m 1%
is at most coumzble. and show that P = W<,

. Prove that every closed set in 2 separable metric space is the union of a inossibiv

empty perfect set and a set which is at most countabie. (Corofiary: Every couni-
abie ciosed se1 in R has isolated points.) Hinr: Use Exercise 27.

. Brpve that every anen 27 in RY ig the union of an a7 mos' conntapie collastion of

disjoint segments. Honr: Use Dxerciss Z2.
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0. Imitate the proof of Theorem 2.43 to obtain the following result:

If Rt = [J?F., where each F, is a closed subset of R*, then at least one F
has a nonempty interior. i

Equivalent statement: If G, is a dense open subset of R, forn=1,2,3,...,
then [)TG. is not empty (in fact, it is dense in R*).

{This is a specia! casc of Baire’s theorem; see Exercise 22, Chap. 3, for the general
case.)

3

NUMERICAL SEQUENCES AND SERIES

As the title indicates, this chapter will deal primarily with sequences and series
of complex numbers. The basic facts about convergence, however, are just as
easily explained in a more general setting. The first three sections will therefore
be concerned with sequences in euclidean spaces, or even in metric spaces.

CONVERGENT SEQUENCES

3.1 Definition A sequence {p,} in a metric space X is said to converge if there
is a point p € ¥ with the following property: For every & > 0 there is an integer
N such thai n = N implies that &(p,, p) <& (Here d denotes the distance in X))

In this case we aiso say that {p,} converges to p, or that p is the limit of
{p.} {see Theorem 3.2(b)]. and we write p, —p. Or

iim p, =p-

17z} does not converge. it is said to diverge.
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It might be well to point out that our definition of ““convergent sequence”
depends not only on {p,} but also on X, for instance, the sequence 11/n} con-
verges in R' (to 0), but fails to converge in the set of all positive real numbers
[with d{x,y) = |¥ —yi]. In cases of possible ambiguity, we can be more
precise and specify “‘convergent in X rather than ‘‘convergent.”

We recall that the set of all points p,, (t =1, 2, 3,...) is the range of {p,}.
The range of a sequence may be a finite set, or it may be infinite. The sequence
{p} is said to be bounded if its range 15 bounded.

As examples, consider the following sequences of complex numbers
(that is, X = R?):

(@) Ifs,=1/n, thenlim, o 5= 0; the range is infinite, and the sequence
is bounded.

B Ifs,= n?, the sequence {s,} is unbounded, is divergent, and has
infinite range. - -

(¢) 1f s, =1+ [(—1)"/n], the sequence {s,} converges to 1, 1s bounded,

and has infinite range. .

(d) If s, = i" the sequence {s,} is divergent, is bounded, and has finite
range.

(e) Ifs,=1(n=1273, ...), then {s,} converges to 1, is bounded, and
has finite range.

We now summarize some important properties of convergent sequences
in metric spaces.

32 Theorem Let{p,} be a sequence in a metric space X.

(@) {p,}convergestope X if and only if every neighborhood of p contains
p, for all but finitely many n.

(b) IfpeX, p €X, andif{p,} convergestop and to p, then p’ = p.

(¢} If{p,} converges, then [pn} is bounded.

(d) IfEc Xandif pisalimit point of E, then there is a sequence {pyin E
such that p=limp,.

n== ot

Proof (a) Suppose p,—p and let V be a neighborhood of p. For

some ¢ > 0, the conditions dig.p)<e. g€ X impiy g € V. Correspond-.

ing to this &, there exists N such that n = N implies d(p,.p) <& Thus
n=Nimpliesp, s V.

Conversely, suppose every neighborhood of p centains all but
finitely many of the p,. Fixz>0. and let V¥ be the set of all g £ X such
umpton, Lere exists N { corresponding to this ¥)

~. Thus d{p,,p)<¢ if n=N: hence p,—p.

whar din phep BV R
that &{p.gi<iw BV &

such that p, eV ifnz

n
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() Lete >0 be given. There exist integers N, N’ such that

n>N implies d(p,,p) <§,

n>N' implies d(p,,p) < ;

Hence if n > max (N, N'), we have

d(p, p') < d(p, p)) + d(ps, P') <&

Since ¢ was arbitrary, we conclude that d(p, o) =0.
(c) Suppose p,—p. There is an integer N such that n> XN
implies d(p,, p) < 1. Put

r = max {15 d(pl’ p)! vy d(PN,P)}

Then d(p,,p)<rforn= ,2,3,....

(d) For each positive integer n, there is a point p, € E such that
d(p,,p) < 1/n. Given &> 0, choose N so that Ne>1. If n>N, it
follows that d(p,. p) <¢&. Hence p, = p.

This completes the proof.

For sequences in R* we can study the relation between convergence, on
the one hand, and the algebraic operations on the other. We first consider
sequences of complex numbers. )

3.3 Theorem Suppose {s,}, {1} are complex sequences, ond lim,_. 5, =35
lim,., t, =1 Then
(@) m(s,+1)=s+1
(b) limcs, = cs, lim (¢ + 5,) = ¢+ 3, for any number c;
ner o | -4

(¢) lim s,t, = st;

n=o

1
(d) lm —= é, provided 5, # 0 (n=1, 2, 3,...),and s # 0.

n—a Sn
Proof

(@) Given e >0, thers exict integers Ny, N, such that

n>N, implies |5,—5si <3

] . ‘ _ £
p= &, implies [r, -~ <3
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If N = max (N,, N,), then n = N implies
Gt t)—G+Dl < |5 —s| +l—tf <&
This proves (a). The proof of (b) is trivial.
(c) We use the identity
U sty — 5t = (8, — $)(t, — ) + s{t, — 1) + t(5, — ).
Given £ > 0, there are integers Ny, N, such that
n> N, implies |[s5,—5| < \/;:,
n> N, implies |f,—1]| < \/E.
1f we take N = max (N, N,), n = N implies
G50 = )t = D] <,
so that 7

lim (s, - Hit,—1)=0.

n=oG
We now apply (a) and (b} to (1), and conclude that

lim {s,t, ~ st) = 0.

n-—=ao

(d) Choosing m such that |s, —s| <3}s| if n 2 m, we see that
|s.| > &lsl 2z
Given £ > 0, there is an integer N > m such that n > N imphes
|5, — | < 3ls%.
Hence, forn > N,

(1 1

(a) Suppose x, e R*(n=1,2,3,...)and

X, = (11," ey Ik,n)'
Then {x,} converges 1o X = (. ..., %) if and enly if
(2‘] iilTl I.".r_ = 27;- (1 S_,T é k).
Fom=
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(b) Suppose{x,},{y.} are sequences in R, {B,} is a sequence of real numbers,
and X, —+X, Yo =Y, Bn — B. Then

lim(x,+y)=x+y, limx, y=x'y, lim}j.x, =px

Proof
(@) If x, - X, the inequalities
laj,n - a;] = lxn - Xl,

which follow immediately from the definition of the norm in R*, show that
(2) holds.

Conversely, if (2) holds, then to each & > 0 there corresponds an
integer N such that r > N implies

g
lgy, —a] <—= (1<j<h),
o~ TR
Hence n > N implies ‘
k ll/Z
Ix, = x| = {2} la; . —al? <e,
= J

so that x, -+ x. This proves (a).
Part (b) follows from (g) and Theorem 3.3.

SUBSEQUENCES

3.5 Definition Given a sequence {p,}, consider a sequence {n,} of positive

integers, such that my <n; <nz <. Then the sequence {p,} is called a
subsequence of {p,}. If {p,} converges, its limit is called a subsequential limit
of {pa}-

It is clear that {p,} converges to p if and only if every subsequence of
{p.)} converges to p. We leave the details of the proof to the reader.

3.6 Theorem

{2y If{p} is a sequence in a compact metric space X. then some sub-
seguence of {p.} converges 1o a point of X.
(by Every bounded sequence in R¥ contains a contergent subsequence.
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Proof

(a) Let E be the range of {p,}. 1f E is finite then thereis a pe E and a
sequence {n;} with 7, <n, <n, <---, such that
Pny = Pay =""" =D
The subsequence {p, } so obtained converges evidently to p.
If E is infinite, Theorem 2.37 shows that E has a limit point p € X.
Choose n, so that d(p, p,,) < 1. Having chosen ny, ..., n;-,, we see from

Theorem 2.20 that there is an integer n, > n;_; such that d(p, p,) < 1/i.
Then {p,,} converges to p.

(5) This follows from (a), since Theorem 2.41 implies that every bounded
subset of R lies in a compact subset of R".

3.7 Theorem The subsequential limits of a sequence {p,} in a metric space X
form a closed subset of X.

Proof Let E* be the set of all subsequential limits of {p,} and let ¢ be a
limit point of E*. We have to show that ¢ € E*.

Choose n, so that p,, #¢. (If no such n, exists, then E* has only
one point, and there is nothing to prove) Put § =d(g,p,). Suppose
fys ..., .y ate chosen. Since g is a limit point of E*, there is an x € E*
with d(x,q)<2~'6. Since x¢&E*, there is an n;>n;_, such that
d(x, p,) <27'6. Thus

dig, p,) <2' 716
fori=1,2,3..... This says that {p,} converges to g. Hence g e E*.

CAUCHY SEQUENCES

3.8 Definition A sequence {p,} in a metric space X is said to be a Cauchy
sequence if for every & > 0 there is an integer N such that d(p,, p.} <¢ ifnzN
and mz= N

In our discussion of Cauchv sequences, as well as in other situations

which will arise later. the foliowing geometric concept will be useful,

319 Definition Let £ be 2 nonemoty subset of a metric space X, and let § be
ne set of ali real numbers of the form d(p. g). with p € £ and ¢ € £. The sup
T T is cailed the diameter of £.
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If{p,}is a sequence in X and if Ey consists of the points py, Prxc1:Puszs oo

it is clear from the two preceding definitions that {p,} is a Cauchy sequence
if and only if

3.10

.11

lim diam Ey =0,

Theorem
(@) If E is the closure of a set E in a metric space X, then
diam E = diam E.
(b) If K, is a sequence of compact sets in X such thar K,> K.,
n=1,2,3,..dandif

lim diam K, = 0,

then ﬂ‘fK,, consists of exactly one point.
Proof
(¢) Since E = E, it is clear that
. diam E < diam E.
Fix £ > 0. and choose p € E, g € E. By the definition of E, there are
points p’, ¢'. ink-such that d(p.p'y < ¢ d(g,q") <e Hence
dip.q) < dip.p') +d(p'q’} + (4. 9)
<2e+d(p.g')<2e+ diam E.

It foliows that
diam E < 2¢ + diam E,

and since ¢ was arbitrary. (@) is proved.

(b) Put K={(\7K,. By Theorefii 2.36, K is not empty. If K contains
more than one point. then diam K > 0. But for each n. K, = K. so that
diam K, > diam K. This contradicts the assumption that diam K, —0.

Theorem

{g) Inany merric space X, every convergent sequence is a Canchy sequence.
If X is a compact meiric space and if {p,} is a Cauciv sequence in X,
then {p,} converges o some point of X.

(&3 In R*. every Cauchy sequence conrerges.

Nore: The difference berween the definition of comvergence and
~rhy invalved

the definition of & Cauchy sequence is that the limit is 220

in the former. Sut not in the latter. Thus Theorsm 3.i1i5+ may enabie us
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to decide whether or not a given sequence CORVEIges without knowledge
of the limit to which it may converge.
The fact (contained in Theorem 3.11) that a sequence CORVEIrZEs in

R* if and only if it is a Cauchy sequence 1s usually called the Cauchy
eriterion for convergence.

Proof

(@) If p,—p and if >0, there is an integer N such that d(p, p,) <&
forall n > N. Hence

d(py, Pr) < d(Prs P) + AP, Pm) <28

as soon as n > N and m = N. Thus {p,} is a Cauchy sequence.

(b)) Let {p,} be a Cauchy sequence in the compact space X. For
N=1,23, ..., let Ey be the set consisting of py. Pn+1s Pr+2s -
Then
(3) lim diam Ey =0,
N=x T

by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the
compact space X, each Ey is compact (Theorem 2.35). Also Ey 2 Eysy,
so that Ey = Ex+1.

Theorem 3.10(b) shows now that there is a unique p € X ‘which lies
in every Ey.

Let ¢>0 be given. By (3) there is an integer N, such that
diam Ey <& if N = N,. Since p € Ey, it follows that d(p,q) <e for
‘every g & Ey. hence for every g € Ey. In other words, d(p, p,) <¢ if
n > No. This says precisely that p, = p.

(c) Let {x,} be a Cauchy sequence in R*. Define Ey as in (b), with X,
in place of p;. For some N, diam Ey < 1. The range of {x,} s the union
of E, and the finite set {x,. ....Xy_i}. Hence {x,} is bounded. Since
every bounded subset of R* has compact closure in R* (Theorem 2.41),
(¢) follows from (b).

3.12 Definition A metric space in which every Cauchy sequence COnverges is
said to be complere.

‘Ihus Theorem 3.11 says that all compact metric spaces and all Euclidean
spaces are complete. Theorem 3.11 implies also that every closed subset E of a
comnpleie metric space XIS cemplete. (Lvery Cauchy sequence in £ is a Cauchy
czuusnss in Y hence it comverzes to ome P E X. and acually p € E since £ is
ciosed.d An exampie of a metric space which is not complete is the space of ali

samional qumbers. with dix. yr= X — ¥ .
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Theorem 3.2(c) and example {d) of Definition 3.1 show that convergent
sequences are bounded, but that bounded sequences in R* need not converge.
However, there is one important case in which convergence is equivalent to
boundedness; this happens for monotonic sequences in R

3.13 Definition A sequence {s.} of real numbers is said to be

(a) monotenicaily increasing if 5, < Sye1 (=12, 3,...0
(b) monotonically decreasing if 5, 2 Saes (0 =1, 2,3,..0.

The class of monotonic sequences consists of the increasing and the
decreasing sequUences.

3.14 Theorem Suppose {s,} is monotonic. Then {s,} converges if and only if it
is bounded. o : S

Proof Suppose 5, < 5,41 (the proof is analogous in the other case).
Let E be the range of {5}, If {s,} is bounded, let s be the least upper
bound of E. Then

5, <5 n=123..
For every ¢ > 0, there is an integer N such that
§—E<Sy <5,

for otherwise s — ¢ would be an upper bound of E. Since {s,} increases,
n > N therefore implies
s—E<5, <5,

which shows that {s,} converges (to 5).
The converse foltows from Theorem 3.2{c).

UPPER AND LOWER LIMITS

3.15 Definition Let {s5,} be a sequence of real numbers with the following
roperty: For every real M there is an integer N such that n > ¥ impiies
s, > M. We then write :
s, — +®%.
Similarly, if for every real M there is an integer A’ such that n > N impliss
o< Af, we write

5, — — L.
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1t should be noted that we now use the symbol — (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as well as for convergent
sequences. but that the definitions of convergence and of fimit, given in Defini-
tion 3.1, are in no way changed.

316 Definition Let {5,} be a sequence of real numbers. Let E be the set of
numbers x (in the extended rea! number system) such that s, —x for some
subsequence {s,}. This set E contains all subsequential limits as defined in
Definition 3.5, plus possibly the numbers +o0c, —.

We now recall Definitions 1.8 and 1.23 and put

s* =sup E,
3* = inf E.

The numbers s*, 54 are called the upper and lower limits of {s,}; we use the
notation
lim sup 5, = 5%, lim inf 5, = Sx.
nsc H=
3.17 Theorem Let {s,} be a sequence of real numbers. Let E and s* have the
same meaning as in Definition 3.16. T hen s* has the following two properties:

(7 s*eE
By If x > 5*, there is an integer N such that n > N implies s, < x.
g D "

'Moreover, s* is the only number with the properties (a) and (b).

Of course, an analogous resuit is true for Sy
Proof

(@) Ifs* = +cc, then Eis not bounded above; hence {s,} is not bounded
above, and there is a subsequence {s,,; such that s, - +o0. .

If s* is real, then E is bounded above, and at least one subsequential
limit exists. so that (@) follows from Theorems 3.7 and 2.28.

If s* = — oo, then £ contains only one element, namely —co, and
there is no subsequential limit. Hence, for any real M, s, > M for at
most a finite number of values of n, so that 5, = —<©.

"I his establishes () in ail cases. )
(b) Suppose there is a number x > s* such that s, = x for infinitely
many values of n. In that case, there is a number y € E such that
3 > x > s*. contradicting the definition of s*.

Thus s* satisfies {a} and (&)

-

To show the unigqueness. suppose there are two numbers, p and 4.

which satisfv () and (b). and suppose 7 < 4. Choose xsuchthatp <x <g.
Since p satisfies (D), we have s, <X forn > N. Butthen g cannot satsiy (a).
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3.18 Examples

(@) Let {5,} be a sequence containing 2ll rationals. Then every real
pumber is a subsequential limit, and

limsups, = +o0, liminfs, -- w,
(&) Lets,=(—1"/[1+(1/n)]. Then
limsups, =1, liminfs,= —1.
LN+ R+

(¢) For a real-valued sequence {s,}, lim 5, = s if and only if

L -3

lim sup s, = lim inf 5, = 5.
= n—+o
We close this section with a theorem which is useful, and whose proof is
quite trivial:

3.19 Theorem Ifs, <1, for n > N, where N is fixed, then
lim inf 5, < liminf¢,,

o L g}

lim sup s, < lim sup ¢,.

r—+a} Ao

SOME SPECIAL SEQUENCES

We shall now compute the limits of some sequences which occur frequently,
The proofs will all be based on the following remark: If0 g x, <5, forn =2 N,
where N is some fixed number, and if 5, =0, then x, -0,

3.20 Theorem
1
(@ If p>0,thenlim — =0
pa N

(6) Ifp >0, thenlimZp=1.
(¢) lim&n=1

n=

. o B i
(d) If p >0 andais real, ihen lim —— =0
n-w (1 + pY

ey Iflx. < l.theniimx" = 0.

=
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Proof

(¢) Take n > (1/e)*/?. (Note that the archimedean property of the real
number system is used here.)

(b) If p>1, put x, -—\/p—l Thcn x, >0, and by the binomial
theorem,

1 -i-J!xllS (1 +xll)"=p’
so that

-1
O<x, < P,
n
Hence x, = 0. If p = 1, (b) is trivial, and if 0 < p < 1, the result is obtained
by taking recipro_cals.
(¢} Putx,= \"/ n — 1. Then x, = 0, and, by the binomial theorem,

nn—1)

=1 ">
n=01+x)2 2

Hence

Os.vc,,£~/T (n=2)

n—1
{d) Let k be an integer such that X > &,k > 0. For n > 2k,

)=k 41
O py> @t ="k 2

Hence
n 2k
< - < =
1+py »p

Since « — k < 0, n* ¥ =0, by {(a).
(¢) Takea =0 in (d).

Tk (n>2k).

SERIES

In th= remainder of this chapter, all sequences and series under consideration
4l be complex-valuad, unless the comrary is explic ittv stated. Extensicns of
some of the theorems which foliow, to series with terms in R*. are mentioned

in Txercise 12,
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@ Definition Given a sequence {a,}, we use the notation

q
L4 (=9
n=p
to denote the sum a, + @, + **° + 4. With {a,} we associate a sequence
{Sn}, Whel'e

For {s,} we also use the symbolic expression

a +0’2+03+"‘
or, more concisely,

4) 2

The symbol (4) we call an infinite series, or just a series. The numbers
s, are called the partial sums of the series. If {5,} converges to s, we say that
the series converges, and write

&
Y 4=
n=1

The number s is called the sum of the series; but it should be clearly under-
stood that s is the limit of a sequence of sums, and is not obtained simply by
addition.

If {s,} diverges, the series is said to diverge.

Sometimes, for convenience of notation, we shall consider series of the
form
()

a

L]
Mgl

n

And frequently, when there is no possible ambiguity, or when the distunction
is immaterial, we shall simply write Za, in place of (4) or (5).

Tt is clear that every theorem about sequences can be stated in terms of
series (putting @, = 5, and 4, = §, — 8, for n > 1), and vice versa. But it is
nevertheless useful to consider both concepts.

The Cauchy -criterion (Theorem 3.11) can be restated in the following
form:

Theorem Xa, converges if and onlv if for every £ >0 there is an integer

N such thar
f

m
0% i N u

i.l\'

&

|
I
&=

n |

Tme=nz= A
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In particular, by taking m = n, (6) becomes
la,| <& (n=N).
In other words:

@ Theorem If Z.a, converges, then im,_, , a, = 0.

The condition a, =0 is not, however, sufficient to ensure convergence
of Za,. For instance, the series

=y -

n=1
diverges; for the proof we refer to Theorem 3.28.

Theorem 3.14, concerning monotonic sequences, also has an immediate
counterpart for series.

3.24 Theorem A series of nonnegative' terms converges if and only if its
partial sums form a bounded sequence.

We now turn to a convergence test of a different nature, the so-called
“‘comparison test.”
3.25 Theorem
@ If |a,| <c, for n2 Ny, where No is some fixed integer, and if Zc,
converges, then La, converges.
(# Ifa,=d,>0fornzNo, and if Zd, diverges, then La, diverges.
Note that {b) applies only to series of nonnegative terms a,.

Proof Given ¢ > 0, there exists N > N, such that m > n > N implies

¢ S &,
"

e

by the Cauchy criterion. Hence

Y a

k=n

m
<Y lal €Y a<e,
k=n k=n

and (a) follows.
Next, (b) follows from (a), for if Za, converges, so must Zd, [note

-~

ihat (5} aiso follows from Theorem 3.241

i The expression ** noanegative " alwayvs refers 1o reai numbars,
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The comparison test is a very useful one; to use it efficiently, we have to
become familiar with a number of series of nonnegative terms whose conver-
gence or divergence is known.

SERIES OF NONNEGATIVE TERMS

The simplest of all is perhaps the geometric series.

326 Theorem If0<x <1, then

© i

xn = -

,,Zo 1—x

If x = 1, the series diverges.
Proof I x#1,
u 1 —x"*!
= xJ( =
Sn kg‘o 1-x

The resuit follows if we let # — 0. Forx = 1, we get
1+1+14-,
which evidently diverges.
In many cases which occur in applications, the terms of the series decrease
monotonically. The following theorem of Cauchy is therefore of particuiar

interest. The striking feature of the theorem is that a rather *‘thin” subsequence
of {a,} determines the convergence or divergence of Xa,.

3.27 Theorem Supposea, > a, = ay >+ 20. Then the series 3 =, a, con-
verges if and only if the series

(7) z 2kazk=ﬂ1 +2a3 +4a¢+8a8+“'
k=0

converges.

Proof By Theorem 3.24. it suffices to consider boundedness of the
partial sums. Let
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For n < 2%,
<a +(ay+a)+ 0+ (@4 + daeryg)
<ay +2a; + -+ 2as
=14,
50 that
(®) Sp <1y

On the other hand, if n > 2%,
S, ay +ay +{ay+ad+ + @u-rgy + 0+ 00
>3a, +a; +2a,+ 0+ 2 lan
= 41,
so that _
(9) 25, > 1.

By (8) and (9), the sequences {57} and {t} are either both bounded
or both unbounded. This completes the proof.

328 Theorem Y # converges if p > 1 and diverges if p < 1.

Proof If p <0, divergence follows from Theorem 3.23. If p>0,
Theorem 3.27 is applicable, and we are led 1o the series

< all~ P
j;Z'o 2“’ ,Z‘

Now, 2177 <1 if and only if 1 —p~<0, and the result follows by com-
parison with the geometric series (take x = 2!7P in Theorem 3.26).
As a further application of Theorem 3.27, we prove:

329 Theorem Ifp>1,

x 1

(10)

»=2 n{log n)*
converges: if p < 1, the series diverges.
Remark ‘‘log »” denotes the logarithm of n to the base e (compare Exercise 7,

Chap. 1): the number ¢ will be defined in 2 moment (see Deilnition 3.30). We
iet the series start witn # = 1. since lcg 1 = 0.
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Proof The monotonicity of the logarithmic function (which will be
discussed in more detail in Chap. 8) implies that {log n} increases. Hence
{1/nlogn} decreases, and we can apply Theorem 3.27 to (10); this
leads us to the series

= 1 = 1 1 ® 1

E, - = —

,(:,2 2X(log 2% ,(Z, (klog2)  (log 2)?,,; k*’

and Theorem 3.29 follows from Theorem 3.28.

(1D

This procedure may evidently be continued. For instance,

= 1
12 —_—
(12) =2nlognloglogn

diverges, whereas
e 1

13 '
(13 ,,;3 n log n(log log n)?

converges,

We may now observe that the terms of the series (12) differ very little
from those of (13). Still, one diverges, the other converges. If we continue the
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and
(13), we get pairs of convergent and divergent series whose terms differ even
less than those of (12) and (13). One might thus be led to the conjecture that
there is a limiting situation of some sort, a “‘boundary” with all convergent
series on one side, all divergent series on the other side—at least as far as series
with monotonic coefficients are concerned. This notion of “boundary” is of
course quite vague, The point we wish to make is this: No matter how we make
this notion precise, the conjecture is false. Exercises 11{5) and 12(b) may serve
as illustrations.

We do not wish to go any deeper into this aspect of convergence theory,
and refer the reader to Knopp's “Theory and Application of Infinite Series,”
Chap. IX, particularly Sec. 41.

THE NUMBER ¢

3.30 Definition e = 5‘ —

on’

Heren!=1-2-3---nifr>1l.and 0! =1,
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Since
=141+t bop
" 1-21-2-3 1°2n
<1+1+1+I+---+ <3
2 22 2n—1 *

the series converges, and the definition makes sense. In fact, the series converges
very rapidly and aliows us to compute e with great accuracy.

It is of interest to note that e can also be defined by means of another
limit process; the preof provides a good illustration of operations with limits:

1 "
3321 Theorem Iim (l + —) = e

R n

Proof Let T

n I JRNENN A |
Su'——za: t,,=(1+“)'

k=0

By the binomial theorem,

1y if, 1V, 2\
= — —_— — —— -—— P
: 1+1+2!(1 n)+3!(l ,,)(1 n)+

L

Hence 7, < 5,, so that e
(14) ) limsup1, <e,

nro0

by Theorem 3.19. Next, if n > m,

heidl+a(1-)+ P oy f et
zi g _n), +m’_( o (_ ")

Letn — o0, keepiné m fixed. We get

v

i , - \
iminf e, >l +1+ =+ 0+ —,
T 2! m:
so that
Sy, <liminfe,.
n=x
Letting m — oo, we finally get
(15) e < liminft,.
R= w0

The theorem follows from (14) and (15).
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1 .
The rapidity with which the series Z p converges can be estimated as

follows: If 5, has the same meaning as above, we have

1 1 1
MY T

e—35,

1 1 I } 1
|4 —— + 4ol —
<(n+1)!{ nil w1 e
so that :

1
(16) O<e—5,<—-
) . nin

Thus 5,0, for instance, approximates ¢ with an error less than 1077, The
inequality (16) is of theoretical interest as well, since it enables us to prove the
irrationality of ¢ very easily.

3.32 Theorem ¢ is irrational.

Proof Suppose e is rational. Then e = p/q, where p and g are positive
integers. By (16),

.

(17 ' 0<q!(e——sq)<é-

" By our assumption, gle is an integer. Since
i
ta
g
is an integer, we see that gl(e — 5,) is an integer. -
Since-q = 1, (17) implies the existence of an integer between 0 and 1.
We have thus reached a contradiction.

1
q!sq=q!(1+1+-?:—!+"'

Actually, e is not even an algebraic number. For a simple proof of this,
see page 25 of Niven's book, or page 176 of Herstein’s, cited in the Bibliography.

THE ROOT AND RATIO TESTS

@ Theorem (Root Test) Given Za,, put « = lim sup WAT-AR
n- o
Then

(@) ifx <], La, comverges;
(by ifa>1, La, diverges;
(¢) ifa=1, the test gives no information.
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Proof If « <1, we can choose f so that a < f <1, -and an integer N

such that
Ja,| <8
for n = N [by Theorem 3.17(b)]. That is, n > N implies

la,] < B

Since 0 < § < 1, Z8" converges. Convergence of Za, follows now from
the comparison test.

If @ > 1, then, again by Theorem 3.17, there is a sequence {m,} such
that

/|, 1 .
Hence |a,| > 1 for infinitely many values of n, so that the condition

a, —0, necessary for convergence of Za,, does not hold (Theorem 3.23).
To prove (c), we consider the series

1 3
Ly Ly
For each of these series @ = 1, but the first diverges, the second converges.

Theorem (Ratio Test) The series La,

Ay y

(@) converges if Bm sup <1,

B

() diverges if |2t

> 1 for all n = ny, where ng, is some fixed integer.

Proef If condition (@) holds, we can find f < I, and an integer N, such
that

for n = N. In particular,
1 1
laxs+1] <Blaxl,
: | ; | 2
iane2t < flawsi] < £%anl,

.En,-p; <,ﬁpia.'\'; .
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That is,
la,} < lan|p~" - £°

for n > N, and {a) follows from the comparison iest, since " converges.
If |@ges = |Gy} for n 2 no, it is easily seen that the condition 2, —+©

does not hold, and (b) follows.

Note: The knowledge that lima,,,/a, =1 implies nothing about the

convergence of Xa,. The series Z1/n and Z1 /n* demonstrate this.

3.35 Examples
(@) Consider the series

1 1+1+1 1+1+1+1+___
PRERET AR ?* T3 ’

for which

Jim inf %! = fim G) =0,

B o a,, B— o

lim mf\/— o,
n=roc n—+omw J3

1
lim sup \/_

r— @ n—+wm 2" /’5,

. Gy .. 1(3\"

lim sup—— = lim - 5) = + 0.
[ i <l " R—+cD

The root test indicates convergence; the ratio test does not apply.
() The same is true for the series

1 1 1 l i !

+_ —_— ...’
2-r1+ + +32 128+64+

where
lim inf — Gsy _ L
1 = =y
- " 8
lim sup =2,

but
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3.36 Remarks The ratio test is frequently easier to apply than the root test,
since it is usually easier to compute ratios than nth roots. However, the root
test has wider scope. More precisely: Whenever ihe ratio test shows conver-
gence, the roct test does too; whenever the root test is inconclusive, the ratio
“ fest is too. This iy a consequence of Theorem 3.37, and is illustrated by the
above examples.

Neither of the two tests is subtle with regard to divergence. Both deduce
divergence from the fact that a, does not tend to zero as » — .

3.37 Theorem JFor any sequence {c,} of positive numbers,

A ) L
Hm inf < Jim inf \n/;" ,

Lind Cx n—w

Cn

lim sup {'/c_,, < lim sup

+1
h=o n— oo Cu

Proof We shall prove the second inequality; the proof of the first is
quite similar. Put

Cn+1

o = lim sup

= "

if « = + o, there is nothing to prove. If a is finite, choose § > x. There
is an integer N such that

for n > N. In particular, for any p >0,
Crortr < Peva Kk=0,1,...,p—1).
Multiplying these inequalities, we obtain

cN+p = IBPCN’

or
<y (=N
fience
LIPS N SRRy
50 that
ich 1T SUp & Gy S 6
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by Theorem 3.20(b). Since (18) is true for every f > «, we have
lim sup \"/LT,. <a.

Laud: ]

POWER SERIES

3.38 Definition Given a sequence {c,} of complex numbers, the series

(19 ' zoc,, z"

is called a power series. The numbers c, are called the coefficients of the series;
z is a complex number.

In general, the series will converge or diverge, depending on the choice
of z. More specifically, with every power series there is associated a circle, the
circle of convergence, such that (19) converges if z is in the interior of the circle
and diverges if z is in the exterior (to cover all cases, we have to consider the
plane as the interior of a circle of infinite radius, and a point as a circle of radius
zero). The behavior on the circle of convergence is much more varied and can-

not be described so simply.

3.39 Theorem Given the power series Zc,z', puf

H .
«=limsup & icl, R=7
n—raoc

(Ifu=0R=+x;ifa=+0, K =0.) Then Zc,z" converges if 1z} <R, and
diverges if |z} > R.

Proof Put a, = c,z", and apply the root test:

lim sup & lg,} = |z| imsup 3 je] =7
n—w s ol

— iz

Note: R is called the radius of convergence of Te,z".

3.40 Examples

(@) The series Zr"z" has R=0.
-
() The series ¥ — has R= —oc. (In this case the ratio 12st is easier 10

apply than the rool test.)
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(c) The series £z° has R=1. If |z| =1, the series diverges, since {z"}
does not tend to 0 as n — co.

z"

(d) The series Z; has R =1. Tt diverges if z =1. It converges for all

other z with |z| = 1." (The last assertion will be proved in Theorem 3.44.)
"

(¢) The series )’ — has R =1. It converges for all z with {z| = 1, by
n

the comparison test, since |2*/n?| = 1/n?.

SUMMATION BY PARTS

3.41 Theotem Given two sequences {a,}, {b,}, put
Au = z Iy
k=0

ifn=0;put ALy =0. Then, if 0 < p < q, we have

q a—1
(20) Z a, bn = Z An(bn - bn-l-l) + Aqbq - Ap-lbp'
n=p r=p
Proof
q g q gq-1
zanbn = Z(An——An—l)bn= EAubn_ Z Anbn-!-l?
n=p n=p n=p A=p-1

and the last expression on the right is clearly equal to the right side of
(20).

Formula (20), the so-called *'partial summation formula,” is useful in the
investigation of series of the form Za,b,, particularly when {4,} is monotonic.
We shall now give applications.

Theorem Suppose

(a) the partial sums A, of Za, form a bounded sequence;
by bozbizbyz;
{¢) lmép,=0.

n—rcc

Then Za, b, converges.
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Proof Choose M such that |4,] < M for all n. Given £ > 0, there is an
integer N such that by < (¢/2M). For N < p < g, we have

L] q-1
Z ab,|= E Afb, —byyy) + Aqbq - Ap-lbp
a=p ncp
gq=1
SM|Y (b —bys)+by+ b,
h=p

=2Mb, <2Mby <.

Convergence now follows from the Cauchy criterion. We note that the
first inequality in the above chain depends of course on the fact that
bn - bn+l =0.

3.43 Theorem Suppose

@ lalzlalzlelz
(b) Cam-1 2 0! Cim < 0 (m = 1? 2: 3: . ):
(¢) lim,._c,=0.

Then ZLc, converges.

Series for which (b) holds are called “‘alternating series”’; the theorem was
known to Leibnitz.

Proof Apply Theorem 3.42, with g, = (=1Y"*%, b, = |c,|.

3.44 Theorem Suppose the radius of convergence of Lc,z" is 1, and suppose
Co=c ==, limy,g ¢, =0. Then Z¢,2" converges at every point on the
circle {z| = 1, except possibly at z = 1.

Proof Put g,=2" b,=c,. The hypotheses of Theorem 3.42 are then
satisfied, since
2

|Anl= _ll_zi’

n _ Htl
3 m =ll z
0

1-:

if |zl =1,z#1L

ABSOLUTE CONVERGENCE

The series a, is said to converge absolutely if the series Tia, converges.

: @ Theorem [/ Za, converges absolurely. then Za, converges.
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Proof The assertion follows from the inequality

m m
Zak = Z !akl’
k=n k=n

plus the Cauchy criterion,

3.46 Remarks For series of positive terms, absolute convergence is the same
as convergence.

If Za, converges, but Zig,| diverges, we say that Za, converges non-
~absolutely. For instance, the series

2

converges nonabsolutely (Theorem 3.43).

The comparison test, as well as the root and ratio tests, is really a test for
absolute convergence, and therefore cannot give any information about non-
absolutely convergent series. Summation by parts can sometimes be used to
handie the latter. In particular, power series converge absolutely in the interior
of the circle of convergence.

We shall see that we may operate with absolutely convergent series very
much as with finite sums. We may multiply them term by term and we may
change the order in which the additions are carried out, without affecting the
sum of the series. But for nonabsolutely convergent series this is no longer true,
and more care has to be taken when dealing with them.

(="
]

ADDITION AND MULTIPLICATION OF SERIES

Theorem If Za,= A, and Ib,= B, then Z(@,+b,)=A+ B, and
Xea, = cd, for any fixed c.

Proof 1ot

Then

Since lim, ., A, = 4 and im___ B, = B. we see that

im(4, + B)=A+ B,

fie proof of e second zssertion is even simpler.
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Thus two convergent series may be added term by term, and the result-
ing series converges to the sum of the two series, The situation becpme§ more
complicated when we consider multiplication of two series. To begin thh,. we
have to define the product. This can be done in several ways; we shall censider
the so-called “Cauchy product.”

3.48 Definition Given Za, and Zb,, we put
=2 &b,y (n=0,1,2,..)
£=0

and call Z¢, the product of the two given series.

This definition may be motivated as follows. If we take two power
series La,z" and Xb,z", multiply them term by term, and collect terms contain-
ing the same power of z, we get

18

a,z" Y b =(@o+az+ayzt + Wb+ bz +bz7 +0)
[¢] n=0

i

n

=aobo + (.aob1 + albo)z + (Qob;y_ -+ albl +a, bo):z + -
=C0+C12+C222+"'.

Setting z = 1, we arrive at the above definition.
349 Example If

A=Eak! B..':

n
k=0

ReE

n
bkr C.rl = z Ck"
0 k=0

"

and A, — A4, B, — B, then it is not at ail clear that {C,} will converge to AB,
since we do not have C, = 4, B,. The dependence of {C,} on {4,} and {B,} is
quite a complicated one (see the proof of Theorem 3.50). We shail now show
that the product of two convergent _s._eries may actually diverge.

The series

S

— 1y I 1
NSRS RERNE N

1

n

converges (Theorem 3.43). We form the product of this series with iself and
obain
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so that
2 1
" = -n" *
= )k=zo\/(n—k+1)(k+1)
Since
2. - N s 2
(n—k+1)(k+I)=(g+I) —(g-—k)zs(g+l) :
we have

so that the condition ¢, —0, which is necessary for the convergence of I¢,, is
not satisfied.

In view of the next theorem, due to Mertens, we note that we have here
considered the product of two nonabsoclutely convergent series.

3.50 Theorem Suppose

@«
(@) Y a, converges absolutely,
n=0

® Sa =4,
=0

© S5=5
r=0

(@)
Then

akb,,_t (n=0, 1, 2,--.).

aﬁ
i
e
L=1

a
Y e, = AB.
n=0

That is, the product of two convergent series converges, and to the right
value. if at least one of the two series converges absolutely.

Proof : Put

4, =_Z°ah B, = i b, G, =20€k, B.=B, - B.
Then
Co=agbg + (agby + a,by) + - + (@ob, +aph,_; + - +a,by)
=aoB,+a;B,_, + - +a,B,
=ag(B + f) +ay(B+foey) + -+ a B+ Bo)

i B4 s B 1 oo s
ApB + Qofy T Afie-y + 1+ @,f3g
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Put
Yo = aoﬁn + alﬂu-l + 4 anﬁﬂ'
We wish to show that C,— AB. Since A,B — AB, it suffices to
show that
@1 lim y, = 0.
Put
a=Y |a,].
=0

{It is here that we use (a).] Let ¢ >0 be given. By (c), §, 0. Hence we
can: choose N such that |B,| <& for n = N, in which case
|¥al < [BoGw + 4 ByGen| + | Bys+1@n-n-1 + == + Braio]
<oty + o + By, yl + 2.
Keeping N fixed, and letting n — oo, we get

lim sup |7.| < ez,

Ll -+

since a, — 0 as k — cc. Since ¢ is arbitrary, (21) follows.

Another question which may be asked is whether the series Ze¢,, if con-
vergent, must have the sum AB. Abel showed that the answer is in the affirma-
tive. '

351 Theorem If the series Xa,, Tb,, Ic, converge to A, B, C, and
c.=aph, + - +a,by, then C = AB.

Here no assumption is made concerning absolute convergence. We shall
give a simple proof (which depends on the continuity of power series) after
Theorem 8.2.

REARRANGEMENTS

3.52 Definition Let {k}.n=1.2,3...., be a sequence in which every
Positive integer appears once and only once (that is, {k,} is a 1-1 function from

J onto J, in the notation of Definition 2.2), Putting
a,'t:akn {n=75213&;'x

- F3

we say that La, is a rearrangement of Za,.
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If {s,}; {s;} are the sequences of partial sums of Za,, La;; it is easily seen

’

that, in general, these two sequences consist of entirely different numbers.
We are thus led to the problem of determining under what conditions all
rearrangements of a convergent series will converge and whether the sums are
necessarily the same.

3.53 Example Consider the convergent series

(22) I=3+3—d+i-p+-

and one of its rearrangements

(23) THd=dd+d—d+3+dr -4+

in which two positive terms are always followed by one negative. If s is the
sum of (22), then

s<l—44+4=4%
Since
1 1 1
w3 w1 w0
for k= 1, we see that s} <5, <5, <+, where 8, is nth partial sum of (23).
Hence

lim sup 5; > 54 = £,

=0

so that (23) certainly does not converge to s [we leave it to the reader to verify
that (23) does, however, converge].
This example illustrates the following theorem, due to Riemann.

3.54 Theorem Ler Za, be a series of real numbers which converges, but not
absolutely. Suppose

—w0=afi<a,

(24) liminfs, =2, lim sup s; = 8.

st n—w

Proof Let

25)
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Then pp—4n =05 Pa+Go=|2,|, 20,4, 20. The series Ip,, Ig,
must both diverge.
For if both were convergent, then

Z(p, + 4.) = Zla,|

would converge, contrary to hypothesis. Since
N N N N
Zan=z (pn_qn)=zpn—zq;|s
i n=1 n=1 n=1 n=1
divergence of Ip, and convergence of Zg, (or vice versa) implies diver-

gence of Za,, again contrary to hypothesis. ) ‘
Now let P, P,, P4, ... denote the nonnegative terms of Xa,, in the
order in which they occur, and let @y, 0,, @5, ... be the absolute values
of the negative terms of Za,, also in their original order.
The series TP,, £Q, differ from Zp,, Zg, only by zero terms, and

are therefore divergent. .
We shall construct sequences {m,}, {k,}, such that the series

Pi+-+P,, —Q = — Oy +Ppsr +
+ P, — Ok 41
which clearly is a rearrangement of Za,, satisfies (24).
Choose rteal-vaiued sequences {x,}, (. such that z, -z B, =8,

2, < B, B >0 .
Let m,, k, be the smallest integers such that

_..._ka+...’

P, + 4 Py, > fi.

P+ + Py =0y — = O <y
let m,, k, be the smallest integers such that
Pi++ P, -0 — = O F P+ F P > B,
Pl 4Py — O — = QO+ P+ Poy — Oy

— = O, <o,

and continue in this way. This is possible since ¥P, and X0, diverge.
If x,, y, denote the partial sums of (25) whose last terms are P, ,
n
- an s tht‘,n

ixn—ﬁnl s}:,Wrn‘ E_l-',,-—if,,! = Qk:e‘

Since P, =0 ard O, =0 asn— o, wesee that x, — f. v, — o
Fi'nallv. it is ciear that no number less than 2 or greater than ff can
- - - . v - ~ ,,’ -
be a subsequential limit of the partial sums of (253,
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3.55% Theorem If Za, is a series of complex numbers which converges absolutely,
then every rearrangement of La, converges, and they all converge to the same sum.

Proof Let Za; be a rearrangement, with partial sums s,. Given ¢ >0,
there exisis an integer N such that m > n > N implies

@8) 3 lal <

Now choose p such that the integers 1,2, ..., N are all contained in the
set ky, k3, ..., k, (we use the notation of Definition 3.52). Thenifn > p,
the numbers 4, ..., a,; will cancel in the difference 5, —5,, so that

[5, — 5.| <&, by (26). Hence {s5} converges to the same sum as {s,}.

EXERCISES ' _ -

1. Prove that convergence of {s,} implies convergence of { [s«]}. Is the converse true?
2. Calculate lim (Va2 + n — n).

LEY-.]

3, If s; = V2, and

-"u+1=‘\'/2+'\/s_, (H=1,2,3,...),
prove that {s,} converges, and that 5, <2forn=1,2,3, ... .

4. Find the upper and lower Jimits of the sequence {s,} defined by

Sim-1y, .
2 y Som+y =5 T Sim.

2

Sl=0; S2m =

5. For any two real sequences {a.}, {,}, prove that

lim sup (g, + 5,) < lim sup @. + lim sup &,,

LT n—o LT}

provided the sum on the right is not of fhe form = — 0,

6. Investigate the behavior (convergence or divergence) of Ta, if
(@ a, =Vn+1~— \/:_z;

Vie1—vn,

(5 an = ;
(@ an=(Vn—1y;

. 1
(d) an =T for complex values of z,

7. Prove that the convergence of Za, implies the convergence of

' Gn

_—

if @, == 0.
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8. If Za, converges, and if {b,} is monotonic and bounded, prove that Za,&, con-

verges. . .
9. Find the radius of convergence of each of the following power series:

-l 2.
(@) ¥ n*z", & L
b n’ -
© 5 @) L3~

10. Suppose that the coefficients of the power series 3 a, z" are integers, infinitely many
of which are distinct from zero. Prove that the radius of convergence is at most 1.
11. Suppose g, >0, 5, = a, + - -~ + @, and Zq. diverges.

a .
d S,
{(a) Prove that Y TTa iverge:

{b) Prove that

ansy AN+ L]
ERPIEE Spubiui ) |

Swel LET] SNk

and deduce that 3. ? diverges.

(¢) Prove that

ax
and deduce that Y, <3 converges.

(d) What can be said about

Gn
1 4 naa.

z

tp
and El -+ Rzal?

12. Suppose a. >0 and Za, converges. Put

-]
r,,:_z [ .
{a) Prove that
n O 40
Fae | m

[ 3
if m < n. and deduce that 3 = diverges.
: -
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(b) Prove that

a — P
fl' <2(\/rn_ “'/rni'l)
VrF

n

an
and deduce that 3 /- converges.
Tn

13. Prove that the Cauchy product of two absolutely convergent series converges
absolutely.

14. If {5,} is a complex sequence, define its arithmetic means o, by
anzsm (n=0,1,2,...).
n—1
{a) If lim 5, =5, prove that im ¢, = 5.
(b) Construct a sequence {s.} which does not converge, although lim o, =0.
(c) Canit happen that s, > 0for all » and that lim sup s, = o<, although lim o, =07
(d) Put @p = $n = Sn-1, fOr # 2z 1. Show that

1

> ka.
!1+1x§1 a

Samm Oy =

Assume that lm (na,) =0 and that {c.} converges. Prove that {s.} converges.
[This gives a converse of (), but under the additiona! assumpticn that na,— 0.]
{e) Derive the last conclusion from a weaker hypothesis: Assume M < cc,
{na.| << M for all n, and lim o, =o. Prove that lim 5, =g, by completing the
following outline: ’

If m<n, then

m—1 , 1 L
R - m(a’I e T T i=§ﬂ(s" = si).
For these |,
st < (n— DM < (n—m— I)M‘

Fix ¢ > 0 and associate with each n the integer m that satisfies

- N PO . T .- - : -
Then im — 1iin—mj-= 1 ¢and .sn— 5 < Me, Hence

nmsup s, — o < AME

o=

Since £ was grbitran. im & = o.
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15. Definition 3.21 can be extended to the case in which the a, lie in some fixed R*.
Absolute convergence is defined as convergence of Z|a,|. Show that Theorems
3.22, 1.23, 3.25(a), 3.33, 3.34, 342, 345, 347, and 3.55 are true in this more
general setting. {Only slight modifications are required in any of the proois.)

16. Fix a positive number «. Choose x, > ‘\/;, and define x2, X3, X4, ..., by the

recursion formula
1 i a
Xn41 & 2 Xn Xn .

(a} Prove that {x,} decreases monotonically and that lim x. = Va.
(b) Put &x =Xy — 1'%, and show that
2 e
so that, setting f =2V,
5

Ent+1 <ﬁ(,3) n=1,2,3,...)

{c) This is a good algorithm for computing square roots. since the recursion
formula is simple and the convergence is extremely rapid, For example, if x =3
and x, = 2, show that &/ < {5 and that therefore

£s <4+ 107%, g <4 10732,

17. Fix a« > 1. Take x, > \f;, and define

.2
%= Xp X,
= Xn T .
11— %, l—xy

Xp+1 =

(@) Prove that x; > x3 > X5 > """
(h) Prove that xy <<x4 <Xg < "'
(c) Prove ihat lim x, =% a. .
(d) Compare the rapidity of convergence of this process with the one described
in Exercise 16,
18. Replace the recursion formula of Exercise 16 by
rp—1 L

Xp-i: & Xy = Xn

r

.o . - - - . . I - ___.‘.: :
where p is a fixed positive Inieger. and describe the behavior of the resuiting

seguences X
18. Associate to each sequence a = ‘., in which . 15 0 or 2. the real numoper

i ]n
IR

rMa)l =

Prove that the set of all xuatis preciseiy the Cantor set described in Sec. L4+
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20. Suppose {p.} is a Cauchy sequence in a metric space X, and -s_c;me subsequence
{pw} converges to a point p € X. Prove that the full sequence {p.} converges to p.
2). Prove the following analogue of Theorem 3.10(h): If {E,} is a sequence of closed
nonempty and bounded sets in a complere metric space X, if E, = L.y, and if
lim diam E, =0,

L]

then |7} £, consists of exactly one point.
22. Suppose X is a nonempty compiete metric space, and {G.} is 2 sequence of
dense open subsets of X. Prove Baire’s theorem, namely, that (){G, is not
empty. (In fact, it 15 dense in X.} Hinz: Find 2 shrinking sequence of neighbor-
hoods E, such that E, = G,, and apply Exercise 21,
23. Suppose {p.} and {g.} are Cauchy sequences in a metric space .X. Show that the
sequence {d(p., g.)} converges. Hint: For any m, n,

~

d(Pa, @} < d(pu, Po) + APy Gm) + d(Gu , §2);
it follows that

1d(py, 42) — d(Pm, gm)|
is small if m and » are large.
24. Let X be a metric space.
(a) Call two Cauchy sequences {p.}, {g.} in X equivalent if

tim d{p., g} =0.

‘Prove that this is an equivalence relation.
{b) Let X* be the set of all equivalence classes so obtained. If Pe X * Qe X*,
{pn} € Ps {q-} € Q, define

A(Ps Q) = hm d(p-nQn);

LEY--

by Exercise 23, this limit exists. Show that the number A(P, @) is unchanged if
{pa} and {q.} are replaced by equivalent sequences, and hence that A is a distance
function in X*.
(c) Prove that the resulting metric space X* is complete.
{d) For each p € X, there is a Cauchy sequence all of whose terms are p.let P,
bz the element of X* which contains this sequence. Prove that
APy, Py) =d{p, q)

forall p,g € X. In other words, the mapping ¢ defined by ®(p) = P, is an isometry
{i.e., a distance-preserving mapping) of X into X*.
{¢)} Prove that @{ X} is dense in X* and that o/ X) = X*if X is compiete. By (d),
we may idemtify X and (A") und thus regard X as embedded in the compieze
meirie space X% We cell VY il compioiion of X,

25. Let X be the merric space whose points are the rational numbers, with the metric
d{x, y) =ix—¥:, What is the completion of tiis space? (Compare Exercise 24.;

4

CONTINUITY

The function concept and some of the related terminology were introduced in
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested
in reat and complex functions (i.e., in functions whose values are real or complex
numbers) we shall also discuss vector-valued functions (i.e., functions with
values in R¥) and functions with values in an arbitrary metric space. The theo-
rems we shall discuss in this general setting would not become any easier if we
restricted ourselves to real functions, for instance, and it actually simplifies and
clarifies the picture to discard unnecessary hypotheses and to state and prove
theorems in an appropriately general context.

The domains of detinition of our functions will also be metric spaces,
suitably specialized in various instances.

LIMITS OF FUNCTIONS

1 Dafinition L2t ¥Yand Y bo metric spaces; suppose F o X, Fmaps Finto

A
Y. and p is a limit point of E. We write f(x} +¢g as x—p, or
(1 lim 7 (x) =2 )

==F
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if there is a point qé Y with the following property: For every ¢ > 0 there
exists a 8 > 0 such that

@ dy(f(x),q) < ¢
for all points x € E for which

3) 0 <dx(x,p) <$.

The symbols dy and dy refer to the distances in X and ¥, respectively.

If X and/or Y are replaced by the real line, the complex plane, or by some
euclidean space R*, the distances dy, dy are of course replaced by absolute values,
or by norms of differences (see Sec. 2.16).

It should be noted that pe X, but that p need not be a point of E
in the above definition. Moreover, even if pe E, we may very well have
£(p) # i, £(x).

We can recast this definition in terms of limits of sequences:

4.2 Theorem Let X, Y, E, f, and p be as in Definition 4.1. Then
4 limf(x) =g

X p

if and only if

) lim f(p,) =¢

sl -]

Jor every sequence {p,} in E such that

(6) po#p,  lmp, =p.
Proof Suppose (4) holds. Choose {p,} in E satisfying (6). Let ¢>0
be given. Then there exists § > 0 such that dy(f(x),q)<¢ if xe E
and 0 <dy(x, p) <. Also, there exists N such that » >N implies
0 <dy(p,,p) <é. Thus, for n>N, we have d\(f(p,),q) <& which
shows that {5) holds.

Conversely, suppose (4) is false. Then there exists some & > 0 such
that for every & > 0 there exists 2 point x € E {depending on &), for which
dy(f(x).q) = € but 0 < dy(x, p) < d. Takingd,=1/n(n=1,2,3,...), we
thus find & sequence in £ satisfying (6) for which (5) is false.

Coroliary If f has a limit ar p. this fimir is unigue,

This follows from Theorems 3.2(p) and 4.2.
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43 Definition Suppose we have two complex functions, f and 9, both defined
on E. By f+ g we mean the function which as_signs to each point x of E the
number f(x) + g(x). Similarly we define the difference f— g, the product fg,
and the quotient flg of the two functions, with the understanding th_at the quo-
tient is defined only at those points x of E at which g(x} # 0. If f assigns to each
point x of E the same number ¢, then f is said to be a constant i_'unctaon, or
simply a constant, and we write f=c. if 'f and g are real functlcn_:s, and if
f(x) = g(x) for every x & E, we shall sometimes write f > g, for brevity.
Similarly, if f and g map E into R* we define f + gand f- g by

(f + g)(x) =f(x) + glx), (- 8)x) = £(x) - 8(x);
and if 2 is a real number, (Af)(x) = A(x}.

