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Preface

Much has happened in the twenty-two years since the publication of the
second edition. The explosive development of personal computing and statis-
tical software has removed the main impediment to sophisticated analyses of
data. Indeed, these developments have brought the ability to carry out such
analyses out of the sole possession of the specialist and into the hands of
every researcher. Logistic, Poisson, and other generalized linear regression
models have taken their rightful place as standard analytic methods. Our
clinical and public health colleagues no longer view the odds ratio as an
inscrutable version of the rate ratio�they understand and use odds ratios all
the time. Generalized estimating equations and empirical Bayes methods
have become powerful tools to deal with complex data. Exact methods and
other computational challenges like conditional likelihood analysis have gone
way beyond the Fisher-Irwin exact test for 2�2 tables. Correct ways to deal
with missing data can no longer be ignored. The randomized clinical trial and
the special role statisticians play in safeguarding the validity of the trial’s
conduct and findings have come of age in dramatic ways.

This means we can no longer content ourselves with methods that require
only a desktop or pocket calculator, which was a hallmark of the second
edition. Anyway, the limitations that those devices once represented no
longer exist. Yet the elegance of simple, clear, and common-sense methods,
which was another hallmark of the previous editions, must never be allowed
to take second place to useless complexity. Meeting these requirements has
been something of a challenge because, tragically, time has also brought a
disabling form of Parkinson’s disease to the first author. Joe’s inimitable
writing style�direct, friendly, honest, sensible, authoritative, and prescrip-
tive in the best sense of the word�hopefully has been allowed to shine
through our attempts to bring the book up to date for both students and
researchers engaged in the analysis of their data.

Our approach has been to leave much of the original material intact with
clarifications, corrections, and streamlining only as necessary, while covering
new material at two levels. The first introduces methods with only as much

xvii
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complexity as is required to give a clear presentation. The mathematical
prerequisites continue to be a knowledge of high school algebra and an
ability to take logarithms and extract square roots. A familiarity with comput-
ers in everyday use is now assumed.

The second level is, admittedly, aimed at students of biostatistics and
specialists in data analysis, and requires a level of mathematical preparation
equivalent to a first and second course in statistics. These sections have been
marked with an asterisk to indicate that full comprehension may require
some familiarity with matrix algebra, multivariate statistical concepts, or
asymptotic methods. Our suggestion to novice readers is to skim these
sections in order to get the lay of the land without getting lost in the thicket
of details.

We have added many new problems, some numerical and some theoreti-
cal. The numerical problems all have answers at the back of the book, as in
the second edition. Many of the theoretical problems have cogent hints to
guide students to a successful solution and, we hope, an increase in their
understanding and level of expertise. We have tried to bear in mind, and
cannot resist paraphrasing here, Stanislaw Lem’s humbling definition of an
expert, given in His Masters Voice: An expert is a barbarian with an uneven
level of ignorance. Our hope is that we can move the level without exacerbat-
ing Lem’s characterization.

The statistical analysis of single-sample data, such as a prevalence study,
now occupies an entire early chapter. We took this as an opportunity to
introduce a few technical definitions of a two-tailed p-value for asymmetrical
discrete distributions, notions which arise in the exact analysis of categorical
data. Armed with such tools, we have fully reinstated exact and approximate-
yet-accurate confidence intervals as appropriate statements of statistical
uncertainty, notwithstanding Joe’s initial reluctance to promulgate their rou-
tine use in the first edition. Again, modern computing enables us to recom-
mend them while respecting Joe’s warning that a properly constructed
confidence interval is frequently more complicated than simply the point
estimate plus or minus a multiple of its standard error.

Regarding other foundational issues of statistical inference, we have
continued Joe’s unabashed preference for frequentist methods. The reader
will see, however, that in key places we take an empirical Bayes approach.
This occurs, for example, in the new sections on the analysis of many

Ž � .proportions with an element of randomness Section 9.6 , random effects
Ž .meta-analysis Section 10.9.1 , tests of odds ratio homogeneity in the large-

Ž . Žsparse case Section 10.9.2 , overdispersion in Poisson regression Section
� . Ž12.3 , and extensions of logistic regression for correlated binary data Sec-

� .tion 15.5 . In these applications, the empirical Bayes approach provides the
most natural analytic framework while avoiding the abuses of subjectivism
that underpinned Joe’s original distaste for Bayesian methods. Of course,
Bayes’ theorem, being the fundamental means to pass between conditional
probabilities, is used throughout the book. The reader will also notice the
likelihood ratio highlighted for its fundamental role in the weighing of
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statistical evidence, in addition to its frequentist use as a hypothesis test
statistic. This, however, is as close as we come to a frank Bayesian approach.

ŽThere is new material on sample size calculations in Chapter 4 formerly
.Chapter 3 and some insights about why the sample size tables in the second

edition work as well as they do. As mentioned above, exact statistical
methods are now presented in a formal and routine manner throughout the
first half of the book, where they can be feasibly applied. There is new

Ž .material on randomization in clinical trials Chapter 5 and factors relating to
Ž .statistical power in randomized clinical trials Section 8.3 . The

Mantel�Haenszel procedure and its generalizations for combining the evi-
dence across several cross-classification tables plays a prominent role starting
in Chapter 10 and recurs in several subsequent chapters. We have included

Žentirely new chapters on logistic regression both binary and polytomous, in
. Ž .Chapter 11 , Poisson regression Chapter 12 , regression models for matched

Ž . Ž .samples Chapter 14 , the analysis of correlated binary data Chapter 15 ,
Ž .and methods for analyzing fourfold tables with missing data Chapter 16 .

The chapters on the effects of, control of, and adjustment for errors of
misclassification from the previous editions have been consolidated into one
Ž .Chapter 17 , with new material on these issues in logistic regression. Chap-
ter 18 on the measurement of interrater agreement has a new section
connecting this topic with that of Chapter 15.

We are most grateful to the colleagues and students who helped us with
critical review and constructive suggestions. We especially want to thank
Melissa Begg for helpful comments; Ann Kinney for her massive and master-
ful editing; Boanerges Dominguez and Amy Murphy, who assisted us in
teaching ‘‘The Analysis of Categorical Data’’ course at Columbia University
with preliminary versions of this edition; Cheng-Shiun Leu and Mei-Yin
Cheng for reading and computing; Jennie Kline for allowing us to use her
spontaneous abortion data and her epidemiologic guidance as to their
interpretation; and Ralph Sacco for the NOMASS data on risk factors for
stroke. We thank James Walkup for kindly updating the citations to the
psychiatric literature�Joe’s knowledge of this field in the earlier editions
was immense and no doubt contributed to their success. We are also
indebted to Michael Finkelstein for his insight into applied statistics and for
stimulating us to think about how to present technical material to nontechni-
cal audiences during the writing of Statistics for Lawyers. We thank Steve
Quigley and Heather Haselkorn for their utterly endless patience during this
project. And we are forever grateful to our spouses, Betty and Yi Hyon, and
our families, who, like Joe’s wife Isabel, now departed, have been a constant
source of inspiration and forbearance during the writing of this book.

BRUCE LEVIN

MYUNGHEE CHO PAIK

New York, New York and
Bear Ri®er, No®a Scotia
August 2002



Preface to the Second Edition

The need for a revised edition became apparent a few years after the
publication of the first edition. Reviewers, researchers, teachers, and stu-
dents cited some important topics that were absent, treated too briefly, or
not presented in their most up-to-date form. In the meantime, the field of
applied statistics continued to develop, and new results were obtained that
deserved citation and illustration.

Of the several topics I had omitted from the first edition, the most
important was the construction of confidence intervals. In the revision,
interval estimation is treated almost as extensively as hypothesis testing. In
fact, the close connection between the two is pointed out in the new Section
1.4. The reader will find there, in the new Section 5.6, and elsewhere
realizations of the warning I gave in the Preface to the first edition that a
properly constructed confidence interval is frequently more complicated than
simply the point estimate plus or minus a multiple of its standard error.

Another important topic missing from the first edition was the planning of
comparative studies with unequal sample sizes. This is treated in the new
Section 3.4.

Several other topics not covered in the first edition are covered here. The
Fisher-Irwin ‘‘exact’’ test for a fourfold table is described in the new Section
2.2. Attributable risk, an important indicator of the effect of exposure to a
risk factor, is discussed in the new Sections 5.7 and 6.4. The Cornfield
method for making inferences about the odds ratio is presented in the new
Sections 5.5 and 5.6.

A number of topics touched on superficially or not dealt with adequately
in the first edition have, I hope, now been covered properly. The analysis of
data from a two-period crossover study is described in an expansion of Sec-
tion 7.2. A more appropriate method for analyzing data from a study of
matched pairs when the response variable is qualitatively ordered is pre-
sented in Section 8.2. The comparison of proportions from several matched

xxi
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samples in Section 8.4 has been expanded to include the case of quantita-
tively ordered samples. A method for comparing data from several fourfold
tables that has been found capable of yielding erroneous results has been

Ž .relegated to the section now Section 10.7 on methods to be avoided.
Developments in statistics since the appearance of the first edition are

reflected in most sections and every chapter of the revision. The determina-
tion of sample sizes is brought up to date in Section 3.2; the corresponding

Ž .table in the Appendix Table A.3 has been revised accordingly. Some
recently proposed alternatives to simple randomization in clinical studies are
discussed in two new sections, 4.3 and 7.3. The presentation of ridit analysis
in Section 9.4 has been revised in the light of recent research. The effects
and control of misclassification in both variables in a fourfold table are
considered in Sections 11.3 and 12.2. The new Chapter 13, which is an
expansion and updating of the old Section 12.2, presents recent results on the
measurement of interrater agreement for categorical data. Some recent
insights into indirect standardization are cited in Sections 14.3 and 14.5.

The emphasis continues to be on, and the examples continue to be from,
the health sciences. The selection of illustrative material was determined by
the field I know best, not by the field I necessarily consider the most
important.

The revision is again aimed at research workers and students who have
had at least a year’s course in applied statistics, including chi square and
correlation. Many of the problems that conclude the chapters have been
revised. Several new problems have been added.

Several of my colleagues and a few reviewers urged me to include the
solutions to at least some of the numerical problems. I have decided to
provide the solutions to all of them. Teachers who wish to assign these
problems for homework or on examinations may do so simply by changing
some of the numerical values.

The mathematical prerequisites continue to be a knowledge of high school
algebra and an ability to take logarithms and extract square roots. All
methods presented can be applied using only a desktop or pocket calculator.
As a consequence, the book does not present the powerful but mathemati-
cally complicated methods of log-linear or logistic regression analysis for high

Žorder cross-classification tables. The texts by D. R. Cox The analysis of binary
.data, Methuen, London, 1970 and by Y. M. M. Bishop, S. E. Fienberg, and

ŽP. W. Holland Discrete multi®ariate analysis: Theory and practice, M.I.T.
.Press, Cambridge, Mass., 1975 are excellent references at a somewhat

Žadvanced mathematical level. Two more recent short monographs B. S.
Everitt, The analysis of contingency tables, Halsted Press, New York, 1977 and
S. E. Fienberg, The analysis of cross-classified categorical data, M.I.T. Press,

.Cambridge, Mass., 1977 provide less mathematically advanced reviews of
these topics.

Professors Agnes Berger, John Fertig, Bruce Levin, and Patrick Shrout
of Columbia University and Professor Gary Simon of the State University of
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New York at Stony Brook reviewed draft copies of the revision and made
many helpful suggestions. Professor Berger, Fertig, and Simon were espe-
cially critical, and offered advice that I took seriously but did not always
follow.

Most helpful of all were the students who took my course on the analysis
of categorical data the last couple of years at the Columbia University School
of Public Health, and the students who took my course on advanced statisti-
cal methods in epidemiology in the 1978 Graduate Summer Session in
Epidemiology at the University of Minnesota School of Public Health. They
served as experimental subjects without informed consent as I tried out

Ž .various approaches to the presentation of the new and old material.
Students who took my course in the 1980 Graduate Summer Session in
Epidemiology saw draft copies of the revision and pointed out several
typographical errors I had made. I thank them all.

Ms. Blanche Agdern patiently and carefully typed the several drafts of the
revision. Ms. Beatrice Shube, my editor at Wiley, was always supportive and a
ready source of advice and encouragement. My wife Isabel was a constant
source of inspiration and reinforcement when the going got tough.

The new table of sample sizes was generated by a program run at the
computer center of the New York State Psychiatric Institute. The publishers
of the American Journal of Epidemiology, Biometrics, and the Journal of
Chronic Disease kindly gave me permission to use published data.

JOSEPH L. FLEISS

New York
December 1980



Preface to the First Edition

This book is concerned solely with comparisons of qualitative or categorical
data. The case of quantitative data is treated in the many books devoted to
the analysis of variance. Other books have restricted attention to categorical

Ždata such as A. E. Maxwell, Analysing qualitati®e data. Methuen, London,
1961, and R. G. Francis, The rhetoric of science: A methodological discussion of

.the two-by-two table, University of Minnesota Press, Minneapolis, 1961 , but
Žan updated monograph seemed overdue. A recent text D. R. Cox, The

.analysis of binary data, Methuen, London, 1970 is at once more general than
the present book in that it treats categorical data arising from more compli-
cated study designs and more restricted in that it does not treat such topics
as errors of misclassification and standardization of rates.

Although the ideas and methods presented here should be useful to
anyone concerned with the analysis of categorical data, the emphasis and
examples are from the disciplines of clinical medicine, epidemiology, psychia-
try and psychopathology, and public health. The book is aimed at research
workers and students who have had at least a year’s course in applied
statistics, including a thorough grounding in chi square and correlation. Most
chapters conclude with one or more problems. Some call for the proof of an
algebraic identity. Others are numerical, designed either to have the reader
apply what he has learned or to present ideas mentioned only in passing in
the text.

No more complicated mathematical techniques than the taking of loga-
rithms and the extraction of square roots are required to apply the methods
described. This means that anyone with only high school algebra, and with
only a desktop calculator, can apply the methods presented. It also means,
however, that analysis requiring matrix inversion or other complicated mathe-

Ž .matical techniques e.g., the analysis of multiple contingency tables are not
described. Instead, the reader is referred to appropriate sources.

The estimation of the degree of association or difference assumes equal
importance with the assessment of statistical significance. Except where the
formulas are excessively complicated, I present the standard error of almost

xxv
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every measure of association or difference given in the text. The standard
errors are used to test hypotheses about the corresponding parameters,
to compare the precision of different methods of estimation, and to obtain
a weighted average of a number of independent estimates of the same
parameter.

I have tried to be careful in giving both sides of various arguments that are
still unresolved about the proper design of studies and analysis of data.
Examples are the use of matched samples and the measurement of associa-
tion. Inevitably, my own biases have probably affected how I present the
opposing arguments.

In two instances, however, my bias is so strong that I do not even permit
the other side to be heard. I do not find confidence intervals to be useful,
and therefore do not discuss interval estimation at all. The reader who finds
a need for confidence intervals will have to refer to some of the cited
references for details. He will find, by the way, that the proper interval is
almost always more complicated than simply the point estimate plus or minus
a multiple of its standard error.

The second instance is my bias against the Bayesian approach to statistical
inference. See W. Edwards, H. Lindman, and L. J. Savage. Bayesian statisti-
cal inference for psychological research, Psychol. Rec., 70, 193�242, 1963,
for a description of the Bayesian approach to data in psychology; and J.
Cornfield, A Bayesian test of some classical hypotheses�with applications to
sequential clinical trials, J. Am. Stat. Assoc., 61, 577�594, 1966, for a
description of that approach to data in medicine. I believe that the kind of
thinking described in Chapter 3, especially in Section 3.1, provides an
adequate alternative to the Bayesian approach.

It is with gratitude that I acknowledge the advice, criticism, and encour-
agement of Professors John Fertig, Mervyn Susser, and Andre Varma of
Columbia University and of Dr. Joseph Zubin of the Biometrics Research
unit of the New York State Department of Mental Hygiene. Dr. Gary Simon
of Princeton University and Professor W. Edwards Deming of New York
University reviewed the manuscript and pointed out a number of errors I had
made in an earlier draft. Needless to say, I take full responsibility for any and
all errors that remain.

My wife Isabel was a constant source of inspiration as well as an invalu-
able editorial assistant.

The major portion of the typing was admirably performed by Vilma
Rivieccio. Additional typing, collating, and keypunching were ably carried out
by Blanche Agdern, Rosalind Fruchtman, Cheryl Keller, Sarah Lichten-
staedter, and Edith Pons.

My work was supported in part by grant DR 00793 from the National
Ž .Institute of Dental Research John W. Fertig, Ph.D., Principal Investigator

and in part by grant MH 08534 from the National Institute of Mental Health
Ž .Robert L. Spitzer, M.D., Principal Investigator . Except when noted other-
wise, the tables in the Appendix were generated by programs run on the
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C H A P T E R 1

An Introduction to Applied
Probability

Some elements of applied probability theory are needed fully to appreciate
and work with the different kinds of rates and proportions that arise in
research. Thus the clearest and most suggestive interpretation of a propor-
tion is as a probability�as a measure of the chance that a specified event
happens to, or that a specified characteristic is possessed by, a typical
member of a population. An important use of probabilities is in estimating
the number of individuals, out of a sample of size n, who have the char-
acteristic under consideration. If P is the probability that an individual
possesses the characteristic, the expected number having the characteristic is
simply nP.

Section 1.1 presents notation and some important definitions, and Section
1.2 presents the rule of total probability, along with an application. The
theory in Sections 1.1 and 1.2 is applied in Section 1.3 to the evaluation of a
screening test, and in Section 1.4 to the bias possible when making inferences
from selected samples.

1.1. NOTATION AND DEFINITIONS

In this book, the terms probability, relati®e frequency, and proportion are used
synonymously. If A denotes the event that a randomly selected person from a

Žpopulation has a defined characteristic e.g., has arteriosclerotic heart dis-
. Ž .ease , then P A denotes the proportion of all people who have the charac-

Ž .teristic. For the given example, P A is the probability that a randomly
selected individual has arteriosclerotic heart disease. The term rate has two

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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AN INTRODUCTION TO APPLIED PROBABILITY2

meanings: one is as a simple synonym for probability, whereas the other
attaches a notion of time to the expression of probability. The time setting
may be over a given interval such as a year, or may refer to a particular point
in time, and may or may not be stated explicitly. For convenience we use rate
mostly in its first sense, but where the second sense is important we so

Ž .indicate. For the given example, in the terminology of vital statistics, P A is
Ž .the case rate for arteriosclerotic heart disease at a particular point in time .

One can go only so far with overall rates, however. Of greater usefulness
usually are so-called specific rates: the rate of the defined characteristic
specific for age, race, sex, occupation, and so on. What is known in epidemi-
ology and vital statistics as a specific rate is known in probability theory as a
conditional probability. The notation is

Ž � .P A B sprobability that a randomly selected individual has character-
istic A, given that he has characteristic B, or conditional on
his having characteristic B.

If, in our example, we denote by B the characteristic of being aged 65�74,
Ž � .then P A B is the conditional probability that a person has arteriosclerotic

heart disease, given that he is aged 65�74. In the terminology of vital
Ž � .statistics, P A B is the rate of arteriosclerotic heart disease specific to

people aged 65�74.
Ž .Let P B represent the proportion of all people who possess characteristic

Ž .B, and let P A and B represent the proportion of all people who possess
both characteristic A and characteristic B. Then, by definition, provided
Ž .P B �0,

P A and BŽ .
�P A B s . 1.1Ž . Ž .P BŽ .

Ž .Similarly, provided P A �0,

P A and BŽ .
�P B A s . 1.2Ž . Ž .P AŽ .

By the association of two characteristics we mean that when a person has one
of the characteristics, say B, his chances of having the other are affected. By
the independence or lack of association of two characteristics we mean that
the fact that a person has one of the characteristics does not affect his
chances of having the other. Thus, if A and B are independent, then the rate

Ž � .at which A is present specific to people who possess B, P A B , is equal to
Ž . Ž .the overall rate at which A is present, P A . By 1.1 , this implies that

P A and BŽ .
sP A ,Ž .P BŽ .
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or

P A and B sP A P B . 1.3Ž . Ž . Ž . Ž .

Ž .Equation 1.3 is often taken as the definition of independence, instead of
the equivalent statement

�P A B sP A .Ž . Ž .

Ž .A heuristic justification of 1.1 is the following. Let N denote the total
number of people in the population, N the number of people who haveA
characteristic A, N the number of people who have characteristic B, andB
N the number of people who have both characteristics. It is then clear thatA B

NAP A s ,Ž . N

NBP B s ,Ž . N

and

NA BP A and B s .Ž . N

Ž � .By P A B we mean the proportion out of all people who have characteristic
B who also have characteristic A, so that both the numerator and the

Ž � .denominator of P A B must be specific to B. Thus

NA B�P A B s . 1.4Ž . Ž .NB

Ž .If we now divide the numerator and denominator of 1.4 by N, we find that

N rN P A and BŽ .A B�P A B s s .Ž . N rN P BŽ .B

Ž .Equation 1.2 may be derived similarly:

N N rN P A and BŽ .A B A B�P B A s s s .Ž . N N rN P AŽ .A A

Ž . Ž .Equations 1.1 and 1.2 are connected by means of Bayes’ theorem:

�P A B P BŽ . Ž .
�P B A s . 1.5Ž . Ž .P AŽ .
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Ž . Ž . Ž � .Equation 1.5 follows from the definition of 1.2 of P B A and from the
Ž . Ž . Ž .fact, seen by multiplying both sides of 1.1 by P B , that P A and B s

Ž � . Ž .P A B P B .
Ž . Ž .It should be clear by comparing the denominators in 1.1 and 1.2 that

Ž � . Ž � .P A B may be very different from P B A . For example, suppose A is a
disease with multiple causes and B is a risk factor that is exceedingly rare,

Ž � .but almost always causes A when a person is exposed to it. Then P A B is
Ž � .close to 1 by assumption, but P B A may be close to 0, as most cases of A

will be caused by factors other than B. A similar phenomenon is studied in
Section 1.3. The moral is that for a conditional probability, as for any rate or
proportion, the denominator should always be clearly identified.

1.2. THE RULE OF TOTAL PROBABILITY

Ž .Let us consider the denominator of 1.5 in a bit more detail. It often
happens that information about characteristic A is available in the form of a
schedule of stratum-specific rates. Suppose there are k mutually exclusive
and exhaustive strata, identified by B , . . . , B , with specific rates1 k
Ž � . Ž � .P A B , . . . , P A B . In the example from the previous section, stratum B1 k i

Ž � .would represent a ten-year age interval, and P A B would be the corre-i
sponding age-specific rate of arteriosclerotic heart disease. Given the stratum

Ž . Ž .proportions P B , . . . , P B , which sum to unity, we can obtain the overall1 k
Ž .rate P A as

� �P A sP A B P B q ���qP A B P B . 1.6Ž . Ž . Ž . Ž .Ž . Ž .1 1 k k

Ž .Equation 1.6 expresses the familiar result that an overall rate is a weighted
average of specific rates, where the weights are the proportions of people in
the several strata. The result holds because if characteristic A occurs at all, it

Ž .must occur along with one and only one of the k exhaustive categories of
stratification B , . . . , B . Because these are mutually exclusive, the corre-1 k
sponding probabilities simply add:

P A sP A and B or A and B or . . . or A and BŽ . Ž . Ž . Ž .1 2 k

sP A and B q ���qP A and B . 1.7Ž . Ž . Ž .1 k

Ž . Ž � . Ž . Ž .For each term we have P A and B sP A B P B , from which 1.6i i i
Ž .follows. Equation 1.6 is called the rule of total probability. In the special case

of two stratum categories, say B and B, the rule can be written

� �P A sP A B P B qP A B P B . 1.8Ž . Ž . Ž . Ž . Ž .Ž .
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Ž .There is an interesting application of 1.8 in survey method known as the
Ž .randomized response technique. Originally introduced by Warner 1965 , the

method is designed to reduce bias due to evasive answers when interviewing
respondents on sensitive matters. Respondents will often evade a truthful
answer to a sensitive question for fear of stigmatization or incrimination,
even with routine assurances of confidentiality. In order to encourage more
accurate responses, in the randomized response technique an interviewer
seeks a yes or no answer to a randomized question, such that the interviewer
has no way of knowing what question the respondent is actually answering. If
the respondent can be assured that there can be no penalties from truthful
responses under such circumstances, the method can be successful in reduc-
ing bias. The following scheme described by Horvitz, Shah, and Simmons
Ž .1967 is one of several variations; another is given in Problem 1.4. The
interviewer hands the respondent a coin and a card on which there are two
questions: question H is the sensitive question, while question T is an
innocuous question, such as ‘‘Is your mother’s maiden name spelled with an
even number of letters?’’ Respondent is instructed to toss the coin, and
without revealing the outcome to the interviewer, answers yes or no to
question H or T according as the coin comes up heads or tails. Thus the
interviewer never knows whether the answer the respondent records is to
question H or T.

Suppose a proportion p out of n respondents answer yes in the above
w xfashion. Let A denote the event As respondent answered yes , and let B

w x Ž .denote the event Bs coin came up heads . Then p is an estimate of P A ,
the proportion of all people in the population surveyed who would answer

Ž � .yes. We seek P A B , the proportion of such respondents who would answer
Ž .yes to the sensitive question. The remaining terms in 1.8 are known:

1 1Ž . Ž . Ž � .P B sP B s by the coin toss, and P A B s by design of the innocu-2 2
1 1 1Ž � . Ž . Ž .ous question. Then solving for P A B yields the estimate py � r s2 2 2

1 Ž .2 py . Since P A must lie between 0.25 and 0.75, in large samples p will2
Ž � .also lie in this interval and will yield a reasonable estimate of P A B .

1.3. THE EVALUATION OF A SCREENING TEST

A frequent application of Bayes’ theorem is in evaluating the performance of
a diagnostic test intended for use in a screening program. Let B denote the
event that a person has the disease in question, B the event that he does not
have the disease, A the event that he gives a positive response to the test,
and A the event that he gives a negative response. Note that we distinguish

Ž .between a test giving a positive or negative response and a person truly
Ž .having or not having the disease, i.e., we acknowledge that the test can be

in error. Suppose now that the test has been applied to a sample of B’s, that
is, to a sample of people with the disease, and to a sample of B’s, that is, to a
sample of people without the disease.
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The results of this trial of the screening test may be represented by the
Ž � . Ž � . Ž � .two conditional probabilities P A B and P A B . P A B is the condi-

tional probability of a positive response given that the person has the disease;
Ž � . Ž � .the larger P A B is, the more sensiti®e the test is. P A B is the conditional

probability of a positive response given that the person is free of the disease;
Ž � . w Ž � . xthe smaller P A B is equivalently, the larger P A B is , the more specific

the test is. These definitions of a test’s sensitivity and specificity are due to
Ž .Yerushalmy 1947 .

Of greater concern than the test’s sensitivity and specificity, however, are
the probabilities of correctly identifying people as truly diseased or not if the
test is actually used in a screening program. If a positive result is taken to
indicate the presence of the disease, then the test’s positi®e predicti®e ®alue, or
PPV, is the proportion of people, among those responding positive, who truly

Ž � .have the disease, or P B A . By Bayes’ theorem,

�P A B �P BŽ . Ž .
�PPVsP B A s . 1.9Ž . Ž .P AŽ .

If a negative result is taken to indicate the absence of the disease, then the
test’s negati®e predicti®e ®alue, or NPV, is the proportion of people, among

Ž � .those responding negative, who truly do not have the disease, or P B A .
Again by Bayes’ theorem,

� �P A B �P B P A B � 1yP B� 4Ž . Ž .Ž . Ž .
�NPVsP B A s s . 1.10Ž .Ž . 1yP AŽ .P AŽ .

Ž � .Let Sens denote sensitivity, SenssP A B ; let Spec denote specificity,
Ž � .SpecsP A B ; and let � denote the prevalence of the disease in the

Ž . Ž . Ž .population being studied, �sP B . Then 1.9 and 1.10 are expressible as

Sens ��
PPVs , 1.11Ž .Sens ��q 1ySpec 1y�Ž . Ž .

and

Spec � 1y�Ž .
NPVs . 1.12Ž .Spec � 1y� q 1ySens �Ž . Ž .

w Ž .In the previous edition of the book, we analyzed the complements of 1.9
Ž .and 1.10 , quantities we labeled the false positi®e rate and the false negati®e

rate. Given the inconsistent meanings that attach to these two quantities�see
Ž . Ž .Galen and Gambino 1975 and Rogan and Gladen 1978 �we decided to

xwork exclusively with predictive values in the present edition.
Ž . Ž .Cochrane and Holland 1971 and Galen and Gambino 1975 analyzed

the performance of screening and diagnostic tests for a variety of medical
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Table 1.1. Results of a trial of a screening test

Test Result

Ž . Ž .Disease Status q A y A Total

Ž .Present B 950 50 1,000
Ž .Absent B 10 990 1,000

Ž . Ž .disorders. We see from 1.11 and 1.12 that, in general, the two predictive
values are functions of sensitivity and specificity, which may be estimated
from the results of a trial of the screening test, and of the prevalence of the
disease, for which an accurate estimate is rarely available. Nevertheless, a
range of likely values for the error rates may be determined as in the
following example.

Suppose that the test is applied to a sample of 1,000 people known to have
the disease and to a sample of 1,000 people known not to have the disease.
Suppose that this trial resulted in the frequencies shown in Table 1.1. We
would then have the estimate of sensitivity,

�SenssP A B s950r1,000s0.95,Ž .

and the estimate of specificity,

�SpecsP A B s990r1,000s0.99,Ž .

a pair of probabilities indicating a test that is both sensitive and specific to
the disease being studied.

Ž .Substitution of these two probabilities in 1.11 gives, as the value for the
positive predictive value,

0.95 �� 95�
PPVs s . 1.13Ž .94�q10.95 ��q 1y0.99 1y�Ž . Ž .

Ž .Substitution in 1.12 gives, as the value of the negative predictive value,

0.99 � 1y� 99y99 ��Ž .
NPVs s . 1.14Ž .99y94 ��0.99 � 1y� q0.05 ��Ž .

Table 1.2 gives the predictive values associated with various values of the
disease prevalence, �. For few disorders will the prevalence exceed 1% of
the population.

If the disease is not too prevalent�if it affects, say, less than 1% of the
population�the negative predictive value will be quite high but the positive
predictive value will be rather small. From one point of view, the test is a
successful one: NPV is greater than 9,995r10,000; therefore, of every 10,000
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Table 1.2. Predicti©e ©alues associated with a screening test

Positive Predictive Value Negative Predictive Value
Ž . Ž .� PPV NPV

1r1,000,000 0.0001 1.0
1r100,000 0.0009 1.0
1r10,000 0.0094 0.99999
1r1,000 0.087 0.99995
1r500 0.160 0.99990
1r200 0.323 0.99975
1r100 0.490 0.99949

people who respond negative and are thus presumably given a clean bill of
health, no more than 5 should actually have been informed they were ill.
From another point of view, the test is a failure: PPV is less than 50r100;
therefore, of every 100 people who respond positive and thus presumably are
told they have the disease or are at least advised to undergo further tests,
more than 50 will actually be free of the disease.

Ž .Bayes’ theorem illuminates what is going on here. Write 1.9 in odds form,
which expresses probabilities in the form of a ratio of the probability to its
complement:

� �P B A P A B P B rP APPV Ž . Ž . Ž . Ž .
s s �1yPPV � �P B A P A B P B rP AŽ . Ž .Ž . Ž .

�P A B P BŽ . Ž .
s � . 1.15Ž .

�P A B P BŽ .Ž .

We see that the odds on true disease versus not, among those testing
Ž � . Ž � .positive, is the product of two factors: the first is P A B rP A B s

Ž .Sensr 1ySpec , and is called the likelihood ratio; the second factor is the
Ž .prevalence odds on disease in the population. In words, then, equation 1.15

states that the posterior odds on disease, given a positive test result, is the
product of the likelihood ratio and the a priori prevalence odds on disease,
that is, the odds we would quote before knowledge of any test result. The
likelihood ratio depends only on the sensitivity and specificity of the test, and
so is an empirically determinable measure of the evidentiary value of a

Ž .positive test result. In the example, the likelihood ratio is Sensr 1ySpec s
0.95r0.01s95. Thus a positive test result is 95 times more likely to occur in
a person with disease than in one without. When the prevalence odds on

Ž . Ž .disease are low, however, the term P B rP B dominates the salutary effect
of the likelihood ratio, and yields a soberingly low posterior odds on disease,
as the results in Table 1.2 for PPV indicate.

The final decision whether or not to use the test will depend on the
seriousness of the disease and on the cost of further tests or treatment.
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Because the positive predictive value is so low, however, it would be hard to
justify using this screening test for any but the most serious diseases. Since

Ž � . Ž � .the proportions P A B and P A B considered in this example are better
than those associated with most existing screening tests, it is disquieting to
realize that their positive predictive values are probably far below the 50 out
of 100 that we found as an upper limit here.

One method for improving the positive or negative predictive value
Žassociated with a diagnostic screening procedure but thereby increasing its

.cost is to repeat the test a number of times and to declare the final result
positive if the subject responds positive to each administration of the test or

Ž . Ž .if he responds positive to a majority of the administrations. Parts b and c
of Problem 1.2 illustrate the improved performance of a screening procedure

Ž .when a test is administered twice. Sandifer, Fleiss, and Green 1968 have
shown that, for some disorders, a better rule is to administer the test three
times and to declare the final result positive if the subject responds positive
to at least two of the three administrations. Only those subjects who respond
to one of the first two administrations and negative to the other will have to
be tested a third time. Those who respond positive to both of the first two
administrations will be declared positive, and those who respond negative to
both will be declared negative.

A more accurate but more complex assessment of the performance of a
screening procedure than the above is possible when disease severity is
assumed to vary and not, as here, merely to be present or absent. The

Ž .appropriate analysis was originally proposed by Neyman 1947 and later
Ž . Ž .extended by Greenhouse and Mantel 1950 and by Nissen-Meyer 1964 .

The reader is referred to these papers and to a review article by McNeil,
Ž .Keeler, and Adelstein 1975 for details.

1.4. BIASES RESULTING FROM THE STUDY
OF SELECTED SAMPLES

The first clues to the association between diseases and antecedent conditions
frequently come from the study of such selected samples as hospitalized
patients and autopsy cases. Because not all subjects are equally likely to end
up in the study samples, bias may result when the associations found in the
selected samples are presumed to apply in the population at large.

Ž .A classic example of this kind of bias occurs in a study by Pearl 1929 . A
large number of autopsy cases were cross-classified by the presence or
absence of cancer and by the presence or absence of tuberculosis. A negative
association between these two diseases was found, that is, tuberculosis was
less frequent in autopsy cases with cancer than in cases without cancer. Pearl
inferred that the same negative association should apply to live patients, and
in fact acted on the basis of this inference by conceiving a study to treat

Ž .terminal cancer patients with tuberculin the protein of the tubercle bacillus
in the anticipation that the cancer would be arrested. What Pearl ignored is
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Table 1.3. Locomotor disease by respiratory disease in hospitalized subsample

Locomotor DiseaseRespiratory Proportion with
Disease Present Absent Total Locomotor Disease

Present 5 15 20 0.25sp1
Absent 18 219 237 0.08sp2
Total 23 234 257 0.09sp

that, unless all deaths are equally likely to be autopsied, it is improper to
extrapolate to live patients an association found for autopsied cases. It is
even possible that there would be no association for live patients but, due to
the differential selection of patients for autopsy, a strong association for
autopsied cases.

The same kind of bias, known as Berkson’s fallacy after the person who
Ž .first studied it in detail Berkson, 1946, 1955 , is possible whenever a subject’s

chances of being included in the study sample vary. Berkson’s fallacy has also
Ž . Ž .been studied by Mainland 1953; 1963, pp. 117�124 , White 1953 , Mantel

Ž . Ž .and Haenszel 1959 , and Brown 1976 . Curiously, the actual existence of the
fallacy was not demonstrated empirically until a report by Roberts et al.
Ž . Ž .1978 . It is illustrated below in data from Sackett 1979 .

Of a random sample of 2,784 individuals interviewed in the community,
257 had been hospitalized during the prior six months. Data on the presence
or absence of respiratory disease and on the presence or absence of disease

Ž .of bones and organs of movement abbreviated locomotor disease for the
subsample that had been hospitalized are presented in Table 1.3.

There is clearly an association between whether a hospitalized patient had
or did not have respiratory disease and whether he or she had or did not
have locomotor disease: the proportion of patients with locomotor disease
among those who had respiratory disease, p s0.25, was over three times the1
proportion of patients with locomotor disease among those who did not have
respiratory disease, p s0.08. Would it, however, be correct to conclude that2
the two kinds of disease were associated in the community?

Not necessarily. In fact, these two characteristics �respiratory disease and
locomotor disease�are essentially independent in the community. As shown
in Table 1.4, the rates of locomotor disease are virtually the same in people
with and without respiratory disease.

Table 1.4. Locomotor disease by respiratory disease in general population

Locomotor DiseaseRespiratory Proportion with
Disease Present Absent Total Locomotor Disease

Present 17 207 224 0.08sp1
Absent 184 2,376 2,560 0.07sp2
Total 201 2,583 2,784 0.07sp
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The source of the apparent paradox lies in variations across the four
Žpossible kinds of people both diseases present, only respiratory disease

.present, only locomotor disease present, neither disease present in the
likelihood of being hospitalized. It may be checked by comparing correspond-
ing cell frequencies in Tables 1.3 and 1.4 that the hospitalization rate for
people with both diseases, 29%, was about three times each of the rates for
the other kinds of people, which ranged from 7% to 10%.

Berkson’s fallacy is always possible when admission rates for people with
different combinations of factors vary; it can reasonably be ruled out only

Žwhen the disease or diseases in question almost always require care e.g.,
.leukemia and some other cancers . The algebra underlying the phenomenon

is as follows. Let B denote the event that a person has one of the two
Ž .characteristics under study in this case, respiratory disease , and B the event

Ž .that he or she does not. Let P B denote the proportion of all people in the
Ž . Ž .community who have the characteristic and let P B s1yP B denote the

proportion of all people who do not.
Let A denote the event that a person has the other characteristic under

Ž .study in this case, locomotor disease , and A the event that he or she does
Ž . Ž . Ž .not, and let P A and P A s1yP A denote the corresponding propor-

Ž .tions. Let P A and B denote the proportion of all people in the community
who have both characteristics, and assume that the two characteristics are

Ž . Ž . Ž . Ž .independent in the community. Thus by 1.3 , P A and B sP A P B .
Let H denote the event that a person from the community is hospitalized

Ž � .for some reason or other. Define P H A and B as the proportion, out of all
Ž � .people who have both characteristics, who are hospitalized; P H A and B

as the proportion, out of all people who have one characteristic but not the
Ž � . Ž � .other, who are hospitalized; and P H A and B and P H A and B simi-

larly. Our problem is to evaluate, in terms of these probabilities,

�p sP A B and H ,Ž .1

that is, the proportion, out of all people who are characterized by B and are
hospitalized, that turns out to have A; and

�p sP A B and H ,Ž .2

that is, the proportion, out of all people who are not characterized by B and
are hospitalized, that turns out to have A.

We make use of the following version of the definition of a conditional
probability:

�P A and B HŽ .
�p sP A B and H s . 1.16Ž . Ž .1 �P B HŽ .

Ž . Ž .Equation 1.16 differs from 1.2 only in that, once specified, the second
Ž .condition H for hospitalization remains a condition qualifying all probabili-

ties.
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A similar expression holds for the complement of p ,1

�P A and B HŽ .
�1yp sP A B and H s , 1.17Ž .Ž .1 �P B HŽ .

Ž . Ž .and because the denominators of 1.16 and 1.17 are the same, the ratio of
p to its complement is1

� �p P A B and H P A and B HŽ . Ž .1 s s . 1.18Ž .1yp � �1 P A B and H P A and B HŽ . Ž .

By Bayes’ theorem,

�P H A and B P A and BŽ . Ž .
�P A and B H sŽ . P HŽ .

�P H A and B P A P BŽ . Ž . Ž .
s

P HŽ .

because of the assumed independence of A and B. Similarly,

�P H A and B P A and BŽ .Ž .
�P A and B H sŽ . P HŽ .

�P H A and B P A P BŽ . Ž .Ž .
s

P HŽ .

and so

� �p P A B and H P H A and B P AŽ . Ž . Ž .1 s s ,1yp � �1 P A B and H P H A and B P AŽ .Ž . Ž .

from which it follows that

�P H A and B P AŽ . Ž .
p s . 1.19Ž .1 � �P H A and B P A qP H A and B P AŽ . Ž . Ž .Ž .

Similarly,

� �p P A B and H P H A and B P AŽ .Ž . Ž .2 s s ,1yp2 � �P A B and H P H A and B P AŽ .Ž . Ž .

from which it follows that

�P H A and B P AŽ .Ž .
p s . 1.20Ž .2

� �P H A and B P A qP H A and B P AŽ . Ž .Ž . Ž .
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Ž . Ž .The two probabilities in 1.19 and 1.20 are not equal if the rates of
hospitalization are not equal, even though the corresponding probabilities in

Ž � . Ž � .the community, P A B and P A B , are equal.
Ž .In our example, with A denoting locomotor disease, P A s7%. The

various hospitalization rates were

�P H A and B s29%,Ž .

�P H A and B s7%,Ž .
�P H A and B s10%,Ž .

�P H A and B s9%.Ž .

Ž . Ž .Substituting these values into 1.19 and 1.20 , we find that

0.29�0.07 0.020
p s s s0.241 0.29�0.07q0.07�0.93 0.085

and that

0.10�0.07 0.007
p s s s0.08,2 0.10�0.07q0.09�0.93 0.091

close to the values we found in Table 1.3.
The moral of this exercise is clear. Unless something is known about

differential hospitalization rates or differential autopsy rates, a good amount
of skepticism should be applied to any generalization from associations found
for hospitalized patients or for autopsy cases to associations for people at
large. This caveat obviously applies also to associations obtained from reports
by volunteers.

PROBLEMS

Ž . Ž . Ž .1.1. Characteristics A and B are independent if P A and B sP A P B .
Ž . Ž . Ž . ŽShow that, if this is so, then P A and B sP A P B , P A and

. Ž . Ž . Ž . Ž . Ž . w Ž . ŽB sP A P B , and P A and B sP A P B . Hint. P A sP A and

. Ž . Ž . Ž . Ž .B qP A and B , so that P A and B sP A yP A and B . Use the
Ž . Ž . Ž . Ž .given relation, P A and B sP A P B , and use the fact that P B s

Ž . x1yP B .

Ž .1.2. Assume that the case rate for a specified disease, P B , is one case per
1000 population and that a screening test for the disease is being
studied.
( )a Suppose that the test is administered a single time to a sample of

people with the disease, of whom 99% respond positive. Suppose
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that it is also administered to a sample of people without the
disease, of whom 1% respond positive. What are the positive and
negative predictive values? Do you think the test is a good one?

( )b Suppose now that the test is administered twice, with a positive
overall result declared only if both tests are positive. Suppose,
according to this revised definition, that 98% of the diseased sample
respond positive, but that only one out of 10,000 nondiseased people
respond positive. What are the positive and negative predictive
values now? Would you be willing to employ the test for screening
under these revised conditions?

( )c Note that not all people have to be tested twice. Only if the first test
result is positive must a second test be administered; the final result
will be declared positive only if the second test is positive as well. It
is important to estimate the proportion of all people who will have
to be tested again, that is, the proportion who are positive on their
first test. What is this proportion? Out of every 100,000 people
tested once, how many will not need to be tested again?

1.3. The opposite kind of bias from that considered in Section 1.3 can occur.
That is, two characteristics may be associated in the community but may
be independent when hospitalized samples are studied. Let A represent
living alone, A living with family, B having a neurosis, and B not having

Ž � . Ž � .a neurosis. Suppose that P A B s0.40 and P A B s0.20. Thus 40%
of neurotics live alone and 20% of nonneurotics live alone. Suppose
that, in the population at large, 100,000 people are neurotic and one
million are not neurotic.
( ) Ž .a Consider first the 100,000 neurotics. 1 How many of them live

Ž .alone? 2 If the annual hospitalization rate for neurotics living
alone is 5r1000, how many such people will be hospitalized? Note
that this is the number of hospitalized neurotics one would find who

Ž .lived alone, that is, the numerator of p . 3 How many of the1
Ž .100,000 neurotics live with their families? 4 If the annual hospital-

ization rate for neurotics living with their families is 6r1000, how
many such people will be hospitalized? Note that the sum of the

Ž . Ž .numbers found in 2 and 4 is the total number of hospitalized
Ž .neurotics, that is, the denominator of p . 5 What is the value of p ,1 1

Ž .the proportion of hospitalized neurotics who lived alone? 6 How
Ž � .does p compare with P A B , the proportion of neurotics in the1

community who live alone?
( ) Ž .b Consider now the one million nonneurotics. 1 How many of them

Ž .live alone? 2 If the annual hospitalization rate for nonneurotics
living alone is 5r1000, how many such people will be hospitalized?
Note that this is the number of hospitalized nonneurotics one would

Ž .find who lived alone, that is, the numerator of p . 3 How many of2
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Ž .the one million nonneurotics live with their families? 4 If the
annual hospitalization rate for nonneurotics living with their families
is 225r100,000, how many such people will be hospitalized? Note

Ž . Ž .that the sum of the numbers found in b2 and b4 is the total
number of hospitalized nonneurotics, that is, the denominator of p .2
Ž .5 What is the value of p , the proportion of hospitalized nonneu-2

Ž . Ž � .rotics who lived alone? 6 How does p compare with P A B , the2
proportion of nonneurotics in the community who live alone?

( )c What inference would you draw from the comparison of p and p ?1 2
How does this inference compare with the inference drawn from the

Ž � . Ž � .comparison of P A B and P A B ?

1.4. In a variation of the randomized response technique described by Kuk
Ž .1990 , the interviewer hands the respondent two decks of cards. After
shuffling each deck, the respondent selects a card at random from either
deck 1 or deck 2, according as the true answer to the sensitive question
would be yes or no. Respondent reports the color of the card selected
Ž .red or black , but does not reveal to the interviewer which deck was
used. In this version, respondent does not have to answer any yes-no
question, and may thus feel more at ease following the rules. Assuming
the proportion of red cards in deck 1 is P and the proportion of red1
cards in deck 2 is P , with P not equal to P :2 1 2

( )a Find an estimate of the proportion of people for whom the answer
to the sensitive question is yes, given that proportion p of respon-
dents selected a red card.

( ) Ž .b What is the variance of the estimate found in a ?
( )c Discuss the trade-off between bias due to an evasive answer and the

variance of the estimate as a function of the magnitudes of P and1
P .2
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Statistical Inference for a
Single Proportion

Most frequently studies compare two or more proportions, but occasionally
we need to draw statistical inferences about a single proportion. For exam-
ple, a survey has collected data on the prevalence of a health condition. How
do we assess whether or not the data support prior claims about the
prevalence of the condition? What are the limits of uncertainty that accom-
pany the estimated population prevalence? Here is another example. A
‘‘Phase II’’ clinical trial is being planned to investigate a new drug for the
acute treatment of stroke victims, in advance of a large-scale, ‘‘Phase III’’
randomized clinical trial. How many patient participants are needed to
confirm initial hopes that the new drug is superior to the standard treat-
ment?

This chapter presents a brief survey of inferential methods for such
problems and lays a formal groundwork for statistical ideas used throughout
the book. Section 2.1 discusses methods of testing hypotheses about the
parameter of a binomial distribution, using exact binomial calculations.
Sections 2.2 and 2.3 continue with a discussion of confidence intervals.
Section 2.4 presents methods that are approximate, being based on large-
sample normal theory, and that require only pencil-and-paper calculations, or
at most a hand-held calculator. Section 2.5 takes up the important question
of sample size planning for a single-sample study. The reader who wants
a quick introduction to the fundamental ideas can stop there and browse
the rest later. Sections 2.6� and 2.7� may be skipped on first reading without
loss of continuity. Section 2.6� discusses how to calculate approximate
standard errors by the delta method. Section 2.7� discusses different ways of
determining p-values and confidence intervals for discrete and asymmetrical
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distributions. Readers already familiar with basic binomial inference can turn
straightaway to statistical methods for fourfold tables in Chapter 3.

2.1. EXACT INFERENCE FOR A SINGLE PROPORTION:
HYPOTHESIS TESTS

Consider a study in which a random sample of n individuals is drawn from a
large population, and the presence or absence of a specified condition or
trait is ascertained for each person in the sample. Let X denote the number
of persons who are found to have the condition. The binomial probability
distribution gives the likelihoods of the nq1 possible outcomes of the study

Ž . Ž�no person has the condition Xs0 , exactly one has the condition Xs
. Ž .1 , . . . , all n have the condition Xsn . If P is the proportion of members of

the underlying population who have the condition, then the probability that
exactly Xsx members of the sample have the condition is denoted by

Ž � .Bin x n, P and given by the formula

n! nyxn x nyx x�P Xsx sBin x n , P s P Q s P 1yP . 2.1Ž . Ž . Ž . Ž .ž / x! nyx !x Ž .

wIn this expression, Qs1yP,

n!n s read ‘‘n choose x ’’Ž .ž / x! nyx !x Ž .

Ž .is called the binomial coefficient, and x! read ‘‘ x factorial’’ is equal to the
Ž .product x!sx� xy1 � ��� �3�2�1. For example, 5!s5�4�3�2�

1s120, and

25! 25�24�23�22�2125 s s s53,130.ž / 5!20! 5�4�3�2�15

xBy convention, 0!s1. The probability that x or more members of the
sample have the condition is equal to

n

�P XGx s Bin i n , P ,Ž . Ž .Ý
isx

and the probability that x or fewer do is equal to

x

�P XFx s Bin i n , P .Ž . Ž .Ý
is0
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Suppose that each member of a sample of ns25 patients known to have a
certain disorder is evaluated with a new diagnostic procedure, and that
x s23 of them are classified by it as positive. Positivity with the new0
diagnostic procedure is the ‘‘condition’’ of the preceding paragraph, and the
sensitivity P of the new procedure is estimated to be 23r25, or 92%. If the
standard laboratory procedure for the disorder has a sensitivity of P s0.75,0
the probability that exactly 23 of 25 patients would be classified as positive,
assuming that the new procedure has the same underlying sensitivity as the
standard, is

25! 25�2423 2 23 2�Bin 23 25, 0.75 s 0.75 0.25 s 0.75 0.25Ž . 23!2! 2

s300�0.001338�0.0625s0.0251.

A scientific or substantive hypothesis explains and predicts certain out-
comes obtained either experimentally or observationally. The traditional
statistical approach to testing such a hypothesis calls for the following steps:
Ž .i setting up a competing null hypothesis that predicts those outcomes based

Žon ordinary causes andror chance the scientific hypothesis is then referred
. Ž .to as the alternati®e hypothesis ; ii calculating the probability, assuming the

null hypothesis holds, of obtaining the outcome that actually occurred, plus
the probabilities of all other outcomes as extreme as, or more extreme than,

Ž .the one that was observed; and iii rejecting the null hypothesis in favor of
the alternative hypothesis if the sum of all these probabilities�the so-called
p-®alue�is less than or equal to a predetermined level, denoted by � , called
the significance le®el. If the p-value exceeds � , the null hypothesis is not
rejected. In the biological and social sciences, where variability of observa-
tions is substantial, typical values for the significance level � are 0.10, 0.05,
and 0.01. In the physical sciences, where the precision of observations can be
quite high, typical values for � are 0.01, 0.001, or less.

Note that rejection of the null hypothesis does not constitute proof that
the alternative hypothesis is true. The null hypothesis could be entirely true,
and an event of low likelihood�� or less�might have occurred. An error,
called the Type I error in the jargon of statistics, would then have been
committed: rejecting the null hypothesis when it is true. It is impossible to
avoid ever making such an error. What one does in the traditional ‘‘frequen-
tist’’ mode of statistical inference is to make the chances of committing a
Type I error tolerably small. On the other hand, failing to reject the null
hypothesis does not constitute proof that it is true. The competing alternative
hypothesis could be entirely true, yet the probability of the outcomes by

Ž .chance alone might be sufficiently large above � , resulting in the failure to
reject the null hypothesis. Such an error is called a Type II error; it frequently
occurs because the study’s sample size is not large enough, an issue that will
be taken up in Section 2.5. We note also that neither the statistical nor the
alternative hypothesis need be true�explanations other than those two may
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be correct. Weighing of the statistical evidence of one hypothesis versus
another is best accomplished by examination of the likelihood ratio, which we
introduced in Section 1.3 and discuss again in Section 2.7.

Returning to our example, the investigators who developed the new
diagnostic procedure would be interested in testing the alternative hypothesis
that it has sensitivity superior to the standard procedure’s sensitivity of 75%.
The competing null hypothesis is that the new procedure’s underlying sensi-
tivity is no better than 75%. If the estimated sensitivity of the new procedure
turned out to be less than 75%, there would obviously be no basis for
asserting that the new procedure was better than the standard. If the new
procedure’s sensitivity turned out to exceed 75%, the question would remain

Žwhether the difference was trivially small as would be the case if x were0
.equal to 19, yielding an estimated sensitivity of 76% or was large enough to

cast serious doubt on the tenability of the null hypothesis.
Ž � .We already found that Bin 23 25, 0.75 s0.0251. To carry out the hypoth-

Ž � .esis test as described above, we also need the values of Bin 24 25, 0.75 s
Ž � .0.0063 and Bin 25 25, 0.75 s0.0008. The sum of these probabilities is the
Ž .p-value, 0.0321 adjusted for round-off . If the prespecified significance level

was �s0.05, we would reject the null hypothesis and conclude that the new
procedure’s underlying true sensitivity was greater than 75%. In repeated
applications of this statistical procedure, our conclusion would be incorrect
no more than 5% of the time when the null hypothesis holds.

The above test is an example of a one-tailed test, in which the alternative
hypothesis is that the new procedure is better, in terms of sensitivity, than the
standard. Ruled out as unimportant or uninteresting is the possibility that
the new procedure is worse than the standard. Another way of stating the
circumstances under which a one-tailed test is appropriate is that the con-
sequences of the new procedure’s sensitivity being the same as the standard’s
for how one acts or what one thinks or believes are the same as the
consequences of the new procedure’s sensitivity being poorer than the stan-
dard’s. Suppose that, on the contrary, it is interesting or important to
distinguish between these two possibilities. For example, the investigators
might continue to conduct research on the new procedure if it is equal in
sensitivity to the standard, but might decide to discontinue research if its
sensitivity is substantially poorer. A two-tailed test would then be in order,
wherein the null hypothesis is that there is no difference in sensitivity. This
null hypothesis would be rejected if the new procedures estimated sensitivity
was either significantly larger or significantly smaller than 75%.

Different two-tailed tests are possible, depending on how one wishes to
apportion the Type I error rate, � , between an outcome suggesting superior-
ity of the new procedure and one suggesting inferiority. The simplest and
most widely used two-tailed test apportions the overall error rate equally, as
follows. One rejects the null hypothesis in favor of the alternative that the

Ž .new procedure has greater sensitivity than 75% if P XGx F�r2, and one0
rejects the null hypothesis in favor of the alternative that the new procedure’s

Ž .sensitivity is worse than 75% if P XFx F�r2.0



2.1 EXACT INFERENCE FOR A SINGLE PROPORTION: HYPOTHESIS TESTS 21

In the example, with ns25, x s23, and P s0.75, the null hypothesis0 0
H : PsP would not be rejected with a two-tailed test having a significance0 0
level of �s0.05 because

25
�P XG23 s Bin x 25, 0.75 s0.0321,Ž . Ž .Ý

xs23

which is greater than the critical probability 0.05r2s0.025. With respect
to the upper tail, only the values xs24 or xs25 permit rejection of the
null hypothesis in favor of the alternative that the new procedure is better
than the standard. With respect to the lower tail, values of x that are 13 or
less lead to rejecting the null hypothesis in favor of the alternative that the

13 Ž � .new procedure’s sensitivity is poorer than the standard’s: Ý Bin x 25, 0.75xs0
s 0.0107, which is less than the critical probability 0.025, but

14 Ž � .Ý Bin x 25, 0.75 s0.0297, which is not.xs0
Suppose the investigators had decided, in ad®ance of the experiment, that a

Type I error in the direction of finding the new procedure inferior to the
standard was consequential only if the new procedure performed extremely
poorly. They might then have set up the test procedure using an asymmetric
rule such as to reject the null hypothesis in favor of the alternative that the
new procedure has better sensitivity than P if the observed value of Xsx0 0
is such that

n

�Bin x n , P F0.04,Ž .Ý 0
xsx 0

and reject in favor of the alternative that the new procedure has poorer
sensitivity than P if x is such that0 0

x0

�Bin x n , P F0.01.Ž .Ý 0
xs0

In the case of such a prespecified rule, the outcome x s23 would lead to0
rejecting the null hypothesis.

What is the definition of the p-value in the two-tailed case? With symmet-
rical allocation of �r2 in each tail, the simplest procedure is to double the

Ž .smaller of the two one-tailed p-values. In the example, we have P XG23 s
Ž .0.0321, which is smaller than P XF23 s0.9930, so the two-tailed p-value is

2�0.0321s0.0642. This definition of two-tailed p-value works assuredly in
the sense that a hypothesis test based on rejecting the null hypothesis
whenever the two-tailed p-value is less than or equal to � will have a Type I

Ž .error no greater than � so it ‘‘works’’ , and this holds true for any value of
Ž .P so it’s ‘‘assured’’ . A proof of this assertion is given in Problem 2.7. We0

note that in some cases symmetrical allocation of Type I error may be
arbitrary. In the illustration given in the previous paragraph of an unequal
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allocation of Type I error, we would define the two-tailed p-value to be the
smaller of 5 times the lower tail probability and 5r4 times the upper tail

Ž .probability see Problem 2.8 . Ultimately, one might wish to deploy a data-
driven allocation of Type I error to the two tails, so long as the corresponding
two-tailed p-values work assuredly. Section 2.7� demonstrates how to do this
in a variety of ways.

2.2. EXACT INFERENCE FOR A SINGLE PROPORTION:
INTERVAL ESTIMATION

2.2.1. Definition of an Exact Confidence Interval

More informative, usually, than a test of the null hypothesis that the
underlying binomial parameter P is equal to some specified value P is a0
confidence inter®al for P. A confidence interval for a statistical parameter is a
set of values that are, in a sense to be made explicit, reasonable candidates
for being the true underlying value. A candidate value for the parameter is
said to be supported by the data at the � level of significance, if, were that
value hypothesized to be the true one and were the hypothesis put to the
test, it would not be rejected with a test having a significance level of � . A

Ž .100 1y� % confidence interval for a parameter includes all values that are
supported by the data, and excludes all values that are not supported by the
data, at the � level of significance. Each value falling outside of the interval
is such that, if it were hypothesized to be the value of the underlying
probability, that null hypothesis would be rejected at the � level of signifi-
cance.

Just as the investigators have to decide whether a one-tailed or two-tailed
test is more appropriate, so must they decide between a one-sided confidence
interval and a two-sided interval. An upper one-sided confidence interval for
an underlying probability P is an interval of the form P�P , where PL L
denotes the lower bound for the interval. Similarly, a lower one-sided
confidence interval is of the form P�P , where P denotes the upper boundU U
for the interval. A two-sided confidence interval is of the form P �P�P .L U

Ž .Consider finding the lower bound P for an upper 100 1y� % confi-L
dence interval for P. Except in special circumstances, no explicit formulas are
available for P ; it must be found by trial and error, by means of a formalL
iterative computation, or by special tables as shown in Section 2.3. In general,
one knows one has the correct value for P whenL

n

�Bin x n , P s� , 2.2Ž .Ž .Ý L
xsx 0

where x , recall, is the number of observations out of n possessing the0
characteristic under study. In the numerical example in which ns25 and
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x s23 with sample proportion ps0.92, the desired upper 95% one-sided0
confidence interval is

P�0.7690. 2.3Ž .

Ž .The reader may confirm that the value P s0.7690 satisfies equation 2.2L
for ns25, x s23, and �s0.05. This has been the first statistical problem0
posed in this text in which ‘‘you know you have the right answer when some
Ž .possibly complicated equation is satisfied.’’ It is not the last.

When x sn, so that all subjects in the sample are positive, an explicit0
equation is available for P . Because we want P to satisfy P ns� , it followsL L L
that P s� 1r n. An equivalent equation for P isL L

P seŽ ln � .r n , 2.4Ž .L

where ln denotes the natural logarithm and e x is the antilog of x. Had all 25
subjects in our example been classified as positive, the lower 95% confidence
bound on P would have been

P s0.051r25 sey2 .9957r25 sey0 .1198 s0.8871.L

Problem 2.1 gives a common application for an upper confidence limit
P s1y� 1r n based on the opposite extreme x s0.U 0

Ž .Notice that the 95% confidence interval in 2.3 excludes the value 0.75,
and recall that the null hypothesis H : Ps0.75 was rejected by a one-tailed0
test with a significance level of 0.05. Such concordance between the verdict
for or against a null hypothesis from an �-level significance test and
the inclusion or exclusion of the hypothesized parameter value from a

Ž .100 1y� % confidence interval always exists when the confidence interval is
test-based, that is, constructed according to the principle of including values
supported by the data at the � level of significance, and excluding all others.
We shall see in Section 2.4 that other methods of constructing confidence
intervals do not always give results concordant with those of significance
tests, although agreement tends to be good in large samples.

Just as many two-tailed significance tests exist, so do many two-sided
confidence intervals: if � and � are any two probabilities that sum to � ,1 2
the value P that satisfiesL

n

�Bin x n , P s� 2.5Ž .Ž .Ý L 1
xsx 0
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and the value P that satisfiesU

x0

�Bin x n , P s� 2.6Ž .Ž .Ý U 2
xs0

Ž .are lower and upper 100 1y� % confidence limits for P. It is standard
practice, and simplest, to take � s� s�r2. The reader is asked in Prob-1 2
lem 2.2 to prove that, in the numerical example,

0.74�P�0.99 2.7Ž .

is a two-sided 95% confidence interval for the underlying sensitivity of the
new procedure. Notice that the sensitivity value 0.75 for the standard

Ž .diagnostic procedure lies within the interval. This is necessarily consistent
with our not having rejected the hypothesis that the underlying sensitivity was

Žequal to 0.75, with a two-tailed test having a significance level of 0.05 with
.0.025 in each tail .

2.2.2. A Fundamental Property of Confidence Intervals

Confidence intervals have a fundamental property that justifies use of the
term ‘‘confidence.’’ The property concerns the co®erage probability for the
parameter in question:

Ž .A 100 1y� % confidence interval contains the true parameter value with proba-
bility at least 1y� .

Note that in hypothetical repetitions of the experiment, the endpoints of the
confidence interval would vary, since they depend on experimental outcomes
that are subject to sampling fluctuations. The fundamental property asserts

Ž .that the chance is at least 1y� that the random confidence interval covers
Ž .the true fixed parameter value. We thus have 95% confidence that the true

value is contained inside a 95% confidence interval in the same sense that we
Ž .might have 95% confidence that a baseball player with a phenomenal .950

batting average will get a hit on any given time at bat.
There is a subtle but important distinction between the fundamental

coverage property and the following statement, which refers to the numerical
Ž .example in expression 2.7 : ‘‘The probability is at least 95% that P lies

between 0.74 and 0.99.’’ Within the classical frequentist approach to infer-
ence, the true P is regarded as a fixed, if unknown, constant. In that case, P
lies either inside or outside the interval from 0.74 to 0.99 without doubt. The
statement only makes sense as a person’s subjective degree of belief about
where P is, or if one regards the true P not as a fixed constant but as a
random variable itself. This is the Bayesian approach, which we revisit in
Section 9.6. The key distinction between the two statements, then, is that the
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fundamental coverage property refers to a predictive operating characteristic
of the confidence interval procedure in general, not to after-the-fact, degree-
of-belief evaluations of coverage in specific applications of the procedure.

2.3. USING THE F DISTRIBUTION

Ž .Earlier we needed to solve equation 2.2 for P . Thanks to a lovely relationL
between sums of binomial probabilities and percentage points of the F
distribution, familiar from the analysis of variance, one may solve for PL
using tables of the F distribution, which appear in most introductory statis-
tics texts and are reproduced here as Table A.3. Let F denote thea, b; �

Ž .100 1y� th percentile of the F distribution with a and b degrees of
freedom; that is, F cuts off the proportion � in the upper tail of thisa, b; �

distribution. The value of P is given explicitly byL

x0P s , 2.8Ž .L x q nyx q1 FŽ .0 0 2Ž nyx q1. , 2 x ; �0 0

where x is the observed frequency. If x s0, the value of P is taken as 0.0 0 L
Consider again the example with ns25, x s23, and the requirement to0

determine the lower limit of an upper one-sided 95% confidence interval for
P. As may be found in Table A.3, after a bit of interpolation, F s2�3, 2�23; 0.05
F s2.30, so that6, 46; 0.05

23
P s s0.77,L 23q3�2.30

Ž .equal to the lower limit found in expression 2.3 .
Ž .The upper limit of a lower one-sided 100 1y� % confidence interval for

P is

x q1 FŽ .0 2Ž x q1. , 2Ž nyx . ; �0 0P s , 2.9Ž .U nyx q x q1 FŽ . Ž .0 0 2Ž x q1. , 2Ž nyx . ; �0 0

Ž .see Problem 2.3 . If x sn, the value of P is taken as 1. The equation that0 U
implicitly determines the value of P isU

x0

�Bin x n , P s� . 2.10Ž .Ž .Ý U
xs0

Suppose that ns25 and x s19, and that a lower one-sided 95% confidence0
interval is desired for P of the form P�P . The critical F value isU
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F sF s2.43, so that2�20, 2�6; 0.05 40, 12; 0.05

20 �2.43
P s s0.89.U 6q20�2.43

The reader may confirm that

19
�Bin x 25, 0.89 s0.05.Ž .Ý

xs0

Ž .The limits of a two-sided 100 1y� % confidence interval with the overall
Type I error rate evenly split between the two tails are

x0P sL x q nyx q1 FŽ .0 0 2Ž nyx q1. , 2 x ; �r20 0

and

x q1 FŽ .0 2Ž x q1. , 2Ž nyx . ; �r20 0P s .U nyx q x q1 FŽ . Ž .0 0 2Ž x q1. , 2Ž nyx . ; �r20 0

For ns25, x s23, and �s0.05, we have F s8.39 and F s0 48, 4; 0.025 6, 46; 0.025
2.70. Thus,

23
P s s0.74L 23q3�2.70

and

24�8.39
P s s0.99,U 2q24�8.39

Ž .identical to the limits reported in 2.7 .

2.4. APPROXIMATE INFERENCE FOR A SINGLE PROPORTION

When n is large, in the sense that nPG5 and nQG5, the following
procedures based on the normal distribution provide excellent approxima-
tions to the corresponding exact binomial procedures. They work in large
samples thanks to the central limit theorem, which implies that the sample
proportion, psXrn, is approximately normally distributed with mean P and
standard error

PQ
se p s . 2.11Ž . Ž .( n
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The sample proportion p is called a point estimator of the binomial parame-
ter P, and the preceding assertion concerns properties of the distribution of
the point estimator. In the sequel we will often be interested in the distribu-
tion of point estimators.

2.4.1. Hypothesis Tests

In order to test the null hypothesis that P is equal to a prespecified P0
against the two-sided alternative hypothesis that P�P , one may calculate0
the critical ratio

pyP y1r 2nŽ .0zs , 2.12Ž .
P Q rn' 0 0

where Q s1yP , and reject the hypothesis if z exceeds z , the critical0 0 �r2
value of the normal distribution for the desired two-tailed significance level

Ž .� . The quantity 1r 2n subtracted in the numerator is a correction for
continuity, bringing normal-curve tail probabilities into closer agreement with
binomial tail probabilities. It should be applied only when it is numerically

� �smaller than pyP .0
Consider again the study of ns25 patients with a certain disorder of

whom x s23 test positive on a new diagnostic procedure, with estimated0
sensitivity ps23r25s0.92. The null hypothesis that the underlying sensitiv-
ity is equal to P s0.75 may be tested with a two-tailed 0.05 level test by0

Ž .determining the value of the critical ratio in 2.12 ,

0.92y0.75 y1r 2�25Ž .
zs s1.73, 2.13Ž .

0.75�0.25( 25

and comparing it with the two-tailed 0.05-level critical value in Table A.1,
z s1.96. Because z is less than 1.96, the hypothesis that Ps0.75 cannot0.025
be rejected with the approximate two-tailed normal theory test. The same
conclusion was drawn in Section 2.1 from the exact two-tailed binomial test.

Equivalently, the approximate two-sided p-value associated with a normal
deviate of zs1.73 may be determined and compared with 0.05. This p-value
is the probability that a standard normal random variable exceeds 1.73 in
absolute value. From Table A.1, this probability is equal to 0.084, which
exceeds the specified significance level of 0.05. Again, the hypothesis that
Ps0.05 cannot be rejected.

One-tailed critical ratio tests are easily carried out. If the alternative
hypothesis is that the true proportion P is greater than P , the null0
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hypothesis is rejected in favor of this alternative when p�P and0

pyP y1r 2nŽ . Ž .0zs Gz , 2.14Ž .�P Q rn' 0 0

where z is the critical value of the normal distribution cutting off probability�

� in the upper tail. For example, z s1.645 and z s2.326. If the0.05 0.01
alternative hypothesis is that P�P , the null hypothesis is rejected in favor0
of this alternative when p�P and0

pyP q1r 2nŽ . Ž .0zs Fyz , 2.15Ž .�P Q rn' 0 0

Ž . Ž . Ž .The continuity correction is applied in 2.14 and 2.15 only if 1r 2n �
� �pyP .0

Consider testing the one-sided alternative hypothesis that sensitivity ex-
ceeds 0.75 in the example. Because ps0.92 is greater than 0.75, one may

Ž .calculate the value of the statistic in 2.14 . It is zs1.73, which exceeds the
critical value of z s1.645 required for a one-sided test with a significance0.05
level of 0.05. The hypothesis that P�0.75 is thus adopted, as it was with the
exact binomial analysis. The exact binomial probability of x s23 or more0
positives on the test being studied, assuming Ps0.75, was found to be 0.032.
The approximate p-value from the normal curve is 0.042, slightly greater.

2.4.2. Confidence Intervals

Ž .An approximate two-sided 100 1y� % confidence interval for the underly-
ing proportion consists of all those values of P that would not be rejected by
a two-tailed critical ratio test at the � level of significance. If the test is

Ž .based on the statistic given in 2.12 , and if z denotes the value cutting off�r2
probability �r2 in the upper tail of the normal distribution, an approximate

Ž .100 1y� % confidence interval consists of all those values of P satisfying

pyP y1r 2nŽ .
zs �z , 2.16Ž .�r2'PQrn

The limits of this interval are given by the two roots of the quadratic equation
Ž . 2obtained by setting the square of the left-hand side of 2.16 equal to z .�r2

Define qs1yp. The lower limit is given explicitly by

2 22npqz y1 yz z y 2q 1rn q4 p nqq1� 4Ž . Ž .'Ž .�r2 �r2 �r2
P s , 2.17Ž .L 22 nqzŽ .�r2
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and the upper limit by

2 22npqz q1 qz z q 2y 1rn q4 p nqy1� 4Ž . Ž .'Ž .�r2 �r2 �r2
P s 2.18Ž .U 22 nqzŽ .�r2

Ž .see Problem 2.4 .
For the data being analyzed, ns25, ps0.92, and qs0.08. For a two-

sided 95% confidence interval for P, we have z sz s1.96. It may be�r2 0.025
Ž . Ž .checked that 2.17 and 2.18 yield P s0.725 and P s0.986, soL U

0.73�P�0.99

is an approximate 95% confidence interval for P. The agreement is excellent
Ž .with the exact interval given in 2.7 . Further, the reader may check that if

P s0.725 or P s0.986 is hypothesized as the value of P, the resulting value0 0
Ž .of z in 2.12 is exactly equal to 1.96.

The preceding somewhat complicated procedure for setting a confidence
interval around P is preferred amongst approximate methods when p is near

Ž .zero or near unity. When p is of moderate size say, 0.3FpF0.7 , the
following more familiar and simpler procedure may be employed when n is

Ž . 'large again, nPG5 and nQGn . Because u 1yu remains fairly constantŽ .
Ž .' 'for 0.3FuF0.7, PQ in the denominator of 2.16 may be replaced by pq

without materially affecting the quality of the large-sample normal approxi-
mation. This yields the interval

pq 1 pq 1
pyz y �P�pqz q 2.19Ž .' '�r2 �r2n 2n n 2n

Ž .as an approximate 100 1y� % confidence interval for P. For the data at
hand, however, the resulting interval is

0.79�P�1.05.

The interval is shifted so strongly to the right relative to the technically more
accurate one that its upper limit is absurd. Problem 2.5 illustrates related

Ž .problems with the interval in 2.19 when p is close to 0 or 1, and Problem
Ž . Ž .2.6 asks the reader to prove that the interval given by 2.17 and 2.18 always

lies between 0 and 1.

2.5. SAMPLE SIZE FOR A ONE-SAMPLE STUDY

One of the most important steps in designing a study is the determination of
the number of participants. In this section we consider the sample size
problem for hypothesis testing and interval estimation in the prototype case
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of a single binomial sample. Section 2.5.1 introduces the related problems of
sample size, statistical power, and detectable effect size for testing hypothe-
ses about the binomial parameter P. Section 2.5.2 determines the sample size
required to construct a confidence interval for P with maximum predeter-
mined width.

2.5.1. Sample Size for Hypothesis Tests

The problem stated at the beginning of the chapter is typical of sample size
determination problems. Here is a version in a bit more detail:

A Phase II clinical trial is being planned to investigate a new drug for the acute
treatment of stroke victims, in advance of a large-scale, Phase III randomized
clinical trial. The new drug is actually a modified form of the tissue plasminogen

Ž .activator tPA molecule that has been shown to be effective in helping stroke
patients recover. In the Phase II trial the investigators want to determine whether
the new preparation can substantially reduce the rate of intracerebral hemorrhage
Ž .ICH , a serious adverse side effect that occurs with a known frequency of 6%
within three days of treatment by tPA . Stroke patients who consent will be given
the new treatment in a single treatment arm. If the new drug is successful in
reducing the rate of ICH substantially below 6%, the drug will be taken to the
Phase III randomized controlled trial to test its efficacy and safety definitively in
comparison with tPA. The investigators decide to conduct a one-sided test, on the
following grounds. No further development of the drug will occur unless the ICH
rate with the new drug is lower than 6%; so a Type I error in the direction of
stating that the new drug is significantly worse than the standard with respect to
ICH, when in fact it has the same rate, will have the same consequences as
lackluster performance in the positive direction: further development will stop.
The investigators want to control the Type I error rate in the direction of stating
that the new drug has a significantly better rate of ICH than 6%, when in fact it
does not, and they choose the significance level �s0.05. Finally, the investigators
also consider a Type II error serious: failure to reject the null hypothesis that the
ICH rate is no better than 6%, when in fact the new drug has a lower ICH rate,
would represent an unfortunate loss of a treatment with better properties than the
standard. The investigators want their study to have statistical power of 90% if, as
they hope, the new drug can reduce the ICH rate to 2%. The main statistical
question for planning the Phase II trial is: how many participants should be
enrolled?

Let X denote the number of intracerebral hemorrhages to be observed
among the n stroke patients treated with the new drug, let P denote the true
ICH rate, and assume X has a binomial distribution with sample size n and

Ž .parameter P, which we write as X�Bin n, P . The null hypothesis is that
the ICH rate with the new drug is no better than 6%, that is, H : PGP s0 0
0.06. The alternative hypothesis is that the new drug improves over this rate:
H : P�P . The statistical power is the probability of correctly rejecting H1 0 0
when it is false. Because that probability depends on the true P, the
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statistical power is not a single number but a function of values as P varies.
It is also the complement of the Type II error rate, � , for given values of P.

Ž �In succinct form, the problem is to find n such that P Reject H H true0 0
. Ž � .with any PGP F� and P Reject H H false with any PF0.02 G1y� ,0 0 0

where �s0.05 is the level of significance and 1y�s0.90 is the statistical
power.

The required sample size will be large, so let us begin with the normal
approximation to the binomial distribution, which states that if we standardize
the random variable X by subtracting off its expected value nP and dividing

Ž .by the square root of the variance, nP 1yP , so that

XyEX XynP�X s s ,'Var X 'nP 1yPŽ .

then the standardized variable X � has an approximately normal distribution
with zero mean and unit variance, that is, X � is approximately standard
normal. The probability of rejection under H will be greatest when PsP ,0 0
so it suffices to consider this case to represent the null hypothesis. For an
approximate one-tailed test of the hypothesis H : PsP , then, we reject H0 0 0
when the observed value of X* is less than or equal to yz , where z is the� �

critical value cutting off probability � in the upper tail of the standard
normal distribution; in this case, z s1.645 from Table A.1. This is the same�

Ž .test as presented in 2.15 , except we have postponed introducing the
Ž .correction for continuity 1r 2n . In symbols, we reject H when we observe0

the event

�w xRs X Fyz s XFnP yz nP 1yP , 2.20' Ž . Ž .� 0 � 0 0

Now suppose that H is true with PsP s0.02. The next step is to1 1
standardize the random variable X again, this time at the alternative param-
eter value. The power is then

�Power at P sP RsReject H PsPŽ . Ž .1 0 1

nP yz nP 1yP ynP' Ž .XyE X 0 � 0 0 11sP F
Var X' nP 1yP' Ž .1 1 1

n P yP yz nP 1yP'Ž . Ž .0 1 � 0 0
fP ZF , 2.21Ž .

nP 1yP' Ž .1 1

where Z denotes a standard normal random variable. In order for the
Ž .expression on the right-hand side of 2.21 to be at least 1y� , the expression

inside the square bracket has to be at least as large as z , the critical value�
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cutting off probability � in the upper tail of the standard normal distribution.
'From Table A.1, z s1.282. Cancelling n from numerator and denominator�

and solving for n establishes the sample size requirement:

2
z P 1yP qz P 1yP' 'Ž . Ž .� 0 0 � 1 1

nG . 2.22Ž .P yP1 0

Ž .Substituting the design constants in 2.22 yields a sample size of nG203.2,
so we take as minimum sample size ns204.

Ž . Ž .How well does 2.22 perform? The rejection region R in 2.20 for ns204
w xis Rs XF6.66 , so the actual rejection region is the set of integers

� 40, 1, . . . , 6 , and the exact binomial probability of rejection when PsP is0
6 Ž � .Ý Bin x 204, 0.06 s 0.0359, and when PsP the exact power isxs0 1
6 Ž � .Ý Bin x 204, 0.02 s0.8829. The Type I error is a bit conservative, and thexs0

power is not quite the desired 90%, so we can do better, but the normal
approximation has given a reasonably good start.

1Ž .The performance of 2.22 can be improved by use of the continuity2

correction, which modifies the critical ratio X � toward zero in such a way
that the accuracy of the normal approximation for the probability of the

w � xevent Rs X Fyz is increased:�

1Xq ynP02�w xRs X Fyz s Fyz� �nP 1yP' Ž .0 0

1s XFnP y yz nP 1yP . 2.23' Ž . Ž .0 � 0 02

Following through the same derivation leads now to the requirement that n
be so large that

1'n P yP y Gz P 1yP qz P 1yP .' 'Ž . Ž . Ž .0 1 � 0 0 � 1 1'2 n

'This expression is a quadratic equation in n that can be solved by the usual
quadratic formula. The required sample size is

2�n 2
ns 1q 1q , 2.24Ž .�(4 � �ž /n P yP1 0

� Ž .where n is from the right-hand side of 2.22 . To an excellent approximation,

� � �nsn q1r P yP .1 0
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In our application, the smallest value to satisfy the inequality is ns228,
Ž .equation 2.24 yields ns227.5, and the approximation 203.2q1r0.04s

228.2 agrees quite well.
Ž . Ž .How well does 2.24 perform? The rejection region R in 2.23 for
w xns228 is now Rs XF7.28 , so the actual rejection region is the set of

� 4integers 0, 1, . . . , 7 , and the exact binomial probability of rejection when
7 Ž � .PsP is now Ý Bin x 228, 0.06 s0.0336, and when PsP the exact0 xs0 1

7 Ž � .power is Ý Bin x 228, 0.02 s0.9105. The Type I error is even a bit morexs0
Ž .conservative, but the power is now greater than the desired 90%, so 2.24

was successful in meeting the goals of the trial.
Actually, the value ns228 is a little larger than necessary. An exact test

� 4based on the critical region 0, 1, . . . , 7 with ns217 has Type I error
7 Ž � . 7 Ž � .Ý Bin x 217, 0.06 s 0.0484 and power Ý Bin x 217, 0.02 s 0.9280.xs0 xs0

While conservative compared to the theoretically exact result, the additional
Ž .sample size implied by 2.24 is not a detriment when one considers the

complexities of actually conducting clinical trials. Withdrawal of patient
consent, poor compliance, protocol violations, and other threats to validity
are risks in conducting any trial, and tend to diminish the effective sample
size. Thus building in a realistic cushion in the sample size calculation is a

Ž .practical and prudent step to take. The conclusion is that 2.24 is a
reasonable initial solution to the sample size problem. Problem 2.9 explores
the consequences of inadequate sample sizes and underpowered studies.

Sample size calculations for hypothesis tests of the form H : PFP0 0
versus H : P�P are almost identical. The only change required is a1 0
reversal of the sign of P yP , so that the general approximate sample size0 1
requirement for one-tailed tests is given by

1'n P yP y Gz P 1yP qz P 1yP . 2.25' 'Ž . Ž . Ž .1 0 � 0 0 � 1 1'2 n

For two-tailed tests of H : PsP versus H : P�P , with equal allocation0 0 1 0
Ž .�r2 in each tail of the rejection region, the only change required in 2.22 is

to replace the critical value z with z :� �r2

1'n P yP y Gz P 1yP qz P 1yP . 2.26' 'Ž . Ž . Ž .1 0 �r2 0 0 � 1 1'2 n

Ž . Ž .Expression 2.24 remains the same. The reader is asked to derive 2.26 in
Problem 2.10.

The basic relationship between sample size, statistical power, and effect
Ž .size in all these problems is the expression for power. This was given by 2.21

without continuity correction in the one-tailed case. For two-tailed testing
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with continuity correction, the basic relationship is

1'n P yP y yz P 1yP' Ž .1 0 �r2 0 0'2 n
Power at P fP ZF . 2.27Ž .1 P 1yP' Ž .1 1

Ž .If sample size is fixed by an external consideration like cost, then 2.27 can
be used to calculate the power of the test for given alternative values of
PsP .1

A related question is to determine the detectable effect size with specified
power and sample sizes. That is, given a fixed sample size n, how large must

� �the difference P yP be for the power to reach a prespecified level? In1 0
the stroke example, if ns100 subjects are available and no more, how small
must the ICH rate be in order for the one-sided level �s0.05 test to reject

Ž .with power of 90%? The answer is contained implicitly in 2.27 , with the
one-tailed critical value z s1.645, namely, that value of P rendering the0.05 1
expression on the right side of the inequality equal to z s1.282. This leads0.90
to another quadratic equation. A computation shows that the solution is less
than 0.01, that is, the detectable effect size is nearly a 90% reduction in ICH
rate. It would be an outstandingly safe drug that could achieve this effect
size, which is another way of characterizing the inadequacy of the sample size
ns100.

2.5.2. Sample Size for Confidence Intervals

In planning a study to determine a confidence interval for a population
proportion P, we need to know how large a sample to draw. In addition to

Ž .the confidence level, 100 1y� %, where � is most often taken to be 0.05,
the investigator will often be able to specify in advance the desired width
of the interval, say ds0.10, between the upper and lower limits. Two cases
may be considered: in the first, no information about P is known or assumed;
in the second, the investigator has a rough idea of the magnitude of P.

Ž . Ž .The width of the confidence interval in 2.17 and 2.18 is no greater than
the quantity

21qz z q2qnk'�r2 �r2
, 2.28Ž .2nqz�r2

where ks4 pq and ps1yq is the sample proportion. The requirement that
Ž .2.28 be no greater than of width d imposes a constraint on n which can be
solved for by means of a quadratic equation. To an excellent approximation,
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Table 2.1. Sample size determination for a confidence inter©al
of prespecified width

If P satisfies Then use

Ž .0FP�dr2 ks4d 1yd
Ž .Ž .dr2FP�0.3 ks4 Pqdr2 Qydr2

0.3FPF0.7 ks1
Ž .Ž .0.7�PF1ydr2 ks4 Pydr2 Qqdr2
Ž .1ydr2�PF1 ks4d 1yd

the solution is given by

kz2 z q22�r2 �r22nG q y2 z q . 2.29Ž .�r22 d kd

Ž . 2 2The first two terms in 2.29 , kz rd q2rd, give the required sample size�r2
Ž .for the approximate confidence interval in 2.19 , while the first term alone

Ž .gives the required sample size for interval 2.19 without the continuity
correction.

Because for any p we have ks4 pqF1, an upper bound is obtained in
Ž . Ž .2.28 by setting 4 pqs1, with corresponding sample size being given in 2.29
using ks1. This is an appropriate value to use when no information is
available about P. If P is known or assumed to lie outside the interval
w x0.3, 0.7 , then a value of k that is less than 1 could be used to reduce the
required sample size. The values of k in Table 2.1 are recommended,

Žassuming a choice of width d no greater than 0.6 d would rarely be set so
.high in practice .

For example, suppose a two-sided 95% confidence interval is desired of
width dF0.2, where P is believed to be about 0.10. Using the value

Ž .ks4�0.2�0.8s0.64 from Table 2.1 in 2.29 yields nG73. With this
Ž . Ž .sample size the confidence interval in 2.17 and 2.18 will be of width at

most 20 percentage points for any observed value of pF0.20. Such values of
p will occur with high probability if P is near 0.10. Suppose in our example

Ž . Ž .we observe ps14r73s0.192. Then 2.17 and 2.18 produce the interval
Ž . Ž .0.112, 0.304 , of width 0.19. The exact confidence interval from 2.5 and
Ž . Ž .2.6 with � s� s�r2 is nearly identical, 0.109, 0.301 . If p is close to the1 2

Ž . Ž .anticipated Ps0.10, say ps7r73s0.096, then 2.17 and 2.18 yield the
Ž . Žinterval 0.043, 0.193 , of width 0.15; the exact confidence interval is 0.039,

.0.188 .
Ž .Now compare these results with those obtained from 2.29 using ks1. In

that case the required sample size is nG105, for which the interval from
Ž . Ž .2.17 and 2.18 has width F0.20 for any value of p. For example, with ps

Ž . Ž . Ž .53r105s0.505, equations 2.17 � 2.18 produce the interval 0.406, 0.603 .
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Ž .The exact confidence interval is nearly identical, 0.405, 0.604 . If p is close
to the anticipated value 0.10, say ps10r105s0.095, the approximate confi-

Ž .dence interval is 0.049, 0.172 , of width 0.123, and the exact confidence
Ž .interval is 0.047, 0.168 .

2.6.� STANDARD ERRORS BY THE DELTA METHOD

Occasions arise when the parameter of interest is not the binomial parameter
Ž .P itself but some function of it, say f P . One important such function is

Ž . � Ž .4f P s ln Pr 1yP , the natural logarithm of the odds associated with P, or
simply the log odds of P. This function will play a central role in later
chapters. The methods of Section 2.4 based on the large-sample normal

Ž .approximation can be used to draw inferences about f P , but require a
Ž .standard error for the estimate of f P . What shall we use as a standard

Ž . Ž .error for the estimate f p of f P based on the sample proportion psXrn
when n is large? If f is a differentiable function, the answer is contained in

Ž .another consequence of the central limit theorem: f p is approximately
Ž . Ž .normally distributed with mean f P and with a standard error se given by

df 'se f p s P P 1yP rn ,� 4Ž . Ž . Ž .dP

� Ž .4where the derivative of f is evaluated at P. If P is not known, then se f p
may itself be estimated by

$ df 'se f p s p p 1yp rn ,� 4Ž . Ž . Ž .dP

where the sample proportion has replaced the unknown P.
For example, with f being the log odds function given above,

df 1 1 1
P s q s ,Ž .dP P 1yP P 1yPŽ .

so that

1 1'se f p s P 1yP rn s ,� 4Ž . Ž .P 1yPŽ . 'nP 1yPŽ .

which can be estimated by

$ 1
se f p s .� 4Ž . 'np 1ypŽ .
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Note that while p has a small estimated standard error when p is close to 0
or 1, the log odds has a large standard error. Problem 2.13 gives another
example of this phenomenon. Problem 2.14 shows there is a ®ariance-stabiliz-
ing transformation for P, yielding a transformed parameter whose estimated
standard error depends only on the sample size but not on p.

2.7.� ALTERNATIVE DEFINITIONS OF TWO-SIDED P-VALUES
AND CONFIDENCE INTERVALS

The definition of a two-sided confidence interval discussed above in Section
Ž . Ž . Ž2.2.1 at 2.5 and 2.6 required specifying � and � each usually taken to1 2
.be �r2 in advance. The symmetrical choice � s� s�r2 can and should1 2

be motivated by substantive considerations related to the relative seriousness
of a Type I error in the upper versus the lower tail. More often, though, this
choice is made for convenience or convention. Symmetrical statistical proce-
dures are familiar from work with the standard normal distribution, due to
the symmetry of its bell-shaped probability density function, which, after all,
is a large-sample approximation to the binomial distribution. However, when
n is not large, or when p is close to 0 or 1, the symmetry of the large-sample
normal approximation is no longer pertinent, given the discrete and asym-

1metrical shape of the binomial distribution with P different from . Even2

with perfectly symmetrical distributions, asymmetrical allocation of Type I
error may still make good sense. Ultimately, however, it just seems unrealistic
to expect advance specification of separate tail probabilities in every applica-
tion of a hypothesis test or confidence interval. In these circumstances there
are alternative approaches to two-sided testing and interval estimation that
require specification only of the total Type I error rate � . In a sense, the
data determine their own allocation of Type I error in these methods, but the
methods still maintain the overall two-tailed Type I error probability at a
maximum of � . They are ‘‘exact’’ in the sense that they use exact binomial
theory as opposed to approximate normal theory.

Below we present three such methods. In practical terms the differences
among them are slight, and no one method dominates another, so that any of
the three methods is acceptable for general usage and, in terms of statistical
power and length of confidence intervals, will usually improve a bit on the
method employing symmetrical allocation of Type I error presented in
Section 2.1. The first method presented in Section 2.7.1 is the simplest of the
three.

2.7.1. The Point Probability Method

In this approach we define the two-sided p-value, corresponding to a
binomial observation x under the hypothesis H : PsP , to be the sum of0 0 0
all binomial probabilities that are less than or equal to the probability of x .0
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Ž .If we denote the p-value for x underH by pval x , P , then0 0 0 0

�pval x , P s Bin x n , P , 2.30Ž . Ž .Ž .Ý0 0 0
x

where the sum is taken over all values of x with

� �Bin x n , P FBin x n , P . 2.31Ž .Ž . Ž .0 0 0

Ž .The set of x ’s satisfying 2.31 generally comprises two tails. One is the
familiar tail of x values on the same side of the average value nP as x is,0 0
but farther away from it. The other tail consists of values of x that are on the
opposite side of nP from x , and with probabilities no larger than0 0

Ž � .Bin x n, P . We call this the two-tailed p-value by the point probability0 0
method.

Given a binomial observation Xsx with sample size n, a two-sided test0
of the hypothesis H : PsP at level � may be conducted by evaluating the0 0

Ž .p-value and rejecting H if and only if pval x , P F� . Problem 2.15 asks0 0 0
the reader to verify that such a test procedure does indeed have Type I error

Ž .rateF� for any value of P , that is, pval x , P works assuredly.0 0 0
In our standard example with x s23 and ns25, the two-sided p-value0

Ž .by the point probability method equals pval 23, 0.75 s0.0618, slightly smaller
than the p-value of 0.0642 found in Section 2.1 with equal allocation of Type
I error in each tail.

It is possible to invert the test procedure just described to obtain an exact
Ž .two-sided 100 1y� % confidence region for P. The confidence region

� Ž �.consists of all values P for which pval x , P �� , that is, values of the0
parameter that would not be rejected as hypotheses of the form H : PsP�.0
By construction, this method agrees exactly with hypothesis testing, such as,
one rejects H : PsP if and only if P is not contained in the confidence0 0 0
region given Xsx . Problem 2.16 demonstrates that the region so obtained0
has coverage probability at least 1y� for all values of P, that is, the
confidence region works assuredly as well.

We have used the term ‘‘region’’ instead of ‘‘interval’’ because it is
possible for the confidence region to consist of a union of disjoint intervals,
due to a slight nonmonotonicity in the p-value function. Problem 2.20
explores this infrequently occurring phenomenon. While theoretically there is
nothing wrong with a disconnected confidence region, for simplicity we will
modify the definition and take as our confidence interval the smallest
connected interval containing the confidence region. The limits of this
confidence interval are obtained by finding the value P , equal to theL

� Ž .smallest value of P technically, the greatest lower bound such that
Ž �. � Žpval x , P �� , and P , equal to the largest value of P technically, the0 U

. Ž �.least upper bound such that pval x , P �� . Although extending the confi-0
dence interval occasionally to include interior values that just miss being
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supported by the data could break the strict correspondence between hypoth-
esis testing and confidence intervals, usually no such parameter values are
included in the confidence interval, that is, the confidence region is already a
connected interval; when there are unsupported values, they are always
contained in a tiny interval, and are surrounded by neighboring values of P
that are supported by the data. Defining the confidence interval to include
these unsupported parameter values merely increases slightly the interval’s
coverage probability. We shall adopt this modification without further men-
tion on the grounds that an interval with good coverage is what is usually
desired in a confidence procedure. Where perfect correspondence between
hypothesis testing and interval estimation is important, the original confi-
dence region can be used.

One advantage of the point probability method is that it usually produces
intervals of shorter length than other methods, while still guaranteeing

Ž .100 1y� % coverage. A disadvantage is that finding P and P generallyL U
requires computer iteration, although efficient computing algorithms exist to
do this. The binary search technique described in any textbook on numerical
analysis is well suited to this task.

In the example with x s23 and ns25, the two-sided p-value by the0
point probability method equals 0.05 at P�s0.9856 and is less than 0.05 for
values of P� larger than 0.9856, so that this value is the upper limit P . InU
Problem 2.17 the reader will verify that P s0.7441. Note that the intervalL
Ž . Ž . Ž .0.7441, 0.9856 is slightly shorter than that obtained from 2.5 and 2.6 with

Ž .� s� s0.025, which is 0.7397, 0.9902 to four decimals.1 2

2.7.2. The Tail Probability Method

Other definitions of two-tailed p-values are possible. For example, instead of
Ž . Ž . Ž .defining pval x , P by 2.30 and 2.31 , we can define the values of x to0 0

Ž .sum in 2.30 by those x which satisfy either

x xx n0 0

� � � �Bin i n , P F Bin i n , P or Bin i n , P F Bin i n , PŽ . Ž . Ž . Ž .Ý Ý Ý Ý0 0 0 0
is0 is0 isx is0

2.32Ž .

if the observed lower tail probability on the right-hand side of either
1expression is less than , that is, if x is in the lower tail. If, instead, x is in0 02

1n Ž � .the upper tail with Ý Bin i n, P � , then the values of x to sum inisx 0 20
Ž .2.30 are those x which satisfy either

x n n n

� � � �Bin i n , P F Bin i n , P or Bin i n , P F Bin i n , PŽ . Ž . Ž . Ž .Ý Ý Ý Ý0 0 0 0
is0 isx isx isx0 0

2.33Ž .



STATISTICAL INFERENCE FOR A SINGLE PROPORTION40

In words, the p-value is the probability associated with all values of x for
which the opposite-tail probability is no greater than the observed-tail
probability. We call this the two-tailed p-value by the tail probability method,
and it too works assuredly. See Problem 2.18.

In our running example with x s23 and ns25, the two-sided p-value by0
Ž .the tail probability method equals pval 23, 0.75 s0.0618, identical to that of

the point probability method, though this is not always the case. Inverting the
p-value by the tail probability method to obtain a 95% confidence interval for

Ž . Ž .P, we find the interval P , P s 0.7485, 0.9856 . In this example, the 95%L U
confidence interval is slightly shorter than that based on the point probability
method, although again, this is not always the case.

2.7.3. The Likelihood Ratio Method

The third definition of two-tailed p-value is based upon the likelihood ratio
test, which is of special interest in its own right. If X has a binomial
distribution with sample size n and parameter P, the likelihood ratio statistic
for testing the null hypothesis H : PsP against an alternative hypothesis of0 0
the form H : PsP is defined as1 1

� x 0 nyx 0Bin x n , P P 1yPŽ .Ž .0 1 1 1�LR P : P x s s , 2.34Ž .Ž .1 0 0 x nyx0 0� P 1yPBin x n , P Ž .Ž . 0 00 0

and the log likelihood ratio statistic is the natural logarithm of LR:

P 1yP1 1� �LLR P : P x s ln LR P : P x sx ln q nyx ln .Ž .Ž . Ž .1 0 0 1 0 0 0 0ž / ž /P 1yP0 0

2.35Ž .

These statistics are of key importance because the likelihood ratio is the
fundamental way to define the weight of evidence in the data concerning the

Ž � .hypothesis H versus the alternative H . The larger LR P : P x or0 1 1 0 0
Ž � .LLR P : P x is, the greater the evidence contained in the data x is in1 0 0 0

favor of H and against H . We saw an illustration of this in Section 1.3 in1 0
the context of a screening test.

The generalized likelihood ratio statistic for testing the null hypothesis H :0
PsP against the omnibus alternative hypothesis H : P�P is obtained by0 1 0
replacing P by the sample estimate psx rn of P under H , which1 0 1
maximizes the binomial likelihood in the numerator of LR:

� � �GLR P x sLR p : P x s max LR P : P x . 2.36Ž .Ž . Ž . Ž .0 0 0 0 1 0 0
P in H1 1
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The generalized log likelihood ratio statistic is defined similarly as

x nyx0 0� �GLLR P x s ln GLR P x sx ln q nyx ln .Ž .Ž . Ž .0 0 0 0 0 0ž / ž /nP n 1yPŽ .0 0

2.37Ž .

Ž � . Ž � .The larger GLR P x or GLLR P x is, the greater the evidence there0 0 0 0
is contained in the observation x against the null hypothesis H : PsP0 0 0
Žand in favor of some other value of P, the most likely of which is the sample

.proportion psx rn . The generalized likelihood ratio statistic thus provides0
an ordering of possible x values: those values of x with generalized likeli-

Ž � .hood ratio statistic greater than GLR P x are ‘‘more extreme’’ than x0 0 0
with respect to the binomial distribution with parameter P , and can serve to0

Ž .define a two-tailed rejection region. Thus, instead of 2.31 , we define the
Ž .values of x to sum in 2.30 by those x satisfying

� � � �GLR P x GGLR P x or GLLR P x GGLLR P x . 2.38Ž .Ž . Ž . Ž . Ž .0 0 0 0 0 0

In words, the p-value is the probability associated with all values of x with at
least as much weight of evidence against H : PsP as there is contained0 0
in x . We call this the two-tailed p-value by the likelihood ratio method, and it0
too works assuredly. See Problem 2.19.

In the example with x s23 and ns25, the two-sided p-value by the0
Ž .likelihood ratio method equals pval 23, 0.75 s0.0428, which is legitimately

significant at the �s0.05 level. Inverting the p-value by the likelihood ratio
method to obtain a 95% confidence interval for P, we find the interval
Ž . Ž .P , P s 0.7560, 0.9856 . In this example, the 95% confidence interval isL U
slightly shorter than those based on all of the previous methods, although,
again, this is not always the case. In this case, the 95% confidence interval
excludes the value 0.75, consistent with the rejection of H by virtue of the0
two-sided p-value being�� .

2.7.4. Some Concluding Remarks

Any one of the ways presented in this section to define a two-sided p-value
for the binomial distribution, which is discrete and generally asymmetrical,
yields a legitimate method for conducting an exact test of a hypothesis about
the binomial parameter P and for constructing an exact confidence interval
for P. Of course, in practice, the method should be prespecified, and not
chosen after looking at each method to find the ‘‘most significant’’ result.

We have also emphasized that all of the above methods‘‘work assuredly.’’
This criterion sets these methods apart from approximate methods, for which
the approximate p-value may not always produce a test with Type I error no
greater than � , and for which approximate confidence intervals may not
always have coverage probability at least 1y� . It also sets them apart from

Ž .another method called the mid-p correction Lancaster, 1949, 1952, 1961 . For
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a one-sided tail probability, instead of defining the p-value as

x n0

� �P XFx s Bin i n , P or P XGx s Bin i n , P ,Ž . Ž . Ž . Ž .Ý Ý0 0
is0 isx 0

the mid-p correction defines the p-value to be, respectively,

� �P XFx yBin x n , P r2sP X�x qBin x n , P r2 2.39Ž . Ž . Ž .Ž . Ž .0 0 0 0

or

� �P XGx yBin x n , P r2sP X�x qBin x n , P r2. 2.40Ž . Ž . Ž .Ž . Ž .0 0 0 0

The rationale for this correction is to make the distribution of the p-value in
repeated samples more closely resemble that of a uniform random variable

1under H ; for example, to render the mean of the p-value closer to under0 2

H than would be the case without the correction, and to remove the bit of0
conservatism introduced into the actual Type I error rate by the discreteness
of the binomial distribution. That is, because of the discreteness, when a
p-value is less than or equal to � , it is almost always strictly less than � , so

Ž .that the actual Type I error of the test is somewhat less than � . Levin 1982
discusses such inherent conservatism in the context of fourfold tables, and
different authors have expressed different views about whether or not to take
steps to remove the conservatism.

In this book we have adopted the somewhat conservative attitude that the
above concerns are not of fundamental importance, whereas the construction
of p-values and confidence intervals that achieve their claims of Type I error
and coverage probabilities is of fundamental importance. Indeed, the mid-p
corrected p-®alue is not ‘‘assured’’ in the sense that we have been using this
term. To illustrate in our standard example, the mid-p corrected upper tail
probabilities under the hypothesis H : Ps0.75 for the outcomes x s23, 24,0 0
and 25 are, respectively, 0.01956, 0.0039, and 0.0004, whereas for the out-

Žcome x s22, the mid-p corrected upper tail probability is 0.064. See0
.Problem 2.21. Therefore, if we were to reject H whenever the mid-p0

Žcorrected upper tail probability is less than 0.025 for a one-sided test at level
.�s0.025 , we would reject H for x s23, 24, or 25. But the probability that0 0

this occurs under H is, as we have seen, 0.032, which is greater than 0.025.0
Therefore this test has Type I error greater than the nominal value of � .
A similar phenomenon occurs for two-sided p-values with a mid-p correction.
On these grounds we do not recommend use of the mid-p correction. The
other methods presented in this section help to alleviate the conservatism of
the Type I error rate found with the equal-allocation method, while maintain-
ing the guaranteed error and coverage rates.

Two-sided confidence intervals for the binomial distribution, comparing
different methods both exact and approximate, were discussed by Blyth and
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Ž . Ž . Ž .Still 1983 , Vollset 1993 , and Newcombe 1998 . The subject has its roots in
Ž . Ž .Wilson 1927 and Clopper and Pearson 1934 .

PROBLEMS

2.1. A common experiment to test for a chemical’s tumorgenicity is to
supplement the diet of ns100 rats with high doses of the chemical.
After six months the animals are sacrificed and examined for tumor
formation. Let P denote the probability that a randomly selected rat
will develop a tumor. Suppose none of the rats in the experiment are

Ž .observed to develop tumors x s0 . Verify that the upper one-sided0
Ž . 1r n100 1y� % confidence limit is P s1y� , and evaluate this forU

�s0.05. If this chemical is found in a human diet, are you comfort-
able with the knowledge that values of P as large as P are supportedU
by the data? How can we reduce the upper limit?

2.2. Prove that for ns25, x s23, and � s� s0.025, the value P s0 1 2 L
Ž . Ž .0.74 satisfies equation 2.5 and P s0.99 satisfies equation 2.6 .U

wHint. It is not necessary to calculate each term in the sum
23 Ž � .Ý Bin x 25, 0.99 . Prove thatxs0

x n0

� � xBin x n , P s1y Bin x n , P .Ž . Ž .Ý Ý
xs0 xsx q10

Ž .2.3. An explicit formula for P is given in 2.8 . Derive, by interchanging PL
with Q and positive response with negative response, the expression in
Ž .2.9 for P .U

Ž . Ž .2.4. Prove that 2.17 and 2.18 provide the two solutions to the equation
2n pyP y1r 2n� 4Ž . 2sz .�r2PQ

wHint. Bear in mind that the purpose of the continuity correction is to
bring the difference between p and P closer to zero. In deriving the

Ž .lower limit, therefore, work with pyPy1r 2n in the numerator; in
Ž . xderiving the upper limit, work with pyPq1r 2n .

2.5. Suppose that out of a sample of ns100 subjects a proportion ps0.05
had a specified characteristic.
( )a To two decimal places, find the lower and upper 99% confidence

Ž . Ž .limits on P using 2.17 and 2.18 . Use z s2.576.0.005

( )b To two decimal places, find the lower and upper 99% confidence
Ž .limits on P using 2.19 .

( )c How do the two intervals compare? Would matters be improved
Ž .any in b if the continuity correction were ignored?
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Ž . Ž .2.6. Prove that P in 2.17 is never less than zero and that P in 2.18 isL U
w Ž .never greater than unity. Hint. Use the defining equation 2.16

Ž . Ž . xrather than the explicit formulas in 2.17 and 2.18 .

2.7. Prove that the definition of the two-tailed p-value with equal alloca-
tion of Type I error to the two tails given in Section 2.1 works
assuredly in the sense that for any P , the test based on rejecting0
H : PsP versus H : P�P whenever the two-tailed p-value is F�0 0 0 0

whas Type I error no greater than � . Hint. Among the possible values
of x , those that lead to a rejection of H by virtue of the rule0 0
‘‘p-valueF� ’’ are those with tail probabilities F�r2, that is, with

x 0 Ž � . n Ž � .Ý Bin x n, P F�r2 or Ý Bin x n, P F�r2. This subset isxs0 0 xsx 00
� 4called the rejection region for the test, and is of the form 0, 1, . . . , cL

� 4j c , c q1, . . . , n , where c and c are, respectively, lower andU U L U
upper critical values for rejecting H , defined as follows: c is the0 L
largest value of x with lower tail probability F�r2, and c is the0 U
smallest value of x with upper tail probability F�r2. Because c0 L
and c are themselves in the rejection region, conclude that the TypeU

cL Ž � . n Ž � . xI error is Ý Bin x n, P qÝ Bin x n, P F�r2q�r2s� .xs0 0 xsc 0U

2.8. Demonstrate that the definition of two-tailed p-value in the case of
asymmetrical allocation of Type I errors to the two tails given at the
end of Section 2.1 works assuredly.

Ž .2.9. An underpowered study. The case-fatality rate for a certain illness
under standard therapy is P s0.10. A new treatment has just passed0

Ž .phase I testing safety and dosage , and now a single-sample, phase II
trial for efficacy is being planned. The experiment will use current
knowledge of the case-fatality rates for historical control; a full-scale
phase III randomized controlled clinical trial will be conducted if the
result of the phase II experiment is promising. A halving of the
case-fatality rate to P s0.05 is considered clinically significant, and1
important to declare as statistically significant with 80% power, using
a two-sided �s0.05 level of significance.
( )a How many patients must be studied to achieve this goal?
( )b Unfortunately, funds for this trial can only cover a study of at

most ns100 patients. What is the power to detect P s0.05 with1
this sample size at the above � level?

( )c With a sample of ns100, what is the value of P that can be1
detected with 80% power?

( )d Redo your calculations for the above questions if it is decided to
use a one-sided test of the hypothesis H : PsP versus H :0 0 1
P�P .1
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Ž .2.10. Derive the sample size requirement 2.26 for a two-sided test of the
hypothesis H : PsP versus H : P�P , with equal allocation �r20 0 1 0
in each tail of the rejection region and use of the continuity correc-

wtion, which achieves power 1y� at PsP �P . Hint. Remember1 0
that the continuity correction is applied in a direction to reduce the
critical ratio. Also, in your expression for the power of the test, you
may ignore one of the two tails of the critical region, which has only

xnegligible probability of occurrence under the alternative hypothesis.

2.11. A randomized trial of two analgesics to relieve postoperative pain is
being planned. On day 1 each subject will be given medication A or
medication B, selected at random, and then switched to the other
medication on day 2. On day 3 the subject is asked to state his or her

Ž .preference for A or B with a coin toss if the subject is indifferent .
Because of the randomization, differences between postoperative pain
on day 1 and on day 2, and other carry-over effects, will be balanced.
Let X denote the number of preferences for A, and let P denote the
proportion of patients in the population of similarly situated patients
who would prefer A. Under the null hypothesis of no true difference

1between the analgesics in terms of preference, Ps . A two-tailed2

test is needed because the investigators wish to limit to 5% the
probability of a Type I error in either direction. How many subjects
are required to achieve statistical power of 90% or more if the
population value of P is above 60% or below 40%?

2.12. The New York Times for October 22, 1996 on page C3 reported the
following:

Ž .Rockville, Md., Oct. 21 AP �An advisory panel to the Food and Drug
Administration recommended today against approving a new contraceptive
device that is similar to the cervical cap, saying it was unclear how effective
it was.

Womens advocacy groups had urged the agency to grant quick approval to
the device, Lea’s Shield, arguing that the millions of unplanned pregnancies
every year showed how desperate women were for better contraceptive
options.

‘‘The appropriate response to the public health needs of women in the 90’s
is to expedite barrier controls,’’ said Lisa Cox of the National Women’s
Health Network.

But the manufacturer, Yama Inc., managed to get only 55 women to
complete a six-month study of the device. The study found a 9 percent
pregnancy rate. The company argued that was acceptable quality, indicating
that had the women used Lea’s Shield for a year, the maximum pregnancy
rate would have been 18 percent, which it said was equivalent to most
diaphragms.
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But the agency’s scientific advisers said no other contraceptive had ever
been approved on the basis of such a small study. They maintained that a
test involving 55 women was not enough to determine the pregnancy rate
reliably. . . .

Comment on the sample size issue. Determine what sample size would
be necessary for a 95% confidence interval for the six-month preg-
nancy rate to exclude 9% if the observed six-month pregnancy rate p
were as high as 15%.

Ž . Ž .2.13. Referring to the delta method in Section 2.6, let f p s ln p be the
natural logarithm transformation of p. Show that the standard error,
w Ž .x � Ž .41r2se ln p is estimated to be qr np in large samples, where

qs1yp. Compare this with the standard error of the relative error
Ž .pyP rP for a given value of the underlying parameter PsP .0 0 0

2.14.� Use the delta method to derive the approximate standard error of the
Ž . 'so-called arcsine�square-root transformation of p: f p sarcsin p .

Does the standard error depend on p? Why might this be of interest?

2.15.� Let X have a binomial distribution with sample size n and probability
Ž .parameter P. Let pval x , P be the p-value function by the point0 0

probability method defined in Section 2.7.1. Verify that rejecting H :0
Ž .PsP in favor of H : P�P if and only if pval x , P F� incurs a0 1 0 0 0

w Ž .Type I error rate no larger than � . Hint. Let RsR P denote the0
Ž . � Ž . 4rejection region for the test, R P s x: pval x, P F� . We want to0 0

show that the probability that X falls in R is F� . Let x� be any
Ž � .point in R with maximum probability, so that Bin x n, P F0

Ž � � .Bin x n, P for all x in R; thus R is contained in the set of x such0
Ž � . Ž � � .that Bin x n, P FBin x n, P . Conclude that the probability that0 0

Ž � . xX is in R is no greater than pval x , P .0

2.16.� The confidence interval based on the two-sided p-value defined in
Ž . Ž . Ž . �2.30 and 2.31 is the set of parameter values I x s P�:0

Ž . 4 Ž . Ž .pval x , P� �� . If X�Bin n, P , then I X is a random interval0 0
wthat either covers P or does not. Show that the event Es P is not0 0

Ž .x w Ž .xcontained in I X is the same as the event X is contained in R P ,0
Ž . Ž .where R P is defined in Problem 2.15. Conclude that P E F� , and0

Ž .thus that for any underlying P the coverage probability of I X is at0
least 1y� .

� Ž .2.17. The p-value function pval x , P� for the point probability, tail proba-0
bility, or likelihood ratio method has jump discontinuities as P� varies,

Ž .as certain values of x are included or excluded from the tail region
Žbecause the binomial probability at these values is less than or

. Ž � .greater than Bin x n, P� .0
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( ) Ž � .a Evaluate Bin x n, P� at x s23, ns25, and P�s0.7441. Also0 0
Ž � .evaluate Bin x n, P� at xs14 and the same P�. Verify that

Ž .xs14 satisfies 2.31 with P sP�, so that xs14 is included in0
the lower tail region at this value of P� by the point probability

Ž .method. The p-value is pval 23, 0.7441 s0.0627.
( ) Ž � .b Evaluate Bin x n, P� at xsx and xs14 with P�s0.7440.0

Ž .Verify that at this value of P�, xs14 fails to satisfy 2.21 , so that
xs14 is excluded from the lower tail region. The p-value is now

Ž .pval 23, 0.7440 s0.0408.
( )c Conclude that the lower 95% confidence limit is P s 0.7441.L

2.18.� Show that the two-tailed p-value by the tail probability method works
w Ž .assuredly. Hint. Let RsR P denote the rejection region for the0

Ž . � Ž . 4test, R P s x: pval x, P F� . We want to show that the probabil-0 0
ity that X falls in R is F� . If there are any values of x in the lower

� Ž � .tail contained in R, there exists a largest such x with pval x , P F0
Ž . Ž � . �� ; show that pval x, P Fpval x , P for all xFx in the lower tail.0 0

Similarly, if there are any values of x in the upper tail contained in R,
�� Ž �� .there exists a smallest such x with pval x , P F� and0

Ž . Ž �� . ��pval x, P Fpval x , P for all xGx in the upper tail. Thus R is0 0
� �4 � �� 4of the form Rs 0, . . . , x j x , . . . , n , and

x� n

� �P XgR s Bin x n , P q Bin x n , P .Ž . Ž . Ž .Ý Ý0 0
��xsxxs0

ŽIf there is no x in the lower tail contained in R, just omit the term
involving x� ; similarly if there is no x in the upper tail contained in

�� .R, just omit the term involving x . Now either

x� n

� �Bin x n , P F Bin x n , PŽ . Ž .Ý Ý0 0
��xsxxs0

or

n x�

� �Bin x n , P F Bin x n , P .Ž . Ž .Ý Ý0 0
��xsx xs0

Ž . Ž � .Suppose it’s the latter; then conclude that P XgR Fpval x , P F0
Ž . Ž �� . x� ; if the former, then P XgR Fpval x , P F� .0

2.19.� Show that the two-tailed p-value by the likelihood ratio method
w Ž .works assuredly. Hint: Let RsR P denote the rejection region for0

Ž . � Ž . 4 Ž .the test, R P s x: pval x, P F � , where pval x , P s0 0 0 0
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Ž � . Ž � .Ý Bin x n, P , where the sum is over all x such that GLR P x Gx 0 0
Ž � .GLR P x . We want to show that the probability that X falls in R is0 0

F� . Pick any x� contained in R that minimizes the generalized
� Ž � .likelihood ratio statistic in R, that is, x gR is such that GLR P x0

Ž � � .GGLR P x for all xgR. First show that R is identical to the0
� � Ž � . Ž � � .4subset R s x: GLR P x GGLR P x . To do this, note that if x0 0

� Ž � . Ž � � .is any point in R, then by definition of x , GLR P x GGLR P x ,0 0
so x is contained in R� , whence R:R�. Conversely, if x� is any point

� � Ž � . Ž � �.4 � Ž � .in R , then x: GLR P x G GLR P x : x: GLR P x G0 0 0
Ž � � .4 Ž � . Ž � � . Ž � .GLR P x , because GLR P x� GGLR P x . So pval x , P F0 0 0 0
Ž � . � �pval x , P F� , because x is in R. Thus x� is in R, whence R :R,0

� Ž . Ž � .whence R s R . Conclude that P X g R s P X g R s
Ž � . Ž � .Ý Bin x n, P , where the sum is over all x such that GLR P x Gx 0 0

Ž � � . Ž � .GLR P x , which, by definition, is pval x , P , which is F� ,0 0
� xbecause x is in R.

2.20.� The use of the greatest lower bound in the definition of P and leastL
upper bound in the definition of P is to allow for the followingU
technicality in the two-tailed p-value functions by the point probabil-
ity, tail probability, and likelihood ratio methods: they need not be
strictly monotonic in P. It is therefore possible for the set of all P

Ž .satisfying pval x , P �� to be not a single interval but a union of0
disconnected intervals. This happens occasionally as values of P
neighboring a jump discontinuity have p-values above and below � . To
illustrate, consider x s37, ns42, and consider the values of P0
supported by the data at the �s0.05 level, i.e., those values with

Ž . Žpval 37, P �0.05, near the lower limit. A similar phenomenon occurs
.near the upper confidence limit with observed data x s5, ns42.0

Ž .Show that pval 37, P jumps from 0.0354 to 0.0505 around Ps0.7409;
decreases to 0.04993 as P increases to about 0.7457, crossing 0.05
around 0.7440; and then increases again as P further increases,
exceeding 0.05 for the second time at around 0.7474. Thus the 95%

Ž .confidence region for P consists of the interval 0.7409, 0.7440
Ž .together with the main interval 0.7474, 0.9519 , and excludes the

Ž .region of unsupported values 0.7440, 0.7474 . The smallest interval
Ž .containing the confidence region is 0.7409, 0.9519 , and this is taken

as the 95% confidence interval. Show that the general procedure
produces confidence intervals that have coverage probability at least
as large as the corresponding confidence regions, and thus have

Ž .coverage probability no less than 100 1y� %.

2.21. Confirm that the mid-p corrected upper tail probabilities for x s23,0
24, and 25 are, respectively, 0.01956, 0.0039, and 0.0004, whereas for
the outcome x s22, the mid-p corrected upper tail probability is0
0.064.
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C H A P T E R 3

Assessing Significance
in a Fourfold Table

Ž .The fourfold table see Table 3.1 has been and probably still is the most
frequently employed means of presenting statistical evidence. The simplest
and most frequently applied statistical test of the significance of the associa-
tion indicated by the data is the classic chi squared test. It is based on the
magnitude of the statistic

21� �n n n yn n y nŽ .. . 11 22 12 21 . .22� s . 3.1Ž .n n n n1 . 2 . .1 .2

The value obtained for � 2 is referred to tables of the chi squared distribu-
Ž .tion with one degree of freedom see Table A.2 . If the value exceeds the

entry tabulated for a specified significance level, the inference is made that
A and B are associated. An interesting graphic assessment of significance is

Ž .due to Zubin 1939 .
Table 3.2 presents some hypothetical frequencies. The value of � 2 is,
Ž .by 3.1 ,

21� �200 15�40y135�10 y 200Ž .22� s s2.58. 3.2Ž .150�50�25�175

Since � 2 would have to exceed 3.84 in order for significance at the 0.05 level
to be declared, the conclusion for these data would be that no significant
association was demonstrated.

Ž .It is perhaps unfortunate that the chi squared statistic 3.1 takes such a
simple form, both because its calculation does not require the investigator to
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Table 3.1. Model fourfold table

Characteristic B

Characteristic A Present Absent Total

Present n n n11 12 1.
Absent n n n21 22 2.
Total n n n.1 .2 . .

Table 3.2. A hypothetical fourfold table

Characteristic B

Characteristic A Present Absent Total

Present 15 135 150
Absent 10 40 50
Total 25 175 200

determine explicitly the proportions being contrasted�these representing
the association being studied, not the raw frequencies�and because it
invites the investigator to ignore the fact that the proper inference to be
drawn from the magnitude of � 2 depends on how the data were generated,
even though the formula for � 2 does not. These ideas are developed in
Section 3.1. There, three methods for generating the frequencies of a
fourfold table are presented and the statistical hypothesis appropriate to
each is specified.

The ‘‘exact’’ test due to Fisher and Irwin is presented in Section 3.2, and
the need for incorporating Yates’ correction for continuity into the chi
squared and critical ratio statistics is considered in Section 3.3. Some criteria
for choosing between a one-tailed and a two-tailed significance test are
offered in Section 3.4. Section 3.5 is devoted to setting confidence limits
around the difference between two independent proportions; Section 3.6, to
a critical ratio test, different from the classic one, that is closely related to the
construction of confidence intervals.

3.1. METHODS FOR GENERATING A FOURFOLD TABLE

There are, in practice, essentially three methods of sampling that can give
Žrise to the frequencies set out in a fourfold table see Barnard, 1947, for a

.more complete discussion .

Method I
The first method of sampling, termed cross-sectional, naturalistic, or multino-
mial sampling, calls for the selection of a total of n subjects from a larger. .
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Table 3.3. Joint proportions of A and B in the population

Characteristic B

Characteristic A Present Absent Total

Present P P P11 12 1.
Absent P P P21 22 2.
Total P P 1.1 .2

population followed by the determination for each subject of the presence or
absence of characteristic A and the presence or absence of characteristic B.
Only the total sample size, n , can be specified prior to the collection of the. .
data.

Much of survey research is conducted along such a line. Examples of the
use of method I sampling are the following. In a study of the quality of
medical care delivered to patients, all new admissions to a specified service
of a hospital might be cross-classified by sex and by whether or not each of a
number of examinations was made. In a study of the variation of disease
prevalence in a community, a random sample of subjects may be drawn and
cross-classified by race and by the presence or absence of each of a number
of symptoms. In a study of the association between birthweight and maternal
age, all deliveries in a given maternity hospital might be cross-classified by
the weight of the offspring and by the age of the mother.

With method I sampling, the issue is whether the presence or absence of
characteristic A is associated with the presence or absence of characteristic

ŽB. In the population from which the sample was drawn, the proportions of
.course unknown are as in Table 3.3.

Ž .By the definition of independence see Section 1.1 , characteristics A and
Ž .B are independent if and only if each joint proportion e.g., P is the12

Žproduct of the two corresponding total or marginal proportions in this
.example, P P . Whether the proportions actually have this property can1. .2

only be determined by how close the joint proportions in the sample are to
the corresponding products of marginal proportions. The cross-classification
table in the sample should therefore be the analog of Table 3.3 and is
obtained by dividing each frequency in Table 3.1 by n . Table 3.4 results.. .

Table 3.4. Joint proportions of A and B in the sample

Characteristic B

Characteristic A Present Absent Total

Present p p p11 12 1.
Absent p p p21 22 2.
Total p p 1.1 .2
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Table 3.5. Joint proportions for hypothetical data of Table 3.2

Characteristic B

Characteristic A Present Absent Total

Present 0.075 0.675 0.75
Absent 0.050 0.200 0.25
Total 0.125 0.875 1

The tenability of the hypothesis that A and B are independent depends
on the magnitudes of the four differences p yp p , where i and j equal 1i j i. . j
or 2. The smaller these differences are, the closer the data come to the
standard of independence. The larger these differences are, the more ques-

Žtionable the hypothesis of independence becomes. Actually, only a single
one of these four differences needs to be examined, the other three being

.equal to it except possibly for a change in sign�see Problem 3.1.
Ž .Pearson 1900 suggested a criterion for assessing the significance of these

differences. His statistic, incorporating the continuity correction, is

22 2 � �p yp p y1r 2nŽ .� 4i j i . . j . .2� sn . 3.3Ž .Ý Ý. . p pi . . jis1 js1

Ž . Ž . 2Problem 3.2 is devoted to the proof that 3.1 and 3.3 are equal. If � is
found by reference to the table of chi squared with one degree of freedom to
be significantly large, the investigator would infer that A and B were
associated and would proceed to describe their degree of association. Chap-
ter 6 is devoted to methods of describing association following method I
sampling.

Suppose that the data of Table 3.2 were obtained from a study employing
method I sampling. The proper summarization of the data is illustrated by
Table 3.5. Note, for example, that p s0.20, whereas if A and B were22
independent, we would have expected the proportion to be p p s0.25�2 . .2
0.875s0.21875. Furthermore, note that each of the four differences entering

Ž . � �into the formula in 3.3 is equal to �0.01875 y0.0025s0.01625.
Ž .Applied to the data of Table 3.5, 3.3 yields the value

0.016252 0.016252 0.016252 0.016252
2� s200 q q q s2.58, 3.4Ž .ž /0.09375 0.65625 0.03125 0.21875

Ž .equal to the value in 3.2 .

Method II
The second method of sampling, sometimes termed purposive sampling, calls
for the selection and study of a predetermined number, n , of subjects who1.
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Table 3.6. Proportions with a specified characteristic
in two independent samples

Sample Size Proportion

Ž .Sample 1 n p sn rn1. 1 11 1.
Ž .Sample 2 n p sn rn2. 2 21 2.
Ž .Combined n p sn rn. . .1 . .

possess characteristic A and for the selection and study of a predetermined
number, n , of subjects for whom characteristic A is absent. This method of2 .
sampling forms the basis of comparative prospective and of comparative
retrospective studies. In the former, n subjects with and n subjects without1. 2 .
a suspected antecedent factor are followed to determine how many develop
disease. In the latter, n subjects with and n subjects without the disease1. 2 .
are traced back to determine how many possessed the suspected antecedent
factor.

Of interest in method II sampling is whether the proportions in the two
populations from which we have samples, say P and P , are equal. It is1 2
therefore indicated that the sample data be so presented that information
about these two proportions is afforded. The appropriate means of presenta-
tion is given in Table 3.6.

The statistical significance of the difference between p and p is assessed1 2
by means of the z-score or critical ratio statistic

1� �p yp y 1rn q1rnŽ .2 1 1 . 2 .2zs , 3.5Ž .
pq 1rn q1rn' Ž .1 . 2 .

where qs1yp. To test the hypothesis that P and P are equal, in large1 2
samples z may be referred to the standard normal distribution. If z exceeds
the normal curve value for a prespecified significance level�see Table
A.1�P and P are inferred to be unequal. Since, by definition, the square1 2
of a quantity that has the standard normal distribution will be distributed as
chi squared with one degree of freedom, z 2 may be referred to tables of chi
squared with one degree of freedom. Problem 3.3 is devoted to the proof that

2 Ž .z is equal to the quantity in 3.1 .
The analysis subsequent to the finding of statistical significance with

method II sampling is shown in Chapter 7 to be quite different from the
analysis appropriate to method I sampling.

Suppose, for illustration, that the data of Table 3.2 had been generated
by deliberately studying 150 subjects with characteristic A and 50 subjects
without it. The appropriate presentation of the data is illustrated in
Table 3.7.
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Table 3.7. Proportions with characteristic B for subjects with and subjects
without characteristic A—from hypothetical data of Table 3.2

Sample Proportion with B

A Present 150 0.10sp1
A Absent 50 0.20sp2

Total 200 0.125sp

Ž .The value of z 3.5 is

1 1 1� �0.20y0.10 y qŽ .2 150 50zs s1.60, 3.6Ž .
1 10.125�0.875 q' Ž .150 50

which fails to reach the value 1.96 needed for significance at the 0.05 level.
The square of the obtained value of z is 2.56, equal except for rounding

2 Ž .errors to the value of � in 3.2 .

Method III
The third method of sampling is like method II in that two samples of
predetermined size are contrasted. Unlike method II, however, method III
calls for the two samples to be constituted at random. This method lies at the
basis of the controlled comparative clinical trial: of a total of n subjects,. .
n are selected at random to be treated with the control treatment, and the1.
remaining n to be treated with the test treatment.2.

Of importance are the proportions from the two groups experiencing the
Ž .outcome under study e.g., the remission of symptoms . The significance of

Ž .their difference is assessed by the same statistic 3.5 appropriate to method
II. The appropriate further description of the data, however, is shown in
Chapter 8 to be different for the two methods.

3.2. ‘‘EXACT’’ ANALYSIS OF A FOURFOLD TABLE

2 Ž .A version of the � statistic almost as familiar as that given in 3.1 is

212 2 � �n yN yŽ .i j i j 22� s , 3.7Ž .Ý Ý Ni jis1 js1

where

n ni . . j
N s 3.8Ž .i j n . .
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is the frequency one would expect to find in the ith row and jth column
Žunder the hypothesis of independence for sampling method I; see Problem

. Ž3.4 or under the hypothesis of equal underlying probabilities for sampling
.methods II and III; see Problem 3.5 . If the marginal frequencies are small,

in the sense that one or more values of N are less than 5, it may not bei j
Žaccurate to base the significance test on the chi squared or equivalent

.normal curve distribution.
Ž . Ž .An alternative procedure, due to Fisher 1934 and Irwin 1935 , proceeds

from restricting attention to fourfold tables in which the marginal frequencies
n , n , n , and n are fixed at the observed values. Under this restriction,1. 2 . .1 .2
exact probabilities associated with the cell frequencies n , n , n , and n11 12 21 22
may be derived from the hypergeometric probability distribution:

n n n n1 . 2 . .1 .2ž / ž / ž / ž /n n n n n !n !n !n !11 21 11 12 1 . 2 . .1 .2� 4P n , n , n , n s s s ,11 12 21 22 n !n !n !n !n !n n . . 11 12 21 22. . . .ž / ž /n n.1 1 .

3.9Ž .

Ž .where, as in Section 2.1, n!sn ny1 . . . 3�2�1 and 0!s1.
Ž .The Fisher-Irwin ‘‘exact’’ test consists of evaluating the probability in 3.9

for the fourfold table actually observed, say P , as well as for all the otherobs
tables having the same marginal frequencies. Attention is restricted to those
probabilities that are less than or equal to P . If the sum of all theseobs
probabilities is less than or equal to the prespecified significance level, the
hypothesis is rejected; otherwise, it is not. The sum is called the two-sided

Ž .p-value by the point probability method see Section 2.7 .
Consider the hypothetical data in Table 3.8. The exact probability associ-

ated with the table is

5!4!6!3!
P s s0.1190. 3.10Ž .obs 9!2!3!4!0!

Table 3.8. Hypothetical data representing
small marginal frequencies

B B Total

A 2 3 5
A 4 0 4

Total 6 3 9
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Table 3.9. Remaining possible fourfold tables consistent
with the marginal frequencies of Table 3.8

Table Associated Probability

3 2
3 1 0.4762

4 1
2 2 0.3571

5 0
1 3 0.0476

The three other possible tables consistent with the marginal frequencies of
Table 3.8, together with their associated probabilities, are presented in
Table 3.9.

Only the last of these tables has an associated probability less than or
equal to P s0.1190, so the exact significance level associated with theobs
observed table is 0.1190q0.0476s0.1666. The value of � 2 for the data of
Table 3.8 is 1.41. The probability of finding a value this large or larger is 0.23,
which is somewhat different from the exact value of 0.17.

Fairly extensive tables exist of the hypergeometric probability distribution.
One of the more accessible ones is Table 38 of the Biometrika Tables
Ž .Pearson and Hartley, 1970 . More extensive tabulations have been compiled

Ž . Ž .by Lieberman and Owen 1961 and by Finney et al. 1963 .
For most of the illustrative examples in the remainder of this text, the

marginal frequencies will be sufficiently large for the chi squared or critical
ratio tests to be valid.

3.3. YATES’ CORRECTION FOR CONTINUITY

Ž .Yates 1934 suggested that the correction

1C sy n 3.11Ž .1 . .2

Ž . 2be incorporated into expression 3.1 for � and that the correction

1 1 1
C sy q 3.12Ž .2 ž /2 n n1 . 2 .

Ž .be incorporated into expression 3.5 for z. These corrections take account
Žof the fact that a continuous distribution the chi squared and normal,

.respectively is being used to represent the discrete distribution of sample
frequencies.
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Studies of the effects of the continuity correction have been made by
Ž . Ž . Ž .Pearson 1947 , Mote, Pavate, and Anderson 1958 , and Plackett 1964 .

Ž .On the basis of these and of their own analyses, Grizzle 1967 and
Ž .Conover 1968, 1974 recommend that the correction for continuity not be

applied. They give as their reason an apparent lowering of the actual
significance level when the correction is used. A lowered significance level
results in a reduction in power, that is, in a reduced probability of detecting a
real association or real difference in rates.

Ž .Mantel and Greenhouse 1968 point out the inappropriateness of Grizzle’s
Ž .and, by implication, of Conover’s analyses and refute their argument against
the use of the correction. The details of Mantel and Greenhouse’s refutation
are beyond the scope of this book. An outline of their reasoning is provided
instead.

In method I, the investigator hypothesizes no association between factors
A and B, which means that all four cell probabilities are functions of the

Ž .marginal proportions P , P , P , and P see Table 3.3 . Because the1. 2 . .1 .2
investigator is almost never in the position to specify what the values of these
proportions are, he or she must use the obtained marginal frequencies to
estimate them.

In methods II and III, the investigator hypothesizes no difference between
two independent proportions, P and P . Because the investigator is almost1 2
never in the position to specify what the value of the hypothesized common
proportion is, he or she must use the obtained marginal frequencies to
estimate it.

For each of the three sampling methods, the investigator must therefore
proceed to analyze the data with the restriction that his marginal proportions
instead of the unknown population proportions characterize the factors
under study. This restriction is equivalent to considering the four marginal

Ž .frequencies n , n , n , and n obtained see Table 3.1 as fixed. As1. 2 . .1 .2
pointed out in Section 3.2, exact probabilities associated with the observed
cell frequencies may, under the restriction of fixed marginal frequencies, be
derived from the hypergeometric probability distribution. Because the incor-
poration of the correction for continuity brings probabilities associated with
� 2 and z into closer agreement with the exact probabilities than when it is
not incorporated, the correction should always be used.

3.4. ONE-TAILED VERSUS TWO-TAILED TESTS

The chi squared test, z-score, and Fisher-Irwin exact test presented so far are
examples of two-tailed tests. Specifically, a significant difference is declared
either if p is sufficiently greater than p or if p is sufficiently less than p .2 1 2 1
Analogously to the discussion begun in Section 2.1 for a single binomial
sample, suppose now that the investigator is interested in an alternative
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hypothesis specifying a difference in one direction only, say in P , the2
underlying proportion in group 2, being greater than P , the underlying1
proportion in group 1. The power of the comparison can be increased by
performing a one-tailed test. The investigator can make one of two inferences
after a one-tailed test, either that p is significantly greater than p or that it2 1
is not; the possible inference that p is significantly greater than p is ruled1 2
out as unimportant, and no Type I error rate has been allocated to it.

The one-tailed test begins with an inspection of the data to see if they are
Žin the direction specified by the alternative hypothesis. If they are not e.g., if

p �p but the investigator was only interested in a difference in the reverse1 2
.direction , no further calculations are performed and the inference is made

that P might not be greater than P . If the data are consistent with the2 1
alternative hypothesis, the investigator proceeds to calculate either the � 2

Ž . Ž .statistic 3.1 or the z-score statistic 3.5 .
The magnitude of � 2 is assessed for significance as follows. If the

investigator desires to have a significance level of � , he enters Table A.2 in
the column for 2� . If the calculated value of � 2 exceeds the tabulated
critical value, the investigator infers that the underlying proportions differ in

Ž .the direction predicted by the alternative hypothesis e.g., that P �P . If2 1
not, he or she infers that the underlying proportions might not differ in that
direction. The magnitude of z is assessed similarly. When the desired
significance level is � , Table A.1 is entered with 2� .

It is seen from Tables A.1 and A.2 that critical values for a significance
level of 2� are less than those for a significance level of � . An obtained

Ž 2 .value for the test statistic either � or z that fails to exceed the critical
value for a significance level of � may nevertheless exceed the critical value
for a significance level of 2� . Because it is easier to reject a hypothesis of no
difference with a one-tailed than with a two-tailed test when the proportions
differ in the direction specified by the alternative hypothesis, the former test
is more powerful than the latter.

As presented here, a one-tailed test is called for only when the investigator
is not interested in a difference in the reverse direction from that hypothe-
sized. For example, if the hypothesis is that P �P , then it will make no2 1
difference if either P sP or P �P . Such an instance is assuredly rare.2 1 2 1
One example where a one-tailed test is called for is when an investigator is

Ž .comparing the response rate for a new treatment p with the response rate2
Ž .for a standard treatment p , and when the new treatment will be substi-1

tuted for the standard in practice only if p is significantly greater than p . It2 1
will make no difference if the two treatments are equally effective or if the
new treatment is actually worse than the standard; in either case, the
investigator will stick with the standard.

If, however, the investigator intends to report the results to professional
colleagues, he is ethically bound to perform a two-tailed test. For if the
results indicate that the new treatment is actually worse than the standard�
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an inference possible only with a two-tailed test�the investigator is obliged
to report this as a warning to others who might plan to study the new
treatment.

In the vast majority of comparative research undertakings, two-tailed tests
are called for. Even if a theory or a large accumulation of published data
suggests that the difference being studied should be in one direction and not
the other, the investigator should nevertheless guard against the unexpected
by performing a two-tailed test. Especially in such cases, the scientific
importance of a difference in the unexpected direction may be greater than
yet another confirmation of the difference being in the expected direction.

