MATH3305 - Problem Sheet 1

Problems 1 and 2 to be handed in at the lecture on Friday, 13 October 2017

1. You are given Euclidean 3 -space with standard Cartesian coordinates $X^{i}=\{x, y, z\}$. Now introduce spherical polar coordinates $Y^{i}=\{r, \theta, \phi\}$ satisfying

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta .
\end{aligned}
$$

(i) Find the 3×3 matrix of first derivatives $J^{i}{ }_{j}=\partial X^{i} / \partial Y^{j}$.
(ii) Show that this matrix is invertible by computing the determinant.
(iii) For which angle θ is $J^{i}{ }_{j}$ not invertible?
(iv) You are given the vector $V_{(Y)}^{i}=(1,0,0)$ in spherical polar coordinates. Find the components of $V_{(X)}^{i}$ in Cartesian coordinates.
2. You are given Euclidean 3 -space $X^{i}=\{x, y, z\}$ with cylindrical coordinates $Y^{i}=\{\rho, \varphi, z\}$ such that

$$
\begin{aligned}
& x=\rho \cos \varphi \\
& y=\rho \sin \varphi \\
& z=z .
\end{aligned}
$$

(i) Find $d x, d y, d z$ in terms of $d \rho, d \varphi, d z$.
(ii) Show that for a smooth function f we can write

$$
\left(\begin{array}{c}
\frac{\partial f}{\partial r} \\
\frac{\partial f}{\partial \varphi} \\
\frac{\partial f}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \varphi & \sin \varphi & 0 \\
-r \sin \varphi & r \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right)
$$

(iii) Express the basis vectors $\boldsymbol{e}_{(Y) i}$ in terms of the basis vectors $\boldsymbol{e}_{(X) i}$