4.4 Theorem Suppose E c X, a metric space, p is a limir poz’nt of E, fand g

are complex functions on E, end
lim f(x) =4, lim g(x) = B.
x—p xp
Then (@) lim (f+g)(x)=A4 + B,
x=p
() lim (fg)(x) = 4B;
x—p
. {f ) A
¢) Iim (— (x)==,if B#0.
{c) im 13 7
Proof In view of Theorem 4.2, these assertions follow immediately from
the analogous properties of sequences (Theorem 3.3).

Remark Iffand g map E inte R* then (a) remains true, and (b) becomes
() lim (f-g)(x)=A-B.

x=p

(Compare Theorem 3.4.)

CONTINUOUS FUNCTIONS

4.5 Definition Suppose X and Y are metric spaces, £ < X, pe E and f maps
E into Y. Then f is said to be continuous ar p if for every ¢ > O there exisis &
¢ > 0 such that 7 '
' d)(.f(x)-_f(p]} <&

for ail points x € E for which dyx. p) < 0. o ' ‘
If fis continuous at every point of E, then fis said to be continuos on £.
) rder 1o b2

It should be noted that 1 has to be defined ai the poInt 2 in Ordes
R . - LRI 3 K ~ - . 4010
continuous zt p. {Compare this with the remark foliowing Detnition 4.1.)
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If p is an isolated point of £, then our definition implies that every function
f which has E as its domain of definition is continuous at p. For, no matter
which & > 0 we choose, we can pick d > 0 so that the only point x € E for which
dy(x,p}y < dis x =p; then '

dy(/(x), /() =0 <e.

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a
limit point of E. Then f is continuous at p if and only if im,_, , f(x) = f(p).

Preof This is clear if we compare Definitions 4.1 and 4.5.

We now turn to compositions of functions. A brief statement of the
following theorem is that a continuous function of a continuous function is
continuous.

4.7 Theorem Suppose X, Y, Z are metric spaces, Ec X, fmaps Einto Y, g
maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

h(x) = g(f(x)) (x e E),

If f is continuous at a point p € E and if g is continuous at the point f(p), then h is
continuous at p.

This function /1 is called the composition or the composite of fand g. The
notation

h=g-f

is frequently used in this context.

Proof Let ¢ >0 be given. Since g is continuous at f{p), there exists
1 > 0 such that

dz(g9(r), gf(p))) < eif dy(3, f(p)) < n and y € f(E).
Since fis continuous at p. there exists § > 0 such that
dy(f(x), f(p)) <nif dy(x, p) <dand xe E.
It follows that
dz(i{x). i(p)) = dy{g(f (x)), g/ (pD) < &

if dy(x, p) < 0 and x e E. Thus £ is continuous at p.
4.8 Theorem A mapping { of & meiric space X inic a meiric space Y is con-
timious on X if and onhy if £ 7H(V) is open in X for every open set Vin Y.

{Tmverse images are defined in Definition 2.2.) This is a very useful charac-
{2rizaton of continuily,

Proof Suppose fis continuous on X and Vis an open setin ¥. We have
to show that every point of £ (V) is an interior point of f~!(V). So,
suppose p € X and f(p) e V. Since V is open, there exists & > O such that
y e Vif d(f(p), ¥) < &; and since f is continuous at p, there exists > 0
such that dy(f(x), f(p)) < ¢ if dy(x, p) < é. Thus xef " *(V) as soon as
dy(x, p) < &. :

Conversely, suppose f (V) is open in X for every open set ¥Vin Y.
Fix pe X and & > 0, let ¥ be the set of all y € ¥ such that dy(y, f(p)) < &.
Then ¥ is open; hence f ~*(V') is open; hence there exists & > 0 such that
xef~(V)as soon as dy(p, x) < é. Butif xe f~1(¥), then f(x)e ¥, so
that dy(f(x), f(p) < s.

This completes the proof.

C;lrollary A mapping f of a metric space X into a metric space Y is continuous if
and only if f "Y(C) is elosed in X for every closed set Cin Y.

This follows from the theorem, since a set is closed if and only if its com-
plement is open, and since f ~'(E°) = [f "HE)} forevery Ec Y.

We now turn to complex-valued and vector-valued functions, and to
functions defined on subsets of R*.

4.9 Theorem Letfand g be complex continuous functions on a metric space X.
Then f + g, fg, and f /g are continuous on X.
In the last case, we must of course assume that g(x) # 0, for all x = X.

Proof At isolated points of X there is nothing to prove. At limit points,
the statement follows from Theorems 4.4 and 4.6.

4.10 Theorem

{a) Let f,, ..., |, be real functions on a metric space X, and let § be the
mapping of X into R* defined by

{7 ix) = (i(x), .. L Alx)) (xe X
then { is continuous if and only if each of the functions f,, ..., fi is continuous.

(b} Iff and g are cominuous mappings of X into R*, thenf -~ g andf+g
are continuous on X.

The funcuons ¢, ..., f; are called the components of £ Note that
f + ¢ is a mapping intc R*. whereas f - g is a rea/ function on X,
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The conclusion may also be stated as follows: There exist _-poinrs p and g
in X such that f(q) < f(x) £f(p) jor all x € X; that is, f attains its maximum
(at p) and its minimum (at ¢).

Proof By Theorem 4.15, f(X) is a closed and bounded set of real num-
bers; hence f(X) contains

M=supf(X) and m=inff(X),
by Theorem 2.28.

417 Theorem Suppose f is a continuous 1-1 mapping of a compact metric
space X onto a metric space Y. Then the inverse mapping f ~' defined on Y by

U =x xeX)

is a continuous mapping of Y onto X.

Proof Applying Theorem 4.8 to /~! in place of f, we see that it suffices
to prove that f(J) is an open set in Y for every open set Vin X. Fix such
aset V.

The complement V< of V is closed in X, hence compact (Theorem
2.35); hence (V) is a compact subset of ¥ (Theorem 4.14) and so is
closed in ¥ (Theorem 2.34). Since f is one-to-one and onto, f(V} is the
complement of (1"°). Hence f(V') is open.

4.18 Definition Let f be a mapping of a metric space X into a metric space Y,
We say that fis uniformly continuous on X if for every & > 0 there exists é > 0
such that

(13) 7 dy(f(p). flg) <&

for all p and g in X for which dy(p, g) < 6.

Let us consider the differences between the concepts of continuity and of
uniform continuity, First, uniform continnity is a property of a function on a
set, whereas continuity can be defined at a singie point. To ask whether a given
function is uniformly continuous at a certain point is meaningless. Second, if
fis continuous on X, then it is possible to find, for each & > 0 and for each
point p of X, 2 number & > 0 having the property specified in Definition 4.5. This
& depends on ¢ and on p. If fis. however. uniformly continuous on X. then it is
passible, for each ¢ > 0. to find one number § > 0 which will do for alf points

TR Y
FAR R e R

Evidently. every uniformlv continuous function is continuous. That ths
WO Concents are eguivalent on compact sets follows from the next theoram.
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4.19 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then f is uniformly continuous on X.

Proof Let £>0 be given. Since f is continuous, we can associate to
each point p € X a positive number ¢(p) such that

) g€ X,de(p,q) <§(p) implies dy(f(p), S@) <3

Let J(p) be the set of all ¢ € X for which
(17) dx(p, q) < 19(p).

Since p € J(p), the collection of all sets J(p) is an open cover of X; and
since X is compact, there is a finite set of points p,, ..., p, in X, such that
(18) XcJ(p)w- - viip)
We put
(19 ¢ =1 min [¢(p,), ..., ¢(pn)]-

Then é > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness, is essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let ¢ and p be points of X, such that dy(p, g) < 8. By (18), there
is an integer m, 1| < m < n, such that p € J(p,); hence

(20) (P, Pm) < }(Pm)s
and we also have
dx(‘]s pm) < dX(ps Q) + d,\'(P: pm) < 6 + %qb(pm) = ¢(pm)'
Finally, (16) shows that therefore

(/). (@) < dy(F (2 S (Pn)) + d(f (). S (Pa)) < &

This completes the proof.

An alternative proof is sketched in Exercise 10.
7 We now proceed to show that compactness Is essential in the hvpotheses
ot Theorems 4.14, 4.15, 4.16, and 4.19,

420 Theorem Ler E be a noncompact set in R*. Then

{a) there exists a continuous function on E which is nor bounded:
18} riore exists g contiitious and bounded function on E which has no
Maxinmnt,

I7. in gaairion. E is bounded. iien
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(21)

(22)

(23)

(¢) there exists a continuous function on E which is not uniformly
contintous.

Proof Suppose first that E is bounded, so that there exists a fimit pc;int
x, of E which is not a point of E. Consider

(xe E).

1
0 =55
This is continuous on E (Theorem 4.9), but evidently unbounded, To see
that (21) is not uniformly continuous, let £ > 0 and & > 0 be arbitrary, and
choose a point x € E such that |x — x,| < 6. Taking f close enough to
x, , we can then make the difference /(1) — f (x)| greater than &, although
|t — x| < 8. Since this is true for every 6 > 0, fis not uniformly continu-
ous on E.

The function g given by

g(x) (xeE)

= 1 + (x - xu)z
is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that

sup g{x) =1,

xcE

whereas g(x) < 1 for all xe £. Thus Ig has no maximum on E.
Having proved the theorem for bounded sets E, let us now suppose
that E is unbounded. Then f(x) = x establishes (a), whereas

2

X
h(x) = ekE
r(x) 1+ x2 (xeE)
establishes (b), since
sup A(x) =1
xeE

and h(x) < 1 for all xe E. »

Assertion {¢) would be false if boundedness were omitted from the
hypotheses. For, let £ be the set of all integers. Then every function
defined on E is uniformly continuous on E. To see this, we need merely
take & < 1 in Definiton 4.18.

We conclude this section bv showing that compactness is also essential in

Theorem 4.17.
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421 Example Let X be the half-open interval [0, 27) on the real line, and
Jet f be the mapping of X onto the circle ¥ consisting of all points whose distance
from the origin is 1, given by

(24) f(t)=(costsint) (0<t<2m)

The continuity of the trigonometric functions cosine and sine, as well as their
periodicity properties, will be established in Chap. 8. These results show that
f is a continuous 1-1 mapping of X onto Y.

However, the inverse mapping (which exists, since f is one-to-one and
onto) fails to be continuous at the point (1, 0) = f{0). Of course, X is not com-
pact in this example. (It may be of interest to observe that ™' fails to be
continucus in spite of the fact that ¥ is compact!)

CONTINUITY AND CONNECTEDNESS

4,22 Thearem [f fis a continuous mapping of a metric space X inlo a metric
space Y, and if E is a connected subset of X, then f(E) is connected.

Proof Assume, on the contrary, that f(E) = A u B, where 4 and B are
nonempty separated subsetsof Y. PutG=En f~1(4), H=E  f~}(B).

Then E = G u H, and neither G nor H is empty.

Since A < A (the closure of A), we have G = f ~'(A4); the latter set is
closed, since fis continuous; hence G = f~!(4). It follows that f(G) = 4.
Since f(H) = B and 4 n B is empty, we conclude that G n H is empty.

The same argument shows that G ~ H is empty. Thus G and H are
separated. This is impossible if £ is connected.

423 Theorem Ler f be a conrinuous real function on the interval [a, b}. If
f(a@) < f(b) and if ¢ is a number such that f(a) < c < f(b), then there exists a
point x € {a, b) such that f(x}) =c.

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the
theorem says that a continuous real function assumes all intermediate values on
an interval.

Proof By Theorem-2.47, [a, b] is connected; hence Theorem 4.22 shows
that f(la, b]) is a connected subset of R, and the assertion follows if we
appeal once more to Theorem 2.47.

424 Remark At first glance. it might seem that Theorem 4.23 has a converse.
Tha is, one might think that if for any two points x; < x, and for any number ¢
between 7(x,} and f(x.) there is a point x in (x,. x;} such that f{x) = ¢ then f
Hlust be conunuous.

Thar this is not so may be concluded from Exampie 4.27(d).
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DISCONTINUITIES

If x is a point in the domain of definition of the function f at which f is not
coutinuous, we say that f is discontinuous at x, or that f has a discontinuity at x.
If f is defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the
right-hand and the left-hand limits of f at x, which we denote by f(x+) and f(x ),
respectively.

4.25 Definition Let f be defined on (g, 5). Consider any point x such that
a<x<b We wrte

fx+)=¢q

if £(1,) — g as n— oo, for all sequences {r,} in (x, b) such that ¢, — x. To obtain
the definition of f(x—), for a < x < b, we restrict ourselves to sequences {¢,} in
(a, x).

It is clear that any point x of (a, b), lim f(r) exists if and only if

—=x

fx+)=flx-)= ltilnf(t)-

426 Definition Let f be defined on (a, b). If fis discontinuous at a point x,
and if f(x+) and f(x—) exist, then f is said to have a discontinuity of the firs
kind, or a simple discontinuiry, at x. Otherwise the discontinuity is said to be of
the second kind,

There are two ways in which a function can have a simple discontinuity:
gither f(x+) # f(x—) [in which case the value f(x) is immaterial], or f(x+) =

fGe=) # fx)

4,27 Examples
(@) Define

N {x rational),
Sy = {0 (xirrational).
Then £ has 2 discontinuity of the second kind at every point x, since
neither f{x-+) nor f(x —) exists.
{8} Define

) = ir (¥ rauionai},
7 it (x trrational).

Then f is continuous at x = 0 and has a discontinuity of the second
kind at every other point.

{c) Define
x+2 (—3<x< -2,
J)=¢(—x-2 (—2=<x<0),
x+2 O=x<l)

Then f has a simple discontinuity at x =0 and is continuous at
every other point of (-3, 1).
{d) Define

1
709 = sin . (x #£0),

0 (x =0).
Sinf:e neither f(0+) nor f(0—) exists, / has a discontinuity of the
second kind at x =0. We have not vet shown that sin x is a continuous

function. If we assume this result for the moment, Theorem 4.7 implies
that /'is continuous at every point x # 0.

MONOTONIC FUNCTIONS

We shall now study those functions which never decrease {or never increase) on
a given segment.

4.28 Definition Let f be real on (a. ). Then f is said to be monoronically
f'ncreasing on (a,b) if a < x < y < b implies f(x) < f()). If the last inequality
1s reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing
functions,

4_.29 Theorem Ler f be monotonically increasing on (a, b). Then f(x+) and
J(x—) exist at every point of x of (a. b). More precisely,

(25 sup f{t) = flx=) < fx) < f(x+) = inf f(1).

acr<x x<t<bhb

Furthermore, if a < x <1 < b. then
{25 Jx=y=;(v—n

Anajogous results evidently hold for monotonicaliv decreasing functions.



96 PRINCIPLES OF MATHEMATICAL ANALYSIS

Proof By hypothesis, the set of numbers f(¢t), where a < t < x, is bounded
above by the number f(x), and therefore has a Jeast upper bound which
we shall denote by 4. Evidently 4 < f{(x). We have to show that
A=f(x=)

Let ¢ > 0 be given. It follows from the definition of 4 as a least
upper bound that there exists 5> 0suchthata< x— & <xand

(27) A—e<f(x—-3) <A
Since f is monotonic, we have ‘
(28) fx—sfl)s4 (x—&<t<X)

Combining (27) and (28), we see that
f)-Al <& (x—d<t<x)..

Hence f{x-) = 4.
The second half of (25) is proved in precisely the same way.
Next, if @ < x < y < b, we see-from (25) that

(29) flx+) = inf f(z)= inf f(1).
x<t<b x<f<y
The last equality is obtained by applying (25) to (a, ») in place of (a. b).
, Similarly,
(30) fy—)y= sup f(1) = sup f{1).

a<t<y x<I<y

Comparison of (29) and (30) gives (26).
Corollary Monotonic functions have no discontinuities of the second kind.

This corollary implies that every monotonic function is discontinuous at
a countable set of points at most. Instead of appealing to the general theorem
whose proof is sketched in Exercise 17. we give here a simple proof which is
applicable to monotenic functions.

4.30 Theorem Let f be monoionic on (. b). Then the set of points of (2. b) at
which f Is discontinuous is at most countabie.

Proof Suppose. for the sake of definiteness. that 7 is increasing. and
jet E be the set of points at which £ is discontinuous.

With every point x of E we associate a rational number r(x) such
a2t

flx—r < HXt<AXSL
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Since x, < x, implies f(x,+) < f(x,=), we see that r(x,) # r(x,) if
Xy #F X3,

We have thus established a 1-1 correspondence between the set £ and
a subset of the set of rational numbers. The latter, as we know, is count-
able.

431 Remark It should be noted that the discontinuities of a monotonic
function need not be isolated. In fact, given any countable subset E of (a, b),
which may even be dense, we can construct a function f, monotonic on (4, b),
discontinuous at every point of E, and at no other point of (a, b).

To show this, let the points of E be arranged in a sequence {x,},

n=1,2, 3,.... Let {c,} be a sequence of positive numbers such that Zc,
converges. Define
(31) fx)= Y ¢ (a<x<b).

The summation is to be understood as follows: Sum over those indices n
for which x, < x. If there are no points x, to the left of x, the sum is empty;
following the usual convention, we define it to be zero. Since (31) converges
absolutely, the order in which the terms are arranged is immaterial.

We leave the verification of the following properties of f to the reader:

(a) fis monotonically increasing on (a. b);
(b) [ is discontinuous at every point of £; in fact,

SG+) —fx—) = ¢a.
(¢) fis continuous at every other point of (a. b).

Moreover. it is not hard to see that f(x—) = f(x) at all points of (g, b). If
a function satisfies this condition, we say that f is continuous from the left. If
the summation in (31) were taken over all indices # for which x, < x, we would
have f{(x+) = f(x) at every point of (a. b); that is. f would be contimeous from
the right.

Functions of this sort can also be defined by another method; for ar
example we refer to Theorem 6.16.

INFINITE LIMITS AND LIMITS AT INFINITY

To enable us to operate in the extended real number system. we shall now
eniarge the scope of Definition 4.1, by reformuiating it in terms of neighborhoods.

For anyv teal number x. we have aiready denn<d 3 neighborhond of x o
DT any segment {x — §. x = &),
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4.32 Definition For any real ¢, the set of real numbers x-such that x > ¢ is
called a neighborhood of + oo and is written (¢, + o). Similarly, the set (=0, 0)
is a neighborhood of — .

4.33 Deﬁnmon Let £ be a real function defined on E = R. We say that
f@ty—-Aast—x,

where 4 and x are in the extended real number system, if for every neighborhood
U of A there is a neighborhood ¥ of x such that ¥ n E is not empty, and such
that f(t)e Uforallte VN E 1t #x.

A moment’s consideration will show that this coincides with Definition
4.1 when 4 and x are real.

The analogue of Theorem 4.4 is still true, and the proof offers nothing
new. We state it, for the sake of completeness.

434 Theorem Let fand g be defined on E < R. Suppose

fity-4, g()—B ast—x.
Then

(@ f@)=—A implies A =A.
® (f+o(t)—»A+B,
(¢) (fgXt)— AB,
(d) (fight)— A[B,
provided the right members of (b), (c), and (d) are defined.
Note that o — o, 0+ 00, oojcc, 4/0 are not defined (see Definition 1.23).

EXERCISES
i, Suppose [ is a real function defined on R* which satisfies

Hm [f(x — ) — flx—h)] =0

k=0

for every x € R'. Does this imply that fis continuous?
2. If fis a continuous mapping of a metric space X into a metric space Y, prove that

fEy= f(E)

for every set E< X. (£ denotes the ciosure of E.) Show, bv an example, that
F{E) can be a proper subser of FEL.
3. Let # be a continuous real function on a metric space X. Let Z (f) (the zero set of )
be the set of all p€ X at which f(pr = 0. Prove that Z(f) is ciosed.
. Let 7 and ¢ be continuous mappings of 2 mettic space X’ into & Terric space

Jn
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and let E be a dense subset of X, Prove that f(E) is dense in f{X). If g(p) =S ()
for all p < E, prove that g(p) = f(p) for all p€ X. (In other words, a continuous
mapping is determined by its values on a dense subset of its domain.)

5. If £ is a real continuous function defined on a closed set E < R!, prove that there
exist continuous real functions g on R* such that g(x) = f(x) for all x= E. (Such
functions g are called continuous extensions of j from E to R'.) Show that the
result becomes false if the word “closed” is omitted. Extend the result to vector-
valued functions. Hint: Let the graph of ¢ be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2).
The result remains true if R* is replaced by any metric space, but the proof is not
s0 simple.

/g If £ is defined on E, the graph of fis the set of points (x, f{x)), for x € E. In partic-

=" ular, if Eis a set of real numbers, and f is real-valued, the graph of fis a subset of
the plane.

Suppose E is compact, and prove that f is continuous on E if and only if
its graph is compact. ,

mlf E < Xand if fis a function defined on X, the restriction of fto E is the function

'—" g whose domain of definition is E, such that g{p) =f(p) for p € E. Define fand g
on R? by: f(0,0)=g(0,0) =0, f(x,3) =xp*/(x* = y*), g(x,y)=xp*/(x* + y*)
if (x, ) #(0, 0). Prove that f is bounded on R?, that g is unbounded in every
neighborhood of (0, 0), and that f is not continuous at (0, 0); nevertheless, the
restrictions of both fand g to every straight line in R? are continuous!

8. Let f be a real uniformly continuous function on the bounded set £ in R'. Prove
that fis bounded on E. :

Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

9. Show that the requirement in the definition of uniform continuity can be rephrased
as follows, in terms of diameters of sets: To every & > 0 there exists a 8 >0 such
“that diam f(E) < ¢ for all E < X with diam E < 3.

io: Complete the derails of the following alternative proof of Theorem 4.19: If fis not

" uniformty continuous, then for some & >.0 there are sequences {p.}, {g»} in X such
that dx{pa, gx) — 0 but dx( f(pa), f{g.)) > & Use Theorem 2.37 to obtain a contra-
diction.

11. Suppose f is a uniformly continuous mapping of a metric space X into a metric
space Y and prove that {f(x.)} is a Cauchy sequence in Y for every Cauchy se-
quence {x,} in X. Use this result to give an alternative proof of the theorem stated
in Exercise 13,

12 A uniformly continuous function of a uniformly continuous function is uniformly

continuous.
) Siate this more precisely and prove it
@Le-‘. I be = dense subsat of = metric space X, 2nd 12t /b2 2 uniformiv Lominucus

reai function defined on E. Prove that f has a continuous extension from E 10 X
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(see Exercise 5 for terminoiogy). (Uniqueness foliows from-Exercise 4.) Hint: For
each pe X and each positive integer n, let Va(p) be the set of all ge E with
d(p, q) < 1/n. Use Exercise 9 to show that the intersection of the closures of the
sets F(V{pY), F(V:(p)), ..., consists of a single point, say g(p), of R'. Prove that
the function g so defined on X is the desired extension of f.

Could the range space R* be replaced by R*? By any compact metric space?
By anv complete metric space? By any metric space?
Let / ={0, 1] be the closed unit interval. Suppose fis a continuous mapping of I
into I. Prove that f(x) = x for at least one x € 1.
Call a mapping of X into Y epen if f(¥/) is an open set in Y whenever ¥ is an open
set in X,

Prove that every continuous open mapping of R! into R! is monotonic.
Let [x] denote the largest integer contained in x, that is, [x] is the integer such
that x — 1 < [x]< x; and let (x} =x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?
Let f be a real function defined on {(a, b). Prove that the set of points at which f
has a simple discontinuity is at most countable. Hint: Let E be the set on which
f{x=)<f(x+). With each point x of E, associate a triple (p, g, r) of rational
numbets such that
(@ flx—)<p<flxt)
(b) a <g <t<x implies f{1) <p,
{c) x < t<r<bimplies f() >p.
The set of all such wiples is countable. Show that each triple is associated with at
most one point of E. Deal similarly with the other possible types of simple dis-
continuities.
Every rational x can be written in the form x = min, where n >0, and m and r are
integers without any common divisors. When x = 0, we take n = 1. Consider the
function f defined on R* by

(x irrational),

-3

Prove that fis continuous at every irrational point, and that f has a simple discon-
tinuity at every rational point.

0
fly=11
n

.:Suppose [ i3 a scal function with demain R! which has the intermediate value

property: If f{a) < ¢ < f(b), then f(x) = ¢ for some x between a and b.
Suppose also, for every raiional r, that the set of all x with f(x) =r is closed.
Frove that / Is continuous.
Hint: If x. — xo but f(x,) > r > f(xo) for some r and all #, then fit=r
[Or SOLLIR (e DELWESH Xp &nd Xai 10Us I =+ Xy. Ting a coprradiction. (N, 1. Fins,

Lamer. Math. Montifv, vol. 73. 1968, p. 782.)
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20. If E is a nonempty subset of a meuric space X, define the distance fromxe Xto E

21

by
pe(x) = inf d(x, z).

(a) Prove that pe(x) =0 if and only if x € E.
(b} Prove that p, is a uniformly continuous function on X, by showing that

|pelx) — pe()| <d(x. 3)
forallxe X, ye X. :
Hint: pe(x) < d{x, z) <d(x, y) + d(3, z), so that
pe(x) < d(x, y) + pe(y).
Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed.
Prove that there exists 8 =0 such that d(p,g) >0 if pe K, ge F. Hint: pris a
continuous positive function on X.

Show that the conclusion may fail for two disjoint closed sets if neither is
compact.

. Let A and B be disjoint nonempty closed sets in a metric space X, and define

palp)
pAD) + poP)
Show that fis a continuous function on X whose range lies in [0, 1], that f(p)=0
precisely on 4 and f(p) = 1 precisely on B. This establishes a converse of Exercise
3: Every closed set A = X is Z(f) for some continuous reai f on X. Setting
V=70, 4), W=f"Y41,

show that ¥ and W are open and disjoint, and that 4 = ¥, B< W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)

fp) = (pe X).

. A real-valued function f defined in (a, b) is said to be convex if

fx+ 1= <M+ 10—

whenever @ <x <b, a<y <bh, 0<A<l. Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, if fis convex, so is &)

If fis convex in {a, b} and if a < s <t < u < b, show that

fin— f(s)<f(u)-*f(s)<f(u}—f(f)_

t—s ~  u—s5 = u~-t

. Assume that f is a continuous reai function defined in {a, 5) such that

AV AN A
f[l‘;}.'gf(*f;f(})

for all x, v = (a. p). Prove that fis convex.
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25. f A= R*and B R*, define A + B to be the set of all sums x +y with x e A4,
Y€ B
(@) If X is compact and C is closed in R*, prove that K+ Cis closed.
Hint: Take z¢ K + C, put F=z — C, the set of all Z—ywithye C. Then
& and F are disjoint. Choose & as in Exercise 21. Show that the open ball with
center z and radius § does not intersect X + C.
{6} Let a be an irrational real number. Let Cy be the set of ail integers, ier C: be
the set of all na with n e C. Show that C, and C, are closed subsets of R whose
sum C, + C; is not closed, by showing that Ci + C; is a countable dense subset
of R,
26. Suppose X, Y. Z are metric spaces. and Y is compact. Let f map X into Y, Tet
g De a continuous sne-to-one mapping of ¥ into Z, and put x) = g( f(x)) Tor
xe X
Prove that f is uniformly continuone if 4 is uniformly continuous.
Hint: g has compact domain g(¥), and Sixy=g="(hix)).
Prove also that 1 is continuous if A is contirmous,
Show (by modirying Example 4.21, or by finding a different exampile) that
the compactness of ¥ cannot be omitted from the hypotheses, even when X and
£ are compact. '

A

DIFFERENTIATION

In this chapter we shall (except in the final section) confine our atrention 1o reqf
functions defined on mtervads or segments. This is not Just a matter of con-
venience, since genuine differences appear when we pass from real fusctions to

vector-valued ones. Differentiation of functions defined on R* wiil be Giscissed
in Chap. 9.

THE DERIVATIVE OF A REAL FUNCTION

5.1 Definition Iet f be defined (énd real-valued) on [a, b]. For any x € [a, b}
form the quotient

0 s0)=TOID i hiay,
and define
2 S'(x) = lim (),

t—x



104 PRINCIPLES OF MATHEMATICAL ANALYSIS

provided this limit exists in accordance with Definition 4.1.

We thus associate with the function f a function /* whose domain
1s the set of points x at which the limit (2) exists; f* is called the derinative
of f. Lo :

If f7 is defined at a point x, we say that f is differentiable at x. If fis
defined at every point of a set E < [q, b], we say that [ is differentiable on E.

It is possible to consider right-hand and left-hand ILimits in (2); this leads
to the definition of right-hand and left-hand derivatives. In particular, at the
endpoints @ and b, the derivative, if it exists; is a right-hand or left-hand deriva-
tive, respactively. We shall not, however, discuss one-sided derivatives in any
detail. '
If fis defined on a segment {2, ) and if a < x < b, then f(x) is defined
by (1) and (2), as above. But f"(a) and /'(b) are not defined in this case.

5.2 Theerem Lerfhe deﬁned on [a, b].If f is differentiable at a point x € [a, b],
then f is continuous at x.

Proof Ast—x, we have, by Theorem 4.4,

f) = f(x)
t—x

J) = f(x) = (t—X)=>f(x)-0=0.

The converse of this theorem is not true. It is easy to construct continuous
functions which fail to be differentiable at isolated points. In Chap. 7 we shall
even become acquainted with a function which is continuous on the whoie iine
without being differentiable at any point!

5.3 Thearem Suppose fand g are defined on [a, b} and are differentizhle at a
poini x € la,b). Thenf g, g, and jjg are differentiabie at x, and

@ (f+9)Vx)=r(x)+7g();

By UaY(x) = (xialx) + M{x)g'{x);

L F-

() (L ) (= W) — g0
g/ (%)

~,

1n ¢}, we assume of course that g(x) # 0.
Proof (a) is clear, by Theorem 4.4. Let & =f7. Then
() = h(x) =1()g(t) — 9G] + gl)f (1) — F(x)).
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If we divide this by ¢ — x and note that £(t) - f(x) as t — x (Theorem 5.2),
(b} follows. Next, let # = f/g. Then

WO - k) 1 fO-F®_ o) = 9]
T x —g(,)g(x)[g(x) —x W@ ]

Letting # — x, and applying Theorems 4.4 and 5.2, we obtain (c).

-~

5.4. Examples ' The derivative of any constant is clearly zero. If J is defined
by f(x) = x, then f'(x) = 1. Repeated application of (b) and (c) then shows that
x" is differentiable, and that its derivative is nx"~", for any integer n (if n < 0.
we have to restrict ourselves to x # 0). Thus every pelynomial is differentiable,
and so Is every rationai function, except at the points wherc the denominator is
Zero.

The following theorem is known as the “chain rule” for differentiation.
It deais with differentiation of composite functions and is probably the most
important theorem ahout derivatives. We shall meet more genera} versions of it
in Chap. 9.

5.5 Theorem Suppose f is continuous on [a,b), f'(x) exists ai some poini
x € [a, b], g is defined on an interval I which contains ihe range of f, and g is
differentiable at the point f(x). If

M) =g(ft)) (a<i1<h), .
then h is differentiable at x, and ' o '

&) - H(x) = ¢ PN,

Proof Lety=f(x). By the definition of the derivative, we have
4) J@) = f(x) = (t = )" (x) + u(2)],
) | 5(5) ~ 90 = (s = Mg’ ) + )]

where e ja, bl,sel andu(t}»0ast—x,o(s)+0ass—>y. Lets =f{1).
Using first (5) and then (4), we obtain
- h(1) — h(x) = g(f (1)) — g(f(x))
= [ft) = (01 1g) + v(s)i
=(t=x) [f'(x) + ()] [g'G) + o(s)],
or, if t #x,
H) — kx)
t—x
Letting £ — x, we see that 5 — y, by the continuity of £, so that the right
side of (6) tends to ¢'(y)f"(x), which give¥ (3).

(6 [§'0) + o)) - [F(x) + u(2)].
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5.6 Examples
(@) Let f be defined by

1
X siny — {(x#0),
x

(M fx) =
0 (x =0).

Taking for granted that the derivative of sin x is cos x (we shalil
discuss the trigonometric functions in Chap. 8), we can apply Theorems
5.3 and 5.5 whenever x # 0, and obtain

I
(8) J'(x)=sin — - —cos — (x #=0).
x X  x

At x =0, these theorems do not apply any longer, since 1 /x is not defined
there, and we appeal directly to the definition: for 7 # 0,

=70 _ .1
t—0 t

As ¢ — 0, this does not tend to any limit, so that /"(0) does not exist.

{b) Let f be defined by ¢
x? sin 1 (x £0)
(9 Jx) = x -
0 {x=10),
As above, we obtain
| . 1 1
103 F{xy=2xsin— ~ cos — (x #0).
x x

At x =0, we appeal to the definition, and obtain

| Fir) — (0 . o
; I. E v oA = - LR -
I__“ pa— ; !tsmt < jt (i #0);
ietitng 1 — 0, we see that
(11) ' ) =0.

Thus f is differentiable at all points x, but /” is not a continuous
function, since cos (1/x) in (10) does not tend to a limit as x — 0.
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MEAN VALUE THEOREMS

5.7 Definition Let f be a real function defined on a metric space X. We say
that fhas a local maximum at a point p € X if there exists § > 0 such that f(g) <
f(p) for all g € X with d(p, q) < 6.

Local minimaare defined likewise.
Our next theorem is the basis of many applications of differentiation.
5.8 Theorem Let f be defined on [a, b]; if f has a local maximum ar a point
x€(a, b), and if f'(x) exists, then f'(x) = 0.
The analogous statement for local minima is of course also true.
Proof Choose & in accordance with Definition 5.7, so that
a<x-d<x<x+5<bh,
Ifx-6<r<ux, then‘
t -
ORVICNN
I—x

Letting t— x, we see that Fx)=0.
Ifx<t<x+34, then

f0-1e) _,

t—x
which shows that /'(x) < 0. Hence f'(x) = 0.

]

5.9 Theorem If f and g are continuous real Junctions on [a, 5] which are
differentiable in (a, b), then there is a point x € (a. b) ar which

LF(B) — f(@)]g'(x) = [9(B) — g(a)]/"(%).
Note that differentiability is not required at the endpoints.
Proof Put _
h(t) = /() — f@g(t) - [g) - g@If (1) (@<rt<b.
Then £ is continuous on {a, 5], # is differentiabie in (a, &), and
(12) h(a) = f(B)g(a) — f(@)g(b) = h(b).

To prove the theorem, we have to show that A’(x) = 0 for some x & (a, b).
If A is constant, this holds for every x €(a, ). If h(t) > h(a) for
some 7 € (a, b), let x be a point on [a, b) at which 4 attains its maximum
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(Theorem 4.16). By (12), x & (a, ), and Theorem 5.8 shows that h(x)=0.
If h(r} < h(a) for some ¢ € (a. ), the same argument applies if we choose
for x a point on [a, b] where A attains its minimum.

This theorem is often called a generalized mean value theorem; the following
special case is usually referred to as “the” mean value theorem:

3.10 Theerem Iffis a real continuous function on [a, b] which is differentiable
in (@, b}, then there is a point x € (a, b) at which

f8) - flay = (b — a) /" (x)..
Proof Take g(x) = x in Theorem 5.9.

5.11 Theorem Suppose f is differentiable in (a, b).
(@) Iff'(x) =0 for all x € (a, b), then f is monotonically increasing.
(8 I f'(x) =0 for all xe (a,b), then f is constant.
(¢) Iff'(x) <0 for all x € (a, b), then f is monotonically decreasing.

Proof All conclusions can be read off from the equation

S} = f(x) = (x; — x,)f (%),

which is valid, for each pair of numbers x,, x, in (a, b), for some x between
x, and x,. ‘ '

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function / may have a derivative
S which exists at every point. but is discontinuous at some point. However, not
every function is a derivative. In particular, derivatives which exist at every
point of an interval have one important property in common with functions
which are continuous on an interval: Intermediate values are assumed (compare
‘Theorzm 4.23). The precise statement follows.

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose
Ja) < i< f(B). Then there is a point x € (a, b) such that f'(x) = ;.
A simiiar resuli holds of course if f'(a) > f'(b).
Proof Putg(s)=f(¢) — ir. Then g'(a) < 0, so that a(1,) < g(a) for some
t, €(a, b), and g'(b) > 0, so that g(r,) < g(b) for some 1, € (a, b). Hence

g attains its minimum on [a, b] (Theorem 4.16) at some point x such that
a<x<bh By Theorem 5.8, g'(x) = 0. Hence f'(x) = A.
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Corollary If f is differentiable on [a, b), then f’ cannot have any simple dis-
continuities on [a, b].

But /' may very well have discontinuities of the second kind.

L’HOSPITAL’S RULE

The following theorem is frequently useful in the evaluation of limits.

5.13 Theorem Supposefand g are real and differentiable in {(a, b), and ¢'(x) +# 0
Jorall x e (a, b), where —00 <a <b < +0. Suppose

(3) %—u{mx—m.
I .

(14) f(x)=0and g(x)> 0 as x —a,
orif

(15) g(x) =+ +w as x—+a,
then

(16) 'g-g-;—vA as x—a.

The analogous statement is of course also true if x — &, or if gix)— —co
in (15). Let us note that we now use the limit concept in the extended sense of
Definition 4.33.

Proof We first consider the case in which —w < 4 < + . Choose a
real number ¢ such that A <g¢, and then choose r such that 4 <r < g.
By (13) there is a point ¢ € (a, b) such that a < x < ¢ implies

fx)
17 - <r
@ 7 |
If a < x<y«<c. then Theorem 5.9 shows that thereis a point r e {x, 1}
such that
&) -/ _ro
18 —_— ey,
4 qD-90) 70
Suppose (14} holds. Letting x — a in (18), we see that
f0)
19 —=sr< (a<y<e)
(19) 70) q )
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Next, suppose (I5) holds. Keeping y fixed in (18), we can choose
a point ¢; € (a, ) such that g(x) > g(3) and g(x} > 0 if @ < x < ¢;. Multi-
plying (18) by [g(x) — g(»))/g(x), we obtain

_, fx) g(,v) IO
20 700 <r - g(x) e (e <x<ep)
If we let x —a in (20), (15) shows that there is a point ¢, € (g, ¢,)
such that
:21) @m; (a<x<cey)
gix)

Summing up, (19) and (21} show that for any g, subject only to the

condition 4 < g, there is a point ¢, such that /' (xj]g(x) <gifa<x<e,. :

In the same manner, if —oc < 4 < 400, and p is chosen so that
2 < A, we can find a point ¢; such that

@
g(x)

and (16) follows from these two statements.

{a<x<cy),

DERIVATIVES OF HIGHER ORDER

5.14 Definition If fhas a derivative /* on an interval, and if /" is itself differen-
Liable, we denote the derivative of /" by /” and call /* the second derivative of f,
Continuing in this manner, we obtain functions .

A AN A AL A
2ach of which is the derivative of the preceding one, ™ is called the nth deriva-
tive, or the derivative of order n, of f. -
| In order for £ (x) 10 exist at a point x, £~V (1) must exist in a neighbor-
hood of x (or in a one-sided neighborhood, if x is an endpoint of the interval
on which £ is defined), and f*~*) must be differentiable at x. Since £~ must
exist in a neighborhood of x, £~ must be differentiable in that neighborhood.

FTAYLOR’S THEOREM

13 Theorem Suppesc f is a real function on [a,b), n is a positive integer,
== 1) is continuous on [a, b}, f"(1) exists for every t € (a, b). Let a, f be distinct
points of [a, b), and define

23) P =3 Dy,

k=0
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Then there exists a point x between « and f§ such that

(n)
(24) 8 =r®)+ 2 @ -ar.

For n = 1, this is just the mean value theorem. In general, the theorem
shows that f can be approximated by a polynomial of degree n — 1, and that
(24) allows us to estimate the error, if we know bounds on |/ "(x)].

Proof Let M be the number defined by
(25) fB)=PB) + M — )
and put
(26} git)=1()—P@)- M@t - (@<t1=b)
We have to show that n'M ="(x) for some x between « and §. By
(23) and (26),
(27 F"M) =) —nM  (a<t<b)

Hence the proof will be complete if we can show that g‘(x) = 0 for some

x between a and f.
Since P® o) = f®a) fork =0, ...,n — 1, we have

(28) gy =gz = =g"")=0
Our choice of M shows that g(f) =0, so that g'(x,) =0 for some x;
between « and f, by the mean value theorem. Since g'(¢} = 0, we conclude
similarly that g"(x,) = 0 for some x, between x and x;. After a steps we
arrive at the conclusion that ¢™(x,) = 0 for some x, beiween o and x,_,,
that is, between o and f.

' DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

5.16 Remarks Definition 5.1 applies without any change to c-omplex_—funcrimf:s
f defined on [a, b], and Theorems 3.2 and 5.3, as wel} as their proots, remain
valid. Iff; and f, are the real and imaginary parts of f, that is, if

HOESAGESFO
for a < t < b, where f,{t) and f,(r) are real, then we clearly have
(29) F1x) = fit0) + if3(x);
also, fis differentiable at x if and only if both f; and f; are differentiable at x.
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Passing to vector-valued functions in general, i.e., to functions f which

map [a, b] into some R*, we may still apply Definition 5.1 to define f'(x). The

term @(¢) in (1) is now, for each ¢, a point in R, and the limit in (2) is taken with

respect to the norm of R*. In other words, f'(x) is that point of R* (if there is
one)} for which

f(z) — f(x)

(30) lim |—
) t—x

X

- f’(x)! =0,

and f’ is again a function with values in R*.
If £i, ..., f; are the components of f, as defined in Theorem 4.10, then

(31 U= )

and { is differentiable at a point x if and only if each of the functions S i
is differentiable at x. '

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and
(b), if fg is replaced by the inner product f - g (see Definition 4.3).

When we turn to the mean value theorem, however, and to one of its
consequences, ramely, L’Hospital's rule, the situation changes. The next iwo
examples will show that each of these results fails to be true for complex-valued
functions,

517 Example Define, for real x,
(32) fx)=¢"™ =cos x + isin x.

(The last expressicn may be taken as the definition of the com plex exponential
e™: see Chap. 8 for a full discussion of these functions.) Then

(33) feR —fO=1-1=0, __
but

(34) f(x) = ie™,

so that §7(x}] =1 for ail real x.

Thus Theorem 5.10 fails to hold in this case.

5.18 Exami:le On the segment (0, 1), define f(x) = x and

(35) g(x) = x + x?e'’*,
Since |e''| =1 for all real ¢, we see that
. f(x)
(36 llm=—==1,
) o 9
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Next,
28}
) = . L 0<x<1),
(37) g =1+ (2x x}e ( )
so that
‘ 22122
(38) g 22— -1=22—1
Hence
fx) 1 X
(39) 7@ 9@ “I-x
and so )
. "(x3
- lim == = 0.
(40) =049 (I)

By (36) and (40), L'Hospital's rule fails in this case. Note also that g'(x) # 0

on (0, 1), by (38). . ' e
However, there is 2 consequence of the mean vaiue theorem which. for

purposes of applications, is almost as useful as Theorem 5.‘10, and which re-
mains true for vector-valued functions: From Theorem 5.10 it follows that

(41) [fb) — fla)] <(b—a) sup FAEIIY

519 Theorem Suppose f is a continuous mapping of [a. b] into R* and { is
differentiable in {a, b). Then there exists x € (a, b) such that

H(®) — f(a)| < (& —a)|T'x)].
Proof' Put z = f(b) ~ f(a), and deﬁrne o
oty=2-11) (a<t<bh). -

Then @ is a real-valued continvous function on la. &] which is differentia-
ble in (@, b). The mean value theorem shows therefore that

o(b) - (@) = (b — a)p'(x) = (b —a)z* I'(x)
for some x € (a, b). On the other hand,
@(d) — pla) =z f(b) =z~ fla) =z~ z = |z}*.
The Schwarz inequality now gives
|22 = (b - )z F(®)] < (& ~ D)z} £
Hence |z| < (b ~ @)|f'(x){, which is the desired conclusion.

1V, P. Havin translated the second edition of this book inte Russian and added this
proof to the original one.
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EXERCIS .
ES whenever 0 < |r— x| <8, a<x<b, a<t<b. (This could be expressed by

saying that fis uniformly differentiable on [a, b] if f is continuous on [a, 5].) Does
- this hold for vector-valued functions tco?
9, 'Let f be a continuous real function on R!, of which it is known that £(x) exists
for alt x %0 and that f’(x) — 3 as x = 0. Does it follow that /“(0) exists?
16. Suppose fand g are complex differentiable functions on (0, 1), f(x) -0, 9(x) - 0,
S (x) = A, g’(x) — Bas x — 0, where A and B are complex numbers, B 0, Prove

(a<x<b) that
f() : im0 _ 4

g E

1. Let f be defined for all real x, and suppose that

=) <(x—y)?
for all real x and y. Prove that fis constant.

2. Suppose f"(x) >0 in (a, b). Prove that fis strictly i increasing in (a, b), and let ¢ be
its inverse function. Prove that g is differentiable, and that

gf(x) =

3. Suppose g is a real function on R’, with bounded derivative (say j¢’'| < M). Fix

& >0, and define f(x) = x + £g(x). Prove that fis one-to-one if ¢ is small enough. Compare with Exampic 5.18. Hint:

{A set of admissible values of & can be determined which depends only on M.) , _ f(x}  {fx) x X
4. If E.(;S_)=1T_ E{HX—)TAE |
Co+ ) e (S +- C, —0 ' Apply Theorem 5.13 to the real and imaginary_parts off(x),‘x and g{(x)/x.
2 n n+1 ’ 11. Suppose f'is defined in a neighborhood of x, and suppose f"{x) ex:sts. Show that
where Ca, ..., C, are real constants, prove that the equation f x+h+Hfx—h—2f(x) = f"(x).
Cot Cux+ o+ Couax™™ 1+ Cox* =0 | 3 K '

has at least one real root between ¢ and 1. Show by an example that the limit may exist even if f"{x) does not.

5. Suppose fis defined and differentiable for every x >0, and f*(x) - 0 as x — + . Hint: Use Theorem 5.13.

Put g(x) == f(x + 1} — f(x). Prove that g(x) - 0 as x - -~ oo, 12. I f(x) ={x]|3, compute f'(x), /"(x) for all real x, and show that f*¥(0) does not
6) Suppose _ exist.

(@) f1s continuous for x >0, 13. Suppose g and ¢ are real numbers, ¢ > 0, and fis defined on [—1, 1] by

{b) f'(x) exists for x >0, ' x*sin (| x|~ (if x = 0),
() /0 =0, - - f@=1{ Gr o 0)
(d) S is monotenically increasing. ’ ’
Put _ Prove the following statements:
{a) fis continuows if and only if g > 0,
g(x) = '@ (x>0 (b)Y £(0} exists if and only if g > 1.

{c} f"is bounded ifand enlyifa >1 L c.
(d} f is continuous if and only ifa > 1 + ¢.
(& S/ existsifand only if 2 >2 + .

{f} £ is bounded if and only if 6 > 2 + 2c.

and prove that g is monotonically increasing.
- Suppose [{(x}, g'{x)} exizt, g (x) £ 0, and f{x) =5{x) =0. Prove tha

mfO _ )

o alt) g (x)

(This holds also for complex functicns.)

8_. Suppose f” is continuous on {a, 4] and &> 0. Prove that there exists & > 0 such
that

fit)— f(x)

T —f(D)l<e

(g) J7 is continuous if and only if @ > 2 + 2e.
. Let f be a differentiable real function defined in {a. b). Prove that fis convex if
and only if f/* is monotonically increasing. Assume next that f“{x) exists for

. every x € (a, b), and prove that fis convex if and only if /"(x) = 0 for all x € (g, b).
15. 'Suppose a € R}, fis a twice-differentiable real function on (g, ™), and My, M,, M,

are the least upper bounds of |f(x)|, |f(x)|, | (x)], respectively, on (a, =).
Prove that

Mi<4M.M,.
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Hint: If h > 0, Taylor’s theorem shows that
£ = 55 x+ 28— @) = @)
for some £ & (x, x + Zh). ‘Hence
IF(x)] <hM,+ ifﬁ

To show that M? =4My M, can actually happen, 1ake @ = —1, define
{2x*—1 (—1<x<0),
flxp={x2 - .
fz—,—l (0 < x < x),
e 1
and show that My =1, M, =4, M. =4. B
- Dioes M} < 4M, M, hold for vector-valued functions too?
16. Suppose f is twice-differentiable on (0, @), f” is bounded on (3, o), and f(x}) — 3
as x — o0. Prove that f(x) >0 asx — o,
Hine: Let a — o in Exercise 15.
17. Suppose f is a real, three times differentiable function on {—1, 1], such that
fi=H=9, fO=0, [fN=1, [f@=0
Prove that f®x) >3 forsome x s (—L 1.
. Note that equality holds for 3{x® + x?).
Hinr: Use Theorem 5.15, with e =0 and 8= L1, to show that there exist
5e(0, 1} and 7 5 (—1, 0) such that
FOAs) + £t = 6. |
18. Suppose fis a real function on {4, b}, n is a positive integer, and F**~" exists for

every ¢ €fa, bl Leat 2, B, and P be as in Taylor’s theorem (5.15). Define

Q(¢)=f”3_£(ﬁ’
for t ea, b], ¢t #’,ﬁ’ differentiate
F—f@={— oW
n— 1 times at # = &, and derive the following version of Taylor’s theorem:
@ =g+ L @y,
19. Suppose f is defined in (—1,1) and f(0) exists. Suppose —1< a, < fBa <1,
o, — 0, and B, = 0 as n — o, Define the difference quotients

— f(.Bn) — flan) .
D. ﬁn — g

21.

22.
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Prove the following statements:
(@) If &y < 0 < B, then lim D, = £(0).
(B) 1£0 < a, < B, and {Bf(Br — au)} is bounded, then lim D, = f'(0).
(¢) 1T £ is continuous in (—1, 1), then lim D, =7"(0).

Give an example in which fis differentiable in {(—1, 1) (but f* is not contin-
uous at 0) and in which «., B.tend to 0 in such a way that lim D, exists but is differ-
ent from f'(0). '

. Formulate and prove an inequality which follows from Taylor’s theorem and

which remains valid for vector-valued functions.

Let F be a closed subset of R'. We saw in Exercise 22, Chap. 4, that therc 1s a
real continuous function / on R* whose zero set is E. Is it possible, for each closed
sét E, to find such an f which is differentiable on R!, or ene which is » {imes
differentiable, or even one which has derivatives of all orders on R'?

Suppose [ is a real function on (— =, ), Call x a fixed point of Fif flx) =x.
{a) .If fis differentiable and J(s) #1 for every real r, prove that f has at most one
- fixed point.

(5) Show that the function f defined oy
fOy=t+(1+e!

has no fixed point, although 0 < f{r) <1 for all real 2.

{¢) However, if there is 2 constant A < 1 such that {f{#)| < A for ali real 1, prove
that a fixed point x of f exists, and that x = lim x,, where x; is an arbitrary real
number and

Znes =F (%)

form=1,2,3....
{d) Show that the process described in (¢) can be visualized by the zig-zag path

(xh xZ) '_"'(ny x2) - (-’:21 x!) - (xlg x3) - (X;, Xs) -t

. The function f defined by

x¥+1

fx)=

has three fxed points, say «, §, ¥, where

—2<a<—1, 0<B<l, l<y<2

For arbitrarily chosen xy, define {x.} by setting xy+1 = f{xa).
(@) If x; < a, prove that x, - —¢c asn — &.

(&) If & < x, <y, prove that xa —Basn—co,

(c) If y < x,, prove that x, = + a0 asn — 0.

Thus 8 can be located by this methed, but « and ¥ cannot.
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24. The process described in part (¢) of Exercise 22 can of course also be applied to
functions that map (0, o) to (0, o).
rix some « > 1, and put -

a4 x
1+ x"

flx)= ;(xig) g(x) =

Both fand g have Vx as their only fixed point in (0, ®). Try to explain, on the
basis of properties of fand g, why the convergence in Exercise 16, Chap. 3, is so
much more rapid than it is in Exercise 17. (Compare /" and g’, draw the zig-zags
sugpested in Exercise 22}

Do the same when 0 < & < 1.

- Suppose [ is twice differentiable on [a, b], f(a) <0, F(B) >0, f/(x) =8 >0, and
O<f"x) <M for all x<[a.b]. Let £ be the unigue point in (a, 5) at which
Fig =0 . '

Complete the dewils in the fellowing outline of Newtor’s method for com-
puting &,
(@) Choose x, € (£, b), and define {x,} by

[
th

_ Slxa)
FAES)
Interpret thic geometrically, in terms of a tangent to the graph of 7.
{(b) Prove that x,., < x, and that

An+1 = Xp

lim x, = £,

n— X

(¢} Use Tayvlor’s theorem to show that

for some 1, € (£, x.).
(d) If 4 =M/28, deduce that
O g Kasl — § S
{Cempare with Exercises 16 and 18, Chap. 3)

{¢) Show that Newton’s method amounts to finding a fixed point of the function
g define by

How does g (x) behave for x near £?
(/) Put f(x) = x"* on (— w0, ) and try Newton’s method. What happens?
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26. Suppose fis differentiable on [a, 5}, f{a) =0, and there is a real number A such

27.

that |f(x)| < A4|f(x)| on [a, b]. Prove that f(x) =0 for all x & [a, b]. Hint: Fix

Xq € [a, b], let ,
Mo =sup|f(x}|, M,=sup|f(x)|

for a < x < x,. For any such x,
N < Mi{xo— @) S A(xo — )Mo
Hence Mo =0 if A(xe —a) < 1. Thatis, /=0 on [a, xo]. Proceed.
Let ¢ be a real function defined on a rectangle R in the plane, given by a <x < b,
o<y < f. A solution of the initizl-value problem
Y =¢x,y, Hay=c (@=c<f)
is, by definition, o differentiable function fon [a, b1 such that f{e) = ¢, e < f{x} < 2,
and
fx)=¢xfx)) (a<x<bh)
Prove that such a problem has at most one solution if there is a constant 4 such

that ) ‘ |
[px, ¥2) — &(x, y1)| < Aly2— 2|
whenever (x, y;) € R and (x, ¥:) € R. . ‘
Hint: Apply Exercise 26 to the difference of two solutions. Note that this
uniqueness theorem does not hold for the initial-value problem

y=y, m0)=0,

which has two solutions: f(x) = 0 and f{x) = x*/4. Find all other solutions. N
Formulate and prove an analogous uniqueness theorem for systems of differentiai
equations of the form

J’.'r=<,1"1(xs}‘1,---,?t)’ yi{a):c.i (j=1s---9”")-

. Note that this can be rewritten in the form

29,

y =%y, ¥ya=¢
where ¥y =(¥i, ..., ¥.) ranges over a k-cell, ¢ is the mapping of a {(k + 1)-cell

2 Vs

into the Euclidean k-space whose components are the functions @, ..., ¢, and ¢
is the vector {c4, ..., ¢). Use Exercise 26, for vector-valued functions.
Specialize Exercise 28 by considering the system

y:.=y‘.+1 !:_J"=1,...,k-1);
=56~ X afxm,,

where f, g1, ... , g« are continuous real functions on [a, b], and derive a uniqueness
theorem for soiutions of the equation
YR 4 @l + o+ g0y + g (XY = S(x),
subject to initial conditions
Ha)=¢c;, Y@=ec, ..., Y Pa@=c.
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THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends verv explicitly on the order structure of the real line. Accordingly,
we besin by discossing integration of real-valuea functions on intervals. Ex-
tensions to compiex- and vector-valued functions on intervals follow in later
sections. iniegraton over seis other than infervals is discussed in Chaps. 10
and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL

6.0 Definiion Let [a, 5] be a given interval. By a partition P of [a, b} we
can 2 finite set of points xg, Xy, ..., X,. where

H

a=x05x1S "'an_lsxl.,:b-
We write

Axi=x;—~ % ((=1...,n.
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Now suppoge fis a bounded real function defined on [a, b]. Corresponding to
each partition P of [a, b] we put

M; = sup f(x) (xjmg £ x < x3),

m; = inf f(x) (xi-1 < x < xy),

UP.f) =Y M, Ax,,

L(Psf) =~=i1mi Axi!

and finally

(1) Ibfdx = inf U(P,f),
. b )

@) [ fax=supLip.5),

where the inf and the sup are taken over all partitions P of [a, b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals of f
over ja, b], respectively.