3.5. A SIMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE
BETWEEN TWO INDEPENDENT PROPORTIONS

When the underlying proportions P and P are not hypothesized to be1 2
equal, a good estimate of the standard error of p yp is2 1

$ p q p q1 1 2 2se p yp s q , 3.13Ž . Ž .2 1 ( n n1 . 2 .

where q s1yp and q s1yp . Suppose that both n and n are large in1 1 2 2 1. 2.
Ž .the sense that n p G5 and n q G5 for is1, 2, and that a 100 1y� %i. i i. i

confidence interval is desired for the difference P yP . Let z denote the2 1 �r2
value cutting off the proportion �r2 in the upper tail of the standard normal
curve. The interval

p q p q 1 1 11 1 2 2p yp yz q y q FP yPŽ .2 1 �r2 2 1( ž /n n 2 n n1 . 2 . 1 . 2 .

p q p q 1 1 11 1 2 2F p yp qz q q q 3.14Ž . Ž .2 1 �r2( ž /n n 2 n n1 . 2 . 1 . 2 .

Ž .is such that it will include true difference approximately 100 1y� % of the
time.

Consider, for example, the data of Table 3.7. The sample difference is
p yp s0.10, and its estimated standard error is2 1

$ 0.10�0.90 0.20�0.80
se p yp s q s0.062.Ž . (2 1 150 50

An approximate 95% confidence interval for the true difference is

0.10y1.96�0.062y0.013FP yP F0.10q1.96�0.062q0.013,2 1

or
y0.035FP yP F0.235.2 1
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The interval includes the value 0, which is consistent with the failure above
w Ž .xsee equation 3.6 to find a significant difference between p and p .1 2

3.6. AN ALTERNATIVE CRITICAL RATIO TEST

Occasionally, the consistency just found between the test for the significance
of the difference between p and p and the confidence interval for P yP1 2 2 1

Ž .will not obtain. For example, the critical ratio test 3.5 may fail to reject the
Ž .hypothesis that P sP , but the confidence interval 3.14 may exclude the1 2

value zero. Partly in order to overcome such a possible inconsistency,
Ž . Ž .Eberhardt and Fligner 1977 and Robbins 1977 considered an alternative

Ž .critical ratio test in which the denominator of the statistic 3.5 is replaced by
Ž .3.13 . The test statistic then becomes, say,

1� �p yp y 1rn q1rnŽ .2 1 1 . 2 .2z�s . 3.15Ž .p q p q1 1 2 2q( n n1 . 2 .

Ž .Eberhardt and Fligner 1977 compared the performance of the test based
Ž .on the critical ratio in 3.5 with that of the test based on the statistic in

Ž .3.15 , although they did not include the continuity correction in their
analysis. When n sn , they found that the test based on z� is always more1. 2 .
powerful than the test based on z, but that it also tends to reject the
hypothesis, when the hypothesis is true, more frequently than the nominal
proportion of times, � . When n �n , there are some pairs of proportions1. 2 .
P and P for which the test based on z� is more powerful, and other pairs1 2
for which the test based on z is more powerful.

Consider again the data of Table 3.7. The value of z� is

1 1 1� �0.20y0.10 y qŽ .2 150 50z�s s1.41,
0.10�0.90 0.20�0.80

q( 150 50

Ž .which is less than the value of z in 3.6 . For these data, it happens that the
w Ž .xclassic z-score test see 3.5 comes closer to rejecting the hypothesis than
w Ž .xthe test based on z� see 3.15 .

Further analysis shows that when the test based on z� is more powerful
than the one based on z, the increase in power is slight except when P and1

wP are greatly different measured by an odds ratio greater than 10; see2
Ž . xequation 4.1 for a definition of the odds ratio . There do not, therefore,

seem to be any overwhelming reasons for replacing the familiar test based on
Ž .z and the equivalent classic chi squared test with the test based on z�.
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In situations where the choice of test statistic or confidence interval would
make a difference to the inferences drawn, exact methods should be relied
upon rather than normal approximations. In that way disagreements over
‘‘borderline significant’’ results can be minimized.

PROBLEMS

3.1. Consider the joint proportions of Table 3.4. Prove that p yp p s12 1. .2
Ž . Ž .y p yp p , that p yp p sy p yp p , and that p y11 1. .1 21 2 . .1 11 1. .1 22

wp p sp yp p . Hint. Because p qp sp , therefore p sp y2. .2 11 1. .1 11 12 1. 12 1.
xp . Use the fact that 1yp sp .11 .2 .1

Ž . Ž . 2 w3.2. Prove that formulas 3.3 and 3.1 for � are equal. Hint. Begin by
� � � Ž .42using the result of Problem 3.1 to factor p yp p y1r 2n out11 1. .1 . .

Ž .of the summation in formula 3.3 . Bring the four remaining terms,
Ž .1r p p , over a common denominator and show, using the facts thati. . j

p qp sp qp s1, that the numerator of the resulting expression is1. 2 . .1 .2
unity. Finally, replace each proportion by its corresponding ratio of

xfrequencies.

Ž . 23.3. Prove that the square of z�see 3.5 �is equal to the expression for �
Ž .given in 3.1 .

3.4. Show that the estimated expected entry in the ith row and jth column of
a fourfold table generated by sampling method I is given by expression
Ž . w3.8 under the hypothesis of independence. Hint. The expected entry is
equal to n P . What is the estimate of P under the hypothesis of. . i j i j

xindependence?

3.5. Show that the estimated expected entry in the ith row and jth column of
a fourfold table generated by sampling method II or III is given by

Ž .expression 3.8 under the hypothesis of equal underlying probabilities.
wHint. Under the hypothesis, P sP sP, say. The expected entries are1 2
equal to N sn P and N sn Q, where Qs1yP. What are thei1 i. i2 i.

xestimates of P and Q under the hypothesis?

Ž .3.6. When the two sample sizes are equal, the denominator of 3.5 involves
Ž .2 pq, whereas the denominator of 3.15 involves p q qp q . Prove that1 1 2 2

p q qp q F2 pq when n sn , with equality if and only if p sp .1 1 2 2 1. 2. 1 2
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C H A P T E R 4

Determining Sample Sizes Needed
to Detect a Difference between
Two Proportions

There are two kinds of errors one must guard against in designing a
comparative study. Even though these errors can occur in any statistical
evaluation, such as in the single sample study of Section 2.1, their discussion
here is restricted to the case where proportions from two independent
samples are compared, that is, to sampling methods II and III. The reader is

Ž .referred to Cohen 1988, Chapter 7 for a discussion of the two kinds of
errors in sampling method I.

The first, called the Type I error, consists in declaring that the difference
in proportions being studied is real when in fact the difference is zero. This
kind of error has been given the greater amount of attention in elementary
statistics books, and hence in practice. It is typically guarded against simply
by setting the significance level for the chosen statistical test, denoted � , at a
suitably small probability such as 0.01 or 0.05.

This kind of control is not totally adequate, because a literal Type I error
probably never occurs in practice. The reason is that the two populations
giving rise to the observed samples will inevitably differ to some extent, albeit
possibly by a trivially small amount. This is as true in the case of the
improvement rates associated with any two treatments as in the case of the
disease rates for people possessing and for people not possessing any sus-
pected antecedent factor. It is shown in Problem 4.2 that no matter how
small the difference is between the two underlying proportions�provided it
is nonzero�samples of sufficiently large size can virtually guarantee statisti-
cal significance. Assuming that an investigator desires to declare significant
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only differences that are of practical importance, and not merely differences
of any magnitude, he should impose the added safeguard of not employing
sample sizes that are larger than he needs to guard against the second kind
of error.

The second kind of error, called the Type II error, consists in failing to
declare the two proportions significantly different when in fact they are
different. As just pointed out, such an error is not serious when the propor-
tions are only trivially different. It becomes serious only when the propor-
tions differ to an important extent. The practical control over the Type II
error must therefore begin with the investigator’s specifying just what differ-
ence is of sufficient importance to be detected, and must continue with the
investigator’s specifying the desired probability of actually detecting it. This
probability, denoted 1y� , is called the power of the test; the quantity � is
the probability of failing to find the specified difference to be statistically
significant.

Some means of specifying an important difference between proportions
are given in Section 4.1. Having specified the quantities � , 1y� , and the
minimum difference in proportions considered important, the investigator
may use the mathematical results of Section 4.2 or the values in Table A.4
Ž . Ž .described in Section 4.3 to find the sample sizes necessary to assure that 1
any smaller sample sizes will reduce the chances below 1y� of detecting the

Ž .specified difference and 2 any appreciably larger sample sizes may increase
the chances well above � of declaring a trivially small difference to be
significant.

Frequently an investigator is restricted to working with sample sizes
dictated by a prescribed budget or by a set time limit. He or she will still find
the values in Table A.4 useful, for they can be used to find those differences
that the investigator has a reasonable probability of detecting and thus to
obtain a realistic appraisal of the chances for success of the study.

Section 4.4 is devoted to the case where unequal sample sizes are planned
for beforehand. Section 4.5 discusses some additional uses of the tables,
including detectable effect sizes. Some final comments are made in Section
4.6.

4.1. SPECIFYING A DIFFERENCE WORTH DETECTING

An investigator will often have some idea of the order of magnitude of the
proportions he or she is studying. This knowledge may come from previous
research, from an accumulation of clinical experience, from small-scale pilot
work, or from vital-statistics reports. Given at least some information, the
investigator can, using his or her imagination and expertise, come up with an
estimate of a difference between two proportions that is scientifically or
clinically important. Given no information, the investigator has no basis for
designing the study intelligently and would be hard put to justify designing it
at all.
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In this section only two of the many approaches to the specification of a
difference are illustrated, each with two examples. Let P denote the1
proportion of members of the first group who possess the attribute or
experience the outcome being studied. In general, the designation of one of
the groups as the first and the other as the second is arbitrary. Here,
however, we designate the first group to be the one that might be viewed as a
standard, typically because more information may be available for it than for
the other group. Our problem is to determine that value of P , the propor-2
tion in the second group, which, if actually found, would be deemed on
practical grounds to differ sufficiently from P to warrant the conclusion that1
the two groups are different.

Example 4.1.1. In a comparative clinical trial, the first group might
represent patients treated by a standard form of therapy. The proportion P1

Ž .might then refer to their observed response e.g., remission within a speci-
fied period of time following the beginning of treatment. The second group
might represent patients treated with an as yet untested alternative form of
therapy. A clinically important proportion P associated with the alternative2
treatment might be determined as follows.

Suppose that it can be assumed that all patients responding to the
standard treatment would also respond to the new therapy. Suppose further
that if at least an added fraction f , specified by the investigator, of nonre-
sponders to the standard treatment respond to the new one, then the
investigator would wish to identify the new treatment as superior to the old.
Since the proportion of nonresponders to the standard treatment is 1yP ,1

Ž .a clinically important value of P is therefore P q f 1yP .2 1 1
For example, the remission rate associated with the standard treatment

might be P s0.60. If the investigator will view the alternative treatment as1
superior to the standard only if it succeeds in remitting the symptoms of at
least one quarter of those patients who would not otherwise show remission,
so that fs0.25, then he is in effect specifying a value P s0.60q0.25�2
Ž .1y0.60 s0.70 as one that is different to a practically important extent
from P s0.60.1

In this example, the proportions P and P refer to a favorable outcome,1 2
namely, a remission of symptoms. Similar reasoning can be applied to studies

Ž .in which an untoward event e.g., morbidity or mortality is of especial
interest.

Example 4.1.2. Suppose that the rate of premature births is P among1
women of a certain age and race who attend the prenatal clinic in their
community hospital. An intensive education program aimed at nonattenders
is to be undertaken only if P , the rate of premature births among prospec-2
tive mothers not attending the clinic but otherwise similar to the clinic
attenders, is sufficiently greater than P .1

It is reasonable to assume that a mother who delivered a premature
offspring even after having attended the clinic would also have done so if she
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had not attended the clinic. The added risk of prematurity associated with
nonattendance can thus only operate on mothers who do not deliver prema-
ture offspring after attending the clinic. If f denotes an added risk that is of

Ž .practical importance, the hypothesized value of P is then P q f 1yP .2 1 1
Suppose, for example, that the prematurity rate for clinic attenders is

P s0.25. Suppose further that an education program is to be undertaken1
only if, of women who attend the clinic and who do not deliver a premature
offspring, at least 20% would have delivered a premature offspring by not
attending the clinic. The value of f is then 0.20, and the hypothesized value

Ž .of P is 0.25q0.20� 1y0.25 s0.40.2
The approach to the comparison of two proportions exemplified by these

Ž .two examples has been recommended and applied by Sheps 1958, 1959, 1961 .
It is considered again in Chapter 8, where the relati®e difference fs
Ž . Ž .P yP r 1yP is studied in greater detail.2 1 1

ŽExample 4.1.3. One often undertakes a study in order to replicate or
.refute another’s research findings, or to see if one’s own previous findings

hold up in a new setting. One must be careful, however, to control for the
possibility that the rates in the groups being compared are at levels in the
new setting different from those in the old. This possibility effectively rules
out attempting to recapture the simple difference between rates found
previously.

For example, suppose that the rate of depression among women aged
20�49 was found in the mental hospitals of one community to be 40
percentage points higher than the rate among men aged 20�49. It will be
impossible to find the same difference in the mental hospitals of a new
community if, there, the rate of depression among males aged 20�49 is 70%,
since a difference of 40 percentage points implies an impossible rate of 110%
for women similarly aged.

A measure of the degree of inequality between two rates is therefore
needed that may be expected to remain constant if the levels at which the
rates apply vary across settings. A measure frequently found to have this
property is the odds ratio, denoted �. The odds ratio is discussed in greater
detail in Chapters 6 and 7. Here we give only its definition.

If P is the rate at which an event occurs in the first population, then the1
odds associated with that event in the first population are, say, � sP rQ ,1 1 1
where Q s1yP . Similarly, the odds associated with the event in the1 1
second population are � sP rQ . The odds ratio is simply the ratio of2 2 2
these two odds,

� P Q2 2 1�s s . 4.1Ž .� P Q1 1 2

Ž .The odds ratio is also termed the cross-product ratio Fisher, 1962 and the
Ž .approximate relative risk Cornfield, 1951 . If P sP , then �s1. If P �P ,2 1 2 1

then ��1. If P �P , then ��1.2 1
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Suppose that a study is to be carried out in attempt to replicate the results
of a previous study in which the odds ratio was found to be �. If, in the
community in which the new study is to be conducted, the rate of occurrence
of the event in the first group is P , and if the same value � for the odds1
ratio is hypothesized to apply in the new community, then the value hypothe-
sized for P is2

� P1P s . 4.2Ž .2 � P qQ1 1

For example, suppose that the value �s2.5 had previously been found as
the ratio of the odds for depression among female mental hospital patients
aged 20�49 to the odds for male mental hospital patients similarly aged. If
the same value for the odds ratio is hypothesized to obtain in the mental
hospitals of a new community, and if in that community’s mental hospitals the
rate of depression among male patients aged 20�49 is approximately P s1
0.70, then the rate among female patients aged 20�49 is hypothesized to be
approximately

2.5�0.70
P s s0.85.2 2.5�0.70q0.30

An important property of the odds ratio to be demonstrated in Chapters 6
and 7 is that the same value should be obtained whether the study is a
prospective or retrospective one. This fact may be taken advantage of if an
investigator wishes to replicate a previous study but alters the research design
from, say, a retrospective to a prospective study.

Ž .Example 4.1.4. Suppose that a case-control retrospective study was
conducted in a certain school district. School children with emotional distur-
bances requiring psychological care were compared with presumably normal
children on a number of antecedent characteristics. Suppose it was found
that one-quarter of the emotionally disturbed children versus one-tenth of

Ž .the normal controls had lost by death, divorce, or separation at least one
Ž .parent before age 5. The odds ratio is then, from 4.1 ,

0.25�0.90
�s s3.0.0.10�0.75

Suppose that a study of this association is to be conducted prospectively in
a new community by following through their school year a sample of children

Ž .who begin school with both parents alive and at home group 1 and a sample
Ž .who begin with at least one parent absent from the home group 2 , with the

proportions developing emotional problems being compared. From a survey
of available school records, the investigator in the new school district is able
to estimate that P , the proportion of children beginning school with both1
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parents at home who ultimately develop emotional problems, is P s0.05. If1
the value �s3.0 found in the retrospective study is hypothesized to apply in
the new school district, the investigator is effectively hypothesizing a value
Ž .see equation 4.2

3.0�0.05
P s s0.136,2 3.0�0.05q0.95

or approximately 15%, as the rate of emotional disturbance during school
years among children who have lost at least one parent before age 5.

The methods just illustrated may be of use in generating hypotheses for
studies to be carried out within a short time, but are likely to prove

Ž .inadequate for long-term comparative studies. Halperin et al. 1968 give a
model and some numerical results when two long-term therapies are to be
compared and when few or no dropouts are expected. When droputs are

Ž .likely to occur, the model of Schork and Remington 1967 may be useful for
generating hypotheses. If the study calls for the comparison of more than two
treatments, or if outcome is measured on a scale with more than two

Ž .categories, the results of Lachin 1977 should be useful.

4.2. THE MATHEMATICS OF SAMPLE SIZE DETERMINATION

We assume in this section and the next that the sample sizes from the two
populations being compared, n and n , are equal to a common n. We find1 2

Ž .the value for the common sample size n so that 1 if in fact there is no
difference between the two underlying proportions, then the chance is

Ž .approximately � of falsely declaring the two proportions to differ, and 2 if
in fact the proportions are P and P �P , then the chance is approximately1 2 1
1y� of correctly declaring the two proportions to differ. Since this section
only derives the mathematical results on which the values in Table A.4
Ž .described in Section 4.3 are based, it is not essential to the sections that
follow.

We begin by deriving the sample size, say n�, required in both the groups
if we ignore the continuity correction. With n� as a first approximation, we
then obtain a formula for the desired sample size per group, n, that is
appropriate when the test statistic incorporates the continuity correction.

Suppose that the proportions found in the two samples are p and p .1 2
The statistic used for testing the significance of their difference is, temporar-
ily ignoring the continuity correction,

p yp2 1zs , 4.3Ž .'2 pqrn�
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where
1ps p qpŽ .1 22

and

qs1yp.

To assure that the probability of a Type I error is � , the difference between
p and p will be declared significant only if1 2

� �z �z , 4.4Ž .�r2

where z denotes the value cutting off the proportion �r2 in the upper tail�r2
� �of the standard normal curve and z is the absolute value of z, always a

nonnegative quantity. For example, if �s0.05, then z sz s1.96,0.05r2 0.025
and the difference is declared significant if either z�1.96 or z�y1.96.

If the difference between the underlying proportions is actually P yP ,2 1
we wish the chances to be 1y� of rejecting the hypothesis, that is, of having

Ž .the outcome represented in 4.4 actually occur. Thus we must find the value
of n� such that, when P yP is the difference between the proportions,2 1

� �p yp2 1P �z s1y� . 4.5Ž .�r2½ 5'2 pqrn�

Ž .The probability in 4.5 is the sum of two probabilities,

p yp p yp2 1 2 11y�sP �z qP �yz . 4.6Ž .�r2 �r2½ 5 ½ 5' '2 pqrn� 2 pqrn�

If P is hypothesized to be greater than P , then the second probability on2 1
Ž .the right-hand side of 4.6 �representing the event that p is appreciably2

Ž .less than p �is near zero see Problem 4.1 . Thus we need only find the1
value of n� such that, when P yP is the actual difference,2 1

p yp2 11y�sP �z . 4.7Ž .�r2½ 5'2 pqrn�

Ž .The probability in 4.7 cannot yet be evaluated, because the mean and the
standard error of p yp appropriate when P yP is the actual difference2 1 2 1
have not yet been taken into account. The mean of p yp is P yP , and its2 1 2 1
standard error is

se p yp s P Q qP Q rn� , 4.8'Ž . Ž . Ž .2 1 1 1 2 2

where Q s1yP and Q s1yP .1 1 2 2
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Ž .The following development of 4.7 can be traced using only simple
algebra:

'1y�sP p yp �z 2 pqrn�Ž .½ 52 1 �r2

'sP p yp y P yP �z 2 pqrn� y P yPŽ . Ž . Ž .½ 52 1 2 1 �r2 2 1

'z 2 pqrn� y P yPŽ .p yp y P yPŽ . Ž . �r2 2 12 1 2 1sP � . 4.9Ž .½ 5P Q qP Q rn� P Q qP Q rn�' 'Ž . Ž .1 1 2 2 1 1 2 2

Ž .The final probability in 4.9 can be evaluated using tables of the normal
distribution, because, when the underlying proportions are P and P , the2 1
quantity

p yp y P yPŽ . Ž .2 1 2 1Zs 4.10Ž .
P Q qP Q rn�'Ž .1 1 2 2

has, to a good approximation if n� is large, the standard normal distribution.
Let z denote the value cutting off the proportion � in the upper tail of�

the standard normal curve. Then, by the symmetry of the normal curve

1y�sP Z�yz 4.11Ž .Ž .�

Ž . Ž .By matching 4.11 with the last probability of 4.9 , we find that the value of
n� we seek is the one that satisfies

'P yP yz 2 pqrn�Ž .2 1 �r2
z s� P Q qP Q rn�'Ž .1 1 2 2

' 'P yP n� yz 2 pqŽ .2 1 �r2
s . 4.12Ž .

P Q qP Q' 1 1 2 2

Ž .Before presenting the final expression for n�, we note that 4.12 is a
function not only of P and P , which may be hypothesized by the investiga-1 2
tor, but also of pq, which is observable only after the study is complete. If n�
is fairly large, however, p will be close to

P qP1 2Ps , 4.13Ž .2

and, more importantly, pq will be close to PQ, where Qs1yP. Therefore,
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'Ž .'replacing 2 pq in 4.12 by 2 PQ and solving for n�, we find

2'z 2 PQ qz P Q qP Q'�r2 � 1 1 2 2ž /
n�s 4.14Ž .2P yPŽ .2 1

to be the required sample size from each of the two populations being
compared when the continuity correction is not employed.

Ž . Ž .Haseman 1978 found that equation 4.14 gives values that are too low,
in the sense that the power of the test based on sample size n sn sn� is1 2
less than 1y� when P and P are the underlying probabilities. Kramer1 2

Ž . Ž .and Greenhouse 1959 proposed an adjustment to 4.14 based on a double
Ž .use of the continuity correction, once in the statistic 4.3 and again in the

Ž .statistic 4.10 . Their adjustment, which was tabulated in the first edition of
Ž .this book, was found by Casagrande, Pike, and Smith 1978b to result in an

overcorrection.
Ž .By incorporating the continuity correction only in the test statistic 4.3 ,

the latter authors derived

2�n 4
ns 1q 1q 4.15Ž .�(4 ž /n P yP2 1

as the sample size required in each group to provide, to an excellent degree
of approximation, the desired significance level and power. The sample sizes

Ž .tabulated in Table A.4 which is different from Table A.3 of the first edition
are based on this formula. The values there agree very well with those

Ž . Ž .tabulated by Casagrande, Pike, and Smith 1978a and Haseman 1978 . Ury
Ž .and Fleiss 1980 present comparisons with some other formulas.

Ž .Levin and Chen 1999 show how the continuity correction can be used,
Ž .in a logically consistent manner, both in the test statistic 4.3 and again in

Ž . Ž . Ž .the statistic 4.10 to obtain 4.14 and 4.15 . By a careful analysis of the
round-off error created in the normal approximation by discreteness in the
exact distribution of the test, they demonstrate that while it may appear that

1Ž . Ž .4.14 and 4.15 result from only one use of the continuity correction, two2

uses are actually required logically. When the second continuity correction is
Ž .properly employed in the Z statistic 4.10 used for approximating power, it

effectively cancels out the round-off error, and leaves only one correction
Ž .apparent in the formula. Curiously, when Kramer and Greenhouse 1959

considered use of two continuity corrections, they applied the second correc-
tion in the wrong direction, which explains the inaccuracy of their sample

Ž .sizes. Thus Levin and Chen 1999 settle three puzzles from the first two
editions of this book: why the sample size table from the first edition had to

Ž .be replaced because of an improper use of the second continuity correction ;
Ž . Žwhy the Casagrande, Pike, and Smith 1978b formula is so accurate because
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.it is a valid approximation to the exact hypergeometric test procedure ; and
Ž .why it is so though it uses only one logically inconsistent application of the

Žcontinuity correction because it actually uses two logically consistent correc-
.tions when properly derived .

Ž � � �To a remarkable degree of accuracy especially when n and P yP are2 1
� � � .such that n P yP G4 ,2 1

2�nsn q . 4.16Ž .P yP2 1

Ž .This result, due to Fleiss, Tytun, and Ury 1980 , is useful both in arriving
quickly at an estimate of required sample sizes and in estimating the power
associated with a study involving prespecified sample sizes. Suppose that one
can study no more than a total of 2n subjects. If the significance level is �
and if the two underlying proportions one is seeking to distinguish are P and1

Ž . Ž .P , one can invert 4.16 and 4.14 to obtain2

2 'P yP ny yz 2 PQ2 1 �r2( P yP2 1
z s 4.17Ž .� P Q qP Q' 1 1 2 2

as the equation defining the normal curve deviate corresponding to the
power 1y� associated with the proposed sample sizes. Table A.1 may then
be used to find the power itself.

4.3. USING THE SAMPLE SIZE TABLES

Table A.4 gives the equal sample sizes necessary in each of the two groups
being compared for varying values of the hypothesized proportions P and1

Ž .P , for varying significance levels �s0.01, 0.02, 0.05, 0.10, and 0.20 , and for2
w Ž . xvarying powers 1y�s0.50, 0.65 0.05 0.95, and 0.99 . The value 1y�s0.50

is included not so much because an investigator will intentionally embark on
a study for which the chances of success are only 50 : 50, but rather to help
provide a baseline for the minimum sample sizes necessary.

The probability of a Type I error, � , is frequently specified first. If, on the
basis of declaring the two proportions to differ significantly, the decision is

Ž .made to conduct further possibly expensive research or to replace a
standard form of treatment with a new one, the Type I error is serious and �

Ž .should be kept small say, 0.01 or 0.02 . If the study is aimed only at adding
to the body of published knowledge concerning some theory, then the Type I

Žerror is less serious, and � may be increased to 0.05 or 0.10 the more the
.published evidence points to a difference, the higher may � safely be set .
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Having specified � , the investigator needs next to specify the chances
1y� of detecting the proportions as different if, in the underlying popula-
tions, the proportions are P and P . The criterion suggested by Cohen1 2
Ž .1988, p. 56 seems reasonable. He supposes it to be the typical case that a
Type I error is some four or five times as serious as a Type II error. This
implies that one should set � , the probability of a Type II error, approxi-
mately equal to 4� , so that the power becomes, approximately, 1y�s
1y4� . Thus when �s0.01, 1y� may be set at 0.95; for �s0.02, at 0.90;
and for �s0.05, at 0.80. When � is larger than 0.05, it seems safe to take
1y�s0.75.

The use of Table A.4 will be illustrated for each of the examples of
Section 4.1.

Example 4.3.1. The investigator hypothesizes a remission rate of P s1
0.60 for the standard treatment and one of P s0.70 for the new treatment.2
The significance level � is set at 0.01, and the power 1y�s0.95. It is
necessary to study 827 patients under the standard treatment and 827 under
the new one, the assignment of patients to treatment groups being at
random, in order to guarantee the desired significance level and power.

To reduce the chances of detecting a difference to 1y�s0.75 without
increasing the significance level, it is necessary to study 499 patients with
each treatment. If the investigator can afford to study no more than a total of
600 patients, so that each treatment would be applied to no more than 300
subjects, the chances of detecting the hypothesized difference become less
than 50 : 50.

Example 4.3.2. The investigator hypothesizes a prematurity rate of P s1
0.25 for clinic attenders and one of P s0.40 for nonattenders. The signifi-2
cance level � is set at 0.01 and the power 1y� at 0.95. It is necessary to
study 357 mothers from each group, all women being within a specified age
range. If the significance level is increased to �s0.02 and the power
lowered to 1y�s0.90, then 65 mothers from each group are needed.

Example 4.3.3. The investigator hypothesizes the rate of depression
among male mental hospital patients aged 20�49 to be P s0.70, and the1
rate among similarly aged female patients to be P s0.85. The significance2
level � is set at 0.05, and the power 1y� at 0.80. It is necessary to study 134
patients of each sex. If the investigator had planned to study 200 patients of
each sex, the chances of picking up the hypothesized difference would be
nearly 95%, a value that might be larger than necessary. The value of z�

Ž .from 4.17 is

2 '0.15 200y y1.96 2�0.775�0.225( 0.15
z s s1.535.� '0.70�0.30q0.85�0.15
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Example 4.3.4. The investigator hypothesizes that the proportion devel-
oping emotional problems among children beginning school with both par-
ents at home is P s0.05, and that the proportion among children beginning1
school with at least one parent absent is approximately P s0.15. The2
significance level � is set at 0.05, and the power 1y� at 0.80. It is necessary
to follow up 160 of each kind of child, making certain that the two cohorts
are similar with respect to sex and race. If the investigator can afford to study
no more than 120 of each kind of child, and if he or she is willing to increase
the chance of making a Type I error to �s0.10, there will still be over a
75% chance of finding the groups to be different if the hypothesized values

Ž .of P and P are correct. The value of z from 4.17 is 0.722.1 2 �

The reader will note in each of these examples that the required sample
size is substantially larger than that required for a comparable single sample
problem. For instance, in Example 4.3.4, if the proportion among children
beginning school with both parents at home were known to be P s0.05 and0
a single sample among children with at least one parent absent were to be
used to test H : PsP with a two-tailed test at level �s0.05 and power0 0

Ž .1y�s0.80 at Ps0.15, then 2.24 would yield ns62.6, about 5 times
smaller than Ns320 for the two-sample study. Comparing an observed
proportion against a hypothesized one is obviously a great deal more efficient
than comparing one observed proportion against another, but the comparison
is valid only if the hypothesized proportion actually pertains to the study
population. In the example, if P pertains to a population of children with0
fewer emotional problems than the one to be studied, then the one-sample
test is invalid, and an erroneous conclusion would likely follow that children
with one or both parents absent are at higher risk for emotional problems,
even if this were not true in the study population. For such reasons single-
sample studies with historical controls are generally unpersuasive. Only
in fields with a good understanding and control of sources of variation, or
with a high degree of certainty in outcomes with standard treatments, are
historical-controlled studies accepted. For example, in the care of patients
with terminal illness where standard therapies are known to be hopeless,
compassionate treatment with experimental therapies may be considered
without concurrent controls. Animal carcinogenesis studies commonly incor-

Ž .porate information from historical controls see Section 9.3 , although the
logic here is less compelling.

4.4. UNEQUAL SAMPLE SIZES

Suppose that considerations of relative cost, the desire for more precise
Ž .estimates for one group than for the other, or other factors Walter, 1977

lead to the selection of samples of unequal size from the two populations.
Let the required sample size from the first population be denoted by m and
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Ž .that from the second by rm 0� r�� , with r specified in advance. The total
Ž .sample size is, say, Ns rq1 m.

If p and p are the two resulting sample proportions, the test statistic1 2
incorporating the continuity correction is

1 rq1
p yp y2 1 ž /2m r

zs ,
pq rq1Ž .( mr

Ž . Ž .where ps p q rp r rq1 and qs1yp. If the desired significance level1 2
is � , and if a power of 1y� is desired against the alternative hypothesis that
P �P , with P and P specified, the same kind of development as in1 2 1 2
Section 4.2 leads to the value

2
� 2 rq1m Ž .

ms 1q 1q 4.18Ž .�(4 ž /m r P yP2 2

for the required sample size from the first population, and rm for that from
Ž .the second. In 4.18 ,

2'z rq1 PQ qz rP Q qP QŽ . '½ 5�r2 � 1 1 2 2
�m s , 4.19Ž .2r P yPŽ .2 1

Ž . Ž . Ž .where Ps P q rP r rq1 and Qs1yP. Expression 4.19 would be the1 2
� Ž .4�Ž . 4required sample size if the continuity correction y 1r 2m rq1 rr were

omitted from the z-score.
Ž .As found by Fleiss, Tytun, and Ury 1980 , m is approximately equal to

rq1�msm q . 4.20Ž .r P yP2 1

Ž . Ž .Note that equations 4.14 � 4.16 are special cases of those presented above
Ž .when the two sample sizes are equal i.e., when rs1 .

Consider again the example of comparing the rates of prematurity in the
Ž .offspring of clinic attenders P is hypothesized to be 0.25 and in the1

Ž .offspring of nonattenders P is hypothesized to be 0.40 . The significance2
level is again set at �s0.01, and the power at 1y�s0.95. Suppose that
recruitment of clinic attenders is easier than recruitment of nonattenders and
that the investigator decides to study half as many nonattenders as attenders,
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� Ž .so that rs0.5. The value of m in 4.19 is

2' '2.576 1.5�0.30�0.70 q1.645 0.5�0.25�0.75q0.40�0.60Ž .�m s 20.5 0.15Ž .

s510.34,

Ž .so that, by 4.18 , the required sample size from the population of clinic
attenders is

2
2 1.5510.34 Ž .

ms 1q 1q s530.(ž /4 510.34�0.5�0.15

Ž .Equation 4.20 yields the same value to the nearest integer.
The two required sample sizes are therefore n sms530 and n s1 2

0.5ms265. The total number of women required is Ns795, some 80 more
Žthan were required for the case of equal sample sizes see Example 2 of

.Section 4.3 .
It is generally true that N is minimized, for given � , � , P , and P , when1 2

sample sizes are equal, rs1.
Problem 4.5 is devoted to further applications of the results of this section.

4.5. SOME ADDITIONAL USES OF THE TABLES

One-Tailed Tests
Ž .It has so far been assumed that a two-tailed test see Section 3.4 would be

used in comparing the two proportions. If the investigator chooses to perform
a one-tailed test, he can still use Table A.4, but should enter it with twice the
significance level. Thus for a one-tailed significance level of 0.01, one uses
�s0.02; for a one-tailed significance level of 0.05, one uses �s0.10. No
change in the value of 1y� is necessary.

Unequal Sample Sizes
Ž . Ž .As discussed by Mantel 1983 and Lee 1984 , sample size tables for equal

group sizes can be used for unequal sample sizes by the following reasonable
Ž .approximation see Problem 4.6 . If n is the tabulated value per group from

Table A.4 for the given values of � , � , P , and P , then, approximately,1 2

n rq1Ž .
ms 4.21Ž .2 r

In the example of the previous section comparing rates of prematurity in the
Ž . Žoffspring of clinic attenders with P s0.25 and nonattenders with P s1 2

. Ž .0.40 , where �s0.01, and 1y�s0.95, use of Table A.4 and 4.21 yields
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Ž . Ž . Ž .ms357 0.5q1 r 2�0.5 s 536, reasonably close to the result using 4.18
Ž .and 4.19 of 530.

One Sample Size Gi©en
Ž .Suppose that one of the two sample sizes, say m sn is given. For example,1

m may represent the fixed number of cases available for a case-control study.
There may or may not then be a value of r such that, with the second sample
size, n s rm, the study will have the desired power. If n denotes the2
common sample size from Table A.4 for the given parameters and the
specified values of � and � , then the required value of r is approximately

n
rs 4.22Ž .2myn

If mFnr2, no positive value for r exists and the study as planned must be
Žabandoned. The power might have to be reduced; the values of P and P1 2

.might have to be moved further apart; etc.
Suppose, for example, that the population from which controls will be

selected is characterized by a probability of P s0.15 for the characteristic1
under study, and suppose that a probability of P s0.30 is sufficiently2
different from P that, if it were the underlying probability in the population1
of cases, the power should be equal to 0.80. Let the two-tailed significance
level be �s0.05, and suppose that only ms100 cases will be available for
the study.

If the study could be carried out with equal numbers of cases and controls,
the required sample size per group would be ns134 from Table A.4.
The required ratio of sample sizes given that ms100 is therefore rs

Ž .134r 2�100y134 s2.03, and the required number of controls is 2.03�
100s203.

Interpolation
Suppose the investigator hypothesizes a pair of probabilities P and P , with1 2
P �P , one or both of which are not tabulated in Table A.4. If P�FP and2 1 1 1
P�GP and if n� is the required sample size for P� and P� and the2 2 1 2
specified values of � and � , then the required sample size n for P and P1 2
is approximately equal to

2� � �n P yPŽ .2 1ns . 4.23Ž .2P yPŽ .2 1

Assume, for example, that P s0.33, P s0.40, �s0.05, and 1y�s0.80.1 2
The value of P� is then 0.30, the value of n� from the table is 376, and, from1
Ž .4.23 , the required sample size for P s0.33 versus P s0.40 is ns1 2
� Ž .24 Ž .2376 0.40y0.30 r 0.40y0.33 s767.3. This value is within 1% of the
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Ž . Ž .sample size produced by the formulas in 4.14 and 4.15 for P s0.33 and1
P s0.40, ns769.6.2

The example highlights a disturbing feature of sample size determination,
the possibly inordinate sensitivity of the sample sizes to the values of P and1
P . The sample size required for the hypothesized difference between 0.332
and 0.40, ns770 per group, is more than twice the sample size required for
the hypothesized difference between 0.30 and 0.40, ns376 per group.
Investigators will often be tempted to round off their hypothesized values of
P or P so that they become multiples of 0.05, but they should be aware1 2
that, if the resulting values of P� and P� are farther apart than the original1 2
values, the sample sizes they determine may be much too low.

Detectable Effect Size
Ž .The key expression for power with equal sample sizes is 4.17 . For unequal

sample sizes, m in group 1 and rm in group 2, the corresponding expression
using the continuity correction is

rq1 'P yP rmy yz rq1 PQŽ .2 1 �r2( P yP2 1
z s . 4.24Ž .� rP Q qP Q' 1 1 2 2

Ž .Expression 4.24 may be used to approximate the power of the test of
H : P sP at alternative values of P and P .0 1 2 1 2

Ž . Ž .Given � and the sample sizes, how does one invert 4.17 or 4.24 to find
the magnitudes of P and P at which the test of H has prespecified power1 2 0

Ž1y� ? Such a pair is called detectable with power 1y� at the � level of
.significance . Usually, one of the probabilities will be known, at least approxi-

Ž .mately; say it’s P . Then 4.24 could in principle be solved for the desired1
P , but the solution generally will require an iterative computation.2

Table A.4 may be used to locate approximate values of P for given P , � ,2 1
and power by bracketing the sample size at hand between two tabled values.
For example, with equal sample sizes of ns100 per group and P s0.30,1
�s0.05, and 1y�s0.80, a value of P slightly above 0.50 can be detected2
Ž .i.e., allows testing with 80% power at �s0.05 two-tailed .

For unequal sample sizes, one finds the values of P that bracket the2
Ž . Ž .harmonic mean of m and rm, i.e., ns2 rmr rq1 . See Problem 4.6. Thus

Ž .for ms75 and rs2, we bracket ns2�2�75r 2q1 s100 to find the
2detectable P s0.50 again. For ms75 and rs , the harmonic mean of 752 3

and 50 is ns60, and bracketing this sample size in Table A.4 we find P2
Ž .between 0.55 and 0.60. Checking in 4.24 shows that the detectable P is2

Ž .0.57. More precise solutions require an iterative computation to solve 4.24
for P . The values from Table A.4 are useful as starting values for the2
iteration.
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4.6. SOME ADDITIONAL COMMENTS

Ž . Ž .Cohen 1988, Chapter 6 gives a set of tables and Feigl 1978 gives a set of
graphs for determining sample sizes when the same parameters as those
preceding are specified. Since the significance test they consider is different
from the standard one, their sample sizes are slightly different from those in
Table A.4. In general, Cohen’s tables and Feigl’s charts have to be used if the
investigator can hypothesize the order of magnitude of the difference be-
tween P and P , but not their separate magnitudes. If the investigator can1 2
hypothesize the separate values of P and P , the current table is preferable.1 2

A number of authors have considered the problem of determining the
required sample sizes for a two-group study when a confidence interval is

Ž .desired for some parameter Greenland, 1988; Satten and Kupper, 1990 .
Ž .Greenland 1988 shows how the power approach may be adopted when one’s

interest is in an interval that has a high probability of excluding one or the
Ž .other of two competing values for a parameter. Satten and Kupper 1990

present a method for deriving sample sizes, and present tables of results,
when one desires a confidence interval for the odds ratio that has a high

Ž .probability of having a maximum prespecified length. McHugh and Le 1984
Ž .and O’Neill 1984 present simple sample size formulas for interval estima-

tion of the difference between two probabilities or of their odds ratio. The
resulting sample sizes will be adequate when the underlying probabilities are

1close to , but otherwise will be too small.2

PROBLEMS

4.1. Suppose that P �P and that n� is the sample size studied in each2 1
group. Let Z represent a random variable having the standard normal
distribution.
( )a Show that the probability that p is significantly less than p ,2 1

p yp2 1P �yz ,�r2�ž /'2 pqrn

is approximately equal to

�''yz 2 PQ y P yP nŽ .�r2 2 1
	sP Z� .

P Q qP Q� 0' 1 1 2 2

( )b If P sP , then 	s�r2. Thus if P �P , show why 	��r2.2 1 2 1'wHint. Prove that P Q qP Q � 2 PQ whenever P � P .' 1 1 2 2 2 1
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Therefore, if P �P ,2 1

� �'' 'yz 2 PQ y P yP nŽ . P yP nŽ .�r2 2 1 2 1 x�yz y �yz .�r2 �r2P Q qP Q P Q qP Q' '1 1 2 2 1 1 2 2

( ) �c 	 is small even if P is only slightly larger than P and even if n is2 1
small. Find the value of 	 when P s0.10, P s0.11, n�s9, and1 2
�s0.05. Note that the probability found in Table A.1 must be
hal®ed.

4.2. Let the notation and assumptions of Problem 4.1 be used again. The
power of the test for comparing p and p is approximately1 2

�° ¶''z 2 PQ y P yP nŽ .�r2 2 1~ •1y�sP Z� ,¢ ßP Q qP Q' 1 1 2 2

( ) �a Show that 1y� approaches unity as n becomes large but �
wremains fixed. Hint. What is the probability that a standard normal

random variable exceeds y1? y2? y3? What value does the
expression to the right of the inequality sign above approach as n�

xincreases?
( ) �b Show that 1y� decreases as � becomes small but n remains fixed.

4.3. Show that, when the test statistic incorporates the continuity correction,
Ž .equation 4.15 gives the sample size needed in each group to achieve a

wpower of 1y� when the underlying probabilities are P and P . Hint.1 2
The hypothesis that P sP is rejected if1 2

1
p yp y2 1 n

�z .�r2'2 pqrn

Assume that P �P , and apply the same algebraic development as in2 1
Section 4.2 to arrive at

1 �' 'n y s n'n P yPŽ .2 1

� Ž .as the equation defining n, where n is defined in 4.14 . Finally, solve
'the above quadratic equation for n and then for n, noting that one of

xthe two roots is negative and therefore inadmissible.
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4.4. An investigator hypothesizes that the improvement rate associated with
a placebo is P s0.45, and that the improvement rate associated with an1
active drug is P s0.65. The plan is to perform a one-tailed test.2

( )a If a significance level of �s0.01 and a power of 1y�s0.95 are
desired, how large a sample per treatment must he study?

( )b How large must the sample sizes be if the significance level is
relaxed to �s0.05 and the power to 1y�s0.80?

( )c What is the power of his one-tailed test if he can study only 52
wpatients per group, and if his significance level is �s0.05? Hint.

Because we are considering a one-tailed test, be sure to replace z�r2
Ž . xin equation 4.17 by 1.645.

4.5. The comparison of two populations with hypothesized probabilities
P s0.25 and P s0.40 was considered several times in the text.1 2

( )a Continuing to take �s0.01 and 1y�s0.95, fill in the remaining
values in the second, third, and fourth columns of the following
table:

Ratio of Sample Required Total
Ž .Sizes n rn s r n n Sample Size Total Cost2 1 1 2

0.5 530 265 795 $8,480
0.6 � � � �
0.7 � � � �
0.8 � � � �
0.9 � � � �
1 357 357 714 $7,854

( )b Suppose that the average cost of studying a member of group 1 is
$10, and that the average cost for group 2 is $12. Find the total cost
associated with each tabulated value of r. For which of these ratios
of sample sizes is the total cost minimized?

( )c Suppose that the investigator can afford to spend only $6,240 on the
Ž .study and decides to employ the value of r found in part b . What is

the value of m? What is the corresponding value of m� when
w Ž . � xP s0.25 and P s0.40? Solve equation 4.20 for m . What is1 2

the corresponding value of z when �s0.01? What, finally, is the�

power of the test?

4.6. Suppose that n is the required sample size per group for specified values
of � , � , P , and P . Another study with sample sizes n sm and1 2 1
n s rm has, approximately, the same power as the first if the harmonic2
mean of n and n is equal to n. Prove that the required value of m is1 2

Ž . wgiven by 4.21 . Hint. The harmonic mean of two positive numbers x
Ž y1 y1 . xand y is 2r x qy .
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4.7. In a discussion of the landmark studies defining the role of elevated
Ž .oxygen concentration in causing retrolental fibroplasia RLF , a condi-

tion that causes blindness in premature infants, a commentary by Day
Ž .et al. 1979 provided the following data from one of the original studies

Ž .by Lanman et al. 1954 . The clinical dilemma at the time was that the
higher oxygen concentration given to the premature infants to improve

Žtheir chances of survival with risk of death due to insufficient lung
.function caused the RLF condition, leading to blindness. The study by

Ž .Lanman et al. 1954 prospectively compared two groups of premies,
Ž .those given low O concentration n s40 and those given high O2 1 2

Ž .concentration n s45 . Two fourfold tables of interest can be derived2
from the reports:

Group Died Lived Total Blind Not Blind Survived

Low O 12 28 40 0 28 282
High O 9 36 45 6 30 362

Ž .The fourfold table on the left indicates higher mortality 30% for the
low-O -concentration group than for the high-O -concentration group2 2
Ž .20% . The fourfold table on the the right indicates no blindness among
those infants who survived the perinatal period in the low-O -concentra-2
tion group, and a higher incidence of blindness among those who
survived in the high-O -concentration group.2

( )a Test the hypothesis of no effect of O concentration on mortality2
against the one-sided alternative hypothesis that lowered O con-2
centration increases mortality. What is the p-value?

( )b Assuming a true mortality of P s0.30 versus P s0.20, what is the1 2
Ž .power of the hypothesis test conducted in part a ? What would be

the equal sample sizes required to test the above hypothesis at the
0.05 level of significance and 80% power at the specified alternative
mortalities? Assuming the high-O -concentration group had a true2
mortality of 20%, what mortality for the low-O -concentration group2
P can be detected at 80% power with the given sample sizes?1

( ) Ž .c How do you interpret the finding of part a in light of the findings
Ž .of part b ?

( )d Use Fisher’s exact test to test the hypothesis of no effect of O2
concentration on blindness among the surviving premies versus the
two-sided alternative. What is the exact two-tailed p-value by the
point probability method?
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How to Randomize

A number of references have been made so far to randomization. Subjects
were described as being ‘‘randomly selected’’ from a larger group of subjects,
as being ‘‘randomly assigned’’ to one or another treatment group, and so on.
This chapter gives some methods for achieving randomness of selection
Ž .needed in sampling methods I and II; see Section 5.1 or of assignment
Ž .needed in sampling method III; see Sections 5.2 and 5.3 .

It is important to bear in mind that randomness inheres not in the samples
one ends up with, but in the method used to generate those samples. When
we say that a group of a given size is a simple random sample from a larger
group, we mean that each possible sample of that size has the same chance of
being selected. When we say that treatments are assigned to subjects at
random, we mean that each subject is equally likely to receive each of the
treatments.

The necessity for randomization in controlled experiments was first pointed
Ž . Ž .out by Fisher 1935 . In the context of comparative trials, Hill 1962

describes what is accomplished by the random assignment of treatments to
subjects:

w xRandomization ensures three things: it ensures that neither our personal
idiosyncrasies . . . nor our lack of balanced judgement has entered into the construc-
tion of the different treatment groups . . . ; it removes the danger, inherent in an
allocation based upon personal judgement, that believing we may be biased in our
judgements we endeavor to allow for that bias, to exclude it, and that in so doing
we may overcompensate and by thus ‘‘leaning over backward’’ introduce a lack of
balance from the other direction; and, having used a random allocation, the
sternest critic is unable to say when we eventually dash into print that quite
probably the groups were differentially biased through our predilections or through

w xour stupidity p. 35 .

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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In spite of the widespread use of randomization in comparative trials,
debate continues as to its universal appropriateness. This issue will be
addressed in Section 8.3.

Table A.5 presents 20,000 random digits, arrayed on each page in ten
columns of 50 numbers, with five digits to each number. Some illustrations of
the use of the table follow. Modern computers generate lists like those in A.5
with ease, and most readers will have no trouble producing their own lists of
random digits by computer. Still, the manual method presented below has a
certain charm, and is instructive on a number of points.

5.1. SELECTING A SIMPLE RANDOM SAMPLE

Suppose that a firm has 250 employees, of whom 100 are to be selected for a
thorough physical examination and an interview to determine health habits.
A simple random sample of 100 out of the larger group of 250 may be
selected as follows.

Examine consecutive three-digit numbers, ignoring any that are 000 or
between 251 and 999. Of the numbers between 001 and 250, list the first 100
distinct ones that are encountered. When a column is completed, proceed to
the next one. The 100 numbers listed designate the employees to be selected.
If a file exists containing the names of all employees�the order in which the
names appear is immaterial�the employees may be numbered from 1 to 250
and those whose numbers appear on the list of random numbers would be
selected.

To illustrate, let us begin in the second column of the second page of
Table A.5. Each number in the column contains five digits, of which only the
first three will be examined. The first five numbers in the column, after
deleting their last two digits, are 670, 716, 367, 988, and 283�all greater than
250. The sixth number, 142, is between 001 and 250 and thus designates one
of the employees to be selected. The other numbers selected from the second
column are seen to be 021, 166, 127, 060, 098, 219, 161, 042, 043, 157, 113,
234, 024, 028, and 128.

Having exhausted the second column, and still requiring 84 additional
numbers, we proceed to examine the third column of the second page. At the
end of the third column, 29 distinct numbers between 001 and 250 are
available. In numerical order, they are:

001 028 052 107 142 166
014 034 059 113 146 219
021 042 060 121 157 234
024 043 080 127 160 244
026 047 098 128 161
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Subsequent columns are examined similarly until an additional 71 distinct
numbers between 001 and 250 are found. If a previously selected number is

Ž .encountered e.g., 244 is encountered again in column 4 , it is ignored.
The above method has the virtue of being self-documenting, in the sense

that, considering Table A.5 as a fixed, public record, any random sample
drawn using it can be reconstructed by revealing the starting location and
selection rules. This is useful for auditing purposes. The reader may wonder
how a sequence of numbers can be both ‘‘random’’ and yet completely
reproducible. That is the secret of pseudorandom sequences, like those
modern computers use universally. A pseudorandom number generator is a
deterministic algorithm whose output exhibits certain properties of theoreti-
cal random sequences: the numbers tend to be uniformly distributed and
chaotic, in the sense of extreme sensitivity to initial conditions, and thus
they are difficult to predict. These features help assure that a documentable

Ž .and replicable pseudo random number generator is beyond suspicion of
manipulation.

To illustrate the chaotic nature of pseudorandom number generators, if
one had used columns 2, 3, and 4 instead of 1, 2, and 3 in the preceding
paragraph, a radically different set of numbers would have resulted. As
another illustration, consider the following example of a pseudorandom
number generator known as a multiplicati®e congruential generator. With a
prespecified multiplier a, a fixed modulus m, and a given seed X , generate0
the next number as follows: multiply X by a, divide the result by m, throw0
away the whole number quotient, and set X equal to the remainder. The1
next number is generated similarly starting with X , and so on. The numbers1
generated will fall in the interval from 1 to my1, and with suitably chosen a
and m, the sequence will not repeat until all my1 integers have been
exhausted. For example, if as7, ms101, and we choose seed X s1, the0

Ž . Žgenerator produces the sequence X , X , X , . . . s 7, 49, 40, 78, 41, 85,1 2 3
.90, 24, 67, 65, . . . . The third number generated is 40 because 7�49s343,

and 343 has a remainder of 40 upon division by 101. Although the first two
numbers generated, 7, 49, are easily predictable, the sequence soon loses that
property. Furthermore, if instead of choosing seed 1 we choose seed X s2,0

Ž .the generator produces 14, 98, 80, 55, 82, 69, 79, 48, 33, 29, . . . , which, as
a sequence of numbers from 1 to 100, bears little resemblance to the first
sequence after the first few numbers, even though each number in the second
sequence is equal to twice that in the first modulo 101.

The above pseudorandom number generator will start repeating after 101
numbers have been generated. In modern computers the multiplier and
modulus are chosen to be huge numbers, so that the sequence does not start
repeating except after an immensely long time. A popular multiplicative
congruential generator is given by as2�72 �4,053,103s397, 204, 094 and
m31y1s2, 147, 483, 647. The modulus m is related to the length of a
computer word, 31 bits, when this congruential generator was developed. The
multiplier a is chosen carefully to assure the sequence of numbers appears as
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uniformly distributed as possible in several dimensions. Some computer
installations select the seed X by reading the time of day down to hun-0
dredths of a second when the random number generator is invoked. The
chaotic nature of the process insures that if one wanted to manipulate the
system in order to predict the outcome of the selection process, one would
have to know the time the algorithm was executed down to the hundredth of
a second; otherwise a completely unrelated selection would result. At the
same time, if the seed is recorded at the moment of execution, the determin-
istic nature of the procedure guarantees replicability of the selection for
auditing.

5.2. RANDOMIZATION IN A CLINICAL TRIAL

Suppose that a clinical trial is to be carried out to compare the effectiveness
of a drug with that of an inert placebo, and suppose that 50 patients are to be
studied under each drug, requiring a total of 100 patients. Suppose, finally,
that patients enter the study serially over time, and so are not all available at
once.

Two randomization methods exist. The first calls for selecting 50 distinct
numbers between 001 and 100, as described in Section 5.1, and for letting
these numbers designate the patients who will receive the active drug. The
remaining 50 numbers designate the patients who will receive the placebo.

This method has two drawbacks. First, if the study must be terminated
prematurely, there exists a strong likelihood that the total number of patients
who had been assigned the active drug up to the termination date will not
equal the total number who had been assigned the placebo. Statistical
comparisons lose sensitivity if the sample sizes differ. This can be especially

Ž .annoying in multicenter studies or highly stratified studies see Section 5.3
where many individual stratum sizes may be small. Second, if the clinical
characteristics of the patients entering the trial during one interval of time
differ from those of patients entering during another, or if the standards of
assessment change over time, then the two treatment groups might well end
up being different, in spite of randomization, either in the kinds of patients

Žthey contain or in the standards of assessment applied to them see Cutler
.et al., 1966, p. 865 .

The second possible method of randomization guards against these poten-
tial weaknesses in the first method. It calls for independently randomizing, to
one treatment group or the other, patients who enter the trial within each
successive short interval of time.

Suppose, for example, that ten patients are expected to enter the trial
each month. A reasonable strategy is to assign at random five of the first ten
patients to one treatment group and the other five to the second treatment
group, and to repeat the random assignment of five patients to one group
and five to the other for each successive group of ten.
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The procedure is implemented as follows, beginning at the top of the fifth
column of the first page of Table A.5. Because selection is from ten subjects,
only single digits need be examined, with 0 designating the tenth subject.
The first five distinct digits are found to be 2, 5, 4, 8, and 6. Therefore, the
second, fourth, fifth, sixth, and eighth patients out of the first ten will be
assigned the active drug, and the others�the first, third, seventh, ninth, and
tenth�will be assigned the placebo.

Examination of the column continues for the second series of ten patients.
The next five distinct digits are found to be 3, 1, 8, 0, and 5, implying that, of
the second group of ten patients, the first, third, fifth, eighth, and tenth are
assigned the active drug and the second, fourth, sixth, seventh, and ninth
are assigned the placebo. As soon as the leading digits in a column are
exhausted, the second digits may be examined.

It is important that a new set of random numbers be selected for each
successive group, lest an unsuspected periodicity in the kind of patient
entering the trial, or a pattern soon apparent to personnel who should be
kept ignorant of which drugs the patients are receiving, introduce a bias.

A special case of the method just illustrated is the pairing of subjects, with
one member of the pair randomly assigned the active drug and the other
assigned the placebo. Random assignment becomes especially simple when
subjects are paired. To begin with, one member of the pair must be desig-
nated the first, and the other, the second. The designation might be on the
basis of time of entry into the study, of alphabetical order of the surname, or
of any other criterion, provided that the designation is made before the
randomization is performed.

Table A.5 is entered at any convenient point, and successive single digits
are examined, one digit for each pair. If the digit is odd�1, 3, 5, 7, or 9�the
first member of the pair is assigned the active drug and the second member,
the placebo. If the digit is even�2, 4, 6, 8, or 0�the second member of the
pair is assigned the active drug and the first member the placebo.

To illustrate, let us begin at the top of the first column on the third page
of Table A.5. The first digit encountered, 2, is even, indicating that, in the
first pair, the active drug is given to the second member and the placebo to
the first. The second digit encountered, 8, is also even, so that, in the second
pair, too, the active drug is given to the second member and the placebo to
the first. The sixth, seventh, and eighth digits�3, 9, and 1�are all odd.
Therefore, in the sixth through eighth pairs, the active drug is given to the
first member and the placebo to the second.

The methods just described for balanced assignment in blocks of size ten
Žor two are special cases of randomly permuted blocks Zelen, 1974; see also

.Fleiss, 1986, from which we freely paraphrase . To simplify matters, let us
reformulate the method as follows. First, exhaustively enumerate all possible
permuted blocks of size 2k for a given choice of k. Each block contains equal
numbers of treatment assignments to treatments, say, A and B. Table 5.1
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Table 5.1. Permuted blocks of length 2, 4, 6, and 8

Length 2

1. AB 2. BA

Length 4

1. AABB 4. BAAB
2. ABAB 5. BABA
3. ABBA 6. BBAA

Length 6

1. AAABBB 6. ABABAB 11. BAAABB 16. BABBAA
2. AABABB 7. ABABBA 12. BAABAB 17. BBAAAB
3. AABBAB 8. ABBAAB 13. BAAB BA 18. BBAABA
4. AABBBA 9. ABBABA 14. BABAAB 19. BBABAA
5. ABAABB 10. ABBBAA 15. BABABA 20. BBBAAA

Length 8

1. AAAABBBB 15. AABBBBAA 29. ABBABAAB 43. BAABBAAB 57. BBAAABAB
2. AAABABBB 16. ABAAABBB 30. ABBABABA 44. BAABBABA 58. BBAAABBA
3. AAABBABB 17. ABAABABB 31. ABBABBAA 45. BAAB BBAA 59. BBAABAAB
4. AAABBBAB 18. ABAABBAB 32. ABBBAAAB 46. BABAAABB 60. BBAABABA
5. AAABBBBA 19. ABAABBB A 33. ABBBAABA 47. BABAABAB 61. BBAABBAA
6. AABAABBB 20. ABABAABB 34. ABBBABAA 48. BABAABBA 62. BBABAAAB
7. AABABABB 21. ABABABAB 35. ABBBBAAA 49. BABABAAB 63. BBABAABA
8. AABABBAB 22. ABABABBA 36. BAAAABBB 50. BAB ABABA 64. BBABABAA
9. AABABBBA 23. ABABBAAB 37. BAAABABB 51. BABABBAA 65. BBABBAAA

10. AABBAABB 24. ABABBA BA 38. BAAABBAB 52. BABBAAAB 66. BBBAAAAB
11. AABBABAB 25. ABABBBAA 39. BAAABBBA 53. BABBAABA 67. BBBAAABA
12. AABBABBA 26. ABBAAABB 40. BAABAABB 54. BABBABAA 68. BBBAABAA
13. AABBBAAB 27. ABBAABAB 41. BAABABAB 55. BAB BBAAA 69. BBBABAAA
14. AABBBABA 28. ABBAABBA 42. BAABABBA 56. BBAAAABB 70. BBBBAAAA

gives the enumerations for ks1, 2, 3, and 4. The length of each enumeration
2k 2�Ž . 4 Ž .is the binomial coefficient s 2k ! r k! , equal to 2, 6, 20, and 70 forž /k

ks1, 2, 3, and 4 for blocks of length 2, 4, 6, and 8.
Second, from Table A.5 generate a sequence of random numbers from 1

to the length of the enumeration. Treatment assignment for the first 2k
subjects begins in the permuted block with the index number specified by the
first number in the sequence. When these have been assigned, the second
number in the sequence specifies which permuted block to use for treatment
assignment, and so on.

Ž .To illustrate the use of permuted blocks of length 6 ks3 , let us begin
Ž .arbitrarily at the top of the sixth column of the sixth page of Table A.5. We
need a sequence of numbers from 1 to 20, and use the method of Section 5.1:
looking at only the first two digits in each row, we obtain the sequence 14, 7,
11, 3, 13, 13, 1, 10, 11, 10, 16, and 8 before exhausting the column. Notice
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that repetitions are allowed in the sequence. Then the first six subjects to be
randomized are assigned treatments B, A, B, A, A, B; the next six subjects are
assigned treatments, A, B, A, B, B, A; the next six B, A, A, A, B, B; and so on.

If the two treatments are sufficiently similar in their side effects and in
Žother characteristics to assure that the investigator can be kept ignorant i.e.,

.masked or blinded to which treatment a patient is receiving, then randomly
permuted blocks of size two should suffice. It is unlikely that the person
responsible for recruiting patients into the study will catch on to the fact that
randomization occurs within consecutive pairs. Even if the investigator does
catch on, he or she may not know which treatment was assigned to the first
patient in a pair and will therefore not be in a position to know with certainty
which treatment will be assigned to the next patient. Such knowledge could
easily cause the investigator to delay enrolling the next patient until, in his or
her clinical judgement, the ‘‘right’’ one came along for that treatment.

In studies comparing different methods of surgery or any kinds of treat-
ments for which maintenance of the investigator’s masking is unlikely or
impossible, the use of blocks of size two is risky. Randomly permuted blocks
of size four, six, or perhaps even eight ought to be used, and one may even
randomly change the block size over the course of the study as an added
control over the investigator’s ‘‘catching on.’’

For example, suppose the trial protocol calls for randomly permuted
blocks of sizes four, six, and eight. First, generate three sequences of
numbers from 1 to 6, 1 to 20, and 1 to 70, calling them, say, F, S, and E,
respectively. Thus, using the first digit of the fourth column of the fourth
page of Table A.5, we generate for the F list the sequence beginning
6, 6, 5, 1, 4, 4, 1, 6, 6, 5, . . . . For the S list we can use the sequence illustrated
above, 14, 7, 11, 3, 13, 13, 1, 10, 11, 10, . . . . For the E list, using the first two
digits of the eighth column of the eighth page of Table A.5, we generate the
sequence beginning 61, 66, 22, 28, 65, 8, 32, 19, 70, 19, . . . . Second, generate an
auxiliary list to randomize between the F, S, or E sequences. Use digits 1, 2,
or 3 for F; 4, 5, or 6 for S; 7, 8, or 9 for E; and ignore digit 0. The first digit of
the first column on the first page of Table A.5 gives the sequence
E, E, S, F, E, E, F, F, F, S, . . . . Then the first block of subjects to be random-
ized is of length eight, and we use the permuted block corresponding to the
first number on the E list, 61. This gives the treatment assignment
B, B, A, A, B, B, A, A. The second block is also of length eight, and using the
second number on the E list, 66, gives the treatment assignment
B, B, B, A, A, A, A, B for the next eight subjects. The third block is of length
six, and we can use, for example, the third number on the S list, 11, to assign
treatments B, A, A, A, B, B to the next six subjects. The fourth block is of
length four, and the fourth number on the F list, 1, assigns treatments

ŽA, A, B, B to the next four subjects; and so on. Instead of using the nth
number on the F, S, or E list for the nth permuted block, one could use the
sequences consecutively, making sure to cross off sequence numbers as they

.are used.
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Ž .As emphasized in Fleiss 1986, p. 51 , the lists of treatment assignments
must be kept under lock and key and not made known to the investigator or
anyone else who must remain blinded to treatment assignment until the study
is over. During the course of a study, the investigator opens an envelope,
calls the statistician or an automated randomization telephone number set up
for the trial, or does any of a number of other things to learn what treatment
to assign after each new eligible patient has been enrolled.

Investigators who require more than the 20,000 random digits of Table A.5
Ž .are referred to the Rand Corporation’s extensive table 1955 . Those whose
Ž .research designs call for applying each of a number more than two of

treatments to each of a sample of subjects will find Moses and Oakford’s
Ž .tables of random permutations 1963 indispensable. Their tables also facili-

tate each of the uses of randomization illustrated above.

5.3. VARIATIONS ON SIMPLE RANDOMIZATION

The randomization procedures discussed in the preceding section are all such
that each new patient has a 50 : 50 chance of being assigned one or the other
of the two treatments being compared. With the exception of studies in
which patients are matched on characteristics associated with the outcome
variable, these procedures run the risk of producing a lack of balance
between the treatment groups in the distributions of age, sex, initial severity,
or other prognostic factors. A solution other than matching on these charac-

Žteristics is to stratify patients into predetermined strata e.g., males aged
.20�29, females aged 20�29, males aged 30�39, etc. , and to apply one of the

simple randomization methods described above separately and independently
within each stratum.

The risk of imbalance is reduced but not totally removed by simple
stratified randomization, especially if patients enter the trial serially over
time so that the total number of patients ending up in each stratum is not
known until the recruitment of patients is completed. As a means of reducing

Ž .even further the risk of imbalance, Efron 1971 introduced and Pocock and
Ž .Simon 1975 elaborated on the concept of the biased coin. Suppose that a

new patient is in a stratum for which, to date, more patients have been
assigned one treatment than the other. Biased coin allocation calls for this
new patient to be assigned, with prespecified probability p�0.5, the treat-
ment that is currently underrepresented in his stratum. His chances of being
assigned the currently overrepresented treatment are 1yp�0.5. If the two
treatments have so far been assigned to equal numbers of patients in his
stratum, the new patient is assigned to one or the other with probability 0.5.

We illustrate Efron’s biased coin scheme with the value of p he proposed
2as generally being good, that is, ps . Suppose a new patient is in a stratum3

where unequal numbers of patients have so far been assigned the two
treatments. A single digit from Table A.5 is examined for this patient, with
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Ž .the digit 0 ignored. If the selected digit is not divisible by 3 1, 2, 4, 5, 7, or 8 ,
the patient is assigned the currently underrepresented treatment. If the

Ž .selected digit is divisible by 3 3, 6, or 9 , he or she is assigned the currently
overrepresented treatment.

Probabilities of assignment other than 50 : 50 are also called for in so-called
adaptive clinical trials, where the intent is to have, by the time the trial is
concluded, more patients treated with the superior than with the inferior

Ž .treatment see Chapter 8 for discussion and references . Let p�0.5 be the
prespecified probability that a new patient is assigned the treatment that, to

Ždate, seems to be superior if the two treatments appear to be equally
effective, the new patient is assigned one or the other treatment with

.probability 0.5 . Two-digit numbers in Table A.5 may be examined. If the
selected number for a new patient lies between 01 and 100 p, inclusive, he or

Žshe is assigned the currently superior treatment; if it exceeds 100 p 00 is
.taken to be 100 , he or she is assigned the currently inferior treatment. For

example, ps0.60 leads to any number in the interval from 01 to 60 assigning
the patient the currently superior treatment, and any number in the interval
from 61 to 00 the currently inferior treatment.
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C H A P T E R 6

Comparative Studies:
Cross-sectional, Naturalistic,
or Multinomial Sampling

In this chapter we study what was identified in Section 3.1 as method I
sampling. This method of sampling, referred to as cross-sectional, naturalistic,
or multinomial sampling, does not attempt to prespecify any frequencies
except the overall total.

We consider only the case where the resulting data are arrayed in a 2�2
table. Most statistics texts describe the chi squared test for association when
there are more than two rows or more than two columns in the resulting

Žcross-classification table e.g., Dixon and Massey, 1969, Section 13.3; Everitt,
.1977, Chapter 3 . The accuracy of the chi squared test for general contin-

gency tables when the total sample size is small has been studied by
Ž .Craddock and Flood 1970 . Methods for estimating association in such

Ž . Ž .tables are given by Goodman 1964 , Goodman and Kruskal 1979 , and
Ž .Altham 1970a, 1970b .

In Section 6.1 we present some hypothetical data that are referred to
repeatedly in this and the next chapter. In Section 6.2 we examine estimation
by means of measures based on � 2 of the degree of association between the
two characteristics studied. Some properties of the odds ratio and its loga-
rithm are presented in Section 6.3.

Exact methods for testing hypotheses about the odds ratio are discussed in
Section 6.4, and exact methods for constructing confidence intervals for the
odds ratio in Section 6.5. Section 6.6 discusses approximate methods for
hypothesis tests and confidence intervals. Section 6.7 presents some criticisms
of the odds ratio by Berkson, Sheps, Feinstein, and others, and some
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alternative measures of association that better serve their needs. Section 6.8
defines and presents methods for making inferences about the attributable
risk. Section 6.9 concludes the chapter with some formulas for the standard
errors of the measures of association presented earlier.

6.1. SOME HYPOTHETICAL DATA

Suppose that we are studying the association, if any, between the age of the
Žmother A represents a maternal age less than or equal to 20 years; A,

. Ža maternal age over 20 years and the birthweight of her offspring B
represents a birthweight less than or equal to 2500 grams; B, a birthweight

.over 2500 grams . Since the association might vary as a function of social and
demographic factors, let us agree to study only women of a given level of
education, race, and type of insurance coverage, who deliver in a single large
urban hospital. For example, we might specify the study population to be
high school graduates who are black and covered by Medicaid delivering at
New York Presbyterian Hospital. Such information is available from birth
certificates andror the hospitals records.

Suppose that all the data we need are on file in the hospital’s record
system and that, for each delivery, an entry is created recording the birth-
weight of the infant and the age, education, race, and type of insurance
coverage of the mother. After filtering out records from the mothers who do
not fit the study criteria, we are left with a file for deliveries of the desired
study population. Suppose that the number of records remaining is quite
large. The decision might then be made to examine only a sample, say 200, of
all the records.

Ž .The sample should ideally be a simple random sample see Chapter 5 , but
alternatives exist that may be more practical for noncomputerized files,
especially those without a record locator index. Suppose that there are a total
of 1,000 records. A systematic random sample of 200 may be selected by

Ždrawing every fifth record, with the starting record the first, second, third,
.fourth, or fifth chosen at random. Another alternative is to base the

selection on the last digit of the identification number, choosing only those
records whose last digit is, for example, a 3 or a 7. These methods are not
truly random, and one needs to assume there are no hidden periodicities in
the filing system that might cause every fifth record to be more or less likely
to represent certain characteristics. Imagine, for example, a file ordered by
day of week, and choosing every seventh record.

Let us suppose that the sample of 200 records has been selected, and that
the data are as in Table 6.1. As pointed out in Chapter 3, a more appropriate
means of presenting the data resulting from method I sampling is as in
Table 6.2.

A consequence of multinomial sampling is that all probabilities may be
estimated. Thus the proportion of all deliveries in which the mother was aged
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Table 6.1. Association between birthweight and maternal age:
cross-sectional study

Birthweight

Maternal Age B B Total

A 10 40 50
A 15 135 150

Total 25 175 200

Table 6.2. Joint proportions deri©ed from Table 6.1

Birthweight

Maternal Age B B Total

Ž . Ž . Ž .A 0.050 sp 0.200 sp 0.25 sp11 12 1.

Ž . Ž . Ž .A 0.075 sp 0.675 sp 0.75 sp21 22 2.
Ž . Ž .Total 0.125 sp 0.875 sp 1..1 .2

20 years or less and in which the offspring weighed 2500 grams or less is
Ž .estimated as p A and B sp s0.05. The proportion of all deliveries in11

Ž .which the mother was aged 20 years or less is estimated as p A sp s0.25,1.
and the proportion of all deliveries in which the offspring weighed 2500

Ž .grams or less is p B sp s0.125..1
The significance of the association between maternal age and birth weight

Ž .the first, but by no means the most important, issue may be assessed by
means of the standard chi squared test. The value of the test statistic is

21200 10�135y40�15 y 200Ž .22� s s2.58, 6.1Ž .50�150�25�175

indicating an association that is not statistically significant.

6.2. MEASURES OF ASSOCIATION DERIVED FROM � 2

The failure to find statistical significance would presumably signal the com-
pletion of the analysis. For later comparative purposes, however, we proceed
to consider the estimation of the degree of association between the two
characteristics, beginning with estimates based on the magnitude of � 2.

A common mistake is to use the value of � 2 itself as the measure of
association. Even though � 2 is excellent as a measure of the significance
of the association, it is not at all useful as a measure of the degree of
association. Generally, a test statistic makes a poor measure of association.
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Table 6.3. Association between birthweight and maternal sge:
Sampling method I with 400 births

Birthweight

Maternal Age B B Total

A 20 80 100
A 30 270 300

Total 50 350 400

Most importantly, a test statistic is constructed under a null hypothesis, and
is thus not designed to estimate a nonnull association. In addition, the
number of subjects studied plays a role in the chances of finding significance
if association exists, but should play no role in determining the extent of

Ž .association see, e.g., Fisher, 1954, pp. 89�90 .
Suppose, for example, that another investigator studied the characteristics

of 400 births from the same hospital, and suppose that the resulting data
were as in Table 6.3. The value of � 2 for these data is

21400 20�270y80�30 y 400Ž .22� s s5.97,100�300�50�350

which indicates an association significant at the 0.05 level.
The inferences are different for the data of Tables 6.1 and 6.3: nonsignifi-

cance for the first but significance for the second. The only reason for the
difference, however, is that twice as many births were used in Table 6.3 as in

Ž .Table 6.1. The joint proportions see Table 6.2 are obviously identical for
Tables 6.1 and 6.3, so that the associations between maternal age and
birthweight implied by both are also identical. The larger value of � 2 for the
data of Table 6.3 is thus a reflection of the larger total sample size
Žthe doubling of all frequencies has in fact more than doubled the value of

.chi squared , and not of a greater degree of association.
A measure of the degree of association between characteristics A and B

which is related to � 2 but is free of the influence of the total sample size,
n , is the phi coefficient:. .

2�u�s , 6.2Ž .( n . .

where � 2 is the uncorrected chi squared statistic,u

2n n n yn nŽ .. . 11 22 12 212� s . 6.3Ž .u n n n n1 . 2 . .1 .2
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The phi coefficient is especially popular as a measure of association in the
Žbehavioral sciences, and is interpretable as a correlation coefficient which is

the actual reason that phi is a measure of association�not the fact that it is
2 .derived from the � test statistic . In fact, � may be computed by assigning

Ž .any two distinct numbers 0 and 1, for simplicity to A and A, assigning any
two to B and B, and calculating the usual product-moment correlation
coefficient between the resulting values.

Values of � close to zero indicate little if any association, whereas values
close to unity indicate almost perfect predictability: if � is near 1, then
knowing whether the subject is A or A permits an accurate prediction of

Žwhether the subject is B or B. The maximum value of � is unity if the
.marginal distributions are not equal, the maximum is less than unity , and, as

a rule of thumb, any value less than 0.30 or 0.35 may be taken to indicate no
more than trivial association.

For the data of Table 6.1,

2200 10�135y40�15Ž .2� s s3.43,u 50�150�25�175

so that

3.43
�s s0.13 6.4Ž .( 200

hardly of appreciable magnitude. The value of � for the data of Table 6.3 is
obviously also equal to 0.13.

The phi coefficient finds its greatest usefulness in the study of items
Ž .contributing to psychological and educational tests Lord and Novick, 1968

Ž .and in the factor analysis of a number of yes-no items. See Harman 1960
Ž .and Nunnally 1978 for a general description of factor analysis, and Nunnally

Ž . Ž .1978 and Lord and Novick 1968 for the validity of factor analysis when
Ž .applied to phi coefficients. Berger 1961 has presented a method for com-

paring phi coefficients from two independent studies.
The phi coefficient has a number of serious deficencies, however. As

shown in Chapter 7, the values of � obtained when the association between
characteristics A and B is studied prospectively and retrospectively are not
comparable, nor is either value comparable with that obtained when the

Ž .association is studied naturalistically. Carroll 1961 has shown that if either
or both characteristics are dichotomized by cutting a continuous distribution
into two parts, then the value of � depends strongly on where the cutting
point is set.

This lack of invariance of the phi coefficient and of other measures
2 Ž .derived from � see Goodman and Kruskal, 1954, pp. 739�740 , plus

presumably other reasons, led Goodman and Kruskal to assert that they
‘‘have been unable to find any convincing published defense of � 2-like



CROSS-SECTIONAL, NATURALISTIC, OR MULTINOMIAL SAMPLING100

Ž .statistics as measures of association’’ 1954, p. 740 . Whereas this assertion
ignores the usefulness of � in psychometrics, it does point to the avoidance
of � and of other statistics based on � 2 as measures of association in those
areas of research where comparability of findings is essential.

Ž .Goodman and Kruskal 1954, 1959 present a great many measures of
association for 2�2 tables that are not functions of � 2 and give their

Ž .statistical properties in two later papers 1963, 1972 , which also appear in a
Ž .collection 1979 .

6.3. THE ODDS RATIO AND ITS LOGARITHM

Frequently, one of the two characteristics being studied is antecedent to the
other. In the example we have been considering, maternal age is antecedent
to birthweight. A measure of the risk of experiencing the outcome under
study when the antecedent factor is present is

�P B AŽ .
� s 6.5Ž .A �P B AŽ .

Ž .see Section 1.1 for a definition of conditional probabilities . � is the oddsA
Ž � .that B will occur when A is present. Now P B A may be estimated by

p11�p B A s ,Ž . p1 .

Ž � .and P B A by
p12�p B A s ;Ž . p1 .

therefore � may be estimated byA

p rp p11 1 . 11O s s . 6.6Ž .A p rp p12 1 . 12

For our example, the estimated odds that a mother aged 20 years or less
will deliver an offspring weighing 2500 grams or less are, from Table 6.2,

0.05 1
O s s s0.25 6.7Ž .A 0.20 4

Thus, for every four births weighing over 2500 grams to mothers aged 20
years or less, there is one birth weighing 2500 grams or less.

The information conveyed by these odds is exactly the same as that
conveyed by the rate of low birthweight specific to young mothers,

0.05 1
�p B A s s s0.20Ž . 0.25 5
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but the emphases differ. One can imagine attempting to educate prospective
mothers aged 20 years or less. The impact of the statement, ‘‘One out of
every five of you is expected to deliver an infant with a low birthweight,’’ may
well be different from the impact of ‘‘For every four of you who deliver
infants of fairly high weight, one is expected to deliver an infant of low
birthweight.’’

When A is absent, the odds of B’s occurrence are defined as

�P B AŽ .
� s , 6.8Ž .A

�P B AŽ .

which may be estimated as

p rp p21 2 . 21O s s . 6.9Ž .A p rp p22 2 . 22

For our example, the estimated odds that a mother aged more than 20 years
will deliver an offspring weighing 2500 grams or less are

0.075 1
O s s s0.11. 6.10Ž .A 0.675 9

Thus for every nine births weighing over 2500 grams to mothers aged more
Ž .than 20 years as opposed to every four to younger mothers , there is one

birth weighing 2500 grams or less.
Ž . Ž .The two odds, � 6.5 and � 6.8 , may be contrasted in a number ofA A

ways in order to provide a measure of association. One such measure, due to
Ž .Yule 1900 , is

� y�A AQs . 6.11Ž .
� q�A A

Ž .Another, also due to Yule 1912 , is

� y �'' A A
Ys . 6.12Ž .

� q �'' A A

the measure of association based on � and � that is currently in greatestA A
use is simply their ratio,

�A�s , 6.13Ž .
�A
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which may be estimated by the sample odds ratio,

O p rp p pA 11 12 11 22os s s . 6.14Ž .p rp p pO 21 22 12 21A

Ž � . Ž � .If the two rates P B A and P B A are equal, indicating the independence
or lack of association between the two characteristics, then the two

Ž .odds � and � are also equal see Problem 6.1 , so that the odds ratioA A
Ž � . Ž � . Ž .�s1. If P B A �P B A , then � �� and ��1 see Problem 6.2 . IfA A

Ž � . Ž � .P B A �P B A , then � �� and ��1.A A
For our data, the estimated odds ratio is

0.05�0.675
os s2.25, 6.15Ž .0.20�0.075

indicating that the odds of a young mother’s delivering an offspring with low
1birthweight are 2 times those for an older mother. Because the odds ratio4

may also be estimated as

n n11 22os , 6.16Ž .n n12 21

it is sometimes also referred to as the cross-product ratio.
The standard error of the estimated odds ratio is estimated in large

samples by

$ o 1 1 1 1
se o s q q q . 6.17Ž . Ž .( p p p p11 12 21 22n' . .

For the data of Table 6.2, the standard error is found to be

$ 2.25 1 1 1 1
se o s q q q s1.00 6.18Ž . Ž .(0.05 0.20 0.075 0.675'200

An equivalent formula in terms of the original frequencies is

$ 1 1 1 1
se o so q q q . 6.19Ž . Ž .(n n n n11 12 21 22

The standard error is useful in gauging the precision of the estimated odds
ratio, but not in testing its significance or in constructing confidence inter-
vals. The classic chi squared test should be used as a test of the hypothesis
that the odds ratio in the population is equal to 1; the methods of Section 6.6
should be used for constructing confidence intervals.

Ž . Ž . Ž .Anscombe 1956 , Gart 1966 , and Gart and Zweifel 1967 have studied
the sampling properties of o and its standard error. Note that if either n or12
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Ž .n is equal to zero, then o in 6.16 is undefined. If any one of the four cell21
Ž . Ž .frequencies is equal to zero, then se o in 6.19 is undefined. Suggested

improved estimates are

n q0.5 n q0.5Ž . Ž .11 22o�s 6.20Ž .n q0.5 n q0.5Ž . Ž .12 21

for the odds ratio and

$ 1 1 1 1
se o� so� q q qŽ . ( n q0.5 n q0.5 n q0.5 n q0.5Ž . Ž . Ž . Ž .11 12 21 22

6.21Ž .

1for its standard error. The addition of to each frequency is not a continuity2

correction, but a bias reduction device. See the discussion at the end of this
section.

A number of important properties of the odds ratio as measure of
association will be demonstrated in the sequel. Advantages of using the odds

Ž .ratio instead of other measures have been illustrated by Mosteller 1968 .
Ž .Edwards 1963 considered the advantages to be so great that he recom-

mended that only the odds ratio or functions of it be used to measure
association in 2�2 tables. We indicate further reasons for the importance of
the odds ratio in Section 11.2.

Ž .The odds ratio was originally proposed by Cornfield 1951 as a measure
of the degree of association between an antecedent factor and an outcome
event such as morbidity or mortality, but only because it provided a good
approximation to another measure he proposed, the relati®e risk, also called
the rate ratio. If the risk of the occurrence of event B when A is present is
taken simply as the rate of B’s occurrence specific to the presence of A,
Ž � .P B A , and similarly for the risk of B when A is absent, then the relative

risk is simply the ratio of the two risks,

�P B AŽ .
Rs . 6.22Ž .

�P B AŽ .

R may be estimated by

p rp p p11 1 . 11 2 .rs s . 6.23Ž .p rp p p21 2 . 21 1 .

If the occurrence of event B is unlikely whether or not characteristic A is
wpresent, then, as shown in Problem 6.3, r is approximately equal to o see
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Ž .x6.14 . For the data of Table 6.2,

0.05�0.75
rs s2.0, 6.24Ž .0.075�0.25

w Ž .xonly slightly less than the value found for the odds ratio, os2.25 see 6.15 .
There is more to the odds ratio, however, than merely an approximation to

the relative risk. There exists a mathematical model, the so-called logistic
model, that naturally gives rise to the odds ratio as a measure of association.
Consider, for specificity, the association between cigarette smoking and lung
cancer. Mortality from lung cancer is a function not only of whether one
smokes, but also, as but one example, of the amount of air pollution in the
environment of the community where one works or lives.

Let us agree to study the association between smoking and lung cancer in
one community only, and let x represent the mean amount of a specified
pollutant in the atmosphere surrounding that community. A possible repre-
sentation of the mortality rate from lung cancer for cigarette smokers is

1
P s , 6.25Ž .S yŽ a xqb .S1qe

and of the mortality rate for nonsmokers,

1
P s , 6.26Ž .N yŽ a xqb .N1qe

where es2.718, the base of natural logarithms. The parameter a measures
the dependence of mortality on the specified air pollutant. The use of the

Ž . Ž .same parameter, a, in 6.25 and 6.26 is equivalent to the assumption of no
synergistic effect of smoking and air pollution on mortality. If a is positive,
then both P and P approach unity as x, the mean amount of the pollutant,S N
becomes large.

Ž . Ž .According to the model represented by 6.25 and 6.26 , the effect of
smoking on mortality is reflected only in the possible difference between the
parameters b and b . When xs0, that is, when a community is completelyS N
free of the specified pollutant, then b is directly related to the mortality rateS
for smokers and b is directly related to the mortality rate for nonsmokers.N

Consider, now, the odds that a smoker from the selected community will
die of lung cancer. These odds are

PS� s .S 1yPS

Since

eyŽ a xqb S .

1yP s ,S yŽ a xqb .S1qe
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therefore

1 a xqb S� s se . 6.27Ž .S yŽ a xqb .Se

Similarly, the odds that a nonsmoker from that community will die of lung
cancer are

� sea xqb N . 6.28Ž .N

Thus, if the logistic model is correct, the odds ratio, that is, the ratio of the
Ž . Ž .odds in 6.27 to the odds in 6.28 , becomes simply

� a xqb SeS b ybS N�s s se , 6.29Ž .a xqb N� eN

independent of x. The natural logarithm of the odds ratio is then simply

ln �sb yb , 6.30Ž .S N

which is also independent of x, and, moreover is the simple difference
between the two parameters assumed to distinguish smokers from non-
smokers.

The importance of this result is that, if the odds ratio or its logarithm is
found to be stable across many different kinds of populations, then one may
reasonably infer that the logistic model is a fair representation of the
phenomenon under study. Given this inference, one may predict the value of
the odds ratio in a new population and test the difference between the
observed and predicted values; one may predict the effects on mortality of

Ž .controlling the factor represented by x in our example, an air pollutant ; and
one may of course predict the effects on mortality of controlling smoking
habits.

Ž .The representation of 6.30 of the logarithm of � suggests that the
logarithm of the sample odds ratio,

Ls ln o , 6.31Ž .

is an important measure of association. Natural logarithms are tabulated in
Ž .Table A.6. The standard error of L has been studied by Woolf 1955 ,

Ž . Ž . Ž .Haldane 1956 , and Gart 1966 . A better estimate of ln � was found to be

L�s ln o�, 6.32Ž .

Ž .where o� is defined in 6.20 , and a good estimate of its standard error was
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found to be

$ 1 1 1 1
se L� s q q q .Ž . ( n q0.5 n q0.5 n q0.5 n q0.5Ž . Ž . Ž . Ž .11 12 21 22

6.33Ž .

1 Ž .The addition of is not arbitrary. Haldane 1956 showed that of all2
�Ž . Ž .4estimators of a log odds parameter of the form ln pqarn r qqarn for

1different values of a, the choice as removes the leading term in the2

expression for bias in large samples. See Problem 6.5.
Ž . Ž . Ž .When the logistic model of 6.25 and 6.26 obtains, ln � is seen by 6.30

to be completely independent of x. Even if, instead, a model specified by a
cumulative normal distribution is assumed, ln � is nearly independent of x
Ž .Edwards, 1966; Fleiss, 1970 . The logistic model is far more manageable for
representing rates and proportions than the cumulative normal model, how-

Ž . Ž .ever, and has been so used by Bartlett 1935 , Winsor 1948 , Dyke and
Ž . Ž . Ž .Patterson 1952 , Cox 1958, 1970 , Grizzle 1961, 1963 , Maxwell and Everitt

Ž . Ž .1970 , and Fienberg 1977 . We devote Chapter 11 to its study.

6.4. EXACT INFERENCE FOR AN ODDS RATIO:
HYPOTHESIS TESTS

In this section we present exact methods of testing hypotheses for an odds
ratio from a fourfold table collected under cross-sectional sampling. Readers
who wish to use approximate methods only may proceed directly to Section
6.6.

The Noncentral Hypergeometric Distribution.
We restrict attention to fourfold tables as in Table 3.1 with marginal
frequencies n , n , n , and n fixed at the values actually observed, and1 . 2 . .1 . 2
suppose that the value of the underlying odds ratio is equal to

P rP P rP P P11 12 11 21 11 22�s s s , 6.34Ž .P rP P rP P P21 22 12 22 12 21

where the P ’s are the true or population cell frequencies as in Table 3.3.i j
Because the margins are being held fixed, any one cell in the table will
determine all the other cells by subtraction, so we will choose n and denote11
it by X. The reference cell frequency X, given all four margins fixed, has
the conditional distribution known as the noncentral hypergeometric distri-

Ž � .bution. It’s probability function P Xsx n , n , n will be denoted by. . 1. .1
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Ž � .H x n , n , n , � and is given by. . 1. .1

n n1 . 2 . x�ž / ž /x n yx.1
�H x n , n , n , � sŽ .. . 1 . .1 Ž .min n , n1. .1 n n1 . 2 . i�Ý ž / ž /i n y i.1Ž .ismax 0, n qn yn1. .1 . .

n n.1 .2 x�ž / ž /x n yx1 .
s . 6.35Ž .Ž .min n , n1. .1 n n.1 .2 i�Ý ž / ž /i n y i1 .Ž .ismax 0, n qn yn1. .1 . .

Ž .The summation in the denominator of 6.35 is a normalizing constant that
insures the point probabilities sum to 1. The terms in the summation extend
over all possible cell frequencies for the reference cell. The maximum
possible reference cell frequency is the smaller of n and n , denoted by1. .1

Ž .min n , n , and the minimum possible cell frequency is the quantity lsn1. .1 1.
Ž . Ž .qn yn , or 0 if l�0, denoted by max 0, l ; 6.35 gives the probability of.1 . .

Ž . Ž .finding Xsx for all values of xsmax 0, l , . . . , min n , n . In Problem 6.61. .1
Ž .the reader is asked to derive 6.35 and to prove that the two expressions in

Ž .6.35 are identical. Thus it does not matter which factors are used for the
rows or columns of the table. The Fisher-Irwin exact probability function in
Ž . Ž .3.9 is the special case of 6.35 when the odds ratio �s1.

Ž .The most remarkable property of 6.35 is that it depends on the four
underlying cell probabilities P , P , P , and P only through the odds ratio11 12 21 22

Ž .� in 6.34 . This reduces what would otherwise be a more complicated,
three-dimensional inference problem about an odds ratio in the presence of
two other nuisance parameters into a simpler, one-dimensional problem
of inference about the odds ratio alone. Thanks to the conditioning on the

Ž .observed margins of the fourfold table i.e., regarding them as fixed , we
can proceed with methods of inference in analogy to those presented in
Chapter 2.

The general method for exact testing of a hypothesis about � is the same
as that for exact testing of a hypothesis about P in the binomial distribution
presented in Section 2.1; in principle, one merely substitutes the noncentral

Ž . Ž .hypergeometric distribution 6.35 for the binomial distribution 2.1 . Given
the observed value of Xsn sx , say, the upper tail probability for testing11 0
the null hypothesis H : �s� against the one-sided alternative hypothesis0 0
H : ��� is1 0

Ž .min n , n1. .1

�P XGx s H x n , n , n , � , 6.36Ž . Ž .Ž .Ý0 . . 1 . .1 0
xsx 0
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and the lower tail probability for testing the same null hypothesis against the
one-sided alternative H : ��� is1 0

x0

�P XFx s H x n , n , n , � , 6.37Ž . Ž .Ž .Ý0 . . 1 . .1 0
Ž .xsmax 0, l

where lsn qn yn .1. .1 . .
Two-tailed p-values for testing the null hypothesis H : �s� against the0 0

alternative H : ��� are defined analogously to those in Section 2.1 and1 0
2.7. In particular, a two-tailed p-value with equal allocation of Type I error in

Žeach tail is defined as twice the observed one-tailed p-value or 1, whichever
.is smaller . A two-tailed p-value by the point probability method of Section

2.7.1 is defined as

�pval x , � s H x n , n , n , � 6.38Ž . Ž .Ž .Ý0 0 . . 1 . .1 0
x

where the sum is taken over all values of x with

� �H x n , n , n , � FH x n , n , n , � 6.39Ž .Ž . Ž .. . 1 . .1 0 0 . . 1 . .1 0

as we did in Section 3.2 for the special case of the Fisher-Irwin exact test,
� s1. All four definitions of two-tailed p-values discussed in Section 2.70
Ž .equal allocation, point probability, tail probability, and likelihood ratio
carry over analogously to the case of the noncentral hypergeometric distribu-
tion, and provide hypothesis tests for odds ratios that work assuredly.

Consider testing the hypothesis that the value of the odds ratio � underly-
ing the data of Table 6.1 equals � s5 against the two-sided alternative0
��5. The noncentral hypergeometric distribution with total sample size
n s200, margins n s50 and n s25, and parameter � s5 is given in. . 1. .1 0
Table 6.4.

Table 6.4. Values of the noncentral hypergeometric distribution
( � )H x 200, 50, 25, � s50

Ž . Ž . Ž .x P Xsx x P Xsx x P Xsx

0 0.0000 10 0.0335 20 0.0055
1 0.0000 11 0.0671 21 0.0013
2 0.0000 12 0.1114 22 0.0002
3 0.0000 13 0.1534 23 0.0000
4 0.0000 14 0.1750 24 0.0000
5 0.0000 15 0.1650 25 0.0000
6 0.0003 16 0.1280
7 0.0013 17 0.0811
8 0.0047 18 0.0416
9 0.0138 19 0.0170
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The reference cell has observed frequency x s10, with point probability0
0.0335. The lower tail probability is the sum of the probabilities for xs

Ž .0, . . . , 10, which is 0.0535 corrected for round-off . The two-tailed p-value by
the equal allocation method is thus twice this value, or 0.1070. The two-tailed
p-value by the point probability method is the lower tail probability, 0.0535,
plus the sum of the probabilities in the upper tail with values no greater than
0.0335, corresponding to xs19, 20, . . . , 25. The resulting p-value, corrected
for roundoff, is 0.0776.

Mean and Variance of the Noncentral Hypergeometric Distribution
Unlike the binomial distribution, there are no general closed-form formulas
for the mean and variance of the noncentral hypergeometric distribution,
except for certain special cases. One special case is �s1, for which EXs

Ž .n n rn as in 3.8 . The variance is given by1. .1 . .

n n n n1 . 2 . .1 .2Var Xs . 6.40Ž .2n n y1Ž .. . . .

ŽAnother important special case arises in the context of matched samples see
.Chapter 13 which correspond to a collection of fourfold tables in which

n s1 for each table. In that case the reference cell frequency is a binary1.
variable taking on values 0 or 1. The reader is asked to show in Problem 6.7
that when n s1 and n s1qn , the mean and variance of the noncentral1. . . 2 .
hypergeometric distribution are

n � n �.1 .1�E X n , 1, n , � s s 6.41Ž .Ž .. . .1 n �qn ynn �y1 qnŽ . .1 . . .1.1 . .

and

n n yn �Ž ..1 . . .1�Var X n , 1, n , � s . 6.42Ž .Ž .. . .1 2
n �y1 qn� 4Ž ..1 . .

Of course, for exact computation of a p-value, one does not need formulas
Ž .for the mean and variance, only terms of 6.35 for tail probabilities. If

needed for other applications, the exact mean may be calculated directly
from the definition,

Ž .min n , n1. .1 n n.1 .2 ii �Ý ž / ž /i n y i1 .Ž .ismax 0, n qn yn1. .1 . .�E sE X n , n , n , � s ; 6.43Ž .Ž .11 . . 1 . .1 Ž .min n , n1. .1 n n.1 .2 i�Ý ž / ž /i n y i1 .Ž .ismax 0, n qn yn1. .1 . .
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the other cell expectations are obtained by subtraction from the margins:

�E sE n n , n , n , � sn yE ,Ž .12 12 1 . .1 . . 1 . 11

�E sE n n , n , n , � sn yE ,Ž .21 21 1 . .1 . . .1 11

�E sE n n , n , n , � sE y l ,Ž .22 22 1 . .1 . . 11

where lsn qn yn . The variance is, by definition,1. .1 . .

�Var X n , n , n , �Ž .. . 1 . .1

Ž .min n , n1. .1 n n2 .1 .2 i�iyE X n , n , n , � � �� 4Ž .Ý . . 1 . .1 ž / ž /i n y i1 .Ž .ismax 0, n qn yn1. .1 . .s ;Ž .min n , n1. .1 n n.1 .2 i�Ý ž / ž /i n y i1 .Ž .ismax 0, n qn yn1. .1 . .

6.44Ž .

Ž .The variances of the other cells are identical to 6.44 , because they differ
from the reference cell only by constants, conditional on fixed margins.

For future reference, the exact expected values of the cells in Table 6.1
when �s5 are E s14.140, E s50y14.140s35.860, E s25y14.14011 12 21

Ž .s10.860, and E s14.140y 50q25y200 s139.140. The variance of each22
Ž � .cell frequency is Var X 200, 50, 25, �s5 s5.093, and the standard devia-

tion is the square root, 2.257.
We note here that the cross-product ratio calculated from the expected

cell frequencies E is close, but not exactly equal, to the underlying oddsi j
Ž . Ž . Ž .ratio of 5: E E r E E s5.052. Mantel and Hankey 1975 explore11 22 12 21

this oddity, and show that for the noncentral hypergeometric distribution, it
is not the cross-product ratio of expected cell frequencies that equals �, but
rather the ratio of expected cross-products:

�E E qVar X n , n , n , �E X Xy l� 4 Ž .Ž . 11 22 . . 1 . .1s�s .
�E E qVar X n , n , n , �E n yX n yX� 4Ž . Ž . Ž .12 21 . . 1 . .11 . .1

Ž .Levin 1984, 1990 exploits these relations to offer simple but highly accurate
approximations to the mean of a noncentral hypergeometric random variable.
When the margins of the table are large, the cross-product ratio of the
expected cell frequencies is approximately equal to the underlying odds ratio,
and this forms the basis for a simple approximation for the mean and
variance in large samples, which is taken up in Section 6.6. For matched
samples and other situations with one or more small margins, the exact

Ž . Ž . Ž . Ž .formulas 6.41 and 6.42 or the more general 6.43 and 6.44 should be
used.
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Ž . Ž .Another point estimator for the odds ratio, in addition to 6.14 and 6.20 ,
Ž .is given by the conditional maximum likelihood estimate cmle , denoted by � .ˆc

Ž .It is defined as that value of � which maximizes 6.35 for the observed value
Ž .xsx of X, and it satisfies the so-called likelihood equation see Appendix B0

�E X n , n , n , � sx , 6.45Ž .ˆŽ .. . 1 . .1 c 0

Ž .where the left-hand side is given by 6.43 . Solving this equation for �̂c
generally requires an iterative computation. In large samples the cmle is close

Ž . Ž .to p p r p p . The standard error of � is estimated in large samplesˆ11 22 12 21 c
by

$
�se � s� r Var X n , n , n , � ,'Ž .ˆ ˆ ˆŽ .c c . . 1 . .1 c

Ž .with the conditional variance of X given by 6.44 evaluated at the cmle. The
Ž .standard error for ln cmle is estimated by

$
�se ln � s1r Var X n , n , n , � ,'Ž .ˆ ˆŽ .c . . 1 . .1 c

Ž . Ž .analogous to the relation between 6.21 and 6.33 . Further approximations
Ž � .for Var X n , n , n , � are given in Section 6.6.. . 1. .1

For the data in Table 6.1, the cmle is � s2.24, essentially the same as theˆc
Ž .value in 6.15 . The variance of X at �s� is 5.056, and so the standardˆc

1r2 Ž .error of � is estimated to be 2.24r5.056 s0.996, very close to 6.18 . Theˆc
cmle of ln � is ln 2.24s0.806, with estimated standard error 1r5.0561r2 s
0.445.

6.5. EXACT INFERENCE FOR AN ODDS RATIO:
CONFIDENCE INTERVALS

An exact confidence interval for the odds ratio underlying the data in a
fourfold table observed under cross-sectional sampling can be obtained by
the same methods used in Section 2.2 for a binomial proportion: the

Ž .100 1y	 % confidence interval contains all those odds ratios which, if
considered as null hypotheses and put to the test with all margins regarded as
fixed, would have p-value strictly greater than 	 .

More precisely, consider finding the upper limit � of a one-sided lowerU
Ž . Ž .100 1y	 % confidence interval for � of the form 0, � . One knows oneU

has the correct value for � whenU

x0

�H x n , n , n , � s	 , 6.46Ž .Ž .Ý . . 1 . .1 U
Ž .xsmax 0, l
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where x , recall, is the observed value of the reference cell, n , and0 11
Žlsn qn yn . Similarly, the lower limit � of a one-sided upper 100 1y1. .1 . . L

. Ž .	 % confidence interval for � of the form � , 
 satisfiesL

Ž .min n , n1. .1

�H x n , n , n , � s	 , 6.47Ž .Ž .Ý . . 1 . .1 L
xsx 0

Ž .For two-sided intervals of the form � , � using the equal allocationL U
Ž .method, the upper limit sets the left-hand side of 6.46 equal to 	r2, and

Ž .the lower limit sets the left-hand side of 6.47 equal to 	r2. For two-sided
intervals using the point probability method, the lower limit � is theL

Ž . Ž .greatest lower bound of all � for which the p-value in 6.38 and 6.39
Ž .satisfies pval x , � �	 , and the upper limit � is the least upper bound of0 U

Ž . Žall � for which the p-value satisfies pval x , � �	 . The use of the greatest0
lower bound and least upper bound in the definition was explained in Section
2.7 and Problem 2.20 for the binomial distribution. Similar remarks apply in

.the present context.
For the data of Table 6.1, the one-sided upper 95% confidence limit is just

larger than �s5, because Table 6.4 shows the lower tail probability, 0.0535,
to be just larger than 0.05. Iterative methods provide the desired upper 95%

Ž .confidence limit of � s5.072 satisfying 6.46 . For the lower confidenceU
Ž .limit, iterative methods yield the value � s0.9650 for 6.47 . For theL

two-sided 95% confidence interval using the equal allocation method, the
Ž .confidence interval is 0.831, 5.820 . The two-sided 95% confidence interval

Ž .using the point probability method is 0.926, 5.390 , narrower than the
interval by the equal allocation method. In neither case would the method
reject the null hypothesis of no association between maternal age and low
birthweight, as the confidence intervals contain �s1.

Ž .Agresti 1992 gives a good review of exact methods for fourfold and larger
tables.

6.6. APPROXIMATE INFERENCE FOR AN ODDS RATIO

When the margins of the fourfold table are large, such that the expected cell
frequencies inside the table are all five or more, the approximate methods
presented in this section are accurate enough for general use. Indeed, the
second edition of this book used the first-order approximations N presentedi j

Ž . Ž .below in expressions 6.52 through 6.55 as if they were the exact expected
Ž .cell frequencies E defined at 6.43 . Although this was not perfectlyi j

accurate, and the exact expressions should be used when the table violates
the ‘‘rule of five,’’ the approximation is perfectly adequate for the large-
sample case illustrated in this section.
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Table 6.5. Expected frequencies in a fourfold table

Factor B

Factor A Present Absent Total

Present N N n11 12 1.
Absent N N n21 22 2 .
Total n n n.1 .2 . .

6.6.1. Hypothesis Tests

We continue to restrict attention to fourfold tables with marginal frequencies
n , n , n , and n fixed at the values actually observed, and suppose that1. 2 . .1 . 2
the value of the underlying odds ratio is equal to �. A first-order approxima-
tion N to the expected cell frequencies E associated with � is such thati j i j
Ž .a they are consistent with the original data in the sense that they reproduce

Ž . Ž .the marginal frequencies see Table 6.5 , and b they are consistent with the
value � in the sense that

N N11 22 s� . 6.48Ž .N N12 21

The hypothesis that the value of the underlying odds ratio is equal to �
may be tested by referring the value of

212 2 n yN yŽ .i j i j 22� s 6.49Ž .Ý Ý Ni jis1 js1

to the chi squared distribution with one degree of freedom. The form of the
Ž .test statistic in 6.49 is identical to the form of the classic statistic presented

Ž .in 3.7 , and the interpretation of the N ’s as expected cell frequenciesi j
w Ž .associated with hypothesized values of the odds ratio �s1 in 3.7 , �

Ž .xarbitrary in 6.49 are also identical.
When � is the hypothesized value of the odds ratio, and when ��1, the

approximate expected cell frequency N may be found as a solution of11

N N y n qn yn� 4Ž .11 11 1 . .1 . . s� ,
n yN n yNŽ . Ž .1 . 11 .1 11

as follows. Define

As� n qn q n yn 6.50Ž . Ž . Ž .1 . .1 2 . .1
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and

2'Bs A y4n n � �y1 ; 6.51Ž . Ž .1 . .1

then

AyB
N s , 6.52Ž .11 2 �y1Ž .

N sn yN , 6.53Ž .12 1 . 11

N sn yN , 6.54Ž .21 .1 11

and

N sN y lsN yn yn qn . 6.55Ž .22 11 11 1 . .1 . .

Ž .Levin 1984 gave an improved approximation to the expected cell frequency:

�y1 n r n y1Ž . Ž .. . . .E fN q ,11 11 BW

Ž . Ž .where B is 6.51 and W is given in 6.56 below.
Ž . Ž .The following result was proved by Stevens 1951 and by Cornfield 1956 .

When the marginal frequencies are held fixed and when � is the value of the
Ž .odds ratio, n for any one of the four cells is approximately normallyi j 'distributed with mean N and standard error 1r W , wherei j

2 2 1
Ws 6.56Ž .Ý Ý Ni jis1 js1

Ž . Ž .and the N ’s are defined by 6.52 � 6.55 .i j
Again consider testing the hypothesis that the value of the odds ratio

Ž .underlying the data of Table 6.1 is �s5. The value of A in 6.57 is

As5 50q25 q 150y25 s500, 6.57Ž . Ž . Ž .

Ž .and that of B in 6.51 is

2'Bs 500 y4�50�25�5�4 s387.30. 6.58Ž .

The four expected cell frequencies are presented in Table 6.6. Note that the
odds ratio for the expected frequencies is

14.1�139.1
s5.0. 6.59Ž .35.9�10.9
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Table 6.6. Expected frequencies for data in Table 6.1
when the odds ratio is 5

Birthweight

Maternal Age B B Total

A 14.1 35.9 50
A 10.9 139.1 150

Total 25 175 200

Ž .The value of chi squared in 6.49 is

2 2� � � �10y14.1 y0.5 40y35.9 y0.5Ž . Ž .2� s q14.1 35.9
2 2� � � �15y10.9 y0.5 135y139.1 y0.5Ž . Ž .

q q10.9 139.1

s2.56, 6.60Ž .

and so the hypothesis that �s5 is not rejected.
Another test of this hypothesis may be based on results given in the

Ž . Ž .preceding section at 6.32 and 6.33 . If �s ln �, the quantity

2L�y�Ž .2� s 6.61Ž .2se L�� 4Ž .

may be referred to the chi squared distribution with one degree of freedom.
For the data at hand,

�s ln 5s1.61, 6.62Ž .
10.5�135.5

L�s ln s0.82, 6.63Ž .40.5�15.5

and

$ 1 1 1 1
se L� s q q q s0.438. 6.64Ž . Ž .(10.5 40.5 15.5 135.5

Ž .The value of the chi squared statistic in 6.61 is then

20.82y1.61Ž .2� s s3.25, 6.65Ž .20.438

Ž .which is larger than the value of the statistic in 6.60 but still indicates a
nonsignificant difference from �s5.
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Ž .The value of the chi squared statistic in 6.61 based on the log odds ratio
Ž .usually exceeds that of the statistic in 6.49 based on a comparison of the

n ’s with the N ’s but the difference is small when the marginal frequenciesi j i j
Ž .are large. If the statistic in 6.49 were defined without the continuity

Ž .correction, its value would be close to that of the statistic in 6.61 even for
Ž .moderate sample sizes see Problem 6.9 .

The procedure described in this section is more complicated than the one
based on the log odds ratio, but is more accurate. It should be used whenever
a hypothesized value of � is tested.

6.6.2. Confidence Intervals

Ž .An approximate 100 1y	 % confidence interval for � may be constructed
as follows. The interval consists of all those values of � for which, when the

Ž . Ž .N ’s are the associated expected cell frequencies from 6.52 � 6.55 ,i j

212 2 n yN yŽ .i j i j 22 2� s Fz . 6.66Ž .Ý Ý 	r2Ni jis1 js1

The upper and lower limits are those for which the value of � 2 equals z 2 .	r2
Ž .The statistic in 6.66 depends on � not explicitly but only implicitly

Ž . Ž .through 6.50 � 6.55 . The criterion for finding the upper and lower limits is
therefore not simple. However, it is not overly complicated and can be
implemented as follows.

The lower confidence limit, say � , is associated with values of N andL 11
N smaller than n and n and with values of N and N larger than n22 11 22 12 21 12

Ž . 2and n . The continuity correction in 6.66 is then such that the � criterion21
simplifies to, say,

212 2� s n yN y Wsz , 6.67Ž .Ž .L 11 11 	r22

Ž .where W is defined in 6.56 . The lower limit, � , will have been found whenL

21 2Fs n yN y Wyz s0. 6.68Ž .Ž .11 11 	r22

Ž .The following describes Newton’s method for iteratively solving 6.68 .
Define

1 �y1
Ts Byn y A n qn y2n n 2�y1 , 6.69� 4Ž . Ž . Ž .. . 1 . .1 1 . .12 B2 �y1Ž .

1 1 1 1
Us q y y , 6.70Ž .2 2 2 2N N N N12 21 11 22
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and

21 1VsT n yN y Uy2W n yN y 6.71Ž .Ž . Ž .½ 511 11 11 112 2

Let � Ž1. be a first approximation to � , let A and B be the correspondingL L
Ž . Ž .values of 6.50 and 6.51 , and let N , N , N , and N be the correspond-11 12 21 22

Ž . Ž . Ž .ing values of 6.52 � 6.55 . If the value of F in 6.68 is not equal to zero, a
second, better approximation to � isL

FŽ2. Ž1.� s� y . 6.72Ž .L L V

If the value of F associated with the second approximation is still not zero
Ž .say, if its absolute value exceeds 0.05 , the process has to be repeated.

Convergence to � , the upper confidence limit, proceeds by exactly theU
1 Ž .same process, except that the continuity correction is taken as q in 6.67 ,2

Ž . Ž .6.68 , and 6.71 . Good first approximations to � and � are provided byL U
the limits of the interval based on the log odds ratio,

Ž1.� santilog L�yz se L� 6.73Ž . Ž .L 	r2

and

Ž1.� santilog L�qz se L� . 6.74Ž . Ž .U 	r2

Consider again the data of Table 6.1, and suppose that a 95% confidence
Ž . Ž .interval is desired for �. From 6.63 and 6.64 ,

� Ž1.santilog 0.82y1.96�0.438Ž .L

santilog y0.04 s0.96 6.75Ž . Ž .

and

� Ž1.santilog 0.82y1.96�0.438Ž .U

santilog 1.68 s5.37. 6.76Ž . Ž .

Ž .Consider first the lower confidence limit. The value of A in 6.50
associated with � Ž1.s0.96 isL

As0.96 50q25 q 150y25 s197.00, 6.77Ž . Ž . Ž .

Ž .and that of B in 6.51 is

2'Bs 197 y4�50�25�0.96� y0.04 s197.49. 6.78Ž . Ž .
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Ž .The value of N in 6.52 is therefore11

197.00y197.49
N s s6.13, 6.79Ž .11 2 y0.04Ž .

and the values of the other cell frequencies to be expected if the odds ratio
is 0.96 are N s43.87, N s18.87, and N s131.13. The value of W in12 21 22
Ž .6.56 is

1 1 1 1
Ws q q q s0.2465, 6.80Ž .6.13 43.87 18.87 131.13

Ž .and that of F in 6.68 is

2Fs 10y6.13y0.5 �0.2465y3.84sy1.04. 6.81Ž . Ž .

The value of the chi squared criterion is 1.04 units below the desired value of
3.84, and the iterative process therefore has to be initiated.

Ž . Ž .The required values of the quantities in 6.69 � 6.71 are

1
Ts 197.49y2002 ž2 y0.04Ž .

y0.04
y 197 50q25 y2�50�25� 1.92y1Ž . Ž . /197.49

s5.22, 6.82Ž .
1 1 1 1

Us q y y sy0.0233, 6.83Ž .2 2 2 243.87 18.87 6.13 131.13

and

2Vs5.22 10y6.13y0.5 � y0.0233 y2�0.2465� 10y6.13y0.5Ž . Ž . Ž .

sy10.05. 6.84Ž .

Ž .The second approximation to � is then, from 6.72 ,L

y1.04Ž2.� s0.96y s0.86. 6.85Ž .L y10.05

This turns out to be, to two decimal places, the lower 95% confidence
limit on �. The table of expected cell frequencies is given in Table 6.7, and

Ž .the value of the chi squared criterion in 6.67 is

22� s 10y5.66y0.5 �0.2586s3.81, 6.86Ž . Ž .L

which is close to the desired value 3.84.
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Table 6.7. Expected frequencies for data in Table 6.1
when the odds ratio is 0.86

Birthweight

Maternal Age B B Total

A 5.66 44.34 50
A 19.34 130.66 150

Total 25 175 200

Problem 6.10 is devoted to applying the same kind of iterative procedure
to the upper 95% confidence limit, which turns out to be 5.84. The desired
95% confidence interval for the odds ratio underlying the data of Table 6.1 is
therefore

0.86F�F5.84. 6.87Ž .

Note that it is somewhat wider than the interval based on the log odds ratio,
Ž .0.96, 5.37 . This phenomenon has been found in other analyses by Gart
Ž . Ž . Ž .1962 , Gart and Thomas 1972 , and Fleiss 1979a ; that is, the interval

Ž . Ž .defined by endpoints satisfying equality in 6.66 is wider but more accurate
Ž . Ž . Žthan the interval defined by 6.73 and 6.74 , and in fact wider but

.more accurate than a number of other suggested approximate confidence
intervals.

For a limited number of tables, exact upper and lower confidence bounds
Ž .on the odds ratio have been tabulated by Thomas and Gart 1977 . For

general fourfold tables, among approximate procedures, the one just de-
scribed is the method of choice. It is more complicated than its competitors,
but it is more accurate and is easily programmed for analysis on a pro-
grammable calculator or desktop computer.

Although presented in the context of a fourfold table generated by
sampling method I, the procedures described in this section are also applica-
ble to tables generated by sampling methods II and III. The reason is that,
once attention is restricted to fourfold tables having a specified set of
marginal frequencies, the probability structure of the internal cell frequen-
cies is independent of the way the data were generated.

6.6.3.� A Confidence Interval Method to Be Avoided

The second edition of this book stated that the values of any function of the
Ž .expected frequencies e.g., the phi coefficient or the relative risk evaluated

for the entries in the tables associated with the lower and upper confidence
limits on the odds ratio would provide lower and upper confidence limits for
the corresponding parameter. This assertion was unfortunately ambiguous,
and while true in a limited sense to be made precise in this section, the
method does not work assuredly in the wider context in which it would
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ordinarily be interpreted. This section explains the difficulty with the method,
which is that the procedure does not guarantee the desired probability of
coverage for the given parametric function of the underlying cell probabili-
ties. Due to this failure, general use of this method is not recommended.

Let � be a scale-invariant function of the cells of the fourfold table, that
Ž .is, a function �s� u , u , u , u taking the same value for any constant11 12 21 22

Ž .multiple of the arguments, such as n u , n u , n u , n u . Assume. . 11 . . 12 . . 21 . . 22
further that � increases in u for fixed values of u , u , u , u . For11 1. 2. .1 .2

Ž . Ž . Ž . �Ž .example, the relative risk, �s u ru r u ru s u ru r u yu r11 1. 21 2 . 11 1. .1 11
4u , is such a function, as are all of the measures of association discussed in2 .

this chapter. We call such a function simply an association function.

Correct statement: Any association function � evaluated for the entries
in the tables of conditional expected frequencies associated with the
lower and upper confidence limits on the odds ratio provides lower and
upper confidence limits for the corresponding parametric function of
the conditional expected frequencies given the true odds ratio, i.e.,
Ž . Ž � .� E , E , E , E , where E sE n n , n , n , � and �s11 12 21 22 i j i j . . 1. .1

Ž . Ž .P P r P P .11 22 12 21

Incorrect statement: The above procedure provides lower and upper confi-
dence limits for the corresponding parametric function of the cell

Žprobabilities underlying the cross-sectional sampling, that is, � P , P ,11 12
.P , P .21 22

To clarify the distinction between these two statements, consider the
coverage property for an exact, two-sided confidence interval for the odds
ratio. When based on the conditional distribution of X given fixed margins,
the coverage property guarantees that for all values of the true odds ratio, �,
we have

�P � X ���� X n , n , n , � G1y	 , 6.88Ž . Ž . Ž .L U . . 1 . .1

Ž .where we have written the lower and upper confidence limits as � X andL
Ž .� X to remind us that these limits depend on the random variable XsnU 11

in the reference cell. Now, in sampling method I, the margins are all random
variables before conditioning, so we first inquire if the coverage property
holds unconditionally as well. That is, we want to confirm that under
sampling method I, for any set of underlying cell probabilities P , P , P ,11 12 21
P , the assertion22

�� 4 � 4P � n ���� n n , P , P , P , P G1y	 6.89Ž .Ž . Ž .L i j U i j . . 11 12 21 22

� 4 Žholds, where n represents all the frequencies inside the table withouti j
.fixed margins, X alone no longer suffices to represent all the cells , and
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Ž� 4. Ž� 4.� n and � n are the confidence limits based on them. The uncon-L i j U i j
Ž . Ž .ditional coverage probability in 6.89 is obtained by averaging 6.88 over all

values of the margins, the joint distribution of which is determined by the
multinomial cell probabilities P , P , P , P . Because the inequality in11 12 21 22
Ž .6.88 holds for all margins, for any P , P , P , P ,11 12 21 22

�� 4 � 4P � n ���� n n , P , P , P , PŽ . Ž .L i j U i j . . 11 12 21 22

� �sE P � X ���� X n , n , n , � n , P , P , P , P� 4Ž . Ž .L U . . 1 . .1 . . 11 12 21 22

G1y	 .

Ž .Thus the coverage property in 6.89 holds, and the confidence interval for
the odds ratio works assuredly, unconditionally as well as conditionally.

Now let � and � denote the association function evaluated at theL U
conditional expected frequencies corresponding to the lower and upper
confidence limits for � :

� s� E ŽL. , E ŽL. , E ŽL. , E ŽL.Ž .L 11 12 21 22
6.90Ž .

� s� E ŽU . , E ŽU . , E ŽU . , E ŽU . ,Ž .U 11 12 21 22

where the expected cell frequencies corresponding to the upper and lower
confidence limits are denoted by E ŽL. and E ŽU ., respectively, and dependi j i j

� 4 Ž . Ž ŽL. ŽU ..on n . Expression 6.88 implies that E , E is an exact conditionali j 11 11
Ž � .confidence interval for E sE X n , n , n , � , because the expectation11 . . 1. .1

Ž .in 6.43 is a monotonic increasing function of �. Thus for every � and every
set of fixed margins n , n , n , n ,1. 2 . .1 .2

ŽL. ŽU .P E �E �E n , n , n , � G1y	 ,11 11 11 . . 1 . .1

whence by the monotonicity of � in E for fixed margins,11

P � �� E , E , E , E �� n , n , n , � G1y	 .Ž .L 11 12 21 22 U . . 1 . .1

This demonstrates the correct, conditional statement. The problem is that
Ž .the quantity inside the limits, � E , E , E , E , based on the conditional11 12 21 22

expected frequencies given fixed margins and evaluated at the true odds ratio
Ž�, is generally not equal to the population parameter, �s� P , P , P ,11 12 21

. Ž .P . Therefore one cannot conclude that � , � is a valid confidence22 L U
interval for � , either conditionally or unconditionally.

ŽTo illustrate, consider the fourfold table with cell frequencies n , n ,11 12
. Ž .n , n s 3, 1, 6, 0 based on a sample of size 10 collected cross-sectionally21 22

Ž .from a population with true cell probabilities 0.25, 0.25, 0.375, 0.125 . In the
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Ž . Ž .population, the relative risk parameter is �s 0.25r0.50 r 0.375r0.50 s
2 Ž .0.50r0.75s . The exact two-tailed lower conditional confidence limit � 3L3

is zero, and the corresponding expected frequency E ŽL. is 3, so that the11
Ž .relative risk at the lower limit is 0.75. See Problem 6.8. No matter how small

the odds ratio, for the given margins the relative risk based on the condi-
tional expected frequencies at the lower limit cannot take values smaller than
the population relative risk. This is just one extreme case, but other, less

2extreme tables similarly exclude the population relative risk of �s , and3
Ž .similar coverage failures occur as well for row margins other than the 5, 5

margins in the illustration. Together these cases occur with nonnegligible
probability, and an exhaustive computation shows that as a result, the

Ž .unconditional coverage probability of 6.90 is only 0.916.
The computation referred to above used the point probability method for

setting two-sided 95% confidence intervals for the odds ratio. It also credited
Ž .6.90 with coverage of � for indeterminate fourfold tables that occur in
sampling method I when there is a zero frequency in one or both sets of
margins. The coverage probability would have been worse if those cases had
been excluded from consideration.

Ž .The difficulty with 6.90 is not just a small-sample aberration. For
Žexample, with sample size n s40, and population probabilities P , P ,. . 11 12

. Ž .P , P s 0.125, 0.375, 0.375, 0.125 , such that the expected cell frequencies21 22
Ž .unconditionally are all 5 or more, the coverage probability for the popula-

1tion relative risk of is only 0.929 using exact 95% confidence intervals for3

the odds ratio.
We emphasize that the exact confidence intervals for the odds ratio have

coverage probability at least 95%. The fundamental difficulty with exact
procedures for other association functions is that fixing the margins does not
produce a conditional distribution that depends only on that association
parameter, as it does for the odds ratio, and so one is forced to deal with an

Ž .additional nuisance parameter. Santner and Snell 1980 discuss methods for
setting exact confidence intervals in small samples for the difference of two
rates and the relative risk. These are either complicated or conservative, and
will not be discussed here. Methods for constructing approximate confidence
intervals in large samples for measures of association other than the odds
ratio are discussed in Section 6.9.

6.7. CRITICISMS OF THE ODDS RATIO

The multiplicative comparison of risks confers useful properties on the odds
ratio and the rate ratio, which we examine in the next chapter. However,

Ž . Ž .Berkson 1958 and Feinstein 1973 strongly criticized taking the ratio of
rates as a measure of association, pointing out that the level of the rates is
lost. Thus a tenfold increase over a rate of one per million would be
considered equivalent to a tenfold increase over a rate of one per thousand,
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Table 6.8. Mortality rates per 100,000 person-years from lung cancer and
coronary artery disease for smokers and nonsmokers of cigarettes

Disease Smokers Nonsmokers o Difference

Cancer of the lung 48.33 4.49 10.8 43.84
Coronary artery disease 294.67 169.54 1.7 125.13

even though the latter increase is far more serious than the former. Berkson
and Feinstein maintain that the simple difference between two rates is the
proper measure of the practical magnitude, in terms of public health impor-
tance, of an association.

Ž .Data from Table 26 of Smoking and Health 1964, p. 110 illustrate their
point. Table 6.8 gives the approximate death rates per 100,000 person-years
for smokers and for nonsmokers of cigarettes.

If we compared only the odds ratios o, we would conclude that cigarette
smoking has a greater effect on lung cancer than on coronary artery disease.
It was this conclusion, from a number of studies, that Berkson felt was
unwarranted. He contended, quite correctly, that the odds ratio throws away
all information on the number of deaths due to either cause. Berkson went
farther, however, and maintained that it is only the excess in mortality that
permits a valid assessment of the effect of smoking on a cause of death:
‘‘ . . . of course, from a strictly practical viewpoint, it is only the total number

w xof increased deaths that matters’’ 1958, p. 30 .
He maintained that the effect of smoking is greater on that cause of death

with the greater number of excess deaths. Thus, since smoking is associated
with an excess mortality of over 120 per 100,000 person-years from coronary
artery disease and with an excess mortality of under 50 per 100,000 person-
years from lung cancer, Berkson concluded that the association is stronger
for coronary artery disease than for lung cancer.

Ž .Sheps 1958, 1961 proposed a simple and elegent modification of
ŽBerkson’s index. Let p denote the mortality rate in general, the rate atc

.which an untoward event occurs in a control sample, and p the correspond-s
ing rate in a study sample presumed to be at higher risk. Thus by assumption,
p �p .s c

Sheps contends that the excess risk associated with being in the study
group, say p , can operate only on those individuals who would not have hade
the event occurring to them otherwise. Thus she postulates the model

p sp qp 1yp ; 6.91Ž . Ž .s c e c

that is, the rate in the study group, p , is the sum of the rate in the controls
group, p , and of the excess risk, p , applied to those who would notc e
otherwise have had the event, 1yp . Sheps suggests that p be used as ac e
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measure of added or excess risk. Because, clearly,

p yps cp s , 6.92Ž .e 1ypc

p may also be called the relati®e difference.e
This differs from Berkson’s index, p yp , only in that the difference iss c

divided by 1yp , the proportion of the people actually at added risk. If p isc c
small, then Sheps’ and Berkson’s indexes are close. Thus for the data of
Table 6.8, the excess mortality due to cancer of the lung is p se

Ž .43.84r 100,000y4.49 s43.84 additional deaths attributable to cigarette
smoking per 100,000 person-years saved by not having smoked. For coronary

Ž .artery disease, the excess mortality is p s125.13r 100,000y169.54 s125.34e
deaths per 100,000 person-years saved by not having smoked.

If research into the etiology of disease were concerned solely with public
health issues, then Berkson’s simple difference or Sheps’ relative difference
would be the only valid measures of the association between the antecedent
factor and the outcome event. Because retrospective studies are incapable of
providing estimates of either measure, such studies are necessarily useless

Ž .from the point of view of public health. As Cornfield et al. 1959 and
Ž .Greenberg 1969 have pointed out, however, etiological research is also

concerned with the search for regularities in many sets of data, with the
development of models of disease causation and distribution, and with the
generation of hypotheses by one set of data that can be tested on other sets.

Given these concerns, that measure of association is best which is sug-
gested by a mathematical model, which is capable of assuming predicted
values for certain kinds of populations and can thus serve as the basis of a
test of a hypothesis, and which is invariant under different methods of
studying association. Because the odds ratio, or its logarithm, comes closest

Ž .to providing such a measure Cox and Snell, 1989, pp. 20�21 , and because
Žthe odds ratio is estimable from a retrospective study as we shall see in the

.next chapter , retrospective studies are eminently valid from the more gen-
Ž .eral point of view of the advancement of knowledge. Peacock 1971 warns,

however, against the uncritical assumption that the odds ratio should be
constant across different kinds of populations.

That Sheps’ measure, like Berkson’s, lacks the regularity so often observed
with the odds ratio is seen from the data of Table 6.9. It gives overall death
rates for smokers and nonsmokers of varying ages, taken from the graph on

Ž .p. 88 of Smoking and Health 1964 . In that graph two rates appear for the
nonsmokers aged 75�79. The value that seemed the more reasonable was
used.

As is so often the case, one comes to different conclusions depending on
which measure is chosen. Looking at p , the conclusion is that the effect ofe
smoking steadily increases with increasing age. In terms of lives lost among
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Table 6.9. Death rates from all causes by age and smoking

Ž .Death Rate per 100,000 pe
Ž .Age Interval Smokers Nonsmokers o per 100,000

45�49 580 270 2.2 310
50�54 1050 440 2.4 610
55�59 1600 850 1.9 750
60�64 2500 1500 1.7 1000
65�69 3700 2000 1.9 1700
70�74 5300 3000 1.8 2400
75�79 9200 4800 2.0 4600

those not otherwise expected to die, this conclusion is correct. The increase
in p , however, is so erratic that no precise mathematical extrapolation ore
even interpolation seems possible.

Looking at o, on the other hand, the conclusion is that the effect of
smoking on overall mortality is essentially constant across all the tabulated
ages. The epidemiological importance of this conclusion is that one may
validly predict that the odds ratio would be approximately 2.0 for specific
ages between 45 and 79, for ages below 45, and for ages above 79. If the
observed odds ratio for any such interpolated or extrapolated age departed
appreciably from 2.0, further research would clearly be indicated.

We turn next to a measure of association that combines elements of both
multiplicative and additive comparisons of risk.

6.8. ATTRIBUTABLE RISK

Let A denote the presence of the risk factor under study, and B the
presence of the outcome condition. The overall rate of occurrence of the

Ž . Ž � . Ž . Ž � . Ž .condition is P B sP B A P A qP B A P A . Unfortunately, there are
several definitions available for the attributable risk; of these, the one due to

Ž . w xLevin 1953 no relation to the author makes the most substantive sense.
Ž .It is that fraction of P B that can uniquely be attributed to the presence of

the risk factor.
Exposure to the risk factor is not necessary for the occurrence of the

Ž � .outcome condition; a proportion, P B A , of people without the risk factor
will develop it. If the risk factor were without any effect, we would expect this
same proportion to apply to the exposed group, so that its contribution to
Ž . Ž � . Ž . Ž � . Ž .P B would be P B A P A . Its actual contribution is P B A P A , and the

Ž .difference between these two quantities, relative to P B , is Levin’s at-
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tributable risk, say,

� �P B A P A yP B A P AŽ . Ž . Ž .Ž .
R sA P BŽ .

� �P A P B A yP B AŽ . Ž . Ž .
s

� �P B A P A qP B A 1yP AŽ . Ž . Ž .Ž .

� �P A P B A yP B AŽ . Ž . Ž .
s

� � �P B A qP A P B A yP B AŽ . Ž .Ž . Ž .

P A Ry1Ž . Ž .
s , 6.93Ž .1qP A Ry1Ž . Ž .

where R is the relative risk,

�P B AŽ .
Rs . 6.94Ž .

�P B AŽ .

The attributable risk, also known as the population attributable risk fraction
or the etiologic fraction, is interpreted as follows. If the risk factor could be

Ž .eliminated, R is the proportion by which P B , the rate of occurrence ofA
the outcome characteristic in the population, would be reduced. Therefore it
has important uses in educational programs and in health planning, but its

Ž .dependence on P A , the rate of exposure to the risk factor, limits its use in
Žmaking comparisons between populations in which this rate varies. There

.are some striking exceptions, however; see Problem 6.12.
The population attributable risk as just defined should not be confused

with the so-called attributable risk among the exposed, defined as

� �P B A yP B AŽ . 1Ž .
R s s1y . 6.95Ž .E R�P B AŽ .

This measure expresses the excess risk as a fraction of the risk among those
exposed to the antecedent factor. It finds its widest applicability in the law,
where issues of causation in civil toxic tort cases require a determination of
whether it was more likely than not that plaintiffs who were exposed to risk

Žfactor A and suffered disease B did so because of their exposure Finkelstein
. Ž � . Ž � .and Levin, 2001 . Thus if the relative risk RsP B A rP B A exceeds 2,

Ž .6.95 shows that more than half of the exposed plaintiffs might not have
been expected to have suffered the disease but for their exposure, suggesting
the more-likely-than-not standard is met. Because the attributable risk among
the exposed, R , does not depend at all on the prevalence of the exposureE
A, it does not indicate the impact of the exposure among the wider group of
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all those who have the disease in the population, as does the attributable risk,
R . Thus R is the more useful measure for etiologic research.A A

The population attributable risk can be expressed equivalently in two
Ž .other ways of interest. From the first equality in 6.93 defining R , we canA

write

� �P B A P A yP B A 1yP AŽ . Ž . Ž .� 4Ž .
R sA P BŽ .

� � �P B A P A qP B A P A yP B AŽ . Ž . Ž .Ž . Ž .
s

P BŽ .

�P B yP B AŽ . 1Ž .
s s1y . 6.96Ž .P BŽ . �P B rP B AŽ . Ž .

Ž .Thus R can be expressed in a manner similar to 6.95 , where the relativeA
risk R is replaced by the ratio of the population risk of disease irrespective of
exposure, to that among the unexposed. This ratio is not generally of interest

Ž . Ž .other than to express 6.93 in a form similar to 6.95 , and the relative risk
should be used as the standard rate ratio comparison.

A more informative expression for R is the following, which starts fromA
Ž . Ž � . Ž .the first equality of 6.93 , factors out the product P B A P A , and applies

Bayes’ theorem:

1
�P B A P A 1yŽ . Ž . ½ 5� �P B A rP B AŽ . Ž .

�R s sR �P A B . 6.97Ž . Ž .A EP BŽ .

Ž .Expression 6.97 shows that the population attributable risk is equal to the
attributable risk among the exposed, reduced by the prevalence of the
antecedent factor among those with the disease. In method I sampling, each
of the required rates or conditional probabilities can be estimated. Moreover,

Ž � . Ž .the use of P A B makes expression 6.97 useful in the context of a
retrospective study, in which antecedent exposures are estimated amongst
those with and without disease. We return to this point in Section 7.3.

Ž .Expression 6.97 has another important advantage. The interpretation of
Ž .attributable risk as the proportion by which P B would be reduced if the

risk factor A could be eliminated is an oversimplification and idealization of
actual experience in public health practice. There are usually confounding
factors that correlate with both exposure and disease, and would not disap-
pear even if the exposure were eliminated. For example, smokers may have
habits other than smoking, like sedentary lifestyles, that contribute to their
higher rates of heart disease. Interventions to eliminate risk factors are only
modestly successful in most cases, and exposed persons may substitute other
risk-elevating factors if compelled to give up the original exposure. These
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realities often produce much smaller reductions in disease than the at-
tributable risk would predict, unless adjustments are made. The adjustment

Ž .takes the form of replacing the rate of disease given no exposure only in the
denominator of the relative risk R by the rate of disease among those
unexposed if the exposure alone were eliminated, but assuming all other
characteristics of exposed persons remain the same. Such adjustments can be
made by conditioning on covariate information, by stratification in the
cross-sectional sampling method, or by regression methods. The advantage of
Ž .6.97 is that if such adjustments to the relative risk are made, the adjusted
relative risk can be used in R and then in R to produce a valid adjustedE A
attributable risk estimate. Other expressions do not lend themselves to this

Ž .kind of adjustment. Expression 6.97 also generalizes easily to the case of
Ž .more than two exposure categories. Rockhill, Newman, and Weinberg 1998

review these and other properties of the population attributable risk.
Ž .When, as pointed out by Markush 1977 , data are collected in cross-

Žsectional surveys such as those conducted by the National Center for Health
. ŽStatistics or as part of routine registration such as the recording of vital

.events by local health departments , the attributable risk may be estimated
by, say,

p p yp p11 22 12 21r s 6.98Ž .A p p.1 2 .

Ž . Ž .see Problem 6.11 . Walter 1976 derived a complicated expression for the
standard error of r . A related but much simpler expression was derived byA

Ž . Ž .Fleiss 1979b for the standard error of ln 1y r ,A

$ p q r p qpŽ .12 A 11 22se ln 1y r s . 6.99� 4Ž . Ž .(A n p. . 21

Its use is illustrated on the data in Table 6.10, which cross-classifies
birthweight and infant mortality among whites in 1974 in New York City. The

Table 6.10. Infant mortality by birthweight for 72,730
li©e white births in 1974 in New York City

Outcomes at One YearBirthweight
Ž .g Dead Alive Total

F2500 0.0085 0.0632 0.0717
�2500 0.0058 0.9225 0.9283

Total 0.0143 0.9857 1
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estimated risk of infant death attributable to low birthweight is

0.0085�0.9225y0.0632�0.0058
r s s0.563, 6.100Ž .A 0.0143�0.9283

Ž .with an estimated standard error of ln 1y r given byA

$ 0.0632q0.563 0.0085q0.9225Ž .
se ln 1y r s s0.037. 6.101� 4Ž . Ž .(A 72,730�0.0058

The natural logarithm of 1y r isA

ln 1y r s ln 1y0.563 sy0.828, 6.102Ž . Ž . Ž .A

Ž .and an approximate 95% confidence interval for ln 1yR isA

y0.828y1.96�0.037F ln 1yR Fy0.828q1.96�0.037, 6.103Ž . Ž .A

or

y0.901F ln 1yR Fy0.755. 6.104Ž . Ž .A

By taking antilogarithms of these limits, and then complements from unity,
we obtain

0.530FR F0.594 6.105Ž .A

as an approximate 95% confidence interval for the attributable risk itself.
With 95% confidence, therefore, between 53% and 59% of all white infant

Ždeaths in New York City in 1974 could have been prevented if low birth-
.weights less than or equal to 2500 grams had been eliminated

6.9.� STANDARD ERRORS FOR MEASURES OF ASSOCIATION

In this chapter we have seen several formulas for the standard error of
w Ž . Ž . Ž .xmeasures of association: the odds ratio see 6.17 , 6.19 , or 6.21 , the log

wŽ .x wŽ .xodds ratio 6.33 , and the log complementary attributable risk 6.99 .
Standard error formulas for many other measures of association may be
derived using the delta method of Section 2.6. Here we record the results for
some other measures mentioned in this chapter, viz., the risk difference, the
relative risk, the phi coefficient, and Sheps’ relative difference, each esti-
mated in a cross-sectional sample. Because the most important use of the
standard error of an estimate of association is to set approximate confidence
intervals for the corresponding population parameter, we state the standard
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error formula for whichever transformation of the measure is best approxi-
mated by the normal distribution in large samples, typically the logarithmic
transformation.