If the upper 2nd lower integrals are eaual, we say that f is Riemann-
integrable on [a, b}, we write fe # (that is, # denotes the set of Riemann-
integrable functions), and we denote the commeon value of (1) and (2) by

b
3) | rax,
or by

b
4 o e

This is the Riemunn iniegial of f over [z, b]. Since f ic bounded, there
exist two numbers, m and M, such that

m<fxys M (a<x<b).

Henee, for every P,

m(b — a) < L(P.f) < U(P,f) < M(b — a),

so that the numbers L(P. ) and U(P,f) form a bounded set. This shows that

‘the upper and lower integrals are defined for every bounded function f. The

question of their equality, and hence the question of the integrability of £, is a
more delicate one. Instead of investigating it separately for the Riemann integral,
we shall immediately consider 2 more general situation.
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6.2 Definition Let o be a monotonically increasing function on [a, b] .(since
«(a) and «(b) are finite, it follows that a is bounded on [a, b]). Corresponding to
each partition P of [a, b), we write

Aay = a(x;) — alxi—g)-

It is clear that Ag; = 0. For any real function f which is bounded on {a, b]
we put

U(P, f, %) =Z M, A,

n

L(P,f,0) = ), mi A,

i=1

where M, n1; have the same meaning as in Definition 6.1, and we define

) T’ £da = inf UP, 1, @),

(6) jb fde = sup L(P, f, %),

the inf and sup again being taken over all partitions. .
If the left members of (5) and (6) are equal, we denote their common
value by :

') Jj Jfda

or sometimes by

® . [[ /) da.

This is the Riemamn-Stieltjes integral (or simply the Stieltjes integral) of
£ with respect to a, over [a, bl. ‘

If (7) exists, i.e., if (5) and (6) are equal, we say that [ is integrable with
respect to o, in the Riemann sense, and write f e #(x).

By taking a(x) = x, the Riemann integral is seen to be a special case of
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case o need not even be continuous. :

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). It is im-
material which letter we use to represent the so-called “‘vaviable of integration.”
For instance, (8) is the same as

[ 1) da)
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The integral depends on f, o, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

n
Y €
i=1

mean the same thing, since each means ¢; + ¢; + *** + €,

Of course, no harm is done by inserting the variable of integration, and
in many cases it is actually convenient to do so.

We shall now investigate the existence of the integral (7). Without saying
50 every time, f will be assumed real and bounded, and & monotonically increas-

ing on [a, b]; and, when there can be no misunderstanding, we shall write I in

place of fb

6.3 Definition We say that the partition P* is a refinement of P if P* > P
(that is, if every point of P is a point of P*). Given two partitions, P, and P,,
we say that P* is their common refinement if P* = Py L P,.

M:

Cx
X

1

6.4 Theorem If P* is a refinement of P, then

® L(P,f, a) < L(P*, f, a}
and
{10) U(P*, f,w) < U(P, [, o).

Proof To prove (9), suppose first that P* contains just one point more
than P. Let this extra point be x*, and suppose x;_, < x* < x,, where
x,-; and x; are two consecutive points of P. Put .

w, = inf f{x) (xio, <x<x%),
w; = inf f(x) (x* < x < Xx).
Clearly w, = m; and w, > m;, where, as before,

m; = inf f(x) (x;i-y S xZx3).
Hence

L(P*, f,0) — L(P,f, @)
= w [o(x*) — a(x;_3)] + wala(x;) — a(x*)] - ma(x;) — alx;_ )]
= (w; — m)o(x*) — a(x; )] + (w; — mo(x;) — «(x*)] = 0.

If P* contains k points more than P, we repeat this reasoning k
times, and arrive at (9). The proof of (10) is analogous. '
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65 Theorem | b fdu< I" fda.

Proof Let P* be the common refinement of two partitions P, and P,.
By Theorem 6.4, :

L(P,, f, 0) < L(P*, f-0) < U(P*.f, ) < U(P,, f. o)
Hence
(i1) L(Py, f,0) < U(P;, [, ).
If Pi is fixed and the sup is taken over all Py, (11) gives
(12) [fan< v, 10,

The theorem follows by taking the inf over all P, in {12).

6.6 Theorem fe #(a) on [a, b] if and only if for every &> 0 there exists a
partition P such that

ay UP,f, o) — L(P,f, o) <&
Proof For every P we have
L(P,f,0) < jfda < _dea < U(P, f, ®).
Thus (13) implies
0< Ifda-—- frau<e.
Hence, if (13) can be satisfied for every & >0, we have
[fda= [fan,
that is, e ().

Conversely, suppose f € %#(x), and let £ >0 be given. Then there
exist partitions P, and P, such that

(14) UP, fra) — [ fdo < 58

as) [rda—1py i) <5
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We choose P to be the common refinement of Py and P;. Then Theorem
6.4, together with (14) and (15), shows that

UP, /o) < UPy £ o) < [ Fdo+ > <L(Py. i) + e S LB, L) + 2,
so that (13) holds for this partition P.

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem
(@) If (13) holds for some P and some ¢, then {13) holds (with the same )
for every refinement of P.
(5) If (13) holds for P ={xq, ..., x,} and if 5,, t, are arbitrary points in
(X1, x;], then

3 1050 =00} 8w, <.
(¢) Iffe R(a) and the hypotheses of (b) hold, then
S ryso,~ [ 1 da
=1 o

Proof Theorem 6.4 implies (q). Under the assumptions made in (8),
both f(s,) and f(¢)) liein [m,, M|], so that L/ (s} = f(t)| < M, —m,. Thus

< &,

iZl |f(sl) —f(‘ri)l Adl < U{P!j; O!) - L(Pa.f; &),
which proves (5). The obvious inequalities

L(P, f,0) < 3 f(t)) bty < UCP, fi)

and
L(P,f,0) < | fde < U(P, f, )

prove (c).
6.8 Theorem If [ is continuous on [a, b] then fe R(x) on [a, b].
Proof Let &£ >0 be given. Choose # > 0 so that
[o®) — (@) <&

Since S is uniformly continuous on [a, 5] (Theorem 4,19}, there exists a
§ > 0 such that

(16) |/ () =S()] <
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1fxe[a,b], tela, b}, and jx — 1] <d.
If P is any partition of [a, ] such that Ax; < & for all i, then (16)
implies that '
amn M, —m<qy i—-1,...,n

and therefore
UP.f.) = LP, f, @) = 3. (M, —m) Ao

<13 Aa, = nla(b) - a@)] <.
i=1
By Theorem 6.6, f€ #(«).

6.9 ‘Theorem If f is monotonic on [a, b}, and if o is continuous on {a, b], then
[ e R(a). (We still assume, of course, thal a is monotonic.)

Proof Let ¢ > 0 be given. For any positive integer n, choose a partition
such that
by —
By =Dy,
n
This is possible since « is continuous (Theorem 4.23).
We suppose that fis monotonically increasing (the proofis analogous

" in the other case). Then

M, =f(x), m; = f(x;-5) i=1,...,m,
a(b) a(a)

so that
UP,f,0) — L(P, f,a} = E LS (x) = f(xi-0)]

- @-;—“@ YO —f@) <

if n is taken large enough, By Theorem 6.6, € #(x).

6.10 Theorem Suppose [ is bounded on {a, b), f has only finitely many points
of discontinuity on [a, b), and a is continuous at every point at which f is discon-
tinuous. Then fe R(a).

Proof Let¢ > 0 be given. Put M = sup |f(x)], let E be the set of points
at which f is discontinuous. Since E is finite and « is continuous at every
point of E, we can cover £ by finitely many disjoint intervals [u;, v)] <

[a, b] such that the sum of the corresponding differences a(v;) — a(u) is

less than &. Furthermore, we can place these intervals in such a way that
every point of E n (a, b) lies in the interior of some [u;, v,].
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Remove the segments (u;, v;) from [a, b]. The remaining set K is
compact. Hence f is uniformly continuous on K, and there exists § >0
such that [f(s) — f(1)| <eifseK rek |s—1t] <4,

Now form a partition P = {xq, x{, ..., x,} of [a, b}, as follows:
Each u; occurs in P. Each v; occurs in P. No point of any segment (x;, v;)
occurs in P. If x,_; is not one of the u;, then Ax; < 4.

Note that M; — m,; < 2M for every i, and that M; — m, < ¢ unless
X,y is one of the u;. Hence, as in the proof of Theorem 6.3,

JUCP, S, @) — L(P, f, @) < [a(B) — o(a)]e + 2Me.

Since ¢ is arbitrary, Theorem 6.6 shows that e 2(«).
Note: If f and « have a common point of discontinuity, then f need not
be in #(x). Exercise 3 shows this.

6.11 Theorem Swuppose fe Aa) on {a,b], m<f< M, ¢ is continuous on
[m, M), and h(x) = ¢(f(x)) on [a, b}. Then h e #(x) on {a, b].

Proof Choose £ > 0. Since ¢ i§ uniformly continuous on [m, M], there
exists 6 >0 such that d <¢ and {@(s) — P(t}] <e if |s—1t] <J and
5, telm, M].

Since f € @&{w), there is a partition P = {xq4, xy, ..., x,} of [, b} such
that

(18) U(P,f, &) — L(P, [, &) < 8%,

Let M;, m; have the same meaning as in Definition 6.1, and let M}, m}
be the analogous numbers for f1. Divide the numbers 1, ..., n into two
classes: ie Aif M, —m; <d,iec Bif M, —n =z 6.

For i € A, our choice of & shows that M — m] < &.

For ie B, M} —m? < 2K, where K =sup|¢(t}|, m<t< M. By
{18), we have

(19) ' §Y Aoy < Y (M, —m) Aa; < &

ieh ieB
so that ) ;. Ao; < 8. It follows that

U(P, h,o)— L(P, h, o) = Z (M} —mf) Ay + Y (MY — ) A,

ieB

< efu(d) — af@)] + 2K6 < e[a(b) — a(a) + 2K}

Since ¢ was arbitrary, Theorem 6.6 iinplies that fi e #{«).
Remark: This theorem suggests the question: Just what functions are
Riemann-integrable? The answer is given by Theorem 11.33(b).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
(@) Iff, € R(x) and 13 € R(w) on [a, b], then

N +fredw),

of € A(x) for every constant ¢, and

[Gitryda=[fides [ .

b
f' Sdu=c| fda.
&) Iffi(x) < fix) on [a, B, then
[fdus [ e

(©) Iffed(e) on[a,bl and if a<c<b, then fc R(2) on [a, c] and on
[e, b), and

[ra+ f fdu = J"’ fda.
(d) Iffe @) on [a, 6] and if |f(x)] < M on [, b], then
| )  fdu
@ IfeRa) andfe Ray), then fe R, + ;) and
[[rde +a)=[ ra + [ ae,;
if fe (@) and c is a positive constant, then f € B(ca) and

j ' fd(ca) = ¢ J' * fda.

< Mla(B) — ().

Proof Iff=/f, +f, and P is any pértition of [a, b], we have
(20) L(P:fll a)+L(P)f25a)5MP:fv d)
S UP.fia) < UP, fi, ) + UL, 13, a).

If /i € A(x) and f; € R(x), let & > 0 be given. There are partitions Py
(j =1, 2) such that

UCP;, £, @) — L(P,, f;, @) <.

21

6.13
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These inequalities persist if P, and P, are replaced by their common
refinement P. Then (20) implies

UGP, f, @) — L(P, /, o} < 2,
which proves that e &(x).
With this same P we have
UP.fi, < [fideve (j=1,2);
hence (20) implies
{fda < UP,f, ) <[fide+ [f,da+ 2.

Since & was arbitrary, we conclude that

(fde< [fida+ (f,du

If we replace f; and f; in (21) by —f, and —f,, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c) the point is that (by passing to refine-
ments} we may restrict ourselves to partitions which contain the point ¢,
in approximating | f da.

Theorem If fe H(«) and g € A(x) on [a, b), then

@) fgeR(a);

® |1 € () and

f:fda sf]fﬂ du.

Proof 1fwetake ¢(¢) = 72, Theorem 6.11 shows that [? e Aa)if fe H(a).
The identity '

HYg=U+9) -(—9)
completes the proof of (a).
If we take ¢(t) = |¢|, Theorem 6.11 shows similarly that If] e R(g).
Choose ¢ = %1, so that
cffdx=0.

| [fda) = cffdu=§cfdu<-fif| du,

Then

since ¢f < |f1.

6.14 Definition The wunit step function I is defined by

o eso,
=)= {1 (x> 0).



13} PRINCIPLES OF MATHEMATICAL ANALYSIS

6.15 Theorem If a <5< b, [ is bounded on [a, B], f is continuous at s, and
oa{x) = [(x — 3), then

[ra=16.

Proof Consider partitions P = {xg, x;, X3, x5}, where x,=a, and
X =5< X, <Xy=b. Then

U(P,f,\'.‘[)=M1, L(P»f'a)=m2-

Since f is continuous at 5, we see that M, and m, converge to f(s) as
Xg —+ 5.

6.16 Theorem Supposec,=0for1,2,3,..., Xc, converges, {s,} is a sequence
of distinct points in (a, b), and

@ a(x) = ¥ euL(x = 5.
n=1

Let f be continuous on [a, b]. Then

(23) [z =3 cute.

Proof The comparison test shows that the series (22) converges for
every x. Its sum a(x) is evidenily monotonic, and afa) =0, afb) = e, .
(This is the type of function that occurred in Remark 4.31.)

Let £ > 0 be given, and choose N so that

o
Ye<e
N+1

Put
N ]
al(x) = z c,,I(x - S,,), EZ(I) = Z € I(x - n)'
a=1 N+1
By Theorems 6.12 and 6.15,

b N
(24) [[rdn = 2 el 52

i=

Since a,(b) — ay(2) < &,

F.]
25) U fdu,| < M,
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where M = sup|f(x)|. Since @ = a; + a3, it follows from (24) and (25)
that H

ob N
a9 [l r = Faurted

If we let N - oo, we obtain (23).

< Me.

6.17 Theorem Assume « increases monotonically and «' € & on [a, b]. Let f
be a bounded real function on [a, b].
Then fe R(e) if and only if fu' € #. In that case

@n j: fdu = _[:' FO90() dx.

Proof Let ¢ > 0 be given and apply Theorem 6.6 to a': There is a par-
tition P = {xy, ..., x,} of [a, b] such that

(28) UP, )= L(P,o') <&.
The mean value theorem furnishes points 7; € [x;_,, x;] such that
Ao, = o'(1;) Ax,
fori=1,...,n Ifs;e[x;_y, x], then
(29) Y |a'(s) — o'(1)| Axp <€,
i=1

by (28) and Theorem 6.7(5). Put M = sup|f(x)|. Since
3. £Gsi By = 3. flspa'(e) ax
it follows from (29) that
(30) 3 S(sd by = 3. 50 (5) b3, < Me.
In particular,
3 750 8, < U ') + M,

for all choices of s; € [x,_, x;], 50 that
UP, f, o) < UP, fr') + Me.
The same argument leads from (30) to

U(P, &) < U(P, f, @) + Me.
Thus
(1) |U(P, £, ®) — U(P, f')| < Me.
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Now note that (28) remains true if P is replaced by any refinement.
Hence (31) also remains true. We conclude that

) <b
I j fda — j FR)e(x) dx| < Me.
But ¢ is arbitrary. Hence
+b Fb
(32) [[rae=] rowax,

for any bounded f. The equality of the lower integrals follows from (30}
in exactly the same way. The theorem follows.

618 Remark The two preceding theorems illustrate the generality and
flexibility which are inherent in the Stieltjes process of integration. If o is a pure
step function [this is the name often given to functions of the form (22)], the
integral reduces to a finite or infinite series. If  has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultancously, rather than separately.
To illustrate this point, consider a physical example. The moment of

inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

1
33) [ % dm

0
where m(x) is the mass contained in the interval [0, x]. 1f the wire is regarded
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into

(39 J:x’ p(x) dx.

On the other hand, if the wire is composed of masses m; concentrated at
points x;, (33) becomes

(33) Y xim.
i
Thus (33) contains (34) and (35) as special cases, but it contains much

more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theorem (change of variable) Suppose ¢ is a strictly increasing continuous
function that maps an interval 4, B] onto la, b). Suppose a is monotonically
increasing on [a, b) and f € R(%) on [a, b). Define f and g on [4, B] by

(36) BO) = alp()),  90)=S(eO))
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Then g € #(B) and
@37) L' gdf— j:' fda.

Proof To each partition P = {Xo, ..., X} of [a, b] corresponds a partition
Q ={¥o, ..., ¥u} Of [4, B, so that x, = ¢(y)- All partitions of [4, B]
are obtained in this way. Since the values taken by f on [x;-,, x;] are
exactly the same as those taken by g on [¥i-,, yi], We see that

38) U(Q,9,8) = UP.fa),  L(Q.g. f)=LES )

Since /€ #(a), P can be chosen so that both U(P, £, a) and L{P, f, %)
are close to j fda. Hence (38), combined with Theorem 6.6, shows that
g € #(F) and that (37) holds. This completes the proof.

Let us note the following special case:
Take a{x) = x. Then f = ¢. Assume ¢’ € # on [4, B]. If Theorem
6.17 is applied to the left side of (37), we obtain

’ b B
(39) [ f@dx=[ om0 é.

INTEGRATION AND DIFFERENTIATION
We still confine ourselves to real functions in this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.
6.20 Theorem Letfe®ona bl. Fora <x<b, put

X

F(x) = J' F() dt.

a
Then F is continuous on [a, b]; furthermore, if f is continuous at a point xq of
[a, B), then F is differentiable at xq, and

Fi(xg) = f(xo).
Proof Since fe ®, f is bounded. Suppose |f(t)| s M for a<t<b

Ifa<x<y<b, then

< M(y — %),

IF®) - F)| = |[ ) a

by Theorem 6.12(c) and (d). Given £ >0, we see that
|F(y) - F(x)| <e,
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provided that |y —x|<é&/M. This proves continvity (and, in fact,
uniform continuity) of F. .

Now suppose f is continuous at x,. Given &> 0, choose § > 0 such
that :

£y —flxo)| <2
if |t —xo} <6, and a< ¢t <b. Hence, if
Xo—0<S<xpSt<xo+8 and asgs<it<h,
we have, by Theorem 6.12(d},

F(t)—F r
(z: = © _ f(xo)l - ‘?’-’? [ - sexon au

It follows that F'(xg) = f(xq).

< E.

621 The fundamental theorem of calculas If /' € & on [a, b} and if there is
a differentiable function F on [a, b] such that F' = f, then

b
- [ e dx = F@) - Fea).
Proof Let £ > 0 be given. Choose a partition P = {x,, ..., x,} of [z, b]

so that U(P,f) — L{P,f) < &. The mean value theorem furnishes points
t; € [x;-1, x;] such that

Flx) — Fx;_y) = f(t)) Ax,
fori=1,...,n Thus

iglf(f;) Ax, = F(b) = Fa).
It now foilows from Theorem 6.7(c) that

<E.

b
F(b) — Fa) — j Sty ds

Since this holds for every & > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are differentiable func-
tionson [a, ), F =feR,and G' =ge R. Then

[ Fa0) dx = FBYG®) ~ F@6(@) ~ [ f66) d.

Prloof Put H(x) = F(x)G(x) and apply Theorem 6.21 to A and its deriv-
ative. Note that H' € ®, by Theorem 6.13.
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INTEGRATION OF VECTOR-VALUED FUNCTIONS

623 Definition Letf;, ..., f, be real functions on [, b], and let f = (fis - )
be the corresponding mapping of [a, b] into R*. If a increases monotonically
on [a, &), to say that f € #(«) means that f; € #(a) forj=1,..., k. Ifthis is the
case, we define - -

f:fdu= (j"'f1 da, _["f,‘ da),

Tn other words, ff dec is the point in R* whose jth coordinate is f; d.

It is clear that parts {a), (¢}, and {e) of Theorem 6.12 are valid for these
vector-valued integrals; we simply apply the earlier results to each coordinate.
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the
analogue of Theorem 6.21.

624 Theorem IffandF map [a,b]into R, iffc R on [a, b, and if F' =1, then
b
J' £(t) dt = F(b) — F(a).

The analogue of Theorem 6.13(b) offers some new features, however, at
least in its proof.

6.25 Theorem If f maps [a, b} inte R* and if f € R(o) for some monotonically
increasing function o on [a, b, then \f| € &(x), and '

(40) 1 rf do| < j: ] da.

Proof Iff,, ...,/ are the components of {, then
@1 Il =3+ -+

By Theorem 6.11, each of the functions f belongs to #&(x); hence so does
their sum. Since x? is a continuous function of x, Theorem 4.17 shows
that the square-root function is continuous on [0, M], for every real M.
If we apply Theorem 6.11 once more, (41) shows that 1] & #(a).

To prove (40), puty = (¥y, ..., ¥i), where y; = {f; da. Then we have
y = {f da, and

ly|*=Yy= Zy;_[ﬂda=f(2y,)g) do.

By the Schwarz inequality,
“2) L TSy @<isb);
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hence Theorem 6.12(d) implies
@) ¥12 < Iyl [ if] da.

If y = 0, (40) is trivial. If y s 0, division of (43) by |y| gives (40).

RECTIFIABLE CURVES

We conclude this chapter with a topic of geometric interest which provides an
application of some of the preceding theory. The case & =2 (i.e., the case of
plane curves) is of considerable importance in the study of analytic functions
of a complex variable.

6.26 Definition A continuous mapping y of an interval [, b] into R* is called
a curve in R*. To emphasize the parameter interval [, b], we may also say that
y is a curve on [a, b].

If y is one-to-one, y is called an arc.
If y(a} = (&), y is said to be a closed curve.

It should be noted that we define a curve to be a mapping, not a point set,
Of course, with each curve y in R* there is associated a subset of R, namely
the range of y, but different curves may have the same range.

We associate to each partition P ={x,,..., x,} of [a, 8] and to each
curve y on [a, b] the number

AR M = T 19x) — 1xi-o).

The ith term in this sum is the distance (in R*) between the points y(x;_,} and
p(x,). Hence A(P, y) is the length of a polygonal path with vertices at y(xq),
y(x,), ..., ¥(x,), in this order. As our partition becomes finer and finer, this
polygon approaches the range of y more and more closely. This makes it seem
reasonable to define the length of y as

A(y) = sup A(P, 7),

where the supremum is taken over all partitions of [a, 5].

If A(y) < o0, we say that y is rectifiable.

In certain cases, A(y) is given by a Riemann integral. We shall prove this
for continuously differentiable curves, i.e., for curves y whose derivative y' is
continuous.
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6.27 Theorem Ify is continuous on [a, b, then y is rectifiable, an{i
b , :
A =[ 170l
Proof Ifa<x,., <x,<b, then

) — el = | @ ar| <[y olar

Hence
b
AP < [ ¥ dr

for every partition P of [a, b]. Consequently,
b r
A = [ Iy a.
aq

To prove the opposite inequality, let & >0 be given. Since ' is
uniformly continuous on [a, &], there exists 4 > 0 such that
1Y) — v <e if |[s—1|<d.

Let P={xg,..., X} be a partition of [g, b], with Ax; <& for all i. If
X;_y S 1< x;, it follows that

[Y(O] < [yx)f+ e
Hence o

[ Iyorde<iye) ax +oAx

fn () + ¥ (x) — ¥l drl + & Ax;

-1

< + & Ax;

[ v dr| + U [y Ge) — ¥©) di
< |y = ylxi- )| + 26 Ax;.

If we add these inequalities, we obtain
)
[ v de <A@, + 26 - 2)

< A(Y) + 2e(b — a).
Since £ was arbitrary,

IROERL

This completes the proof.
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Assume that f(x) >0 and that f decreases monotonically on [I, «). Prove

EXERCISES . that
1. Suppose « increases on [a, 4], @ < x < b, « is conginuous at Xo, f(xo) =1, and @
Sf(x) =0 if x % x,. Prove that fe H(x) and that | fdo =0, L flx) dx

2. Suppose f =0, £ is continuous on [a, 5], and J.: J(x) dx=0. Prove that f(x) =0
for all x € [a, b). (Compare this with Exercise 1.) \

converges if and only if

3. Define three functions f1, B2, 85 as follows: B,(x) = 0if x <0, B(x)=1if x>0 _glf (m
for j=1,2, 3; and £,(0) = 0, B:(0) =1, B,(0) = 4. Let f be a bounded function on - - . .
[—1,1} converges. (This is the so-called “integral test” for convergence of series.)

9. Show that integration by parts can sometimes be applied to the “improper”

(a) Prove that f€ #(8,) if and only if £(0-+) = f{0) and that th
fe R B yiE£0+) =1(0) at then integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a

ff df, = f(0). theorem, and prove it.) For jnstance show that

() State and prove a similar resuit for 8, . “ COS X _ ® sinx .

(c) Prove that f'e #(8;) if and only if £ is continuous at 0, o 1+x o (I +x)?

(d) If fis continuous at 0 prove that Show that one of these integrals converges absolutely, but that the other does not.

10. Let d g be positive real numbers such that
J'fdﬁ;-—-ffdﬂ;=ffdp,=f(o), et p and ¢ be positive 5
1 1

4. If f(x) = 0 for all irrational x, f(x} = 1 for all rational x, prove that f ¢ & on[a, 8] P + 7 L

for any a < b. .
5. Suppose f is a bounded real function on [, 5], and f* € & on [g, b]. Does it Prove the following statements.
follow that f &€ #? Does the answer change if we assume that /* € #7 (@) 1fu=0and» >0, then
6. Let P be the Cantor set constructed in Sec. 2.44. Let fbe a bounded real function w_ov
on [0, 1] which is continuous at every point outside P. Prove that fe # on [0, 1]. '
Hint: P can be covered by finitely many segments whose total length can be made
as small as desired. Proceed as in Theorem 6.10.
7. Suppose fis a real function on (0,1]and fe & on [¢, 1] for every ¢ >0, Define

Equality holds if and only if 4 = p*.
(&) If fe R(a), g R(e), /=0, =0, and

Llf(x)dx=‘1if2ff(x)dx ff'du:=1=£'gcda,

if this limit exists (and is finite). then

{a) 1f fe @R on [0, 1], show that this definition of the integral agrees with the old r Jada < 1.
one. ‘
(&) Construct a function f such that the above limit exists, although I fails to exist
with | ] in place of /.
8. Suppose f'e & on [a, b] for every b > a where a is fixed, Define

P

(¢) If fand g are complex functions in #(x), then

s{f: ifl'da}m{_f: |g!'daz}”'.

This is Hdlder's t'nequali:y. When p=g=2 it is usuaily called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)

(d} Show that Hiolder's inequality is also true for the *improper” integrals de-
scribed in Exercises 7 and 8.

f Jo dzx

[ 76 ax < jim ) "oy dr

if this limit exists (and is finite). In that case, we say that the integral on the left
corverges. If it also converges after £ has been replaced by | £], it is said to con-
verge absolutely.
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11. Let « be a fixed incraasing function on [2, 5. For u e R[x), define
b 1/2 :
llalts = {j' [u]? da] .

Suppose f, g, k € R(x), and prove the triangle inequality
=kl < [ f—gllz + llg — All,

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37,
12. With the notations of Exercise 11, suppose fe ®(a) and £>0. Prove that
there exists a continuous function g on [a, 5] such that Lf—gliz <€
Hint: Let P={xo, ..., x»} be a suitable partition of [, 5], define

_x;—t I — X3
gty = Ax, f(xl-:)+—rx"——f(ra)
Fxia <t <.
13. Define

x+1
= _[ sin (%) dt.

(a) Prove that [f(x)| < 1/xif x> 0.
Hint: Put t* = u and integrate by parts, to show that (x) is equal to
cos (x)  cos [(x+ 1)*] _ J"*“" cos u
p 20+ 1) 3o

Replace cos u by —1.
(b) Prove that

x3

2xf(x) = cos (x*) — cos [(x + D)?] + r(x)

where |#(x)| < c/x and ¢ is a constant.
(c) Find the upper and lower limits of xf(x), as x — co.

(d) Does f:sin (t*) dr converge?
14. Deal similarly with
x+1
oy = f sin (¢") d,
Show that

e fx)]<2
and that

ef(x)=cos (¢*) — e~ cos (e**} + r(x),

where |r(x)| < Ce~*, for some constant C.
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13, Suppose fis a real, continuously differentiable function on [a, b, f(a) = f(b)y=0,

and
b
f A0 dx=1.
Prove that
b
[worma=—4
and that

[ a- [ xre de> 1,
16. For 1 < s < o, define

=3

mml

A=

(This is Riemann’s zeta function, of great importance in the study of the distri-
bution of prime numbers.) Prove that

= [x]

1 xﬂ-ldx

(@) Lsy=s

and that

where [x] denotes the greatest integer < x,
Prove that the integral in (5) converges for all s > 0.
Hint: To prove (@), compute the difference between the integral over {1, N]
and the Nth partial sum of the series that defines (s).
17. Suppose o increases monotonically on [a, b, g is continuous, and g(x} = G'(x) ~
for a << x <. Prove that

J"uc(x)g(x) dx = G(B(b) — Gla)ala) — f "G da.

Hini; Take g real, without loss of generality. Given P ={x,, x5, ..., %},
choose 1 & (x:.., x1) so that g(1;} Ax; = G(x,;} — G(x.—,). Show that

3 aCo)g(e) A1 = G(ba(b) — Glaa(a) — 3 G- .

18. Let y,, ¥z, vs be curves in the complex plane, deﬁ.ned on [0, 2] by
Yl(t) = 8", Yz(f) = ezu’ y!(l) i ez-n Ha (lft)'

Show that these three curves have the same range, that v, and ¥, are rectifiable,
that the length of y, is 2=, that the length of ¥, is 4m, and that v, is not rectifiable.
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19. Let v, be a curve in R*, defined on [a, b]; let ¢ be a continuous 1-1 mapping of
[c, d] onto [a, 5], such that ¢{c) = a; and define y.(s) =;)l,(¢(s)). Prove that y; is
an arc, a closed curve, or a rectifiable curve if and only if the same is true of y,.
Prove that y; and ¥, have the same length.

7

SEQUENCES AND SERIES OF FUNCTIONS

In the present chapter we confine our attention to complex-valued functions
(including the real-valued ones, of course), although many of the theorems and
proofs which follow extend without difficulty to vector-valued functions, and
even to mappings into general metric spaces. We choose to stay within this
simple framework in order to focus attention on the most important aspects of
the problems that arise when limit processes are interchanged.

DISCUSSION OF MAIN PROBLEM

7.1 Definition Suppose {f.}, n=1,2,3,..., is a sequence of functions
defined on a set E, and suppose that the sequence of numbers { f,(x)} converges
for every x € E. We can then define a function Sby

(1 : fx)= :i_flzoﬂ(x) (x € E).
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Under these circumstances we say that {f,} converges on E and that [ is
the limit, or the limit function, of {f,}. Sometimes we $hall use a more descriptive
terminology and shall say that “{f,} converges to f ppintwise on E” if (1) holds.
Similarly, if £f,(x) converges for every x € E, and if we define

@ f@=350  (eb),

the function f is called the sum of the series Zf, .

The main problem which arises is to determine whether important
properties of functions are preserved under the limit operations (1) and (2).
For instance, if the functions £, are continuous, or differentiable, or integrable,
is the same true of the limit function? What are the relations between f, and /',
say, or between the integrals of £, and that of /7

To say that fis continuous at a limit point x means

lli_ljlf (0) =S (x).

Hence, to ask whether the limit of a sequence of continuous functions is con-
tinuous is the same as to ask whether
3 lim lim f,(¢) = lim limf{#),

=X n*+D A=+ =X
i.e., whether the order in which limit processes are carried out is immaterial.
On the left side of (3), we first let # — co, then 7 — x; on the right side, £ — x
first, then n — oo.

We shall now show by means of several examples that limit processes
cannot in general be interchanged without affecting the result. Afterward, we
shall prove that under certairi conditions the order in which limit operations
are carried out is immaterial. :

Our first example, and the simplest one, concerns a “*double sequence.”

7.2 Example Form=1,23,...,n= 1,2,3,..., let

m
S = N
" m+n
Then, for every fixed n,
lim s, =1,

m=
5o that
@) lim lims,,=1.

K=o w0

SEQUENCES AND SERIES OF FUNCTIONS 145

On the other hand, for every fixed m,

lim 5,0 =0,

so that
(5 lim lims,,="0.

M=o B X0

7.3 Example Let

2

fi) = (_1—_};27 (creal;n=0,1,2,...)
and consider
@ o« x2
) f(x) =n§0ﬁ(x) ="§o a7

Since £,(0) = 0, we have f(0) =0. Forx # 0, the last series in (6) is a convergent
geometric series with sum 1 + x? (Theorem 3.26). Hence

_Jo (x=0),
@ S = ‘1 +x (x#0),

so that a convergent series of continuous functions may have a discontinuous
sum.

7.4 Example Form=1,23,..., put

£.(0) = lim (cos m!nx)*",

Lind

When m!x is an integer, £,(x) = 1. For all other values of x, f(x) = 0. Now let
fx) = lim f(x).
m—o

For irrational -x, £.(x) =0 for every m; hence f(x) =0. For rational x, say
x = pjq, where p and g are integers, we see that m!x is an integer if m = ¢, so

that f(x) = 1. Hence

- 2|0 (x irrational),
8 lim lim (cos mlnx) —[1 (x rational).

a0 Ak Q0

We have thus obtained an everywhere discontinuous limit function, which
is not Riemann-integrable (Exercise 4, Chap. 6).
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7.5 Example Let

(xreal, n = l-, 2,3,..)

J(x) =lim f,(x) = 0.
Then f°(x) = 0, and
(x)= \/ n cos nx,
so that {f,} does not converge to f*. For instance,
fi0) =/~ +oo
as n — o0, whereas /(0) = 0.
7.6 Example Let
Silx) = nx(1 — X%y

For 0 < x < 1, we have

O<x=<l,n=123,..)

lim f(x) = 0,

by Theorem 3.20(d). Since Ju(0) = 0, we see that
limf{x)=0
L iad- ]

A simple calculation shows that

1
fo x(1 — x*ydx =
Thus, in spite of (I1),

1 2
Lﬁ.(x)dx=2n+

If, in (10), we replace »? by n, (11) still holds, but we now have

SEQUENCES AND SERIES OF FUNCTIONS 147

Thus the limit of the integral need not be equal to the integral of the limit,
even if both are finite.

After these examples, which show what can go wrong if limit processes
are interchanged carelessly, we now define a new mode of convergence, stronger
than pointwise convergence as defined in Definition 7.1, which will enable us to
arrive at positive results. '

UNIFORM CONVERGENCE

7.7 Definition We say that a sequence of functions {f,},n=1,2,3,...,
converges uniformly on E to a function [ if for every & > O there is an integer N
such that n > N implies

(12) [fix) —f(x)| e

for all x € E.

It is clear that every uniformly convergent sequence is pointwise con-
vergent. Quite explicitly, the difference between the two concepts is this: If{/}
converges pointwise on E, then there exists a function f such that, for every
€ > 0, and for every x € E, there is an integer N, depending on & and on x, such
that (12) holds if » > N; if { f,} converges uniformly on E, it is possible, for each
£ > 0, to find one integer N which will do for all x ¢ E.

We say that the series If,(x) converges uniformly on E if the sequence
{s.} of partial sums defined by

Fix) = 5,(x)

1=

I

1

converges uniformly on E.
The Cauchy criterion for uniform convergence is as follows.

7.8 Theorem The sequence of functions {f,}, defined on E, converges uniformly
on E if and only if for every & > 0 there exists an integer N such that m = N,

n =N, x € E implies
(13) i) = fa(x)] < &

Proof Suppose {f,} converges uniformly on E, and let f be the limit
function. Then there is an integer N such that n > N, x € F implies
£
/() — F(x)] <30
so that
A L) S IAE - @+ IO -S| <

ifn>=N,m=>=N,xeE.
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Conversely, suppose the Cauchy condition holds. By Theorem 3.11,
the sequence {f,(x)} converges, for every x, to 2 limit which we may call
f(x). Thus the sequence {f,} converges on E, to /. We have to prove that
the convergence is uniform.

Let ¢ > 0 be given, and choose N such that (13) holds. Fix n, and
let m — a0 in (13). Since f(x) — f(x) as m — oo, this gives

(14 |A) ~f(x}]| <e
for every n = N and every x € E, which completes the proof.

The following criterion is sometimes useful.

7.9 Theorem Suppose

:Eﬂ,(x) =f(x) (xek).
Put
: M, = sup | f,(x) —f()|.

Then 1, — f uniformly on E if and only if M, -0 as n - .

Since this is an immediate consequence of Definition 7.7, we omit the
details of the proof.

For series, there is a very convenient test for uniform convergence, due to
Weierstrass.
7.10 Theorem Suppose{f,} is a sequence of functions defined on E, and suppose
fi(x) <M, (xeEn=123,..).
Then Zf, converges uniformly on E if LM, converges.

Note that the converse is not asserted {(and is, in fact, not true).

Proof If IM, converges, then, for arbitrary ¢ > 0,

Erieo

- provided m and n are large enough. Uniform convergence now follows
from Theorem 7.8.

S:ZM;SS (x e E),
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UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose f,— funiformly on a set Eina metric space. Let x be
a limit point of E, and suppose that

(15) limf()=4, {(=123..)
L+ x
Then {H,,} converges, and
(16) lim f(r) = lim 4,.
—=x L2
In other words, the conclusion is that
(1n lim limf;(f} = lim Lim f(¢).
I~z A= n=w ¢—+x

Proof Let &> 0 be given. By the uniform convergence of {f.}, there
exists N such that n = N, m = N, t € E imply

(18) FAORFAOIE<2
Letting r — x in (18), we obtain
IAn - Aml =t

for n>N,m> N, so that {4,} is a Cauchy sequence and therefore

converges, say to A.
Next,

(19 If() = A} € [fO — 7]+ 16O — 4| + |4 — 4]
We first choose #n such that
H
20) HOEFAON <3
for al! 1 € E (this is possible by the uniform convergence), and such that
Al = £
@n |4, — 4] S5
Then, for this #, we choose a neighborhood ¥ of x such that
&
@ FAOEPHMES:

if teVNE,t#x. )
Substituting the inequalities (20) to (22) into (19), we see that

[f)—Al<s
provided t e V n E, 15X, This is equivalent to (16).
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7.12 Theorem If{f,} is a sequence of continuous functions on E, and if f, = f
uniformly on E, then f is continuous on E.

This very important result is an immedjate corollary of Theorem 7.11,

The converse is not true; that is, a sequence of continuous functions may
converge to a continuous function, although the convergence is not uniform,
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case
in which we can assert the converse.

7.13 Theorem Suppose K is compact, and

(@) {f.)is a sequence of continuous functions on K,
(b} {f,} converges pointwise to a continuous function f on K,
© fizfinq(Xforallxek,n=1,213,....
Then f, — f uniformly on K.
Proof Put g,=f,—f Then g, is continuous, g, —0 pointwise, and
On = Gu+1- We have to prove that g, — 0 uniformly on K.

Let 2> 0 be given. Let K, be the set of all x e X with g,(x) = &.
Since g, is continuous, X, is closed (Theorem 4.8), hence compact (Theorem
2.35). Since g, =ge+1, We have K, o K, ... Fix xe K. Since g,(x) -0,
we see that x ¢ X, if n is sufficiently large. Thus x ¢ ﬂ K, . In other words,
() K, is empty. Hence Ky is empty for some N (Theorem 2.36). It follows
that 0 < g,(x) < efor all x € K and for alln > N. This proves the theorem.

Let us note that compactness is really needed here. For instance, if
j;,(x)=T (0<x<1;n=1,2,3,...)
then £,(x) — 0 monotonically in (0, 1), but the convergence is not uniform.

7.14 Definition  If X is.a metric space, ¥(X) will denote the set of all complex-
valued, continuous, bounded functions with domain X.

[Note that boundedness is redundant if X is compact (Théorem 4.15).
Thus €(X) consists of all complex continuous functions on X if X is compact.]
We associate with each f & €(X) its supremum norm

Ifll = sup |f(x) 1.
Since f is assumed to be bounded, ||f|| < co. It is obvious that || f|| = 0 only if
J(x) =0 for every x e X, that is, only if f=0. If h =f+g, then
|hx) | < [FO3 ]+ lgGd] < Uf1 + llgll
for all x € X; hence

IF+ gk < If1l + gl
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If we define the distance between fe €(X) and g e €(X) to be ||f—gl.
it follows that Axioms 2.15 for a metrlc are satisfied.

We have thus made €(X) inty a metric space.

Theorem 7.9 can be rephrased as follows:

A sequence {f;} converges to [ with respect to the metric of €(X) if and
only if [, = funiformly on X.

Accordingly, closed subsets of ¥(X) are sometimes called uniformly
closed, the closure of a set &f = €(X) is called its uniform closure, and so on.

7.15 Theorem The above metric makes €{X) into a complete metric space.

Proof Let{f} be a Cauchy sequence in ¥(X). This means that to each
£ >0 corresponds an N such that |f, —f,ll <cif n=N and m= N.
It follows (by Theorem 7.8) that there is a function f with domain X to
which {f,} converges uniformly. By Theorem 7.12, f is continuous.
Moreover, f is bounded, since there is an » such that |f{x) —f,(x)| <1
for all x € X, and f, is bounded.
Thus fe¥(X), and since f,—f uniformly on X, we have

lf— Al =0 as n— oo,

UNIFORM CONVERGENCE AND INTEGRATION

7.16 Theorem Let « be monotonically increasing on [a, b). Suppose f, € R(x)
on[ab), forn=1,2,3,..., and suppose f, — f uniformly on {a, b]. Then f € H(x)
on {a, b}, and

(23) f fda—limfj;

L ind 1)

(The existence of the limit is part of the conclusion.)

Proof It suffices to prove this for real f,. Put
29) & =sup [f(x}—f(X)[,
the supremum being taken over @ < x <b. Then
.fn_sn stfn'l'en!
so that the upper and lower integrals of f (see Definition 6.2) satisfy
5 = b
@5) [Gi-edns[fde<[raus| (f,+e)dn
a - a
Hence

0 sI o — [ fdz < 26,[a(8) — o(a)].
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Since g, — 0 as n — o (Theorem 7.9), the upper and lower integrals of f
are equal.
Thus f € #(e). Another application of (25) now yiclds
b b
Lfa—Lﬁh

(26) < 2,{a(d) — o(a)).

This implies (23).
Corollary If f, € #(2) on [a, b] and if

f@=3 50 @sxsh,

the series converging uniformly on [a, b), then
ffﬁ—Zfﬁ
n=]

In other words, the series may be integrated term by term.

UNIFORM CONVERGENCE AND DIFFERENTIATION

We have already seen, in Example 7.5, that uniform convergence of { £} implies
nothing about the sequence {f.}., Thus stronger hypotheses are required for the
assertion that f — f'if f, = f.

717 Theorem Suppose{f,} is a sequence of fimetions, differentiable on [a, b}
and such that {f.(x,)} converges for some point x, on [a,b]. If{f]} converges
uniformly on [a, b), then {f,} converges uniformly on [a, b, to a function f, and

an f@=lmfid) (a<xsb).
Proof Let ¢ > 0 be given. Choose N such that n = N, m = N, implies
28) |fixo) = fulxo}] <3
and
@) i -f0l< p—s  @st<b)

2(b a)
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If we apply the mean value theorem 5.19 to the function ﬁ, — fre2 (29)
shows that

|x—1tle

G0) 48) =) =0+ 1u)] S s <5

‘for any x and ¢ on [g, b], if n = ¥, m = N. The inequality
/%) = fulX) | S 100 — Sal3¥) = Six0) + SulX0) | + | fslx0) — fulX0) |
implies, by (28) and (30), that
i) —ful)i<e (a<x<sbnrnzNmz=N),
s¢ that {f,} converges uniformly on [a, b]. Let
fx) =£lgﬂ(x) (asx<b).

Let us now fix a point x on [a, b} and define

6) PO R NPORS )
fora<t=<b,t+#x. Then
(32 lim ¢, ()=f,(x) (=123..)
t=x
The first inequality in (30) shows that
[6u(t) — ult)| < 57— 2(b ) (rzN,mzN),

so that {¢,} converges uniformly, for # # x. Since {f,} converges to f, we
conclude from (31) that
(33) lim ¢,() = ¢(1)

| b o}

uniformly fora <t <b, t # x.
If we now apply Theorem 7.11 to {¢,}, (32) and (33) show that

lim ¢(r) = lim f;7(x);

1—+x n—+x
and this is (27), by the definition of ¢(f).
Remark: If the continuity of the functions f is assumed in addition to

the above hypotheses, then a much shorter proof of (27) can be based on
Theorem 7.16 and the fundamental theorem of calculus.
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7.18 Theorem There exists a real continuous function on the real line which is
nowhere differentiable.

Proof Define
(34) o) =Ix| (-1<xs51)

and extend the definition of @(x) to all real x by requiring that
(35) ox +2) = p(x).

Then, for all s and ¢,
(36) lp(s) — () | < s — 2.

In particular, ¢ is continuous on R®. Define

) 10 =3 @ro@s.

Since 0 <¢ <1, Theorem 7.10 shows that the series (37) converges
uniformly on R}. By Theorem 7.12, fis continuous on R'.
Now fix a real number x and a positive integer m. Put

(38) b=t 147"

where the sign is so chosen that no integer lies between 4"x and 4™(x + 6,,).
This can be done, since 4™ |5, | = 4. Define

_ oM@ (x + 6,)) — 9(d"x)
am
When n > m, then 4", is an even integer, so thaty, =0. When0 <n <m,

{36) implies that [y, | <4".
Since |y, | = 4™, we conclude that
it 3 "
BZO (Z) P
m=1
>3-3y3

f(x + 3a) (%)
n=0

O
=43+ 1).
As m— 0, §, - 0. It follows that f is not differentiable at x.

(39) n

EQUICONTINUOUS FAMILIES OF FUNCTIONS

In Theorem 3.6 we saw that every bounded sequence of complex numbers
contains a convergent subsequence, and the question arises whether something
similar is true for sequences of functions. To make the question more precise,
we shall define two kinds of boundedness.
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719 Definition Let{f;} be a sequence of functions defined on a set E.

"We say that{f,} is pointwise bounded on E if the sequence{f,(x)} is bounded
for every x € E, that is, if therg exists a finite-valued function ¢ defined on E
such that : :

/i) <) (xeEn=1,23..)

We say that {f,} is uniformly bounded on E if there exists a number M
such that

<M (xeEn=123,..).

Now if {£,} is pointwise bounded on E and E; is a countable subset of E,
it is always possible to find a subsequence {f, } such that {f, (x)} converges for
every x € E,. This can be done by the diagonal process which is used in the
proof of Theorem 7.23.

However, even if {f;} is a uniformly bounded sequence of continuous
functions on a compact set E, there need not exist a subsequence which con-
verges pointwise on E. In the following example, this would be quite trouble-
some to prove with the equipment which we have at hand so far, but the proof
is quite simple if we appeal to a theorem from Chap. 11.

7.20 Example Lect
fi(¥)=sinmx (0=£x<2r,n=1,23,..).

Suppose there exists a sequence {,} such that {sin n.x} converges, for every
x €[0, 2x). In that case we must have

lim (sin mx —sinm ) =0 (0 < x < 2nm);

k=00
hence
(40) lim (sin nx —sinm,, x)* =0  (0< x < 2n).
k—+x

By Lebesgue’s theorem concerning integration of boundedly convergent
sequences {Theorem 11.32), (40) implies

2x

41) lim f (sin mx — sinmyy,x)* dx = 0.
k»0"0

But a simple calculation shows that

ix
I (sin mx — sin w4 x)? dx = 2,
1]

which contradicts (41).
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Another question is whether every convergent sequence contains a
uniformly convergent subsequence. Our next example will show that this
need not be so, even if the sequence is uniformly bounded on a compact sct.
(Example 7.6 shows that a sequence of bounded functions may converge
without being uniformly bounded; but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.)

7.21 Example Let

x?
HO= ey

Then |f,(x)} < 1, so that{;} is uniformly bounded on [0, 1]. Also
limfi(x)=0 (O<x<1),
L aad- ]

O<x<l,n=1,23,..)

but

f(%) =1 (=123,.)

so that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity;
it is given in the following definition.

7.22 Definition A family # of complex functions f defined on a set £ in a
metric space X is said to be eguicontinuous on E if for every ¢ > 0 there exists a
¢ > 0 such that

HOEFOIRS:

whenever d(x, y) <4, x e E, y e E, and fe #. Here d denotes the metric of X,

It is clear that every member of an equicontinuous family is uniformly
continuous.

The sequence of Example 7.21 is not equicontinuous.

Theorems 7.24 and 7.25 will show that there is a very close relation
between equicontinuity, on the one hand, and uniform convergence of sequences
of continuous functions, on the other. But first we describe a selection process
which has nothing to do with continuity.

7.23 Theorem If{f} is a pointwise bounded sequence of complex fimetions on
~a countable set E, then{f,} has a subsequence {f, } such that {£,.(x)} converges for
every x € E,
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Proof Let{x;},i=1,23,...,be the poiats of E, arraniged in a sequence.
Since {f,(x;)} is bounded,- there exists a subsequencé, which we shall
denote by {f; .}, such that {f; ,(x,)} converges as k - oo:

Let us now consider sequences S, 5,, S,, ..., which we represent
by the array 3

St fia Sz f1,3 Ha
820 fou Sfaz fas Sra e
Syt foa Sfaz Sz Sia e

and which have the following properties:

(@) S, is a subsequence of S,_,, forn =2, 3, 4,....

(B {fea(x)} converges, as k— oo (the boundedness of {fulx )}
makes it possible to choose S, in this way);

(¢} The order in which the functions appear is the same in each se-
quence; i.e., if one function precedes anotherin S, theyarein the same
relation in every S,, until one or the other is deleted. Hence, when
going from one row in the above array to the next below, functions
may move to the left but never to the right.

We now go down the diagonal of the array; i.e., we consider the
sequence

St fia far fos faures
By {c), the sequence S (except possibly its first n — | terms) is a sub-
sequence of S,, for n=1,2,3,.... Hence (b} implies that {fen(x)}
converges, as n — o, for every x, ¢ E.

7.24 Theorem If K is a compact metric space, if f, € €K)for n=1,2,3,...,
and if{f,} converges uniformly on K, then{f} is equicontinuous on K,

Proof Let ¢ >0 be given. Since {} converges uniformly, there is an
integer N such that

(42) 1f—ful <e  (>N).

(See Definition 7.14.) Since continuous functions are uniformly con-
tinuous on compact sets, there is a § > 0 such that

(43) ) = fn) | <e

if1<i<N and d(x, ) <34.
If n > N and d(x, y) < 3, it follows that

G = A0 < 10 ~ 0 | + 1) —A0) | + [fu) = £0) | < 3e.

‘In conjunction with (43), this proves the theorem.
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7.25 Theorem [f K is compact, if f,e€(K)forn=1,2,3,..., and if {f.} is
pointwise bounded and equicontinuous on K, then :

(a) {f.} is uniformly bounded on K,
) {f.) contains a uniformly convergent subsequence,

Proof
(@) Let &> 0 be given and choose & > 0, in accordance with Definition
7.22, so that

) LX) = £ <e

for all n, provided that d(x, y) < &,

Since K is compact, there are finitely many points p,, ..., p, in K
such that to every x € K corresponds at least one p, with d(x, p)) < 3.
Since{f,} is pointwise bounded, there exist M; < oo such that |f,(p)| < M,
for all n. If M=max(My,..., M,), then |f(x}| <M +¢ for every
x € K. This proves (a).
(6) Let E be a countable dense subset of X. (For the existence of such a
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {f,} has a
subsequence { £, } such that{/, (x)} converges for every x ¢ E.

Put f, =g, to simplify the notation. We shall prove that {g;}
converges uniformly on X,

Let £ > 0, and pick é >0 as in the beginning of this proof. Let
¥(x, 8) be the set of all y € K with d(x, y) < §. Since E is dense in X, and
K is compact, there are finitely many points x,, ..., x,, in E such that

(45) KcVix,d)u v Flx,, o).
Since {g;(x)} converges for every x € E, there is an integer N such
that
(46) |9 i(xl') -4 j(x.r) I <t

whenever i = N, j2> N, 1 ss<m.
If x € K, (45) shows that x e ¥{(x,, &) for some s, 50 that

lgix) —gix)] <&
for every i. If i = N and j 2 N, it follows from (46) that
[9:x) = 9| < lgdx) — gilx) | +19.:00) — x| + lgfx) — g;(x) |

< 3e.

This completes the proof.
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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b), there exists a
sequence of polynomials P, such that

- im P(x) = f{(x)

K=o
uniformly on [a, b]. If f is real, the P, may be taken real.

This is the form in which the theorem was originally discovered by
Weierstrass.

Proof We may assume, without loss of generality, that [a, 5] = [0, 1].
We may also assume that f(0) = f(1) = 0. For if the theorem is proved
for this case, consider

gx) =f(x) =fO) - x[f1) -/0)] (O=<x<1).

Here g(0) = g{1) =0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
" since f — g is a polynomial.
Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.
We put

én ) =cfl~x (n=1,23,..),
where ¢, is chosen so that
(48) j' 0.dx=1 (n=1,23,..).
-1

We need some information about the order of magnitude of ¢,. Since

jl a —xz)'-dx=2jl(1 —xz)”dx22fuﬁ(l — X dx
a 1]

-1

Vi
zzj” (1 — nx?) dx
Q
4

3

7

S

v

it follows from (48) that

49) ey < /n.
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The inequality (1 — x?)" 2 1 — nx* which we used above is easily
shown to be true by considering the function

(1 —x%" =1 +nx?

which is zero at x = 0 and whose derivative is positive in (0, 1),
For any é > 0, (49) implies

(50) QM= /n(l-8y @<,
so that @, — 0 yniformly in § < |x| < 1.
Now set
(51) Bx) = f _11 fx+00.0d (Osx<1)

Our assumptions about /" show, by a simple change of variable, that

1-x 1
P& =] fx+nQd=[ [0~ ar,
and the last integral is clearly a polynomial in x. Thus {£,} is a sequence

of polynomials, which are real if fis real.
Given & > 0, we choose & > 0 such that |y — x| < & implies

0 -/ <3

Let M =sup [f(x)|. Using (48), (50), and the fact that Q,(x) >0, we
see thatfor0 < x <1,

1P ~£@) = |[” 65+ - fe
<[ e+ -rele0

-4 i
<M f Q0+ g j _, Oaleydt +2, _[:.Q,ir) dt

£
<aM\/n(1 -5 +5
<E

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q, for a few values of n; also,

note that we needed uniform continuity of f to deduce uniform convergence
of {P,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [— a, 4] there is a sequence of real poly-
nomials P, such that P(0) = 0 and such that
lim P(x) = |x|

uniformly on [ — a, al.

Proof By Theorem 7.26, there exists a sequence {P} of real polynomials
which converges to |x| uniformly on [— a, a}. In particular, P}{0)—0
as nt — c0. The polynomials

Pn(x)=P:(x)_P:(0) (ﬂ=1,2,3,...)

have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family & of complex functions defined on a set E is said
to be an algebraif (i) f+ g e &, (i) fg € o, and (jiii) ¢f e o forall fe of, g € o
and for all complex constants ¢, that is, if & is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (iii) is of course only required to hold for all real ¢.

If of has the property that fe .of whenever foes (n=1,2,3,...) and
Jo—/ uniformly on E, then & is said to be uniformly closed.

Let @ be the set of all functions which are limits of uniformly convergent
sequences of members of of. Then @& is called the wniform closure of of . (See
Definition 7.14.)

For example, the sct of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, ]
is the uniform closure of the set of polynomials on [e, b].

7.29 Theorem Let & be the uniform closure of an algebra of of bounded
Junctions. Then @ is a uniformly closed algebra.

Proof If fe @ and g € @, there exist uniformly convergent sequences
{fo}:{g.) such that f, = f, g, » g and f, € of, g, € &f. Since we are dealing
with bounded functions, it is easy to show that

Sot g F+a  SugamSfi, S,

where ¢ is any constant, the convergence being uniform in each case.
"Hence f+g €@, fg &, and ¢f € B, so that & is an algebra.
By Theorem 2.27, # is (uniformly) closed.
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7.30 Definition Let of be a family of functions on a set E. Then &f is said
to separate points on E if to every pair of distinct points x,, x, € E there corre-
sponds a function f € & such that f{x,) # /(x;).

If to each x € E there corresponds a function g € & such that g(x) # 0,
we say that of vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties
on R'. An example of an algebra which does not separate points is the set of
all even polynomials, say on [— 1, 1], since f(—x) = f{x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose of is an algebra of functions on a set E, sf separates
points on E, and o vanishes at no point of E. Suppose x,, x, are distinct points
of E, and ¢, ¢, are constants (real if of is a real algebra). Then f contains a
Junction f such that

ﬂf(xn) =€y Jx)=c,.

Proof The assumptions show that o contains functions g, 4, and &
such that

g(x) #g(x),  Alx))#0,  k(x;) #0.
Put
u=gk—gOk, v=gh-—glx)h
Then u € &, v € o, u(x;) = v(x3) = 0, u(x;) # 0, and v(x,) # 0. Therefore

_ov o
_”(xl) u(x;)

S
has the desired properties.

We now have all the material needed for Stone's generalization of the
Weierstrass theorem.

7.32 Theorem Let of be an algebra of real continuous fimctions on d compact
set K. If of separates points on K and if of vanishes at no point of K, then the
uniform closure & of of consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEr 1 Iffe@, then |fi e,
Proof Let
(52) a=sup |[f(x)| (xeK)
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and let £>0 be given. By Corollary 7.27 there exist real numbers
€1y »- ., ¢y sSuch that
(53)

Yoyt - Iyll<e  (—asysa)
i=1

Since 2 is an algebra, the function

a= Z eif!
i=1
is a member of #. By (52) and (53), we have

lgx) - /&) ]| <& (xeK).
Since @ is uniformly closed, this shows that |f] e #.

STEP 2 Iffe# and g e &, then max(f,g) € @ and min(f, g) € 2.

By max( f, g) we mean the function / defined by

=) iff) = g(x),
h(x) = {g(x) if f(x) < g(x),

and min (f, g) is defined likewise.

Proof Step 2 follows from step 1 and the identities

max(j‘,g)=‘£—;—_—g+——1f;g'.
min(f,g):'f_jz-_q._i;f_%g_i.

By iteration, the result can of course be extended to any finite set
of functions: Iff,, ..., f, € &, then max {f}, ..., f,) € #, and

“min (f, ..., f,) € B.
STEP 3 Given a real function f, continuous on K, a point x € K, and ¢ > 0, there
exists a function g € @& such that g, (x) = f(x) and
(54 g >f)—e (k)

Proof Since & — # and o satisfies the hypotheses of Theorem 7.31 so
does 4. Hence, for every y € K, we can find a function &, € # such that

(55) h(x)=f@), A =SO.
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By the continvity of A, there exists an open set J,, containing y,

such that
(56) B>~  (tel)
Since X is compact, there is a finite set of points y,, ..., y, such that
(37 KcJ,,u---u.f,_.
Put

ge=max{h,, ..., h)
Bystep 2, g, € @, and the relations (55) to (57) show that g, has the other
required properties,

STEP 4 Given a real fimction f, continuous on K, and £ > 0, there exists a function
h € & such that

(58) lhx) ()| <& (xeK).

Since @ is uniformly closed, this statement is equivalent to the conclusion
of the theorem.

Proof Let us consider the functions g, for each x € X, constructed in
step 3. By the continuity of g,, there exist open sets ¥, containing x,
such that

(59) g <fO+e (teV))

Since K is compact, there exists a finite set of points x,..., x,,
such that

(60) KcV, uuV¥, .
Put
h=min(g,,...,g.)
By step 2, i € &, and (54) implies

(61) k() > f(N—e  (ek),
whereas (59) and (60) imply
{62) Dy <flit)+e¢ (te k).

Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is
given in Exercise 21. However, the conclusion of the theorem dges hold, even
for complex algebras, if an extra condition is imposed on &, namely, that &
be self-adjoint. This means that for every f e & its complex conjugate § must

also belong to & ; f is defined by f{x) = f(x).

7.33 Theorem Suppose & is a self-adjoint algebra of complex continuous
Junctions on a compact set K, of separates points on K, and of vanishes at no
point of K. Then the uniform closure & of of consists of all complex continuous
Junctions on K. In other words, & is dense €(K).

Proof Let o/, be the set of all real functions on X which belong to &.

If fe of and f= u + iv, with u, v real, then 2u = f + f, and since o
is self-adjoint, we see that w e &fp. If x, # x,, there exists fe .o such
that f(x,) = 1, f(x;) = 0; hence 0 = u(x,) # u{x,;) = 1, which shows that
& separates points on K. If x € K, then g(x) # 0 for some g € &, and
there is a complex number A such that Ag(x) > 0; if f=Ag, f=u+ v, it
follows that u(x) > 0; hence &, vanishes at no point of K.

Thus &y satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on X lies in the uniform closure of &g,
hence lies in #. If fis a complex continuous function on K, f=u +iv,
then u e #, v € #, hence fe &. This completes the proof.

EXERCISES

1. Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.

2. If {f.} and {g.} converge uniformly on a set E, prove that {f. + g.} converges
uniformiy on E. If, in addition, {£.} and {g.} are sequences of bounded functions,
prove that {f.g.} converges uniformly on E.

3. Construct sequences {f.}, {g.} which converge uniformly on some set E, but such
that {f.g.} does not converge uniformly on E (of course, {/ng.} must converge on
E).

4, Consider

1
fix)= EH__nzx'

=1

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is fbounded?



166 PRINCIPLES OF MATHEMATICAL ANALYSIS

5 Let

1
0 ("<m)'
—sine” !
Jux) = {sm x (H-H

o (<)

Show that {f;} converges to a continuous function, but not uniformly. Use the
series T f, to show that absolute convergence, even for all x, does not imply uni-
form convergence.

6. Prove that the series

1
<x:Z —),
n

= Lxi+n
PNE

A=t

converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.
7. Forn=1,2,3,..., x real, put

5=

Show that {£;} converges uniformly to a function f, and that the equation
0y =lm/i)
is correct if x # 0, but false if x =0.
8 If

0 (x<0)
“")={1 (x>0,

if {x,} is a sequence of distinct points of (g, &), and if Z|c,| converges, prove that
the series

f) = }'::lc. Hx—x) (a<x<b)

converges uniformly, and that f is continuous for every x # xa.
9, Let {£.} be 2 sequence of continuous functions which converges uniformly to a
function f on a set E. Prove that

fim fi(x) =f(z)

for every sequence of ﬁoints x. € E such that x, = x, and x € E. Is the converse of
this true?
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10. Letting {x) denote the fractional part of the real number x (see Exercise'lﬁ, Chap. 4,
for the definition), consider the function
- (nx

f)=3% %  (xreal.

wwl 77

Find ail discontinuities of f, and show that they form a countabl: dense set.
Show that f is nevertheless Riemann-integrable on every bounded interval.

11. Suppose (.}, {g.) are defined on E, and
(g) £ £, has uniformly bounded partial sums;
{8) g~ =0 uniformly on E;
{€) g1(x) = g:(x) = ga(x) = - - - for every x € E,

Prove that ¥ f,g. converges uniformly on E, Hint: Compare with Theorem

3.42.

12. Suppose g and fi(n=1, 2, 3, ...) are defined on (0, =), are Riemann-integrable on
[t, T] whenever 0 <t <T < o, | fa| <g, fu~>f uniformly on every compact sub-
set of (0, =0), and

fﬂ o(x) dx < co.

o

Prove that
i - (x) dx == .
im [ A de= [ fodx

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)

This is a rather weak form of Lebesgue’s dominated convergence theorem
(Theorem 11.32). Even in the context of the Riemann integral, uniform conver-
gence can be replaced by pointwise convergence if it is assumed that f& #. (See
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and
by H. Kestelman in Amer. Math. Monthly, vol, 77, 1970, pp. 182-187)

13. Assume that {f.} is a sequence of monotonically increasing functions on R! with .
0 < fi(x} < 1 for all x and all a.
(@) Prove that there is a function fand a sequence {m:} such that

S = lim £

for every x € R'. (The existence of such a pointwise convergent subsequence is
usually called Helly's selection theorem.)
(b) If, moreover, f is continuous, prove that f,, = f uniformly on compact sets.
Hint: (i) Some subsequence {,,} converges at all raticnal points r, say, to
f(r). (ii) Define f(x), for any x € R', to be sup f(r), the sup being taken over all
r < x. (iii) Show that f,{x) —f(x) at every x at which f is continucus. (This is
where monotonicity is strongly used.) (iv) A subsequence of {f,;} converges at
every point of discontinuity of f since there are at most countably many such
points. This proves (). To prove (b), modify your proof of (jii) appropriately.
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14. Let f be a continyous real function on R with the following propertics:
0 (1)< 1, f(t + 2) = f(¢) for every ¢, and .

0 ©O=<:<Ph

f(t)={1 G<r<1).

Put (1) = (+(0), #0), where
X0 =Z20G, W0 =3 277G,

Prove that ¥ is continuois and that ® maps 7 = [0, 1] onro the unit square I* = R3,
If fact, show that & maps the Cantor set onto I3,
Hint; Each (xq, yo) € I? has the form

Xo =--Zx 27"a30-1, Yo =.Z’; 2-"a;,
where each a;is O or 1. If
to =‘213 =t=12a,)

show that f(3%,) = a,, and hence that x{15) = x0, ¥{(fo) = Y.
(This simple example of a so-called “space-filling curve™ is due to 1. J.
Schoenberg, Bull, A.M.S., vol, 44, 1938, pp. 519.)

15. Suppose fis a real continuous function on RY, fi(t) = f(rt)} for n=1,2,3, ..., and
{2} is equicontinuous on [0, 1). What conclusion can you draw about /'

16. Suppose {£.} is an equicontinuous sequence of functions on a compact set X, and
{/:} converges pointwise on K. Prove that {f,} converges uniformly on X.

17. Define the notions of uniform convergence and equicontinuity for mappings into
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hoid for
vector-valued functions, that is, for mappings into any R*.

18, Let {3} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on {g, 5], and put

Fo=[ fd  @<xsh.

Prove that there exists a subsequence {F,,} which converges uniformly on [a, 4].

19. Let X be a compact metric space, let S be a subset of ¥(K). Prove that § is compact
(with respect to the metric defined in Section 7.14) if and only if S is uniformly
closed, pointwise bounded, and equicontinuous. (If § is not equicontinuous,
then § contains a sequence which has no equicontinuous subsequence, hence has
no subsequence that converges uniformly on X.)
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20. If £ is continuous on [0, 1] and if
1
J' S dx=0 (1=0,1,2,..)),
L]

prove that f(x)=0 on [0, 1]. Hint: The integral of the product of }”with any
1
polynomial is zero, Use the Weierstrass theorem to show that _[D fHx)dx =0,

21. Let X be the unil circle in the complex plane (i.e., the set of all z with |z| = 1), and
let «f be the algebra of all functions of the form

(") =.$ac..e"" (0 real).

Then &f separates points on K and «f vanishes at no peint of X, but nevertheless
there are continuous functions on X which are not in the uniform closure of &.
Hint; For every fe of

ix
J' fle"et* df =0,

and this is also true for every £ in the closure of ..
22. Assume f € %(x} on [g, 4], and prove that there are polynomials P, such that

*
lim _[ | f— Py |?dax=0.
(Compare with Exercise 12, Chap. 6.)
23. Put Py =0, and define, forn=0,1,2, ...,

Peidy =P + 220

Prove that
lim Pux)=|x|,

uniformiy on [—1, 1].

(This makes it possible to prove the Stone-Weierstrass theorem without first
proving Theorem 7.26.)

Hint: Use the identity

[x] —Pusi(x)=1]x| —P.(x)][l - Lafl_'g@]
to prove that 0 < Po(x) < Povy(x) < x| if | x| <1, and that
x1y\* 2
Ix| —P.(x)S[xl(l- T) -

if |x| <1.
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4.

&

Let X be a metric space, with metric 4. Fix a point g ¢ X. Assign toeachpe X
the function f, defined by

D =dxp)—dx,a) (xeX).
Prove that | f,(x}] < d(a, p) for all x € X, and that therefore £, € €(X).

Prove that
Ilfy = felt = d(p, q)

forall p,g e X.

If ®(p) = f, it follows that © is an isometry (a distance-preserving mapping)
of X onto ®(X) = €(X).

Let ¥ be the closure of ®(X)in €{X). Show that Y is complete.

Conclusion: X is isometric to a dense subset of a complete meiric space Y.
(Exercise 24, Chap. 3 contains a different proof of this.)
Suppose ¢ is a continuous bounded real function in the strip defined by
0<x <1, —w <y <, Prove that the initial-value problem

J”=¢(x,y), y(0)=c

has a solution. (Note that the hypotheses of this existence theorem are less stringent
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.)
Hint: Fix n. Fori=0,...,n, put x, = ifn. Letf, be a continuous function

on [0, 1] such that £,(0) = ¢,
Jit) = lxy, fulx))

if X <t <Xi41,

and put
A= f:lt) — 0, [1)),
except at the points x;, where A,(f) =0. Then

00 =c+ [ 160,10 + BN .

Choose M < o so that |$| << M. Verify the following assertions.

@ Al <M, |4, <2M, A, e R, and | f,| < |¢| + M = M,, say, on [0, 1), for
all n.

(b) {£.} is equicontinuous on [0, 1], since | fa] < M.

(¢) Some {f..} converges to some f, uniformly on [0, I].

(d) Since ¢ is uniformly continuous on the rectangle 0 < x < 1, |¥] < M.,

Bt fu(2)) = (1, £ (1))

uniformly on [0, 1].
(e} A.(t)— 0 uniformly on [0, 1], since

An() = i, fulx) — B, £(1))

in (x; ) X:u).

26.
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(/) Hence
fly=c+ f :sf»(r. f(0) dr.

This £ is a solution of the given problem.

Prove an analogous existence theorem for the initial-value problem
Y=%x7, y®=c

where now ¢ € R*, y € R*, and ¢ is a continuous bounded mapping of the part of
R**1 defined by 0 << x <1, y € R* info R*. (Compare Exercise 28, Chap. 5.) Hint:
Use the vector-valued version of Theorem 7.25. ’
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SOME SPECIAL FUNCTIONS

POWER SERIES

In this section we shall derive some properties of functions which are represented
by power series, i.e., functions of the form

6} J(x) =n}:foc,f'
or, more generally, _
0)) fx)= Zoc..(x - a).

These are called analytic functions.

We shall restrict ourselves to real values of x. Instead of circles of con-
vergence (see Theorem 3.39) we shall therefore encounter intervals of conver-
gence.

If (1) converges for all x in (—R, R), for some R> 0 (R may be + ),
we say that fis expanded in a power series about the point x = 0. Similarly, if
(2) converges for | x — a| < R, fis said to be expanded in a power series about
the point x = a. As a matter of convenience, we shall often take a = Q without
any loss of generality.
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8.1 Theorem Suppose the sgries

€) 5 e

converges for | x| < R, and define

@ f@=%ax  (x<P.

Then (3) converges uniformly on [— R + €, R — £], no matter which ¢ > 0
is chosen. The function f is continuous and differentiable in (— R, R), and

® F@=Yneet (x<.

Proof Let &> 0 be given. For |x| < R — ¢, we have
leax®| < {eu(R =€)}
and since
Ze (R —g)"

converges absolutely (every power series converges absolutely in the
interior of its interval of convergence, by the root test), Theorem 7.10
shows the uniform convergence of (3) on [~R + ¢, R — &].

Since \’7;—»1 as n-» oo, we have
lim sup /n|c,| = lim sup Y/ |e,|,
E i) R= 0

so that the series (4) and (5) have the same interval of convergence.

Since (5) is a power series, it converges uniformly in [-R +¢,
R —¢], for every € > 0, and we can apply Theorem 7.17 (for series in-
stead of sequences}). It follows that (5) holds if x| < R —e.

But, given any x such that |x| < R, we can find an & > 0 such that
|x| < R —&. This shows that (5) holds for [x| < R.

Continuity of f follows from the existence of /' (Theorem 5.2).

Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all
orders in (— R, R), which are given by

a0

(6) FOx) =Y nn~ 1) (n~k+ e, x"%
n=k
In particular,
™ fEO) =kle, (k=0,1,2,..).

(Here £ means f, and £ is the kth derivative of f, fork = 1, 2,3, ...).
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Proof Equation (6) follows if we apply Theorem 8.1 successively to f,
F'sf" ... Puiting x =0 in (6), we obtain (7).

Formula (7) is very interesting. It shows, on the one hand, that the
coefficients of the power series development of f are determined by the values
of fand of its derivatives at a single point. On the other hand, if the coefficients
are given, the values of the derivatives of f at the center of the interval of con-
vergence can be read off immediately from the power series.

Note, however, that although a function f may have derivatives of all
orders, the series Ic, x", where ¢, is computed by (7), need not converge to f(x)
for any x s 0. In this case, f cannot be expanded in a power series about x = 0,
For if we had f(x) = Za,x", we should have

nla, =f (")(0);

hence @, = ¢,. An example of this situation is given in Exercise i.

If the series (3) converges at an endpoint, say at x = R, then fis continuous
not only in (—R, R}, but also at x = R. This follows from Abel’s theorem (for
simplicity of notation, we take R = 1):

8.2 Theorem Suppose Lc, converges. Put
od
f@=Yex (-l<x<).
n=0
Then

@) lim f(x) = }:joc,,.

x=1
Proof Lets,=co+ " +¢,,5-4 =0. Then

MZ X' = io(sn =5 =(1- x)"i:s,,x" + 5, x™.

=0

For | x| < I, we let m — oo and obtain

o}
©®) f@ = -0 52
Suppose 5 = lim s,. Let 2> 0 be given. Choose N so that n> N
=D
implies
|s—-.v|<E
n 2 *
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Then, since

a-n¥e=1 (x<D,

n=0D

we obtain from (%)
o N
'|ﬂﬂ—ﬂ=(r—ﬂ2§rﬂh"Sﬂ—ﬂzUa“ﬂhV+§SB

if x> 1 — 3, for some suitably chosen & > 0. This implies (8).
As an application, let us prove Theorem 3.51, which asserts: If Za,, Zb,,
Tc,, converge to A, B, C, and if ¢, = agb, + -+ + a, by, then C=AB. We let
aa o0 [
f@W=Yax, g®=Ybx hx)=}cx"
»=0 n=0 #=0

for 0 < x < 1. For x < 1, these series converge absolutely and hence may be
multiplied according to Definition 3.48; when the multiplication is carried out,

we see that

(10) Fx) - g(x) = h(x) O<x<1).
By Theorem 8.2,
(11) f)y-4, g(x)=B  hx)-C

as x — 1. Equations (10) and (11) imply AB = C.
We now require a theorem concerning an inversion in the order of sum-
mation. (See Exercises 2 and 3.)

8.3 Theorem Given a double sequence {ay}, i=1,2,3,...,)j= 1,2 3..,
suppose that

(12) ' J'lea,-jl =b, (=123..)
and Tb, converges. Then

Yay=Y Y ay
171 ==t

Proof We could establish {13) by a direct procedure similar to (although
more involved than) the one used in Theorem 3.55. However, the following
method seems more interesting.

[~18

(13)
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Let E be a countable set, consisting of the points x,, x, X,, ..., and
Suppose X, ~» X, as n — 0. Define

1) fey=Tay  G=123,.),

D) Fix) =,i a;  (bn=123,.),
=1

(16) g(x)=i§1ﬂ{x) (e E).

Now, (14) and (15), together with (12), show that each f, is con-
tinuous at x,. Since |f;(x)] < b; for x € E, (16) converges uniformly, so
that g is continuous at x4 (Theorem 7.11). It foilows that

i 2 aij =i§1fi(x0) = g(xo) = lim g(x,)

i=1j=1 n—=w

=lim3 fx)=1lim 5 3 a,

a=wi=1 A= i=1 f=

n a0 0 o0
=lim 3 % a;=3 ¥ ay.
J=1i=1

nem f=] i=m]

8.4 Theorem Suppose

0= ¥ e,

the series converging in |x| < R. If —R <a < R, then f can be expanded in a
power series about the point x = a which converges in |x —a| < R — |a|, and

o £(n)
an 79 = 5100

(x—ar (|[x—a|<R-]a|)

This is an extension of Theorem 5.15 and is also known as Taylor's
theorem.

Proof We have

7)) =2 alx—a)+al

gl

x
n
o

Il
[~18
.ﬂ
s

(") & ™x —a™

o 1

(;) 6 a"""] (x - a)".

a
]
<

|
i
s
[ g -
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This is the desired expansion about the point x = a. To prove its validity,
we have to justify the change which was made in the order of summation.
Theorem 8.3 shows that this is permissible if

08> ;3

a=0m

¢, (::;) @ "(x — a)"

0

converges. But (18) is the same as
L)
(19 Zolc,,|'(|x—a|+|a|)",

and (19) converges if |x — a| + |a| < R.
Finally, the form of the coefficients in {17} follows from (7).

It should be noted that (17) may actually converge in a larger interval than
the one given by |x - a| < R — |al.

If two power series converge to the same function in (— R, R), (7) shows
that the two series must be identical, i.c., they must have the same coefficients.
It is interesting that the same conclusion can be deduced from much weaker
hypotheses:

8.5 Theorem Suppose the series La,x" and Lb,x" converge in the segment
S =(—R, R). Let E be the set of all x € S at which

(20 Yax"=Y bx"

a=0 LETY
If E has a fimit point in S, thena, = b, forn=0, 1, 2, .... Hence (20) holds for
allxe§, :

Proof Putc,=a,—b,and
@n f=Yex" (xeS)
#=0

Then f(x)=0o0n E.

Let 4 be the set of all limit points of E in §, and let B consist of all
other points of 8. It is clear from the definition of “limit point™ that B
is open. Suppose we can prove that 4 is open. Then A and B are disjoint
open sets. Hence they are separated (Definition 2.45). Since S=A4 u B,
and S is connected, one of 4 and B must be empty. By hypothesis, A4 is
not empty. Hence B is empty, and 4 = §. Since f is continuous in S,
Ac E Thus E= S, and (7} shows that ¢, =0forn=20,1, 2, ..., which
is the desired conclusion.
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Thus we have to prove that 4 is open. If x; ¢ 4, Theorem 8.4 shows
that :

@2) )= 3 dix=xay (15— %l <R~ Ixo])

We claim that d, = 0 for all n. Otherwise, let k& be the smallest non-
negative integer such that d; # 0. Then
23 SO =G =x)g(x)  (|x— x| < R— |x]),

where
@) 809 =3 duunly — 20"

Since g is continuous at x, and
g{xg) =dy #0,

there exists a § > 0 such that g(x) # 0 if [x — x,| < 5. It follows from
(23) that f(x) # 0 if 0 < |x — x| < 6. But this contradicts the fact that
Xp is a limit point of E.

Thus d, = 0 for all n, so that f(x) = 0 for all x for which (22) holds,
ie., in a neighborhood of x;. This shows that 4 is open, and completes
the proof.

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS
We define ‘

@9) 0= 2

The ratio test shows that this series converges for every complex z. Applying
Thecrem 3.50 on multiplication of absolutely convergent series, we obtain

22w @ oA Py
EQEW =2, 53 2ol = 2 2 B = 51
21l s R (W)
EPAHEGEPAS LS
which gives us the important addition formula
(26) E(z+w) = E@E(w) (z, w complex).

One consequence is that
i) E@E(—2)=E(z —z)= E0) =1 (z complex).

SOME SPECIAL FUNCTIONS 179

This shows that E(z) # 0 for all z. By (25), E(x) > 0 if x > 0; hence (27) shows
that E{x) > 0 for all real x. By (25), E(x) = + 0 as x = +00; hence (27) shows
that E(x) —+0 as x -+ — 0 along the real axis. By (25), 0 <x < y implies that
£(x) < E(y); by (27), it follows that E(—y) < E(—x); hence E is strictly in-
creasing on the whole real axis.

The addition formula also shows that

28) lim Ez+h) - Ez)
ka0 h

Em—1

= E(z) lim = E(z);
a=0

the last equality follows directly from (25).
Iteration of (26) gives
29) E(zy+ --- +z)=E(z;) -+ E(z,).

Let us take z; == :-- =z, = 1. Since E(1) = ¢, where e is the number defined
in Definition 3.30, we obtain

(30 Em=¢& (n=1213..)
If p = nfm, where n, m are positive integers, then

@1 (E(p)]" = E(mp) = E(r) = ¢,
so that

32) E(p)=e" (p>0,p rational),

It follows from (27) that E(—p) = e™? if p is positive and rational. Thus (32}
holds for all rational p.
In Exercise 6, Chap. 1, we suggested the definition

(33) X’ = sup x”,

where the sup is taken over all rational p such that p <y, for any real y, and
x > 1. If we thus define, for any real x,

34) ¢ =supe? (p<x,prational),
the continuity and monotonicity properties of E, together with (32), show that
35 E(x)=¢*

for all real x. Equation (35) explains why E is called the exponential function.
The notation exp (x) is often used in place of €%, expecially when x is a
complicated expression.
Actually one may very well use (35) instead of (34) as the definition of ¢*:
(35) is a much more convenient starting point for the investigation of the
properties of e*. We shall see presently that (33) may also be replaced by a
more convenient definition [see (43)].
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We now revert to the customary notation, €%, in place of E(x), and sum-
marize what we have proved so far.

'8.6 Theorem Let & be defined on R by (35) and (25). Then
(a) € is continuous and differentiable for all x;

®) (€ =
(c) €& is a sirietly increasing function of x, and &* > 0;
(d) et =ee;

(&) > +wasx—+ow,e>0as x> —o0;
() lim,., x"e™* =0, for every n.

Proof We have already proved (a) to (¢); (25) shows that
+1

e —
CE]
for x > 0, so that

]
e"‘<(” + 1).’
x

x"

and () follows. Part {f) shows that ¢* tends to + oo **faster” than any
power of x, as x —+ + 0.

Since E is strictly increasing and differentiable on R!, it has an inverse
function L which is also strictly increasing and differentiable and whose domain
is E(R"), that is, the set of all positive numbers. L is defined by

(36) ELON=y (>0,
or, equivalently, by
37 L(E(x)) = x (x real).

Differentiating (37), we get (compare Theorem 35.5)
L'(E(x)): E(x)=1.

Writing y = E(x), this gives us

i
(38) L'(y) =; (y > 0).
Taking x = 0 in (37), we see that L(1) = 0. Hence (38) implies
¥ dx
) = | =Z.
1 X
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Quite frequently, (39) is taken as the starting point of the theory of the logarithm
and the exponential function. Writing & = E(x), v = E(y), (26) gives

L) =LEX) - EQ)=LEX+y)=x+,
so that

(40) Liuy=L(w)+ L&) (@w=>0,v>0)
This shows that L has the familiar property which makes logarithms useful
tools for computation. The customary notation for L(x) is of course log x.
As to the behavior of log x as x = +o and as x — 0, Theorem 8.6(¢)
shows that
logx— +w as x = + oo,

logx—+ —ao asx—0.
It is easily seen that
(41) x" = E(nL(x))

if x >0 and n is an integer. Similarly, if m is a positive integer, we have
. 1
(42) f“=E(—Mﬂ}
m

since each term of (42), when raised to the mth power, yields the corresponding
term of (36). Combining (41) and (42), we obtain

43) x* = E(aL{x)) = e*'*%*

for any rational a.

We now define x", for any real « and any x > 0, by (43). The continuity
and monotonicity of £ and L show that this definition leads to the same result
as the previously suggested one. The facts stated in Exercise 6 of Chap. 1, are
trivial consequences of (43). _

If we differentiate (43), we obtain, by Theorem 5.5,

(44) (Y = B{x) = = ax"",

Note that we have previously used (44) only for integral values of a, in which
case (44) follows easily from Theorem 5.3(8). To prove (44) directly from the
definition of the derivative, if x* is defined by (33) and a is irrational, is quite
troublesome.

The well-known integration formula for x* follows from (44) if & % —1,

and from (38) if « = —1. We wish to demonstrate one more property of log x,
\Ymely,
(45) lim x *logx=10

X+



182 PRINCIPLES OF MATHEMATICAL ANALYSIS

for every a > 0. That is, log x — + o0 “‘slower” than any positive power of x,
as x — + o0, )
Forif 0 < ¢ < ¢, and x > 1, then

X x
x"logx=x"f et dt<x"J- ot dt
1 )

s DR

=X —_

[ 4

and (45) follows. We could also have used Theorem 8.6(f) to derive (45).

THE TRIGONOMETRIC FUNCTIONS
Let us define

(46 Co)=51BE)+ -] 569 =5 [EGx) — B(—in)

We shall show that C(x) and S{x) coincide with the functions cos x and sin x,
whose definition is usually based on geometric considerations. By (25), E(2) =

E_(z—). Hence (46) shows that C{x) and S(x} are real for real x. Also,
1CY)) E(ix) = C(x} + iS(x).

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if
x is real. By (27),

| E(ix)|? = E(ix)E(ix) = E(ix)E(—ix) =1,

so that
{48) |E@x)] =1  (xreal).

From (46) we can read off that C(0) =1, $(0) =0, and (28) shows that
(49 Cx)=—-5x), S =Cx). S -

We assert that there exist positive numbers x such that C(x) = 0. For
suppose this is not so. Since C(0) =1, it then follows that C(x) > 0 for all
x > 0, hence §'(x) > 0, by (49), hence § is strictly increasing; and since $(0) = 0,
we have S(x) > 0if x > 0. Hence if 0 < x < y, we have

(50) S — x) < j S(t) di = Cx) — Cr)s2.

The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be
true for large y, and we have a contradiction.
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Let x, be the smallest ppsitive number such that C(xg) = 0. This exists,
since the set of zeros of a continuous function is closed, and C(0) £0. We
define the number n by

(51 T =2x,.

Then C(n/2) =0, and (48) shows that S(n/2) = +1. Since C(x) > 0 in
(0, =/2), S is increasing in (0, =/2); hence S(n/2) = 1. Thus

o)

and the addition formula gives

(52) E(ni)= —1, E(2ri)=1;
hence
(53) E(z + 2ri} = E(2) {z complex).

8.7 ' Theorem

(a) The function E is periodic, with period 2xi.

(b) The functions C and S are periodic, with period 2.

(¢) If0 <t <2n, then E(it) # 1.

(d) If z is a complex number with |z| =1, there is a unigue t in [0, 2m)
such that E(it) = z. ’

Proof By (53}, (a) holds; and (b) follows from (a) and (46).
Suppose 0 < ¢ < n/2 and E(it) = x + iy, with x, y real. Our preceding
work shows that 0 < x < I, 0 < y < 1. Note that

E(4it) = (x + iy)* = x* — 6x%p* + y* + dixy(x* — y).

If E(4it) is real, it follows that x* — y? = 0; since x* + y* = 1, by (48),
we have x* = y* = §, hence E(4it) = —1. This proves (c).
If0< ¢ <t; <2n, then

E(iEG))™! = E(it, — in) # 1,

by (¢). This establishes the uniqueness assertion in (d).

To prove the existence assertion in (d), fix z so that |z| = 1. Write
z = x + iy, with x and y real. Suppose first that x >0 and y > 0. On
[0, =/2], C decreases from 1 to 0. Hence C(#) = x for some ¢ € [0, =/2].
Since C? + 5% =1and S'= 0 on [0, n/2), it follows that z = E(it).

If x <0 and y = 0, the preceding conditions are satisfied by —iz.
Hence —iz = E(ir) for some ¢ € [0, x/2), and since i = E(zi/2), we obtain
z = E(i(t + n/2)). Finally, if y <0, the preceding two cases show that
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—z = E(ir) for some t € (0, ). Hence z = — E(it) = E(i( + ).
This proves {d), and hence the theorem.

It follows from (d) and (48) that the curve y defined by
(54) Wy=E@) (©O<s1<2m)
is a simple closed curve whose range is the unit circle in the plane. Since
v'(¢) ={E(ir), the length of y is

{Mywld=1r,
0

by Theorem 6.27. This is of course the expected result for the circumference of
a circle of radius 1. It shows that 7, defined by (51), has the usual geometric
significance.

In the same way we see that the point y(¢) describes a circular arc of length
1, as ¢ increases from 0 to #;. Consideration of the triangle whose vertices are

=0, z;=%t) 2z3=C(t)
shows that C(r) and S(¢) are indeed identical with cos 7 and sin ¢, if the latter
are defined in the usual way as ratios of the sides of a right triangle.

It should -be stressed that we derived the basic properties of the trigono-
metric functions from (46) and (25), without any appeal to the geometric notion
of angle. There are other nongeometric approaches to these functions. The
papers by W. F. Eberlein (dmer. Math. Monthly, vol, 74, 1967, pp. 1223-1225)
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) dea] with these
topics.

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD

We are now in a position to give a simple proof of the fact that the complex
field is algebraically complete, that is to say, that every nonconstant pofynomial
with complex coefficients has a complex root.

8.8 Theorem Suppose agy, ..., a, are complex numbers, n= 1, a, # 90,
n
P(Z) = Z a,‘ Z'k.
0

Then P(z) = 0 for some complex number z.
Proof Without loss of generality, assume a, = 1. Put
(55) u = inf [P(z)| (z complex)
If |z| = R, then
(56) [Pz} = Rl = |@p—y|R™P = =+- = |ag| R7"].
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The right side of (56) tends to oo as R — co. Hence there exists R, such
th'at |P(z)] > p if |z| > Ry. Since |P| is continuous on the closed disc
with center at 0 and radius Ry, Theorem 4.16 shows that | P(zp)| = u for
some z,. f ‘
We claim that u = 0.

_ If not, put -@(z) = P(z + 2,){P(z,). Then ¢ is a nonconstant poly-
nomial, Q(0) =1, and | Q(z)| = 1 for all z. There.s a smallest integer k,
1 < k < »n, such that ’

7 Q@) =1+bz*+ - +b,2" b #0.
By Theorem 8.7(d) there is a real # such that
(58) &%, = —|b,|.

If r > 0and r*|B,| < 1, (58) implies

[T+ B rie™| = 1—r*|b,],
so that

[QUe) <1 —rX{|be| —rlbgss| = - = "7, [}

For sufficiently small 7, the expression in braces is positive; hence
| Q(re™®)| < 1, a contradiction. '
Thus g = 0, that is, P(zg) = 0.

Exercise 27 contains a more general result.

FOURIER SERIES

8.9 Definition A trigonometric polynomial is a finite sum of the form
N

(59) fx)=ao+ ) (@,cosnx + b,sinnx)  (xreal),
n=i

whereag, ..., ay, by, ..., by are complex numbers. On account of the identities
(46), (59) can also be written in the form

(60) flx) = i c,e™  (xreal),

which is more convenient for most purposes. It is clear that every trigonometric
pelynomial is periodic, with period 2z,

. If n is a nonzero integer, e~ is the derivative of e™/in, which also has
period 2w, Hence

L § inx — 1 (ir]‘l=0),
(61) Z,J_f “'x“[o (ifn=%1, £2,..)
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Let us multiply (60) by e~'™*, where m is an integer; if we integrate the
product, (61) shows that :

@) tm= g || S0

for |m| < N. If |m| > N, the integral in (62) is 0.

The following observation can be read off from (60) and {62): The
trigonometric polynomial f; given by (60), is real if and only if ¢., = ¢ for
n=0,...,N.

In agreement with (60), we define a trigonometric series to be a series of
the form

(63) T o™ (xreal);

the Nth partial sum of (63) is defined to be the right side of (60).

If f is an integrable function on [, n], the numbers ¢, defined by (62)
for all integers m are called the Fourier coefficients of £, and the series (63) formed
with these coefficients is called the Fourier series of f.

The natural question which now arises is whether the Fourier series of f
converges to f, or, more generally, whether fis determined by its Fourier series.
That is to say, if we know the Fourier coefficients of a function, can we find
the function, and if so, how?

The study of such series, and, in particular, the problem of representing a
given function by a trigonometric series, originated in physical problems such
as the theory of oscillations and the theory of heat conduction (Fourier’s
“Théorie analytique de la chaleur” was published in 1822). The many difficult
and delicate problems which arose during this study caused a thorough revision
and reformulation of the whole theory of functions of a real variable. Among
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately
connected with this field, which nowadays, with all its generalizations and rami-
fications, may well be said to occupy a central position in the whole of analysis.

We shall be content to derive some basic theorems which are easily
accessible by the methods developed in the preceding chapters. For more
thorough investigations, the Lebesgue integral is a natural and indispensable
tool.

We shall first study more general systems of functions which share a
property analogous to (61).

8.10 Definition Let {¢,) (n =1, 2, 3,...) be a sequence of complex functions
on [a, b], such that

(64 (6@ dc=0 @ em.
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Then {¢,} is said to be an orthogonal system of functions on [a, b]. If, in addition,

b
(65) [ o017 dx =1

for all n, {¢,} is said to be orthonormal.
. For example, the functions (21)*e™ form an orthonormal system on
[—n, n]. So do the real functions :

1 cosx sinx cos2x sin2x
VNN AN

If {¢,} is orthonormal on [a, 8] and if

(66) c"=jbf(r)mdt (n=1,2,3,...,

we call ¢, the nth Fourier coefficient of f relative to {¢,}. We write

a

(67) Sy~ Xl: €y Du(X)
and call this series the Fourier series of f (relative to {¢,}).

Note that the symbol ~ used in (67) implies nothing about the conver-
gence of the series; it merely says that the coefficients are given by (66).

The following theorems show that the partial sums of the Fourier series
of £ have a certain minimum property. We shall assume here and in the rest of
this chapter that fe &, although this hypothesis can be weakened.

8.11 Theorem Let {$,} be orthonormal on [a, b]. Let

@) 5200 = 3. mal®)

be the nth partial sum of the Fourier series of [, and suppose
® 60 = 5 1l

Then

aw - [r-sltdns f:lf— 1 dx,

and equality holds if und only if
) Y = €m (m=1,...,n).

That is to say, among all functions ¢,, s, gives the best possible mean
square approximation to f.
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Proof Let [ denote the integral over [, 4], I the sum from | to n. Then
[ft= 1% 5ubu=T enm
by the definition of {c,},
[104? = [t =T 1.6n £ 5= X l7al?
since {¢,,} is orthonormal, and so
Jir=al=[ 117 = [ - [Fu+ [ 1012
= - T cutn— Latnt L v
=[1717 = T leal® + T l1m— cal,

which is evidently minimized if and only if 7, = ¢,,.
Putting y,, = ¢, in this calculation, we obtain

) * H v F t 2
™ [ 15012 dr =3 leal? < [ 170017 ds,

since |/~ 1,|* = 0.

8.12 Theorem If {¢,} is orthonormal on [a, b, and if

10~ § i)
then
(3 3 lel? < [ 1712 dx.
In particuiar,
(14) lim ¢, = 0.

Proof Letting n— o0 in (72), we obtain (73), the so-called “‘Bessel
inequality.”

8.13 Trigonometric series From now on we shall deal only with the trigono-
metric system. We shall consider functions f that have period 2z and that are
Riemann-integrable on [—m, n] (and hence on every bounded interval). The
Fourier series of f is then the series (63) whose coefficients ¢, are given by the
integrals (62), and

N
(75) sy(x) = sy(f; x) = _ZN €, e
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is the Nth partial sum of the Fourier series of f. The inequality (72) now takes
the form '

1 N L .
76) | lsltdr=3 el s o [ 1ol

In order to obtain an expression for sy that is more manageable than (75)
we introduce the Dirichlet kernel ‘
- N sin (N 4+ 4)x
77 D = fne o 7,
an W) ,,,Z,Ne sin (x/2)
The first of these equalities is the definition of Dy(x). The second follows if
both sides of the identity
(eix — l)DN(X) = el(N+1)x _ e—i.’\’x
are multiplied by e~ /2,
By (62) and (75), we have

&1 —int inx
w30 =3 o [ fe " dte

S Ly’
27: -x -5 ’

so that

() sifi9=y [ SO - di=5 [ ftx— DD

The periodicity of all functions involved shows that it is immaterial over which
interval we integrate, as long as its length is 2m. This shows that the two integrals
in (78) are equal.

We shall prove just one theorem about the pointwise convergence of
Fourier series. :

8.14 Theorem If, for some x, there are constants 6 > 0 and M < o such that

(79 [fx+ 0~ f(x)) < Mt
Jor all te (=6, 8), then
(80) lim sy(f; x) = f(x).
N=wm
Proof Define
(8D sy TE=D =

sin (#/2)
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for 0 < |7]| < n, and put g(0) = 0. By the definition (77),
1 :
2] D) ax=1.

Hence (78) shows that

1 . 1
10 =5 == [ a@ysin (¥4 3)eds

1
=5,

By (79) and (81), g{¢) cos (¢/2) and g(¢) sin (#/2) are bounded. The last
two integrals thus tend to 0 as N — oo, by (74). This proves (80).

. t
[g(t) sin 5] cos Nt dt.

-=

t] . |
[g(t) cos 5] sin Nt dr + ﬂ.’l

Corollary If f(x) =0 for all x in some segment J, then lim sy{f; x) =0 for
every x €J.,

Here is another formulation of this corollary:
IFf (1) =g(t) for all t in some neighborhood of x, then
su(f'5 %) — sx(g; x) = sy(f — g; ¥) = Oas N = co.

This is usually called the localizatior theorem. It shows that the behavior
of the sequence {s5(f; x)}, as far as convergence is concerned, depends only on
the values of f in some (arbitrarily small) neighborhood of x. Two Fourier
series may thus have the same behavior in one interval, but may behave in
entirely different ways in some other interval. We have here a very striking
contrast between Fourier series and power series (Theorem 8.5).

We conclude with two other approximation theorems.

8.15 Theorem If fis continuous (with period 2n) and if € > 0, then there is a
trigonometric polynomial P such that

|P(x) = f(x})| < &

Jfor all real x.

Proof If we identify x and x + 27#, we may regard the 2a-periodic func-
tions on R! as functions on the unit circle T, by means of the mapping
x =¢™. The trigonometric polynomials, i.e., the functions of the form
(60}, form a self-adjoint algebra &, which separates points on 7, and
which vanishes at no point of T. Since T is compact, Theorem 7.33 tells
us that «f is dense in 9(7°). This is exactly what the theorem asserts.

A more precise form of this theorem appears in Exercise 15.
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8.16 Parseval’s theorem Sy ] ]
: ¢ ppose [ and g are Riemann-integrab ]
with period 2r, and graie Junctions

82) S~ Sane™, g~ 3 pen
Then T
P
(83) Jim = [ V0= st 012 dx =,
] x —_— ()
(89) 7| S0 = § 5,
1
) 5] r@lra=F e
Proof Let us use the notation
(56) Vit = (2 [ 1o )

Let £> 0 be given. Since fe & and J(®m) =f{—n) i

. ; : = f{—n), the construction
Sescr}:beq }1ln Exercise 12 of Chap. 6 yields a continuous 2n-periodic func-
1on a wit

87) If= Al <e.

» )Byp'{h)jorcm f8.!5,“th¢:rf: is a trigonometric polynomial P such that
X) = #F\x)| <etor all x. Hence [hA—Pll, <e. If Ph
Theorem 8.11 shows that . u degree No,

(88) I — su(@)ll, < 15— Pil, <
for all N> N,. By (72), with 4 —fin place of ,
(89) Isw(®) — sx()l2 = fisnth = I, < i — £, < &.

Now the triangle inequality (Exercise 11, Cha 6), ¢ i i
, . 6), comb:
(87), (88}, and (89), shows that P O combined with

(90) —sDla<3e (N2 N).
This proves (83). Next,

1 x N 1 x N
91 — ddx= i 7,
( ) In f_“sh'(f)g dx—'_zh.cn Ef“lef g(x)dx=§rcn?n)
and the Schwarz inequality shows that

©2) [15 - [sr8) < [1 7= sulgl < ([15=ou 1]
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which tends to 0, as N — ¢, by (83). Comparison of (91) and (92} gives
(84). Finally, (85} is the special case g =f of (84).

A more general version of Theorem 8.16 appears in Chap. 11.

THE GAMMA FUNCTION

This function is closely related to factorials and crops up in many unexpected
places in analysis. Its origin, history, and development are very well described
in an interesting article by P. 1. Davis (Amer. Math. Monthly, vol. 66, 1959,
pp. 849-869). Artin’s book {cited in the Bibliography) is another good elemen-

tary introduction.
Our presentation will be very condensed, with only a few comments after

each theorem. This section may thus be regarded as a large exercise, and as an
opportunity to apply some of the material that has been presented so far.

8.17 Definition For 0 < x < o0,
(93) I'(x) = j Frlemt L.
0

The integral converges for these x. (When x < 1, both 0 and <o have to
be looked at.)

8.18 Theorem
(@) The functional equation
T(x + 1) = xI'(x)
holds if 0 < x < o,

(3 T+ =nlforn= 1,2,3 ...
(¢) log I is convex on (0, o).

Proof An integration by parts proves (g). Since I'(1) =1, (@) implies

(¥, by induction. If l<p<w and (1/p)+ (1/g)=1, apply Holder’s
inequality (Exercise 10, Chap. 6) to (93), and obtain

r(’i +}i) < T)UPTO)H.
p g
This is equivalent to (c).

It is a rather surprising fact, discovered by Bohr and Mollerup, that
these three properties characterize I completely.
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8.19 Theorem Iffis a positive function on )
S b (0, o0} such that
& fH=1,
(c) logfis convex,

then f(x) = I'(x).

Proof Since T satisfies (a), (b}, and {c), it is enough to prove that f(x} is

uniquely determined by (a), (b fi it i
e oyt ), (B), (c), for all x > 0. By (a), it is enough to

Put ¢ =logf. Then
(%94) px+1D=p(x)+logx (D<x<w),

¢{1) =0, and ¢ is convex. Suppose 0 < x < i iti

. 1, and # is a positive integer.
Ey (94), @(n + 1) = log(n!). Consider the difference quotients of ¢ ongthe
intervals [m,n+ 1), [n+ L,n+ 1+ x], [n + 1, n+ 2]. Since ¢ is convex

on+1+x)—@n+1)
X

logn < < log{n + 1.

Repeated application of (94) gives
on+1+x)=0e(x)+log[x(x+ 1} {x+n)]
Thus

In*

0 _ n. 1
< 909~ log [x(x+ I)"'(x+n)] s xlog (l +E)'

p T tends t S . ]i (P dctc[fﬂl cd a
I I],E laSI exXpPressio (»] 0 asn— oo ence X) 1§
( ) 1l s nd

As a by-product we obtain the refation

95) I = lim nin®
n-aax(x‘l' l)"'(x+n)

at least when 0 < x < 1; from this one can ded
e e, educe that (95) holds for all x > 0,

8.20 Theorem Ifx>0andy>0, then

(96) J.ltx—l(l P = rx)IrQ)
o FG+y)

This integral is the so-called beta function B(x, y).
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Proof Note that B(l, y) = 1/y, that log B(x, y) is a conveX function of
x, for each fixed y, by Holder's inequality, as in Theorem .18, and that

o7 B(x+1,y) = i B, )

x

To prove (97), perform an integration by parts on
! Y +y=1
= 1 —¢ytr-ta
Bx+1,%) J’o (1-:)( )

These three properties of B(x, y) show, for each y, that Theorem 8.19
applies to the function f defined by

£ = r_()r%)y_) B(x, ).

Hence f(x) = T'(x).

821 Some consequences The substitution ¢ = sin® 8 turns (36) into

©8) 2 j:z (sin 8%~ (cos )21 d8 = ____rr((’;)i(f;
The special case x =y = % gives
99) @)=
The substitution ¢ = s* turns (93) into
(100 T(x) =2 _[: 7 leg gy ([D<x< )

The special case x = gives
(101) j e ds= /.
By (99), the identity
2= xy _fx+1

follows directly from Theorem 8.19.

8.22 Stirling’s formula This provides a simple approximate cxpre:ssion for
T'(x + 1) when x is large (hence for n! when n is largg). The formula is

Tx+1)

fim ————=1.
(103) xl—'w (xje)* /2nx
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Here is a proof. Put ¢ = x(1 + u) in (93). This gives
(104) Toc+ 1) =x*te™ [ [(L +we "] du.
-1

Determine #(u) so that #(0) = 1 and

. , .2 .
(105) (Il +w)e ™ =exp [——h(:r)l

2y
if -1l <wu<aoo,u+#0. Then
2

(106) h(u) = 3 [u—log(l +u)l.

It follows that 4 is continuous, and that A(u) decreases monotonically from oo
to 0 as w increases from —1 to co.

The substitution ¥ = 5 \/2/x turns (104) into

(107) T(x+ 1) =x%e ™ /2x f W) ds
where

by = [P VIR (=2 <s < ),
o (s < ~/x/2).

Note the following facts about .(s):

(@) Forevery s, i/ (s) » e~ as x - oo.

(B) The convergence in () is uniform on [— A, 4], for every 4 < .
(c) When s <0, then 0 < (5) < e,

(d) Whens>0and x > I, then 0 < (s} < ,(5).

© 1§ i) ds< .

The convergence theorem stated in Exercise 12 of Chap. 7 can therefore
be applied to the integral (107), and shows that this integral converges to ﬁ
as x — o0, by (101). This proves (103).

A more detailed version of this proof may be found in R. C. Buck’s
“Advanced Calculus,” pp. 216-218. For two other, entirely different, proofs,
see W. Feller’s article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225
{with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin’s book.

Exercise 20 gives a simpler proof of a less precise result.
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EXERCISES
1. Define

e (x#0),

ﬂﬂ:u (x=0).

Prove that f has derivatives of all orders at x=0, and that f*X0)=0 for

n=1,2,3,....

2. Let a,, be the number in the ith row and jth column of the array

-1 0 0 0
r —1 0 0
1 ¥ -1 0
PO T S
so that
0 (<)
ay={—1 {i=J)
pa (=)
Prove that

3. Prove that

R

if @i, =0 for all { and j (the case + o0 = 4 oo may occur).
4. Prove the following limit relations:

|
@ ,lglﬂ — log & (&>0).

log(l+x _
— =1

(b} lim
x=+0

(© lim (1 + 0" =e.

(d) lim (1 +’—;)'=e=.

L2
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5. Find the following limits
. 1fx
(@) tim =L FEAT
x—0 X
i M e
&) ,].Lnl log n L 11

. tanx —Xx
() ll-l.T; (1 —cosx)’

. x—sinx
{d) lim ———.
x=0 a0 X — X

6. Suppose /1 :(x) () = f(x + y) for all real x and y.
(@) Assuming that fis differentiable and not zero, prove that

flx) = e

where ¢ is a constant.
(6) Prove the same thing, assuming only that f is continuous.

7. lf0<x<f—r, prove that

2 sinx
—g—< 1.
1'r x

8. Forn=0,1, 2, ..., and x real, prove that
|sin nx| < n|sin x|,
Note that this inequality may be false for other values of #. For instance,
|sin 47| > #|sin #].
9, () Putsy=1+{ + -+ (I/N). Prove that

}’im (sx—log N)
exists. (The limit, often denoted by , is called Euler's constant. Its numerical
value is 0.5772.... It is not known whether y is rational or not.)
(&) Roughly how latge must m be so that N = 10™ satisfies sy => 100?