Sampling method I involves the multinomial distribution, so we state an
appropriate multivariable version of the delta method. In large samples, the
sample proportions p estimated from the fourfold table are jointly dis-i j
tributed approximately with a multivariate normal distribution with mean
Ž .P , P , P , P and covariance matrix11 12 21 22

Cov p , p , p , pŽ .11 12 21 22

P 1yP yP P yP P yP PŽ .11 11 11 12 11 21 11 22

yP P P 1yP yP P yP PŽ .1 11 12 12 12 12 21 12 22
s .n yP P yP P P 1yP yP PŽ .11 21 12 21 21 21 21 22

yP P yP P yP P P 1yPŽ .11 22 12 22 21 22 22 22

6.106Ž .

Ž .The variances of the sample proportions lie on the main diagonal of 6.106 ,
and the covariance of the ith and jth sample proportions lies in the ith row
and jth column. The assertion about the large-sample joint distribution of
the sample proportions follows from the multivariate version of the central

Ž .limit theorem. Expression 6.106 can be written in the equivalent matrix
form

Cov p , p , p , pŽ .11 12 21 22

P11

P1 12 P P P Ps Diag P , P , P , P yŽ . 11 12 21 2211 12 21 22n P21� 0P22

6.107Ž .

Ž .where Diag P , P , P , P is a 4�4 matrix with P , P , P , P on the11 12 21 22 11 12 21 22
main diagonal and 0 for the off-diagonal entries, and matrix multiplication is
used to multiply the column vector of cell probabilities by the row vector of
cell probabilities.

Ž .Now let �s f P , P , P , P be a differentiable function of the cell11 12 21 22
probabilities in the fourfold table. � represents a population parameter
we want to estimate by substituting the sample proportions for the P ,i j

ˆ ˆŽ .i.e., �s f p , p , p , p . The estimate � is then a maximum likelihood11 12 21 22
ˆestimate of � . What is the distribution of � in large samples, and what is its
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Ž .standard error? The answer is normal with mean �s f P , P , P , P11 12 21 22
and standard error given by the square root of the following expression:

ˆ� 4Var � sVar f p , p , p , p� 4Ž .11 12 21 22

ff P , P , P , P �Cov p , p , p , pŽ . Ž .11 12 21 22 11 12 21 22

�
�f P , P , P , P 6.108Ž . Ž .11 12 21 22

Ž .The quantity f P , P , P , P is called the gradient ®ector and is defined11 12 21 22
as the row vector of partial derivatives of f with respect to the P ’s:i j

� f � f � f � f
f P , P , P , P s , , , . 6.109Ž . Ž .11 12 21 22 ž /� P � P � P � P11 12 21 22

Ž . �Matrix multiplication is used in 6.108 , and the prime on f refers to the
ˆtranspose of the gradient vector. As usual, the variance of � is estimated by

substituting the sample proportions p for the population proportions Pi j i j
Ž . Ž .wherever they appear in 6.106 � 6.109 .

For example, consider Berkson’s risk difference, p yp , which in thes c
Ž . Ž .current notation is an estimate of �s f P , P , P , P s P rP y11 12 21 22 11 1.

Ž .P rP . The gradient of f is the vector21 2.

P P P P12 11 22 21f P , P , P , P s ,y ,y , ;Ž .11 12 21 22 2 2 2 2ž /P P P P1 . 1 . 2 . 2 .

Ž . � Ž .4 �the term in 6.108 equal to f Diag P , P , P , P f is11 12 21 22

P P 2 P P 2 P P 2 P P 2
11 12 12 11 21 22 22 21q q q4 4 4 4P P P P1 . 1 . 2 . 2 .

P P P P P P P P11 12 21 22 11 11 21 21s q s 1y rP q 1y rP ,1 . 2 .3 3 ž / ž /P P P PP P 1 . 1 . 2 . 2 .1 . 2 .

Ž . Ž . �and the other term in 6.108 involving the product of P , P , P , P f11 12 21 22
Ž .with itself is equal to 0 do you see why? . Thus the standard error of the risk

difference is

P P P P1 11 12 21 22se p yp s q , 6.110Ž . Ž .s c 3 3( P Pn' 1 . 2 .. .
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which is estimated by

$ n n n n11 12 21 22se p yp s q . 6.111Ž . Ž .s c 3 3( n n1 . 2 .

For the data in Table 6.1, the risk difference is estimated as 0.20y0.10s
Ž .0.10, the standard error of the risk difference is estimated from 6.111 to be

0.0616, and an approximate 95% confidence interval is given by 0.10�1.96�
Ž .0.0616s 0.021, 0.221 .

�Ž . Ž .4Next consider the log relative risk, �s ln Rs ln P rP r P rP .11 1. 21 2 .
Problem 6.13 asks the reader to demonstrate that the standard error of the
sample log relative risk is estimated by

$ $ p p n n11 21 12 22w xse ln r sse ln s q . 6.112Ž .(ž / ž /½ 5p p n n n n1 . 2 . 11 1 . 11 2 .

Another application of the delta method shows that in large samples, the
standard error of the relative risk itself is estimated by

$ $ p p n n11 21 12 22w xse r sse s r q . 6.113Ž .(ž / ž /p p n n n n1 . 2 . 11 1 . 21 2 .

As for the odds ratio, the preferred method for setting an approximate
confidence interval for the relative risk is not to take the sample estimate

Ž .plus or minus a critical value times 6.113 , but rather to construct a
confidence interval for the log relative risk and then to exponentiate the

Ž .lower and upper limits. Thus an approximate 100 1y	 % confidence inter-
val for the log relative risk �s ln R in large samples is given by ln r�

� 4z se ln r , obtaining, say, � and � , and then taking as the confidence	r2 L U
Ž . Ž .limits for R itself R sexp � and R sexp � .L L U U

For the data of Table 6.1, the estimated log relative risk is ln 2s0.693,
w� Ž . Ž .41r2and the standard error is estimated to be 40r 10�50 q135r 15�150

s0.374. Thus an approximate 95% confidence interval for the log relative
Ž .risk is 0.693�1.96�0.374s y0.040, 1.426 , and thus an approximate 95%

Ž Ž . Ž ..confidence interval for the relative risk is exp y0.040 , exp 1.426 s
Ž . Ž . Ž . Ž .0.961, 4.16 . A comparison of 6.75 � 6.76 with 6.87 for the odds ratio
suggests that the confidence interval just obtained for the relative risk may be
overoptimistic in its width.

For the attributable risk among the exposed, R s1y1rR, we do notE
need a separate standard error formula. Confidence limits for R , say RE E, L
and R , are obtained by using the corresponding confidence limits for theE, U
relative risk, such that, R s1y1rR and R s1y1rR .E, L L E, U U



6.9 STANDARD ERRORS FOR MEASURES OF ASSOCIATION 133

Ž .For Sheps’ relative difference p in 6.92 it is simplest to work with thee
Žlogarithm of the complement of the relative difference, 1yp s 1ye

. Ž . Ž . Ž .p rp r 1yp rp s p rp r p rp . Then the standard error of the11 1. 21 2 . 12 1. 22 2 .
sample log complementary relative difference is given by

P P1 11 21se ln 1yp s qŽ .e (P P P P12 1 . 22 2 .n' . .

1 1 1 1 1
s y q y(P P P P12 1 . 22 2 .n' . .

and is estimated by

$ n n 1 1 1 111 21se ln 1yp s q s y q y . 6.114Ž . Ž .e ((n n n n n n n n12 1 . 22 2 . 12 1 . 22 2 .

Ž .The reader is asked to derive 6.114 in Problem 6.14.
Ž .For the data of Table 6.1, Sheps’ relative difference is p s 0.2y0.1 re

Ž .1y0.1 s0.111. The estimated log complementary relative difference is
8�Ž . Ž .4 Ž .ln 1y0.2 r 1y0.1 s ln sy0.118, and the standard error is estimated9

1 1 1 1 1r2Ž .at y q y s0.0758. Thus an approximate 95% confidence40 50 135 150

interval for the log complementary relative difference is y0.118�1.96�
Ž .0.0758s y0.267, 0.0306 . Taking antilogs and then complements, an approx-

Žimate 95% confidence interval for Sheps’ relative difference is 1y
Ž . Ž .. Ž .exp 0.0306 , 1yexp y0.267 s y0.031, 0.234 .

For the phi coefficient, in order to preserve the sign or direction of the
association, write the measure as

n n yn n11 22 12 21�s 6.115Ž .
n n n n' 1 . 2 . .1 .2

First consider the case in which the population phi coefficient,

P P yP P11 12 12 21�s , 6.116Ž .
P P P P' 1 . 2 . .1 .2

is zero. We demonstrate in this case that the standard error of the sample phi
Ž .1r2coefficient is 1r ny1 . To see this, write the sample version as

n n yn n n yn n rn11 22 12 21 11 1 . .1 . .�s s
2n n n n' 'n n n n rn1 . 2 . .1 .2 1 . 2 . .1 .2 . .

n yn n rn 111 1 . .1 . .s � , 6.117Ž .
2 n y1'n n n n r n n y1' Ž .� 4 . .1 . 2 . .1 .2 . . . .
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where the first equality follows from the identity

n n yn n sn n yn yn yn yn nŽ .11 22 12 21 11 . . 11 12 21 12 21

sn n y n qn n qn sn n yn n rn .Ž . Ž . Ž .. . 11 11 12 11 21 . . 11 1 . .1 . .

6.118Ž .

Ž . Ž . Ž .1r2Referring to 6.40 , we recognize 6.117 as n y1 times a standardized. .
central hypergeometric random variable, given fixed margins. Thus we have,
conditionally, that � is approximately normal in large samples, with

1
� �E � n , n , n , �s0 s0 and Var � n , n , n , �s0 s .� 4Ž .. . 1 . .1 . . 1 . .1 n y1. .

6.119Ž .

Ž .The unconditional variance of phi is then also 1r n y1 , because of the. .
general identity for any two random variables, X and Y, with finite means
and variances,

� �Var Y sE Var Y X qVar E Y X . 6.120� 4 � 4Ž . Ž . Ž . Ž .

Ž . � Ž .4 � 4 Ž .Thus Var � sE 1r n y1 qVar 0 s1r n y1 , so that the exact stan-. . . .
dard error of � is

1
�se � n , �s0 s . 6.121Ž .Ž .. . n y1' . .

This simple result provides a good approximation to the standard error of the
phi coefficient when the population value is small but nonzero, although it

� 4slightly underestimates se � .
'For the data in Table 6.1, the approximate standard error is 1r 199 s

0.071. A simulation experiment shows that for cross-sectional sampling with
underlying cell probabilities equal to those shown for the sample in Table
6.2, the standard error of � is 0.079. An approximate 95% confidence

Ž . Ž .interval for � using 6.121 is then 0.13�1.96�0.071s y0.01, 0.27 .
When the population phi coefficient is not close to zero, the situation is

more complicated. We shall assume in this case that all of the true marginal
cell probabilities are positive, and that the sample size is sufficiently large
that the sample phi coefficient will be bounded away from zero with high
probability, in order that we may work with the logarithm of phi:

1� ��s ln �s ln P P yP P y ln P qP q ln P qP� Ž . Ž .11 22 12 21 11 12 21 222

qln P qP q ln P qP .4Ž . Ž .11 21 12 22
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� � y1 y1Define �s P P yP P and a sP qP . Then a calculation shows11 22 12 21 i j i . . j
that the standard error of ln � is given by

1
se ln � s B qB qB yB yB yB , 6.122Ž . Ž .' 1 2 3 4 5 6n' . .

where

1
B s P P P qP qP P P qP ,� 4Ž . Ž .1 11 22 11 22 12 21 12 212�

1 2 2B s a P 1yP qa P 1yPŽ . Ž .�2 11 11 11 12 12 124

qa2 P 1yP qa2 P 1yP ,Ž . Ž . 421 21 21 22 22 22

B s2 a P qa P qa P qa P ,Ž .3 11 11 12 12 21 21 22 22

B s4,4

1 1 1 1
B s q q q ,5 ž /P P P P1 . 2 . .1 .2

1B s a a P P qa a P P qa a P PŽ6 11 12 11 12 11 21 11 21 11 22 11 222

qa a P P qa a P P qa a P P ..12 21 12 21 12 22 12 22 21 22 21 22

As usual, the standard error may be estimated by substituting the sample
proportions for the P .i j

For a cross-sectional sample of size 1,000 with sample proportions as in
Ž .Table 6.2, 6.122 yields an estimated standard error of 0.270 for ln �. Thus

an approximate 95% confidence interval for ln � is ln 0.13�1.96�0.270s
Ž .y2.56,y1.50 , and taking antilogs, a 95% confidence interval for � is
Ž . Ž .0.08, 0.22 . This is close to the interval 0.07, 0.19 based on the simpler

Ž .standard error formula 6.121 for � with a sample of size n s1,000.. .

PROBLEMS

Ž . Ž .6.1. The odds � and � are defined by 6.5 and 6.8 . Prove thatA A
Ž � . Ž � .� s� if and only if P B A sP B A .A A

Ž .6.2. The odds ratio � is defined by 6.13 . Prove that ��1 if and only if
Ž � . Ž � .P B A �P B A .

Ž . Ž .6.3. The relative risk r is defined by 6.23 , and the odds ratio o by 6.14 .
Prove that r is approximately equal to o if p is small relative to p21 22

w Ž .and if p is small relative to p . Hint. p sp 1qp rp and11 12 2 . 22 21 22
Ž . xp sp 1qp rp .1. 12 11 12
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6.4. It had long been known that, among first admissions to American
public mental hospitals, schizophrenia as diagnosed by the hospital
psychiatrists was more prevalent than the affective disorders, whereas
the reverse was true for British public mental hospitals. A cooperative
study between New York and London psychiatrists was designed to
determine the extent to which the difference was a result of differ-
ences in diagnostic habits. The following data are from a study

Ž .reported by Cooper et al. 1972 .
( ) ( )a 1 One hundred and forty-five patients in a New York hospital

and 145 in a London hospital were selected for study. The
New York hospital diagnosed 82 patients as schizophrenic
and 24 as affectively ill, whereas the London hospital diag-
nosed 51 as schizophrenic and 67 as affectively ill. Ignoring
the patients given other diagnosis, set up the resulting four-
fold table.

( )2 The project psychiatrists made diagnoses using a standard set
of criteria after conducting standardized interviews with the
patients. In New York, the project diagnosed 43 patients as
schizophrenic and 53 as affectively ill. In London, the project
diagnosed 33 patients as schizophrenic and 85 as affectively
ill. Ignoring the patients given other diagnoses, set up the
resulting fourfold table.

( )3 The results of the standardized interview served as input to a
computer program that yields psychiatric diagnoses. In New
York, the computer diagnosed 67 patients as schizophrenic
and 27 as affectively ill. In London, the computer diagnosed
56 patients as schizophrenic and 37 as affectively ill. Ignoring
the patients given other diagnoses, set up the resulting four-
fold table.

( )b Three diagnostic contrasts between New York and London are
possible: by the hospitals’ diagnoses, by the project’s diagnoses,
and by the computer’s diagnoses. Compute, for each of the three
sources of diagnoses, the ratio of the odds that a New York
patient will be diagnosed schizophrenic rather than affective to
the corresponding odds for London. How do the odds ratios for
the project’s and computer’s diagnoses compare? How do these
two compare with the odds ratio for the hospital’s diagnoses?

( )c For each source of diagnosis, all four cell frequencies are large,
Ž .indicating that the improved estimate 6.20 may not be necessary.

Check that, for each source of diagnosis, the estimate of the odds
Ž .ratio given by 6.20 is only slightly less than the estimate given by

Ž .6.14 .

� Ž . Ž .6.5. Prove Haldane’s 1956 result that among all estimators of ln PrQ of
1�Ž . Ž .4the form ln pqarn r qqarn , the choice as removes the term2
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of order 1rn in the asymptotic expansion of the bias of the estimator.
wHint. Write the estimator in the following form:

pqarn P pyPqarn qyQqarn
ln s ln q ln 1q y ln 1q .ž /ž / ž / ž /qqarn Q P Q

Ž . 2Use the approximation ln 1qx fxyx r2 for small x to write the
estimator approximately as

2pqarn P pyPqarn 1 pyPqarn
ln f ln q y ž /ž / ž /qqarn Q P 2 P

2qyQqarn 1 qyQqarn
y q ž /Q 2 Q

P pyPqarn qyQqarn
s ln q yž /Q P Q

1 a 1 a2 2y pyP y pyP q qyQ q qyQ ,Ž . Ž . Ž . Ž .2 2 2 22 P nP 2Q nQ

ignoring terms of order 1rn2 and higher. Now take expectations, and
Ž . Ž .2use the fact that E pyP s0 and E pyP sPQrn to express the

bias of the estimator, ignoring terms of order 1rn2 and higher, as

pqarn P
biassE ln y lnž / ž /qqarn Q

a 1 1 1 Q P QyP 1 xf y y y s ay .ž /ž / ž /n P Q 2n P Q nPQ 2

6.6. The joint multinomial probability function for cross-sectional sampling
is given by

N ! n n n n11 12 21 22P n , n , n , n s P P P PŽ .11 12 21 22 11 12 21 22n !n !n !n !11 12 21 22

for all quadruplets of nonnegative integers n , n , n , n that sum11 12 21 22
to n . Show that the conditional distribution of n given the two. . 11
conditions n qn sn and n qn sn is given by either expres-11 12 1. 11 21 .1

Ž . wsion in 6.35 . Hint. Write the conditional probability as the joint
multinomial probability for n , n , n , n divided by the joint multi-11 12 21 22
nomial probability for the conditioning events. Write n sn yn ,12 1. 11
n sn yn , and n sn yn yn qn and substitute these into21 .1 11 22 11 1. .1 . .
the expression. Cancel terms that involve only n ,n , and n and that1. .1 . .

xappear in both numerator and denominator.
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6.7. Show that when n s1, the reference cell in the noncentral hypergeo-1.
Ž . Ž .metric distribution 6.35 is a binary outcome with P Xs1 given by

Ž . Ž . Ž .6.41 . Deduce the mean and variance formulas 6.41 and 6.42 .

Ž .6.8. For the fourfold table with cell frequencies n , n , n , n s11 12 21 22
Ž .3, 1, 6, 0 , show that the upper conditional tail probability above
x s3 is 1 for any odds ratio, and hence the lower confidence limit is0
� s0. Confirm the same by the approximate method of Section 6.6.2.L
Conclude that the corresponding expected frequency is 3, and that the
corresponding relative risk is 0.75.

6.9. When the continuity correction is not incorporated into the test
Ž .statistic in 6.49 , the resulting value usually agrees very well with that

Ž .of the statistic in 6.61 . Find the value of

22 2 n yNŽ .i j i j2� s Ý Ý Ni jis1 js1

for the data in Tables 6.1 and 6.6, and compare with the value found
Ž .in 6.65 .

6.10. Apply the iterative procedure of Section 6.6.2 to find the upper 95%
confidence limit on the odds ratio underlying the data of Table 6.1.

Ž1. Ž .Use as the initial approximation the value � s5.37 from 6.76 .U

6.11. Show that, when the components of the population attributable risk
Ž . w Ž .defined in 6.93 are replaced by their sample estimators P A by p1.

Ž .xand R by the expression in 6.23 , and when the resulting expression
Ž .is simplified, equation 6.95 results.

6.12. Data on infant mortality by birthweight for whites were presented in
Table 6.10. Data for 37,840 nonwhite live births in New York City in
1974 are

Outcome at One YearBirthweight
Ž .g Dead Alive Total

F2500 0.0140 0.1147 0.1287
�2500 0.0088 0.8625 0.8713
Total 0.0228 0.9772 1

( )a What is the estimated attributable risk for nonwhite live births?
Ž .How does this compare with the value found in 6.100 for white

live births?
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( ) Ž .b What is the estimated standard error of ln 1y r for the estimateA
Ž .found in a ? What is an approximate 95% confidence interval for

R in nonwhite live births? How does this compare with theA
Ž .interval found in 6.105 for white live births?

6.13.� Show that for the log relative risk function ln R with
Ž . �Ž . Ž .4f P , P , P , P s ln P rP r P r P , the gradient is given by11 12 21 22 11 1. 21 2 .

P P1 112 22,y ,y ,P P P P P P11 1 . 1 . 21 2 . 2 .

and that the matrix multiplication of the gradient on the left by the
Ž .covariance matrix 6.107 on the right yields the vector

P P P P12 12 22 22,y ,y , ,P P P P1 . 1 . 2 . 2 .

so that multiplying the result on the right by the transpose of the
gradient vector yields

P P12 22Var ln r s q .Ž . P P P P11 1 . 21 2 .

Deduce that when sample estimates of the cell and marginal probabil-
Ž .ities are substituted, expression 6.112 results as the estimated stan-

dard error of the log relative risk.

6.14.� Consider the log complementary relative difference function
Ž . �Ž . Ž .4f P , P , P , P s ln P rP r P rP . Derive the standard er-11 12 21 22 12 1. 22 2 .

Ž . w xror formula 6.114 . Hint. Use Problem 6.13.

6.15. Referring to Problem 4.7, consider the right-hand data set for blind-
ness outcomes among premature infants who survived the perinatal
period, comparing low versus high O concentration.2

( )a Find the exact two-sided 95% confidence interval for the odds
ratio relating blindness to oxygen concentration, using the point
probability method. Confirm that the value for the odds ratio
�s1 is excluded from the confidence interval. This is consistent
with the exact two-tailed p-value 0.031 by the point probability
method for Fisher’s exact test.

( )b An approximate confidence interval for the log odds ratio appears
Ž . Ž . Ž .in expressions 6.73 and 6.74 using the definitions in 6.20 ,

Ž . Ž .6.32 , and 6.33 . Construct the approximate 95% confidence for
Ž .the same data as in part a . Exponentiate the endpoints of this



CROSS-SECTIONAL, NATURALISTIC, OR MULTINOMIAL SAMPLING140

interval to arrive at a commonly used confidence interval for the
Ž .odds ratio. Compare the results with the exact interval in part a .

What are your conclusions in this small-sample case?
( ) Ž .c Repeat part b for the mortality data in the left-hand table of

Problem 4.7. Compare the results with the exact interval for the
Ž .odds ratio two-sided, using the point probability method of

Ž .0.615, 4.730 . What are your conclusions in this larger sample size
case?
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C H A P T E R 7

Comparative Studies: Prospective
and Retrospective Sampling

Section 3.1 introduced sampling method II as the selection of a sample from
each of two populations, a predetermined number n from the first and a1
predetermined number n from the second. Method II sampling is used in2

wcomparative prospective studies in which one of the two populations is
defined by the presence and the second by the absence of a suspected

Ž .xantecedent factor MacMahon and Pugh, 1970, Chapter 11 , and is also used
win comparative retrospective studies in which one of the two populations is

defined by the presence and the second by the absence of the outcome under
Ž .xstudy MacMahon and Pugh, 1970, Chapter 12 .

The analysis of data from a comparative prospective study is discussed in
Section 7.1, and the analysis of data from a comparative retrospective study
in Section 7.2. Inferences about the attributable risk when the data are from
retrospective studies are considered in Section 7.3. Section 7.4 compares the
prospective and retrospective approaches.

7.1. PROSPECTIVE STUDIES

ŽThe comparative prospective study also termed the cohort, or forward-going,
.or follow-up study is characterized by the identification of the two study

samples on the basis of the presence or absence of the antecedent factor and
by the estimation for both samples of the proportions developing the disease
or condition under study.

ŽConsider again the hypothetical association between maternal age the
. Ž .antecedent factor and birthweight the outcome introduced in Chapter 6.
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A design fitting the paradigm of a comparative prospective study would be
indicated if, for example, the file containing records for mothers aged 20
years or less were kept separate from the file containing records for mothers
aged more than 20 years. Suppose that 100 mothers of each kind are sampled
from the respective lists, and the weights of their offspring ascertained.

The precise outcome is of course subject to chance variation, but let us
suppose that the data turn out to be perfectly consistent with those obtained

Ž .with sampling method I see Section 6.1 . From Table 6.2, the rate of low
birthweight specific to mothers aged 20 years or less is estimated to be

p 0.0511�p B A s s s0.20. 7.1Ž . Ž .p 0.251 .

Thus we would expect to have 20% of the offspring of mothers aged 20 years
or less, or 20 infants, weighing 2500 grams or less, and the remaining 80
weighing over 2500 grams.

The rate of low birthweight specific to mothers aged over 20 years is
estimated from Table 6.2 to be

p 0.07521�p B A s s s0.10. 7.2Ž .Ž . p 0.752 .

We would therefore expect to have ten of the offspring of mothers aged over
20 years weighing 2500 grams or less, and the remaining 90 weighing over
2500 grams. The expected table is therefore as shown in Table 7.1.

The value of � 2 for these data is

� 2s3.18, 7.3Ž .

so that the association fails to reach significance at the 0.05 level. What is
noteworthy is that the total sample sizes of Tables 6.1 and 7.1 are equal and
that the frequencies of the two tables are consistent. Nevertheless, the chi
squared value for the latter table is greater than that for the former. The
inference from this comparison holds in general: a prospective study with
equal sample sizes yields a more powerful chi squared test than a cross

Ž .sectional study with the same total sample size see Lehmann, 1997, p. 158 .

Table 7.1. Association between birthweight and maternal age: Prospecti©e study

Birthweight
Maternal Proportion with

Age B B Total Low Birthweight

Ž . w Ž � .xA 20 80 100 sN 0.20 sp B AA

Ž . w Ž � .xA 10 90 100 sN 0.10 sp B AA
Total 30 170 200
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The odds ratio � was introduced in Section 6.3 as a measure of associa-
tion between characteristics A and B. Because of the way the separate odds

Ž . Ž .� in 6.5 and � in 6.8 were defined, it is clear that the odds ratio mayA A
be estimated from a comparative prospective study as well as from a cross-
sectional study. The estimate is

� �p B A p B AŽ . Ž .
os . 7.4Ž .

� �p B A p B AŽ . Ž .

For the data of Table 7.1, the estimated odds ratio is

0.20�0.90
os s2.25, 7.5Ž .0.80�0.10

Ž .which is precisely equal to the value found in 6.15 for the data from the
cross-sectional study.

Formula 6.16 for o as a function of the cross-products of cell frequencies
applies to the data from comparative prospective studies as well. For the data
of Table 7.1, obviously,

20�90
os s2.25.80�10

The standard error of the odds ratio estimated from a comparative
prospective study is estimated as

$ 1 1
se o so q . 7.6Ž . Ž .( � � � �N p B A p B AŽ . Ž . N p B A p B AŽ . Ž .A A

For the data of Table 7.1, the estimated standard error is

$ 1 1
se o s2.25 qŽ . (100�0.20�0.80 100�0.10�0.90

s0.94. 7.7Ž .

An equivalent expression for the standard error in terms of the original
Ž .frequencies see Problem 7.1 is

$ 1 1 1 1
se o so q q q , 7.8Ž . Ž .(n n n n11 12 21 22

Ž .which is identical to expression 6.19 .
We found above that the chi squared test applied to data from a compara-

tive prospective study with equal sample sizes is more powerful than the chi
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squared test applied to data from a cross-sectional study. A similar phe-
nomenon holds for the precision of the estimated odds ratio. Even though
the total sample sizes in Tables 6.1 and 7.1 are equal, and even though the
association between the two characteristics is the same, the odds ratio from

$
w Ž . Ž .xthe latter table is estimated more precisely se o s0.94, from 7.7 than the

$
w Ž . Ž .xodds ratio from the former se o s1.00, from 6.18 . A prospective study

with equal sample sizes is thus superior in both power and precision to a
cross-sectional study with the same total sample size.

Using the methods described in Section 6.6, an approximate 95% confi-
dence interval for the odds ratio based on the data of Table 7.1 may be
shown to be

0.93F�F5.51, 7.9Ž .

Ž . Ž .which is narrower than and thus superior to the interval found in 6.87 for
data from the corresponding cross-sectional study.

Ž .The value of the uncorrected chi squared statistic see equation 6.3 for
the data of Table 7.1 is

2200 20�90y80�10Ž .2� s s3.92.u 100�100�30�170

Ž .It yields a phi coefficient see equation 6.2 of

3.92
�s s0.14, 7.10Ž .( 200

Ž .which is only slightly greater than the value 0.13 found in 6.4 for the data of
Table 6.1. Recall, however, that the data of Tables 6.1 and 7.1 are perfectly
consistent.

7.2. RETROSPECTIVE STUDIES

Ž .The comparative retrospective study also termed the case-control study is
characterized by the identification of the two study samples on the basis of
the presence or absence of the outcome factor and by the estimation for both
samples of the proportions possessing the antecedent factor under study.

This method might be easily applied to the study of the association
between maternal age and birthweight if, for example, the file containing

Ž .records for infants of low birthweight less than or equal to 2500 grams were
kept separate from the file containing records for infants of higher birth-
weight. Suppose that 100 infants of both kinds are sampled from the
respective lists and that the ages of their mothers are ascertained.

Let us suppose, as we did in Section 7.1, that the data turn out to be
Ž � .perfectly consistent with those already given. We need the rates p A B and
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Ž � .p A B , that is, the proportions of mothers aged 20 years or less among
infants to low and among infants of high birthweight. From Table 6.2 we find
that

p 0.0511�p A B s s s0.40, 7.11Ž . Ž .p 0.125.1

implying that 40% of the mothers of the 100 low-birthweight infants, or 40,
should be aged 20 years or less, and the remaining 60, over 20 years. We also
find that

p 0.2012�p A B s s s0.23, 7.12Ž .Ž . p 0.875.2

implying that 23% of the mothers of the 100 higher-birthweight infants, or
23, should be aged 20 years or less, and the remaining 77, over 20 years.

Standard practice is to set out the data resulting from sampling method II
as in Table 3.6, so that the two study samples appear one above the other
and the characteristic determined for each subject is located across the top.
This causes something of an anomaly when applied to data from a compara-
tive retrospective study, because the characteristic determined for each
subject is the suspected antecedent factor and not the outcome characteristic

Ž .that is hypothesized to follow from it. Miettinen 1970 stressed the necessary
shift in thinking required for analyzing data from a comparative retrospective
study: that the outcome characteristic follows the antecedent factor in a
logical sequence, but precedes it in a retrospective study.

Following, then, the format of Table 3.6, we present the expected data as
shown in Table 7.2. The value of � 2 for these data is

� 2s5.93, 7.13Ž .

which indicates that the association is significant at the 0.05 level.
The gradient in the magnitude of � 2 from the cross-sectional study

Ž 2 . Ž 2 .� s2.58 to the prospective study � s3.18 to the retrospective study
Ž 2 .� s5.93 is noteworthy because the three sets of data were all generated
according to the same set of underlying rates and because the three total

Table 7.2. Association between birthweight and maternal age: Retrospecti©e study

Maternal Age
Proportion with

Birthweight A A Total Low Age

Ž . w Ž � .xB 40 60 100 sN 0.40 sp A BB

Ž . w Ž � .xB 23 77 100 sN 0.23 sp A BB
Total 63 137 200
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sample sizes were equal. It is true in general that a retrospective study with
equal sample sizes yields a more powerful chi squared test than a cross
sectional study with the same total sample size. If, in addition, the outcome
characteristic is rarer than the antecedent factor�more precisely, if

� � � �P B y0.5 � P A y0.5 , 7.14Ž . Ž . Ž .

then the chi squared test on the data of a retrospective study with equal
sample sizes is more powerful than the chi squared test on the data of a

Ž .prospective study with equal sample sizes Lehmann, 1997, p. 158 .
For the data of Table 7.2, the value of the uncorrected chi squared

statistic is

2200 40�77y60�23Ž .2� s s6.70.u 100�100�63�137

The value of the associated phi coefficient is

6.70
�s s0.18, 7.15Ž .( 200

nearly 40% higher than the value, �s0.13, associated with the data of Table
6.1, and nearly 30% higher than the value, �s0.14, associated with the data
of Table 7.1. Now, if a given measure is to be more than a mere uninter-
pretable index, it should have the property that different investigators study-
ing the same phenomenon should emerge with at least similar estimates even
though they studied the phenomenon differently. Since the phi coefficient
obviously lacks the property of in®ariance, it should not be used as a measure
of association for data from comparative prospective or retrospective studies.

The odds ratio �, on the other hand, is invariant across the three kinds of
studies we are considering. It is defined by

� �P B A P B AŽ . Ž .
�s . 7.16Ž .

� �P B A P B AŽ . Ž .

When expressed in this form, � seems to be estimable only from cross-sec-
tional and comparative prospective studies, because only these two kinds of

Ž � . Ž � .studies provide estimates of the rates P B A and P B A . An equivalent
Ž .expression for � see Problem 7.2 , however, is

� �P A B P A BŽ . Ž .
�s , 7.17Ž .

� �P A B P A BŽ . Ž .

and, when expressed in this form, � is clearly estimable from comparative
Ž .retrospective studies, too see Cornfield, 1956 .
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The estimate is

� �p A B p A BŽ . Ž .
os . 7.18Ž .

� �p A B p A BŽ . Ž .

For the data of Table 7.2, the estimated odds ratio is

0.40�0.77
os s2.23, 7.19Ž .0.60�0.23

equal except for rounding errors to the value os2.25 found previously.
Ž .Formula 6.16 , which involves the cell frequencies, continues to apply as

well.
The standard error of the odds ratio estimated from a comparative

retrospective study is estimated as

$ 1 1
se o so q . 7.20Ž . Ž .( � � � �N p A B p A BŽ . Ž . N p A B p A BŽ . Ž .B B

Ž . Ž .Expressions 6.19 and 7.8 for the standard error as a function of the
original frequencies are also valid for the data of a comparative retrospective
study.

For the data of Table 7.2,

$ 1 1
se o s2.23 qŽ . (100�0.40�0.60 100�0.23�0.77

1 1 1 1
s2.23 q q q(40 60 23 77

s0.70. 7.21Ž .

The gradient noted above in the magnitude of � 2 is matched by a gradient in
the precision with which the odds ratio is estimated. For the cross-sectional

$ $
Ž . w Ž .x Ž .study, se o s1.00 see 6.18 ; for the comparative prospective study, se o

$
w Ž .x Ž .s0.94 see 7.7 ; and for the comparative retrospective study, se o s0.70

w Ž .xsee 7.21 .
An approximate 95% confidence interval for the odds ratio based on the

data of Table 7.2, using the methods described in Section 6.6, is

1.16F�F4.33. 7.22Ž .

Exactly the same gradient across the three kinds of studies is therefore found
for the length of the 95% confidence interval for the odds ratio. The length

w Ž .xof the interval for the cross-sectional study see 6.87 is largest; that for the
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w Ž .x wprospective study see 7.9 , smaller; and that for the retrospective study see
Ž .x7.22 , smallest of all.

According to the criteria of precision, power, and length of confidence
Ž .interval, therefore, when the total sample sizes are equal and 7.14 holds, a

comparative retrospective study with equal sample sizes is superior to both a
cross-sectional study and a comparative prospective study with equal sample
sizes.

7.3. ESTIMATING ATTRIBUTABLE RISK FROM
RETROSPECTIVE STUDIES

Ž .Levin’s 1953 attributable risk, R , was presented in Section 6.8 as theA
fraction of all occurrences of a condition due to exposure to a specified risk

Ž .factor. As motivated there, and as defined in 6.93 , R appears to beA
estimable only from a cross-sectional study, which simultaneously permits the

Ž .estimation of P A , the proportion of the population exposed to the risk
Ž .factor, and of R, the relative risk. As pointed out by Levin 1953 , Walter

Ž . Ž .1975, 1976 , and Taylor 1977 , however, R can be approximated from aA
Ž .retrospective study under certain assumptions. If P B , the rate of occur-

rence of the outcome characteristic in the population, is low, then the odds
Ž .ratio � approximates R. If, in addition, the control group B in the study is

Ž � .a random sample of the corresponding group in the population, then P A B
Ž .approximates P A .

Under these assumptions,

� �p A B yp A BŽ . Ž .
r s 7.23Ž .Ã �1yp A BŽ .

Žis a good estimate of the population attributable risk Levin and Bertell,
. Ž .1978 . See Problem 7.5. For the hypothetical data of Table 7.2, the esti-

mated risk for low birthweight attributable to low maternal age is

0.40y0.23
r s s0.22. 7.24Ž .Ã 1y0.23

Ž . Ž .For the corresponding data from a cross-sectional study Table 6.2 , p A s
Ž .0.25 and the relative risk is rs2.0; thus from 6.93 ,

0.25 2.0y1Ž .
r s s0.20, 7.25Ž .A 1q0.25 2.0y1Ž .

Ž .which is reasonably close to the estimate in 7.24 from a retrospective study.
In either case, the hypothetical data suggest that the rate of low birthweight
could be reduced about a fifth if pregnancy among women aged 20 years or
less could be avoided.
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Ž .Walter 1975 showed that when the attributable risk is estimated from a
Ž .retrospective study using formula 7.23 , the estimated standard error of the

natural logarithm of its complement, 1y r , is given byÃ

$ �� p A Bp A B Ž .Ž .
se ln 1y r s q , 7.26� 4 Ž .Ž .Ã ) � �N p A BŽ . N p A BŽ .B B

where N is the number of cases and N the number of controls. ThisB B
Ž .formula is the same as one would use upon recognizing that 7.23 is formally

identical to Sheps’ relative difference�applied, however, to the retrospective
Ž � . Ž � .probabilities p A B and p A B �and then applying the result of Problem

Ž .2.13. See Problem 7.6. The formula is also identical to 6.114 .
For the data of Table 7.2,

ln 1y r s ln 1y0.22 sy0.25 7.27Ž . Ž .Ž .Ã

and

$ 0.40 0.23
se ln 1y r s q s0.10. 7.28� 4 Ž .Ž .˜ (A 100�0.60 100�0.77

Ž .An approximate 95% confidence interval for ln 1yR isA

y0.25y1.96�0.10F ln 1yR Fy0.25q1.96�0.10, 7.29Ž . Ž .A

or

y0.45F ln 1yR Fy0.05. 7.30Ž . Ž .A

By taking antilogarithms of these limits, and then complements from unity,
we obtain an approximate 95% confidence interval for the attributable risk
itself:

0.05FR F0.36. 7.31Ž .A

Ž � . Ž .Problem 7.5 shows that only the approximation P A B fP A is re-
Ž .quired to show that r is a good estimate of R when P B is small, but notÃ A

the other approximate equality, �fR, which is also true under the rare-
disease assumption. The latter approximate equality can be used in expres-

Ž .sion 6.97 for the attributable risk to provide an equivalent estimate of R inA
retrospective studies:

1
�r s 1y p A B . 7.32Ž . Ž .Ã ž /o
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For the data in Table 7.2,

1
r s 1y �0.40s0.22, 7.33Ž .Ã ž /2.23

Ž .which is identical to 7.24 , apart from roundoff. Problem 7.7 demonstrates
Ž . Ž .that 7.23 is identical to 7.32 in general.

7.4. THE RETROSPECTIVE APPROACH VERSUS THE
PROSPECTIVE APPROACH

If a scientist accepts the argument of Section 6.7 that the odds ratio and thus
the retrospective study are inherently valid, he or she must still bear in mind
that retrospective studies are subject to more sources of error than prospec-

Ž .tive studies. Hammond 1958 , for example, has cited the bias that may arise
because historical data are obtained only after subjects become ill, and
frequently only after they are diagnosed. A patient’s knowledge that he has a
certain disease might easily affect his recollection, intentionally or uninten-
tionally, of which factors preceded his illness.

Another difficulty pointed out by Hammond is in finding an adequate
control series for the sample of patients: one must, after all, find groups of
subjects who are like the cases in all respects save for having the disease.

Ž .Mantel and Haenszel 1959 cite these and other deficiencies in the retro-
spective approach. When, for example, the subjects having the disease are
found in hospitals or clinics, inferences from retrospective studies may be
subject to the kind of bias illustrated in Section 1.4. Specifically, the an-
tecedent factors may appear to be associated with the disease, but in reality

Ž .be more associated with admission to a treatment facility. Feinstein 1973
describes the closely related bias due to differential surveillance of individu-
als with and individuals without the suspected risk factor.

This does not imply that only the retrospective approach, and not the
prospective, is open to bias. Similar biases have been shown to operate in

Žprospective studies as well Mainland and Herrera, 1956; Yerushalmy and
Palmer, 1959; Mantel and Haenszel, 1959; Greenland, 1977; Joffres et al.,

.1990 . For example, the bias possible in those retrospective studies that
require hospitalized patients to be evaluated is matched by the potential bias
in those prospective studies that require volunteers to be followed up. Errors
of diagnosis and insufficiently frequent screening are also problems associ-

Ž .ated with prospective studies Schlesselman, 1977 .
What does seem to be true, however, is that a greater degree of ingenuity

is needed for the proper design of a retrospective study than for the design of
Ž .a prospective study. Thus Levin 1954 controlled for the first bias cited

above�that due to a patient’s report possibly being influenced by his
knowledge that he has the disease being studied�by questioning all subjects
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prior to the final diagnosis. By this means, the possible bias due to the
examiner’s applying different standards to the responses of cases and controls

Ž .is also controlled. Rimmer and Chambers 1969 suggested another means of
control. They found greater accuracy in the recollections of relatives than in
those of the patients themselves.

Improper identification or sampling of a control group can cause such
selection biases. Analytic methods to adjust for selection bias have been

Žproposed Kleinbaum, Morgenstern, and Kupper, 1981; Weinberg and
.Wacholder, 1990; Maclure and Hankinson, 1990; Lin and Paik, 2001 .

As a means of reducing the bias possible in contrasting cases with only one
Ž .control series, Doll and Hill 1952 studied two control groups. One was a

sample of hospitalized patients with other diseases than the one studied, and
Ž .the second was a sample from the community. Matching see Chapter 13 is

another device for reducing bias. The validity of the retrospective approach
can only increase as investigators learn which kinds of information can be

Ž .accurately recalled by a subject and which cannot. For example, Gray 1955
Ž .and Klemetti and Saxen 1967 have shown that the occurrence or nonoccur-´

rence of a past event can be recalled accurately, but not the precise time
when the event occurred.

Ž .Jick and Vessey 1978 have reviewed the major sources of error in those
retrospective studies in particular that seek to elucidate the role of pre-
scribed drug use in the development of illness, and they indicate methods for
their control. The January 1979 issue of the Journal of Chronic Diseases
Ž .Ibrahim, 1979 is devoted to the art of designing retrospective studies; the

Ž .contribution by Sackett 1979 is especially useful for its cataloguing of
several sources of bias and for its prescriptions for their control or measure-
ment.

The reduction of bias is discussed again in Chapter 17. To the extent that
bias can be controlled, the following points made by Mantel and Haenszel
argue strongly for the retrospective approach:

Among the desirable attributes of the retrospective study is the ability to yield
results from presently collectible data . . . . The retrospective approach is also
adapted to the limited resources of an individual investigator . . . . For especially
rare diseases a retrospective study may be the only feasible approach . . . . In the
absence of important biases in the study setting, the retrospective method could be
regarded, according to sound statistical theory, as the study method of choice
w x1959, p. 720 .

PROBLEMS

Ž . Ž .7.1. Prove the equality of expressions 7.6 and 7.8 for the standard error of
w Ž � . Ž � . Ž � .the odds ratio. Hint. p B A sn rN ; p B A sn rN ; p B A s11 A 12 A
Ž � .n rN ; and p B A sn rN . Also, N sn qn and N sn q21 A 22 A A 11 12 A 21

xn .22
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Ž . Ž .7.2. Prove the equality of expressions 7.16 and 7.17 for the odds ratio.
wHint. Use the definitions of Section 1.1 to replace all conditional

Ž . Ž .probabilities in 7.16 by joint probabilities. The probabilities P A and
Ž . Ž . Ž .P A are seen to cancel out. Multiply and divide by P B and by P B ,

Ž . xand use the definition of conditional probabilities to arrive at 7.17 .

w Ž .x7.3. The phi coefficient see 6.2 is a valid measure of association only for
Ž .method I naturalistic or cross-sectional sampling. Phi coefficients ap-

Ž .plied to data from method II prospective or retrospective studies are
not at all comparable to those applied to data from method I studies.
Even more is true. When two studies are both conducted according to
either the prospective or retrospective approaches, but with proportion-
ately different allocations of the total sample, the phi coefficient for one
will not in general be comparable to that for the other.
( )a In a retrospective study of factors associated with cancer of the oral

Ž .cavity, Wynder et al. 1958 studied 34 women with cancer of the
oral cavity and 214 women, matched by age, with nonmalignant
conditions. Twenty-four percent of the cancer cases, as opposed to
66% of the controls, were nonsmokers. Set up the resulting fourfold
table, and calculate uncorrected chi squared and the associated phi
coefficient.

( )b Suppose that Wynder et al. had studied, instead, 214 cancer cases
and 34 controls. Assuming the same proportions of nonsmokers as
above, set up the expected fourfold table, and calculate uncorrected
chi squared and the associated phi. How do the phi coefficients
compare?

( )c Suppose, now, that 124 of both kinds of women had been studied,
and assume the same proportions of nonsmokers as above. Set up
the resulting expected fourfold table and calculate uncorrected chi
squared and the associated phi. How does this phi coefficient

Ž . Ž .compare with those in a and b ? What is the percentage differ-
Ž . Ž .ence between the phi coefficient of a and that of c ? What would

you conclude about the comparability of phi coefficients in retro-
spective studies with varying allocations of a total sample?

7.4. Three criteria were suggested in this chapter for comparing the cross-
sectional, prospective, and retrospective approaches. Another criterion
is the total sample size necessary for the standard error of the odds ratio
to assume some specified value. The data for the following questions are
those employed throughout Chapters 6 and 7. Suppose that the correct
values of os2.25 and of all the necessary proportions are known.
( )a The approximate standard error of o with cross-sectional sampling

Ž .is given by 6.17 . What value of n is needed to give a standard. .
error of 0.50?
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( )b The approximate standard error of o with prospective sampling is
Ž .given by 7.6 . Let N qN , the total sample size, be denoted N ,A A P

and suppose for simplicity that N sN sN r2. What value of NA A P P
is needed to give a standard error of 0.50? What is the percentage
reduction from n to N ?. . P

( )c The approximate standard error of o with retrospective sampling is
Ž .given by 7.20 . Let N qN , the total sample size, be denoted N ,B B R

and suppose for simplicity that N sN sN r2. What value of NB B R R
is needed to give a standard error of 0.50? What is the percentage
reduction from n to N ? From N to N ?. . R P R

( ) Ž . Ž .d Is the reduction in b of much practical e.g., monetary impor-
Ž .tance? How about the reductions in c ?

Ž .7.5. Starting from expression 6.97 , show that another formula for R isA

�P A B yP AŽ . Ž .
R s .A 1yP AŽ .

Ž .Deduce that 7.23 is an estimator in retrospective sampling that approx-
Ž � . Ž .imates R , assuming P A B fP A , which would obtain with smallA

Ž . wP B . Hint. Use Bayes’ theorem to write all probabilities in retrospec-
Ž .tive form, and put all terms over a common denominator P A s

Ž . x1yP A .

Ž . Ž .7.6. Show that 7.26 results when 7.23 is recognized as Sheps’ relative
Ž � . Ž � .difference applied to the retrospective probabilities p A B and p A B ,

Ž � . Ž � .rather than the prospective probabilities p B A and p B A as origi-
Ž . wnally proposed by Sheps 1958, 1961 . Hint. Write 1 y r sÃ

Ž � . Ž � . Ž .p A B rp A B , and notice that in retrospective sampling, ln 1y r isÃ
the difference of two independent random variables. Then apply the

xresult of Problem 2.13.

Ž . Ž .7.7. Show that 7.23 and 7.32 are identical.

Ž .7.8. An article in the February 8, 2002 issue of the New York Times p. A18
excitedly discusses a new blood test currently being developed for
detecting ovarian cancer. Some initial results regarding the sensitivity
and specificity of this test have been published. In a preliminary study,
50 women known to have ovarian cancer and 66 women known to be
free of ovarian cancer were tested. Of the 50 women with ovarian
cancer, all 50 tested positive. Of the 66 women without ovarian cancer, 3
tested positive and 63 tested negative.
( )a Assume the prevalence of ovarian cancer is 40 per 100,000 women.

Ž .What then is the positive predictive value PPV of this test?
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( )b Find an approximate two-sided 95% confidence interval for the
w Ž . ŽPPV. Hint. Write the PPV odds as PPVr 1yPPV sR � prevalence
. Ž � . Ž � .odds , where R is the rate ratio RsP q D rP q no D , and the

prevalence odds, 4r9,996, is a given constant. Take logs, and note
that the log PPV odds is the sum of ln R plus a constant. Find the
standard error for the estimate of ln R, and use that to find an
approximate 95% confidence interval for the log PPV odds. Back-
transform the endpoints of this interval to find an approximate 95%
confidence interval for PPV.
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C H A P T E R 8

Randomized Controlled Trials

Sampling method III is exemplified by the comparative clinical trial in which
treatments are assigned to subjects at random. The philosophy of the

Ž .controlled clinical trial is discussed by Hill 1962, Chapters 1�3 , and solu-
tions to some practical problems arising in the execution of a clinical trial are

Ž .offered by Mainland 1960 and in an entire issue of Clinical Pharmacology
Ž .and Therapeutics Roth and Gordon, 1979 . Ethical issues are discussed by

Ž . Ž . Ž .Fox 1959 , Meier 1975 , and Royall 1991 . Considerations needed in
deciding how many patients to study and some unfortunate consequences

Ž .of studying too few are discussed by Friedman et al. 1978 .
In the twenty years since publication of the second edition of this book,

there has been an explosion in the literature both of the methods and of the
ethics of controlled clinical trials. An entire journal dedicated to the field
Ž .Controlled Clinical Trials had its inaugural publication in 1981, as the
official journal of the Society for Clinical Trials. A theme issue of the British
Medical Journal recently celebrated the fiftieth anniversary of its publication
of a randomized controlled trial of streptomycin in pulmonary tuberculosis,
arguably the first such publication of a trial to describe explicitly the method

Ž .of randomization Smith, 1998 . The volume also contains several articles on
the deficiencies of randomized trials, and the ‘‘huge scope for doing better’’
Ž .Smith, 1998 . Of several textbooks on the design and conduct of clinical

Ž . Ž .trials, four of note are in their current editions by Pocock 1984 , Piantadosi
Ž . Ž .1997 , Friedman, Furberg, and DeMets 1998 , and Everitt and Pickles
Ž . Ž .2000 . Levine 1999 gives an excellent review of current thinking about
ethical issues in randomized clinical trials.

A distinctive feature of clinical trials is the opportunity to terminate the
study prematurely if one of the groups being compared is found to be
experiencing an alarmingly high rate of serious adverse reactions or if the

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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therapeutic difference between the treatments is so overwhelming that to
withhold the superior treatment from all future eligible patients is deemed

Žunethical. The University Group Diabetes Program Report of the Commit-
tee for the Assessment of Biometric Aspects of Controlled Trials of Hypo-

.glycemic Agents, 1975 provides a noteworthy example of the former reason
Žto terminate a trial, and the Anturane Trial Anturane Reinfarction Trial

.Research Group, 1978 provides a noteworthy example of the latter. Meier
Ž .1979 suggests a framework for deciding whether to continue or to terminate
a trial. The development of sequential and group sequential methods for
interim monitoring and early stopping of clinical trials has also been remark-

Ž .able. The textbook by Friedman, Furberg, and DeMets 1998 contains useful
guidance in these areas. An early monograph on the application of sequential

Ž .methods to clinical trials is Armitage 1975 , and the monograph by
Ž .Siegmund 1985 gives the advanced mathematical theory underpinning the

Ž .field. Modern treatments are given by Whitehead 1997 and Jennison and
Ž .Turnbull 1999 .

Ž . Ž .Friedman and DeMets 1981 and Ellenberg, Fleming, and DeMets 2002
discuss the role of monitoring committees, variously called Data and Safety

Ž .Monitoring Committees DSMCs , Performance and Safety Monitoring
Ž . Ž .Boards PSMBs , or variations on these names. See also Levin 2003 . As the

names suggest, a PSMB has responsibility as an independent, deliberative
body to review data and consider issues related to the safety of the partici-
pants and the performance and integrity of the trial. These issues include:
accumulating data concerning serious adverse events; interim analyses show-
ing evidence strongly favoring efficacy of one treatment arm relative to
another earlier in the trial, or the lack of any efficacy differences later in the
trial; late-breaking developments from other studies suggesting an alteration
of the clinical equipoise under which the trial began; poor subject accrual
and other performance matters directly affecting statistical power andror the
ability of the study to achieve its primary goals; protocol violations or
proposals to alter the protocol after the trial is underway. The PSMB must
weigh these and other matters, and, ultimately, advise on whether a trial
should be allowed to continue or stopped. Current guidelines by federal
funding and regulatory agencies call for increasing deployment of such
independent monitoring committees whenever there are potential risks to the
participants above a minimal level.

The scope of randomized controlled trials has become so broad that we
must limit consideration in this chapter just to salient statistical points
related to the comparison of two treatments. Section 8.1 describes the
analysis of data from a simple comparative trial, and Section 8.2 discusses the
crossover design�both for the case where the outcome is a yes-no variable,
such as recovery�no-recovery. Section 8.3 discusses some issues that affect
the power of the primary statistical analysis of a randomized trial. One is the
intent-to-treat principle. A second is the design of a trial for goals other than
the classical test of the null hypothesis of no treatment effect. Some proposed
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Table 8.1. Hypothetical data from a comparati©e clinical trial

Number of Patients Proportion Improved

Ž . Ž .Treatment 1 80 sn 0.60 sp1 1
Ž . Ž .Treatment 2 70 sn 0.80 sp2 2
Ž . Ž .Overall 150 sn 0.69 sp

alternatives to simple randomization in comparative trials are discussed in
Section 8.4.

8.1. THE SIMPLE COMPARATIVE TRIAL

Suppose that the data of Table 8.1 resulted from a trial in which one
treatment was applied to a sample of n s80 subjects randomly selected1
from a total of ns150 and the other treatment was applied to the remaining
n s70 subjects.2

The statistical significance of the difference between the two improvement
Ž .rates is tested using the statistic given in 3.5 . For the data of Table 8.1, the

value is
1 1 1� �0.80y0.60 y qŽ .2 80 70zs s2.47, 8.1Ž .
1 10.69�0.31 q' Ž .80 70

indicating that the difference is significant at the 0.05 level.
The simple difference between the two improvement rates,

dsp yp , 8.2Ž .2 1

is the measure most frequently used to describe the differential effectiveness
of the second treatment over the first. The standard error of d is estimated
by

$ p q p q1 1 2 2se d s q . 8.3Ž . Ž .( n n1 2

For the data of Table 8.1, the simple difference is

ds0.80y0.60s0.20, 8.4Ž .

implying that among every 100 patients given the first treatment an addi-
tional 20 would have been expected to improve had they been given the
second treatment. The estimated standard error of d is

$ 0.60�0.40 0.80�0.20
se d s q s0.07. 8.5Ž . Ž .( 80 70



RANDOMIZED CONTROLLED TRIALS162

An approximate 95% confidence interval for the difference between the
two underlying rates of improvement is

0.20y1.96�0.07FP yP F0.20q1.96�0.07, 8.6Ž .2 1

or

0.06FP yP F0.34. 8.7Ž .2 1

Occasionally one can assume that the two treatments are such that any
patient who responds to the first treatment is also expected to respond to the
second. This assumption may be tenable if the first treatment is an inert
placebo, or if the first treatment is an active drug and the second is that drug
plus another compound or that drug at a greater dosage level. A consequence
of the assumption is that any greater effectiveness of the second treatment

Žcan only be manifested on subjects who were refractory to the first see
.Sheps, 1958, for further examples and discussion .

Let P denote the proportion improving in the population of patients1
given the first treatment and P the proportion improving in the population2
given the second. Let f denote the proportion of patients, among those
failing to respond to the first treatment, who would be expected to respond
to the second. It is then assumed that

P sP q f 1yP , 8.8Ž . Ž .2 1 1

that is, the improvement rate under the second treatment is equal to that
under the first plus an added improvement rate which applies only to
patients who fail to improve under the first treatment. The value of f is
clearly

P yP2 1fs , 8.9Ž .1yP1

which was introduced in Section 6.7 as Sheps’ relati®e difference.
Because the sample proportions p and p are estimates of the corre-1 2

sponding population proportions, an estimate of the relative difference is

p yp2 1p s . 8.10Ž .e 1yp1

Ž .Its standard error see Sheps, 1959 is approximately

$ p q p q1 22 2 1 1se p s q 1yp . 8.11Ž . Ž . Ž .e e(q n n1 2 1

Ž .Walter 1975 showed, however, that more accurate inferences about f could
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Ž . Ž .be made by taking ln 1yp as normally distributed with a mean of ln 1y fe
w Ž .xand an estimated standard error of see also 6.114

$ p p2 1se ln 1yp s q . 8.12Ž . Ž .e (n q n q2 2 1 1

For the data of Table 8.1, the relative difference is

0.80y0.60
p s s0.50, 8.13Ž .e 1y0.60

implying that, of every 100 patients who fail to improve under the first
treatment, 50 would be expected to improve under the second. The value of
Ž .ln 1yp is y0.69, and an estimate of its standard error ise

$ 0.80 0.60
se ln 1yp s q s0.28. 8.14Ž . Ž .(e 70�0.20 80�0.40

Ž .An approximate 95% confidence interval for ln 1y f is

y0.69y1.96�0.28F ln 1y f Fy0.69q1.96�0.28,Ž .

or

y1.24F ln 1y f Fy0.14. 8.15Ž . Ž .

By taking antilogarithms of the limits of this interval and then their comple-
ments from unity, one obtains an approximate 95% confidence interval for
the relative difference itself:

0.13F fF0.71. 8.16Ž .

A perspective different from the usual one is required when the aim of the
study is to demonstrate that two treatments are therapeutically equivalent or,
at least, that they differ by an amount that is clinically unimportant. Exam-
ples of such studies and a method of analysis are given by Dunnett and Gent
Ž .1977 , and considered further in Section 8.5.

8.2. THE TWO-PERIOD CROSSOVER DESIGN

Chapter 13 presents means for analyzing data from, inter alia, a controlled
trial in which patients are first matched on characteristics associated with the
outcome and then randomly assigned the treatments. An extreme example of
matching is when, as in a crosso®er design, each patient serves as his own
control, that is, when each patient receives each treatment.
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Table 8.2. Layout of data from a two-period crosso©er design

Order AB Order BA

Response to B Response to BResponse Response
to A Good Poor to A Good Poor

Good n n Good m m11 12 11 12
Poor n n Poor m m21 22 21 22

Half of the sample of patients is randomly selected to be given the two
treatments in one order, and the other half to be given the treatments in the
reverse order. A number of factors must be guarded against in analyzing the
data from such studies, however.

Ž .Meier, Free, and Jackson 1958 have shown that the order in which the
treatments are given may affect the response. The following test, due to Gart
Ž .1969 , is valid when order effects are present and when the outcome is
measured as good or poor.

Let the data be arrayed as in Table 8.2, where, for example, n denotes12
the number of patients, among those receiving the treatments in the order
AB, who had a good response to treatment A but a poor response to
treatment B. For the sample of patients receiving the two treatments in the

Ž .order AB, those with a good response to both treatments n in number11
Ž .and those with a poor response to both n in number provide no informa-22

tion about a difference between the two treatments and may be ignored in
the analysis. Similarly, the m qm patients with similar responses to the11 22
two treatments, among those receiving them in the order BA, are uninforma-
tive about a difference between A and B and may also be ignored.

The resulting data should be arrayed as in Table 8.3, where nsn qn12 21
and msm qm . If treatments A and B are equally effective, the two12 21
proportions p sn rn and p sm rm should be close; if A and B are1 12 2 21
different, p and p should be different. The hypothesis of equal effective-1 2
ness of the two treatments may be tested by comparing p with p in the1 2

Ž .standard manner see Problem 8.2 .

Table 8.3. Layout of data from Table 8.2 to test hypothesis
of equal treatment effecti©eness

Outcome

Order of First Treatment Second Treatment
Treatment Better Better Total

AB n n n12 21
BA m m m21 12

Total n qm n qm nqm12 21 21 21
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A possibility to be guarded against in crossover studies is that a treatment’s
effectiveness is long-lasting and hence may affect the response to the treat-
ment given after it. When this so-called carry-o®er effect operates, and when it

Ž .is unequal for the two treatments, Grizzle 1965 has shown that for compar-
ing their effectiveness, only the data from the first period may be used.
Specifically, the responses by the subjects given one of the treatments first
must be compared with the responses by the subjects given the other
treatment first. The responses to the treatments given second shed light on
the carry-over effects, but might just as well not have been determined if the
simple effectiveness of the treatments is all that is of interest.

Differential carry-over effects may be eliminated by interposing a long
dry-out period between the termination of the treatment given first and the
beginning of the treatment given second. The longer the dry-out period,
however, the greater the chances that patients drop out of the trial.

Crossover designs are safe when the treatments are short-acting. When
the possibility exists that they are long-acting, the crossover design is to be
avoided.

8.3. FACTORS AFFECTING POWER IN A RANDOMIZED
CONTROLLED TRIAL

8.3.1. The Intent-to-Treat Principle

Randomized controlled trials often encounter a variety of serious problems
that can compromise their validity andror the statistical power of the
hypothesis test to be conducted at the end of the trial. These problems
should be anticipated in the planning stages of the trial. Patients may need to
be removed from study therapy by their physicians before the end of the trial,
either temporarily or permanently. Subjects may not be fully adherent in
taking study medications. They may try to break the blind, share their
medications with others, or take unprescribed supplements. The assigned
treatment may not be delivered in a timely manner, or as intended, as when

Ž .an acute treatment e.g., for stroke has a narrow window of application.
Crossovers occur when a patient assigned to one treatment arm in fact
receives all or part of the intervention from another arm. For example, a
patient assigned to a surgical intervention dies before the surgery can be
performed; or, vice versa, a patient assigned to a medical intervention is
given surgery before the end of follow-up due to worsening symptoms. The
list goes on.

In all these cases, there is an understandable temptation to ‘‘adjust’’ for
such problems, for example, by analyzing the data according to the actual
treatments received by the subjects instead of according to the groups into
which they were randomized, or by excluding nonadherers from the analysis
altogether. Such practices have been shown to be seriously biased, so much
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Žso that the main advantages of the randomized design balance and avoid-
.ance of confounding bias , indeed, the entire validity of the trial, can be lost

Ž .completely. See, for example, Peduzzi et al. 1991 in the context of crossovers
in randomized clinical trials for treatment of ischemic heart disease compar-
ing medical with surgical treatment. The only analytic technique known to
preserve a valid Type I error rate in the presence of these deficiencies, which
thereby preserves the advantages of the randomized design, follows the
so-called intent-to-treat principle, also called the intention-to-treat principle
Ž .Peto et al., 1976 . All other attempts to redress what happened after
randomization are potentially biased, some more seriously than others
Ž .Peduzzi et al., 1991 .

Ž .The intent-to-treat principle has two components: i all patients, once
Ž .randomized, are analyzed; ii patients are analyzed as members of the group

to which they were initially randomized, irrespective of any nonadherence,
Ž .treatment crossovers, behavior, or anything else. Component i rules out

Ž .so-called completers-only and compliers-only analyses. Component ii rules
out so-called as-treated analyses. The intent-to-treat principle calls for as-
randomized analysis.

Another way to interpret the as-randomized analysis is that it compares a
policy of treatment with one therapy versus another, rather than actual
treatment with one therapy versus another. Whether this is merely a seman-
tic distinction or an important substantive distinction depends on context.
From a public health or outcome effectiveness perspective, it may be exactly
the policy of treatment that is important, in the real world where therapies
are not given or received under ideal laboratory conditions. How many
people will actually be cured if we follow the policy of prescribing A versus
B? From an etiologic or purely clinical perspective, the intent-to-treat analy-
sis may be of less interest. If the treatment regimen were followed perfectly,
how well could we do? Whatever one’s perspective, it may suffice to point
out that most, if not all, modern, large-scale, randomized clinical trials follow
the intent-to-treat principle for their primary analysis.

ŽSo the statistical arguments for preserving the validity of a randomized
.trial’s test of the null hypothesis strongly favor analysis under the intent-to-

treat principle. That said, it should also be clear that there is an attendant
inflation of Type II error and dilution of statistical power associated with the
intent-to-treat analysis when crossovers and nonadherence exist. Therefore,
the best procedure when conducting trials is to make every effort to minimize
the rate of crossovers and nonadherence. When they are few in number,
analysis by intent to treat has only a minimal effect on power, and is well
worth that cost in exchange for validity of the primary test of the null
hypothesis. This was the context originally envisaged by Peto and colleagues,
to accommodate a relatively small number of patients who could not tolerate
the side effects of active chemotherapy. On the other hand, when crossover
or nonadherence is massive, failure to reject the null hypothesis on the basis
of an intent-to-treat analysis should not be misinterpreted as evidence of no
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effect, because the power of the test can be severely impaired. But as-treated
analyses may be fraught with bias, so the best that might be said of such a
disastrous situation is that the randomized trial failed to meet its objectives
of clarifying the science and altering clinical equipoise. See Weinstein and

Ž .Levin 1989 for an example and discussion of the problems of large-scale
crossover in the context of a coronary artery surgery trial.

To illustrate the effect of crossover on statistical power, consider the
following simple example. A two-arm randomized trial is being planned to
compare an experimental drug with a standard drug. The expected success
rate with the standard treatment is P s0.60, and the investigators deem it1
important to declare as statistically significant an improvement in the success

Ž .rate with the experimental treatment to P s0.80 the design alternati®e .2
They choose the level of significance at 0.05, two-tailed, and require 80%
power at the design alternative. Consulting Table A.4, equal sample sizes of
ns91 per group are required.

Suppose now that the experimental drug has unpleasant side effects, such
that 25% of participants on that therapy cross over to standard treatment,
and assume none on the standard drug cross over to the experimental
treatment. What is the effective power of the test of the null hypothesis of no
treatment difference under the intent-to-treat principle, assuming the design

Žalternative is true? Or, more precisely, what is the effective power of the test
of the null hypothesis of no difference between the policy, or intention, to

.treat with one drug versus the other? If those who do not cross over
experience the hypothesized success rate P of the experimental treatment,2
while those who do cross over experience the expected success rate P of the1
standard treatment, then the group initially randomized to the experimental
drug can be expected to have a success rate of 0.75�0.80q0.25�0.60s
0.75sP� . From Table A4 we find the power of the test has fallen to2
approximately 50% . In order to recoup 80% power, ns165 subjects per
group would have to be enrolled, an increase in sample size of over 80%.

An actual trial can have crossovers in both directions, further reducing
Ž .power. We note from expression 4.19 that because P yP appears as a1 2

squared term in the denominator of the sample size formula, the impact of
the dilution of effect by crossover is much greater than might be intuited, and
is generally inadequately counteracted by increasing the original sample size
by the fraction of crossovers anticipated. Note also that the assumption made

Žin the illustration that those crossing over to standard treatment would have
success rate P while those not crossing over would remain with success rate1

.P is speculative and would require substantiation in practice. The sub-2
groups of crossovers and noncrossovers are not randomized, and can exhibit
selection biases of unknown magnitude and direction.

For example, in the Coronary Artery Surgery Study discussed in Weinstein
Ž .and Levin 1989 , patients were randomized to medical therapy or coronary

Ž .artery bypass graft CABG surgery. If a patient’s symptoms of coronary
artery disease worsened, the treating physician was at liberty to recommend
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surgery. Of the patients initially randomized to medical therapy, about 25%
Ž .had received CABG surgery i.e., were crossovers after five years of follow-

up; crossover was as high as 38% among patients with triple vessel disease.
Of those randomized to the surgery group 11% did not receive the surgery.
One might think that the patients assigned to medical therapy who crossed
over to surgery would have a higher mortality rate than those originally
assigned to surgery, due to their selection as patients with worsening symp-
toms. In fact, the medical-to-surgical crossover subgroup had a substantially
lower mortality rate than those initially assigned to surgery. This might have
been due to a sur®i®or effect, that is, candidates for late operation years after
entering the study who are still well enough to undergo operation may have
lower mortality than others. Whatever the clinical explanation, such post hoc
rationalizations for the direction and magnitude of bias are difficult to
predict or defend. The intent-to-treat analysis produced a valid test of the

Ž .null hypothesis in terms of Type I error unaffected by any subgroup biases.
In terms of statistical power, however, the effect of the crossovers was
startling.

By one calculation, the intent-to-treat analysis had a power of only 33% to
detect a true mortality difference equal to that observed in the trial. Five-year
mortality was estimated at 8.0% for the medically assigned group versus 5.5%
for the surgically assigned group. The difference of 2.5 percentage points is
of considerable public health significance, amounting to a saving of about
25,000 lives per one million patients at risk with this common disease
Ž .Weinstein and Levin, 1989 . To make matters worse, the published finding
of no significant difference was misconstrued in the popular media as
evidence supporting a policy of deferred surgery. For further discussion of

Ž .this particular clinical trial, see Weinstein and Levin 1985 , Fisher et al.
Ž . Ž . Ž .1989 , Weinstein and Levin 1990 , and Kannel 1990 .

The lesson to be learned from this and cases like it is that the intent-to-treat
principle should be reported as the primary analysis, because of its general
validity, but the results should always be accompanied by careful interpreta-
tion, especially in the presence of nonnegligible crossover or other non-
adherence. Well in advance of the trial, investigators need to plan to enroll
sufficiently many participants to maintain good statistical power in the face of
likely crossovers, which will be substantially more than the expected number
of nonadherers. Interim analyses are useful during the trial to assess the
magnitude of the problem and to make appropriate sample size corrections.

Ž .On this point, see also Bigger et al. 1998 .

8.3.2. Noninferiority and Equivalence Trials

A noninferiority trial is designed to show that a new treatment is not
substantially worse than a standard treatment. A definition is required for
‘‘not substantially worse,’’ which we will call the limit of indifference. For
example, the success rate for standard treatment might be 75%, but because



8.3 FACTORS AFFECTING POWER IN A RANDOMIZED CONTROLLED TRIAL 169

of unpleasant side effects, an alternative medication without those side
effects would have better adherence, and therefore might be acceptable for
general use even if its efficacy were slightly less than 75%. If a success rate of
70% or more is deemed ‘‘not substantially worse’’ than the standard, but
below 70% unacceptable, the limit of indifference would be 5 percentage
points. The limit of indifference could also be expressed in terms of a rate
ratio or an odds ratio.

An equi®alence trial is designed to show that a new treatment is neither
substantially worse nor substantially better than another treatment. Again, a
definition is required, and in this case, a zone of indifference is identified such

Ž .that two treatments with success rate differences or ratios falling within it
are regarded as effectively equivalent. The zone of indifference has a lower
and an upper limit of indifference. In the above example, the zone of
indifference might be taken as plus or minus 5 percentage points, to reflect a
clinical judgment that if the new treatment had a true success rate less than
70%, it would be considered inferior to the standard treatment, and if more
than 80%, it would be considered superior, assuming the standard had a true
success rate of 75%. Otherwise the new treatment would be considered
clinically equivalent to the standard.

For a noninferiority trial, the sample size required to achieve a given
power under the alternative hypothesis when P sP is not necessarily larger1 0
than the sample size for the corresponding one-tailed test of the null
hypothesis of no difference which gives the same power when the difference
between the success rates is at the limit of indifference. This is contrary to a
popular myth that noninferiority trials, like equivalence trials, require larger
sample sizes than conventional tests. An example is given below. The biggest
factor causing a large sample size is the choice of an indifference zone that is
too narrow. For an equivalence trial, the sample size required to achieve a
given power under the alternative hypothesis when P sP tends to be1 0
somewhat larger at typical error rates than the sample size for the corre-
sponding two-tailed test of the null hypothesis of no difference which gives
the same power when the difference between the success rates is at the limit
of indifference. The increase in sample size, however, is not as great as is
sometimes assumed, and depends on the Type I and II error rates. There-
fore, these designs deserve full and careful consideration. In particular, in
situations where a placebo-controlled trial would be deemed unethical be-
cause an active-control therapy is available, the hypotheses tested by a
noninferiority or equivalence trial would become the relevant ones to con-
sider.

A novel feature of the noninferiority or equivalence trial is the transposi-
tion of what might be expected to be the null and alternative hypothses. For
a two-arm, randomized noninferiority trial, the null hypothesis is that the
new treatment is inferior to the standard, and one seeks to reject that
hypothesis in favor of the alternative that the new treatment is not inferior. If
��0 denotes the limit of indifference, P the success rate for the standard0
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treatment, and P the success rate for the new treatment, then we can write1
H : P FP y� and H : P �P y�.0 1 0 1 1 0

Suppose a noninferiority trial is planned with a maximum Type I error
Žrate of �s0.05 for incorrectly declaring the new treatment noninferior to

.the standard when in fact it is inferior, i.e., P FP y� , and power 1y�s1 0
Ž0.80 for correctly declaring the new treatment noninferior to the standard

.when in fact P sP . For large sample sizes n and n , and corresponding1 0 1 0
sample proportions p and p , the critical region is zGz , where1 0 �

1 1 1
p yp q�y q1 0 ž /2 n n0 1zs , 8.17Ž .

ˆ ˆˆ ˆ P y� Q q�P Q Ž . Ž .0 00 0 q( n n0 1

ˆwhere P is the maximum likelihood estimate of the standard treatment0
success rate subject to the constraint that the difference between success

ˆrates is at the limit of indifference. P satisfies the likelihood equation0

ˆˆ p y P y�p yP Ž .1 00 0 q s0. 8.18Ž .ˆ ˆ ˆ ˆP 1yP rn P y� 1yP q� rnŽ . Ž . Ž .0 0 0 0 0 1

ˆŽ .Expression 8.18 is a cubic equation in P , and expresses the relation that0
when the theoretical proportions are at the maximum likelihood estimates

ˆ ˆP sP and P sP y�, a weighted average of the differences between0 0 1 0
Žobserved and theoretical proportions with weights proportional to the
. Ž .squared standard errors of the differences equals zero. The z-score in 8.17

has a standard normal distribution, approximately, under the null hypothesis
when the difference in success rates is at the limit of indifference.

The power of the test for arbitrary P and P in large samples is given0 1
approximately by

1 1 1
�q P yP y qŽ .1 0 ž /2 n n0 1powers�

P Q P Q0 0 1 1q� ( n n0 1

� � � �P Q P y� Q q�Ž . Ž .0 0 0 0qn n0 1
yz , 8.19Ž .� P Q P Q0 0 1 1) q 0n n0 1

Ž .where � x is the area under the standard normal density function to the left
� Ž .of x, and where P is the solution of 8.18 when p is replaced by P and0 0 0
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p is replaced by P . For equal sample sizes n sn sn, say, at the alterna-1 1 1 0
Ž .tive hypothesis of perfect equivalence, P sP sP, say, 8.19 reduces to1 0

power at P sP sPŽ .1 0

� � � �' ' '� n y1r n yz P Q q P y� Q q�Ž . Ž .�
s� . 8.20Ž .ž /'2 PQ

Consider the example at the beginning of this section, with �s0.05. Taking
Ž .equal sample sizes of n sn sn per group, the solution of 8.18 when 0.750 1

replaces both p and p is P�s0.7733, with P�y�s0.7233. Substituting0 1
Ž .this in 8.20 , one finds that the test will have power 80% at P sP sPs0.750 1

when ns968 per group.
How does this compare to a conventional test of the null hypothesis

H : P GP versus the alternative hypothesis H : P �P for a one-sided0 1 0 1 1 0
Ž‘‘inferiority’’ trial? Entering Table A4 with �s0.10 for a one-sided test at

.the 0.05 level of significance , we find the required sample size for 80%
power when P s0.70 and P s0.75 to be greater than 968 per group1 0
Ž .ns1025 subjects per group are required . This can be explained by compar-

Ž .ing expression 8.19 with the corresponding expression for the power of the
conventional test:

1 1 1 1 1
P yP y q PQ qŽ .0 1 ž / ž /2 n n n n0 1 0 1

� yz , 8.21Ž .� P Q P QP Q P Q 0 0 1 1)0 0 1 1 qq� 0( n nn n 0 10 1

Ž . Ž .where Ps1yQs n P qn P r n qn . The only difference between0 0 1 1 0 1
Ž . Ž .8.19 , with P sP sP, and 8.21 , with P yP s�, is the quantity1 0 0 1

� � � �Ž .Ž . ŽP Q rn q P y� Q q� rn in the first expression versus PQ 1rn q0 1 0
.1rn in the second. For this illustration with equal sample sizes, the1

numerator of the first quantity is 0.7733�0.2267q0.7233�0.2767s0.3754,
which is less than the numerator of the second quantity, 2 PQs2�0.725�

Ž . Ž .0.275s0.3988. Consequently the power in 8.19 or 8.20 is greater than the
Ž .power in 8.21 .

The situation is a little different for an equivalence trial. The null
hypothesis is that the new treatment is not equivalent to the standard, and
one seeks to reject that hypothesis in favor of the alternative hypothesis of
equivalence. Note in this case that the null hypothesis is a composite region
for the difference of the success rates, consisting of two disjoint intervals.

� �For a symmetric zone of indifference of the form P yP ��, we have1 0
� �H : P FP y� or P GP q�, and H : P yP ��. Now one rejects H0 1 0 1 0 1 1 0 0

when both of the one-sided components of H would be rejected, such that,0
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� � � Ž . �when z Gz and z Fyz , where z is given by 8.17 and z is given by� �

1 1 1
p yp y�q q1 0 ž /2 n n0 1�z s . 8.22Ž .

ˆ ˆ ˆ ˆP y� Q q� P QŽ . Ž .1 1 1 1q( n n0 1

ˆŽ .In 8.22 , P is the maximum likelihood estimate of the new treatment1
success rate subject to the constraint that the difference between success
rates is at the upper limit of indifference with P yP s�, and satisfies the1 0
likelihood equation

ˆ ˆp y P y� p yPŽ .0 1 1 1q s0. 8.23Ž .ˆ ˆ ˆ ˆP y� 1yP q� rn P 1yP rnŽ . Ž . Ž .1 1 0 1 1 1

Let us assume that the sample size is large enough so that the critical
value which p yp must be no less than in the first-component test, that is,1 0
the right-hand side of

1 �y1 y1p yp Gy�q n qn qz se p yp ,Ž .Ž .1 0 0 1 � 1 02

w �Ž . Ž .xis negative with se p yp given by the denominator of 8.17 , while1 0
the critical value which p yp must be no greater than in the second-1 0
component test, that is, the right-hand side of

1 �y1 y1p yp F�y n qn yz se p yp ,Ž .Ž .1 0 0 1 � 1 02

w �Ž . Ž .xis positive with se p yp given by the denominator of 8.22 . Under this1 0
assumption, to conduct the test of H one only needs to check one of the0

� Ž . � Žinequalities, z Gz when p yp is negative or z Fyz when p yp is� 1 0 � 1 0
.positive ; the other inequality will follow automatically, and one need not

ˆ ˆŽ . Ž .calculate P from 8.23 in the first case or P from 8.18 in the second case.1 0
Note that the critical values for z� and z� are �z , not �z . This is� �r2

because rejection only occurs when both component tests reject, so that
Ž . Ž � � .under the null hypothesis, P reject H sP z Gz and z Fyz which is0 � �

Ž � . Ž � .no greater than the smaller of the two probabilities P z Gz and P z Fz ,� �

each of which is no greater than � . Thus the test is slightly conservative.
The power of the test of the null hypothesis of nonequivalence is

�1 y1 y1P y�q n qn qz se p yp Fp ypŽ .Ž .0 1 � 1 0 1 02

�1 y1 y1F�y n qn yz se p ypŽ .Ž .0 1 � 1 02
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and is given approximately in large samples for arbitrary P and P by0 1

1 1 1
�y P yP y qŽ .1 0 ž /2 n n0 1

powers�
P Q P Q0 0 1 1q� ( n n0 1

� � � �P y� Q q� P QŽ . Ž .1 1 1 1qn n0 1
yz� P Q P Q0 0 1 1) q 0n n0 1

1 1 1
y�y P yP q qŽ .1 0 ž /2 n n0 1

y�
P Q P Q0 0 1 1q� ( n n0 1

� � � �P Q P y� Q q�Ž . Ž .0 0 0 0qn n0 1
qz . 8.24Ž .� P Q P Q0 0 1 1) q 0n n0 1

In the case of equal sample sizes, n sn sn, say, at the alternative hypothe-1 0
Ž .sis of perfect equivalence, P sP sP, say, 8.24 reduces to1 0

power at P sP sPŽ .1 0

� � � �' ' '� n y1r n yz P Q q P y� Q q�Ž . Ž .�
s2� y1, 8.25Ž .ž /'2 PQ

� Ž . Ž .where P satisfies 8.18 or 8.23 with p and p replaced by P, and n and0 1 1
Ž .n replaced by n or canceled from the equation altogether .0

Returning to the example, suppose an equivalence trial is planned with the
� �symmetrical zone of indifference P yP �� with �s0.05. Taking equal1 0

Ž .sample sizes of n sn sn per group, the solution of 8.18 with P sP sP0 1 0 1
s0.75 replacing p and p is P�s0.7733 as before, and substituting this in0 1
Ž .8.25 , one finds that the test will have power 80% at P sP sPs0.750 1
when ns1,326 per group.

How does this compare to a conventional test of the null hypothesis
H : P sP versus the alternative hypothesis H : P 	P for a two-sided0 1 0 0 1 0

Ž‘‘efficacy’’ trial? Entering Table A4 with �s0.05 for a two-sided test at the
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.0.05 level of significance , we find the required sample size for 80% power
when, say, P s0.70 and P s0.75 now to be less than 1,326 per group1 0
Ž .ns1,291 subjects per group are required , but the relative difference in
sample sizes is not large. Problem 8.3 explores these relations further.

8.3.3. Selection Trials

A final factor that affects the power of a trial is the study goal itself. There
are occasions, represented by the class of selection problems, when control of
the Type I error rate at the conventional levels of 0.10, 0.05, or 0.01 is totally
beside the point; rather, the goal of the study shifts away from hypothesis
testing and towards making a necessary selection. Suppose, for example, one
of two treatments, A or B, must be given to patients with a certain condition
Ž .at least until a better therapeutic choice is found , and the goal of the study
is to select the better of the two treatments. If one therapy is truly superior to
the other, then we seek a selection procedure that assures the correct
selection with high probability if the level of superiority exceeds the prespeci-
fied limit of indifference. If the two treatments are of equal efficacy,
however, then we might be indifferent as to which treatment we select
Ž .assuming other factors like cost and side effects are equal . If the two
treatments had identical success rates in the sample, for example, we might
even select one of them at random. In this example, when A and B are truly
equivalent, no real error would be made by selecting A or B as the apparent
best treatment, and so control of such a Type I error would miss the mark of
relevance. The selection problem can be framed in terms of hypothesis
testing, but now with complete indifference under the null hypothesis we

Ž .have �s0.50 not 0.05 . This allows a selection trial to be conducted with
smaller sample sizes than the corresponding efficacy test that controls the
Type I error rate in a conventional manner.

In the example we have been considering, suppose the purpose of the trial
is not to test efficacy or to test equivalence, but rather to select either the
new or the standard treatment for future care of patients with the given
condition. Patients will be randomized to the two treatment arms in equal
numbers, and at the end of the trial, the treatment in the group with the
higher sample success rate will be declared the winner and selected for

Žsubsequent use. In the rare event that the two success rates are exactly
equal, flip a coin to select the winner. In practice, one would regard both as

. � �equivalent. Taking the zone of indifference again to be P yP �� with1 0
�s0.05, we require the procedure to have an 80% chance of correctly

� �selecting the truly superior treatment if P yP s�, for example, if P s1 0 1
0.80 and P s0.75. If the sample size is n per group, the probability of0

1Ž . Ž .correct selection is then P p �p q P p sp assuming the new treat-1 0 1 02
1Ž . Ž .ment is truly better than the standard, and P p �p q P p sp assum-1 0 1 02

ing the standard treatment is truly better than the new one. In large samples
1 Ž .the probability of the P p sp term is negligible, and so the power is1 02
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given approximately by

' '� n y1r n
� . 8.26Ž .ž /P Q qP Q' 1 1 0 0

For this to exceed 80% when P s0.80 and P s0.75 requires nG136 per1 0
group. Even if the investigators could not prespecify the approximate true
success rates, the trial could still be designed conservatively using the values

Ž .P s0.525 and P s0.475 that maximize the denominator of 8.26 , in which1 0
case a sample size of 180 per group would suffice.

From the example, it can be seen that the selection trial is an appealing
design in limited-sample-size situations, especially when there is justification
for the selection goal as superseding the goal of controlling the Type I error
rate in a hypothesis test paradigm. The selection trial design also lends itself
easily to modifications such as sequential monitoring rather than fixed

Ž .sample size, and adaptive allocation see Section 8.4 below . The interested
Ž .reader may consult the textbook by Gibbons, Olkin, and Sobel 1999 for

fixed-sample-size designs for selecting the best of two or more treatments or
for selecting a subset of treatments with high probability of containing the

Ž .best; and Lai et al. 1980 for some theory of sequential selection procedures.

8.4. ALTERNATIVES TO SIMPLE RANDOMIZATION

The need always to randomize the assignment of treatments to patients in
Ž .clinical trials continues to be debated. Gehan and Freireich 1974 and

Ž .Weinstein 1974 , for example, offer criticisms of and propose some alterna-
Ž .tives to the strictly randomized clinical trial, whereas Byar et al. 1976 and

Ž . Ž .Peto et al. 1976 come to its defense. Levine 1999 summarizes the debate
over whether or not the current reliance on randomized trials is excessive.
There appear to be some instances in which competitors to randomization
should be seriously considered, but these are few. One instance arises when
only a small number of patients is available for study, so that recent historical
controls may have to be relied upon. An Institute of Medicine report on

Ž .small clinical trials considers this case IOM Committee, 2001 . Another
instance is when the disease in question has a uniformly lethal outcome when

Ž .untreated, and for which there is no effective therapy Levine, 1999 . We
return to this issue at the end of the section.

Debate and research continues, too, with respect to the need to stratify or
Ž .to match patients on prognostic factors e.g., age, sex, and initial severity ,

and just how to assure comparable distributions across the strata in the two
Ž .treatment groups. On one side of the debate are Peto et al. 1976 , who

recommend not bothering to stratify the eligible sample of patients before
randomizing them to one or the other treatment group, especially when the
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number of patients is large. The consensus among those responsible for the
design of clinical trials, however, seems to be that some degree of control,
preferably stratification, is desirable to guard against unlikely but devastating

Ž .imbalances between the two groups see, e.g., Simon, 1979 . Separate and
independent randomizations of the patients falling into the several strata will
usually suffice, but some recently proposed modifications in simple stratified
randomization should be borne in mind.

These modifications are intended especially for studies in which patients
enter the trial serially over time, so that it is impossible to determine at the
start of the trial exactly how many patients will end up in each stratum.
Suppose, for example, that a patient enters the trial at a point at which,
within his stratum, more patients have been assigned treatment A than to
treatment B. Instead of assigning this new patient to one treatment group or
the other independently of the current imbalance in his stratum, one may
adopt an allocation method that seeks to bring the numbers in the two
groups closer to each other.

Ž .One method for balancing is Efron’s 1971 biased-coin scheme, which, in
Žthe current example, would assign this patient treatment B the underrepre-

1.sented one with a fixed, prespecified probability that is greater than but2
Ž .less than 1. An essentially nonrandomized method is Taves’ 1974 minimiza-

tion scheme, which would assign this patient treatment B with certainty.
Randomization plays no role in minimization except for the first group of
patients to enter the trial, unless the two treatment groups are balanced at
the time a new patient enters the trial. Other schemes have been proposed by

Ž . Ž .Pocock and Simon 1975 and simplified by Freedman and White 1976 .
Ž .As Pocock 1979 has pointed out, however, the ability to execute a design

is at least as important as the design’s theoretical optimality. Complexity of
execution plus the likely sufficiency in most instances of simple stratified
randomization appear to rule out the large-scale adoption of these proposed
schemes for establishing balance between the two treatment groups.

Other alternatives to the simple comparative study, termed adapti®e trials,
have been proposed because of the uniqueness of comparative clinical trials
as studies aimed as much at the testing of scientific hypotheses as at the
alleviation of symptoms of the patients being studied. Whereas the classic
design and its modifications summarized in the preceding call for assigning
the different treatments to approximately equal numbers of patients, adap-
tive designs call for assigning to an increasing proportion of patients the
treatment that, on the basis of the accumulated data, appears to be superior.

Adaptive designs are still in the process of development and have been
adopted in only a small number of trials in spite of their intuitive appeal. The

Ž . Ž .interested reader is referred to Anscombe 1963 , Colton 1963 , Cornfield,
Ž . Ž . Ž .Halperin, and Greenhouse 1969 , Zelen 1969 , Canner 1970 , Robbins

Ž . Ž . Ž .1974 , Simon 1977 , and Lai et al. 1980 for some suggested means of
balancing the statistical requirement of equal sample sizes with the ethical
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requirement of applying the superior treatment to as many patients as
possible as quickly as possible. For a discussion of an application of an
adaptive allocation rule in a life-threatening situation, and the ethical prob-

Ž . Ž .lems the investigators faced, see Ware 1989 and Truog 1992 .
Ž .Zelen 1979 introduced a daring idea into the design of clinical trials in

seeking to overcome the reluctance of many patients and the physicians
responsible for their care to consent to participate in a randomized experi-
ment. This reluctance is especially prevalent when the patients suffer from
life-threatening conditions such as cancer or heart disease. Zelen’s idea was
to randomize eligible patients into one of the two groups characterized as
follows.

All patients in the first group will receive the currently accepted standard
treatment. Because this is the treatment they would receive in any event,

Ž .their informed consent to participate in an experiment it was argued is not
required. All patients in the second group will be asked whether they consent
to be treated with the experimental treatment. If they consent, they will be so
treated. If they refuse, they will be treated with the standard treatment. At
the end of the trial, the results for all patients in the second group,
regardless of treatment, will be compared with the results for all those in the
first, that is, according to the intent-to-treat principle.

Operating to reduce the power associated with Zelen’s proposed design is
the fact that the response rate estimated for the second group is an average
of the rate for those patients receiving the experimental treatment and the
rate for those patients receiving the standard treatment. If the experimental
treatment is superior to the standard, this average will be closer to the
response rate in the first group than the response rate would be in a group of
patients treated exclusively with the experimental treatment.

Operating in favor of the proposed design is the presumption that much
larger numbers of patients will be studied. The traditional design requires
that an eligible patient give informed consent to participate in the trial
before that patient is randomized. The proposed design would permit all
eligible patients to be randomized; a patient’s refusal to give consent would
not result in that patient’s being dropped from the study. The enrolled
patients would represent a wider cross section of the population, and thus

Ž .make the trial more ‘‘pragmatic’’ Schwartz and Lellouch, 1967 . The in-
creased power due to the larger numbers of patients might overcome the
decreased power due to the attenuated difference between the two groups.

Ž .The last twenty years have not seen widespread use of Zelen’s 1979
proposal. In response to criticisms on ethical grounds, namely, that therapy
would be assigned by chance without the participant’s knowledge or consent,

Ž .Zelen 1981 proposed a modified design in which randomization before
consent would still take place, but would be followed by securing of informed
consent from participants in each treatment group. This design has been

Ž .used in several major randomized trials Ellenberg, 1984 , but is not without
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its own difficulties, to wit, the potential for major bias to be introduced in the
unblinded negotiation of informed consent by clinicians and subjects, and
whether or not participation at all in the trial is presented as an option.

Ž .Ellenberg 1984 finds the evidence lacking to support the presumed gains
in efficiency in these so-called prerandomization designs. Insofar as enroll-
ment is not substantially increased with these modified designs, power
considerations alone would dictate against their use. In addition, current
standards for the ethical conduct of research with human subjects generally
require informed consent whenever patients participate in an experiment in
which their therapy is chosen by chance, that is., informed consent is

Ž .required explicitly for the randomized assignment of therapy Levine, 1999 .
We mentioned at the beginning of this section the existence of circum-

stances under which a randomized controlled trial might not be feasible or
ethical to conduct from the start. One design for a clinical trial that avoids
the considerable problems of historical controls was discussed by Finkelstein,

Ž .Levin, and Robbins 1996a, 1996b , and we consider it briefly here, even
though it is a nonrandomized design. Called an assured allocation design, or
risk-based allocation design by these authors, it was proposed for use in
situations where it is overwhelmingly clear that the randomized design would
fail, either because subject enrollment would be close to zero, or when
ethical concerns dictate against randomization in life-threatening illnesses.

The first situation arises, for example, when a therapy is readily available
outside the study protocol, or when a treatment has been in use for a long
time and is perceived to be efficacious, even though it has never been

Ž .subjected to a randomized trial. Bone marrow transplantation BMT in the
treatment of advanced breast disease is an illustration. A nationwide, multi-
center, randomized trial was designed to test the efficacy of bone marrow
extraction prior to aggressive chemotherapy followed by BMT in women with
at least ten underarm nodes of tumor involvement. The comparison group
was ‘‘standard of care’’ omitting the bone marrow procedures. BMT was
widely available outside the clinical trial, which drastically slowed down
patient enrollment: the target sample size of 982 women took over seven

Ž .years to achieve between 1991 and 1998 , while more than 15,000 procedures
were administered during this time period. If only one-half of the women
receiving off-protocol BMTs could have been enrolled in the trial, the target
sample size would have been reached before two years. The difficulty was
that when subjects were informed they faced a 50% chance of being random-
ized to the comparison group, they withheld consent in order to obtain BMT

Ž .elsewhere, often just across town e.g., in New York City . It is a tribute to
the investigators’ and funding agency’s perseverance to have followed this trial
to its conclusion. Yet one has to wonder if the same answer achieved after

Ž .seven years no survival benefit might not have been reached much sooner
with a risk-based allocation design, saving many women from undergoing a
very painful, expensive, and�ultimately�questionable surgical procedure.
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Other examples exist of desperately ill patients or their caregivers seeking
experimental treatments as their perceived last hope who would refuse to be
randomized, e.g., in the early days of AIDS trials and with extracorporeal

Ž .membrane oxygenation ECMO for premature infants. Other therapies,
Ž .such as pulmonary artery catheterization Swan�Ganz , estrogen treatment

for Alzheimer’s disease, or radical surgery for prostate cancer, have all been
next to impossible to test in randomized trials because subjects convinced of
therapeutic benefits do not want the placebo or standard therapy. These
therapies have often been cited in the news media for the difficulty or
near-impossibility of recruiting subjects into randomized trials�see Kolata
Ž . Ž . Ž . Ž .1995 , Altman 1996 , Kolata 1997 , Brody 1997 , and Kolata and Eichen-

Ž .wald 1999 .
In the risk-based allocation design, all participants who exceed a prespeci-

fied threshold of risk measured at baseline are assigned to the experimental
therapy. Nothing about the experimental therapy is assumed known beyond
the usual preliminary safety and efficacy checks. Those who do not exceed
the prespecified threshold of risk are assigned, as concurrent controls, to the
standard therapy, about which much prior experience is assumed known.

ŽSpecifically, one requires a model for the standard treatment but only the
.standard treatment that relates the average or expected outcome to specific

values of the baseline measure of risk used for the allocation. For example,
the model might specify that the standard treatment affects the expected
outcome multiplicatively on a patient-by-patient basis. Only the functional
form of the model is required, not specific values of the model parameters,
because the parameters of the model are estimated from the concurrent
control data, and then extrapolated to the high-risk patients. This is a real
advantage over historical controlled studies. One need not rely on historical
estimates of expected outcome means or proportions, which are notoriously
untrustworthy for transport to other times or patient populations. All one
needs to assume for the risk-based design is that the mathematical form of
the model relating outcome to risk is correctly specified throughout the
entire range of the risk measure. This is a strong assumption, to be sure, but
with sufficient experience and prior data on the standard treatment, the form
of the model can be validated. In addition, the validity of the predictive
model can be checked against the concurrent control data in the risk-based
trial, at least below threshold.

Because of the biased allocation of subjects to treatment arms, a simple
comparison of outcomes between the two groups is not appropriate, as it is
for a randomized trial. Rather, the appropriate analysis utilizes empirical
Bayes methods of estimation to provide a valid estimate of the treatment
effect among the high-risk patients. As indicated above, the heart of the
analysis is an estimation of the expected outcome the high-risk patients
would have had on average under the standard therapy. Empirical Bayes
methods are ideally suited for these purposes because of their characteristic
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ability to use information from one group of subjects to make valid inferences
about another group, even when the two groups are not directly comparable,
as in the present case, by design.

Further discussion of the analytic technique is beyond the scope of this
chapter, but for details, the interested reader should see: Finkelstein, Levin,

Ž .and Robbins 1996a, 1996b for examples and a demonstration of feasibility
Ž .of the method in the context of controlled clinical trials, and the IOM 2001

Ž .report cited above for further discussion; Robbins 1956, 1977 for a series of
landmark papers on the theory of general empirical Bayes estimation, also
contained in the collection of papers by Robbins edited by Lai and Siegmund
Ž . Ž . Ž .1985 ; and Robbins and Zhang 1988, 1989, 1991 and Robbins 1993 for
development of statistical methods adapted to the needs of a risk-based
allocation design. The risk-based allocation design has often been used to
evaluate social or behavioral interventions, in which fields it goes under the

Žsomewhat misleading name of ‘‘regression discontinuity’’ see Campbell and
. Ž .Stanley, 1963, and Cook and Campbell, 1979 . Cappelleri and Trochim 1994

Ž .and Trochim and Cappelleri 1992 discuss the method in the context of
randomized clinical trials. Whether risk-based allocation will be used in
clinical research when a randomized trial would not be feasible remains to be
seen.

PROBLEMS

8.1. Suppose that the two treatments contrasted in Table 8.1 are compared
in a second hospital, with the following results:

Number of Patients Proportion Improved

Treatment 1 100 0.35
Treatment 2 100 0.75

Overall 200 0.55

( )a Is the difference between the improvement rates significant in the
second hospital?

( ) w Ž .xb What is the simple difference see 8.2 between the two improve-
ment rates in the second hospital? What is its estimated standard

w Ž .xerror see 8.3 ? Is the difference found in the second hospital
wsignificantly different from that found in the first? Hint. Denote the

Ž . Ž .difference and its estimated standard error found in 8.4 and 8.5
$
Ž .by d and se d , and denote the corresponding statistics just calcu-1 1
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$
Ž .lated by d and se d . Refer the value of2 2

d yd2 1zs
$ $2 2' se d q se dŽ . Ž .� 4 � 41 2

xto Table A.1 of the normal distribution.
( ) w Ž .xc What is the relative difference see 8.10 between the two improve-

ment rates in the second hospital? Is it significantly different from
wthe relative difference found in the first hospital? Hint. Define

� 4 � 4L s ln 1yp and L s ln 1yp . Refer the value of1 eŽ1. 2 eŽ2.

L yL2 1zs
$ $2 2' se L q se LŽ . Ž .� 4 � 41 2

xto Table A.1.

8.2. Suppose two treatments were compared in a two-period crossover de-
sign, with results as follows:

Order AB Order BA

Response to B Response to BResponse Response
to A Good Poor to A Good Poor

Good 20 15 Good 30 10
Poor 5 10 Poor 5 5

( )a Consider first the sample of patients given the treatments in the
Žorder AB. What is the value of n i.e., how many of these patients

gave responses that were informative about a difference between A
. Žand B ? What is the value of p i.e., what proportion of these n1

.patients had a good response to the treatment given first ?
( )b Consider next the sample of patients given the treatments in the

order BA. What is the value of m? What is the value of p ?2

( )c Test whether treatments A and B are equally effective by compar-
ing p with p .1 2

8.3. When does a noninferiority or an equivalence trial require a larger
sample size than a conventional one-sided or two-sided efficacy trial
design? In this problem we abstract from the difficulties of nonconstant
standard errors and consider the following idealized situation. We
observe normally distributed random variables with known, constant
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standard deviation � , in two groups of equal sample size n. We obtain
the sample mean difference, X yX , which has a normal distribution1 0

Ž .1r2with mean � y� and standard error � 2rn . Larger values of the1 0
mean are considered better than smaller values.
( )a The null hypothesis in a noninferiority trial is H : � y� Fy�,0 1 0

and the alternative is H : � y� �y�. Show that the sample size1 1 0
necessary to achieve power 1y� when the alternative of perfect

2Ž .2 2equivalence � s� holds is ns2� z qz r� .1 0 � �

( )b The null hypothesis in a one-sided efficacy trial is H : � y� F0,0 1 0
and the alternative hypothesis is H : � y� �0. Show that the1 1 0
sample size necessary to achieve power 1y� when the alternative

2Ž .2 2� y� s� holds is the same, ns2� z qz r� . Conclude1 0 � �

that the two trial designs are equivalent under these assumptions.
( )c The null hypothesis in an equivalence trial is H : � y� Fy� or0 1 0

� �� y� G�, and the alternative hypothesis is H : � y� ��.1 0 1 1 0
Show that the sample size necessary to achieve power 1y�
when the alternative of perfect equivalence � s� holds is ns1 0

2Ž .2 2 w2� z qz r� . Hint. A rejection of H occurs when both of� �r2 0
the following inequalities are true:

' 'y�qz � 2rn FX yX F�yz � 2rn .� 1 0 �

so the power under the alternative � s� is1 0

' ' '� n y� n � n
� yz y� qz s2� yz y1.� � �ž / ž / ž /' ' '� 2 � 2 � 2

For this to equal 1y� , the argument of � on the right-hand side
xmust equal z .�r2

( )d The null hypothesis in a two-sided efficacy trial is H : � y� s0,0 1 0
and the alternative hypothesis is H : � y� 	0. Show that the1 1 0
sample size necessary to achieve power 1y� when the alternative

2Ž .2 2� y� s� holds is ns2� z qz r� .1 0 �r2 �

( ) Ž . Ž .e Comparing c and d , conclude that the equivalence trial in this
idealized situation requires a greater sample size than the two-sided
efficacy trial if and only if z qz Gz qz . Evaluate these� �r2 �r2 �

expressions for �s0.05 and �s0.20. Which trial requires the
greater sample size? What happens if �s� ?
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C H A P T E R 9

The Comparison of Proportions
from Several Independent Samples

With only a few exceptions, we have restricted our attention to the compari-
son of two proportions. In this chapter we consider the comparison of a
larger number of proportions. In Sections 9.1 through 9.3 we are concerned
with comparing m independent sample binomial proportions. In Section 9.1
we study the analysis of an m�2 contingency table, where m�2 and where
there is no necessary ordering to the m groups. Sections 9.2 and 9.3 are
devoted to the case where an intrinsic ordering to the m groups exists. We
consider in Section 9.2 the hypothesis that the proportions vary monotoni-

Ž .cally i.e., steadily increase or steadily decrease with m quantitatively or-
dered groups, and in Section 9.3 that they vary monotonically with m
qualitatively ordered groups. In Sections 9.4 and 9.5 we compare proportions
from two independent multinomial samples with m�2 mutually exclusive,
qualitatively ordered categories. Section 9.4 discusses ridit analysis for the
probability that an ordered categorical response from a study sample is
shifted up or down in comparison with an identified reference population.
Section 9.5 presents some more advanced logit models for qualitatively
ordered response outcomes. Section 9.6 considers the analysis of m indepen-
dent sample proportions when there is randomness among the true propor-
tions. Because of the complexity of the exact analysis of an m�2 table, we
postpone discussion of this topic until Chapter 11, Section 4.

The procedures of this chapter are suitable for each of the three methods
Ž .of sampling presented previously see Section 3.1 . In randomized trials

Ž .method III sampling , the m samples represent groups treated by m differ-
ent treatments, with subjects assigned to groups at random. In comparative

Ž .studies method II sampling , either the investigator selects prespecified
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Table 9.1. Proportions from m independent samples

Total in Number with Number without Proportion with
Sample Sample Characteristic Characteristic Characteristic

1 n n n p1. 11 12 1
2 n n n p2. 21 22 2. . . . .. . . . .. . . . .
m n n n pm. m1 m2 m

Overall n n n p. . .1 .2

numbers of subjects from each of the m groups and observes a binary
outcome for each subject, or the investigator selects prespecified numbers of
subjects with and without a given characteristic and observes a multinomial

Ž .outcome for each subject. In cross-sectional surveys method I sampling ,
these numbers become known only after the study is completed. As was the

Ž .case for the comparison of ms2 samples see Sections 7.1 and 7.2 , method
II sampling with equal sample sizes is superior in power and precision to
method I sampling when m�2. The methods of Section 9.6 are appropriate
when each subject provides several binary responses.

9.1. THE COMPARISON OF m PROPORTIONS

Suppose that m independent samples of subjects are studied with each
subject characterized by the presence or absence of some characteristic. The
resulting data might be presented as in Table 9.1, where

ni1p s 9.1Ž .i ni .

and

n Ýn p.1 i . ips s . 9.2Ž .n Ýn. . i .

For testing the significance of the differences among the m proportions,
the value of

2m 2 n yn n rnŽ .i j i . . j . .2� s 9.3Ž .Ý Ý n n rni . . j . .is1 js1

Ž .may be referred to tables of chi squared see Table A.2 with my1 degrees
Ž .of freedom df . An equivalent and more suggestive formula for the test
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Table 9.2. Smoking status among lung cancer patients in four studies

Study Number of Patients Number of Smokers Proportion of Smokers

Ž . Ž .1 86 sn 83 0.965 sp1. 1
Ž . Ž .2 93 sn 90 0.968 sp2. 2
Ž . Ž .3 136 sn 129 0.949 sp3. 3
Ž . Ž .4 82 sn 70 0.854 sp4. 4

Ž . Ž .Overall 397 sn 372 0.937 sp. .

statistic is
m1 22� s n p yp , 9.4Ž .Ž .Ý i . ipq is1

where qs1yp.
Consider, as an example, the data in Table 9.2 from four studies cited by

Ž .Dorn 1954 . In each study, the number of smokers among lung cancer
2 Ž .patients was recorded. For these data, the value of � 9.4 is

1 2 22� s 86� 0.965y0.937 q93� 0.968y0.937Ž . Ž .�0.937�0.063
2 2q136� 0.949y0.937 q82� 0.854y0.937Ž . Ž . 4

s12.56, 9.5Ž .

which, with 3 df, is significant at the 0.01 level.
Having found the proportions to differ significantly, one would next

proceed to identify the samples or groups of samples that contributed to the
significant difference. Methods for isolating sources of significant differences

Ž .in the context of a general contingency table are given by Irwin 1949 ,
Ž . Ž . Ž . Ž .Lancaster 1950 , Kimball 1954 , Kastenbaum 1960 , Castellan 1965 , and

Ž .Knoke 1976 . Here we illustrate the simplest method for the m�2 table.
Suppose that it is planned in advance of the data to compare the m

samples when they are partitioned into two groups, the first containing m1
samples and the second m , where m qm sm. Define2 1 2

m1

n s n 9.6Ž .ÝŽ1. i .
is1

to be the total number of subjects in the first group of samples, and

m

n s n 9.7Ž .ÝŽ2. i .
ism q11

to be the total number of subjects in the second group.
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Let the proportion in the first group be denoted p , where1

Ým1 n pis1 i . ip s , 9.8Ž .1 nŽ1.

and that in the second group be denoted p , where2

Ým n pism q1 i . i1p s . 9.9Ž .2 nŽ2.

Then

n n1 Ž1. Ž2. 22� s � p yp , 9.10Ž .Ž .diff 1 2npq . .

with 1 df, may be used to test for the significance of the difference between
2p and p . Note that � is identical to the chi squared, without the1 2 diff

continuity correction, that one would calculate on the fourfold table obtained
by combining all the data from the first m samples into one single set and all1
the data from the remaining m samples into a second.2

The statistic

m11 22� s n p yp , 9.11Ž .Ž .Ýgroup 1 i . i 1pq is1

with m y1 df, may be used to test the significance of the differences among1
the m proportions in the first group, and the statistic1

m1 22� s n p yp , 9.12Ž .Ž .Ýgroup 2 i . i 2pq ism q11

with m y1 df, may be used to test the significance of the differences among2
the m proportions in the second group. It may be checked that the three2

Ž . Ž . 2 Ž .statistics given by 9.10 � 9.12 sum to the overall value of � in 9.4 .
Ž .If p and p differ appreciably, then the product p q sp 1yp should1 2 1 1 1 1

Ž . Ž . Ž .replace pq in 9.11 , and p q sp 1yp should replace pq in 9.12 .2 2 2 2
These adjustments have little effect on the magnitudes of � 2, but the sum of

Ž .the adjusted chi squareds plus the chi squared in 9.10 will no longer
Ž .generally recapture the overall value of chi squared in 9.4 .

A more serious modification is called for, however, if the partitioning of
the samples into groups is suggested by the data instead of being planned
beforehand. Of the four samples in Table 9.2, for example, the first three
appear, on the basis of the similarity of their proportions, to form one
homogeneous group, whereas the fourth sample seems to stand by itself as a
second group. To control for the erroneous inferences possible by making
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2 Ž . Ž .comparisons suggested by the data, each of the � values in 9.10 to 9.12
should be referred to the critical value of chi squared with my1 degrees of
freedom and not to the critical values of chi squared with 1, m y1, and1

Ž .m y1 degrees of freedom Miller, 1981, Section 6.2 .2
For the data of Table 9.2, for example, the first set of m s3 studies1

consists of

n s86q93q136s315Ž1.

lung cancer patients, of whom the proportion smoking is

83q90q129
p s s0.959.1 315

The second set of m s1 study alone consists of n s82 patients, of whom2 Ž2.
the proportion smoking is p s0.854.2

The significance of the difference between p and p is assessed by the1 2
2 w Ž .xmagnitude of � see 9.10 :diff

1 315�82 22� s � 0.959y0.854Ž .diff 0.937�0.063 397

s12.15. 9.13Ž .

The significance of the differences among p , p and p �all from group 11 2 3
2 w Ž .x�is assessed by the magnitude of � see 9.11 :group 1

1 22� s 86� 0.965y0.959Ž .group 1 0.937�0.063
2 2q93� 0.968y0.959 q136� 0.949y0.959Ž . Ž .

s0.41. 9.14Ž .

Because group 2 consists of but a single study sample, the statistic � 2
group 2

w Ž .xsee 9.12 is inapplicable here.
Note first of all that

� 2 q� 2 s12.15q0.41s12.56,diff group 1

Ž .which is equal to the value of the overall chi squared statistic given in 9.5 .
Ž .Note next that, with p q s0.959�0.041 replacing 0.937�0.063 in 9.14 ,1 1

the value of � 2 increases only slightly, to 0.62. Recall, finally, that thegroup 1
partitioning was suggested by the data and not planned a priori. The values
of both � 2 and � 2 must therefore be referred to the critical value ofdiff group 1
chi squared with my1s4y1s3 df. Since the critical value for a signifi-
cance level of 0.05 is 7.81, the conclusion would be that the proportion of
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Table 9.3. Pre©alence of reported insomnia among women by age

Number in Proportion Reporting Midpoint
Ž . Ž . Ž .Age Interval Interval sn Insomnia sp Age sxi. i i

18�24 534 0.280 21.5
25�34 746 0.335 30.0
35�44 784 0.337 40.0
45�54 705 0.428 50.0
55�64 443 0.538 60.0
65�74 299 0.590 70.0

Ž . Ž . Ž .Overall 3511 sn 0.393 sp 42.15 sx. .

smokers among the patients in study 4 differed from the proportions in
Ž 2 .studies 1 to 3 because � s12.15�7.81 , but that there were no differ-diff

Ž 2 .ences among the proportions in studies 1 to 3 because � s0.41�7.81 .group 1

9.2. GRADIENT IN PROPORTIONS: SAMPLES QUANTITATIVELY
ORDERED

The analysis of the preceding section is of quite general validity, but lacks
sensitivity when the m samples possess an intrinsic ordering. We assume in
this section that the ordering is quantitative; specifically, that a measure-
ment x is naturally associated with the ith sample. Data from the Nationali

Ž .Center for Health Statistics 1970, Tables 1 and 6 are used for illustration
Ž .Table 9.3 .

Different methods of analysis are called for depending on how the
Ž .proportions are hypothesized to vary with x Yates, 1948 . Here we consider

only the simplest kind of variation, a linear one. In Chapter 11 we discuss the
more common, and in many respects preferable, linear logistic model to
describe the variation in proportions.

Let P denote the proportion in the population from which the ith samplei
was drawn. We hypothesize that

P s�q� x , 9.15Ž .i i

where � , the slope of the line, indicates the amount of change in the
proportion per unit change in x, and � , the intercept, indicates the propor-
tion expected when xs0.

Ž .The two parameters of 9.15 may be estimated as follows. Define

m n xi . ixs , 9.16Ž .Ý n . .is1
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the mean value of x in the given series of data. The slope is estimated as

m

n p yp x yxŽ . Ž .Ý i . i i
is1bs , 9.17Ž .m

2n x yxŽ .Ý i . i
is1

and the intercept as

aspybx. 9.18Ž .

The calculation of b is simplified somewhat by noting that its numerator is

m

numerator b s n p x yn px 9.19Ž . Ž .Ý i . i i . .
is1

and that its denominator is

m
2 2denominator b s n x yn x . 9.20Ž . Ž .Ý i . i . .

is1

A simple expression for the fitted line is

p spqb x yx . 9.21Ž .Ž .î i

For the data of Table 9.3, ps0.393, xs42.15, and

bs0.0064. 9.22Ž .

The fitted straight line becomes

p s0.393q0.0064 x y42.15 , 9.23Ž . Ž .î i

implying an increase of 0.64% in the proportion of adult women reporting
insomnia per yearly increase in age, or 6.4% per decade.

It is useful to calculate the estimated proportion corresponding to each xi
in order to compare it with the actual proportion, p . If p and p are close inˆi i i

Ž .magnitude for all or most categories, then one can conclude that 9.15
provides a good fit to the data, that is, P tends to vary linearly with x . If pi i i
and p tend to differ, then the conclusion is that the association betweenî
P and x is more complicated than a linear one. Having the differencesi i
p yp available serves also to identity those categories for which the depar-ˆi i
tures from linearity are greatest.

Table 9.4 contrasts the actual proportions of Table 9.3 with those yielded
Ž .by 9.23 . The fit appears to be a good one.
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Table 9.4. Obser©ed and linearly predicted age-specific
rates of insomnia

x n p p̂i i. i i

21.5 534 0.280 0.261
30.0 746 0.335 0.315
40.0 784 0.337 0.379
50.0 705 0.428 0.443
60.0 443 0.538 0.507
70.0 299 0.590 0.571

Ž . Ž .A chi squared statistic due to Cochran 1954 and Armitage 1955 is
available for testing whether the association between P and x is a lineari i
one. This chi squared statistic is

m
22� s n p yp rpq. 9.24Ž .Ž .ˆÝlinearity i . i i

is1

Under the hypothesis of linearity, when the n ’s are large, � 2 has ani. linearity
approximate chi squared distribution with my2 df, and the hypothesis of
linearity would be rejected if � 2 were found to be large. The power oflinearity

Ž .this test was studied by Chapman and Nam 1968 .
The calculation of � 2 is simplified if one first calculates the statisticlinearity

m
22 2� sb n x yx rpq, 9.25Ž .Ž .Ýslope i . i

is1

because it may be shown that

� 2 s� 2y� 2 , 9.26Ž .linearity slope

2 Ž . 2where � is given by 9.4 . The statistic � has 1 df and may be used toslope
test the significance of the slope, b. If � 2 is large, the inference is that theslope
slope is significantly different from zero, indicating that there is a tendency
for increasing values of x to be associated with increasing values of P if b isi i
positive or with decreasing values of P if b is negative.i

For the data of Table 9.3, the value of the overall chi squared statistic in
Ž .9.4 for testing the hypothesis that the proportion reporting insomnia is
constant for all age groups is

� 2s140.72. 9.27Ž .

The magnitude of this chi squared, which has 5 df, indicates highly significant
differences among the age-specific proportions, but fails to describe the
steady increase with age of the proportion reporting insomnia.
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w Ž .xThe chi squared statistic for linearity see 9.24 is, for the data from
Table 9.4,

2 2534� 0.280y0.261 q ���q299� 0.590y0.571Ž . Ž .2� slinearity 0.393�0.607

s10.76, 9.28Ž .

which, with 4 df, is significant at the 0.05 level. The association with age of
the proportion of women reporting insomnia is thus not precisely a linear

Žone, but the departures from linearity i.e., the differences between the
.observed and linearly predicted proportions are sufficiently small to make

the hypothesis of linearity plausible and the predictions useful.
Ž .The chi squared statistic of 9.25 assumes the value

0.00642 �757,964.79752� s s130.15, 9.29Ž .slope 0.393�0.607

which, with 1 df, indicates that the slope of the fitted line, bs0.0064, is
significantly different from zero. The difference between the overall chi
squared of 140.72 and the chi squared for testing the significance of the

Ž .slope, 130.15, should, by 9.26 , be equal to the chi squared for linearity,
10.76. Except for errors due to rounding, this is seen to be the case.

The inferences to be drawn from this more detailed chi squared analysis
are that there is a significant tendency for the proportion of women reporting
insomnia to increase steadily with age and that this tendency is, approxi-
mately, a linear one. Had the chi squared for linearity been significant at, say,
the 0.01 or 0.005 level instead of merely at the 0.05 level, the latter inference
would not have been warranted.

Slightly different versions of the estimators and of the test statistics given
Ž . Ž .above have been derived by Mantel 1963 , Chapman and Nam 1968 , and

Ž .Wood 1978 , who also consider the comparison and combination of fitted
regression lines across several independent samples. The procedure pre-
sented here is valid when, as in the example, the p ’s are not close to 0 or toi
1. For p ’s close to 0 or to 1, or extrapolations of x far from x, the lineari

Žmodel may fail to give reasonable values for the fitted probabilities below 0
.or above 1 . The methods of Chapter 11 should be used instead.

9.3. GRADIENT IN PROPORTIONS: SAMPLES QUALITATIVELY
ORDERED

We assumed in Section 9.2 that the m samples could be ordered on a
quantitative scale. We assume in this section that the ordering is merely
qualitative. Suppose, for example, that one has data as in Table 9.5. The
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Table 9.5. Hypothetical one-month release rates as a function of initial se©erity

Number Released Proportion Released
Initial Severity Total within One Month within One Month

Ž . Ž .Mild 30 sn 25 0.83 sp1. 1
Ž . Ž .Moderate 25 sn 22 0.88 sp2. 2
Ž . Ž .Serious 20 sn 12 0.60 sp3. 3
Ž . Ž .Extreme 25 sn 6 0.24 sp4. 4

Ž . Ž .Overall 100 sn 65 0.65 sp. .

2 Ž .value of � in 9.4 for these data is

� 2s28.74 9.30Ž .

Ž .with 3 df, clearly significant beyond the 0.001 level see Table A.2 .
The inference that the four release rates differ significantly is a valid one,

but is clearly insufficient in that it fails to describe the almost steady decline
in release rates as initial severity worsens. Because it would have been
reasonable to hypothesize beforehand a gradient of release rate with severity,
an alternative method of analysis is called for. The method of the preceding
section is not appropriate, because no numerical values can naturally be
assigned to the four levels of severity.

Ž .Chassan 1960, 1962 proposed a simple test of the hypothesis that m
proportions were arrayed in a prespecified order, but his test was shown by

Ž .Bartholomew 1963 to lack adequate power. Specifically, Chassan’s test may
be applied only when the sample proportions are arrayed without exception in
the same order as hypothesized. It would therefore be inapplicable whenever

Ž .there were slight departures as, e.g., for p and p in Table 9.5 from the1 2
hypothesized order. A more powerful procedure due to Bartholomew
Ž .1959a, 1959b will be described.

Suppose that the hypothesis predicts the ordering p �p � ��� �p , but1 2 m
that departures from this ordering are observed. For the proportions in Table
9.5, for example, the ordering p �p �p �p was predicted, but instead1 2 3 4
we obtained p �p and then, as predicted, p �p �p .1 2 2 3 4

When departures are found, weighted averages of those adjacent propor-
tions that are out of order are taken until, when the averages replace the
original proportions, the hypothesized ordering is observed. The revised
proportions are denoted p�. For the proportions in Table 9.5, the weighted
average of p and p must be taken. It is1 2

30�0.83q25�0.88
p s s0.85. 9.31Ž .1, 2 30q25

When p and p are replaced by p , Table 9.6 results.1 2 1, 2
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Table 9.6. Proportions from Table 9.5 re©ised
to be in hypothesized order

Initial Severity Total Revised Proportion
�Ž . Ž .Mild 30 sn 0.85 sp1. 1
�Ž . Ž .Moderate 25 sn 0.85 sp2. 2

�Ž . Ž .Serious 20 sn 0.60 sp sp3. 3 3
�Ž . Ž .Extreme 25 sn 0.24 sp sp4. 4 4

Ž . Ž .Overall 100 sn 0.65 sp. .

The revised proportions are no longer out of order. If they were, the
process would have to be continued. When the process has been completed,
the statistic

m1 2�2� s n p yp 9.32Ž .Ž .Ý i . ipq is1

is calculated. For the revised proportions of Table 9.6,

1 2 22� s 30� 0.85y0.65 q25� 0.85y0.65Ž . Ž .0.65�0.35
2 2q20� 0.60y0.65 q25� 0.24y0.65 s28.27. 9.33Ž . Ž . Ž .

2The value of � may no longer be referred to tables of chi squared,
however. Instead, Tables A.7 to A.9 are to be used. When ms3 proportions
are compared, calculate

n n1 . 3 .cs , 9.34Ž .( n qn n qnŽ . Ž .1 . 2 . 2 . 3 .

and enter Table A.7 under the desired significance level, interpolating if
necessary. When ms4, calculate

n n1 . 3 .c s 9.35Ž .1 ( n qn n qnŽ . Ž .1 . 2 . 2 . 3 .

and

n n2 . 4 .c s , 9.36Ž .2 ( n qn n qnŽ . Ž .2 . 3 . 3 . 4 .

and enter Table A.8 under the desired significance level, interpolating in
both c and c if necessary. If all sample sizes are equal, and if mF12,1 2
Table A.9 may be used.
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For the data of Table 9.6, for which ms4,

30�20
c s s0.491 ( 30q25 25q20Ž . Ž .

and

25�25
c s s0.56.2 ( 25q20 20q25Ž . Ž .

ŽVisual interpolation in Table A.8 c is approximately equal to 0.5, and c is1 2
2.nearly midway between 0.5 and 0.6 shows that � would have to exceed 9.0

in order for significance to be declared at the 0.005 level. The obtained value
2 Ž .of � s28.27 from 9.33 is far beyond this critical value.

What is noteworthy, however, is the comparison of the value just found
from Table A.8 with the corresponding value from Table A.2 for the standard
chi squared test with my1s3 degrees of freedom. If no ordering is

2 Ž .hypothesized, � would have to exceed 12.8 instead of 9.0 for significance
to be declared at the 0.005 level. Thus, if the hypothesized ordering actually
obtains in the population, Bartholomew’s test is more powerful than the
standard chi squared test. If the hypothesized ordering is not true, however,

2 Ž .the averaging process necessary before the calculation of � in 9.32 could
well reduce its magnitude to insignificance. Further analyses and generaliza-

Ž .tions of Bartholomew’s test have been made by Barlow et al. 1972 .

9.4. RIDIT ANALYSIS

Suppose that one has data available from two or more samples, with the
subjects from each sample distributed across a number of ordered categories.
Let k denote the number of categories. For example, let us consider
automobile accidents, with the phenomenon studied being the degree of
injury sustained by the driver. The degree of injury might be graded from
none through severe to fatal. Such a grading is clearly subjective and
probably not too reliable. It nevertheless seems preferable to the adoption of
the simple dichotomy, little or no injury versus severe or fatal injury, because
it both possesses some degree of reliability and succeeds in describing the
phenomenon more completely than the cruder yes-no system.

There exists the problem, however, of summarizing the data and making
comparisons among different samples in an intelligible way. When two
samples are being compared, the data may be arrayed as in Table 9.7. The

Ž .proportions p , . . . , p represent the frequency distribution in sample 1,11 k1
Ž .and the proportions p , . . . , p represent the frequency distribution in12 k 2
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Table 9.7. Relati©e frequency distributions from two samples

Sample 1 Sample 2 Combined Sample
Ž . Ž . Ž .Outcome Category sample sizesn sample sizesn sample sizesn1 2 .

1 p p p11 12 1
2 p p p21 22 2. . . .. . . .. . . .
k p p pk1 k 2 k

Total 1 1 1

Ž .sample 2. The frequency distribution in the combined sample is p , . . . , p ,1 k
where

n p qn p1 i1 2 i2p s 9.37Ž .i n .

Ž .is1, . . . , k and nsn qn , the total sample size. The value of chi squared. 1 2
with ky1 degrees of freedom may be found using the formula

2kn n p ypŽ .1 2 i1 i22� s 9.38Ž .Ýn p. iis1

Ž .see Problem 9.4 , but crucial information on the natural ordering of the k
categories would be lost.

A frequently employed device is to number the categories from 0 for the
least serious to some highest number for the most serious, and then calculate
means and standard deviations and apply t tests or analyses of variance. This
device of concocting a seemingly numerical measurement system has many
drawbacks. For one thing, one is giving the impression of greater accuracy
than really exists. For another, the results one gets depend on the particular
system of numbers employed. The choice of a system is by no means a simple
one.

Consider again the study of automobile accidents, and suppose that we
have seven categories of injury, the first two being None and Mild, and the
last two, Critical and Fatal. The straightforward system of numbering assigns
the seven integers from 0 to 6 successively to the seven categories. This
system is hard to justify, for it implies that the difference between no injury
and a mild one is equivalent to the difference between a critical injury and a
fatal one. The latter difference is obviously more important, but this greater
importance can be picked up only by assigning a value in excess of 6 to the
final category. Just what this value should be can, however, only be decided

Ž .arbitrarily. If an underlying logistic model see Chapter 11 may be assumed,
Ž .a procedure due to Snell 1964 is appropriate. We return to the problem of

assigning scores to categories in Section 9.5.
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Table 9.8. An Illustration of the calculation of ridits for degrees of injury

Ž . Ž . Ž . Ž . Ž .Severity 1 2 3 4 5 sridit

None 17 8.5 0 8.5 0.047
Minor 54 27.0 17 44.0 0.246
Moderate 60 30.0 71 101.0 0.564
Severe 19 9.5 131 140.5 0.785
Serious 9 4.5 150 154.5 0.863
Critical 6 3.0 159 162.0 0.905
Fatal 14 7.0 165 172.0 0.961

For now, let us abandon the attempt to quantify the categories and instead
agree to work only with the natural ordering that exists. A technique that
takes advantage of this natural ordering is ridit analysis. Virtually the only
assumption made in ridit analysis is that the discrete categories represent
intervals of an underlying but unobservable continuous distribution. No
assumption is made about normality or any other form for the distribution.

Ž .Ridit analysis is due to Bross 1958 and has been applied to the study of
Ž . Žautomobile accidents Bross, 1960 , of cancer Wynder, Bross, and Hirayama,

. Ž .1960 , and of schizophrenia Spitzer et al., 1965 . A mathematical study of
Ž .ridit analysis was made by Kantor, Winkelstein, and Ibrahim 1968 . A

Ž .critique of ridit analysis has been offered by Mantel 1979 .
Ridit analysis begins with the selection of a population to serve as a

standard or reference group. The term ridit is derived from the initials of
‘‘relative to an identified distribution.’’ For the reference group, we estimate
the proportion of all individuals with a value on the underlying continuum
falling at or below the midpoint of each interval, that is, each interval’s ridit.

ŽThis initial arithmetic is illustrated in Table 9.8, using data from Bross 1958,
.p. 20 .

1. In general, column 1 contains the distribution over the various cate-
gories for the reference group. In Table 9.8, the distribution is over
seven categories of injury for the 179 members of a selected sample.

Ž .2. The entries in column 2 are simply half the corresponding entries in
Ž .column 1 .

Ž . Ž .3. The entries in column 3 are the accumulated entries in column 1 ,
but displaced one category downwards.

Ž .4. The entries in column 4 are the sums of the corresponding entries in
Ž . Ž .columns 2 and 3 .

Ž . Ž .5. The entries in column 5 , finally, are those in column 4 divided by the
total sample size, in this case 179.

The final values are the ridits associated with the various categories. The
ridit for a category, then, is nothing but the proportion of all subjects from
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the reference group falling in the lower-ranking categories plus half the
proportion falling in the given category. If, in the model of an underlying
continuum, we assume that the distribution is uniform in each interval, then
a category’s ridit is the proportion of all subjects from the reference group
with an underlying value at or below the midpoint of the corresponding
interval.

Given the distribution of any other group over the same categories, the
mean ridit for that group may be calculated. The resulting mean value is
interpretable as a probability. The mean ridit for a group is the probability
that a randomly selected individual from it has a value indicating greater
severity or seriousness than a randomly selected individual from the standard
group.

In our example, if this probability is 0.50, we infer that the comparison
group tends to sustain neither more nor less serious injuries than the
reference group. For the reference group itself, by the way, the mean ridit is
necessarily 0.50. This is consistent with the fact that, if two subjects are
randomly selected from the same population, then the second subject will
have a more extreme value half the time and will have a less extreme value
also half the time.

If the mean ridit for a comparison group is greater than 0.50, then more
than half of the time a randomly selected subject from it will have a more
extreme value than a randomly selected subject from the reference group. In
our example, we would infer that the comparison group tends to sustain more
serious injuries than the reference group. If, finally, a comparison group’s
mean ridit is less than 0.50, we would infer that its subjects tend to have less
extreme values than the subjects of the reference group.

As an example, consider the hypothetical data of Table 9.9, giving the
distribution of seriousness of injury to the driver when he was involved in an
accident and had been slightly intoxicated.

The mean ridit for a group is simply the sum of the products of observed
frequencies times corresponding ridits, divided by the total frequency. For

Table 9.9. Seriousness of injury sustained by slightly
intoxicated dri©ers of automobiles in©ol©ed in accidents

Severity Number Ridit Product

None 5 0.047 0.235
Minor 10 0.246 2.460
Moderate 16 0.564 9.024
Severe 5 0.785 3.925
Serious 3 0.863 2.589
Critical 6 0.905 5.430
Fatal 5 0.961 4.805

Total 50 28.468
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slightly intoxicated drivers the mean is

28.468
rs s0.57. 9.39Ž .50

Ž .Thus the odds are 4 to 3 s0.57r0.43 that a slightly intoxicated driver will
sustain a more serious injury than a driver from the reference group if both
are involved in accidents.

Ž .Selvin 1977 has shown how ridit analysis is closely connected with
so-called rank order analysis used in nonparametric statistics and thus how
standard errors of mean ridits can be found. Let N denote the number ofi
individuals from the reference group in category i, NsÝN the total numberi
of individuals in the reference group, n the number of individuals from thei
comparison group in category i, and nsÝn the total number of individualsi
in the comparison group. If the reference group is not too much larger than
the comparison group, the standard error of the mean for the comparison
group is given by

3Ý N ynŽ .1 nq1 1 i ise r s 1q q y .Ž . ( N' N Nqny1 N Nqn Nqny1Ž . Ž . Ž .2 3n

9.40Ž .

The two frequency distributions for the current problem are presented in
Table 9.10. The standard error of the mean ridit for slightly intoxicated

Ž .drivers involved in accidents is, by 9.40 ,

1 51 1 735,907
se r s 1q q y s0.045. 9.41Ž . Ž .( 179 179�228 179�229�228'2 150

Table 9.10. Frequency distributions from reference and comparison groups

Reference Group Comparison Group Total
Ž . Ž . Ž .Severity N n N qni i i i

None 17 5 22
Minor 54 10 64
Moderate 60 16 76
Severe 19 5 24
Serious 9 3 12
Critical 6 6 12
Fatal 14 5 19

Ž . Ž . Ž .Total 179 sN 50 sn 229 sNqn
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The significance of the difference between an obtained mean ridit and the
standard value of 0.5 may be tested by referring the value of

ry0.5
zs 9.42Ž .se rŽ .

to Table A.1 of the normal distribution. For our example,

0.57y0.50
zs s1.56. 9.43Ž .0.045

Because z failed to reach significance, we would have to conclude that the
seriousness of injuries to slightly intoxicated drivers might equal that of the
injuries to members of the reference group.

When N, the size of the reference group, is very large relative to that of
any possible comparison group, the standard error of the mean ridit simpli-
fies to

1
se r f . 9.44Ž . Ž .'2 3n

For the current data, this simple approximation yields an estimated standard
Ž .error of 0.041, slightly smaller than the correct value 0.045 from 9.41 .

As another example of the use of ridit analysis, suppose we have data on a
sample of 50 extremely intoxicated drivers who were involved in accidents,
and suppose that their mean ridit is 0.73. An important comparison is
between slightly and extremely intoxicated drivers. Instead of identifying a
new reference group, a simple approximation is to subtract one of the two

Ž .mean ridits from the other and add 0.50. Thus we obtain 0.73�0.57 q0.50
s0.66 as the chances that a driver who is extremely intoxicated will sustain a
more severe injury than one who is slightly so, when they are involved in
accidents. Problem 9.6 shows the rationale for this simple approximation.

If one mean ridit is based on N subjects and the other on N , the1 2
standard error is approximately

N qN' 1 2
se r y r s . 9.45Ž .Ž .2 1 2 3N N' 1 2

This formula provides a good approximation to the standard error of the
mean ridit for a single comparison group when N and n are of comparable

w Ž .xmagnitudes see expression 9.40 , provided N and n replace N and N . It1 2
o®erapproximates the standard error, but usually by only a very slight amount
w Ž . Ž .xsee Problem 9.5, parts c and d .



COMPARISON OF PROPORTIONS FROM SEVERAL INDEPENDENT SAMPLES204

With N sN s50, the approximate standard error is1 2

'100
se r y r s s0.06. 9.46Ž .Ž .2 1 '2 3�50�50

The significance of the difference between r and r may be tested by1 2
referring the value of

r y r2 1zs 9.47Ž .
se r y rŽ .2 1

to Table A.1. For our example,

0.73y0.57
zs s2.67, 9.48Ž .0.06

which indicates a difference significant at the 0.01 level. We can therefore
infer that extremely intoxicated drivers involved in accidents tend to sustain
more serious injuries than slightly intoxicated drivers involved in accidents.

The reader is warned of the possibility of an anomalous result using the
approximate approach just described for contrasting two comparison groups,
that is, the estimated probability may be less than zero or greater than unity.
Consider the hypothetical data in Table 9.11, where one frequency distribu-
tion is the mirror image of the other. It is easily checked using the ridits of
Table 9.8 that the two mean ridits are r s0.25 and r s0.89. The aboveA B

Ž .approach yields an impossible value of 0.89y0.25 q0.50s1.14 for the
probability that a randomly selected member of group B will sustain a more
severe injury than a randomly selected member of group A. Problem 9.6
reveals the difficulty with the approximation.

When, as in this hypothetical case, frequency distributions in the two
contrasted comparison groups are widely different, it is appropriate to ignore

Table 9.11. Hypothetical data on seriousness of injury
in two comparison groups

Severity Group A Group B

None 46 1
Minor 34 2
Moderate 9 3
Severe 5 5
Serious 3 9
Critical 2 34
Fatal 1 46

Total 100 100
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the original reference group entirely and to calculate the desired probability
as a mean ridit, with either of the two groups serving as the ad hoc reference
group. Problem 9.5 is devoted to the appropriate analysis of the data from
Table 9.11. We may also proceed as in the next section.

9.5.� LOGIT MODELS FOR QUALITATIVELY ORDERED OUTCOMES

The methods of Chapter 11 for polytomous logistic regression are applicable
here. Our purpose in this section is to illustrate the kind of results available
with these methods.

Consider the two columns of relative frequency distributions in Table 9.7.
Here we take the view that each column is an independent sample from a
multinomial distribution with sample sizes n and n , respectively, and true1 2

Ž . Ž .cell probabilities given by the vectors P , . . . , P and P , . . . , P , with11 k1 12 k 2
P q ���qP s1 for js1 and 2. The multinomial distributions can be1 j k j
reparameterized by an equivalent system of parameters which reflect the
qualitative ordering of the categories. One such system uses adjacent logit
parameters, defined by

Piq1 , jŽ j.L s ln for is1, . . . , ky1 and js1, 2. 9.49Ž .i Pi j

The adjacent logit parameter LŽ j. specifies the odds on an accident in groupi
Ž Ž j..j falling in category iq1 versus i as exp L for is1, . . . , ky1. This is alsoi

the conditional odds given that an accident in group j falls in either category
i or iq1.