10. Prove that 3 1/p diverges; the sum extends over all primes,

{This shows that the primes form a fairly substantial subset of the positive
integers.)
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Hint: Given N, let py, ..., px be those primes that divide at least one in-
teger <<¥. Then

n=1 J=1 P; P
x 1y
= 1——
}1( p;)
X 2
<expy —.
S=LPy

The last inequality holds because
(1 _ x)- 1 g elx

fo<x<t
{There are many proofs of this result. See, for instance, the article by
1. Niven in Amer. Math. Monthiy, vol. 78, 1971, pp. 272-273, and the one by
R. Bellman in Amer. Math. Monthly, vol. 50, 1943, pp. 318-319.)
11. Suppose f€ 2 on [0, A] for all A < o0, and f(x)—1 as x — + . Prove that

")

lim rJ e~ f)dx=1 {t>0).
=3 ']

12. Suppose O <8 <m, fix)=11if |x| <& flx)=0if 8 < |x| <=, and f(x + 27} =
Sf{x) for all x.
(a) Compute the Fourier coefficients of £,
(b) Conclude that

z sin(nd) w3 - .

3 =1~ @<i<w)

A=l n -

{¢) Deduce from Parseval's theorem that

= sin? (n8) 7.‘;8

& s 2

(d) Let 3 0 and prove that

@ . 2
sin x ™
J‘ (—) “=z
a0 x 2
{e) Put & —= /2 in (o3, Whar dovou get?

13, Put f(x) = x if 0 << x < 2, and appiy Parsevai's theorem to conclude that

-] 1 1
2—;=

A=l N
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14. If f(x) = (= — | x|}* on [—m, =], prove that

)= % ,;i; ’;i cos nx

and deduce that
= 1 w? = ] ot
2T ARTwn
(A recent article by E. L. Stark contains many references to series of the form
Y n-%, where s is a positive integer. See Math. Mag., vol. 47, 1974, pp. 197-202.)
15. With D, as defined in (77), put

N
Ku{x)= Z D.(x).
Prove that
1 1—cos(N+-1)x
KN(X)_N+1 1 —cosx
and that
{a) Ky 20,

®) 51-; fi‘KN(.v) dx=1,

2

P 2 fo<h<ixlem
N'll—cosS

(&) Kulx) € ——
If 54 = s4(f: x) is the Mth partial sum of the Fourier series of f, consider
the arithmetic means

So =85 +— "+ 35x
N+ 1

Prove that
aifi0=5 | Je-nio@,

and hence prove Fejér’s theorem:
If fis continuous, with period 2m, then o ( f; x) — f(x) uniformly on [—=, 7).
Hint: Use properties {@), (), {c} to proceed as in Theorem 7.26.
15. Prove a peirtwise version of Felér's theorem:
If fe R and f(x +), flx =) exist for some x, then

Jim o f; )= f(x =)+ flx—))
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17. Assume f is bounded and monotonic on [—, =), with Fourier coefficients ¢,, as

18.

19,

20.

given by (62).
(2) Use Exercise 17 of Chap. 6 to prove that {nc,} is a bounded sequence.
{6) Combine (a) with Exercise 16 and with Exercise 14(¢) of Chap. 3, to conclude
that
ii_r.r; sa(f;x)=Hf(x+) -+ flx-)]
for every x.
(¢} Assume only that fe & on [—w, 7} and that f is monotonic in some segment
(x, B}= [—m, =]. Prove that the conclusion of () holds for every x € (=, ).

(This is an application of the localization theorem.)
Define

f(xy=x*—sin? xtan x
g{x) = 2x* —sin* x — x tan x.
Find out, for each of these two functions, whether it is positive or negative for all

x € (0, 7/2), or whether it changes sign. Prove your answer.

Suppose f is a continuous function on R, f(x + 27) = f(x), and %= is irrational,
Prove that

18 ‘ 1o~
31_1.1; 374;1‘{('!_‘_”“):5_—7—7 I’_sf(f)ﬂ'!

for every x. Hint: Do it first for f(x) = /=,

The following simple computation yields a good approximation to Stirling’s
forrmula.

For m=1,2,13,..., define
fX=(m—-1—x)logm~(x—m)log{m-+ 1

if m<x=<m+ 1, and define
gy=2 —1+logm
m

ifm— 3 <x<m4 4 Draw the graphs of fand g. Note that f(x) < log x < g(x)
if x> 1 and that ’

-"1 flxydx=log(n)—ticgn> —} + Jm g{x) dx.

Integrate log x over [1, n]. Conclude that
F<log(a)—(n+Hlogn+n<l

for n=2,3,4,.... (Nore: log V2 ~ 0918... ) Thus

1

.!',ﬂ< ne

e ——— <¢
(nje)"v'n
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21, Let

22,

1 T
,Ln;z_#f_ﬂwn(x);d: (n=1,2,3,..)

Prove that there exists a constant € > @ such that
L,>Clogn (n=1,2,3..)

or, mote precisely, that the sequence
4
{Ln -3 log n}

is bounded.
If « is real and —1 < x < 1, prove Newton's binomial theorem

(]+X)’=1+i oc(ac—l)"'(rx——n+1)x“‘

=1 n!

Himt: Denote the right side by f{x). Prove thas the series converges. Prove that
(1 + %) f'(x)==f(x)

and solve this differential equation.
Show also that

(-x=%

f—l<x<land x>0

. Let v be a continuously differentiable c¢losed curve in the complex plane, with

parameter interval [a, 5], and assume that ¥{(1) =0 for every ! = [, ). Define the
index of y to be

B 7
70 4

1
Tnd &) = 2 ¥(t)

Prove that Ind (y) is always an integer.

Hint: There exists ¢ on [a, b] with ¢" = ¥'/y, p(a} = 0. Hence y exp(—¢)
is constant. Since 1{a) = y(b) it follows that exp @(b) = exp p(a) = 1. Note that
@(b) = 2mi Ind (y).

Compute Ind (y) when v(t) =€, a=0, b= 2rm.

Explain why Ind (v) is often called the winding number of y around 0.

. Let + be as in Exercise 23, ard assume ir additiop that the range of y does not

intersect the negative real axis. Prove that Ind () =0. Hint: For 0<¢ < o,
Ind (v + ¢} is a continuous integer-valued function of ¢. Also, Ind (y +-¢) =0
as ¢ — 0.
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25. Suppose v, and ¥, are curves as in Exercise 23, and
[¥:(6) — y:(0)1 < [yu(D)] (a<r<h).
Prove that Ind (y,} = Ind (y;).
Hinr: Put y = y2fyy. Then |1 — »| < 1, hence Ind (y) = 0, by Exercise 24.
Also,

26. Let y be a closed curve in the compiex plane (not necessarily differentiable) with
parameter interval [0, 2], such that y(r) # 0 for every ¢ & [0, 2x].

Choose & > 0 so that [+{s)] > 8 for all r € {0, 2=]. If P, and P; are trigo-
nometric pelynomials such that |P{r) — y(r)| < 8/4 for all ¢ € {0, 2=] (their exis-
tence is assured by Theorem 8.15), prove that

Ind (P,) = Ind (P;)
by applying Exercise 23.

Define this common value to be Ind (y).

Prove that the staternents of Exercises 24 and 25 hold without any differenti-
ability assumption.

27. Let f be a continuous complex function defined in the complex plane. Suppose
there is a positive integer 7 and a complex number ¢ # 0 such that

lim z=*(z)=c.

£
Prove that f{z) = 0 for at least one complex number z.
WNote thar this is a generalization of Theorem 8.8,
Hine: Assume f(z) == 0 for all z, define

v = flre')
for 0 <r < =, 0 <1 < 2=, and prove the following statements about the curves
Yol
(@) Ind (yo) = 0. .
(&) Ind (y,) = n for ail sufficiently large.r.
(¢) Ind (y,) is a continuous function of r, on [0, =).
fIn {(b) and (¢), use the last part of Exercise 26.]
Show that (a), {b), and (¢} are contradictory, since 7 > 0.

28. Let D be the closed unit disc in the complex plane. (Thus ze D if and oniy if
lz] < 1.3 Let g be a continuous mapping of D into the unit circle 7. (Thus,
lgiz)i = 1 for every z 2 B)

Prove that g(z)= —zfor at leastone z € T.
Himt: For 0 <r < 1,0 < 2m, put
ydt) = glre™),
and put Yi(s} = ¢~ "y,(1). If g{z} = —z for every z € T, then (1) = —1 for every
¢ € [0, 27]. Hence Ind (/) = 0, by Exercises 24 and 26. It fotlows that Ind {yi)=1
But Ind (vo) = 0. Derive a contradiction, as in Exercise 27.
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29, Prove that every continuous mapping f of D into D has a fixed point in D.
(This is the 2-dimensional case of Brouwer's fixed-point theorem.)
Hint: Assume f(z) # z for every z € D. Associate to each z € D the point
g(z) € T which les on the ray that starts at f(z) and passes through z. Then g
maps D into T, g{z) = z if z € T, and g is continuous, because
g(z) =z — 5D (2) — 2},
where s(z) is the unique nonnegative root of a certain quadratic equation whose
coefficients are continuous functions of £ and z. Apply Exercise 28.
30, Use Stirling’s formula to prove that
. Flx=c)
il

for every real constant ¢.
31. In the proof of Theorem 7.26 it was shown that

L 4
- an >____
.[_1(1 ) x—l‘\/’n

forn=1, 2,3, .... Use Theorem 820 and Exercise 30 to show the more precise

result

1 _
lim v | (1—x)rde=Vm

e LA



9

FUNCTIONS OF SEVERAL VARIABLES

LINEAR TRANSFORMATIONS

We begin this chapter with a discussion of sets of vectors in euclidean n-space R".
The algebraic facts presented here extend without change to finite-dimensional
vgcto‘r spaces over any field of scalars. However, for our purposes it is quite
suflicient to stay within the familiar framework provided by the euclidean spaces.

9.1

Definitions

(@) A nonempty set X < R" is a vector space fx+yeXand cxe X
forall xe X, ye X, and for all scalars ¢.
&) Ifxy....x,eR"and ¢, ..., c, are scalars, the vector

Xy T O,

iy valied s fircar combianation of X, ..., %,. If S R"and if £is the st
of al} linear combinations of elements of S, we say that S spans E, or that
E is the span of S.

Observe that every span is a vector space,
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(¢) A set consisting of vectors X,,.... X, (we shall use the notation
{Xy,..., % for such a set) is said to be independent if the relation
¢,X; + -+ + %, = Oimplies that¢; =+ = ¢, = 0. Otherwise {x,..., X}
is said to be dependent.

Observe that no independent set contains the aull vector.
(d) If a vector space X contains an independent set of r vectors but con-
tains no independent set of r + 1 vectors, we say that X has dimension r,
and write: dim X =r.

The set consisting of 0 alone is a vector space; its dimension is 0.
{¢) An independent subset of a vector space X which spans X is called

"a basis of X.

Observe that if B ={X,,...,%,} is a basis of X, then every xe X
has a unique representation of the form x = Zc;x;. Sucha representation
exists since B spans X. and it is unique since B is independent. The
numbers c,, ..., ¢, are called the coordinates of x with respect to the
basis B.

The most familiar example of a basis is the set {e,, ..., e,}, where
e; is the vector in R" whose jth coordinate is 1 and whose other coordinates
areall 6. If xe R", x ={x,, ..., X,), then x = Lx;e;. We shail call

fe|....,e}

the standard hasis of R".

9.2 Theorem Let r be a positive integer. If a vector space X Is spanned by a
set of r vectors, then dim X < r.

Proof 1f this is false, there is a vecior space X which contains an inde-
pendent set Q ={y,....,¥,+} and which is spanned by a set S, consisting
of r vectors.

Suppose 0 < i < r. and suppose a set §; has been constructed which
spans X and which consists of all ¥; with | < <7 plus a certain cotlection
of r — i members of Sy, say X, ..., X,—;. {In other words. S, is obtained
from S, by replacing / of its elements by members of ¢, without altering
the span.) Since S, spans X, ¥, is in the span of 5;; hence there are

scalars @y, ..., @1, By oo b with gy = 1, such that
irl r—i
Yaiy+ Y b =0
= k=1

If all &,’s were 0, the independence of ¢ would force all a;s to be 0, a
contradiction. Tt follows thot some X, € §; is 2 Hnear combination of the
other members of T; = 5; U {¥,4.}. Remove this x; from 7, and calt the
remaining set S;,,. Then §;;, spans the same sel as T;. namely X, so
that S;., has the properties postutated for S; with / +1 in place of .
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Starting with S,, we thus construct sets S:....,5,. The last of
these consists of y,,...,y,, and our construction shows that it spans Y.
But @ is independent; hence ¥r+1 15 not in the span of S.. This contra-
diction establishes the theorem.

Corollary dim R" =n.

Proof Since {e,, ..., ¢,} spans R", the theorem shows that dim R" < n.
Since {e, ..., ¢} is independent, dim R* > n.

9.3 Theorem Suppose X is g pector space, and dim X = p.

(@) Aset Eofnvectorsin X spans X if and only if E is independent.

(8) X has a basis, and every basis consists of n pectors.

() Ifil<r<nandly, ..., Y.} is an independent set in X, then X has a
basis containing {y,, ..., y,).

Proof Suppose E ={x,,...,x.}. Sincedim ¥ = n, the set {x,, ..., x,, v}
Is dependent, forevery ye X. If £ is independent, it follows that y I5 in
the span of £; hence £ spans JX. Conversely, if £ is dependent, ane of jts
members can be removed without changing the span of E. Hence £
cannot span &, by Theorem 9.2. This proves {a).

Since dim X =»n, X contains an independent set of # vectors, and
(@) shows that every such set is a basis of X; (5) now follows from 9.1id)
and 9.2

To prove (c), let {x,, ..., X.} be a basis of X. The set

S={yy 0, ¥ X0 x)

spans X and is dependent, since it contains more than »n vectors. The

* argument used in the proof of Theorem 9.2 shows that one of the X/ s is
a linear combination of the other members of S. If we remove this x, from
S, the remaining set still spans X. This process can be repeated r times
and leads to a basis of X which contains {¥1, ... .} by (a).

9.4 Definitions A mapping 4 of a vector space X into a vector space Y is said
to be a linear transformation if

AlXy +x5) = dx; + Ax,, A(cx) = cAx

for all x, x,, ¥, € X and all sealars ¢, . Note that one often writez Ax instead
of A(x) if A is linear.

Observe that A0 =0 if A is finear. Observe also that a linear transforma-
tion 4 of X into ¥ is completely determined by its action on any basis: If
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{X1,..., x,} is a basis of X, then every x € X has a unique representation of the
form _

a

x=3 %,

i=1

and the linearity of 4 allows us to compute Ax from the vectors Ax,, ..., Ax,
and the coordinates ¢, ..., ¢, by the formula
n
AX =Y c; AX;.
i=1

Linear transformations of X into X are often called linear operators on X,
If A is a linear operator on X which (i) is one-to-one and (i) maps X onto
X, we say that A is invertible. In this case we can define an operator 4™ on X
by requin:ing that A7 !'(Ax) = x for all x e X. It is trivial to verify that we then
aiso have 4(47'x) = x, for all x € X, and that A~ is linear.

An important fact abour linear operators on finite-dimensional vector
spaces is that each of the above conditions (i) and (i) implies the other:

9.5 Theorem A linear operator A on a finite-dimensional vector space X is
one-to-one if and only if the range of A is all of X.

Proof Let {x,,...,x,} be a basis of X. The linearity of 4 shows that
its range #(4) is the span of the set 0 ={dx,,..., 4x,}. We therefore
infer from Theorem 9.3(a) that #(4) = X if and only if Q is independent.
We have to prove that this happens if and only if 4 is one-to-one.
Suppose 4 is one-to-one and Ic; AX; = 0. Then A(Zcx,) =0, hence

Lex; =0, hence ¢y =+ = ¢, =0, and we conclude that ( is independent.
Conversely, suppose Q is independent and A{Zc,x,) =0. Thep
Zc;Ax; =0, hence ¢, = =¢, =0, and we conclude: 4x =0 only if

x =0. If now Ax = Ay, then 4(x — y) = Ax — Ay =0, so that x — y =0,
and this says that A4 is one-to-one.

9.6 Definitions
(@) Let Z{X, Y) betheset of all linear transformations of the vector space
X into the vector space Y. Instead of L{X. X), we shall simply write Lix.
I 4,, 4, e L(X. Y) and if ¢}, ¢, are scalars, define ¢,4, + ¢, 4; by
(eyAd, + 40X =c A,x + ¢y daX (xe X).
It is then clear that ¢, 4, + ¢; 4, e L(X, Y). ‘
(o) If X, Y. Z are vecicr spaces. and if A € L(X, Y) and Fe L(Y, Z), we
define their product BA to be the composition of 4 and A:
{(BA)X = B(Ax) (xe X).
Then BA e L(X, Z).
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Note that BA need not be the same as 4B, evenif Y= Y =2,

(¢) For AeL(R", R™), define the norm |A|| of 4 to be the sup of all

numbers | Ax|, where x ranges over ail vectors in R” with |x} < I.
Observe that the inequality

fAx| < (4] |x]

holds for ail xe R". Also, if Z is such that {Ax| < A|x] for all xe R",

then |4l < A

9.7 Theorem

(@) If A€ L{(R". R™), then [Ad| <co and A is a uniformly continuous

mapping of R" into R™.
(b) IfA, Be L(R", R™ and ¢ is a scalar, then

4+ Bl <44 + B, - fedf=|c| |4}

With the distance between A and B defined as {4 — B, L(R", R™) is a

metric space.
(¢} IfAeL(R", R™Y and Be L(R™, R¥), then

1B < 1B [44.
Proof
(@) Let{e,..... e} be the standard basis in R" and suppose x = Zce,,
|x| <1,s0that |¢; <l fori=1,...,n Then
|4xj ={T cide| = 5 jef |4e] < 5 | ey
so0 that

H
14) €3 | dei< .
i=1

3

Since |Ax — Ay¥{ < |4l {x ~¥] if X, y € R", we see that A4 is unifermly

continzous.
(#) The inequality in (&) follows from

(4 + B)x| = |dx + Bx| < {dx] ~ | Bx] < (|4} + |B]) x].
The second part of (b) is proved in the same manner, If
A, B, Ce L(F", R™),
we have the triangle inequality

l4=Ci=l{4d-B)+(B-0CO}f <4~ B|+|8-C],
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and it is easily verified that |4 — B| has the other properties of a metric
(Defition 2.15).
{c) Finaily, (¢) follows from
[{(BA)x] = | B(4x)| < 18| |4x] < |B] 4] |xL
Since we now have metrics in the spaces L(R", R™), the concepts of open

set, continuity, etc., make sense for these spaces. Our next theorem utilizes
these concepts.

9.8 Theorem Let Q be the set of all invertible linear operaters on R™,

(1)

(@) IfAeQ. Be L(R"), and
1B—A|- 1471 <1,

then Be Q.
(B)  Q is an open subset of L(R™), and the mapping A — 471 is continuous
on 2.
(This mapping is also obviously a 1 — 1 mapping of © onto £,
which is its own inverse.)

Proof

(@) Put A7 =1/z, put {B— A = 8. Then # <=z For every x € R",

2x[=x|Ad7 Ax]| £ 247 - [ Ax]
= |Ax| < [(4 — B)x| + {Bx| < Blx| + | Bx},
s0 that
(x-Plx[ =B (xR

Since x — f >0, (1) shows that Bx # 0 if x #0. Hence Bis 1 — 1.
By Theorem 9.5, Be Q. This holds for all B with !B — 4l| <« Thus
we have (a) and the fact that Q is open.
(b) Next, replace x by 7'y in (1). The resulting inequality

(@—BHB 'y < |BB ™'y =¥ (yeR"
shows that |B™'|| < (x — B)™%. The identity
' B '— AT =B Y4 - B4,

combined with Theorem 9.7(c), implies therefore that

-1 -1 -1 _ =11 ﬁ
IB7 = AT S4BT A - B A7 S

This establishes the continurty assertion made in (5), since f — 0 as B — A.
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9.9 Matrices Suppose {X,,..., X,} and {y,. ..., Y.} are bases of vector spaces
X and Y, respectively. Then every 4 € L(X, Y} determines a set of numbers

’

aU such that
€y Ax; =_>_:10;,-y.- (I=<j<n.

It is convenient to visualize these numbers in a rectangular array of m rows
and » columns, called an m by n matrix:

1 2 din
=P
Omy 2 “mn_!
Observe that the coordinates a,; of the vector Ax; (with respect to the basis
{¥y, ..., ¥u}} appear in the jth column of [4]. The vectors Ax; are therefore

sometimes called the cofumn vectors of [4]. With this termmolonv the range

of A is spanned by the column vectors of [A].
If x = Z¢;x;, the linearity of 4, combined with (3), shows that

() Z(Zau ,)

i=1 \j=1

Thus the coordinates of Ax are I;a;¢;. Note that in (3) the summaticn
ranges aver the first subscript of a;, but that we sum over the second subscript
when computing coordinates.
Suppose next that an m by » matrix is given, with reai entries ;. If 4 1
then defined by (4), it is clear that 4 = L(X, Y) and that [4]is the given matrix.
_Thus there is a natural 1-1 correspondence between L{X, Y) and the set of ail
" real m by n matrices. We emphasize, though, that [4] depends not only on 4
but also on the choice of bases in X and Y. The same A may give rise to many
different matrices if we change bases, and vice versa. We shall not pursue this
observation any further, since we shall usually work with fixed bases. (Some
remarks on this may be found in Sec. 9.37.)
If Z is a third vector space, with basis {z,, ..., Z,}, if 4 is given by (3},
and if

By, =¥bk:‘zkv (BA)X; =Lj..ckak’

then A€ £(X, Y), B L(Y.2), BAe (X, Z). and since
B(dx;) =B Z ai;¥e = Z a; By;
i 1}

=Y aij;b“zk =§ (}‘: bk,-a,-j) Z,
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the independence of {z,, ..., z,} implies that

(5) ) 'c‘,;j=z_b“aij {(lgk=<p l<j<n.

This shows how to compute the p by n matrix [B4] from [B] and [4]. If we
deﬁng t_he product [B}{A] to be [BA], then (5) describes the usual rule of matrix
multiplication.

i Finallly, suppose {X1,.... %} and {y,, ..., ¥} are standard bases of R" and
R™, and A is given by {4). The Schwarz inequality shows that

A =3 (T aye) s ¥ (i o) =T aix
Thus ’

(6) 14l < (3 a3]7.
o a
.If we apgly (6) to B— A in place of 4, where 4, B L(R", R™), we see
that lf. the matrix elements a;; are continuous functions of a parameter, then the
same is true of 4. More precisely:

. If § is a metric space, if ay,. ..., a,, are real continuous functions on S,
and if, for each p € S. A, is the linear transformation of R" into R™ whose matrix

j"fzfq entries a;(p), then the mapping p— A, is a continuous mapping of S into
n! Rm).

DIFFERENTIATION

9.10 Preliminaries In order to arrive at a definition of the derivative of a
function whose domain is R (or an open subset of £, let us take another look
at thf: familiar case n = 1. and let us see how to interpret the derivative in that
case it a way which will naturally extend to n > 1.

. If fis a reai function with domain (4. 5) = R' and if x € (g, b), then f'(x)
15 usually defined to be the real number

i h) -/

ﬂ—'(}

()

provided, of course, that this limit exists. Thus

(8) Slx + B) = flx} =f(x}h + r(h)
where the “remainder™ r(#) is small, in the sense that
(9) im 2 L.

k=0 h
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Note that (8) expresses the difference f{x + k) — f(x) as the sum of the
finear function that takes k to f"(x)k, plus a small remainder.

We can therefore regard the derivative of f at x, not as a real nuniber,
but as the linear operator on R! that takes 4 to f'(x)A.

[Observe that every real number « gives rise to a linear operator on R!;
the operator in question is simply multiplication by «. Conversely, every linear
function that carries R' to R! is muitiplication by some real number. It is this
natural 1-1 correspondence between R' and L{R') which motivates the pre-
ceding statements. ]

Let us next consider a function f that maps (4, b} = R! into R™. In that
case, f'(x) was defined to be that vector y ¢ R™ (if there is one) for which

10y i f1G5 B — 1) Ly

=0
h—0 h

We can again rewrite this in the form
(an f{x + A} ~ £(x} = Ay + 1(h),

where r(h)/h — 0 as £ —0. The main term on the right side of (11) is again a
lineqr function of . Every y € R™ induces a linear transformation of R! into
R™, by associating to each he R' the vector 4y € R™. This identification of k™
with L(R!, R™) allows us to regard {'(x) as a member of L(R', R™.

Thus, if fis a differentiable mapping of (4, ) « R'into R™, and if x & (g, b),
then f'(x) is the linear transformation of R! into R™ that satisfies

— x)—-f’
(12) fim (XA 10 =Pk _ g

or, equivalently,

) 1) - £(0h|
(1) - IA] =

We are now ready for the case n > 1.

0.

9.11 Definitior Suppose £ is an open set in R",  maps F into R™, and x € E.
If there exists a linear transformation 4 of R into R™ such that
. |f(x +h) — f(x) — Ah]

14 ! =0,
(14) im i

then we say that { is differentiable at x, and we write
(15 f'(x) = 4.

If f is differentiable at every x € £, we say that f is differentiable in E.
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It is of course understood in (14) that he R". If {h| is small enough, then
x +he £ since £1s open.-Thus f(x + h) is defined, f(x + h}e R™, and since
AeL(R", R™), dhe R™. Thus
f(x +h) — {{x) ~ 4he R™
The norm in the numerator of (14) is that of R™. In the denominator we have
the R"-norm of h.

There is an obvious uniqueness problem which has to be settled before
we go any further,

9.12 Theorem Suppose E and f are as in Definition 9.1\, x € E, and (14) holds
with A = A and with A = 4,. Then A, = 4,.

Proof If B=A, — A4,, the inequality
[Bh| < |f(x +h) — f(x) — 4,h| + [f{x + h) — £(x} — 4, h]
shows that | Bh|/|h| -0 as h — 0. For fixed h # 0, it follows that

| B(th)
16 — =0 as -0
(16) Th] s 1
The linearity of B shows that the left side of (}6) is independent of 1.
Thus Bh =0 for every he R". Hence B =0.

9.13 Remarks
{a} The relation (14) can be rewriiten in the form
{an f{x+h)—f(x) =1{x)h + r(h)
where the remainder r(h) satisfies

)]
(18) :er; Th| 13

We may interpret (17), as in Sec. 9.10, by saying that for fixed X and small
h, the left side of (17) is approximately equal to '{x)h, that is. to the value
of a linear transformation applied to h.

(b) Suppose f and E are as in Definition 9.11, and f is differentiable in E.
For every x € £, f'{x) is then a function, namely, a linear transformation
of R into R™ But{’is also a function: f' maps E into L(R", R™).

() A giance ai (17) shows that { is continuous at any point at which f is
differantiable.

(d) The derivative defined by {14) or (17) is often called the differential
of f at x, or the total derivative of f at x, to distinguish it from the partial
derivatives that will occur later.
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9.14 Example We have defined derivatives of functions carrying R to R™ to
be linear transformations of R" into R™. What is the derivative of such a linear
transformation? The answer is very simple.

IfAeL(R", R™) and if x& R", then
(19 A'(x) =4.
Note that x appears on the left side of (19), but not on the right. Both

sides of (19) are members of L{R", R™), whereas 4x € R™.
-The proof of (19) is a triviality, since

(20) A(x +h) — Ax = 4h,
by the linearity of 4. With f{x) = Ax, the numerator in (14) is thus 0 for every

he R In(17), r(h) = 0.

We now extend the chain rule (Theorem 5.3) to the present situation.

9.15 Theorem Suppose E is an open set in R", { maps E into R™, {is differentiable
at Xo € £, g maps an apen set containing {(E) inte R*, and g is differentiable at
£(xo). Then the mapping F of E into R* defined by

F(x) = g(f(x))
is differentiable at Xy, and
@y F(xg) = 8'(f (xo )} '(x,).

On the right side of (21), we have the product of two linear transforma-
tions, as defined in Sec. 9.6.

Proof Puty, =f(x,). 4 =1'(xq), B = g'(¥,)}, and define
u(h) = f(x, + h) — f(x,) — 4h,
v(k} = g(yo + k) — g(y,) — Bk,

for all h e R" and k & R™ for which f(x, + h) and gy, + k) are defined.
Then '

{22) lu)| =eyihl, vk} =nk)ik]|,
where e(h) =0 ash—0and (k) >0 as k= 0.
Given h, put k = f(x, + h) — £(x,). Then

@3 k= A ull< (Al o] bl
©and ¢ o
Fi(x, + b) — F(xo) — B4h =g(y, + k) — g(y,) — B4h
= B(k — Ah) + v(k)
= Bu(h) + v(k).
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Hence {22) and (23) imply. for h # 0, that
|F(x, + h) — F(x,) — BAh|
hi

Let h— 0. Then eh) —=0. Also, k—0, by (23), so that n(k)— 0.
It follows that F'(x,) = B4, which is what {21) asserts.

< Bl et) + {4l + &) (k).

9.16 Partial derivatives We again consider a function f that maps an open
set E« R"into R™. Let{e,,...,e,} and {u,,...,u,} be the standard bases of
R and R™. The components of f are the real functions f), ..., f,, defined by

(4 (=3 fton  (xeE)

or, equivalently, by fi(x) =f(x) -u;, 1 <i<m.
ForxeE ! gigm | <j<n, wedefine

fix + 1e) = fi0)

(25) (D, f)x) = lim
=0 t

provided the limit exists. Writing fi(xy, ..., x,) in place of f{x), we see that
D, f, is the derivative of f; with respect to x;, keeping the other variables fixed.
The notation

(26) %
)
is therefore often used in place of D, f;, and D,f; is called a partial derivative.
In many cases where the existence of a derivative is sufficient when dealing
with functions of one variable, continuity or at least boundedness of the partial
derivatives is needed for functions of several variables. For exampie, the
functions f and g described in Exercise 7, Chap. 4, are not continuous, although
their partial derivatives exist at every point of R*. Even for continuous functions.
the existence of all partial derivatives does not imply differentiability in the sense
of Definition 9.11; see Exercises 6 and 14, and Theorem 3.21.
However, if { is known to bé differentiable at a point x, then its partial
derivatives exist at x, and they determine the linear transformation f’(x}
completely:

9.17 Theorem Suppose{maps anopenset E = R" into R, and{is differentiable
at a point x € E. Then the partial derivatives (D, f,)(x} exist, and

@ F(e = 3 (Df)0m (1<)
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Here, as in Sec. 9.16, {e,,..., e,} and {u;, ..., u,} are the standard bases
of R” and R™,

Proof Fix/. Since fis differentiable at X,
flx +te) —f(x) = f'(x)(re;) + r(te))
where {r(re;)|/t >0 as 1 0. The linearity of f'(x) shows therefore that

(28) li

f D—1
L L
t—=+0

If we now represent f in terms of its components, as in {(24), then (28)
becomes

u; = {'{x)e,.

(29) i § A +00) =0
=0 i=]

It follows that each quotient in this sum has a limit, as f — 0 (see Theorem
4.10), so that each (D, f)(x) exists, and then (27) follows from (29).

Here are some consequences of Theorem 9.17:

Let [f'(x)] be the matrix that represents f "(x) with respect to our standard
bases, as in Sec. 9.9.

Then f'(x)e, is the jth column vector of [f'(x)], and (27) shows therefore
that the number (D , /(%) occupies the spot in the ith row and Jth column of
[f'{x}]). Thus

(D fi)x) - (Dnf1)(x)
Fx)] = ererrieie i, )
(lem)(x) e (anm)(x)

If h = $he, is any vector in R", then (27) implies that

(30) 1'(x)h 2-51

3. Dufon, ) u.

9.18 Example Lety be a differentiable mapping of the segment (a, b) < R
into an open set £ < R", in other words, y is a differentiable curve in E. Let f
be a real-valued differentiable function with domain £ Thus fis a differentiable
mapping of £ into R'. Define

(31) : g} =0 {a<i<bh).
The chain rule asserts then that

(32) gO=romye) (@<t<b).
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Since ¥'(t)e L(R', R") and f(y(t))e L(R", RY), (32) defines ¢'(r) as a linear
operator on R'. This agrees with the fact that g maps (a, b) into I{fl. However,
g'(t) can also be regarded as a real number. (This was discussed in Sec. 9.10.)
This number can be computed in terms of the partial derivatives of £ and the
derivatives of the components of y, as we shall now see.

With respect to the standard basis {e, ..., e,} of R", [y'{t)] is the n by |
matrix (a “column matrix’) which has ¥} {r) in the ith row, where y, ..., 7n 2T€
the components of y. Forevery x & E, [f7(x)] is the | by n matrix (a “row .matnx”)
which has (D, f)(x) in the jth column. Hence {g'(s)} is the 1 by 1 matrix whose
ouly entry is the real number

G3) 7= 3 DS 0

This is a frequently encountered special case of the chain rule, It can be
rephrased in the following manner. .

Associate with each x € £ a vector, the so-called “gradient” of f at x,
defined by

(34) (/)9 = 3 (Dif e
Since
(35) 70 = 70k,

(33) can be written in the form
(36) g) = (VO - ')

the scalar product of the vectors {V)(3(¢)) and y'(¢). _
Let us now fix an x € £, let w e R" be a unit vector (that is, [uf = 1), and

specialize y so that
(37 W) =x+tu (— o <t<w)
Then ¥'{t) = u for every ¢t. Hence (36) shows that
(38) g@ =N -
On the other hand, (37) shows that
g(t) ~ g(0) = f(x + ) — f(x).
Hence (38} gives

- F(x + ) — f(x)

t=~0 !

(39) =(V)(x) - u.
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The limit in (39) is usually called the directional derivative of Satx,in the
direction of the unit vector u, and may be denoted by (D, f)}x).

_ If fand x are fixed, but u varies, then (39) shows that (D, f)x) attains its
maximum when u is a positive scalar multiple of (V/)x). [The case (Vf Hx) =0
should be excluded here. ]

If u = Zu;e,, then (39) shows that (D, f)(x} can be expressed in terms of
the partial derivatives of f at x by the formula

(40) (D)) = 3 (D, f)x;.
i=1
Some of these ideas will play a role in the following theorem.
9.19 Theorem Suppose { maps a convex open set E < R* into R™, f is differen-
tiable in E, and there is a real number M such that
ool < M
Jor every x e E. Then
If(b) — f(a)| < M|b — a|
JorallacE beE.
Proof Fixae E beE Define
yty={1—0a+1h
for all t & R’ such that y(r)e E. Since E is convex, y(t)e Eif 0 < r < 1.

Put
g(t) = 1(3(r).
Then
g0 =1y (1) = ' (}(t})b — a),
so that

IO < IFGEDEb —a] < M|b - al
for all te [0, 1]. By Theorem 5.19,
lg(t) — g(0)} < M[b - aj.
But g(0) = f(a} and g(1) = £(b). This completes the proof.

Corollary ~ If,"in addition, {'(x) =0 for all x € E, then f is constant.

Proof To prove this, note that the hypotheses of the theorem hold now
with M =0,
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9.20 Definition A differentiable mapping f of an open set £ < R" into R™ is
said to be continuously differentiable in E if ' is a continuous mapping of £
into L(R", R™). _
More explicitly, it is required that to every xe E and to every ¢ >0
corresponds a § > 0 such that
Iy —1'xol<e

ifye Fand [x —yj<d.
If this is so, we also say that f is a ¥’-mapping, or that fe €'(E).

9.21 Theorem Suppose f maps an open set E < R* into R™. Then fe CEYIf
and only if the partial derivatives D f, exist and are continuous on Efor 1 <i<m,
I<j<n

Proof Assume first that fe °(E). By (27),
(D,/0(x) = (f'(x)e;) "y
for all 4, j, and for all x€ E. Hence

(D) — (D)%) ={I'(¥) - T'(x)]e;} - w;

and since ;| = [e;] =1, it follows that
D) — (D)) < I — 1'(x)]ey]
< Iy — &0l

Hence D, f; is continuous.

For the converse, it suffices to consider the case m =1, {Why?)
Fix xe F and ¢ > 0. Since E is open, there is an open ball § < E, with
center at X and radius r, and the continuity of the functions D, f shows
that r can be chosen so that

(41) (DN = (Def M) <= (e 1<j<n.

Suppose h =Zhe;, |h| <r, put vy =0,and v, =he; + - + i ey,
forl £k <n. Then

@) fox+ 0 —f00 = 3 L+ ) = flx 4 v5e )]

Since |v| <rfor 1 <k < n and since S is convex, the segments with end
points x +v;_, and x 4+ v; lie in 5. Since v; =¥, + A;e¢;, the mean
value theorem (5.10) shows that the jth surnmand in (42) is equal to

BAD X + ¥;_y + O;hye;
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for some 8, € (0, 1), and this differs from h(D,f)(x) by less than Vrsle/n,
using (41). By (42), it follows that

foc+ B - 709 - $ D0 <1 3 hle<nfe

for all h such that [hj <,

This says that f is differentiable at x and that f'(x) is the linear
function which assigns the number Zh{D;f)(X) to the vector h = Ih;e;.
The matrix [f(x)] consists of the row (D, /){x), ..., (D, f)x); and since
D.f, .:., D,f are continuous functions on- £, the concluding remarks ‘of
Sec. 8.9 show that f< 4'(E).

THE CONTRACTION PRINCIPLE

We now interrupt our discussion of differentiation to insert a fixed point
theorem that is valid in arbitrary complete metric spaces. It will be used in the
proof of the inverse function theorem.

9.22  Definition Let X be a metric space, with metric 4. If ¢ maps X into X
and if there is a number ¢ < I such that

(43) d(p(x), p(y) < cd(x, y)

for all x, y e X, then ¢ is said to be a contraction of ¥ into X,

9.23 Theorem If X is a complete metric space, and if ¢ is a contraction of X
into X, then there exists one and only one x € X such thar p(x) = x.

In other words, ¢ has a unique fixed point. The uniqueness is a triviality,
for if p{x) = x and @(y) = y, then (43) gives d(x, y) £ ¢ d(x, y), which can only
happen when d(x, y} =0.

The existence of a fixed point of ¢ is the essential part of the theorem.
The proof actually furnishes a constructive method for tocating the fixed point.

Proof Pick x, € X arbitrarily, and define {x,} recursively, by setting
(44 Xoyq = @(x,) n=0,1,2,..)
Choose ¢ < | so that (43) helds. For n > | we then have
A5ps 1, %) = A, 9 ) 5 €4y, Xpey).
Hence induction gives

(45) d(x, 0y, X)) < M d(xy, x0) (n=0,1,2...)
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If n < m, it follows that

A5 < S dlxxin)

i=n+1
S+ T+ " d(xy, xo)
< (1~ o)™  dlxy, xg)]e".
Thus {x,} is a Cauchy sequence. Since X is complete. lim x, = x for some

xe X
Since @ is a contraction, @ is continuous {in fact, uniformly con-
tinuous) on X, Heace

@(x) = limp(x,) = limx,, , = x.

n—x n=m

THE INVERSE FUNCTION THEOREM

The inverse function theorem states, roughly speaking, that a continuously
differentiable mapping f is invertible in a neighborhood of any point x at which
the linear transformation f'(x) is invertible:

9.24 Theorem Suppose f is a €'-mapping of an open set E = R" info R", {'(a)
is invertible for some ae £, and b = {(a). Then

{a) there exist open sets Uand V in R” mc& thatae U, be V, { is one-to-
oneon U, and 1(1) =V,
(b)Y if g is the inverse of f [which exists, by {a)), defined in V by

gfixh=x  (xel)
then g e 4'(V).

Writing the equation ¥ = f(x) in component form. we arrive at the follow-
ing interpretation of the conclusion of the theorem: The system of n equations

v =05 x,) (l<izn

can be solved for x|, ..., x, mterms of v,,..., ¥, if we restrict x and y to small
enough neighborhoods of a and b; the selutions are unique and continuously
differentiable.

Proof
(@) Put{’(a) = A4, and choose 4 so that

(#6) 221471 =1
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Since f” is continuous at a, there is an open ball I/ « E, with center at a
H 3

such that
47) fE(x) — A} < 4 (xel.
We associate to each y € R" a function o, defined by
(48) PX)=x+ A7y —f(x)) (xeE)

Note Ih_at f(x) =y if and only if x is a fixed point of .
s Since @'(x) =1 - A7H'(x) = A~ (4 — f'(x)), (46) and (47) impiy
a
(49} le'®)f <t  (xel).
Hence ) '
(50 fo(x;) — olx)| < ¥[x; ~x,! X x, 20,

by Theorem 9.19. It follows that @ has at most one fixed point in U, so
that f(x) =y for at most one x & I/,
Thusfisl —1in U

Next, put ¥ ={(U), and pick Yo€ V. Then y, =f(x,) for some
X, e.U. Let B l:ie an open ball with center at x,, and radius r > 0, 30 small
thatits closure Bliesin U. We will show thaty e ¥ whenever ¥ =y <ir
This proves, of course, that ¥ is open, C h

Fix y, 1y ~ yo| < ir. With ¢ asin (48),

[0x0) = ol = |47 — yo)| < 4t pir =
If x € B, it therefore follows from (56) that

1000 = %5| < [o(x) = 0(X5)] + |0(x0) — %o

r
<§ [x — xq] -e-Esr;
hence ¢(x) e B. Note that (50) holds if x;€ 8, x,¢B.
o Thus ¢ is a contraction of B into &, Being a closed subset of R",
B qucompletel. Theorem 9.23 implies therefore that @ has a fixed point
xe B. For thJ.s X, f(x}=y. Thusyef(B)<f(U) =V,
This proves part (a) of the theorem.

() Pick yeV, v+keV, Then there exist xe U, x +he U, so that
Yy=£(x), ¥y + k = f(x + h). With @ as in (48),

PO+ 1)~ 000 = h + 4 Uf(x) — F(x + b)] =h — 4~k
By (50), |h — 47*k| < }|h!. Hence A7k} > 1{h], and
51) ] <2047 (k| =27k
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By (46), (47), and Theorem 9.8, £'(x) has an inverse, say 7. Since
By +K) —g(y) = Tk =h — Tk = —T{f(x + b) — £(x) — £(0h],
(51) implies

|8y + ) —g(v) = Tk| _ [T} [f(x+H)— () — (0]
[k T b
Ask—0, (51) shows that h —» 0. The right side of the last inequality

thus ternds to 0. Hence the same is true of the left. We have thus proved
that g'(y) = 7. But 7 was chosen to be the inverse of f'(x} = £'{g(y)). Thus

(52) g =N GeW.

Finally, note that g is a continuous mapping of ¥ onto U (since g
is differentiable), that f’ is a continuous mapping of U into the set {} of
all invertible elements of L(R"), and that inversion is a continuous mapping
of Q onto Q, by Theorem 9.8. If we combine these facts with (52), we see
that ge €'(V).

This compietes the proof.

Remark., The full force of the assumption that f e €°(E) was only used
in the last paragraph of the preceding proof. Everything else, down to Eq. (52),
was derived from the existence of f'(x) for x € E, the invertibitity of {'(a). and
the continuity of f” at just the point a. In this connection, we refer to the article
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-380.

The foilowing is an immediate consequence of part (a) of the inverse
function theorem.

9.25 Theorem [ffis a ¥ -mapping of an open set E = R" into R" and if £'(x)
is invertible for every x & E, then {(W) is an open subset of R" for every open set
Wec E. -
In other words, f is an open mapping of E into R".

The hypotheses made in this theorem ensure that each point x € £ has a
neighborhood in which f is 1-1. This may be expressed by saving that f is
localily one-to-one in £. But f need not be 1-1 in E under these circumstances.
For an example, see Exercise 17.

THE IMPLICIT FUNCTION THEOREM

If fis a continuously differentiable real function in the plane. then the equation
f{x, ¥y} =0 can be solved for y in terms of x in a neighborhoed of any point
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(a, b) at which f(a, b) = 0 and &f/éy # 0. Likewise, one can solve for x in terms
of y near (g, &) if éf/éx # 0 at (a. b). For a simple example which illustrates
the need for assuming &7y # 0, consider f(x, ¥ = x> + y* — 1.

The preceding very informal statement is the simplest case (the case
m =n =1 of Theorem 9.28) of the so-called “implicit function theorem.” Its
proof makesstronguse of the fact that continuously differentiable transformations
behave locally very much like their derivatives. Accordingly, we first prove
Theorem 9.27, the linear version of Theorem 9.28.

9.26 Notation Ifx=(x;,....,x,)e R and y = (Jy...., b € R™ let us write
(x, ¥) for the point (or vector)

(Xye oo Xy Y10 e P ROTM

In what follows, the first entry in (X, ¥) or in a similar symbol will always be a
vector in R, the second will be a vector in R™,

Every 4 € L{R"™™, R"} can be split into two tinear transformations 4, and
A,, defined by

(33) _ Ah = A(h, 0), Ak = A0, k)
foranyhe R", ke R™. Then 4, ¢ L(R", A, L(R™, R", and
(34) Ah. k) =Ah + A k.

The linear version of the implicit function theorem is now almost obvious.

9.27 Theorem [fA4¢ L(R""". R") and if A, is invertible, then there-corresponds
to every k € R™ a unigue h € R" such that A{h, k) = @,
This b can be computed frem k by the formula
(55) h=—(4)""4,k
Proof By (54), A(h. k) =0 if and only if
Ah+ 4 k=0,

which is the same as (55) when A, is invertible.

The conclusion of Theorem 9.27 is, in other words, that the equation
A(h, k) = 0 can be sclved (uniquely) for h if k is given, and that the solution h
is a linear function of k. Those who have some acquaintance with linear algebra
will recognize this as a very familiar statement about systems of linear equations.

9.28 Theorem Let f be a €'-mapping of an open ser E< R**™ into R", such
that f(a, b} = 0 for some point (a, b} & E.
Put 4 =1'(a, b) and assume that A, is invertible.
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Then there exist open sets U R'*" and W< R", with (a,b)e U and
b € W, having the following property:
To every v € W corresponds a unique X such that

(56) (x,)eU and {(x,y)=0
If this x is defined to be g(y), then g is a €'-mapping of W into R', g(b) = a,
(57) ey =0 (veW)
and
(58) gb) = —(4,)7'4,.

The function g is “implicitly”’ defined by (57). Hence the pame of the

theorem. - .
The equation f{x,y) =0 can be written as a system of n equations in

n + m variables:
Fil¥isees Xy Vs eees Y} =0

(59) .............................
S, ooy Xgy Vi oo s V) =00

The assumption that 4_ is invertible means that the n by » matrix

i:D:fl ant}

len Tt D.-rj;

evaluated at (a, b) defines an invertible linear operator in R"; in other words,
its column vectors should be independent, or, equivalently, its determinant
should be +0. (See Theorem 9.36.) If, furthermore, (59) holds when x = a and
y = b, then the conclusion of the theorem is that (39) can be solved for x,, .. S Xy
in terms of ¥y, ..., ¥, for every y near b, and that these solutions are continu-

ously differentiable functions of ¥.
Proof Define F by
(60) F(x,y) =(f(x,y.¥) (X yekE)

Then F is a ¥"-mapping of E into R*™™. We claim that F'(a, b) is an
invertible element of L(R"™™):
Since f(a, b) = 0, we have

f(a + b, b + k) = A(h, k) + r(h, k),
where T is the remainder that occurs in the definition of f'(a, b). Since

Fla+h b+k)—Fab={(a+hb+k),k)
= (A(h, k), k) + (r(h, k), )
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(61)

(62)

63)

(64)

(65)
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it follows that F{a, b) is the linear operator on. R"*™ that maps {h, k) to
(4(h, k), k). If this image vector is 0, then A(h,k) =0 and k =0, hence
A(h, 0) = 0, and Theorem 9.27 implies that h = Q. It follows that F ‘(a, b)
is 1-1; hence it is invertible (Theorem 9.3).

The inverse function theorem can therefore be applied to F. It shows
that there exist open sets &/ and ¥ in R**”, with (a, b) e U, (0, b e V, such
that F is a 1-1 mapping of ¥/ onto V,

We let W be the set of all ye R™ such that (0, ¥y)e V. Note that
be W. : ;

It is clear that W is open since ¥ is open.

Ify e W, then (0, y) = F(x, y) for some (x, y)e U. By(60),f(x,y) =0
for this x. -

Suppose, with the same y, that (x’, y}e U and f (x',¥) =0. Then

Fx, y) =((x, 5), ¥) =0 (x, y), y) = F(x. y).

Since F is 1-1 in U, it follows that x' = x.
This proves the first part of the theorem.

For the second part, define g(v}, for y € W, so that (g(y), yt e U and
(57) holds. Then

Fgy)hy) =05 (yew).

If G is the mapping of V onto U that inverts F, then G € ‘, by the inverse
function theorem, and (61) gives

(8(y), y) = G(0, )
Since G € €', (62) shows that g e &".
Finally, to compute g'(b), put (g(y), ¥) = O(y). Then

Pyk=(Ekk (yeW keRm.
By (57), f(@(y)) = 0 in W. The chain rule shows therefore that
£ (y) = 0.
When y = b, then ®(y) = (a, b), and { (d(y)) = 4. Thus

yew)

AD'(h) = 0.
It now follows from (64), (63), and (54), that
A8’k + A,k = A(g'(b)k, k) = AD'(b)k =0
for every k € R™. Thus
4,2'(b) + 4, =0.
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This is equivalent to (58), and completes the proof.
Note. In terms of th'é'components of f and g, (65) becomes

¥ (D,£)(a. BY(Dyg)(b) = —(D,uf)a, b)

()
=t \Ex \GW \G¥e
where l<ign lgsk<m o . o
For each k. this is a system of a linear equations in which the derivatives

8g/8y, (1 <Jj < n) are the unknowns.

or

9.29 Example Take n =2, m =3, and consider the mapping f = (f}, f3) of
R into R? given by
Al X,y p ) =28+ x5y — 4y 13
Sa(xis X3\ Y1 Y2, Ya) =Xz 008 Xy~ 6x; + 2y — ).
Ifa={0,1)andb=3,2,7), then f(a, b) =0. . .
With respect to the standard bases, the matrix of the transformation
A=1(a, b} is

. T2 3 1 -4 0
1A]=L_.5 1 2 0 -1

wi=[5 3l w=h 5

We see that the column vectors of [A,] are independent. Hence A’.‘ is invertible

and the implicit function theorem asserts the existence of a ¢’-mapping g, defined

in a neighborhood of (3, 2, 7), such that g(3,2,7) = (0, 1) and f(g(y}, ¥} = 0.
We can use (58) to compute g'(3, 2, 7): Since

Hence

S
=t =55 7))

{(58) gives

R T PR | Y I
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In terms of partial derivatives, the conclusion is that

Dlgl z.i. ‘ngl =é ‘Dagl = -—%
Dig, = -3 Dyg, =% Dyg, =5
at the point (3, 2, 7).

THE RANK THEOREM

Although this theorem is not as important as the inverse function theorem or
the implicit function theorem, we include it as another interesting illustration
of the general principle that the locat behavior of a continuously differentiable
mapping F near a point x is similar to that of the linear transformation F'(x).

Before stating it, we need a few more facts about linear transformations.

9.30 Definitions Suppose X and Y are vector spaces, and 4 € L{X, Y), as in
Definition 9.6. The nudl space of A, A(4), 1s the set of ail x € X at which 4x = 0.
It is clear that 47(4) is a vector space in X,

Likewise, the range of 4, #(A), is a vector space in Y.

The rank of 4 is defined to be the dimension of R(A).

For example, the invertible elements of L{R") are precisely those whose
rank is n. This fellews from Theorem 9.5.

IfdeL(X, Y)and A hasrank 0, then Ax = 0 forall xe 4. hence #{A) = X.
In this connection, see Exercise 25.

9.31 Projections Let X be a vector space. An operator P e L{X)is said to be
a projection in X if P* = P.

More explicitly, the requirement is that P(Px} = Px for every xe X. In
other words, P fixes every vector in its range #(P).

Here are some elementary properties of projections:

(a) If Pisaprojection in X, then every X € X has a unigue representation
of the form

x=xg_+X2

where X, € A(P), x, € #(P).

To obtain the representation, put X, =Px, x; =x~x,. Then
Px; =Px— Px, = Px — P’x = (), As regards the uniqueness, apply P to
the equation X = x;'+X;. Since X, € #(P), Px, = X,; since Px, =0, it
follows that x, = Px.
(b) If X is a finite-dimensional vector space and if X; is a vector space in
X, then there is a projection P in X with R(P) = X,
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If X, contains only @, this is trivial: put Px =0forall xe X. .
Assume dim X, =k > 0. By Theorem 9.3, X has then a basis
{ay, ..., u,) such that {u,, ..., .} is a basis of X|. Define

Plcjuy + - +e,m,) =gy + 0+ Gy

for arbitrary scalars ¢y, ..., ¢,.
Then Px = x for every xe X, and X, = Z(P).
Note that {u,, 4, ..., U,} is a basis of A (P). Note also that there are

infinitely many projections in X, with range X, if 0 < dim &, < dim X.

9.32 Theorem Suppose m, n, r are nonnegative integers, m=r,n>r, Fisa
%'-mapping of an open set E < R" into R™, and ¥'(x) has rank rforr every X & E
Fixac E, put A =F'(a), let Y, be the range of A, and let P be a projection
in R™ whose range is Y. Let Y, be the null space of P. .
Then there are open sets U and Vin R", withae U, UC’E, and there is a
1-1 4 '-mapping H of V onto U (whose inverse is also of class €') such that

66) F(H(x)} = 4x + p(4dx) xeV)
where ¢ is a € -mapping of the open set A(V) <= Y, inte Y,.

After the proof we shall give a more geomertric description. of the informa-
tion that (66) coniains.

Proof Ifr =0, Theorem 9.19 shows that F(x) is constant in a neighbor-
hood I of a, and (66) holds trivially, with ¥ = U, H(x) =x, ¢(0) = F(a').

From now on we assume r > 0. Since dim Y, =r, ¥, has a“basm
{¥i»....v,}. Choosez; e R"so that 4z; =y, (1 <i <), and define a iinear
mapping § of ¥, into R" by setting

(67) Sy +-+ey) =z + 0+ 61,

for all scalars ¢y, ....¢,.
Then ASy, = Az, =y, for 1 <i<r. Thus

(68) ASy=y (yely).
Define a mapping G of E into R" by setting
(69) G(x) =x + SP[F(x) ~ 4x]  (xeE}.