For many applications, a very useful model specifies that the differences
between corresponding adjacent logits in groups 1 and 2 are constant:

LŽ2.yLŽ1.s� for is1, . . . , ky1. 9.50Ž .i i

Ž .Assumption 9.50 defines the proportional adjacent odds model, so named
Ž Ž2. .because the adjacent odds exp L in group 2 are proportional to thei

Ž Ž1. . Ž .adjacent odds exp L in group 1, with constant of proportionality exp � ,i
which is the common adjacent odds ratio:

P Piq1 , 2 iq1 , 1sexp � � for is1, . . . , ky1. 9.51Ž . Ž .P Pi2 i1

Ž .Model 9.50 gives � the interpretation of a shift parameter, indicating
how much moderate drinking shifts the log odds toward more serious injuries
at each categorical level of severity. Whether or not a single parameter �

Ž . Ž .suffices for each comparison in 9.50 or 9.51 is an empirical question.
When it does, the analysis is greatly simplified. Otherwise the complete set of

Ž . Ž Ž2. Ž1. .odds ratios exp � sexp L yL for is1, . . . , ky1 should be reported.i i i
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Using methods of Chapter 11, we can test the goodness of fit of the
proportional adjacent odds model. If we do not reject the assumption of

Ž .a constant difference in 9.50 , or of a common adjacent odds ratio
Ž . Ž . Ž .P rP r P rP sexp � , we can assess the null hypothesis ofiq1, 2 i2 iq1, 1 i1
homogeneous multinomial cell probabilities by testing H : �s0, and give a0

Ž .confidence interval for the common adjacent odds ratio exp � .
For the data in Table 9.10, the chi squared goodness-of-fit statistic for the

proportional adjacent odds model is � 2s3.67 on 5 df, indicating a good fit.
There are 5 df because there are 6 adjacent logit parameters for each
comparison group under the alternative hypothesis of no relationship, for 12
parameters, minus 7 parameters under the null hypothesis, comprising the 6
adjacent logit parameters for one of the groups plus the parameter of
interest, �. The difference in the number of parameters, 12y7s5, is the
number of degrees of freedom. Table 9.12 shows the observed and fitted
frequencies and proportions. Although the observed adjacent odds ratios
show substantial variation, the fitted frequencies are, on the whole, quite

Žclose to the sample frequencies, yet have a constant adjacent odds ratio. The
largest relative deviation between observed and fitted frequencies occurs in

.the critical severity category. The chi squared statistic indicates that such
small-sample fluctuations are not uncommon.

ˆThe maximum likelihood estimate of � is �s0.1568, corresponding to a
ˆŽ .constant adjacent odds ratio of exp � s1.17. The estimated standard error

$ $ˆ ˆ ˆ ˆŽ . Ž .of � is se � s0.0924, and the Wald z-score, zs�rse � s1.70, with
two-tailed p-value equal to 0.09, slightly less than, but in general agreement

Ž .with, that of the ridit z-score 9.43 at the 0.05 level of significance. An
$ˆ ˆŽ .approximate 95% confidence interval for � is given by ��1.96 se � ,

Ž .yielding y0.024, 0.338 , and exponentiating the interval endpoints yields
Ž .0.98, 1.40 as an approximate 95% confidence interval for the common
adjacent odds ratio.

Another version of the proportional odds model, discussed by McCullagh
Ž . Ž .1980 , replaces the adjacent logits in 9.49 with cumulati®e logit parameters,
defined by

Giq1 , lŽ j.H s ln for is1, . . . , ky1 and js1, 2, 9.52Ž .i Fi j

where F sP q ���qP is the cumulative probability of a person in group ji j 1 j i j
having an injury in category i or any category less severe, and G siq1, j
P q ���qP is the cumulative probability of having an injury strictlyiq1. j k j

Ž .more severe than category i. The model corresponding to 9.50 is now

H Ž2.yH Ž1.s�
� for is1, . . . , ky1 9.53Ž .i i

and is called the proportional cumulati®e odds model. The numerical results
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Ž .of fitting 9.53 to the data of Table 9.10 are very similar to those for the
proportional adjacent odds model, and are not presented.

There are other ways to model multinomial responses, which are discussed
in Section 11.4. The reader may find Figure 11.9 with a conceptual diagram
of each model helpful.

There is a relation between the proportional adjacent odds model and the
problem of assignment of scores 1, 2, 3, . . . to categories that was raised in
Section 9.4. To motivate the discussion, suppose we ask whether or not
sample 2 could be considered to have arisen as a random sample without
replacement from the finite population consisting of the two samples pooled
together. To operationalize this further, consider assigning any set of specific
scores a for is1, 2, . . . , k to the categories, and then ask whether or not thei
difference in mean scores would be statistically significant between the two
groups. We could address this question with a randomization test; it remains
to decide on a set of scores.

Our choice of scores could be guided by the locally most powerful score
test for a given model thought to apply under the alternative hypothesis. The
conditional score test for the null hypothesis H : �s0 under the proportional0

Ž . Ž . Žadjacent odds model 9.50 or 9.51 takes the form with continuity correc-
.tion

k 1 1 1
a p yp y qŽ .Ý i i2 i1 ž /2 n n1 2 n y1is1 .z s , 9.54Ž .c ( n .1 1

s q(a ž /n n1 2

where the scores a multiplying the differences in relative frequencies takei
the simple form of integer scoring,

a s i is1, . . . , k 9.55Ž . Ž .i

Ž . Ž .see Problem 9.7 . In 9.54 the denominator contains the finite-population
standard deviation of the scores, s , given in squared form bya

n .
2

a yaŽ .Ý j k
js1 22s s s p a ya , 9.56Ž .Ž .Ýa i i wn . is1

Žwhere a is the average score per injury over all n. observations a denotingj
.the score for the jth injury out of n. , equivalently expressed as a weighted

average score per category, with weights given by the marginal proportions
p :i

n k.

a s a rn s p a . 9.57Ž .Ý Ýw j . i i
js1 is1
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The test statistic z is referred to the standard normal distribution under H .c 0
�Ž . 41r2 Ž .The factor ny1 n in 9.54 reflects the exact conditional variance of. .

the difference in mean scores given fixed margins and may be omitted for
Ž .large sample sizes n and n . The same statistic z in 9.54 is used as a1 2 c

normal approximation to the exact randomization or urn model test that is
Ž .used to assess the randomness hypothesis using scores 9.55 .

We conclude from these considerations that assignment of the simple
scores a s i to the severity categories can be justified as an optimal scoringi
for the locally most powerful score test with respect to an assumed propor-
tional adjacent odds model. Use of these scores need not imply that we are
attempting to equate the severity difference of level 0 versus 1 with level
ky1 versus k; it is, rather, that we behave in the same way simply for
purposes of optimizing the power of the hypothesis test in a certain direction
Ž .that of proportional adjacent odds .

Ž .For the proportional cumulative odds model 9.53 , the locally optimal
scores are

n q1i .a sn q ���qn q is1, . . . , k . 9.58Ž . Ž .i 1 . Ž iy1. . 2

These scores are the same as the tied ranks used in the Wilcoxon rank sum
test with all outcomes in the same severity category tied. Note that they
depend on the marginal frequencies N qn sn qn sn in the notationi i i1 i2 i .
of Section 9.4 and Problems 9.4 and 9.7, and so vary from sample to sample.

Ž . Ž .For ridit analysis, 9.54 gives the ridit z-score 9.42 with use of the ridit
scores. The ridit scores depend only on the reference group proportions, and
therefore not on all the data. If the ridits were computed on the basis of the
combined group of data, i.e., from n , . . . , n , the ridit scores would be1 . k .

Ž .equivalent to those in 9.58 .
Ž . Ž . Ž .The score statistic in 9.54 � 9.56 was introduced by Cochran 1954 and

Ž . Ž .Armitage 1955 . It was discussed by Mantel 1963 and also goes under the
Žname of an extended Mantel-Haenszel statistic ‘‘extended’’ referring to the

.use of a given scoring system . The urn model is a commonly used device for
Ž .testing null hypotheses. See Gail, Tan, and Piantadosi 1988 for an applica-

Ž .tion in clinical trials; Hatch et al. 1990 give an application in epidemiology;
Ž . Ž .and Levin and Robbins 1983 and Finkelstein and Levin 2001 give some

applications in the law.

9.6.� THE EFFECT OF RANDOMNESS IN TRUE PROPORTIONS

In Section 9.1 we presented the chi-squared test of homogeneity of m
2 Ž .binomial proportions. When the � statistic 9.4 is large, we infer that two

or more of the true proportions differ among the populations, subgroups, or
units sampled. How we further interpret the data depends on whether we
view the true proportions as constants or as random variables. When viewed
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as constants, we interpret the differences as indicating systematic or fixed
effects, the causes of which one tries to discover and explain. In other
situations, especially those in which the sampling units are numerous and
have many sources of variability, it makes sense to regard the true propor-
tions themselves as random variables, and to view differences between them
as random effects. As the search for systematic explanations for such differ-

Ž .ences continues, additional statistical tasks arise: i to characterize andror
Ž .quantify the unexplained random variation, ii to estimate the population

average proportion with appropriate standard errors reflecting that variation,
Ž .and iii to provide estimates for individual true proportions or odds which

might improve upon the individual sample proportions by taking advantage
of the ‘‘strength in numbers’’ in the ensemble of sampling units.

For example, during her reproductive years, a woman may have a number
of pregnancies that result in a livebirth and some that result in other

Ž .outcomes such as stillbirth, miscarriage spontaneous abortion , or induced
abortion. The proportion of livebirths among pregnancies could be called the
woman’s livebirth rate. This is a sample version of what demographers call a

Ž .pregnancy outcome probability Mode, 1985 on a per woman basis, or the
woman’s true livebirth rate. In a sample of m women with a given number of
pregnancies, say n with nG2, the livebirth rates for individual women can be
observed empirically to have a variance larger than that implied by the
binomial distribution with index n and parameter 	 , where 	 is the average
livebirth pregnancy outcome probability in the group of women under consid-
eration. A natural interpretation of this empirical fact is that, for whatever
reasons, true livebirth rates vary from woman to woman as a random variable
in the population. In that case, the average true livebirth rate should be

� Ž . Ž .41r2estimated with a standard error greater than 	 1y	 r mn , which
reflects only binomial variation. It is also of interest to estimate the true
livebirth rate for a woman who has had x miscarriages among her first n
pregnancies, for counseling on the chances of delivering a livebirth on her
next pregnancy.

In the context of a clinical trial, subjects evaluated posttreatment with n
binary assessments of health status in a given period would provide m
independent sample proportions in each treatment group. To properly test
the significance of the treatment effect, a random effects model would be
required to allow for the natural variation in true health status from subject
to subject. This and the previous example illustrate the large sparse case in
which the number of proportions, m, is large but each proportion is based on
a small number of binary observations, n.

In general, whenever observations have a hierarchical structure with
nontrivial statistical variation operating at two or more levels, such as
independent binary trials within subjects and subjects within populations,

Ž .true proportions at the lower level level 1 become random variables at the
Ž .higher level level 2 . As a result, a test of the hypothesis of homogeneity for

m binomial proportions ought to reject that hypothesis because the true
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proportions do truly differ. This is the view adopted in Section 10.8 on
random effects meta-analysis. In that application, subjects constitute the

Ž .sampling unit within studies level 1 , and studies constitute the sampling unit
within groups of studies or within the hypothetical universe of all studies
Ž .level 2 . The fixed effects estimated within a single study become random
effects across the group of studies. For example, the significant variation in
the proportion of smokers among the studies of lung cancer patients pre-

Žsented in Table 9.2 or between the groups of studies identified as nonhomo-
.geneous might reflect random, unexplained variation across study popula-

tions. In that case, estimates of the average proportion of smokers in the
universe of studies of lung cancer patients should reflect this additional
source of variation.

Drawing statistical inferences when parameters are regarded as random
variables is known as Bayesian inference, and also goes under the name of
random effects modeling. The foregoing examples illustrate the empirical
Bayes problem of estimation, in which there are many units each providing
sample data governed by individual true parameters, and in which the data
themselves are used to derive information about the distribution of the true
parameters and other quantities of interest. Parametric empirical Bayes
methods work with specific parametric families of distributions for the
random parameters, and use the data to estimate the hyper-parameters of the
assumed family. This in turn allows estimation of other quantities of interest.
The choice of parametric families should be guided by experience with
previous data sets of similar nature. General empirical Bayes methods pro-
vide nonparametric estimates of the quantities of interest directly, without
first estimating the actual prior distribution of true parameters. Although
they require a larger number of sampling units than parametric Bayes
methods for a given level of precision, general empirical Bayes methods,

Ž .when available, are attractive because they provide valid consistent esti-
mates of quantities of interest for any prior distribution of true parameters in
the population, even in ignorance of that distribution.

Subjecti®e Bayesian inference refers to the use of subjective probability
distributions to quantify a person’s beliefs about a parameter regarded as a
random variable. The subjective prior distribution governing the random
parameter is to be identified through introspection or structured interview to
elicit an individual’s odds on the possible values he or she believes the true
parameter may assume. For a subjective Bayesian analysis to be coherent, the
prior distribution should reflect the subjective views of the decision-maker,
not the convenience of the analyst. Therefore the common practice of
adopting a simple prior distribution for mathematical convenience is not
recommended except as illustrative.

Bayesian methods are enjoying renewed interest thanks to the continuing
development of modern computers and algorithms for executing the complex
computations required for applied problems. A full treatment of Bayesian
methods is beyond the scope of this book. The interested reader may consult
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Ž . Ž . Ž .the textbooks by Berry 1996 , Box and Tiao 1992 , Carlin and Louis 2000 ,
Ž . Ž . Ž .Gelman et al. 1995 , Kadane 1996 , and Press 1989 . The subject of

empirical Bayes inference and the closely related problem of compound
decision theory was pioneered by Herbert Robbins; see, for example,

Ž .Robbins 1956 and the collection of Robbins’ papers selected by Lai and
Ž .Siegmund 1985 . Interesting applications of general empirical Bayes meth-

Ž . Žods are contained in Robbins 1977, 1993 , Robbins and Zhang 1988, 1989,
. Ž .and 1991 , and Finkelstein, Levin, and Robbins 1996a, 1996b . The paramet-

ric empirical Bayes approach was popularized by Efron and Morris in a series
Ž .of influential papers 1971, 1972a, 1972b, 1973a, 1973b, 1975 . Below we

present a few results to give the reader a taste of the problems encountered
and the analyses that are possible.

9.6.1. Estimation of the Marginal Mean Proportion

Suppose we observe m binomial sample proportions p , . . . , p , based on1 m
sample sizes n , . . . , n , respectively. To simplify the notation, we write n1 m i
instead of n and nsn q ���qn instead of n in this section. We assumei . . 1 m . .
for simplicity that the true proportions P vary at random, independently ofi
the sample sizes n . If a correlation did exist between P and n , as evidencedi i i
by a correlation between the observed p and n , the analysis below wouldi i
require stratification on the binomial index. For example, the independence
assumption might not hold for a pregnancy outcome analysis for women with
complete reproductive histories: women with a higher likelihood of a live-
birth versus other pregnancy outcomes may complete their desired family size
with fewer pregnancies than those with a higher risk of termination. Esti-

Ž .mates of 	 for women of specified gravidities numbers of pregnancies
would be obtained separately.

Ž � . Ž � . Ž .We can write E p n , P sP and Var p n , P sP 1yP rn for thei i i i i i i i i i
Ž � .sample proportions from units at the first level, and E P n s	 andi i

Ž � . Ž . 2Var P n s	 1y	 D at the second level. We choose this form for thei i
Ž .variance of P because 	 1y	 is the maximum possible variance for ai

random variable on the unit interval with mean 	 ; thus D2 is a constant
between 0 and 1. We first consider estimating 	 , the population average true
proportion, and D2. It follows from the assumptions that

� � � �E p n sE E p n , P n sE P n s	 9.59� 4 Ž .Ž . Ž . Ž .i i i i i i i i

and
� � � � �Var p n sE Var p n , P n qVar E p n , P n� 4 � 4Ž . Ž . Ž .i i i i i i i i i i

� �sE P 1yP rn n qVar P n� 4Ž . Ž .i i i i i i

	 1y	 1q n y1 D2Ž . Ž .� 4is 9.60Ž .ni

Ž .see Problem 9.8 .
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m m mThe pooled average proportion is psÝ n p Ý n sÝ n p n , asis1 i i is1 i is1 i i .
Ž .in 9.2 ; it is a weighted average of the sample proportions, with weights

n rn . This p is an unbiased estimate of 	 , because given the collection ofi .
Ž . Ž � .sample sizes, which will be denoted by n, we have from 9.59 that E p n s

m Ž � .Ý n E p n rns	 . The variance of p isis1 i i i .

2	 1y	 1q n y1 DŽ . � 4Ž .w�Var p n s , 9.61Ž .Ž . n .

where n is the weighted average sample size,w

m m mni 2n s n s n n 9.62Ž .Ý Ý Ýw i i iž /n .is1 is1 is1

Ž . Ž .see Problem 9.9 . Expression 9.61 shows that compared to the fixed-effects
Ž .variance, 	 1y	 rn , in the presence of random variation in true propor-.

tions, the variance of p is magnified by the ®ariance inflation factor, VIFs
2 2Ž .1q n y1 D . Note that D can be interpreted as an intraclass correlationw

Ž .coefficient see Chapter 15 . The larger the average sample size n , or thew
larger the intraclass correlation coefficient D2, the greater is the variance
inflation factor. The variance inflation factor is also called an o®erdispersion
parameter.

To estimate 	 with minimum variance when the n ’s are not all equal, wei
must generally use a different weighted average, one that uses weights

Ž . 2proportional to the reciprocal of 9.60 . Assuming 	 and D were known,
the optimal estimator would be

m m

	s w p w 9.63Ž .ˆ Ý Ýi i i
is1 is1

with
niw s . 9.64Ž .i 2	 1y	 1q n y1 DŽ . Ž .� 4i

ŽSee Chapter 10, Section 1 for some general theory related to weighted
.average estimators with minimum variance. The variance of 	 would beˆ

m
2 �w Var p nŽ .Ý i i

1is1�Var 	 n s sŽ .ˆ m2m
wÝ iwÝ iž / is1is1

1
s . 9.65Ž .m niÝ 2	 1y	 1q n y1 DŽ . Ž .� 4iis1
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Ž . Ž .Problem 9.10 demonstrates that 9.65 is no greater than 9.61 and is strictly
Ž . Ž .less than 9.61 unless all n ’s are equal, in which case 9.63 is the same as p.i

Ž . Ž .In order to use the formulas 9.61 � 9.65 for standard errors and confi-
dence intervals, we need to estimate the unknown variance components
Ž . 2 Ž .	 1y	 and D . Estimates of these quantities may be used in 9.64 to

Ž .produce approximately optimal weights call them w , and then the weights˜i
Ž .w may be used in 9.63 to produce an estimate of 	 with approximately˜i

minimum variance:

m m

	s w p w . 9.66Ž .˜ ˜ ˜Ý Ýi i i
is1 is1

The standard error of 	 is estimated by˜

& 1
�se 	 n s . 9.67Ž .Ž .˜

mÝ w' ˜is1 i

Ž . 2To estimate 	 1y	 and D we proceed as follows. Let

2m2 Ý n p ypŽ .� pq is1 i iQ s s , 9.68Ž .1 my1 my1

2 Ž .where � is the chi squared statistic 9.4 . Problem 9.11 asks the reader to
show that

� 2E Q n s	 1y	 1qc D , 9.69Ž . Ž .Ž . Ž .1 1

where

n ym y n y1 m n y1 y n y1Ž . Ž . Ž . Ž .. w a wc s s , 9.70Ž .1 my1 my1

Ž .In 9.70 , n sn rm is the arithmetic-average sample size, which is alwaysa .
less than or equal to the weighted-average sample size n .w

Now let

n .Q sp 1yp . 9.71Ž . Ž .2 n y1.

Problem 9.12 is to show that

� 2E Q n s	 1y	 1yc D , 9.72Ž . Ž .Ž . Ž .2 2

where

n y1 n y1w wc s s . 9.73Ž .2 n y1 mn y1. a
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Ž .Note that because m appears in the denominator of 9.73 , c becomes small2
Ž .as m becomes large, i.e., Q is approximately unbiased for 	 1y	 for a2

Ž .large number of proportions. By solving the pair of equations 9.69 and
Ž . Ž . 2 Ž .9.72 for 	 1y	 and D , it follows that an unbiased estimate of 	 1y	
is given by

c Q qc Q1 2 2 1 9.74Ž .c qc1 2

Ž . Ž . 2and an unbiased estimate of Var P s	 1y	 D is given by

& Q yQ1 2Var P s . 9.75Ž . Ž .c qc1 2

Thus a ratio-unbiased estimate of D2 is given by

& Q yQ1 22D s , 9.76Ž .c Q qc Q1 2 2 1

Ž . Ž . Ž . Ž � .and substituting 9.74 and 9.76 in 9.61 yields an estimate of Var p n :

&& c Q qc Q1 2 2 1 2Var p s 1q n y1 D n . 9.77Ž . Ž .Ž .½ 5w .c qc1 2

This estimate is unbiased, because it can be written equivalently as

c q n y1 Q y n y1 yc Q� 4 � 4Ž . Ž .2 w 1 w 1 2Var p sŽ . n c qcŽ .. 1 2

n m.n y1 Q y n yn QŽ . Ž .w 1 w a 2n y1 my1.
s , 9.78Ž .n m.n n y1 y n ynŽ . Ž .. w w a½ 5n y1 my1.

Ž . Ž .and taking expectations yields 9.61 . In the above expression, and in 9.71
Ž .and 9.73 , n may be used instead of ny1 with negligible bias when n is. . .

large.
&

2If we ignore terms of order 1rn , we can write D alternatively as.

& Q yQ1 22D s c Q qc Q1 2 2 1

2 n y1 2� �. y1 y1ž / ž / ž /my1 n my1.
s f .2 2n y1� �.c qc c qc1 2 1 2ž / ž /ž /my1 n my1.
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From this we arrive at the following large-sample estimate of the variance
2Ž . Žinflation factor, VIFs1q n y1 D continuing to ignore terms of orderw

.1rn. :

� 2

yb& n yn mmy1 w aVIFs , where bs 9.79Ž .1yb my1n y1w

is a correction for imbalance in the sample sizes n . If the sample sizes are alli
equal to n, say, then c sn y1sn y1sny1, the unbiased estimate of1 w a

Ž . Ž .the variance of p in 9.77 reduces to Q rnsQ r mn , and the estimate for1 . 1
Ž . 2 Ž .the VIF in 9.79 reduces simply to � r my1 .
Ž . Ž .Although 9.69 and 9.72 show that the expected value of Q is at least as1

large as the expected value of Q , the sample difference of Q and Q in the2 1 2
Ž . 2unbiased estimator 9.76 for D may be negative. Indeed, if there were no

&
2 2Ž .heterogeneity in the true proportions D s0 , we would expect D to be

negative roughly half of the time. Because D2 must be nonnegative a
&

2 Ž .truncated version of D is often used in place of 9.76 :

& &
q2 2D smax D , 0 .Ž .

&
2 2When D �0, the fixed effects hypothesis D s0 is usually adopted; p

Ž . Ž .estimates the now constant true proportion P, and, from 9.61 and 9.72 ,
&

2Ž . Ž . Ž � . Ž .Q rnsp 1yp r ny1 estimates Var p n . While 9.77 with D s0 is an2 .
2Ž � .unbiased estimate of Var p n under the fixed-effects hypothesis D s0,

Ž . Ž . Ž � .generally p 1yp r ny1 is a more precise estimate of Var p n than is
&

2Ž . Ž .9.77 with D set equal to zero. For the weighted average estimator 9.66 ,
& &

q2 2 Ž .when D �0 and D s0 is used instead, the weights 9.64 are proportional
Ž . Ž .to n , 9.66 reduces to p, and the variance formula 9.65 reduces toi

Ž . Ž . Ž .	 1y	 rn , which again may be estimated by Q rnsp 1yp r ny1 .. 2 . .
Several models for overdispersed binomial or multinomial data have been

Ž .considered in the literature; see, e.g., Banerjee and Paul 1999 and Morel
Ž . Ž .and Nagaraj 1993 . Morton 1991 represents an overdispersed multinomial

as a set of independent overdispersed Poisson random variables conditioned
on a fixed sum. Analyses of such data have been discussed in the two-sample

Ž . Ž .problem by Neerchal and Morel 1998 and Cook and Lawless 1991 , and in
Ž .log linear models by Waller and Zelterman 1997 . Goodness-of-fit test

statistics of a multinomial model against overdispersion alternatives have
Ž . Ž .been proposed by Kim and Margolin 1992 , Paul, Liang, and Self 1989 ,

Ž . Ž .Wilson 1989 , and Whittemore et al. 1987 , and, in the case of large sparse
Ž .data sets, by Zelterman 1987 . Overdispersion models appear in diverse

Žapplication areas, particularly in toxicology Ibrahim and Ryan, 1996;
.O’Hara-Hines and Lawless, 1993 .
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Table 9.13. Pregnancy outcomes for women with one, two, or three pregnancies

LivebirthNo. of No. of No. of
Frequency of Livebirths ProportionGravidity Women Pregnancies Livebirths

Ž . Ž . Ž . Ž . Ž .gsn 0 1 2 3 m n X p sX rni g g. g . g g . g .

1 433 737 � � 1170 1170 737 0.630
2 168 436 368 � 972 1944 1172 0.603
3 52 215 229 131 627 1881 1066 0.567

Total 653 1388 597 131 2769 4995 2975 0.596

9.6.2. An Example

To illustrate these ideas, consider the data in Table 9.13 from a case-control
Ž .study of spontaneous abortion Kline et al., 1995 . Cases were women

presenting to one of three New York City hospitals with a miscarriage
Ž .spontaneous abortion . Controls were women who were recruited from a
prenatal care setting before 22 weeks gestation and delivered at 28 weeks or
later. The table presents livebirth outcomes from 2,769 women in the control
group with one, two, or three pregnancies prior to the index pregnancy that
led to their enrollment in the study.

The first row gives the frequencies of women whose only prior pregnancy
resulted in 0 or 1 livebirth. The second row gives the frequencies of women
having 0, 1, or 2 livebirths for women with two pregnancies, and the third row
similarly gives frequencies of women having 0, 1, 2, or 3 livebirths among
those with three pregnancies. In the first row, the estimated average livebirth
proportion is p s0.63; in the second row, the pooled estimate is p s0.60,1 2
and in the third row, the pooled estimate is p s0.57. Do the average3
livebirth outcome probabilities differ significantly by gravidity?

The first row comprises only binary outcomes, so the standard error of the
1r2� Ž . Ž .4livebirth proportion for gravidity 1 is p 1yp r n y1 s0.0141. For1 1 1.

gravidity 2, we have Q s0.2548, Q s0.2395, c s1, and c s1r1169s1 2 1 2
Ž .0.000515, so that from 9.75 , the estimated variance of P is 0.0153, implying

that the true livebirth proportions have a standard deviation of 0.1237. The
&

2 Ž .variance inflation factor is estimated as VIFs� r my1 fQ rQ s1.064,1 2
1r2Ž . Ž .and from 9.78 , the standard error of p is estimated as Q rn f2 1 2 .&

1r2� 4VIF �Q rn s0.0114. For gravidity 3, we have Q s0.2650, Q s0.2456,2 2 . 1 2
Ž .c s2, and c s2r1880s0.00106, so that from 9.75 , the estimated variance1 2

Ž .of P is 0.2650y0.2456 r2.00106s0.00969, implying that the true livebirth
proportions have a standard deviation of 0.0985. The variance inflation factor

&
is estimated as VIFfQ rQ s1.079, and from this the standard error of p1 2 3
is estimated as 0.0119.

The difference between livebirth proportions for gravidity 1 and 2 is
2 2 1r2Ž 4p yp s0.027 with standard error 0.0141 q0.0114 s0.0181, so the1 2

difference has z-score zs0.027r0.0181s1.49 and is not statistically signifi-
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cant. If we estimate a single pooled livebirth proportion, p , for gravidities1q2
Ž . Ž .1 and 2, we find p s 737q1172 r 1170q1944 s0.613. Now Q s1q2 1

Ž . Ž .0.2432, Q s0.2373, c s0.4558 from 9.70 , and c s0.0002916 from 9.73 ,2 1 2
Ž . Ž . Žso that from 9.75 , the estimated variance of P is 0.2432y0.2373 r 0.4558
.q0.0002916 s0.01294, implying that the true livebirth proportions would

have a standard deviation of 0.1137. The variance inflation factor is estimated
&

Ž . Ž .from 9.79 with bs0.2732 as VIFs1.034. From this, or directly from 9.77 ,
the standard error of p is estimated as 0.008877.1q2

Ž .For comparison, the weighted average 9.66 for gravidity 1 and 2 is
Ž .	s0.613, with optimal weights from 9.64 estimated by substituting the˜

Ž . 2 Ž . Ž .estimates of 	 1y	 and D from 9.74 and 9.76 , respectively. 	 is˜
essentially the same as p , and the standard error of 	 is 0.008874,˜1q2
trivially less than that of the pooled estimate p . The variance reduction is1q2

Ž .negligible in this case because the n ’s only take values 1 or 2, and Var Pi
is small.

The methods of Section 10.1 may be used to test the homogeneity
hypothesis 	 s	 s	 with a 2 df test. Here we simply point out that p is1 2 3 3$

Ž . Ž .significantly less than p with critical ratio zs p yp rse p yp1q2 1q2 3 1q2 3
Ž . Ž 2 2 .1r2s 0.613y0.567 r 0.008877 q0.0119 s3.10. If we do not pool the

livebirth proportions for gravidity 1 and 2, we find p to be significantly3
Ž .smaller than both p and p , with z-scores 3.41 p�0.001 and 2.181 2

Ž .p�0.05 , respectively.

9.6.3. General Empirical Bayes Estimation of Posterior Odds, and
a Test of Homogeneity of Proportions in the Large Sparse Case

Ž .Next we consider estimation of the odds Pr 1yP for subjects with given
observed outcomes. Suppose that, given n and P , X has a binomiali i i
distribution with index n and parameter P , and write p sx rn for ob-i i i i i
served X sx . The following fundamental relation, due to Herbert Robbins,i i
is called the general empirical Bayes identity for binomial distributions. See

Ž . Ž . Ž .Robbins 1956 , Cressie 1982 , and Robbins and Zhang 1991 . It states that
for js0, . . . , n y1,i

ni�P X s jq1 nŽ .i i ž /jq1PiE n , X s j si iž /1yPi ni�P X s j nŽ .i i ž /j

�P X s jq1 nŽ . jq1i is . 9.80Ž .ž /n y j�P X s j nŽ . ii i
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Ž .Problem 9.13 gives a proof of 9.80 . In words, the identity says that for the
group of subjects with j successes out of n trials, the average of the truei

Ž .odds is given by the expression on the right-hand side of 9.80 . The beauty of
the identity is that it expresses the posterior expected odds, an otherwise
unobservable quantity, in terms of the marginal probabilities of the frequen-
cies X , which can be estimated directly from the data when m is large.i

Ž .For the data in the second row of Table 9.13, the values of 9.80 for js0
Ž . Ž .and 1 are 436r2 r168s1.298 and 368r 436r2 s1.688. We infer that the

average odds on a livebirth among those with one previous livebirth out of
two pregnancies are about 30% greater than the average odds on a livebirth
among those with no livebirths in two pregnancies. Estimates of the average
livebirth probabilities are considered below.

Ž .The fundamental identity 9.80 suggests that if there is random variation
in the true P, the quantities on the right-hand side should increase as j
increases from 0, because in the expected odds on the left-hand side, the

w xconditioning on the event Xs j selects for those individuals with increas-
ingly larger values of P. This assertion can be proved by Jensen’s inequality.
If there is no heterogeneity in P, the quantities on the right-hand side
remain constant, which can be verified by substituting the terms from the
binomial probability function. These considerations can be used to construct
a test for heterogeneity in P in the large sparse case. Such a test is useful

Ž .because the usual chi squared statistic 9.4 for m proportions does not have
Žgood power in the large sparse case because there are too many degrees of

. Ž . 2freedom ; in fact, 9.4 does not even have a � distribution in this case
Žbecause the sample sizes n need to be large with m remaining fixed, justi

.the opposite of the large sparse case .
Other methods for testing homogeneity in the large-sparse case have been

Ž .proposed see, e.g., Paul et al., 1989 . A simple test is provided by the chi
squared goodness-of-fit statistic for the hypothesis that the multinomial cell
probabilities underlying the frequencies in Table 9.13 agree with the binomial
probability function. The goodness-of-fit test will generally have degrees of
freedom more than 1, however, so a 1 df statistic that capitalizes on the

Ž .increasing sequence of posterior expected odds in 9.80 for js0, . . . , n y1i
due to random variation in P should do better.

To motivate the test, consider again the second row of data in Table 9.13.
Ž . Ž . Ž . � Ž .4The identity states that 2 P X s2 rP X s1 GP X s1 r 2 P X s0 withi i i i

equality if and only if there is no variation in the true proportions, in which
2 j 2yjŽ . Ž . Ž . Ž . Ž .case P X s j s 	 1y	 and 	r 1y	 s2 P X s2 rP X s1 si i iž /j

Ž . � Ž .4P X s1 r 2 P X s0 . When m is large, we may test whether the samplei i 2
quantity

2 f f22 21
̂s ln y ln s ln f y2 ln f q ln f q ln 4 9.81Ž .20 21 22f 2 f21 20
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has zero mean, where f , f , and f are the frequencies of women of20 21 22
gravidity 2 with 0, 1, and 2 livebirths, respectively, with f q f q f sm .20 21 22 2

˜By the delta method, 
 has estimated standard error

$ 1 4 1˜se 
 s q q , 9.82Ž .Ž . ( f f f20 21 22

$˜ ˜Ž .and the critical ratio zs
rse 
 can be referred to the standard normal
˜distribution. For the data in Table 9.13, we find 
s ln 1.688y ln 1.298s

$
1r2˜Ž . �Ž . Ž . Ž .40.2631 with se 
 s 1r168 q 4r436 q 1r368 s0.1336 and critical

ratio zs0.2631r0.1336s1.97. A one-sided test is appropriate here due to
Ž .the inequality in 9.80 . We infer that the 30% increase in odds mentioned

above for those with one livebirth relative to those with no livebirths is
significant at the one-sided 0.025 level.

The empirical Bayes test for heterogeneity of proportions in the general
large sparse case proceeds as follows. The form of the fundamental identity
Ž .9.80 leads us to parameterize the multinomial distribution governing the

Ž .frequencies of outcomes f for given g by adjacent logits see Section 9.5 .g j
Under the null hypothesis of no variation in P, the adjacent logits plus

�Ž . Ž .4offsets ln jq1 r gy j are constant in j for js0, . . . , gy1. For a wide
variety of prior distributions for P under the alternative hypothesis, these
quantities increase in a remarkably linear manner. It is thus reasonable to fit
a linear model in j to the adjacent logits plus offsets and test the hypothesis
of zero slope versus the one-sided alternative that the slope is positive.
Assuming a common slope for all gravidity groups gG2 yields a test with a

Ž . Ž .single degree of freedom see Parides, 1995 . Levin 1992 uses the same
method to derive a test of odds-ratio homogeneity with improved power in
the large sparse case of many fourfold tables with small margins.

Fitting the logit model

g
�P X s jq1 n sgŽ .i i ž /jq1

ln s� q� j for gs1, 2, 3gg
�P X s j n sgŽ .i i ž /j

and js0, . . . , gy1 9.83Ž .
$ˆ ˆŽ .to the data in Table 9.13, we find �s0.1866 with se � s0.0745. The

$ˆ ˆŽ .critical ratio zs�rse � s2.50 has one-tailed p-value 0.006. Compare this
with the chi squared goodness-of-fit statistic for multinomial cell probabilities
given by the binomial probability function with index g and parameter p .g
For gs2, chi squared is 3.94 on 1 df, and for gs3, chi squared is 7.72 on 2
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Table 9.14. Obser©ed and fitted cell probabilities for the empirical Bayes
( )logit model 9.83 and the binomial model

Ž .Cell Probabilities for Frequency of LivebirthsGravidity
Ž .gsn 0 1 2 3i

Observed 1 0.370 0.630 � �
Ž .Model 9.83 0.370 0.630 � �

Binomial model 0.370 0.630

Observed 2 0.173 0.449 0.379 �
Ž .Model 9.83 0.168 0.457 0.374 �

Binomial model 0.160 0.480 0.360 �

Observed 3 0.083 0.343 0.365 0.209
Ž .Model 9.83 0.097 0.308 0.393 0.202

Binomial model 0.084 0.319 0.418 0.182

Ž .df. The sum of these is 11.66 on 3 df p-value 0.009 . That the p-value is not
as small as that for the one-sided critical ratio test for the slope coefficient �

Ž .in model 9.83 reflects the greater power of the latter test.
Ž . � Ž . � 4The intercept terms exp � sE Pr 1yP X s0, n sg are also ofg i i

interest. The expected odds on livebirth decrease strongly with gravidity
Ž .among those with no livebirths: � s0.5319 expected odds 1.702 , � sˆ ˆ1 2

Ž . Ž .0.3058 expected odds 1.358 , and � s0.0581 expected odds 1.060 . Unlikeˆ3
the test for equality of the marginal proportions p and p , there is a1 2$

Ž .significant difference between � and � : � y� s0.2261, se � y� sˆ ˆ ˆ ˆ ˆ ˆ1 2 1 2 1 2
0.0877, zs2.58, p-values0.01, two-tailed. The difference between � andˆ1$

Ž .� is also significant: � y� s0.4738, se � y� s0.1124, zs4.22, p-ˆ ˆ ˆ ˆ ˆ3 1 3 1 3
value�0.001, two-tailed.

Table 9.14 shows the observed and fitted cell probabilities for the logit
Ž .model 9.83 and for the binomial model with separate average livebirth

probabilities. The logit model fits the data significantly better than does the
binomial model: the chi squared goodness-of-fit statistic is 11.66 on 3 df for

Ž .the binomial model, compared to 5.49 on 2 df for model 9.83 , and the
difference of 6.17 on 1 df agrees well with the square of the critical ratio for

Ž 2 2 .the � coefficient z s2.50 s6.25 . Both models fit the data for the
primigravidae perfectly, because there is only one degree of freedom in the
first row of Table 9.13, and there is one free parameter for row 1 in each
model. The logit model fits the data in row 2 better than the null binomial
model in each cell. The logit model fits the data in row 3 a little better than
the null binomial model: � 2s7.72 for the binomial compared to 5.16 for

Ž .model 9.83 ; but the residuals from the model suggest that there are too few
women of gravidity 3 with no livebirths in the data compared to women with
one livebirth. This may reflect a relation between obstetric history and
patterns of seeking routine prenatal care.
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9.6.4. Parametric Models

If the prior distribution of P belongs to the family of beta distributions,
calculations are dramatically simplified. A beta distribution with parameters
a�0 and b�0 has probability density function

� aqbŽ . by1ay1f P s P 1yP 9.84Ž . Ž . Ž .
� a � bŽ . Ž .

for 0�P�1. The normalizing constant involves the gamma function, defined
Ž . � ay1 yx Ž . Ž .as � a sH x e dx, taking values � a s ay1 ! for positive integer0

Ž . Ž . Ž .values of a, and satisfying the recursive relation � a s ay1 � ay1 for
arbitrary values of a�0. The mean and variance of the beta distribution are

	 1y	a ab Ž .
E P s	s and Var P s s .Ž . Ž . 2aqb aqbq1aqb aqbq1Ž . Ž .

9.85Ž .

The beta family of density functions encompasses a wide variety of shapes.
When asbs1, P has the uniform distribution on the unit interval. When
0�a�1 and 0�b�1, the density of P is U-shaped. When a�1 and
0�b�1, the density of P is J-shaped, or reverse J-shaped when 0�a�1
and b�1. When a�1 and b�1, the density of P is unimodal and roughly

Ž .bell-shaped. As a and b become large with ar aqb s	 , the distribution
of P becomes concentrated around 	 as the variance approaches zero. As a
and b approach zero, P approaches a binary random variable, taking values 1
or 0 with probability 	 or 1y	 , respectively.

Suppose, given integer n, P has a beta distribution with parameters a and
b, independent of n, and further suppose that given n and P, X has a
binomial distribution with index n and parameter P. Then the marginal
distribution of X has the beta-binomial distribution with index n and
parameters a and b. Its probability function is

� aqb � aq j � bqny jn Ž . Ž . Ž .
�P Xs j n s �Ž . ž /j � a � b � aqbqnŽ . Ž . Ž .

aq jy1 ��� aq1 a� bqny jy1 ��� bq1 bn Ž . Ž . Ž . Ž .
s .ž /j aqbqny1 ��� aqbq1 aqbŽ . Ž . Ž .

9.86Ž .

For example, when asbs1, the marginal distribution of X is uniform on
Ž � . Ž .the integers 0, . . . , n, such that, P Xs j n s1r nq1 . The marginal mean
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and variance of X are

aqbqn
� �E X n sn	 and Var X n sn	 1y	 , 9.87Ž . Ž . Ž . Ž .aqbq1

Ž .As the prior parameters a and b become large with ar aqb s	 , the
beta-binomial distribution of X approaches the ordinary binomial distribu-

Ž .tion with index n and parameter 	 , with minimum variance n	 1y	 . As
the prior parameters approach zero, the beta-binomial distribution of X
approaches a polarized distribution, taking values n or 0 with probability 	

2 Ž .and 1y	 , respectively, with maximum variance n 	 1y	 .
Ž � .The sample proportion psXrn has mean E p n s	 and variance

	 1y	 1Ž . 2 2�Var p n s 1q ny1 D , where D s . 9.88� 4Ž . Ž .Ž . n aqbq1

Ž .Given m independent proportions p based on sample sizes n is1, . . . , mi i
with numerators following the beta-binomial distribution with index n andi
parameters a and b, the average proportion 	 may be estimated by the
methods in the preceding subsection, but it is more efficient to estimate a, b,

Ž .and 	 by maximum likelihood see Appendix B .
For the livebirth data, the maximum likelihood estimates of 	 and aqb

ˆ Žare, for gravidity 1, 	 s0.630 and aqbs� because the beta-binomial andˆ ˆ1
.binomial models are identical for ns1 ; for gravidity 2, 	 s0.603 andˆ 2

ˆ ˆaqbs14.82; and for gravidity 3, 	 s0.567 and aqbs24.48. The overdis-ˆ ˆ ˆ3
Ž . Ž .persion parameters are 0, 1q 1r15.82 s1.063, and 1q 2r24.48 s1.082,

2 Ž .respectively. Although D s1r aqbq1 is estimated to be larger for
gravidity 2 than gravidity 3, note that multiplication by ny1 in the variance
inflation factor causes greater overdispersion for gravidity 3 than gravidity 2.
The overdispersion parameters agree well with the VIF estimates found in

Ž .Section 9.6.2 using 9.79 .
The most useful property of the beta-binomial model is that the posterior

distribution of P given X has an especially simple form: that of anotheri i
beta distribution, with parameters aqX and bqn yX . It follows that thei i i
conditional mean of P given X isi i

aqX naqbi i�E P n , X s s	 qp . 9.89Ž .Ž .i i i i ž /ž /aqbqn aqbqn aqbqni i i

Ž .Expression 9.89 shows that the posterior mean of P is a weighted averagei
of the a priori average 	 and the sample proportion p , with relatively morei
weight on the sample proportion for larger n , and relatively more weight oni
the prior mean for smaller n . When used to estimate P or to predict ai i

Ž .future value of X , expression 9.89 is called a shrinkage estimator, becausei
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the sample proportion p is ‘‘shrunk’’ toward the prior mean 	 . Althoughi
Ž .9.89 is a biased estimate for P , it can be shown that the mean squared errori

Ž .of 9.89 as an estimate for P is smaller than that for p : the mean squaredi i
�Ž .Ž .Ž .4error for the former is abr aqb aqbq1 aqbqn , while that for pi i

�Ž .Ž . 4is abr aqb aqbq1 n . This holds true both for individual estimatesi
and for the total mean squared error for the ensemble of women. Thus the
shrinkage estimator has an optimality property when the beta-binomial
model holds. Further results from empirical Bayes theory show that as m

Ž .becomes large, 9.89 with a, b, and 	 estimated by maximum likelihood
performs as well in terms of mean squared error as knowing the true values
of a and b. Remarkably, the same is true of the general empirical Bayes

Ž .estimates of posterior odds: as m becomes large, 9.80 does as well as
Žactually knowing the true prior distribution of P without having to estimate

.it .
Ž .In the livebirth data, from 9.89 and the maximum likelihood estimates of

	 and aqb given above, for a woman with no livebirths, the estimate of her
Ž � .true livebirth probability for gravidity 1, E P ns1, Xs0 , is 0.630; for

Ž � .gravidity 2, the estimate of E P ns2, Xs0 is 0.531, and for gravidity 3,
Ž � .the estimate of E P ns3, Xs0 is 0.505. How do these expectations

compare with the posterior expected odds found in Section 9.6.3 using model
Ž .9.83 ?

We note that by Jensen’s inequality, for any prior distribution for P ,i

�E P n , Xs jP Ž .
E n , Xs j G 9.90Ž .ž /1yP �1yE P n , Xs jŽ .

and

�E P n , Xs j1yP Ž .
E n , Xs j G . 9.91Ž .ž /P �1yE P n , Xs jŽ .

For js0, . . . , ny1, define the numbers

n
�P Xs jq1 nŽ . ž /jq1

nP �P Xs j nŽ .E n , Xs j ž /jž /1yP
r s s . 9.92Ž .j P n1qE n , Xs j �P Xs jq1 nŽ .ž /1yP ž /jq1

1q
n

�P Xs j nŽ . ž /j
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The r are proportions obtained by ‘‘back-transforming’’ the posterior ex-j
pected odds; they can be estimated from the marginal data as shown on the

Ž . Ž . Ž .right-hand side of 9.92 . From the inequalities in 9.90 and 9.91 , the
Ž . � Ž . � 4general empirical Bayes identity 9.80 for E Pr 1yP n, Xs j , and

the corresponding identity for the reciprocal odds, namely,

n
�P Xs jy1 nŽ . ž /jy11yP

E n , Xs j s , 9.93Ž .ž /P n
�P Xs j nŽ . ž /j

it follows that for js0, . . . , n,

�r FE P n , Xs j F r . 9.94Ž .Ž .jy1 j

Ž . Ž .In 9.94 , we need a definition of r and r , which are not covered by 9.92 ,y1 n
Žso for the moment let us take the simple bounds r s0 and r s1 wey1 n

. Ž .improve on this choice below . 9.94 shows that the r bracket the desiredj
posterior expected probabilities, but we need to specify suitable values

Ž � .between the r in order to estimate E P n, Xs j without the bias producedj
Ž .by Jensen’s inequality. Following work by Robbins, Cressie 1982 argued

ˆ Ž � .that a reasonable choice for an estimate E of E P n, Xs j that fallsj
between r and r would be obtained by choosing a ‘‘self-weighted’’jy1 j

ˆ ˆ ˆ ˆŽ .average of r and r , i.e., by defining E such that E sE r q 1yE r .jy1 j j j j jy1 j j
ˆWhen the prior distribution for P is beta with parameters a and b, E agreesj

Ž . Ž � .perfectly with 9.89 . In practice, we estimate E P n, Xs j by replacing rjy1
and r by estimates r and r . For js0, . . . , n, this produces the estimatesˆ ˆj jy1 j

r̂j
Ê s . 9.95Ž .j 1q r y rˆ ˆj jy1

The estimates r may be obtained directly from the marginal data for eachĵ
value of n, or from a model estimate. Here we illustrate the latter using

Ž .model 9.83 . From the maximum likelihood estimates of � and � , forg
gravidity gs2 or 3 and jsy1, 0, . . . , gy1, g, we obtain the estimates

ˆexp � q� jˆž /g
r s . 9.96Ž .ĵ ˆ1qexp � q� jˆž /g

Note that for r and r we use the extrapolated values from the model forˆ ˆy1 g
ˆ ˆjsy1 and jsg. These produce better estimates of E and E than the0 g

crude bounds r s0 and r s1.ˆ ˆy1 g
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Table 9.15. Conditional expected li©ebirth probabilities for women with gi©en
numbers of li©ebirths among two or three pregnancies, estimated from the

( ) ( )empirical Bayes logit model 9.83 and the beta-binomial model 9.89

Number of Livebirths among g PregnanciesGravidity
g Estimate y1 0 1 2 3

� �2 r 0.5298 0.5759 0.6207 0.6635ĵ

Ê � 0.5505 0.5941 0.6363j
Beta-binomial � 0.5312 0.5906 0.6501

� �3 r 0.4679 0.5145 0.5609 0.6062 0.6497ĵ

Ê � 0.4916 0.5360 0.5799 0.6226j
Beta-binomial � 0.5049 0.5413 0.5777 0.6141

� Ž .Extrapolated from model 9.83 for jsy1 and jsg.

Ž . Ž . Ž .Table 9.15 shows the estimates from 9.92 , 9.95 , and 9.96 for the
ˆlivebirth data. There is good agreement between the estimates E and thej

Ž .beta-binomial estimates, which are 9.89 with maximum likelihood estimates
substituted for 	 and aqb.

PROBLEMS

Ž . Ž . 29.1. Prove the equality of expressions 9.3 and 9.4 for � .

Ž .9.2. The estimate of the slope b is given by 9.17 . Prove that its numerator
Ž . Ž .is given by 9.19 and that its denominator is given by 9.20 .

9.3. Three samples of New York mental hospital patients were studied as
Ž .part of a collaborative project Cooper et al., 1972 . The numbers of

hospital diagnoses of affective disorders were as follows:

Number of Number Diagnosed
Sample Age Range Patients Affective Proportion

1 20�34 105 2
2 20�59 192 13
3 35�59 145 24

Overall 442 39

( )a Calculate the proportions diagnosed affective, and test whether
they differ significantly.

( )b Test whether the proportion diagnosed affective in the first two
samples combined differs significantly from the proportion in the
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third sample. Test whether the proportions in the first two sam-
ples differ.

( )c The patients in sample 1 tend to be younger than those in sample
2, who in turn tend to be younger than those in sample 3. Because
the chances of an affective disorder increase with age, it might be
hypothesized that p should be less than p , and that p in turn1 2 2
should be less than p . Are the proportions in this order? What is3

2 Ž . Ž .the value of � in 9.32 ? What is the value of c in 9.34 ? Refer
to Table A.7 to test the hypothesized ordering.

Ž .9.4. Let the frequencies underlying the data in Table 9.7 be n , . . . , n11 k1
Ž .and n , . . . , n , so that p sn rn and p sn rn , is1, . . . , k.12 k 2 i1 i1 1 i2 i2 2

Define n sn qn , so that p sn rn . The classic formula for chii i1 i2 i i . ..

squared is

2 2n n n ni . 1 i . 2n y n yi1 i2k kž / ž /n n. .2� s q .Ý Ýn n n ni . 1 i . 2
is1 is1n n. .

Ž .Prove that this formula is equal to the one in 9.38 .

9.5. Consider the data of Table 9.11.
( )a Taking group A as the reference group, find the mean ridit for

group B.
( )b Taking group B as the reference group, find the mean ridit for

Ž . Ž .group A. What is the relation between answers in a and b ?
( ) Ž .c Use formula 9.40 to find the standard error of the mean ridit

contrasting groups A and B.
( ) Ž .d Use formula 9.45 to estimate the same standard error. How do

Ž . Ž .the values in c and d compare?

( )9.6. a Prove that for any three continuous random variables, X , X ,0 1
and X ,2

P X �X qP X �X yP X �XŽ . Ž . Ž .2 1 1 0 2 0

sP X �X �X qP X �X �X qP X �X �X .Ž . Ž . Ž .1 0 2 0 2 1 2 1 0

Ž .Thus if ridit r estimates P X �X , where X is an observation1 1 0 0
Ž .from the reference population, and ridit r estimates P X �X ,2 2 0

1 Ž .then r y r q estimates P X �X with error term2 1 2 12

1 y P X �X �X qP X �X �X qP X �X �X .� 4Ž . Ž . Ž .1 0 2 0 2 1 2 1 02
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( )b If X , X , and X are identically distributed, show that the error0 1 2
1Ž . Ž .term in part a equals 0, so that r y r q estimates P X �X2 1 2 12

without bias, even if the three variables are not independent.
( )c Suppose the distribution of X is entirely supported below that of1

X , which in turn is entirely supported below that of X ; that is,0 2
Ž . Ž .suppose P X �X s1sP X �X . Then r s1, r s0, and0 1 2 0 2 1

1 3Ž .P X �X s1, but r y r q s , a nonsensical estimate of2 1 2 1 2 2
Ž . Ž .P X �X . Show that the error term in part a is as large as2 1

1 w Ž . Ž .possible, viz., . Hint. P X �X �X sP X �X �X s1 0 2 0 2 12
Ž . xP X �X �X s0. Thus if the comparison groups are widely2 1 0

separated in this sense, or nearly this sense, the error term in part
Ž . Ž .a will be large and lead to error in estimating P X �X . Apply2 1
this reasoning to the data in Table 9.11 with reference distribution
data in Table 9.8.

( ) Ž . Ž . Žd Use the inequalities P X �X �X FP X �X , P X �X1 0 2 1 2 0 2
. Ž . Ž . Ž .�X FP X �X , and P X �X �X FP X �X to show1 0 2 2 1 0 1 0

Ž .that the error term in part a is at least

1 y P X �X q 1y r q r� 4Ž . Ž .1 2 2 12

1 1s r y r y yP X �X f r y r y ,Ž .2 1 1 2 2 12 2

where the last approximate equality holds if the two comparison
Ž .groups are widely separated in the sense that P X �X f0. For1 2

the two comparison groups in Table 9.11, with r s0.25 and1
Ž .r s0.89, show that the error in estimating P X �X by r y r2 1 2 2 1

1 Ž .q s1.14 is approximately at least 0.89y0.25y0.5s0.14.2

� ( )9.7. a State the conditional log-likelihood function given all margins
fixed for the two-sample multinomial problem under the propor-

wtional adjacent odds model. Hint. Using the notation of Problem
9.4, the appropriate conditional distribution for the comparison
group frequencies n , . . . , n given all margins fixed is the non-12 k 2

Ž .central multiple hypergeometric distribution see Section 13.2
with probability function

�P n , . . . , n n , n , . . . , n ,  , . . . , Ž .12 k 2 1 1 . k . 2 k

n n1 . k .
��� exp  n q ���q nŽ .2 22 k k 2ž / ž /n n12 k 2

s ,
n n1 . k .

��� exp  u q ���q uŽ .Ý 2 2 k kž / ž /u u1 ku , . . . , u gD1 k
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where the sum in the denominator is taken over the set Ds
Ž .D n ; n , . . . , n of all vectors of nonnegative integers 0Fu F1 1 . k . i

n such that n su q ���qu . The parameters  , . . . ,  are thei. 1 1 k 2 k
log odds ratios relating row category i to the first row category,
for the comparison group versus the reference group, i.e.,  si
�Ž . Ž .4ln P rP r P rP for is2, . . . , k. Express these log oddsi2 12 i1 11

ratios in terms of � from the proportional adjacent odds model,
xand collect the terms in the exponent multiplying �.

( ) Ž .b Prove that the statistic SsÝa n yn p with a s i for isi i2 2 i i
1, . . . , k results from differentiating the conditional log-likelihood

Ž .function derived in part a with respect to � when the derivative
is evaluated at the null hypothesis value �s0. This is a score
statistic, and takes the typical form of an observed sum of scores
from group 2 minus an expected sum of scores under the null
hypothesis. Because the observed sum of scores is integer-valued,

1it is appropriate to subtract from the absolute value of S. The2

result is a scaled version of the numerator of the score test z inc
Ž .9.54 .

( )c The conditional variance of S under H : �s0 is simply the0
variance of a sum of n scores randomly selected without replace-2
ment from a finite population containing n p sn scores with. i i.
value a for is1, . . . , k. Reexpress S in terms of p yp , andi i2 i1

1� �rescale the continuity corrected statistic S y to derive2
Ž . Ž .9.54 � 9.57 .

Ž � . Ž 2 � . � Ž � .429.8. Use the definition Var P n sE P n y E P n to confirm ex-i i i i i i
Ž .pression 9.60 .

2 2Ž � . Ž � . Ž .9.9. Write Var p n sÝ n Var p n rn , and use 9.60 to confirm ex-i i i i .
Ž .pression 9.61 for the variance of p.

Ž . Ž .9.10. Demonstrate that 9.65 F 9.61 with equality if and only if n s ��� s1
w w Ž .�n . Hint. Let V be a random variable taking values 1r 	 1y	 1qm

Ž . 24x Ž .n y1 D with probability n rn for is1, . . . , m, and let f x s1rx.i i .
Use Jensen’s inequality to argue that

m ni 2n � 9.61 s 	 1y	 1q n y1 D sEf VŽ . Ž . Ž . Ž .� 4Ý. in .is1

1
G f EV sŽ . m n 1iÝ 2ž /n 	 1y	 1q n y1 DŽ . Ž .. � 4iis1

xsn � 9.65 .Ž ..
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m 2 m 2Ž . w Ž .9.11. Prove expression 9.69 . Hint. Write Ý n p yp sÝ n p yis1 i i is1 i i
2 2Ž � . Ž � .n p , and take expectations, using the relations E p n sVar p n. i i

2 2� Ž � .4 Ž . Ž � . Ž � .q E p n and 9.60 , and similarly, E p n s Var p n qi
2� Ž � .4 Ž . xE p n and 9.61 ; then simplify.

Ž .9.12. Prove expression 9.72 .

Ž . w9.13. Prove expression 9.80 . Hint. Omitting subscripts, the posterior dis-
tribution of P given Xs j has density proportional to the binomial
likelihood times the prior distribution for P; specifically, the posterior

jŽ .nyj Ž . jŽ .nyj Ž . Ž .density is P 1yP g P rHP 1yP g P dP, where g P is the
Ž .prior density for P. The left-hand side of 9.80 is

nyj nyjy1j jq1H PrQ P 1yP g P dP HP 1yP g P dPŽ . Ž . Ž . Ž . Ž .
s .nyj nyjj jHP 1yP g P dP HP 1yP g P dPŽ . Ž . Ž . Ž .

Express the numerator and denominator in terms of the marginal
Ž � . Ž � . Ž . xprobabilities P Xs j n sHP Xs j n, P g p dP.
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C H A P T E R 1 0

Combining Evidence from
Fourfold Tables

There are a number of ways in which data relevant to the association
between a risk factor A and a disease B might end up arrayed in several
fourfold tables. If the possibility of an association between A and B is
strong, interesting, or important enough, it is virtually guaranteed that a
number of investigators will study the association. Similarly, if an association
has been found to exist in one kind of population, it is to be expected that
the possibility of association in other kinds of populations will be studied. As
a final example, a single given study might call for stratifying the samples
being compared on variables known to be associated with the outcome
variable under investigation; each stratum would then provide its own four-
fold table.

Suppose that the association between A and B has been studied in each
of g groups, with each group generating its own fourfold table. The following
questions can be asked:

1. Is there evidence that the degree of association, whatever its magni-
tude, is consistent from one group to another?

2. Assuming that the degree of association is found to be consistent, is the
common degree of association statistically significant?

3. Assuming that the common degree of association is significant, what is
the best estimate of the common value for the measure of association?
What is its standard error? How does one construct a confidence
interval for the underlying measure?

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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Section 10.1 provides a simple statistical framework within which these
questions can be answered. Section 10.2 describes how to use methods with
the logarithm of the odds ratio. Section 10.3 gives the foundations of exact
inference about a common odds ratio, and Section 10.4 describes approxi-
mate methods based on results of Cornfield and Gart. Section 10.5 describes
the Mantel-Haenszel method. Section 10.6 compares these methods for
different kinds of study designs, and Section 10.7 indicates how they can be
used as alternatives to matching in the control of confounding factors.
Section 10.8 describes some popular but generally invalid methods of com-
paring and combining data from several fourfold tables. Section 10.9 con-
cludes with some matters related to the material presented earlier on
confounding, meta-analysis, and tests for homogeneity of odds ratios in the
large sparse case.

The methods reviewed in this chapter are special cases of those available
for the analysis of complex cross-classification tables. The texts by Cox and

Ž . Ž . Ž .Snell 1989 , Bishop, Fienberg, and Holland 1975 , Everitt 1992 , Breslow
Ž . Ž .and Day 1993, 1994 , and Hosmer and Lemeshow 2000 are excellent

references to the general methods of log linear and logistic regression
Ž .analysis. Munoz and Rosner 1984 discuss power and sample size for a˜

collection of 2�2 tables.

10.1. THE CONSTRUCTION AND INTERPRETATION OF SOME
CHI SQUARED TESTS

To answer the questions posed above, some knowledge of the theory of chi
squared tests is necessary. For a single one of the g groups, say the ith, let yi
denote the value of the chosen measure of association. The measure might
be the difference between two proportions, the logarithm of the odds ratio,
and so on.

Ž .Whatever y is, let se y denote its standard error, and definei i

1
w s , 10.1Ž .i 2se yŽ .i

so that w is the reciprocal of the squared standard error of y . The quantityi i
w is the weight to be attached to y . If the standard error of y is large,i i i
implying that y is not too precise, then w is small. This is reasonable, sincei i
imprecise estimates should not be given great weight. If, on the other hand,
the standard error of y is small, implying that y is rather precise, then w isi i i
large. This, too, is reasonable, since precise estimates should be given great
weight.

Let us suppose that y is such that a value of zero indicates no association.i
When the hypothesis of no association in the ith group is true, suppose that
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the quantity
yi sy w 10.2Ž .'i ise yŽ .i

has, approximately, the standard normal distribution. Then the quantity

� 2sw y2 10.3Ž .i i i

has, approximately, the chi squared distribution with 1 df. If the hypothesis of
no association in the ith group is false, � 2 may be expected to be large, soi
that the hypothesis is likely to be rejected if a chi squared test is applied.

We are not so much interested in the ith group, or in any other single
group, however, as in all the groups together. The analysis of all groups
conveniently begins with the calculation of

g g
2 2 2� s � s w y . 10.4Ž .Ý Ýtotal i i i

is1 is1

If there is no association in any of the g groups, then � 2 has a chi squaredtotal
distribution with g df. This follows because the sum of g independent chi
squareds, each with 1 df, has a chi squared distribution with g df, and
because the g groups are assumed to be independent.

If we calculate � 2 and find it to be significantly large, we may validlytotal
conclude that there is association somewhere within the g groups. We do
not, however, know whether the association is consistent across all groups or
whether it varies from one group to another. � 2 is not, therefore, informa-total
tive by itself. Rather, its calculation serves the purpose of simplifying other
calculations, as will now be indicated.

� 2 is subdivided, or partitioned, into two components,total

� 2 s� 2 q� 2 . 10.5Ž .total homog assoc

The quantity � 2 assesses the degree of homogeneity, or equality, amonghomog
the g measures of association, and the quantity � 2 assesses the signifi-assoc
cance of the average degree of association. The subdivision indicated by
Ž . 210.5 is most easily effected by calculating � first and determiningassoc
� 2 by simple subtraction.homog

The term � 2 is calculated as follows. The overall measure of associa-assoc
tion across all groups is taken as the weighted average of the g individual

Ž .measures, with the weights being those defined in 10.1 :

Ý g w yis1 i iys . 10.6Ž .gÝ wis1 i

Under the hypothesis that the overall association is zero, y has an average
value of zero and a standard error of

1
se y s . 10.7Ž . Ž .gÝ w' is1 i
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Hence

gÝ w yy is1 i is 10.8Ž .gse yŽ . Ý w' is1 i

is distributed approximately as a standard normal variate under the hypothe-
sis, and

2g2 gÝ w yŽ .y is1 i i2 2� s sy w s 10.9Ž .Ý gassoc i½ 5 Ý wse yŽ . is1 iis1

is distributed approximately as chi squared with 1 df.
The term � 2 is then easily obtained by subtraction:homog

g g
2 2 2 2 2� s� y� s w y yy w . 10.10Ž .Ý Ýhomog total assoc i i i

is1 is1

An equivalent expression for � 2 ishomog

g
22� s w y yy . 10.11Ž .Ž .Ýhomog i i

is1

This expression for � 2 is useful for two purposes. One is to provide ahomog
numerical check on the arithmetic. The other is to point out that � 2

homog
actually measures the degree of variability among the separate values of y .i
� 2 is uncorrelated with � 2 , and is approximately distributed as chihomog assoc

Ž .squared with gy1 df under the hypothesis of consistent homogeneous
association.

Means are therefore provided for answering the three questions posed at
the beginning of this chapter.

1. Consistency of association can be tested by referring � 2 to tableshomog
of chi squared with gy1 df. If � 2 is significant, the next step in thehomog
analysis is to partition � 2 into appropriate components in order tohomog
identify those groups in which the association is different from that in

Ž .the remaining groups see Problem 10.1 .
2. If � 2 is not significant, the significance of the overall degree ofhomog

association can be tested by referring � 2 to tables of chi squaredassoc
with 1 df.

w Ž .x3. The best estimate of the overall degree of association is y see 10.6 .
Ž . Ž .Its standard error is given by 10.7 . An approximate 100 1y� %
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confidence interval for the underlying overall degree of association is

y�z se y , 10.12Ž . Ž .�r2

where z is the value cutting off the proportion �r2 in the upper tail�r2
of the standard normal curve.

In general, one hopes to find that the value of � 2 is small, so thathomog
homogeneous association may be inferred, and that the value of � 2 isassoc
large, so that real overall association may be inferred.

The issue of whether a test of the hypothesis of homogeneous association
should ever be performed has been debated. Bishop, Fienberg, and Holland
Ž .1975, p. 147 , for example, state that homogeneity of association must always
be verified before inferences are made about a purportedly common degree

Ž .of association. Mantel, Brown, and Byar 1977 , on the other hand, suggest
caution in interpreting the results of such tests; they point out that the
presence or absence of homogeneous association is strongly dependent on
which measure of association is used.

In practice, it would seem prudent before proceeding too far with the
analysis both to inspect the data to confirm that the g measures are at least
pointing to association in the same direction even if not of exactly the same
magnitude, and to use � 2 to confirm that the several measures ofhomog
association are not widely divergent and that subsequent inferences about a
supposedly common measure actually tend to apply to the individual groups.

What remains, then, is to apply these results to particular choices of the
measure of association. The following notation will be used consistently in
this chapter. In the ith group, n is the number of observations in the firsti1
sample and p is the proportion of the first sample having the studiedi1
characteristic. The quantity n is the number of observations in the secondi2
sample, and p is the proportion of the second sample having the studiedi2
characteristic. The total number of observations in the ith group is denoted
by n sn qn , and the overall proportion in the ith group having thei. i1 i2
characteristic is denoted by

n p qn pi1 i1 i2 i2p s . 10.13Ž .i ni .

The complementary proportion is q s1yp .i i

10.2. COMBINING THE LOGARITHMS OF ODDS RATIOS

The sample odds ratio itself,

p 1ypŽ .i1 i2o s , 10.14Ž .i p 1ypŽ .i2 i1
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does not have the property that a value of zero indicates no association. The
logarithm of the odds ratio does have this property. Thus consider taking as
the measure of association

y sL s ln o . 10.15Ž .i i i

The squared standard error of L is approximatelyi

$ 2 1 1 1
se L s s q , 10.16Ž . Ž .i w n p 1yp n p 1ypŽ . Ž .i i1 i1 i1 i2 i2 i2

which is equal to the sum of the reciprocals of the frequencies within the
cells. The weight w is then the reciprocal of this sum of reciprocals.i

The chi squared analyses of Section 10.1 have been applied to the
Ž . Ž .logarithm of the odds ratio by Gart 1962 and Sheehe 1966 . They will now

be illustrated with the data of Table 10.1, which presents the proportions of
patients diagnosed as schizophrenic by resident hospital psychiatrists in New

Ž .York and London see Cooper et al., 1972 .
Table 10.2 outlines the arithmetic required to perform the analysis of the

Ž .log odds ratios. To reduce bias Naylor, 1967; Gart, 1970, 1971 , the constant
Ž . Ž .0.5 was added to each frequency, as in 6.20 and 6.33 , in calculating

$
� � � � 2w Ž .xL s ln o and w s1r se L . The values of the individual chi squaredsi i i i

w �Ž � .2 xsw L are all approximately equal to the values given by the standardi i
1-df chi squareds incorporating the continuity correction and are all highly
significant.

Table 10.1. Diagnoses of schizophrenia by resident hospital psychiatrists
in three studies in New York and London

New York London

Study n p n pi1 i1 i2 i2

Ž .is1 ages 20�34 105 0.771 105 0.324
Ž .is2 ages 20�59 192 0.615 174 0.397
Ž .is3 ages 35�59 145 0.566 145 0.359

Table 10.2. Analysis of logarithms of odds ratios applied to data of Table 10.1
� � � � � � � 2Ž .Study o L w w L w Li i i i i i i

1 6.894 1.931 10.410 20.102 38.816
2 2.415 0.881 21.868 19.266 16.973
3 2.314 0.839 17.357 14.563 12.218

Total 49.635 53.931 68.007
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The value of the total chi squared is

3
2� �2� s w L s68.01, 10.17Ž . Ž .Ýtotal i i

is1

and the value of the chi squared statistic for testing the homogeneity of the
odds ratios is

2� �33 Ý w LŽ .2 is1 i i� �2� s w L yŽ .Ý �homog i i 3Ý wis1 iis1

253.931Ž .
s68.01y 49.635

s9.41 10.18Ž .

with 2 df, indicating the existence of significant differences at the 0.01 level
among the three odds ratios. Problem 10.1 is devoted to a detailed analysis of
the heterogeneity of the odds ratios in Table 10.2.

While not equal, the three odds ratios are at least all in the same
direction. Further analysis of all the data, in terms of a hypothetical common
underlying odds ratio, might be justified if the conclusions are understood to
apply to hospital diagnoses made on psychiatric patients in New York and
London in general, not to diagnoses made on patients of any specific age
group. Problem 10.2 carries the following kind of analysis forward on the
data from studies is2 and is3 only, where the patients tended to be older
and the odds ratios were similar.

The estimate of the logarithm of the supposedly common odds ratio is

3 � �Ý w L 53.931is1 i iL�s s�3 49.635Ý wis1 i

s1.087, 10.19Ž .

with an estimated standard error of

$ 1 1
se L� s sŽ .

�3 '49.635'Ý wis1 i

s0.142. 10.20Ž .

The value of chi squared for testing the significance of the mean log odds
ratio is then

2 2L� 1.0872� s s s58.60 10.21$ Ž .assoc ž /0.142ž /se L�Ž .
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with 1 df, which is obviously highly significant. The inference may therefore
be drawn that the odds that a mental patient hospitalized in New York will
be diagnosed schizophrenic by a hospital psychiatrist are significantly greater
than the corresponding odds for a mental patient hospitalized in London.

An approximate 95% confidence interval for �, the logarithm of the
supposed common odds ratio, is

$ $
L�y1.96 se L� F�FL�q1.96 se L� ,Ž . Ž .

1.087y1.96�0.142F�F1.087q1.96�0.142,

or

0.809F�F1.365. 10.22Ž .

It is usually desirable to report the final results in terms of the odds ratio
itself rather than in terms of its logarithm. The mean odds ratio is estimated
by

L�o�se santilog L� , 10.23Ž . Ž .

and an approximate 95% confidence interval for �, the supposed common
odds ratio, is given by

$ $
antilog L�y1.96 se L� F�Fantilog L�q1.96 se L� . 10.24Ž . Ž . Ž .

For the data at hand,

o�santilog 1.087 s2.97, 10.25Ž . Ž .

Ž .and an approximate 95% confidence interval for � is, from 10.22 ,

antilog 0.809 F�Fantilog 1.365 ,Ž . Ž .

or

2.25���3.92. 10.26Ž .

10.3.* EXACT INFERENCE FOR A COMMON ODDS RATIO

An outline of the theory to be applied here was presented in Section 6.4.
Readers who wish to use approximate methods only may proceed directly to
Section 10.4.

Let the data from group i be reexpressed as in Table 10.3, where we have
written l sm qn yn . If all four marginal frequencies are held fixed, andi i i1 i.
if � is the underlying odds ratio, then each X has a noncentral hypergeo-i

Ž .metric distribution�see expression 6.35 in Section 6.2. The joint condi-
tional probability of observing the collection of g independent 2�2 tables
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Table 10.3. Notation for data from group I

Outcome Variable

Sample Present Absent Total

1 X n yX ni i1 i i1
2 m yX X y l ni i i i i2

Total m n ym ni i. i i.

given all margins as observed is the product of these g noncentral hypergeo-
metric probabilities. Under the assumption of a common odds ratio �, the

Ž .product of terms of the form 6.35 depends on the individual reference cells
X only through their sum, SsÝ g X , that is, the sum is a sufficient statistici is1 i
for drawing inferences about �. Hypothesis tests about the common odds
ratio, and confidence intervals for it, can be constructed in the same way as
described in Sections 6.4 and 6.5. The only change required is that the
noncentral hypergeometric distribution for a single X must be replaced by

Ž � . Žthe distribution of S. Using the notation H j n , n , m , � sP X si i. i1 i i
� . Ž .j n , n , m , � from 6.35 for the probability function for each componenti i. i1 i

distribution, the probability function of the sum is defined as

g g

� �P X ss n , n , m , � s H j n , n , m , � ,Ž .Ý Ý Łi . 1 i i . i1 iž / is1is1 � 4 Ž .j , . . . , j gR s1 g g

10.27Ž .

Ž . Ž . Ž .where ns n , . . . , n , n s n , . . . , n , ms m , . . . , m , and where the. 1. g . 1 11 g1 1 g
Ž .sum is taken over the set R s of all g-fold partitions of s into nonnegativeg

Ž .integers j , . . . , j with j q ���qj ss.1 g 1 g
This distribution is called a con®olution of noncentral hypergeometric

Ž .distributions. The convolution of two vectors as a , . . . , a and bs0 u
Ž . Ž .b , . . . , b is defined as the vector a� bs c , . . . , c where, for js0 ® 0 uq®

0, . . . , uq®,

j

c s a b sa b qa b q ���qa b qa b . 10.28Ž .Ýj i jyi 0 j 1 jy1 jy1 1 j 0
is0

Ž .In practice one calculates the probability function 10.27 iteratively by
Ž i. Ž i.Ž . � Ž i.Ž . Ž i.Ž .4obtaining the convolution of the vectors h sh � s h � , . . . , h � ,0 r i

Ž . Ž i.Ž .where for is1, . . . , g, r smin m , n , and for js0, . . . , r , h � si i i1 i j
Ž � . Ž .H j n , n , m , � . In this notation, 10.27 can be written asi. i1 i

g
Ž1. Ž g .�P X ss n , n , m , � sh � � ��� � h � . 10.29Ž . Ž . Ž .Ý i . 1ž /

is1
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Ž .The convolution operations in 10.29 may be carried out by starting
with hŽ1.� hŽ2. and then recursively calculating hŽ1.� ��� � hŽkq1. s
� Ž1. Žk .4 � Žkq1. 4 Ž i. Ž i.Ž .h � ��� � h � h . The order of entering the vectors h sh � into

Žthe calculation does not matter. For efficient calculation of P Ss
� . Ž .s n , n , m, � , the terms in the sum 10.28 need only be found for indices i. 1

and j for which a and b do not equal 0. Problem 10.3 specifies whichi jyi
indices these are.

The fast Fourier transform provides an alternative way to calculate the
Ž .convolution. We find the simplicity of programming 10.28 attractive for

personal computing, and relatively rapid for tables of small to moderate
sample sizes where exact computation is of special interest.

Once the convolution distribution of SsÝ g X is in hand, conditionalis1 i
inference about � is straightforward given the table margins and the ob-
served reference values X sx , . . . , X sx . For example, as shown by Gart1 1 g g
Ž . Ž .1970 , two-tailed 100 1y� % confidence limits for � are the solutions to
the two polynomial equations

g g
�

P X G x n , n , m , � sÝ Ýi i . 1 L 2ž /
is1 is1

and
g g

�
P X F x n , n , m , � s .Ý Ýi i . 1 U 2ž /

is1 is1

Just as for the binomial distribution, smaller p-values and narrower confi-
dence regions are achievable using one of the other methods described in
Section 2.7 that work assuredly. For example, the two-tailed p-value by the
point probability method is

g

�pval x , � s P Sss n , n , m , � ,Ž .Ý Ýi . 1ž /
sis1

Ž � . Žwhere the sum is taken over all s such that P Sss n , n , m, � FP Ss. 1
� .Ý x n , n , m, � .i . 1

Ž .The conditional maximum likelihood estimate of �, cmle � , is the
solution of the likelihood equation

g g

�X y E X n , n , m , � s0, 10.30Ž .Ž .Ý Ýi i i . i1 i
is1 is1

where the second term is the sum of the expectations of the respective
w Ž .xnoncentral hypergeometric distributions see 6.43 . Iterative solution of

Ž . Ž .10.30 is generally required to find cmle � . This is a prototype example of
the kind of calculation found in the odds ratio regression model or, more

Ž .generally, in conditional logistic regression analysis see Section 14.2 .
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How does one test exactly the assumption of a common odds ratio
Ž .underlying each of the g tables? Zelen 1971 specified an exact test of odds

ratio homogeneity. Because SsÝ g X is sufficient for �, conditioning theis1 i
joint distribution of X , . . . , X on S as well as on all four margins of each1 g
fourfold table eliminates the nuisance parameter � from the conditional

Ž .distribution, and produces a simple point null hypothesis distribution for
the data. This is in exact analogy to the way conditioning on the sum of two
binomial distributions with equal probability parameters produces Fisher’s

Ž .exact central hypergeometric distribution. The joint conditional distribution
of X , . . . , X given Ý g X ss is1 g is1 i

g g �Ł H x n , n , m , �s1Ž .is1 i i . i1 iP X sx , . . . , X sx X ss, n , n , m sÝ1 1 g g i . 1 g �ž / P Ý X ss n , n , m , �s1Ž .is1 i . 1is1

g n n n1 i 2 i i .Ł ž / ž / ž /x m yx mis1 i i i i
s . 10.31Ž .g

P X ss n , n , m , �s1Ý i . 1ž /
is1

Ž .On the right-hand side of 10.31 , use of any odds ratio � is permissible,
since the conditional distribution does not depend on �. The choice �s1 is
merely one of convenience. Then the two-tailed p-value by the point proba-

Ž .bility method for Zelen’s test of homogeneity is the sum of terms 10.31 over
Ž .all g-fold partitions j , . . . , j of s with j q ���qj ss, and1 g 1 g

g

P X s j , . . . , X s j X ss, n , n , mÝ1 1 g g i . 1ž /
is1

g

FP X sx , . . . , X sx X ss, n , n , m .Ý1 1 g g i . 1ž /
is1

As a simple illustration, we consider an extension of Fisher’s example of
Ž .‘‘The Lady Tasting Tea’’ Fisher, 1971 to a comparison of three tea tasters.

Ž .In the original story, delightfully retold by Sir Cyril Clarke 1991 with
punchline supplied by Fisher’s daughter and biographer, Joan Fisher Box
Ž .1978 , at a now famous tea party at Rothamsted Research Station, Sir
Ronald poured a cup of tea for a lady, Dr. Muriel Bristol, who declined it,
saying she liked the milk poured in first, before the tea. ‘‘Surely it makes no
difference,’’ said Fisher, but the lady claimed she could taste the difference.
Fisher devised an experiment on the spot to test the claim: he presented her
with eight cups of tea, four with tea before milk, four with milk before tea, in
a randomized order. The lady tasted all eight cups before making her
declarations, and, with full knowledge of the design, she was asked to identify
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the four cups of each kind. Such an experimental design results in a fourfold
Žtable with all four margins fixed at four: the rows are the true orderings tea

.before milk versus milk before tea and the columns are the lady’s declara-
tions. The elegance of Fisher’s experiment is that only getting all eight

Ž �declarations correct would yield a significant result: P Xs4 n , n s4,. 1
18. Ž .ms4, �s1 s1r s , whereas if any choice was incorrect, P XG3 s70ž /4

Ž .1q16 r70f0.24. According to Joan Fisher Box, in the actual experiment,
Dr. Bristol got all eight declarations correct!

Let us entertain the noncentral hypergeometric distribution as a model for
such data, where the odds ratio serves as a measure of ability: �s1 is pure
guesswork, �s	 would be perfect ability, and �s0 would be perfect

Žanti-ability reminiscent of the claim of ‘‘anti-ESP’’ when the psychics get it
.wrong! . Now suppose there were three tea tasters, with the following results:

Ž . Ž . Ž . Ž . Ž .a all eight declarations correct X s4 , b guesswork X s2 , and c all1 2
Ž .eight wrong X s0 . What is the exact p-value for the null hypothesis of3

equal odds ratios? The sum SsX qX qX s6 has probability 0.3023 from1 2 3
Ž . Ž . Ž . Ž . Ž .the threefold convolution h 1 � h 1 � h 1 of h 1 with itself, where h 1 s

1 16 36 16 1Ž . Ž . Ž � ., , , , with h 1 sH j 8, 4, 4, �s1 for js0, . . . , 4. There are 19j70 70 70 70 70
Ž . Ž . Ž .partitions of 6 into three integers between 0 and 4: 4, 2, 0 , 4, 1, 1 , 4, 0, 2 ,

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3, 3, 0 , 3, 2, 1 , 3, 1, 2 , 3, 0, 3 , 2, 4, 0 , 2, 3, 1 , 2, 2, 2 , 2, 1, 3 , 2, 0, 4 ,
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1, 4, 1 , 1, 3, 2 , 1, 2, 3 , 1, 1, 4 , 0, 4, 2 , 0, 3, 3 , and 0, 2, 4 . Then 10.31

Ž � Ž . Ž . Ž . .gives P X s 4, X s 2, X s 0 S s 6, 8, 8, 8 , 4, 4, 4 , 4, 4, 4 , � s 1 s1 2 1
0.0003471. Of all the partitions listed above, only the 6 permutations of
Ž . Ž .4, 2, 0 have the same probability as 4, 2, 0 , and no other partition has
smaller probability. Thus the two-tailed p-value by the point probability
method is 6�0.0003471s0.00208. The data are significant in their rejection
of the null hypothesis. Note that the presence of extreme sample odds ratios
of 0 and 	 was no impediment to calculation of the p-value. The reader
might enjoy Problem 10.4, which asks for the significance of the results from
only the first two tasters.

Much literature has been devoted to developing efficient computational
algorithms for finding exact p-values and confidence intervals for a common
odds ratio. The network algorithm plays a large role in this area. See, e.g.,

Ž . Ž .Mehta and Patel 1983 ; Mehta, Patel, and Gray 1985 ; Hirji, Mehta, and
Ž . Ž .Patel 1987 ; Mehta, Patel, and Senchaudhuri 1988, 1992 ; Agresti, Mehta,

Ž . Ž .and Patel 1990 ; and Vollset, Hirji, and Elashoff 1991 . Various exact and
asymptotic tests for homogeneity of several odds ratios were compared by

Ž . Ž .Reis, Hirji, and Afifi 1999 . Agresti 1992 gives a nice review of exact
methods for contingency tables.

Exact methods become computationally infeasible after a certain point,
even though the steady improvement in computing speed and memory keeps
pushing that envelope out. Well before the breaking point, fortunately,
saddlepoint approximations to exact quantities become highly accurate. Levin
Ž .1990 gives a double saddlepoint approximation to the exact conditional
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Ž .score statistic on the left-hand side of 10.30 , and discusses its use in
conditional logistic regression analysis. The approximation applies a correc-
tion term to the profile score function, which is the result of starting with the
two-independent-binomial model in each fourfold table, and substituting into
the corresponding score statistic maximum likelihood estimates for the nui-
sance parameters, one per table, under the assumed common odds ratio.

Ž .Bartlett 1953, 1955 had provided a general bias correction for such profile
Ž .score statistics, and Gart 1970 notes the high accuracy of the bias correction

Ž .for fourfold tables. Levin and Kong 1990 explain why Bartlett’s bias correc-
tion to the profile score function gives such accurate approximations to the
exact conditional score function for fourfold tables, by pointing out that in
canonical exponential families, Bartlett’s correction is actually a double
saddlepoint correction, which is known to have a higher order of accuracy.

Ž .Strawderman and Wells 1998 give a saddlepoint approximation to the exact
Ž .distribution of cmle � . Their method is based on a novel way of calculating

the exact mean of the noncentral hypergeometric distribution introduced by
Ž .Kou and Ying 1996 .

10.4. APPROXIMATE INFERENCE FOR A COMMON ODDS RATIO

An outline of the theory to be applied here was presented in Section 6.6. As
Ž .proven by Cornfield 1956 , X in Table 10.3 is approximately normallyi

distributed with approximate mean x and approximate standard errori

1
se X s . 10.32Ž . Ž .i W x' Ž .i i

Ž .In 10.32 ,

1 1 1 1
W x s q q q 10.33Ž . Ž .i i x m yx n yx x y li i i i1 i i i

with l sm qn yn , and x is the unique root in the admissible intervali i i1 i. i

larger of l , 0 Fx Fsmaller of m , n 10.34Ž . Ž . Ž .i i i i1

of the quadratic equation

x x y lŽ .i i i s� . 10.35Ž .m yx n yxŽ . Ž .i i i1 i

The approximate mean x of X is the same as N in the notation of Tablei i 11
6.5. Explicitly, the quadratic equation is

x 2 �y1 yx � m qn y l q� m n s0. 10.36� 4Ž . Ž . Ž .i i i i1 i i i1
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Ž .Gart 1970 has taken these results and extended them to the case of
several fourfold tables. An examination of the data for heterogeneous odds
ratios begins by estimating the hypothesized common odds ratio, say �. Theˆ
appropriate estimate, which cannot be obtained by means of an explicit
equation, is such that, when x is the admissible root ofî

x x y lŽ .ˆ ˆi i i s� is1, . . . , g , 10.37Ž . Ž .ˆm yx n yxŽ . Ž .ˆ ˆi i i1 i

w Ž . xthe solution of which is given in 6.52 for given � , thenˆ
g g

X y x s0. 10.38Ž .ˆÝ Ýi i
is1 is1

The estimate � may be found either by trial and error or by any one of theˆ
standard iteration methods available for the solution of complicated equa-

Ž . Žtions; either o� from 10.23 or the Mantel-Haenszel estimate see Section
. Ž .10.5 can serve as the initial approximation of �. Note that 10.38 has theˆ

Ž .same form as 10.30 . The only difference is whether the sum of expectations
is approximate or exact.

For the data of Table 10.1, the desired estimate is

�s3.04, 10.39Ž .ˆ

which is only slightly larger than the estimate based on the log odds ratio
Ž . Ž .given in 10.25 . Table 10.4 presents the associated values of x and W x .ˆ ˆi i i

Note that ÝX sÝ x s281.ˆi i
The hypothesis that the underlying odds ratios are equal may be tested by

referring the quantity

g
22� s W x X yx 10.40Ž .Ž . Ž .ˆ ˆÝhomog i i i i

is1

to the chi squared distribution with gy1 degrees of freedom. For the data of
Table 10.4,

� 2 s9.70 10.41Ž .homog

Table 10.4. Values associated with �s3.04 for data of Table 10.1ˆ
Ž .Study n n m X x W xˆ ˆi1 i2 i i i i i

1 105 105 115 81 71.601 0.0832
2 192 174 187 118 122.856 0.0473
3 145 145 134 82 86.543 0.0600

Total 281 281.000
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Ž .with 2 df, indicating statistically significant differences p�0.01 among the
odds ratios for the three studies of Table 10.1. The chi squared value in
Ž . Ž .10.41 happens to be slightly larger than the corresponding value in 10.18
based on the log odds ratios.

A test for the significance of the overall odds ratio is performed as follows.
Ž .If �, the underlying supposed common odds ratio, is equal to unity, 10.36

becomes linear, and its unique solution is

n mi1 ix s . 10.42Ž .i ni .

Ž .The corresponding value of W x isi i

n3
i .W x s . 10.43Ž . Ž .i i n n m n ymŽ .i1 i2 i i . i

Under the hypothesis that �s1, the quantity

2g g

X y x y0.5Ý Ýi iž /
is1 is12� s 10.44Ž .gassoc 1Ý W xŽ .i iis1

has, approximately, a chi squared distribution with 1 df. As pointed out in
Section 10.5, this statistic is closely related to the Mantel-Haenszel chi
squared statistic.

Ž .The values of x and W x associated with the hypothesis that �s1 arei i i
Ž .presented in Table 10.5. The value of the statistic in 10.44 for testing

whether the overall degree of association is significant is

2� �281y222.598 y0.5Ž .2� s s62.28. 10.45Ž .assoc 53.836

The inference may therefore be drawn that the supposed common value of
the underlying odds ratio is different from unity. The value of chi squared in

Table 10.5. Values associated with the hypothesis that �s1 for data of Table 10.1

Ž . Ž .Study n n m X x W x 1rW xi1 i2 i i i i i i i

1 105 105 115 81 57.500 0.0769 13.006
2 192 174 187 118 98.098 0.0438 22.809
3 145 145 134 82 67.000 0.0555 18.021

Total 281 222.598 53.836
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Ž .10.45 happens to be somewhat larger than the value of the corresponding
Ž .chi squared statistic in 10.21 based on the log odds ratio.
Ž .An approximate 100 1y� % confidence interval for the supposed com-

mon underlying odds ratio is determined as follows. The lower confidence
limit, say � , is such that, if x is the admissible root ofL i L

x n ym qxŽ .i L i2 i i L s� 10.46Ž .Ln yx m yxŽ . Ž .i1 i L i i L

and if

1 1 1 1
W x s q q q , 10.47Ž . Ž .i i L x m yx n yx x y li L i i L i1 i L i L i

then

2g g

X y x y0.5Ý Ýi i Lž /
is1 is1 2sz . 10.48Ž .g �r21Ý W xŽ .i i Lis1

The upper limit, say � , is found similarly, except that the continuityU
Ž .correction in 10.48 is taken as q0.5 instead of y0.5.

As with the estimation of the common odds ratio described earlier in this
section, the upper and lower limits must be found either by trial and error or
by means of a formal iterative procedure. The limits based on the log odds

Ž .ratio, given in 10.24 , may be used as first approximations.
Table 10.6 presents values associated with the lower 95% confidence limit,

� s2.28. Note thatL

2281y266.421 y0.5Ž .
s3.84, 10.49Ž .51.606

the value required for a confidence coefficient of 95%.

Table 10.6. Values associated with lower 95% confidence limit,
� s2.28, for data of Table 10.1L

Ž . Ž .Study n n m X x W x 1rW xi1 i2 i i i L i i L i i L

1 105 105 115 81 68.083 0.0803 12.453
2 192 174 187 118 116.672 0.0457 21.882
3 145 145 134 82 81.666 0.0579 17.271

Total 281 266.421 51.606
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Table 10.7. Values associated with upper 95% confidence limit,
� s4.06, for data of Table 10.1U

Ž . Ž .Study n n m X x W x 1rW xi1 i2 i i iU i iU i iU

1 105 105 115 81 74.985 0.0870 11.494
2 192 174 187 118 128.811 0.0494 20.243
3 145 145 134 82 91.237 0.0627 15.949

Total 281 295.033 47.686

Table 10.7 presents values associated with the upper 95% confidence
limit, � s4.06. Note thatU

2281y295.033 q0.5Ž .
s3.84, 10.50Ž .47.686

as required.
Using Cornfield’s results, then, the approximate 95% confidence interval

for the supposed common odds ratio is

2.28F�F4.06. 10.51Ž .

This interval is shifted slightly to the right of, and is slightly wider than, the
Ž .interval based on the log odds ratio given in 10.26 .

10.5. THE MANTEL-HAENSZEL METHOD

Ž .A procedure due to Mantel and Haenszel 1959 , and extended by Mantel
Ž .1963 , permits one to estimate the assumed common odds ratio and to test
whether the overall degree of association is significant. Curiously, it is not the
odds ratio itself but another measure of association that directly underlies

Ž .the test for overall association; Radhakrishna 1965 has shown that such an
approach is valid. The fact that the methods use simple, closed-form formu-
las has much to recommend it. We start with the Mantel-Haenszel summary
estimate of the common odds ratio, present a simple confidence interval for
the log odds ratio, briefly consider tests of homogeneity of the odds ratio, and
finally present the test of overall association.

The Mantel-Haenszel summary estimate of the odds ratio is, say,

g gn ni1 i2 p 1ypŽ . X X y l rnŽ .Ý Ýi1 i2 i i i i .ni .is1 is1
� s s ; 10.52Ž .ˆ g gMH n ni1 i2 p 1yp m yX n yX rnŽ . Ž . Ž .Ý Ýi2 i1 i i i1 i i .ni .is1 is1
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Ž� is a weighted average of the separate odds ratios from the g groups seeˆMH
. ŽProblem 10.5 . Note that � is the solution of the estimating equation seeˆMH
.Section 15.5

g gn n n ni1 i2 i1 i2p 1yp y�� p 1yp s0. 10.53Ž . Ž . Ž .Ý Ýi1 i2 i2 i1n ni . i .is1 is1

This is an unbiased estimating equation because the conditional expectation
Ž .of the left-hand side of 10.53 given fixed margins is equal to zero by the

Ž .result of Mantel and Hankey 1975 discussed in Section 6.4.
For the data of Table 10.1,

87.516
� s s3.00, 10.54Ž .ˆMH 29.143

Ž .which happens to be slightly greater than the estimate given in 10.25 based
Ž .on the log odds ratio, and slightly smaller than the estimate given in 10.39

based on the approximate approach of Cornfield and Gart.
Ž . Ž .Mantel and Haenszel 1959 referred to Cornfield 1956 for calculation of

interval estimates for the common odds ratio without presenting standard
error formulas for � . The Mantel-Haenszel estimator is important be-ˆMH

Ž .cause of its consistency in two different large-sample situations: i a fixed,
possibly small, number of tables, each with large marginal frequencies; and
Ž .ii a large number of tables, each with possibly small frequencies. The latter
is the large sparse case, and frequently arises in matched-sample or finely

Ž .stratified studies. Robins, Breslow, and Greenland 1986 and Phillips and
Ž .Holland 1987 proposed an asymptotic variance formula that is a consistent

estimator of the variance of ln � under both situations and other, inter-ˆMH
mediate ones. For is1, . . . , g, let

g

R sX X y l rn and Rs R , 10.55Ž . Ž .Ýi i i i i . i
is1

g

S s m yX n yX rn and Ss S , 10.56Ž . Ž . Ž .Ýi i i i1 i i . i
is1

and

P s X qX y l rn and Q s1yP s m yX qn yX rn .Ž . Ž .i i i i i . i i i i i1 i i .

10.57Ž .

P is the proportion of data on the main diagonal of the ith table, and Q isi i
the proportion of data off the diagonal. Then the Mantel-Haenszel estimate
of the common odds ratio is � sRrS, and the variance of ln � isˆ ˆMH MH
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consistently estimated by

g g g

P R P S qQ R Q SŽ .Ý Ý Ý° ¶i i i i i i i i
$ 1 is1 is1 is1~ •Var ln � s q q . 10.58Ž .Ž .ˆMH 2 22 RSR S¢ ß

Ž .For a single 2�2 table, 10.58 reduces to the familiar formula for the
estimated variance of the log odds ratio, namely, the sum of reciprocal cell

1Ž .frequencies, or 6.33 without the bias correction. At the same time, for2
Žmatched pair data the most extreme form of sparse data, corresponding to a

. Ž .set of g 2�2 tables each with margins of n sn s1 , formula 10.58i1 i2
Ž . Ž .reduces to the familiar formula for the estimated variance 1rb q 1rc for

Ž . Ž . Ž .the log odds ratio estimate ln brc see Chapter 13 . Thus 10.58 is a
Ž .generally useful formula. A modified formula is given by Sato 1990 . An

Ž .alternative formula that works in asymptotic framework i is given by Hauck
Ž . Ž . Ž .1979 and in framework ii by Breslow 1981 .

A confidence interval for the common log odds ratio may be constructed
Ž .from 10.58 in the usual way:

$
ln � �z se ln � , 10.59Ž .Ž .ˆ ˆMH �r2 MH

Ž .where the estimated standard error is the square root of 10.58 , giving a
Ž . Ž .100 1y� % confidence interval for ln �. Exponentiating 10.59 yields a
Ž .100 1y� % confidence interval for the common odds ratio itself.

Tests of homogeneity of the assumed common underlying odds ratio
require different methods for the two large-sample situations identified

Ž . Ž .above. For situation i , Tarone 1985 proposed a statistic that corrects for
Ž .the fact that 10.30 is not satisfied exactly by the Mantel-Haenszel estimator.

Tarone’s test statistic is

2g �X yE X n , m , n , �� 4ˆŽ .i i i . i i1 MHÝ �Var X n , m , n , �̂Ž .i i . i i1 MHis1

2g

�X yE X n , m , n , �� 4ˆŽ .Ý i i i . i i1 MH
is1y , 10.60Ž .g

�Var X n , m , n , �̂Ž .Ý i i . i i1 MH
is1

where the first term is the score test statistic evaluated at the Mantel-Haenszel
odds ratio, and the second term is the correction for bias. Under the

Ž .hypothesis of a common underlying odds ratio, 10.60 has an approximate
chi-squared distribution on gy1 df. The assumption of large samples within
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each table is used for the approximate normality of each squared term on the
Ž .left of expression 10.60 .

Ž .Tests for odds ratio homogeneity in situation ii , the large sparse case, are
best handled by random effects methods, and will be taken up in Section
10.9.3.

The Mantel-Haenzel chi squared test for the significance of the overall
degree of association is based on a weighted average of the g differences
between proportions, say

g n ni1 i2 p ypŽ .Ý i1 i2ni .is1ds . 10.61Ž .g n ni1 i2Ý ni .is1

The Mantel-Haenszel chi squared statistic is given by

2g n ni1 i2 p yp y0.5Ž .Ý i1 i2nž /i .is12� s , 10.62Ž .gMH n ni1 i2 p qÝ i in y1i .is1

Ž .with 1 df. Note that the numerator of 10.62 without continuity correction is
Ž .the left-hand side of 10.53 evaluated at �s1.

For the data of Table 10.1, the value of � 2 isMH

2� �58.374 y0.5Ž .2� s s62.00, 10.63Ž .MH 54.024

Ž .which is slightly smaller than the value given in 10.45 for the chi squared
statistic for association based on the Cornfield-Gart approach. In fact, if

Ž .n y1 were replaced by n in the denominator of 10.62 , the two chii. i.
squared statistics would be identical.

Closely related to the Mantel-Haenszel chi squared statistic is one due to
Ž .Cochran 1954 :

2g n ni1 i2 p ypŽ .Ý i1 i2nž /i .is12� s . 10.64Ž .gC n ni1 i2 p qÝ i ini .is1

Ž . Ž .The statistics in 10.62 and 10.64 differ not only in the former’s inclusion of
the continuity correction but, more seriously, in the former’s taking n y1i.
rather than n in the denominator. When the sample sizes in the g groupsi.
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are all large, the difference is trivial. When, however, the sample sizes in the
g groups are small, the difference becomes substantial.

Consider again the extreme case of matched pairs, in which, each group
consists of two individuals, one from each sample. It is easy to check that

Ž .McNemar’s chi squared statistic, given in 13.3 , is identical to the Mantel-
Ž .Haenszel chi squared statistic given in 10.62 . See Problem 10.6. Cochran’s

Ž .statistic in 10.64 with the continuity correction, on the other hand, would
yield a value twice as large as McNemar’s statistic.

The classic criterion for whether the sample sizes in a fourfold table are
large enough to warrant referring the value of the standard chi squared
statistic to tables of the chi squared distribution with 1 df is that each

Ž .expected cell frequency must be at least equal to 5 see Section 3.2 . A
similar criterion has been proposed for the Mantel-Haenszel chi squared

Ž .statistic by Mantel and Fleiss 1980 . It is that each of the four sums of
expected cell frequencies,

g g g g

n p , n p , n q , n q ,Ý Ý Ý Ýi1 i i2 i i1 i i2 i
is1 is1 is1 is1

must differ by 5 or more from its maximum and from its minimum.
It is therefore not necessary that each table have large marginal frequen-

Ž .cies in order for the statistic in 10.62 to be safely referred to the chi squared
distribution with 1 df; in fact, as in the case of matched pairs, the total
frequency in each table can be as small as 2. All that is required is that there
be sufficiently many tables so that each sum of cell expectations is large.

10.6. A COMPARISON OF THE THREE PROCEDURES

Ž . Ž . Ž .Gart 1962, 1970 , Odoroff 1970 , and McKinlay 1975b, 1978 have com-
pared the procedures described in the three preceding sections as well as

Ž . Ž .procedures due to Birch 1964 and Goodman 1969 . Two cases must be
distinguished.

In one case, the number of groups or strata is small or moderate, and the
sample sizes within each are large. This would be the case if the samples
being compared were stratified into a limited number of strata, with addi-
tional subjects being assigned to existing strata, or if a limited number of
replicate studies were being analyzed. For this case, procedures based on the
logarithms of the odds ratios perform either better than or only slightly
poorer than their competitors. Given their fair to good precision and accu-
racy, together with their relative simplicity, the methods of Section 10.2 are
recommended for addressing, in a unified manner, all the major inference
problems for the odds ratios in each of a small number of strata.

In the second case, each group or stratum is of small or moderate size, but
the number of groups or strata is large. This would be the case if the samples
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Ž .being compared were stratified usually after the data were collected on
several dimensions, or if matching were employed and the number of

Žmatched individuals possibly varied e.g., some matched sets consisting of a
pair of individuals, others of a single member from one sample and two

.members from the other, etc. , or, in general, if the recruitment of additional
subjects meant the creation of additional groups or strata.

wIn this case, the Mantel-Haenszel estimate of the overall odds ratio see
Ž .x10.52 , the Mantel-Haenszel 1 df chi squared statistic for testing its signifi-

w Ž .x Ž .cance see 10.62 , and the confidence interval 10.59 for the overall odds
ratio are the methods of choice. Testing for the equality of the several odds

Ž .ratios may be conducted by Tarone’s test 10.60 for a fixed number of tables,
or by random effects methods for the large sparse case. In contrast to the
case of few groups each of large size, the procedures in Section 10.2 based on
the log odds ratio perform terribly in the case of many groups each of small
size. Exact methods are useful for checking on the accuracy of approximate
ones, and for small-sample-size inferences.

10.7. ALTERNATIVES TO MATCHING

Ž .McKinlay 1975a conducted a historical review of methods that have been
used to control for biasing factors in nonrandomized studies such as compar-
ative prospective and comparative retrospective studies, and also reviewed
statistical studies of these methods. Her bibliography consists of 165 items,
and Fienberg adds others in his Comment on her paper. There are three
relatively simple methods available for the control of biasing factors: match-

Žing for which the analytic procedures described in Chapter 13 are appropri-
. Žate , stratification for which the procedures described in this chapter are

. Žappropriate , and covariance or regression control for which the analytical
.procedures described in Chapters 11 and 12 are appropriate .

Suppose, for example, that a retrospective study is contemplated of the
association between cigarette smoking and lung cancer, with control for the
possible confounding effects of age and sex. One method of control is to pair
each lung cancer case with one or more controls of the same sex and of a
similar age and to apply the methods of Section 13.1 or 13.3.

Another method of control is to draw a cross-sectional sample of cases
and a cross-sectional sample of controls, to stratify the two samples by sex
and by age intervals, and then, separately for each resulting stratum, to set
up a fourfold table contrasting the rates of smoking for the cases and
controls. If there are, say, five age intervals, the total number of fourfold
tables is gs10: five for the males plus five for the females. The resulting set
of tables may be viewed as coming from g distinct groups, and the methods
of Sections 10.2 to 10.5 may be applied.

Ž .If only a small number two or three of biasing factors out of several are
Žactually controlled, the possible effects of those factors not controlled and

.perhaps not even measured may be assessed by criteria suggested by Bross
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Ž . Ž .1966 and Schlesselman 1978 . If simultaneous control over several biasing
Ž .factors more than three is desired, the composite ‘‘multivariate confounder

Ž .score’’ of Miettinen 1976 may be used as the basis for stratification;
Miettinen suggests five as a reasonable number of strata. A multivariate
procedure such as discriminant function analysis must be applied first,
however, in order to determine how the composite score is to be calculated.

The multivariate confounder score has been largely supplanted by the
Ž .propensity score of Rosenbaum and Rubin 1983, 1984, 1985a, 1985b . The

propensity score has become an indispensible tool in drawing causal infer-
Ž .ences in observational studies. Holland 1986 gives a nice overview of causal

inference.
Matching has the advantage of assuring that the two samples are compara-

ble on the factors used for matching, but has as a major disadvantage the
practical difficulty of finding a matched control for each case if the number
of cases is large. Other disadvantages are cited in Section 13.5.

Stratifying the samples after they have been drawn has the advantage of
not requiring a specification beforehand of the composition of the two
samples, as well as the advantage of permitting an examination of the
consistency of association across the various strata. A disadvantage is that, if
the sample sizes are not large, the number of individuals in a stratum from
one sample may be small compared to the number of individuals in it from
the other sample. The power and precision of the comparisons may therefore
suffer.

Research on the effectiveness of matching versus the effectiveness of
stratification in controlling for confounding factors has been performed

Ž . Ž .by Cochran 1968 and Rubin 1973 for quantitative measurements and by
Ž .McKinlay 1975c for dichotomous measurements. Based on their results, we

may view matching as the method of choice only for moderate sample sizes
and cross-sectional sampling followed by stratification as the method of
choice for large sample sizes.

10.8. METHODS TO BE AVOIDED

A Test Described by Fleiss
In the first edition of this book, a test for homogeneity originally proposed by

Ž .Yates 1955 was described. It calls for summing the values of the standard
Žsingle-degree-of-freedom chi squareds for the individual groups without the

.continuity correction and for subtracting from this sum the value of Cochran’s
Ž . Ž .1954 single-degree-of-freedom summary chi squared given in 10.64 . The
procedure is based on the following application of the theory of Section 10.1.

Let the measure of association in the ith group be the so-called standard-
ized difference,

p ypi1 i2y sd s . 10.65Ž .i i p qi i
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Its squared standard error is

$ 2 n1 i .se d s , 10.66Ž . Ž .i ž /n np q i1 i2i i

so that

p q n ni i i1 i2w s 10.67Ž .i ni .

and

2p ypŽ .i1 i22 2� sw d s , 10.68Ž .i i i p q 1rn q1rnŽ .i i i1 i2

which is precisely the usual chi squared value, aside from the continuity
correction.

The mean standardized difference is

g p yp n nŽ .i1 i2 i1 i2Ý ni .is1ds 10.69Ž .g p q n ni i i1 i2Ý ni .is1

with a squared standard error of

$ 2 1
se d s , 10.70Ž . Ž .g p q n ni i i1 i2Ý ni .is1

so the chi squared statistic for testing overall association is

2g p yp n nŽ .i1 i2 i1 i2Ý nž /2 i .d is12� s s , 10.71Ž .gassoc $ 2 p q n ni i i1 i2se dŽ . Ý ni .is1

2 Ž .which is identical to Cochran’s � in 10.64 .C
The error in the first edition was in suggesting that

g
2 2 2� s w d y� , 10.72Ž .Ýhomog i i C

is1
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Table 10.8. Data to illustrate pre©iously suggested test for homogeneity

Sample 1 Sample 2 Overall

Group n p n p n pi1 i1 i2 i2 i. i

is1 230 0.87 50 0.20 280 0.75
is2 40 0.25 810 0.0123 850 0.0235

Table 10.9. Summarization of data in Table 10.8
2Group d w w d w di i i i i i

is1 3.57 7.70 27.489 98.136
is2 10.36 0.87 9.013 93.375

Total 8.57 36.502 191.511

with gy1 df, always formed the basis of a valid test of homogeneity. Mantel,
Ž .Brown, and Byar 1977 have shown that the standardized difference in

Ž . Ž .10.65 , and therefore the test statistic in 10.72 , is sensitive to the ratio of
sample sizes as well as to the underlying degree of association, so that the

Ž .test based on 10.72 may sometimes be invalid.
Consider the data in Table 10.8, taken from Mantel, Brown, and Byar

Ž .1977 . It is easily checked that the odds ratio in both groups is equal to 26.7.
Nevertheless, as shown in Table 10.9, the two standardized differences are

Ž .markedly different, and the test based on 10.72 suggests, incorrectly, that
association differs between the two groups:

36.5022
2� s191.511y s36.04 10.73Ž .homog 8.57

with gy1s1 df, which is highly significant.
Ž .Mantel, Brown, and Byar 1977 illustrate other possible anomalies associ-
Ž . Žated with the statistic given in 10.72 e.g., the odds ratios may vary markedly

2 .across the g groups, but � might nevertheless equal zero . The problemhomog
with � 2 is the dependence of the standardized differences, which thishomog
statistic compares, on the sample sizes n and n . The sample sizes affecti1 i2

Ž .the values of p and q ; therefore, as seen in 10.65 , they affect the value ofi i
d . Because of the above difficulties, the test for homogeneity based oni
Ž .10.72 should be avoided.

The Summation-of-Chi Procedure
One of the more frequently employed methods for combining data from
different fourfold tables is of the form outlined in Section 10.1, although not
obviously so. The method, usually referred to as the summation-of-chi
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procedure, has long been known to have serious defects but keeps reappear-
Ž .ing nevertheless see, e.g., Finney, 1965 . The method in effect takes as the

measure of association

p ypi1 i2y sz s . 10.74Ž .i i
p q 1rn q1rn' Ž .i i i1 i2

Because z has been standardized to have a standard error of unity, thereforei

1
w s s1. 10.75Ž .i 2se zŽ .i

The word ‘‘chi’’ in the name of the procedure derives from z ’s being thei
Ž .square root of a chi squared variate without the correction for continuity ,

and hence being a chi variate.
Ž .When y is defined by 10.74 ,i

Ý g zis1 iys sz 10.76Ž .g

and
g

w sg , 10.77Ž .Ý i
is1

Ž . Ž .by 10.75 . Therefore, by 10.9 ,

2gÝ zŽ .is1 i2 2� s sgz . 10.78Ž .assoc g

ŽThere is a serious flaw inherent in this chi squared statistic see, e.g.,
.Pasternack and Mantel, 1966 . Consider the numerical example of Table

10.10. For group 1,

� 2sz 2s8.00; 10.79Ž .1 1

for group 2,

� 2sz 2s80.00. 10.80Ž .2 2

Table 10.10. Data to illustrate summation-of-chi procedure

Sample 1 Sample 2 Overall

Group n p n p n p zi1 i1 i2 i2 i. i i

is1 100 0.60 100 0.40 200 0.50 2.83
is2 1000 0.60 1000 0.40 2000 0.50 8.94
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The average value of z is

1zs 2.83q8.94 s5.88, 10.81Ž . Ž .2

Ž .so that, by 10.78 ,

22� s2� 5.88 s69.15 10.82Ž . Ž .assoc

with 1 df. What is disquieting about this value for the overall test of
association is that it is less than the value for one of the individual chi
squareds for association, � 2s80. The addition of the evidence from group 1,2
in which the association was really the same as in group 2, would be expected
to increase the statistical significance of the association. The summation-of-chi
procedure failed to do so.

Any procedure for which an accumulation of evidence for association may
lead to a reduction in chi squared is to be avoided. So be it with the
summation-of-chi procedure.

Summation Obser©ed ©ersus Summation Expected
A relative lack of sensitivity to added evidence for association in a given
direction characterizes the following method, too. Although it can be cast
into the terms of the theory of Section 10.1, that would not be an aid to
understanding.

The method calls first for generating a total fourfold table by summing the
frequencies across the g individual tables. Let the observed frequencies for
gs2 groups be as in Table 10.11 Chi squared is calculated without the
continuity correction. The association between A and B, measured by an
odds ratio of 26.7, is the same in both groups.

The table of total frequencies is as shown in Table 10.12.
The next step is to determine, for each group, the set of frequencies

expected under the hypothesis of no association. The expected frequency for
a cell is calculated as the product of the total frequencies in a cell’s row and
column divided by the overall frequency in the table. Thus the expected

Table 10.11. Data to illustrate procedure based on summation obser©ed
©ersus summation expected

Group 1 Group 2

B B Total B B Total

A 200 30 230 40 120 160
A 10 40 50 10 800 810

Total 210 70 280 50 920 970
2 2� s98.20 � s154.351 2
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Table 10.12. Sum of frequencies for groups 1 and 2

B B Total

A 240 150 390
A 20 840 860

Total 260 990 1250

Table 10.13. Expected frequencies for groups 1 and 2

Group 1 Group 2

B B Total B B Total

A 172.5 57.5 230 8.25 151.75 160
A 37.5 12.5 50 41.75 768.25 810

Total 210 70 280 50 920 970

Ž .frequency in the A, B cell for group 2 is 160�50r970s8.25. All expected
frequencies are shown in Table 10.13.

Next, generate an overall table of expected frequencies by summing, as in
Table 10.14, across the individual tables just determined.

Finally, calculate the summary chi squared for association by taking, for
each cell, the difference between the total observed and total expected
frequencies, squaring, dividing by the total expected frequency, and summing
across all four cells. Thus from Tables 10.12 and 10.14,

2 2240y180.75 150y209.25Ž . Ž .2� s qassoc 180.75 209.25
2 220y79.25 840y780.75Ž . Ž .

q q79.25 780.75

s84.99. 10.83Ž .

This value for chi squared is less than either of the two original chi
squared values shown in Table 10.11. The procedure based on comparing the

Table 10.14. Sum of expected frequencies for groups 1 and 2

B B Total

A 180.75 209.25 390
A 79.25 780.75 860

Total 260 990 1250
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Table 10.15. Association between A and B in two groups

Group 1 Group 2

B B Total B B Total

A 10 40 50 60 40 100
A 20 80 100 30 20 50

Total 30 120 150 90 60 150
2 2� s0 � s01 2

sums of observed frequencies with the sums of expected frequencies there-
fore suffers from the same deficiency as the summation-of-chi procedure and
is to be avoided for the same reason.

( )Chi Squared on the Table of Totals Pooling the Data
A defect opposite in nature to that of the two preceding methods character-
izes the following procedure for testing overall association. The method
cannot be described in terms of the theory of Section 10.1. It calls merely for
generating the table of total observed frequencies as described in the preced-
ing section and then calculating a straightforward chi squared on it.

The method works quite well on the data of the two previous sections, and
in general for groups in which corresponding proportions are nearly equal.
Such a state of affairs is exceptional, however. Consider the data of Table
10.15. No association between A and B exists in either group, although the
basic rates are different in the two groups.

The table of total frequencies is as shown in Table 10.16. Its associated chi
squared is 5.01, indicating an association significant at the 0.05 level. The
pooling of data from tables with unequal proportions and with unequal ratios
of sample sizes, n rn , has created the impression of association wherei1 i2
none actually existed. See Section 10.9.1 for further discussion of such
confounding.

The procedures described in this section should be avoided for the reasons
Ž .indicated see also Gart, 1962, and Sheehe, 1966 . This necessarily means

that the calculations become more complicated, as was seen in Sections 10.2
to 10.5, but that is the price one must pay for a valid analysis.

Table 10.16. Sum of frequencies for groups 1 and 2

B B Total

A 70 80 150
A 50 100 150

Total 120 180 300
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10.9. RELATED MATTERS

We close the chapter with some comments and results on matters related to
the combination of evidence from fourfold tables. Section 10.9.1 continues
the discussion of confounding illustrated at the end of the preceding section.
Section 10.9.2 extends the methods of Section 10.1 to random effects meta-
analysis. Section 10.9.3 covers tests for homogeneity of odds ratios in the
large-sparse case.

10.9.1. Potential Confounding and Operational Nonconfounding

The problem highlighted at the end of Section 10.8 is one of confounding.
Generally, when the group or stratification variable C is associated with

Ž .variable A within fixed levels of variable B , and is also associated with B
Ž .within fixed levels of A , one should presume that the pooled odds ratio will
be a biased estimate of the true odds ratio assumed constant across tables.
Here we further distinguish between potential confounding and operational
nonconfounding. In order to abstract the discussion from issues of sampling,
let us assume in this subsection that the sample sizes per group are so large
that the sample proportions p and p are essentially equal to the truei1 i2
proportions P and P , respectively. Then given a set of g 2�2 tables withi1 i2

Ž . Ž .a common odds ratio, p q r p q s� , the necessary and sufficienti1 i2 i2 i1 common
condition for the pooled odds ratio,

g g

n p n qÝ Ýi1 i1 i2 i2ž / ž /
is1 is1

� s , 10.84Ž .pooled g g

n p n qÝ Ýi2 i2 i1 i1ž / ž /
is1 is1

to equal � is thatcommon

g gp pi2 i2w s w , 10.85Ž .Ý Ýi1 i2q qi2 i2is1 is1

Ž .where the two sets of weights are defined as w sn q r Ý n q andi1 i1 i1 i i1 i1
Ž . Ž .w sn q r Ý n q . When the necessary and sufficient condition 10.85i2 i2 i2 i i2 i2

holds, we say the collection of tables is collapsible, meaning that the pooled
odds ratio from the collapsed set of tables equals the common odds ratio. It

Ž .is easy to identify two special cases of 10.85 :

( )i p rq is constant for is1, . . . , g. In this case the stratum variable Ci2 i2
is unassociated with the outcome variable B within level 2 of variable
A, and, because of the assumption of a common odds ratio, C is also
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Table 10.17. Potential confounding with operational nonconfounding

Group 1 Group 2 Group 3 Pooled

B B Total B B Total B B Total B B Total

A 79 79 158 36 18 54 270 90 360 385 187 572
A 36 36 72 144 72 216 135 45 180 315 153 468

Total 115 115 230 180 90 270 405 135 540 700 340 1040

unassociated with B within level 1 of variable A. Briefly, C is
conditionally unassociated with B given A; in symbols we write

�B�C A.
( )ii The two sets of weights are identical: w sw for is1, . . . , g. In thisi1 i2

case the odds on an observation at level 1 versus 2 of A among
Ž . Ž . Ž . Ž .outcomes at level 2 of B are n q r n q s Ý n q r Ý n qi1 i1 i2 i2 i i1 i1 i i2 i2

and thus constant, and similarly for the odds at level 1 of B, i.e., C is
�conditionally unassociated with A given B, A�C B.

Ž . Ž .Conditions i and ii are sufficient conditions for the pooled odds ratio to be
unbiased for the common odds ratio. When either sufficient condition holds,
the group or stratification variable is nonconfounding.

When neither condition holds, variable C is said to be potentially con-
Ž . Ž .founding. The qualifier is required because i and ii are sufficient but not

Ž . Ž .necessary for collapsibility. Thus it is possible for neither i nor ii to hold
Ž .while 10.85 nevertheless holds, in which case we say that the group variable

is operationally nonconfounding. For example, consider the hypothetical data
in Table 10.17. The reader may confirm that the odds ratio equals 1 in each
table, as well as in the pooled table, so that C is operationally nonconfound-

Ž . Ž .ing, even though neither sufficient condition i nor ii holds.
Our view of the situation illustrated in Table 10.17 is that the group

variable should still be considered a confounding factor, notwithstanding its
status as an operational non-confounder in the data. The reason is that with
exactly the same proportions p and p and odds ratios, but merelyi1 i2
different sample sizes n and n , collapsibility is usually lost. Consider thei1 i2
data of Table 10.18, which has precisely the same proportions and odds ratio
relations as Table 10.17 for the three separate groups, but triples one sample
size, n , in the first table. Now the pooled table odds ratio shows serious bias11

Ž .for the common odds ratio in one direction pooled odds ratios0.76 . Table
10.19 triples n in the first table and produces serious bias in the opposite12

Ž .direction pooled odds ratios1.20 . Thus if a researcher reported a finding
of nonconfounding by the group variable in his or her analysis of the data in
Table 10.17, other researchers who failed to control for the same potential
confounder with a different design could be misled. In general, whenever a
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Table 10.18. Loss of operational nonconfounding in one direction

Group 1 Group 2 Group 3 Pooled

B B Total B B Total B B Total B B Total

A 237 237 474 36 18 54 270 90 360 543 345 888
A 36 36 72 144 72 216 135 45 180 315 153 468

Total 273 273 546 180 90 270 405 135 540 858 498 1356

Table 10.19. Loss of operational nonconfounding in the other direction

Group 1 Group 2 Group 3 Pooled

B B Total B B Total B B Total B B Total

A 79 79 158 36 18 54 270 90 360 385 187 572
A 108 108 216 144 72 216 135 45 180 387 225 612

Total 187 187 374 180 90 270 405 135 540 772 412 1184

characterization of a relation between variables is sensitive to changes in a
design feature under the control of the investigator, like sample size, the
characterization should be avoided as unreliable. So it is with the notion of
operational nonconfounding when the stratum variable is a potential con-
founder.

10.9.2. Fixed and Random Effects Meta-analysis

Section 10.1 presented general methods for combining evidence across sev-
eral independent studies, and those methods have come to be called fixed-ef-
fects meta-analysis when they are applied to literature review and synthesis
on a particular research question. An excellent review of the problems and

Ž . Ž .methods in this area is given by Hedges and Olkin 1985 , Fleiss 1993 , and
Ž .Olkin 1995a, 1995b, 1996 . When the studies are viewed not as the entire

population of studies but rather as a sample from a larger population of
studies, then random effects meta-analysis is a better analytic framework to

Ž .use. Here, paraphrasing liberally from Fleiss 1993 , we present methods
appropriate for random effects meta-analysis for combining the evidence
about odds ratios from several independent studies. These extend the meth-
ods of Section 9.6 for a set of proportions with random heterogeneity to
methods for a set of odds ratios with random heterogeneity.

Under the assumption that the g studies are a random sample from a
larger population of studies, there is a mean population log odds ratio, say 
,
about which the true study-specific log odds ratios vary. Thus, even if each
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study’s results were based on sample sizes so large that the standard errors of
the sample log odds ratios were zero, there would still be study-to-study
variation in the log odds ratios. Let D2 denote the variance of the studies’

2 Ž . Ž .true log odds ratios, and let � denote the statistic 10.11 or 10.18 forhomog
measuring study-to-study variation in effect size. Note that there is no
concern in the random effects analysis about the statistical significance or not
of � 2 . On the contrary, it is taken as axiomatic that interstudy hetero-homog
geneity exists, and that it should automatically be taken into account in the
analysis. Instead, � 2 is used to estimate the true interstudy variance D2,homog
as follows.

g 2Let wsÝ w rg be the average of the g weights w , . . . , w , and let sis1 i 1 g w
be the sample variance of the weights,

2g g 2 2Ý w yw Ý w ygwŽ .is1 i is1 i2s s s . 10.86Ž .w gy1 gy1

Ž .The weights w are defined in 10.16 , or, if the cell frequencies from thei
individual studies’ fourfold tables are available, the bias-corrected version w�

i
Ž .from Section 10.2 or 6.33 may be used; alternatively, if log odds ratios are

adjusted for confounding factors in the individual studies and these are to be
used in the meta-analysis, the general definition of w as the squaredi
reciprocal of the estimated standard error for the adjusted log odds ratio will
be used. We will not here further distinguish between these alternatives, and
will simply write L for the estimated log odds ratio to be meta-analyzed,i
and w for its squared reciprocal standard error. We shall also ignore the facti
that, technically, the weights themselves are random variables, both because
they are estimated from data, and because they generally depend on the
parameters from each study, which are variables in the random effects
approach. We assume the sample sizes are large enough in each study to
justify the assumption of an approximately normal distribution for L , and wei
shall treat the estimated standard errors, and hence the weights, as if they
were known constants. This approach is justified on the grounds that the
additional uncertainty introduced in the meta-analysis due to random weights
is generally small, and ignoring it simplifies the analysis substantially. Results

Ž .of Lin et al. 1997 support this approach, though they point out that the
standard error of an estimate of D2 is sensitive to random variation in the
weights.

Now let

s2
wUs gy1 wy . 10.87Ž . Ž .ž /gw

An estimate of D2, the component of variance due to interstudy variation in



10.9 RELATED MATTERS 267

effect size, is given by the following formula of Dersimonian and Laird
Ž .1986 :

° 2� y gy1Ž .homog 2if � �gy1,2 homog~˜ UD s 10.88Ž .
2¢0 if � Fgy1.homog

Due to the interstudy variability in true log odds ratios, the marginal
variance of each estimated log odds ratio is no longer simply wy1, buti

Ž . 2 y1Var L sD qw . Thus, for estimating 
, we use the approximatelyi i
optimal weights

1�w s ; 10.89Ž .i 2 y1D̃ qwi

the random effects point estimate of 
 is then

Ý g w�Lis1 i i�̃L s , 10.90Ž .�gÝ wis1 i

with standard error

& 1�̃se L s . 10.91Ž .Ž . �gÝ w' is1 i

Ž .Thus an approximate 100 1y� % confidence interval for 
 is

z z�r2 �r2� �˜ ˜L y �
�L q , 10.92Ž .� �Ý w Ý w' 'i i i i

and a test for significance of the population average log odds ratio is
provided by

g
� 2 �2 ˜� sL w . 10.93Ž .Ýassoc i

is1

A consequence of the random effects analysis compared with the fixed-
effects analysis is that the confidence interval for the population average log
odds ratio 
 in the former is wider than that for the assumed constant log
odds ratio in the latter. Specifically, Ý w�FÝ w , with equality only wheni i i i
˜2 Ž . Ž .D in 10.88 equals zero, so that the standard error in 10.91 is at least as

Ž .large as 10.7 in the fixed-effects analysis. A random effects analysis there-
fore suggests more uncertainty in estimating the population average parame-
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Table 10.20. Random effects analysis of logarithms of odds ratios
applied to data of Table 10.1

� � � �Study o L w w * w * Li i i i i i

1 6.894 1.931 10.410 3.035 5.861
2 2.415 0.881 21.868 3.583 3.156
3 2.314 0.839 17.357 3.436 2.883

Total 10.054 11.900

ter than does a fixed-effects analysis, reflecting the additional variability in
the true study-specific parameters.

Ž . 2Consider once again the data in Table 10.1. From 10.18 , � s9.41,homog
and from Table 10.2, the average weight is ws49.635r3s16.545. The

2 Ž .variance of the weights is s s33.316. Thus the quantity U in 10.87 isw
� Ž .4Us2 16.545y33.316r 3�16.545 s31.748, whence the estimated disper-

˜2 Ž .sion is D s 9.41y2 r31.748s0.2334.
The fixed and random effects weights are displayed in Table 10.20 for

comparison. Note how the weights w� place more even weight on the threei
Žstudies than do the weights w . This is typical of the random effects analysis;i

in fact, as D2 grows large, the optimal weights approach 1rg, wherein all
.studies would be weighted equally. The estimate of the population average

�̃log odds ratio is L s11.900r10.054s1.184, slightly larger than the value of
� Ž .L s1.087 in 10.19 , as a result of the greater weight placed on the first study

&
� �˜ ˜Ž .than on the other two. The standard error of L is estimated as se L s

' Ž .1r 10.054 s0.315, over twice as large as 0.142 in 10.20 from the fixed-
effects analysis, reflecting the substantial variation in the odds ratios across

Ž . 2the three studies. The test of overall association from 10.93 is � sassoc
1.1842 �10.054s14.09, still highly significant, but substantially smaller than

Ž .58.60 from 10.21 . An approximate 95% confidence interval for the popula-
Ž .tion average log odds ratio from 10.92 is 1.184 � 1.96 � 0.315 s

Ž .0.567, 1.801 . Taking antilogs yields an approximate 95% confidence interval
Ž .for exp 
 : 1.76�exp 
�6.06, which is substantially wider than the fixed-

effects confidence interval for the assumed common odds ratio, 2.25���
Ž .3.92, from 10.26 .

There has been controversy concerning how interstudy differences in the
magnitudes of estimated effect sizes should be taken account of in a meta-

Ž .analysis. Fleiss 1993 argues that the random effects model anticipates better
than the fixed-effects model the possibility that some studies not included in
the analysis are under way, are about to be published, were published in
obscure places, or were never even reported, and that the results of the
unincluded studies may show the same kind of variation as those of the

Ž . Ž .included studies. DeMets 1987 and Bailey 1987 discuss the strengths and
weaknesses of the two approaches. Bailey suggests that when the research
question involves extrapolation to the future�will the treatment have an
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effect, on average�then the random effects model is the appropriate one.
When the research question concerns whether treatment has produced an
effect, on average, in the set of studies being analyzed, then the fixed-effects

Ž .model is the appropriate one. Meier 1987 argues that study-to-study varia-
tion is a key feature of the data and should contribute to the analysis, and

Ž .thus supports the random effects approach. Peto 1987 , on the other hand,
supports the view that only the studies currently being analyzed should be of
interest.

On the whole, the present authors find the random effects model gener-
ally most appropriate. Crucial to remember, however, is that whichever
statistical model is chosen, understanding the sources and causes of inter-

Ž .study variation in effect sizes is as important if not more so to understand-
ing the phenomena under study as is the mechanical calculation of a
summary effect size and confidence interval for it, be it a constant or a popu-
lation average. Summarization should follow understanding, not the other
way around.

10.9.3.* Tests of Odds Ratio Homogeneity in the Large-Sparse Case

The large sparse case presents special challenges for detecting heterogeneity
in odds ratios, because, like any test of a higher-order interaction, it has
smaller power than the test of overall association. In addition, the usual
approximation of the exact distribution of a test statistic for odds ratio
homogeneity by the chi squared distribution, which is valid in the classic
framework of a fixed number of tables each with large margins, breaks down
when there are many degrees of freedom and each component is not
accurately approximated by chi squared. To help address these issues, it
makes good sense to seek methods that take advantage of the random effects
model.

Ž .Ejigou and McHugh 1984 considered the case of 1-to-R matched sample
Ž .studies, and Zelterman and Le 1991 considered chi-squared goodness-of-fit

Ž .tests. Liang and Self 1985 considered several tests of odds ratio homogene-
ity in the large sparse case. One of their statistics, which had favorable
operating characteristics in a Monte Carlo study, was the so-called mixture
model score test. This test statistic is theoretically locally most powerful
against nearby alternatives of a random mixture of odds ratios. Using the
notation of Table 10.3, the numerator of the mixture model score statistic is

g
2

� �Ts X yE X n , n , m , � yVar X n , n , m , � , 10.94Ž .� 4ˆ ˆŽ . Ž .Ý i i i . i1 i c i i . i1 i c
is1

Ž .where the mean and variance of the reference cell X are the moments 6.43i
Ž .and 6.44 of the noncentral hypergeometric distribution, evaluated at the

conditional maximum likelihood estimate of the common odds ratio under
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w Ž .xthe null hypothesis of homogeneity see expression 10.30 . Under the null
hypothesis of a common odds ratio, the expected value of T is approximately

w Ž .xzero and would be exactly zero if � were known and used in 10.94 . Under
the alternative hypothesis of random variation in true odds ratios, the leading

Ž .terms of squared observed-minus-expected differences in 10.94 tend to
Ž .exceed their null expectation of Var X , so T becomes large. As the numberi

g of tables increases, T has an approximately normal distribution with zero
mean under the null hypothesis, by the central limit theorem.

In order to operationalize the test procedure, one needs the standard
error of T , which involves third and fourth moments of the noncentral

Ž .hypergeometric distribution. Jones et al. 1989 give explicit formulas for the
variance of T. Letting

Ž1. � Ž2. �� sE X n , n , m , � , � sVar X n , n , m , � ,ˆ ˆ ˆ ˆŽ . Ž .i i i . i1 i c i i i . i1 i c

3Ž3. Ž1. �� sE X y� n , n , m , � ,ˆ ˆŽ .½ 5i i i i . i1 i c 10.95Ž .
4Ž4. Ž1. �� sE X y� n , n , m , � ,ˆ ˆŽ .½ 5i i i . i1 i c

denote the first four moments evaluated at the conditional maximum likeli-
hood estimate � the standard error of T is given byˆc

1r22g Ž3.$ �̂Ž .2 iŽ4. Ž2.se T s � y � q . 10.96Ž . Ž .ˆ ˆŽ .Ý i i Ž2.½ 5�ž /ˆŽ .iis1

$
Ž .The mixture model score test consists of referring zsTrse T to the

one-tailed critical value z from the standard normal distribution, and�

rejecting the null hypothesis of odds ratio homogeneity if zGz .�

To illustrate, consider the hypothetical data in Table 10.21, which simu-
lates the results of a matched case-control study with a dichotomous ante-
cedant exposure and with 2 : 2 matching, that is, two cases matched with two

Table 10.21. Data of 200 matched samples from a simulated matched sample
case-control study with 2 : 2 matching

Canonical Representation Product Multinomial Representation

Number of Exposed Controls Number of Exposed CasesNumber of
Exposed Cases 0 1 2 m 0 1 2

0 11 29 16 1 29 36 �
1 36 35 30 2 16 35 13
2 13 16 14 3 � 30 16
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controls, with each of the four matched on given levels of strongly confound-
ing factors. For the illustration, two hundred pairs of binomial variables with
sample sizes n sn s2 were generated, representing the number of ex-i1 i2
posed cases, X , or the number of exposed controls, Y sm yX . The bino-i i i i
mial parameters were selected as follows. P was held fixed at P s0.5, andi1 1
ln � was given a standard normal distribution. P was then calculated asi i2

Ž . Ž .P sP r P q� Q s1r 1q� . The results are displayed in two formatsi2 i1 i1 i i1 i
in Table 10.21. The first is the canonical presentation of data from matched

Ž .samples see Chapter 13 , and cross-classifies the number of cases exposed
Ž . Ž .0, 1, or 2 by the number of controls exposed 0, 1, or 2 . The second recasts
the data into independent rows with fixed m s1, 2, or 3. The uninformativei
matched sets with X sY sm s0 or X sY s2 and m s4 have beeni i i i i i
omitted from the second format. These do not affect either the statistic
Ž . Ž .10.94 or its standard error 10.95 and may be deleted from the analysis.

For the mixture model score test, the first step is to obtain the conditional
Ž .maximum likelihood estimate of the common odds ratio. Solution of 10.30

yields � s0.8759, with standard error for ln � equal to 0.1429 and 95%ˆ ˆc c
Ž .confidence interval for � equal to 0.66, 1.16 , all under the assumption of aˆc

wconstant odds ratio. For comparison, the Mantel-Haenszel estimate of the
Ž .common odds ratio is 0.8802, and the 95% confidence interval by 10.58 and

Ž . Ž . x10.59 is 0.67, 1.16 . Next one obtains the first four moments for the
informative cases with m s1, 2, or 3. We have the following results:i

for m s 1: �Ž1. s 0.4669, �Ž2. s 0.2489, �Ž3. s 0.01647, and �Ž4. sˆ ˆ ˆ ˆi i i i i
0.06304;

for m s2: �Ž1.s0.9558, �Ž2.s0.3333, �Ž3.s0.00008578, and �Ž4.sˆ ˆ ˆ ˆi i i i i
0.3314;

for m s 3: �Ž1. s 1.4669, �Ž2. s 0.2489, �Ž3. s 0.01647, and �Ž4. sˆ ˆ ˆ ˆi i i i i
0.06304.

Ž .The distribution for m s3 is the same as that for m s1 shifted up by 1.i i
Then

2 2Ts29 0y0.4669 qy0.2489 q36 1y0.4669 y0.2489Ž . Ž .� 4 � 4
2 2q16 0y0.9558 y0.3333 q35 1y0.9558 y0.3333Ž . Ž .� 4 � 4
2 2q13 2y0.9558 y0.3333 q30 1y1.4669 y0.2489Ž . Ž .� 4 � 4
2q16 2y1.4669 y0.2489 s7.54.Ž .� 4

After a somewhat lengthy calculation the standard error of T is found to be
3.7616, for a z-score of 7.54r3.76s2.00. The one-tailed p-value is thus 0.023,
and the test has confirmed the substantial heterogeneity in odds ratios.

In the simulated data, the true odds ratios had a mean of 1.524 and a
standard deviation of 1.817, with a highly skewed log-normal distribution.



COMBINING EVIDENCE FROM FOURFOLD TABLES272

Ž .Note that 1.524 is outside the 95% confidence interval 0.66, 1.16 for the
presumed common odds ratio. This highlights another point about varying
odds ratios: when odds ratios are random, a confidence interval for an
assumed constant odds ratio, constructed by exponentiating the endpoints of
a confidence interval for its logarithm, will generally not be a confidence
interval for the average of the random odds ratios, especially when there is
skewness in their distribution. The constructed interval centers about the
geometric mean odds ratio rather than the arithmetic mean, and these differ
unless the odds ratios are constant.

Ž .Jones et al. 1989 conducted a Monte Carlo investigation comparing
several tests for odds ratio homogeneity including the mixture model score
test. Interestingly, these authors found substantially lower power for the

Ž .mixture model score test than did Liang and Self 1985 in their Monte Carlo
Ž .study. Levin 1992 explained the discrepancy between the two studies on the

basis of how each set of authors generated their simulated data. Liang and
Ž .Self 1985 generated random probabilities P and odds ratios � indepen-i1 i

Ž .dently, implicitly defining P sP r P q� Q . Then, given the pair ofi2 i1 i1 i i1
Ž .probabilities P , P , they generated the reference cell X as a binomiali1 i2 i

random variable with sample size n and parameter P , and generated thei1 i1
Ž .count Y in the 2, 1 cell independently as a binomial with sample size ni 2 i

Ž .and parameter P . They considered 1 : R matched designs with n , n si2 i1 i2
Ž .1, R , and completely balanced designs with n sn sn, and also consid-i1 i2
ered cases in which P was fixed, not random, as in the illustration above.i1

Ž .By contrast, Jones et al. 1989 generated random variables P and �2 i i
Ž y1 .independently, implicitly defining P sP r P q� Q . They consideredi1 i2 i2 i i2

completely balanced designs and balanced designs with n sn varyingi1 i2
from table to table, and also considered cases in which P was fixed, noti2

Ž .random. Levin 1992 pointed out that there is a complete loss of power for
the 1 : R matched design when P is fixed, even when � is random, becausei2 i
one cannot distinguish a binary random variable X with n s1 and ai i1
random P , on the one hand, from a binary random variable with a fixed Pi1 1
equal to the expected value of the random P . Thus the null and alternativei1
hypotheses are indistinguishable. He also showed that there is a partial loss
of power when n �1 and P is fixed, based on consideration of ani1 i2
empirical Bayes model. We present this model next.

Let us start with the two-binomial model for each 2�2 table. Given
Ž . Ž .n , n and P , P , X and Y have conditionally independent binomiali1 i2 i1 i2 i i
distributions with parameters P and P and sample sizes n and n ,i1 i2 i1 i2
respectively; further conditioning on the sum X qY sm gives X thei i i i

Ž � . Ž .noncentral hypergeometric distribution H j n , n , m , � as in 6.35 , de-i . i1 i i
Ž . Ž .pending only on the odds ratio � s P rQ r P rQ . It is easy to checki i1 i1 i2 i2

that

� �P X s jq1 n , n , m , � C jq1 n , n , mŽ . Ž .i i . i1 i i i . i1 is �� , 10.97Ž .i� �P X s j n , n , m , � C j n , n , mŽ . Ž .i i . i1 i i i . i1 i
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where we have written

nn i2i1�C j n , n , m s for js0, . . . , min m , n y1.Ž .Ž .i . i1 i i i1ž / ž /m y jj i

Now suppose G is any unknown joint distribution function for the pair of
Ž . Ž . Ž .probabilities P , P over the unit square 0, 1 � 0, 1 , which induces ai1 i2

distribution for the odds ratio � . We assume that each pair of probabilityi
Ž .parameters P , P is independent of the corresponding pair of sample sizesi1 i2

Ž . Ž .n , n , and that for is1, . . . , g, the pairs P , P are an independentlyi1 i2 i1 i2
Ž .and identically distributed sample from G. Then from 10.97 it follows that

Ž .for js0, . . . , min m , n y1 we havei i1

� �P X s jq1 n , n , m rC jq1 n , n , mŽ . Ž .i i . i1 i i . i1 i�E � X s j,n , n , m sŽ .i i i . i1 i � �P X s j n , n , m rC j n , n , mŽ . Ž .i i . i1 i i . i1 i

10.98Ž .

Ž . Ž .see Problem 10.8 . Expression 10.98 is the fundamental general empirical
Bayes identity for the noncentral hypergeometric distribution, analogous to
that presented in Section 9.6.3 for proportions. In words, the identity states
that among all fourfold tables with the given margins and reference cell equal
to j, the average value of the true odds ratio underlying those tables can be
expressed as the ratio of the marginal conditional probabilities on the
right-hand side, which can be estimated directly from the data. Given the

Žcomplexity of the marginal conditional probabilities marginal with respect to
.the unobserved odds ratio � , conditional given the observed m ,i i

	
�P X s j, Y sm y j n , n , P , P dG P , PŽ .Ž .H i i i i1 i2 i1 i2 i1 i2

0�P X s j n , n , m sŽ .i i . i1 i 	
�P X qY sm n , n , P , P dG P , PŽ .Ž .H i i i i1 i2 i1 i2 i1 i2

0

ni1 n yjj i1P 1yPŽ .HH i1 i1ž /jŽ . Ž . Ž .P , P g 0, 1 � 0, 1i1 i2

ni2 jylm yj ii� P 1yP dG P , PŽ . Ž .i2 i2 i1 i2ž /m y ji
s ,Ž .min m , ni i1 n n yui1i1 uP 1yPŽ .HH Ý i1 i1ž /uŽ .Ž . Ž . Ž . usmax l , 0P , P g 0, 1 � 0, 1 ii1 i2

ni2 uylm yu ii� P 1yP dG P , PŽ . Ž .i2 i2 i1 i2ž /m y ji

10.99Ž .
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Ž .it is remarkable that 10.98 offers such a simple and direct way to estimate
the average odds ratio given X s j.i

An application of Jensen’s inequality shows that for any mixing distribu-
Ž .tion G, the quantities in 10.98 are nondecreasing in j for fixed margins, and

are strictly increasing in j unless G is such that � degenerates to a constant.i
This suggests the following approach. For ease of presentation, suppose we
assume that n sn and n sn are fixed by design, as they would be in ai1 1 i2 2
matched sample design; the general case is a straightforward elaboration of
this case. For each informative value of m from 1 to ny1sn qn y1,. 1 2

Ž .classify the reference cell outcomes X into categories 0, . . . , min m, n ,i 1
thinking of them as multinomial responses. We then have one row of
independent multinomial observations for each value of m. For this product
multinomial data set, we specify a polytomous logistic regression model using

Ž .adjacent logit parameterization see Section 9.5 . Let

� �P X s jq1 n , n , m rC jq1 n , n , mŽ . Ž .i . 1 . 1�� m n , n s ln 10.100Ž .Ž .j 1 2 � �P X s j n , n , m rC j n , n , mŽ . Ž .i . 1 . 1

� Ž � . Ž � .4denote the adjacent logits ln P X s jq1 n , n , m rP X s j n , n , m plusi . i i . i
� Ž � . Ž � .4the offsets ln C j n , n , m rC jq1 n , n , m . The first model we consider. 1 . 1

is

� �� m n , n s m n , n q� j. 10.101Ž .Ž . Ž .j 1 2 1 2

wUnder the null hypothesis H : �sconstant, the slope coefficient �s0 in0
Ž .xwhich case s ln � by 10.97 , whereas under the random effects alterna-

tive, ��0. Thus we can use the techniques of Chapter 11 to fit model
$ˆ ˆŽ . Ž .10.101 to the multinomial data, and then use a Wald z-score, zs�rse � ,

as a test of H : �s0, to carry out the test of odds ratio homogeneity.0
Ž � .Note that there is no real concern if the true dependence of � m n , nj 1 2

on j is not exactly linear. Although many examples do confirm that the
dependence is remarkably linear, what is important for the test to have good
power is the monotonicity of � .j

An interesting feature of this problem is that often there is more evidence
of odds ratio heterogeneity in the data than is represented by the coefficient

Ž .� . From the empirical Bayes identity 10.98 , it would be plausible for the
Ž � .logit parameters � m n , n to decrease monotonically in m for fixed j.j 1 2

Ž .Although this is not universally true, Levin 1992 identifies a certain wide
Ž . w Ž .class of joint distributions G for P , P or equivalently, P , � ori1 i2 i1 i

Ž .x Ž � .P , � , for which the logit parameters � m n , n do decrease monotoni-i2 i j 1 2
Ž � .cally. The necessary and sufficient condition for � m n , n to be decreas-j 1 2

ing in m for fixed j is that the odds P rQ and the odds ratio � si2 i2 i
Ž . Ž .P rQ r P rQ have a negative conditional covariance given X s j. Ifi1 i1 i2 i2 i

Ž � .the covariance is zero, as when the odds ratio is constant, then � m n , nj 1 2
Ž � .is constant in m for fixed j. Sufficient conditions for � m n , n to strictlyj 1 2
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Ž .decrease are any of the following: a P and P are initially independenti1 i2
Ž . Ž .with P nondegenerate; b as a special case of a , P is constant with Pi2 i1 i2

Ž . Ž .not constant; c P rQ is initially independent of � ; d P rQ isi2 i2 i i1 i1
Ž .independent of � , the support of P rQ is all of 0, 	 , and the density ofi i1 i1

Ž . Ž .ln P rQ is log-concave. Condition d includes, for example, the casesi1 i1
Ž .where P has a beta distribution or ln P rQ has a log-normal distribution.i1 i1 i1

These sufficient conditions cover all the simulation scenarios considered by
Ž . Ž . Ž .Liang and Self 1985 and Jones et al. 1989 . Condition a ought not to

occur in a properly designed matched sample study, due to the correlation
between P and P induced by matching on strong confounding factors. It isi1 i2
nevertheless of interest to note that even with P constant and � nondegen-i1 i

Ž � .erate, � m n , n will decrease in m for fixed j.j 1 2
Ž .Thus we consider a second model, even simpler than 10.101 :

�� m n , n s n , n q� mq� j. 10.102Ž . Ž .Ž .j 1 2 1 2

Under the null hypothesis, both � and � equal zero, whereas under the
alternative hypothesis of random odds ratios satisfying the necessary andror

Ž .sufficient condition stated above, ��0 and ��0. Levin 1992 provides a
test statistic for the null hypothesis H : �s�s0 against alternatives in the0
parameter quadrant ��0, ��0 based on the maximum likelihood estimates

Ž .of � and � from the polytomous logistic regression model 10.102 and on a
Ž .specialized likelihood ratio test given by Chernoff 1954 for parameter

quadrant alternatives. A simpler procedure is to test the hypothesis H :0
�y�s0 versus the one-sided alternative H : �y��0. This is accom-1$ˆ ˆŽ . Ž .plished with the z-score, zs �y� rse �y� . Another simple test, albeitˆ ˆ

ˆ � ˆ y1 ˆŽ . � Ž .4 Ž .with less power, is the Wald chi squared statistic, � , � Cov � , � � , �ˆ ˆ ˆ
with 2 df, which is a test of H : �s�s0 against omnibus alternatives.0

The conditional covariance in the necessary and sufficient condition will
be zero not only when there is a constant odds ratio, but also when P isi2

Ž � .constant, in which case � m n , n is constant in m for fixed j, and �s0 inj 1 2
Ž .model 10.102 . Thus if P is constant, there is only one-dimensional insteadi2

of two-dimensional evidence for odds ratio heterogeneity, and tests of odds
ratio homogeneity based on both � and � will have lower power than tests
based only on � in this case. A preliminary test of homogeneity in P as ini2
Section 9.6.3 could be used to screen for this situation. Similarly, if n sni1 1
s1 for all i, then there is only evidence from � , and the Wald test for �
should be used.

For the illustrative data in Table 10.20, the sample estimates of the
Ž � . Ž � . �Ž . Ž .4� m n , n are as follows: for � 1 2, 2 , we have ln 36r2 r 29r2 s0.216.j 1 2 0

Ž � . �Ž . Ž .4 Ž � .For � 2 2, 2 we have ln 35r4 r 16r1 sy0.604, and for � 2 2, 2 we0 1
�Ž . Ž .4 Ž � . �Ž . Ž .4have ln 13r1 r 35r4 s0.396. For � 3 2, 2 we have ln 16r2 r 30r2 s1

Ž � .y0.629. These display the trends suggested by heterogeneity:� 2 2, 2 �0
Ž � . Ž � . Ž � . Ž � . Ž � .� 2 2, 2 , whereas � 1 2, 2 �� 2 2, 2 and � 2 2, 2 �� 3 2, 2 . Fitting1 0 0 1 1
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Ž . Žmodel 10.102 yields the following maximum likelihood estimates �1 stan-
ˆ ˆ.dard error : s1.164�0.473, �sy0.905�0.317, and �s0.987�0.504;ˆ

each coefficient is nominally significant. The 2 df chi squared test of joint
ˆsignificance of � and � is 8.346 with p-value 0.015, and the differenceˆ

�̂y�s1.892 has z-score 2.43 with one-tailed p-value 0.008. The statisticˆ
based on Chernoff’s generalized likelihood ratio test also has p-value 0.008.
In this example the empirical Bayes test had a smaller p-value than did the
mixture model score test.

PROBLEMS

10.1. It was found in Section 10.2 that the odds ratios in the three studies
summarized in Table 10.1 were significantly different.
( ) � � Ž .a The odds ratios o and o appear to be similar see Table 10.2 .2 3

Test whether they differ significantly, basing the test on the value
of

w� w�
2� �2 32� s L yL .� � Ž .2 vs 3 2 3w qw2 3

( ) � � �b The odds ratios o and o differ by less than either does from o .2 3 1
Test whether the mean of o� and o� differs significantly from o� .2 3 1

� � � � � � � �w Ž . Ž .Hint. The mean of L and L is L s w L qw L r w qw .2 3 2, 3 2 2 3 3 2 3
Refer the value of

� � �w w qw 2Ž . �1 2 32� s L yL� � � Ž .2 vs Ž2, 3. 1 2, 3w qw qw1 2 3

to critical values of chi squared with 2 df rather than 1, because the
xcomparison was suggested by the data.

( ) Ž .c How does the sum of the chi squared statistics determined in a
Ž . 2 Ž .and b compare with the value of � found in 10.18 ?homog

10.2. Apply the methods of Section 10.2 to the data of groups 2 and 3 only in
Tables 10.1 and 10.2. Specifically,
( )a What is the mean log odds ratio? What is its standard error? Is the

mean log odds ratio significantly different from zero?
( )b Find an approximate 95% confidence interval for the underlying

log odds ratio.
( )c What is the mean odds ratio? What is the approximate 95%

confidence interval for the underlying odds ratio corresponding to
Ž .the interval found in b ?
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10.3. Assume one is at stage k of the calculation of hŽ1.� ��� � hŽ g ., and let
Ž1.Ž . Žk .Ž . Žkq1. Ž . Ž .ash � � ��� � h � and bsh � . In 10.28 , show that only

terms with j satisfying

kq1 kq1

max l , 0 F jF min m , nŽ . Ž .Ý Ýh h h1
hs1 hs1

are nonzero, and that, in the limits of the sum, only terms with i
satisfying

k

max jymin m , n , max l , 0Ž . Ž .Ýkq1 kq1 , 1 h½ 5
hs1

k

F iFmin jymax l , 0 , min m , nŽ . Ž .Ýkq1 h h1½ 5
hs1

need be included.

10.4. Refer to the discussion of the ladies tasting tea in Section 10.3�.
Suppose two ladies are tested, and one gets all eight declarations right
Ž .X s4 while the other exhibits no better than chance accuracy1
Ž .X s2 . Calculate the two-tailed p-value.2

Ž .10.5. While it perhaps is not obvious, o see 10.52 is actually a weightedMH
average of the g individual odds ratios,

p 1ypŽ .i1 i2o s , is1, . . . , g .i p 1ypŽ .i2 i1

Show that this is so by finding a set of weights, w , . . . , w , so that, with1 g
Ž .o given by 10.52 ,MH

Ý g o wis1 i io s gM H Ý wis1 i

10.6. Prove that, when n sn s1, as in the study of matched pairs, thei1 i2
Ž .Mantel-Haenszel chi squared statistic given in 10.62 is identical to

Ž .McNemar’s chi squared statistic given in 13.3 .

Ž .10.7. Kline et al. 1995 report the results of a case-control study of the
Žassociation between cigarette smoking and miscarriage spontaneous

.abortion . Cases were women who presented at one of three New York
City hospitals with a spontaneous abortion prior to 28 weeks of gesta-
tion. Controls were women who were recruited from a prenatal care
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setting before 22 weeks of gestation and who delivered at 28 weeks or
later. The study was conducted over a 12-year period, and changes in
participating hospitals and sociodemographics suggested the need to
stratify on time period in three phases as a potential confounder. The
three fourfold tables shown below cross-classify women by case and

Žcontrol status and smoking in two categories: regular smokers 14 or
.more cigarettes per day at last menstrual period and women who never

Žsmoked. Ex-smokers and those who smoked fewer than 14 cigarettes
per day are excluded from consideration here. Cases represent those
with chromosomally normal fetuses. Fetuses with chromosomal aberra-

.tions are excluded.

Phase of study: 1 2 3
1974�1979 1979�1982 1982�1986

Smoking status: 14q Never 14q Never 14q Never

Cases: 70 333 40 211 23 273
Controls: 127 938 105 1011 60 794

( ) Ž .a Test at level �s0.05 two-sided the hypothesis of no association
between smoking and miscarriage given phase of study, against the
alternative of a constant odds ratio relating smoking and miscar-
riage across the three phases of the study. Estimate the assumed
common log odds ratio along with its standard error.

( ) Ž .b Is the test in part a powerful? Test the hypothesis of a constant
odds ratio relating smoking and miscarriage across the three phases

Ž .of the study at level �s0.05 two-sided .
( )c Calculate the odds ratio from the data pooled across all three

phases. Was phase a potential confounder? Was phase an opera-
tional confounder?

w xHint. To help with calculations, use the following worksheet.

� � �2�Phase Log Odds Ratio L Weight w Product wL wL

1 0.4421 38.33 16.95 7.492
2 0.6076 25.07 15.23 9.254
3 0.1208 15.63 1.89 0.228

Total 79.03 34.06 16.974
� 1 bias correction added.2

Ž . w Ž .10.8. Prove expression 10.98 . Hint. Use 10.97 and the definition of
posterior density as proportional to the likelihood function times the
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Ž � .prior to express the marginal probability P X s jq1 n , n , m ini i . i1 i
terms of the posterior expected value of � given the margins andi

xX s j.i
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C H A P T E R 1 1

Logistic Regression

11.1. INTRODUCTION

We use logistic regression to express relationships between a set of explana-
tory factors and one or more categorical outcomes. In much the same way as
the mean is the key quantity to be modeled in ordinary multiple regression,
so the log odds parameter plays a prominent role when outcome variables are
categorical. Good reasons exist for preferring to analyze discrete data in
terms of log odds parameters rather than probabilities or expectations. The
simplest reason is that the log odds parameter may take on any value
between plus and minus infinity, whereas a probability parameter is con-
strained to lie between zero and one. A binary outcome variable Y, taking

Ž .values zero or one, has a single probability parameter PsP Ys1 governing
its distribution, and P is the mean value of Y. The log odds parameter is

P
�s ln . 11.1Ž .1yP

We may pass back and forth between P and � via that relation and

e� 1
Ps s . 11.2Ž .� y�1qe 1qe

For specifying the distribution of the binary variable Y, the two parameters P
Ž . Ž .and � are equivalent, in the sense that equations 11.1 and 11.2 put them

into one-to-one correspondence. Because there is no constraint on �, a
working model may assign any value to �, which will automatically transform

Ž .via 11.2 into a proper probability between 0 and 1.

Statistical Methods for Rates and Proportions, Third Edition
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Ž .The transformation from P to � expressed in 11.1 is called the logit
Ž . � Ž .4transformation of P, written logit P s ln Pr 1yP . The transformation
Ž .from � back to P expressed in 11.2 is variously called the in®erse logit,

logistic, or expit transform of �. Table A.10 contains the logit transformation
and its inverse for selected values of P and �. We examine more fundamen-
tal reasons for using the log odds parameter in the next section.

Due to its wide applicability, logistic regression has become the standard
tool for analyzing categorical data. Here are three illustrations of how to use
logistic regression.

1. A researcher wishes to study how the probability of contracting a
sexually transmitted disease varies with the number of occasions of unpro-
tected sexual intercourse within a one-year period. The researcher asks a
sample of subjects, all of whom are initially free of disease, to keep personal
diaries for one year. Thereupon the researcher observes Xsnumber of
unprotected occasions and, upon subject examination, observes disease status

Ž .Y 1s infected, 0snot infected . While it would be straightforward to
demonstrate an association between X and risk of infection by showing that
the average of X among those infected differed from the average among
those not infected, this comparison would not directly furnish an estimate of
elevated risk per additional occasion. So the researcher fits a linear logistic

� Ž .4 Ž .regression model of the form logit P X s�q� X, where P X s
w � xP Ys1 X is the conditional probability of infection given X occasions. The

coefficient � , found to be large and positive, indicates strong association.
The magnitude of � allows the researcher to quantify the increased risk of
infection per occasion and to extrapolate sensible estimates of risk for values
of X larger than those observed in the sample.

2. Another researcher wishes to study how the risk of miscarriage among
pregnant women above age 35 varies with the age of the woman at the time
of conception. Instead of taking a random sample of all pregnant women
above age 35, the researcher intentionally oversamples younger and older
women in this age group, undersampling women in the middle range. For
each subject selected, let X denote maternal age at conception, and let Y

Ž .denote an outcome 1smiscarriage, 0sno miscarriage . Unlike the previ-
ous example, it is not clear that the researcher could quantify the association
between maternal age and risk of miscarriage simply by comparing the mean
age of women who miscarried with the mean age of women who did not,
because any age differential found would merely reflect the researcher’s
choice of subjects. Instead, the researcher fits a logistic regression model of

� Ž .4 Ž .the form logit P X s�q� X, where P X is the age-specific risk of
miscarriage for women of age X. The results are correct because the analysis
conditions on the specific ages of the women sampled; just as in ordinary
linear regression, the values of the X variable may be selected to accomplish
the study’s aims rather than to reflect the distribution in the population. The
researcher’s choice of X at the extreme age ranges allows a more precise
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estimate of � than would a simple random sample of the same size. The
model also allows the researcher to estimate the risk of miscarriage at
intermediate ages not necessarily observed in the sample.

3. A retrospective study is conducted to examine multiple risk factors for
Žbreast cancer. Let Y denote the binary case-control indicator 1scase,

. Ž .0scontrol , and let Xs X , X , . . . denote a vector of biologic risk factors1 2
such as familial history, age at menarche, nulliparity or age at first birth, and
history of lactation for parous women, age at menopause, body mass index,

� Ž .4etc. A multiple logistic regression model of the form logit P X s
�q� X q ��� is fitted to the data as if the data had been collected1 1
prospectively. After some preliminary model revisions, the coefficients
� , . . . , � corresponding to selected variables X , . . . , X are estimated,1 k 1 k
furnishing useful information about the relative importance of the selected
risk factors. Environmental factors such as exposure to organochlorine com-
pounds or polyaromatic hydrocarbons are then entered into the model. The
statistical significance of the environmental terms is assessed, and gene-
environment interactions are explored.

11.2. THE LOG ODDS TRANSFORMATION REVISITED

Why is the log odds transformation so important to categorical data analysis?
In this section we go a little deeper into the charms of logistic regression and
make a few historical and terminological observations. The reader interested
in applications may go directly to Section 11.3.

Historical Roots—Bioassay and Log-linear Models
The logistic regression model developed from two beginnings: first, as a
mathematical formulation of bioassay models more convenient than probit
analysis, and second, as a natural analog of analysis of variance methods
suitable for contingency table analysis.

The bioassay model is similar to the second illustration of the previous
section. In the laboratory a researcher administers a possibly toxic substance
at various dose levels X to a sample of experimental animals and observes

Ž .the proportion P X of animals at each dose that exhibit a quantal response
Y such as death or morbidity. The goal is to describe the ogival dose-
response curve and from it to estimate certain quantities, such as the median

1w Ž . xlethal dose that value of X with P X s . A hypothetical mechanism for2

generating the Y outcomes is to assume a latent threshold quantity � such
w xthat the event Ys1 occurs if and only if the dose exceeds the threshold,

w xXG� . It is further assumed that � is a random variable with some mean �
and standard deviation � in the population of experimental animals, with a

�Ž . 4cumulative distribution function of the form F xy� r� for some standard
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Ž . Ž . Ž � .cumulative distribution function F x . It follows that P X sP Ys1 X s
Ž . �Ž . 4 y1� Ž .4P �FX sF Xy� r� . Inverting this relation gives F P X s�q� X,

Ž .where �sy�r� and �s1r� ; i.e., the inverse F transform of P X is
linear in X.

Ž . Ž . Ž .The class of probit models arises by taking F x s� x , where � x is
the standard normal cumulative distribution function. It is traditional to add
an arbitrary constant to the transformed probability to avoid negative values;

Ž . � Ž .4for example, the probit transform of P X is defined as probit P X s
y1� Ž .4 y1Ž .� P X q5, where � p gives the pth quantile of the standard normal

distribution. Before computers were widely available, the logistic distribution
Ž . x Ž x. Ž yx .function, F x se r 1qe s1r 1qe , was used as an alternative speci-
Ž . Ž .fication to � x Finney, 1964 . This distribution function is remarkably close

Ž . Ž .to a suitably scaled version of � x for values of F x between 0.1 and 0.9,
Žalthough the logistic distribution has thicker tails than the normal see

. Ž .Figures 11.1 and 11.2 . The closed form expressions for F x and its inverse,
y1Ž . � Ž .4 Ž .F p s ln pr 1yp s logit p , produce a class of logistic bioassay mod-

y1� Ž .4 � Ž .4els, F P X s logit P X s�q� X, which are easily calculated by hand.
Beyond computational convenience, however, there is little motivation for
the assumption of a logistic distribution for the latent threshold � . Even if the
threshold model corresponds to a real biologic mechanism, there is no reason
to expect its distribution to be logistic. However, the term ‘‘logistic regres-
sion’’ does derive from this origin.

In an entirely different vein, work by Leo Goodman and Frederick
Mosteller and others in the late 1960s to adapt analysis-of-variance ideas to
multiway contingency tables led to the development of log-linear models.

Ž . Ž .See, for example, Goodman 1970 and Mosteller 1968 . In a log-linear
model, the logarithms of the table’s cell probabilities are expressed as simple
linear functions of certain main effect terms and higher-order interaction
terms. In the case where one of the cross-classification variables is dichoto-
mous, the difference between the log probabilities of the two possible
outcomes, that is, the log odds parameter, is also a simple linear function of
the main effects and other terms, so the log-linear model implies a certain
linear logistic regression model. We discuss log-linear models further in
Section 11.4, but a brief digression on terminology may be helpful here.

Terminology
Ž .Bishop 1969 asserts that log-linear analysis is more general than logistic

regression analysis in the sense that the logit model can be represented as
one kind of log-linear model, but not every log-linear model can be written as

Ž .a logit model. See also Fienberg 1980 . This characterization presupposes,
however, a definition of logistic regression limited only to binary logistic
regression. In fact, log-linear models and logistic regression models are both
special cases of a more inclusive family of models called the multinomial

Ž .response model Bock, 1970, 1975; Levin and Shrout, 1981 . Typically, we have
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Ž . Ž .Figure 11.1. a Logistic and normal probability density functions; b logistic and normal
cumulative distribution functions. Both distributions have mean 0 and variance 	 2r3.

a set of discrete outcome variables whose joint distribution can be described
in the language of log-linear analysis. In addition, we have a set of explana-
tory variables, some of which may be discrete, some continuous. The multino-
mial response model relates each of the log-linear parameters for the
multivariate outcomes to each of the explanatory factors. Specifically, we
speak of a model for a single dichotomous outcome variable as a binary
logistic regression model, and a model for more complex outcomes as a
polytomous logistic regression model. The polytomous model arises in the
univariate case when a single outcome variable has three or more outcome
categories, or in the multivariate case when several categorical outcome
variables are jointly cross-classified. A log-linear model for a multiway
contingency table is simply a multinomial response model with no explana-
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Ž . Ž 2 .Figure 11.2. a Difference between N 0, 	 r3 and unit logistic cumulative distribution func-
Ž . Ž 2 .tions. b Ratio of N 0, 	 r3 to unit logistic density.

tory factors. In this way the multinomial response model contains both the
classical log-linear model and the classical binary logistic regression model as
special cases.

Log-linear models are most useful when all the categorical variables in a
multiway table are regarded as outcome variables, and none as explanatory
factors. This perspective is appropriate in the context of cross-sectional
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studies or survey data, where several cross-classification variables are consid-
ered interdependent outcomes and interest centers on describing their joint

Ždistribution. For univariate logistic regression models either binary or poly-
.tomous , one variable is distinguished as the outcome variable, while all

others are viewed as explanatory, and interest centers on describing the
conditional distribution of the outcome given the explanatory factors. This
perspective is most useful in etiologic investigations, where relations among
the explanatory factors are of less interest than relations between an outcome
variable and the explanatory factors. Section 11.4 has examples which com-
bine features of both log-linear analysis and logistic regression analysis.

Henceforth we use the term log-linear model to refer to the parametric
structure of the joint distribution of the dependent variables under consider-
ation, and the term logistic regression to refer to the general multinomial
response model which relates the log-linear structure to the explanatory
factors. As in the case of classical linear regression, if the explanatory factor
is a single variable, we call the model a simple logistic regression. If there are
several explanatory factors, we call the model a multiple logistic regression.
The context will make clear whether the dependent variable in a given
logistic regression model is binary or polytomous, and, if the latter, the
log-linear parameterization of the outcome variables will be specified.

Discriminant Problem
Returning to the question posed at the beginning of this section, we come to
a fundamental reason that log-odds parameters and logistic models hold a
central place in the analysis of categorical data.

Suppose a population has two subgroups identified by Ys1 or Ys0, with
Ž . Ž .proportions P Ys1 s	 and P Ys0 s1y	 . We assume that determina-

tion of Y for an individual is nontrivial, as occurs, for example, with a
difficult diagnosis or an occult condition. We further assume that we have an
easily observable variable X whose probability density function, for individu-

Ž .als with given group membership Ys j, is denoted by f x for js1 or 0. Wej
wish to classify Y for a randomly selected person on the basis of his or her
value of X
this is the discriminant problem. By Bayes’ theorem

� f xŽ .P Ys1 Xsx 	Ž . 1s � , 11.3Ž .1y	� f xP Ys0 Xsx Ž .Ž . 0

so that the log odds on outcome Ys1 versus Ys0 is of the form

�P Ys1 Xsx 	Ž .
ln s ln q l x , 11.4Ž . Ž .1y	�P Ys0 XsxŽ .

Ž . Ž . � Ž . Ž .4where l x is the log-likelihood ratio function, l x s ln f x rf x . For1 0
Ž . 2example, if f x is a normal density function with mean � and variance � ,j j j

Ž . Ž . � 2 �then l x is of the form l x s� q� xq� x for some coefficients � , � ,
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2 wand � which depend on the means � and variances � see Problemj j
Ž .x11.1 a . This leads directly to the binary multiple logistic regression model
� Ž .4 2 Ž . Ž � .logit P x s�q� xq� x , where we have written P x sP Ys1 Xsx

� � Ž .4 2 2and �s� q ln 	r 1y	 . In the special case � s� , the coefficient of1 0
the quadratic term is zero, reducing the model to the simple linear logistic

� Ž .4equation logit P x s�q� x. See Figure 11.3.

Ž . Ž . Ž . Ž . Ž .Figure 11.3. a N 0, 1 and N 1, 1 densities. b Log-likelihood ratio function for N 0, 1 and
Ž .N 1, 1 densities.
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Ž .Several points are worth noting. First, equation 11.4 exhibits a funda-
mental connection between log-odds parameters and the log-likelihood ratio
function, which is of central importance in statistical inference. Second, the
assumption of normal distributions for X in the example above can be
checked by simple examination of the data from the two groups, unlike the
situation in the bioassay model, where the threshold distribution is not
directly observable. If the normal assumption is inaccurate, then the appro-
priate sampling densities of X may be used and, with the corresponding

Ž .log-likelihood ratio function, 11.4 provides the correct logistic regression
model. Third, many common parametric families of densities for X besides

Ž .the normal have a linear log-likelihood ratio l x . For example, if X is a
Ž .Poisson random variable with mean � in group Ys j, then l x is linear in xj

w Ž .xsee Problem 11.1 b . If X has a Gamma distribution with shape parameter
Ž . Ž . �a and scale parameter b in group Ys j, then l x is of the form l x s� qj j

� xq� ln x, which implies a multiple linear logistic regression model with
w‘‘carrier’’ variables X and ln X. The chi squared distribution is a member of

Ž .the Gamma family
see Problem 11.1 c . This example is further discussed
xin Section 11.4. Thus the logistic regression model has a certain robustness

against misspecification of the sampling densities for X, which explains why
linear logistic models so often provide excellent descriptions of data. Inas-

Ž .much as thanks to the central limit theorem the normal distribution is
ubiquitous in continuous data analysis, the linear logistic model is similarly

Ž .fundamental via 11.4 .

11.3. A CLOSER LOOK AT SOME LOGISTIC
REGRESSION MODELS

11.3.1. Simple Binary Logistic Regression

Let outcome Y take values 0 and 1, let X be a single explanatory factor, and
Ž . Ž � .let P X sP Ys1 X denote the conditional probability that Ys1 given

X. Suppose X and Y are related via the model

logit P X s�q� X . 11.5� 4Ž . Ž .

The intercept term � represents the log odds on outcome Ys1 versus Ys0
when X takes the value 0. It is good practice to arrange the coding of X so
that Xs0 is meaningful as a reference value. In that case we call � the

� Ž .4reference or baseline log odds. A unit increase in X increases logit P X by
� Ž .4 � Ž .4 Ž . Ž .the amount logit P Xq1 y logit P X s�q� Xq1 y �q� X s� ,

Ž .so that � is the log odds ratio per unit increase in X .
Ž .The simplest example of model 11.5 occurs in the two-group prospective

comparative study discussed in Chapter 7. We have a study group of exposed
subjects, coded Xs1, and a reference group of unexposed subjects, coded
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Ž .Xs0. Model 11.5 specifies that the log odds on the outcome, or response,
Ž .Ys1 versus Ys0 for any member of the reference group is � , and 11.2

Ž � . � Ž � . Ž y� .gives the response probability P Ys1 Xs1 se r 1qe s1r 1qe .
Ž � . �q�The response probability in the exposed group is P Ys1 Xs1 se r

Ž �q� . � yŽ �q� .41qe s1r 1qe . The odds ratio comparing the response proba-
bilities for group Xs1 versus 0 is e �.

Ž .We illustrate model 11.5 with a subset of the data from the study of
Ž .Kline et al. 1995 of risk factors for spontaneous abortion that was reported

Ž .in Kline et al. 1983 . As mentioned in Section 9.6 and Problem 10.6, cases
were women presenting to one of three New York City hospitals with a
spontaneous abortion; controls were women recruited from a prenatal care
setting before 22 weeks of gestation who delivered at 28 weeks or later. The
women were interviewed, and, with their consent, specimens of fetal cells
were grown in culture and karyotyped. Karyotyping is a microscopic examina-
tion and classification procedure which determines characteristics of the fetal
chromosomes. Fetal karyotypes may be numerically and morphologically

Ž .normal i.e., 23 pairs of chromosomes without rearrangements , or may
manifest one of several kinds of chromosomal aberrations. Trisomy is a
particular kind of chromosomal aberration in which one of the 23 chromo-
some pairs gains an extra member through an error of germ cell meiosis.
Thus, trisomy actually refers to a collection of 23 possible aberrations.
Down’s syndrome, for example, is trisomy 21: the 21st chromosome pair has a
third member. A well-known but little-understood phenomenon concerns the
association between trisomic conception and increasing maternal age. Let us

Ž .focus on the binary outcome of any trisomic aberration Ys1 versus no
Ž .chromosomal aberration Ys0 among spontaneous abortions. For now we

ignore other kinds of aberration, such as monosomies or triploidies. Tri-
somies plus chromosomally normal outcomes constitute about 75% of all
spontaneous abortions, and the remaining aberrations are unrelated to age.

Table 11.1 shows the proportion of trisomy among chromosomally normal
or trisomic karyotyped spontaneous abortions by maternal age. The data are
presented in five-year intervals of maternal age for ease of presentation. The

Table 11.1. Trisomy and maternal age among spontaneous abortions

Ž .Coded Number of Number of Total Proportion Fitted P X
Age Age Trisomic Normal Trisomy with from Model

Ž . Ž .years X Karyotypes Karyotypes Plus Normal Trisomy 11.5

15�19 y2.5 9 70 79 0.114 0.107
20�24 y1.5 26 157 183 0.142 0.145
25�29 y0.5 42 163 205 0.205 0.194
30�34 0.5 37 130 167 0.222 0.254
35�39 1.5 33 59 92 0.359 0.325
40�44 2.5 12 18 30 0.400 0.405
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Figure 11.4. Observed and fitted proportions with trisomy. Area of symbol is proportional to
sample size.

Ž .column headed ‘‘Coded Age X ’’ gives the midpoint of each age interval
Ž .minus 30 years, divided by 5; for example, the first entry is 17.5y30 r5s

y2.5. Thus the reference age is 30 years, and a unit increase in X represents
five years. Although we analyze grouped data here, there is no necessity in
practice to impose such an arbitrary grouping when individual values of X
and Y are available. This is a virtue of the method of maximum likelihood

Ž . Ž .estimation used to fit model 11.5 to these data see Appendix B . An
iterative computation is required to obtain maximum likelihood estimates in
most problems; all major statistical software packages today provide the
necessary numerical procedures.

� Ž .4The fitted model is logit P X sy1.2536q0.3470 X. The intercept term
� yŽy1.2536. 4y1.2536 corresponds to the proportion 1r 1qe s0.22 trisomic at

the reference age. The slope coefficient 0.3470 indicates that the odds on
trisomy increase by a factor of e0.3470 s1.41 per five years of age, or
e0.3470r5 s1.072 per year. The final two columns of Table 11.1 demonstrate a
remarkably good fit, so the model gives reasonable estimates for probabilities
at given ages of interest. For example, what does the model predict for the

Žproportion of trisomies in women at age 45 among miscarriages which are
. Ž .either trisomic or chromosomally normal ? The coded age is 45y30 r5s3,

so the estimated log odds is y1.2536q0.3470�3sy0.2126, and the esti-
� yŽy0.2126. 4mated proportion is 1r 1qe s0.447. See Figure 11.4.

How precise are the estimates? Formulas for standard errors of the
estimates are available from the theory of maximum likelihood. Given a

ˆŽ . Ž .sample of n pairs X , Y , . . . , X , Y , let � and � be the maximumˆ1 1 n n
ˆŽ . Ž .likelihood estimates mle’s of � and � , respectively. Let P X be the
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Ž̂ . Žestimated model probability at a given value of X, that is, P X sexp �qˆ
ˆ ˆ ˆ ˆ. � Ž .4 Ž .� X r 1qexp �q� X , and let P sP X for is1, . . . , n. For each obser-ˆ i i i

ˆ ˆŽ .vation, define the weight w sP 1yP . Let X denote the weighted aver-i i i w
n nage of the X ’s, X sÝ w X rÝ w , and let SS denote the weightedi w is1 i i is1 i w

n 2Ž .sum of squared deviations about the mean, SS sÝ w X yX . Thenw is1 i i w

2$ X1 wse � s q , 11.6Ž . Ž .ˆ n( SSÝ w wis1 i

$ 1ˆse � s , 11.7Ž .Ž .
SS' w

ˆand the covariance between the estimates � and � isˆ

$ XwˆCov � , � sy . 11.8Ž .ˆŽ . SSw

The last expression is used to obtain standard errors and confidence intervals
for probabilities predicted from the model. At a given value of X, say Xsx ,0

ˆ ˆ� Ž .4the log odds is estimated as logit P x s�q� x , with estimated standardˆ0 0
error

$ $ $ $ 22
2ˆ ˆ ˆse logit P x s se � q2 x Cov � , � qx se � . 11.9'Ž . Ž . Ž .� 4� 4 ˆ ˆŽ . Ž .½ 50 0 0

Ž̂ . Ž .The delta method then gives the standard error for P x see Problem 11.2 :0

$ $ˆ ˆ ˆ ˆse P x sP x 1yP x se logit P x . 11.10Ž . Ž . Ž . Ž . Ž .� 4 � 4 � 40 0 0 0

Ž . � Ž .4Approximate 100 1y� % confidence limits for logit P x are0

$ˆ ˆlogit P x �z se logit P x . 11.11Ž . Ž . Ž .� 4 � 40 � 0

Ž .Taking the inverse logit transform 11.2 of these limits provides a confidence
Ž . Ž . Ž .interval for P x . Using 11.11 to obtain confidence intervals for P x is0 0$ˆ ˆŽ . � Ž .4more accurate than taking the crude interval P x �z se P x , especially0 � 0

Ž̂ .when P x is far from one-half.0 $ $ ˆ ˆŽ . Ž . Ž .For the trisomy example, se � s0.0909, se � s0.0699, and Cov � , �ˆ ˆ
s0.0001936. The small value for the covariance results from coding X so
that the reference value Xs0 is near the central value of the explanatory

ˆvariable. Thus, an approximate 95% confidence interval for � is ��1.96�
$ ˆŽ . Ž .se � s0.347�1.96�0.0699s 0.21, 0.48 . The slope coefficient is highly
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$ˆ ˆŽ .significant: zs�rse � s4.96. At maternal age 45, x s3, and the pre-0
� 2dicted log odds has standard error 0.0909 q2�3�0.0001936q9�

241r2 Ž . Ž .0.06992 s0.231 from 11.9 . From 11.10 , the standard error for the
Ž̂ . Ž .predicted probability P x s0.447 is 0.447 1y0.447 �0.231s0.057. An0

ˆ� Ž .44approximate 95% confidence interval for logit P x is y0.2126�1.96�0
Ž . Ž .0.231 s y0.665, 0.240 , and 11.2 yields the corresponding interval

ˆŽ . Ž .0.340, 0.560 for P x . In this example, the crude confidence interval0
Ž̂ .0.447�1.96�0.057 is in good agreement, because P x is close to one-half.0

In the special case of the two-group comparative binomial study, the mle’s
and standard errors have a closed form. Let n denote the sample size ink
group ks0 or 1, and let p be the sample proportion of outcome Ys1 ink
group k. The mle of the reference log odds � is the sample log odds,

� Ž .4�s ln p r 1yp , and the mle of � is the sample log odds ratio, �sˆ 0 0
w� Ž .4 � Ž .4xln p r 1yp r p r 1yp . Algebra then shows that1 1 0 0

n

w sn p 1yp qn p 1yp , 11.12Ž . Ž . Ž .Ý i 1 1 1 0 0 0
is1

n p 1ypŽ .1 1 1X s , 11.13Ž .w n p 1yp qn p 1ypŽ . Ž .1 1 1 0 0 0

and

2
n p 1yp� 4Ž .1 1 1SS sn p 1yp yŽ .w 1 1 1 n p 1yp qn p 1ypŽ . Ž .1 1 1 0 0 0

n p 1yp n p 1ypŽ . Ž .1 1 1 0 0 0s . 11.14Ž .n p 1yp qn p 1ypŽ . Ž .1 1 1 0 0 0

ˆ Ž .The reader may check that the standard error for � given by 11.7 special-
1Ž .izes to formula 6.33 without the correction term. See Problem 11.3.2

11.3.2. Multiple Binary Logistic Regression: Additive and
Interactive Models

Ž .Given explanatory factors Xs X , . . . , X and binary outcome Y, the multi-1 r
ple binary logistic regression model is

logit P X s� q� X q ���q� X , 11.15� 4 Ž .Ž . 0 1 1 r r

Ž . Ž � .where P X sP Ys1 X . When the explanatory factors are all functionally
independent variables, the model is said to be additi®e, in which case the
regression coefficients have straightforward interpretations analogous to those
in the simple binary case. In particular, � is the reference log odds on event0
w x w xYs1 versus Ys0 when all X s0, and � is the log odds ratio per unitj j
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increase in X , holding all other variables constant. For additive models,j
these interpretations hold irrespective of the levels at which the other
explanatory variables are held constant.

An example of an additive multiple logistic regression model was discussed
in Section 6.3. In the present notation, we take X to be the mean pollution1

Žlevel in a subject’s community, X to be a smoking indicator 1ssmoker,2
. Ž .0snonsmoker , and Y to be mortality from lung cancer 1syes, 0sno .
Ž . Ž . � Ž .4Then equations 6.25 and 6.26 may be written logit P X s� q� X q0 1 1

� X . Coefficient � gives the reference log odds on mortality for a non-2 2 0
smoker who lives in a pollution-free community. Coefficient � is the log1
odds ratio on mortality per unit increase in pollution, which applies for
smokers and nonsmokers alike. Coefficient � is the log odds ratio on2
mortality for smokers versus nonsmokers, which applies at any pollution
level. We refer to � as the log odds ratio for pollution adjusted for smoking,1
and � as the log odds ratio for smoking adjusted for pollution.2

Another example of an additive model derives from a generalization of the
Ž .discussion of Section 11.2. Suppose X , X has a bivariate normal distribu-1 2

Ž . Ž .tion with means � , � in group Ys1 and � , � in group Ys0, and11 12 01 02
Ž .assume X , X has the same variance-covariance structure in the two1 2

Ž .groups. Then among all individuals with explanatory factor X , X , the1 2
Ž . � Ž .4proportion P X in group Ys1 is given by logit P X s� q� X q� X0 1 1 2 2

Ž .see Problem 11.4 .
The presence of several expanatory factors introduces two new features of

the model. One is the effect of interaction between Y and two or more
explanatory factors. The other is the need to test for joint significance of two
or more coefficients � .j

An interaction between Y and X and X means that the magnitude of1 2
the effect of X on Y depends on the level of X , and vice versa, the1 2
magnitude of the effect of X on Y depends on the level of X . Suppose, for2 1
example, X is a continuous variable, X is a binary indicator variable, and1 2
X sX X is the product of X and X . We call X an interaction ®ariable,3 1 2 1 2 3

Ž .and 11.15 is then called an interacti®e model. The interpretation of �1
changes because it is no longer possible to hold X constant as X changes.3 1
Now, � has the interpretation of a log odds ratio only when X is at its1 2

Ž .reference ®alue X s0. When X s1, however, subtraction of 11.15 with X2 2 1
Ž .at a given value, say x , from 11.15 with X sx q1, produces a change in1 1 1

� Ž .4 � Ž . Ž .4 �logit P X equal to � q� x q1 q� q� x q1 y � q� x q�0 1 1 2 3 1 0 1 1 2
4q� x s� q� . Thus, nonzero values of X modify the effect of X from3 1 1 3 2 1

� to � q� , and we speak of X as an effect modifier. Similarly, X acts as1 1 3 2 1
an effect modifier for the relation between Y and X : coefficient �2 2
describes the log odds ratio associating Y with X only when X s0. When2 1

� Ž .4X takes some nonzero value x , the difference between logit P X for1 1
X s1 and for X s0 is the modified log odds ratio � q� x .2 2 2 3 1

The interaction coefficient thus has the interpretation of a difference in
Ž .log odds ratios, and exp � corresponds to a ratio of odds ratios. In3
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Žparticular, � is the difference between the log odds ratio on Ys1 versus3
.Ys0 per unit increase in X at level X s1 versus that at level X s0. �1 2 2 3

Žis also the difference between the log odds ratio on Ys1 versus Ys0
.comparing X s1 with X s0 when X takes value x q1 versus that when2 2 1 1

Ž .X sx . Then exp � is the multiplicative factor by which the odds ratio1 1 3
associating Y with X increases per unit increment in X , and it is also the1 2
factor by which the odds ratio associating Y with X increases per unit2
increment in X .1

The interaction term � X X in the above example is called a first-order3 1 2
interaction. Higher-order interactions are constructed by including extended
product terms as explanatory factors. For example, a second-order interac-
tion between Y and variables X , X , and X would be modeled by1 2 3
including � q� X q� X q� X q� X X q� X X q� X X q0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Ž .� X X X in model 11.15 . The coefficients � , � , and � are log odds123 1 2 3 1 2 3
ratios when the other variables not included in the subscript are at reference
value; coefficients � , � , and � represent first-order interactions when12 13 23
the third variable not in the subscript is at reference value; and �123

Ž .represents the second-order interaction. Thus exp � is a ratio of ratios of123
odds ratios. And so on.

A word of caution is in order here. It is always good practice to assess the
impact of potential effect modifiers on important coefficients in the model.
However, interactions such as � are generally not estimated as precisely as12
main effect terms like � or � in an additive model, and higher-order1 2
interactions are even more difficult to estimate precisely. Similarly, tests of
significance of first- and higher-order interactions generally have less statisti-
cal power than tests of main effects. When screening for interactions,
therefore, one can often get a clearer picture by setting confidence interval
widths at lower confidence levels and conducting tests at less stringent Type I
error rates, such as �s0.10 or higher.

As an example of an interactive model, consider the data in Table 11.2,
which elaborate on the trisomy example of Section 11.3.1. Maternal smoking
before and around the time of conception was determined by detailed
interview shortly after occurrence of the miscarriage, but before either the
subject or her interviewer were aware of the fetal karyotype. For illustrative

Ž .purposes, we classify smoking status in three categories: a ‘‘current
smokers’’
primarily women who smoked at the time of their last menstrual

Ž .period LMP , plus a small number of ‘‘probable’’ smokers, women whose
exact smoking status in relation to their LMP was uncertain, but who
probably smoked around the time of conception based on other interview

Ž .information; b ‘‘ex-smokers’’
women who quit smoking prior to their
Ž .LMP; and c ‘‘nonsmokers’’
women who reported never having smoked.

We take nonsmokers as the reference category. Maternal age is coded
Ž .linearly in the variable X s agey30 r5 as before. Two additional indicator1

variables for smoking status are needed: X s1 if current smoker, otherwise2
0; and X s1 if ex-smoker, otherwise 0. Thus all women are coded uniquely3

Ž . Ž . Ž . Ž .as X , X s 1, 0 for current smokers, 0, 1 for ex-smokers, or 0, 0 for2 3
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Table 11.2. Trisomy and smoking and maternal age among spontaneous abortions

Smoking Status

Age Current Ex- Non-
Ž .years Outcome Smoker smoker smoker Total

15�19 Trisomy 5 0 4 9
Normal 43 4 23 70

20�24 Trisomy 6 0 20 26
Normal 81 9 67 157

25�29 Trisomy 10 6 26 42
Normal 64 17 82 163

30�34 Trisomy 13 8 16 37
Normal 40 21 69 130

35�39 Trisomy 10 5 18 33
Normal 13 7 39 59

40�44 Trisomy 5 0 7 12
Normal 7 2 9 18

nonsmokers. In general, one constructs cy1 indicator variables to encode a
c-category explanatory factor, excluding the reference category indicator. We
fit the model

logit P X s� q� X q� X q� X q� X X q� X X 11.16� 4 Ž .Ž . 0 1 1 2 2 3 3 12 1 2 13 1 3

to these data, with the results shown in Table 11.3. Note the interaction
coefficient for age by current smoking, � : it is numerically large and12

Table 11.3. Model-fitting results for the trisomy and smoking data

Maximum Critical Goodness
ŽLikelihood Standard Ratio y2� Maximized of Fit

. Ž .Model Coefficient Estimate Error z Log Likelihood df

Ž .11.16 � y1.1300 0.1210 y9.3422 743.121 14.1270
Ž .unconstrained � 0.1727 0.0942 1.8345 121

Žinteractive � y0.3016 0.2031 y1.48522
.model H � y0.1069 0.3071 y0.34811 3

� 0.3670 0.1531 2.397112
� 0.3089 0.2800 1.103413

Ž .11.16 with � y1.1280 0.1222 y9.2276 749.351 20.3570
Ž .� s� s0 � 0.3304 0.0710 4.6533 1412 13 1

Žadditive � y0.3393 0.2016 y1.68272
.model H � y0.0668 0.2933 y0.22790 3

2Ž .Joint test of significance of interaction terms: G H : H s6.230 on 2 df.0 1
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Ž .statistically significant nearly 2.4 standard errors above zero . The age-by-
ex-smoking interaction coefficient � is also substantial although, with its13
larger standard error, not statistically significant. One interpretation of these
results is that the effect of current smoking on the trisomy versus normal
outcome is modified by age: at the reference age or younger, current smokers

Ž .have smaller risk of trisomy than those who never smoked because � �0 ,2
but at older ages current smoking is associated with elevated risk of trisomy.
For example, at age 45, the model estimates the odds ratio for current

Ž . Ž .smoking to be exp � q� X sexp y0.3016q0.3670�3 s2.22. Similar2 12 1
remarks pertain to ex-smokers. An equivalent interpretation is that smoking
appears to modify the trisomy�maternal-age relation: women who never

Ž .smoked have a modest age slope coefficient � s0.1727 compared to1
Ž . Žcurrent smokers with age slope � q� s0.54 or to ex-smokers with age1 12

.slope � q� s0.48 .1 13
The lower panel in Table 11.3 shows the effect of omitting the interaction

terms and fitting a purely additive model. Both smoking effects are negative,
suggesting an inverse association of smoking with trisomy, irrespective of age.
This conclusion is incomplete and misleading, as visual inspection of Table
11.2 confirms.

11.3.3. Generalized Likelihood Ratio Tests

How do we assess whether or not some subset of coefficients are jointly
significant? In the trisomy data, for example, would the two interaction
coefficients survive a joint test of significance? Likelihood theory with maxi-
mum likelihood estimation again provides an answer. We observe n vectors,
Ž . Ž . Ž .X , Y , . . . , X , Y , where for subject i, X s X , . . . , X is the vector of r1 1 n n i i1 i r

Ž . Ž .explanatory factors is1, . . . , n . Suppose we call 11.15 model hypothesis
ˆŽ1.H . First, estimate the coefficients for H by maximum likelihood; let �1 1 j

denote the mle of � under H for js0, . . . , r. Next record the log likelihoodj 1
for H , which in this case is1

Ž̂1. Ž̂1.L H s Y ln P X q 1yY ln Q XŽ . Ž .Ž . Ž .� 4Ý1 i i i i
i

Ž̂1.P XŽ .i Ž1.ˆs Y ln q ln Q X , 11.17Ž .Ž .Ý Ýi iŽ1.Q̂ XŽ .i ii
where

Ž1. Ž1. Ž1. Ž1. Ž1.ˆ ˆ ˆ ˆ ˆP X s1yQ X s1r 1qexp y � q� X q ���q� XŽ . Ž . ½ 5ž /i i 0 1 i1 r i r

Ž .is the fitted model probability under H for the ith observation. L H is1 1
simply the sum of fitted model log probabilities corresponding to the ob-

Ž̂1. Ž̂1.Ž . Ž .served outcome for each subject: P X for those with Y s1, or Q Xi i i
for those with Y s0.i

Now suppose we hypothesize that certain coefficients equal zero; for
example, that model H specifies � s ��� s� s0 for some index s� r.0 sq1 r
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We call H a reduced model nested within H , because it contains the sq10 1
parameters � , . . . , � from H , but constrains the remaining parameters to0 s 1
be zero. Next, fit the reduced model H by maximum likelihood to obtain0

ˆŽ0. ˆŽ0. Ž . Ž .mle’s � , . . . , � and the corresponding log likelihood L H from 11.170 s 0
Ž̂0. ˆŽ0.Ž . w � Žusing the fitted probabilities from model H , P X s1r 1qexp y �0 0 i 0

ˆŽ0. ˆŽ0. Ž̂1..4x Ž .q� X q ���q� X , instead of P X . Finally, obtain the generalized1 i1 s i s i
2Ž .log-likelihood ratio statistic G H : H , which is defined as twice the differ-0 1

ence in log-likelihoods:

G2 H : H s2 L H yL H� 4Ž . Ž . Ž .0 1 1 0

Ž̂1. Ž̂1.P X Q XŽ . Ž .i is2 Y ln q 1yY ln . 11.18Ž . Ž .Ý i iŽ0. Ž0.ž /ˆ ˆP X Q XŽ . Ž .i 0 i i

Summarizing, we construct the log-likelihood ratio statistic for a pair of
nested models by subtracting twice the maximized log likelihood for the
reduced model from that of the full model.

2Ž .When the sample size n is large, G H : H has an approximate chi0 1
squared distribution with rys df under H . We therefore reject H when0 0

2Ž . 2G H : H exceeds the critical value  , cutting off probability � in the0 1 rys ; �

upper tail of the chi squared distribution with rys df.
Ž .Let H represent the saturated model, which allows the probability P Xs

2Ž .to be arbitrary for each i. Then G H : H is called the de®iance of thej s

Ž . 2Ž .model H js1 or 0 , in which case G H : H is the difference betweenj 0 1
2Ž . 2Ž .the deviances for models H and H . Unlike G H : H , G H : H is not0 1 0 1 j s

distributed as chi squared, even in large samples, because the number of
parameters associated with H increases as the sample size increases.s

Log likelihoods are often numerically large and a bit cumbersome. We can
2Ž .dodge that problem because the statistic G H : H is a difference of two0 1

log-likelihood terms, and therefore equivalent results may be obtained if each
Ž . Ž .of the terms L H and L H is shifted by the same amount. It is most1 0

Ž . Ž .convenient, for example, to replace L H and L H by the deviance1 0
2Ž . � Ž . Ž .4 2Ž . � Ž .expressions G H : H s2 L H yL H and G H : H s2 L H y1 s s 1 0 s s

Ž .4 2Ž .L H , respectively, and then to write G H : H as the difference of the0 0 1
2Ž . 2Ž . 2Ž .deviances for model H and H , G H : H sG H : H yG H : H .0 1 0 1 0 s 1 s

Ž .The term L H , defined later in this section, is usually of the same order ofs
Ž . Ž . 2Ž .magnitude as L H and L H , so the deviances G H : H and1 0 0 s

2Ž .G H : H are less awkward to tabulate. Of greater importance is the1 s
2Ž . 2Ž .following: although G H : H and G H : H do not generally play the0 s 1 s

role of goodness-of-fit statistics, under appropriate circumstances they do, as
we shall soon see.

In the trisomy example, the penultimate column of Table 11.3 gives minus
Ž . Ž .two times the log-likelihood, y2 L H , for model 11.16 in the upper panel,1

Ž .and y2 L H in the lower panel for the null hypothesis that the interaction0
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2Ž .coefficients equal zero, H : � s� s0. Thus G H : H s749.351y0 12 13 0 1
2Ž . 2Ž . 2Ž .743.121s6.23 or, equivalently, G H : H sG H : H yG H : H s0 1 0 s 1 s

20.357y14.127s6.23, using the goodness-of-fit statistics in the final column.
2Ž .Under H , G H : H has an approximate chi squared distribution on 2 df.0 0 1

Since the �s0.05 critical value for this distribution is 5.99 and is exceeded
2Ž .by G H : H , we reject H and conclude that the interaction terms are0 1 0

jointly significant.
The reader may have noticed that for hypotheses about an individual

parameter, say H : � s0, we now have two test statistics: the log-likelihood0 j $
2 Ž1. Ž1.ˆ ˆŽ . � 4ratio statistic, G H : H , and the critical ratio, zs� rse � , also0 1 j j

called the Wald test critical ratio, or its square, z 2, called the Wald test
2Ž . 2statistic. G H : H is asymptotically equivalent to z , as is a third variety of0 1

test statistic, the score test statistic X 2, which is the square of the partial
derivative of the log-likelihood function with respect to � , evaluated at thej
maximum likelihood estimate of � , . . . , � subject to the constraint � s0.1 r j
Asymptotic equivalence means that while the various test statistics are not
arithmetically identical, they have the same approximating distribution in
large samples under the null hypothesis, so that with high probability they all
result in the same inference.

Ž .As a simple illustration, consider a single binomial variable Y�Bin n, P .
Y may be viewed as the sufficient statistic Ý Y based on a sample Y , . . . , Yi i 1 n

� 4from the trivial logit model logit P s� ; call this model H . The maximum0 1
ˆŽ1. Ž .likelihood estimate of � under H is the sample log odds � s ln prq0 1 0$

Ž1. y1r2ˆ� 4 Ž .with estimated standard error se � s npq , where ps1yqsYrn0
Ž̂1.is the sample proportion, which is the mle of P, P sp. To test the null

1hypothesis H : Ps , equivalent to H : � s0, we have the following three0 0 02
Ž . 2Ž . �test statistics: i the log-likelihood ratio statistic, G H : H s2 Y ln 2 pq0 1 $

2 Ž1. Ž1. 2ˆ ˆŽ . 4 Ž . w � 4xn y Y ln 2 q ; ii the Wald test statistic, z s � r se � s0 0
� Ž .42 Ž . 2 Ž .2 Ž .ln prq npq; and iii the score test statistic, X s Yynr2 r nr4 s

1 2Ž .4n py . Problem 11.5 demonstrates the asymptotic equivalence of these2

three statistics by showing they are all approximately chi squared on one
degree of freedom under H in large samples.0

For the remainder of this chapter, the log-likelihood ratio statistic will be
our main tool for drawing inferences about model hypotheses. For conve-
nience in informal discussions of the significance of individual regression

$
Ž1. Ž1.ˆ ˆ� 4coefficients, we also quote the Wald test critical ratios zs� rse � andj j

their associated p-values.
As another illustration of multiple logistic regression, interactive models,

and the use of log-likelihood ratio tests, let us reconsider the test of
homogeneity of odds ratios in a set of g independent 2�2 tables discussed

2 Ž .in Chapter 10. The test statistic � , given in Section 10.1 at 10.10 andhomog
Ž . Ž .10.11 or in Section 10.2 at 10.18 , is based on Wald test procedures; the

2 Ž .test statistic � given in Section 10.4 at 10.40 is based on score testhomog
procedures. For the log-likelihood ratio test procedure, we view the problem
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in the context of a multiple logistic regression model for binary outcome Y
and explanatory variables X , . . . , X , where X is the binary risk factor of1 g 1
interest in each 2�2 table, and X , . . . , X are indicator variables for tables2 g
2 through g, taking the first table as reference. The full model, with no
constraints on the g odds ratios, is H :1

logit P X s� q� X q� X q ���q� X q� X X q ���q� X X .� 4Ž . 0 1 1 2 2 g g 12 1 2 1 g 1 g

11.19Ž .

The log odds ratio associating outcome Y with exposure X is � in the1 1
reference table, and � q� in table js2, . . . , g, due to the presence of the1 1 j
interaction variables X X . Thus, the hypothesis of constant odds ratio is1 j
represented in this model as H : � s ��� s� s0. To test H versus H ,0 12 1 g 0 1
we first require the mle’s of the parameters under each model. Under H , the1
mle of � is the sample log odds ratio in the reference table, while the mle of1
� is the difference between the sample log odds ratio in table j and that in1 j
the reference table. It follows that the fitted model probabilities are simply

Ž .the sample proportions in each row of each table. Then 11.17 gives the log
Ž .likelihood L H , which simplifies slightly in this case as follows. Let y be1 i j

the frequency of the outcome Ys1 in row is1 or 0 of table js1, . . . , g, and
let n be the sample size in row i of table j. Theni j

g1 y n yyi j i j i j
L H s y ln q n yy ln . 11.20Ž . Ž . Ž .Ý Ý1 i j i j i jn ni j i jis0 js1

To cover the case in which a row has a zero cell frequency, we define 0 ln 0 to
Ž . � Ž .4be 0 in 11.20 . Under H , the model is logit P X s� q� X q� X0 0 1 1 2 2

q ���q� X , for which one must calculate the maximum likelihood esti-g g
ˆŽ0. ˆŽ0.mates iteratively. Call these � , . . . , � . The common log odds ratio0 g

ˆŽ0. Ž̂ .estimated under H is � . Using the fitted probabilities P X from H0 1 0
Ž . Ž . 2Ž . � Ž . Ž .4in 11.17 yields L H , and then G H : H s2 L H yL H is the0 0 1 1 0

Ž .log-likelihood ratio statistic. Model H has a total of 1qgq gy1 s2 g1
2Ž .parameters, while model H has gq1 parameters. Therefore G H : H0 0 1
Ž .has an approximate chi squared distribution under H with 2 gy gq1 s0

gy1 df.
For the data in Table 10.1, Ys1 denotes diagnosis of schizophrenia. X is1

Ž .hospital location 1sNew York, 0sLondon ; X s1 for study 2, else 0;2
Ž .X s1 for study 3, else 0. Under H , the log-likelihood is L H sy561.303.3 1 1

ˆŽ0. ˆŽ0. ˆŽ0.The mle’s under H are � sy0.3502, � s1.1128, � sy0.1878, and0 0 1 2
ˆŽ0. ˆŽ0.Ž . Ž .� sy0.3702. The estimated common odds ratio is exp � sexp 1.11283 1

Ž .s3.04, in excellent agreement with 10.39 . Under H , the log likelihood is0
Ž . 2Ž . �Ž . Ž .4L H sy566.310. Thus G H : H s 2 y561.303 y y566.310 s0 0 1

Ž .1132.620y1122.606s10.01 on 2 df p�0.01 . This result should be com-
Ž .pared with the value of the Wald test statistic of 9.41 given in 10.18 and the

Ž .score test statistic of 9.70 given in 10.41 .
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11.3.4. Log-Likelihood Ratio Goodness-of-Fit Tests and the
Analysis of Information

Another important use of the log-likelihood ratio statistic is to test the global
Ž .goodness of fit of a model. Suppose we wish to test whether model 11.15 fits

Ž . Ž .the data X , Y , . . . , X , Y adequately, or whether there are important but1 1 n n
unspecified departures in the data from the model. We assume for the
moment that only a fixed number of explanatory factor combinations occur
even as n becomes large. This would occur, for example, with grouped data,
such as in the trisomy example, or with purely categorical explanatory factors.

Ž .In essence, model 11.15 , which we shall continue to call H , now becomes a1
null hypothesis which we desire to test against another model, H say, thats

Ž .allows the probability P X to be arbitrary for each combination of factors.
Such a model is called fully saturated, because it possesses as many parame-
ters as there are distinct combinations of factors and corresponding probabil-

2Ž .ities. As mentioned in the previous section, G H : H is not generally0 s
distributed as chi squared. In the present case of grouped data, however, we
can appeal to the central limit theorem when group sizes are large, in which

2Ž .case G H : H does have a chi squared distribution. To distinguish the0 s
general saturated model H with individual-level data from the saturateds
model with grouped data, we denote the latter by H , and then the chi2

2Ž .squared approximation for G H : H can be made. For example, in the0 2
Ž .preceding discussion of g fourfold tables, model 11.19 , which was fully

saturated, would play the role of H in the present discussion. The hypothe-2
sis of constant odds ratio, previously called H , is now the model H of0 1
interest; this leaves room to consider a reduced model, H , such as the0
hypothesis of no association in any table, H : � s� s ��� s� s0.0 1 12 1k

2Ž .In order to test H versus H , we construct the test statistic G H : H1 2 1 2
� Ž . Ž .4s2 L H yL H , which is called the log-likelihood ratio goodness-of-2 1

Žfit statistic to emphasize its use in checking the fit of a model and which
2 .explains the choice of the symbol G . Specifically, suppose there are c

distinct possible combinations of explanatory factors. Let n denote thei
number of observations at the ith combination, and let y denote thei

w xfrequency of the event Ys1 at that combination; thus n y y isi i
w xthe frequency of the event Ys0 . Under the saturated model, the sample

proportions y rn are maximum likelihood estimates of the unrestrictedi i
Ž .probabilities, so that the maximized log likelihood L H is2

c y n yyi i iL H s y ln q n yy ln , 11.21Ž . Ž . Ž .Ý1 i i in ni iis1

where, as above, 0 ln 0 is defined as 0 wherever it appears. Then the
log-likelihood ratio goodness-of-fit statistic is given explicitly by

c y n yyi i i2G H : H s2 y ln q n yy ln , 11.22Ž . Ž . Ž .Ý1 2 i i iŽ1. Ž1.ˆ ˆn P n Qis1 i i i i
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Ž̂1. Ž̂1.where P s1yQ is the fitted model probability under H at the ithi i 1
combination of explanatory factors. Under H , as the n become large,1 i

2Ž . Ž .G H : H has an approximate chi squared distribution with cy rq11 2
wdegrees of freedom because the saturated model has c parameters, one for

Ž . Ž � . xthe probability P X sP Ys1 X at each combination of X .
2Ž . � Ž . Ž .4In similar fashion, G H : H s2 L H yL H is the log-likelihood0 2 2 0

ratio goodness-of-fit statistic for testing the reduced model H : � s ��� s0 sq1
2Ž .� s0 against the saturated model H . Under H , G H : H has anr 2 0 0 2

Ž .approximate chi squared distribution with cy sq1 degrees of freedom.
We have seen the difference between the two goodness-of-fit statistics as

Ž .the log-likelihood ratio statistic for testing H versus H in 11.18 , with0 1
� Ž .4 � Ž .4cy sq1 y cy rq1 s rys df:

G2 H : H sG2 H : H yG2 H : H s2 L H yL H . 11.23� 4Ž . Ž . Ž . Ž . Ž . Ž .0 1 0 2 1 2 1 0

In the trisomy example, the saturated logit model for the data in Table
11.2 has cs18 parameters, corresponding to the 18s6�3 combinations of
maternal age interval and smoking status. The log likelihood for H is2
Ž . Ž . Ž . Ž .L H s 5 ln 5r48 q 43 ln 43r48 q ��� sy364.497, with y2 L H s2 2

Ž .728.994. From the penultimate column of Table 11.3, y2 L H s743.121.1
2Ž .Thus G H : H s743.121y728.994s14.127 with 18y6s12 df, as indi-1 2

Ž .cated in the final column of Table 11.3. We do not reject model H at 11.161
at the �s0.05 level, because, from Table A.2, the critical value for  2 on

2Ž .12 df is 21.03�G H : H . The model is formally judged adequate. We1 2
recognize, though, that the power to reject H against H may not be high,1 2
so it is good practice also to consider the agreement between observed and
fitted probabilities. Figure 11.5 illustrates this, and confirms a reasonably

Figure 11.5. Observed and fitted proportions with trisomy by smoking status.
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close fit. We discuss the formal comparison of observed and fitted probabili-
ties in Section 11.5.

2Ž .Note that the goodness-of-fit statistic G H : H s20.357 in the lower0 2
panel of Table 11.3 also does not exceed the �s0.05 level critical value for
chi squared on 14 df, so that, judging from the global goodness-of-fit statistic
alone, we might conclude that H is adequate, even though we have already0
rejected H in favor of H . This illustrates an important point: a test of H0 1 0

Ž .against a parametric unsaturated alternative like H , which fits the data1
well, using a statistic having few degrees of freedom, will typically be more

Ž .powerful than a test of H against a nonparametric fully saturated hypothe-0
sis like H , using a goodness-of-fit statistic with many degrees of freedom.2
The analysis of g fourfold tables also illustrates the point. To test the null
hypothesis H of no association in any table, we would rather test against0
H : constant odds ratio with a 1 df test than against H with a g df test,1 2

Žassuming, of course, that H fits the data well. If there are substantial1
variations in the odds ratios in both directions around unity, then the test of

.H against H may well be more powerful. For example, the Mantel-0 2
Haenszel 1 df procedure, a conditional score test which is locally most
powerful for testing H versus H , is not necessarily powerful at all if H is0 1 1
false. In Problem 11.6 the reader will conduct the log-likelihood ratio
goodness-of-fit test of H versus H and the log-likelihood ratio test of H0 2 0
versus H for the data in Table 10.1. In this exercise, the odds ratios are all1

2Ž .substantially greater than unity, in which case the power of G H : H is0 1
maintained even though H does not fit the data well.1

Ž .Rearranging terms in equation 11.23 yields a relation analogous to the
analysis-of-variance decomposition for continuous outcome variables,

G2 H : H sG2 H : H qG2 H : H , 11.24Ž . Ž . Ž . Ž .0 2 0 1 1 2

Ž .but 11.24 does not parcel out components of explained and unexplained
variance. Instead, we interpret the log-likelihood ratio as a measure of the
weight of e®idence contained in the data in favor of one hypothesis and against

1 2� Ž .4another. This interpretation is valid because exp G H : H describes0 22

how many times more likely the data are under an optimized form of H2
than under an optimized form of H . Measures of the weight of evidence,0
like other measures of information content, are usually expressed logarithmi-

1 2Ž .cally. Thus if G H : H represents the total weight of evidence against0 22
Ž .H , then 11.24 apportions this total to the weight of evidence against H0 0

1 2Ž .explained by model H , G H : H , plus the weight of evidence against H1 0 1 02
1 2Ž .or any other version of model H explained by model lack of fit, G H : H .1 1 22

An analysis-of-information table may be constructed as in Table 11.4. The
2Ž . 2Ž . 2Ž . 2Ž .fractions G H : H rG H : H and G H : H rG H : H are0 1 0 2 1 2 0 2

roughly analogous to R2 and 1yR2 from the analysis of variance, but
instead of proportions of variance in Y explained and unexplained by model
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Table 11.4. Analysis-of-information table

Source of
2Evidence against H G No. of df p-Value0

2 2 2Ž . w Ž .xExplained by H G H : H rys P  �G H : H1 0 1 rys 0 1
2 2 2Ž . Ž . w Ž .xUnexplained by H G H : H cy rq1 P  �G H : H1 1 2 cyŽ rq1. 1 2

2 2 2Ž . Ž . w Ž .xTotal G H : H cy sq1 P  �G H : H0 2 cyŽ sq1. 0 2

H , respectively, the log-likelihood ratio fractions describe the proportions of1
evidentiary weight against H explained and unexplained by model H .0 1

Goodness-of-fit tests break down when explanatory factors are continuous,
i.e., H sH , for then the number of distinct combinations of X may grow2 s
essentially as fast as the sample size n, instead of remaining fixed. When
there are n distinct combinations, each with n s1 observation of Y , thei i

Ž . 2Ž . Ž .expression for L H reduces to 0, G H : H reduces to y2 L H , ands 1 s 1
2Ž . Ž . Ž .G H : H reduces to y2 L H . That does not alter the relation 11.23 ,0 s 0

2Ž .and G H : H is still a valid and useful test statistic for H versus H .0 1 0 1
2Ž . 2Ž .However, the individual components G H : H and G H : H no longer0 s 1 s

have approximate chi squared distributions, so other methods must be
employed to assess the models’ goodness of fit.

Such methods fall into two broad categories: grouping methods and model
embedding methods. In a grouping method, the data are grouped in some
specific way and a corresponding goodness-of-fit test is applied. For example,
the trisomy data originally were available with exact maternal age; the data
were then grouped as in Table 11.3 for purposes of testing the goodness of fit

Ž .of the model 11.16 . Another grouping method focuses on the fitted proba-
Ž .bilities, p X , for each observation. These are ordered in increasing size andi

then grouped into equal intervals, e.g. quintiles or deciles. The sum of the
fitted probabilities in each quintile is compared with the corresponding sum
of observed counts Y using a multinomial chi squared goodness-of-fit test.i

Ž .See Hosmer and Lemeshow 2000 for further details about this class of tests.
Model-embedding methods require enlarging the class of models so that

Ž .11.15 becomes nested within the class as a special case. In the trisomy
example, we might introduce quadratic age terms and test whether the
coefficients for the quadratic terms are jointly significant. Another model

Ž .embedding technique is described by Tsiatis 1980 . This method involves
Ž .adding indicator variables to model 11.15 corresponding to d mutually

exclusive and exhaustive domains of the space of explanatory factors. A d df
log-likelihood-ratio test of the joint significance of the domain indicator
coefficients provides the test of goodness of fit. This method works best when
there are few explanatory factors, so that the number of domains, d, is not
large enough to cause a loss of power to detect model departures.
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Table 11.5. British coal miners classified by age and symptoms of
breathlessness and wheeze

Breathlessness: Present Absent

Age Interval Wheeze Present Absent Present Absent Total

20�24 9 7 95 1,841 1,952
25�29 23 9 105 1,654 1,791
30�34 54 19 177 1,863 2,113
35�39 121 48 257 2,357 2,783
40�44 169 54 273 1,778 2,274
45�49 269 88 324 1,712 2,393
50�54 404 117 245 1,324 2,090
55�59 406 152 225 967 1,750
60�64 372 106 132 526 1,136

Totals 1,827 600 1,833 14,022 18,282

Ž .Source: National Coal Board’s Pneumoconiosis Field Research 1957 , as reported by Ashford
Ž .and Sowden 1970 .

11.4. POLYTOMOUS LOGISTIC REGRESSION

11.4.1. An Example: The Double Dichotomy

Table 11.5 shows the frequencies of respiratory symptoms among British coal
miners aged 20 through 64 in five-year intervals of age. These data are from

Ž . Ž .the British National Coal Board’s 1957 pneumoconiosis field research
Ž .reported by Ashford and Sowden 1970 and discussed by several authors,

Ž . Ž . Ž .including Grizzle 1971 , Mantel and Brown 1973 , Fienberg 1980 , and
Ž .Levin and Shrout 1981 . Each row of the table contains the cells of a 2�2

table that cross-classifies the presence or absence of symptoms of breathless-
ness and wheeze for the given age interval. Figure 11.6 plots the log odds on
breathlessness among miners without symptoms of wheeze by age group.
Note the nearly perfect linear fit and the clear increase in the log odds with
age. Figure 11.7 plots the log odds on wheeze among miners without
breathlessness. We again find a clear increase in the prevalence of wheeze,
although for this symptom there is a slowing of the increase at older ages.
Figure 11.8 plots the log odds ratio relating breathlessness and wheeze by
age. Note how the association between the two symptoms decreases with age
and, again, the striking linearity of the relation.

Polytomous logistic regression offers a parsimonious description of the
above relations. Among the several ways to parameterize the four categories
of the multinomial sample in each age group, we choose the one most useful

Ž .for representing the relations of interest. We let Ys y , y be a doubly1 2
Ždichotomous outcome variable denoting breathlessness presents1, absent

. Ž .s0 and wheeze presents1, absents0 . We think of Y as a multinomial
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Ž .Figure 11.6. Log odds on breathlessness among miners without wheeze .

Ž .Figure 11.7. Log odds on wheeze among miners without breathlessness .

response in four categories for each miners symptoms, in this case with the
structure of a fourfold table of sample size 1. Thus, each row of Table 11.5
summarizes the sample distribution of Y for miners in the corresponding age
group. We then define the following three logistic parameters, which we call
natural parameters:

� ŽB . x s log odds on breathlessness among miners without wheeze at age xŽ .

�P Ys 1, 0 agesx� 4Ž .
s ln ; 11.25Ž .�P Ys 0, 0 agesx� 4Ž .
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Figure 11.8. Log odds ratio relating breathlessness and wheeze.

� ŽW . x s log odds on wheeze among miners without breathlessness at age xŽ .

�P Ys 0, 1 agesx� 4Ž .
s ln ; 11.26Ž .�P Ys 0, 0 agesx� 4Ž .

� ŽBW . x s log odds ratio associating breathlessness and wheeze at age xŽ .

� �P Ys 1, 1 agesx rP Ys 1, 0 agesx� 4 � 4Ž . Ž .
s ln . 11.27Ž .� �P Ys 0, 1 agesx rP Ys 0, 0 agesx� 4 � 4Ž . Ž .

These natural parameters allow us to specify the logarithms of the four cell
probabilities at any age x as follows:

�ln P Ys 0, 0 agesx sy� x , 11.28� 4Ž . Ž . Ž .

� ŽB .ln P Ys 1, 0 agesx sy� x q� x , 11.29� 4Ž . Ž . Ž . Ž .

� ŽW .ln P Ys 0, 1 agesx sy� x q� x , 11.30� 4Ž . Ž . Ž . Ž .

� ŽB . ŽW . ŽBW .ln P Ys 1, 1 agesx sy� x q� x q� x q� x ,� 4Ž . Ž . Ž . Ž . Ž .
11.31Ž .

Ž .where � x is the logarithm of a normalizing constant to ensure that the four
cell probabilities sum to one:

exp � x s1qexp � ŽB . x qexp � ŽW . x� 4 � 4 � 4Ž . Ž . Ž .

qexp � ŽB . x q� ŽW . x q� ŽBW . x . 11.32� 4Ž . Ž . Ž . Ž .
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Thus the cell probabilities can be written

�P Ys 0, 0 agesx sexp y� x� 4 � 4Ž . Ž .
1

s ,ŽB . ŽW . ŽB . ŽW . ŽBW .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .1qexp � x qexp � x qexp � x q� x q� x

11.33Ž .

� ŽB .P Ys 1, 0 agesx sexp y� x q� x� 4 � 4Ž . Ž . Ž .

� ŽB . 4Ž .exp � x
s ,ŽB . ŽW . ŽB . ŽW . ŽBW .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .1qexp � x qexp � x qexp � x q� x q� x

11.34Ž .

� ŽW .P Ys 0, 1 agesx sexp y� x q� x� 4 � 4Ž . Ž . Ž .

� ŽW . 4Ž .exp � x
s ,ŽB . ŽW . ŽB . ŽW . ŽBW .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .1qexp � x qexp � x qexp � x q� x q� x

11.35Ž .

� Ž � . ŽW . ŽBW .P Ys 1, 1 agesx sexp y� x q� x q� x q� x� 4 � 4Ž . Ž . Ž . Ž . Ž .

� ŽB . ŽW . ŽBW . 4Ž . Ž . Ž .exp � x q� x q� x
s .ŽB . ŽW . ŽB . ŽW . ŽBW .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .1qexp � x qexp � x qexp � x q� x q� x

11.36Ž .

Ž . Ž .The reader may check that the three � parameters in 11.25 � 11.27 are
Ž . Ž .returned when the appropriate ratios of 11.33 � 11.36 are formed.

We can now state the polytomous logistic regression model that captures
the relations displayed in Figures 11.6�11.8:

� ŽB . x s� ŽB .q� ŽB .x�q� ŽB .x� 2 , 11.37Ž . Ž .0 1 2

� ŽW . x s� ŽW .q� ŽW .x�q� ŽW .x� 2 , 11.38Ž . Ž .0 1 2

� ŽBW . x s� ŽBW .q� ŽBW .x�q� ŽBW .x� 2 , 11.39Ž . Ž .0 1 2

� Ž .where x s age interval midpoint y42.5 r5 is a linearly transformed version
of age, taking values y4, y3, . . . , 0, . . . , q3, q4. The quadratic term in x� 2

Ž . Ž .is used to reflect the nonlinearity in Figure 11.7. Model 11.37 � 11.39 was
fitted to the data in Table 11.5 with the results shown in Table 11.6.

Ž . Ž .The goodness-of-fit statistic for testing model 11.37 � 11.39 as H versus0
� Ž . � �4the saturated alternative H of arbitrary probabilities, P Ys i, j agesx ,1

2Ž . Ž .is G H : H s17.656 on 9�3 y9s18 df, indicating an excellent fit. The0 1
linear terms for � ŽB . and � ŽW . are positive and highly significant, reflecting

Žthe increasing prevalence of breathlessness and wheeze with age among
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.miners without wheeze and breathlessness, respectively . The linear term for
the log odds ratio � ŽBW . is negative and highly significant, reflecting the
decreasing strength of association with age. Problem 11.7 asks the reader to

ŽB .Ž .plot the log odds on breathlessness among miners with wheeze, � x q
ŽBW .Ž .� x , against age, and also the log odds on wheeze among miners with

ŽW .Ž . ŽBW .Ž .breathlessness, � x q� x . Problem 11.7 also looks at the logarithm
of the marginal odds on breathlessness and the logarithm of the marginal
odds on wheeze, which are obtained by adding the appropriate terms from

Ž . Ž .the fitted probabilities 11.33 � 11.36 before forming the log odds.
ˆŽW . ŽW .The quadratic term � sy0.018 for � , which indicates the decelera-2

tion of the prevalence of wheeze among miners without breathlessness seen
$

ŽW . ŽW .ˆ ˆw Ž .in Figure 11.7, is highly significant Wald test z-scores� rse � s2 2
ˆŽB .xy0.018r0.0049sy3.6 . However, the estimated quadratic coefficient �2

for the log odds on breathlessness among miners without wheeze and the
ˆŽBW .quadratic coefficient � for the log odds ratio are not significantly2

different from zero. The results of constraining these two coefficients to
equal 0 and refitting the model are shown in Table 11.7. The goodness-of-fit

2Ž .statistic for this model, say H , still indicates a good fit: G H : H s00 00 1
19.824 on 20 df. The difference in log-likelihood ratio statistics is

2Ž . 2Ž . 2Ž .G H : H yG H : H sG H : H s19.824y17.656s2.168 with 200 1 0 1 00 0
Ž . ŽB .df ps0.34 , which indicates that the two quadratic coefficients for � and

� ŽBW . do not significantly improve the fit of the model to the data. The
estimated coefficients from the reduced model were entered into
Ž . Ž .11.37 � 11.39 , and Figures 11.6�11.8 show the fitted natural parameters as

w xsmooth curves for values of x in the interval 22.5, 62.5 . The figures confirm
the good fit of the model.

One might question the use of a quadratic age model on the grounds that
for sufficiently old ages, the predicted log odds on wheeze would start to
decrease. The objection is moot given the age span in the data set, but one

Ž .could also use a logarithmic explanatory factor, say ln age , which would
increase monotonically, instead of the quadratic age term. As explained in
Section 11.2, this model would be justified by assuming age distributions in
the gamma or chi squared family among miners in each of the four categories
of respiratory symptoms. The model with linear and logarithmic age terms
fits the data about as well as the quadratic model, with virtually identical

Ž .fitted curves results not shown .
The reduced model with only seven parameters gives a parsimonious

parameterization of the multinomial response model for these data. The
elegance of the model compares favorably with the approach using log-linear

Ž .models for all three variables breathlessness, wheeze, and age . The latter
Ž .approach, followed in Gokhale and Kullback 1978 , results in a more

complicated analysis because of the need to fit parameters for the distribu-
tions of age. Restricting the dependent variable to the double dichotomy and
conditioning on age as an explanatory factor allows us to focus on the
essential relations of the model.
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11.4.2. A General Framework for Multinomial Responses:
The Exponential Family of Distributions

We now consider the general multinomial response model of Bock
Ž .1970, 1975 , built along lines similar to the prefactor-postfactor multivariate

Ž .model of Roy 1957 . In this section we define the response structure for a
general polytomous response and consider several examples. The unifying

Žtheory is that of the exponential family of distributions see, e.g., Lehmann,
.1997 ; specifically, all of the examples are discrete linear exponential family

distributions. In the next subsection, we allow the natural parameters to be
functions of explanatory factors, thus arriving at the general logistic regres-
sion model.

Let the discrete outcome variable Y take values in a set 	 with m
elements. The elements in 	 can be identified with any set of m labels, such

� 4as 1, 2, . . . , m , or any other elements suitable to the application. For
example, the double dichotomy considered above takes values in the set

�Ž . 4	s y , y : y s0 or 1 . An exponential family of distributions for Y over1 2 i
the outcome space 	 is specified by a collection of s sufficient statistics,
Ž . Ž .t y , . . . , t y , defined for y in 	; a corresponding set of natural parameters,1 s

� , . . . , � ; and a set of weights with a G0 called the dominating measure.1 s j
The family of distributions is defined as

�P Ysy sP Ysy � , . . . , � ; a , . . . , aŽ . Ž .1 s 1 m

sa exp y� � , . . . , � q� t y q ���q� t y for yg	,� 4Ž . Ž . Ž .y 1 s 1 1 s s

11.40Ž .

Ž .where �s� � , . . . , � is a normalizing constant which ensures that the1 s
Ž .terms in 11.40 sum to 1 over y in 	:

� � , . . . , � s ln a exp � t y q ���q� t y . 11.41� 4Ž . Ž . Ž . Ž .Ý1 s y 1 1 s s
yg	

A surprisingly large number of problems involving categorical data can be put
into exponential family form, depending on the choice of sufficient statistics
and dominating measure. We examine some examples below.

The Unordered Multinomial Response
If Y is an unordered categorical response, we identify the outcomes arbitrar-

� 4ily with the elements of 	s 1, . . . , m , set the dominating measure to be
Ž . Ž .a s ��� sa s1, and define the sufficient statistics t y , . . . , t y as1 m 1 my1

1 if ys j,
t y s 11.42Ž . Ž .j ½ 0 if y
 j
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for js1, . . . , s with ssmy1. This choice of sufficient statistics encodes
category m as a reference category and endows the natural parameter �j
with an interpretation as the logit parameter

P Ys jŽ .
� s ln . 11.43Ž .j P YsmŽ .

Ž .To see this, we have from 11.40

ln P Ys j s ln a y� � , . . . , � q� t j q ���q� t jŽ . Ž . Ž . Ž .j 1 my1 1 1 my1 my1

sy� � , . . . , � q�Ž .1 my1 j

and similarly

ln P Ysm sy� � , . . . , � ,Ž . Ž .1 my1

Ž .so that, by subtraction, � is given by the logit 11.43 . When logit parametersj
use the same cell probability in their denominators, they are said, in the
terminology of generalized linear models, to follow the ‘‘canonical link.’’ The
specific choice of reference category is arbitrary.

Given a sample y , . . . , y of N independent multinomial responses from1 N
Ž .11.40 , the likelihood function is

�L � , . . . , � y , . . . , yŽ .1 my1 1 N

N N

sexp yN� � , . . . , � q� t y q ���q� t y .Ž . Ž . Ž .Ý Ý1 my1 1 1 i my1 my1 iž /
is1 is1

11.44Ž .

The sufficient statistics, now the sums of the t ’s over the sample valuesj
y , . . . , y , are simply the cell frequencies in the multinomial sample, say1 N

N Ž .n , . . . , n , with n sÝ t y . The reference cell frequency n is obtain-1 my1 j is1 j i m
w Ž .xable by subtraction from N n sNy n q ���qn , so it need not bem 1 my1

included in the list of minimal sufficient statistics.

The Ordered Multinomial Response
� 4If there is a natural ordering to the m outcomes, we identify 1, . . . , m with

the outcomes in this ordering and again choose the dominating measure to
be a s ��� sa s1. Now, let1 m

1 if y� j,
t y s for js1, . . . , ssmy1. 11.45Ž . Ž .j ½ 0 if yF j



LOGISTIC REGRESSION316

Ž .This choice encodes category 1 as the reference category, with ln P Ys1 s
y� , and endows the natural parameters with the interpretation as adjacent
logits,

P Ys jq1Ž .
� s ln for js1, . . . , ssmy1. 11.46Ž .j P Ys jŽ .

Ž . Ž . Ž .To see this, we have from 11.40 ln P Ys1 sy� � , . . . , � , and for1 my1
Ž . Ž . Ž .j�1, ln P Ys jq1 sy� � , . . . , � q� q ���q� , while ln P Ys j1 my1 1 j

Ž .sy� � , . . . , � q� q ���q� , so, by subtraction, � is the adjacent1 my1 1 jy1 j
Ž .logit 11.46 .

Given a sample y , . . . , y of N independent multinomial responses, the1 N
likelihood function is

�L � , . . . , � y , . . . , y sexp yN� � , . . . , �� Ž .Ž .my1 1 N 1 my1

q� n q ���qn q� n q ���qn q ���q� n , 11.474Ž . Ž . Ž .1 2 m 2 3 m my1 m

N Ž .that is, the sufficient statistics Ý t y are the cumulative cell frequenciesis1 j i
n q ���qn for js1, . . . , my1.jq1 m

Ž .A parameterization that is not represented by 11.40 is the cumulative
Ž . Ž .logit model of McCullagh 1980 see Section 9.5 . Specifying parameters as

Ž .cumulative logits as in 9.52 results in a nonlinear exponential family more
complex than the linear exponential family considered here. Another param-
eterization for an ordered categorical outcome uses so-called conditional
log odds:

P Ys jŽ .
ln for js1, . . . , my1. 11.48Ž .P Y� jŽ .

Ž .An advantage of this choice is that estimates of 11.48 based on sample
proportions are uncorrelated. Thus, saturated models can be reduced to a
sequence of separate binary logistic regression problems. Models imposing
parameter constraints lose this simplification, however. Figure 11.9 diagrams
various ways to parameterize an ordered multinomial response. The first and

Ž .last are covered by 11.40 .
Ž . Ž .Instead of comparing P Ys j with P Y� j using the conditional odds

Ž .parameterization, one might compare P Ys j with an a®erage of the proba-
Ž .bilities P Ysk for k� j. In the example of injury severity considered in

Chapter 9, one might consider the odds of a response in the lowest category
of severity versus an average probability of response in more severe cate-
gories; then the odds of a response in the second lowest category of severity
versus an average probability of response in categories more severe than that;
and so on. If for the ‘‘average’’ probability of response we agree to use the

Ž .geometric mean of the probabilities, then model 11.40 again applies. For



11.4 POLYTOMOUS LOGISTIC REGRESSION 317

Figure 11.9
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example, suppose we define the natural parameters as follows:

m P Ys11 Ž .
� s ln P Ys1 y ln P Ys j s lnŽ . Ž .Ý1 my1my1 mjs2 Ł P Ys jŽ .' js2

P Ys1Ž .
s ln ,

geometric mean of P Ys2 , . . . , P YsmŽ . Ž .
m P Ys21 Ž .

� s ln P Ys2 y ln P Ys j s lnŽ . Ž .Ý2 my2my2 mjs3 Ł P Ys jŽ .' js3

P Ys2Ž .
s ln ,

geometric mean of P Ys2 , . . . , P YsmŽ . Ž .
...

P Ysmy1Ž .
� s ln P Ysmy1 y ln P Ysm s ln . 11.49Ž . Ž . Ž .my1 P YsmŽ .

The reader is asked to check in Problem 11.8 that these natural parameters
can be defined via the sufficient statistics

1° if y� j,my jq1~t y s for js1, . . . , my1. 11.50Ž . Ž .j 1 if ys j,¢0 if y� j

Nested Responses
Sometimes response categories are nested hierarchically, as when different
questions are asked in an interview depending on responses to a lead-in

Ž .question. In such cases we can compare an average read geometric mean of
the response probabilities nested within one set of categories with an average
of the response probabilities nested within another set of categories. These
cases are conveniently handled using orthogonal contrasts of log probabilities.

For example, suppose a ‘‘yes’’ response to the lead-in question results
either in response category 1 or 2 to the followup question, while a ‘‘no’’
response to the lead-in results in either response category 3 or 4 to its

� 4followup question. Set 	s 1, 2, 3, 4 . There are three contrasts of interest:
Ž .the log odds on response 1 versus 2 nested within ‘‘yes’’ to the lead-in , the

Ž .log odds on response 3 versus 4 nested within ‘‘no’’ to the lead-in , and the
log of the ratio of the geometric mean probability of response following ‘‘yes’’
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to that following ‘‘no’’:

� s ln P Ys1 y ln P Ys2 , � s ln P Ys3 y ln P Ys4 ,Ž . Ž . Ž . Ž .1 2

1� s ln P Ys1 q ln P Ys2� 4Ž . Ž .3 2 11.51Ž .
1y ln P Ys3 q ln P Ys4 .� 4Ž . Ž .2

The reader is asked to check in Problem 11.9 that � , � , � result from the1 2 3
sufficient statistics

1 if ys1,2t y sŽ .1 1½y if ys2,2

1 if ys3,2t y s 11.52Ž . Ž .2 1½y if ys4,2

1 if ys1 or 2,2t y sŽ .3 1½y if ys3 or 4.2

Log-Linear Models for Multiway Contingency Tables
In cross-sectional studies with a sample of size N, we may have d categorical
variables, say V , . . . , V , with I , . . . , I levels, respectively, cross-classified to1 d 1 d
produce a d-dimensional I �I � ��� �I multiway contingency table with1 2 d
cell frequencies given by

n : i s1, . . . , I ; . . . ;i s1, . . . , I . 11.53� 4 Ž .i i � � � i 1 1 d d1 2 d

To avoid notation with multiple levels of subscripts, consider the case of a
�three-way, 2�3�4 table with cell frequencies n : is1, 2, js1, 2, 3,i jk

4ks1, 2, 3, 4 with Ý n sN, and call the three variables A, B, and Ci jk i jk
instead of V , V , and V . The class of log-linear models is represented by1 2 3
Ž . �Ž . 411.40 with 	s i, j, k : is1, 2, js1, 2, 3, and ks1, 2, 3, 4 and the follow-
ing system of sufficient statistics:

One-factor terms:

1 if y s i ,1Ž A.t y s for is1, . . . , I y1s1; 11.54aŽ . Ž .i 1½ 0 if y 
 i1

1 if y s j,2ŽB .t y s for js1, . . . , I y1s2; 11.54bŽ . Ž .j 2½ 0 if y 
 j2

1 if y sk ,3ŽC .t y s for ks1, . . . , I y1s3. 11.54cŽ . Ž .k 3½ 0 if y 
k3
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Two-factor terms:

1 if y , y s i , j ,Ž . Ž .1 2Ž A B . Ž A. ŽB .t y s t y t y sŽ . Ž . Ž .i j i j ½ 0 if y , y 
 i , jŽ . Ž .1 2

for is1, . . . , I y1s1 and js1, . . . , I y1s2; 11.55aŽ .1 2

1 if y , y s i , k ,Ž . Ž .1 3Ž AC . Ž A. ŽC .t y s t y t y sŽ . Ž . Ž .i k i k ½ 0 if y , y 
 i , kŽ . Ž .1 3

for is1, . . . , I y1s1 and ks1, . . . , I y1s3; 11.55bŽ .1 3

1 if y , y s j, k ,Ž . Ž .2 3ŽBC . ŽB . ŽC .t y s t y t y sŽ . Ž . Ž .jk j k ½ 0 if y , y 
 j, kŽ . Ž .2 3

for js1, . . . , I y1s2 and ks1, . . . , I y1s3. 11.55cŽ .2 3

Three-factor terms:

1 if y , y , y s i , j, k ,Ž . Ž .1 2 3Ž A BC . Ž A. ŽB . ŽC .t y s t y t y t y sŽ . Ž . Ž . Ž .i jk i j k ½ 0 if y , y , y 
 i , j, kŽ . Ž .1 2 3

for is1, . . . , I y1s1, js1, . . . , I y1s2,1 2

and ks1, . . . , I y1s3. 11.56Ž .3

The system extends to higher-way tables similarly: for each level l of factors
and each choice of variables V , . . . , V , there is a species of sufficient statistici i1 l

1 if y , . . . , y s � , . . . , � ,Ž . Ž .i i i i1 l 1 lV � � � Vi i1 lt y s 11.57Ž . Ž .� � � ��i i1 l ½ 0 if y , . . . , y 
 � , . . . , �Ž . Ž .i i i i1 l 1 l

for indices � s1, . . . , I y1, . . . , � s1, . . . , I y1. This system identifiesi i i i1 1 l l
Ž .the cell with all ‘‘maximal’’ subscripts I , . . . , I as reference category, and1 d

creates the following interpretations for the natural parameters, which in this
context are called log-linear parameters:

Ž .i Any natural parameter with a maximal subscript is zero. In the
example, these are

� Ž A.s� ŽB .s� ŽC .s� Ž A B .s� Ž A B .s� Ž AC .s� Ž AC .s� ŽBC .s� ŽBC .
2 3 4 i3 2 j i4 2 k j4 3k

s� Ž A BC .s� Ž A BC .s� Ž A BC .s0i j4 i3k 2 jk

for any i, j, and k. In general, � ŽVi1
, . . . , Vil

.s0 if any subscript � sI .� , . . . , � i ii i j j1 l
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Ž .ii One-factor � parameters are log odds parameters comparing the cell
probability having the given subscript in the named variable with the proba-
bility of the reference cell, where all unnamed variables are set equal to their
maximal subscript. For example,

P Ys i , 3, 4� 4Ž .Ž A.� s ln for is1,i P Ys 2, 3, 4� 4Ž .

P Ys 2, j, 4� 4Ž .ŽB .� s ln for js1, 2, 11.58Ž .j P Ys 2, 3, 4� 4Ž .

P Ys 2, 3, k� 4Ž .ŽC .� s ln for ks1, 2, 3.k P Ys 2, 3, 4� 4Ž .

Ž .iii Two-factor � parameters are log odds ratios for the 2�2 subtable
formed from the named subscripts and other cells with maximal subscripts.
Thus

P Ys i , j, 4 �P Ys 2, 3, 4� 4 � 4Ž . Ž .Ž A B .� s ln for is1 and js1, 2,i j P Ys i , 3, 4 �P Ys 2, j, 4� 4 � 4Ž . Ž .

P Ys i , 3, k �P Ys 2, 3, 4� 4 � 4Ž . Ž .Ž AC .� s ln for is1 and ks1, 2, 3,i k P Ys i , 3, 4 �P Ys 2, 3, k� 4 � 4Ž . Ž .

P Ys 2, j, k �P Ys 2, 3, 4� 4 � 4Ž . Ž .ŽBC .� s ln for js1, 2 and ks1, 2, 3.jk P Ys 2, j, 4 �P Ys 2, 3, k� 4 � 4Ž . Ž .
11.59Ž .

Ž .iv Three-factor � parameters are log ratios of odds ratios, with un-
named variables set to their maximal subscripts. For example,

� 4 � 4 � 4 � 4Ž . Ž . Ž . Ž .P Ys i , j, k �P Ys i , 3, 4 P Ys 2, j, k �P Ys 2, 3, 4Ž A BC .� s lni jk � 4 � 4 � 4 � 4Ž . Ž . Ž . Ž .P Ys i , j, 4 �P Ys i , 3, k P Ys 2, j, 4 �P Ys 2, 3, k

for is1, js1, 2, and ks1, 2, 3.

11.60Ž .

And so on. Higher-order � parameters are logarithms of ratios of ratios
of . . . of odds ratios. The reader may check that the sufficient statistics for the
likelihood function based on a sample of size N are the marginal configura-
tions corresponding to the � parameters present in the model. Thus the

� 4saturated model, with all � parameters present, has sufficient statistics n ,i . .
� 4 � 4 � 4 � 4 � 4 � 4n , n , n , n , n , and n . Since the last set implies the. j . . . k i j . i . k . jk i jk
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� 4values of all preceding marginal configurations by summing, n alone isi jk
the minimal sufficient statistic.

Parsimony in log-linear models is represented by unsaturated models with
s�my1. Most convenient are models that constrain entire species of �
parameters to be zero. For example, the model setting � Ž A BC .s0 for alli jk
Ž .i, j,k , the so-called no-three-factor effect model, is a model of constant

Ž .odds ratio because, by 11.60 , the set of odds ratios involving any two
Ž .variables at fixed levels of the unnamed variable s is constant across all

Ž .levels of the unnamed variable s . For the constant-odds-ratio model, the
� 4 � 4 � 4three marginal configurations n , n , and n constitute the minimali j . i . k . jk

� Ž .4sufficient statistic. There are no closed-form formulas for P Ys i, j, k in
terms of marginal probabilities. Maximum likelihood estimates of � parame-
ters and expected cell frequencies must be obtained by iterative computation.

Ž A B . Ž A BC . Ž .Another model of interest is H :� s� s0 for all i, j, k . In this00 i j i jk
case the model specifies no association between variables A and B given C.
That is so because at level 4 of variable C, the log odds ratios between A and
B are all equal to 0, since � Ž A B .s0; but because � Ž A BC .s0, the log oddsi j i jk
ratios between A and B at any other level of C are the same, namely, zero.

�This model may therefore be written succinctly as A� B C, such that, A and
B are conditionally independent given C. It follows that

� � 4P Ys i , j, k sP Ys i , j, k Y sk P Y sk� 4 � 4Ž . Ž . 3 3

� � � 4sP Y s i Y sk P Y s j Y sk P Y sk , 11.61� 4 � 4 Ž .1 3 2 3 3

which simplifies calculation of the mle’s: from the marginal configurations
� 4 � 4 Ž .n and n , n rn is the mle of the first term in 11.61 , n rn isi . k . jk i . k . . k . jk . . k
the mle of the second term, and n rN is the mle of the third term. Thus. . k
Ž . Ž . � Ž .4n n r Nn is the mle of P Ys i, j, k .i . k . jk . . k

Ž A B . Ž AC . Ž A BC . Ž .The model � s� s� s0 for all i, j, k can be identifiedi j i k i jk
Ž .with the relation A� B, C , that is, variable A is completely independent of

Ž .the joint variable B, C , with

� 4P Ys i , j,k sP Y s i P Y , Y s j, k . 11.62� 4 � 4Ž . Ž . Ž . Ž .1 2 3

Its mle is n n rN 2.i . . . jk
Ž A B . Ž AC . ŽBC . Ž A BC . Ž .The model � s� s� s� s0 for all i, j, k , the so-calledi j i k jk i jk

no-two-factor effect model, specifies the relation of mutual independence,
A� B�C, with

� 4 � 4 � 4P Ys i , j, k sP Y s i P Y s j P Y sk . 11.63� 4Ž . Ž .1 2 3

Its mle is n n n rN 3.i . . . j . . . k
As seen from the foregoing, the number of log-linear models one can

entertain grows rapidly with the number of cross-classification variables.
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Thus, whenever feasible, we prefer to use a logistic regression model for a
smaller number of dependent cross-classification variables with other vari-
ables serving as explanatory factors, as we did in the coal miner example,
rather than treating all variables in a model as dependent.

The Noncentral Multiple Hypergeometric Distribution
Chapter 9 discussed the statistical analysis of several proportions, but
deferred discussion of the exact analysis of such data. We touch on that
briefly here. Suppose we have M binomial random variables Y , . . . , Y ,1 M

Ž .with Y �Bin n , P for is1, . . . , M. The joint conditional distribution ofi i i
Y , . . . , Y with given fixed sum SsY q ���qY ss is said to have the1 M 1 M
noncentral multiple hypergeometric distribution with odds ratio parameters

� Ž .4� , . . . , � , where for js1, . . . , My1 we have � s Pr 1yP r1 My1 j j j
� Ž .4P r 1yP . As in the case of the univariate noncentral hypergeometricM M
distribution discussed in Chapter 6, the joint conditional distribution depends
on the binomial parameters P , . . . , P only through the odds ratios1 M

Ž .� , . . . , � see Problem 11.10 . The probability function for the noncen-1 My1
tral multiple hypergeometric distribution is

�P Y sy , . . . , Y sy Sss, n , . . . , n , � , . . . , �Ž .1 1 M M 1 M 1 My1

n n1 M y y1 My1��� � ��� �1 My1ž / ž /y y1 M
s , 11.64Ž .

n n1 M u u1 My1��� � ��� �Ý 1 My1ž / ž /u u1 Mu

Ž .where the sum in the denominator of 11.64 is taken over the set of all
integer-valued vectors u of length M with 0Fu Fn and u q ���qu ss.j j 1 M

Ž .Call this set D s; n , . . . , n .M 1 M
Ž . Ž .Expression 11.64 can be put into the exponential family form 11.40 as

Ž .follows. First take 	sD s; n , . . . , n , and enumerate all m vectorsM 1 M
Ž .Ys Y , . . . , Y in 	, identifying these as possible outcomes of a multinomial1 M

response in m categories. The number m of such outcomes may be large, but
the exact analysis of the 2�M table is of greatest interest when it is feasible
to do the enumeration. The dominating measure is taken as

n n1 Ma s ��� ,y ž / ž /y y1 M

Ž .and the sufficient statistics are simply t y sy for js1, . . . , My1. Thej j
natural parameters are the log odds ratios � s ln � for js1, . . . , My1.j j

Ž . Ž .With these identifications, 11.40 represents the distribution 11.64 , and the
entire 2�M table becomes a single multinomial response from this exponen-
tial family.
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Table 11.8. Data of Table 9.2 rearranged

Study

1 2 3 4 Total

Smokers 83 90 129 70 372
Nonsmokers 3 3 7 12 25

Total 86 93 136 82 397

The exact distribution of test statistics such as chi squared may be
calculated with the enumerated distribution. Here we focus on a different
aspect of an exact analysis
calculation of conditional maximum likelihood
estimates for the log odds ratios. In fact, using software designed to find

Ž .maximum likelihood estimates of the natural parameters in 11.40 , we obtain
the conditional maximum likelihood estimates of the log odds ratios � s ln �j j

Ž .which maximize the conditional likelihood function given by 11.62 .
As an example, consider the data of Table 9.2, which we present in slightly

rearranged form in Table 11.8. Let Y denote the number of smokers in thej
Ž . Ž .jth study js1, . . . , 4 . Conditioning on the margins 86, 93, 136, 82 and ss

372 of the 2�4 table results in ms3,276 possible outcomes for the sufficient
Ž .statistic Y , Y , Y with nonzero dominating measure. The observed table1 2 3

Ž .corresponds to the multinomial response with sufficient statistic 83, 96, 129 .
Ž .Maximizing the likelihood 11.40 for this single multinomial response yields

Ž . Ž .the mle’s � , � , � s 1.552, 1.633, 1.146 with estimated standard errorsˆ ˆ ˆ1 2 3
Ž . Ž .0.665, 0.664, 0.497 and Wald test z-scores 2.33, 2.46, 2.30 . The conditional

Ž .mle’s of the odds ratios, 4.72, 5.12, 3.15 , are close to the unconditional
Ž .maximum likelihood estimates 4.74, 5.14, 3.16 , which are the cross-product

ratios for each study compared to study 4. A likelihood ratio test of the
hypothesis that � s� s� , namely, that studies 1, 2, and 3 have the same1 2 3
proportion of smokers, is obtained by subtracting y2 times the multinomial

Ž .log likelihood, 8.883, for the saturated model H : � arbitrary from that for1 j
Ž . 2Ž .the reduced model H : � s� s� s� , 9.514. Thus G H : H s9.5140 1 2 3 0 1

Ž .y8.883s0.631 on 2 df ps0.73 . We conclude that the three odds ratios
underlying studies 1, 2, and 3 are not significantly different. The conditional

Ž .maximum likelihood estimate of the common odds ratio � is �sexp � sˆ ˆ
Ž .exp 1.3773 s3.96 with the estimated standard error of � equal to 0.4209.ˆ

Conditional maximum likelihood estimation is taken up in greater detail in
Ž .Chapter 14. The conclusion to be drawn here is that model 11.40 can

accommodate conditional distributions quite naturally, and even complicated
Ž .expressions like 11.64 offer no special theoretical difficulties.

Binomial Goodness of Fit
In Section 9.6.3 we considered whether a sample of N random variables

Ž .X , . . . , X could be accepted as binomial random variables, X �Bin g, P ,1 N j
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with constant P, or whether there was random heterogeneity in the parame-
ter P. To do that, we viewed each count X as a multinomial response takingj

� 4values in the set 	s 0, 1, . . . , g so that msgq1. Under the null hypothe-
sis of no heterogeneity, we now write the binomial distribution in exponential
family form as

g gyjj� �P X s j g , P s P 1yP sP Ys j g , �Ž . Ž .Ž .i ž /j

g
s exp y� � q� j , 11.65� 4Ž . Ž .ž /j

ggŽ .where � � s ln Ý exp � j . Thus the dominating measure is theŽ .js0½ 5ž /j
g Ž .binomial coefficient a s , the sufficient statistic is simply t y sy, andj ž /j

� Ž .4the natural parameter is �s ln Pr 1yP . Under the alternative hypothe-
sis, we specify the sufficient statistics for the multinomial response to be
Ž .11.45 for js0, . . . , gy1, in which case the natural parameters become the
adjacent logit-plus-offset parameters

g
P Ys jq1Ž . ž /jq1

� s lnj g
P Ys jŽ . ž /j

that played an important role in the general empirical Bayes analysis of
Ž .Section 9.6.3. In particular, we used the model � s� q� j in 9.83 to testj g

for binomial homogeneity by testing �s0.
Ž .Many other examples of 11.40 are useful in applications. Levin and

Ž .Shrout 1981 show generally how to interpret the natural parameters
Ž . Ž .� , . . . , � for given sufficient statistics t y , . . . , t y in terms of contrasts of1 s 1 s

log multinomial cell probabilities and, conversely, given an interpretation of
� , . . . , � as certain desired contrasts of log probabilities, they show how to1 s

Ž . Ž .construct appropriate sufficient statistics t y , . . . , t y to accomplish the1 s
task. They also consider the use of constrained maximum likelihood estima-
tion and affine transformation of parameters to impose linear constraints on

Ž .the natural parameters. We used this technique to fit model 9.83 .
Next we turn to the modeling of the natural parameters as functions of

explanatory factors.

11.4.3.� General Logistic Regression

In the preceding section, for each multinomial response model examined, we
assumed a single sample of data. Here we allow each of the natural
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parameters � , . . . , � to depend on r explanatory factors, say Xs1 s
Ž .�X , . . . , X , which vary over n independent samples. This section provides1 r
the basic statistical results for a maximum likelihood analysis of the general
logistic regression model in this case. It is more challenging because it uses
matrices and deals with multivariate concepts.

Notation
Ž . Ž .As in the coal miner example at 11.37 � 11.39 , we assume s linear expres-

sions of the form

� X s� X q ���q� X ,Ž .1 11 1 r1 r

� X s� X q ���q� X . 11.66Ž .Ž .s 1 s 1 r s r

We assume that we have data from n independent groups of subjects,
Ž .�corresponding to explanatory factors X s X , . . . , X for is1, . . . , n,Ž i. i1 i r

each with a multinomial sample of size N G1, with cell frequenciesi
N , . . . , N summing to N . We collect the various items of information intoi1 im i
the following matrices.

Ž .i Sample Design Array. As in the familiar multiple regression model
for continuous dependent variables, the n� r sample design matrix contains
the vectors X as rows:Ž i.

�X X ��� XŽ1. 11 1 r
. . .. . .X s s . 11.67Ž .. . .

n�r �X X ��� XŽn. n1 nr

It is conventional to take the first column of X to be the constant 1, in which
case � , . . . , � are intercepts for the natural parameters.11 1 s

Ž . Ž . Ž .ii Response Design Array. The s sufficient statistics t y , . . . , t y eval-1 s
uated at each of the m elements in the response set 	 form an s�m matrix
called the response design array, T :

t y ��� t yŽ . Ž .1 1 1 m
. .. .T s . 11.68Ž .. .

s�m
t y ��� t yŽ . Ž .s 1 s m

The response design array encodes the interpretation of the natural parame-
ters discussed in the previous section.

Ž .iii Frequency Data Array. The multinomial frequencies for each inde-
pendent group are collected into the n�m frequency data array, N:

N ��� N11 1m
. .. .N s . 11.69Ž .. .

n�m
N ��� Nn1 nm
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The rows of N sum to N for is1, . . . , n. Individual-level multinomiali
response data correspond to N s ��� sN s1; replicate observations, such1 n
as arise with discrete explanatory factors, have sample sizes N G1.i

Ž .iv Dominating Measure Array. The dominating measure weights for
each independent sample form an n�m matrix called the dominating
measure array, A:

a ��� a11 1m
. .. .A s . 11.70Ž .. .

n�m
a ��� an1 nm

Note that the dominating measure may vary from row to row, as is the case
gŽ .with the binomial model 11.65 with a s for independent samples ofg j ž /j

binomial count data with varying indices gs1, . . . , n. We allow zero values
gfor the dominating measure, e.g., a s s0 for j�g. It is convenient tog j ž /j

� 4write the n�m array ln As ln a , and we shall write ln a even if a s0,i j i j i j
with the understanding that multinomial outcomes in cells with zero dominat-
ing measure do not occur, and so ln 0, though indeterminate, is irrelevant to
the statistical analysis.

Ž .v Model Cell Probability and Log Probability Arrays. Define the n�m
matrix of cell probabilities, P:

� �P Ys1 XsX ��� P Ysm XsX� 4 � 4Ž1. Ž1.
. .. .P s , 11.71Ž .. .

n�m
� �P Ys1 XsX ��� P Ysm XsX� 4 � 4Žn. Žn.

and the corresponding matrix of log cell probabilities, L:

� �ln P Ys1 XsX ��� ln P Ysm XsX� 4 � 4Ž1. Ž1.
. .. .L s . 11.72Ž .. .

n�m
� �ln P Ys1 XsX ��� ln P Ysm XsX� 4 � 4Žn. Žn.

As for the dominating measure array, we interpret ln 0 in components of L
as indeterminate but statistically irrelevant.

Ž .vi Natural Parameter Array. The natural parameters vary from group to
group due to their dependence on the explanatory factors. We collect these
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in an n�s array, �:

�
� � X ��� � XŽ . Ž .Ž1. 1 Ž1. s Ž1.

. . .. . .� s s . 11.73Ž .. . .
n�s �

� � X ��� � XŽ . Ž .Žn. 1 Žn. s Žn.

Ž .vii Logistic Regression Coefficient Array. The object of the statistical
analysis is to draw inferences about the logistic regression coefficients � .i j
These are collected in the r�s logistic regression coefficient array B:

� ��� �11 1 s
. .. .B s . 11.74Ž .. .

r�s
� ��� �r1 r s

With these definitions, we can write from the regression part of model
Ž .11.66 ,

� �
� s � X , . . . , � X s X B , 11.75Ž .Ž . Ž .Ž i. i Ž i. s Ž i. Ž i.

r�s
1�s 1�r

Ž .and from the response design part of model 11.40 ,
� w xL s L ��� LŽ i. i1 im

1�m

w x � �s ln a , . . . , ln a y � � X , . . . , � X 1 q � TŽ . Ž .Ž .i1 im 1 Ž1. s Ž i. m Ž i.
s�m1�m 1�m 1�s

� � �s ln A y� � X , . . . , � X �1 qX BT , 11.76Ž . Ž .Ž . Ž .Ž .Ž . 1 Ž i. s Ž i. m Ž i.i

� Ž .where 1 s 1, . . . , 1 is a row vector of length m consisting of 1’s. Putting itm
all together, the general logistic regression model can be written succinctly as

L syDiag � , . . . , � �1 q X B T , 11.77Ž . Ž .1 n n�m
n�m n�r r�s s�mn�n

Ž .where Diag � , . . . , � is an n � n diagonal matrix with � s1 n i
Ž Ž . Ž ..� � X , . . . , � X on the main diagonal, and where 1 is an n�m1 Ž i. s Ž i. n�m

array of 1’s.
To illustrate the notation, consider the simple binary logistic regression

Ž .model 11.5 with individual-level binary responses Y , . . . , Y and explanatory1 n
factor observed at values x , . . . , x . Here rs2, including the constant1 n
explanatory factor. The sample design array is

1 x1
. .. .X s , 11.78Ž .. .

n�2
1 xn
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Ž .and the response design array for the binary outcome ms2 is the 1�2
array

Ts , 11.79Ž .1 0

corresponding to the single logit parameter

�P Y s1 X sx PŽ .i i i i1� x s ln s ln sL yL , 11.80Ž . Ž .i i1 i2P�P Y s0 X sxŽ . i2i i i

using the identification of outcomes Ys1 or 0 with the elements of the set
� 4	s 1, 2 . The frequency data array is the array of 0’s and 1’s,

Y 1yY1 1
. .. .N s , 11.81Ž .. .

n�2
Y 1yYn n

and the dominating measure array is the n�2 matrix of all 1’s, As1 .n�2
The model cell probability array is

exp �q� xŽ . 11

1qexp �q� x 1qexp �q� xŽ . Ž .1 1
. .. .P s , 11.82Ž .. .

n�2
exp �q� xŽ . 1n

1qexp �q� x 1qexp �q� xŽ . Ž .n n

with logarithms

y� q�q� x y�1 1 1
. .. .L s . .

n�2
y� q�q� x y�n n n

�q� x y ln 1qexp �q� x yln 1qexp �q� x� 4 � 4Ž . Ž .1 1 1
. .. .s .. .

�q� x y ln 1qexp �q� x yln 1qexp �q� x� 4 � 4Ž . Ž .n n n

11.83Ž .
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The natural parameter array is the n�1 array

�P Y s1 X sxŽ .1 1 1ln
�P Y s0 X sxŽ . �q� x1 1 1 1

. . �. .� s s sX sXB , 11.84Ž .. . �n�1
�q� x�P Y s1 X sxŽ . nn n nln

�P Y s0 X sxŽ .n n n

expressing the logits as linear functions of x with coefficients contained in
�the 2�1 logistic regression coefficient array Bs .�

As another illustration, consider the model for the coal miner data. In this
case, ms4 for the double dichotomy, ns9 age groups, rs3 for the
quadratic age model, and ss3 for the three natural parameters � ŽB ., � ŽW .,

ŽBW . Ž . Ž .and � given in 11.25 � 11.27 . The sample design array is the 9�3
matrix

1 y4 16
1 y3 9
1 y2 4
1 y1 1

Xs , 11.85Ž .1 0 0
1 q1 1
1 q2 4
1 q3 9
1 q4 16

and the response design is the 3�4 array

1 1 0 0
Ts , 11.86Ž .1 0 1 0

1 0 0 0

corresponding to a saturated model for the 2�2 response with log-linear
ŽB . ŽW . ŽBW . Ž .parameters � , � , � 
see 11.54 for the first two rows of T and

Ž .11.55 for the third row. The frequency data array N is the 9�4 array given
in Table 11.5, and the dominating measure array is again the 9�4 matrix of
all 1’s, As1 . The model cell probability array P is the 9�4 array whose9�4

Ž . Ž .rows are given by 11.33 � 11.36 , with logarithms L whose rows are given by
Ž . Ž . Ž . � Ž . � Ž11.28 � 11.31 , and with � x s ln P Ys 0, 0 coded ages xs agey
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. 442.5 r5 . The natural parameter array is the 9�3 array

ŽB . ŽW . ŽBW .Ž . Ž . Ž .� y4 � y4 � y4
. . .. . .� s . . .

9�3 ŽB . ŽW . ŽBW .Ž . Ž . Ž .� q4 � q4 � q4

ŽB . ŽB . ŽB . ŽW . ŽW . ŽW . ŽBW . ŽBW . ŽBW .� y4� q16� � y4� q16� � y4� q16�0 1 2 0 1 2 0 1 2
. . .. . .s . . .

ŽB . ŽB . ŽB . ŽW . ŽW . ŽW . ŽBW . ŽBW . ŽBW .� q4� q16� � q4� q16� � q4� q16�0 1 2 0 1 2 0 1 2

ŽB . ŽW . ŽBW .� � �0 0 0

ŽB . ŽW . ŽBW .� � �sX sXB , 11.87Ž .1 1 1

ŽB . ŽW . ŽBW .� � �2 2 2

expressing the log-linear parameters as the linear functions of x and x 2 given
Ž . Ž .in 11.37 � 11.39 with coefficients contained in the 3� 3 logistic regression

coefficient array

ŽB . ŽW . ŽBW .� � �0 0 0

ŽB . ŽW . ŽBW .� � �Bs . 11.88Ž .1 1 1

ŽB . ŽW . ŽBW .� � �2 2 2

Maximum likelihood estimates of the coefficients in B are displayed in the
‘‘mle’’ column of Table 11.6.

Two final bits of matrix notation will be helpful. The first is the Kronecker
Ž . Ž .product of two matrices. For any two arrays A p�q and B r�s , the

Ž . Ž .Kronecker product of A and B, denoted by AmB, is the pr � qs matrix
defined by the block diagram

a B ��� a B11 1 p
. .. .AmB s . 11.89Ž .. .Ž . Ž .pr � qs

a B ��� a Bp1 p q

Ž .The Kronecker product has the following properties see Problem 11.11 :

Ž .i The transpose of a Kronecker product is the Kronecker product of
the transposes in original order,

� � �AmB s A m B . 11.90Ž . Ž .
q�p s�rŽ . Ž .qs � pr

Ž .ii Kronecker multiplication is associative:

AmB mCsAm BmC . 11.91Ž . Ž . Ž .
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Ž . � 4iii The 1�1 matrix 1 serves as an identity matrix:

Am1 s1 mAsA. 11.92Ž .1�1 1�1

Ž .iv Multiplication of two Kronecker products: If A is a p �p matrix1 1 2
and A is a p �p matrix, such that A A of dimension p �p is the2 2 3 1 2 1 3
ordinary matrix product, and if, similarly, B is a r � r matrix and B is a1 1 2 2

Ž .r � r with ordinary matrix product B B r � r , then the Kronecker2 3 1 2 1 3
product A mB can by multiplied by A mB by taking the Kronecker1 1 2 2

Ž . Ž .product of A A with B B , which is an array of dimension p r � p r :1 2 1 2 1 1 3 3

A mB � A mB s A A m B B . 11.93Ž . Ž . Ž . Ž . Ž .1 1 2 2 1 2 1 2
Ž . Ž . Ž . Ž . p �p r �rp r � p r p r � p r 1 3 1 31 1 2 2 2 2 3 3

The last notational convenience is the ®ectorization of a matrix. This
operation simply strings out the elements of an r�s array into a vector of
length rs by going down the columns, from left to right. Thus we write the
logistic regression coefficient ®ector �sBV as the vectorized logistic regres-
sion coefficient array:

�V� sB s � , . . . , � , � , . . . , � , . . . , � , . . . , � . 11.94Ž . Ž .11 r1 12 r 2 1 s r s

Ž .rs �1

Looking under the Hood
We may now present the elements of a likelihood analysis of the general
logistic regression model. The log-likelihood function given the data array N,
conditional on the sample design array X, response design array T , and
dominating measure array A, is

n m n n m r s

� � s N L sy N � q N X B T , 11.95Ž .Ž . Ý Ý Ý Ý Ý Ý Ýi j i j i i i j i k k l l j
is1 js1 is1 is1 js1 ks1 ls1

Ž Ž . Ž ..where � is the normalizing constant � � X , . . . , � X evaluated ati 1 Ž i. s Ž i.
the ith sample given X . The dominating measure array appears implicitlyŽ i.

Ž . Ž .in 11.95 ; it appears explicitly in the definition of � given in 11.41 .
Ž .The score function U � is the vector of length rs of partial derivatives of

Ž .� � with respect to the components of � :

��
��11 n..U � s s N TmX p yPŽ .Ž . Ž .Ý i Ž i. Ž i. Ž i..

is1��
��r s

n

s N T p yP mX , 11.96Ž .Ž .Ý i Ž i. Ž i. Ž i.
is1
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Ž .�where p s N rN , . . . , N rN is the m�1 vector of sample proportionsŽ i. i1 i im i
from the ith sample, and where P is the ith row of the model cellŽ i.
probability array P, written as an m�1 vector. The likelihood equations
comprise the system of rs equations in the rs unknowns in � obtained by

ˆsetting the score function equal to zero. The maximum likelihood estimates �
ˆŽ . Ž .of � satisfy U � s0. Expression 11.96 indicates that at the maximum

likelihood estimate, the observed sufficient statistics equal the expected value
Ž .of the sufficient statistics under the model, Ý N TP mX .i i Ž i. Ž i.

Ž . Ž . Ž .The information matrix, I � , is the rs � rs matrix of negative second
Ž .derivatives of � � :

2 n� � �Ž .
� �I � s y s N TW P T mX X , 11.97Ž .� 4Ž .Ž . Ý i Ž i. Ž i. Ž i.½ 5�� ��i j is1

Ž .where W P is the m�m variance-covariance matrix of a single multino-Ž i.
mial response evaluated at the model probability for the ith sample:

� 4 �W P sDiag P , . . . , P yP P . 11.98Ž .Ž .Ž i. i1 im Ž i. Ž i.

Ž .In 11.98 , the elements on the main diagonal are binary variable variances,
Ž . Ž .P 1yP ; the element off the diagonal in position j, k is the multinomiali j i j

Ž .covariance yP P . The information matrix I � is both the ‘‘observed’’i j i k
information matrix and the ‘‘expected’’ or Fisher information matrix; that is,
because the second derivative of the log-likelihood function does not depend

Žon the cell frequency data array, it is a constant given the explanatory
.factors . This simplification is a general property of the exponential family of

distributions with natural parametrization.
In practice, the information matrix is evaluated at the maximum likelihood

ˆŽ .estimate, that is, we use the matrix I � , which involves the fitted probabili-
ˆ ˆ ˆ ˆŽ . Ž .ties P and the matrices W P evaluated at �. The matrix inverse of I �Ž i.

provides the estimated variance-covariance matrix of the maximum likelihood
ˆestimates. Thus the estimated standard error of � is the square root of thej

ˆ y1 ˆŽ .jth diagonal element of I � , and the estimated covariance between �j
ˆ ˆ y1Ž .and � is the element in the jth row and kth column of I � .k

As an illustration, let us again consider the simple binary logistic regres-
ˆŽ . Ž . Ž .sion model represented by 11.78 � 11.84 . In this case, W P is the 2�2Ž i.

matrix

ˆ ˆ ˆ ˆP 1yP yP PŽ .i1 i1 i1 i2 1 y1ˆW P s sw , 11.99Ž .ž /Ž i. i y1 1ˆ ˆ ˆ ˆyP P P 1yPŽ .i2 i1 i2 i2

ˆ ˆŽ . Ž . Ž .where w sP 1yP are the weights used in 11.6 � 11.8 . Since the re-i i1 i1
w x Ž .sponse design matrix is the 1�2 array Ts , we have N T p yP1 0 i Ž i. Ž i.

sN yP sy yP , where N sy is the binary response for the ith obser-i1 i1 i i1 i1 i
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Ž . Ž .vation. It follows that the score function 11.96 reduces to Ý y yP x . Thei i i1 i
likelihood equation defining the maximum likelihood estimates of the inter-

n ˆŽ .cept coefficient � and the slope coefficient � is Ý N yP x s0, or,1 2 is1 i1 i1 i
equivalently,

n n
ˆx y s x P . 11.100Ž .Ý Ýi i i i1

is1 is1

ˆ � ˆ ˆŽ . Ž .TW P T reduces simply to the 1�1 quantity w sP 1yP , and so theŽ i. i i1 i1
information matrix at the mle is the 2�2 array

n n

w w xÝ Ýi i in
is1 is1�w mX X s . 11.101Ž .Ý n ni Ž i. Ž i.

2is1 w x w xÝ Ýi i i i
is1 is1

Ž . Ž . Ž .The inverse of 11.101 gives rise to formulas 11.6 � 11.8 for the estimated
standard errors of the intercept and slope coefficient mles and their covari-
ance.

The score function and information matrix are used to calculate the
maximum likelihood estimates via the Newton-Raphson iterative algorithm, a
generalization to several dimensions of Newton’s method for finding the root
of an equation. The algorithm begins with an initial estimate of � , call it
� Ž0.. If N s1 for all is1, . . . , n, then one usually sets each component ofi
� Ž0. equal to zero. If N are large and N �0 for all i and j, then a morei i j
efficient choice of � Ž0. in terms of speed of convergence of the algorithm is
given by the weighted least-squares estimate of � :

y1n n
� ��̃s N TW p T mX X N TW P l mX , 11.102� 4Ž . Ž .� 4� 4 Ž .Ý Ýi Ž i. Ž i. Ž i. i Ž i. Ž i. Ž i.

is1 is1

Ž .where the matrix W p is evaluated at the sample proportions p in theŽ i. Ž i.
ith sample, and l is the m�1 vector of sample log probabilities, l sŽ i. Ž i.
Ž .� Ž .ln p , . . . , ln p . Note that 11.102 is used only to start the iterations oni1 im
their way toward the maximum likelihood estimates. Grizzle, Starmer, and

Ž .Koch 1969 consider inference based on the weighted least-squares esti-
mates rather than maximum likelihood estimates. We generally prefer maxi-
mum likelihood estimation because it applies when N s1, whereas weightedi
least-squares estimation requires arbitrary grouping of the data.

After � stages of the Newton-Raphson iteration, we have the current
Ž� . Ž .estimates � �s0, 1, . . . . The estimates are updated by the adjustment

y1Ž�q1. Ž� . Ž� . Ž� .� s� qI � U � . 11.103Ž .ž / ž /
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As the iteration progresses, the score function approaches zero and the
iterates converge to the maximum likelihood estimate. A definite advantage

Ž .of scheme 11.103 is its rapid convergence: after a few iterations, the errors
Ž� . ˆin the current iterate � y� decrease in proportion to the square of thej j

errors of the previous iteration. That means that after the first few iterations,
the accuracy in terms of correct decimal places roughly doubles per iteration.
In practice, four or five iterations usually suffice to reach convergence with

Ž .double-precision accuracy about 13 decimal places . The rapidity of the
Newton-Raphson algorithm is an important advantage over other iterative
algorithms such as the iterati®e proportional fitting algorithm for log-linear

Ž .models discussed, for example, in Bishop, Fienberg, and Holland 1975 .
With modern computers, even a large number rs of coefficients can be easily
estimated by Newton-Raphson.

Conclusion
The subject of logistic regression has burgeoned since the late 1960s into a
versatile tool for many problems involving rates, proportions, counts, and
contingency tables. The interested reader may consult the textbooks by Bock
Ž . Ž . Ž .1975 , Cox and Snell 1989 , and Hosmer and Lemeshow 2000 for addi-
tional topics such as logistic regression diagnostics, standardized residuals,
indices of high leverage, and overdispersed data.

PROBLEMS

( ) Ž .11.1. a Let f x be the normal probability density function with mean �j j
12 2 y1r2Ž . Ž . � Žand variance � for js0 or 1: f x s 2	� exp y xyj j j 2

.2 24 Ž . � Ž . Ž .4� r� . Calculate the log likelihood ratio l x s ln f x rf x .j j 1 0
Ž . Ž . � 2Verify that l x is of the form l x s� q� xq� x , and find

expressions for � �, � , and � in terms of � and � 2.j j

( ) Ž .b Let f x be the Poisson probability function with mean � :j j
Ž . Ž . x Ž .f x sexp y� � rx!. Calculate the log likelihood ratio l x sj j j
� Ž . Ž .4 Ž . Ž . �ln f x rf x . Verify that l x is of the form l x s� q� x, and1 0

find expressions for � � and � in terms of � .j
( ) Ž .c Let f x be the Gamma probability density function with shapej

Ž . ajy1 Ž .parameter a and scale parameter b : f x sx exp yxrb rj j j j
� Ž . aj4� a b . A chi squared distribution with � degrees of freedom isj j

1in the Gamma family, with shape parameter � and scale parame-2
Ž . � Ž . Ž .4ter 2. Calculate the log likelihood ratio l x s ln f x rf x .1 0

Ž . Ž . �Verify that l x is of the form l x s� q� xq� ln x, and find
expressions for � �, � , and � in terms of a and b .j j

Ž . x Ž x. �Ž .11.2. Let f x se r 1qe . Find the first derivative f x . Use this result
Ž .in the delta method to derive equation 11.10 for the standard error

Ž̂ .of the fitted model probability P x .0
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Ž . Ž . Ž .11.3. Verify equations 11.12 , 11.13 , and 11.14 . Check that expression
ˆŽ . Ž .11.14 in equation 11.7 for the standard error of � agrees with the

familiar formula for the standard error of the log odds ratio in a 2�2
$

y1 y1 y1 y1ˆ� 4 Ž . 'table n : se � s n qn qn qn .i j 11 10 01 00

Ž . Ž .11.4. Let X , X have a bivariate normal distribution with mean � , � ,1 2 1 2
Ž 2 2 .variances � , � , and correlation coefficient �. The density function1 2

for this distribution is

2x y�Ž .1 1 1 1f x , x s exp yŽ .1 2 2 2 2 2½22	� � 1y� � 1y�Ž . Ž .1 2 1

22 � x y� x y� x y�Ž . Ž . Ž .1 1 2 2 2 2y q .2 2 2 5� � 1y� � 1y�Ž . Ž .1 2 2

Ž . Ž .Suppose now that given Ys j, the mean of X , X is � , � for1 2 j1 j2
js1 or 0 but that � 2, � 2, and � are the same for Ys1 and 0. Let1 2
Ž .f x , x denote the corresponding densities.j 1 2

( ) Ž . � Ž . Ž .4a Verify that the log-likelihood ratio function l x s ln f x rf x1 0
Ž . �is of the form l x s� q� x q� x , and find expressions for0 1 1 2 2

the coefficients � � , � , � in terms of � , � , � , � , � 2, � 2,0 1 2 11 12 01 02 1 2
and �.

( )b Given the distributions assumed in this problem, the analysis-of-
Ž � .covariance model E X X , Y s�q� X q� Y is appropriate1 2 2

for explaining variation in X in terms of X and Y. Using the1 2
Ž . 2expression for � found in part a , show that � s�r� , where1 1 1.2

2 2Ž 2 . Ž� s� 1y� is the residual variance of X given X within1.2 1 1 2
.either group Ys1 or 0 . Find an analogous relation between �2

and the coefficient of Y in the analysis-of-covariance model for
Ž � .E X X ,Y .2 1

( ) Ž . Ž .c What happens to l x in part a if the two groups have different
variance-covariance structures?

( ) 2Ž . Ž . �11.5. a Verify that G H : H given in 11.18 reduces to 2 Y ln 2 pq0 1
1Ž . 4 Ž .nyY ln 2 q for testing H : � s0 equivalently H : Ps0 0 0 2

1Ž .versus H : � 
0 equivalently H : P
 in the simple binomial1 0 1 2
Ž .model Y�Bin n, P .

( ) 2Ž . 2Ž . Ž . Ž .b Write G H : H in the form G H : H s2nf p , where f p0 1 0 1
sp ln 2 pqq ln 2 q. Find expressions for the first two derivatives

1 � 1Ž . Ž . Ž .of f p with respect to p, and verify that f s f s0 and2 2
� 1 1Ž . Ž .f s4. Use a Taylor expansion for f p about ps to show2 2

1 2Ž . Ž .that f p f2 py , ignoring terms in third or higher powers of2
1 'py . Conclude that on ignoring terms of order 1r n or less,2

12 2 2Ž . Ž .G H : H f4n py sX under H .0 1 02
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'( ) Ž .c Use the delta method to show that n ln prq is approximately
Ž .y1normal with mean 0 and variance PQ , and therefore that

2 � Ž .42 2z s ln prq npq is approximately  .1

( ) 2Ž . 2d Conclude that under H , the three statistics G H : H , z , and0 0 1
2 Ž .X are all asymptotically equivalent to chi squared on 1 df .

11.6. For the data in Table 10.1, the saturated model H has maximized log2
Ž .likelihood L H sy561.303, while the model H of constant odds2 1
Ž .ratio has L H sy566.310. Let H denote the hypothesis of no1 0

association between diagnosis and hospital location in any of the ks3
studies.
( ) Ž . wa Find L H . Hint. Under H , the maximum likelihood estimate0 0

for the common probability in a given study is the sample marginal
Ž . xor pooled proportion from that study.

( ) 2Ž .b Calculate G H : H for testing H versus H without the0 2 0 2
assumption of a common odds ratio. How many degrees of free-

2Ž .dom does G H : H have? What is the p-value?0 2

( ) 2Ž .c Calculate G H : H for testing H versus H . How many0 1 0 1
2Ž .degrees of freedom does G H : H have? What is the p-value?0 1

( )d Construct the analysis of information table for these data.

11.7. Plot the log odds on breathlessness among miners with wheeze, and
the log odds on wheeze among miners with breathlessness, together

Ž . Ž .with the fitted values from model 11.37 � 11.39 . Obtain the fitted
Ž .probabilities from the model see Table 11.7 , and from these, obtain
� � 4 � � 4the marginal proportions P Y s1 agesx and P Y s1 agesx .1 2

Plot the log of the marginal odds on breathlessness against age, and
the log of the marginal odds on wheeze against age. Does the log of
the marginal odds on breathlessness look as linear as the log odds on
breathlessness among miners without wheeze? Does the log of the
marginal odds on wheeze look as nonlinear as the log odds on wheeze
among miners without breathlessness?