Since F'(a) = A, differentiation of (69) shows that G'(a) = /. the identity
operator on R". By the invesse function theorem.'there are vpen seis U
and ¥ in R, with a e U, such that G is a 1-1 mapping of U ogto ¥ whose
inverse H is also of class ¥”. Moreover, by shrinki‘ng U land ¥, if necessary,
we can arrange it so that ¥is convex and H'(x) is invertible for every x e V.
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Note that ASPA = A4, since PA = A and (68) holds. Therefore (69)

gives
{(70) AG(x) = PF(x) (xe E).
In particular, (70) holds for x e U. If we replace x by H(x), we obtain
(71) PF(H(x)) = Ax Xe
Define xeh
(72) wix} = F(H(x)) — Ax xeV).

Si’ncc Pf.i =4, (71) implies that Py(x) =0 for all xe ¥. Thus Yis a
%'-mapping of ¥ into Y,
Since ¥ is open, it is clear that A(V) is an o b i
Iy (V) pen subset of its range
To c?mpie’te the p_roof, i.e., to go from (72) to (66), we have to show
that there is a %’-mapping ¢ of A(V) into Y, which satisfies

(73) PlAX) =y(x) (xeV)
As a step toward (73), we will first prove that
(74 Y(x) =y(x;)

fx; €V, x,6 V, Ax = Ax,.
Put (IJ(Ix) =F(H(x)), for xe V., Since H'(x) has rank n for every
x €V, and F'(x) has rank r for every x e U, it follows that

(75 - rank 9'(x) = rank F(Hx)H'(x) = r {xe ).
Fix xe V. Let M be the range of ¢’ ™, di
By (71 g (x). Then M <= R, dim M =r.
(76) Pd(x) = 4.

Thus.P maps M onto #(A4) = Y,. Since M and Y, have the same di-
mension, it follows that P (restricted to M) is 1-1.

Suppose now that 4h =0, 'Then Pe®'(x)h

, . ) =9, by (76). But

?'(x)he M, and P is 1-1 on M. Hence ©'(x)h = 0. A look at (72) shows
now that we have proved the following:

If x € Vand Ah =0, then y'(x)h = 0,

We can now prove (74). Su

. ppose xy eV, x, e V, dx, =

h =x, — x, and define 1 i o

gU) =v(x, +1h)  (0<r<1).
The convexity of ¥ shows that Xy + the V for these r. Hence
(78) EO=y¢(x +thh=0 (<<,
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so that g(1) = g(0). But g(1) = ¥(x,) and g(0) = y(x,). This proves (74).
By (74), ¥(x) depends only on Ax, for x € V. Hence (73) defines ¢
unambiguously in A(V). Tt only remains to be proved that ¢ € €.
Fix ¥, € A(V), fix x, € ¥ s0 that 4x, =y,. Since V is open, ¥y, has
a neighborhood W in Y, such that the vector

(79} X =X, + Sy — ¥o)
lies in ¥V for all ye W. By (68),
AX = AXg + ¥ — Yo =Y.
Thus (73) and (79) give
(80) o(y) =¥(xo — Syp +8y)  (ye W)

This formula shows that ¢ € ¥” in W, hence in A(}), since ¥, was chosen
arbitrarily in A(V).
The proof is now complete.

Here is what the theorem tells us about the geometry of the mapping F.
If y € F{U) then y = F(}(x)} for some x € V¥, and (66) shows that Py = 4x.

Therefore
(81) y=Py+oPy) (yeFL)).

This shows that ¥ is determined by its projection Py, and that P, restricted
to F(U). is a 1-1 mapping of F{U) onto A{V). Thus F(U) is an “r-dimensional '
surface” with precisely one point “over” each point of A(V). We may also
regard F({/) as the graph of .

If &(x) = F(H(x)), as in the proof, then (66) shows that the tevel sets of
{these are the sets on which & attains a given value) are precisely the level sets of
A in V. These are “flat” since they are intersections with ¥ of transiates of the
vector space A47(4). Note that dim A'(4) = # — r (Exercise 25).

The level sets of F in U are the images under H of the flat level sets of @
in ¥. They are thus “(n — r)-dimensional surfaces™ in U.

DETERMINANTS

Determinants are numbers associated to square matrices. and hence to the
operators represented by such matrices. They are O if and oniy if the corre-
sponding operator fails to be invertible. They can therefore be used to decide
whether the hypotheses of some of the preceding theorems are satisfied. They
will play an even more important role in Chap. 10.
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9.33 Definition If (jy, ..., j,) is an ordered n-tuple of integers, define
(82) S(jl! "':jn) = HSgn (jq “‘jp),
P<q

wl?ere sgnx=1if x>0, sgnx=—1if x<0, sgnx =0 if x=0. Then
sUy, s Jay =1, =1, or 0, and it changes sign if any two of the j's are inter-
changed.

. Let [A ] be the matrix of a linear operator 4 on R*, relative to the standard
ba;lS {ey, ..., e,}, with entries a(Z, /} in the ith row and jth column. The deter-
minant of [4] is defined to be the number

(83) det {d] =3 s, ... gall, j)a(2, jp) -+ aln, ,).
The sum in (83) extends over all ordered n-tuples of integers (j,, .
1 S.}r g n. °

The column vectors x; of [4] are

.. J.} with

(84) ;=Y at e (1<j<n).
i=1

It will be convenient to think of det {4] as a function of the column vectors
of [4]. If we write

det (x,, ..., x,) = det [4],

det is now a real function on the set of all ordered n-tuples of vectors in R™

9.34 Theorem
(a) IfIis the identity operator on R", then

det [[] =det(e,;...,e) =1.

(&) det is a linear function of each of the column vectors x,, if the others are
e
held fixed.
() If [A]y is obtained from [A} by interchanging two columns, then
det [A]; = —det [4].
{(d} If [A} has two equal columns, then det [A] = 0.

Proof if 4 =1, thena(f,i) =1 and a(i,j) =0 for i #j. Hence
det [ =35(1.2,....0) =1,

which proves (a). By (82), s{/y, ..., J,) =0 if any two of the j's are equal.
Each of the remaining #! products in {83) contains exactly one factor
from each column. This proves (b). Part (¢) is an immediate consequence
of the fact that s(j;, ..., /,} changes sign if any two of the j's are inter-
changed, and () is a corollary of (¢).

9.35

(85)

(36)

(87)

{38)

(89}

9.36

(99)
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Theorem [f [A] and [B) are n by n matrices, then
 det ([BH{A]) == det {B] det [4].
Proof Ifx,, ...V, k,, are the columns of [4], define
Ag(Xy, .., X,) = AglA] =det ([B][4].
The columns of [B][4] are the vectors Bxy, ..., Bx,. Thus
AglXy, ..., X,) =det (Bxy, ..., Bx,).

By (86) and Theorem 9.34, Ay also has properties 9.34 (5} 1o (d). By €)]
and (84),

Agld] =Ag (Z a(i, De;, ;2, x,,) =3 ali, \) Agle;, X2, .5 X,).

Repeating this process with X, ..., X,, we obtain
Agld] = ¥ aliy, Daliy, 2} -~ aliy. n) Aglei, .. &),
the sum being extended over ali ordered n-tuples {iy, ..., /) with
| <i <n By(c)and (d),
Agley ....e ) =iy, ... i) Apley, ..o, e,),

where ¢t = 1,0, or —1, and since {B][I] = [B], (83) shows that
, &,y = det [B].
Substituting (89) and (88) into (87), we obtain

det ((BYIAD ={Y a(iy. ) alf,, nhy, ...

for all n by n matrices [4] and [B]. Taking B =/, we see that the above
sum in braces is det [4]. This proves the thecrem.

Agley, ...

, i)} det [B],

Theordm A linear operator A on R" is invertible if and only if det [4] #0.
Proof If A is invertible, Theorem 9.35 shows that

det [4]det [4™ ] =det [44 ] =det[I]=1,
so that det {4] #0.

1f 4 is not invertible, the columns x, ..., X, of [4] are dependent
(Theorem 9.5); hence there is one. say, X, such that

X+ Y o;x; =0
ik
for certain scalars ¢;. By 9.34 (b) and (), x, can be replaced by %, + ¢;X;
without altering the determinant, if j # k. Repeating, we see that x, can
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bg replaced by the left side of (90), i.e., by 0, without altering the deter-
minant. But a matrix which has 0 for one column has determinant 0.
Hence det {4] = 0.

9.;57 Remark Suppose {e;,..., e} and {u,,...,u,} arc bases in R".
Every linear operator 4 on R” determines matrices {4] and [4 lo, with entries
a;; and «y;, given by

Ae; =3 aje, Auj=2aijui.
Ifu; = Be; = Xb;;e,, then Ay, is equal to
;%;Bek = gakj Z bye = Z (g bu‘“kj) &,

and also to
ABEJ =4 ;bk}-e,l = Z (; aikb,‘j) €.

Thus £b;, ot = Zay by, or
(91} [B][A]y = {4][B].
Since B is invertible, det [B] # 0. Hence (91), combined with Theorem 9.35,
shows that
(92) det [4], = det [4].
The determinant of the matrix of a linear operator does therefore not

depend on the basis which is used to construct the matrix. It is thus mearingful
to speak of the determinant of a linear operator, without having any basis in mind,

' 9.38 Jacobians If f maps an open set £ = R"into R", and if  is differen-
tiable at a point x £ E, the determinant of the linear operator f'{x) is called
the Jacobian of f at x. In symbols,

(93) J{x) = det ().

We shall also use the notation

(94) s Vi)
S(xy, . ne xy)

for Je(x), if (3, .oy =T(xq, ..., x,)

In terms of Jacobians, the crucial hypothesis in the inverse function
theorem is that J(a) #0 (compare Theorem 9.36). If the implicit function
theorem is stated in terms of the functions {(59), the assumption made thers on
A amounts to

c(fir o0 S} %0

G{Xqs e, %)
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DERIVATIVES OF HIGHER ORDER

9.39 Definition - Suppose f is a real function defined in an open set £ < R,
with partial derivatives D,f,..., D,f If the functions D;f are themselves
differentiable, then the second-order partial derivatives of f are defined by

D,f=D,D;f (GFi=1....,n)

If all these functions D, fare continuous in E, we say that fis of class ¥” in E,
or that f€ €"(E).
A mapping f of E into R™ is said to be of class ¥” if each component of f

is of class €”.
It can happen that D;;f # D;.f at some point, although both derivatives

exist (see Exercise 27). However, we shail see below that Dy, f = D, f whenever
these derlvatives are continuous.

For simplicity (and without loss of generality) we state our next two
theorems for real functions of two variables. The first one is a mean value
theorem.

9.40 Theorem Suppose f is defined in an open set E< R, and D, fand D, f
exist at every point of E. Suppose Q c E is a closed rectangle with sides paralle!
to the coordinaie axes, having (a, b) and {a+h, b+ k) as opposite vertices
{h#0, k+0). Put
AL, Q =flat+h b+ k)—flat+hb)—fla,b~+k)+fab)

Then there is a point (x, y) in the interior of Q such thai
(93) ALS, Q) = hk(Dy f)(x, y).

Note the analogy between (95) and Theorem 5.10; the area of Q is Ak,

#
Proof Putu(s) = f(1, b + k) — f(¢, b). Two appiications of Theorem 5,10
show that there is an x between a and @ + A, and that there is a y between
b and & + &, such that

AL, Q) =ul(a + h) — ula)
= hu'(x)
=h[{{D f)x, b+ k) — (D f)x, b)]
= hie( Dy f)(x, ¥)-
9.41 Theorem Suppose f is defined in an open set E = R?, suppose that D, f,

D,.f, and D, f exist at every point of E, and D, f is continuous at some point
{a, b) e E.
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Then D, f exists at (a, b) and
(96) (D12 Xa, &) =(D;,f)a, b).

Corellary D,,f=D,.fiffe ¥"(E).

Proof Put 4 =(D,,f)a.b). Choose e>0. If Q is a rectangle as in
Theorem 9.40, and if # and k& are sufficiently small, we have

_ [A—(DyfXx. p)l <e
for all (x, y) € 0. Thus '

AL Q)
hk

by (95). Fix A, and let k = 0. Since D,f exisis in E, the last inequality
implies that

| . —
97 ‘(Dz Fila + A bz (Dyf)a. by Ai <e

—Al<a,

Since ¢ was arbitrary, and since {97) holds for all sufficiently small
k£ 0, it follows that (D, f)(a, b) = A. This gives (96).

DIFFERENTIATION OF INTEGRALS

Suppose ¢ is a function of wo variables which can be integrated with respect
to one and which can be differentiated with respect to the other. Under what
conditions will the resuli be the same if these two limit processes are carried out
in the opposite order? To state the question more precisely: Under what
conditions on ¢ can one prove that the equation

(98) d [bcp(x, 1) dx = J’b ';—‘f (x. 1) dx

dt <y

is true ? (A counter example is furnished by Exercise 28.)
Tt will be convenient to use the notation

(99) @'(x) = o(x, 1).

Thus ' is, for each ¢, a function of one variable.

9.42 Theorem Suppose

(@) o(x,t)isdefinedfora<x<bh c<t<d,
(b) x is an increasing function on [a, b];
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(©) @ & R(2) for every te [c, d];
(d) ¢ <s<d,and to every £ >0 corresponds a 6 > 0 such that

(D, 9)x, 1) — (D 0)x.5)| <¢
forall xela. bl and for all te(s— 3,5+ 8).

Define
{100) fle) = _Iff,o(x. Ddxx)  (est=4d)
Then (D, o) & R(a). /'(s) exists, and
(101) 76) = [ (0: 0.5 it

Note that (¢) simply asserts the existence of the integrals (100) for alt
t € [c. d]. Note also that {d) certainly holds whenever D, o is continuous on the
rectangle on which ¢ is defined.

Proof Consider the difference quotients

: o(x, 1) — olx, 5)
h t—5

d(x, 1)

for 0 < it — 5{ <. By Theorem 5.10 there corresponds to each {x,t}a
number u between 5 and f such that
glx, 1) = (Dy @)(x, ).

Hertee (&) implies that

{102) Nx. £) — (D @X(x. 51 <& (@a<x<b 0<lit~s5|<d)
Note that
— ad
(103) &:-f:@ = l Wi 1) dx(x).

By (102), ¢ = (D, v)*, uniformiy on {a, b}, as {—5. Since each
W' & A(x), the desired conclusion follows from (103) and Theorem 7.16.

9.43 Example One can of course prove analogues of Theorem 9.42 with
(—o0, 00) in piace of [a, b]. Insiead of doing this, let us simply loock at an
example, Define

(104) fir =] e cos (xi)dx
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and

(105) gln) = — j ® xem sin (xt) dx,

for —20 <¢< . Both integrals exist (they converge absolutely) since the
absolute values of the integrands are at most exp (—x%) and |x| exp (—x?),
respectively.

Note that g is obtained from f by differentiating the integrand with respect
to £. We claim that fis differentiable and that
(106} f )y =41 (—coc <1< o)

To prove this. let us first examine the difference quotients of the cosine:
it # >0, then

cos{x+fy—cosx . 1 (28

(107) +siny = - (sin z - sin¢) 4t

B s

Since [sina —sin ¢ < |+ — }, the right side of (107) is at most B/2 in absolute
value; the case f# < 0 is handled similarly. Thus

cos (x + ) —cos x
B

for all # (if the left side is interpreted to be O when 5=0.
Now fix 7, and fix & #0. Apply (108) with x = xt, B = xh; it follows from
(104) and (105) that

if(r+h) —f()
3 T k -

(108) < {B]

+ sin «

g(t)

<ihl | xte<dr
When # — 0, we thus obtain (106).
. Let us go a step further: An integration by parts, applied to (104), shows
that
[ e 2T (x1) dx.

(109) fi=2 J

@ t

Thus /(1) = — 2g{r), and {i06) implies now that S satisfies the differentjal
equation

(110} 200 + of (1) = 0.

If we solve this differential equation and use the fact that f(0) = V’IE (see Sec.
8.21), we find that

(i11) £(t) =y exp (m ?2)

The integral (104) is thus expiicitly determined.
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EXERCISES

1. If §is a nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that
the span of § is a vector space.
2. Prove (as asserted in Sec. 9.6) that BA is linear if 4 and B are linear transformations,
Prove also that 4 ~* is linear and invertible.
3. Assume 4 € L(X, Y)and Ax = 0 only when x =10, Prove that 4 is then 1-1.
4. Prove (as asserted in Sec. 9.30) that nuil spaces and ranges of linear transforma-
tions are vector spaces.
5. Prove thatto every 4 € L{R", R") corresponds a unique y € R*suchthatdx = x-y. -
Prove also that 14 = |¥].
Hinr: Under certain conditions, equality holds in the Schwarz inequality.

6. If f10, Y =0 and

Flo ) = 52— i (x, ) = (0, 0),

xzf)r’

prove that (D, f)(x, ») and (D.f)x, y) exist at every point of R?, although f is
not continuous at {0, 0).
7. Suppose that fis a real-valued function defined in an open set £ < R", and that
the partial derivatives D, f, ..., D,/ are bounded in £. Prove that fis continuous
in E.
Hint: Proceed as in the proof of Theorem 3.21.
8. Suppose that fis a differentiabie real function in an open set £ < R", and that f
has a local maximum at a point x € £. Prove that f'(x)= 0.
9. If f is a differentiable mapping of a cornected open set £ < R* into R*, and if
f'{x) = 0 for every x £ £, prove that f is constant in £.
10. If fis a real function defined in a convex open set £ < R7, such that (D, /)(x) =0
for every x € E, prove that f(x} depends only on x,, ..., x..
Show that the convexity of E can be replaced by a weaker condition, but
that some condition is required. For example, if n=2 and E is shaped like a
horseshoe, the statement may be false.
11. If fand g are differentiable real functions in R, prove that
Y(fg) ~f Vg =g ¥/
and that V(1;/) = — /- *Vf wherever /= 0.
12. Fix rwo real numbers # and b, 0 < a << 5. Define a mapping = (f.. fz,f3) of R?
nto R? by
Sds,ty=(b—acoss)cost
fils,py=(b—acossysint
fs, fy=asins.
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13.

i4.

Describe the range K of £. (It is a certain compact subset of R?.)
(a) Show that there are exactly 4 points p € K such that

(VAXE e = 0.

Find these points.
(6) Determine the set of all g € K such that

(V)" (gh =0

{c) Show that one of the points p found in part (@) corresponds 1o a local maxi-
mum of f,, one corresponds 0 a local minimum, and that the other two are
neither (they are so-called “saddle points™).

Which of the points g found in part (b} correspond to maxima or minima?
(d) Let A be an irrational real number, and define g(¢) = {(t, Ar). Prove that g is a
1-1 mapping of R' onio a dense subset of K. Prove that

gy *=a®+ Ab—acost)i

Suppase f is a differentiable mapping of R' into R* such that {{(1}] = 1 for every .
Prove that £'(£)-f(t}=0.

Interpret this result geomerrically,
Define f(0, 0} = 0 and

x?

flx, »= - if (x, ) # (0, 0).

xl _i_ y-
(@) Prove that D, fand D, /fare bounded functions in R*. (Hence fis continuous.)
{5) Let u be any unit vector in R2. Show that the directional derivative (D, 30,0
exists, and that its absoiute value is at most 1.
{c} Let y be a differentiable mapping of R' into R? (in other words, ¥ is a differ-
entiabie curve in R%), with »{0)=(0, O and |0} > 0. Put g{r) = f(¥{1)) and
prove that g is differentiable for every ¢ & R'.

If v € %", prove that g € €.
(d} In spite of this, prove that fis not differentiable at (0, 0).

Hint: Formula {40) fails.

. Define (¢, 0) = 0, and put

dxty?
X, = x? - 2 2ty - —/
i YT

if{x, y) = (0,0
(a)y Prove, for ail (x, ¥} € R?, that

dxty? < (xt - pR)R

Conclude that £ is continuous.

196.

17.

18.

19.

20,
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)] For 0 <8< 2r, —w0 <t < %, define
- gdy=f(rcos b, tsin .

Show that gs(0) =0, ga(0) =0, g5(0} = 2. Each ge has therefore a strict local

minimum at ¢t =0
In other words, the restriction of f to each line through (0, 0) has a strict

local minimum at {0, 0).

{¢) Show that (0, 0) is nevertheless not & local minimum for £, since f(x, x¥) = —x*,
Show that the continuity of £ at the point a is needed in the inverse function
theogrem, even in the case n=1: If

flty=t+2t?sin (lr)

for ¢+ =0, and f(0) =0, then F(O)=1, [ is bounded in {—1,1), but fis not
one-to-one in any neighborhood of 0.
Let f = {£,, f) be the mapping of R? into R? given by

flx,yy=e5cosy, file,y)=¢siay.

{a) What is the range of f?
(#) Show that the Jacobian of fis not zero at any point of R*. Thus every point
of R? has a neighborhood in which f'is one-to-one. Nevertheless, f is not one-to-

one on R?,
(cy Put a=1{0,73), b =f(a), let g be the continuous inverse of f, definedin a

neighborhood of b, such that g{b) = a. Find as explicit formula for g, compute
£'{a) and g'(b), and verify the formula (52),

{d) What are the images under f of lines parailei o the coordinate axes?

Answer analogous questions for the mapping defined by

u=x*—y v = 2xy.
Show that the system of equations
Ix+y—zrui=0
x—y+2z+u=90
2x-2y—3z+2u=0
can be soived for x, y, u in terms of =3 for x, z, uin terms of y; for y, z, u in terms

of x; but not for x, y, z in terms of a.
Take n=m =1 in the impiicit function theorem, and interpret the theorem (as

well as its proof) graphically.

. Define fin R? by

flx, yy=2x* = 3x2 - 27 + 3y

{2) Find the four points in R? at which the gradiens of fis zero. Show that f has
exactly one local maximum and one local minimum in R*.
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() Let S be the set of all (x, ¥) € R* at which Flx, ») = 0. Find those points of
§ that have no neighborhoods in which the equation f{x, ) = 0 can be solved for
¥ in terms of x {or for x in terms of y). Describe § as precisely as you can.

22, Give a similar discussion for

fle, ) = 2x% + 6xy*f 3x1 1 32,
23, Define fin R3 by

S puyy=xtn v ey,

Show that f(0, 1, —1)=0,{D, )0, 1, —1) # 0, and that there exists therefore a
differentiable function g in some neighborhood of (1, —1) in R?, such that
gll, = 1D =0 and

flg(rn yah yi, ya) = 0.
Find (D,g)(1, —1) and (D.g)(1, —1).
24. For (x, ¥) (0, 0), define f= (£, f2) by

xi—y Xy
ﬁ(-r,y)ﬂx2+yz, fz(x,y)=x2?yz.

Compute the rank of f'(x, ¥), and find the range of f.

25. Suppose A € L(R”, R™), let r be the rank of A.
{a) Define 5 as in the proof of Theorem 9.32, Show that S4 isa projection in R"
whose null space is .#°(4) and whose range is #(S). Hint: By {68), S4S54A =S A.
(&) Use (a) to show that

dim A7(A} + dim #(4) = n,

26, Show that the existence (and even the continuity) of D, f does not imply the
existence of D, f. For example, let f{x, ¥) = gix), where g is nowhere differentiable.

27, Put £(0,0) =0, and

Hx?— 3
x? = y?

flx, yy=

if (x, ¥) = (0, 0). Prove that
{(a} f, D.f, D, f are continuous in R?;
(6) Di:fand D,,fexist at every point of R?, and are continuous except at (0, 0);
(€} (21230, M =1, and (D, f)(0, 0) = —1.
28. Forr >0, put

 x o {0=x=VD
cp(x,t)=i-x—§~2'\/r (VnggZ\/;)
0 {otherwise),

and put glx, ) = —lx, |¢]) if t < 0.

30.
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Show that ¢ is continuous on R?, and
(Dz29)x, 0} =0
for all x. Define
1
sy =" glx, s
Show that j{f}=rif |+] <} Hence

F(0} #Jail(quv)(x, 0) dx.

. Let E be an open set in R". The classes ¥"(E) and €"(E) are defined in the texi.

By induction, ¥*(E) can be defined as follows, for all positive integers &: To say
that f € € E) means that the partial derivatives D, f, ..., D, fbelong to €*~(E),

Assume f£ ¥*™E), and show (by repeated application of Theorem 9.41)
that the kth-order derivalive

Dl]iz .- lk,f: D!LDQ e D(kf

is unchanged if the subscripts iy, ..., { are permuted.
For instance, if # >3, then

D1213f= Dsnzf
for every f e €.

Let S €(E), where E is an open subset of R". Fix a € E, and suppose x £ R"
is so close to 0 that the points

plty=a +rx
lie in E whenever 0 <t < 1. Define
ht) = f(p(t})

for all ¢ = R* for which pif) € E.
(a) Forl <k < m, show (by repeated application of the chain rule) that

RO =3 (D e o UPUN X1 Xy

The sum extends over all ordered k-tuples iy, ..., i) in which each /; is one of the

integers 1, ..., .
{#) By Taylor's theorem (5.15),
) m-lh(k) 0) hlml I)
TR Sl it

k=0 k! ' m!

for some 7 € (0, 1). Use this to prove Taybor's theorem in # variables by showing
that the formula
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31.

fla+x)= :.in %Z (D) )@x1y e xy = HX)

represents f{a -+ x) as the sum of its so-called “Taylor pelynomial of degree
m — 1,” plus a remainder that satisfies

Jim
20 |X[71

= 0.

Each of the inner sums extends over all ordered k-tuples (i, ..., L), as in
part (a); as usual, the zero-order derivative of fis simply £, so that the constant
term of the Taylor polynomial of fata is fla).

(c} Exercise 29 shows that repetition occurs in the Taylor polynomial as written in
part (6). For instance, Dy, occurs three times, as D:ia, Dysy, Dy, The sum of
the corresponding three terms can be written in the form

(D] Dy fYadxi x;.

Prove (by calcuiating how often each derivative occurs} that the Tayvlor polynoﬁlial
in (b) can be written in the form

)3 (DY - D fia) in
too o ! X1
PR

Here the summation extends over all ordered n-tuples (s, ..., 5,) such that each
1 is @ nonnegative integer, and 5, - -+ g, <m— 1.

Suppose e ¥ in some neighborhood of a point a € R*, the gradient of fis 0
at a, but not all second-order derivatives of fare 0 at a. Show how one can then
determine from the Taylor polvnomial of fat a (of degree 2) whether f has a local
maximum, or a local minimum, or neither, at the point a.

Extend this to R" in place of R®.

10

INTEGRATION OF DIFFERENTIAL FORMS

[ntegration can be studied on many levels. In Chap. 6, the theory was daveloped
for reasonably well-behaved functions on subintervals of the reai line. In
Chap. 1 we shall encounter a very highly daveloped theory of integration that
can be applied to much larger classes of functions, whose domains are more
or less arbitrary sets, not necessariiy subsets of R". The present chapter is
devoted to those aspects of integration theory that are closely refated to the
geometry of euclidean spaces, such as the change of variables formula, line
integrals, and the machinery of differential forms that is used in the statement
and proof of the n-dimensional analogue of the fundamental theorem of calculus,

namely Stokes’ theorem.

INTEGRATION

10.1 Definition Suppose I*is a k-cell in R*, consisting of all
X=(X,r., %)

such that
(l) agtgb, (I=[,,k),
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I_j is the j-cell in R’ defined by the first ; inequalities (1), and f is a real con-
tinuous function on 1%
Put £ = f;, and define f,_, on I*7! by

by
foorlx oo Xemg) = J. Floens ooy X gy xi) dxy
ai

The uniform continuity of £, on /* shows that f,_, is continuous on I*!.
Hence we can repeat this process and obtain functions 7, continuous on I, such

._tha:tjj-_._ is the integral of f;, with respect to x;, over [a;, b;]. After k steps we
tzfrrwe at a number f,, which we call the integral of f over I*; we write it in the
orm .

2

@) [ s or [ f
A priori, this definition of the integral depends on the order in which the

k integrations are carried out. However, this dependence is oniy apparent. To

prove this, let us introduce the temporary notation L{/) for the integral (2)

and L'(f) for the result obtained by carrying out the & integrations in some

other order,

10.2 Theorem For every fe €(I%), L{(f) = L'(f).

Proof If A(x) = A(x} - Afxy), where fi; € %([g;, &;]}, then

ko-ube
Lihy=T} J hix) dx; = L'(h).

i=1%a;

If o7 is the set of all finite sums of such functions 4, it follows that L{g) =
L'(g) for all g & . Also, & is an algebra of functions on /* to which the
Stone-Weierstrass theorem applies.

k
Put V = ]:I (b; —a). If fe %’(_I“) and £ > 0, there exists g e & such

that {f— gl < &/ ¥, where |fi| is defined as max |f(x)| (xe 7). Then
[L{f — g} <& |[L(f-g)l <& and since

LN-LN=Lf-a+L{g-/)

we conclude that {L{f) — L'(f)] < 2e.
In this conaection, Exercise 2 ic rzlavant.

10.3 Definition The support of a (real or complex) function f on R* is the
closure of the set of all peints x & R* at which f(x) # 0. If fis a continuous
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function with compact support, let £ % be any k-cell which contains the support
of f, and define  _

3 = .
o) [ .r=].7

vk

The integral so defined is evidently independent of the choice of I*, provided
only that I* contains the support of f.

it js now tempting to extend the definition of the integral over R* to
functions which are limits (in some sense) of continuous functions with compact
support. We do not want 10 discuss the conditions under which this can be
done; the proper setting for this question is the Lebesgue integral. We shall
merely describe one very simple example which will be used in the proof of
Stokes’ theorem.

10.4 Example Let O* be the k-simpiex which consists of all points x=
(%1, ..., %) in R* for which x, + -+ ¥ % = land x; 20 foi i=1,.... k. If
k = 3, for example, Q* is a tetrahedron, with verticesat 0, e, €,, ;. Iffs % (0",
extend / to a function on I* by setting f(x) =0 off 0%, and define

O | =] f
Qk i
Here J* is the “unit cube” defined by
0=x =1 (1<igk).
Since f may be discontinuous on I* the existence of the integral on the
right of (4) needs procf. We aiso wish to show that this integral is independent

of the order in which the k single integrations are carried out.
To do this, suppose 0 < d < 1, put

[1 (t<1-3)
©) cp(r):*'(lgr) (-6<t<1)
]\0 1<),
and define
(6) F(x) = olx, + - +xJf(0)  (xE€ ).

Then Fe %(1%).
Put y = (x,, ..., Xx- ) X = (¥, x). For each yeI*7', the set of all x

such that F(y, x.) # f{(y; x,) is either empty or is a segment whose length does
not exceed 8. Since 0 < ¢ < 1, it follows that

(7 |Fues) —fea | S 8UF1 (ye 270,
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where {f[f has the same meaning as in the proof of Theorem 10.2, and £, |,
Ji—, are as in Definition 10.1.
As §— 0, (7) exhibits f,_, as a uniform limit of a sequence of continuous
functions. Thus f,_, € ${I*~"), and the further integrations present no problem.
This proves the existence of the integral (4). Moreover, (7) shows that

®) [ Fwax— [ s axl s

Note that (8) is true, regardless of the order in which the & single intzgrations
are carried out. Since Fe %(J*), [F is unaffected by any change in this order.
Hence (8) shows that the same is true of [£

This completes the proof.

Our next goal is the change of variables formula stated in Theorem 10.9.
To facilitate its proof, we first discuss so-calied primitive mappings, and parti-
tions of unity. Primitive mappings will enable us to get a clearer picture of the
local action of a % -mapping with invertible derivative, and partitions of unity
are a very useful device that makes it possibie to use local information in a
global setting.

PRIMITIVE MAPPINGS

10.5 Definition If G maps an open set £ < R" into R, and if there is an
integer m and_a real function ¢ with domain £.such that

)] G{x) = _,_\—_ x;e; + g(xle, {xe £},

i®m

then we call G primitive. A primitive mapping is thus one that changes at most
one coordinate. Note that (3) can also be written in the form

(10) G{x) = x + [g{x) — x,)e,.

If g is differentiable at some point ae E, so is G. The matrix [a;] of the
operator G'(a) has

(11) (D1g)Ha), ..., (Dngia), ..., (D, g)a)

as its mth row. For j 3 m, we have a;=1 and a;; = 0if i # 7. The Jacobian
of G at a is thus given by

(12) Jg(a) = det[G'(a)] = (D, g)(a),
and we see (by Theorem 9.36) that G'(a) is invertible if and only if (D,, g)(a) # 0.
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10.6 Definition A linear operator B on R" that interchanges some pair of

members of the standard basis and leaves the others fixed will be called a flip.
For example, the flip B on R* that interchanges e, and e, has the form

{13) Blxje, + x;8; + x5e5 + xq8s)=x,8; +x3e, + X385 + X6,

or, equivalently,

(14) Blxiey +x,8, + 3383 +xa8)=x;8, +x.8; + X305+ X;2,.

Hence B can also be thought of as interchanging two of the coordinates, rather
than two basis vectors.

In the proof that follows, we shall use the projections Py, ..., P, in R,
defined by Pyx =0 and

(15) Pox=x1e + " +x,e,

for 1 <m <n Thus P, is the projection whose range and null space are
spanned by {e, ..., ¢, and {e, ., ..., &}, respectively,

10.7 Theorem Suppose ¥ is a € -mapping of an open set E— R" into R", 0 e E,
F(0) = 0, and F'(0) is invertible.
Then there is a neighborhood of 0 in R" in which a representation

(16} F(x}=8---8,_1G,> =G {x)

is valid.
In (16), each G, is a primitive 4 -mapping in some neighborhood of 0;
G(0) = 0, Gi{D) is invertible, and each B, is either a flip or the identity operator.
Briefly, (16) represents F locally as a composition of primitive mappings
and flips.

Proof Put F=F,, Assume 1 <m<n—1, and make the following
induction hypothesis (which evidently holds for m = 1):
V.. is a neighborkood of 0, F,, € €'(V,)) ,F,.(0) = 0, F,(0) is invertible,
and
(17) Pm-—lFm(x}=Pm—1x (XE Vm)'
By (17), we have

(18) Fu(x) =P, ;X *_Z a{xje;,
where %, ..., %, are real ¥’-functions in V,,. Hence
L]
(19) F (D, = } (D, x)(0e.

i=m
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Since F,,(0) is invertible, the left side of (1) is not 0, and therefore there
is a k such that m < k < » and (D, 2)(0) # 0.

Let B,, be the flip that interchanges m and this k {(if £ = m, B, is the
identity) and define

(20} Gu(®) = x + [4(x) — x.le,,  (xe V).

Then G, ¥%'(V,), G, is primitive, and G.(0) is invertible, since
(D, 2.)(0) 0,

The inverse function theorem shows therefore that there is an open
set U,,, with 0 e U, = ¥, such that G, is a 1-1 mapping of U/, onto a
neighborhood V., of 0, in which G_! is continuously differentiable.
Define F,, ., by

o3y Fpus() = B, F o GIUY)  (¥& Vs

Then F,,., € %' (Vair) Fory(0) =0, and F_, (0} is invertible (by
the chain rule). Also, forxe U/,

(22} P Frs 1(Gp(x)) = P, B, F (%)
=P [P, X+ x(x)e, + -]
=P, x+ x(xke,
=P,G,(x)
so that
(233 FaFustW =Py (Y& Voiy)

Our induction hypothesis holds therefore with m + 1 in place of m.

[In (22), we first used (21), then (18) and the definition of B,,, then
the definition of P,,, and finaily (20).]

Since B, B,, =1, (21), with y = G(x), is equivalent to
(24) Fm(x} = 'Bm me"i(Gm(x)) (x € Um}'
If we apply this with m =1, ..., n — 1, we successively obtain
F=F =38F,:G,
=BleF3°Gz°G1 ="
=Bl ”"B'l—lFHG Gu—l et GGi

in some neighborhood of 0. By (17), F, is primitive. This completes the
proof.
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PARTITIONS OF UNITY
10.8 Theorem Suppose K is a compact subset of R, and {¥,} is an open cover
of K. Then there exist functions |i;, ..., ¥ € €(R") such that

(@) 0, gslfori<i<ys;

(B each ¥, has its support in some V., and

{©) ¢, (xX)+ - +¥(x)=1 for every xe K.

Because of (¢), {y+;} is called a partizion of unity, and (b} is sometimes
expressed by saying that {i,} is subordinate to the cover {V,}.

Corollary  If fe 4(R") and the support of f lies in K, then
(23) f=Y s
i=1

Fach . f has its support in some V,.

The point of (25) is that it furnishes a representation of f as a sum of
continuous functions i, f with ““small’" supports.

Proof Assoclate with each x £ K an index «(x) so that x & ¥,,,. Thea
there are open balls B(x) and W/(x), centered at X, with

(26) B(x) = W(X) @ W(X) € V.
Since K is compact, there are points X, ..., X, in X such that

1)} K< Bilx,) v v B(x).
By (26), there are functions ¢y, ..., @, € ¥(R"), such that g(x)=1 on
B(x,), ¢{x) =0 outside W(x;), and 0 < ¢, {x) < | on R". Define y, = ¢,
and

(28) Vivo={l—o) {l —@)p;e;

fori=1,...,5—1.
Properties (a) and (b} are clear. The relation

(29} Yo+ =1 -(l-g) (-0
is trivial for i = 1. If {29 holds for some i < 5, addition of {28) and (29)
vields (29) with { + 1 in place of i. It follows that

(30) Tuto=1-[ll-o] (xeR)

If x e X, then x € B(x;} for some i, hence ¢(x) =1, and the product in
(30) is 0. This proves (c).
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CHANGE OF VARIABLES

We can now describe the effect of a change of variables on a multiple integral.
For simplicity, we confine ourselves here to continuous functions with compact
support, although this is too restrictive for many applications. This is illustrated
by Exercises 9 to 13.

10.9 Theorem Suppose T is a 1-1 €'-mapping of an open set E < R* into R*
such that Jp(x} # 0 for all x € E. [ffis a continuous function on R* whose support
is compact and lies in T{E), then

GO [ Twdr= [ e e

We recall that J; is the Jacobian of T. The assumption J1(x) # 0 implies,
by the inverse function theorem, that T~ '-is continuous on T(E), and this
ensures that the integrand on the right of (31) has compact support in E
(Theorem 4.14).

The appearance of the absoluze vaiue of J3(x) in (31) may call for a com-
ment. Take the case k£ = 1, and suppose T is a 1-1 ¥'-mapping of R! onto R'.
Then Ji{x) = T'(x); and if T is increasing, we have

(32) [ SO &= FTT b,

*R
by Theorems 6.19 and 6.17, for alt continuous f with compact support. But if
T decreases, then 7'(x) <0, and if fis positive in the interior of its support,
the left side of (32) is positive and the right side is negative. A correct equation
is obtained if T" is replaced bv |T’| in (32).

The point is that the integrals we are now considering are integrals of
functions over subsets of RY, and we associate no direction or orientation with
these subsets. We shall adopt a different point of view when we come to inte-
-gration of differential forms over surfaces.

Proof It follows from the remarks just made that (31) is true if T is a
primitive ¥’-mapping (see Definition 10.5), and Theorem 10.2 shows
that (31) is true if T is a linear mapping which merely interchanges two
coordinates.

If the theorem is true for transformations P, @, and if S(x) = P(Q(x)),
then

[r@dz= [ rpan1 i) ay
= [ APQEMITHOE)] 17,00)] ax

= [ 7500 J5(0)| ax,
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singe
Jp(Q(xPJo(x) = det P{Q(x)) det Q'(x)
= det P(Q(x)F'(x) = det §'(x} = J5(x),

by the multiplication theorem for determinants and the chain rule. Thus
the theorem is also true for S.
Each peint a = E has a neighborhood U = £ in which

{33) TX)=T@) + By By Gy 2 Gy 22 2 Gylx 1),

where G; and B; are as in Theorem 10.7. Setting ¥ = T({}, it follows
that {31) holds if the support of flies in V. Thus:

Each point y € T{E) lies in an open set ¥V, < T(E) such thar {31) holds
Jor all continuous functions whose support lies in V.

Now let f be a continuous function with compact support K = T(E).
Since {¥,} covers K, the Corollary to Theorem 10.8 shows that /=Xy, f,
where each v, is continuous, and each ; has its support in some V.
Thus (31) holds for each ¢/, and hence also for their sum f.

DIFFERENTIAL FORMS

We shail now develop some of the machinery that is needed for the n-dimen-
sional version of the fundamental theorem of calculus which is usuaily called
Stokes’ theorem. The original form of Stokes’ theorem arose in applications of
vector analysis to electromagnetism and was stated in terms of the curl of 2
vector field. Green's theorem and the divergence thearem are other special
cases. These topics are briefly discussed at the end of the chapter.

1t 1s a curious feature of Stokes’ theorem that the only thing that is difficult
about it is the elaborate structure of definitions that are needed for its statement.
These definitions concern differential forms, their derivatives, boundaries, and
orientation. Once these concepts are understood, the statement of the thearem
is very brief and succirct, and its proof preseats little dificulty.

Up to now we have considered derivatives of functions of several variables
only for functions defined in open sets. This was done to avoid difficulties that
can occur at boundary points. It will now be convenient, however, to discuss
difierentiable functions on compact sets. We therefore adopt the following
convention:

To say that f is a ¥"-mapping (or a ¥ -mapping) of a compact set
D < R* into R® means that there is a %’-mapping (or a ¥"-mapping) g of
an open set W < R* into R® such that D = W and such that g(x) = f(x} for
all xe D.
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10.10  Definition Suppose £ is an open set in R". A k-surface in Eis a ¢'- Then
mapping ® from a compact set D < R* into E. 1 ' , . ‘

D is called the parameter domain of ®. Points of D will be denoted by . f&) =7J.0_[?:({)?2(f) +y2(t )i dt =y, (1ya(1) ~ »(0)y.(0).
u=(uy,..., ). ’ . .

We shall confine ourselves to the simple situation in which D is either a Note that in t_hls example f, w dCPCf‘dS only on the initial point (0)
k-cell or the k-simplex Q* described in Example 10.4. The reason for this js and on the end point ¥(1) of y. In particular, fy @ =0 for every closed
that we shall have to integrate over D, and we have not yet discussed integration curve y. {As we shall see later, this is true for every 1-form w which is
over more complicated subsets of R*. [t will be seen that this restriction on D exact.) L
(which will be tacitly made from now on) entails no significant loss of generality Integrais of 1-forms are often called line integrals.
in the resulting theory of differential forms. () Fixa>0,b>0, and define

We stress that k-surfaces in £ are defined to be mappings into E, not

. - g P y(ty=(acost bsint) (0 <t < 2m),
subsets of £. This agrees with our eariier definition of curves (Definition 6.26),

In fact, 1-surfaces are precisely the same as continuously differentiable curves. so that y is a closed curve in R?. (Its range is an ellipse.) Then
- ' in
10.11  Definition Suppose E is an open set in R”. A differential form of order f xdy= j ab cos’ t dt = nab,
kz1in E (briefly, a k-form in E) is a function w, symbolically represented by ' °
the sum whereas
(34) ©=3 a0 (%) dei A A dx, fydx = — J.hab sin? fdt = —nab,
(the indices i), ..., i, range independently from 1 to ), which assigns to each ’ o ° o
k-surface @ in £ a number (@) = jo w, according to the rule Note that [, x dy is the area of the region bounded by y. This is a
- 2 . special case of Green's theorem.
(3%) J w = f Ya, - fk(‘b(u))Mdu. {(c) Let D be the 3-cell defined by
® . iy, ooy 1)

0<r<l, 0<8=<m, 0<p<n
where D is the parameter domain of @,

The functions a;, ..., are assumed to be reai 2nd continuous in £. if Defne @(r, 8, @) = (x, y, ), where
¢15 ... ¢, are the components of @, the Jacobian in (35) 1s the one determined

X =rsin 8 cos ¢
by the mapping

y=rsinfsing

; (s oo ) = (B0, .., b, () | z=rcosb.
Note that the right side of (35) is an integral over D, as defined in Defini- Then
tion 10.1 (or Example 10.4) and that (35) is the definition of the symbol [oo. R
A k-form w is said to be of class " or €” if the functions @, ..., in (34) Jolr, B, @) = m =rsind.
are all of class ¥’ or %" T
A O-form in E is defined to be a continuous function in £, Hence
’- 4r
10.12  Examples (36) L dx Ady adz= Jfe=7"

(@) Let y be a l-surface (a curve of class %') in R, with parameter i
domain {0, 11 : : Note that @ maps D onto the closed unit ball of R?, that _the mapping
Write (x, y, z) in place of (x, x,, x3), and put is [-1 in the interior of D (but certain boundary points are identified by

w = xdv+ydx @), and that the integral (36) is equal to the volume of ®(D).
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10.13  Elementary properties Let e, Wy, w; be k-forms in £, We write @, = w,

if and only if @,(®) = w,(®) for every k-surface ® in £. In particular, @ = 0

means that o{(®) = 0 for every k-surface ® in £. If ¢ is a real number, then
ca 1s the k-form defined by ,

(37) fca)=c(w
b v

L4

and w = @, + w, means that

8 Jo=loo

f;:;r every k-surface @ in £. As a special case of (37), note that —w is defined so
that

.

(39 L(—-a}) - - [ do.

L2

Consider 2 k-form
(40) w = a(x) dxi, A A d-’fi,‘

and let @ be the k-form obtained by interchanging some pair of subscripts in
(flO).. If (35) atnd (39) are combined with the fact that 2 determinant changes
sign if two of its rows are interchanged, we see that

(41) W=-~w
As a special case of this, note that the anticommutative relation
(42) dx; A dx; = —dx; A dx,
holds for all / and j. In particular,
(43) dx; ndx, =0 (i=1....n.

More generally, let us return to (40), and assume that §, = i; for some
E;lé)s. If these two subscripts are interchanged. then @ = w, hence w = 0, by
‘ In‘ other words, if @ is given by {40}, then @ = O unless the subscripts
& ..., Iy are ali distinet.

I_f @ 15 as in (34), the summands with repeated subscripts can therefore
be omitted without changing w.

E"t f‘oIlov_vs that O is the only k-form in any open subset of R, if k > n.

Ihe antcommutativity expressed by (42) is the reason for the inordinate

?mount of attention that has to be paid to minus signs when studying differential
orms.

@4) dxy=dxg A e ady
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10.14 Basic k-forms If |, ..., {, are integers such that 1 <i <i; < ---
< i, £ n, and if { is the ordered k-tupie {i,, ..., iy}, then we call I an increasing
k-index, and we use the brief notation

[

These forms dx; are the so-called basic k-forms in R".

1t is not hard to verify that there are precisely n!/k'{n — k)! basic &-forms
in R"; we shall make no use of this, however.

Much more important is the fact that every £-form can be represented in
terms of basic k-forms. To see this, note that every k-tuple {/,, ..., j,} of distinct
integers can be converteéd to an increasing k-index J by 2 finite nuruber of inter-
changes of pairs; each of these amounts to a multiplication by —1, as we saw

in Sec. 10.13; hence
(45) dx;, noo Adxg = (), .. ) dxg

where &(j;, ..., i) is | or —1, depending on the number of interchanges that
are needed. In fact, it is easy to see that

(46) (s o Jid = 8 -0 S

where 5 is as in Definition %.33.
For example,

dx; A dig Adey Adxy = —dx, adxy Adxy A dxs
and
dx, ndxy Adxy=dxy Adxy Ade,.

If every k-tuple in (34) is converted to an increasing k-index, then we
obtain the so-called standard presentation of w:

(47) w=7Y bx)dx,.

The summation in (47) extends over all increasing A-indices {. [Of course, every
increasing 4-index arises from many (from k!, to be precise) k-tuples. Each
b, in (47) may thus be a sum of several of the coeflicients that occur in (34).]

For example,
X, dxg Adx — Xy dxy A dyy + x5 dx, Adxy + dxy Adx;
is a 2-form in R® whose standard presentation is
(1 —x)dx, Adxs +{x; +x3)dxs A dxy.

The following uniqueness theorem is one of the main reasons for the
introduction of the standard presentation of a k-form.



" 258 PRINCIPLES OF MATHEMATICAL ANALYSIS

10.15 Theorem Suppose
(48) =) bx)dx,
I

is the standard presentation of a k-form w in an open set Ec R". [f w=0in E,
then by(x) = O for every increasing k-index I and for every x € E.

Note that the analogous statement would be false for sums such as (34),
since, for example,

dxy Adxy +dxy A dx; =0.

Proof Assume, to reach a contradiction, that 5,{¥) > 0 for some ve E
and for some increasing k-index J ={j. ..., /i}. Since b, is continuous,
there exists A > 0 such that b,(x) >0 for ali x € B* whose coordinates
satisfy |x, —v,| <A Let D be the k-cell in R* such that we D if and
onlyif |u,| <hforr=1,..., k. Define

(49) Plu) = v + i u g (ue D).

Then @ is a k-surface in E, with parameter domain D, and b,(®(u)) > 0
for everyue D.
We claim that

(50) J;cu = fn b(®(u)) du,

Since the right side of (50} is positive, it follows that w(®) # 0. Hence
(50) gives our contradiction.

To prove {30), apply (35) to the presentation (48). More specifically,
compute the Jacobians that occur in (35). By (49),

. ﬁ(le,...,.\'jk)= i
Oy, ooy ity)

For any other increasing -index I # J, the Jacobian is 0. since it is the
determinant of a matrix with at least one row of zeros.

10.16 Produets of basic k-forms Suppose
(51) IT={, .0, T={j, .., J}

where 1 <, « <i<nand 1 <ji < -+ <, <n The product of the cor-
tesponding basic forms dxp and dx; in B s 4 (p + ¢)-forn in &, denoted by
the symbol dx; A dx,, and defined by

(32) dxp Adxy=dx, A roade Adxg A Adx; .
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If I and J have an element in common, then the discussion in Sec. 10.13
shows that dx; A dx; = 0.

If 7 and J have no element in common, let us write [J, J] for the increasing
(p + q)index which is obtained by arranging the members of / « J in increasing
order. Then dx;; 5 is a basic (p + g)-form. We claim that

(53) dx; A dxy = (— 1Y dxp

where z is the number of differences j, — i, that are negative. (The number of
positive differences is thus pg — «.}
To prove (33), perform the following operations on the numbers

(54) . ih'“’ip;jh‘":jq'

Move i, to the right, step by step, until its right neighbor is larger than i,.
The number of steps is the number of subseripts ¢ such that i, < j,. (Note that
0 steps are a distinct possibility.) Then do the same for /,_,,..., ;. The total
number of steps taken is x. The final arrangement reached is [/, J]. Each step,
when applied to the right side of (52), multiplies dx; » dx; by — . Hence (53)
holds.

Note that the right side of (53} is the standard presentation of dx; a dx,.

Next, let X = (k,, ..., k,) be an increasing r-index in {1, ..., n}. We shall
use (53) to prove that
(55) (dx; A dxg) A dxyg =dxp A (dx; A dxg).

If any two of the sets [, J, K have an element in common, then each side
of (55) is 0, hence they are equal.

So let us assurne that I, J, K are pairwise disjoint. Let [I, J, K] denote
the increasing (p + ¢ + r)>index obtained from their union. Asscciate p with
the ordered pair {/, K) and y with the ordered pair (7, X} in the way that « was
associated with (7, J) in (53). The left side of (53} is then

{—1) d-\’u,.r] Adxg = (1) "‘1)“1 dx{f.}.m
by two applications of (53), and the right side of (53) is
(— VP dx; A dxpy g = (=~ 1P(=1)*7 dxey 1 x1-
Hence (53) is correct.
10.17 Multiplication Suppose @ and A are p- and g-forms, respectiveiy, in
some open set £ < R", with standard presentations

(56) w=Y b(x)dx;, A=Y cx)dx;
: T

J

where I and J range over all increasing p-indices and over all increasing ¢-indices
taken from the set {1, ..., n}.
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Their product, denoted by the symbol w A J, is defined to be
57 @A A=) b(X)e X} dx; A dx,.
o}
In this sum, I and J range independently over their possible values, and dx, A dx,

is as in Sec. 10.16, Thuswm A iis a {p + g)-form in E.

It is quite easy to see (we leave the details as an exercise) that the distribu-
tive laws

(e +w2)/\i=(w1/"]~)+(w2/\i)
and
@AMy + ) =(0Al)+(aly)

hold, with respect to the addition defined in Sec. 10.13. If these distributive
[aws are combined with (55), we obtain the associative law

(38) (wridac=wA(iacg)

for arbitrary forms w, 4, 7 in £.
In this discussion it was tacitly assumed that P =1landg > 1. The product
of a 0-form f with the p-form w given by (56) is simply defined to be the p-form

fo=aof= )I:f (x)by(x} dx,.

It is customary to write fuw, rather than f A w, when fis a O-form.

10.18 Differentiation We shall now define a differentiation operator d which
associates a (k + 1)-form dw to each k-form w of class ¥ in some open set
Ec R

A O-form of class ¢ in E is just a real function fe%'(E), and we define

(59) df =3 (DN dx,.

If o = Lb(x)dx; is the standard preseﬁtation of a k-form , and b, e €'(E)
for each increasing k-index /, then we define

{60) dw =73 (dby) A dx,.

i
10.19 Example Suppose F is open in R", fe€'(£),and v is a continuously
differentiable curve in £, with domain {0, 11. By (55} and {33),

(61) [or=] 5 @0temvo) .
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By the chain rule, the last integrand is {f- y)'(t). Hence

(62) [ df = £ — 760N,

b

and we see that §, dfis the same for all y with the same initial point and the same
end point, as in (@) of Example 10.12,

Comparison with Example 10.12(b) shows therefore that the l-form x dy
is not the derivative of any O-form f. This could also be deduced from part (&)
of the following theorem, since

dx dyy =ax s dy # 0.

10.20 Theorem

(g} If w and & are k- and m-forms, respectively, of class %' in E, then
(63) dier A A)=(do) AL+ (=1 o A di
() Ifwisof class €" in E, then d’w = 0.
Here d%w means, of course, d(de).

Proof Because of (57) and (60), {a) follows if (63) 15 proved for the
special case

(64) wﬁfdxf, ).=gdx;

where f, g e €'(F), dx, is a basic k-form, and dx; is a basic m-form. [If
k or m or both are 0, simply omit dx; or dx; in (64); the proof that follows
is unaffected by this.] Then

wAA=fgdxyadx;.