Ž .11.8. Demonstrate that sufficient statistics 11.50 give rise to the natural
Ž .parameters in 11.49 , that is, that � is the contrast betweenj

Ž . Ž .ln P Ys j and the average of ln P Ysk for k� j.

Ž .11.9. Demonstrate that sufficient statistics 11.52 give rise to the natural
Ž .parameters in 11.51 , that is, that � is the log odds on response 11

versus 2, � is the log odds on response 3 versus 4, and � is the2 3
difference between the average log probability of responses 1 and 2
and that of responses 3 and 4.
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11.10. Let Y , . . . , Y be independent binomial random variables with Y �1 m j
Ž . Ž .Bin n , P . Show that the joint conditional distribution of Y , . . . , Yj j 1 m

Ž .given Y q ���qY ss is given by 11.64 , with odds ratio parameters1 m
� Ž .4 � Ž .4� s Pr 1yP r P r 1yP .j j j m m

11.11. Demonstrate the algebraic properties of the Kronecker product stated
Ž . Ž .in 11.90 � 11.93 .
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C H A P T E R 1 2

Poisson Regression

Up to this point we have dealt with statistical methods for proportions.
Rates, the other part of the title of this book, are the focus of this chapter.
As noted in Section 1.1, the term rate attaches a notion of time. A rate,
typically the expected number of events in a given population over a given
period of time, is expressed in units such as events per thousand person-years.
The Poisson distribution is the prototype for assigning probabilities of observ-
ing any number of events. In Section 12.1, we introduce Poisson random
variables and their properties. Section 12.2 discusses their application in
Poisson regression models. Count data often exhibit larger variability than
provided for by the Poisson distribution. Such data are said to be o®erdis-
persed; inference from overdispersed data requires appropriate methods,
covered in Section 12.3. We do not cover log-linear models for contingency
tables where cell counts are the outcome of Poisson regression models�Bi-

Ž . Ž .shop, Fienberg, and Holland 1975 and Agresti 1990 thoroughly discuss
these models.

12.1. POISSON RANDOM VARIABLES

Ž .Named after the French mathematician Simeon Denis Poisson 1791�1840 ,´
the Poisson distribution is defined by the probability function

ey�� y
�P Ysy � s for nonnegative integers ys0, 1, 2, . . . . 12.1Ž .Ž . y!

A random variable having this distribution is called a Poisson random
Ž .variable, written Y�Poisson � . As demonstrated below, the parameter � is

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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the mean of Y. For example, let Y be the number of traffic accidents per day
in a given geographic region, and suppose Y has the Poisson distribution
with mean �. Then the probability of no accidents on a given day is

� y�P Ys0 � se .Ž .

Ž � . y�The probability of exactly one accident that day is P Ys1 � s�e . If the
expected number of accidents is �s1, these two probabilities are each equal

Ž � . Ž � . y1to P Ys0 � sP Ys1 � se f0.368. When ��1, the probabilities in
Ž .12.1 decrease steadily for ys0, 1, . . . . When � has a noninteger value
greater than 1, the probabilities increase for y�� and decrease for y��:
Ž � . Ž � . Ž � . Ž � .P Ysyy1 � �P Ysy � for y�� and P Ysyy1 � �P Ysy � for

Ž � .y��; thus P Ysy � reaches its maximum at y equal to the greatest
integer less than �. If � is an integer greater than or equal to 1, then the
probabilities are equal for ys�y1 and ys�, increase for ys0, . . . , �y1,
and decrease for ys�, �q1, . . . .

Ž . � Ž � .Expression 12.1 is a proper probability function, that is, Ý P Ysy �ys0
s1, because of the power series representation of the exponential function:

� y� �se .Ý y!
ys0

We can also directly verify that the mean of Y is indeed �:

� � �y� y yy1 ye � � �y� y� y� �E Y s y se � se � se �e s�.Ž . Ý Ý Ýy! y!yy1 !Ž .ys0 ys1 ys0

Problem 12.1 asks the reader to show that the variance of Y is also �.
Problem 12.2 considers higher-order moments.

Because the Poisson variance is the same as the mean, the sample mean,
Ž .Y , based on n independent observations Y , . . . , Y from 12.1 , and then 1 n

2 n 2Ž . Ž .sample variance, s sÝ Y yY r ny1 , are both unbiased estimatorsn is1 i n
of the Poisson parameter �. Under the Poisson assumption, the sample mean
is the minimum-variance unbiased estimator of the variance �, and thus has

2 w Ž .xsmaller variance than s see Problem 12.2 h . The sample mean is also then
maximum likelihood estimate of �, and thus has the greatest efficiency in
large samples among all consistent estimators of �.

A beautiful relation exists between the cumulative distribution for a
ŽPoisson random variable and the upper tail of a chi squared distribution see

. Ž .Problem 12.3 . If Y�Poisson � , then for any integer a, the probability that
Y is no greater than a equals the upper tail probability above 2� of a chi

Ž .squared distribution with 2 aq1 degrees of freedom:

P YFa sP � 2 G2� . 12.2Ž . Ž .Ž .2Ž aq1.
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Taking complements, the upper tail of a Poisson distribution can be ex-
pressed in terms of the lower tail of a chi squared distribution with 2 a df:

P YGa s1yP YFay1 s1yP � 2 G2� sP � 2 F2� . 12.3Ž . Ž . Ž .Ž . Ž .2 a 2 a

Ž . Ž .Expressions 12.2 and 12.3 can be used to set an exact confidence
interval for � given an observation of Ysa. As in Chapter 2, Section 2.1, the
lower and upper bound, � and � , for a 95% confidence interval by theL U
equal-tail method are the values that satisfy the following two equations:

�P YGa � s0.025 12.4Ž .Ž .L

and

�P YFa � s0.025. 12.5Ž .Ž .U

Ž . Ž .We can use 12.2 and 12.3 to solve these equations. For the upper limit,

� 2P YFa � sP � G2� ,Ž . Ž .U 2Ž aq1. U

1 2so � s � , that is, the upper limit is one-half the critical valueU 2Ž aq1. ; 0.0252
Ž .cutting off probability 0.025 in the upper tail of chi squared on 2 aq1

degrees of freedom. For the lower limit,

� 2P YGa � sP � F2�Ž . Ž .L 2 a L

1 2so � s � , that is, the lower limit is one-half the critical value cuttingL 2 a; 0.9752
Ž .off probability 0.975 in the upper tail 0.025 in the lower tail of chi squared

on 2 a df.
For example, suppose we observe the value Ys9. The critical value

2 Ž .cutting off 2.5% probability in the upper tail of � on 2 9q1 s20 df, from
Table A.2, is 34.170, so � s34.170r2s17.085. The critical value cutting offU
97.5% probability in the upper tail of � 2 on 2�9s18 df is 8.231, so

Ž .� s8.231r2s4.115. Thus the 95% confidence interval is 4.1, 17.1 .L
There are many other useful properties of the Poisson distribution. One

Ž . 'concerns its relation to the normal distribution. As � increases, Yy� r �
is distributed approximately as a standard normal random variable,
Ž . Ž .'Yy� r � �N 0, 1 . Thus we may approximate the cumulative distribution

Ž .function for the Poisson with continuity correction by

1 1aq y� aq y�Yy�1 2 2P YFa sP Y�aq sP � f� ,Ž . Ž .2 ž / ž /' ' '� � �

12.6Ž .

Ž .where � z is the cumulative distribution function for the standard normal.
Ž . Ž . Ž .P YFa can be computed exactly using 12.1 or 12.2 , but the difference
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Ž . Ž .between P YFa and the right-hand side of 12.6 becomes small as �
'increases. In technical terms, the difference is of order 1r � . A better

approximation is available, such that the difference is of order 1r�:

1 2P YFa f� z y z y1 � z , 12.7Ž . Ž . Ž . Ž . Ž .'6 �

�1Ž . Ž . Ž .'where zs aq y� r � , and � z s� z is the standard normal density2
Ž . Ž � .function Pitman, 1993, p. 225 . For example, P YF3 �s9 s0.021 by

Ž .exact calculation, 0.033 by the normal approximation 12.6 with continuity
Ž .correction, and 0.024 by 12.7 .

Another useful property is closure under addition: if Y , . . . , Y are inde-1 n
pendent Poisson variables with means � , . . . , � , respectively, then SsY1 n 1
q ���qY also has a Poisson distribution, with mean � q ���q� . Thisn 1 n
property follows directly from the moment generating function found in

Ž .Problem 12.2 b . Suppose in the example above there were ns10 indepen-
dent Poisson random variables, each with mean �, whose total was the
observed count Ss9. Since S is Poisson with mean 10�, the exact confi-

Ž .dence interval 4.1, 17.1 for 10� is easily converted to an exact confidence
Ž .interval for � by dividing by 10: 0.41, 1.71 .

Ž . 'From the central limit theorem we know that Y y� r �rn is dis-n
tributed approximately as a standard normal random variable for large n.

Ž .Due to 12.6 , however, this approximation is accurate for large � even if n is
small. Thus one can construct an approximate 95% confidence interval for �
as follows:

1 1' 'Y y y1.96 Y rn ���Y q q1.96 Y rn . 12.8Ž .n n n n2n 2n

Ž .Applying 12.8 to the example with ns10 and Ss9, we obtain 0.9�0.05q
' Ž .1.96 0.09 s0.9�0.638s 0.26, 1.54 . The skewness of the Poisson distribu-

tion has caused the normal approximation to be less accurate than it would
be for larger �.

Ž .The limiting normal approximation in 12.6 provides the rationale for
using the Pearson chi squared statistic for testing goodness-of-fit hypotheses
given a sample of independent Poisson random variables Y with mean � .i i
The statistic is

2n Y y�Ž .i i2� s . 12.9Ž .ÝP �iis1

Ž .The exact expectation of 12.9 is n. Since a sum of n independent squared
standard normal random variables is distributed as chi squared with n df,
when the � are known and large, � 2 is distributed approximately as chii P
squared with n df. In practice, � are most often given by a model estimate,i
say � , and we use � 2 as a goodness-of-fit statistic for the given model,ˆ i P
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Ž .replacing � by � in 12.9 :ˆi i

2n Y y�Ž .ˆi i2� s . 12.10Ž .ÝP �̂iis1

Pearson’s � 2 now has an approximate chi squared distribution with nypP
degrees of freedom, where p parameters need estimation in order to pro-
duce the fitted means � . Since the mean of a chi squared random variable isˆ i
its associated number of degrees of freedom, the Pearson chi squared
statistic tends to be close to its number of degrees of freedom when the
Poisson assumption is correct and the model for � is correct. The Pearsoni
statistic divided by its degrees of freedom is called the scaled Pearson
statistic. A value of the scaled Pearson statistic close to one indicates a good
fit. Methods for testing goodness of fit when � are small but n is large areˆ i
considered in Section 12.3.

The following important property allows us to compare two or more
Poisson means. Let Y and Y be two independent Poisson random variables,1 2
with means � and � , respectively. Given SsY qY sm, say, Y is1 2 1 2 1
distributed as a binomial random variable with index m and probability

Ž .parameter P s� r � q� ; similarly, Y is distributed as a binomial with1 1 1 2 2
Ž .index m and parameter P s� r � q� . See Problem 12.5. For example,2 2 1 2

let Y and Y represent the numbers of new leukemia patients in equal time1 2
periods before and after a nuclear plant accident; we want to test the
hypothesis H : � s� . Since the number of postaccident cases, Y , is0 1 2 2
distributed as a binomial given the total number of cases m, testing � s�1 2

1reduces to testing the binomial hypothesis H : P s . This property natu-0 2 2

rally extends to more than two variables. Let Y , . . . , Y be independent1 n
Poisson random variables with mean � , . . . , � . Given SsÝ Y sm, the Y ’s1 n i i i
are distributed as a multinomial random vector with sample size m and cell

Ž .probabilities P , . . . , P , where P s� rÝ � .1 n j j i i
A stochastic process useful in applications is the Poisson process. Suppose

Ž .events occur under the following three assumptions: i the numbers of events
Ž .occurring in nonoverlapping time intervals are statistically independent; ii

the probability of an event occurring in a short time interval of length h is
wproportional to h, with a constant of proportionality 	 more precisely, the

w . Ž .probability that an event occurs in the time interval t, tqh equals 	hqo h ,
Ž .where o h is an error term that approaches zero faster than h, i.e.,

Ž . x Ž .o h rh™0 as h™0 ; and iii the probability of two or more events
w Ž .xoccurring in a short interval of length h is negligible more precisely, o h .

Then the events are said to follow a Poisson process with intensity parameter
	. The intensity parameter, a rate parameter, is measured in number of
events per unit time interval. It can be shown that the number of events
falling in an arbitrary interval of a units of time has a Poisson distribution
with mean �sa	 and that counts falling in disjoint time intervals have
independent Poisson distributions. Thus the familiar estimate of number of
events divided by person-years of followup is a maximum likelihood estimate
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of the rate parameter 	. We note that the Poisson process can be defined
with units other than time. For example, in spatial models, the unit is often
taken as area, with the intensity parameter measured in units of, say, number
of gypsy moth infestations per square meter of forest.

In the nuclear accident example, suppose the preaccident period was
a s5 years with an observed number of incident leukemia cases Y s3, and1 1
Y s7 cases developed after a followup period of a s3 years. Under the2 2

Ž .assumption of a Poisson process, we have Y �Poisson a 	 independent of1 1 1
Ž .Y �Poisson a 	 , where 	 is the leukemia event rate per year in the pre-2 2 2 i

or post-accident period. A test of H : 	 s	 can be conducted conditionally0 1 2
� Ž .on Y qY sm, in which case Y Y qY s10�Bin 10, P where, under H ,1 2 2 1 2 0

a 	 a 32 2 2Ps s s . 12.11Ž .a 	 qa 	 a qa 81 1 2 2 1 2

Since the binomial upper tail probability for Y G7 with P s0.375 is 0.0384,2 2
we reject H at the one-tailed 0.05 level.0

Ž .Note that the binomial parameter in 12.11 depends only on the ratio
Rs	 r	 and on the ratio of the followup times, 
sa ra :2 1 2 1

a 	2 2

a 	 
R1 1
Ps s . 12.12Ž .a 	 1q
R2 21q a 	1 1

ŽRs	 r	 is the incidence rate ratio or the intensity rate ratio, or hazard rate2 1
.ratio . An exact confidence interval for R can be obtained by inverting an

Ž . Ž .exact confidence interval for P using 12.12 . If P �P�P is a 100 1y� %L U
confidence interval for P using any of the methods of Chapter 2, then

P PL U
�R� 
 12.13Ž .1yP 1yPL U

is a corresponding interval for the intensity rate ratio R. In the example, a
90% two-sided confidence interval for P by the point probability method is
Ž . Ž .0.398, 0.884 . Inverting this using 12.13 with 
s3r5s0.6 gives a lower

Ž . Ž .limit of 0.398r 0.602�0.6 s1.1 and an upper limit of 0.884r 0.116�0.6 s
Ž .12.7 for an exact 90% confidence limit for R of 1.1, 12.7 .

12.2. POISSON REGRESSION

12.2.1. Simple Poisson Regression

Let Y be a Poisson count associated with given units of observation. Here Y
could be the number of cancer patients in a region over a given period of
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time, the number of defective products in a factory, the number of pixels in a
positron emission tomography scan, or a cell count in a contingency table.
Consider the case in which the mean of Y varies across levels of exposure to

Ž � .a risk factor X. Denoting the conditional mean of Y given X by E Y X ,
suppose that Y and X are related via the model

�ln E Y X s� q� X , 12.14Ž . Ž .0 1

or, equivalently,

�E Y X sexp � q� X sexp � exp � X .Ž . Ž . Ž . Ž .0 1 0 1

This model is called a multiplicati®e model. The intercept � is the log of the0
Ž � .mean of Y for a unit with Xs0. The slope � is the increase in ln E Y X1

per unit increase in X. The interpretation of the coefficient becomes clear in
the simple case of single binary covariate X. For the reference group with
Xs0,

�ln E Y Xs0 s� ,Ž . 0

while for the exposed group with Xs1,

�ln E Y Xs1 s� q� .Ž . 0 1

By subtraction we obtain

�E Y Xs1Ž .
� s ln ,1 �E Y Xs0Ž .

Ž .the log rate ratio. If we assume a linear model instead of 12.14 , we have
Ž � . Ž � .E Y Xs0 s� for the reference group and E Y Xs1 s� q� for the0 0 1

Ž � . Ž � .exposed group. By subtraction, � sE Y Xs1 yE Y Xs0 , so � is the1 1
rate difference. An advantage of the multiplicative model over the linear
model is that the predicted value of � is always positive, whereas the linear
model can yield negative predicted values. Furthermore, the observed Fisher

Ž .information matrix see Section 12.2.2 is always nonnegative, greatly simpli-
fying computation of maximum likelihood estimates.

We illustrate these ideas with a subset of data from the study of Doll
Ž .1971 concerning cigarette smoking and lung cancer among British physi-

Ž .cians, reanalyzed by Frome 1983 . Table 12.1 contains the data from Table 1
Ž . Žof Frome 1983 for the group whose number of years of smoking defined as

.current age minus 20 years was 45 to 49. The table shows that the lung
cancer rate increases as the number of cigarettes per day increases. Denote
the number of lung cancer cases by Y, and number of cigarettes per day by
X. To allow for different expectations due to varying numbers of person-years
of exposure at any level of smoking, we assume a Poisson process model in
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Table 12.1. Smoking and lung cancer

Person- No. of Observed Fitted
�CigarettesrDay Years Cases Rate Rate

0 1421 0 0 0.00079
5.2 927 0 0 0.00117

11.2 988 2 0.0020 0.00182
15.9 849 2 0.0024 0.00261
20.4 1567 9 0.0057 0.00366
27.4 1409 10 0.0071 0.00619
40.8 556 7 0.0126 0.01690

� Mean value within intervals of cigarette consumption.

which the expected number of cases is given by the number of person-years
Ž . Ž . Ž .at risk, a X , multiplied by the lung cancer rate, 	 X , given by 	 X s

Ž .exp � q� X , that is,0 1

�E Y X s person-years of exposure at level X � rate at level XŽ . Ž . Ž .

sa X exp � q� X ,Ž . Ž .0 1

or, equivalently,

�ln E Y X s ln a X q� q� X .Ž . Ž . 0 1

Ž .The first term, ln a X , is a known quantity called the offset. The fitted rates,
Ž̂ . Ž .	 X sexp y7.14q0.075X , are shown in the final column of Table 12.1.

ˆThe intercept term � sy7.14 indicates that the predicted lung cancer rate0
Ž .among the nonsmoking population is exp y7.14 s0.00079 or 0.79 cases per

ˆ1,000 person-years. The slope coefficient � s0.075 indicates that for each1
additional cigarette per day, the lung cancer rate increases by a factor of

Ž .exp 0.075 s1.078, and for each additional pack of 20 cigarettes per day, the
Ž .rate increases by a factor of exp 20�0.075 s4.48. The fit is reasonable,

yielding a scaled Pearson chi squared statistic of 0.98. For comparison, we
Ž .also fit a linear model for 	 X , continuing to assume the Poisson process

Ž � . Ž . Ž . Ž . Ž .E Y X sa X 	 X sa X � � q� X . The fitted model for the rate is0 1
y0.0025q0.0004 X, which produces negative predicted rates for the non-
smoking group and the group smoking 5.2 cigarettes per day.

Formulas for the standard errors of the estimates can be obtained from
ˆ ˆthe theory of maximum likelihood. Let � and � be the mle’s of � and �0 1 0 1

Ž . Ž .in 12.14 based on n units X , Y . The formulas for their standard errorsi i
are remarkably similar to those for logistic regression coefficient estimates

Ž . Ž .given in 11.6 and 11.7 . The only difference is the form of the weights: in
Ž .Poisson regression, the weight is w s� see Problem 12.5 . Denoting theˆi i

weighted mean of X by X sÝ w X rÝ w , and the sum of the weightedw i i i i i
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2Ž .squared deviations from the mean by SS sÝ w X yX , we havew i i i i

2$ X1 wˆse � s q . 12.15Ž .Ž . n(0 SSÝ w wis1 i

and

$ 1ˆse � s . 12.16Ž .Ž .1 SS' w

ˆ ˆThe covariance between the estimates � and � is0 1

$ Xwˆ ˆCov � , � sy . 12.17Ž .ž /0 1 SSw

ˆ ˆThe standard error of the linear predictor � q� X can be obtained the0 1
Ž .same way as in 11.9 and, because it refers to the predicted value of

Ž � . Ž � .ln E Y X , the standard error of the predicted value of E Y X can be
derived using the delta method as

$ $ˆ ˆ ˆ ˆ� �se E Y X sE Y X se � q� X .Ž . Ž .� 4 ž /0 1

$ $ˆ ˆŽ . Ž .For the smoking and lung cancer data, se � s0.4540, se � s0.0156,0 1$ ˆ ˆŽ .and Cov � , � sy0.006501. An approximate 95% confidence interval for0 1
ˆ Ž .� is 0.0748�1.96�0.0156s 0.0442, 0.1055 . The slope is highly signifi-1
cant: zs0.0748r0.0156s4.795. The standard error of the linear predictor at

Ž 2 2 2 .1r2Xs5.2 is 0.4540 y2�5.2�0.006501q5.2 �0.0156 s0.381. Using
ˆ ˆŽ � . Ž � .E Y Xs5.2 s1.0853, the standard error of E Y Xs5.2 is estimated to be
1.0853�0.381s0.4135.

12.2.2. Multiple Poisson Regression

Poisson regression is widely used. Examples include estimating mortality or
Žmorbidity rates in epidemiologic studies Stevenson and Olson, 1993; Whitte-

more and Gong, 1991; Vonesh, 1990; Frome and Morris, 1989; Thall, 1988;
. Ž .Whittemore, 1985; Frome, 1983 , estimating accident rates Lindsey, 1997 ,

Ž .analyzing imaging data in positron emission tomography Kay, 1994 , and
Ž .estimating density functions in statistics Efron and Tibshirani, 1996 . An

application of Poisson regression for estimating a standardized mortality
ratio is given in Chapter 19.

Ž .�Now consider the case X s 1, X , X , . . . , X , so that X is ai i1 i2 iŽ py1. i
column vector of covariates specific to unit i. Suppose that, given X , Y isi i
distributed as a Poisson random variable with mean � , where � is ai i
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function of the covariates X . Let  sX � � , where  is a linear predictor andi i i i
� is the regression coefficient of interest. The function that relates  and �
is called the link function. The log link and identity link functions were
introduced in the previous section. We can rewrite the log link function for a
multiple Poisson regression model thus:

 s ln � s� q� X q ���q� X sX � � .i i 0 1 i1 py1 iŽ py1. i

As in the simple Poisson regression case, � is the log of the mean of Y0
when X s ��� sX s0. Now � is the log rate ratio per unit increase ini1 iŽ py1. j
X , holding all other variables constant. Note that the link function deter-i j
mines the interpretation of � . In the case of the identity link,j

 s� s� q� X q ���q� X ,i i 0 1 i1 py1 iŽ py1.

� is the arithmetic change in rate per unit increase in X holding all otherj i j
variables constant.

In the smoking and lung cancer example, Table 12.1 only shows data for
the group of physicians with years of smoking between 45 and 49. The full
data set includes eight other groups categorized by varying years of smoking.
In Problem 12.6, readers are asked to analyze the full data from Frome
Ž .1983 . Let X snumber of cigarettesrday and X snumber of years of1 2

Ž .smoking, and let a X denote the number of person-years of exposure at
Ž .�given levels of Xs X , X . Using the full data, we can fit the model1 2

�ln E Y X s ln a X q� q� X q� X .Ž .Ž . 0 1 1 2 2

Now � is the log rate ratio per unit increase in number of cigarettes per day,1
adjusted for the number of years of smoking.

Other issues related to multiple Poisson regression are similar to those of
multiple logistic regression. The interpretation of the coefficient � for an12
interaction term, X X , remains the same except that � is the difference1 2 12

Žnot between log odds ratios but between log rate ratios per unit increase in
.X , say, comparing two values of X differing by one unit . Similarly, the1 2

coefficient for a second-order interaction is a difference of differences in log
rate ratios. Hypothesis tests using nested models and analysis of information
discussed in Section 11.3.4 can be conducted in the same manner. Recall that
for logistic regression models, when the log-likelihood ratio goodness-of-fit
statistic G2 is constructed using the saturated model as H , the usual1
likelihood ratio theory does not apply unless there are large samples per
independent group. Similarly, the log-likelihood ratio statistic for Poisson

Ž .regression does not test goodness of fit unless � X is large, in which case
Ž .12.2 and normal theory assure the asymptotic chi squared distribution
of G2.
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Before turning to the next example, we specify the log-likelihood function,
the score function, and its derivative for Poisson regression. This discussion
lays the groundwork for the quasilikelihood method to be considered in
Section 12.3. For convenience we write the p�1 vector X .i

The maximized log-likelihood for a multiple Poisson regression model is

n n n
ˆln L � sy � q Y ln � y ln Y !, 12.18Ž .ˆ ˆŽ . Ý Ý Ýi i i i

is1 is1 is1

ˆwhere � is the maximum likelihood estimate of � , and

� ˆ ˆ ˆ ˆ� sexp X � sexp � q� X q ���q� X .ˆ Ž .i i 0 1 i1 py1 iŽ py1.ž /
Expressing the log-likelihood in terms of � explicitly, we have

�n n n
�ˆ ˆ ˆln L � sy exp X � q Y X �y ln Y !.Ž . Ž .Ý Ý Ýi i i iž /

is1 is1 is1

ˆThe statistic Ý X Y multiplying � is the sufficient statistic for � ; it is ofi i i
fundamental importance in drawing inferences about � , both unconditionally
as in this chapter, and conditionally as in Section 14.3.

The score function for � for any link function is the p�1 vector of partial
Ž .derivatives of ln L � with respect to the parameters in �. It has the form

n ��� ln L �Ž . i y1U � s s X V Y y� , 12.19Ž . Ž . Ž .Ý i i i i�� �iis1

Ž � .where V sVar Y � . This form is actually shared by all regression modelsi i i
for outcomes with exponential family distributions, such as the normal,
binomial, Poisson, and Gamma. In each case, V is determined by thei

Ž � .distribution of Y. Returning to the Poisson case, we have V sVar Y � s� .i i i i
With the identity link function � s , we have �� r� s1, and the scorei i i i
function is

n
y1U � s X � Y y� .Ž . Ž .Ý i i i i

is1

Ž . Ž .With the log link function � sexp  , we have �� r� sexp  s� , andi i i i i i
the score function reduces to

n

U � s X Y y� .Ž . Ž .Ý i i i
is1
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The variance-covariance matrix of the score function is a p�p matrix of
Ž .expected values of the negative derivatives of the components of U � , i.e.,

Ž .the expected values of the negative second derivatives of ln L � :

n2� ln L �Ž . �I � sE y s � X X ,�Ž . Ý i i iž /�� ��
is1

which is the Fisher information matrix. Note that for the log link function, the
negative second derivative of the log-likelihood function does not involve the
random variables Y , and so is equal to its expectation. That is, the observedi

Ž .Fisher information matrix before taking expectations and the expected
Fisher information matrix are identical, a simplification due to use of the log

Ž .link function. The solution to the equation U � s0 is the maximum
ˆ ˆlikelihood estimate, � , and the asymptotic variance of � is the inverse of the

Fisher information matrix:

y1n
y1 �ˆasymptotic Cov � sI � s � X X . 12.20Ž . Ž .Ž . Ý i i iž /

is1

Ž .It is usually estimated at mle � , so that in practice we use

y1n
y1 �ˆ ˆestimated asymptotic Cov � sI � s � X X . 12.21Ž .ˆŽ . Ž . Ý i i iž /

is1

In the simplest case of inference for a single group, X s1 for all i, wei
Ž . Ž .have � s�sexp � , and by setting the score function 12.19 equal to zeroi 0

we obtain the likelihood equation

ˆY sn exp � .Ž .Ý i 0
i

ˆThe maximum likelihood estimate for � is �sÝ Yrn and for � is � sˆ i i 0 0
ˆŽ .ln Ý Yrn . The asymptotic variance of � is the inverse of the Fisheri i 0

information matrix,

y1n 1y1I � s � s .Ž . Ý0 i n�ž /
is1

ˆThis agrees with the large-sample variance of � s ln � obtained using theˆ0
delta method. Since the variance of Ý Yrn is �rn,i i

2d ln � � 1 � 1
Var ln � s s s .Ž .ˆ 2ž /d� n n n��



POISSON REGRESSION352

In the case of simple Poisson regression, the square roots of the diagonal
Ž . Ž . Ž .elements of the matrix in 12.21 are exactly 12.15 and 12.16 . See also

Appendix B.

Example 12.2.1. To illustrate Poisson regression methods, consider the
following data on nursing homes, collected by the Department of Health and
Social Services of the State of New Mexico, covering ns52 of the 60
licensed nursing facilities in New Mexico in 1988. Detailed descriptions and

Ž .analyses are given by Smith, Piland, and Fisher 1992 . Here we ask whether
nursing homes in rural areas tend to have fewer beds per patient population
than those in urban areas, adjusting for other factors affecting hospital
facilities. The collected variables include the number of beds, annual total
patient days, annual total patient care revenue, annual nursing salaries,
annual facilities expenditures, and an indicator for rural location. The data
appear in Table 12.2.

Let the number of beds be the outcome, Y , and assume that the expectedi
number of beds at nursing home i is proportional to the total patient days,
TDAYS :i

�E BED PCREV , NSAL , FEXP sTDAYS �	 .Ž .i i i i i i

Using the log link function,we have

�ln E BED PCREV , NSAL , FEXP s ln TDAYS q ln 	 .Ž .i i i i i i

The first term, ln DAYS , is the offset, taken as a known term. We fit thei
following three models for 	 :i

M1 : ln 	 s� q� PCREVq� NSALq� FEXP,Ž . i 0 P N F

M2 : ln 	 s� q� PCREVq� NSALq� FEXPŽ . i 0 P N F

q� PCREV�NSALq� PCREV�FEXPPN PF

q� NSAL�FEXP,NF

M3 : ln 	 s� q� PCREVq� NSALq� FEXPŽ . i 0 P N F

q� PCREV�NSALq� PCREV�FEXPPN PF

q� NSAL�FEXPq� RURAL.NF R

The results are summarized in Table 12.3. For reference, we also include the
saturated model, in which each y serves as its own maximum likelihoodi
estimate, that is, y s� . Twice the difference between the log-likelihood forˆi i

Ž . Ž .the saturated model and the log-likelihood for any of the models M1 , M2 ,
Ž .or M3 produces the deviance for that model.
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Table 12.2. Nursing home data

Unit BED TDAYS PCREV NSAL FEXP RURAL

1 244 385 2.3521 0.5230 0.5334 0
2 59 203 0.9160 0.2459 0.0493 1
3 120 392 2.1900 0.6304 0.6115 0
4 120 419 2.2354 0.6590 0.6346 0
5 120 363 1.7421 0.5362 0.6225 0

6 65 234 1.0531 0.3622 0.0449 1
7 120 372 2.2147 0.4406 0.4998 1
8 90 305 1.4025 0.4173 0.0966 1
9 96 169 0.8812 0.1955 0.1260 0

10 120 188 1.1729 0.3224 0.6442 1

11 62 192 0.8896 0.2409 0.1236 0
12 120 426 2.0987 0.2066 0.3360 1
13 116 321 1.7655 0.5946 0.4231 0
14 59 164 0.7085 0.1925 0.1280 1
15 80 284 1.3089 0.4166 0.1123 1

16 120 375 2.1453 0.5257 0.5206 1
17 80 133 0.7790 0.1988 0.4443 1
18 100 318 1.8309 0.4156 0.4585 1
19 60 213 0.8872 0.1914 0.1675 1
20 110 280 1.7881 0.5173 0.5686 1

21 120 336 1.7004 0.4630 0.0907 0
22 135 442 2.3829 0.7489 0.3351 0
23 59 191 0.9424 0.2051 0.1756 1
24 60 202 1.2474 0.3803 0.2123 0
25 25 83 0.4078 0.2008 0.4531 1

26 221 776 3.6029 0.1288 0.2543 1
27 64 214 0.8782 0.4729 0.4446 1
28 62 204 0.8951 0.2367 0.1064 0
29 108 366 1.7446 0.5933 0.2987 1
30 62 220 0.6164 0.2782 0.0411 1

31 90 286 0.2853 0.4651 0.4197 0
32 146 375 2.1334 0.6857 0.1198 0
33 62 189 0.8082 0.2143 0.1209 1
34 30 88 0.3948 0.3025 0.0137 1
35 79 278 1.1649 0.2905 0.1279 0

36 44 158 0.7850 0.1498 0.1273 1
37 120 423 2.9035 0.6236 0.3524 0
38 100 300 1.7532 0.3547 0.2561 1
39 49 177 0.8197 0.2810 0.3874 1
40 123 336 2.2555 0.6059 0.6402 1
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Ž .Table 12.2. Continued

Unit BED TDAYS PCREV NSAL FEXP RURAL

41 82 136 0.8459 0.1995 0.1911 1
42 58 205 1.0412 0.2245 0.1122 1
43 110 323 1.6661 0.4029 0.3893 1
44 62 222 1.2406 0.2784 0.2212 1
45 86 200 1.1312 0.3720 0.2959 1

46 102 355 1.4499 0.3866 0.3006 1
47 135 471 2.4274 0.7485 0.1344 0
48 78 203 0.9327 0.3672 0.1242 1
49 83 390 1.2362 0.3995 0.1484 1
50 60 213 1.0644 0.2820 0.1154 0

51 54 144 0.7556 0.2088 0.0245 1
52 120 327 2.0182 0.4432 0.6274 0

BED snumber of beds in home,
Ž .TDAYSsannual total patient days in hundreds ,

Ž .PCREVsannual total patient care revenue in $ millions ,
Ž .NSAL sannual nursing salaries in $ millions ,

Ž .FEXP sannual facilities expenditures in $ millions ,
Ž . Ž .RURALsrural 1 or nonrural 0 .

( ) ( ) ( )Table 12.3. Log likelihood for the Poisson regression models M1 , M2 , and M3
� 2Ž .Model Added Terms Log Likelihood Deviance df snyp � rdf

Ž .M1 � 17,446.38 245.05 48 5.77
Ž .M2 � , � , � 17,461.07 215.67 45 5.23PN PF NF
Ž .M3 � 17,467.93 201.95 44 4.91R
Saturated All possible 17,568.91 0 0 0

� Ž .The constant Ý ln y !s17,732.35 has been added to the likelihood in 12.18 .i i

Ž .The first model M1 is the simplest of the three; from there, two-way
Ž .interaction terms are added in M2 . We first ask whether the two-way

interaction terms are necessary, testing

H : � s� s� s0.0 PN PF NF

We conduct this test first using the log likelihood ratio statistic and then
using the Wald statistic, to compare the two methods.

ˆŽ .Most software packages report the log likelihood ln L � for each fitted
model as standard output. Therefore, when testing more than one parameter,

Ž . Ž .the likelihood ratio test is easiest to prepare. Note that M1 and M2 are
Ž . Ž .nested models, because � s� s� s0 in M2 reduces to M1 . ThePN PF NF

Ž . Ž .log likelihood of M2 is larger than that of M1 due to the added two-way
Ž . Ž .interaction terms, suggesting that M2 fits the data better than M1 . The
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Ž . Ž .next question is whether M2 fits the data significantly better than M1 or,
equivalently, whether the increase in the log likelihood is significant. To
answer this question we need to know the distribution of the increase when
H is true. As described in Section 11.3.3, when two models are nested, G2,0
which is twice the difference between the log-likelihood values of the more
inclusive and the less inclusive model, has an approximate chi squared
distribution with degrees of freedom equal to the difference between the
numbers of unknown parameters in the two models. The log-likelihood ratio

2 Ž .statistic is G s2� 17461.07y17446.38 s29.38 or, equivalently, the oppo-
site difference between deviances, 245.05y215.67s29.38. Referring this to
the chi squared distribution with 48y45s3 df, the p-value is less than
0.0001. The interaction terms are jointly highly significant.

Computing the Wald statistic requires an extra step. It is given by the
quadratic form

y1° ¶ˆ ˆ� �PN PN
$

2 ~ •ˆ ˆ ˆ ˆ ˆW s � , � , � Var .� �PN PF NF PF PF

¢ ßˆ ˆ� �NF NF

Most software packages report the maximum likelihood estimates and their
Ž .standard errors, but the variance-covariance matrix 12.21 , also required,

may need to be specially requested.
Ž .Table 12.4 shows the estimates and their standard errors from M2 and

$
y1ˆ ˆ ˆŽ . Ž .the estimated variance-covariance matrix of � , Var � sI � .

Table 12.4. Maximum likelihood estimates and standard errors of the Poisson
( )regression model M2

ˆVariable � Standard Error p-Value

Intercept y1.048 0.107 �0.0001
PCREV y0.322 0.071 �0.0001
NSAL 0.017 0.479 0.972
FEXP 1.358 0.280 �0.0001
PCREV�NSAL 0.372 0.147 0.011
PCREV�FEXP 0.526 0.254 0.038
NSAL�FEXP y3.653 0.936 �0.0001

ˆ y1Ž .Inverse information matrix I � :

0.0115 y0.00212 y0.0381 y0.0107 0.0112 y0.00455 0.0400
0.00507 y0.0101 0.00141 y0.00147 y0.0143 0.0470

0.2294 y0.00408 y0.0586 0.0886 y0.3231
0.0786 0.0111 y0.0189 y0.0842

0.0215 y0.0159 0.0369
0.0646 y0.1930

0.8766
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Because the inverse information matrix is symmetric, only the upper
triangular elements are given. Note that the diagonal elements are equal to
the squared standard errors in Table 12.4. Extracting the three coefficient

Ž . Žestimates from model M2 and their variance-covariance estimates the 3�3
.lower right submatrix of the inverse information matrix , we compute the

Wald test statistic:

y1
0.0215 y0.0159 0.0369 0.372

2 w xW s 0.372 0.526 y3.653 0.0646 y0.1930 0.526
0.8766 y3.653

s36.28.

Comparing 36.28 with the chi squared distribution with 3 df, we see that W 2

is highly significant, with p-value less than 0.0001, agreeing with G2.
Focusing now on the effect of RURAL, we turn our attention to models

Ž . Ž . Ž .M2 and M3 . Note that the log likelihood for M2 increases on adding the
Ž .term RURAL in M3 . The log-likelihood ratio statistic for these two nested

Ž .models is 2� 17467.93y17461.07 s13.72, and, referring to the chi squared
distribution with 1 df, the p-value is 0.0002. RURAL is thus highly signifi-
cant.

To compute the Wald statistic, we use the estimate of � and its standardR
Ž .error from M3 , shown in Table 12.5. Testing H : � s0 involves only one0 R

parameter, and the Wald statistic is simply

2
2�̂ y0.1331R2W s s s13.67,$ ž /0.036½ 5ˆse �Ž .R

which is close to the log-likelihood ratio statistic G2s13.72.
The estimates and standard errors for coefficients other than RURAL are

ˆŽ .similar to those from M2 . � s0.1331 implies that, adjusting for otherR
factors, rural area hospitals tend to have fewer beds by a factor of

Ž . Ž .exp y0.1331 s0.875, with 95% confidence interval 0.816, 0.939 .

( )Table 12.5. MLEs and standard errors of the Poisson regression model M3

ˆVariable � Standard Error p-Value

Intercept y0.973 0.109 �0.0001
PCREV y0.348 0.071 �0.0001
NSAL 0.278 0.484 0.565
FEXP 1.468 0.283 �0.0001
RURAL y0.133 0.036 0.0002
PCREV�NSAL 0.266 0.150 0.076
PCREV�FEXP 0.709 0.257 0.006
NSAL�FEXP y4.497 0.955 �0.0001
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Ž .Figure 12.1. Q-Q plot for y y� r � .'ˆ ˆi i i

The reader might wonder why we do not fit the model

ln 	s� q� PCREVq� NSALq� FEXPq� RURAL0 P N F R

Ž .and compare it with M1 in order to calculate the log-likelihood ratio
statistic. To do so ignores interaction terms that are clearly important
descriptions of the data, in which case the RURAL coefficient is vulnerable
to model misspecification bias. In the present case, the RURAL coefficient

Ž .from the additive model not shown is roughly one standard error smaller
than in Table 12.5.

As for the goodness of fit, the scaled Pearson chi squared statistic � 2rdfP
Ž .for M3 is 4.91, indicating a rather poor fit. Inclusion of higher-order

interaction terms or other possible two-way interaction terms does not
improve the goodness of fit. Figure 12.1 shows a Q-Q plot of the standard-

ˆ ˆ 1r2Ž . Ž .ized residuals, r s y yTDAYS �	 r TDAYS �	 . Since the number ofi i i i i i
beds is large, if Y were Poisson-distributed, the standardized residuals would
follow the standard normal distribution, approximately. The Q-Q plot clearly
indicates that the standardized residuals deviate from the standard normal
distribution. The residuals lie on a curve at a steep angle to the straight line
of the standard normal, suggesting that their variability is larger than that of
standard normal random variables. We address this overdispersion issue in
Section 12.3.
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12.3.� OVERDISPERSION

Certain integer-valued random variables with mean � have variance greater
than �. We call such variables o®erdispersed compared to the Poisson case. In
this section, we consider methods for handling overdispersion in the context
of Poisson regression models.

There are several ways to generate overdispersed variables. One way is to
allow random heterogeneity in the underlying Poisson parameters. Suppose
that, given Z, Y has a Poisson distribution with mean Z, and that Z itself is
a random variable with a Gamma distribution with mean � and variance
�r� . The density of Z is

� �� z ��y1 ey� z

f z s for z�0. 12.22Ž . Ž .
� ��Ž .

Then, marginally, Y has a negati®e binomial distribution with mean � and
Ž y1 . Žvariance � 1q� Plackett, 1981, p. 6; McCullagh and Nelder, 1989,

.p. 199 . The probability function for this form of the negative binomial is

� yq�� ��1 �Ž .
�P Ysy � , � sŽ . yq� �y! � ��Ž . 1q�Ž .

��qyy1 ��qyy2 ��� ��q1 ��Ž . Ž . Ž . Ž .
s

y yy1 � ��� �2�1Ž .

�
y��� 1
. 12.23Ž .ž / ž /1q� 1q�

In this case, the variance of Y is larger than � by the constant factor
Ž y1 .�s 1q� , called the o®erdispersion parameter. If we drop the assumption

Ž .12.22 of a Gamma distribution, while retaining the two moment assump-
Ž . Ž .tions E Z s� and Var Z s�r� , the distribution of Y is no longer

necessarily negative binomial, but the marginal variance of Y is still
Ž y1 .� 1q� :

� � � 4 � 4Var Y sE Var Y Z qVar E Y Z sE Z qVar Z� 4 � 4Ž . Ž . Ž .

s�q�r�s� 1q�y1 .Ž .

Now consider a slightly different random effects model. Suppose that,
given b and �, Y has a Poisson distribution with mean �b:

�Y b�Poisson �b ,Ž .

and b�0 has a Gamma distribution with mean 1 and variance 1r� , with
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density function

� �b�y1ey� b

g b s . 12.24Ž . Ž .
� �Ž .

Then Y has a negative binomial distribution with mean � and variance
Ž .� 1q�r� , with probability function

�
� yq� �r�1 Ž . Ž .

P Ysy sŽ . yq�y! � �Ž . 1q�r�Ž .
� y�qyy1 �qyy2 ��� �q1 � � �Ž . Ž . Ž .

s .ž / ž /�q� �q�y yy1 � ��� �2�1Ž .
12.25Ž .

Ž .Note that, in this case, the overdispersion factor �s 1q�r� , which
depends on �, could vary from unit to unit in regression settings where

Ž . Ž . Ž .�s� X . Again, without assuming the functional form 12.24 of g b , but
Ž . Ž . Žonly that E b s1 and Var b s1r� or, equivalently, that with Zs�b,

Ž . Ž . 2 .E Z s� and Var Z s� r� , the same marginal variance of Y results:

� � � 4 � 4Var Y sE Var Y b qVar E Y b sE �b qVar �b� 4 � 4Ž . Ž . Ž .

s�q�2r�s� 1q�r� .Ž .

Yet another way to generate overdispersed Y is to have events come not one
Ž .at a time, but in clusters of random size possibly even empty , where the

clusters themselves occur as a Poisson process. Specifically, let YsZ1
q ���qZ , where Z ’s are independently and identically distributed integer-N i

Ž . Ž .valued random variables with mean E Z s1 and variance Var Z . Z is the
Ž .number of events per cluster; the Poisson case Y�Poisson � corresponds

to cluster size Z identically equal to 1. Now let the number of clusters N
Žhave a Poisson distribution with mean � as it would in a Poisson process for

. Ž . Ž .clusters over a given time interval . Then the mean of Y is E N E Z s�,
and the variance of Y is

� �Var Y sE Var Y N qVar E Y N sE N Var Z qVar NE Z� 4 � 4� 4 � 4Ž . Ž . Ž . Ž . Ž .

sE N Var Z qE N s� 1qVar Z .� 4Ž . Ž . Ž . Ž .

Ž .If Var Z �0, then Y is overdispersed, with overdispersion parameter �s1
Ž .qVar Z .

Ž .For analysis of overdispersed count data see, for example, Breslow 1984 ,
Ž . Ž . ŽBrillinger 1986 , Lawless 1987 , and McCullagh and Nelder 1989, Section

.6.2 .
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Quasi-likelihood
One way to analyze overdispersed count data is to rely on the likelihood

Ž . Ž .function, such as for the Poisson-Gamma mixture given in 12.23 or 12.25 .
Ž . Ž .Wedderburn 1974 see also McCullagh,1983 proposed an alternative

method that utilizes assumptions regarding the first two moments of Y only.
This quasi-likelihood method is especially convenient when the likelihood
function is complicated or unknown, due to uncertainty in the mixing
distribution for Z. To describe the quasi-likelihood method, first consider the

Ž .score equation from the Poisson regression model given in 12.19 :

n ��� ln L �Ž . i y1U � s s X V Y y� .Ž . Ž .Ý i i i i�� �iis1

Ž .For overdispersed Y with V sVar Y s� � , say, and for the log link withi i i i
Ž . Ž .�� r� s� , substitution for V and �� r� in the expression for U �i i i i i i

Ž .results in a function we denote by u � :

n
y1u � s X � Y y� . 12.26Ž . Ž . Ž .Ý i i i i

is1

Ž .Note that u � is generally not the score function, because Y are no longeri
Ž .Poisson; we call u � a quasi-score function or an estimating function.

Although not the score function, it has several of the nice properties of a true
score function. The most important property is that its expectation is zero as

Ž � . Ž .long as E Y X s� . Since u � is a sum of independent random vectorsi i i
with mean zero, it is, by the central limit theorem, asymptotically distributed

Ž .as multivariate normal with mean zero. Denote the solution of u � s0, the
˜ ˜Ž .maximum quasi-likelihood estimate mqle of � , by �. Then �y� can be

expressed approximately as a matrix multiple of the multivariate random
Ž .vector u � :

y1
�̃y�f � � u � ,� 4Ž . Ž .

where

� u �Ž .
� � sE y .�Ž . ž /��

˜Therefore �y� is itself asymptotically multivariate normally distributed. As
Ž .in the case of the score function and its negative expected derivative I �

Ž .the Fisher information matrix , the negative expected value of the derivative
Ž . Ž .of the estimating function, � � , turns out to be the variance of u � . For

the log link function, the negative derivative does not involve the random
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variables Y , so it equals its expectation:i

n� u �Ž . �y1� � sE y s � � X X ,�Ž . Ý i i i iž /��
is1

while

n n
� �y1 y1 y1Var u � s X � Var Y y� � X s � � X X .� 4Ž . Ž .Ý Ýi i i i i i i i i i

is1 is1

˜ y1� Ž .4Consequently, the asymptotic variance of � is � � :

y1 y1 y1˜Var � s � � Var u � � � s � � .� 4 � 4 � 4 � 4Ž . Ž . Ž . Ž .Ž .
If the overdispersion factor � is constant over i, that is, � s� for all i,i i

Ž .then � drops out from u � s0, and the estimating equation becomes

n

u � s X Y y�Ž . Ž .Ý0 i i i
is1

with expected negative derivative

n� u �Ž . �0E y s� � s � X X ,� Ž . Ý0 i i iž /��
is1

where the subscript 0 indicates that the estimating function and the expecta-
tion of its derivative are free of the overdispersion parameter. Although
Ž . Ž .u � is identical to the score function for pure Poisson outcomes, u � is0 0

not the score function for overdispersed counts. In this constant-overdisper-
sion case,

n n
� �Var u � s X Var Y y� X s� � X X s�� � , 12.27� 4Ž . Ž . Ž . Ž .Ý Ý0 i i i i i i i 0

is1 is1

y1
�̃y�f� � u � , 12.28Ž . Ž . Ž .0 0

and thus

y1 y1 y1˜Var � s � � Var u � � � s� � � . 12.29� 4 � 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .Ž . 0 0 0 0

This expression implies that one can fit an ordinary Poisson regression model
to overdispersed data as if there were no overdispersion in order to obtain

˜the maximum quasi-likelihood estimate �. The maximum quasi-likelihood
˜estimate of � is consistent and asymptotically normal, but the variance is

� Ž .4y1 � Ž .4y1� � � rather than the usual � � as in ordinary Poisson regres-0 0
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sion. Thus, inflating the standard errors by the factor �1r2 is all that is
required for valid analysis in this case.

It is worth pointing out that the quasi-likelihood argument starts from the
quasi-score function. If a function is maximized by solving the quasi-score

˜Ž . Ž .equation u � s0 and its derivative is u � , we call it a quasi-likelihood
function. In general, specification of the mean and variance structure does
not guarantee the existence of a quasi-likelihood function. In the case of
constant �, there is always a quasi-likelihood function whose logarithm is

Ž .proportional to the Poisson log-likelihood function. See also Firth 1987 .

Estimating the O©erdispersion Parameter
˜Computing standard errors for � generally requires estimating the unknown

overdispersion parameter. As for the parameter � itself, one could obtain
the maximum likelihood estimate for the unknown overdispersion parameter,
assuming a parametric form for the marginal distribution of Y, such as
Ž . Ž .12.23 or 12.25 . Alternatively, a consistent estimate can be found based
only on the first two moments of Y. Since the estimating methods depend on
whether or not the overdispersion is constant, we first consider the constant
case.

Ž .2If � is constant, from the relationship Ý E Y y� s�Ý � , a naturali i i i i
estimator of � is

2nÝ Y y�Ž .ˆis1 i i�̂s . 12.30Ž .nÝ �̂is1 i

Because estimating � does not require � when � is constant, one can
compute � by fitting an ordinary Poisson regression. From the relationshipˆ i

2Y y�Ž .i iE s� ,½ 5�i

another natural estimator is

2n Y y�Ž .ˆy1 i i�̃s nyp , 12.31Ž . Ž .Ý �̂iis1

˜where p is the number of unknown parameters in �. Note that � is the
scaled Pearson chi squared statistic, and so is the more common estimator
of �.

When the variance of Y is � � , � is involved in estimating �. Consideri i i i
the case in which � is of known parametric form, as in � s1q� r� .i i i
Setting an initial value for 1r� equal to 0, we can fit a regular Poisson

˜Ž1.regression model and obtain an intermediate estimate � of � , from which
we compute the predicted values �Ž1.. Then we can consistently estimate 1r�ˆ i
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˜Ž1.given � based on the linear regression model

2 2E Y y� s� � q� � , 12.32Ž . Ž .� 4i i 1 i 2 i

Ž Ž1. .2where � s1 and � s1r� . To do this, enter Y y� as an outcome,ˆ1 2 i i
Ž1. � Ž1.42declare � as an offset with known 0 intercept, declare � as anˆ ˆi i

explanatory factor, and estimate � Ž1.s1r� Ž1.. Use the new estimate of � ,2 i
Ž1. Ž1. Ž1. ˜Ž2.namely � s1q� r� , as a weight to obtain an updated estimate, � .ˆi i

˜Ž1. ˜Ž2.Both � and � are consistent, but the variance of the first estimator is

y1 y1 y1 y1�
� � Var u � � � s � � � � X X � �� 4 � 4 � 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .Ý0 0 0 0 i i i i 0ž /

i

Ž . � Ž .4y1see Problem 12.7 , and the variance of the second is � � . Most
˜Ž2.software packages report the variance of � if � is declared as a weight.i

Ž .Model 12.32 can also discriminate between the overdispersion model � s1i
Ž . Ž .q1r� for which � s0 and the model � s1q� r� for which � �0 .2 i i 2

For tests concerning the regression parameter � , we construct Wald-like
˜ Ž .or scorelike statistics based on the properties of � and u � . We demon-

strate the use of Wald-like statistics in the example to follow.

Testing for O©erdispersion
The question remains whether or not overdispersion even exists. When �i
are large � 2 may be used. Even when � are not large, however, when n isP i
large, one can test for overdispersion by forming a score statistic from a

Ž . Ž .likelihood function such as 12.23 or 12.25 . Such score tests are valid and
most powerful if the likelihood function is correctly specified. Various
statistics derived from this approach have been suggested by Cameron and

Ž . Ž . Ž .Trivedi 1990 , Collings and Margolin 1985 , and Dean and Lawless 1989 .
Ž .Dean 1992 proposed a class of score tests that require specification only of

the first two moments of the random effect, which yields several previously
proposed statistics as special cases. She shows that when the variance of Y

Ž . Ž .has the form � 1q� r� , as in 12.25 , the score statistic for no overdisper-i i
sion, that is, for zero variance of the random effect, has the form

2nÝ Y y� yYŽ .ˆ½ 5is1 i i i
Q s . 12.33Ž .1 n 2'2Ý �̂is1 i

Ž . Ž .When the variance of Y has the form � 1q1r� , as in 12.23 , the scorei
statistic has the form

2n Y y� yYŽ .ˆ1 i i iQ s . 12.34Ž .Ý2 �' ˆ2n iis1
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Table 12.6. Maximum quasi-likelihood estimates and standard errors
( )of the Poisson regression model M3 assuming constant �

˜Variable � Standard Error p-Value

Intercept y0.973 0.234 �0.0001
PCREV y0.348 0.152 0.022
NSAL 0.278 1.038 0.789
FEXP 1.468 0.607 0.016
RURAL y0.133 0.077 0.085
PCREV�NSAL 0.266 0.322 0.408
PCREV�FEXP 0.709 0.551 0.198
NSAL�FEXP y4.497 2.048 0.028

Both Q and Q are distributed approximately as standard normal random1 2
variables when n is large.

Example 12.3.1. We resume the analysis of the nursing home data in
Example 12.2.1. The large scaled Pearson chi squared statistic suggests
overdispersion. It is not unlikely that the expected number of beds is
heterogeneous across the nursing homes, even given patient care revenue,
nursing salaries, and facilities expenditures. The formal tests for overdisper-

Ž . Ž .sion are Q s17.01 from 12.33 and Q s16.02 from 12.34 . Both confirm1 2
the presence of overdispersion.

ˆAssuming constant overdispersion, the two estimates of � are �s4.60
˜ ˜Ž . Ž .from 12.30 , and �s4.91 from 12.31 ; see Table 12.3 for �. In this case,

the estimates of � are the same as in Table 12.5, but the standard errors
ˆ'should be multiplied by � . Using �, the maximum quasilikelihood esti-

mates and their standard errors are shown in Table 12.6.
Assuming nonconstant overdispersion, from the regression analysis based
Ž .on 12.32 we obtained the estimate of 0.0354 for � s1r� with standard2

˜error of 0.011. In this case � differs from the maximum likelihood estimate

Table 12.7. Maximum quasi-likelihood estimates and standard errors
( )of the Poisson regression model M3 assuming nonconstant �

˜Variable � Standard Error p-Value

Intercept y0.905 0.212 �0.0001
PCREV y0.390 0.167 0.020
NSAL 0.149 0.956 0.876
FEXP 1.420 0.544 0.009
RURAL y0.119 0.075 0.111
PCREV�NSAL 0.334 0.305 0.273
PCREV�FEXP 0.757 0.540 0.160
NSAL�FEXP y4.558 2.107 0.030
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ˆŽ . 'Figure 12.2. Q-Q plot for y y� r �� .ˆ ˆi i i

from the ordinary Poisson regression model. The maximum quasi-likelihood
estimates are given in Table 12.7 along with their estimated standard errors.

In both cases the standard errors are substantially larger than in Table
12.4. Clearly, the variability of Y is understated if Y is assumed to be pure
Poisson, and consequently the estimated standard errors are understated too.
The coefficients estimates, standard errors, and Q-Q plots given in Figures
12.2 and 12.3 from the two overdispersion models are not much different,
demonstrating robustness of the results from either model.

Finally, to test the null hypothesis H : � s0, the Wald-like statistics0 R
Ž .2 Ž .2from the two models are y0.133r0.0772 s2.96 and y0.119r0.0747 s

2.54, respectively. Both are smaller than the critical value from a chi squared
distribution with 1 df at the 0.05 level. Using the constant overdispersion
model, the estimate of the rate ratio remains the same as before,

Ž .exp y0.133 s0.8753, but a revised 95% confidence interval based on the
Ž .standard error 0.0772 is 0.7525, 1.0185 , which now includes 1. The signifi-

cant result previously obtained ignoring the substantial overdispersion was
overstated.

The reader may also have noticed some clumping of BEDS at the value
Ž .120 there are 10 such values in Table 12.2 . If not coincidence, such

clumping may reflect reporting practices or regulations. Clumping tends to
reduce the data’s variability. Clumping errors, if present, may introduce
systematic bias if, for example, there is a tendency to round the actual value
in one direction toward a particular value.
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ˆŽ . 'Figure 12.3. Q-Q plot for y y� r � � .ˆ ˆi i i i

PROBLEMS

w12.1. Show that the variance of a Poisson random variable is �. Hint. First
� Ž .4 2 Ž 2 . 2show E Y Yy1 s� , which leads to E Y s� q�, and then use

Ž . Ž 2 . � Ž .42 xVar Y sE Y y E Y .

12.2.� For any integer rG0 and any quantity y, let the symbol y Ž r . denote
Ž r . Ž . Ž .the r th descending factorial power of y, y sy yy1 ��� yy rq1 ,

containing r factors, with y Ž0.s1. For a random variable Y taking
integer values, 0, 1, . . . , the r th factorial moment is defined as EY Ž r .

� Ž . Ž .4 Ž1. Ž . Ž2.sE Y Yy1 ��� Yy rq1 . Thus EYsEY and Var Y sEY q
Ž .2EYy EY . The factorial moment generating function for Y is the

Ž . �Ž .Y xfunction � t sE 1q t . We consider only random variables forY
which the expectation exists for all t in a neighborhood of 0. If two
random variables have the same factorial moment generating func-
tions, they are identically distributed.
( )a Show that the factorial moments are generated by differentiating

the factorial moment generating function as follows: EY Ž r .s
r Ž . r �d� t rdt .ts0Y

( ) Ž . Ž .b For a Poisson random variable, Y�Poisson � , show that � tY
Ž . Ž Ž r .. r � Ž .4sexp t� , and thus that E Y s� . In particular, E Y Yy1
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s�2. Also, use the factorial moment generating function to
demonstrate that the sum of two independent Poisson random
variables has a Poisson distribution.

( )c Higher moments of integer-valued random variables are most
easily expressed in terms of factorial moments. To this end,
demonstrate the following identities:

y2sy Ž2.qy , EY 2sEY Ž2.qEY ,

y3sy Ž3.q3 y Ž2.qy , EY 3sEY Ž3.q3EY Ž2.qEY ,

y4sy Ž4.q6 y Ž3.q7y Ž2.qy , EY 4sEY Ž4.q6EY Ž3.q7EY Ž2.qEY .

( ) Ž .d For a multivariate random variable Xs X , . . . , X , the mixed1 n
Ž . � Ž r1.factorial moment of order r , . . . , r is defined as E X ���1 n 1

Ž rn.4X , and the factorial moment generating function is defined asn
Ž . Ž . �Ž . t1 Ž . tn4� t s� t , . . . , t sE 1qX ��� 1qX , assumed to existX X 1 n 1 n

for t in a neighborhood of 0. Show that

r q� � �qr1 n� � tŽ .XŽ r . Ž r .1 nE X ��� X s .� 4 r r1 n 1 n� t ��� � t1 n ts0

( ) Ž .e Let Xs X , . . . , X have a multinomial distribution in n cate-1 n
Ž .gories with index m and parameter Ps P , . . . , P , denoted by1 n

Ž .X�Mult m, P . Show thatn

mn

� t s 1q P t .Ž . ÝX j jž /
js1

� Ž r1. Ž rn.4 Ž r1q � � �qr n. r1 rnConclude that E X ��� X sm P ��� P , where m1 n 1 n
is raised to a factorial power, and the terms involving P arej
ordinary powers. In particular, the familiar expressions for the
means, variances, and covariances of the multinomial distribution

Ž . Ž Ž2. . Ž . Ž . 2are given by E X smP , E X sEX X y1 sm my1 P ,j j j j j j
Ž . Ž . Ž .Var X s mP 1 y P , and Cov X , X symP P . What isj j j i j i j

� Ž . Ž .4E X X y1 X X y1 ?1 1 2 2

( )f Now let Y , . . . , Y be independent and identically distributed1 n
Ž .Poisson random variables, Y �Poisson � , and let the sum bei

denoted by SsY q ���qY . Define1 n

n
22Ts ny1 s s Y yY .Ž . Ž .Ýn i n

is1

Ž .Use the fact that the conditional distribution of Ys Y , . . . , Y1 n
Ž .given S s m is multinomial, Y � Mult m, P where P sn
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Ž .1rn, . . . , 1rn , to show that the conditional mean of T given
SsnY sm isn

�E T Ssm sm ny1 rn.Ž . Ž .

w 2 2 Ž � . Ž 2 �Hint. Write TsÝ Y ym rn. Then E T Ssm snE Y Ssi i 1
. 2 Ž 2 . 2 Ž .m y m rn s nE X y m rn, where X s X , . . . , X �1 1 n

Ž Ž .. Ž . Ž . Ž 2 .Mult m, 1rn, . . . , 1rn . Use parts c and e to write E X sn 1
Ž Ž2. 2 . Ž . xm rn q mrn , and simplify.

( )g Continuing, show that the conditional variance of T given Ssm
is

2mŽ2.
�Var T Ssm s ny1 .Ž . Ž .2n

w Ž � . Ž 2 � . Ž 2 .Hint. Var T Ssm sVar Ý Y Ssm sVar Ý X , where, asi i i i
Ž . Ž Ž ..above, Xs X , . . . , X �Mult m, 1rn, . . . , 1rn . Now1 n n

22
2 2 2Var X sE X y E XÝ Ý Ýi i iž / ž / ž /½ 5½ 5

i i i

n n
24 2 2 2 2 2s EX q2 E X X y EX y2 EX EXŽ .Ž .Ý Ý Ý Ýi i j i i j

is1 i�j is1 i�j

2 24 2 2 2 2sn EX y EX qn ny1 E X X y EX .Ž .Ž . Ž . Ž .½ 5 ½ 51 1 1 2 1

Ž . Ž . 4 Ž 2 2 .Use the results of parts c and e to express EX and E X X1 1 2
�Ž Ž2. .Ž Ž2. .4 � Ž2. Ž2.4 � Ž2.4 � 4sE X qX X qX sE X X q2 E X X qE X X1 1 2 2 1 2 1 2 1 2

xin terms of factorial powers of m, and simplify.
( ) Ž .h Use the fact that SsY q ���qY �Poisson n� and the identity1 n

� �Var T sE Var T Ssm qVar E T Ssm� 4 � 4Ž . Ž . Ž .

to derive the exact variance of the Poisson sample variance
estimator of �:

� 2�2 � 2�ny22Var s s ny1 Var T s q s 1q .Ž . Ž .Ž .n ž /n ny1 n ny1

This expression is greater than the variance of the sample mean
estimator of �, namely, �rn. The relative efficiency of s2 to then

2Ž . Ž .sample mean Y , which is the ratio Var Y rVar s , thus goes ton n n
zero as the mean � becomes large. Note that this result can be
obtained in an approximate manner quite simply: for large �,
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Ž . 2ny1 s r� is distributed approximately as a chi squared onn
Ž . Ž 2 .ny1 df, which has variance 2 ny1 . Thus Var s is approxi-n

2 Ž .mately 2� r ny1 . The additional term �rn in the exact vari-
ance formula is relatively small for large �.

Ž .12.3. Let Y�Poisson � , and let U have a Gamma distribution with shape
Ž .parameter aq1 and scale parameter 1. The density of U is f u saq1

uaeyura! for uG0. Show that

a y� y �e �
s f u dusP U�� .Ž . Ž .Ý H aq1y! �ys0

Ž .Since 2U has a chi squared distribution on 2 aq1 df, conclude that

P YFa sP � 2 G2� .Ž . Ž .2Ž aq1.

wHint. Verify the equality for the case �s0 directly. Then differenti-
ate Ýa ey�� yry! with respect to �, and show that the derivative is ays0
telescoping series that collapses to the single term yey��ara!s

Ž . xyf � . Thus the two functions are identical.aq1

12.4. Let Y and Y be independent Poisson random variables with means1 2
� and � , respectively. Demonstrate that the conditional distribution1 2

Ž . Ž .of Y given Y qY sm is Bin m, P , where Ps� r � q� . Gen-1 1 2 1 1 2
eralize to the multinomial case.

Ž . Ž .12.5. Verify 12.15 � 12.17 .

Ž .12.6. Table 12.8 shows the full data from Frome 1983 . Using these data,
fit the following model:

�ln E Y X s ln person-years q� q� X q� X ,Ž . Ž . 0 1 1 2 2

where X is the mean number of cigarettes per day and X is the1 2
number of years of smoking. Evaluate whether an interaction term
X X is necessary for the model to fit the data adequately.1 2

˜Ž1.12.7. Verify that the asymptotic variance of � is

y1 y1�� 4� � Ý � � X X � � .� 4 � 4Ž . Ž .0 i i i i i 0

˜Ž1. ˜Ž1.w Ž .Hint. Notice that � is the solution of 0su � , from which0
Ž . Ž . n Ž .12.28 follows. But the variance of u � sÝ X Y y� is0 is1 i i i

� Ž .4 � �4 xVar u � s Ý � � X X .0 i i i i i
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C H A P T E R 1 3

The Analysis of Data from
Matched Samples

Ž .A device often employed in controlled trials sampling method III is to
match subjects on the basis of characteristics that are associated with the
response being studied, and to randomize the treatment assignments inde-
pendently within each matched group. Matched pairs of subjects are used for
comparing two treatments, matched triples for comparing three treatments,
and in general m-tuples for comparing m treatments. The purpose of
matching in controlled trials is to increase the precision of the comparisons

Ž .among the treatments Hill, 1962, p. 21 .
Matching is also frequently employed in comparative prospective and

Ž .retrospective studies sampling method II , but more for increasing the
validity of the inferences by controlling for confounding factors than for

Žincreasing precision see Bross, 1969, and Miettinen, 1970a, for a debate on
.this point . Age and sex, for example, are possible confounding factors in the

study of the association between cigarette smoking and lung cancer, because
age and sex are associated both with smoking and with the risk of lung
cancer. In a retrospective study, therefore, these factors might be controlled
by matching each case of lung cancer with a control subject of the same sex
and of a similar age. Because the cases and controls would then be similar on
sex and age, any difference between the two samples would have to be
attributable to other factors. Section 10.5 presents another device for the
control of confounding factors.

Sampling method I does not lend itself to matching.
Section 13.1 is devoted to the analysis of data from matched pairs when

Ž .only a dichotomous yes-no outcome is of interest, and Section 13.2 to the
analysis of data from matched pairs when more than a dichotomous outcome

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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is of interest. Section 13.3 considers the analysis of data resulting from the
study of cases matched with multiple controls when the controls all form a
single sample. Section 13.4 considers the analysis of data from a study
comparing samples from more than two populations when the members of
the several samples form matched sets. Section 13.5 concerns sample size
determination for matched studies. Some comments on the advantages and
disadvantages of matching are made in Section 13.6. Regression analysis for
matched samples is discussed in Chapter 14.

13.1. MATCHED PAIRS: DICHOTOMOUS OUTCOME

Suppose that a retrospective study has been conducted in which each case
has been matched with a single control and in which the relative frequency of
an antecedent factor among the cases is to be compared with that among the
controls. Because of the matching of cases with controls, the proper unit of
analysis is the matched pair rather than the individual subject. Table 13.1
gives the appropriate means for presenting the resulting data.

Each frequency in Table 13.1 represents a number of pairs. Thus there
Žwere n pairs studied in all. Of these, a were such that both members the

.case and his matched control had the antecedent factor; b were such that
the case had the factor but the control did not; c were such that the control
had the factor but the case did not; and d were such that neither member
had the factor.

The proportion of controls who had the factor is

aqc
p s ,1 n

and the proportion of cases who had the factor is

aqb
p s .2 n

Table 13.1. Data on two outcomes from matched pairs

Controls

Cases Factor Present Factor Absent Total

Factor present a b aqb
Factor absent c d cqd
Total aqc bqd n
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The number of pairs in which both the case and the matched control had the
factor, a, clearly does not affect the difference between the two proportions,

byc
p yp s . 13.1Ž .2 1 n

Ž .As McNemar 1947 has shown, neither a nor d, the numbers of pairs both of
whose members were similar with respect to the antecedent factor, con-
tributes explicitly to the standard error of the difference when the two
underlying proportions are equal. In fact, it is estimated by

$ 'bqc
se p yp s . 13.2Ž . Ž .2 1 n

Ž . Ž .The square of the ratio of 13.1 to 13.2 may, with a correction for
continuity, be used to test for the statistical significance of the difference

Ž .between p and p . The correction, due to Edwards 1948 , yields the1 2
statistic, termed McNemar’s test,

2 2� � � �p yp y1rn byc y1Ž .2 12� s s . 13.3$ Ž .½ 5 bqcse p ypŽ .2 1

In large samples, the value of � 2 may be referred to tables of chi squared
Ž . 2with 1 df see McNemar, 1947; Mosteller, 1952; and Stuart, 1957 . If � is

large, the inference can be made that the cases and controls differ in the
proportion having the antecedent factor. It is noteworthy that only the pairs
in which the members differ in the antecedent factor contribute to the test

Ž .statistic. The power of this test has been studied by Miettinen 1968 and by
Ž .Bennett and Underwood 1970 . The exact distribution of the square root of

Ž .McNemar’s test is derived by Suissa and Schuster 1991 .
Ž .The test based on 13.3 is illustrated on the hypothetical data of Table

13.2.
The proportion of controls having the factor is p s20r100s0.20, and1

the proportion of cases having the factor is p s35r100s0.35. The standard2$ 'w Ž .x Ž .error of the difference see 13.2 is se p yp s 20q5 r100s5r100s2 1

Table 13.2. Hypothetical data to illustrate McNemar’s test

Controls

Cases Factor Present Factor Absent Total

Factor present 15 20 35
Factor absent 5 60 65
Total 20 80 100
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w Ž .x0.05, and the test statistic see 13.3 has the value

2 2� �0.35y0.20 y0.01 0.142� s s s7.84,ž /ž /0.05 0.05

equal to the value obtained by comparing the numbers of pairs whose
members differed on the factor,

2� �20y5 y1 196Ž .2� s s s7.84.20q5 25

Since � 2 exceeds 6.63, the value needed for significance at the 0.01 level,
the conclusion can be drawn that the cases and controls differ in the
presence of the antecedent factor.

ŽAs pointed out in Chapters 6 and 7, the odds ratio the odds of the disease
.when the factor is present relative to the odds when the factor is absent is an

important measure of the degree of association between the antecedent
Ž .factor and the disease. Mantel and Haenszel 1959 and Cornfield and

Ž .Haenszel 1960 have investigated the proper method for estimating the odds
ratio when matched pairs have been studied. When the data are arrayed as in
Table 13.1, the estimate obtained by treating each pair as a stratum is simply

b
os , 13.4Ž .c

and its standard error is estimated by

$ 1 1
se o so q 13.5Ž . Ž .( b c

Ž . Ž .see Ejigou and McHugh, 1977 . Formula 13.5 can be obtained using the
Ž .variance formula for the Mantel-Haenszel log odds ratio given in 10.58 .

Ž .13.4 is also a conditional maximum likelihood estimator for the common
odds ratio underlying each matched pair. For the frequencies of Table 13.2,
the estimated odds ratio is os20r5s4.0, and its estimated standard error
is

$ 1 1
se o s4 q s2.0.Ž . (20 5

An approximate confidence interval for �, the underlying odds ratio, may
be obtained as follows. Define

�
Ps . 13.6Ž .�q1
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An estimate of P is

b
ps . 13.7Ž .bqc

based on a sample size of bqc. The methods described in Section 2.4.2 may
Ž .be applied to find an approximate 100 1y� % confidence interval for P, say

P FPFP , 13.8Ž .L U

and equation 13.6 inverted to find the desired interval for � :

P PL UF�F . 13.9Ž .1yP 1yPL U

For the data of Table 13.2, the sample size is 20q5s25 and ps20r25
Ž . Ž .s0.80. Formulas 2.26 and 2.27 yield

0.587FPF0.924 13.10Ž .

Ž .as an approximate 95% confidence interval for P, and 13.9 yields

1.42F�F12.16 13.11Ž .

as an approximate 95% confidence interval for the underlying odds ratio.
Ž .The simpler approach based on 2.29 yields

0.623FPF0.977 13.12Ž .

as an approximate 95% confidence interval for P, and

1.65F�F42.48 13.13Ž .

Ž .as an approximate 95% confidence interval for �. The lower limits of 13.11
Ž .and 13.13 agree well, but the upper limits are greatly different. Because, in

this case, ps0.80, which is outside the interval suggested in Section 2.4.2 for
Ž .close correspondence between the two approaches 0.3FpF0.7 , the result

Ž . Ž .given in 13.11 is preferred. Jewell 1984 proposed several bias-corrected
estimators for small to moderate sample sizes. One preferred estimator is

Ž .o�sbr cq1 , which removes bias of order 1rn.
So far the analysis of the fourfold table resulting from matched pairs has

been presented in the context of a comparative retrospective study. The
analysis involving McNemar’s test and the estimation of the odds ratio may
also be applied to a comparative prospective study with matched pairs. In the
analysis of a controlled trial with matched pairs, however, the finding of a
significant difference by McNemar’s test should be followed by point and
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Table 13.3. Data from a controlled trial with matched pairs

Standard Treatment

New Treatment Recovered Not Recovered Total

Recovered a b aqb
Not recovered c d cqd
Total aqc bqd n

interval estimation of either the simple or the relative difference between the
two outcome proportions.

Table 13.3 presents the proper means for presenting the data from such a
trial, in which we suppose that a new treatment was compared with a
standard. As was the case for Table 13.1, each frequency represents a
number of pairs.

The proportion of cases who recovered under the standard treatment is

aqc
p s ,1 n

and the proportion who recovered under the new treatment is

aqb
p s .2 n

The simple difference between p and p is2 1

byc
p yp s ,2 1 n

and an estimate of its standard error appropriate when the two underlying
proportions are not hypothesized to be equal is estimated by

2'$ 'n bqc y byc aqd bqc q4bcŽ . Ž . Ž . Ž .
se p yp s s . 13.14Ž . Ž .2 1 ' 'n n n n

Ž .An approximate 100 1y� % confidence interval for the difference between
the two underlying rates of recovery is

$ 1
p yp yz se p yp y FP yPŽ . Ž .2 1 �r2 2 1 2 1n

$ 1
F p yp qz se p yp q .Ž . Ž .2 1 �r2 2 1 n

13.15Ž .
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Note that all four cell frequencies contribute explicitly to the estimated
Ž . Ž .standard error in 13.14 , unlike the standard error in 13.2 , which is

appropriate only for testing the hypothesis that the underlying proportions
are equal.

Under the assumption that the new treatment can benefit only those
patients who fail to improve under the standard treatment, the relative value
of the new treatment may be estimated by the relative difference,

p yp byc2 1p s s . 13.16Ž .e 1yp bqd1

The standard error of the relative difference may be estimated by

$ 1 'se p s bqcqd bcqbdqcd ybcd . 13.17Ž . Ž . Ž . Ž .e 2bqdŽ .

Note that a, the number of pairs both of whose members recovered,
contributes neither to the estimation of the relative difference nor to the

Ž .estimation of its standard error. An approximate 100 1y� % confidence
$
Ž .interval for the underlying parameter is given by p �z se p . Alternativee �r2 e

Ž . Ž .confidence intervals are given by Lui 1998 . Kuritz and Landis 1988
provide an estimate for attributable risk and its standard error.

Table 13.4 presents some hypothetical data. Of the patients who were
given the standard treatment, the proportion who recovered was p s50r751
s0.67. Of those who were given the new treatment, the proportion who
recovered was p s65r75s0.87. The value of McNemar’s chi squared2

w Ž .xstatistic see 13.3 for assessing the significance of the difference between
these two proportions is

2� �25y10 y1Ž .2� s s5.60.25q10

The difference is therefore statistically significant at the 0.05 level.

Table 13.4. Hypothetical data from a controlled trial with matched pairs

Standard Treatment

New Treatment Recovered Not Recovered Total

Recovered 40 25 65
Not recovered 10 0 10
Total 50 25 75
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The difference between the two proportions is

25y10
p yp s s0.202 1 75

Ž .and an estimate of its standard error is, by 13.14 ,

$ 1 'se p yp s 40q0 25q10 q4�25�10 s0.08.Ž . Ž . Ž .2 1 '75 75

Ž .An approximate 95% confidence interval for P yP is, by 13.15 ,2 1

1 1
0.20y1.96�0.08y FP yP F0.20q1.96�0.08q ,2 175 75

or

0.03FP yP F0.37.2 1

Ž .The value of the relative difference in 13.16 is

25y10
p s s0.60,e 25

which means that, of every 100 patients who fail to recover under the
standard treatment, 60 might be expected to recover under the new treat-

Ž .ment. The estimated standard error of the relative difference in 13.17 is

$ 1
se p sŽ .e 225q0Ž .

'� 25q10q0 25�10q25�0q10�0 y25�10�0Ž . Ž .

s0.15.

An approximate 95% confidence interval for the parameter is 0.60�1.96�
0.15, or the interval from 0.30 to 0.90.

13.2. MATCHED PAIRS: POLYTOMOUS OUTCOME

Often the response of a subject to treatment or the degree to which he or she
possesses a factor may be graded more finely than on the simple presence-
absence dichotomy considered in the preceding section. Response to treat-
ment, for example, may be graded as improvement, essentially no change, or
worsening. Extent of cigarette smoking, as another example, may be graded
as none at all, between 1 and 10 cigarettes per day, between 11 and 20
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Table 13.5. Data from a study of matched pairs with k mutually exclusi©e
outcome categories

Outcome Category for Controls

Outcome Category
for Cases 1 2 ��� k Total

1 n n ��� n n11 12 1k 1.
2 n n ��� n n21 22 2k 2.. . . . .. . . . .. . . . .
k n n ��� n nk1 k 2 k k k .

Total n n ��� n n.1 .2 . k . .

cigarettes per day, or 21 or more cigarettes per day. When the samples being
compared are not matched, the methods of Chapter 9 may be applied. Here
we consider the case of matched pairs, both members of which are classified

Ž .into one of k �2 mutually exclusive categories.
Table 13.5 demonstrates the appropriate presentation of the data. Each

entry in the table represents a number of pairs. For example, n is the total. .
number of matched pairs, n is the number of pairs in which the case was in1.
category 1, n is the number in which the control was in category 2, and n.2 12
is the number in which the case was in category 1 and the control in category
2. The differences between the cases and controls are represented by the k

Ž . Ž . Ž .differences d s n yn , d s n yn , . . . , d s n yn . Clearly, these1 1. .1 2 2. .2 k k . . k
differences do not depend on the quantities n , n , . . . , n , the numbers of11 22 k k
pairs both of whose members had outcomes in the same category.

Complicated test statistics for assessing the significance of the k differ-
Ž .ences d , d , . . . , d have been proposed by Bhapkar 1966 , Grizzle, Starmer,1 2 k

Ž . Ž .and Koch 1969 , and Ireland, Ku, and Kullback 1969 . A simpler test
statistic, but one that still requires the inversion of a matrix, has been

Ž . Ž .proposed by Stuart 1955 and Maxwell 1970 . A simple expression for the
Stuart-Maxwell statistic when ks3 has been derived by Fleiss and Everitt
Ž .1971 .

For ks3, define

n qni j ji
n s . 13.18Ž .i j 2

The statistic

2 2 2n d qn d qn d23 1 13 2 12 32� s 13.19Ž .
2 n n qn n qn nž /12 13 12 23 13 23

may be referred to tables of chi squared with two degrees of freedom. If � 2

is significantly large, the inference will be made that the distribution across
the categories for the cases differs from the distribution for the controls.
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Table 13.6. Hypothetical data to illustrate the Stuart-Maxwell test

Diagnostician A

Diagnostician B Schizophrenia Affective Other Total

Schizophrenia 35 5 0 40
Affective 15 20 5 40
Other 10 5 5 20
Total 60 30 10 100

Consider the hypothetical data in Table 13.6, in which it is assumed that
two diagnositicians independently diagnosed each of a sample of 100 mental

2 Ž .patients. The value of the Stuart-Maxwell � statistic in 13.19 is

5q5 0q10 5q152 2 240y60 q 40y30 q 20y10Ž . Ž . Ž .2 2 22� s 5q15 0q10 5q15 5q5 0q10 5q5
2 � q � q �ž /2 2 2 2 2 2

3500
s s14.00,2�125

which, with 2 df, is significant beyond the 0.001 level. It may therefore be
concluded that the diagnostic distribution of diagnostician A is different
from that of diagnostician B.

When, as in this example, a significant difference is found between the two
distributions, the next step in the analysis would be to find those single

Žcategories in the case of more than three categories, possibly those combina-
. Žtions of categories for which the differences are significant see Fleiss and

.Everitt, 1971, for a general discussion . One need only collapse the original
Ž .table into a 2�2 table and apply McNemar’s statistic 13.3 . The test for

significance, however, must incorporate a control over the fact that the
chances of erroneously declaring a difference to be significant increase when
a number of tests are applied to the same data. An appropriate control in the

Ž .case we are considering see Miller, 1966, Section 6.2 is to refer McNemar’s
chi squared statistic to the critical value of chi squared with ky1 df.

We illustrate the search for those categories with a significant difference
using the data of Table 13.6. To determine whether the proportions who
were diagnosed as having schizophrenia by the two diagnosticians were
different, we form the 2�2 table in Table 13.7. Sixty percent of the patients
were diagnosed as having schizophrenia by A, while only 40% were so
diagnosed by B. The value of McNemar’s statistic is

2 2� �5y25 y1 19Ž .2� s s s12.03.5q25 30
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Table 13.7. Two-by-two table for comparing rates of schizophrenia by
diagnosticians A and B

Diagnostician A

Diagnostician B Schizophrenia Not Schizophrenia Total

Schizophrenia 35 5 40
Not schizophrenia 25 35 60
Total 60 40 100

Table 13.8. Hypothetical data to illustrate the analysis of an ordered
outcome ©ariable

Standard Treatment

New Treatment Improved No Change Worse Total

Improved 40 20 10 70
No change 6 6 8 20
Worse 4 4 2 10
Total 50 30 20 100

The critical value of chi squared with two degrees of freedom for a signifi-
Ž .cance level of 0.05 see Table A.2 is 5.99. Since the obtained value of

McNemar’s chi squared exceeds 5.99, we may infer that A is more likely to
diagnose schizophrenia than B.

Problem 13.1 calls for comparing the proportions of patients diagnosed as
affectively ill and diagnosed as having a disorder other than schizophrenia or
affective illness by A and B.

ŽIf the k outcome categories are ordered as in the two examples cited at
.the beginning of this section , the analysis of the data should somehow take

the ordering into account. Consider the hypothetical data in Table 13.8, in
which it is assumed that the treatments were assigned to the members of
each matched pair at random. The value of the Stuart-Maxwell chi squared

w Ž .xstatistic is significant see Problem 13.2 a , so that a more detailed analysis of
the data is in order.

The kind of category-by-category analysis illustrated above could be per-
formed, but it would be inefficient in that it would ignore the ordering
inherent in grading response to treatment. The following method of analysis
is appropriate when interest is in whether one treatment tends to produce
more responses than the other treatment at one end of the ordered scale and
fewer at the other.

Consider the difference d yd . If the new treatment is better than the1 3
Žstandard in the sense that it has associated with it more improvement so that

. Ž .d is positive and less worsening so that d is negative , d yd will be large1 3 1 3
in the positive direction. If the new treatment is poorer than the standard,
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d yd will be large in the negative direction. In either case, the hypothesis1 3
that the treatments do not differ at the two ends of the scale may be tested
by referring the value of

2d ydŽ .1 32� s 13.20Ž .
2 n q4n qnŽ .12 13 23

to the chi squared distribution with 1 df if this particular comparison was
planned before the data were examined, and to the chi squared distribution
with 2 df if the comparison was suggested by the data. This test and the more
general one when the number of outcome categories exceeds three were

Ž . Ž .derived by Fleiss and Everitt 1971 . Problem 13.2 b calls for applying it to
the data of Table 13.8.

13.3. MULTIPLE MATCHED CONTROLS PER CASE

Occasionally, two matched samples may be generated by matching each case
Ž . Žor each patient given a new treatment with more than one control or with

.more than one patient given a standard treatment . Matching with multiple
controls is especially advantageous when the number of potential control
subjects is large relative to the number of available cases and when little
effort needs to be expended in obtaining the necessary information.

We assume that each subject is characterized by either the presence or the
absence of some factor or outcome. A general method of analysis, valid even
when the number of controls varies from one case to another, was originally

Ž .derived by Mantel and Haenszel 1959 . An alternative but more complex
Ž .method of analysis in the general case is due to Cox 1966 . Here we assume

that each case is matched with the same number, say my1, of controls, and
we consider only the Mantel-Haenszel method.

Suppose that there are a total of N matched sets, each containing one
Ž .case and my1 controls. In the ith set is1, . . . , N , let x denote thei

Žnumber of controls who had the factor so that x may equal 0, 1, . . . , ori
.my1 , and let n denote the total number of subjects�including the casei

and controls�who had the factor. Thus if the case in the ith set had the
factor, then n sx q1; if he or she did not have the factor, then n sx .i i i i

Define

N

As x , 13.21Ž .Ý i
is1

the total number of control subjects who had the factor, and define

N

Bs n , 13.22Ž .Ý i
is1
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the total number of either kind of subject who had the factor. Note that the
total number of cases who had the factor is ByA. The rate at which the
factor is present among the controls is

A
p s , 13.23Ž .1 N my1Ž .

and the rate at which it is present among the cases is

ByA
p s . 13.24Ž .2 N

In order to test the significance of the difference between p and p , the1 2
statistic

2 2p yp my1 BymAŽ .2 12� s s 13.25$ Ž .u N 2ž / mByÝ nse p ypŽ . is1 i2 1

Žmay be referred to tables of chi squared with 1 df see Miettinen, 1969, and
. Ž .Pike and Morrow, 1970 . Miettinen 1969 has studied the power of the test

Ž . Ž .based on 13.25 and has given criteria in terms of reducing cost for
deciding on an appropriate value for my1, the number of controls per case.

The data in Table 13.9 are used to illustrate this analysis. Suppose that
Ns10 matched sets with ms3 were studied, implying my1s2 controls

w Ž .xper case. The proportion of controls having the factor see 13.23 is

7
p s s0.35,1 10�2

Table 13.9. Outcome data from matched sets with 1 : 2 matching

Case Has Number of Controls Total Having
2Ž . Ž .Triple Factor* with Factor sx Factor sn ni i i

1 1 2 3 9
2 1 1 2 4
3 1 1 2 4
4 1 1 2 4
5 1 1 2 4
6 1 0 1 1
7 1 0 1 1
8 1 0 1 1
9 0 1 1 1

10 0 0 0 0

Ž . Ž . Ž .Total 8 sByA 7 sA 15 sB 29

*1syes, 0sno.
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w Ž .xand the proportion of cases having the factor see 13.24 is

8
p s s0.80.2 10

Ž .The value of the statistic in 13.25 for testing the significance of the
difference between these two proportions is

2 22�15y3�7 9Ž .2� s s s5.06.u 3�15y29 16

Since this value exceeds 3.84, the value of chi squared with one degree of
freedom needed for significance at the 0.05 level, the inference may be drawn
that the proportion of cases having the factor is larger than the proportion of
controls having it.

2 Ž .Note that � in 13.25 omits the continuity correction. Use of theu
Mantel-Haenszel 1 df chi squared procedure with continuity correction

Ž . 2 Žcomes to a slightly different conclusion; from 10.62 , � s 8 y 5cc
1 2. Ž .y r1.7778s3.516 ps0.06 . The matter may be settled by the exact2

Ž .two-tailed p-value by the point probability method ps0.054 : a result of
borderline significance.

The Mantel-Haenszel estimate of the assumed common odds ratio over
Ž .the N matched sets 1959, p. 736 is

N

my1 ByA y x n yxŽ . Ž . Ž .Ý i i i
is1os . 13.26Ž .N

Ay x n yxŽ .Ý i i i
is1

Ž .The quantity Ý x n yx is obtained by restricting attention to sets in whichi i i i
the case had the factor and simply adding the numbers of controls in those
sets who had the factor.

For the data of Table 13.9, only the first eight sets had cases with the
factor. The total number of controls in those eight sets with the factor is 6
w Ž .x Ž .sÝ x n yx , so that the estimated odds ratio in 13.26 isi i i i

2�8y6
os s10.0.7y6

An estimate of the variance of the logarithm of the Mantel-Haenszel
Ž .estimate of the common odds ratio � was given by 10.58 . That expression, a

� 4consistent estimate for Var ln o in matched samples, can be used to set
confidence intervals for ln � and �. For the data of Table 13.9, the terms in

1 2 1Ž . Ž . Ž . Ž .10.58 , R , S , P , Q , equal , 0, , for four sets sets 2 through 5 ;i i i i 3 3 3
2 1 1 2Ž . Ž . Ž . Ž ., 0, 1, 0 for three sets sets 6 through 8 ; and 0, , , for one set set 9 .3 3 3 3
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Matched sets 1 and 10 are uninformative and may be omitted from the
10 1calculations. Then RsÝ R s , SsÝ S s , and osRrSs10, as foundi i i i3 3

2 2 26 1 1 4Ž . Ž . Ž .above. Also Ý P R s4 q3 s ; Ý P S s ; Ý Q R s4 s ; andi i i i i i i i i9 3 9 9 9 9
2 Ž .Ý Q R s . Thus the estimated variance of ln o from 10.58 isi i i 9

1 26r9 5r9 2r9
q q s1.38,½ 52 100r9 10r9 1r9

'and the estimated standard error of ln o is 1.38 s1.1747. An approximate
Ž .95% confidence interval for ln � is ln o�1.96�1.1747s 0.000, 4.605 . Ex-

ponentiating, an approximate 95% confidence interval for � is
Ž . Ž .exp 0.000, exp 4.605 s 1.000, 100.0 . For comparison, an exact two-sided 95%

Ž .confidence interval for � by the point probability method is 1.000, 194.1 .
Ž .The equal-tail method gives 0.98, 394.1 . The uncertainty in the upper

endpoint reflects the sparse information in the eight informative triplets.
Ž .Miettinen 1970b presents an alternative method for estimating the odds

ratio in the case of matched sets by the method of maximum conditional
Ž .likelihood see Chapter 14 , and gives approximate expressions for the

standard error of the estimate. We note that the conditional maximum
likelihood estimator agrees with the Mantel-Haenszel estimator for 1-to-1
matching, but not for matched samples with m�2.

The assumption of a common odds ratio across all N matched sets may be
tested when m�2. Several tests of odds ratio homogeneity for matched

Ž . Ž .studies have been proposed. See Ejigou and McHugh 1984 , Gart 1985 ,
Ž . Ž . Ž .Liang and Self 1985 , Zelterman and Chen 1988 , Zelterman and Le 1991 ,

Ž .and Levin 1992 . See also Section 10.9.3. The power of these tests is usually
low unless the sample size is greater than 50 matched sets.

Power and sample size calculations for tests of association in matched
samples are discussed below in Section 13.5. In brief, the power of the chi

Ž .squared test based on 13.25 and the precision of the estimated odds ratio in
Ž .13.26 both increase as my1, the number of controls per case, increases.
The improvement in power and precision is usually trivial, however, as soon

Ž .as we get beyond three or four controls per case Miettinen, 1969; Ury, 1975 .
The search for five or more controls per case therefore usually represents
wasted effort.

13.4. THE COMPARISON OF MATCHED SAMPLES WITH
m DISTINCT TYPES

In Section 13.3 we considered the case where the my1 controls for each
case formed a homogeneous group. In this section we consider the compari-
son of m distinct types of matched subjects, but again restrict attention to the

Žsituation where only two outcomes are of interest see Koch and Reinfurt,
. Ž .1971, for the general case . We refer to the matched sets as triples ms3 ,

Ž .quadruples ms4 , or, in general, m-tuples.
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Table 13.10. Presentation of data from m matched samples

Sample

m-tuple 1 2 ��� m Total

1 X X ��� X S11 12 1m 1
2 X X ��� X S21 22 2m 2...
N X X ��� X SN1 N 2 N m N

Total: T T ��� T T1 2 m
Proportion: p p ��� p p1 2 m

The case being considered would arise in a comparative prospective study
in which, for example, a number of quadruples of subjects would be matched
on sex and age, under the restriction that one member did not smoke
cigarettes, another smoked between 1 and 10 cigarettes per day, a third
smoked between 11 and 20 cigarettes per day, and a fourth smoked 21 or
more cigarettes per day. The proportions of subjects from the four resulting
matched samples who develop a disease would then be compared using the
methods of this section. An example of a retrospective study with three

Žmatched samples lung cancer patients, other patients, and community con-
. Ž .trols is the study by Doll and Hill 1952 .

The methods of this section are also applicable to the results of a
controlled trial in which m�2 treatments are compared by grouping to-
gether a number of sets of m similar patients each and randomly assigning
the treatments to the patients within each matched m-tuple. The methods
are applicable, too, when each of a sample of subjects is studied under m
different conditions. An example is the comparison of the proportions
positive associated with m diagnostic tests, when each test is applied to each
patient in the sample.

Table 13.10 illustrates the presentation of the data resulting from the
study of m matched samples, with N observations in each sample. In Table

Ž . Ž13.10, each X is either 0 if the response is negative or 1 if the response is
.positive . Thus, for example, S represents the total number of positives from1

the first m-tuple, T represents the total number of positives from the first1
sample, and T represents the overall total number of positives.

Define

Tj
p s , 13.27Ž .j N

the proportion of subjects from the jth sample who were positive;

SnP s , 13.28Ž .n m
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the proportion of positives in the nth m-tuple; and

m N1 1 T
ps p s P s , 13.29Ž .Ý Ýj nm N Nm

js1 ns1

the overall proportion positive. Interest is in whether the proportions
Ž .p , . . . , p differ significantly. The following statistic, due to Cochran 1950 ,1 m

may be used to test for the significance of the differences among the m
proportions:

m
2

p ypŽ .Ý j
2 js1N my1Ž .

Qs � Nm 2Np 1yp y P ypŽ . Ž .Ý n
ns1

m
2 2m T yTÝ j

js1
s my1 � . 13.30Ž . Ž .N

2mTy SÝ n
ns1

Ž .The value of 13.30 may be referred to tables of chi squared with my1 df.
Problem 13.5 demonstrates that Q is also the generalized Mantel-Haens-
Ž .zel my1 df chi squared statistic for combining the evidence across the N

m-tuples when each m-tuple is viewed as a 2�m table with column margins
of 1, . . . , 1 and row margins of S and myS .n n

Ž .Consider the data of Table 13.11, originally reported by Fleiss 1965a .
The proportions p of patients judged to have religious preoccupations varyj

Ž .from a low of 0 to a high of 0.375. The value of Q 13.30 for testing whether
this variation can be attributed to chance or whether it represents real
differences among the raters is

8 12q02q ���q02q32 y152Ž .
Qs7� s14.71.2 2 2 28�15y 0 q1 q ���q0 q6Ž .

The validity of calculating Q for many ratings on the same subjects has been
Ž .established by Fleiss 1965b .

Referring to Table A.2 with my1s7 degrees of freedom, we find that Q
must exceed 14.07 in order for the variation to be declared significant at the
0.05 level. Since our obtained value of 14.71 exceeds the critical value, we
infer that the raters differ in their judgments of religious preoccupation.

Having found significant variation, our next step would be to try to identify
Žthose samples or groups of samples in our example, those raters or groups of

.raters that differed. A device that is frequently useful is to partition Q into
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Table 13.11. Judgments by eight raters as to presence or absence*
of religious preoccupations in eight patients

Rater Total
Ž .Patient 1 2 3 4 5 6 7 8 sSn

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 1
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 1 0 0 1 0 1 3
6 0 0 1 1 1 1 0 1 5
7 0 0 0 0 0 0 0 0 0
8 1 0 1 1 1 1 0 1 6

Ž . Ž .Total sT : 1 0 3 2 3 3 0 3 15 sTj
Proportion
Ž . Ž .sp : 0.125 0 0.375 0.250 0.375 0.375 0 0.375 0.234 spj

*1 or 0, respectively.

separate components, each of which measures a specified source of variabil-
ity. The general method for partitioning a chi squared statistic is described by

Ž .Everitt 1977, Chapter 3 . Here we illustrate the method for the statistic in
Ž .13.30 .

Suppose that the m samples represent two groups, with m samples in the1
first group and m in the second. In the first example given at the beginning2

Žof the section, one group consists of the single sample of nonsmokers so that
. Žm s1 and the other of the three samples of cigarette smokers so that1
.m s3 . Define2

m1

U s T 13.31Ž .Ý1 j
js1

as the total number of positives in the first group of samples, and

m

U s T 13.32Ž .Ý2 j
jsm q11

as the total number of positives in the second group. The statistic for testing
whether the proportion positive in the first group differs significantly from
that in the second is

2m U ym UŽ .my1 2 1 1 2Q s � . 13.33Ž .diff N 2m m mTyÝ S1 2 ns1 n

The statistic Q has 1 df.diff
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Consider again the data of Table 13.11. The first five raters were from
New York, and the last three were from Kentucky. They therefore form two
natural groups, one containing m s5 raters and the other m s3. It is1 2
reasonable to inquire whether the two groups of raters differ in their
judgments. The total number of positive ratings by the raters in the first
group is

U s1q0q3q2q3s9,1

and the total number of positive ratings by those in the second group is

U s3q0q3s6.2

Ž .The value of Q 13.33 isdiff

23�y5�67 Ž .
Q s � s0.09,diff 5�3 120y71

indicating a negligible difference between the New York raters as a group
and the Kentucky raters as a group.

The next step in the analysis would be to compare the m samples within1
group 1 by means of the statistic

m1
2 2m T yUÝ1 j 1

js1m my1Ž .
Q s � , 13.34Ž .group 1 Nm1 2mTy SÝ n

ns1

and to compare the m samples within group 2 by means of the statistic2

m
2 2m T yUÝ2 j 2

jsm q1m my1Ž . 1Q s � . 13.35Ž .group 2 Nm2 2mTy SÝ n
ns1

The statistic Q has m y1 df, and the statistic Q has m y1. Itgroup 1 1 group 2 2
may be checked that

QsQ qQ qQ .diff group 1 group 2

In addition, note that the three numbers of degrees of freedom for the Q
Ž . Ž .statistics of 13.33 � 13.35 , namely 1, m y1, and m y1, sum to m qm y1 2 1 2

Ž .1smy1, the number of degrees of freedom in the overall Q 13.30 .
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For the data of Table 13.11, the differences among the five New York
raters are assessed by

5 12q02q32q22q32 y928�7 Ž .
Q s � s7.77,group 1 5 120y71

which with 5y1s4 df fails to reach significance at the 0.05 level. The
differences among the three Kentucky raters are assessed by

3 32q02q32 y628�7 Ž .
Q s � s6.86,group 2 3 120y71

which with 3y1s2 df is significant at the 0.05 level. Note that

Q qQ qQ s0.09q7.77q6.86s14.72,diff group 1 group 2

which equals, except for rounding errors, the overall value of Q, 14.71.
Ž .Cochran 1950, p. 265 suggests a slightly different approach to the

partitioning of Q. Its effect is to reduce slightly the magnitudes of Qgroup 1
Ž .and of Q see also Tate and Brown, 1970 . The conclusions for the datagroup 2

of Table 13.11 are the same for both methods of partitioning: there are
differences among the judgments of the eight raters, arising essentially from
the variability among the three Kentucky raters.

On occasion, the m samples represent m separate levels of a quantita-
Žtively ordered variable e.g., average number of cigarettes smoked per day, as

.in the example described at the beginning of this section . Let x denote thej
Ž .value of this variable for the jth sample js1, . . . , m , and define

m

T x yxŽ .Ý j j
js1

bs , 13.36Ž .m
2

N x yxŽ .Ý j
js1

where

m1
xs x , 13.37Ž .Ý jm

js1

the mean value of x for these samples. The statistic b is the slope of the
straight line fitted to the data. It describes the average change in the rate of
occurrence of the event under study per unit change in x.
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The statistical significance of b may be assessed by referring the value of

m
22m my1 N x yxŽ . Ž .Ý j

js12 2� s b 13.38Ž .slope N
2mTy SÝ n

ns1

Žto the chi squared distribution with 1 df. If b is significant and positive or
. Žnegative , the inference would be that the proportions tend to increase or
.decrease with increasing values of x.

Suppose, contrary to fact and purely for illustrative purposes, that the
numerals used in Table 13.11 to denote the several raters represent their
numbers of years of experience. It might then be of interest to determine
whether the likelihood of judging the presence of religious preoccupation
varies systematically with length of experience. Note that x in Table 13.11 is

2Ž .equal to 4.5, and that Ý x yx is equal to 42.j
Ž .The slope of the straight line associating p with x is, by 13.36 ,

7.5
bs s0.02,8�42

indicating an average increase of 0.02 in the likelihood of judging the
presence of religious preoccupation for each additional year of experience.

Ž .The associated value of chi squared from 13.38 is

8�7�64�42 22� s 0.02 s1.23,Ž .slope 8�15y71

which is not significant by any reasonable standard. No tendency for the
proportions to vary systematically with length of experience can therefore be
asserted.

The test statistics presented in this section, like those presented in the
three preceding sections, are unaffected by the deletion of those m-tuples in
which either all m responses were positive or all m were negative. Berger

Ž . Ž .and Gold 1973 and Bhapkar and Somes 1977 have shown that the
distribution of Q in large samples under the hypothesis of equal underlying
probabilities is approximately chi squared with my1 df only if all pairwise

Ž .probabilities P X s1 and X s1 , i� j, are equal. Seeger and Gabriels-ni n j
Ž . Ž .son 1968 and Tate and Brown 1970 have studied the accuracy of the chi

squared approximation to the distribution of Q when this assumption holds
and when the sample sizes are small. It seems that the approximation is

Ž .adequate provided the product of the number of samples sm and the
number of m-tuples remaining after the deletion of those in which all
responses were the same is at least 24. For the data of Table 13.11, four
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Ž .patients numbers 1, 3, 4, and 7 were such that the ratings were identical.
Ž .The product of ms8 and the remaining number of patients s4 is 32,

indicating that the approximation was adequate.
Ž .A quite different approach from Cochran’s 1950 to the comparison of m

Ž .matched samples is due to Bennett 1967, 1968 . The reader is referred to his
Žtwo papers for the test statistics he derived more complicated than the Q

.statistic except when ms3�see Mantel and Fleiss, 1975 and for their
powers.

13.5. SAMPLE SIZE DETERMINATION FOR MATCHED SAMPLES

Power and sample size determination in pair-matched studies have been
Ž . Ž .discussed by Schlesselman 1982 , Parker and Bregman 1986 , Connett,

Ž . Ž . Ž .Smith, and McHugh 1987 , Dupont 1988 , Fleiss and Levin 1988 , Lachin
Ž . Ž .1992 , and Ejigou 1996 . In this section we follow the development of Fleiss

Ž .and Levin 1988 , who refine the method of Schlesselman and correct an
important oversight. The assumed study design is a pair-matched case-control
study, although the same formulas apply to prospective or experimental
matched pair designs as well. We indicate appropriate modifications at the
end of the section for matched sets with 1 : r matching.

The determination of the number of matched pairs begins as usual with
specification of an odds ratio worth detecting, say �� , at given levels of type I
error � and power 1y�. We assume �� �1, and that �� is so large that
the investigator would want the chance to be at least 1y� that the null
hypothesis H : �s1 would be rejected at level � if the true odds ratio �0
were �� or larger. The next step is to determine the number of discordant
pairs, m, that must be obtained, since the power of McNemar’s test depends
on how many informative pairs enter the analysis. Because that number is not
known precisely until after collection of the data, the final step in the sample
size determination is to estimate how many subjects pairs, M, to recruit in
order to produce the required number of informative pairs. It is important
not to overestimate the probability of discordance.

The number of discordant pairs, msbqc, required to achieve power
1y� in McNemar’s test can be found using the methods of Section 2.5.1 for
the single-sample binomial problem because, given m, b has a binomial

Ž .distribution with index m and probability Ps�r �q1 . The null hypothesis
1value of P is P s , and the alternative hypothesis value of P at which0 2

� � Ž � . Ž .power is to be 1y� is P s� r � q1 . An initial value of m call it md
is, ignoring the continuity correction, given by

22 � �� � '' z 1q� q2 z �z P Q qz P Q Ž .' ½ 5ž / �r2 ��r2 0 0 �
m s s . 13.39Ž .d 2 2� �P yP � y1Ž . Ž .0



13.5 SAMPLE SIZE DETERMINATION FOR MATCHED SAMPLES 395

McNemar’s test with continuity correction requires augmenting m tod

2
�m 4 � q1Ž .d�m s 1q 1q . 13.40Ž .�d (½ 54 m � y1Ž .d

A simple and excellent approximation is

2 ��q1Ž .�m fm q . 13.41Ž .�d d � y1

Ž .We illustrate with an example discussed by Schlesselman 1982, p. 162 , in
Žwhich it is required to achieve a power of 1y�s0.90 so that z s1.282�

� .when � s2 for a two-tailed McNemar test with a significance level of
Ž . Ž .�s0.05 so that z s1.96 . Formula 13.39 yields m s90.26 as the�r2 d

required number of discordant pairs, without continuity correction, and
Ž . � �13.40 yields m s96.17, close to the value m s96.26 produced by thed d

Ž .simpler formula 13.41 . Thus we need 97 discordant pairs. So far, so good.
Let the probability that a matched pair will be discordant be denoted by

p . If p were known, then the total number of pairs to be recruited would bed d
M�sm�rp , with the expectation that the number of discordant pairs willd d
be M� p sm� on average. In practice, one ought to augment M� in orderd d
to increase the likelihood that m will be at least m . For example, to insured
adequate power, one might augment M� by the multiplicative factor 1q

�Ž . �41r20.842 1yp rm , which allows an 80% chance that the number ofd d
� Ž .discordant pairs m would exceed m see Problem 13.6 . For simplicity, wed

will just use M�sm�rp in the discussion below.d d
The probability of discordance p depends fundamentally on the preva-d

lence of exposure, the odds ratio �, and the strength of the unconditional
association of the exposure status of a case with the exposure status of his or her
matched control. To be precise, let us introduce the following notation. Let p0
denote the marginal or overall proportion of control subjects expected to
have been exposed to the risk factor under study, and let p denote the1
marginal proportion of case subjects exposed. First suppose that the value of
p can be specified. Now assume for the moment that there is no association0
at all between the matching factors and exposure. Then p is also the0
constant within-pair probability of exposure for controls. The within-pair

Žproportion of cases exposed to the risk factor is also constant assuming the
.common odds ratio � , equal to p , and would equal, say,1

� p0�p s . 13.42Ž .1 1q �y1 pŽ . 0
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Then the the probability of discordance would be

�q1 p 1ypŽ . Ž .0 0� � �p sp 1yp qp 1yp s . 13.43Ž . Ž . Ž .d 0 1 1 0 1q �y1 pŽ . 0

However, if the matching has been effective, in the sense that the matching
variables are associated with exposure, as they ought to be as confounders,
then the within-pair probabilities of exposure vary, the overall proportion of
exposed cases is no longer equal to p� , and the use of p� for p results in an1 d d
underestimation of the required sample size M, no matter what the true

Ž .value of � is Parker and Bregman, 1986 . Variation in the within-pair
probabilities of exposure will be manifest in the marginal association of the
case exposures with the exposures of their matched controls; we need to
assess the strength of that association.

Ž .Let the marginal overall probabilities of exposure for the members of the
matched pairs in the underlying population be as follows:

Status of Control

Status of Case Exposed Not Exposed Total

Exposed u ® p1
Ž .Not exposed w x 1yp 13.441

Total p 1yp 10 0

A natural measure of the strength of association between the exposure status
of cases with matching controls is the odds ratio,

ux
	s . 13.45Ž .®w

It is important to understand the difference between the two odds ratios �
and 	 . The former measures the association between exposure status on the
one hand and disease development on the other. It is the parameter about
which the study is intended to provide information. The latter measures the
association between cases’ and matched controls’ exposure status. It reflects
the variation of exposure probabilities across matched pairs, i.e., how suc-
cessful the matching has been, and is thus a characteristic of the study design.

Ž .In the notation of 13.44 , the probability of discordance is p s®qw, thed
marginal probability of control exposure is p suqw, the marginal probabil-0
ity of case exposure is p suq®, and the common odds ratio is �s®rw1
Ž .see Problem 13.7 . With values of 	G1, the discordance probability is
given by

� �1q4 	y1 p q y1' Ž . 1 1�p sp , 13.46Ž .� �d d 2 	y1 p qŽ . 1 1
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� Ž . � Ž .where p is given by 13.42 and p is given by 13.43 . When the value of 	1 d
is close to 1, the value of p will be close to that of p�. For strongerd d

� Ž .association 	�1, p can be substantially smaller than p . Then 13.46d d
should be used in place of p� in determining the required number ofd
matched pairs: M�s m�rp .d d

Ž . Ž .Expressions 13.43 and 13.46 may be applied when the value of p , the0
marginal probability that a control is exposed, can be specified. When instead
the investigator can specify the value of p , the marginal probability that a1
case is exposed, the value of p corresponding to the odds ratio 	�1 isd

� �1q4 	y1 p q y1' Ž . 0 0��p sp , 13.47Ž .� �d d 2 	y1 p qŽ . 0 0

where
p1�p s 13.48Ž .0 1qq �y1Ž .1

and

�q1 p qŽ . 1 1��p s . 13.49Ž .d 1qq �y1Ž .1

Ž . Ž .Formulas 13.46 and 13.47 require a value for 	 . The best estimates
derive from prior evidence, of course. When such information is lacking,

Ž .however, one may use a conservative high value of 	 . A far from exhaustive
Ž .examination of the literature led Fleiss and Levin 1988 to suggest that

	s2.5 was among the largest odds ratios induced by matching in actual case
control studies; 	 rarely exceeded 3.

Ž .Continuing with the example, Schlesselman 1982 used m s90.26 andd
assumed a marginal exposure probability for controls of p s0.3, so that0

� 6 �p s . He then assumed, in effect, that 	s1, obtaining p s0.484 as the1 d13

discordance probability. Dividing p� into m , he obtained the value Msd d
90.26r0.4846s186.3, or 187 matched pairs. This value could be too small.
Assume that matching is on a set of strong confounders, such that the

Ž . �induced odds ratio is 	s2.5. Then 13.46 with �s� s2 yields the value
p s0.3759 as the probability of discordance; dividing this into m yieldsd d
Ms90.26r0.3759s240.1, or 241, almost 30% larger than Schlesselman’s
value. Using the continuity correction yields M�sm�rp s96.26r0.3759sd d

1256 as the required number of matched pairs, more than greater than 187.3

For studies with 1 : r matching of one case to r controls, Parker and
Ž .Bregman 1986 have shown that to an excellent approximation, the required

number N of matched sets can be obtained from M� as

rq1 �Ns M . 13.50Ž .2 r

The Mantel-Haenszel procedure would now be the test statistic.
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In the example, suppose that rs3 controls are to be matched to each
Žcase. Then the total number of matched sets required and therefore the

.total number of cases is

3q1
Ns 255.8f171,2�3

or Ns171 cases and 3Ns513 controls. The number of cases is reduced by
one-third, from 256 to 171, but the total sample size is increased also by
about one-third, from 2�256s512 to 4�171s684.

13.6. ADVANTAGES AND DISADVANTAGES OF MATCHING

In comparative prospective and retrospective studies, the matching of sub-
jects is usually employed to assure that the samples being contrasted are
similar with respect to characteristics associated with the factors being

Ž .studied see, e.g., Billewicz, 1965, and Miettinen, 1970a . The possible gain in
Žefficiency due to the study of matched samples i.e., increase in the power of

the test of significance and increase in the precision of the estimated degree
.of association therefore assumes lesser importance, but some results are

available.
Ž . Ž .Cochran 1950 and Worcester 1964 have shown that matching is not

guaranteed to increase efficiency. It can be expected to do so only when the
characteristics being matched on are strongly associated with the factors
under study. When the characteristics used for matching are only slightly or

Ž .not at all associated with the factors under study, Youkeles 1963 has shown
that efficiency may even be lost. When the number of matched sets exceeds
30, however, matching on irrelevant characteristics seems not to affect
efficiency.

In the context of controlled comparative trials with random assignment of
treatments to subjects, on the other hand, the purpose of matching is mainly

Ž .the increase of efficiency. Chase 1968 has shown that matching is at least as
Ž .efficient as no matching except for small sample sizes. Billewicz 1964, 1965 ,

however, has indicated that the increase in efficiency is frequently small and
may not be worth the effort involved in securing adequate matches.

He has shown how the length of time required to complete a study
increases either as the number of matching characteristics increases or as the
relative frequencies of some categories of the matching characteristics de-
crease. With too many matching characteristics, or with only a few but some
containing too many categories, the investigator may find a large proportion
of subjects left unmatched at the end of the study.

In view of the need to assure comparability in comparative prospective
and retrospective studies, matching or some other method of control for
biasing factors in these contexts is often necessary. In addition to matching,
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control may be effected by means of stratification or regression techniques
Ž .Cochran, 1968; Rubin, 1973; McKinlay, 1975a . When stratification is the
method adopted, the techniques presented in Chapter 10 are applicable.

Ž .McKinlay 1977 has critically analyzed matching for the control of un-
wanted sources of variation and cites as its major advantages its easy
understandability and the relative simplicity of the analysis of the resulting
data. Its major disadvantages include the possibly excessive costs associated
both with finding matches and with discarding subjects who could not be
matched, and the likely failure to detect interaction, the phenomenon in
which the magnitude of the difference or association varies across different

Ž .subgroups. McKinlay 1975b, 1977 also points out that whereas matching
may well yield greater precision than designs that do not control for sources
of bias, it does not necessarily yield greater precision than other designs in

Ž .which control is attempted. Rosenbaum 1987, 1991 considers sensitivity
analyses for matched case-control studies and examines the influence of an
unobserved confounder on inference.

It may be that an investigator nevertheless decides to employ matching
instead of another method for control of biasing factors in a comparative
prospective or retrospective study. In studies of hospitalized patients, for
example, matching on the date of hospitalization is probably the best method
for control of the effect of an epidemic. Matching should, however, be on a

Žsmall number of characteristics rarely more than four and preferably no
. Žmore than two , with each defined by a small number of categories with

.respect to age, e.g., matching by 10-year intervals should frequently suffice .
If the investigator insists on controlling for a large number of biasing factors
simultaneously, multivariate methods such as those proposed by Althouser

Ž . Ž .and Rubin 1970 and Rosenbaum and Rubin 1983, 1984, 1985a, and 1985b
may have to be used.

Once matching is employed in the design of a study, it should be taken
Ž .into account in the analysis Breslow and Day, 1980 . If the matching is

ignored in a matched pairs study with binary outcomes, and the odds ratio
estimated from the pooled fourfold table, serious bias may result unless

Ž . Ž .�s1. Liang and Zeger 1988 and Kalish 1990 proposed estimators that
are weighted averages of the pooled odds ratio and the Mantel-Haenszel
estimator, in an attempt to reduce the overall mean squared error. Levin
Ž .1997 provides a lower bound for the Mantel-Haenszel chi squared statistic
based on the pooled chi squared statistic in 1-to-r matched samples. This is
useful when the proper presentation of the matched sample data is unavail-
able. Specifically, Levin shows that

r2 2� G � ,MH pooledrq1

where � 2 is the proper Mantel-Haenszel statistic to use for one caseMH
matched to rsmy1 controls, and where � 2 is the ordinary chi squaredpooled
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statistic one would use if the data were collapsed into a single 2�2 table
Žcross-classifying case-control status by exposure status an incorrect statistic

. 2 Ž . Ž .to use for matched sets . Thus if � is at least rq1 rrsmr my1pooled
times the required critical value to declare significance at any given level,
then the appropriate � 2 would also reject H .MH 0

PROBLEMS

13.1. Consider the hypothetical data of Table 13.6. Do the two diagnosticians
differ significantly in the proportions of patients they diagnose as

waffectively ill? as other? Hint. Be sure to refer the value of McNemar’s
xstatistic to the critical value of chi squared with 2 df.

13.2. Consider the hypothetical data of Table 13.8.
( ) Ž .a What is the value of the Stuart-Maxwell statistic given in 13.19 ?

Does the outcome distribution of patients given the new treatment
differ significantly from that of patients given the standard treat-
ment?

( )b What are the values of d , d , and d yd ? What does the sign of1 3 1 3
d yd suggest about the direction of the difference between the1 3

Ž .two treatments? What is the value of the test statistic in 13.20 ? Is
the new treatment significantly better than the standard?

13.3. When not corrected for continuity, McNemar’s chi squared statistic is
given by

2bycŽ .2� s .u bqc

2 Ž .Prove that, when ms2, the expression for � given by 13.25 is equalu
2 wto that of � above. Hint. Refer to Table 13.1 for notation. Prove that,u

Ž . Ž .when ms2, A 13.21 equals aqb, B 13.22 equals 2 aqbqc, and
2 xÝ n equals 4aqbqc.i i

Ž .13.4. Prove that, when ms2, the value of Q given by 13.30 is equal to that
2 wof � . Hint. Prove that, when ms2, one has T saqc, T saqb,u 1 2

2 xTs2 aqbqc, and Ý S s4aqbqc.n n

13.5. Each row of Table 13.10 represents the first row of a 2�m table with
column margins equal to 1. For example, patient 8 in Table 13.11
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represents the 2�8 table

Rater

1 2 3 4 5 6 7 8 Total

Religious Present 1 0 1 1 1 1 0 1 6
preoccupation Absent 0 1 0 0 0 0 1 0 2

Total 1 1 1 1 1 1 1 1 8

The generalized Mantel-Haenszel procedure is used to combine the
evidence across the N 2�m tables. The basic idea is to sum the

Ž .�multiple hypergeometric vectors X s X , . . . , X for ns1, . . . , N,n n1 nm
subtract the sum of their conditional expectations given all margins

Ž .�fixed under H , S rm, . . . , S rm , and note that the resulting vector0 n n

�N N �S S T Tn nX y ,���, X y s T y ,���, T yÝ Ýn1 nm 1 mž /ž / ž /m m m mž /
ns1 ns1

is distributed approximately as a multivariate normal vector with mean
Ž .0, . . . , 0 � and covariance matrix

1° ¶
mN .S mySŽ .n n 1 1 1 1~ •.Diag ,���, y ,���, .Ž .Ý m m m m.my1

ns1 1¢ ß
m

Equivalently, the vector

�m my1 T TŽ .
Us T y ,���, T y1 mN ž /( m mÝ S mySŽ .ns1 n n

Ž .�has an approximately normal distribution with mean 0, . . . , 0 and
covariance matrix

�Cov U sIy p p ,Ž . ' '
�Ž .where I is the m�m identity matrix, ps 1rm, . . . , 1rm , and p s'

�' 'Ž .1r m , . . . , 1r m .
( )a Show that if p is any nonnegative vector with Ý p s1 and p s'i i

�Ž .p , . . . , p and U has a multivariate normal distribution with' '1 m
� �Ž .mean 0 and covariance matrix Iy p p , U�N 0, Iy p p ,' ' ' 'm

then U �UsÝ U 2 � � 2 , the chi squared distribution withi i my1
my1 df.
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( ) Ž .� � 2b Show that with ps 1rm, . . . , 1rm , one has U UsÝ U sQ.i i
wHint:

m m2T 2 2T y m T yTÝ Ýj jž /m
js1 js1� xU Usm my1 s my1 sQŽ . Ž . .N N

2S myS mTy SŽ .Ý Ýn n n
ns1 ns1

Ž � . w x13.6. Let m�Bin M , p . Show that for the event mGm to occur withd d
probability at least 1y� , M� should be chosen to satisfy the inequality
Ž .ignoring continuity correction

1r2� �M p yz M p q Gm .Ž .d � d d d

Ž � .1r2This is a quadratic equation in M , whose solution is

22z q 4m� d d�M G 1q 1q .2(4 p ž /q zd d �

Expand the square and ignore terms of order smaller than m1r2 tod
Ž � .� Ž .1r2 4derive the augmented number of pairs m rp 1q z q rm thatd d � d d

will give at least m discordant pairs with probability 1y�.d

Ž .13.7. Suppose that given probabilities P , P , a case exposure has probabil-i1 i0
Ž .ity P , namely, X �Bin 1, P , the matched control exposure hasi1 i1 i1

Ž . Ž .probability P , such that, X �Bin 1, P , and that given P , P , Xi0 i0 i0 i1 i0 i1
and X are conditionally independent. Assume that the probabilitiesi0

Ž . Ž .have a constant odds ratio with P rQ r P rQ s�, but that Pi1 i1 i0 i0 i0
has an arbitrary and unknown distribution in the population of con-
trols. Prove the following assertions:
( )a The marginal covariance of X and X equals the covariancei1 i0

w Ž .between P and P . Hint. Use the identity Cov X , X si1 i0 i1 i0
� Ž � .4 � Ž � . Ž � .4 xE Cov X , X P , P qCov E X P , E X P .i1 i0 i1 i0 i1 i1 i0 i0

( ) Žb The odds ratio � equals the quantity ®rw, where ®sP X s1,i1
.X s0 is the marginal proportion of matched pairs with exposedi0

Ž .case and unexposed control, and where wsP X s0, X s1 isi1 i0
the marginal proportion of matched pairs with unexposed case and
exposed control. This result gives another proof of the consistency

wof the odds ratio estimator brc for matched pairs. Hint. In
general, for any joint distribution of two random probabilities
Ž .P , P , show that the conditional expected value of the odds ratio1 0
Ž . Ž . Ž . Ž .P rQ r P rQ given that X , X s 0, 1 is equal to the ratio1 1 0 0 1 0
®rw. Under the assumption of a constant odds ratio �, the condi-

Ž . Ž . xtional expectation in the subgroup with X , X s 0, 1 is still �.1 0
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Regression Models for
Matched Samples

The previous chapter presented the analysis of matched data in the case of a
single risk factor. This chapter presents analytic methods for matched studies
with multiple risk factors of interest. We consider matched sample designs of

Ž . Žtwo types, prospective cohort or randomized and retrospective case-
.control studies. In the simplest nontrivial case, we have a single binary

exposure variable, X, a single binary disease indicator, Y, and a potent
confounder, Z, such as age, upon which the samples are matched. In

Ž .pair-matched prospective studies, we match one exposed subject Xs1 and
Ž .one unexposed subject Xs0 on Z, and then follow them to observe Y. In

Ž .pair-matched case-control studies, we match one case Ys1 and one
Ž .control Ys0 on Z, and then observe the antecedent risk factor X.

Matching guarantees balance in Z between exposed and unexposed in
prospective studies, and between cases and controls in retrospective studies.

Ž .When there are multiple risk factors Xs X , X , X , . . . , we must de-1 2 3
cide how many exposure groups will be matched in a prospective study, and
which factors will remain uncontrolled. For example, with two binary risk

Ž .factors, Xs X , X , a prospective study could match pairs of subjects1 2
exposed or unexposed to X on Z, leaving X to covary in an uncontrolled1 2

Žmanner with X and Z. This is essentially the strategy of a randomized trial1
.with randomization within matched pairs. To gain more detailed informa-

tion, the prospective study could be designed to match four samples�
Ž . Ž . Ž . Ž . Ž .X , X s 1, 1 , 1, 0 , 0, 1 , and 0, 0 �on Z and then use the methods of1 2
Section 13.4 for quadruplet data. In retrospective studies, we do not have to

Ž .decide which exposure variables will be matched on Z because none are ,

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
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but we must deal with the multivariate response variable X and its relation-
Ž .ship to Y. When there are polytomous disease states Ys Y , Y , Y , . . . , the1 2 3

design and analysis considerations become more complex because the rela-
Ž . Ž .tions between X , X , X , . . . and Y , Y , Y , . . . multiply.1 2 3 1 2 3

Regardless of the number of elements in X and Y, some general remarks
Ž � .hold true. Prospective studies provide direct estimates of P Y X, Z , the

joint conditional distribution of disease status Y given risk factors X and
matching factors Z; the effect of Z on X cannot be estimated. Retrospective

Ž � .studies provide direct estimates of P X Y, Z , the joint distribution of the
risk factors given disease status and matching factors; the effect of Z on Y
cannot be estimated.

In a prospective matched-sample study, we can occasionally model
Ž � .P Y X, Z parametrically by accounting explicitly for the effect of Z on Y in

a logistic regression model. In this case, the analytic methods of Chapter 11
apply. When matching variables are not readily quantifiable, explicit para-
metric modeling is not feasible. Examples include matching on identical twins

Žreared separately or matching on self e.g., pre- and posttreatment observa-
.tions on the same individual , wherein the matching device controls a large

number of factors. If we try to model the dependence of Y on Z nonpara-
metrically, by estimating separate parameters for each matched set, then the
number of unknown parameters increases in proportion to the sample size,

Žrendering maximum likelihood estimation inconsistent Andersen, 1970, 1973;
.Neyman and Scott, 1948 . Conditional logistic regression, the primary focus of

this chapter, provides a solution to this dilemma: conditioning eliminates the
nuisance parameters for both quantifiable and unquantifiable matching fac-
tors from the likelihood function, so that estimation of the odds ratio of
interest becomes consistent.

In a retrospective matched-sample study, we can occasionally model
Ž � .P X Y, Z parametrically by accounting explicitly for the effect of Z on X.

When X is a single binary exposure variable of primary interest, we can fit a
logistic regression model for X, using the case-control indicator Y as an
explanatory factor, together with the matching factors and other covariates.

Ž .This approach is discussed by Prentice 1976 . As long as the model for X is
correctly specified, the coefficient of Y is a consistent estimate of the
disease-exposure log odds ratio, thanks to the invariance property of the odds
ratio. Multiple exposure variables require multivariate regression models to

Ž .fit the vector X as dependent variables. See also Section 15.5. If a
parametric model for the matching variables is unavailable, we can specify
nonparametric indicators for the matched sets. Neyman-Scott inconsistency
of the unconditional maximum likelihood estimates leads again to the use of
conditional logistic regression. This approach was popularized for case-

Ž .control studies by Holford, White, and Kelsey 1978 , Pike, Hill, and Smith
Ž . Ž .1980 , and Breslow and Day 1980 .

Additional biases arise from attempts to use parametric logistic regression
Ž � .models for P Y X, Z with data collected retrospectively in matched samples,
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Ž � .or for P X Y, Z with data collected prospectively in matched samples.
These issues are discussed in Section 14.1. Section 14.2 describes conditional
likelihood analysis for 1 : 1 or 1 : k matched samples, and Section 14.3
describes the general case for matched samples including polytomous out-
comes. An illustration of matched-sample case-control analysis is presented
in Section 14.4, and further topics are discussed in Section 14.5.

14.1. DIRECT AND INDIRECT PARAMETRIC MODELING OF
MATCHED-SAMPLE DATA

To motivate the discussion of this section, we pose the following question: Is
it valid to analyze data from a matched case-control study as if they had been
collected prospectively, that is, to ignore the retrospective design and to fit a

Ž � .parametric logistic regression model for P Y X, Z to estimate the disease-
exposure log odds ratio? There is strong interest in doing so, because it is
natural to think about disease etiology in terms of the parameters of a model

Ž � . Ž � .for P Y X, Z . Also, as indicated above, models for P X Y,Z , the directly
estimable quantity from a retrospective study, require multivariate methods
for risk factors in several dimensions and formats, so it is generally much
simpler to fit a single multiple logistic regression model with a prospective
specification, using the case-control indicator Y as if it were the observed
outcome.

Ž .In unmatched case-control studies, Prentice and Pyke 1979 , Farewell
Ž . Ž .1979 , Carroll, Wang, and Wang 1995 , and others have shown that using
logistic regression as if the data had been collected prospectively provides
consistent estimates of, and standard errors for, all coefficients except the
intercept term, assuming a correctly specified population disease prevalence
model and unbiased sampling for cases and controls. It is surprising to learn,
therefore, that no such justification holds for pair-matched case-control
studies, where the intention is to model the case-control indicator logistically
as an explicit, parametric function of the risk factors X and the matching
factors Z, e®en if the chosen model is a correct specification of true disease

Ž .pre®alence in the population. Levin and Paik 2001 show that such an analysis
may lead to biased log odds ratio estimates and, worse, grossly misleading
coefficients for other terms in the model. They also map out situations where
the bias is negligible or extreme. We discuss this problem in more detail in
the rest of this section. We hasten to add that the conditional logistic
regression methods discussed in Section 14.2 do not suffer from this potential
bias, a strong recommendation for their use.

In matched-sample prospective studies, we observe disease outcome Y for
Ž � .given instances of X and Z, so we can directly estimate P Y X, Z . Hence-

forth we assume that the linear logistic disease prevalence model,

�P Ys1 X , ZŽ .
ln s� Xqg Z , 14.1Ž . Ž .�P Ys0 X , ZŽ .
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is valid in the population from which cases and controls are drawn. When
Ž . Ž .g Z is of a known functional form, for example, g Z s�q� Z, a standard

logistic regression model estimates � consistently using the methods of
Ž .Chapter 11. Lynn and McCulloch 1992 discuss the bias introduced by

partially omitting relevant matching factors from a logistic regression model
in the context of a prospective matched-pairs study. When the matching

Ž .factors are quantifiable but g Z is of unknown functional form, Hastie and
Ž . Ž .Tibshirani 1990 and Severini and Staniswalis 1994 consider semiparamet-

ric regression models. Direct modeling approaches apply to both matched
and unmatched designs, so no distinction need be made between them.

To avoid biased sampling in a matched-sample prospective study, the
probability of selection into the study, either as an exposed or as an
unexposed participant, must not depend on Y given X and Z. Often
selection occurs even before outcome Y can be observed. Bias can occur if
subjects with markers that correlate with future Y are differentially sampled
from those exposed versus unexposed. Randomization in experimental stud-
ies avoids biased sampling.

In matched-sample retrospective studies, we observe antecedent risk fac-
tors X for given instances of Y and Z. We now make the role of selection

w xexplicit by introducing the selection indicator S: the event Ss1 denotes
selection and inclusion in the case-control study. We make S explicit because

Ž .cases and controls are not selected by random sampling from 14.1 as in the
prospective design. The proper likelihood function for the retrospective
design is a product of conditional densities for X given Y, Z, and Ss1,

Ž � .denoted by f X Y, Z, Ss1 . To avoid biased sampling, the selection indica-
tor must be conditionally independent of X given Y and Z, that is,

� �P Ss1 X , Y , Z sP Ss1 Y , Z . 14.2Ž . Ž . Ž .

For example, if subjects having the same Y and Z are equally likely to be
selected into the case-control sample, the sampling is unbiased. With unbi-
ased sampling, we have, by Bayes’ theorem,

� �P Ss1 X , Y , Z � f X Y , ZŽ . Ž .
� �f X Y , Z, Ss1 s s f X Y , Z . 14.3Ž . Ž . Ž .�P Ss1 Y , ZŽ .

In particular, if X is a single binary variable, by the invariance of the odds
ratio,

� �f Xs1 Ys1, Z rf Xs0 Ys1, ZŽ . Ž .
� �f Xs1 Ys0, Z rf Xs0 Ys0, ZŽ . Ž .

� �P Ys1 Xs1, Z rP Ys0 Xs1, ZŽ . Ž .
s , 14.4Ž .� �P Ys1 Xs0, Z rP Ys0 Xs0, ZŽ . Ž .
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so it is possible to estimate the odds ratio of interest on the right-hand side of
Ž . Ž � . Ž � . Ž .14.4 by modeling f X Y, Z, Ss1 s f X Y, Z Prentice, 1976 . For exam-
ple, if we assume the model

�f Xs1 Y , ZŽ . �ln s� Yqh ZŽ .�f Xs0 Y , ZŽ .

Ž . Ž . � Ž .for some function h Z , then 14.4 implies � s� in 14.1 . Note, however,
Ž . Ž . Ž .that if g Z in 14.1 is linear and Z is continuous, h Z will generally be

Ž .nonlinear, and conversely. Only if Z is discrete and h Z is saturated with
parameters will the two models be mutually consistent. See Section 15.5 for
cases in which X is a vector of binary exposure variables or a vector of
continuous and categorical variables.

As an alternative to direct modeling, we can express the likelihood
Ž .function in terms of the disease prevalence model 14.1 via

� �P Y X , Z, Ss1 f X Z, Ss1Ž . Ž .
�f X Y , Z, Ss1 s . 14.5Ž . Ž .�P Y Z, Ss1Ž .

Ž . Ž � .In 14.5 , f X Z, Ss1 denotes the marginal distribution in the sample of
the risk factors X for given matching factors Z. It can be estimated
empirically from the data in the sample, without reference to any model, and,

Ž .as Prentice and Pyke 1979 demonstrate for unmatched samples, estimating
Ž � .f X Z, Ss1 from the empirical distribution without any constraints inde-

pendently maximizes that portion of the likelihood function based on prod-
Ž � . Ž .ucts of f X Y, Z, Ss1 . The term in the denominator of 14.5 is a constant

1Ž � .depending on the matched-sample design, for example, P Y Z, Ss1 s for2
Ž .matched pairs. Therefore, instead of modeling the left-hand side of 14.5 ,

Ž � . Ž .one could choose to model P Y X, Z, Ss1 on the right-hand side of 14.5 ,
which we call indirect modeling with prospecti®e analysis, or simply prospecti®e
analysis, for the retrospective design. Whatever parameters maximize the

Ž � .likelihood function based on products of P Y X, Z, Ss1 also maximize the
Ž .likelihood function based on products of 14.5 .

Ž . Ž � .One should note that while 14.3 is true, generally P Y X, Z, Ss1 �
Ž � . Ž � .P Y X, Z . P Ys1 X, Z, Ss1 is the probability that a given subject in the

Ž .sample with X, Z is a case. With indirect modeling, we can estimate the
Ž � . Ž . Ž � .parameters of P Y X, Z, Ss1 , but model 14.1 for P Y X, Z is the object

of interest. The difference between the two will become apparent below.
Suppose, for a single risk factor X and single quantitative matching factor

Z, that the following linear logistic disease prevalence model is valid in the
population from which cases and controls are drawn:

�P Ys1 X , ZŽ .
ln s�q� Xq� Z, 14.6Ž .�P Ys0 X , ZŽ .
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Ž .so that g Z s�q� Z. Coefficient � provides the increase in log odds on
disease per unit increment in Z. We emphasize that, because we are

Ž .assuming model 14.6 is valid, any inconsistency in the estimation of �
demonstrated below does not arise from misspecification of the true model

Ž � . Ž � .for disease prevalence. The relation between P Y X, Z, Ss1 and P Y X, Z
is given by

� � �P Ys1 X , Z, Ss1 P Ys1 X , Z P Ss1 Ys1, ZŽ . Ž . Ž .
ln s ln q ln

� � �P Ys0 X , Z, Ss1 P Ys0 X , Z P Ss1 Ys0, ZŽ . Ž . Ž .
� �P Ys1 X , Z P Ys1 ZŽ . Ž .

s ln y ln ,
� �P Ys0 X , Z P Ys0 ZŽ . Ž .

Ž � . Ž �where the last equality follows because P Ys1 Z, Ss1 sP Ys0 Z,
1. Ž .Ss1 s in the pair-matched design see Problem 14.3 . To simplify the2

notation, denote the logarithm of the ratio of selection probabilities for cases
and controls by

� �P Ss1 Ys1, Z P Ys1 ZŽ . Ž .�� Z s ln syln ,Ž . � �P Ss1 Ys0, Z P Ys0 ZŽ . Ž .

and let

g� Z s�q� Zq�� Z .Ž . Ž .

Then we have

�P Ys1 X , Z, Ss1Ž . � �ln saq� Xq� Zq� Z s� Xqg Z . 14.7Ž . Ž . Ž .�P Ys0 X , Z, Ss1Ž .

Ž � .Note that the logit of P Y X, Z, Ss1 is still linear in X, but the functional
Ž . Ž . � Ž . Ž .forms of g Z in 14.6 and g Z in 14.7 are different. Even though

Ž . � Ž .g Z s�q�Z is linear, g Z is generally nonlinear because the marginal
Ž � . � Ž . wprobabilities P Y Z involved in � Z which are obtained by integrating

Ž � . Ž .P Y X, Z from 14.6 with respect to the marginal distribution of X given
xZ do not preserve the linear logistic form. Consequently, if we use a linear

� Ž . � Ž . � �prospective specification for g Z , such as g Z s� q� Z, the coeffi-
Ž .cients, including � , are estimated with bias because the indirect model 14.7

is misspecified in Z.
We can be more explicit when X is a binary risk factor. In that case we

have

� �qg ŽZ . dŽZ . g ŽZ .� 4P Xs0 Ys1, Z 1qe qe 1qeŽ .�g Z s ln s ln ,Ž . �qg ŽZ . �qd ŽZ . g ŽZ .�P Xs0 Ys0, ZŽ . � 41qe qe 1qe

Ž . � Ž � . Ž � .4where d Z s ln P Xs1 Z rP Xs0 Z is the population log odds on
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Ž . Ž . Ž .exposure given Z see Problem 14.4 . Even if g Z and d Z are both linear
� Ž .functions, g Z generally is not, so � will not be estimated consistently.

Ž . � Ž � . ŽNote that by 14.7 , when one models ln P Ys1 X, Z, Ss1 rP Ys
� .40 X, Z, Ss1 as a function of X and Z, to avoid bias we must essentially

model the log-likelihood ratio for Xs0 comparing Ys1 with Ys0 as a
nonlinear function of Z.

Ž � . Ž � .In unmatched retrospective studies, because P Y X and P Y X, Ss1
� � Ž � . Ž � .4differ only by the constant � s ln P Ss1 Ys1 rP Ss1 Ys0 , model

misspecification does not occur. That is why the estimate of � by indirect
modeling with prospective analysis is consistent in unmatched case-control
studies. Misspecification, however, is the key reason that prospective model-
ing for matched case-control studies provides inconsistent estimates. The

Ž .regression coefficient � for Z in 14.6 cannot be estimated sensibly in a
matched-pairs design, so the coefficient � � estimated in the misspecified

� Ž . � � �model � Xqg Z s� q� Xq� Z leads to misinterpretation. It is typical
for the estimate of � � to be of the wrong magnitude and even the wrong sign.

Ž .Gail, Wieand, and Piantadosi 1984 study the general biasing effects of
model misspecification on logistic regression coefficients.

As an illustration, consider the hypothetical data in Table 14.1 from a
case-control study with close pair matching on age, assumed to be a strong
confounding factor for the association between binary risk factor X and
disease Y. Large sample sizes have been chosen to distance the discussion
from issues of sampling variation. The data were constructed according to the
following assumptions:

( )i The sample design calls for matched case-control pairs of equal
sample sizes from four age groups, 30, 40, 60, and 70 years of age; defining

Ž .Zs agey50 r10, Z takes on the four values y2, y1, q1, and q2. We
omit the central age group Zs0 in order to make a point below.

( )ii In the population, the risk factor X is strongly correlated with Z
according to the logistic model

�P Xs1 ZŽ .
ln s3Z.

�P Xs0 ZŽ .

Thus, in the population, the prevalence of X at ages 30, 40, 60, and 70 is
0.25%, 4.74%, 95.26%, and 99.75%, respectively.

( )iii The prevalence of disease in the population given coded age Z and
exposure to X follows the logistic model

�P Ys1 X , ZŽ .
ln sXq3Z,

�P Ys0 X , ZŽ .

Ž .with true coefficients �s0, �s1, and �s3 in 14.6 . The disease preva-
lence in the population among the unexposed in the four age groups is
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Table 14.1. Hypothetical data from a matched-pairs case-control study
[The left-hand panel reports data in the standard format for matched pairs.
The right-hand panel reports data in a format suitable for input to the

( )]prospecti©e logistic regression model 14.6

NumberAge
Ž .years Z X Ys1 Ys0 Total

30 Control

Exp’d Unexp’d Total

Exp’d 0 7 7 y2 1 7 2 9Case Unexp’d 2 991 993 y2 0 993 998 1991

Total 2 998 1000 1000 1000 2000

40 Control

Exp’d Unexp’d Total

Exp’d 4 106 110 y1 1 110 44 154Case Unexp’d 40 850 890 y1 0 890 956 1846

Total 44 956 1000 1000 1000 2000

60 Control

Exp’d Unexp’d Total

Exp’d 843 111 954 q1 1 954 884 1838Case Unexp’d 41 5 46 q1 0 46 116 162

Total 884 116 1000 1000 1000 2000

70 Control

Exp’d Unexp’d Total

Exp’d 991 7 998 q2 1 998 993 1991Case Unexp’d 2 0 2 q2 0 2 7 9

Total 993 7 1000 1000 1000 2000
$

Ž . � Ž .4bs231, cs85, brcs2.718, ln brc s1.000, se ln brc s0.127.

Ž0.25%, 4.74%, 95.26%, and 99.75%, respectively the same as the marginal
.prevalence of X only because the two models happen to be the same ;

among the exposed, the disease prevalence is 0.67%, 11.92%, 98.20%, and
99.91%. The odds ratio on disease versus no disease comparing exposed and
unexposed is equal to e �s2.718 for each age group.

Ž . Ž .Assumptions ii and iii completely determine the joint distribution of X
and Y in the population at each age. The joint probabilities of exposure in
the matched case-control pairs for the example were then obtained under
conditional independence of the case and control exposures within matched
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pairs,

� � �P X , X Y s1, Y s0, Z sP X Y s1, Z �P X Y s0, Z ,Ž . Ž . Ž .1 2 1 2 1 1 2 2

and, by Bayes’ theorem, the individual factors are obtained from

� � �P X s1 Y s0, Z P Y s0 X s1, Z P X s1 ZŽ . Ž . Ž .2 2 2 2 2ln s ln q ln
� � �P X s0 Y s0, Z P Y s0 X s0, Z P X s0 ZŽ . Ž . Ž .2 2 2 2 2

1qexp 3ZŽ .
s ln q3Z½ 51qexp 1q3ZŽ .

and, by invariance of the odds ratio, from

� �P X s1 Y s1, Z P Xs1 Ys0, ZŽ . Ž .1 1ln s ln q�
�� P Xs0 Ys0, ZŽ .P X s0 Y s1, ZŽ .1 1

1qexp 3ZŽ .
s ln q3Zq1½ 51qexp 1q3ZŽ .

Ž . Ž �see Problem 14.4 . For cases, the equation yields probabilities P Xs1 Ys
.1, Z s0.0067, 0.1112, 0.9539, and 0.9975 for Zsy2, y1, q1, and q2,

Ž � .respectively, and P Xs1 Ys0, Z s0.0025, 0.0440, 0.8840, and 0.9933,
Ž . Ž . Ž .respectively, for controls. The frequency of outcomes X , X s 1,1 , 1,0 ,1 2

Ž . Ž .0,1 , and 0,0 at each age were set approximately equal to their expectations
Žin samples of size 1000 pairs per age group, namely, 1000 times P X sx ,1 1

� .X sx Y s1, Y s0, Z .2 2 1 2
The left-hand panel of Table 14.1 allows the data to be analyzed in the

Ž .correct conditional way. There are bs231 pairs in which the case is
exposed but not the control, and cs85 pairs in which the control is exposed
but not the case. For matched pairs, the conditional maximum likelihood

Ž . Ž .estimate cmle of exp � is the same as the Mantel-Haenszel estimate of
Ž .the odds ratio, and equals brcs231r85s2.718, with ln brc s1.000, in

perfect agreement with the correct parameter value �s1.
The right-hand panel of Table 14.1 reports data in a format suitable for

Ž .input to a prospective logistic regression analysis using model 14.6 . The
results of fitting the prospective model are given in Table 14.2. The prospec-

Table 14.2. Results of fitting the logistic regression model logit
� � �( � )P Y X , Z, Ss1 s� �� X�� Z to the data of Table 14.1

from a matched-pairs case-control study

Variable Coeff. mle se Z
�Constant � y0.3656 0.0555 y6.58
�Xsexposure � 0.7327 0.1018 7.20
�Ž .Zs agey50 r10 � y0.2072 0.0321 y6.45
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Ž . Žtive-analysis estimate of � 0.7327 is seriously biased the true value equals
. Ž . Ž1 , and the estimate of � y0.2072 is of the wrong magnitude and sign the

.true value equals q3.0 . The estimated standard error of the cmle, 0.127, is
slightly larger than the standard error of the prospective estimate of � , 0.102,
but, of course, the bias in the prospective estimate precludes its use.

Prospective analyses of pair-matched case-control data are published from
Žtime to time in leading medical journals Jacobs et al., 1999; Marshall et al.,

.1997; Nuako et al., 1998; London et al., 1992 . Ironically, prospective model-
ing in retrospective matched designs often produces estimates for the dis-

Žease-exposure odds ratio � that are numerically close to the cmle’s Marshall
. Ž .et al., 1997; London et al., 1992 . Breslow and Day 1980, p. 270 deemed this

Ž .phenomenon ‘‘of considerable theoretical interest.’’ Levin and Paik 2001
quantify the bias of prospective analysis for matched pairs of cases and
controls, identify situations in which the bias is large, and explain the
‘‘unreasonable effectiveness’’ of the method in cases where the bias is small.
In the illustration, for example, they show that if the design calls for three
groups at ages Zsy1, 0, and q1, with equal sample sizes of matched pairs,
as the sample size grows the limiting mle of � is 0.9986�bias is negligible.
With five groups of equal size at ages Zsy2, y1, 0, q1, and q2, the
limiting mle of � is 0.8770�bias is moderate. With seven groups of equal
size at ages Zsy3,y2,y1, 0,q1,q2,q3, the limiting mle of � is 0.7305.
Omitting the central age group in the last scenario produces a limiting mle of
0.5065 with severe bias. The shape of the distribution of age in the design
also affects the bias: a U-shaped distribution for Z increases bias, relative to

Ža uniform distribution which was why we omitted Zs0 in the starting
.illustration , while a unimodal distribution tends to decrease bias. All these

assertions can be explained by the approximate linearity or nonlinearity of
� Ž . � Ž .g Z . In the starting example, g Z is markedly nonlinear. If Z has a

Ž . � Ž .normal distribution, results of Zeger et al. 1988 show that g Z is
approximately linear.

Because of the potential for bias and the monstrous distortion of the
coefficients of the matching variables, prospective modeling for matched
retrospective designs should be avoided. Conditional likelihood methods
provide the analyses of choice, and we turn to these next.

14.2. CONDITIONAL LOGISTIC REGRESSION

14.2.1. Matched Case-Control Studies: One Case Matched
to One or More Controls

In this section we focus on conditional logistic regression in matched case-
control studies. The method for matched prospective studies, outlined in
Section 14.2.2, is similar. The main idea of conditional likelihood is illus-
trated by the simplest case of the pair-matched case-control study. The



14.2 CONDITIONAL LOGISTIC REGRESSION 417

design fixes the first subject as a case, say, and the second subject as a
control. Suppose, however, their exposure vectors, X and X , are known1 2
only in terms of their values, not their owners. Then we can condition on the

Žnumber of cases and controls per pair or, as we shall say in general, per
. � 4stratum and on the unordered set of exposure vectors X , X . As there are1 2

Ž .only two subjects per stratum, only two scenarios are possible: A X1
Ž . Ž .belongs to the case and X belongs to the control as observed ; or B X2 2

belongs to the case and X belongs to the control. The conditional probabil-1
Ž . Ž . Ž .ity that scenario A occurs, given that either A or B occurs, is, using the

notation of the previous section,

� �P X Y s1, Z, Ss1 P X Y s0, Z, Ss1Ž . Ž .1 1 2 2 .
� �P X Y s1, Z, Ss1 P X Y s0, Z, Ss1� Ž . Ž .1 1 2 2

� �qP X Y s1, Z, Ss1 P X Y s0, Z, Ss1 4Ž . Ž .2 1 1 2

Ž .Using 14.5 and canceling terms, this conditional probability can be written
as

�P Y s1 X , Z, Ss1Ž .1 1

�P Y s0 X , Z, Ss1Ž .1 1
.

� �P Y s1 X , Z, Ss1 P Y s1 X , Z, Ss1Ž . Ž .1 1 2 2q
� �P Y s0 X , Z, Ss1 P Y s0 X , Z, Ss1Ž . Ž .1 1 2 2

Ž . Ž .When the prevalence model has the form 14.1 , relation 14.7 holds and the
conditional probability reduces to

exp � � X qg� Z exp � � X� 4Ž . Ž .1 1s .� �� �� � exp � X qexp � XŽ . Ž .exp � X qg Z qexp � X qg Z� 4 � 4Ž . Ž . 1 21 2

� Ž .Note that g Z cancels out because it is common to each subject in the
� Ž .stratum. Since the conditioning effectively eliminates g Z , we do not have

Ž . Ž .to assume any functional form for g Z in 14.1 . The conditional likelihood
is the product of these conditional probabilities over all strata. It is clear that
if both the case and the control in a given pair have identical X ’s, then the
stratum is not informative. When each case has k controls, the conditional
likelihood is obtained similarly as a product of conditional probabilities that
one scenario occurred out of kq1 possible scenarios. We formalize these
ideas next.

Conditional Likelihood—Formal Definition for One Case
Matched to Any Number of Controls

Ž .Let Y be the case indicator for the jth subject, js0, . . . , k i , in the ithi j
matched set, is1, . . . , n. Arrange the data so that js0 corresponds to the

Ž .case, that is, Y s1, Y s ��� sY s0, where k i is the number ofi0 i1 i kŽ i.
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controls for matched set i. Similarly, let X be the vector of exposurei j
variables, of order r, say, for this subject. We denote the matching variables
for matched set i by Z .i

Ž .Assume the logit model 14.1 for disease prevalence holds in the popula-
tion; coefficient � is the log odds ratio parameter of primary interest. As in

Ž . Ž � . Ž � .the previous section, let f y s f X Y sy, Z , S s1 s f X Y sy, Zi j i j i j i i j i j i j i
denote the sampling density of X given Y sy and Z under unbiasedi j i j i
retrospective sampling. Then the proper likelihood function for the matched
case-control study is given by

Ž .k in

Ls f Y ,Ž .Ł Ł i j i j
is1 js0

which can be expressed as a product of two parts:

Ž .k i

f YŽ .Ł i j i j Ž .k in
js0

Ls f 1 f 0 .Ž . Ž .Ł Ý Łi y ik½ 5Ž .k i
is1 k�jjs0f 1 f 0Ž . Ž .Ý Łi j i k½ 5

k�jjs0

The first factor in each term is the conditional probability that the X ’si j
Ž .belong to the case and controls as in fact they do, given the k i q1 ways the

risk factor vectors might belong to the case and controls in stratum i.
Conditional likelihood methods draw inferences by maximizing only the
product of the first factors, called the conditional likelihood, L . The condi-c
tional likelihood can be reexpressed as

f 1Ž .i0f 1 f 0Ž . Ž .Łi0 i kn n f 0Ž .i0k�0L s sŁ Łc Ž .k i f 1Ž .is1 is1 i jf 1 f 0Ž . Ž .Ý Łi j i k½ 5 Ýk�j f 0js0 Ž .i jjs0

upon division of each numerator and denominator in the product by
kŽ i. Ž .Ł f 0 . Furthermore, from Bayes’ theorem and Problem 14.3,js0 i j

�P Ys1 X , ZŽ .
�P Ys0 X , ZŽ .f 1Ž .

s . 14.8Ž .�f 0 P Ys1 ZŽ . Ž .
�P Ys0 ZŽ .

Ž � . Ž � .The ratio in the denominator, P Ys1 Z rP Ys0 Z , which is common to
all subjects in a stratum, cancels out in the conditional likelihood. Thus
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Ž .L sL � depends only on � :c c

n �exp � XŽ .i0L � s . 14.9Ž . Ž .Ł �c kŽ i.Ý exp � XŽ .is1 js0 i j

Ž .To repeat, L � is a product of conditional probabilities that X is the riskc i0
Ž .factor vector belonging to the case among all k i q1 possibilities in

� 4X , X , . . . , X , viewing these as fixed, and given that there is one casei0 i1 i kŽ i.
in stratum i.

Whether use of L to draw inferences about � instead of the fullc
likelihood L results in a noticeable loss of efficiency depends on circum-
stances. The product of second factors in L,

Ž .k inL
s f 1 f 0 .Ž . Ž .Ł Ý Łi j i k½ 5Lc is1 k�jjs0

may contain only a small amount of information about � ; it certainly does
not depend on the cases’ identities. When there is little information about �
in LrL and few sets are noninformative, L results in near-efficientc c
estimation compared to use of L. However, a parametric analysis based on L
could be much more efficient, especially when there are many noninforma-
tive sets.

In the special case of 1 : 1 matching, the conditional likelihood reduces to

n � n �exp � X exp � X yX� 4Ž . Ž .i0 i0 i1L � s s .Ž . � �Ł Ł �c exp � X qexp � XŽ . Ž . 1qexp � X yX� 4Ž .i0 i1is1 is1 i0 i1

This has the form of a likelihood function of standard logistic regression
where the sample size is the number n of matched sets, the outcomes are all
equal to 1, the covariate is X yX , and the intercept term is 0. Thei0 i1

ˆconditional maximum likelihood estimator, � , can be obtained in this casec
Ž .from an ordinary unconditional logistic regression program.

In the general setting, the conditional score function is

Ž .k i° ¶
�X exp � XŽ .Ý i j i jn� ln L �Ž . js0c ~ •U � s s X yŽ . Ýc i0 Ž .k i��

is1 �exp � XŽ .Ý i j¢ ß
js0

Ž .k in n

�s X y � � X s X yE X � ,� 4Ž . Ž .Ý Ý Ýi0 i j i j i0 c i½ 5
is1 js0 is1
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Ž . Ž � . kŽ i. Ž � . Ž � .where we have written � � sexp � X rÝ exp � X and E X �i j i j ks0 i k c i
kŽ i. Ž .sÝ � � X . In words, the score function has the familiar ‘‘observedjs0 i j i j

minus expected’’ form, where ‘‘observed’’ is the observed covariate of the
Ž .case and ‘‘expected’’ is the expected covariate of the case given the k i q1

Ž � .values of the covariates. For given � , the expected covariate E X � is ac i
Ž .weighted average of all the covariates in the stratum with weights � �i j

Ž � . Ž .proportional to exp � X . The conditional likelihood equation sets U �i j c
equal to 0, and the solution is the conditional maximum likelihood estimator,
ˆ ˆ' Ž .� . Denoting the true value of � by � , for large n, n � y� isc 0 c 0
distributed approximately as a multivariate normal with mean 0 and variance

Ž .y1 Ž .nI � , where I � is the conditional information matrix,c c

�U � � 2 ln L �Ž . Ž .c cI � sy sy �Ž .c �� �� ��

Ž .k in
�

� �s � � X yE X � X yE X � .Ž . � 4 � 4Ž . Ž .Ý Ý i j i j c i j i j c i j
is1 js0

Ž .I � thus has the form of a sum of variance-covariance matrices of thec
exposure vectors with respect to the conditional distribution specified by

Ž .� � .i j
Ž . Ž .Levin 1990 gives a useful double saddlepoint approximation to L � ,c

Ž . Ž .U � , and W � . The approximation, accurate even for small strata,c c
facilitates computation of the conditional maximum likelihood estimate,
especially when large strata cause exact computation to be time-consuming or

ˆŽ . Ž . Ž .not feasible. Exact computation of L � , U � , W � , and � is discussedc c c c
Ž .in Levin 1987 . Exact inference is considered by Hirji, Mehta, and Patel

Ž . Ž .1988 and is compared with asymptotic inference by Hirji et al. 1988 .

Illustration
Ž .Consider the data of Table 13.9. The conditional likelihood function 14.9 is

4 3 1� �e e 1
L � sŽ .c � � � �ž /ž / ž /e qe q1 e q1q1 1qe q1

e7�

s .4 4� �2 e q1 e q2Ž . Ž .

ˆŽ . w Ž . xL � is maximized and U � equals zero at the cmle � s2.121, corre-c c c
ˆsponding to an odds ratio of 8.34. The conditional information at � isc

ˆ ˆŽ .I � s0.8375. Thus the asymptotic standard error of � is estimated to bec c c
ˆ y1r2 ˆŽ .I � s1.0927. An approximate 95% confidence interval for � isc c c

Ž . Ž2.121�1.96�1.0927s y0.021, 4.26 , corresponding to the interval 0.980,
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.71.0 for the odds ratio. These results should be compared with the Mantel-
Haenszel estimate of 10.0 for the odds ratio, with approximate 95% confi-

Ž .dence interval 1.000, 100.0 and exact two-sided 95% confidence interval by
Ž . Ž .the equal-tail method of 0.98, 394.1 see Section 13.3 .

Goodness of Fit
Several authors have considered diagnostic statistics to evaluate model good-

Ž .ness of fit for matched case-control studies. Pregibon 1984 , viewing Y as an
outcome, forms residuals for each subject as a unit. Here we present a
diagnostic statistic with each stratum as a unit; this statistic is asymptotically
equivalent to a statistic suggested by Moolgavkar, Lustbader, and Vanzon
Ž . Ž .1985 . Bedrick and Hill 1996 proposed an exact method for checking
goodness of fit.

Ž .Model checking requires three steps: i identify a statistic with which to
examine observed values versus expected values under the model assumption;
Ž .ii find the distribution of the statistic when the model is correct; and
Ž .iii assess the deviation of observed versus expected according to the
distribution.

Now let

�u � sX yE X � .Ž . Ž .i i0 c i

Ž .Note that u � , the contribution of the ith stratum to the conditional scorei
Ž . Ž .function U � , has the desired ‘‘observed minus expected’’ form. The u �c i

may serve as residuals, but they are r-variate vectors. So consider the
Ž .following quadratic function of u � :i

� y1e � su � I � u � .Ž . Ž . Ž . Ž .i i c i

ˆwhich, when evaluated at � , produces the one-dimensional diagnostic statis-c
ˆ ˆŽ . Ž .tic e � . Because � is the solution of Ý u � s0, we havei c c i i

ˆ ˆu � sy u � .Ž . Ž .Ýi c j c
j�i

ˆDenote by � the estimate of � obtained after deleting the ith stratum.yi
ˆ ˆŽ .Then, by a Taylor expansion of 0sÝ u � about � , and ignoringj� i j yi c

terms of order 1rn, we find

y1 y1ˆ ˆ ˆ ˆ ˆ ˆ� y� fI � u � syI � u � .Ž . Ž . Ž . Ž .Ýyi c c c j c c c i c½ 5
j�i
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ˆŽ .This leads to the interpretation of e � as approximately equal toi c

�
ˆ ˆ ˆ ˆ ˆ� y� I � � y� .Ž .ž / ž /yi c c c yi c

ˆThis statistic, called Cook’s distance, measures the sensitivity of � toc
deletions of single strata. Now that we have identified the diagnostic statistic

ˆŽ .e � to examine, the next step is to find its distribution when the model isi c
ˆŽ .correct. We generate a reference distribution for e � as follows:i c

( ) � 41 For every i, pick one vector from X , . . . , X with selectioni0 i kŽ i.
ˆ ˆ �� Ž . Ž .4probabilities p � , . . . , p � . Call the selected covariate X .i0 c ikŽ i. c i0

( ) �2 Pretend that X is the observed covariate for the case, and solve thei0
likelihood equation

n
� �X yE X � s0.� 4Ž .Ý i0 c i

is1

ˆ�for �. Denote the solution by � .
ˆ�( ) Ž .3 Calculate e � for is1, . . . , n.i

( ) Ž . Ž .4 Repeat 1 � 3 m times, where m is a large number, e.g., ms1,000.

ˆ� ˆŽ . Ž .The m generated values of e � form a reference distribution for e � .i i c
ˆŽ . Ž .For each e � we can form a 95% confidence interval from the 0.025m thi c

ˆ�Ž .smallest and largest e � values. Figure 14.1 in Section 14.4 shows a plot ofi
ˆŽ .e � and their 95% confidence limits obtained from a conditional logistici c

regression analysis for the stroke study discussed below.

Computation
� � Ž .Software packages such as EGRET or STATA procedure CLOGIT have

routines to compute conditional maximum likelihood estimates and standard
errors. Software for fitting the Cox proportional hazards model can also be

Ž .used to compute cmle’s. The conditional likelihood function L � is for-c
Ž .mally equivalent to the partial likelihood function L � for the Cox model.p

Ž .The only differences are that � in L � refers to the proportional hazardsp
constant and that the partial likelihood conditions on risk sets from a survival

Žstudy whereas conditional likelihood conditions on strata from a matched
. � �sample study . The SAS procedure PHREG, the SPSS procedure

COXREG, or the Splus� procedure COXREG for survival analysis can be
used to compute the conditional maximum likelihood estimate and its stan-
dard error when there is only one case per stratum. When there are multiple
cases, which is equivalent to having tied failure times in the Cox model,
SAS� constructs the proper likelihood function upon specifying ties=
discrete. SPSS� currently does not handle ties appropriately for construc-
tion of the conditional likelihood function. Code for a SAS� procedure to fit
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a conditional logistic regression model is given in Table 14.5 for the stroke
study discussed in Section 14.4.

14.2.2. Matched Prospective Studies

Consider a pair-matched prospective study with a single binary risk factor X.
For matched set i with matching variable Z , label the subjects so thati
X s1, and X s0; we observe Y , js1, 2. We continue to assume thei1 i2 i j

Ž .linear logistic disease prevalence model 14.1 . The full likelihood function is

n 2
Y 1yYi j i j� �Ls P Y s1 X , Z P Y s0 X , Z .Ž . Ž .Ł Ł i j i j i i j i j i

is1 js1

Let

�p x sP Y s1 X sx , Z s1yq x .Ž . Ž .Ž .i j i j i j i i j

The conditional likelihood function is obtained by conditioning on the design
features, which are the risk factors, X s1 and X s0, and the unorderedi1 i2

� 4set of observed outcomes, Y , Y . The outcomes correspond to subjects 1i1 i2
Ž . Ž .and 2 as Y , Y or as Y , Y . The conditional probability of observingi1 i2 i2 i1

Ž . Ž . Ž .Y ,Y given either Y , Y or Y , Y isi1 i2 i1 i2 i2 i1

Y 1yY Y 1yYi1 i1 i2 i2Ž . Ž . Ž . Ž .p 1 q 1 p 0 q 0i1 i1 i2 i2
Y 1yY Y 1yY Y 1yY Y 1yYi1 i1 i2 i2 i2 i2 i1 i1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .p 1 q 1 p 0 q 0 qp 1 q 1 p 0 q 0i1 i1 i2 i2 i1 i1 i2 i2

Y Yi1 i2� 4 � 4Ž . Ž . Ž . Ž .p 1 rq 1 p 0 rq 0i1 i1 i2 i2s Y Y Y Yi1 i2 i2 i1� 4 � 4 � 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .p 1 rq 1 p 0 rq 0 q p 1 rq 1 p 0 rq 0i1 i1 i2 i2 i1 i1 i2 i2

w x� 4Ž . Ž .exp Y �qg Z qY g Zi1 i i2 is w x w x� 4 � 4Ž . Ž . Ž . Ž .exp Y �qg Z qY g Z qexp Y �qg Z qY g Zi1 i i2 i i2 i i1 i

Ž .exp � Yi1s . 14.10Ž .Ž . Ž .exp � Y qexp � Yi1 i2

The conditional likelihood thus reduces to

n exp � YŽ .i1L � s . 14.11Ž . Ž .Łc exp � Y qexp � YŽ . Ž .i1 i2is1

Suppose that another risk factor W, observed at baseline but not con-
trolled in the design, is potentially confounding, such that the correct disease
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Ž .prevalence model is not 14.1 but instead

�P Ys1 X , W , ZŽ .
ln s� Xq�Wqg Z . 14.12Ž . Ž .�P Ys0 X , W , ZŽ .

In that case we condition on the risk factor ®ectors

X 1 X 0i1 i2
s and sž / ž / ž / ž /W W W Wi1 i1 i2 i2

� 4and the unordered set of outcomes Y , Y . Repeating the argument above,i1 i2
Ž . Ž .the conditional probability of observing Y , Y given either Y , Y ori1 i2 i1 i2

Ž . Ž .Y , Y is, instead of 14.10 ,i2 i1

exp Y �q�W qg Z qY �W qg Z� 4 � 4Ž . Ž .i1 i1 i i2 i2 i .
exp Y �q�W qg Z qY �W qg Z� 4 � 4Ž . Ž .� i1 i1 i i2 i2 i

qexp Y �q�W qg Z qY �W qg Z� 4 � 4Ž . Ž . 4i2 i1 1 i1 i2 i

wŽ .� Ž .4xDividing numerator and denominator by exp Y qY �W qg Z yieldsi1 i2 i2 i

exp Y �q� W yW� 4Ž .i1 i1 i2 ,
exp Y �q� W yW qexp Y �q� W yW� 4 � 4Ž . Ž .i1 i1 i2 i2 i1 i2

whence the conditional likelihood function is

n exp Y �q� W yW� 4Ž .i1 i1 i2L � , � s .Ž . Łc exp Y �q� W yW qexp Y �q� W yW� 4 � 4Ž . Ž .is1 i1 i1 i2 i2 i1 i2

14.13Ž .

Ž . Ž .Note that the only informative terms in 14.13 occur when Y , Y arei1 i2
Ž . Ž .discordant� 1, 0 or 0, 1 �in which case the factors reduce to either

exp �q� W yW� 4Ž .i1 i2

1qexp �q� W qW� 4Ž .i1 i2

or its complement

1
.

1qexp �q� W qW� 4Ž .i1 i2

This is an ordinary binary logistic regression with Y s1 corresponding toi
Ž . Ž . Ž . Ž .Y , Y s 1, 0 and Y s0 to Y , Y s 0, 1 , and explanatory factor W yi1 i2 i i1 i2 i1
W . The intercept term is � , the log odds ratio of interest adjusted for thei2
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effect of W, and the slope coefficient is � . Generalization to the case of
multiple risk factors is straightforward.

A final point: Suppose we ask what the conditional likelihood would be if,
Ž .instead of 14.12 , one posited a retrospective model for X where, say,

Ž � .P X Y, W, Z is of linear logistic form,

�P Xs1 Y , W , ZŽ . � �ln s� Yq� Wqh Z .Ž .�P Xs0 Y , W , ZŽ .

This situation is formally the reverse of that considered in Section 14.2.1, so
we find the conditional likelihood to be

n � �exp � Y q� WŽ .� � i1 i1L � , � s .Ž . � � � �Łc exp � Y q� W qexp � Y q� WŽ . Ž .i1 i1 i2 i2is1

By invariance of the odds ratio, the regression coefficient for Y would be the
Ž . �same as � in 14.12 , that is, �s� , but the coefficient for W would

measure the effect of W on X, not the effect of W on Y, such that, ��� �.

Illustration
Consider Table 13.11 on judgments by eight raters on the presence or
absence of a psychiatric symptom in eight patients. We can view this study as

Ža prospective matched design with n s8 dichotomous ratings Ys1 fori
.symptoms present or positive, Ys0 for symptoms absent or negative matched

Ž .on patient Z under eight different conditions raters , identified by the seven
Ž .� Ž .vectors X s 1, 0, 0, 0, 0, 0, 0 , X s 0, 1, 0, 0, 0, 0, 0 , . . . , X si1 i2 i7

Ž .0, 0, 0, 0, 0, 0, 1 , each with seven components. Rater 8, the reference rater, is
Ž .identified by the zero vector X s 0, 0, 0, 0, 0, 0, 0 . We consider the logiti8

model

�P Ys1 X , ZŽ . �ln s� Xqg Z ,Ž .�P Ys0 X , ZŽ .

Ž .�where �s � , . . . , � . � gives the log odds ratio comparing the odds on a1 7 j
positive rating for a given patient by rater j with the odds on a positive rating
for the same patient by the reference rater. The conditional likelihood
function is

Y 1yY Y 1yYn i1 i1 i8 i8p X q X ��� p X q XŽ . Ž . Ž . Ž .i1 i1 i1 i1 i8 i8 i8 i8L � s ,Ž . Łc Y 1yYi	 Ž1. i	 Ž1.is1 p X q X ���Ž . Ž .Ý i	 Ž0. i	 Ž1. i	 Ž1. i	 Ž1.
	

Y 1yYi	 Ž8. i	 Ž8.p X q XŽ . Ž .i	 Ž8. i	 Ž8. i	 Ž8. i	 Ž8.

� 4where the sum is over all permutations of the outcomes Y , . . . , Y . Fori1 i8
Žpatient i, let m sÝ Y be the total number of positive diagnoses this wasi j i j



REGRESSION MODELS FOR MATCHED SAMPLES426

. Ž i.denoted by S in the notation of Table 13.10 . Let 
 denote any one of thei
8 ways to assign m positive and 8ym negative ratings from the eighti imž /i

Ž Ž i..raters, and let S 
 be the sum of the X vectors corresponding to thei
Ž .positive ratings. Then L � is equivalent toc

n � Ž i.exp � S 
� 4Ž .i obsL � s ,Ž . Ł �c Ž i.exp � S 
Ž .� 4is1 Ý i
Ž i.


Ž Ž i. .where S 
 is the sum of the X vectors for patients with positivei obs
diagnoses, that is, a vector with a one in position j if rater j gave a positive
rating for js1, . . . , 7. For example, patient 5 in Table 13.11 had m s35
positive ratings, from raters 3, 6, and 8. The contribution to the conditional
likelihood function for this patient is

exp � � X qX qX� 4Ž .5, 3 5, 6 5, 8
� Ž5.exp � S 
Ž .� 4Ý 5

Ž5.


e �3q� 6

s ,
� q� q� � q� q� � q� � q�1 2 3 1 2 4 5 7 6 7e qe q ���qe qe

8where the sum in the denominator is over all s56 ways of choosing threež /3

X vectors; equivalently, the denominator is the sum over all ways of writing
� 4the exponential of a sum of three terms from among � , . . . , � , 0 .1 7

Ž .Differentiating ln L � with respect to � and evaluating at �s0 givesc
the score statistic

T yTr81n .Ž i. .�U 0 s S 
 yE S �s0 sŽ . � 4Ž .Ž .Ýc i obs c i .
is1 T yTr87

in the notation of Table 13.10. The information matrix is

1° ¶8n .S 8ySŽ .i i 1 1 1 1~ •.I 0 s Diag , . . . , y , . . . ,Ž . Ž .Ýc 8 8 8 8.7
is1 1¢ ß

8

Ž . Ž .� Ž .y1 Ž .see Problem 13.5 . It follows that the score test statistic U 0 I 0 U 0 isc c c
Ž .equal to Cochran’s Q statistic 13.30 .
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It is remarkable that this score test statistic is informative at all, because
there is very little information contained in the data about the individual log
odds ratio components of �. Note first that patients 1, 3, 4, and 7, who
received no positive ratings, are conditionally uninformative about �. Fur-
thermore, raters 2 and 7 gave no positive ratings, so that calculation of the

ˆ ˆcmle of � does not converge, due to the singularity at � s� sy�. The2 7
singularity merely indicates that any arbitrarily small value of � or � is2 7
consistent with the data, a reflection of lack of information. If we omit raters
2 and 7 from the analysis, patient number 8, now with all positive ratings,
becomes conditionally uninformative about the odds ratios among the six
other raters. For the three remaining patients�2, 5, and 6�there is insuffi-
cient information to estimate the remaining five parameters. This example
illustrates an advantage of the score statistic over the Wald statistic for
testing the hypothesis H : �s0: the score statistic is calculated under the0
null hypothesis, so that singularities in the cmle do not pose a problem.

14.3. EXTENSIONS

14.3.1. Matched Studies with Varying Numbers of Cases and Controls

Sometimes a study is planned for 1 : 1 or 1 : 2 matching, but eligible controls
Ž . Ž .or cases are not available for some cases or controls . In this situation, it
may be possible to merge a lone case or control into an appropriate stratum,
i.e., with the same matching variables. In fact, Brookmeyer, Liang, and Linet
Ž .1986 showed that this approach can increase efficiency. Such merging
creates variable numbers of cases and controls per stratum. Another example
arises when one stratifies data post hoc, creating many strata with varying
numbers of cases and controls. In this section we consider retrospective
matched samples with m cases and n ym controls in stratum i.i i i

The principle of conditional likelihood, suitably generalized, is the same as
that for 1 : k matching described in Section 14.2. Let Y , js1, . . . , n be thei j i
case indicator for the jth subject in the ith stratum. We assign the cases to
the index js1, . . . , m and controls to jsm q1, . . . , n , so that Y s ��� si i i i1

niY s1 and Y s ��� sY s0. There are possible ways of parti-im im q1 ini i i mž /i
tioning the set of n exposure vectors into two groups: one of size mi i
associated with the cases, and the other of size n ym associated with thei i
controls. For each of these ways, let the index of the vectors assigned to

Ž . Ž .the cases be 	 1 , . . . , 	 m , and let the index of the vectors assigned to thei
Ž . Ž .controls be 	 m q1 , . . . , 	 n , where 	 is an appropriate permutation ofi i

� 4 � 41, . . . , n . We call 	 a partition of 1, . . . , n . The conditional likelihood isi i
the product over all strata of the conditional probabilities that the first mi
exposure vectors belong to the cases, given that some such partition occurs.
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Ž . Ž � .Again writing the density of the exposure vectors as f y s f X Y sy, Zi j i j i j i
Ž � .s f X Y sy, Z , S s1 , the conditional likelihood isi j i j i i j

m n mi i i
�f 1 f 0 exp � XŽ . Ž . Ž .Ł Ł Łi j i j i jn n

js1 jsm q1 js1iL � s sŽ . Ł Łm n mc i i i
is1 is1 �f 1 f 0 exp � X� 4Ž . Ž .Ý Ł Ł Ý Łi	 Ž j. i	 Ž j. i	 Ž j.

js1 jsm q1 js1	 	i

n �exp � SŽ .is ,Ł �exp � S 	� 4Ž .Ýis1 i
	

ni � 4where the summation is over the distinct partitions 	 of 1, . . . , n , andimž /i
Ž .where we have written S sX q ���qX for the observed partition 	 j si i1 im i

Ž .j, and S 	 sX q ���qX for an arbitrary partition 	 . The resultingi i	 Ž1. i	 Žm .i
score equation is

n n

�U � s S yE S � s S y � � S 	 s0,� 4Ž . Ž . Ž .Ž .Ý Ý Ýc i c i i i	 i½ 5
	is1 is1

� 4 Ž . � � Ž .4where for each partition 	 of 1, . . . , n , � � s exp � S 	 ri i	 i
� � Ž .4Ý exp � S 	 . The information matrix is	 i

�U � � 2 ln L �Ž . Ž .c cI � sy sy �Ž .c �� �� ��

n
�

� �s � � S 	 yE S � S 	 yE X � .� 4Ž . Ž . Ž .Ž . � 4Ž .Ý Ý i	 i c i i c i j
	is1

14.3.2. Matched Studies with Polytomous Outcomes

In some studies, there are more than two kinds of outcome. For example, Y
may take values 0, 1, or 2, labeling three disease states of none, mild, and
severe. Another example is the matched triplet retrospective study, matching,
say, a case, a community control, and a hospital control on Z, with an
exposure vector X observed on each. We assume that Y has a multinomial
distribution given X and Z. Multinomial regression models for unmatched

Ždata are described in Chapter 11 and also in the literature e.g., McCullagh
. Ž .and Nelder, 1989 . For matched studies, Levin 1987 and Liang and Stewart

Ž .1987, correction by Levin, 1988 proposed conditional polytomous logistic
regression models.

There are several ways to contrast multinomial probabilities, as depicted
in Figure 11.9, but here we consider only the canonical contrasts of each cell
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probability to that of the reference category, Ys0. The polytomous logistic
regression model we assume is

�P Ys1 X , ZŽ . �ln s� Xqg Z ,Ž .1�P Ys0 X , ZŽ .
14.14Ž .

�P Ys2 X , ZŽ . �ln s� Xqg Z .Ž .2�P Ys0 X , ZŽ .

In a matched triplet stratum, suppose we arrange the notation so that the
first subject has Ys0, the second has Ys1, and the third has Ys2.
The contribution of this stratum to the conditional likelihood function is the
conditional probability that the first subject has exposure vector XsX ,1
the second has XsX , and the third has XsX , given that the study design2 3

Ž . Ž . � 4fixes Y , Y , Y s 0, 1, 2 and that some permutation of X , X , X corre-1 2 3 1 2 3
sponds to the members of the triplet. There are six ways to assign the three

� 4 Ž . Ž . Ž .subscripts 1, 2, 3 of X to the matched triplet: 1, 2, 3 , 1, 3, 2 , 2, 1, 3 ,
Ž . Ž . Ž .2, 3, 1 , 3, 1, 2 , and 3, 2, 1 . We denote these permutations generically by 	 .
The conditional probability is

p X p X p XŽ . Ž . Ž .0 1 1 2 2 3 ,
Ý p X p X p XŽ . Ž . Ž .	 0 	 Ž1. 1 	 Ž2. 2 	 Ž3.

Ž . Žwhere the summation is over the above six permutations and p X sP Ysj
� . Ž . Ž . Ž .j X, Z . After dividing numerator and denominator by p X p X p X ,0 1 0 2 0 3

the conditional likelihood simplifies to

exp � � X qg Z exp � � X qg Z� 4 � 4Ž . Ž .i2 1 i i3 2
� �Ý exp � X qg Z exp � X qg ZŽ . Ž .� 4 � 4	 i	 Ž2. 1 i i	 Ž3. 2 i

exp � � X q� � XŽ .i2 i3s � �Ý exp � X q� XŽ .	 i	 Ž2. i	 Ž3.

Ž . Ž .Note that elimination of g Z and g Z follows from the choice of logit1 i 2 i
Ž .parameterization 14.14 . If cumulative probabilities are assumed to be linear

Ž . Ž .in the logit scale, g Z and g Z do not cancel out of the conditional1 i 2 i
likelihood.

The General Case
Ž .Given tq1 disease states labeled Ys0, 1, . . . , t, with ms m , m , . . . , m0 1 t

subjects of each kind, the conditional likelihood function is most easily
specified in terms of ordered partitions of the set of exposure vectors,

Ž i. � 4� s X , . . . , X , consistent with the frequencies m. An ordered partition isi1 in i
Ž .a list of subsets, 
s D , D , . . . , D , such that there are m exposure0 1 t j
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vectors in D , the component D ’s are mutually disjoint, and their union is allj j
of � Ž i.. An ordered partition represents one of the n !rm ! ��� m ! ways thei i0 i t
exposure vectors might have been associated with the m cases of type Ys ji j
for js0, 1, . . . , t. The conditional likelihood function is the product over
the n strata of the conditional probability of occurrence of the observed

Ž i. Ž� 4 � 4.partition, 
 s X : Y s0 , . . . , X : Y s t , given that any of theobs i k ik ik ik
Ž . Ž i. Ž i.n !r m ! ��� m ! ordered partitions 
 of � might have been so associ-i i0 i t

Ž i.Ž Ž i..ated. Let S 
 denote the vector of length rt given by stringing together
the individual sums of exposure vectors:

XÝ i k
X gDik 1

.Ž i. Ž i. Ž i. Ž i..S 
 s for ordered partition 
 s D , . . . , D of � .Ž . Ž .0 t.
XÝ i k

X gDik t

Ž i.Ž Ž i..Note that S 
 does not include the vectors in the reference component
D of 
 Ži.. Also, assume the t logit equations0

�P Ys j X , ZŽ . �ln s� Xqg Z , for js1, . . . , t .Ž .j j�P Ys0 X , ZŽ .

String the coefficient vectors together into one vector of length r t, �s
Ž � �.�� , . . . , � . Then the conditional likelihood function is given by1 t

n � Ž i. Ž i.exp � S 
� 4Ž .obsL � s ,Ž . Ł �c Ž i. Ž i.exp � S 
� 4Ž .is1 Ý
Ž i.


where the sum is taken over all ordered partitions 
 Ž i. of � Ž i. consistent with
mŽ i.. The score function is

n
Ž i. Ž i. Ž i. �U � s S 
 yE S �Ž . � 4Ž .Ž .Ýc obs c

is1

n
Ž i. Ž i. Ž i. Ž i.

Ž i.s S 
 y � � S 
 ,Ž . Ž .Ž .Ý Ýobs i
½ 5
Ž i.is1 


where, for each ordered partition 
 Ž i. of � Ž i. consistent with mŽ i., we have

exp � �S Ž i. 
 Ž i.� 4Ž .
Ž i.� � s .Ž . �i
 Ž i. Ž i.exp � S 
� 4Ž .Ý

Ž i.
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The information matrix is

�U � � 2 ln L �Ž . Ž .c cI � sy sy �Ž .c �� �� ��

n
�Ž i. Ž i. Ž i. Ž i. Ž i. Ž i.� �Ž i.s � � S 
 yE S � S 
 yE S � .Ž . � 4 � 4Ž . Ž .Ž . Ž .Ý Ý i
 obs c obs c

Ž i.is1 


Ž . Ž . Ž .The computations required to evaluate L � , U � , and I � are nontriv-c c c
Ž .ial in the polytomous case. Levin 1987 gives an efficient recursive algorithm

Ž .for exact computation of these quantities, and Levin 1990 gives a highly
accurate double saddlepoint approximation.

14.4. AN EXAMPLE

Ž .The Northern Manhattan Stroke Study NOMASS is a population-based
study to determine stroke incidence, risk factors, and prognosis in a multi-
ethnic, urban population. The initial phase of NOMASS was an incidence
study. The study was extended to a case-control study described in Sacco

Ž .et al. 1999 ; later phases followed subjects in a cohort design. The case-
control data used in this example are the complete records from Paik and

Ž .Sacco 2000 .
In the case-control portion of NOMASS, the cases were northern Manhat-

tan area residents with an incident ischemic stroke. Two controls were
matched to each case on age, gender, and ethnicity. Controls were sampled
in two stages: first, candidate controls were sampled from northern Manhat-
tan via random digit dialing; second, two controls were randomly selected
from among all matching candidate controls. For 71 cases, only one control
was available. For the 237 cases and 403 controls, there were 166 strata with
1 : 2 matching and 71 strata with 1 : 1 matching.

The mean age of the stroke cases was 68.3. Of the cases, 57.3% were
women; 16.3% were non-Hispanic white, 29.7% non-Hispanic black, 53.1%

Ž .Hispanic black or nonblack , and 0.9% other. Cases were more likely than
controls to have hypertension, cardiac disease, or diabetes mellitus. Controls

Ž .were more likely to have at least a high school education see Table 14.3 .
Results of three conditional logistic regression models are shown in Table

14.4. Model 1 includes an indicator for level of physical activity and an
indicator for winter season at the time of the case’s or controls’ interview.
The latter indicator is intended to adjust for the effect of season on physical
activity. Model 2 includes conventional risk factors for stroke, such as
hypertension, diabetes, cardiac disease, current smoking, low education level,
and obesity. Model 3 combines the variables of the other two. Table 14.5
provides SAS� code for fitting the third model.
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Table 14.3. Northern Manhattan Stroke Study: Marginal frequencies of risk factors

Cases Controls

Variable Yes No % Yes Yes No % Yes

ACT 121 116 51.1 306 97 75.9
WIN 56 181 23.6 53 350 13.2
EDU 74 163 31.2 184 219 45.7
HTN 169 68 71.3 233 170 66.6
DIAB 88 149 37.1 78 325 19.4
PVD 58 179 24.5 57 346 14.1
CARD 85 152 35.9 87 316 21.6
CIG 56 181 23.6 83 320 20.6
BMI 96 141 40.5 170 233 42.2
ALC 24 213 10.1 30 373 7.4

All variables are dichotomies, with 1syes, 0sno:

ACT Physically active
WIN Winter at time of case’s stroke or control’s interview
EDU High school graduation
HTN History of hypertension
DIAB History of diabetes
PVD History of peripheral vascular disease
CARD History of cardiovascular disease
CIG Current cigarette smoking
BMI Obesity: BMI�30
ALC 14q alcoholic drinks per week

Table 14.4. Northern Manhattan Stroke Study: Conditional logistic regression
coefficient estimates and standard errors for the matched case-control data

Model 1 Model 2 Model 3

Variable CMLE SE CMLE SE CMLE SE

ACT y1.300 0.211 � � y1.130 0.226
WIN 0.733 0.249 � � 0.716 0.271
EDU � � y0.884 0.226 y0.813 0.241
HTN � � 0.528 0.206 0.394 0.218
DIAB � � 0.761 0.200 0.648 0.206
PVD � � 0.280 0.254 0.233 0.265
CARD � � 0.544 0.206 0.568 0.217
CIG � � 0.132 0.236 0.147 0.250
BMI � � y0.246 0.201 y0.278 0.210
ALC � � 0.301 0.349 0.259 0.367
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Table 14.5. SAS � code to fit conditional logistic regression model 3

proc phreg data=casectl2 outest=beta noprint;
model time*case(0)=ACTS WINTER HTN DIABET PVD CIGCUR CARDIO
OBESE ETHVY EDU / ties=discrete;
strata id;

Figure 14.1. Diagnostic statistics and their 95% confidence intervals.

Model 1 suggests that physically active subjects have a significantly smaller
w Ž .odds on ischemic stroke than sedentary subjects ORsexp y1.3 s0.273,

xp	0.05 . This protective effect persists even after adjustment for conven-
tional risk factors for stroke, showing a significant odds ratio in model 3

ˆw Ž . x Ž .ORsexp y1.13 s0.323, p	0.05 . Figure 14.1 shows e � and theiri c
95% confidence limits, obtained by the method described in Section 14.2.1.
All but two diagnostic statistics lie inside the 95% confidence interval. Figure

ˆ14.2 shows a plot of � for physical activity versus stratum i. No singleyi
stratum has a major effect on the cmle for this coefficient.
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ˆ ˆFigure 14.2. Difference between � for ACT and � for ACT against stratum index.yi c

14.5. OTHER ISSUES

Missing Co©ariates
It is not uncommon for covariates to be missing, but in matched-sample
analyses the effect can be greater than in other analyses. To illustrate the
point, let W and X denote a completely and a partially observed covariate,

Ž .respectively. Consider a missing-at-random MAR mechanism, for which the
probability that a covariate is missing may depend on the observed data,
Ž .Y, W, Z , but not on X :

� �P R j s1 X , W , Y , Z sP R j s1 W , Y , Z ,Ž . Ž .� 4 � 4i i j i j i j i i i j i j i

Ž . Ž .where R j denotes the observation indicator for X : R j s1 if X isi i j i i j
Ž . Ž . Žobserved, and R j s0 if X is missing js0, . . . , k . See Chapter 16 for ai i j i

.detailed exposition of missing-data mechanisms. In complete-record analysis
for a single case matched to k controls, the estimating function for �si
Ž � � .�� , � becomes1 2

n W yWi0R 0 ,Ž .Ý i ž /X yXis1 i0 i
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where

ki Wi j � �R j exp � W q� XŽ . Ž .Ý i 1 i j 2 i jXž /W i jjs0i
s .kiž /X � �i R j exp � W q� XŽ . Ž .Ý i 1 i j 2 i j

js0

Ž .If the case in stratum i is not completely observed, R 0 s0, so the ithi
stratum does not contribute to the estimating function. Also, if the case is the

Ž . Ž .only completely observed subject, R 0 s1, R j s0, j�0, then the meani i
vector equals the case vector, and the contribution is again zero.

Complete-record analysis thus discards not only incompletely observed
subjects but also completely observed subjects if no matching case or controls
are completely observed. More important, if the missingness mechanism is

Ž .not missing completely at random MCAR , complete-record analysis yields
biased estimates.

To utilize completely observed but discarded subjects, we can use the
Ž .method of Brookmeyer, Liang, and Linet 1986 to merge ‘‘neighboring’’

strata if values of the matching variables are close. This analysis, valid under
MCAR, increases efficiency by rescuing completely observed records. Gib-

Ž .bons and Hosmer 1991 propose imputing expected values of X from
regression models for the missing covariate given other observed variables.
The resulting estimates generally have reduced bias, but are still biased.

Ž .Lipsitz, Parzen, and Ewell 1998 use a weighting method for conditional
likelihood functions. This method, which uses completely observed records
weighted by the reciprocal of the probability of observation, is valid under
MAR. Efficiency may still suffer because, as in complete-record analysis,

Ž .some completely observed records must be dropped. Paik and Sacco 2000
propose an imputation method, valid under MAR, in which a missing
covariate is replaced by a weighted average of the predicted values from a

Ž .regression model for cases and controls. Satten and Carroll 2000 propose a
likelihood method valid under MAR. Their approach, maximization of the

Ž � .conditional likelihood based on P Y W, Z , is asymptotically most efficient if
the models are correctly specified.

Selection Bias
Another issue in analyzing case-control data is selection bias. The selection

Ž � . Ž � .process is biased if P Ss1 Y, X, Z �P Ss1 Y, Z . Then the log odds of
Ž � .P Ys1 X, Z, Ss1 is

� � �P Ys1 X , Z, Ss1 P Ys1 X , Z P Ss1 Ys1, X , ZŽ . Ž . Ž .
ln s ln q ln .

� � �P Ys0 X , Z, Ss1 P Ys0 X , Z P Ss1 Ys0, X , ZŽ . Ž . Ž .
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The last term, now a function of X and Z, does not cancel out in the
conditional likelihood. Therefore, the maximum conditional likelihood esti-
mator obtained ignoring the selection bias is inconsistent. Bias in the esti-
mate of the odds ratio depends on the probability of being selected given
disease status, exposure status, and the matching factors. Kleinbaum,

Ž .Morganstern, and Kupper 1981 propose a bias-corrected estimator of the
odds ratio for a classical 2�2 table assuming that the selection probabilities

Ž .are known. Maclure and Hankinson 1990 consider the case in which the
selection probability can be estimated by logistic regression, but their vari-
ance estimate of the bias-corrected odds ratio does not take account of
variation introduced by estimating the selection probabilities. In the regres-

Ž .sion context, Weinberg and Wacholder 1990 estimate a bias-corrected odds
ratio assuming the selection probability is known by design. When selection

Ž .probabilities are unknown, Lin and Paik 2001 provide a consistent method
for avoiding selection bias in unmatched or matched case-control studies that
takes account of the variation introduced by estimating the selection proba-
bilities.

PROBLEMS

Ž .14.1. When X is a binary variable and there is only one covariate in 14.1 ,
Ž . Ž .obtain an explicit estimator of exp � by solving U � s0.c

Ž .14.2. Under unbiased sampling as defined in 14.2 , verify by a simple
Ž � . Ž � .example that P Y X, Z, Ss1 �P Y X, Z .

14.3. Verify the following relationships:

� � �P Ys1 X , Z, Ss1 P Ys1 X , Z P Ss1 Ys1, ZŽ . Ž . Ž .
ln s ln q ln

� � �P Ys0 X , Z, Ss1 P Ys0 X , Z P Ss1 Ys0, ZŽ . Ž . Ž .

and

� �P Ss1 Ys1, Z P Ys1 ZŽ . Ž .
ln syln .

� �P Ss1 Ys0, Z P Ys0 ZŽ . Ž .
� Ž � . Ž � .4 Ž .14.4. Let ln P Ys1 X, Z rP Ys0 X, Z s� Xqg Z , where X is a bi-

nary risk factor, and let

�P Xs1 ZŽ .
ln sd ZŽ .�P Xs0 ZŽ .

Ž .for some function d Z .
( )a Show that

� � �P Ys1 X , Z P Ys1 Z P X Ys1, ZŽ . Ž . Ž .
ln y ln s ln .

� � �P Ys0 X , Z P Ys0 Z P X Ys0, ZŽ . Ž . Ž .
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Conclude that

� �P Ys1 X , Z, Ss1 P Xs0 Ys1, ZŽ . Ž .
ln s� Xq ln ,

� �P Ys0 X , Z, Ss1 P Xs0 Ys1, ZŽ . Ž .

namely, that

�P Xs0 Ys1, ZŽ .�g Z s ln .Ž . �P Xs0 Ys1, ZŽ .

w xHint. Use Bayes’ theorem.
( )b Show that

� �P Xs1 Ys0, Z P Ys0 Xs1, ZŽ . Ž .
ln s ln qd ZŽ .� �P Xs0 Ys0, Z P Ys0 Xs0, ZŽ . Ž .

1qe g ŽZ .

s ln qd ZŽ .�qg ŽZ .½ 51qe

and that

� g ŽZ .P Xs1 Ys1, Z 1qeŽ .
ln s ln q�qd Z .Ž .�qg ŽZ .½ 5�P Xs0 Ys1, ZŽ . 1qe

w xHint. Use Bayes’ theorem and invariance of the odds ratio.
( )c Conclude that

1qe �qg ŽZ .
�P Xs0 Ys0, Z s ,Ž . �qg ŽZ . dŽZ . g ŽZ .� 41qe qe 1qe

1qe �qg ŽZ .
�P Xs0 Ys1, Z sŽ . �qg ŽZ . �qd ŽZ . g ŽZ .� 41qe qe 1qe

and thus that

�qg ŽZ . dŽZ . � g ŽZ .41qe qe 1qe�g Z s ln .Ž . �qg ŽZ . �qd ŽZ . g ŽZ .½ 5� 41qe qe 1qe

� Ž . Ž . Ž .Plot g Z for Z varying between y2 and q2 with g Z sd Z s
3Z and �s1.
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Analysis of Correlated
Binary Data

An important assumption in the analysis of binary data is that the binary
outcomes are statistically independent. This assumption is typically violated if
the units of measurement are clustered. In longitudinal or panel studies, for
example, measurements are taken at multiple time points for the same
individual. Repeated measurements from the same individual are correlated
when one outcome affects the probability of occurrence of the next. Even if
uncorrelated within subjects, however, repeated measurements will appear
correlated when there is substantial person-to-person variability in the proba-
bility of outcomes. In family studies, measurements from members of the
same family are typically more similar than measurements from members of
different families, and are thus correlated. In periodontal research, corre-
lated measurements are taken from multiple sites in the mouth. Other
examples arise in surveys conducted with cluster sampling, in data from

Žophthalmological or otolaryngological studies with two eyes or two ears per
.person , in group-randomized behavioral intervention trials, and in hospital

utilization studies where patients are clustered within treating physicians and
physicians are clustered within hospitals. In each of these examples, the
statistically independent sampling units have subunits which furnish the
measurements and which are the natural units of analysis. If the analysis
ignores the correlation between subunit measurements, point estimates may
be valid, but naively estimated standard errors will not, leading to invalid
p-values and confidence intervals and to poorly designed future studies. In
this chapter we explain how to analyze correlated binary data properly.
Section 15.1 presents methods for a single sample prevalence study. Section
15.2 covers inference for two correlated proportions, and Section 15.3 makes
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some design recommendations. Section 15.4 discusses problems that arise
from a pair of fourfold tables which have clustered or correlated data.
Section 15.5 contains material for the more advanced reader. It covers
extensions of logistic regression methods for correlated outcomes, including
generalized estimating equations, methods for random effects models, and
likelihood-based methods.

15.1. INFERENCE FOR A SINGLE PROPORTION

To illustrate the effect of clustering on inference, we first consider estimation
of a single proportion, as in a prevalence study. Let Y be a binary outcomei j

Ž . Ž .for independent unit i is1, . . . , K and subunit js1, . . . , n . In a randomi
sample of K families, for example, Y could represent the presence ori j
absence of some disease or condition for the jth member of the ith family,
with varying numbers n of family members. Let the total number of subjectsi
in the study be Nsn q ���qn , and the number of diseased members in1 K
family i be Y sY q ���qY . The proportion with disease in family i isiq i1 in i

Y rn . An estimator of the proportion P of diseased individuals in theiq i
population, say p, is the total number of diseased subjects divided by N,
which is also a weighted average of the family-specific proportions with
disease, with weights proportional to family size:

nK Ki Y n Yi j i iqps s .Ý Ý ÝN N niis1 js1 is1

If the disease indicators from all subjects were independent, p would be
Ž .asymptotically normally distributed with mean P and variance P 1yP rNs

PQrN. Suppose, though, that the disease indicators among family members
Ž . Ž .are correlated, with Cov Y , Y sPQ� for j�k, where �sCorr Y , Y isi j i k i j i k

the correlation between outcomes for subjects in the same family. This type
of correlation structure is called intraclass correlation, wherein any two
measurements from the same cluster have the same correlation. Then p is
asymptotically normally distributed with mean P and variance

K n PQ 1q n y1 �� 4Ž . PQi iVar p s s 1q n y1 � , 15.1� 4Ž . Ž .Ž .Ý w2 NNis1

K 2 K K Ž .where n sÝ n rÝ n sÝ n rN n is the cluster-size-weighted aver-w is1 i is1 i is1 i i
age cluster size. Thus the variance of p is PQrN times a ®ariance inflation

Ž .factor, or VIF see also Section 9.6 . Re-expressing the sum of squared
Kcluster sizes in n in terms of the arithmetic mean cluster size n sÝ n rKw a is1 i

2 K 2Ž .and the finite-population variance of the cluster sizes, s sÝ n yn rK ,is1 i a
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we have

2VIFs1q n y1 �s1q s rn q n y1 � . 15.2Ž .Ž . Ž .Ž .½ 5w a a

When VIF�1, we say the data are o®erdispersed.
The variance of p can be estimated by

$ $pq pq 2Var p s VIFs 1q s rn q n y1 � , 15.3Ž . Ž .Ž . ˆŽ .½ 5a aN N

Ž .where � is an estimator of � which we discuss below at 15.4 . The varianceˆ
Ž . Ž . Ž .estimate 15.3 is given in Donald and Donner 1987 ; Rao and Scott 1992

give a slightly different estimator. For large K , an approximate 95% confi-
dence interval for P is

$ $
py1.96 se p �P�pq1.96 se p ,Ž . Ž .

$ $'Ž .where se p s Var p . By assuming a specific distribution for Y , such asŽ . iq
the beta-binomial distribution, one could provide an exact confidence inter-
val for P, but in this chapter we focus on nonparametric methods that are
valid in large samples for any distribution.

Note that the average cluster size, the variability of cluster sizes, and the
intraclass correlation all affect the variance of p. Researchers may not have
control over the cluster size, as in the family study, but in other studies the
n ’s can often be designed by the investigator. In longitudinal studies, fori
example, n is the number of time points of observation and repeatedi
measurement, while in periodontal studies, n is the number of measure-i
ments sites in the oral cavity. If n sn for all i, then s2 is zero, and thei

Ž .� Ž . 4variance of p reduces to PQrN 1q ny1 � . When � is positive, the
naive variance estimate pqrN underestimates the true variance. When �
is negative, pqrN overestimates the true variance. Note that because the

Ž .VIF depends on the product of the correlation and cluster size minus 1 ,
even if the correlation is small, a large cluster size can result in a marked
variance inflation. For example, with �s0.05 and ns100, the VIF is 5.95,
meaning that p has almost six times the variance given by the naive estimate.
Variation in cluster sizes further inflates the variance. For example, if
half the clusters have n s50 and the other half have n s150, resultingi i

2in the same average n s100 but with s s2500, the VIF increases toa
�Ž . 41q 2500r100 q100y1 0.05s7.2. Thus variation in cluster sizes modestly

increases the VIF, while the average size of the cluster can have a large
effect on the VIF when � is nonnegligible.

In practice, the intraclass correlation � is unknown and needs to be
estimated. Using the relationship

E Y yP Y yP rPQs� ,Ž .� 4Ž .i j i k
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a natural estimator for � is

K

2 Y yp Y ypŽ .Ž .Ý Ý i j i k
is1 j�k

�s . 15.4Ž .ˆ K

n n y1 pqŽ .Ý i i
is1

Because data are often presented only in terms of Y , a computationallyiq
Ž .more convenient expression for the numerator of 15.4 is given by

K

2 Y yp Y ypŽ .Ž .Ý Ý i j i k
is1 j�k

K
2s Y Y y1 y2 p n y1 Y qn n y1 p .Ž . Ž . Ž .� 4Ý iq iq i iq i i

is1

To illustrate, Table 15.1 presents a subset of the data from a toxicologic
Ž .experiment originally reported by Weil 1970 and analyzed by Williams

Ž . Ž .1975 and Rao and Scott 1992 . The table gives the number Y of pupsiq

Table 15.1. Number of pups sur©i©ing 21 lactation days among
pups ali©e 4 days after birth for 16 litters of pregnant rats
gi©en a chemically treated diet

Number of Pups

Litter Survived Alive after
No. 21 Days 4 Days
Ž . Ž . Ž .s i sY sniq i

1 12 12
2 11 11
3 10 10
4 9 9
5 10 11
6 9 10
7 9 10
8 8 9
9 8 9

10 4 5
11 7 9
12 4 7
13 5 10
14 3 6
15 3 10
16 0 7
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surviving 21 lactation days among the number n of pups alive 4 days afteri
birth from Ks16 pregnant rats whose diet was chemically treated. The
estimated proportion of all pups in a similar situation who would survive 21
lactation days is psÝ Y rÝ n s112r145s0.7724. To calculate the stan-i iq i i
dard error of p, we first estimate the correlation to be �s0.3205 usingˆ

2Ž .15.4 . With Ns145, n s9.0625, and s s3.4336, the variance inflationa
Ž . Ž .factor from 15.2 is VIFs3.705, and 15.3 yields

$ 0.7724 0.2276Ž . Ž .
Var p s �3.705s0.004493Ž . 145

$
1r2Ž .with estimated standard error se p s0.004493 s0.0670. A 95% confi-

dence interval for P is then

$
p�1.96 se p s 0.641, 0.904 .Ž . Ž .

15.2. INFERENCE FOR TWO PROPORTIONS

Next consider a 2�2 table with data correlated due to cluster sampling. We
now have a binary exposure variable, X , in addition to the binary outcomei j
Y for the jth member in the ith cluster. There are two cases to consider. Ini j

Ž .one case, exposure does not vary among the members subunits in the same
Ž .cluster independent unit ; in the other case, exposure does vary. When Xi j

does not vary within a cluster, we can denote exposure as X with a singlei
subscript, and we can continue to aggregate the binary outcomes to single
cluster counts Y , using X to keep track of which clusters are exposed andiq i
which are unexposed. When X does vary within a cluster, it is no longeri j
appropriate to aggregate the data to single cluster counts. Instead, the data
should be aggregated separately by exposure group, thus: Y sÝni X Yi1q js1 i j i j

n i Ž .and Y sÝ 1yX Y . In either case, the two group proportions can bei2q js1 i j i j
estimated as if the data were independent, but the standard errors
cannot�they have different forms depending on whether or not exposure
varies within clusters.

When exposure does not vary within clusters, we may use the layout of
Table 15.2 to represent the data. The cell counts can be expressed in terms of
X and Y as follows.i i j

nK Ki

as X Y s X Y ,Ý Ý Ýi i j i iq
is1 js1 is1

nK i

bs X 1yY ,Ž .Ý Ý i i j
is1 js1
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Table 15.2. Data layout from a two-sample study when exposures
do not ©ary within clusters

Ž .Outcome Y

1 0 Total

1 a b aqbsÝ X n sNi i i 1Ž .Exposure X Ž .0 c d cqdsÝ 1yX n sNi i i 2

Ž .Total aqcsÝ Y bqdsÝ n yY Ni iq i i iq

nK Ki

cs 1yX Y s 1yX Y ,Ž . Ž .Ý Ý Ýi i j i iq
is1 js1 is1

nK i

ds 1yX 1yY .Ž . Ž .Ý Ý i i j
is1 js1

Ž � . Ž � .Now let P sP Ys1 Xs1 and P sP Ys1 Xs0 . In testing P sP ,1 2 1 2
a natural test statistic is

p yp1 2zs ,
Var p yp' Ž .1 2

Ž . Ž .where p sar aqb and p scr cqd . Here z is distributed approxi-1 2
mately as a standard normal variable in large samples. In the case we are
considering, a and c are statistically independent�see Problem 15.3. The
variance of p yp then needs only a simple adjustment as in the single1 2
sample case, namely,

P Q f P Q f1 1 1 2 2 2Var p yp s q , 15.5Ž . Ž .1 2 aqb cqd

where f and f are the variance inflation factors defined for the groups of1 2
clusters with X s1 and X s0, respectively. Specifically, after obtaining �̂i i 1

Ž .from 15.4 using only those clusters with X s1, we calculatei

K

X nÝ i i
is1n s ,1 K

XÝ i
is1

K
2X n ynŽ .Ý i i i

is12s s ,1 K

XÝ i
is1
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Table 15.3. Number of pups sur©i©ing 21 lactation days among
pups ali©e 4 days after birth for 16 litters of pregnant rats
gi©en a control diet

Number of Pups

Litter Survived Alive after
No. 21 Days 4 Days
Ž . Ž . Ž .s i sY sniq i

1 13 13
2 12 12
3 9 9
4 9 9
5 8 8
6 8 8
7 12 13
8 11 12
9 9 10

10 9 10
11 8 9
12 11 13
13 4 5
14 5 7
15 7 10
16 7 10

and

2f s1q s rn q n y1 � ;Ž .Ž .½ 51 1 1 1 1

2� , n , s , and f are obtained similarly, using only those clusters withˆ2 2 2 2
X s0, and replacing X by 1yX in the above expressions.i i i

To illustrate the first case, consider the data presented in Table 15.1
together with the data shown in Table 15.3 from another 16 pregnant rats
who were fed a control diet. Letting X s0 for the control group andi j
X s1 for the chemically treated group, it is clear that X does not varyi j i j
among the pups in the same litter, such that, X sX s ��� sX sX .i1 i2 in ii

The data are summarized in the following 2�2 layout:

Outcome

Survived Died Total

Treated diet 112 33 145
Exposure

Control diet 142 16 158

Total 254 49 303
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For the control group with N s158, we obtain p s142r158s0.8987,2 2$
2 Ž .� s0.01657, n s9.875, s s4.984, f s1.155, Var p s0.0006656, andˆ2 2 2 2 2$

Ž . Žse p s 0.0258. To test H : P s P , the z-score is zs 0.8987 y2 0 1 2
. Ž .1r20.7724 r 0.004493q0.0006656 s1.758, and we do not reject H at the0

�s0.05 level.
When exposure does vary within a cluster, we need to retain the double

subscript notation for X , and separate out Y and Y for exposed andi j i1q i2q
unexposed subunits, respectively. We also let k be the number of subunits ini
the ith cluster with X s1. In this case asÝK Y and csÝK Y arei j is1 i1q is1 i2q
not statistically independent, because some subunits in a cluster may con-
tribute to a and others in the same cluster to c. The variance of p yp must1 2
now include the covariance between p and p , as follows:1 2

�Cov a, c X� 4Ž .P Q f P Q f i j1 1 1 2 2 2Var p yp s q y2 . 15.6Ž . Ž .1 2 aqb cqd aqb cqdŽ . Ž .

where f and f denote the variance inflation factors calculated from the two1 2
sets of K subclusters, one with cluster sizes k , . . . , k and the other with1 K

Ž � � 4.cluster sizes n yk , . . . , n yk , and where Cov a, c X denotes the1 1 K K i j
� 4conditional covariance of a and c given the set of exposures X . Derivingi j

Ž .this covariance involves careful counting of pairs Y , Y such that Yi j ik i j
belongs to group 1 and Y belongs to group 2:i k

n nK Ki i

�Cov a, c X sCov X Y , 1yX Y X� 4 � 4Ž .Ž . Ý Ý Ý Ýi j i j i j i k ik i jž /is1 js1 is1 ks1

n nK i i

s Cov X Y , 1yX Y X� 4Ž .Ý Ý Ýi j i j i k ik i jž /is1 js1 ks1

K

�s X 1yX Cov Y , Y X s1, X s0Ž . Ž .Ý Ý i j i k i j i k i j i k
is1 j�k

K

s� P Q P Q k n yk , 15.7Ž . Ž .' Ý12 1 1 2 2 i i i
is1

where � denotes the conditional correlation between two binary responses12
within the same cluster, one with X s1, the other with X s0: � si j i k 12

Ž � .Cov Y ,Y X s1, X s0 r P Q P Q . This correlation can be estimated'i j i k i j i k 1 1 2 2
in the same manner as in the single-proportion case. A consistent estimate of
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� is given by12

K

X 1yX Y yp Y ypŽ . Ž .Ž .Ý Ý i j i k i j 1 i k 2
is1 j�k

� sˆ12 K

k n yk p q p qŽ .'Ý i i i 1 1 2 2
is1

K

� 4Y yk p Y y n yk p� 4Ž .Ý i1q i 1 i2q i i 2
is1s . 15.8Ž .K

k n yk p q p qŽ .'Ý i i i 1 1 2 2
is1

15.3. DESIGN CONSIDERATIONS

Consider an experiment comparing a treatment with a control where the two
groups are assembled in clusters. Just as standard errors depend on whether
or not exposure varies within clusters, so do power and sample size calcula-
tions. Suppose that the experimenter has a choice of allocating treatments
within clusters or between clusters. Allocating treatments randomly within
clusters will result in exposure varying within clusters, whereas allocating
them randomly to entire clusters will result in exposure not varying within

Ž . Ž .clusters. Variance formulas 15.5 and 15.6 suggest that allocating within
clusters gives a smaller standard error for the difference estimator. Indeed,
the clusters serve as a natural blocking factor.

When exposure does not vary within clusters, the sample size formula
Ž .4.14 given in Chapter 4 can be modified to give the required sample size per

Žgroup without use of continuity correction and with equal total group sizes,
�.N sN sN . Assuming equal cluster sizes, n sn for all i, the modified1 2 i

Ž .formula is see Donner, Birkett, and Buck, 1981

2'z 2 PQf qz f P Q q f P Q'�r2 � 1 1 1 2 2 2ž /�N s , 15.9Ž .2P yPŽ .1 2

Ž . Ž . Ž .where Ps P qP r2s1yQ and where fs f q f r2s1q� ny1 is1 2 1 2
the variance inflation factor calculated under the null hypothesis. A sample
version of f would be used to estimate the variance, 2 PQf , of p yp under1 2
the null hypothesis. When exposure varies within clusters, we assume there

�will be the same number of clusters, Ks2 N rn, with k snr2 exposed andi
n yk snr2 unexposed in each cluster, so that the total sample size remainsi i

�N per group. Then f may be replaced by fyn�r2, and P Q f qP Q f1 1 1 2 2 2
may be replaced by P Q f qP Q f yn� P Q P Q , using f , f , and'1 1 1 2 2 2 12 1 1 2 2 1 2
� as defined in the previous section.12
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Ž .Figure 15.1. Required sample size versus difference in rates P s0.2 .1

To calculate power and sample size, we need information on correlation,
average cluster size, and the variance of cluster sizes. A naive power calcula-
tion ignoring the cluster effect will overstate the actual power and understate
actual required sample sizes. When the intraclass correlations are positive,
for fixed total sample size N and total number of clusters K , maximum
power is achieved when the cluster sizes are equal. If cluster sizes can be
designed, then for fixed total sample size, smaller-size clusters yield greater

Ž .power but require more clusters than larger-size clusters. When �s0,
power is equivalent to sampling NsKn independent units, while if
�s1, power is equivalent to sampling only K independent units. When
0���1, power corresponds to sample sizes between K and Kn. Figure 15.1
illustrates the effect of � on sample size. The figure plots the sample size N �

per group required to achieve 80% power as a function of P yP for �s0,2 1
2Ž .0.2, 0.5, and 0.7, when �s0.05 two-tailed , P s0.2, ns5, and s s0.1

15.4. 2�2�2 TABLES

15.4.1. Hypothesis Testing

A pair of 2�2 tables with correlated data raises several problems according
to the dependence structure and the hypotheses to be tested. Sometimes cell
counts in different tables are correlated, sometimes cell counts from different
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Table 15.4. Notation for a two-group, two-wa©e panel study with binary outcomes

Obser®ed Frequencies

Time 1 Time 2

Outcome Outcome
Ž . Ž .sY sY1 2

1 0 Total 1 0 Total

1 a b n 1 a b n1 1 1 2 2 1Ž .Exposure sX 0 c d n 0 c d n1 1 2 2 2 2

Obser®ed Proportions

Time 1 Time 2

Outcome Outcome
Ž . Ž .sY sY1 2

1 0 Total 1 0 Total

1 p q 1 1 p q 111 11 12 12Ž .Exposure sX 0 p q 1 0 p q 121 21 22 22

rows within a table are correlated, and sometimes the cells themselves are
clustered counts. Different dependence structures lead to different test
statistics, and we consider each of these situations in this section.

Dependent Tables
Consider a two-group comparison in which each individual in each group
provides a binary outcome at each of two points in time. Let p denote thei j
observed proportion of positive responses in group i at time j for is1, 2 and
j s 1, 2, with corresponding unknown population proportions P s
Ž .�P , P , P , P . The observed frequencies and proportions may be sum-11 12 21 22
marized in a pair of 2�2 tables as in Table 15.4 These fourfold tables differ
from those shown in Chapter 10 because of the correlation between the cell
counts in different tables.

Several questions may now be posed, depending on the study objectives.
The first question is whether or not, at each time point, the two groups have
the same response proportions, that is, P sP and P sP . We write this11 21 12 22
null hypothesis as

P yP11 21H : s0.01 ž /P yP12 22

It can be shown that

p yp11 21ž /p yp12 22



15.4 2�2�2 TABLES 451

is distributed asymptotically as a bivariate normal random variable with mean

P yP11 21ž /P yP12 22

and variance-covariance matrix

P Q P Q11 11 21 21q Cov p , p qCov p , pŽ . Ž .11 12 21 22n n1 2
� s .1 P Q P Q12 12 22 22Cov p , p qCov p , p qŽ . Ž .� 011 12 21 22 n n1 2

15.10Ž .

The variance-covariance matrix may be estimated by substituting p for P ,i j i j
and the covariance terms may be estimated by

$ �̂1Cov p , p s p q p qŽ . '11 12 11 11 12 12n1
15.11Ž .

$ �̂2Cov p , p s p q p q ,Ž . '21 22 21 21 22 22n1

where

Ýni Y yp Y yp Ýni Y Y yn p pŽ . Ž .hs1 hi1 i1 hi2 i2 hs1 hi1 hi2 i i1 i2� s s , 15.12Ž .î n p q p q n p q p q' 'i i1 i1 i2 i2 i i1 i1 i2 i2

and where we have indexed all n binary observations in group i at time j asi
Ž .Y hs1, . . . , n . Under hypothesis H , instead of using separate esti-hi j i 01

Ž . Ž .mates p in 15.10 and 15.11 , the pooled proportions p s1yq mayi j qj qj
Ž . Ž . Ž . Ž .be used, where p s a qc r n qn and p s a qc r n qn .q1 1 1 1 2 q2 2 2 1 2
Ž .Note that Ý Y Y hence � , which is not available from the marginalˆh hi1 hi2 i

tables in Table 15.4, must be calculated from the joint outcome frequencies.
There is no reason that � must equal � under H , even when the observedˆ ˆ1 2 01
proportions are equal across groups at each time point, that is, p sp and11 21
p sp . This can be seen by cross-classifying Y and Y in a 2�2 table;12 22 hi1 hi2

Ž .different values of Ý Y Y in the 1, 1 cell are consistent with theh hi1 hi2
Ž .observed margins a and a in group 1 or c and c in group 2 . The1 2 1 2

Ž .separate estimates in 15.12 should therefore be used if there is evidence of
different strengths of correlation in the two groups between time 1 and 2

Ž .measurements. A stronger form of the null hypothesis see H below posits05
Ž .a common distribution for Y , Y in each group, in which case the intraclass1 2
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correlations are the same and may be estimated by pooling the data:

Ýn1qn 2 Y yp Y yp Ýn1qn 2 Y Y y n qn p pŽ . Ž . Ž .hs1 h1 q1 h2 q2 hs1 h1 h2 1 2 q1 q2�s s .ˆ
n qn p q p q n qn p q p qŽ . Ž .' '1 2 q1 q1 q2 q2 1 2 q1 q1 q2 q2

15.13Ž .

ˆAfter settling on an estimated version of � , say � , hypothesis H may1 1 01
be tested by the statistic

p yp11 21y1ˆT s p yp , p yp � , 15.14Ž . Ž .1 11 21 12 22 1 ž /p yp12 22

which has an asymptotic chi squared distribution with 2 df as n and n1 2
become large.

The second question is whether or not, in each group, the probability of a
positive response remains constant over time, that is, P sP and P sP .11 12 21 22
The null hypothesis is

P yP11 12H : s0.02 ž /P yP21 22

In this case, p yp and p yp , which involve different groups of11 12 21 22
subjects, are statistically independent and are each asymptotically normal.
The pair

p yp11 12ž /p yp21 22

is asymptotically bivariate normal with mean

P yP11 12ž /P yP21 22

and variance-covariance matrix � , where � is a diagonal matrix with2 2
diagonal elements

P Q qP Q rn y2Cov p , p� 4Ž . Ž .11 11 12 12 1 11 12

and 15.15Ž .
P Q qP Q rn y2Cov p , p .� 4Ž . Ž .21 21 22 22 2 21 22

ˆ Ž . Ž .� is estimated by � , substituting p for P and using 15.11 and 15.12 .2 2 i j i j
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H may be tested by the statistic02

p yp11 12y1ˆT s p yp , p yp �Ž .2 11 12 21 22 2 ž /p yp21 22

2p ypŽ .11 12s $
p q qp q rn y2Cov p , p� 4Ž . Ž .11 11 12 12 1 11 12

2p ypŽ .21 22q , 15.16$ Ž .
p q qp q rn y2Cov p , p� 4Ž . Ž .21 21 22 22 2 21 22

which has an asymptotic chi squared distribution with 2 df.
The third question is whether or not the changes from time 1 to time 2 are

the same for the two groups, such that, P yP sP yP , which is12 11 22 21
equivalent to asking whether or not the group differences are the same at
each time point, such that, P yP sP yP . This null hypothesis can be21 11 22 12
expressed as

H : P yP y P yP s P yP y P yP s0.Ž . Ž . Ž . Ž .03 12 11 22 21 21 11 22 12

Ž . Ž .The difference p yp y p yp is asymptotically normal with mean12 11 22 21
Ž . Ž .P yP y P yP and variance12 11 22 21

P Q qP Qy1 11 11 12 12� s y1, 1 � s y2Cov p , pŽ . Ž .3 2 11 12ž / n1 1

P Q qP Q21 21 22 22q y2Cov p , p . 15.17Ž . Ž .21 22n2

Hypothesis H may be tested by the statistic03

2 ˆT s p yp y p yp r� , 15.18� 4Ž . Ž . Ž .3 12 11 22 21 3

where

y1ˆ ˆ� s y1, 1 � .Ž .3 2 ž /1

T is asymptotically chi squared with 1 df.3
The first hypothesis is equivalent to the assertion that, at each time point,

there is an odds ratio of 1 comparing response probabilities for group 1
versus group 2, and the second hypothesis is equivalent to the assertion that,
for each group, there is an odds ratio of 1 comparing response probabilities
for time 1 versus time 2. The third hypothesis, however, is not equivalent to
the assertion that the odds ratios for the two tables are the same; that
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Table 15.5. Obser©ed and expected cell frequencies for two multinomial
distributions with a 2�2 response design

Obser®ed Frequencies

Ž . Ž . Ž . Ž . Ž .Exposure Y , Y s 1, 1 1, 0 0, 1 0, 0 Total1 2

Ž . Ž . Ž . Ž .1 n 1 n 1 n 1 n 1 n11 10 01 00 1
Ž . Ž . Ž . Ž .0 n 2 n 2 n 2 n 2 n11 10 01 00 2

Total n n n n n qn11 10 01 00 1 2

Expected Frequencies

Ž . Ž . Ž . Ž . Ž .Exposure Y , Y s 1, 1 1, 0 0, 1 0, 0 Total1 2

Ž . Ž . Ž . Ž .1 n � 1 n � 1 n � 1 n � 1 n1 11 1 10 1 01 1 00 1
Ž . Ž . Ž . Ž .0 n � 2 n � 2 n � 2 n � 2 n2 11 2 10 2 01 2 00 2

hypothesis is

P rQ P rQ11 11 12 12H : s .04 P rQ P rQ21 21 22 22

Both H and H specify no interaction between group and time, but H is03 04 03
on an additive scale, while H is on a multiplicative scale, and these need04
not hold simultaneously. Test statistics for H will be discussed in Section04
15.5 in the context of generalized estimating equations.

Note that hypotheses H through H concern the marginal proportions01 04
of positive outcome at each time point; they do not address subject-specific
changes. There are four possible joint events for binary outcomes observed at

Ž . Ž . Ž . Ž .two time points: 1, 1 , 1, 0 , 0, 1 , and 0, 0 . These constitute a multinomial
response, and we can ask whether or not the underlying multinomial proba-
bilities are the same for the two groups. Casting the raw data into a 2�4
table, the observed and expected cell frequencies may be denoted as in Table
15.5.

As mentioned above, Table 15.5 contains information not available from
the marginal frequencies in Table 15.4. Formally,

�� i sP Y s j, Y sk Xs2y i ,Ž . Ž .jk 1 2

1 1

with � i s1 for is1 and 2.Ž .Ý Ý jk
js0 ks0
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Ž .The equality of the joint distribution of Y , Y between the two groups is1 2
hypothesis H :5

� 1 � 2 �Ž . Ž .11 11 11

� 1 � 2 �Ž . Ž .10 10 10H : s s .5 � 1 � 2 �Ž . Ž .01 01 01� 0 � 0 � 0
� 1 � 2 �Ž . Ž .00 00 00

Ž . Ž .Expression 9.38 , which is equivalent to 9.3 , gives the appropriate
statistic for testing the equality of two multinomial probability vectors. We
denote that statistic by T :5

21 1 � 1 y� 2Ž . Ž .� 4ˆ ˆjk jk
T s , 15.19Ž .Ý Ý5 � 1rn q1rnŽ .ˆ jk 1 2js0 ks0

Ž . Ž . Ž .where � i are the sample proportions n i rn corresponding to � i ,ˆ jk jk i jk
Ž .and � is obtained from the marginal proportions � sn r n qn . As inˆ ˆjk jk jk 1 2

Section 9.4, T is asymptotically chi squared with 3 df.5
The methods of Chapter 11 for polytomous logistic regression may also be

applied. Indeed, the double-dichotomy response design was illustrated by the
breathlessness and wheeze example of Section 11.4.1. Specifically, we can
write

�P Y , Y s j, k Xsx� 4Ž . Ž .1 2ln
�P Y , Y s 0, 0 Xsx� 4Ž . Ž .1 2

s� Ž1. x � t Ž1. j, k q� Ž2. x � t Ž2. j, k q� Ž12. x � t Ž12. j, k ,Ž . Ž . Ž . Ž . Ž . Ž .

Ž1.Ž . Ž2.Ž .where t j, k s1 if and only if js1, t j, k s1 if and only if ks1, and
Ž12. Ž . Ž1.Ž . Ž2.Ž .t j, k s t j, k t j, k , and where

� Ž1. x s� Ž1.q� Ž1. x ,Ž . 0 1

� Ž2. x s� Ž2.q� Ž2. x ,Ž . 0 1

and

� Ž12. x s� Ž12.q� Ž12. x ,Ž . 0 1

Hypothesis H is equivalent to H : � Ž1.s� Ž2.s� Ž12.s0. Other hypotheses5 5 1 1 1
about specific parameters may be tested as well.

Ž .We use data from the Northern Manhattan Stroke Study NOMASS to
illustrate analyses of 2�2�2 tables with correlated outcomes. As discussed
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Table 15.6. Functional status by stroke mechanism at time
( ) ( )of stroke time 1 and two years later time 2 from NOMASS

Time 1 Time 2

Functional Status Functional StatusStroke
Ž . Ž .sY sY1 2Mechanism

Ž .sX Normal Impaired Total Normal Impaired Total

IATH 5 20 25 17 8 25
Other 26 205 231 106 125 231

Total 31 225 256 123 133 256

Ž . Ž .in Section 14.4 and in Sacco et al. 1998 and Paik, Sacco, and Lin 2000 ,
NOMASS was designed to identify determinants of stroke and stroke out-
comes in an urban population of white, black, and Hispanic residents of
northern Manhattan. One of the research questions is whether or not the

Ž . Ž .stroke mechanism X of intracranial atherosclerosis IATH versus other
Ž . Ž .stroke mechanisms affects functional status Y at the time of stroke time 1

Ž . Ž .and two years later time 2 . The data analyzed here Table 15.6 are from a
subset of patients whose functional outcomes are observed at both time
points. A larger data set with other covariate information is analyzed in
Section 15.5.

To test H , that the IATH group and non-IATH group have the same01
Ž .functional status at each time point , we compute p s0.2, p s0.68,11 12

Ž .p s0.1126, p s0.4589. From 15.12 , we compute � s0.3440 and � sˆ ˆ21 22 1 2
Ž .0.1943, using Ý Y Y s5 and Ý Y Y s19 see Table 15.7 below . Ifh h11 h12 h h21 h22

Ž . Ž .separate estimates for all terms in 15.10 	 15.12 are used to estimate � in1
Ž .15.10 , we find

0.006832 0.002692
�̂ s .1 ž /0.002692 0.009779

Then

T s 0.2y0.1126, 0.68y0.4589Ž .1

y1
0.006832 0.002692 0.2y0.1126

� s5.116.ž / ž /0.002692 0.009779 0.68y0.4589

Under the null hypothesis, however, the pooled proportion p s31r256sq1
Ž .0.1211 can be used instead of P and P in 15.10 and instead of p and11 21 11

Ž .p in 15.11 ; and p s123r256s0.4805 can be used instead of P and21 q2 12
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Ž . Ž .P in 15.10 and instead of p and p in 15.11 . Then22 12 22

0.004718 0.002373
�̂ s1 ž /0.002373 0.011065

Ž .and T s4.7994. If one were to treat � and � as equal and use 15.13 toˆ ˆ1 1 2
estimate the common value �, the estimate is �s0.2182,ˆ

0.004718 0.001577
�̂ s ,1 ž /0.001577 0.011065

and T s5.115, very close to the value with all terms estimated separately. In1
none of these instances do we reject H at the 0.05 level for chi squared on01
2 df.

Next, we test H , that the rates of functional impairment at the two time02
Ž .points are the same for the IATH and non-IATH groups . Now

0.01185 0
�̂ s2 ž /0 0.00121

and

T s 0.2y0.68, 0.1126y0.4589Ž .2

y1
0.01185 0 0.2y0.68

� s118.6,ž / ž /0 0.00121 0.1126y0.4589

which is highly significant as a chi squared variate on 2 df.
To test the interaction hypothesis H , we calculate03

0.01185 0 y1
�̂ s y1, 1 s0.01306,Ž .3 ž / ž /0 0.00121 1

and T s1.369. We do not reject H , that there is no interaction between3 03
time and group membership.

Table 15.7. Joint response frequencies at times 1 and 2 by stroke mechanism
for the NOMASS data

Stoke
Ž . Ž . Ž . Ž . Ž .Mechanism Y ,Y s 1, 1 1, 0 0, 1 0, 0 Total1 2

IATH 5 0 12 8 25
Other 19 7 87 118 231

Total 24 7 99 126 256



ANALYSIS OF CORRELATED BINARY DATA458

( )Table 15.8. Notation for o©erdispersed response data collapsing o©er time
by exposure in two strata

Obser®ed Frequencies

Stratum 1 Stratum 2

Outcome Outcome

1 0 Total 1 0 Total

1 a b n 1 a b n1 1 11 2 2 12
Exposure

0 c d n 0 c d n1 1 21 2 2 22

Obser®ed Proportions
Stratum 1 Stratum 2

Outcome Outcome

1 0 Total 1 0 Total

1 p q 1 1 p q 111 11 12 12
Exposure

0 p q 1 0 p q 121 21 22 22

To test H , that the response profile is the same for the two groups, we05
require the joint frequencies in Table 15.7. The test statistic T is5

2 2 28 118 12 87 5 19y y yŽ . Ž . Ž . Ž .25 231 25 231 25 231T s q q ���q s6.386.119 1 1 99 1 1 24 1 15 q q qŽ . Ž . Ž .256 25 231 256 25 231 256 25 231

Since T is smaller than the critical value for chi squared on 3 df at the 0.055
Ž . Ž .level 7.81 from Table A.2 , we do not reject H p�0.10 .5

O©erdispersed Cell Counts with Independent Rows and Tables
Suppose we wish to study the relation between functional impairment and
stroke mechanism irrespective of time point, but stratifying the data by age at
the time of stroke in two intervals. In each age group one subject contributes
two data points, functional status at time one and time two. The data may be
arranged as in Table 15.8. Unlike Table 15.4, the two fourfold tables in Table
15.8 contain different subjects, so the cell counts in different tables are
independent. Moreover, the stroke type does not change over time and the
two rows in each table contain different subjects, so the rows in each table
are independent. However, the cell counts in a given row are not distributed
as binomial random variables given the row margin, because the cells
represent sums of correlated binary variables. The variances of the cell

Ž .counts given the row margins have the form 15.1 .
The observed proportions are p sa rn , p sa rn , p sc rn ,11 1 11 11 2 12 11 1 21

Ž .and p sc rn , with underlying expected values P sE p . Note that the22 2 22 i j i j
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row margins for each table are allowed to differ, i.e., n �n and n �n .11 12 21 22
When cell counts are overdispersed, but rows and tables are statistically
independent, the hypotheses H , H , and H are similar to those pre-01 02 03
sented above, but the variance-covariance matrices � , � , and � are1 2 3

Ž .different. We denote the variance inflation factor defined in 15.2 for the ith
row of the jth table by f , such thati j

P Q fi j i j i j
Var p s .Ž .i j ni j

Ž . Ž .Due to the independence between tables, Cov p , p sCov p , p s0,11 12 21 22
and the covariance term in � disappears. Then, estimating the separate1

ˆ Ž . Ž .variance inflation factors f as in 15.3 and 15.4 , we obtaini j

2p ypŽ .11 21T s1 ˆ ˆf p q rn q f p q rnŽ . Ž .11 11 11 11 21 21 21 21

2p ypŽ .12 22q , 15.20Ž .ˆ ˆf p q rn q f p q rnŽ . Ž .12 12 12 12 22 22 22 22

which is asymptotically chi squared with 2 df;

2p ypŽ .11 12T s2 ˆ ˆf p q rn q f p q rnŽ . Ž .11 11 11 11 12 12 12 12

2p ypŽ .21 22q 15.21Ž .ˆ ˆf p q rn q f p q rnŽ . Ž .21 21 21 21 22 22 22 22

with 2 df; and

2
p yp y p yp� 4Ž . Ž .11 12 21 22T s3 ˆ ˆ ˆ ˆf p q rn q f p q rn q f p q rn q f p q rnŽ . Ž . Ž . Ž .11 11 11 11 12 12 12 12 21 21 21 21 22 22 22 22

15.22Ž .

with 1 df.
Table 15.9 presents the NOMASS data from Table 15.6 stratified by age.

Note that in either table, a subject contributes two counts.
H specifies that for each age group, the proportions who exhibit normal01

functional status are the same with or without IATH. Because n sns2 fori
all subjects, we have f s f s f s f s1q�s1.2182. Then T s5.5965,ˆ11 12 21 22 1
which is not significant at the 0.05 level. For hypothesis H , we obtain02
T s26.6189, and conclude that functional status depends on age. For H ,2 03
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Table 15.9. Functional status and stroke mechanism from NOMASS data,
collapsed o©er time and stratified by age at stroke�70 years andF70 years

Age�70 AgeF70

Functional Status Functional StatusStroke
Mechanism Normal Impaired Total Normal Impaired Total

IATH 17 9 26 5 19 24
Other 78 120 198 54 210 264

Total 95 129 224 59 229 288

we fail to reject the hypothesis with T s3.0948, indicating no significant3
interaction between stroke mechanism and age group.

15.4.2. Inference for the Mantel-Haenszel Odds Ratio
with Clustered Data

When several fourfold tables are statistically independent, we can estimate
an assumed common odds ratio and test whether it equals one using the

Ž .methods of Chapter 10. As mentioned at 10.53 , the Mantel-Haenszel odds
Ž .ratio 
 at 10.52 satisfies the estimating equationˆMH

g a d yb c 
j j j j
s0, 15.23Ž .Ý Njjs1

where N sa qb qc qd , and g is the number of independent strata. Thej j j j j
Mantel-Haenszel odds ratio does not require iterative computation. It is a
consistent estimator for a fixed number of tables with large sample sizes per
stratum or for a large number of strata with small sample sizes.

When the data in different tables are correlated, some adjustments are
needed. One approach is to use the method of generalized estimating
equations discussed in Section 15.5. An alternative approach is to use an

Ž .adjusted Mantel-Haenszel odds ratio or test statistic. Fortunately, 10.52 is
consistent even when data are correlated. This is true essentially because the

Ž .estimating equation 15.23 is unbiased, that is, the left-hand side has zero
expectation. The use of unbiased estimating equations is discussed further in
Section 15.5. The only problem is that the variance of the logarithm of the

Ž .Mantel-Haenszel odds ratio given at 10.58 is not correct for correlated data.
Similarly, the numerator of the Mantel-Haenszel chi squared statistic can be
used as is, but the variance term in the denominator needs to reflect the

Ž .correlation between tables. Donald and Donner 1987 show that when
exposure does not vary within the cluster, one may simply divide the Mantel-

Ž .Haenszel chi squared statistic shown in 10.62 by the variance inflation
factor f ; the adjusted statistic then has a chi squared distribution with 1 df.
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Alternative variance estimators have been proposed for the Mantel-
Ž .Haenszel odds ratio. Donald and Donner 1987 consider the case of covari-

ates that are constant within clusters, and suggest using the correction factor
in Hauck’s variance formula. Denoting the correction factor for the ith row
and the jth table by f , leti j

f f1 j 2 j�® s q . 15.24Ž .j n P Q n P Q1 j 1 j 1 j 2 j 2 j 2 j

Then with gs2,


 2Ý g w ®�
js1 j j

Var 
 s , 15.25Ž .Ž .ˆMH 2gÝ wŽ .js1 j

Ž y1 y1 . Ž .where w sP Q r n qn . Liang 1985 proposed an empirical variancej 2 j 2 j 1 j 2 j
estimator which is useful when the number of strata is large:

2g a d b cj j j j
y 
̂Ý MHN Nž /j j$ js1

Var 
 s . 15.26Ž .Ž .ˆMH 2g b cj jÝ Nž /jjs1

Ž .Zhang and Boos 1997 proposed two modified statistics using another
unbiased empirical variance estimator. An extension of the variance formula

Ž .given in Robins, Breslow, and Greenland 1986 and Phillips and Holland
Ž . Ž .1987 is not straightforward and is not yet available. Rao and Scott 1992

Ž .and Donner and Hauck 1988 proposed modified Mantel-Haenszel odds
ratios using new weights which include corrections for correlation.

The above-mentioned adjustments are limited to the case in which expo-
sure is constant within clusters and when tables and table rows are indepen-

Ž .dent. Begg 1999 proposed an adjustment for the Mantel-Haenszel chi
Ž .squared statistic, and Begg and Panageas 1999 proposed an adjustment for

the variance of the Mantel-Haenszel odds ratio, which are applicable when
exposure is constant within clusters or varies across subunits within clusters,
or when tables are dependent as in Table 15.4.

An alternative way to obtain a consistent variance estimate is to use the
jackknife technique: delete independent units one at a time and estimate the
variance from the sum of squared differences of the delete-one estimates

Ž .from the full estimate. The same technique is applied at 15.40 below for
GEE estimates.

Using the data in Table 15.9, were we to ignore the fact that the cell
$
Ž .counts are clustered, we would obtain 
 s1.9044, and se 
 s0.6596.ˆ ˆMH MH
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The Mantel-Haenszel chi squared statistic without continuity correction is
3.9722, which would be significant at the 0.05 level. Taking the clustering into

Ž .account, 
 remains the same, but the standard error using 15.25 isˆMH
0.7279, and the variance-inflation-adjusted Mantel-Haenszel chi squared
statistic is 3.2607. This fails to reach significance at the 0.05 level, and we do
not reject the hypothesis of no association.

15.5.* EXTENSIONS OF LOGISTIC REGRESSION FOR
CORRELATED OUTCOMES

In this section we consider certain extensions of the logistic regression model
to accommodate correlation among binary outcomes. These modifications
vary depending on the study aims and analytic assumptions. The discussion is
intended for the more advanced reader. The main focus is on generalized
estimating equations in Section 15.5.1 and random effects models in Section
15.5.2. Other techniques are touched on briefly, such as summarization by
individual or time in Section 15.5.3, Markov models in Section 15.5.4, and
multivariate binary distributions in Section 15.5.5.

As before, let Y be a binary outcome for the jth subunit of the ithi j
independent unit, where i s 1, . . . , K and j s 1, . . . , n . Let Y si i
Ž .�Y , Y , . . . , Y denote the ith independent vector of binary responses, andi1 i2 in i

let X be a vector of covariates of length p, which includes the intercepti j
w � � xconstant. We collect the n vectors into the p�n matrix X s X ��� X .i i i i1 in i

15.5.1. Generalized Estimating Equations

Suppose the marginal probability of a positive outcome is of primary interest.
‘‘Marginal’’ is used in the sense that the probability is not conditional on the
outcomes at previous time points, although it is conditional on X�the
probabilities throughout this section are all conditional on X. We denote

Ž . Ž � .the marginal probability by P sP X sP Y s1 X , and assume thati j i j i j i j i j
the logit of P is linear in X, i.e.,i j

�P Y s1 X P XŽ .Ž .i j i j i j �ln s ln s� X . 15.27Ž .i j� 1yP XP Y s0 X Ž .Ž . i ji j i j

Estimating Equations
An equation which yields an estimator as a solution is called an estimating
equation, and the function equated to zero is called an estimating function.
The quasiscore function introduced in Section 12.3 is an example of an

Ž .estimating function, as is the left-hand side of 15.23 . Suppose we fit the
Ž .logistic regression model 15.27 as if all the Y ’s were independent. Becausei j

the specified likelihood function is generally not the correct likelihood
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function when the Y ’s are correlated, the equation solved to obtain thei j
estimate is not the correct score equation, but rather an estimating equation.
Although the solution of the estimating equation is not the maximum
likelihood estimate, it turns out nevertheless to be consistent, i.e., the
estimator converges to the true parameter value in probability as K becomes
large, primarily because the estimating function, like the correct score func-
tion, has zero expectation. We say that an estimating equation is unbiased if
the corresponding estimating function has zero expectation for any true value
of the parameters. A well-known estimating equation for continuous data is
the set of normal equations whose solution gives ordinary least-squares
estimates, which are consistent estimators even when the error terms are not
normal, due mainly to unbiasedness of the normal equations. While the
parameter estimates from an unbiased estimating equation are consistent,
the standard errors computed as if all Y ’s were independent are incorrect,i j
and so are the associated p-values and confidence intervals; so, much of the
effort in this subject is devoted to proper evaluation of the standard errors of
the estimates.

Ž . Ž .Liang and Zeger 1986 and Zeger and Liang 1986 proposed the method
Ž .of generalized estimating equations GEEs as an extension of generalized

Ž .linear models McCullagh and Nelder, 1989 for correlated outcomes. The
key idea of GEEs in such applications is to use an unbiased estimating
equation. GEE models for correlated binary outcomes are described next.

GEEs for Multi©ariate Binary Data
Ž . Ž .� Ž .Let E Y sP , where P s P , . . . , P . Since Y is binary, Var Y si i i i1 in i j i ji

Ž .P 1yP . Next, assume the variance-covariance matrix of Y isi j i j i

1r2 1r2�V sV � , � X , . . . , X sA P R � A P , 15.28Ž . Ž . Ž . Ž .Ž .i i i1 in i i i i ii

Ž .where A is an n �n diagonal matrix with jth diagonal element P 1yPi i i i j i j
Ž .and R � is a correlation matrix that may depend upon an additionali

Ž .parameter � . When �s0, we take R 0 as the identity matrix. If � isi
ˆknown, an estimate of � , say � , can be obtained by solving the estimating

equation

K �� Pi y1U � , � s V Y yP s0. 15.29Ž . Ž . Ž .Ý i i i��
is1

In the present case of a binary outcome with logistic link function, if
� Ž .�s0, � P r��sX A and the estimating function U � , � is equal to thei i i

Ž . Ž . Žscore function Ý X Y yP sÝ Ý X Y yP from logistic regression seei i i i i j i j i j i j
. Ž .Section 11.4.3 . If the Y ’s were indeed independent, U � , 0 would be thei j

correct score function, that is, the derivative of the log likelihood given by the
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product of Bernoulli distributions. The main distinction between a score
function and an estimating function is that the score function derives from
the likelihood function while an estimating function, constructed ab initio, is
not necessarily derived from a target function to be maximized. Both have
zero expectation.

Such unbiased estimating equations are key to proving the consistency and
ˆ ˆŽ .asymptotic normality of �. To see why heuristically, first note that U � , �

s0 so, by a Taylor expansion about the true value � � of � ,

�U � 	 , �Ž .� �ˆ ˆ0sU � , � sU � , � q �y� ,�Ž .Ž . Ž .��

� 	 	 �ˆ ˆwhere the matrix �Ur�� is evaluated at � satisfying � y� � � y� .
This leads to

y1	�U � , �Ž .� ��̂y� s y U � , � .� Ž .ž /��

Ž � .Since U � , � is a sum of random vectors with mean zero and finite
� 	' Ž .Ž .variance, it is of order K in probability, while y �Ur�� � , � is a sum

ˆof positive terms, and is thus of order K. Therefore � converges in probabil-
� ˆity to � as K becomes large, that is, � is consistent.

Ž . �Ž � .Ž .4Now let W � , � sE y�Ur�� � , � . We use W rather than I to0
distinguish the expected value of y�Ur�� � from the Fisher information

Ž . Ž . Ž .matrix I � , which, under independence, equals I � s W � , 0 s0
Ý X V X �sÝ Ý P Q X X � . Then we havei i i i i j i j i j i j i j

K �� P � Pi iy1W � , � s V . 15.30�Ž . Ž .Ý0 i�� ��
is1

Ž �.Ž 	 . Ž � .It can be shown that y �Ur�� � , � converges to W � , � , from0
ˆ �which it follows that �y� has the same asymptotic distribution as

Ž � .y1 Ž � .W � , � U � , � , which we denote by0

y1� � ��̂y� fW � , � U � , � . 15.31Ž . Ž . Ž .0

Ž � .The central limit theorem implies that U � , � is asymptotically multivari-
ˆ �Ž .ate normal, and 15.31 shows that �y� is also asymptotically multivariate

normal. A similar argument was used for the quasilikelihood method in
Section 12.3.

Ž . Ž .Liang and Zeger 1986 called R � a ‘‘working correlation’’ matrix toi
Ž .reflect the fact that R � does not actually have to be the true correlationi

Ž � .matrix of Y . With that in mind, the true variance of U � , � , call iti
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Ž � .W � ,� , is1

K �� Pi� y1W � , � sVar V Y yPŽ . Ž .Ý1 i i i½ 5��
is1

K �� P � P�i iy1 y1sE V Y yP Y yP V .�Ž . Ž .Ý i i i i i i½ 5�� ��
is1

Ž . Ž .Ž .�If R � is correctly specified, E Y yP Y yP sV , and the right-handi i i i i i
side becomes

K � K �� P � P � P � P�i i i iy1 y1 y1E V Y yP Y yP V s V ,� �Ž . Ž .Ý Ýi i i i i i i½ 5�� �� �� ��
is1 is1

Ž .resulting in W sW . Even when R � is misspecified, however, the vari-1 0 i
Ž � .ance of U � , � can be consistently estimated by

K �� P � P�i iy1 y1Ŵ s V Y yP Y yP V , 15.32�Ž . Ž . Ž .Ý1 i i i i i i�� ��
is1

ˆ Ž .evaluated at � and �s�. Using equation 15.31 , we see that the variance
ˆof � is of the so-called sandwich form:

Wy1 W Wy1 , 15.33Ž .0 1 0

ˆy1 ˆ ˆy1which can be consistently estimated by W W W . This sandwich estimate0 1 0
enables us to draw correct inferences even when the correlation structure is
misspecified. Misspecification of the correlation structure does not affect the

ˆconsistency of � and its variance estimate, but it reduces statistical efficiency,
resulting in larger standard errors and wider confidence intervals than would
obtain with the correct specification. See below under ‘‘Efficiency.’’

Estimation of �
ˆSince the consistency of � is unaffected by misspecification of R, we could

Ž .specify R as the identity matrix, in which case solving U � , 0 s0 is equiva-
Ž .lent to fitting an ordinary logistic regression. When R � is chosen as some

other function of an unknown parameter � , we need to estimate � . Note
that � is assumed common to all i. The correlation matrix may be different
for different units, but should be completely determined by � . Liang and

Ž .Zeger 1986 give several examples of correlation structures. A simple exam-
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ple is the intraclass correlation matrix,

1 � � ��� �
� 1 � ��� �
� � 1 ��� �R � sŽ .i . . . ... . . . ... . . .� 0
� � � ��� 1

In this case, an estimate of � is given by

K ˆ ˆY yP Y yPi j i j i k ik2 Ý Ý
ˆ ˆˆ ˆ P 1yPis1 j�k 'P 1yP' Ž .i k ikž /i j i j

�s . 15.34Ž .ˆ K

n n y1Ž .Ý i i
is1

Ž .Another example is an autoregressive process of order 1 AR-1 , where the
Ž . Ž . � jyk �j, k th element of R � is � :i

1 � � 2 ��� � niy1

n y2i� 1 � ��� �
2 n y3i� � 1 ��� �R � s .Ž .i . . . ... . . . ... . . .� 0

n y1 n y2 n y3i i i� � � ��� 1

In this case, � can be estimated as a coefficient in a regression model where
ˆ ˆ ˆŽ . ŽY y P r P 1yP is the dependent variable and Y y' ž /i j i j i j i j i, jy1

ˆ ˆ ˆ.P r P 1yP is the independent variable with intercept con-' ž /i, jy1 i , jy1 i , jy1

strained to be zero.
Ž .Munoz et al. 1992 proposed a flexible family of correlation structures in˜

Ž . Ž . � jyk � �

which the j, k th element of R � is � . With the additional parameteri
� , this family can express various types of correlation structure including

Ž . Ž .AR-1 �s1 and intraclass correlation �s0 .
Ž .When the number of subunits is the same for all units n sn for all i , ifi

Ž . Ž .we assume that R � sR is constant, we can estimate all n ny1 r2i
unknown parameters without specifying any particular structure as follows:

K
�

y1 y1r2 y1r2ˆ ˆ ˆ ˆ ˆRsK A Y yP Y yP A . 15.35Ž .Ž . Ž .Ý i i i i i i
is1
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We see that the estimation of � depends on � , and the estimation of � in
turn depends on � . Each step can be iterated in alternating fashion until

ˆboth parameters converge. For the asymptotic properties of � to hold, Liang
'Ž .and Zeger 1986 required the estimate of � to be K -consistent. Under this

assumption, the statistical uncertainty introduced by replacing � by � is of aˆ
small order of magnitude that does not affect the asymptotic distribution

ˆof �.

Inference
In likelihood-based inference, we can draw inferences from any of three
types of test statistic: the Wald test, score test, or likelihood ratio test. The
Wald test is based on the asymptotic normality of maximum likelihood
estimators. The score test is based on the asymptotic normality of the score
function evaluated at the null-hypothesis value of the parameters of interest,

Ž .with restricted maximum likelihood estimates mle’s used for nuisance
parameters. The likelihood ratio test is based on the asymptotic chi squared
distribution of twice the difference of the log likelihood functions evaluated
at corresponding mle’s for two nested models. Since the GEE estimator is not
derived from a likelihood function, these three test statistics do not exist
per se. However, analogous test statistics can be constructed which are called
Wald-type, score-type, or likelihood-ratio-type statistics. Consider a partition

Ž � � .�of the entire parameter, �s � , � , where � is the parameter of interest1 2 1
of length q, and � is a nuisance parameter of length pyq. Suppose we are2
interested in testing the hypothesis H : � s� .0 1 10

Wald-Type Statistics
A Wald-type statistic can be formed by

$� y1ˆ ˆ ˆT s � y� Var � � y� , 15.36Ž .Ž . Ž . Ž .W 1 10 1 1 10

$ˆ ˆ ˆŽ .where � is a q�1 subvector of the GEE estimate � , and Var � is1 1
the corresponding estimated q�q submatrix of the sandwich variance

y1 y1 Ž .W W W at 15.33 . The test statistic is asymptotically chi squared with0 1 0
q df.

To illustrate, consider hypothesis H given in Section 15.4.1 to test for04
interaction between group and time. First, we can set up a marginal logistic
regression model

�P Y s1 X , TŽ .i j i j
ln s q X q T q X T ,0 1 i 2 j 3 i j�P Y s0 X , TŽ .i j i j

where X is the group membership indicator for the ith subject and T is ani j
indicator for time point 2. H is equivalent to the hypothesis that  s0.04 3

Ž .Here  ,  ,  are nuisance parameters. The Wald-type test statistic is0 1 2
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$ $
2 Ž . Ž . Ž .T s rVar  , where  is the GEE estimator and Var  is the 4,4ˆ ˆ ˆ ˆW 3 3 3 3

element of the sandwich variance estimate.

Score-Type Statistics
Ž .Lefkopoulou, Moore, and Ryan 1989 examined score-type statistics for

GEE inferences under the independent working correlation structure, RsI.
Ž .These statistics can be constructed in the same way for general R �

Ž . Ž Ž .�structures. One partitions the estimating function U � , � s U � , � , � ,1 1 2
Ž .� .� Ž .U � , � , � where U � , � , � is a q-variate subvector of the estimat-2 1 2 1 1 2

Ž .ing function U � , � corresponding to � . The score-type statistic is then1

$ y1�ˆ ˆT sU � , � � , � Var U � , � � , �Ž . Ž .Ž . Ž .½ 5S 1 10 2 10 1 10 2 10

� ˆU � , � � , � , 15.37Ž . Ž .Ž .1 10 2 10

ˆ Ž . Ž .where � � is the solution of U � , � , � s0, i.e., the GEE estimate of2 10 10 2
� under the restriction � s� . Consider a similar partition for the2 1 10
matrices W and W :0 1

�U �U1 1y y� ��� �� D D1 2 11 12W sE s , say,0 �U �U ž /D D2 2 21 22y y� �� 0�� ��1 2

and

M M11 12W s ,1 ž /M M21 22

where by symmetry D sD and M sM . To obtain the variance of21 12 21 12
ˆŽ Ž . .U � , � � , � , we consider the following Taylor approximation:1 10 2 10

�U � , � , �Ž .1 10 2ˆ ˆU � , � � , � fU � , � , � q � � y�Ž . Ž . Ž .� 4Ž .1 10 2 10 1 10 2 2 10 2��2

fU � , � , � yD Dy1U � , � , � . 15.38Ž . Ž . Ž .1 10 2 12 22 2 10 2

ˆ Ž .The second approximate equality holds because � � y � f2 10 2
y1 Ž . Ž .D U � , � , � , just as was derived at 15.31 for the entire parameter22 2 10 2

Ž .vector. Then from 15.38 ,

ˆ y1 y1 y1Var U � , � � , � sM qD D M D D y2 D D M .Ž .Ž .½ 510 2 10 11 12 22 22 22 21 12 22 21

15.39Ž .



15.5 EXTENSIONS OF LOGISTIC REGRESSION FOR CORRELATED OUTCOMES 469

Ž .Expression 15.38 is analogous to the profile score function in the theory of
maximum likelihood. It can be thought of as analogous to a residual from the

Ž . Ž .projection of U � , � , � onto the space spanned by U � , � , � . When1 10 2 2 10 2
Ž . Ž .RsI, the right-hand side of 15.38 is uncorrelated with U � , � , � , but2 10 2

not otherwise.
The test statistic T has an asymptotic chi squared distribution with q df.S

Replacing � by � , the estimate of � under the null, does not affect theˆ
asymptotic distribution of the test statistic. One drawback is that the compu-
tation of the score statistic requires a specialized program.

Likelihood-Ratio-Type Statistics
When the Y ’s are independent, the log-likelihood function isi j

nK i Pi j
�L � Y s Y ln y 1yY ln 1yP ,Ž . Ž . Ž .Ý Ý i j i j i j1yPi jis1 js1

and the log-likelihood ratio statistic for testing � s� in the presence of1 10
the nuisance parameter � is2

ˆ ˆ ˆT s2 L � , � yL � , � � ,Ž .� 4ž /L 1 2 10 2 10

ˆ Ž .where � � is the maximizer of L under the restriction � s� .2 10 1 10
In GEEs, one does not start with an explicit likelihood function. Instead,

Ž .Rotnitzky and Jewell 1990 consider the distribution of T when the Y ’s areL i j
correlated. They show that T can be expressed as a weighted sum ofL
independent chi squared variables with 1 df. Suppose we write

q
2T f d � ,ÝL j j

js1

where � 2, . . . , � 2 are q independent chi squared random variables with 1 df.1 q
The weights d Gd G ��� Gd are eigenvalues of Dy1 V , where1 2 q 11 . 2 1

D sD yD Dy1D ,11 . 2 11 12 22 21

V sM qD Dy1M Dy1D y2 D Dy1M ,1 11 12 22 22 22 21 12 22 21

and all submatrices of D and M in D and V are evaluated at �s0.11 . 2 1
When there are no nuisance parameters, D sW and V sW .11 . 2 0 1 1

Ž .Rotnitzky and Jewell 1990 also derive the distributions of the naive Wald
and score tests formed as if all observations were independent. Those
statistics are asymptotically equivalent to T .L
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Computation
GEE estimates under the independent working correlation structure can be
obtained using any software that fits logistic regression models. The coeffi-
cient standard errors reported by the software are the square roots of

ˆy1the diagonal elements of W , so to compute the correct values we need to0
ˆcalculate W as well. Some programs have a routine to fit GEE and report1

� Ž . � Ž .the sandwich variance. SAS PROC GENMOD , Stata XTGEE , and
� Ž .SUDAAN PROC MULTILOG are among the commercially available

programs that have these features.
The sandwich variance estimate can also be estimated by the jackknife

ˆmethod. Let � be the GEE estimate obtained after deleting the ithyi
independent unit or cluster. The jackknife variance

K �
ˆ ˆ ˆ ˆV s � y� � y� 15.40Ž .Ý ž / ž /J yi yi

is1

consistently estimates the sandwich variance Wy1W Wy1. Use of the jack-0 1 0
Ž .knife variance to estimate the sandwich variance is discussed in Paik 1988 ,

Ž . Ž .Ziegler 1997 , and Lipsitz, Dear, and Zhao 1994 .

Efficiency
ˆWhen the correlation structure is correctly specified, the variance of � is the

inverse of W � , where the asterisk indicates that the correlation matrix R is0
ˆ y1 y1correctly specified. Otherwise the variance of � is W W W . By applying0 1 0

Ž .the maximization lemma of quadratic forms see Problem 15.8 , we find that
ˆŽ .the asymptotic relative efficiency ARE of a linear combination of � lies

between the largest and smallest eigenvalues of Wy1W Wy1W �. When the0 1 0 0
dimension of � is 1, the ARE of the estimator with misspecified correlation

y1 y1 � Ž .structure is exactly W W W W . Rotnitzky and Jewell 1990 provide the0 1 0 0
upper and lower bounds for efficiency under special correlation structures.

Ž .The efficiency of GEE estimators in the case of misspecified R � is
Ž .examined analytically by Mancl and Leroux 1996 and by simulation in Paik

Ž . Ž .1988 and Park 1993 .

Extensions of GEEs
Ž .Extensions of GEEs have been studied by several authors. Prentice 1988

considers modeling not only the mean as a function of the covariates as in the
original GEE method, but also correlation as a function of the covariates.
The estimating equation for the correlation is stacked with the original GEEs

Ž .for � to form a joint estimating equation. Paik 1992 considers joint
Ž .modeling of mean and scale parameters. Liang, Zeger, and Qaqish 1992

modeled the mean together with the odds ratio between repeated binary
outcomes instead of the correlation.
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Caution in Using GEEs
Because the asymptotic properties of GEE estimators and test statistics
depend on large K and fixed n , studies with large n or small K are noti i
suited to GEE analysis. Even when K is large with fixed n , difficulties mayi
arise. Most of these are related to specification of the working correlation
structure. For some working correlation structures, such as m-dependence,
there is a range of � that yields a non-positive-definite correlation matrix.
Users should make sure the estimated correlation matrix is positive definite.
A more fundamental problem is the potential ambiguity of the estimated
working correlation coefficient. The difficulty is that when � is not a true
correlation, but merely a working correlation, it is sometimes unclear what �̂
is estimating. As previously noted, one of the assumptions used to derive the

ˆconsistency and asymptotic normality of � is that the estimate of � is
' Ž .K -consistent. Crowder 1995 examines this issue and cautions that in some

Ž .cases misspecification of R � may lead to a breakdown of the asymptotic
ˆproperties of �.

For these reasons, it is good practice to fit the independent-working-corre-
lation model and examine the empirical correlations before fitting more
complicated working correlation structures. Noticeable differences in results
should stimulate further checking.

Another important issue is missing data. GEE naturally handles varying
numbers of subunits per independent unit, so when varying numbers occur
due to dropout in a longitudinal study, there is no obstacle to fitting a GEE
model. However, the results of the analysis are valid only when such dropout

Žoccurs completely at random. See Chapter 16 for a full discussion of
.missing-data methods and terminology. If the probability of dropout or other

Žkinds of missingness depends on the observed data missing at random but
. Žnot completely at random , or on the unobserved value of Y nonignorablyi j

.missing , GEE estimates are not consistent. To address this problem, Robins,
Ž .Rotnitzky, and Zhao 1995 propose a weighted form of GEE in which each

observation is weighted by the reciprocal of an estimate of the probability of
Ž .observation. Paik 1997 proposes an imputed form of GEE in which missing

outcomes are replaced with estimates of their conditional expectation given
Ž .the observed data. Fitzmaurice, Molenberghs, and Lipsitz 1995 examine the

bias in GEE estimates when the missingness mechanism is nonignorable. Xie
Ž .and Paik 1997a, 1997b propose an imputation approach when covariates are

Ž .missing. Ziegler, Kastner, and Blettner 1998 give an extensive annotated
bibliography on GEEs.

Example 15.5.1. NOMASS Functional Outcome Data. We return to the
Ž .Northern Manhattan Stroke Study NOMASS to illustrate the use of GEE

methods. The research goal considered here is to estimate the effect of the
stroke mechanism and associated syndromes on functional status at baseline
Ž .prior to the stroke and two years later, adjusting for other known stroke risk
factors.
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Table 15.10. GEE estimates and standard errors for a logistic regression
model of functional outcomes from NOMASS data

Independent Working Correlation Intraclass Working Correlation

Estimate SE p-Value Estimate SE p-Value

Intercept y5.9866 1.0904 �0.0001 y6.0456 1.0794 �0.0001
IATH 0.8801 0.5421 0.1045 0.8553 0.5496 0.1196
LHS 1.0818 0.4128 0.0088 1.0770 0.4153 0.0095
Time 2.9040 0.6819 �0.0001 2.9107 0.6930 �0.0001
IATH� time 0.1621 0.6346 0.7984 0.2117 0.6291 0.7364
LHS� time 0.3619 0.5106 0.4784 0.3603 0.5091 0.4792
Age 0.0475 0.0114 �0.0001 0.0480 0.0113 �0.0001
Female y0.5846 0.2399 0.0148 y0.5910 0.2412 0.0143
Education y0.4383 0.2815 0.1195 y0.4333 0.2825 0.1250
Race 0.7592 0.5969 0.2034 0.7857 0.6026 0.1922
Race� time y0.9137 0.6921 0.1868 y0.9193 0.7025 0.1907

Two hundred ninety-four patients who survived for two years after stroke
were included in the analysis. Functional status is dichotomized as impaired
Ž . Ž .Ys1 if the Barthel Activities of Daily Living ADL scale is less than 95,
indicating any type of dependence in daily living. These outcomes were
observed two years after stroke for 256 of the 294 patients. At baseline
Ž .before stroke , 35 of 294 were impaired; two years after stroke, 127 of 256

Ž . Ž . Ž .were impaired. Covariates of interest include i age continuous , ii sex
Ž . Ž . Ž . Ž . Žfemale versus male , iii race nonwhite versus white , iv education at

. Ž .least high school versus less than high school , v large hemisphere syn-
Ž . Ž . Ž .dromes LHS present versus absent , and vi intracranial atherosclerosis

Ž . Ž .IATH present versus absent . For each binary covariate the second cate-
gory in parentheses is designated as the reference group. LHS includes such
stroke syndromes as unconsciousness, major paralysis, and aphasia. IATH is
one of several mechanisms by which stroke occurs.

The results of two GEE models are shown in Table 15.10. Computations
� Ž .were carried out using SAS code given in Table 15.11 . The left panel in

Table 15.10 uses an independent working correlation structure. The results
indicate that patients are still more likely to be functionally impaired two
years after stroke than before the stroke. The risk of impairment increases
with age and is higher for men. IATH and LHS increase the odds of
functional impairment at baseline by factors of e0.88 s2.4 and e1.08 s2.9,
respectively, adjusting for other factors. The effects of IATH and LHS were a
little larger at time 2, but not significantly so.

The right-hand panel of Table 15.10, which uses an intraclass correlation
structure, reveals coefficient estimates and standard errors only slightly
different from those using the independent working correlation structure.
This implies that there was little improvement in efficiency, ostensibly be-
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Table 15.11. SAS � code for the GEE analysis of Table 15.10

/* independence correlation model */
title 'Model 1.1 -- GEE independence correlation model';
proc genmod data=stroke3;
class subj;
model y=iath large time iath*time large*time age sex edu
race race*time / dist=binomial link=logit type3;
repeated subject=subj / corr=ind corrw;
run;
/* intraclass correlation model */
title 'Model 1.2 -- GEE intraclass correlation model';
proc genmod data=stroke3;
class subj;
model y=iath large time iath*time large*time age sex edu
race race*time / dist=binomial link=logit;
repeated subject=subj / corr=exch corrw;
run;

Žcause the correlation between the two measurements was weak intraclass
.correlations0.0965 . Also note that, because there are only two time points

under consideration, the AR-1 structure or any other correlation structure
would be identical to the intraclass correlation structure and would yield
identical results.

Example 15.5.2. Cognitive Function among Stroke Patients. The next
example exhibits a somewhat larger influence of the working correlation

Ž .structure on the coefficient standard errors. Tatemichi et al. 1992 studied
cognitive function among 241 elderly stroke patients in a longitudinal design
with six time points: 7	10 days after the stroke, again at 3 months, and then
yearly for 4 years. The outcome of interest at each time point was whether or
not the subject had normal cognitive function, defined operationally as a
score of 24 or higher on the 30-item Mini Mental State Examination
Ž . ŽMMSE . The numbers of patients observed by time point were 241 at 7	10

. Ž . Ž . Ž . Ž .days , 237 at 3 months , 183 at year 1 , 158 at year 2 , 98 at year 3 , and 35
Ž .at year 4 . As mentioned above, variable length of follow up is handled
naturally by GEEs, but the validity of the results holds only when the dropout

Ž .data are missing completely at random MCAR . Here we use standard GEE
Ž .under MCAR. Paik 1997 analyzes these data using an extended GEE

method without this assumption, which almost certainly does not hold.
Let Y s1 if the ith individual’s MMSE score is above 24 at time t;i t

otherwise Y s0. We assume that if a patient is alive at time t, theni t

5

logit E Y s� q � I tskq1 q� Age q� Edu q� Sev ,� 4Ž . Ž .Ýi t 0 k 6 i 7 i 8 i
ks1
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Table 15.12. Coefficient estimates and their standard errors under ©arious
working correlation structures for cogniti©e function data

Independent Working Corr. Intraclass Working Corr. AR1 Working Corr.

Parameter Est. Naive SE SE Est. SE Est SE

Intercept 3.8034 0.6716 1.0901 3.1323 1.0538 3.4221 1.0483

Time2 0.4512 0.2134 0.1477 0.4465 0.1451 0.4428 0.1454

Time3 0.5737 0.2309 0.1823 0.6062 0.1714 0.6064 0.1714

Time4 0.5401 0.2395 0.1960 0.5374 0.1830 0.4977 0.1820

Time5 0.1583 0.2723 0.2297 0.1021 0.1962 0.1476 0.2099

Time6 0.0951 0.4049 0.3652 0.2427 0.2765 0.2826 0.3002

Age y0.0706 0.0095 0.0155 y0.0619 0.0149 y0.0655 0.0148

Sev y1.2442 0.1677 0.2782 y1.2502 0.2692 y1.2437 0.2675

Edu 0.1747 0.0192 0.0298 0.1792 0.0290 0.1754 0.0296

where Age denotes age of the ith patient at the time of entry, Edu denotesi i
Žyears of education, and Sev is a binary stroke severity indicator 1ssevere,i

.0snot severe . The proportions of patients with normal cognitive function
were observed to be 0.52, 0.61, 0.65, 0.66, 0.61, and 0.63 at 7	10 days, 3
months, and 1, 2, 3, and 4 years, respectively. Table 15.12 shows the
coefficient estimates and their standard errors under independent, intraclass,
and AR-1 working correlation structures.

The columns labeled ‘‘SE’’ report the sandwich estimator standard errors;
the column labelled ‘‘Naive SE’’ reports the standard errors obtained by
incorrectly assuming the repeated outcomes are independent when fitting the
logistic regression model. We see that the standard errors for time-constant
variables such as age, stroke severity, and education are understated. This is
an extension to logistic regression of the variance inflation phenomenon we
studied earlier. On the other hand, the standard errors are overstated for the

Ž .time-varying variables, Time2 to Time6. As suggested by expression 15.6 ,
when the covariates vary within a cluster, the variance of the estimate
decreases on correctly taking the correlation into account. Also notice that
under the assumption of the intraclass or AR-1 correlation structures, the
standard errors of the estimates are slightly smaller than those under the
independent correlation structure. This reflects how the estimation of �
becomes more efficient as the working correlation approaches the true
correlation structure.

When an intraclass correlation structure is assumed, the estimated corre-
lation is �s0.5022. With AR-1 structure, we obtain �s0.5549 from theˆ ˆ
regression of lagged standardized residuals, with estimated working correla-
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tion matrix

1.0000 0.5549 0.3079 0.1708 0.0948 0.0526
0.5549 1.0000 0.5549 0.3079 0.1708 0.0948
0.3079 0.5549 1.0000 0.5549 0.3079 0.1708
0.1708 0.3079 0.5549 1.0000 0.5549 0.3079
0.0948 0.1708 0.3079 0.5549 1.0000 0.5549
0.0526 0.0948 0.1708 0.3079 0.5549 1.0000

If no correlation structure is assumed, the estimated empirical correlation
matrix is

1.0000 0.5462 0.4024 0.4482 0.5177 0.5609
0.5462 1.0000 0.5419 0.4349 0.4742 0.4833
0.4024 0.5419 1.0000 0.5435 0.5502 0.5350
0.4482 0.4349 0.5435 1.0000 0.5524 0.7015
0.5177 0.4742 0.5502 0.5524 1.0000 0.8188
0.5609 0.4833 0.5350 0.7015 0.8188 1.0000

One should not rely heavily on this estimate, as there are too few
measurements at later time points to estimate the correlations stably. Never-
theless, the empirical correlation matrix clearly suggests that the intraclass
correlation structure describes the data better than the AR-1 structure.

Cognitive function improves after the initial damage of stroke, then
appears to decline after 2 years, a phenomenon not seen in the unadjusted
proportions. Older patients and those with more severe stroke had more
cognitive impairment. Those with more years of education were more likely
to have normal cognitive function.

15.5.2. Random Effects Models

Suppose that in any given cluster i there is a unit-specific factor, call it b ,i
shared by each subunit, and that, conditional on the factor, the measure-
ments Y for js1, . . . , n are conditionally independent; that is, for any j�k,i j i

� � �P Y s1 Y s1, b sP Y s1 Y s0, b sP Y s1 bŽ . Ž . Ž .i j i k i i j i k i i j i

Even though the Y ’s are conditionally independent, variability in b fromi j i
Žcluster to cluster induces an observable marginal correlation, such that P Yi j

� . Ž � .s1 Y s1 �P Y s1 Y s0 . The shared factor is called a random effect,i k i j i k
and statistical models with such features are called random effects models.
Consider, for example, a family study where the outcomes are binary indica-
tors of some condition, such as malnutrition or obesity, for each family
member. Suppose some families have a propensity to have the condition
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while others do not, and that, conditional on the propensity, each member
does or does not have the condition as an independent event. Probabilisti-
cally, the situation is equivalent to the toss of a coin to determine outcomes
for family members, but every family has its own coin with a different
probability of heads. Under these circumstances, if a sample of families is
selected and the binary outcomes from two members of each family cross-
classified, the resulting fourfold table would show a marginal correlation
between outcomes due to the shared propensity factor.

The random effects models considered in this section can be viewed as
extensions of those in Section 9.6 to a regression setting. Given b , thei
response outcomes are assumed to be conditionally independent with

exp � q� X qbŽ .0 1 i j i
�P Y s1 X , b s . 15.41Ž .Ž .i j i j i 1qexp � q� X qbŽ .0 1 i j i

The marginal covariance between Y and Y is positive because the condi-i j i k
Ž .tional probabilities of Y and Y in 15.41 vary in the same way throughi j i k

their dependence on b ; that is, they co-vary. Specifically,i

�Cov Y , Y X , XŽ .i j i k i j i k

� �sE Cov Y , Y X , X , b X , X� 4Ž .i j i k i j i k i i j i k

� � �qCov E Y X , b , E Y X , b X , XŽ .� 4Ž .i j i j i i k ik i i j i k

� � �s0qCov P Y s1 X , b , P Y s1 X , b X , X �0. 15.42Ž .Ž .� 4Ž .i j i j i i k ik i i j i k

Ž . Ž .The reader is asked to show Problem 15.5 that the last term in 15.42 is
Ž . Žpositive. Model 15.41 is also called a subject-specific model Stiratelli, Laird,

.and Ware, 1984; Zeger, Liang, and Albert, 1988 . Note that the interpreta-
tion of the parameter � is different from that of the corresponding nonin-1

Ž .tercept terms � of the coefficient � in the marginal model 15.27 . The1
Ž .odds ratio parameter in 15.41 for a binary exposure X ,i j

� �P Y s1 X s1, b P Y s0 X s1, bŽ . Ž .i j i j i i j i j i
exp � s ,Ž .1 � �P Y s1 X s0, b P Y s0 X s0, bŽ . Ž .i j i j i i j i j i

Ž . Ž .applies within each cluster i, whereas exp � in 15.27 refers to the odds1
ratio constructed from the marginal probabilities in the population. In a
family study, for example, with X a smoking indicator and no otheri j
covariates, � might represent the log odds ratio on lung disease for a1
smoking member compared to a nonsmoking member in the same family. In
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the marginal model, � would be the log odds ratio on lung disease for1
smokers compared to nonsmokers in the population. Because conditioning
on the family-specific factor b allows more control for confounding factors ati
the family level, � from the random effects model is of direct interest in1
etiologic research.

There are two ways to draw inferences from a random effects model. One
is to assume a distribution for b , obtain the marginal likelihood, andi
maximize it. The other is to find a sufficient statistic for b , condition on it,i
and maximize the conditional likelihood, which depends on � but not on b .i

Marginal Likelihood
Ž .Let b be independent and identically distributed as F b . In parametrici i

Ž .models, F b is a known distribution with unknown parameters. The marginali
probability becomes

� �P Y s1 X s P Y s1 X , b dF b . 15.43Ž . Ž .Ž . Ž .Hi j i j i j i j i i

Ž .Although the logistic regression model 15.41 is linear in X and b , thei j i
Ž .marginal probability 15.43 generally is not of logit form. Suppose, for

example, that b is distributed as a normal deviate with mean 0 and unknowni
variance � 2. The marginal likelihood for cluster i is then

ni� Y 1yYi j i j� �P Y s1 X , b P Y s0 X , bŽ . Ž .ŁH i j i j i i j i j i½ 5
y� js1

�
b21 iexp y db ,i2ž /2' 2�2��

Ž 2 .and the full likelihood L � , � is a product of such factors for eachM
independent unit i. This likelihood does not have a closed form, and

Ž 2 .maximizing L over � , � involves numerical integration. Another draw-M
back of this approach is that the random effect b is not directly observable,i
and distributional assumptions such as normality are difficult to verify and
are often gratuitous. Nonparametric models which do not require specifica-

Ž .tion of the parametric form of F are studied by Davidian and Gallant 1993 .