Let us assume that [ and J have no element in common. [In the other
case each of the three terms in (63) is 0.] Then, using (33),

diw ~ 2y = d(fgdx, A dx;) =(~ 1Y d(fg dx;; ;).
By (59), d(fg) = fdg + g df. Hence (60) gives

dw A D) ={(=1(fdg + gdf) n dxy; p
= (gdf + fdg) A dx; A dx;.

Since dg is a 1-form and dx; is a k-form, we have

dg A dx; = {—1)dx; A dg,



262 PRINCIPLES OF MATHEMATICAL AMALYSIS

by (42). Hence
diw A 2)=(df A dxp) A (gdx)) +(=DYfdxp) A (dg A dx))
= (dw) A i+(— Do A di,

which proves (a).
Note that the associative law (58) was used freely.
Let us prove (b) first for a O-form fe €":

= a( £ (20 5

d(D;f) A dx;
=

np~ia

= 3 (D dx, A dyy.

Since Dy;f = D;,f (Theorem 9.41) and dx; A dx; = —dx; A dx;, we see
that d%f = 0.

If 0 = fdx,, as in (64), then dw = (df) A dx;. By (60), d(dx) = 0.
Hence (63) shows that

d*w = (d*) Adx;=0.
10.21- Change of varizbies Suppose £ is an open set in R", T is a 4’-mapping
of E into an open set ¥ < R™, and w is a k-form in ¥, whose standard presenta-
tion is
(65)  e=Y by
7
(We use y for points of ¥, X for points of E.)
Lett,, ..., t, be the components of T: If
y= (.yix -'-»ym) = T(x)

then y; = 1,(x). Asin (59),

(66) dt= Y (D)0 dx; (1<i<m)

Thus each dt; is a 1-form in E.
The mapping T transforms o into a k-form @y in E, whose definition is

(67) wr =3 BATX)) dt, Ao A dty.
1 .
In each summand of (67), I={/,, .. i} is an increasing k-index.

Cur next theorem shows that addition, multiplication, and differentiation
of forms are defined in such a way that they commute with changes of variables.
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10.22 Theorem With E and T as in Sec. 10.21, lef @ and 4 be k- and m-forms
in V, respectively. Then

(@ (+Ar=or+irifk=m
B (wAl)yr=wra Ars
(¢) dlwy) = (dw); if  is of class € and T is of class €”.

Proof Part () follows immediately from the definitions. Part (&) is
almost as obvious, once we realize that

(68) (dy;, A= ady)r=di At A dr;

i

regardless of whether {iy, . .., 1} 18 increasing or not; (68) holds because
the same number of minus signs are needed on each side of (68) to produce

increasing rearrangements.
We turn to the proof of (). If fis a O-form of class %' in V, then

£ =T, df= (DS i
By the chain rule, it follows that
(©) d(f7) = T (B0
= T 5 U XTCND; 90
= T (0T () d
~ @

A dvy=dy; A0 Ady,. then (dv)r = dt, A - A dty, and Theorem
10.20 shows that
(70 di{ay )r) = 0.

(This is where the assumption T & %" is used.)
Assume now that w = fdy,. Then

wr = f7(x) {dy 1
and the preceding calculations lead to
dwp)y =d(f1) A dyir = (df )y A (dyvir
= ((df) A dyp}r = (d)r.
The first equality holds by (63) and (70), the second by (69), the third by
part (&), and the iast by the definition of dw.

The general case of (c) follows from the special case just proved, if
we appiy (a). This completes the proof.
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Our next objective is Theorem 10.25. This will follow directly from two If ¢y, ..., ¢, arc the components of @, then

fc;;}s]:r important transformation properties of differential forms, which we state 0o = a(®(W) dpy, A+ A dby,.
The theorem will follow if we can show that
10.23 Theorem Suppose T is a €'-mapping af an open set E < R* into an open a de A A dd, =dyduy A A duy,
ser V < R™, §is a €'-mapping of V into an open set W< R?, and w is a k-form !
in W, so that wg is a k-form in V and both (wg)y and wer are k-forms in E, where where
ST is defined by (ST)x) = S(T(x)). Then s B(Xips e s Xiy
= ————""">

(71) (ws)r = Wsr. g, oons thy)

-.Proof If.w.and A are forms in ¥, Theorem 10.22 shows that since (72) implies -

((w A Ds)r = (wy A 4g)r = (ws)r A (Ag)r J' = j 2(®(u))J(u) du
and ® D
(@ A A)st = wsr A dsr. = f a(D(u)J (u) duy A o A diy = J‘Afﬂm-

Thus if (71) holds for w and for 4, it follows that (71) also holds for @ A 2.

. be the & by & matrix with entries
Since every form can be built up from O-forms and I-forms by addition Let [4] be

and multiplication, and since (71) is trivial for 0-forms, it is enough to
prove (71) in the case w =dz,, ¢ =1, ..., p. (We denote the points of

2(p, q)=(quJip)(u} (psq: L., k)

E, V, Wby x,y, z, respectively.) _ . _ Then v 4
Lets, ..., £, be the components of T, let 5, ..., 5, be the compo- gy, = ). 2p, 9) duy
nents of S, and let ry, ..., r, be the components of ST. If w = dz,, then
so that
ws = ds, = ) (D;5,)y) dy;, :
§ 1 ; e I d(bilA...Ad(f_,ik:Za(l,ql)"'l(k,qk)duql AT Aduqk'
so that the chain rule implies In this last sum, g, ..., g range independently over 1, ..., k. The anti-
(ws)r = Y (D UT(x)) dt, commutative relation (42} implies that

dug A A g, = 5(qs .- Q) Uy A A duy,

= Z (D;s T (x)) Z (D; 1, )Mx) dx;,

where s is as in Definition 9.33; applying this definition, we see that
= E (Dyr )(x) dx; = dr, = wgr.
i

di; AN dg;, =det [d]du; A o A duy ;
and since J(u) = det [4], (72) is proved.

10.24  Theorem Suppose w is a k-form in an open set E < R", ® is a k-surface . .
The final result of this section combines the two preceding theorems.

in E, with parameter domain D < R*, and A is the k-surface in R*, with parameler
domain D, defined by A(u) = u(u e D). Then

fo-fon

Praof We need oniy consider the case

10.25 Theorem Suppose T is a €'-mapping of an open set E o R" into an open
set Ve R™ Oisak-surfacein E,and w is a k-form in V.

Then
= wr.
w=a(x)dx; A Adx, .[m J.@ T

Ix*
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Proof Let I be the parameter domain of ® {hence also of Td) and
define A as in Theorem 10.24,
Then

J.row = fn Wrg = J.A (wr)e = fm @r.

The first of these equalities is Theorem 10.24, applied to 79 in place of .
The second follows from Theorem 10.23. The third is Theorem 10.24,
with wy in place of w.

SIMPLEXES AND CHAINS

10.26 Affine simplexes A mapping f that carries a vector space X into a
vector space Y is said to be affine if f — £(0) is linear. In other words, the require-

ment is that
(73) f(x) = f{0) + Ax
for some 4 e L(X, 1.

An aﬁifle mapping of R into R" is thus determined if we know f(0) and
fe,) for 1 <i<k; as usual, {e,, ..., €.} is the standard basis of R*.
We define the standard simplex O to be the set of all u € R* of the form

k
(74; U=y ae
i=t
such that 2, >0fori=1,..., k and Ty, < 1.
Assume now that pg, p, ..., P, are points of R*. The oriented affine
k-simplex
- (75) °'=[P0;P1,---~Pk]

is defined to be the k-surface in R" with parameter domain Q* which is given
by the affine mapping .

k
(76) o(xe + - + xe)=p, + Z 2{P; — Po)-
=1

Note that ¢ is characterized by

(77) o0 =po, ale)=p (forl<i<k),
and that

(72 ou)=p, +Au  (ue O

where A € L(R*, R") and Ade; =p,— p, for 1 <i < k.
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We call o orienred to emphasize that the ordering of the vertices py, ..., pr
is taken into account. If
(7% - az[piospiu "'ipik]’
where {iy, f,, ..., i} is 2 permutation of the ordered set {0, I, ..., k}, we adopt
the notation
(80) &= 8(ig, i, ..., 10,

where s 1s the function defined in Definition 9.33. Thus § = +o, depending on
whether s =1 or s = —1. Strictly speaking, having adopted (75) and (76} as
the definition of o, we should not write & = ¢ unless 7, =0, ..., & =k, even
ifs{ig, ..., ) = |; what we have here is an equivalence reiation, not an equality.
However, for our purposes the notation is justified by Theorem 10.27.

If & = &0 (using the above convention) and if ¢ = 1, we say that ¢ and &
have the same ocrientation; if e = — 1, & and o are said to have oppesite orienta-
tions. Note that we have not defined what we mean by the *‘orientation of a
simplex.”” What we have defined is a relation between pairs of simplexes having
the same set of vertices, the relation being that of “having the same orientation.”

There is, however, one situation where the orientation of a simplex can
be defined in a natural way. This happens when n =k and when the vectors
p;— Py {1 <7< k) are independent. In that case, the linear transformation A
that appears in (78) is invertible, and its determinant {which is the same as the
Jacobian of o) is not 0. Then ¢ is said to be positively (or negatively) oriented if
det A is positive (or negative). In particular, the simplex [0, e,. ..., ¢ in R,
given by the identity mapping, has positive orientation.

So far we have assumed that k > |. An oriented O-simplex is defined to
be a point with a sign attached. We write 6= +p, or e = —py. If ¢ =2p,
(e = +1)and if fis 2 O-form (i.2., a real function), we define

[ 1= ef(po).

e

10.27 Theorem If ¢ is an oriented rectilinear k-simplex in an open set £ < R"
and if ¢ = &6 then

(81) |“w = sf w
for every k-form w in E.

Proof For k=0, (81) follows from the preceding definition. So we
assume k > I and assume that ¢ is given by (73).
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Suppose 1 <j <k, and suppose G is obtained from ¢ by inter-
changing py and p;. Then¢= —1, and

au)=p,+Bu  (ue 0,

where B is the linear mapping of R* into R" defined by Be;=p, - p,,
Be,=p, ~p;if i} If we write de, = X, (1 < i< k), where 4 is given
by (78), the column vectors of B (that is, the vectors Be;) are

X=Xy X0 — X, XX T X, X - X

If we subtract the jth column from each of the others, none of the deter-
minants in (35) are affected, and we obtain columns X X, =X,
Xj+1» -++» X These differ from those of 4 only in the sign of the jth
column. Hence (81} holds for this case.

Suppose pext that 0 < i <<k and that 7 is obtained from o by
interchanging p; and p;,. Then &(u) = p, + Cu, where C has the same
columns as A, except that the ith and Jth columns have been inter-
changed. This again implies that (81) holds, since s = — 1.

The general case follows, since every permutation of {0, 1, ..., &} is
a composition of the special cases we have just dealt with.

10.28 Affine chains An affine k-chain T in an open set £ < R" is a collection
of finitely many oriented affine k-simplexes @y, ..., g, in E. These need not be
distinct; a simplex may thus occur in I' with a certain multiplicity.

If I is as above, and if @ is a &-form in E, we define

We may view a k-surface @ in £ as a function whose domain is the collec-
tion of all k-forms in E and which assigns the number [, w to w. Since real-

valued functions can be added (as in Definition 4.3), this suggests the use of the
notation

(83) Tmo 440

o1, more compactly,

r

i

(84) i

=1

to state the fact that (82) holds for every &-form w in £.

To avoid misunderstanding, we point out explicitly that the notations
introduced by (83) and (80) have to be handied with care. The point is that
every oriented affine k-simplex o in R" is a function in two ways, with different
domains and different ranges, and that therefore two entirely different operations
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of addition are possible. Originally, ¢ was defined as an R"-valued funct@on
with domain (*; accordingly, o, + o, could be interpreted to be ‘the funcnqn
o that assigns the vector o, (u} + o,(u) to every u e 0*; note that o is then again
an oriented affine &-simpiex in R"! This is not what is meant by (33).

For example, if ¢, = — o, as in (80) (that is to say, if o, and ¢, have the
same set of vertices but are oppositely oriented) and if [' =0, + 0,, then
{r =0 for all », and we may express this by writing I =0 or o, + 7, = 0.
This does not mean that ¢,(w) + o,(u) is the nuil vector of R

10.29 Boundaries For k& = 1, the boundary of the oriented affine k-simplex

¢ = [P, Bys -5 Pul
is defined to be the affine (k — 1)-chain

LA

(85) 562 (_[}j{POa--~ij—th-1,---a pk}

=0

For example, if ¢ = [pg, p;, p;], then

ée = [py. p2] — [P0, P2l + [Po. pi] = [Pa. ] + [Py 221 + [D2, Pol,

which coincides with the usual notion of the criented boundary of a triangle.

For 1 <<k, observe that the simplex ¢, = [pg, ..., Bi-1: Pje1 oo Pl
which occurs in (85) has 0°7! as its parameter domain and that it is defined by
(36) ciw)=po+Bu  (uc Q')

where B is the linear mapping from R*~! to R" determined by
Be,=p,—pg f 1l<igj-1,
Be,=p;., — po (if j=i<k-1).
The simplex
3 =[P P2+ Bl
which also occurs in (85), is given by the mapping
go{u) = p, + Bu,

where Be, =p,,, —p forl<i<i—1

10.30 Differentiable simplexes and chains Let 7 be a ¥"“-mapping of an open
set £ = R%into an opensei I < R™; T need not be one-to-one. If ¢isan orieqted
affine k-simplex in £, then the composite mapping © = 1 » ¢ {which we shall
somelimes write in the simpler form 7o} is a k-surface in V, with parameter
domain Q. We call © an oriented k-simplex of class 4"
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A finite collection W of oriented k-simplexes @,, ..., ®, of ciass " in ¥
is called a k-chain of class € in V. Ifwis a k-form in ¥, we define

(8” he=g e

and use the correspending notation W = 20,
IfI' = Zo, is an affine chain and if Oy =Too0,, we also write ¥ = T» T,

or
(88) T(Z ;)= Z To;.

The boundary d¢ of the oriented k-simplex ® = T's ¢ is defined to be the
(X — 1) chain ’

(89) EQ = T(da).

In justification of (89), observe that if T is affine, then ® =T o g is an
oriented affine k-simplex, in which case (89) is not a matter of definition, but is
seen to be a consequence of (85). Thus {89) generalizss this special case.

It is immediate that 6@ is of class @” if this is true of ¢.

Finally, we define the boundary ¢¥ of the k-chain Y = ZD; to be the
(k — 1) chain

(90} =Y i,

10.31 Positively oriented boundaries So far we have associated boundaries to
chains, not to subsets of R". This notion of boundary is exactly the one that is
most suitable for the statement and proof of Stokes' theorem. However, in
appiications, especially in R* or R?, it is customary and convenient to talk
about “‘oriented boundaries” of certajn sets as well. We shall now describe
this briefly.

Let Q" be the standard simpiex in R, let o, be the identity mapping with
domain 0" As we saw in Sec. 10.26, o, may be regarded as a positively oriented
n-simplex in R". Its boundary éoy, is an affine {n ~ I)-chain. This chain is
called the positively oriented boundary of the ser Q"

For example, the positively ariented boundary of 07 is

[el? €2, e.‘i] - [Os €, e;] + {0, e, e;] - [0, e, 02].

Now let T be a I-1 mapping of 0" into R", of class ¢", whose Jacobian is
positive (at feast in the interior of @"). Let £=T(Q". By the inverse function
theorem, £ is the closure of an open subset of R". We define the positively
oriented boundary of the set £ to be the (n = D)-chain

oI = T'(ay),

and we may denote this (1 ~ 1)-chain by JF.
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An obvious question occurs here: If E=T,(Q" = (0", anq if both
T, and T, have positive Jacobians, is it true that éT, = ¢T,? That is to say,
does the equality

f w= w
T 0T

hold for every (n — 1)-form @? The answer is yes, but we shall omit the proof.
(To see an example, compare the end of this section with Exercise 17.)
One can go further. Let

Q=E u---uFE,

where E; = T,(Q"), each T, has the properties that T had above, and the interiors
of the sets E; are pairwise disjoint. Then the (n — 1}-chain

8T, + +++ + 6T, = 60

is cailed the positively oriented boundary of Q. ,
For example, the unit square 17 in R? is the union of ¢,(Q%) and o,(0%),
where

o.(u) =u, ag(u)=¢e +e,~u

Both ¢, and &, have Jacobian [ > 0. Since

o =[0e.e) o=l +e;,e,¢]
we have

¢ay = le;, €;] ~ {0, e,] + [0, ¢, ],

0oy =[e;, e]~[e, +e;,e,]+ [e; + e, e5];
The sum of these two boundaries is

oIt =10,e} + (e, e +e,] +fe, +e,, e+ e, 0],

the positively oriented boundary of 72, Note that [e,, e,] canceled (e, e

If © is a 2-surface in R™, with parameter domain 2, then @ (regarded as
a function on 2-forms) is the same as the 2-chain

Poo, +Peg,,
Thus
00 =d(bo0)+ Do ay)
= ®(G0,) + D@0} = DEI).
In other words, if the parameter domain of @ is the square /2, we need

not refer back to the simplex @, but can obtain 6@ directly from 412,
Other examples may be found in Exercises 17 to 19.
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10.32 Example ForO<w<n 0<r < 2rx, define
Z(u, v) = (sin & cOs v, Sin « sin v, €os ),

Then X is a 2-surface in R?, whose parameter domain is a rectangle D = R,
and whose range is the unit sphere in 8>. [ts boundary is

GL=ZIED) =9 +72+73+
where
7 () = 2w, 0) = (sint, 0, cos u),
720} =Lr ) ={0.0, - 1),
yalt) = E(n — u, 27) = (sinu, 0, —cos u),
7a() = X0, 2 — v) = (0.0, 1),

with [0, =] and [0, 2n] as parameter intervals for v and v, respectively.

Since y, and y, are constant, their derivatives are 0, hence the integral of
any 1-form over y, or y, is 0. [See Example 1.12(a).]

Since y;(u) = y,(m — u), direct application of (35) shows that

fo=-] o

for every 1-form w. Thus §,; w = 0, and we conclude that GE = 0,

{In geographic terminology, éZ starts at the nerth pole N, runs to the
south pole § along a meridian, pauses at 5, returns to .V along the same meridian,
and finally pauses at &¥. The two passages along the meridian are in opposite
directions. The correspondiug two line iniegrals therefore cancel each other.
in Exercise 32 there is also one curve which occurs twice in the boundary, but
without cancellation.}

STOKES®* THEOREM

10.33 Theorem If ‘¥ is a k-chain of class €” in an open set V < R™ and if w
isa (k — V-form of class €' in V, then

(91) [ do=[
i 4 v &Y
The case &£ = m =1 is nothing but the fundamental theorem of caleulus
{with an additional differentiability assumption). The case k = m = 2 is Green’s
theorem, and &k =m =3 gives the so-called “divergence theorem’ of Gauss.
The case k=2, »m =3 is the one originally discovered by Stokes. (Spivak’s
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book describes some of the historical background.) These special cases will be
discussed further at the end of the present chapter.

Proof Itis enmigh to prove that

(92) le dw = J'm w

for every oriented k-simplex @ of class ¥” in ¥. For if (92) is proved and
if ¥ = ¥@,, then (87) and (8%) imply (51).
Fix such a @ and put
(93) c=[0,e,....8}

Thus o is the oriented affine k-simplex with parameter domain O* which
is defined by the identity mapping. Since @ is also defined on Q* (see
Definition 10.30) and ® € %", there is an open set £ < R* which contains
%, and there is a ¥"-mapping T of £ into V' such that ®=T:¢6. By
Theorems 10.25 and {0.22(c), the left side of (92) is equal to

[ do= (o) = [ d(y).

Te Ve b4
Another application of Theorem 10.25 shows, by (89), that the right side
of (92} is

"~

J o= f w = f wr.
(T} Tia} Tig

Since wy is a {k — 1)-form in £, we see that in order to prove (92)
we merefy have to show that

94 d=[ i
( ) fa’ Jaa
Sor the special simplex (93) and for every (k — 1)-form i of class €' in E.

H k=1, the definition of an oriented O-simplex shows that (94)
merely asserts that

©5) [[ 7w du=s01) - 50

for every continuously difflerentiable function / on {0, 1], which is true

by the fundamental thecrem of calculus.
From now on we assume that & > 1, fix an integer r (1 € r < k),
and choose fe ¥°(£). 1t is then enough to preve (94) for the case

(96) A=F(x)dx, A oo ade, o Adx A A dxy

since every {k — 1)-form is a sum of these special ones, for r =1, ..., k.
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By (85), the boundary of the simplex (93) is

k
do=Te,....,e]+ 2 (D,
1

where
7, =[0, e,, ...,e;_l,eiﬂ,...,e,‘]
fori=1,.,., k Put
To=[e..€,....8_,84p,...,8l

Note that 7, is obtained from [ey, ..., e} by r — I successive interchanges
of e, and its left neighbors. Thus

9N g6 = (-1 "1, +V_Zk:(—-l)"ri.

Each 7; has Q0*"' as parameter domain,
If x = t4(u) and ue 0*, then

u; (I<j<r),
o8 xj={1—(u1+~~+uk-l) G=rk
Loty (r<j<k)
fl<i<k ue @' and x = 7,(u), then
’ u; (t<j<i),
(99) x; = [O /=1 _
' Lﬂ—] (i<j<k).
For 0 = i<k, let J; be the Jacobian of the mapping
(100) (”13 LS ] I"k—l) - (xll I 7 S I T P xk)
%nduceld by 7;. When { =0 and when / = r, (98) and (99) show that {100)
is the 1Fientity mapping. Thus Jy =1, J, = I. For other /, the fact that
X; =0 in (99) shows that /; has a row of zeros, hence J, = 0. Thus
(101) j i=0  (i#0,i%n),
by (35) and (96). Conseguently, (97) gives
(102) ' A== A+(=1y] 4
[ A= As ) 4

= (=07 Ure() - Az )] du
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On the other hand,
di= (D OX)dx, andxy Ao Adx,_y Adx g A Adx,
= (-1 DN dxy A A dxy

so that
(103) [ di= (=17 [ (D)) dx,
Jﬂ. Qk

We evaluate (103} by first integrating with respect to x,, over the interval
{0' 1..._ (x]. ot R Xl T X + xtn!

PUut (X, vov, Xomis Xpngs oo s X} = (g, .., o), and see with the aid of
(98) that the integral over @ in (103) is equal to the integral over Q*7!
in (102), Thus (94) holds, and the proof is complete.

CLOSED FORMS AND EXACT FORMS

10.34 Definition Letw bea k-forminan openset E < R". Ifthereisa(k — I)-
form 4 in £ such that w = dA, then w is said to be exact in E.

[fwis of class € and dw = 0, then o is said to be closed.

Theorem 10.20{b) shows that every exact form of class € is closed.

fn ceriain sets £, for example in convex oaes, the converse is trus; this
is the content of Theorem 10.39 (usually known as Poincaré's lemma) and
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms
that are not exact.

10.35 Remarks

(a) Whether a given k-form o is or is not closed can be verified by
simply differentiating the coefficients in the standard presentation of w.
For example, a 1-form

(104) o= fix)dx,,
i=1
with f, € €(E} for some open set £ < R", is closed if and only if the
eguations
(105) (Df)x) = (D f)(x)

hold for all 4, jin {I, ..., n} and for all xe £.
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Note that (105) is a “‘pointwise” condition; it does not involve any
global properties that depend on the shape of E.

On the other hand, to show that w is exact in E, one has to prove
the existence of a form 2, defined in E, such that di = w. This amounts
to solving a system of partiai differential equations, not just locally, but
in all of E. For example, to show that (104) is exact in a set E, one has
to find a function (or O-form) g € ¥'(E) such that

(106) (Dig)(x) = fi{x}

Of course, {(105) is a necessary condition for the solvability of (106).

(xeE 1<i<n).

(b) Let w be an exact k-form in-£. Then thereis a (k — )-form 4 in E
with di = w, and Stokes’ theorem asserts that

(107) Lw:Ldz=L?i

for every k-chain ¥ of class " in E.
1f W, and ¥, are such chains, and if they have the same boundaries,

it follows that
w=1] w.
J“"'l J:yz

In particular, the integral of an exact k-form in E is O over every
k-chain in E whose boundary is Q.

As an imporiant special case of this, note that integrals of exact
1-forms in E are 0 over closed (differentiable) curves in E.

(c) Let w be a closed k-form in E. Then dw =0, and Stokes’ theorem
asserts that

(108) _[Wm - L do = 0

for every (k + 1)-chain ¥ of class 4" in E.
In other words, integrals of clesed k-forms in E are O over k-chains
that are boundaries of (k + 1)-chains in E.

{d) Let¥ be a {k + 1)-chain in £ and let i be a (k — )-form in E, both
of class ¥”. Since d*Z = 0, two applications of Stokes’ theorem show that

(109) fwﬂ. = jwda = Ldli =0,

We conclude that 3¢ =9. In other words, the boundary of a
boundary is 0. -
See Exercise 16 for a more direct proof of this.
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10.36 Example Let E = R* — {0}, the plane with the origin removed. The
1-form

xdy—-ydx
(10) T
is closed in R® — {0}, This is easily verified by differentiation. Fix r >0, and
define

(11D W)= (rcost, rsimt) 0<t<2nm).
Then y is a curve (an “‘oriented 1-simpiex™} in RT —{0}. Since (0} = y(2m),
we have T -
(112) dy =0
Direct computation shows that
(113) * [n=2z%0.

“r

The discussion in Remarks 10.35(b) and (c) shows that we can draw iwo
conclusions from (113):
First, n is not exact in R* — {0}, for otherwise (112) would force the integral

{113} to be 0. . )
Secondly. v is not the boundary of any 2-chain in R ~ {0} (of class ),

for otherwise the fact that 7 is closed would force the integral (113) to be 0.

10.37 Example Let £ = R = {0}, 3-space with the origin removed. Define

xdy adz+ydz ade + zdx ady
(xz +y2 + Zl).’:,’l

(114) {=

where we have written (x. y, z} in place of {x;, x5, X3). Differentiation shows
that 4% = 0. 50 that [ is a closed 2-form in R {0} .

Let T be the 2-chain in R — {0} that was constructed in Example 10.32;
recall that ¥ is a parametrization of the unit sphere in R?. Using the rectangle
D of Example 10.32 as parameter domain, it is easy to compute that

(115) Lg’=£)sinududv=4n#0.

As in the preceding example, we can now conclude that { is noi exact in
RY — {0} (since 8L =0, as was shown in Example 10.32) and that the sp.here z
is not the boundary of any 3-chain in RY = {0} (of class "), although JZ = 0.
The following result will be used in the proof of Theorem 10.39.
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10.38 Theorem Suppose E is a convex open set in R", fe €'(E), p is an integer,
1 <p<h and
(116) (D f)x)=0 (p<j<nxeE).
Then there exists an F € €'(E) such that
(117} (D, F)x) = fi(x), (D;F)(x)=0 (p<j<nxekE)
Proof Write x = (x/, x,. x"), where

X=X h X =Xy, e, X))
(When p =1, X’ is absent; when p=n, x" is abgent.) Let V be the
set of all (X', x,) e R? such that (x', x,,X") e E for some x". Being a
projection of E, V'is a convex open set in R”. Since £ is convex and (116)
holds, f(x} does not depend on x”. Hence there is a function ¢, with
domain ¥, such that
£) = plx, x,)

forallxe E.

If p=1, ¥ is a segment in R' (possibly unbounded). Pick ce ¥
and define

Fo=[ otydt  (xeE)

If p> 1, let U be the set of ail x'& R*™? such that (x, x,} € ¥ for
some x,. Then U/ is a convex open set in R*™¢, and there is a function
e %' (U) such that (X, x(x)) e ¥ for every x' € I/; in other words, the
graph of z lies in ¥ (Exercise 29). Define

Foy=[

a{x’

@(X', 1) dt (xe E).
)
In either case, F satisfies (117).
(Note: Recall the usual convention that [} means — [¢if & < a.)

10.39 Theorem If E <= R"is convex and open, if k> |, if w is a k-form of
class €' in E, and if dw = 0, then there is a (k — 1)-form 4 in E such that w = di.

Briefly, closed forms are exact in convex sets.

Proof Forp=1,..., 2 let Y, denote the set of all k-forms o, of class
%" in E, whose standard presentation
(118) w=Y fAx)dx;
i
does notinvolve dx,.,, ..., dx,. Inother words, I < {1, ..., p}if f{x) +# 0

for some x e E.
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We shall proceed by induction on p.

Assume first that we ¥,. Then o =f(x}dx,. Since do =10,
(D;f)x) =0for1 <j<n xeE By Theorem 10.38 thereis an F € ¥'(E)
such that D F = fand D;F=0for 1 <j<nr Thus

dF = (DyF)(x) dx, = f(x) dx, = .

Now we take 7> 1 and make the following induction hypothesis:
Every closed k-form that belongs to ¥,_, is exact in E.
Choose w € ¥, so that dw = 0. By (118),

(119) ) _;zl(pj £ dx; A dxy = doo =0,

Consider a fixed j, with p <j<n. Each [ that occurs in (118) Hes in
{1,...,p0 It I, I, are two of these k-indices, and if | # I,, then the
{k + 1)-indices (I}, /), (I;,)) are distinct. Thus there is no cancellation,
and we conclude from (119) that every coefficient in (1i8) satisfies

(120} (D; fXx)=0 {(xeE,p<j<n).
We now gather those terms in (118) that contain dx, and rewrite w
in the form
(121) w=o+ Y fiX)dx;, Adx,,
. 7
where 2 ¢ ¥,_,, each f; is an increasing (k — )-indexin{l,...,p — 1},
and = (I, p). By (120), Theorem 10.38 furnishes functions F; e €(E)
such that
{122) Dpr=f[7 DJF[-_—O (p<]£ﬂ)
Put
123 - 8= IZF,(x) dxy,

and define y = w — (—1)*"! dB. Since f is a (k — 1)-form, it foilows that

y=w—3 i (D; F)x) dxyp, A dx;

Inp j=1

p—1
=a—3 Y (D;F)x)dxy adx;,
fo f=1
which is cleacly in Y,_,. Since dw =0 and 4?8 =0, we have dy =0.
Qur induction hypothesis shows therefore that y =4y for some
(k — 1)-form g in E. If A= p +(—1)}*"'B, we conclude that w = d1.
By induction, this completes the proof.
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10.40 Theorem Fix k, 1 <k<n. Let E= R" be an open set in which every
closed k-form is exact. Let Thea 1-1 % "-mapping of £ onto an open ser U = R*
whose inverse S is also of class €". -

Then every closed k-form in U is exact in U,

Note that every convex open set £ satisfies the present hypothesis, by
Theorem 10.39. The relation between E and {7 may be expressed by saying
that they are ¥ -equivalent,

Thus every closed form is exact in any set which is & "-eguivalent 1o a convex
open set,

Proof Let w be a k-form in U, with do = 0. By Theorem 10.22(c),
wr is a k-form in E for which d{ws) =0. Hence wr =di for some
(k— 1)-form i in E. By Theorem 10.23, and another application of
Theorem 10.22(¢),

@ = (wp)s = (d")s = d(fs).

Since Agis a (k — )-form in ¢/, w is exact in U,

10.41 Remark In applications, cells (see Definition 2.17) are often more con-
venient parameter domains than simplexes. If our whole development had
been based on cells rather than simplexes, the computation that occurs in the
proof of Stokes’ theorem would be even simpler. (Itis done that way iu Spivak’s
book.) The reason for preferring simplexes is that the definition of the boundary
of an oriented simplex seems easier and more natural than is the case for a cell.
(See Exercise 19.) Also, the partitioning of sets into simplexes (called “*triangu-
lation™) piays an important role in topology, and there are strong connections
between certain aspects of topology, on the one hand, and differential forms,
on the other. These are hinted at in Sec. 10.35. The book by Singer and Thorpe
contains a good introduction to this topic.
’ Since every cell can be triangulated, we may regard it as a chain. For
dimension 2, this was done in Example 10.32; for dimension 3, see Exercise 18,
Poincaré’s lemma (Theorem 10.39) can be proved in several ways. See,
for example, page 94 in Spivak’s book, or Page 280 in Fleming's. Two simple
proofs for certain special cases are indicated in Exercises 24 and 27.

YECTOR ANALYSIS

We conclude this chapter with a few applications of the preceding material to
theorems concerning vector analysis in R®. These are special cases of theorems
about differential forms, but are usually stated in different terminology. We
are thus faced with the job of translating from one language 1o another.
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10.42 Vector fields LetF = Fie, + Fye, + Fy¢, be a continuous mapping of
an open set £ < R? into R®. Since F associates a vector to each point of E, F
is sometimes called a vector field, especially in physics. With every such F is
associated a 1-form ~

(124) Ap=Fidc+ Fdv+ Fydz
and a 2-form
(125) wp=Fidy adz+ F,dz »ndx+ Fydx A dy.

Here, and in the rest of this chapter, we use the customary notation (x, ¥, 2)
in place of (x, x,, x3). :

It is clear, conversely, that every I-form 4 in £ is J, for some vector field
Fin £, and that every 2-form w is wy for scme F. In R?, the study of 1-forms
and 2-forms is thus coextensive with the study of vector fields.

If w e ¥'(E) is a real function, then its gradient

Vu = (Dyuje, + (Dyu)e; + (Dyudes

is an example of a vector field in E.
Suppose now that F s a vector field in E, of class €. Its curl V x ¥ is the
vector field defined in £ by

VxF=(DyFy—DyF)e +(D;F, — D, Fy)e, + (D,Fy — D, F))ey
and its divergence is the real function V - F defined in E by
V'F501F1+D2F2+D3F3.

These quantities have various physical interpretations. We refer to the
book by O. D. Keliogg for more details.
Here are soms relations between gradients, curls, and divergences.

10.43 Theorem Suppose E is an open set in R*, ue 4°(E), and G is a vector
field in E, of class C”.

(@) fF=Vu, thenVxF=10
) fF=VxG, ihenV-F=0.

Furthermore, if E is ¢ -equivalent to a convex set, then (a} and (b) have
converses, in which we assume that ¥ is a vecior field in E, of class €'

(@) IfVxF=0,then ¥ = Vu for some uc €"(E)
(5Y IFV-F=0,thenF =V x G for some vector field G in E, of class #"

Proof If we compare the definitions of Vu, V x F, and ¥+ F with the
differential forms Ay and wy given by (124) and (123), we obtain the
following four statements:
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F=Vu ifand only if A =du.
VxF=0 if and only if digp =0.

F=VxG if and only if w; =di;.
Y-F=0 if and only if dogy=0.

Now if F = Vu, then Ap = du, hence dlg = d*u = 0 (Theorem 10.20),
which means that V x F = 0. Thus (@) is proved.

As regards (a'), the hypothesis amounts to saying that dig =0 in E.
By Theorem 10.40, iy = du for some O-form . Hence F = Vu.

The proofs of (&) and (&) follow exactly the same pattern,

10.44 Volume elements The k-form
dx, A - A dxy,

is called the volume element in R*. It is often denoted by d¥ {or by 4V, if it
seems desirable to indicate the dimension explicitly), and the notation

(126) .Lf(x) dx, A o+ A dx, = Lde

is used when @ is a positively oriented k-surface in R* and f is a continuous
function on the range of @,

The reason for using this terminology is very simple: If D is a parameter
domain in RY, and if @ is a 1-1 ¥'-mapping of D into R, with positive Jacobian
Jo, then the left side of (126) is

| oy du=| £ dx,
D (D)

by {35) and Theorem 10.9.

In particular, when f= 1, (126) defines the volume of ®. We already saw
a special case of this in (36).
The usual notation for 4V is dd4.

10.45 Green’s theorem Suppose E is an open set in R*, x < €'(E), f € ¢'(E),
and Q is a closed subser of E, with positively oriented boundary 05), as described
in Sec. 10.31. Then

(127) [ arpay=] (Z—i - g) a4.
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Proof Put i=adx + fdy. Then
dl = (D,x)dy A dx + (D, f) dx A dy
= (DB — D) dA,
and {127) is the same as
1=1{ ai,
[ o JQ

which is true by Theorem 10.33.
With a(x, y) = —y and B(x, y) = x, (127) becomes
(128) t (edy-ydo = 4@,

the area of Q. .
With « = 0, 8 = x, a similar formula is obtained. Example 10.12(d) con-

tains a special case of this.
10.46 Area elements in R® Let @ be a 2-surface in R’, of class %', with pa-
rameter domain D c R%. Associate with each point (v, v) ¢ D the vector

_ya) e o)
S Ty )

The Jacobians in (129) correspond to the equation
(130) (x, y, 2) = O(u, v).

If fis a continuous function on ®(D), the area integral of f over & is
defined to be

(129) N(u, v)

(131 J’ fdd = J"D O, 1)) N, v)| du do.
[}
In particular, when f = 1 we obtain the areq of @, namely,
(132) A(®) = L[N(u, v)| du do.

The following discussion will show that (131) and its §pecial case (132)
are reasonable definitions. It will also describe the geometric features of the

vector N. .
Write ® = 0., + 0,8, + @18y, fix a point py= (4q, vo)e D, put

N =N(po). put
(133) a; = (D19, XPo)s Bi=1(D ¢ )(Po) (i=1,23)
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Since [n(u, v)| = 1, we have [N(u, )| =a(b + asinu), and if we integrate this
over D, (131) gives

A(®) = dnah

as the surface area of our torus.

If we think of N = N(u, v) as a directed line segment, pointing from
D(u, v) 10 O, v) + N(x, v), then N points outward, that is to say, awa;r from
W(K). This is so because Jy > 0 when 7 = a.

For example, take u = v = 7/2, ¢t = . This gives the largest value of z on
W(K), and N = a(b + a)e, points “upward” for this choice of (u, ).

19.48 Integrals of 1-forms in R* Let y be a %'~curve in an open set £ < R?,
with parameter interval [0, 1], let F be a vector field in E, as in Sec. 10.42, and
define Ay by (124). The integral of 4, over ¥ can be rewritten in a certain way
which we now describe. :

Forany ue |0, 1],

Y = yi(we, + yi(te; + yi(w)es

is cal_led the rangent vecror to v at u. We define t = t(u) to be the unit vector in
the direction of y'(u). Thus

Y (@) = |y () t(u).

fIf ¥'(u) = 0 for some u, put t(x) = e,; any other choice would do just as well.]
By (35),
al

[2e=3 | Ftpi

¥
1
(142) = [ Fo() - 7w du
9
<1
= JO F(u)) - )| y'(w)| du.
Theorem 6.27 makes it reasonable to call [¥'(w)| du the element of arc

;"engﬂz along y. A customary notation for it is ds, and (142) is rewritten in the
orm

{143 (1. =((F.
) lez_w_ J?(F t) ds.

Sinee t is a unit tangent vector to ¥, F - tis called the rangential component
of F along y.
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The right side of (143) should be regarded as just an abbreviation for the
last integral in (142). The point is that F is defined on the range of y, but t is
defined on {0, 1]; thus F -t has to be properly interpreted. Of course, when y
is one-to-one, then t(x) can be replaced by t(y(x)), and this difficulty disappears.

10.49 Integrals of 2-forms in R® Let ® be a 2-surface in an open set £ < R,
of class €’, with parameter domain D < R*. Let F be a vector field in E, and
define we by (125). As in the preceding section, we shall obtain a different
representation of the integral of wy over .

By (35) and (129),

J.sz f (FldyAdz—i-dezAdx-%—ﬂdxf\dy)
& @

du dv

(x, 1)

R0 0D )
. Jp [* U)

| é(u, 1) u, v) Au
= [ F@(, v))- N(u, v} du dv.
*D

Now let n =niu, v) be the unit vector in the direction of N(u, v). [If
N(u, v) = 0 for some (&, v) € D, take n(u, v) = ¢;.] Then N = |Nin, and there-
fore the last integral becomes

j F(O{u, ©)) - n{er, )| Nw, v}| du do.
D
By (131), we can finally write this in the form

(144) [jos=] F-madd

With regard to the meaning of F * n. the remark made at the end of Sec. 10.48

applies here as well.
We can now state the original form of Stokes’ theorem,

10.50 Stokes’ formula If F is a vector field of class € in an open set E < R3
and if @ is a 2-surface of class € in E, then

(145) [(VxF)-ndd= [;(F-t)ds.

e v

Proof Put H =V x F. Then, as in the proof of Theorem 10.43, we have

(146) Wy = dig.
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Hence

J@(VxF)-ndA=L(H-n}dA=f Wy

- _[@d;h, = J@

Je= [ (F-tyds.
¢ vée
Here we used the definition of H, then (144) with H in place of F,
then (146), then—the main step—Theorem 10.33, and finally (143)

extended in the obvious way from curves to 1-chains.

10.51 The divergence theorem If' F is a vector field of class €' in an open set
E< R, and if Q is a closed subset of E with positively oriented boundary £Q
{(as described in Sec. 10.31) then

(147) [ o par= | ®omas

Proof By (123),
dwg=(V-Fydx ady andz=(V-F)dV.
Hence

L(V-F) deJQdco,-:J.mmF:J“Q(F-n)dA,

by Theorem 10.33, applied to the 2-form wy, and (144).

EXERCISES

1. Let H be a compact convex set in R*, with nonempty interior. Let fe E(H), put
f(x}=0in the complement of H, and define [, f as in Definition 10.3.
Prove that [ f is independent of the order in which the & integrations are
carried out,
Hine: Approximate f by functions that are continuous on R* and whose
supporis are in A, as was done in Example 10.4.
2. Fori=1,2,3,...,let . e 4(R") have support in (2~', 2' -9, such that fpr=1,
Put

f65,9)= 3 [906) ~ gea (D)
Then fhas compact support in R?, fis continuous except at {0, 0}, and
fdyff(x, ydx=0  but J‘dxff(x, yydy=1.

Observe that fis unbounded in every neighborhood of (0, 0).
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. (@) If Fis as in Theorem 10.7, put A = F(0), F,(x) = A~'F{x). Then F;(0) = J.

Show that
: Fl(x) = Gn a Gn—l or"ta Gl(x)

in some neighborhood of 0, for certain primitive mappings G, ..., G.. This
gives another version of Theorem 10.7:

F(X) = F(0)Gao Gyy o - 5 Gu(X).

(b) Prove that the mapping (x, ¥) —(y, x} of R? onto R? is not the composition
of any two primitive mappings, in any neighborhood of the origin. (This shows
thar the flips B, cannot be omitted from the statement of Theorem 10.7.)

. For (x, ¥) € R?, define

Flx, y)=(ercosy— 1, e sin y).
Prove that F = G, = G, where
Gilx,yy=(fcosy—1,)
Galu, v) = (u, {1 + &) tan v)

are primitive in some neighborhood of (0, 0).
Compute the Jacobians of G,, G., F at {0, 0). Define

H.(x, ¥) = (x, " sin y)
and find
Hi{u, v) = (Alu, ), v)

so that F = H, o H; is some neighborhood of (0, 0).

. Formulate and prove an anaiogue of Theorem 10.8, in which X is a compact

subset of an arbitrary metric space. (Replace the functions g, that occur in the
proof of Theotem 10.8 by functions of the type constructed in Exercise 22 of
Chap. 4.)

. Srengthen the conclusion of Theorem 10.8 by showing that the functions 4, can

be made differentiable, and even infinitely differentiable. (Use Exercise 1 of
Chap. 8 in the construction of the auxiliary functions ¢, .)

. (@) Show that the simplex Q* is the smailest convex subset of R* that contains

0, €1,..., 8.
(&) Show that affine mappings take convex sets to convex seis.

. Let H be the parallelogram in R? whose vertices are (1, 1), {3, 2), (4, 5), (2, 4).

Find the affine map T which sends {0, 0) to (1, 1), {1, 0) to (3,2), (0, 1) to (2, 4).
Show that Jr = 5. Use T to convert the integral

o= J.H_;e“’ dx dy

to an integral over I? and thus compute a.
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9.

10,

11.

12.

Define (x, y) = T(r, &) on the rectangle

0<r<a, 0<A<2n
by the equations

x=rcosf, y=rsinf,

Show that T maps this rectangle onto the closed disc D with center at {0, 0) and
radius g, that T is one-to-one in the interior of the rectangle, and that J+{r, 8) = r.
If f € €(D), prove the formula for integration in polar coordinates:

[ roevraxay=["[" e, opr dr .
L “ovo

Hint: Let D, be the interior of D, minus the interval from (0, 0) to (0, a).
As it stands, Theorem 10.9 applies to continuous functions f whase support lies in
D,. To remove this restriction, proceed as in Example 10.4.
Let @~ o in Exercise 9 and prove that

j FGx, ) dedy = j : f :' F(T(r, O)r dr b,
R2

for continuous functions f that decrease sufficiently rapidly asjx| = jy| — .
(Find a more precise formutation.) Apply this to

Flx, y)=exp(—x* — y?}

to derive formula (101) of Chap. 8.
Define (u, v) = T(s, #) on the strip

<5< 0, 0<r<1

by setting « = s — sr, v = s¢. Show that T is a 1-1 mapping of the strip onto the
positive quadrant Q in R?. Show that J1(s, f)=s.
For x >0, y > 0, integrate

uxvle-uvy-]e—n N
over @, use Theorem 10.9 to convert the integral to one over the strip, and derive
formula (96) of Chap. & in this way.

(For this application, Theorem 10.9 has to be extended so as to cover certain
improper integrals. Provide this extension.)
Let I* be the set of all u= (i, ..., 1) € R* with 0 < u, < | for all ; ler O be the
set of all x=(x,,..., x\) € R* with x, =0, Ex, < 1. (J*is the unit cube; O* is
the standard simplex in R*) Define x = T{u) by
LR Y
Xz = (I — Uy iy

xe=(1—u) (1 — ).

13,

14.
15,

16.

17,

18.
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Show that
13 k
- Y oxe=1—=T](1 —u)
=1 i=1

Show that T maps I* onto Q% that T is 1-1 in the interior of I¥, and that its
inverse S is defined in the interior of Q* by u, = x; and

X
b=
1—x;— " —xi-y

fori=2,..., k. Show that
Jr(u)= (1 — @) (= )~ (1 — ),
and
Jx}=[1—x)l —x;—xz) (I —x; — - —xe-)] L
Let ri, ..., r. be nonnegative integers, and prove that

ryleon!

71 vk
Xl xtde=s ———— 1
J.Qn tk+ri++r)!

Hint: Use Exercise 12, Theorems 10.9 and 8.20.

Note that the special case r, = *+* = r, = 0 shows that the volume of Q¢
is 1kl
Prove formula (46).
If w and A are k- and m-forms, respectively, prove that

w AA=({—1}"A A w.

Ifk =2 and ¢ = [po, P1, ..., Pu] is an oriented affine k-simplex, prove that 220 = 0,
directly from the definition of the boundary operator & Deducé from this that
2% = 0 for every chain ¥,

Hint: For orientation, do it first for & == 2, k'= 3. In general, if 1 </, let oy,
be the (k — 2)-simnplex obtatned by deleting p, and p, from o, Show that each a;
occurs twice in 8%2a, with opposite sign.
Put J? = 7, + r;, where

Ty = [0, e, & + €], r:=—{0,e;,e:+¢€L

Explain why it is reasonable 1o call J* the positively oriented unit square in R?,
Show that &J* is the sum of 4 oriented affine 1-simplexes. Find these. What is
é(ry — 14)7

Consider the oriented affine 3-simplex

o, =[0,e,e +e;, e +e + el

in R* Show that o, (regarded as a linear transformation) has determinant 1.
Thus o, is positively oriented.
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19.

20,

21.

Let o4,...,0s be five other oriented 3-simplexes, obtained as follows:
There are five permutations {js, I3, /) of {1, 2, 3), distinct from (1, 2, 3). Associate
with each (iy, i;, 7s) the simplex

S(fh il: 13)[0, €y, €y +eiz, €y + €is e em]

where 5 is the sign that oceurs in the definition of the determinant. (This is how 7,
was obtained from r, in Exercise 17.)

Show that o3, ..., vs are positively oriented.

Put J* =05, 4+ --- + ¢4. Then J* may be called the positively oriented unit
cube in R3. ..

Show that 8J3 is the sum of 12 oriented affine 2-simplexes. (These 12 tri-
angles cover the surface of the unit cube /3.)

Show that X = (., x3, x5) is in the range of ¢, if and only if 0< ¥, < xs
< x = 1.

Show that the ranges of oy, ..., o, have disjoint interiors, and that their
union covers I3, {Compare with Exercise 13; note that 3! = 6.)
Let J* and J3 be as in Exercise 17 and 18. Define

By (u, v) = (0, u, v}, Bi(u, )= (1, u, 0},
Boa(u, ) =(u, 0, 1), Bia(u, v)y=1{u, 1, v),
Boalu, v} =(u,9,0),  Buale, v) = (u, v, 1),

These are affine, and map R? into R2.
Put B..=B.(J?, for r=0,1,i=1,2,3. Each B.: is an affine-oriented
2-chain. (See Sec. 10.30.) Verify that

83 = :-ii {(—D"Bo: ~ B1),

in agreement with Exercisz 18.
State conditions under which the formula

[ faw=[ fo-[ @) nw
"9 90 ‘@
is valid, and show that it generalizes the formula for integration by parts.
Hint: difw)=(df) A w + fde,
As in Example 10.36, consider the 1-form
xdv—ydx

- x2 + yl
in R* — {0}
{a) Carry out the computation that leads to formula (113}, and prove that dy=0.

(b) Let y(t) = (rcos 1, r sin 1), for some r >> 0, and let T be 2 ¥”-curve in 8* — {0},
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with parameter interval [0, 2], with ['{0) = T'(2=), such that the intervals [+(r),
I'{t)] do not contain O for any 1 €[0, 2r]. Prove that

fq:Z‘n'.
r

Hint: For0 <t <2m, 0 <u <1, define
D¢, u) = {1 — 1) I'{t) = uy(r).

Then @ is a 2-surface in R? — {0} whose parameter domaia is the indicated rect-

 angle. Because of cancellations (as in Exampie 10.32),

¢ =T—.
Use Stokes’ theorem to deduce that

fr=i

7

because dn = 0.

{c} Take I'(ry=(acoss, bsint) where a>0,b>>0 are fixed. Use part (&) to
show that

HL ab
,—,—ﬁd)':}n'.
o a*cosit+ brsintt

(d) Show that
Y I
7= a(drc tan x)

in any convex open set in which x =0, and that
d c tan ¥
= — ar -
7 ;)

in any convex open set in which y #0. ‘
Explain why this justifies the notation 7 = d8, in spite of the fact that 7 is

not exact in R* — {0;.
(¢} Show that (§) can be derived from (d).

(#) If T is any closed ¥’-curve in R* — {0}, prove that

i
— = Ind{[").
,mfrn )

(See Exercise 23 of Chap, 8 for the definition of the index of a curve.}
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22. As in Example 10.37, define { in R* — {0} by face @ to which (c) can be applied to show that [o{ = 0. The same thing holds

gzxdy/\dz+ya'z/\dx+zdx/\dy

ri

where r = (x* + y* + 22!, let D be the rectangle given by 0 <<u < #, 0 <p < 27,
and let X be the Z-surface in R, with parameter domain D, given by

when u is fixed. By (a) and Stokes’ theorem,

Lﬁ:jﬁg:t}.

(e} Put A= — (z/r)m, where

. . . xdy—ydx
X = sin & Cos v, y=sinusinwp, Z=Cos u. =,
XT =y

(a) Prove that d{ =0 in R — {0}.

b Let S denote tﬁe restri-cti'on ofé to a parameter domain £ < D. Prove that
[ 0= [ sinududo= (),
g E

where A denotes area, as in Sec. 10..43. Note that this contains (115) as a special
case.

(c) Suppose g, I, k2, ks, are € -functions on [0, 1], ¢ > 0. Let (x,y,2)=D(s, 1)
define a 2-surface ®, with parameter domain 2, by

x=g(O)h(s), y=gMls), z=g(Dhi(s).

Prove that

directly from (35).
Note the shape of the range of ©: For fixed s, ®(s, 1) runs over an interval
on a line through 0. The range of @ thus lies in a “cone” with vertex at the origin.

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose
fe¥"(D), f>0. Let Q be the 2-surface with parameter domain E, defined by

Qlu, vy = f(u, v) I (u, v).
Define S as in (§) and prove that

LC:LZ=A(S).

(Since S is the “radial projection” of © into the unit sphere, this result makes it
reasonable to call [of the “solid angle” subtended by the range of 2 at the origin.)
HAint: Consider the 3-surface ¥ given by.

it u, 0y =1 — ¢t + tf(u, )] = (w, v,

where (u, v) € E,0 <z < 1. For fixed v, the mapping (¢, u) = ¥{1, u, v) is a 2-sur-

23.

as in Exercise 21. Then A is a 1-form in the open set ¥ = R? in which x2 — »* > 0.
Show that £ is exact in ¥ by showing that

{=4dr

(f) Derive () from (¢), without using (c).
Hint: To begin with, assume 0 << u <7 on E. By (e),

L;:L,\ and Lg‘:J‘“A.

Show that the two integrals of A are equal, by using part (4} of Exercise 21, and by
noting that z/r is the same at Z(u, v} as at Qlu, ).

{g) Is { exact in the complement of'every line through the origin?
Fix n. Define re=(xi+ - =xP¥* for 1 <k <n, let E, be the set of all x & R"
at which r; =0, and let w; be the (K — 1)-form defined in E. by

K
we =)0y (=1 xde A Adriog Adxie A A dx,
i=1

Note that w; = %, w; = £, in the terminology of' Exercises 21 and 22. Note
also that
EcEyc-cF =R~ {0},
{a} Prove that dw, =0 in L.
(6) For k=12, ..., n, prove that w, is exact in E,_,, by showing that
Wy = d(ﬁ.wk_l) = (dﬂ) Mo,

where £i(x)=(—1)*gu{x,/r} and
g =[ Q—e-mrds (1<,
-1

Hinr: f, satisfies the differential equations

x-(VA¥x =0
and

— DM,
(Do = e T
(rk}
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24.

25.

26.

27.

(¢) Is w, exact in E,?
(d) Note that (b) is a generalization of part (¢} of Exercise 22. Try to extend some
of the other assertions of Exercises 21 and 22 to wy, for arbizrary n.

Let w =%a{x) dx; be a 1-form of class %" in 2 convex open set £< R". Assume
dw =0 and prove that w is exact in E, by completing the following outline:
Fix p € £. Define

f(X)=f o  (xsE).

p.x]

_z_i.pply Stokes’ theorem to affine-oriented 2-simplexes [p, x, y}in E. Deduce that
L3 al
O =)= T 0= x) | adl—0x + ) i
i= [}

forx € E, y € £, Hence {D: f}(x) = aifx).
Assume that o is a 1-form in an open set £ = R such that
[ w=0
v
for every closed curve y in £, of class 4. Prove that w s exact in E, by imitating
part of the argument sketched in Exercise 24.

Assume « is a I-form in R* — {0}, of class € and dw =0. Prove that w is exact in
R3 — {0},

Hint: Every closed continuously differentiable curve in R® — {0} is the
boundary of a 2-surface in R? — {0}, Apply Stokes’ theorem and Exercise 25.

Let E'be an open 3-cell in K3, with edges parallel to the coordinate axes. Suppose
(@, b,c)eE, fie4(E)fori=1,2, 3,
w=frdy Adz = fadz Ade+ fode A dy,

and assume that dw = 0 in £. Define

A=g dx+g,dy

where
m@xﬂ=fﬂ@%ﬂ¢—fﬁmadm

a7, == [ filx, 3,9 ds,
for ‘('x. y,2)€ E, Prove thatdd = win E.
Evaluate these integrals when w = { and thus find the form A that occurs in
part (e} of Exercise 22,

28.

29,

30,

31.
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Fix b > a > 0, define
Ofr, &) = (rcos 9, rsin &

fora<r<b0 g@ < 2w. (The range of @ is an annulus in R%) Put w=x3dy,
and compute both

[ do

b

and f @
ao

to verify that they are equal,

Prove the existence of a function « with the properties needed in the proof of
Theorern 10.38, and prove that the resuliing function F is of class €’. (Both
assertions become trivial if E is an open <ell or an open ball, since = can then be
taken to be a constant. Refer to Theorem 9.42.)

If N is the vector given by {135), prove that

41 ,81 0!2,83 - ‘13,32
det xy ,8; 13,81—(1“83 =|NI2
X3 ﬁs 5‘1.32 - 5‘-2,81
Also, verify Eq. (137),
Let £< R® be open, suppose g €€"(E), h € €"(E), and consider the vector field
F=gVh
(@) Prove that
V-F=gVhL{Yg) (Vi)
where V3h =V - (Vh) = T#*hjcx}t is the so-called “Laplacian” of A.
(h) [f £2 is a closed subset of E with positively oriented boundary 0 (as in
Theorem 10.51), prove that

. - th
| lo¥%h~ gy (Vhldv = | g5, da
o) ten

where (as is customary) we have written &4/én in place of (V&) - n. (Thus #h/én

is the directional derivative of # in the direction of the outward normai to €8, the

so-called normal derivative of i) Interchange g and A, subtract the resuiting
formula from the first one, to obtain
ch de

[(vh—nvgar=] (ga - k,—g) dA.

Ja Yan cn

These two formulas are usually called Green's identities.
(c) Assume that & is harmonic in E; this means that V24 = 0. Take g =1 and con-
ciude that

J' th g4 =,

m CN
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32,

Take g = A, and conclude that A =0 in O if & = 0 on &0,
(d) Show that Green's identities are also valid in R*.

Fix3,0 <8< 1. Let Dbethesetof all (f, 7) e R*such that 0 <8 << w, —8 < ¢ < 8.
Let @ be the 2-surface in R?, with parameter domain D, given by

x={1 —tsin 6) cos 28
y={1—tsin & sin 20
ze=tcos

where (x, y, ) = ©{(f, t). Note that ®(r, r) = ®(0, —¢), and that ¢ is one-to-one
on the rest of D,

The range M = ®(D} of ® is known as a Mdbius band. It is the simpiest
example of a nonorientable surface,

Prove the various assertions made in the following description: Put
p: = (0, —8), p. = (m, —3), ps = (=, 8), pa=(0,3), ps=p1. Put v, = [p:, Piil,
i=1,...,4and put ', =P o y;. Then

o=, +T;+-T,+T,.
Puta=(1,0, -8),b=(1,0,8). Then
D(p,) = O(ps) = a,

and @ can be described as foliows.

T, spirals up from a to b; its projection into the (x, y)~plane has winding
number -~ around the origin. (See Exercise 23, Chap. 8.)

I's=1h,al

T'; spirals up from a to b; its projection into the (x, y) plane has winding
number —1 around the origin.

Te= [b, a].

Thus ¢@ =TI, T, 2T,.

If we go from a to b along T', and continue along the “edge™ of M until we
return to a, the curve traced out is

rirl“rsy

O(p.} = D(p.} = b,

which may also be represenied on the parameter interval {0, 2] by the equations

x=(1 -~ 3sin 6) cos 26
y= (1 = 3&sin &) sin 29
z=—2dcosd.

It should be emphasized that I e®: Let 5 be the 1-form discussed in
Exercises 21 and 22. Since ¢ = 0, Stokes’ theorem shows that

»

J 7=0.

Ll
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But although T is the “geometric” boundary of M, we have

J‘rr,' = 4.

In order to avoid this possibie source of confusion, Stokes’ formula (Theorem
10.50) is frequently stated only for orientable surfaces ®.
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THE LEBESGUE THEORY

It is the purpose of this chapter to present the fundamental concepts of the
Lebesgue theory of measure and integration and to prove some of the crucial
theorems in a rather general setting, without obscuring the main lines of the
development by a mass of comparatively trivial detail. Therefore proofs are
only sketched in some cases, and some of the easier propositions are stated
without proof. However, the reader who has become familiar with the tech-
niques used in the preceding chapters will certainly find no difficulty in supply-
ing the missing steps.

The theory of the Lebesgue integral can be developed in several distinct
ways. Only one of these methods will be discussed here. For alternative
procedures we refer to the more specialized treatises on integration listed in
the Bibliography.

SET FUNCTIONS

If 4 and B are any two sets, we write 4 — B for the set of all elements x such
that x € 4, x ¢ B. The notation 4 — 8 does not imply that B = 4. We denote
the empty set by 0, and say that 4 and B are disjoint if A ~ B = 0.
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11.1 Definition A family # of sets is called a ring if d = # and Be & implies
¢} AuBeR, A—BeA

SinceAnB=A~(A—B),wealsohave AnBeRifFisa ring.
A ring # is called a o-ring if

A

(-

(2) ZER

n=1

whenever A, e #(n=1,2,3,...). Since
Nde=ai= G- 4,
we also have
(31‘4,, e R
if Z is a ¢-ring.

11.2 Definition We say that ¢ is a set function defined on # if ¢ assigns to
every A € # a number ¢(4) of the extended real number system. ¢ is additive
if A n 8 =0 implies

3 PlA © B) = $(4) + ¢(B).
and ¢ is countably additive if 4; ~ A; =0 (i # j) implies

@ 6 (0 a) =5 pa)

We shail always assume that the range of ¢ does not contain both + oo
and —ao; for if it did, the right side of (3) could become meaningless. Also,
we exclude set functions whose only value is + = or —cc.

[t is interesting to note that the left side of {4) is independent of the order
in which the 4,’s are arranged. Hence the rearrangement theorem shows that
the right side of (4) converges absolutely if it converges at all; if it does not
converge, the partial sums tend to + ¢, or to — .

I ¢ is additive, the following properties are easily verified :

(3} ${0) = 0.
(6) Pl wd) =¢ld) + - + ¢{4,)
if 4; nA; =0 whenever { # /.
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(7 Py u Az} + (4 N Az) = ¢(4)) + $l(4,).
If ¢(4) = 0 for all 4, and 4, = A4,, then
(3) P(4;) < p(4y).

Because of (8), nonnegative additive set functions are often called
monotonic.

® (4 — B) = ¢(4) — ¢(B)
if Bc A4, and |[(¢B)| < + o0.

11.3 Theorem Suppose ¢ is countably additive on a ring #. Suppose A, € R
n=1,2,3,..),4,cA,cdyc-,Ae R, and

Then, as nt - @,
$(4,) —~ $(4).
Proof Put B, = A4,, and
B,=dA,—A,_, (n=2,3,..).
Then B;n B, =0fori#j, A, =B, w--UB, and 4 =B, Hence

#dy) = 3 $(B)
and

#(4) = 3 9180,

CONSTRUCTION OF THE LEBESGUE MEASURE

11.4 Definition Let R” denote p-dimensional euclidean space. By an interval
in R” we mean the set of points x = (x,, ..., x,) such that

(IO) G;SXESb.- (f=!,...,P),

or the set of peints which is characterized by (10) with any or all of the <
signs replaced by <. The possibility that ¢; = b; for any value of { is not ruled
out; in particular, the empty set is inciuded among the intervals.
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If A is the union of a finite number of intervals, 4 is said to be an elemen-
tary set. o
If 7is an interval, we define

D) = [1 - a0,

no matter whether equality is included or excluded in any of the inequalities (10).
If 4 =1 v v, and if these intervals are pairwise disjoint, we set

{11 m{d) = m{I,) + - + m{l)}.
We let & denote the family of all elementary subsets of RP.

At this poing, the following properties should be verified:

(12) & 1is a ring, but not a g-ring.

{(13) If A€ &, then A is the union of a finite number of disjeint intervals.

(1) If A € & m(A) is well defined by (11); that is, if two different decompeo-
sitions of A into disjoint intervals are used, each gives rise i0 the same
value of m(A).

(15) m is additive on &.

Note that if p =1, 2, 3, then m is length, area, and volume, respectively.

11.5 Definition A nonnegative additive set function ¢ defined on & is said to
be regular if the following is true: To every 4 € £ and to every e > O there
exist sets F e &, G e & such that Fis closed, G is open, F = 4 < G, and

(16) $(G) — & < B(A) < $(F) +e.

11.6 Examples

(a) The set function m is regular,
If A4 is an interval, it is trivial that the requirements of Definition

11.5 are satisfied. The general case follows from ([3).
(b) Take R°=R', and let o be a monotonically increasing func-
tion, defined for all reai x. Put

u(la, b)) = 2(b—} — ala—),

.“({01 b]) = 1(b+) - I(a_)’

plla, b)) = 2(b+) — 2a+),

ul(a, b)) = 2(b—) — afa+).
Here [a. &) is the set a < x < b, etc. Because of the possible discon-
tinuities of x, these cases have to be distinguished. If z is defined for
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el;r(nentary sets as in (i1}, p is regular on &. The proof is just {ike that
- of (a).

Our next objective is to show that every regular set function on & can be
extended to a countably additive set function on a a-ring which contains &.

11.7 _Deﬁnition Let p be additive, regular, nonnegative, and finite on &.
Consider countable coverings of any set £< R” by open elementary sets A_:
.

Ec|}4,.,
n=1
Define
=
(17) HYE)=inf ¥ w(A,),
n=1

the inf being taken over all countable coverings of £ by open efementary sets,
H*(E) is called the outer measure of E, carresponding to .
It is clear that u*(E) = 0 for alt F and that

(18) BHE) < p*(Es)
if £ < E,.

11.8 Theorem
(@) Forevery Aeé&, p¥(4) = niA).
(6) IfE= | E,, then

n=

{i9) BHEY < Y u(E,).
i
Note t}}at (a) asserts that u* is an extension of p from & to the family of
all subsets of R?. The property (19) is called subadditivity,
Proof Choose A=& and ¢ > 0.

The regularity of u shows that 4 is contained In an open elementary
Sef ‘G such that u(G) < u(4) +¢. Since B*4) < w(G) and since & was
aroltrary, we have

(20) #¥(A) < p(A).
The definition of p* shows that there is a sequence {A4,) of open

slama ote w : i
sementary sets whose union centains 4, such that

Sl H(d,) < u*(A) + e
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The regularity of x shows that A contains a closed elementary set F such
that p(F) = u(A) — ¢; and since Fis compact, we have

Focd v --uAdy
for some N. Hence
N
wAY < u(F)+espldy v udy)+esy pld) +e < p*(A) + 2.
1
In conjunction with {20}, this proves (a).
Next, suppose £ = {JE,, and assume that u*(E,) < + = for all #.

Given £ >0, there are coverings {4, k=1,2,3,..., of E, by open
elementary sets such that

@ ' ju(mk)sa*(ﬂ)+z-"e.
Then
MLOES I WRER WA

znd (19) follows. In the excluded case, i.e., if u*(E) = +cc for some n,
(19} is of course trivial.

11.9  Definition For any 4 = R?, B = R?, we define

(22) S{(A, By=(A— Byu (B-4),
(23) : d(4, B) = u*(S(4, BY).
We write 4, = A if
limd(4, 4,) =0.
P

If there is a sequence {4,} of elementary sets such that A, — 4, we say

that A is finitely y-measurable and write 4 e ().
If A is the union of a countable collection of finitely y-measurable sets,

we say that A is y-measurable and write 4 € M{y).
S(A4, B) is the so-called “*symmetric difference™ of 4 and B. We shall see

that d(A, B) is essentially a distance function.
The following theorem will enable us to obtain the desired extension of p.

11.10  Theorem iy} is a a-ring. and u* is countably additive on IM{p).

Before we turn to the proof of this theorem, we develop some of the
properties of 5(A4. B) and 4(A4, B). We have
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24 (4. B) = 5(B, A), 5(4, A) = 0.

(23) S(4, B) « S(4, C) v S(C, B).
S(4, U d,, B uB,)

(26) Sidy n A4;, B, n By)! < S(4,, B)yu S(4,, B,).
S(4, ~ 4,, B, - Bz)J

(24) is clear, and (25) follows from
(Ad=B)e{d~-C)u(C- B,

The first formula of (26) is obtained from

(B~A)c(C-A)u(B-0).
(dy v dy) — (By U By < (4, — B)) U (d; — By).

Next, writing £° for the complement of E, we have

S(dy n A4y, By 1 By) = S(AS U A5, Bf v BS)

< S(AT, BY) w S(45, BS) = S(4,, B) w S(4,, B,
and the last formula of (26) is obtained if we note that
Ay~ A4; =4, n 45.
By (23), (19), and (18), these properiies of 5(4, B) imply

(27 d(4, By = d(B, 4), d(A, A}y =0,
(28) d(4, B) < d(4, C) + d(C. B),
a4, v Ay, By v By)
29} _ d(A, 0 Ay, By A By)) <d(A4,, B) + d(4,, B,).

d(d, ~ A;, B, ~ By)

The relations (27) and (28) show that d(A, B) satisfies the requirements
of Definition 2.15, except that d{4, By = 0 does not imply 4 = B. For instance,

ifpu=m Ais countable, and B is empty, we have
d(A4, BY = m*(4) = 0;
to see this, cover the nth point of 4 by an interval J, such that
m(l) < 27"z
But if we define two sets 4 and B to be equivalent, provided

d(d, B) =0,

we divide the subsets of R? into equivalence classes, and d(4, B) makes the set
of these equivalence classes into a metric space. My(p) is then obtained as the
closure of &. This interpretation is not essential for the proof, but it explains

the underlying idea.

(30)
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We need one more property of d(4, B), namely,
fu¥d) = uX(B)] < d(4, B),

if at least ome of p*(4), u*(B) is finite. For suppose 0 < p*(B) < p*(4).
Then (28) shows that :

d(4,0y<d(4, B)+ d(B, 0,

that is,

u*(4) < d(A4, B) + 1*(B).

Since u*(B) is finite, it follows that

(31)
(32)
(33)
(34)

(3%)

(36)

pH(d) — p*(B) < d(4, B).

Prool of Theorem 11.10 Suppose 4 & M(u), B e Mp(u). Choose {4},
{B,} such that 4, ¢ &. B, e &, A, -4, B,—~ B. Then (29) and (30) show
that

A, B - 40 B,
A, B,—>4n B,
Ay~ B, - A- B,
uHd,) — uMd),
and u*(4) < + oc since di4,, 4) 0. By (31) and (33), Me{) is a ring.
By (7),
ud,) + 1(B) = u(4, v B) + u(4, n B,
Letting # — oo, we cbtain, by (34) and Thecrem 11.8{a).
#HA) + u*(B) = u*(4 v B) + u*(4 » B).
If A~ B =0, then u*(4 n B) =0.

It follows that u* is additive on M, (w).

Now let 4 e Diu). Then 4 can be represented as the union of a
couniabie collection of disjoint sets of My(x). For if 4 = U A, with
A € M(u), write 4, = 4], and

A= (AU U A) = (AL u U ALy
Then

(n=2,34,..)

-8

A=1{]4,

1

[]

n

is the required representation. By (19)

u* Ay < _f we(4,).
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(37

(38)

On the other hand, 4 o 4, w--- U 4,; and by the additivity of
p* on Me(u) we obtain

EHA) Z p* Ay v U ) = (A o+ a4,
Equations (36) and (37) imply

JH(A) = iiu*un).

Suppose u*(4) is finite. Put B, = 4, U -+ U 4,. Then (38) shows
that

did, By = [ A)= 3 pd)-0

I=HT

as n—co. Hence B, — A4; and since B, M (y), it is easily seen that
A e M)
We have thus shown that 4 € Me(u) if 4 € PW(u) and u*(4) < + .
It is now clear that p* is countably additive on M (). For if

A=1]4,,

where {4,} is a sequence of disjoint sets of M(u), we have shown that (38)
holds if p*(4,) < + oo for every n, and in the other case (38) is trivial.
Finally, we have to show that M(u) is a o-ring. If 4, e Diu). n =1,

2,3, ..., itis clear that [} 4, € M(p) (Theorem 2.12). Suppose A € M(y),

B e M), and

A=

n

s

4,, B=0)B,
n=1

L

where A,, B, € Mp{y). Then the identity
o0
AnﬁB= U (Ant,)
i=1

shows that 4, n B € M{y); and since

u*(Ad, N B) < u*(4,) < + oo,
A, nBeMp(z). Hence 4,— BeW(u), and 4 — BeM(y) since
A-B=U=, (4, - B).

We now replace u*(4) by p(4) i 4 = M{p). Thus g, originaily only de-

fined on &, is extended to a countably additive set function on the o-ring
M(y). This extended set function is called a measure. The special case y =m
is called the Lebesgue measure on RP.
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11.11 Remarks

40)

{a) If A is open, then 4 € Pt(w). For everv open set in R? is the union
of a countable collection of open intervals. To see this, it is sufficient to
comstruct a countable base whose members are open intervals.

By taking complements, it follows that every closed set is in M{u).
(&) If A e M(u) and ¢ > 0, there exist sets F and G such that

FcdcgG,

F is closed, G is open, and

uG — Ay <¢, wd—F)<e

The first inequality hoids since ¢* was defined by means of coverings
by open elementary sets. The second inequality then follows by taking
complements.
(¢) We say that E is a Borel set if E can be obtained by a countable
number of operations, starting from open sets, each operation consisting
in taking unions, intersections, or compiements. The collection 4 of all
Borel sets in R¥ is a o-ring; in fact, it is the smallest ¢-ring which contains
all open sets. By Remark (a), £ e M{u) if £ Z.
() If 4 eMi(u), there exist Borel sets F and G such that Fe 4 < G,

and
G~ Ay =p(d - F)=0.

This follows from (b) if we take ¢ = 1/n and let 5 — 0.

Since A = Fu (4 — F), we see that every 4 € WM{y) is the union of a
Borel set and a set of measure zero.

The Borel sets are p-measurabie for every u. But the sets of measure
zero [that is, the sets E for which u*(£) = 0] may be different for different
u's.

(e) For every u, the sets of measure zero form a o-ring.

(/) In case of the Lebesgue measure, every countable set has measure
zero. But there are uncouatable (in fact, perfect) sets of measure zero.
The Cantor set may be taken as an exampie: Using the notasion of Sec.
2.44, it is easily seen that

m{E) =) (n=1273..%

and since P = [} £,, P < E, for every a. so that m(P) =0.
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MEASURE SPACES

11.12 Definition Suppose X is a set, not mecessarily a subset of a euclidean
space, or indeed of any metric space. X is said to be a measure space if there
exists a o-ring M of subsets of X (which are called measurable sets) and a non-
negative countably additive set function 4 (which is called a measure), defined
on Wt

If, in addition, X € M, then X is said to be a measurable space.

For instance, we can take X = RP, M the collection of all Lebesgue-
measurable subsets of R?, and u Lebesgue measure.

Or, let X be the set of all positive integers, M the collection of all subsets
of X, and u(E) the number of elements of £.

Another example is provided by probability theory, where events may be
considered as sets, and the probabiiity of the occurrence of events is an additive
(ot countably additive) set function.

In the following sections we shall always deal with measurable spaces,
It should be emphasized that the integration theory which we shall soon discuss
would not become simpler in any respect if we sacrificed the generality we have
now attained and restricted ourselves to Lebesgue measure, say, on an interval
of the real line. In fact, the essential features of the theory are brought out
with much greater clarity in the more general situation, where it is seen that
everything depends only on the countable additivity of 4 on a o-ting.

It will be convenient to introduce the notation

(41) {x|P}

for the set of all elements x which have the property P.

MEASURABLE FUNCTIONS

11.13  Definition Let f be a function defined on the measurable space "X, with
values in the extended real number system. The function fis said to be megsur-
able if the set

(42) x| f(x) > a

is measurable for every real g.

11.14 Example If X =R® and I = M (1} as defined in Definition 11.9,
every continuous f is measurable, since then (42} is an open set.
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11.15 Theorem Each of the following four conditions implies the other three:

(43 {x{f{x) > a} is measurable for every real a.
(44) ' {x1f(x) = a} is measurable for every reaf a.
(45) {x|f(x) < a} is measurable for every real a.
(46) {x|/(x) < a} is measurable for every real a.

Proof The relations

= 1
0 >a= () {xff(x) >a- ]

e

{xlf(x)<a}=X-{x]f(x)=a,
=l < ah = () {XFf(x) <a +}I}

Xl >a=X-{x|f(x) < a}
show successively that (43) implies (44), (44) implies (45), (45) implies
(46), and (46) implies (43).

Hence any of these conditions may be used instead of (42) to define
measurability. ’

11.16 Theorem I_f" [ is measurable, then |f! is measurable.
Proof
FI <ap ={x[fx) <ag} n =[x > - a)

11.17 Theorem Let {f,} be a sequence of measurable functions. For x € X, put
gy =supflx) (n=1,23..),
A(x) = lim sup f,{x).

Then g and h are measurable.

The same is of course true of the inf and lim inf.

Proof

(xlot) >} = ) x140 > a),
h(x) = inf g,,(x),

where g,.(x) = sup £.{x) (n = m).
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Corollaries

(@) Iffandgare measurable, then max (f, g) and min (f, 9) are measurable.

Ir
47 fr=max(£,0), f~ = —nmin (/. 0,

it follows, in particular, that f* and [~ are measurable.

(b) Thelimitofa convergent sequence of measurable functions is measurable.

1118 Theorem Let f and g be measurable real-vatued Junctions defined on X,
let F be real and continuous on R, and put :

Mx) = F(f(x), g(x))  (xeX).
Then h is measurgble.
In particular, f + ¢ and fg are measurable.

Proof Let
G, = {(u, »)| F(u, v) > a).

Then G, is an open subset of R?, and we can write

Gn = U In’

n=1
where {1} is a sequence of open intervals:
L={uv)a,<u<b, c,<v<d)
Since
Irla, <flx} <b} = (xIf(0) > a,) ~ {x|f(x) < b}
is measurable, it follows that the set
U 9(0) € L} = {xla, < f(x) < b} m {xje, < glx) < d,}
is measurable. Hence the same is true of
xih(x) > a} = {x}(f(x), g(x)) € G}
= U U, gty ey

Summing up, we may say that all ordinary operations of analysis, includ-
ing limit operations, when applied to measurable functions, lead to measurable
functions;_in other words, all functions that are ordinarily met with are measur-
able. ' o

That this is, however, only a rough statement is shown by the following
example (based on Lebesgue measure, on the real line): If A(x) = f(g(x)), where
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S is measurable and g is continuous, then % is not necessarily measurable,
(For the'details, we refer to McShane, page 241}

The reader may have noticed that measure has not been mentioned in
our discussion of measurable functions. In fact, the class of measurable func-
tions on X depends only on the ¢-ring M (using the notation of Definition 11.12).
For instance, we may speak of Borel-measurable Junctions on R®, that is, of
function f for which

xf(x) > a}

is always a Borel set, without reference to any particular measure.

SIMPLE FUNCTIONS

11.19 Definition Let s be a real-valued function defined on X, If the range
of s is finite, we say that s is a simple function,
Let £ = X, and put

_t (xef),
(48) Kf(x} - 0 (x é E).
K¢ is called the characteristic function of E.
Suppose the range of s consists of the distinct numbers €, .v.y €. Let

Ei={x|s(x) = ¢;} (i=1..,n).

Then
n
(49) =) ¢k,
n=1
that is, every simple function is a finite linear combination of characteristic
functions. It is clear that s is measurable if and only if the sets £, ..., E, are
measurable,

It is of interest that every function can be approximated by simple
functions:

11.20 Theorem Let f be a real function on X. There exists a sequence {s,} of
simple functions such that s,(x) - f(x) as n > @, Jorevery x e X. If f is measur-
able, {s,} may be chosen to be a sequence of measurable Juncrions, If f=0, {5}
may be chosen to be a monotonically increasing sequence.

Proof If />0, define

i—-1
E, =
ni lr 2,1

SS@<zh  R=bl@zn
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forn=1,2,3,...,i=1,2,...,n2% Put
mr 1
(50 5 = .};1 “é:."‘KE,.; +nKy, .

In the general case, let f=f* — f~, and apply the preceding construction
tof" and to .

It may be noted that the sequence {s,} given by (50) converges
uniformly to £if fis bounded.

INTEGRATION

We shall define integration on a measurable space X, in which 9 is the o-ring
of measurable sets, and p is the measure. The reader who wishes to visualize
a more concrete situation may think of X as the real line, or an interval, and of
i as the Lebesgue measure m.

11.21 Definition Suppose

(51) sx)= 3 cKe(x) (xeX,¢;>0)
i=1

is measurable, and suppose E ¢ M. We define

(52) Ids) = ): e; {E n E).

i=

If fis measurable and nonnegative, we define

-

(33) JEf dp = sup f(s),

where the sup is taken over all measurable simple functions s such that 0 < 5 < /.
The left member of (53) is called the Lebesgue integral of f, with respect
to the measure u, over the set E. It should be noted that the integral may have
the value +zo.
It is easily verified that

(54) [ sdu=1s)
E
for every nonnegative simple measurabie function s.
11.22  Definition Let f be measurable, and consider the two integrals
59 [rtdn [ f da
‘E E
where /7 and /'~ are defined as in (47).
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If at least one of the integrals (55) is finite, we define
5 . dy = *dy - “du.
(56) _fEf 2 fEf o J;f W

If both integrals in (55) are finite, then (56) is finite, and we say that f is
integrable (ot summable) on E in the Lebesgue sense, with respect to u; we write
feP)on E. If u = m, the usual notation is:fe#onkE.

This terminology may be a little confusing: If (56) is +w or — oo, then
the integral of f over E is defined, although f is not integrable in the above
sense of the word; fis integrable on E only if its integral over £ is finite.

We shall be mainly interested in integrable functions, although in some
cases it is desirable to deal with the more general situation.

11.23  Remarks The following properties are evident:

(@ If fis measurable and bounded on £, and if u(E) < + oo, then
FfeZ(Won L.
(b) Ifa<f{x)<bforxek, and uy(E) < +w0, then

a(EY < [ fdu < bu(E).
E
(¢) Iffznd g € #(u) on E, and if f(x) < g(x) for x € E, then

f Sdu SJ g du.
) £ E
{(d) IffeP(u)on E, then ¢f € £(u) on E, for every finite constant ¢, and
f of du = cJ' fdu.
£ E
{e} If y{E)=0, and fis measurable, then
[ rdu=o.
E

(Y i feP(w)on E, AeM, and A  E, then fe #(u) on 4.

11.24 Theorem

(@) Suppose f is measurable and nonnegative on X. For A € M, define

(57) dia) = fu
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Then ¢ is countably additive on M.
(&) The same conclusion holds if f € #{g) on X.

Proof It is clear that (b) follows from (a) if we write f=f* —f~ and

apply (@) to /™ and to f ~.
To prove (@), we have to show that

(58) ¢w=iWJ

f 4, eMm=1,2,3..), A, "d;=0fori#jand d=||° 4, .

If / is a characteristic function, then the countable additivity of ¢ is
precisely the same as the countable additivity of y, since

L Ky du = (4 A E).

If f is simple, then fis of the form (51), and the conclusion again
holds.

In the general case, we have, for every measurable simple function s
such that 0 < 5 < f,

[san=3 [ sau<¥ o(4).
A n=1"4, n=1
Therefore, by (53),
(59) MMSSfMJ

Now if ¢{4,) = +co for some n, (58) is trivial, since ¢(4) > d(A,).
Suppose ¢(4,) < + oo for every n.

Given £>0, we can choose a measurable function s such that
0 <5 <, and such that

(60) Ll sdp > Lfdu —e -{A, sdu > J;zfdp —c

Hence

A v Ay = |

Ay v Az

s@=Ls@+Ls¢zmmH¢Mﬂ—h
1 Tz

50 that

Ay w A) = PlA) + #(A,).
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It follows that we have, for every n,
(61) A Um0V A) = Pl4) + -+ P4,).
Since Ao A4, v U4, (61) implies

(62) P2 Y 44,
and (58} fotlows from (359) and (62).

Carollary [f 4 e, Be M, B < A4, and (A — B) =0, then

Lf@=Lf@-

Since A = B U (4 — B), this foilows from Remark 11.23(e).

11.25 Remarks The preceding corollary shows that sets of iaeasure zero are
negligible in intzgration.
Let us write f ~ g on E if the set

{x|f(zx) #gx)} n E

has measure zero.

Then f~ [, f~ g implies g~ f; and f~ g, g~k implies f~ k. That is,
the relation ~ is an equivalence relation.

If f~ g on E, we clearly have

[rdu=] gan

provided the integrals exist, for every measurable subset A of E.

If a property P holds for every x € £ — 4, and if u(A) =0, it is customary
to say that £ holds for almoest alt x € £, or that P holds almost everywhere on
E. (This concept of “almost everywhere” depends of course on the particular
measure under consideration. In the literature, unless something is said to the
contrary, it usually refers to Lebesgue measire. )

Iff e Z£(u)on E, itis clear that f(x) must be finite almost everywhere on E,
In most cases we therefore do not lose any generality if we assume the given
functions to be finite-valued from the outset.

11.26 Theorem [ffe % (u) on E, then |f| € #(u) on E, and

(63) {Lf@

sLUhm
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Proof Write E=4 0 B, where f(x) >0 on 4 and f{x) <0 on B.
By Thecrem 11.24,

[itde={ iftdu+ | \fidu=] f*aus| 7 du<+o,
E A B A B

so that |f} € £(u). Since f< |f] and —f 5 |f], we see that

[fdus|iftan =] raus] il
E E E E

and (63) follows.

Since the integrability of f implies that of ||, the Lebesgue integral is
often called an absolutely convergent integral. It is of course possible to define

nonabsolutely convergent integrals, and in the treatment of some problems it is
essential to do so. But these integrals fack some of the most useful properties

of the Lebesgue integral and play a somewhat less impertant role in analysis. _

11.27 Theorem Suppose f is measurable on E, |f| <g, and g € £(u) on E.
Then fe L(u)yon E.

Proof Wehavef™ <gandf~ <g.

11.28 Lebesgue’s monotone convergence theorem Suppose E e M. Let {f} be
a sequence of measurable functions such thot

(64) 0sfi<hlx) s (xeE)
Let f be defined by

(65) M) =f@  (xeE)

asn—o. Then

(66) Lﬂ@*Lf@ (1 c0).

Proof By (64) it i1s clear that, as n — o5,

(67) f fody -«
E
for some 2; and since [f, £ Jf, we have

(68) a<| fdu
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Choose ¢ such that 0 <c <1, and let 5 be a simple measurable
function such that 0 < 5 < f. Put

E={xlfix)ze(x} (r=123..)
By (64), E, = E, = E; < - ; and by (65),
(69) E= O E,.
n=1

For every n,

(70) [ fduz] fidwzc] sau
£ En En
Welet n — 0 in (70). Since the integral is a countably additive set function

(Theorem 11.24), (69) shows that we may apply Theorem 11.3 to the last
integral in (70), and we obtain

(1) aZCfsdh
E

Letting ¢ = 1, we see that

azj‘ s d,
E

and (53} implies

-

(72 o zJ fdp.
E
The theorem follows from (67), (68), and (72).

11.29 Theorem Suppose f=f, +f,, where f,e %) on E (i=1,2). Then
SePu)on E, and

(73) [ rau={ fiau+{ fdu
E E vE
Proof First, suppose f; 20, /, = 0. If /; and f; are simgle, {73) follows
trivially from (52) and (54). Otherwise, choose monotonicaily increasing
sequences {5,}. {s;} of nonnegative measurable simple functions which

converge to fi,f;. Theorem 11.20 shows that this is possible. Put
$, =5, +5.. Then

fE 5, dpt = fE S dp + L_ Sq du,

and (73) follows if we let # — o0 and appeal to Theorem 11.28.
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Next, suppose f; > 0, f, < 0. Put
={xif(x) =0},  B={x|f(x) <0}

Then f, f, and —f, are nonnegative on A. Hence
74) du = du+t (~fydu= du— | f,dn
( [ =] saus| (-pyau [ fdu~] fian
Similarly, —f, f;, and —#, are nonnegative on B, so that

5, (<Rde=[ fidus [ (<nyan
or
(75) [fide=] fau- [ fran

and (73) follows if we add (74) and (75).
In the general case, E can be decomposed into four sets £, on each

of which f|(x) and f,(x) are of constant sign. The two cases we have proved
so far imply

[ fau={ fiau+| fidu  (=1.23.9,
~E; Ei E;
and (73) follows by adding these four equations.
We are now in a position to reformulate Theorem 11.28 for series.

11.30 Theorem Suppose E M. If{f}isa sequence of nonnegative measurable
Junctions and

(76) fx) = z AR (xeE),
then

[ fdu=3 [ fidn

*E a=1"YE"

Proof The partial sums of (76) form a monotonically increasing sequence.
11.31 Fatou’s theorem Suppose £ M. If (1.} is a sequence of nonnegative
measurable functions and
Jx) =lim inf £,{x) (x g E).

Ao

then

7 ffa‘;;<l:mmff £, du.

E e o
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Strict inequality may hold in (77). An example is given in Exercise 5.
Proof Forn=1,23,...and x e E, put
glx)=1nff{x) (izn).

Then g, is measurabie on E, and

(78) 0<g(x)<gifx)< -,
(79) ga(x) £ fi(x),
(80) gx) =f(x})  (n—-w)

By (78}, (80), and Theorem 11.28,
81 W du— | fdu,
(81) [ondu~]
so that (77) follows from (79) and (81).

11.32  Lebesgue’s dominated convergence theorem Suppose E ¢ M. Let {f,} be
a sequence of measurable functions such that

(82) flx) -fx)  (x€E)

as n— . If there exists a function g € ¥ (u) on E, such that
(83) fx)] <g(x)  (n=1,2,3,...,x€E),
then

(84) lim J fodu= J fdu.

Because of (83), {f,} is said to be dominated by g, and we taik about
dominated convergence. By Remark 11.25, the conclusion is the same if (82)
holds almost everywhere on E.

Proof First, (83) and Theorem 11.27 imply that f, e Z() and fe Z(u)
on E.
Since f, + g = 0, Fatou's theorem shows that

JUrgdestimint [ (1 +9)de
or
(8%) [ fdu < lim inf l' S du.

=0
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Since g - f, = 0, we see similarly that for the Lebesgue integral of f over [a, 5]. To distinguish Riemann integrals
L from Lebesgue integrals, we shall now denote the former by
[ e=ndu<iiminf [ (g -1 dn

50 that Q?ijdx.
—f fdu < lim inf [—f fndp],
E E

H—=x

11.33 Theorem

- (@ IffeRonla, b, then fe & on [a, b, and
(86) J'E fdu > lim sup L fdg.

[l -]

which is the same as

b b

The existence of the limit in (84) and the equality asserted by (84) &9 J‘,. fdx=2 -[, fax.
foll 85) and (86). '

now follow from (83) and (86) (6) Suppose f is bounded on [a, b]. Then fe & on (a, b] if and only if f is

Corollary  If u(E) < + o0, {f,} is uniformiy bounded on E, and f,(x) = f(x) on E, continuous almost everywhere on [a, b).

then (84) holds. Proof Suppose fis bounded. By Definition 6.1 and Theorem 6.4 there
] o ] is a sequence {P,} of partitions of [a, b], such that Py, is a refinement
A uniformly bounded convergent sequence is often said to be boundedly of Py, such that the distance between adjacent points of P, is less than
convergent. 1/k, and such that
(88) lim L(Py. f) = & [ fdv,  lim U(P,.f) = S?ffdx.
COMPARISON WITH THE RIEMANN INTEGRAL ke = ke
Our next theorem wilt show that every function which is Riemann-integrabie (In thxiproof‘, all integrals are t_aken over [a, 5])
on an interval is also Lebesgue-integrable, and that Riemann-integrable func- WPy =txo, X1, .. X}, with xo = a, x, = b, define
tions ate subject to rather stringent continuity COI’IdlthH'S. Quite apart from the Ula) = Li{a) = f{a);
fact that the Lebesgue theory therefore enables us to integrate a much larger '
class of functions, its greatest advantage lies perhaps in the ease with which put Uy(x) =M, and Li(x)=m, for x,_; <x<x;,1 €i<n, using the
many limit operations can be handled; from this point of view, Lebesgue’s notation introduced in Definition 6.1. Then
convergence thecrems may well be regarded as the core of the Lebesgue theory.
One of the difficulties which is encountered in the Riemann theory is (89) L{P,f)= ‘.Lk dx, UP,, [y = ka dx,
that limits of Riemann-integrable functions (or even continuous functions) :
may fail to be Riemann-integrable. This difficulty is now almost eliminated, and
since limits of measurable functions are always measurable.
Let the measure space X be the interval {a, 5] of the real line, with & =m (90) L <L) < <f(x) < < Up(0) < Uilx)

(the Lebesgue measure), and M the family of Lebesgue-measurable subsets for all x € {a, b], since P, refines P,. By (90), there exist
of [a, b]. Instead of

" 91 Lix) =lim L (x), Ulx) = lim U{x).

fodm ( ) (x) i £(%) (x) o W)
it is customary to use the familiar notatiga Observe that L and U are bounded measurabie functions on [a, 3],
that

b
L fdx (92) Lixy<f)<sUlx) f{a<xg¥),
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and that

(93) dex=9?jfdx, fde=gledx,

by (88), (90), and the monotone convergence theorem.

So far, nothing has been assumed about f° except that fis a bounded
real function on [a, b}.

To complete the proof, note that f e # if and oniy if its upper and
lower Riemann integrals are equal, hence if and only if

{94) jL dx=ij;

since L < U, (94) happens if and enly if L{x) = U(x) for almost all
x e{a, b] (Exercise 1).
In that case, (92) implies that

(93) L(x) =/f(x) = U(x)

almost everywhere on [g, b], so that f is measurable, and (87) follows
from (93) and (95).

Furthermore, if x belongs to no P, it is quite easy to see that UVix) =
L{x)if and only iffis continuous at x. Since the union of the sets P, is count-
able, its measure is 0, and we conclude that fis continucus almost every-
where on [g, b] if and only if L(x) = U(x) almost everywhere, hence
(as we saw above) if and only if f& #

This compietes the proof.

. The familiar connection between integration and differentiation is to a
large degree carried over into the Lebesgue theory. If fe % on [a, 5], and

(96) Fo=[jdt  @sx<b),

then F'{x) = f(x) almost everywhere on {a, b].
Conversely, if F is differentiable at every point of [a, 5} (“almost every-
where™ is not good enough here!) and if F' € & on {a, b], then

Fx)—Fa)=[ F( (a<x<b).

For the proofs of these two theorems, we refer the reader to any of the
works on integration cited in the Bibliography.
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INTEGRATION OF COMPLEX FUNCTIONS

Suppose f is a complex-valued function defined on a measure space X, and
S =u+iv, where u and v are real. We say that f is measurable if and only if
both u and v are measurable.

It is easy to verify that sums and products of complex measurable functions
are again measurable. Since

f] =@ + )5,

Theorem 11.18 shows that [f{ is measurable for every complex measurable /.

Suppose p is a measure on X, £ is a measurable subset of X, and fis a
complex function on X. Wesay that f € #(n) on E provided that fis measurable
and

97) [l du< 4o,
E
and we define
f fdu =J- ud,u+if vdu
E E E

if (97) holds. Since |u]| < |f], |¢| < [f], and |f] < |ui + ||, it is clear that
(97) holds if and only if u e #(u) and v € ¥ () on £,

Theorems [1.23{a), (d), (e), {f), 11.24(b), 11.26, 11.27, 11.29, and 11.32
can now be extended to Lebesgue integrais of complex functions. The proofs
are quite straightforward. That of Theorem 11.26 is the only one that offers
anything of interest: _

If fe #(u) on E, there is a complex number ¢, |¢| = 1, such that

cf fduz0.
YE
Put g=c¢f=u+iv, uand ¢ real. Then

[ fau

“E
The third of the above equalities holds since the preceding ones show that
j'g dp is real.

=cLﬂm=me=mesLUhm

FUNCTIONS OF CLASS &°

As an application of the Lebesgue theory, we shall now extend the Parseval
theorem (which we proved only for Riemann-integrabie functions in Chap. 8)
and prove the Riesz-Fischer theorem for orthonormal sets of functions.
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11.34 Definition Let X be a measurable space. We say that a complex
function f e #%(u) on X if fis measurable and if

[ 117 du< + .
X

If uis Lebesgue measure, we say fe #%. For fe . %(y) (we shall omit the
phrase “on X from now on) we define

1/2
171 =|[ 1117 a]
and call ||f}} the #*() norm of f.

11.35 Theorem Suppose fe L (u) and g € £*(u). Then fg € L(1), and

98) [ 1ol du<f0 hgi.

This is the Schwarz inequality, which we have already encountered for
series and for Riemann integrals. It follows from the inequality

0 [ (f] +lgh?du=if1 + 2 [ 1fgl du + Plgl,
X X

which holds for every real A.

11.36 Theorem [ffec % (u)and ge L (u). thenf+ge LYy, and

If+ gt < If1 + gl
Proof The Schwarz inequality shows that

If+gl* = [ 11+ [13+ o+ [1g]?
<117+ 21/ 1gi + Il
=78+ g,

1137 Remark If we define the distance between two functions £ and g in
F2(u) to be ||/ — gll, we see that the conditions of Definition 2.15 are satisfied,
except for the fact that | f — gl =0 does not imply that f(x) = g(x) for all x,
but only for almost all x. Thus, if we identify functions which differ ouly on a
set of measure zero, #£3(u) is a metric space.

We now censider #? on an interval of the real line, with respect o
Lebesgue measure.

11.38  Theorem The continuous functions form a dense subset of £* on [a, 5].
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More explicitly, this means that for any fe #? on {g, b], and any ¢ > 0,
there is a function g, continuous on [a, 6], such that
' L&

:!f—gu={f:’af~g|zarxJ <e

Proof We shall say that f is approximated in %2 by a sequence {g,} if
If — gall >0 as n —co. :
Let A be a closed subset of [a, ], and X its characteristic function.

Put
Ko =inflx~yl  (yed)
and
! *
gn(x)zmt-(;) (n=1,2,3,...)

Then g, is continuous on [a, b], g{x) =1 on 4, and g(x) =0 on B,
where B=[a, 5] — A. Hence

F, 12
lov~ Kal = |[ g2 ax] =0

by Theorem 11.32. Thus characteristic functions of closed sets can be
approximated in %2 by continuous functions.

By (39) the same is true for the characteristic function of any
measurable set, and hence also for simple measurable functions.

If f=0and fe #* let {5,} be a monotonically increasing sequence
of simple nonnegative measurable functions such that s5,(x) -/ (x).
Since {f — 5, < f*, Theorem 11.32 shows that i/ — 5,1 —0.

The general case follows.

11.39 Definition We say that a sequence of complex functions {¢,} is an
orthonormal set of functions on a measurable space X if

- 10 (n#Em),
L OOm it =41 )

In particular, we must have ¢, € £*(u). If fe £%(u) and if

=] fBadu (=123,
X

we write

f~ Z qubnv
=1

n

as in Definition 8.10.
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The definition of a trigonometric Fourier series is extended in the same
way to 7’ (or even to %) on [—n, 7). Theorems 8.11 and 8.12 (the Bessel
inequality) hold for any fe %*(u). The proofs are the same, word for word.

We can now prove the Parseval theorem.

1140 Theorem Suppose

(99) F&)~ 3 e,
where fe #* on [—=, 7). Let s, be the rth partial sum of (95). Then
(100) lim || f = 5] =0,
o ]_ ®
< 1 2
(101) Tlal =g [ (17

Proof Let >0 be given. By Theorem [1.38, there is 2 continuous
function g such that

€

— <~

If =gl <3
Moreover, it is easy to see that we can arrange it so that g(m) = g(—7).
Then g can be extended to a periodic continuous function. By Theorem
8.16, there is a trigonometric poiynomial T, of degree N, say, such that

4
lg—T1 <.

Hence, by Theorem 8.11 (extended to #2), n > N implies
s = fI < AT = fll <&,

and (100) follows. Equation (101} is deduced from (100) as in the proof of
Theorem 8.16.

Corollary If fe #* on [~n, 7], and if
[ fwe™dx=0  (1=0, 21, £2,..),
then fif] = 0.

Thus if two functions in #* have the same Fourier series, they differ at
most on a set of measure zero.
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1141 Definition Let f and f,e L2 (u)(n=1,2,3,...). We say that {f}
converges to fin L(u) if ||f, — ] =0. We say that {f,} is a Cauchy sequernce
in &?(u) if for every & > 0 there is an integer N such that n > N, m > N impties

i.a :fmﬂ <e

11.42 Theorem If {f,} is a Cauchy sequence in F(y), then there exists a
Sunction f e F(u) such that {f,} converges to f in F*(u).

This says, in other words, that #*(u) is a compiete metric space.

Proof Since {f,} is a Cauchy sequer;ce, we can find a sequence {n,},
k=123 ..., such that

1
IS = frio i <z (k=123

Choose a function g & #*(u). By the Schwarz inequality,

J‘X |.g(.f;u¢ _.f;lk+|)| d.u = ]‘Eéq_g!l'
Hence
(1 3 10Un = Sl di < ).

By Theorem [1.30, we may interchange the summation and integration in
(102). It follows that

(103) ig(x)lkZ k) = fu, (D] < + 0
=1
aimost everywhere on X. Therefore
(104) Z !-f;lk+l(x) "fm((x” <+ o
k=1

almost everywhere on X. For if the series in (104) were divergent on a
set E of positive measure, we could take g(x) to be nonzerc on a subset of
£ of positive measure, thus obtaining a contradiction to {103).

Since the kth partial sum of the series

3 ) =,

which converges almost everywhere on X, is

j:uu» |(x) —fnl(x):
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we see that the equation

S =lim /(2

defines f(x) for almost all x € ¥, and it does not matter how we define
Jf(x) at the remaining points of X.

We shall now show that this function S has the desired properties.

Let >0 be given, and choose N as indicated in Definition i1.41. If

n, > N, Fatou’s theorem shows that

1f=fll <liminflf, ~ fu] <e.

=G

Thus f—f,. e sz(p)-,cand since f=(f—f,) + £, we see that e #*(u).
Also, since ¢ is arbitrary, -

klim IS —=full = 0.
Finally, the inequality

(103) W =Rl < if = ful + 1 — £l

shows that {f} converges to f in LHu); for if we take n and n large

enough, each of the two terms on the right of (105} can be made arbi-
trarily small,

11.43 The Riesz-Fischer theorem [Ler {.} be orthonormal on X. Suppose

Zlc,1? converges, and put Sp=C 4+t by, Ther there exists a Sunction
e ) such that {s,} converges to f in PHy), and such thar

sl
f~ Z C,,(,f’,,-
n=1
Proof Forn>m,

152 = 5wl = lemei [P+ o + ] %,

so that {s,} is a Cauchy sequence in Z?(u). By Theorem 11.42, there is
a fnction f& £*(u} such that

im || f—s,] =0

n—+gy
Now, for n > k,

J‘quﬂ du—e= [ [, du- fxs,.ci dg,

VX
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so that

‘ [ fBudi— i <17=s 1l + 1/ -5,

Letting # — oo, we see that

ck=j fEdu (k=123
X

and the proof is complete.

11.44 Definition An grthonormal set {¢,} is said to be complete if, for
S e £y, the equations

ffq"ﬁna‘p=0 (n=1,2,3,..)
y x

imply that {|fi =0.
In the Corollary to Theorem 11.40 we deduced the compieteness of the

trigonometric system from the Parseval equation (101). Conversely, the Parseval
equation holds for every complete orthonormal set:

11.45 Theorem Let {¢,} be a complete orthonormal set. If fe Py and if

(106 7~ 3 e,

then

(107 Jirzdu=y lel
X a=1

Proof By the Bessel inequality, £|e,|? converges. Putting
Sn = Cl.qf’l + +Cn¢nl

the Riesz-Fischer theorem shows that there is a function g e £2() such
that

(108) ) g~ Z Cn¢na
- n=1

and such that ||g — 5,] — 0. Hence |5} —|g/l. Since
Isu = Jey]? 4 oo + e[,

we have

(109) [ lgl?du=} |l
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Now (106), (108), and the completeness of {¢,} show that I f — gl =0,
so that (109) implies (107).

Combining Theorems 11.43 and 11.45, we arrive at the very interesting
conclusion that every comnplete orthonormai set induces a 1-1 correspondence
between ‘the functions fe #*(y) (identifying those which are equal almost
everywhere) on the one hand and the sequences {c,} for which X|¢,|? converges,
on the other. The representation

o

f"" Zl C,,Q‘J,.,.

together with the Parseval equation, shows that #%(x) may be regarded as an
infinite-dimensional euclidean space (the so-called “Hilbert space™), in which
the point f has coordinates c,, and the functions ¢, are the coordinate vectors.

EXERCISES

1. If 2= 0 and [¢ fdu = 0, prove that f(x) = 0 almost everywhere on E. Hint: Let E,
be the subset of E on which f(x) > 1/n. Write 4 = [JE,. Then u(4) = 0if and only
if w(E,) = O for every n.

2. If f. fdu = 0 for every measurable subset 4 of a measurable set E, then f{x)=0
almost everywhere con E.

3. K {/a} is a sequence of measurable functions, prove that the set of points x at
which {fi(x)} converges i measurable.

4. If fe Z(u) on E and g is bounded and measurable on E, then f7 ¢ Flpyon E

5. Put

_Jjo o o<x<y,
=N s Gexs,
Sulx)y = g(x) O<x<,
frn(ty=g(l—x)+ (O<x<h).
Show that ¥
liminf filx) = 0 0<x<),
but -

/. Flxyie=4.

[Compare with (77).]
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6. Let

1
f,.(x)= ; (Ix{gn):
0

(ix] >n).

Then fo(x) =0 uniformly on R, but
F fidv=2 (1=1,23,..).

{We write [Z_, in place of Jz;.) Thus uniform convergence does not imply domi-
nated convergence in the sense of Theorem 11.32. However, on sets of finite
measure, uniformly convergent sequences of bounded functions do satisfy Theo-
rem i11.32.

7. Find a necessary and sufficient condition that f€ #(a) on [a, b]. Hint: Consider
Example 11.6(b} and Theorem 11.33.

8. If f= R on [a. b] and if F(x)= [ f{t) dt, prove that F(x) = f(x) almost every-
where on (g, 6}

9. Prove that the function F given by (96) is coutinuous on [a, b].

10. If p(X) < + = and fe F¥p) on X, prove that fe Plp)on X. If

plX}= =,

this is false. For instance, if

fl) = b,

1+ ix|

then fe #?on R', but f¢ & on R'.
11. 1f £, g € F(p) on X, define the distancg between fand g by

J gl du

Prove that &{p) is a complete metric space.

12. Suppose
@ |flen<tif0<e<,0<y<],
(b) for fixed x, f(x, ¥} is a continusus function of y,
(¢} for fixed y, f(x, y) is a continuo(® function of x.
Put

~
g =] fxdy (O<x<D).
Is g continuous ?

13. Consider the functions

Jalx) = sin nx =123 .., —a<x<m)
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14.

15,

16.

17.

18.

as points of 22, Prove that the set of these points is closed and bounded, but
not compact.

Prove that a complex function f is measurable if and only if £/~(¥) is measurable
for every open set ¥ in the plane.

Let 2 be the ring of all elementary subsets of 0,1]. HO0<a<b<1, define

#(la, b)) = b([a, b)) = ¢ ((a, b} = di{a, b)) = b — a,
but define
$0, b)) = (0, B =1 + b

if 0 < b<1. Show that this gives an additive set function ¢ on 2, which is not
regular and which cannot be extended to a countably additive set function on a
o-ring.
Suppose {n,} is an increasing sequence of positive integers and F is the set of ajl
x &€ (—m, w) at which {sin n.x} converges. Prove that m(E}=10. Hint: For every
A< E,

-~

J sin nox dx — 0,
A

and

2J.‘(sin mx)? dx=JA(1 — €08 2mex) dx — mi{ 4) as k — o,

Suppese E< (~m, =), m{(E)>0,8 >0. Use the Bessel inequality to prove that
there are at most finitely many integers n such that sin nx >éforall xe E.
Suppose f& £ u), g € P, Prove that

o de] =151 d 1977 au

if and only if there is a constant ¢ such that g(x) = c¢f (x) almost everywhere.
(Compare Theorem 11.35.)
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The symbols listed below are followed by a brief statement of their meaning and by
the number of the page on which they are defined.
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lim sup upper limit .............. 56
lim iaf lower limit ............. .. 56
g°f composition ................ 86
Flx+) right-hand Bimit . ...... ..., 94
flx—} left-hand limit ............ 94
f, 7 (x) derivatives ........ 103,112
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Additbvity, 301
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Affine mapping, 266
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Bounded set. 32
Brouwer's theorem. 203
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Complex number. 2
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Borel-measurable function. 313
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of series. 59
eniform, 147
Convex functon. 101
Convex set. 31



340 INDEX

Coordinate function, 3§
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integration of. 134, 324
partial, 215
of power serigs. 173
total, 213
of a transformation. 214
of a vector-valued function. 12
Determminant. 232
of an operator, 234
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