Conditional Likelihood
When interest centers on the regression coefficient � for X, but not on �1 0
or on b , the conditional likelihood method eliminates the nuisance parame-i
ters altogether. First, the contribution of cluster i to the full likelihood given
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b isi

ni
Y 1yYi j i j� �P Y s1 X , b P Y s0 X , bŽ . Ž .Ł i j i j i i j i j i

js1

ni �P Y s1 X , bŽ .i j i j i
�sexp Y ln q ln P Y s0 X , bŽ .Ý i j i j i j i�ž /P Y s0 X , bŽ .i j i j ijs1

ni

sexp Y � q� X qb y ln 1qexp � q� X qb� 4Ž . Ž .Ý i j 0 1 i j i 0 1 i j iž /
js1

n ni i

sexp � qb Y q� X YŽ . Ý Ý0 i i j 1 i j i j
js1 js1

ni

y ln 1qexp � q� X qb . 15.44Ž .� 4Ž .Ý 0 1 i j i
js1

Although Ýni Y carries information about � qb , it carries little informa-js1 i j 0 i
tion about � . Conditioning on y sÝni Y , the contribution to the condi-1 iq js1 i j
tional likelihood becomes

ni
Y 1yYi j i j� �P Y s1 X , b P Y s0 X , bŽ . Ž .Ł i j i j i i j i j i

js1
, 15.45Ž .ni

Y 1yYi j i j� �P Y s1 X , b P Y s0 X , bŽ . Ž .Ý Ł i j i j i i j i j i
js1Yi

where the summation in the denominator is over all possible binary vectors
Ž . Ž .Y s Y , . . . , Y that satisfy Y q ���qY sy . Equation 15.45 simplifiesi i1 in i1 in iqi i

Ž .dramatically with 15.44 �the resulting conditional likelihood function is

ni

exp � X YÝ1 i j i jK ž /
js1

L � s . 15.46Ž . Ž .ŁC 1 niis1
exp � X YÝ Ý1 i j i jž /

Y js1i

Conditional likelihood was used in Chapter 14 to analyze matched sample
studies. In a longitudinal study with observations at times t , . . . , t , eachi1 in i

subject provides a matched sample of outcomes Y , . . . , Y with correspond-i1 in i

ing covariates X , . . . , X . Different outcomes associated with differenti1 in i

levels of the covariates allow estimation of � . This method is especially1
effective in studying factors influencing change in structural growth models.
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Table 15.13. Maximum marginal likelihood estimates and standard errors from
( )random effects model 15.41 for functional outcomes from NOMASS data

Parameter Estimate Standard Error p-Value

Intercept y6.9007 1.3528 �0.0001
IATH 0.9510 0.6326 0.1338
LHS 1.2806 0.5010 0.0111
Time 3.3849 0.8170 �0.0001
IATH� time 0.3278 0.8236 0.6909
LHS� time 0.4061 0.6575 0.5373
Age 0.0545 0.0132 �0.0001
Female y0.6785 0.2928 0.0212
Education y0.5183 0.3172 0.1034
Race 0.8479 0.6677 0.2051
Race� time y1.0449 0.7757 0.1790

2� 1.0555 0.8132 0.1953

Ž .See Levin 1986 for an application to spontaneous abortion, whose risk
increases with maternal age. Estimation of the parameters of a subject-specific
growth curve model for the increase in risk is considered in the presence of

Žsubstantial woman-to-woman heterogeneity in the risk of miscarriage the
.random effect .

Note that � and b are eliminated by conditioning, so this approach0 i
cannot be used for drawing inferences about them. A potential disadvantage
of the conditional approach is that if Y s1 for all j, or Y s0 for all j, or ifi j i j
X is constant within units, those units do not contribute to the likelihood,i j
i.e., all data in those units are uninformative. If many units are uninforma-
tive, there is a loss of efficiency compared to the parametric marginal
likelihood approach.

Ž .Table 15.13 shows the results of fitting the random effects model 15.41 to
the NOMASS functional outcome data using maximum marginal likelihood,
assuming one normally distributed random intercept and X as in Tablei j
15.10. SAS� code is given in Table 15.14.

As noted above, the interpretation of coefficients in the random effects
Ž .model is quite different from that in the marginal model 15.27 . For

example, the coefficient of LHS is the change in log odds on functional
impairment when a subject has LHS compared to when the same subject
does not have LHS, one of which situations is counterfactual. Note also that
each coefficient in Table 15.13 is larger than the corresponding coefficient in
Table 15.10, albeit with larger standard errors. This is typical of subject-
specific models compared to marginal models�for a subject-specific effect
to persist when probabilities are averaged over many random units, it would
typically need to be larger than the effect based on population averages. The
estimate of � 2, 1.05, indicates that 68% of all units have b ranging fromi
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Table 15.14. SAS � code for the random effects model using maximum
marginal likelihood

title 'Model 2 -- random effects model';
proc nlmixed data=stroke3;
/* define the parameters and their starting values */
parms b0=-4 biath=0.7 blarge=1 btime=2.5 biat=-0.1 blargt=0
bage=0 bsex=-0.5 bedu=-0.3 brace=0.1 bracet=-0.3 s2a=2;
/* define the linear predictor component */
xlinear=(b0+a)+biath*(iath)+blarge*(large)+btime*(time)
+biat*(iath*time)+ biargt*(large*time)+bage*(age)
+ bsex*(sex)+bedu*(edu)+ brace*(race)+bracet*(race*time);
expx=exp(xlinear);
p=expx=exp(xlinear);
model y 
 binary(p);
random a 
 normal (0,s2a) subject=subj;
run;

' 'y 1.05 to 1.05 . This means, for example, that the probabilities of func-
tional impairment at time 2 for subjects who have the same risk factor profile
as the reference group range between

' 'y6 .90q3 .38y 1.05 y6 .90q3 .38q 1.05e e
, s 0.01, 0.08 .Ž .' 'y6 .90q3 .38y 1.05 y6 .90q3 .38q 1.05ž /1qe 1qe

The conditional likelihood method does not estimate coefficients for the
covariates that are constant in time, which are essentially matching factors.

Ž .These include IATH, LHS, Age at stroke , Female, Education, and Race.
The time-dependent covariates, X s time, X sIATH� time, X sLHS�3 4 5
time, and X sRace� time, can be estimated by conditional maximum11
likelihood. The model essentially becomes a regression model for the log
odds ratio on impairment at time 2 versus time 1, as a function of IATH,

Ž .LHS, and Race, as follows we omit the data-analytic results for brevity :

� �P Y s1 IATH, LHS, Race P Y s0 IATH, LHS, RaceŽ . Ž .i2 i2ln
� �P Y s1 IATH, LHS, Race P Y s0 IATH, LHS, RaceŽ . Ž .i1 i1

s� q� IATHq� LHSq� Race.4 5 6 11

15.5.3. Summarizing by Individual or by Time

An analytic strategy to finesse the problem of high dimensionality of re-
peated measurements is to summarize the data in some way down to one or
two dimensions. One way is to summarize by indi®idual. In longitudinal
studies, one can summarize the time course of measurements for each
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individual by an average, or by a slope and intercept. In periodontal research,
an average can be taken at each site in the mouth. A strength of such a tactic,
insofar as it can address the scientific questions of interest, is that the
summary measures are independent. Of course, if scientific interest resides in
responses at the subunit level, then this type of analysis is inappropriate. As
for the random effects model, analyses summarizing by individual typically
assume conditional independence of measurements within the same individ-
ual.

Alternatively, one can summarize by time. In this case subject data are
independent at each time point, so an assumption of conditional indepen-
dence given time is automatically satisfied. The summary measures for each
time point are correlated, however, and must be taken into account when
combining the summary measures.

Summarizing by Indi©idual
Ž .Korn and Whittemore 1979 summarize repeated measurements by estimat-

ing individual regression coefficients for each subject. Their model, called a
random regression model, is useful when the number of subunits is large, such

Ž .as in diary studies see, e.g., Neugebauer et al., 1994 . Here we consider the
simplest case of a single-sample study with a linear logistic regression model
with random coefficients. Let X denote the time of observation at the jthi j
measurement for the ith subject. The model can be described in two stages.

Ž .At the first stage, given individual regression coefficients � , � , it is0 i 1 i
assumed that

exp � q� XŽ .0 i 1 i i j
�P Y s1 X , � , � s 15.47Ž .Ž .i j i j 0 i 1 i 1qexp � q� XŽ .0 i 1 i i j

Ž .with conditional independence of the Y ’s given the X ’s and the � , � ’s.i j i j 0 i 1 i
Ž .At the second stage, the unobservable � , � ’s are assumed to arise from a0 i 1 i
Ž .bivariate normal distribution with mean � , � and dispersion matrix D, an0 1
ˆ ˆŽ .unknown 2�2 symmetric matrix. Let � , � be the maximum likelihood0 i 1 i

estimates of the logistic regression coefficients for the ith subject. By the
asymptotic normality of mles when the number of measurements per individ-

ˆ ˆŽ . Ž .ual is large, it is reasonable to treat � , � given � , � as a bivariate0 i 1 i 0 i 1 i
Ž .normal random variable with mean � , � and variance-covariance matrix0 i 1 i

y1Ž . Ž .I � , � , the inverse information matrix. Korn and Whittemore 1979i 0 i 1 i
y1Ž .treat the I � , � terms as known and fixed at their values at the mlesi 0 i 1 i

for each individual.
ˆ ˆŽ .Under these assumptions, the marginal distribution of � , � is approx-0 i 1 i

Ž . y1imately bivariate normal with mean � , � and variance I qD. The0 1 i
marginal likelihood of normal densities can be maximized to estimate the

Ž .unknown parameters � , � and D. The maximum likelihood estimate of0 1
ˆ ˆŽ . Ž . Ž� , � turns out to be a weighted average of the individual � , � ’s see0 1 0 i 1 i

.Problem 15.6 .
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Ž .Dawson and Lagakos 1993 also summarize by individual, but take ac-
count of missing data. The summary measures are stratified by the various
patterns of missing data and then combined. These authors use this tech-
nique for a two-group comparison. Their method is valid as long as the
missingness probabilities are the same for the two groups.

Summarizing by Time
Several authors consider obtaining summary statistics by time and combining

Žthe time-specific statistics Moulton and Zeger, 1989; Wei and Stram, 1988;
.Wei and Johnson, 1985 . These methods are useful when the number of time

points is limited. The essence of the method is as follows. Let n be the
Ž .maximum of n over i. At the jth time point js1, . . . , n , we assume thati

exp � q� XŽ .0 j 1 j i j
�P Y s1 X , � , � s . 15.48Ž .Ž .i j i j 0 j 1 j 1qexp � q� XŽ .0 j 1 j i j

ˆ ˆŽ . Ž .One obtains the estimate � , � by fitting model 15.48 using all available0 j 1 j
data at time j. Inference can be based on the multivariate normality of the

ˆ ˆ ˆ ˆ ˆ ˆ ˆ �Ž .stacked coefficient estimators, �s � , � , � , � , . . . , � , � . Actually,01 11 02 12 0 n 1n
this model fits into the GEE framework if the interaction terms include time
and all covariates in the model.

Ž .Wei and Johnson 1985 also consider the two-sample problem. They
propose using U statistics for each time point and combining these depen-
dent test statistics as a weighted average. Based on the multivariate normality
of the stacked time-specific U statistics, the distribution of the combined
statistic can be obtained. The authors show that the optimal weight is the
inverse of the covariance matrix of the stacked time-specific U statistics.

15.5.4. Models Conditioning on Previous Outcomes

In some cases the conditional probability of a positive outcome given the
previous outcomes is of primary interest. This probability can be modeled
directly as follows:

�P Y s1 X , Y , Y , . . . , YŽ .i j i j i , jy1 i , jy2 i1

exp � q� X q� Y q ���q� YŽ .0 1 i j 2 i , jy1 j i1
s . 15.49Ž .

1qexp � q� X q� Y q ���q� YŽ .0 1 i j 2 i , jy1 j i1

While the association among repeated measurements is treated as a nuisance
in the models presented in Sections 15.5.1 through 15.5.3, coefficients

Ž .� , . . . , � in 15.49 give direct measures of association between repeated2 j
measurements. Inferences concerning � can be drawn conveniently by maxi-
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mizing the following likelihood function:

ng i
Yi j�Ls P Y s1 X , Y , Y , . . . , YŽ .Ł Ł i j i j i , jy1 i , jy2 i1

is1 js1

�
1yY i j�P Y s0 X , Y , Y , . . . , Y . 15.50Ž .Ž .i j i j i , jy1 i , jy2 i1

A peculiarity of this model is that the marginal distributions of the Y havei j
different forms depending on j. For example, for js1, the marginal proba-

Ž .bility is of logit form, but for js2, it is not. Also note that 15.49 implies a
certain joint distribution for Y .i

Ž .In a one-step Markov model see, e.g., Diggle, Liang, and Zeger, 1996 ,
the probability of a positive outcome is assumed to depend only on the
immediately preceding outcome. That is, Y is conditionally independent ofi j
Y , . . . , Y given Y . As a result, we havei, jy2 i1 i, jy1

� �P Y s1 X , Y , Y , . . . , Y sP Y s1 X , Y .Ž . Ž .i j i j i , jy1 i , jy2 i1 i j i j i , jy1

Ž .In this case, the likelihood 15.50 reduces to

nK i
Y 1yYi j i j� �L s P Y s1 X , Y P Y s0 X , Y . 15.51Ž .Ž . Ž .Ł ŁV i j i j i , jy1 i j i j i , jy1

is1 js1

Suppose one is interested in the conditional probability given the immedi-
ately preceding outcome only, but is not willing to assume that Y isi j

Ž .independent of Y , Y , . . . , Y conditional on Y as in the Markovi, jy2 i, jy3 i1 i, jy1
model. In this case L is not a likelihood function, but inferences can still beV
drawn correctly by maximizing L . This approach can be justified using theV
theory of estimating equations. Let

exp � q� X q� YŽ .0 1 i j 2 i , jy1
�� sP Y s1 X , Y sŽ .i j i j i j i , jy1 1qexp � q� X q� YŽ .0 1 i j 2 i , jy1

Ž .�and � s � , � , . . . , � . Then the maximizer of L is a solution ofi i1 i2 in Vi

K ���i y1V Y y� s0, 15.52Ž . Ž .Ý i i i��
is1

Ž . Ž .where V is a diagonal matrix with elements � 1y� . Equation 15.52 isi i j i j
an unbiased estimating equation as long as � is correctly specified. Usingi j

ˆarguments similar to those used to justify GEEs, � can be shown to be
asymptotically normal with mean equal to the true value of � and with
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variance given by

y1� �K K�� �� �� ���i i i iy1 y1 y1V V Y y� Y y� V� �Ž . Ž .Ý Ýi i i i i i i½ 5�� �� �� ��ž /
is1 is1

�

y1�K �� ��i iy1V . 15.53� Ž .Ý i�� ��ž /
is1

As for GEEs, a more efficient estimator can be obtained when the variance is
1r2 Ž . 1r2modeled as V sA R � A .i i i i

15.5.5. Multivariate Binary Distributions

Multivariate binary data can be analyzed with a likelihood approach given a
multivariate joint distribution for the outcomes. When n sn for all i, thei
methods of Chapter 11 for polytomous logistic regression with a 2� ��� �2
response variable is most useful when interest centers on the logit parameters
rather than the marginal probabilities of individual outcomes. In other cases,
the challenge is to find a rich and flexible class of multivariate binary
distributions that captures the features of interest. Several authors have

Žproposed multivariate distributions for binary data Bahadur, 1961; Fitzmau-
. Ž .rice, Laird, and Lipsitz, 1994 . Among them, Prentice and Zhao 1991 study

a multivariate binary distribution of quadratic exponential form:

� y1f Y � , � s� exp Y � qw � yC Y , 15.54� 4Ž . Ž .Ž .i i i i i i i i i i

Ž .� Ž .� Žwhere � s � , . . . , � , w s Y Y , Y Y , Y Y , . . . , � s � , � ,i i1 in i i1 i2 i1 i3 i2 i3 i i12 i13i
.� Ž . Ž .� , . . . , � s� � , � is a normalizing constant, and C Y is an arbitraryi23 i i i i i i

function of Y . One of the attractive features of the quadratic exponentiali
form is that both conditional and marginal distributions of any subset of the

Žcomponents of Y belong to the same family of distributions see Problemi
.15.7 . The dimensions of � , � , and w are determined by Y . It is not hard toi i i i

Žverify that the expected values of Y and w have the following form Problemi i
.15.8 :

� ln � � ln �i iE Y s and E w s . 15.55Ž . Ž . Ž .i i�� ��i i

Ž .To proceed, we model the mean of Y , P sE Y , and the mean of w , sayi i i i
Ž .� sE w . For example,i i

exp � q� XŽ .0 j 1 i j
P s , 15.56Ž .i j 1qexp � q� XŽ .0 1 i j
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and

� sCov Y , Y qP P s� Var Y Var Y qP P . 15.57Ž . Ž .Ž . Ž .'i jk i j i k i j i k jk i j i k i j ik

Ž . Ž .Let � s � , � , � , . . . �, and let � be the vector of length n ny1 r2,i i12 i13 i23
Ž .�s � , � , � , . . . , � . Note that P is linked to the regression param-12 13 23 ny1, n

eter � , and � is linked to the correlation parameter � . In this quadratic
exponential family, the likelihood equation for � has the same form as a
GEE when R is correctly specified.

The likelihood equation becomes

K � Pi�� ln f Y X 0Ž . �Ł i i K ��is1 s�� � Ý �� ��� � , �Ž . i iis1 � 0� ��� ��

y1
Var Y Cov Y , w Y yPŽ . Ž .i i i i i

� s0. 15.58Ž .ž /ž / w y�Cov w , Y Var wŽ . Ž . i ii i i

ˆ Ž0. Ž0.Ž . Ž .Computation of � , � starts from an initial value � , � , and updatesˆ
are made by Newton-Raphson iteration:

y12Ž�q1. Ž� . �� ln f Y XŽ .� � i is q y �� � � � Ž� .½ 5Ž�q1. Ž� . �s�ž / ž / � � , � � � , �Ž . Ž . Ž� .� � �s�

�� ln f Y XŽ .i i� �� � Ž� .½ 5 �s�� � , �Ž . Ž� .�s�

Ž . Ž . Ž .It is clear that solving 15.58 requires evaluation of Cov Y , w and Var w ,i i i
which involve the third and fourth moments of Y. This evaluation is carried
out by direct computation, for example,

� �Var w s w y� w y� f y � , � , 15.59Ž . Ž . Ž . Ž .Ž .Ýi i i i i i i i

where the summation is over all possible realizations y of Y . To computei i
Ž .15.59 , we need to know � and � . The updating formula for � and � giveni i i i

Ž Ž0. Ž0. . Ž Ž0. Ž0. .initial values � , � and � , � is

� y1
Ž� . Ž� . Ž� .Y yP Y yP Y yP� � i i i i i i� � � �Ž�q1. Ž�q1. Ž� . Ž� .� , � s � , � q E E ,Ž . Ž .i i i i Ž� . Ž� . Ž� .½ 5ž / ž / ž /w y� w y� w y�i i i i i i
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Ž .where the expectations are calculated directly as in 15.59 using
Ž � Ž� . Ž� ..f y � , � .i i i

PROBLEMS

Ž .15.1. Verify the variance formula 15.1 .

Ž .15.2. Verify formula 15.2 for the variance inflation factor.

15.3. Verify algebraically that the cell counts a and c in Table 15.2 are
windependent when exposure does not vary within clusters. Hint. Show

K K K

Cov a, c sCov Y X , Y 1yX s Var Y X 1yX .Ž . Ž . Ž . Ž .Ý Ý Ýiq i iq i iq i i½ 5
is1 is1 is1

15.4. Show that

n n ni i i

Var Y sVar Y X q Y 1yXŽ .Ý Ý Ýi j i j i j i j i j½ 5ž /
js1 js1 js1

sk P Q 1q k y1 � q n yk P Q 1q n yk y1 �� 4 � 4Ž . Ž . Ž .i 1 1 i 1 i i 2 2 i i 2

q2k n yk � P Q P Q .Ž . 'i i i 12 1 1 2 2

Ž . Ž .15.5. Let f u and g u be two functions that are either both strictly
increasing or both strictly decreasing. Let U be any nondegenerate

Ž . Ž .random variable such that Ef U and Eg U are finite.
( ) � Ž . Ž .4 w � Ž . Ž .4a Show that Cov f U , g U �0. Hint. Express Cov f U , g U as

Cov f U , g U sEf U g U yEg U� 4 � 4Ž . Ž . Ž . Ž . Ž .
�sE f U y f u g U yEg U� 4 � 4Ž . Ž . Ž . Ž .

for any fixed number u�. Suppose f and g are both strictly
� Ž . Ž .increasing. Then there is a value u such that g u �Eg U for all

� Ž . Ž . �u�u and g u �Eg U for all u�u . Conclude that the factors
Ž . Ž � . Ž . Ž .f U y f u and g U yEg U always have the same sign, and

xtherefore the expected value of their product is positive.
( ) Ž . Ž . Ž . Ž .b Let f b be 15.41 with XsX , let g b be 15.41 with XsX ,i i j i i k

� Ž � . Žand let Usb . Conclude that Cov P Y s1 X , b , P Y si i j i j i i k
� . � 4 Ž � .1 X , b X , X �0 and therefore that Cov Y , Y X , X �0i k i i j i k i j i k i j ik

Ž � .even though Cov Y , Y X , X , b s0.i j i k i j i k i
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Ž .15.6. Korn and Whittemore, 1979. In Section 15.5.3, the log marginal
likelihood for � and D can be written

n n
y11 1 ˆ ˆy W qD y � y� , � y� W qDŽ .Ý Ý ž /i 0 i 0 1 i 1 i2 2

is1 is1

�
�

ˆ ˆ� y� , � y� .ž /0 i 0 0 i 1

Verify that when D is known, the maximum likelihood estimate of
Ž .� , � can be written as0 1

y1n n �� y1 ˆ ˆ� , � s W qD W qD � , � .Ž . Ž .ˆ ˆŽ . Ý Ý ž /0 1 i i 0 i 1 i½ 5
is1 is1

Ž .15.7. Binary distribution 15.54 in the bivariate case can be written

� y1f Y , Y � , � s� exp Y � qY � qY Y �yC Y , Y ,� 4Ž .Ž .1 2 1 1 2 2 1 2 1 2

Ž . Ž .where �s� � , � is a normalizing constant and C Y , Y is an arbi-1 2
trary function. Verify that both the marginal distribution of Y and the1
conditional distribution of Y given Y belong to the same family.2 1

Ž Ž . . Ž Ž . .15.8. Using the fact that E � f Y r�� s0 and that E � f Y r�� s0,i i i i
derive the following relationships:

� ln � � ln �i iE Y s and E w s .Ž . Ž .i i�� ��i i

Ž .15.9. ARE of GEE estimators. The maximization lemma for quadratic
forms states that if B is a p�p positive definite matrix with eigenval-
ues � G� G ��� G� �0 and associated normalized eigenvectors1 2 p
e , e , . . . , e , then1 2 p

x�Bx
max s� when xse� 1 1x xx�0

and

x�Bx
min s� when xse� p px xx�0

Consider a linear combination of the GEE regression coefficients, c��.
ˆ � �y1When R is correctly specified, the variance of � is c W c, where0

W � denotes W with correct specification of R. When RsI, the0 0
ˆ � y1 y1variance of � is c W W W c. Use the maximization lemma to derive0 1 0

maximum and minimum values of the asymptotic relative efficiency
Ž .ARE of the GEE estimator with and without correct specification
of R.
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C H A P T E R 1 6

Missing Data

Unlike the data used in most textbook illustrations, data collected in the real
world are often incomplete. Study participants refuse to continue in follow
up, for example, or decline to answer questions they consider embarrassing.
Laboratory samples become contaminated, or assays yield uninterpretable
results. Investigators, fieldworkers, or technicians make errors. Data are lost.
Sometimes even in the design of a study, one will knowingly create missing
data. Such is the case of the two-stage design discussed in the next chapter,
where for reasons of cost or other practical reasons, only a subsample of the
entire sample can be studied in appropriate detail or with the most reliable
instruments; the details or reliable measurements are then missing for the
rest.

In this chapter we consider methods appropriate for drawing inferences in
the presence of missing data. Section 16.1 identifies three types of nonre-
sponse or ‘‘missingness mechanisms.’’ Section 16.2 discusses inference for
data missing at random in a 2�2 table with a monotone missingness pattern.
Section 16.3 discusses methods for analyzing several 2�2 tables, Section 16.4
does the same for logistic regression models when covariate data are missing
at random, and Section 16.5 considers missing outcomes in logistic regres-
sion. Section 16.6 presents methods appropriate for nonignorably missing
data, and Section 16.7 discusses the case of nonmonotone missingness.

16.1. THREE TYPES OF NONRESPONSE MECHANISM

ŽConsider a simple 2�2 table where S indicates smoking status smoker
. Žversus nonsmoker and H indicates blood pressure status hypertensive
.versus normotensive . We are interested in three parameters: D , theS � H

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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difference in smoking rates between hypertensive and normotensive subjects;
D , the difference in hypertension rates between smokers and nonsmokers;H � S
and �, the odds ratio:

� �D sP Ss1 Hs1 yP Ss1 Hs0 ,Ž . Ž .S � H

� �D sP Hs1 Ss1 yP Hs1 Ss0 ,Ž . Ž .H � S

and

� �P Ss1 Hs1 P Ss0 Hs1Ž . Ž .
�s

� �P Ss1 Hs0 P Ss0 Hs0Ž . Ž .

� �P Hs1 Ss1 P Hs0 Ss1Ž . Ž .
s .

� �P Hs1 Ss0 P Hs0 Ss0Ž . Ž .

For a sample of 200 subjects, suppose that smoking status is known for all
200 but that blood pressure has been measured for only 100, with the results
shown in Table 16.1 The first four rows represent completely observed
records. The last two rows represent incompletely observed records. We can

Ž . Ž .divide these data between two tables, as in Table 16.2 a and 16.2 b .

( )Table 16.1. Smoking and hypertension hypothetical data

S H Frequencies

1 1 30
1 0 20
0 1 10
0 0 40
1 ? 80
0 ? 20

200

Table 16.2. Tables with complete and incomplete data

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 30 20 50 1 ? ? 80
S S

0 10 40 50 0 ? ? 20

Total 40 60 100 Total ? ? 100
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If we restrict the analysis to the completely observed records in Table
Ž .16.2 a , the estimates of D , D , and � based on the sample propor-S � H H � S

tions are

30 20
d s y s0.42,S � H 40 60

30 10
d s y s0.40,H � S 50 50

and

30r10
os s6.20r40

Under what conditions do these estimates accurately reflect the parameters
of interest? To answer this question, we need first to understand the relation
between the variables and the mechanism causing the data to be missing.

Ž .There are three types of nonresponse mechanism Rubin, 1976 . For the time
being, we continue to assume S is completely observed.

( ) Ž .a Missing Completely at Random MCAR . The missingness of H de-
pends on neither S nor H. If the subjects with complete data constitute a

Ž .truly random sample i.e., are a random subsample of our random sample ,
Ž .we do not expect marked differences between Table 16.2 a and a table with

complete observations for all 200 subjects. Smoking rates for hypertensive
and normotensive subjects would be similar in each table, as would hyperten-
sion rates for smokers and nonsmokers. Analysis of the observed data thus

Žyields unbiased estimates of the parameters D , D , and � and theirS � H H � S
.standard errors . In general, whatever the mechanism is that causes the data

to be missing, the estimates remain unbiased provided that the mechanism is
independent of S and H.

( ) Ž .b Missing at Random MAR . The missingness of H depends on S but
not H. Suppose, for example, that compared to smokers, nonsmokers are

Žmore likely to complete the study protocol i.e., come to the investigator’s
.office for sphygmomanometry because they are more health-conscious. As

Ž .explained in the next section, Table 16.2 a would then provide an accurate
Ž � .estimate of hypertension rates given smoking status, P H S , but an inaccu-

Ž � .rate estimate of smoking rates given hypertension status, P S H . Thus
wthe hypertension rate difference D , and the odds ratio � because it canH � S

Ž � .xbe expressed in terms of P H S , can be consistently estimated from the
observed data. Section 16.2.1 describes a consistent method to estimate
the smoking rate difference D .S � H

( ) Ž .c Nonignorable NI Missingness. The missingness of H depends on H
even after conditioning on S. If, for example, hypertensive subjects who
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Table 16.3. Obser©ation indicator and data

R S H FrequenciesH

1 1 1 30
1 1 0 20
1 0 1 10
1 0 0 40
0 1 ? 80
0 0 ? 20

200

Ž .smoke are more or less likely to have missing data than nonhypertensive
subjects who smoke, then both the hypertension rate given smoking status
and the smoking rate given hypertension status differ between the tables with
complete and incomplete data. None of the three parameters can be consis-
tently estimated from the completely observed data. Inferences require
assumptions about the relationships between S, H, and the reasons that data
are missing, assumptions which are difficult to verify. These are discussed
further in Section 16.6. No analysis with NI missingness is complete without
sensitivity analyses.

It is evident that some types of missingness are more damaging than
others. To help clarify the discussion, we define an obser®ation indicator. Let
R take the value 1 if H is observed, 0 if H is missing. The data in TableH
16.1 can then be presented as in Table 16.3. Note that the variable R isH

Žcompletely observed. Even when H is missing, R is known if H is missing,H
.R s0 . The observation indicator is sometimes called a missingness indica-H

tor, even though a 1 indicates the opposite. Similarly, when we talk of
Ž � .response mechanisms or models for P R S, H , we are also apt to think ofH

these as nonresponse mechanisms.
Ž � .The missingness probability is defined as P R s0 S, H . For the threeH

response mechanisms, the missingness probabilities satisfy

�MCAR: P R s0 S, H sP R s0 ,Ž .Ž .H H

� �MAR: P R s0 S, H sP R s0 S , 16.1Ž .Ž . Ž .H H

� �NI: P R s0 S, H �P R s0 S .Ž . Ž .H H

Sometimes we can use these probabilities to rule out certain types of
nonresponse mechanisms. For example, from Table 16.3, we can construct
Table 16.4. The sample estimates of the missingness probabilities are

� �p R s1 Ss1 s50r130 and p R s1 Ss0 s50r70.Ž . Ž .H H



16.1 THREE TYPES OF NONRESPONSE MECHANISM 495

Table 16.4. Obser©ed smoking data and obser©ation
indicator RH

RH

1 0 Total

1 50 80 130
S

0 50 20 70

Total 100 100 200

Table 16.5. Nonmonotonically missing data

S H Frequencies

1 1 30
1 0 20
0 1 10
0 0 40
1 ? 40
0 ? 20
? 1 20
? 0 20

200

Because the two proportions differ significantly, the data suggest that the
nonresponse mechanism is not MCAR. Distinguishing between MAR and NI
requires a test statistic to determine whether or not R is independent of HH
given S. Again, the test statistic must rely on unverifiable model assumptions
which we discuss in Section 16.6.

We now consider cases in which both S and H are incompletely observed.
Suppose we have the situation in Table 16.5. As before, we divide these data

Ž .between two tables Table 16.6 .
Ž .Table 16.6 b has unknown column totals as well as unknown row totals,

Ž .whereas Table 16.2 b has unknown column totals only. We therefore define

Table 16.6. Tables with complete and incomplete data for nonmonotonically
missing data

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 30 20 50 1 ? ? ?
S S

0 10 40 50 0 ? ? ?

Total 40 60 100 Total ? ? 100
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Table 16.7. Obser©ation indicators for nonmonotonically missing data

R R S H FrequenciesS H

1 1 1 1 30
1 1 1 0 20
1 1 0 1 10
1 1 0 0 40
1 0 1 ? 40
1 0 0 ? 20
0 1 ? 1 20
0 1 ? 1 20

200

a second observation indicator, R , taking the value 1 if S is observed, 0 if SS
Ž .is missing. An array of observation indicators R , R is called a missingnessS H

wŽ . Ž .xpattern. If all patterns in the array are nondecreasing 1, 1 or 0, 1 or
wŽ . Ž .xnonincreasing 1, 1 or 1, 0 , the missingness pattern is said to be monotone.

Thus, the data in Table 16.3 have a monotone missingness pattern, because
Ž . Ž .there are only two patterns: 1, 1 and 1, 0 , both of which are nonincreasing.

Ž . Ž .In Table 16.7, on the other hand, there are three patterns: 1, 1 , 1, 0 , and
Ž .0, 1 ; the missingness pattern is nonmonotone.

As we will see, missingness patterns play an important role in deciding
which method we select to handle missing data.

16.2. DATA MISSING AT RANDOM IN A 2�2 TABLE

In this section, we discuss the missing-data problem and its solutions in the
simple setting of a 2�2 table. When data are MCAR, as mentioned above,
statistical inferences drawn from the completely observed records are valid,
that is, estimates are consistent and tests have their nominal error rates.

Ž .Reliance on the completely observed records is called complete record CR
analysis. CR analysis is identical to the analyses covered earlier in this book,
so here we focus on methods for data that are MAR, making comparisons of
these methods with CR analysis along the way. We consider first the analysis
of a monotonic missingness pattern, postponing discussion of the nonmono-
tone case to Section 16.7.

16.2.1. Point Estimation

For the data in Table 16.1, smoking status is completely observed, but
hypertension status is incompletely observed. We assume that the missing-
ness of H depends on S but not on H. Under the assumed MAR mechanism
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w Ž .xwe have by Problem 16.1 a

� � �P H S, R s1 sP H S, R s0 sP H S . 16.2Ž . Ž .Ž . Ž .H H

Ž � .Because we can estimate P H S, R s1 consistently from the completelyH
Ž . Ž � .observed data, by 16.2 we also estimate P H S consistently by CR analysis

and, consequently, D and � as well. However, we cannot estimateH � S
Ž � . w Ž .xP S H consistently by CR analysis, because by Problem 16.1 b

� �P S H , R s1 �P S H ,Ž .Ž .H

so the rate of smoking given hypertension among completely observed
records is different than what it would be if there were no missing data. To

Ž � .estimate P S H there are two ways to proceed: by imputation or by
weighting.

Imputation
A natural way to handle missing data is to use our best estimate of the value
we would have observed had we been able. This approach, known as
imputation, does not always give valid point estimates, although in the case of
a 2�2 table, it does. The standard error, on the other hand, is not estimated
consistently, because an imputed value lacks the variability of actual data.
How to estimate standard errors correctly is discussed in Section 16.2.2.

If all of the data were observed, we would work from a display like Table
16.8. Because some H ’s are missing, we partition the table as shown in Table
16.9. The subscripts o and m denote, respectively, observed and missing cell

Ž .counts. Denote the observed data a , b , c , d , m , m by O. If all datao o o o 1 2
Ž � .were observed, we would estimate P Ss1 Hs1 by the sample proportion

Ž .p sar aqc . When a and c are partially missing, the best estimates of aS � H
Ž � .and c are their conditional expectations given the observed data, E a O and

Ž � .E c O . The conditional expectation of a given the observed data is

� � �E a O sE a a , b , c , d , m , m sa qE a OŽ . Ž . Ž .o o o o 1 2 o m

Table 16.8. Summary table when no data are missing

H

1 0 Total

1 a b aqb
S

0 c d cqd

Total aqc bqd n
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Table 16.9. Tables with complete and incomplete data

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 a b a qb 1 a b mo o o o m m 1S S
0 c d c qd 0 c d mo o o o m m 2

Total a qc b qd n Total a qc b qd no o o o o m m m m m

and that for c is

� � �E c O sE c a , b , c , d , m , m sc qE c O .Ž . Ž . Ž .o o o o 1 2 o m

Ž̂ � .Once estimates of the conditional mean of the cell counts, say E a O andm
Ž̂ � . Ž � .E c O are obtained, P Ss1 Hs1 is estimated bym

ˆ �a qE a OŽ .o mˆ �P Ss1 Hs1 s . 16.3Ž . Ž .ˆ ˆ� �a qE a O qc qE c OŽ . Ž .o m o m

Ž � .P Ss1 Hs0 is estimated similarly, using the observed frequencies b ando
ˆ ˆŽ � . Ž � .d and the estimated conditional means E b O and E d O , and fromo m m

these we estimate D by subtraction. These imputation estimates areS � H
consistent if the conditional expectation estimates are consistent.

There are two apparent ways to estimate the conditional expectation of
the missing cell counts. Applying the observed sample cell proportion a rno o

Ž � .to the missing data total, we can estimate E a O by n a rn . Thism m o o
estimate is valid if

� �P S, H R s1 sP S, H R s0 sP S, H ,Ž .Ž . Ž .H H

w Ž .xwhich holds only if data are MCAR Problem 16.1 c . If that were the case,
Žthen a rn would give a consistent estimate of the cell probability P Sso o

.1, Hs1 , c rn would give a consistent estimate of the cell probabilityo o
Ž .P Ss0, Hs1 , and similarly for the other cells, as well as the row and

column conditional probabilities. Consequently, this method of estimating
the conditional cell expectations would allow us to obtain consistent esti-
mates for all three parameters D , D , and �.H � S S � H

Alternatively, applying the row proportions as observed in the complete
Ž � .data to the row totals of missing data, we can estimate E a O by a sˆm m

ˆ ˆŽ � . Ž . Ž � . Ž �m P Hs1 Ss1 sm a r a qb and E c O by c sm P Hs1 Ssˆ1 1 o o o m m 2
. Ž .0 sm c r c qd . These estimates are valid under the less restrictive2 o o o

Ž .MAR condition 16.2 which we are assuming. We reiterate that only the row
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Ž � .probabilities P H S are estimated consistently from the complete data;
Ž � .neither the column probabilities P S H nor the individual cell probabilities

Ž .are. For example, a rn is not a consistent estimate for P Ss1, Hs1 , ando o
Ž . Ž .c rn is not a consistent estimate for P Ss0, Hs1 . But a r a qb is ao o o o o

Ž � . Ž .consistent estimate of P Hs1 Ss1 , and c r c qd is a consistento o o
Ž � .estimate of P Hs1 Ss0 , so it is clear that we can use these in a toˆm

Ž � . Ž � .estimate E a O and in c to estimate E c O in order to obtain aˆm m m
consistent method of imputation under MAR.

Ž � . Ž .Therefore we estimate P Ss1 Hs1 using 16.3 by

a q âo mˆ �P Ss1 Hs1 s . 16.4Ž . Ž .
a qa qc qcˆ ˆo m o m

ˆ ˆ ˆ ˆŽ � . Ž . Ž � .With b sm P Hs0 Ss1 sm b r a qb and d sm P Hs0 Ss0m 1 1 o o o m 2
Ž .sm d r c qd , we also have2 o o o

ˆb qbo mˆ �P Ss1 Hs0 s ,Ž .
ˆ ˆb qb qd qdo m o m

so that we have the following consistent imputation estimates for D ,S � H
D , and � :H � S

ˆa qa b qbˆo m o mD̂ s y ,S � H a qa qc qcˆ ˆ ˆ ˆb qb qd qdo m o m o m o m

a qa c qcˆ ˆo m o mD̂ s y ,H � S ˆ ˆa qa qb qb c qc qd qdˆ ˆo m o m o m o m

and

ˆa qa d qdŽ .ˆ Ž .o m o m
�s .ˆ ˆb qb c qcŽ .ˆŽ .o m o m

Let us compare the CR and imputation estimates a little more closely.
First consider the imputation scheme conditioning on the total margin, which

Ž̂ .is valid only under MCAR. With P Ss1, Hs1 sa rn , we haveo o

n a nm o mˆ �a qE a O sa q sa 1q .Ž .o m o o ž /n no o

Replacing the other missing cell counts with their expectations produces
similar expressions with the same factor 1qn rn , so that substitution inm o
Ž . Ž . Ž � .16.3 reduces to the CR estimate a r a qc for P Ss1 Hs1 . Similarly,o o o

Ž � .the imputation estimates for D , P Hs1 Ss1 , D , and � are identi-S � H H � S
cal with the corresponding CR estimates.
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Now consider the imputation scheme conditioning on the row margins,
Ž � .which is valid under MAR. The CR estimate of P Hs1 Ss1 is, say,

˜ ˆŽ � . Ž . ŽP Hs1 Ss1 sa r a qb , while the imputation estimate is P Hso o o
ˆ� . Ž . Ž .1 Ss1 s a qa r a qa qb qb . These too are identical, becauseˆ ˆo m o m o m

m1a qa sa 1qˆo m o ž /a qbo o

and

m1ˆb qb sb 1q ,o m o ž /a qbo o

and the common factor in parentheses cancels out. Similarly, the imputation
� Ž .4estimates for D and � are identical to the CR estimates a r a qb yH � S o o o

� Ž .4c r c qd and osa d rb c , respectively. However, a similar cancella-o o o o o o o
Ž � .tion does not occur for the two estimates of P Ss1 H , because, for

Ž .example, from 16.4 ,

a 1qm r a qb a� 4Ž .o 1 o o oˆ �P Ss1 Hs1 s � .Ž . a qca 1qm r a qb qc 1qm r c qd� 4 � 4Ž . Ž . o oo 1 o o o 2 o o

To summarize, for the case we are considering of the 2�2 table under
MAR, we find some but not all of the CR and imputation estimates to be
equal. In other applications, however, even when complete record analysis is
valid, CR and imputation estimates are seldom algebraically identical.

Example 16.2.1. Consider again the data in Tables 16.1 and 16.2. Since
the imputation estimates of D and � are identical to the CR estimates,H � S
we focus on the estimation of D . The estimated expected cell countsS � H

ˆunder MAR are a s80�30r50s48, b s80�20r50s32, c s20�ˆ ˆm m m
ˆ10r50s4, and d s20�40r50s16. The observed and estimated cellm

counts are shown in Table 16.10.

Table 16.10. Obser©ed complete and estimated expected incomplete cell
frequencies for the data of Table 16.2

Ž . Ž .a Complete Table b Estimated Expected Table

H H

1 0 Total 1 0 Total

1 30 20 50 1 48 32 80
S S

0 10 40 50 0 4 16 20

Total 40 60 100 Total 52 48 100
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Table 16.11. Combined obser©ed complete and estimated expected
missing cell frequencies from Table 16.10

H

1 0 Total

1 78 52 130
S

0 14 56 70

Total 92 108 200

When the two tables are combined, we have Table 16.11. The estimates
Ž � . Ž � .for P Ss1 Hs1 and P Ss1 Hs0 are thus

ˆ �P Ss1 Hs1 s78r92s39r46s0.8478Ž .

and

ˆ �P Ss1 Hs0 s52r108s13r27s0.4815,Ž .

ˆgiving D s0.8478y0.4815s0.3663, about 5 percentage points lowerS � H
than the CR estimate of 0.75y0.3333s0.4167. Note that the imputation

Ž . Ž .estimate of the odds ratio is 78�56 r 52�14 s6, numerically identical to
Ž . Ž .the complete-record estimate, 30�40 r 20�10 .

Weighting
Another way to handle missing data is to compensate for the missingness by
weighting the observed data. We begin by noting that, whereas we cannot

Ž � .consistently estimate P S H using completely observed records only, we can
Ž � . Ž � .consistently estimate P S H, R s1 and P R s1 S under MAR. BayesH H

Ž � . Ž � .theorem gives us a connection between P S H, R s1 and P S H :H

� ��P Ss1 H , R s1 P R s1 Ss1, HP Ss1 HŽ . Ž .Ž .H Hs � , 16.5Ž .�� �P Ss0 HŽ .P Ss0 H , R s1 P R s1 Ss0, HŽ . Ž .H H

Ž � . Ž � .and MAR gives us another relation: P R s1 S, H sP R s1 S . Substi-H H
Ž .tuting this last in 16.5 and rearranging terms, we have

� �P Ss1 H , R s1 P R s1 Ss1Ž . Ž .�P Ss1 HŽ . H H
s .

�P Ss0 HŽ . � �P Ss0 H , R s1 P R s1 Ss0Ž . Ž .H H

The quantities appearing on the right-hand side can be consistently estimated
Žunder MAR. This formula suggests an old survey sampling trick Horvitz and

.Thompson, 1952 : to weight observed quantities inversely by their probability
of observation, thereby compensating for the missing data.
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Ž � .To estimate P Ss1 Hs1 in our numerical example, we first calculate

ˆ �P Ss1 Hs1, R s1Ž . 30r40 39H s s50r130 20ˆ �P R s1 Ss1Ž .H

and

ˆ �P Ss1 Hs1, R s1Ž . 10r40 7H s s .50r70 20ˆ �P R s1 Ss0Ž .H

39Ž � . Ž � .Therefore the estimate of P Ss1 Hs1 rP Ss0 Hs1 is , so the7
39Ž � . Ž .estimate of P Ss1 Hs1 is 39r 39q7 s . Similarly,46

ˆ �P Ss1 Hs0, R s1Ž . 20r60 13H s s50r130 15ˆ �P R s1 Ss1Ž .H

and

ˆ �P Ss0 Hs0, R s1Ž . 40r60 14H s s50r70 15ˆ �P R s1 Ss1Ž .H

13Ž � . Ž .The estimate of P Ss1 Hs0 is then 13r 13q14 s .27

Note that these estimates are numerically identical to the imputation
estimates. This is no coincidence. Going back to the imputation method, the
conditional expectation of the cell count in the upper left-hand corner of the

Ž � . � Ž .4 �Ž . Žfull-data Table 16.8 is E a O sa 1qm r a qb sa a qb r m qo 1 o o o o o 1
.4y1 Ž . Ž . Ž � .a qb , and a qb r m qa qb estimates P R s1 Ss1 . Thuso o o o 1 o o H

the imputation and weighting estimates yield identical results in 2�2 tables.
In general, however, the two approaches do not yield equivalent estimates
Ž .Little, 1986 , and they have different asymptotic properties as well.

Two Paradigms
Imputation and weighting represent two distinct paradigms for handling
missing data, each one tackling the problem from a different angle: imputa-
tion fills in missing data, whereas weighting blows up observed data. Imputa-
tion fills in the best guess for the missing data, makes a ‘‘completed’’ data set,
and analyzes it. Weighting blows up each observed datum by the inverse of
the probability of observing it, essentially replicating the observed data to
stand in for the missing data. For example, if only one record is observed out
of ten sampled with the other nine records missing, weighting the observed

Ž .record by a factor of 10 the reciprocal probability of observation replicates
the observed record nine times to stand in for the missing records. The
weighting factor depends on how underrepresented each observed record is
among all records with the same characteristics.
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16.2.2. Variance Estimation

Ž .We cannot estimate the variance of the imputation estimate 16.4 by

a qa c qcŽ . Ž .ˆ ˆo m o m ,3
a qa qc qcˆ ˆŽ .o m o m

as we would if the imputed data had actually been observed. Calculating the
variance of an imputation estimate is generally challenging. Problem 16.2
derives an empirical variance estimate by a general method used for estimat-
ing equations. Other methods include the jackknife and multiple imputation,
which we discuss in subsequent sections. Here we present a relatively simple

ˆformula for the estimated variance of D using the delta method.S � H
Ž � .To keep the notation concise, let � sP Ss1 Hs1 and � s1 2

Ž � .P Ss1 Hs0 denote the conditional probabilities we are interested in
Ž . Ž .estimating; let p sa r a qb and p sc r c qd ; and let q s1 o o o 2 o o o 1

Ž . Ž .b r a qb s1yp and q sd r c qd s1yp . We provide an esti-o o o 1 2 o o o 2
ˆmate of the variance of D conditional on the total number n sa qb qS � H 1 o o

Ž . Ž .m of smokers Ss1 and n sc qd qm of nonsmokers Ss0 . Condi-1 2 o o 2
tioning on n and n renders the random variables p and p conditionally1 2 1 2

Ž . Ž .independent. Now let f sn r n qn and f sn r n qn , and let1 1 1 2 2 2 1 2

n p qn p n q qn q1 1 2 2 1 1 2 2ps s f p q f p and qs s f q q f q .1 1 2 2 1 1 2 2n qn n qn1 2 1 2

Ž .With this notation we can write the imputation estimates 16.4 for � and1
1y� as1

n p f p n p f p1 1 1 1 2 2 2 2� s s and 1y� s s ,ˆ ˆ1 1n p qn p n p qn pp p1 1 2 2 1 1 2 2

the imputation estimates for � and 1y� as2 2

n q f q n q f q1 1 1 1 2 2 2 2� s s and 1y� s s ,ˆ ˆ2 2n q qn q n q qn qq q1 1 2 2 1 1 2 2

and the imputation estimate for D asS � H

f p f q1 1 1 1D̂ s� y� s yˆ ˆS � H 1 2 p q

w Ž .x Ž . Ž .see Problem 16.3 a . In Problem 16.3 b and c , the reader is asked to use
the delta method to derive the large sample variances of the estimates �̂ 1
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and � , and their covariance. Specifically, these are estimated byˆ 2

$ q rp q rp2 1 1 2 2Var � s � 1y� q ,� 4Ž . Ž .ˆ ˆ ˆ1 1 1 ž /n ym n ym1 1 2 2

$ p rq p rq2 1 1 2 2Var � s � 1y� q ,� 4Ž . Ž .ˆ ˆ ˆ2 2 2 ž /n ym n ym1 1 2 2

and

$ p rq p rq2 1 1 2 2Cov � , � sy � 1y� � 1y� q ,� 4Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆŽ .1 2 1 1 2 2 ž /n ym n ym1 1 2 2

Ž .Putting these together in Problem 16.3 d , we have the variance estimate for
D̂ :S � H

$ q rp q rp2 1 1 2 2Var � y� s � 1y� q� 4Ž .ˆ ˆ ˆ ˆŽ .1 2 1 1 ž /n ym n ym1 1 2 2

p rq p rq2 1 1 2 2q � 1y� q� 4Ž .ˆ ˆ2 2 ž /n ym n ym1 1 2 2

1 1
q2 � 1y� � 1y� q� 4Ž . Ž .ˆ ˆ ˆ ˆ1 1 2 2 ž /n ym n ym1 1 2 2

2q p1 1 1s � 1y� q� 1y�Ž . Ž .ˆ ˆ ˆ ˆ1 1 2 2( (½ 5n ym p q1 1 1 1

2q p1 2 2q � 1y� q� 1y� .Ž . Ž .ˆ ˆ ˆ ˆ1 1 2 2( (½ 5n ym p q2 2 2 2

16.6Ž .

In our numerical example, p s0.6, q s0.4, p s0.2, q s0.8, n s130,1 1 2 2 1
Ž .Ž . Ž .Ž .n s70, f s130r200s0.65, f s70r200s0.35, ps 0.65 0.6 q 0.35 0.22 1 2

39Ž .Ž . Ž .Ž . Ž .Ž .s0.46, qs 0.65 0.4 q 0.35 0.8 s0.54, � s 0.65 0.6 r0.46s , � sˆ ˆ1 246$ $
13Ž .Ž . Ž . Ž .0.65 0.4 r0.54 s . Then Var � s 0.001554, Var � s 0.002182,ˆ ˆ1 227$ $

Ž . Ž .Cov � , � sy0.001288, and Var � y� s0.006312.ˆ ˆ ˆ ˆ1 2 1 2
Ž .Note how expression 16.6 increases as m and m increase, reflecting1 2

the additional uncertainty in � y� as the missingness increases. Note alsoˆ ˆ1 2
that the estimated variance of � y� , 0.006312, is about 70% larger thanˆ ˆ1 2
the estimated variance would be if the imputed data had actually been
observed:

ˆ ˆb qb d qda qa c qc � 1y� � 1y�Ž . Ž .Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆo m o mo m o m 1 1 2 2q s q3 3 n qn p n qn qŽ . Ž .1 2 1 2a qa qc qc ˆ ˆˆ ˆŽ . b qb qd qdo m o m ž /o m o m

78 14 52 56Ž . Ž . Ž . Ž .
s q3 392 108
s0.003714.



16.3 DATA MISSING AT RANDOM IN SEVERAL 2�2 TABLES 505

16.3. DATA MISSING AT RANDOM IN SEVERAL 2�2 TABLES

Let C be a stratification variable with K levels. We assume there is a
common odds ratio � between S and H across the levels of C and our goal
is to estimate �. As discussed in Chapters 10 and 11, there are two widely
used estimators of the common odds ratio, the maximum likelihood estimator
and the Mantel-Haenszel estimator. Here we focus on the Mantel-Haenszel
odds ratio; the next section covers maximum likelihood estimation in logistic
regression models with incomplete data, which we can apply to the K 2�2
tables.

16.3.1. Complete Record, Weighting, and Imputation Methods for the
Mantel-Haenszel Estimator, and Variance Estimation by the Jackknife

When either the exposure or outcome variable is MAR, the Mantel-Haenszel
odds ratio based on complete records is consistent. When the stratifying
variable is MAR, the complete record estimator is not consistent and one
must turn to imputation or weighting methods.

Missing Exposure or Outcome
Suppose H is partially missing, but S and C are completely observed. Let RH
be the observation indicator for H. Table 16.12 replicates Table 16.9 for each
table is1, . . . , K.

When there are no missing data, the Mantel-Haenszel odds ratio

ÝK a d rnis1 i i i� sˆMH KÝ b c rnis1 i i i

is the solution of the unbiased estimating equation

K a d y� b ci i i i s0Ý niis1

Table 16.12. Notation for complete and incomplete portions of se©eral 2�2 tables

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 a b a qb 1 a b moi oi oi oi mi mi 1 iS S
0 c d c qd 0 c d moi oi oi oi mi mi 2 i

Total a qc b qd n Total a qc b qd noi oi oi oi oi mi mi mi mi mi
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Ž .see Section 15.5.1 for the basic theory of estimating equations . Using
complete records only, the analogous estimating equation

K a d y� b coi o i o i o i s0 16.7Ž .Ý noiis1

is unbiased if the left-hand side has zero expectation. We demonstrate this as
follows. In each table, the rows are conditionally independent given n sa1 i o i
qb qm and n sc qd qm . Conditioning further on the observedo i 1 i 2 i o i o i 2 i
sums a qb sn ym and c qd sn ym , we haveo i o i 1 i 1 i o i o i 2 i 2 i

a d y� b coi o i o i o iE n , n , a qb , c qdi1 i2 o i o i o i o iž /noi

n ym n ymŽ . Ž .1 i 1 i 2 i 2 is P Q y�Q P ,Ž .1 i 2 i 1 i 2 inoi

Ž � . Ž �where P sP Hs1 Ss1, Cs i, R s1 s1yQ and P sP Hs1 Ss1 i H 1 i 2 i
. Ž � .0, Cs i, R s1 s1yQ . Under MAR, P sP Hs1 Ss1, Cs i and PH 2 i 1 i 2 i

Ž � .sP Hs1 Ss0, Cs i , so the factor P Q y�Q P equals zero by defi-1 i 2 i 1 i 2 i
Ž .nition of �. Thus, unconditionally, each term in the sum of 16.7 has zero

expectation.
It follows that the complete-record Mantel-Haenszel odds ratio is consis-

tent when H is MAR. A symmetric argument can be applied when the roles
of H and S are reversed.

Alternatively, we can obtain a Mantel-Haenszel-type estimate by imputa-
tion. For each table is1, . . . , K , let the observed data be denoted by O si
Ž .a , b , c , d , m , m with n sa qb qc qd qm qm sn qo i o i o i o i 1 i 2 i i o i o i o i o i 1 i 2 i 1 i
n sn qn . When data are missing, we wish to use the unbiased estimat-2 i o i mi
ing equation

� �a qE a O d qE d O� 4 � 4Ž . Ž .o i mi i o i mi i
K � �y� b qE b O c qE c O� 4 � 4Ž . Ž .o i mi i o i mi i

s0,Ý niis1

whose solution is

K

� �a qE a O d qE d O� 4 � 4Ž . Ž .Ý o i mi i o i mi i
is1

ni
�s , 16.8Ž .ˆ K � �b qE b O c qE c O� 4 � 4Ž . Ž .o i mi i o i mi iÝ niis1
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so we need to estimate the expected values of the missing cell counts. As in
the case of a single fourfold table, there are two estimators for these counts.

Ž . Ž1. Ž .For the upper left-hand cell, the estimators are i a sn a rn and iiˆmi mi o i o i
Ž2. Ž . Ž .a sm a r a qb . Estimator i is consistent ifˆmi 1 i o i o i o i

� � �P S, H C , R s1 sP S, H C , R s0 sP S, H C ,Ž .Ž . Ž .H H

which holds if the missingness is independent of both S and H given C, or,
equivalently, if

� �P R C , S, H sP R C ,Ž . Ž .H H

i.e., if the missingness is MCAR, in which case the individual cell probabili-
Ž � .ties P S, H C are estimated consistently using the completely observed

records. The estimated conditional expectation of the total cell count ai
becomes

ˆ Ž1.�E a O sa qa sa 1qn rn sa n rn ,Ž .Ž . ˆi i o i mi o i mi o i o i i o i

and, on estimating the other conditional expectations similarly, equation
Ž .16.8 reduces to

K Ž1. Ž1. Kˆa qa d qd� 4 � 4ˆ a doi mi o i mi o i o iÝ Ý �n ni iis1 is1Ž1.� s s , 16.9Ž .ˆ KŽ1. Ž1.K ˆ b cb qb c qc� 4� 4 ˆ o i o io i mi o i mi ÝÝ �n ni iis1is1

where n�sn2 rn .i o i i
Ž .Estimator ii is consistent if

� � �P H S, C , R s1 sP H S, C , R s0 sP H S, C ,Ž .Ž . Ž .H H

which holds if the missingness is independent of H given S and C, or,
equivalently, if

� �P R S, C , H sP R S, C ,Ž . Ž .H H

Ž � .that is, H is MAR, in which case only the row probabilities P H S, C can be
estimated consistently from the complete records. The estimated conditional
expectation of the total cell count a isi

m n1 i 1 iŽ2.ˆ �E a O sa qa sa 1q sa ,Ž . ˆi i o i mi o i o iž /a qb n ymoi oi 1 i 1 i
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and estimating the other conditional expectations similarly, we obtain

K Ž2. Ž2. Kˆa qa d qd� 4 � 4ˆ a doi mi o i mi o i o i
�Ý Ýn ni iis1 is1Ž2.� s s , 16.10Ž .ˆ KŽ2. Ž2.K ˆ b cb qb c qc� 4� 4 ˆ o i o io i mi o i mi
�ÝÝ nn ii is1is1

� Ž .Ž . Ž .where n sn n ym n ym r n n .i i 1 i 1 i 2 i 2 i 1 i 2 i
An unbiased estimating equation can also be constructed using the method

of weighting by the inverse probability of missingness. The equation is

a doi o i�°K � �P R s1 Ss1, Hs1, Cs i P R s1 Ss0, Hs0, Cs iŽ . Ž .H H~Ý ni¢is1

b coi o i� ¶� �P R s1 Ss1, Hs0, Cs i P R s1 Ss0, Hs1, Cs iŽ . Ž .H H •y� .ni ß

16.11Ž .
Ž � . Ž � . Ž .Under MCAR, P R s1 S, H, C sP R s1 C , so the solution to 16.11H H

is
K a d rnoi o i iÝ 2

�P R s1 Cs i� 4Ž .is1 HŽ1.� P s ,Ž .ˆ K b c rnoi o i iÝ 2
�P R s1 Cs i� 4Ž .is1 H

Ž1. Ž � .where P is the vector of probabilities P R s1 Cs i for is1, . . . , K.H
Ž̂1.Ž � .Estimating the vector of P R s1 Cs i by P sn rn and replacingH oi i

Ž1. Ž̂1. Ž1.Ž .P by P in � P , we conclude that the weighting estimator of the oddsˆ
Ž̂1.Ž . Ž .ratio � P is identical to the imputation estimate 16.9 .ˆ

Ž � . Ž � .Under MAR, P R s1 S, H, C sP R s1 S, C , so the solution toH H
Ž .16.11 is

K a d rnoi o i iÝ � �P R s1 Ss1, Cs i P R s1 Ss0, Cs iŽ . Ž .H His1Ž2.� P s ,Ž .ˆ K b c rnoi o i iÝ � �P R s1 Ss1, Cs i P R s1 Ss0, Cs iŽ . Ž .H His1

Ž2. Ž � .where P is the vector of probabilities P R s1 Ss j, Cs i for js0, 1H
Ž̂2.Ž � .and is1, . . . , K. Estimating the vector of P R s1 Ss j, Cs i by P sH

Ž2. Ž̂2. Ž2.�Ž . 4 Ž .n ym rn and replacing P by P in � P , we conclude that theˆji ji ji
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Ž̂2.Ž .weighting estimator of the odds ratio � P is identical to the imputationˆ
Ž .estimate 16.10 .

Ž .We note that the use of n in 16.11 is in accord with the idea of blowingi
up the observed data that characterizes the weighting method. One could
also use n instead, and doing so simplifies calculation of the variance of theo i

� Ž .estimated log odds ratio, which we next consider. In that case, n in 16.9i
� 3 2 � Ž . �is replaced by n sn rn , and n in 16.10 is replaced by n so i o i i i o i

Ž .Ž . Ž .n n ym n ym r n n .o i 1 i 1 i 2 i 2 i 1 i 2 i

Variance Estimation
Ž1. Ž2. ˆWith P denoting P under MCAR or P under MAR, and P denoting

Ž̂1. Ž̂2. ˆŽ .P or P , � P is given approximately byˆ

� �� PŽ .ˆˆ ˆ� P f� P q PyP . 16.12Ž . Ž .Ž . Ž .ˆ ˆ � P

Ž .It can be shown that when n is used in estimating equation 16.11 insteado i
� Ž . 4of n , E �� P r� P is approximately zero, and that there are only negligibleˆi

contributions to the total variance of the estimate due to the variance of the
second term and the covariance between the first and second terms in

ˆŽ . Ž . Ž .16.12 . Then the variance of ln � P is estimated by formula 10.58 for theˆ
standard Mantel-Haenszel odds ratio after replacing R , S , P , and Q byi i i i
R� , S� , P� , and Q *, respectively, where R�sa d rn� , S�sb c rn� ,i i i i i o i o i o i i o i o i o i

� Ž . � � Ž . �P s a qd rn , and Q s b qc rn .i o i o i o i i o i o i o i
wThe variance of the imputation estimate equal to the weighting estimate

Ž . xusing 16.11 with n cannot be obtained in the same way, because thei
Ž .corresponding derivatives in 16.12 do not have zero expectation. The

method of Problem 16.2 can be used, but is complicated. Instead, we indicate
Ž Ž1. . Ž Ž2. .how to use the jackknife technique to estimate Var ln � or Var ln � .ˆ ˆ

The jackknife deletes one independent record at a time, each time recalculat-
ing the quantities of interest, called delete-one statistics. The jackknife
variance estimate is then the sum of squared differences between the
delete-one statistics and the overall estimate.

When all records are completely observed in a 2�2 table, the asymptotic
Ž . Ž .variance of the sample log odds ratio ln adrbc is estimated by 1ra q

Ž . Ž . Ž .1rb q 1rc q 1rd . If a record from the upper left-hand cell is deleted,
�Ž . Ž .4then the log odds ratio becomes ln ay1 dr bc and the contribution to

the jackknife variance estimate is

2 2ay1 d ad 1Ž .
ln y ln s ln 1y .½ 5ž /ž /bc bc a

Repeating the argument for deletion of records from other cells, the jack-
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knife variance estimate is expressible in closed form as

2 2 2 21 1 1 1
a ln 1y qb ln 1y qc ln 1y qd ln 1y .½ 5 ½ 5 ½ 5 ½ 5ž / ž / ž / ž /a b c d

� Ž .4Note that when cell counts are large, ln 1y 1ra f1ra, and the jackknife
Ž . Ž . Ž . Ž .estimate approaches the asymptotic variance 1ra q 1rb q 1rc q 1rd .

The jackknife variance estimate for the imputation log Mantel-Haenszel
odds ratio ln � Ž1. or ln � Ž2. is calculated in similar fashion, each timeˆ ˆ
deleting one of the n q ���qn records and recalculating the delete-one log1 K

Ž . Ž .odds ratios from 16.9 or 16.10 . The equivalence of the variance estimate
to a known asymptotic variance formula has yet to be verified. However,
simulation studies by the authors have shown that the jackknife estimate
provides nominal error rates and coverage probabilities under a variety of
conditions.

Missing Stratifying Variable
Now suppose that S and H are completely observed but that C is missing for
some records, so that the tables into which to cross-classify S and H are

Ž .unknown. The margins m and m in Table 16.12 b are now individually1 i 2 i
unknown, although we know each cell of the pooled missing data as in

Ž . ŽTable 16.13 b . The observed data vectors are now O s a , b , c , d ,i o i o i o i o i
.a , b , c , d for is1, . . . , K.mq mq mq mq

C is missing at random if the observation indicator R is conditionallyC
independent of C given S and H, so that the missingness of C may depend
on S or H or both, but not on the missing value of C. If the missingness
depends on both S and H, the complete record Mantel-Haenszel odds ratio

Ž .is not consistent for any table, because E a d y� b c �0. If the miss-o i o i o i o i
ingness does not depend on both S and H, for example, if R is independentC

Ž . Ž .of C, S given H, or if R is independent of C, H given S, then theC
complete record Mantel-Haenszel odds ratio is consistent. However, statisti-
cal efficiency is lost, as illustrated below.

The following imputation estimator corrects the bias when the complete
record odds ratio is biased, and improves efficiency when the complete
record odds ratio is unbiased. The imputation Mantel-Haenszel odds ratio

Table 16.13. Pooled data obtained by summing Tables 16.12 for is1, . . . , K

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 a b a qb 1 a b moq oq oq oq mq mq 1qS S
0 c d c qd 0 c d moq oq oq oq mq mq 2q

Total a qc b qd n Total a qc b qd noq oq oq oq oq mq mq mq mq mq
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Ž .has the same form as 16.8 , but the conditional expectations are different.
We estimate these by

aoiˆ �E a O sa ,Ž .mi i mq aoq

boiˆ �E b O sb ,Ž .mi i mq boq

coiˆ �E c O sc ,Ž .mi i mq coq

doiˆ �E d O sd .Ž .mi i mq doq

The resulting estimator is

K
�a d rnÝ o i o i 1 i

is1
�s ,ˆ K

�b c rnÝ o i o i 2 i
is1

where

a doq oq�n sn � ,ˆ1 i i a qa d qdmi oq mq oq

b coq oq�n sn � ,ˆ2 i i b qb c qcmi oq mq oq

and

ˆ ˆ ˆ ˆ� � � �n sn qE a O qE b O qE c O qE d O .Ž . Ž . Ž . Ž .ˆi o i mi i mi i mi i mi i

� � Ž � .Note that n rn and n rn are estimators of P R s1 Ss1, Hs1 �ˆ ˆ1 i i 2 i i C
Ž � . Ž � . Ž � .P R s1 Ss0, Hs0 and P R s1 Ss1, Hs0 �P R s1 Ss0, Hs1C C C

respectively, so that the weighting estimate has the same form as the
imputation estimate. If n is used instead of n for the weighting estimate,o i i
we replace n� and n� with1 i 2 i

a doq oq�n sn �o1 i o i a qa d qdmq oq mq oq

and

b coq oq�n sn � ,o2 i o i b qb c qcmq oq mq oq

respectively.
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Table 16.14. Hypothetical data for two 2�2 tables

R S H C FrequenciesH

1 1 1 1 12
1 1 1 0 18
1 1 0 1 25
1 1 0 0 19
1 0 1 1 8
1 0 1 0 11
1 0 0 1 13
1 0 0 0 17
0 1 ? 1 29
0 1 ? 0 25
0 0 ? 1 10
0 0 ? 0 13

200

Explicit variance formulas are even more elaborate than those in the
missing-exposure case, because the terms across the stratifying variables are
correlated. Further research is needed to confirm whether or not the jack-
knife technique is consistent in this case.

Example 16.3.1. To illustrate the imputation Mantel-Haenszel odds ra-
tio � Ž2. and weighting counterpart, consider Table 16.14, in which H isˆ
partially missing and S and C are completely observed. Table 16.15 shows
the data in the layout of Table 16.12.

Ž .The complete-record Mantel-Haenszel odds ratio from Table 16.15 a is
Ž .1.110, with log odds ratio 0.1045 and variance 0.1428 from 10.58 , yielding a

Ž .95% confidence interval for � of 0.529, 2.328 . The jackknife variance
estimate of the complete record log odds ratio is 0.1503, with corresponding

Ž .95% confidence interval 0.519, 2.373 for �.
For the weighting odds ratio using n , we have n� s22.026, n� s26.49,o i o1 o2

Ž̂2.Ž .and � P s1.098 with logarithm 0.0935. The modified version of theˆ
Ž .asymptotic variance 10.58 is 0.1429, yielding a 95% confidence interval for

Ž .� of 0.523, 2.303 , while the jackknife variance estimate is 0.1535, with
Ž .corresponding 95% confidence interval 0.509, 2.366 for �.

For the imputation odds ratio, we have n�s36.84, n�s41.98, and � Ž2.sˆ1 2
1.107. The jackknife variance estimate is 0.1520 yielding a 95% confidence

Ž .interval for � of 0.516, 2.377 .
To illustrate the case of a missing stratifying variable, we present the

Ž .results of a small simulation experiment 200 replications in which the
stratifying variable C is MAR. Two missingness conditions are illustrated:
Ž . � Ž � .4i R depends on both S and H, but not C: logit P R s1 S, H, C sC C

Ž .y1q2Sq2SH; and ii R is independent of C and H given S: logitC
� Ž � .4P R s1 S, H, C sy1q2S. The underlying mechanism generating SC
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Table 16.15. Complete and incomplete portions of Table 16.14

Cs1
Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 12 25 37 1 ? ? 29
S S

0 8 13 21 0 ? ? 10

Total 20 38 58 Total ? ? 39

Cs0
Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 18 19 37 1 ? ? 25
S S

0 11 17 28 0 ? ? 13

Total 29 36 65 Total ? ? 38

� Ž � .4given H and C is logit P Ss1 H, C sy1qHqC, so that the true log
odds ratio between S and H is 1. Here C has two levels, and the conditional

Ž � . Ž .distribution of C given H is P Cs1 H s0.2q0.6 H, with P Hs1 s0.5.
Ž . ŽTable 16.16 gives results for four estimates: a full data for comparison�

. Ž .missing data precludes use of the full data estimate in practice , b complete
Ž . Ž .record, c imputation, and d weighting. The table also shows the simulation

mean squared error for each estimate. The results show that the imputation
and weighting estimates correct the bias incurred by complete record analysis

Ž . Ž .under condition i , and improve efficiency under condition ii .

Table 16.16. Simulation results for four estimators of the log odds ratio between
S and H with a missing stratifying ©ariable C under two different MAR
missingness conditions

Ž . Ž .i R Depends on Both ii R is Independent of HC C
S and H Given S

Mean Mean Mean Mean
Method Point Estimate Squared Error Point Estimate Squared Error

Ž .a Full data 1.0026 0.0441 1.0026 0.0441
Ž .b Complete record 1.2905 0.1966 1.0260 0.1145
Ž .c Imputation 0.9936 0.0639 0.9975 0.0647
Ž .d Weighting 1.0108 0.0691 1.0112 0.0669
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16.3.2. Multiple Imputation

Single imputation as presented in the preceding sections produces consistent
point estimates under appropriate MCAR or MAR assumptions. Naive
application of standard error formulas for complete data, however, does not
produce accurate estimates of the true uncertainty. To obtain valid standard
errors requires special methods like the jackknife or those presented in
Section 16.2.2 or Problem 16.2. The multiple imputation technique of Rubin
Ž . Ž .1976 also provides valid standard errors. Rubin 1987 provides formulas for
these, together with estimates of the amount of information lost due to
missingness.

The key idea of multiple imputation is to generate each missing value
repeatedly while mimicking the actual variation that might have been ob-
served in the data had they not been missing. Repeating the imputations in
this way allows one to gauge how sensitive the results are to imputation, and
thereby to provide valid standard errors. For each of, say, m� repeated
imputations, after the data sets have been completed by pooling the observed
and imputed data, ordinary point estimates and standard errors are pre-
pared. The multiple imputation point estimate is then the average of the m�

ordinary point estimates, and the multiple imputation standard error is given
Ž .by formula 16.16 below. We note that the term ‘‘multiple’’ derives from

imputing data repeatedly, not from the possible use of a multiple regression
model to generate the imputed values. ‘‘Repeated imputation’’ is an apt
description of the procedure.

For 2�2 tables it would appear plausible to generate the missing cell am
as a binomial random variable with index m and parameter p sa r1 1 o
Ž .a qb . This imputation underestimates the true uncertainty, however,o o
because it ignores the fact that p is itself an estimate, not the true1

Ž � .probability P sP Hs1 Ss1 . This defect is corrected as follows.1
Rubin originally proposed multiple imputation in the context of a fully

Bayesian analysis, and suggested imputing the missing data by first sampling
parameter values from their posterior distribution given the observed data,
and then generating the missing data randomly from distributions governed
by the sampled parameters. For 2�2 tables, this involves sampling a value
P� from the posterior distribution of P and then generating a binomial1 1
random variable a� with index m and parameter P�. The value c� ism 1 1 m
imputed similarly by sampling P� from the posterior distribution of P s2 2
Ž � . � Ž � . � �P Hs1 Ss0 and generating c as Bin m , P . Setting b sm ya andm 2 2 m 1 m

d� sm yc� completes one imputation of the missing data. The completedm 2 m
table with cells a qa� , b qb� , etc. is used to estimate the log odds ratio,o m o m
say, together with its standard error. The entire process is then repeated m�

times. The additional variation introduced by using randomly generated P�
1

and P� corrects for the fact that p is an estimate of P .2 j j
Ž .For example, suppose that a priori before observation of the data , P has1

Ža beta distribution with parameters � and � see Section 9.6.4 for a0 0
. Ždefinition of the beta distribution . Then a posteriori after observation of ao
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.and b , P has a beta distribution with parameters � sa q� ando 1 1 o 0
� sb q� . Because the conditional distribution of the imputed value of1 o 0

� Ž � . �the missing cell, a , is Bin m , P given P sP , the marginal distributionm 1 1 1 1
� � Ž .of a is beta-binomial, with mean Ea sm � r � q� sm � , say, withm m 1 1 1 1 1 1

Ž .� s� r � q� , and variance given by1 1 1 1

Var a� sm � 1y� 1q m y1 D2 16.13Ž . Ž . Ž . Ž .� 4m 1 1 1 1

where

Var P�Ž . 112D s s
� q� q1� 1y�Ž . 1 11 1

1 1
s s . 16.14Ž .a qb q� q� q1 n ym q� q� q1o o 0 0 1 1 0 0

D2 represents additional variation due to uncertainty in P . When the1
observed sample size a qb sn ym is large compared to � and � , �o o 1 1 0 0 1
approaches p , so we are essentially sampling a� with mean m p as if a�

1 m 1 1 m
Ž . 2were binomial, but with a variance inflation factor 1q m y1 D approach-1

Ž . Ž . Ž . Ž .ing 1q m y1 r n ym s n y1 r n ym . If the number of missing1 1 1 1 1 1
records m is a small fraction of n , the imputation distribution is essentially1 1
binomial; if m is a nonzero fraction of n , the imputations have greater-1 1
than-binomial variance.

Ž .Rubin and Schenker 1986 proposed a simple alternative technique called
the approximate Bayesian bootstrap. This method generates P� as the sample1
proportion from a bootstrap sample drawn from the observed set of a oneso
and b zeros. A bootstrap sample is generally drawn with replacement aftero
each draw of a record from the observed set of data. Generating parameters
by bootstrap sampling, and using these to govern the distributions for
imputing missing data, also appropriately reflects uncertainty in the unknown
parameters.

For 2�2 tables, the bootstrap generates P� as a scaled binomial random1
Ž .variable with mean p and variance p q r n ym . Thus the imputed1 1 1 1 1

missing cell a� has mean m p and variancem 1 1

Var a� sm p 1yp 1q m y1 D2 with D2s1r n ym .Ž . Ž . Ž . Ž .� 4m 1 1 1 1 1 1

In a Bayesian framework, this corresponds to use of an improper beta prior
Ž .negative � q� sy1 , but the variance inflation factor is slightly larger0 0
than with a proper prior with positive � and � . The inflation factor is0 0
approximately the same as with a proper prior if n ym is large compared1 1

2 Ž .to � and � . We note that use of a value of D larger than 16.14 is not0 0
unreasonable if the MAR assumption itself is questionable, for in that case
there is uncertainty attaching to the use of the estimate p to generate a� in1 m
the first place, even if the observed sample size is large.
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We illustrate the multiple imputation procedure for estimation of the log
Mantel-Haenszel odds ratio in several 2�2 tables. Let ln � Žk . denote theˆMH
standard Mantel-Haenszel log odds ratio from the k th completed data set
Ž � . 2ks1, . . . , m , and let s denote its nominal estimated variance fromk
Ž .10.58 . The multiple imputation point estimate of �s ln � is then the
simple average

m�

1 Žk .�̂s ln � . 16.15Ž .� ˆÝ MHm
ks1

� Ž .When m is large, 16.15 will be close to the imputation estimates presented
earlier.

The multiple imputation variance of the point estimate is obtained by
combining within- and between-imputation components of variance:

m� m�
$ 21 1 12 Žk .ˆ ˆVar � s s q 1y ln � y� . 16.16Ž .Ž . � � � ˆŽ .Ý Ýk MHž /½ 5 ½ 5m m m y1

ks1 ks1

Ž Žk. .The first term estimates the expected value of Var ln � over the imputa-ˆMH
tion distribution for the missing data. The factor in braces in the second term
estimates how variable the completed data point estimates are due to the
imputation of the missing data. The leading factor is a correction for bias
when m� is small.

Ž .The simplicity of Rubin’s variance formula 16.16 is the reward earned
only after careful and often laborious imputation of the missing data. A

Ž .problem arises, however, with the use of 16.16 for the particular application
to the Mantel-Haenszel estimate of the odds ratio which we discuss at the
end of the section.

For imputing the missing data of Table 16.15, we use the approximate
Bayesian bootstrap. The first step is to draw m� bootstrap samples to

� Ž .generate P for each table is1 and 2 for Cs1 and 0, respectively andji
Ž .each row js1 and 2 for Ss1 and 0, respectively . For each repetition

ks1, . . . , m� this may be accomplished by generating four binomial random
variables BŽk ., with indices 37, 21, 37, and 28, as per the observed marginsji

12 8 18 11n ym , and with parameters p s , p s , p s , and p s ,ji ji 11 21 12 2237 21 37 28

respectively, and then dividing by the corresponding observed margins. Once
the binomial parameters P� Žk . are generated for each k, an independentji
binomial random variable is generated for each of a , c , a , and c ,m1 m1 m2 m2
with sample sizes m s29, m s10, m s25, and m s13, respectively.11 21 12 22
These are used to complete the data sets, and the Mantel-Haenszel log odds
ratios ln � Žk . and variance estimates s2 are calculated.ˆMH k

Using m�s25, the mean log odds ratio in one calculation was 0.08294,
ˆ Ž .which is the multiple imputation point estimate � in 16.15 . This corre-

Ž .sponds to an odds ratio estimate of exp 0.08294 s1.086, slightly less than
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the single imputation and weighting estimates from the previous section. The
mean of the 25 variance estimates s2 was 0.09180, which is the first term ofk
Ž .16.16 . The sample variance of the 25 log odds ratios was 0.02876, and
multiplying by the leading factor 1y1rm�s0.96 provides the second term,
0.02761. Summing, the multiple imputation variance estimate is 0.1194, and
taking the square root yields the multiple imputation standard error 0.3456.

Ž .A 95% confidence interval for � is given by exp 0.08294�1.96�0.3456 s
Ž .0.552, 2.139 .

The multiple imputation variance estimate is about 20% smaller than the
Ž .jackknife estimates obtained in the previous section 0.12 versus 0.15 .

Comparing the excess of the jackknife variance over the mean complete data
w Ž .xvariance i.e., the first term of 16.16 , 0.15y0.092s0.058, with the excess

of the multiple imputation variance over the mean complete data variance,
0.12y0.092s0.028, shows that the jackknife corresponds roughly to the use
of a beta prior in the multiple imputation procedure with variance inflation
factor about twice as large as that of the approximate Bayesian bootstrap.

Ž .Robins and Wang 2000 study the consistency of the multiple imputation
Ž .variance formula 16.16 when the ordinary point estimates are solutions of

an estimating equation and derive a general variance formula which differs
Ž .from 16.16 . The difference vanishes when the estimating equation is a score

Žfunction so that the ordinary point estimates are maximum likelihood
.estimates . In general, however, the difference is nonzero because the nega-

Žtive derivative of an estimating function is not its variance whereas the
.negative derivative of a score function is its variance . The difference is often

Ž .positive, in which case the variance given by 16.16 is conservative, but
positivity is not guaranteed in all cases. Our example of the Mantel-Haenszel
log odds ratio, which is not a maximum likelihood estimate, illustrates this

Ž .point. It would appear prudent, then, to avoid using 16.16 for the Mantel-
Haenszel log odds ratio. The single imputation method of Section 16.3.1 with
the jackknife variance estimate is preferred.

16.4.� LOGISTIC REGRESSION WHEN COVARIATES
ARE MISSING AT RANDOM

Another way to estimate the common odds ratio underlying several 2�2
tables is to use logistic regression, which can also handle more general

Ž .situations Chapter 11 . In this section, we consider the problem of missing
data when there are two explanatory factors, one of which has missing data.
Extension to the case of many covariates, only one of which has missing
values, is straightforward. If more than one covariate has missing values,
extensions become complicated, requiring multivariate regression models
Ž .Section 15.5 .

Let Y be a binary response indicating whether or not the ith subject hasi
an event. Let X be a binary covariate with missing values. Let Z be a vectori i
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Ž . Ž � .of completely observed covariates. With P X , Z denoting P Y s1 X , Z ,i i i i i
we assume that

P X , ZŽ .i iln s� q� X q� Z , 16.17Ž .0 X i Z i1yP X , ZŽ .i i

Ž .�where �s � , � , � contains the unknown parameters of interest. Let R0 X Z i
be the observation indicator for X . If no data are missing, the likelihoodi
function is

n
1yYY ii� � 4 � 4 � 4LsL � X , Y , Z s P X , Z 1yP X , Z .� 4Ž . Ž .Ž . Łi i i i i i i

is1

The maximum likelihood estimate is obtained by solving

1n
� Xln Ls i Y yP X , Z s0.� 4Ž .Ý i i i�� � 0is1 Zi

We denote the contribution of the ith unit to the score function by u :i

1
Xu s i Y yP X , Z .� 4Ž .i i i i� 0Zi

When values of X are missing, the corresponding equation using completei
records only is

1n n
XU s R i Y yP X , Z s R u s0, 16.18� 4Ž . Ž .Ý ÝC i i i i i i� 0is1 is1Zi

Ž .The solution to equation 16.18 is consistent only if the data are MCAR. If
Ž . Ž .R depends on Y MAR or on X given Z NI , the solution for � is noti i i i

Ž .consistent, because E U �0 under either of these conditions.C
In this section, we focus on the following MAR case:

� �P R Y , X , Z sP R Y , Z .Ž . Ž .

Under this condition,

� � �P X Y , Z, Rs0 sP X Y , Z, Rs1 sP X Y , Z . 16.19Ž . Ž . Ž . Ž .

For an estimator to be consistent, its estimating function must have expecta-
Ž .tion zero Section 15.5 . Since U has nonzero expectation, we need to adjustC
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Ž .the estimating function. There are four approaches to adjustment: 1 likeli-
Ž . Ž .hood analysis Murphy and Van der Vaart, 2001 ; 2 imputation, which adds

Ž � . ŽE u Y , Z to U if the ith record is incomplete Pepe and Fleming, 1991;i i i C
. Ž .Reilley and Pepe, 1995 ; 3 weighting, which weights the completely ob-

Žserved data by the reciprocal of the probability of observation Zhao and
. Ž . Ž � .Lipsitz, 1992 ; and 4 modeling P Y X, Z, Rs1 from the observed data

Ž .Wang, 1999 . The first two approaches require additional assumptions for
Ž � . Ž � .either P X Z or P X Y, Z . The last two approaches require an additional

Ž � .model assumption for P R X, Y, Z . All four approaches have unbiased
estimating equations.

Before discussing each approach, we consider the implications of making
Ž � . Ž � .assumptions about P X Z or P X Y, Z . Both the likelihood and the

imputation approaches replace missing u with an estimate of the conditionali
Ž � .mean of u given the observed data, E u Y , Z . An attractive feature ofi i i i

Ž � . Ž � .specifying P X Y, Z is that we can directly estimate E u Y , Z . Supposei i i
Ž � .that P Xs1 Y, Z has a linear logistic form, say,

�P Xs1 Y , ZŽ .
ln s	 q	 Yq	 Z. 16.20Ž .0 Y Z�1yP Xs1 Y , ZŽ .

Ž .Because equation 16.19 holds under MAR, we obtain a consistent estimate
Ž .�of 	s 	 , 	 , 	 by fitting a logistic regression model with X as the0 Y Z

outcome and Y and Z as covariates, using completely observed records only.
Ž .Substitution of the maximum likelihood estimate of 	 in 16.20 produces

Ž̂ � .estimated probabilities P X Y , Z , and these are used to estimatei i i
Ž � .E u Y , Z for given � :i i i

1
ˆ ˆ� � 1E u Y , Z sP X s1 Y , Z Y yP 1, Z� 4Ž .Ž . Ž .i i i i i i i i� 0Zi

1
ˆ � 0qP X s0 Y , Z Y yP 0, Z . 16.21� 4Ž . Ž .Ž .i i i i i� 0Zi

Ž � .Suppose, alternatively, that P X Z has a prespecified form, such as

�P Xs1 ZŽ .
ln s
 q
 Z. 16.22Ž .0 Z�1yP Xs1 ZŽ .

Ž � .Then we need an extra step to compute E u Y , Z , to wit,i i i

� �E X Y , Z sP X s1 Y , ZŽ . Ž .i i i i i i

� �P Y X s1, Z P X s1 ZŽ . Ž .i i i i is . 16.23Ž .1 � � �Ý P Y X sx Z P X sx ZŽ . Ž .xs0 i i i i i
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Ž � . Ž � . Ž � .A drawback to modeling P X Y, Z is that both P Y X, Z and P X Y, Z
specify a relationship between Y and X, generating a potential conflict

Ž . Ž .between the two assumptions 16.17 and 16.20 . See Section 14.1. When
both linear logistic models are correctly specified, we have 	 s� , byY X
invariance of the odds ratio, but careful analysis requires attention to the
goodness of fit of both models.

Ž � . Ž � .Likelihood analysis with specification of P X Z instead of P X Y, Z
Ž .produces a simpler score function and information matrix discussed below .

For this reason, we present the likelihood approach with a model based on
Ž � . Ž � .P X Z . Imputation analysis with specification of P X Y, Z instead of
Ž � . Ž � .P X Z is simpler because we can use complete records to model P X Y, Z ,

Ž .whereas the estimate of 
 in 16.22 obtained from complete records is not
Ž � . Ž � .consistent, because P X Z, Rs0 �P X Z, Rs1 . For this reason we pre-

Ž � .sent the imputation approach with a model for P X Y, Z .
Ž � . Ž � .For both P X Z and P X Y, Z , we consider the case in which the

functional form is known up to a fixed number of unknown parameters. Pepe
Ž .and Fleming 1991 discuss imputation which requires no parametric assump-
Ž � .tions about P X Y, Z when Z is categorical and data are MCAR. Paik

Ž . Ž .2000 and Murphy and Van der Vaart 2001 consider a likelihood approach
under MAR conditions which requires no parametric assumptions about
Ž � . Ž � .P X Z . Here we present a parametric model for P X Z which allows Z to

be a continuous or categorical variable.

16.4.1. Likelihood Approach

The likelihood approach involves specifying the joint distribution
Ž � .P R, Y, X Z . There are two ways of partitioning the joint distribution:
Ž � . Ž � . Ž . Ž � . Ž � .P R Y, X, Z �P Y, X Z the selection model and P Y, X Z, R �P R Z

Ž . Ž � .the pattern mixture model . The parameters of interest in P Y, X Z can be
directly estimated in the selection model. The pattern mixture model esti-

Ž � . Ž � .mates P Y, X Z, R , which must be averaged using P R Z as weights to
Ž � .draw inferences about P Y, X Z . Sometimes a pattern mixture model best

Žaddresses the question of interest e.g., Little 1994; Fitzmaurice, Laird, and
.Shneyer, 2001 . Here, however, we focus on the selection model approach.

Likelihood Function and Score Equations
When data are missing, each record’s contribution to the likelihood function

Ž .differs depending on whether or not X is observed. If Y , X , Z are alli i i i
observed, the contribution to the likelihood function, conditional on Z , isi

� � �P R s1, Y , X Z sP R s1 Y , X , Z �P Y , X ZŽ . Ž . Ž .i i i i i i i i i i i

� � �sP R s1 Y , X , Z �P Y X , Z �P X Z ,Ž . Ž . Ž .i i i i i i i i i

which we write as

� �L sP R s1 Y , X , Z P X ZŽ . Ž .i1 i i i i i i

�
Y 1yYi i� �P Y s1 X , Z 1yP Y s1 X , Z .� 4 � 4Ž . Ž .i i i i i i



16.4 LOGISTIC REGRESSION WHEN COVARIATES ARE MISSING AT RANDOM 521

Ž .If only Y , Z are observed, the contribution to the likelihood function isi i

� � �P R s0, Y Z sP R s0, Y , X s1 Z qP R s0, Y , X s0 ZŽ . Ž . Ž .i i i i i i i i i i i

� � �sP R s0 Y , X s1, Z �P Y X s1, Z �P X s1 ZŽ . Ž . Ž .i i i i i i i i i

� � �qP R s0 Y , X s0, Z �P Y X s0, Z �P X s0 Z ,Ž . Ž . Ž .i i i i i i i i i

which we write as

1
� �L s P R s0 Y , X sx , Z P X sx ZŽ . Ž .Ýi2 i i i i i i

xs0

�
Y 1yYi i� �P Y s1 X sx , Z 1yP Y s1 X sx , Z .� 4 � 4Ž . Ž .i i i i i i

Combining the contributions from all records, the likelihood function is

n
R 1yRi iLs L L . 16.24Ž .Ł i1 i2

is1

Ž � .The likelihood function thus comprises three elements: P R Y , X , Z ,i i i i
Ž � . Ž � . Ž � . Ž � .P Y X , Z , and P X Z . For P Y X , Z and P X Z , we use thei i i i i i i i i i

Ž . Ž .models of equation 16.17 and equation 16.22 . For the missingness proba-
Ž � .bility, P R Y , X , Z , we do not need a model specification under MAR:i i i i

Ž � . Ž � .P R Y , X , Z equals P R Y , Z , which factors out of the summation overi i i i i i i
Ž � .x in L . Assuming P R Y , Z is parametrically independent of � and 
 ,i2 i i i
Ž � .the factors involving P R Y , Z do not affect the maximization of thei i i

likelihood function over � and 
 .
Ž .The score equation for � derived from 16.24 has the following form

Ž .Problem 16.4 :

n
� ln L

�U s s R u q 1yR E u Y , Z , R s0Ž . Ž .Ý� i i i i i i i��
is1

Y yP X , ZŽ .i i in

X Y yP X , Z� 4Ž .s RÝ i i i ii
is1 � 0Z Y yP X , Z� 4Ž .i i i i

�Y yE P X , Z Y , Z , R s0� 4Ž .i i i i i i

�E X Y yP X , Z Y , Z , R s0� 4Ž .q 1yR s0. 16.25Ž . Ž .i i i i i i ii � 0�Z Y yE P X , Z Y , Z , R s0� 4Ž .i i i i i i i
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The score equation for 
 is

� ln L
U s
 �


n �X y� E X Y , Z , R s0 y�Ž .i i i i i i i
s R q 1yR s0,Ž .Ý i iž / �Z X y� ž /Ž . Z E X Y , Z , R s0 y�� 4Ž .i i i i i i i i iis1

16.26Ž .

Ž � . Ž .where � sE X Z . Note that under MAR mechanisms, equation 16.19i i i
Ž � . Ž � .holds and E X Y, Z, Rs0 sE X Y, Z , so the condition Rs0 in the

score equations can be dropped. Thus we write

n
� ln L

�U s s R u q 1yR E u Y , ZŽ . Ž .Ý� i i i i i i��
is1

Y yP X , ZŽ .i i in

X Y yP X , Z� 4Ž .s RÝ i i i ii
is1 � 0Z Y yP X , Z� 4Ž .i i i i

�Y yE P X , Z Y , Z� 4Ž .i i i i i

�E X Y yP X , Z Y , Z� 4Ž .q 1yR s0 16.27Ž . Ž .i i i i i ii � 0�Z Y yE P X , Z Y , Z� 4Ž .i i i i i i

and

n X y�� ln L i i
U s s RÝ
 i�
 ž /Z X y�Ž .i i iis1

�E X Y , Z y�Ž .i i i i
q 1yR s0, 16.28Ž . Ž .i �ž /Z E X Y , Z y�� 4Ž .i i i i i

Ž . Ž .We then solve equations 16.27 and 16.28 simultaneously to obtain
ˆŽ .� , 
 , the mle of � and 
 . These equations differ from the full-data scoreˆ

equations for � and 
 , because we replace statistics involving missing Xi
with their conditional expectations given the observed data. Computation of
�̂ and 
 may be organized in one of three ways, which we present in order ofˆ
decreasing complexity.

ˆSingle Joint Newton-Raphson Iteration for � and 
̂
This is the standard Newton-Raphson method. The conditional expectations

Ž . Ž .required in 16.27 and 16.28 are viewed as functions of � and 
 . From
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Ž .16.23 ,

� �E X Y s1,Z sP X s1 Y s1, ZŽ . Ž .i i i i i i

� �P Y s1 X s1, Z P X s1 ZŽ . Ž .i i i i is 1 � �Ý P Y s1 X sx , Z P X sx ZŽ . Ž .xs0 i i i i i

Ž . Ž .exp � q� q� Z exp 
 q
 Z0 X Z i 0 Z i�Ž . Ž .1qexp � q� q� Z 1qexp 
 q
 Z0 X Z i 0 Z i
s Ž . Ž .exp � q� q� Z exp 
 q
 Z0 X Z i 0 Z i�Ž . Ž .1qexp � q� q� Z 1qexp 
 q
 Z0 X Z i 0 Z i

Ž .exp � q� Z 10 Z iq �Ž . Ž .1qexp � q� Z 1qexp 
 q
 Z0 Z i 0 Z i

Ž .exp � q
 q
 ZX 0 Z i

Ž .1qexp � q� q� Z0 X Z i
s 16.29Ž .Ž .exp � q
 q
 Z 1X 0 Z i qŽ . Ž .1qexp � q� q� Z 1qexp � q� Z0 X Z i 0 Z i

and

� �E X Y s0,Z sP X s1 Y s0, ZŽ . Ž .i i i i i i

� �P Y s0 X s1, Z P X s1 ZŽ . Ž .i i i i is 1 � �Ý P Y s0 X sx , Z P X sx ZŽ . Ž .xs0 i i i i i

Ž .exp 
 q
 Z1 0 Z i�Ž . Ž .1qexp � q� q� Z 1qexp 
 q
 Z0 X Z i 0 Z i
s Ž .exp 
 q
 Z1 0 Z i�Ž . Ž .1qexp � q� q� Z 1qexp 
 q
 Z0 X Z i 0 Z i

1 1
q �Ž . Ž .1qexp � q� Z 1qexp 
 q
 Z0 Z i 0 Z i

Ž .exp 
 q
 Z0 Z i

Ž .1qexp � q� q� Z0 X Z i
s . 16.30Ž .Ž .exp 
 q
 Z 10 Z i qŽ . Ž .1qexp � q� q� Z 1qexp � q� Z0 X Z i 0 Z i

Also,
1

� �E P X , Z Y s1, Z s P X sx Y s1, Z P x , Z� 4Ž . Ž .Ž .Ýi i i i i i i i
xs0

Ž . Ž .exp � q
 q
 Z exp � q� q� ZX 0 Z i 0 X Z i�Ž . Ž .1qexp � q� q� Z 1qexp � q� q� Z0 X Z i 0 X Z i

Ž .exp � q� Z1 0 Z iq �Ž . Ž .1qexp � q� Z 1qexp � q� Z0 Z i 0 Z i
s Ž .exp � q
 q
 Z 1X 0 Z i qŽ . Ž .1qexp � q� q� Z 1qexp � q� Z0 X Z i 0 Z i

16.31Ž .
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and

1
� �E P X , Z Y s0, Z s P X sx Y s0, Z P x , Z� 4Ž . Ž .Ž .Ýi i i i i i i i

xs0

Ž . Ž .exp 
 q
 Z exp � q� q� Z0 Z i 0 X Z i�Ž . Ž .1qexp � q� q� Z 1qexp � q� q� Z0 X Z i 0 X Z i

Ž .exp � q� Z1 0 Z iq �Ž . Ž .1qexp � q� Z 1qexp � q� Z0 Z i 0 Z i
s .Ž .exp 
 q
 Z 10 Z i qŽ . Ž .1qexp � q� q� Z 1qexp � q� Z0 X Z i 0 Z i

16.32Ž .

w � Ž .4 � xThe expressions for E X Y yP X , Z Y , Z are similar, but only the firsti i i i i i
Ž . Ž .term of the sum in the numerator of 16.31 or 16.32 appears. The above

Ž . Ž .expressions are substituted into 16.27 and 16.28 to arrive at the explicit set
of equations involving � and 
 ,

U � , 
Ž .�
s0,

U � , 
ž /Ž .


to solve by the Newton-Raphson method.
The equations are complicated. Moreover, the Newton-Raphson algorithm

requires differentiating U and U to obtain the observed information matrix,� 


�U � , 
 �U � , 
Ž . Ž .� �
y y� ��� �


I � , 
 s . 16.33Ž . Ž .
�U � , 
 �U � , 
Ž . Ž .
 


y y� ��� �


ˆŽ0. Ž0. �Ž .Given an initial value, say � , 
 , the approximations to the mle areˆ
updated by

ˆŽ� . Ž� .Ž�q1. Ž� . U � , 
̂ˆ ˆ Ž .y1 �� � Ž� . Ž� .ˆs qI � , 
̂Ž .Ž�q1. Ž� . Ž� . Ž� .ž / ž / ˆ
 
 � 0ˆ ˆ U � , 
̂Ž .


until the iterates converge.
ˆ y1Ž .An advantage of carrying out the differentiations is that I � , 
 is aˆ

consistent estimate of the asymptotic variance-covariance matrix of the mle
ˆŽ .� , 
 which is produced as a by-product of the calculation.ˆ
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ˆIterati©e Separate Estimation of � and 
—the EM Algorithmˆ
The following modification of the joint estimation procedure simplifies the

ˆŽ� . Ž� . �Ž .calculations to a certain extent. Given approximations � , 
 for �sˆ
Ž � .0, 1, 2, . . . , the conditional expectations E X Y , Z are calculated fromi i i

Ž . Ž� .16.23 as before, but are then treated as numerical constants, say c si
Ž� . ˆŽ� . Ž� .Ž . Ž � . � Ž . � 4c � , 
 sE X Y , Z , in the expressions for E P X , Z Y , Z andˆi i i i i i i i
w � Ž .4 � x Ž .E X Y yP X , Z Y , Z in 16.27 , rather than as functions of � and 
 .i i i i i i

For example,

� Ž� . Ž� .E P X , Z Y , Z sP 1, Z c qP 0, Z 1yc� 4Ž . Ž . Ž . Ž .i i i i i i i i

exp � q� q� ZŽ .0 X Z i Ž� .s ci1qexp � q� q� ZŽ .0 X Z i

exp � q� ZŽ .0 Z i Ž� .q 1yc .Ž .i1qexp � q� ZŽ .0 Z i

Ž .The left-hand side of equation 16.27 is then a relatively simple function of
� alone:

Y yP X , ZŽ .i i in
Ž� . X Y yP X , Z� 4Ž .U � s RŽ . Ý i i i i� i

is1 � 0Z Y yP X , Z� 4Ž .i i i i

Y y P 1, Z cŽ� .qP 0, Z 1ycŽ� .Ž . Ž .� 4Ž .i i i i i

Ž� .Y yP 1, Z c� 4Ž .q 1yRŽ . i i ii

Ž� . Ž� .� 0Z Y y P 1, Z c qP 0, Z 1ycŽ . Ž .� 4Ž .i i i i i i

16.34Ž .

Ž� .Ž .and the equation U � s0 is solved by a Newton-Raphson algorithm for�
ˆŽ�q1. Ž� . ˆŽ� .Ž .� . The derivative of U � with respect to � , evaluated at � , is still�

required, but is also relatively simple�see Problem 16.5. In similar fashion,
Ž � . Ž� . Ž .E X Y , Z sc is treated as if it were observed data in 16.28 . Thei i i i

Ž .left-hand side of 16.28 is viewed as the function

n Ž� .X y� c y�i i i iŽ� .U 
 s R q 1yR , 16.35Ž . Ž . Ž .Ý
 i i Ž� .ž /Z X y�Ž . ž /Z c y�� 4i i i i i iis1

Ž� .Ž .which depends only on 
 through � . The equation U 
 s0 is solvedi 

Ž�q1. Ž� .Ž .separately for 
 . The derivative of U 
 with respect to 
 , evaluatedˆ 


Ž� . ˆŽ�q1. Ž�q1.at 
 , is given in Problem 16.5. Once � and 
 are in hand, theˆ ˆ
Ž � . Ž�q1.conditional expectations E X Y , Z are updated to c and the entirei i i i

process is repeated until it converges.
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Ž . ŽThis procedure is an EM expectation-maximization algorithm Demp-
.ster, Laird, and Rubin, 1977 . The E-step evaluates the conditional expecta-

tions of the missing data given the observed data at current estimates of the
parameters; the M-step maximizes the likelihood function as if the condi-

Ž .tional expectations were observed data. Dempster, Laird, and Rubin 1977
prove that, on iterating these two steps, the likelihood of the observed data
increases with each iteration and the algorithm becomes stationary at the
maximum likelihood estimate.

A disadvantage to this method is that it does not produce standard errors
ˆ ˆ y1Ž . Ž .for � , 
 directly; these must be calculated separately, either from I � , 
ˆ ˆ

Ž . Žat 16.33 as in the joint method thus negating the simplification provided by
.the EM algorithm , or by some other method such as the jackknife.

The E-M Algorithm Using the Expanded-Dataset Method
Ž� .Ž .The estimating function U � in the preceding method, while simpler�

Ž .than U � , 
 in the joint method, is not a regular logistic regression score�
Ž� .Ž .function, so special programming is still required to solve U � s0. There�

is a clever way, however, to use any software package which provides for case
Ž� .Ž . Ž� .Ž .weighting to solve the equations U � s0 and U 
 s0 simply. The� 


procedure constructs an expanded dataset by replacing each record with
missing X by two records, one with X s1 and the other with X s0. Thei i i

Ž � . Žduplicated records are then weighted by P X s1 Y , Z , R s0 and P X si i i i i
� .0 Y , Z , R s0 , respectively. The necessary steps for computation are asi i i

follows:

( )i Prepare an expanded dataset by duplicating each record with missing
X , one with X s1 and the other with X s0. The expanded dataseti i i

� � n n Ž .has n records, where n sÝ R q2Ý 1yR . The duplicatedis1 i is1 i
records keep Y and Z fixed as observed.i i

( ) �ii Given initial values of � and 
 , create case weights w for is1, . . . , n .i
For observed records, w s1. For the duplicated record with X s1,i i

Ž � .w sP X s1 Y , Z , R s0 , and for the duplicated record with X si i i i i i
Ž � .0, w sP X s0 Y , Z , R s0 . Under MAR, these are obtained fromi i i i i

Ž .16.23 .
( )iii Fit two separate, weighted logistic regression models, one for Y given

X and Z, the other for X given Z, using the expanded dataset of size
n� with case weights w , to obtain updated estimates of �i
and 
 .

( )iv Using the new estimates of � and 
 , update the case weights w ini
Ž . Ž .step ii and the estimates of � and 
 in step iii . Repeat until

convergence.

Ž .Lipsitz and Ibrahim 1996 use this technique in a survival analysis context.
As mentioned above, a separate calculation is required to obtain standard
errors. We describe the use of the jackknife for this purpose below.
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We pause here to ask: What happens if we choose to specify a model for
Ž � . Ž .P X Y, Z as in 16.20 with parameter 	 instead of specifying a model for
Ž � . Ž .P X Z as in 16.22 with parameter 
 ? To write down the likelihood

Ž � .function in terms of L and L , we must deduce the form of P X Z giveni1 i2
Ž � . Ž .the specified P X Y, Z from Bayes theorem Problem 16.6 :

�P Xs1 ZŽ .
� �P Y Xs0, Z P Xs1 Y , ZŽ . Ž .

s .
� � � �P Y Xs0, Z P Xs1 Y , Z qP Y Xs1, Z P Xs0 Y , ZŽ . Ž . Ž . Ž .

16.36Ž .

Ž . Ž � .Equation 16.36 shows that P X Z is a function of both � and 	 , unlike
Ž � . Ž .P X Z in 16.22 , which depends on 
 but not �. It follows that the score

Ž .function for � has a more complicated form than 16.27 and the observed
Ž . Ž .information matrix is more complicated than I � , 
 in 16.33 .

16.4.2. Imputation

Ž . ŽObserve that the score function U in 16.25 has zero expectation Problem�

.16.7 , a critical property of an estimating function. Observe further that
certain slight modifications of U do not change its unbiasedness. First, if we�

replace u with any other unbiased estimating function, for example, thei
Ž .quasiscore function of Wedderburn 1974 , the resulting estimating function

remains unbiased. Even if u is not a score function, it is unbiased as long asi
Ž .it depends on Y only through Y yP X , Z . Second, if the conditional meani i i i

Ž � .E u Y , Z is estimated consistently using a method other than maximumi i i
Ž .likelihood estimation of 
 by solving 16.28 followed by calculation ofˆ

Ž .16.23 , the unbiasedness of the estimating function is unaffected and the
Ž .estimate of � as the solution of equation 16.27 is consistent. The imputa-

tion method described below is obtained via a modification of the second
kind. We call the methods incorporating such modifications imputation
methods. Estimators of � obtained by imputation methods have different
asymptotic properties than maximum likelihood estimates.

Ž � .As mentioned at the beginning of this section, P X Y, Z can be consis-
Ž � .tently estimated using only complete records, but P X Z cannot. Suppose

Ž . Ž � .model 16.22 for P X Z is correct. If we fit the model using only the
complete records and then compute the conditional mean using equation
Ž .16.23 , we obtain an inconsistent estimate of 
 , thus an inconsistent estimate

Ž � .of E X Y, Z , and, consequently, an inconsistent estimate of �. On the
Ž . Ž � .other hand, suppose 16.20 for P X Y, Z is correct. When we fit that model

using complete records and compute the conditional expectation of X given
Ž .Y, Z directly from the model, we obtain consistent estimates for 	 and
Ž � .E X Y, Z , and thus � , because X is conditionally independent of R given

Ž .Y, Z . These considerations motivate the following imputation method for
estimating �.
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First, using complete records, solve the following estimating equation for
˜	 , calling the solution 	 :

1n exp 	 q	 Y q	 ZŽ .0 Y i Z iYU 	 s R i X y s0. 16.37Ž . Ž .Ý	 i i½ 51qexp 	 q	 Y q	 ZŽ .0 Y i Z i� 0is1 Zi

˜ Ž � .Using 	 , estimates of the conditional expectations E X Y , Z ,i i i
� Ž . � 4 � Ž . � .4E P X , Z Y , Z , and E X P X , Z Y , Z are easily computed. For ex-i i i i i i i i i

ample,

˜ �E P X , Z Y , Z sP 1, Z c qP 0, Z 1yc ,� 4Ž . Ž . Ž . Ž .˜ ˜i i i i i i i i

where

˜ ˜ ˜exp 	 q	 Y q	 Zž /0 Y i Z i˜ �c sE X Y , Z s . 16.38Ž .Ž .ĩ i i i ˜ ˜ ˜1qexp 	 q	 Y q	 Zž /0 Y i Z i

Ž . Ž .The estimated expectations are inserted in 16.27 , analogous to 16.34 :

Y yP X , ZŽ .i i in
˜ ˜ X Y yP X , Z� 4Ž .U � sU � , 	 s RŽ . Ž . Ý i i i i� � i

is1 � 0Z Y yP X , Z� 4Ž .i i i i

Y y P 1, Z c qP 0, Z 1yc� 4Ž . Ž . Ž .˜ ˜i i i i i

Y yP 1, Z c� 4Ž . ˜q 1yR . 16.39Ž . Ž .i i ii � 0Z Y y P 1, Z c qP 0, Z 1yc� 4Ž . Ž . Ž .˜ ˜i i i i i i

While the separate-solution method in the likelihood approach repeatedly
Ž . Ž .solves 16.27 and 16.28 , updating the conditional expectations after each

Ž .solution, the imputation method has just two steps: First, solve 16.37 to
˜ ˜ ˜Ž .estimate 	 and obtain c ; second, solve U � s0 once for the solution �.ĩ �

Note that whereas the likelihood approach estimates 
 from all available
data, the imputation estimate of 	 derives from complete records only. By

˜ ˜Ž .viewing the imputation estimator � , 	 as the solution of the joint estimat-
ing equation,

nU � , 	Ž .�
U � , 	 s s U s0, 16.40Ž . Ž .ÝJ J iž /U 	Ž .	 is1

we can derive its asymptotic properties: imputation estimates are consistent
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and asymptotically normally distributed; specifically,

�̃y� y1 y1�N 0,  Var U  ,Ž .Ž .Jž /	̃y	

where

�U � , 	Ž .�
y 0���

s � , 	 sE .Ž .
�U � , 	Ž . �U 	Ž .� 	� 0y y� ��	 �	

The asymptotic variance of the imputation estimator has the sandwich form
Ž .typical for estimators derived from estimating equations Section 15.5 : the

Ž . y1‘‘meat’’ Var U sandwiched between the ‘‘bread’’  . Problem 16.8 pro-J
vides the derivatives required for . To estimate the variance-covariance

˜ ˜Ž . Ž .matrix of � , 	 , Var U may be estimated by the empirical varianceJ
˜ ˜ �Ž .evaluated at � , 	 , Ý U U , and substituted in the sandwich formula withi J i J i

y1 ˜ ˜Ž . evaluated at � , 	 . This approach requires evaluation of . Alterna-
˜ ˜Ž .tively, the variance-covariance matrix of � , 	 may be estimated directly by

Ž .the jackknife see below .
Imputation estimates can be computed using standard software by the

expanded-dataset method. The first step, preparing the expanded dataset, is
identical to the likelihood case.

( )i Prepare an expanded dataset by duplicating each record with missing
X , one with X s1 and the other with X s0. The expanded dataseti i i

� � n n Ž .has n records, where n sÝ R q2Ý 1yR The duplicatedis1 i is1 i
records keep Y and Z fixed as observed.i i

( ) �ii Create case weights w for is1, . . . , n . For observed records, w s1.i i
Ž � .For the duplicated record with X s1, w sP X s1 Y , Z , R s0 ,i i i i i i

Ž �and for the duplicated record with X s0, w sP X s0 Y , Z , R si i i i i i
.0 . Under MAR, these are obtained from the fitted logistic regression

˜Ž . Ž .model 16.20 . Calculate 	 by solution of 16.37 using complete
Ž .records only, and c from 16.38 . Then set w sc for duplicated˜ ˜i i i

records with X s1, or set w s1yc for duplicated records with˜i i i
X s0.i

( ) Ž .iii Fit model 16.17 using weighted logistic regression with the ex-
panded dataset of size n� and case weights w to obtain the finali

˜estimate �.

Although the above algorithm has an ‘‘expectation’’ step and a ‘‘maximiza-
tion’’ step, it is not an EM algorithm, because we did not maximize a
likelihood function.
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Standard-Error Calculation with the Jackknife
Standard errors are easily calculated using the jackknife technique for both
the maximum likelihood estimator and the imputation estimator. Let T

ˆ � ˜ ˜ � nŽ . Ž . Ždenote � , 
 or � , 	 . The jackknife variance estimate is Ý T yˆ is1 yi
.Ž .�T T yT , where T denotes the estimate obtained by deleting the ithyi yi

record. When R s0, duplicated records are deleted pairwise to calculatei
T .yi

Ž .Lipsitz, Dear, and Zhao 1994 justify the jackknife variance estimate for
Cox models for correlated survival data. A similar justification applies here.

16.4.3. Weighting

In weighting methods, each observed record is weighted by the inverse of its
probability of observation. The theoretical estimating equation is

Y yP X , ZŽ .i i in nR Ri i X Y yP X , Z� 4Ž .W s u s s0, 16.41Ž .Ý Ý i i i i� i� �i iis1 is1 � 0Z Y yP X , Z� 4Ž .i i i i

where

�� sP R s1 X , Y , Z .Ž .i i i i i

Ž . ŽDue to the weighting procedure, E W s0. Because � is unknown unless�

.data are missing by design , we need to replace � by an estimate, � . Recallˆ
Ž � . Ž � . Ž .that, under MAR, P Rs1 X, Y, Z sP Rs1 Y, Z ; since R, Y, Z are

Ž � .completely observed, we can estimate P Rs1 Y, Z from all records. With
Ž � .the following parametric model for P Rs1 Y, Z ,

�
ln s� q� Yq� Z, 16.42Ž .0 Y Z1y�

the estimating equation for � is

1n exp � q� Y q� ZŽ .0 Y i Z i YU s R y i s0. 16.43Ž .Ý� i½ 51qexp � q� Y q� ZŽ .0 Y i Z i � 0is1 Zi

Ž .The analysis is conducted in two steps: First, fit model 16.42 using the
observation indicator R as an outcome. Second, using complete records, fit a
weighted logistic regression model for Y with the inverse of the predictedi
values, �y1, as the case-weights. Since the estimator is the solution ofˆ

W�
s0,ž /U�
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the asymptotic variance is obtained as a sandwich-type estimator in the same
Žmanner as the variance of the imputation estimator Zhao, Lipsitz, and Lew,

.1996 . Alternatively, the variance can be estimated by the jackknife technique
Ž .or by the method of Robins, Rotnitzky, and Zhao 1994 .

Ž . Ž .Robins, Rotnitzky, and Zhao 1994 modify 16.43 by subtracting a correc-
tion term so that the estimating function is orthogonal to the score function
of the nuisance parameters, � . Although this estimator is asymptotically
efficient, calculating the correction term is not trivial. For the particular case
of one missing covariate, the modified estimating equation has the form

n R Ri i �u y y1 E u Y , Z . 16.44Ž .Ž .Ý i i i iž /� �i iis1

This estimating equation is also examined by Lipsitz, Ibrahim, and Zhao
Ž . Ž � .1999 for nonparametric estimation of E u Y , Z . Interestingly, the esti-i i i

Ž .mating equation 16.44 guarantees consistency when the model specification
of either the nonresponse mechanism or the conditional expectation is
correct.

16.4.4. Models Conditioning on the Observation Indicator

As discussed above, complete record analysis gives inconsistent estimates of
Ž � . Ž .P Y X, Z under MAR conditions. Wang 1999 suggested modeling
Ž � .P Y X, Z, Rs1 , which can be estimated consistently using complete records.

Ž � .If we assume a model for the probability of observation P R X, Z, Y , then
Ž � . Ž � .P Y X, Z, Rs1 can be expressed in terms of the models for P Y X, Z and
Ž � .P R X, Z, Y :

� � �P Ys1 X , Z, Rs1 P Ys1 X , Z P Rs1 X , Z, Ys1Ž . Ž . Ž .
ln s ln q ln .

� � �P Ys0 X , Z, Rs1 P Ys0 X , Z P Rs1 X , Z, Ys0Ž . Ž . Ž .

Ž � . Ž � .Under MAR conditions, P R X, Y, Z sP R Y, Z , so

� �P Ys1 X , Z, Rs1 P Rs1 Ys1, ZŽ . Ž .
ln s� q� Xq� Zq ln .0 X Z� �P Ys0 X , Z, Rs1 P Rs1 Ys0, ZŽ . Ž .

Ž .Assuming 16.42 ,

� 1qexp � q� ZŽ .P Rs1 Ys1, ZŽ . 0 Zln s� q� q� Zq ln .0 Y Z� 1qexp � q� q� ZP Rs1 Ys0, Z Ž .Ž . 0 Y Z
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An estimating equation for � is

1n
X�Q s R Y yP Y s1 X , Z , R s1 i s0.� 4Ž .Ý� i i i i i i � 0is1 Zi

Ž .For � , we use equation 16.43 .
To compute the estimate of � and � using standard software, we first

Ž . � Ž � .estimate � , say � , from 16.43 , then compute ln P Rs1 Ys1, Z rˆ
Ž � .4 Ž .P Rs1 Ys0, Z evaluated at � , say g Z, � , and declare it as an offset.ˆ ˆ

Ž .The estimate from the logistic regression model with Y as outcome, X, Z as
Ž .covariates and g Z, � as offset is the solution of the joint estimatingˆ

equation

Q�
s0.ž /U�

As in the case of imputation or weighting estimators, the asymptotic variance
has the sandwich form. The jackknife also consistently estimates the variance.

Ž .Liang and Qin 2000 propose a pseudolikelihood approach which elimi-
nates the offset term and therefore the need to specify a missingness model

Ž .such as 16.42 .

16.4.5. Comparisons

Of the four methods for handling missing data, the likelihood approach is
most efficient but requires the most restrictive assumptions. Weighting and
models that condition on the observation indicator require specification of
the nonresponse mechanism; the consistency of the estimate therefore de-
pends on correct specification of the mechanism. The imputation approach
requires specification of an imputation model for the missing data; the
consistency of the estimate therefore depends on the correct specification of
the model. In general, imputation methods, unlike likelihood methods, do
not require specification of a full joint distribution. They require specification

Ž .only of: i the imputation model, i.e., the conditional expectation of the
Ž .missing data given the observed data; and ii the main analysis model for the

outcome of interest. These two specifications are usually less restrictive than
specifying a full joint distribution for X, Y, and R given Z. Even if we
assume a parametric model for the joint distribution, we may choose an
imputation method for computational simplicity. The resulting estimators are
not as efficient as maximum likelihood estimates, but can be useful in
practice when computation is substantially easier and the loss of the effi-
ciency is small. Table 16.17 provides an example.

Between imputation and weighting, imputation tends to yield more effi-
cient estimates. Intuitively, if we have a strong predictor of missing data,
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Table 16.17. Estimates and standard errors of � using three different methods
under MAR

Method Estimate � � �0 X Z

Likelihood parameter 0.3666 0.1057 0.3529
se 0.2704 0.3934 0.3072

Imputation parameter 0.3666 0.1056 0.3529
se 0.2704 0.3934 0.3072

Weighting parameter 0.3881 0.1014 0.3095
se 0.2929 0.3947 0.3835

Ž .imputation capitalizes on this information Paik, 1997 . The weighting ap-
proach, on the other hand, cannot benefit from such information. Wang
Ž .1999 shows that in some situations estimates from a conditional model are
more efficient than those from a weighting approach. Under MCAR, the

Ž .conditional model approach of Wang 1999 reduces to a valid complete-
record analysis. Weighting estimates are sometimes less efficient than the

Ž .complete-record estimate under MCAR. Reilly and Pepe 1998 and Kuk,
Ž .Mak, and Li 2001 discuss the advantages and disadvantages of different

estimation methods.

16.4.6. Example

We use the hypothetical data presented in Tables 16.14 and 16.15 to
illustrate the results of the likelihood, imputation, and weighting methods.
We reinterpret S as a binary outcome Y, H as a covariate X with some
values missing, and C as a completely observed binary covariate Z. Table
16.17 shows that the maximum likelihood estimates and the imputation
estimates are almost identical. The maximum likelihood estimate of the log

ˆŽ . Ž .odds ratio � s0.1057 and its standard error 0.3934 are very close to theX
Žlogarithm of the imputation Mantel-Haenszel odds ratio 0.1016s ln 1.107s

Ž2. '. Ž .ln � and its standard error 0.3918s 0.1520 in Section 16.3.ˆ
ˆThe standard errors of � are similar for all three methods, but theX

ˆstandard error of � from the weighting method is about 25% larger thanZ
those of the maximum likelihood and imputation estimates. This inflation
makes intuitive sense because records not used in the weighting method carry
information about the effect of Z on Y. Table 16.18 contains the parameter
estimates and standard errors for the imputation and weighting models. The
table shows that the standard errors of coefficients in the imputation models

Ž .for the likelihood method 
 and 
 are smaller than the standard errors0 Z
Ž .for the corresponding coefficients in the imputation method 	 and 	 , but0 Z

ˆthis fact is not manifest in the standard errors of �. As for the estimate of �
in the weighting model, the Wald tests for H : � s0 and H : � s0 are0 Y 0 Z
not significant, suggesting that the nonresponse mechanism is MCAR rather
than MAR. However, studies are usually not designed to detect nonzero
components of � , so failure to reject H may be due to lack of power.0
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Table 16.18. Estimates and standard errors of parameters of the imputation and
( ) ( ) ( )weighting models 16.22 , 16.20 , and 16.42 under MAR

Method Estimate � �0 Z

Likelihood parameter y0.2128 y0.4245
se 0.2546 0.3804

Method Estimate � � �0 Y Z

Imputation parameter y0.2765 0.1056 y0.4331
se 0.3392 0.3934 0.3851

Method Estimate � � �0 Y Z

Weighting parameter 0.8032 y0.4323 y0.1077
se 0.2910 0.3168 0.2977

Readers may find SAS� code to compute the estimates in Tables 16.17
and 16.18 at http:rrwww.wiley.comrstatistics.

16.5.� LOGISTIC REGRESSION WHEN OUTCOMES
ARE MISSING AT RANDOM

Now we turn to the case in which the outcome variable Y is MAR and the
covariates X and Z are completely observed. Denoting the observation

Ž .indicator of Y by R, we assume the missingness depends on X, Z but not
Ž � . Ž � . Ž � .on Y, such that, P R X, Y, Z sP R X, Z , in which case P Y X, Z, Rs1

Ž � . Ž � .sP Y X, Z, Rs0 sP Y X, Z . This equality implies that complete record
analysis is valid. We encountered this situation in the analysis of the 2�2

Žtable of Section 16.2.1, where the missingness of hypertension status Y in
. Ž .the present context was assumed to depend only on smoking now X . The

probability of hypertension given smoking status was consistently estimated
using only completely observed records.

Under the present assumptions, both the likelihood and the imputation
estimating functions reduce to complete-record analysis. We write the score
equation for � explicitly:

n
� ln L

�s R u q 1yR E u X , Z , R s0Ž . Ž .Ý i i i i i i i��
is1

1n
Xs R Y yP X , Z i� 4Ž .Ý i i i i � 0is1 Zi

1
X�q 1yR E Y X , Z yP X , Z i .� 4Ž . Ž .Ž .i i i i i � 0Zi
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Ž � . Ž .Since E Y X , Z sP X , Z , the contribution from the incomplete recordsi i i i i
is zero, and the score equation reduces to

Y yP X , ZŽ .i i in
� ln L X Y yP X , Z� 4Ž .s R s0.Ý i i i ii��

is1 � 0Z Y yP X , Z� 4Ž .i i i i

Weighting analysis requires a weighted logistic regression, where the case
weights are the inverse probabilities of observation, which depend on the
covariates. The weighted logistic regression estimates are less efficient
than the unweighted logistic regression estimates from the complete-record
analysis.

16.6.� NONIGNORABLE MISSINGNESS

Ž .When missingness in a covariate is nonignorable NI , the observation indica-
tor depends on the unobserved value of X. The methods described under
MAR are no longer valid, because the probability of observing X,
Ž � .P R X, Y, Z , cannot be factored out as an isolated term in the likelihood

Ž � .function. We must therefore model P R X, Y, Z explicitly.
Work attempting to estimate the parameters of interest together with the

Žprobability of response first appeared in the econometrics literature e.g.,
. Ž .Nelson, 1977 . Baker and Laird 1988 discussed NI missing categorical data

Ž .within a likelihood framework; Wu and Bailey 1988 and Wu and Carroll
Ž .1988 considered the continuous case. More recently, Lipsitz, Ibrahim,

Ž .Chen, and Peterson 1999 studied a likelihood-based method for handling
NI missing covariates in logistic regression models.

16.6.1. Inference under Nonignorable Missingness

To understand the characteristics of valid inference under nonignorable
missingness, it is helpful to examine the likelihood and score functions. The

Ž .likelihood function is of the form shown in 16.24 , but the response mecha-
Ž � .nism P R Y, X, Z is nonignorable. The score function is of the form given

Ž .in 16.25 , but the conditional expectations are different. Under MAR,
Ž � . Ž � . Ž � .E u Y , Z , R s0 sE u Y , Z , R s1 sE u Y , Z . Under NI, this rela-i i i i i i i i i i i

tionship is no longer true. Using Bayes’ theorem,

� �E X Y , Z , R s0 sP X s1 Y , Z , R s0Ž . Ž .i i i i i i i i

�P X s1 Y , Z 1y� 1� 4Ž .Ž .i i i is , 16.45Ž .
� �P X s1 Y , Z 1y� 1 qP X s0 Y , Z 1y� 0� 4 � 4Ž . Ž .Ž . Ž .i i i i i i i i

Ž . Ž � . Ž �where � x sP R s1 X sx, Y , Z for xs0 or 1, so that E X Y , Z , Ri i i i i i i i i
. Ž � .s0 is a function of � as well as E X Y , Z . We consider the case ini i i i
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Ž � . Ž . Ž � . Ž .which P X Z is given by 16.45 , P X Y , Z is given by 16.23 , and � hasi i i i i
a known functional form up to some unknown parameters. Suppose � has ai
linear logistic form:

� iln s� q� X q� Y q� Z . 16.46Ž .0 X i Y i Z i1y� i

A score equation for � is

° ¶1 1
n X Xi i~ •R R y� q 1yR E R y� Y , Z , R s0 s0.Ž . Ž . Ž .Ý i i i i i i i i iY Yi iis1 � 0 � 0¢ ßZ Zi i

16.47Ž .

Ž .The maximum likelihood estimates of � , 
 , � can be obtained solving
Ž . Ž . Ž .equations 16.25 , 16.26 , and 16.47 simultaneously. Parameter estimation

Ž .under NI missingness thus requires i solving a third estimating equation
Ž . Ž . Ž .16.47 and ii including the probabilities of response from 16.46 in the

Ž . Ž � .computation of conditional expectation� 16.23 for P X Y , Z first, theni i i
Ž � . Ž . Ž � .P X Y , Z and � in 16.45 to produce E X Y , Z , R s0 .i i i i i i i i

The computation of the estimate and its standard error can be carried out
using standard software as follows:

( )i Prepare an expanded dataset by duplicating each record with missing
X , one with X s1 and the other with X s0. The expanded dataseti i i

� � n n Ž .has n records, where n sÝ R q2Ý 1yR . The duplicatedis1 i is1
records keep Y and Z fixed as observed.i i

( ) Ž .ii Given initial values of � , 
 , � , create case weights w for isi
1, . . . , n�. For observed records, w s1. For the duplicated record withi

Ž � .X s1, w sP X s1 Y , Z , R s0 , and for the duplicated recordi i i i i i
Ž � .with X s0, w sP X s0 Y , Z , R s0 . Under NI, these are ob-i i i i i i

Ž . Ž � . Ž .tained from 16.45 with P X s1 Y , Z as given in 16.23 .i i i

( )iii Fit three separate, weighted logistic regression models, one for Y
given X and Z, the next for X given Z, and the last for R given X,
Y, and Z, using the expanded dataset of size n� with case weights wi

Ž .to obtain updated estimates of � , 
 , � .
( ) Ž .iv Using the new estimates of � , 
 , � , update the case-weights w ini

Ž . Ž . Ž .step ii and the estimates of � , 
 , � in step iii . Repeat until
convergence.

Ž .The standard error can be computed using the jackknife Section 16.4.2 .
Using the data given in Tables 16.14 and 16.15, we fit the above described
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Table 16.19. Maximum likelihood estimates and standard errors of � under NI

Estimate � � �0 X Z

parameter 0.3666 0.1056 0.3529
se 0.2704 0.3934 0.3072

Table 16.20. Estimates and standard errors of parameters of the imputation model
( ) ( )16.22 and probability-of-response model 16.46 under NI

Estimate � �0 Z

parameter y0.2131 y0.4241
se 0.2539 0.3788

Estimate � � � �0 X Y Z

parameter 0.8032 y0.0001 y0.4323 y0.1077
se 0.2911 0.0006 0.3167 0.2978

model. The estimates and standard errors in Tables 16.19 and 16.20 are very
Ž .close to those obtained under MAR Tables 16.17 and 16.18 . We also see

that the estimate of � is nearly zero, suggesting that the nonresponseX
mechanism is MAR rather than NI. The SAS code to compute the maximum
likelihood estimates under NI is provided in http:rrwww.wiley.comr
statistics.

16.6.2. Sensitivity Analysis

The maximum likelihood estimation of � under conditions of nonignorable
missingness sometimes suffers from technical difficulties such as nonidentifi-

Ž .ability different sets of parameter values give identical likelihood or non-
convergence. Even if we surmount these difficulties, maximum likelihood
estimation is valid only when all models are correctly specified, a circum-
stance difficult to verify. In addition to the routine model-checking effort one
should conduct even without missing data, it is advisable to conduct sensitiv-

Ž .ity analyses Little and Rubin, 1999 . A sensitivity analysis treats the relation
between the observation indicator and the missing variable as known and,
given that relation, estimates the parameters of interest. When there is a
nonidentifiability problem, stipulating the dependence between the observa-
tion indicator and the missing variable makes the rest of the parameters

Židentifiable Rotnitzky, Robins, and Scharfstein, 1998; Scharfstein, Rotnitzky,
.and Robins, 1998 . Even when all parameters are identifiable, sensitivity

analysis provides information about how much estimates of the parameters of
interest change as the severity of nonignorability increases.
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For example, consider the case of a 2�2 table. A saturated model for the
probability of observation is

�
ln s� q� Xq� Yq� XY .0 X Y X Y1y�

Under this model, the parameters become unidentifiable. We can set � atX Y
certain values and observe the resultant changes in the odds ratio between X
and Y. Note that the dependence of � on missing data X characterizes the
severity of nonignorable missingness. MAR corresponds to � s� s0, soX X Y
the magnitude of � and � measures the deviation from MAR, that is,X X Y
the severity of nonignorability. We can assess the sensitivity of our inferences
by assigning � a range of plausible values and calculating maximumX Y

Ž .likelihood estimates of the log odds ratio and � , � , � . Most software0 X Y
packages handle this computation if � XY is declared as an ‘‘offset.’’X Y

We can conduct a similar sensitivity analysis in a less formal way through a
simple extreme-case scenario. For example, if the missing variable is binary,
we know that it is either 1 or 0. Thus, one extreme case is when all missing
X ’s are 1 or all are 0. However, the maximum impact on the sample log odds

Žratio, ln o, does not occur when all missing X ’s have the maximum or
. Ž . Žminimum value i.e., � ™�� . Rather, the log odds ratio is maximized orX
. Ž .minimized when all missing X ’s with Ys1 are 1 or 0 , and all missing X ’s

Ž . Ž .with Ys0 are 0 or 1 i.e., � ™�� .X Y
Consider the smoking and hypertension data in Table 16.2. The odds ratio

estimate is maximized when all the data in the incomplete table are in the
diagonal cells, as shown in Table 16.21. In this scenario, � sy�. TheX Y

�Ž . Ž .4 �Ž . Ž .4odds ratio estimate is os 30q80 � 40q20 r 20q0 � 10q0 s33.
Conversely, the odds ratio estimate is minimized when all the data are in the
off-diagonal cells, as in Table 16.22. In this scenario, � sy�. The oddsX Y

�Ž . Ž .4 �Ž . Ž .4ratio estimate is os 30q0 � 40q0 r 20q80 � 10q20 s0.25.
At one extreme, the odds ratio is 33; at the other, it is 0.25. Less extreme

odds ratio estimates can be obtained changing one cell count at a time. The
second most extreme cases would be the two incomplete tables shown in
Table 16.23.

Table 16.21. One extreme-case scenario for the missing data of Table 16.2

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 30 20 50 1 80 0 80
S S

0 10 40 50 0 0 20 20

Total 40 60 100 Total 80 20 100
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Table 16.22. Another extreme-case scenario for the missing data of Table 16.2

Ž . Ž .a Complete Table b Incomplete Table

H H

1 0 Total 1 0 Total

1 30 20 50 1 0 80 80
S S

0 10 40 50 0 20 0 20

Total 40 60 100 Total 80 20 100

Table 16.23. Two near-extreme-case scenarios for the missing data of Table 16.2

Ž . Ž .a Incomplete Table 1 b Incomplete Table 2

H H

1 0 Total 1 0 Total

1 79 1 80 1 80 0 80
S S

0 0 20 20 0 1 19 20

Total 79 21 100 Total 81 19 100

Figure 16.1. Sample log odds ratio versus � .X Y
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We can continue changing the cell counts in the incomplete table, main-
taining fixed row margins. Each such table corresponds to a certain value of
� . A plot of the resultant log odds ratios versus � is informative. FigureX Y X Y

Ž .16.1 shows all possible pairs � , ln o generated by changing cell counts inX Y
the incomplete table. The two horizontal lines represent the logs of the

Žextreme values computed for the data in Tables 16.21 and 16.22 maximums
.ln 33s3.4965, minimums ln 0.25sy1.3863 . Recall that � s� s0 cor-X X Y

responds to MAR.

16.7.� NONMONOTONE MISSINGNESS

So far, we have considered monotonically missing data only. Now we turn to
the situation in which covariate Z is completely observed, but X and Y are

Žpartially observed. There are four possible patterns of missingness Table
. Ž . Ž . Ž . Ž .16.24 : i X, Y, Z are all observed; ii X is missing and Y, Z are

Ž . Ž . Ž .observed; iii Y is missing and X, Z are observed; and iv X and Y are
missing and Z is observed. Let R and R be the observation indicators forX Y
X and Y, respectively.

Ž .Consider the non response mechanism

� �P R X , Y , Z sP R Y , Z . 16.48Ž .Ž . Ž .X X

Although this mechanism looks the same as the mechanism assumed under
MAR in the case of a missing covariate, the nonresponse mechanism here is
nonignorable: the missingness of X may depend on an unobserved value
of Y.

Ž .Under 16.48 , complete-record analysis is not valid, because generally

� �P Y X , Z, R s1, R s1 �P Y X , Z .Ž .Ž .X Y

If

� �P R X , Y , Z sP R Z 16.49aŽ .Ž . Ž .Y Y

and

� �P R X , Y , Z, R sP R Z, R , 16.49bŽ .Ž . Ž .X Y X Y

( )Table 16.24. Nonmonotonically missing data hypothetical

Pattern Y X Z R RX Y

Ž .i o o o 1 1
Ž .ii o ? o 1 0
Ž .iii ? o o 0 1
Ž .iv ? ? o 0 0
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the nonresponse mechanism is MCAR, and it follows that

� �P Y X , Z, R s1, R s1 sP Y X , ZŽ .Ž .X Y

Ž .Problem 16.9 . In this case, complete-record analysis is valid.
A more elaborate set of assumptions is required for non-monotonically

missing data to be MAR, which we specify below to illustrate the likelihood
and imputation methods of analysis. The weighting method can be applied
as in the monotone case by weighting the completely observed records
w Ž .x Ž � . Žpattern i by 1rP R s1, R s1 X Y, Z Rotnitzky and Robins, 1997;X Y

.Robins, 1997 .

Likelihood Approach
Ž .For the moment, we do not assume 16.48 . The likelihood function requires

Ž � .specification of the joint distribution of P R , R , X, Y Z . We partition theX Y
joint distribution as for selection models:

� � � �P R , R , X , Y Z sP R , R X , Y , Z P Y X , Z P X Z .Ž . Ž .Ž . Ž .X Y X Y

The full likelihood function for the nonmonotonically missing data in Table
16.24 is

n
R R Ž1yR .R R Ž1yR . Ž1yR .Ž1yR .X Y X Y X Y X Yi i i i i i i iLs L L L L ,Ł i1 i2 i3 i4

is1

where

1yYY ii� �L sP Y X , Z 1yP Y X , Z� 4Ž . Ž .i1 i i i i i i

� � �P X Z P R s1, R s1 X , Y , Z ,Ž . Ž .i i X Y i i ii i

1
1yYY ii� �L s P Y x , Z 1yP Y x , Z� 4Ž . Ž .Ýi2 i i i i

xs0

� � �P x Z P R s0, R s1 x , Y , Z ,Ž . Ž .i X Y i ii i

1
y 1yy

� � �L s P y X , Z 1yP y X , Z P X Z� 4Ž . Ž . Ž .Ýi3 i i i i i i
ys0

� �P R s1, R s0 X , y , Z ,Ž .X Y i ii i

1 1
y 1yy

� �L s P y x , Z 1yP y x , Z� 4Ž . Ž .Ý Ýi4 i i
xs0 ys0

� � �P x Z P R s0, R s0 x , y , Z .Ž . Ž .i X Y ii i
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L , L , L , and L represent the contributions to the likelihood functioni1 i2 i3 i4
Ž . Ž .of patterns i through iv , respectively. The resulting score function for � is

n
� ln L

�s R R u q 1yR R E u Y , Z , R s0, R s1Ž . Ž .½Ý X Y i X Y i i i X Yi i i i i i��
is1

�qR 1yR E u X , Z , R s1, R s0Ž . Ž .X Y i i i X Yi i i i

�q 1yR 1yR E u Z , R s0, R s0 s0. 16.50Ž .Ž . Ž . Ž . 5X Y i i X Yi i i i

This score function differs from the full data score function only in that
missing statistics have been replaced by their conditional expectations. If X

w Ž .x Ž �is missing and Y is observed pattern ii , u is replaced with E u Y , Z ,i i i i
. w Ž .xR s0, R s1 ; if Y is missing and X is observed pattern iii , u isX Y ii i
Ž � .replaced with E u X , Z , R s1, R s0 ; if both X and Y are missingi i i X Yi i

w Ž .x Ž � .pattern iv , u is replaced with E u Z , R s0, R s0 . Then the prob-i i i X Yi i
Ž � . Ž �lem is reduced to finding P X Y, Z, R s0, R s1 , P Y X, Z, R s1,X Y X

. Ž � .R s0 , and P X, Y Z, R s0, R s0 . These probabilities can be ex-Y X Y
pressed as

�P Xsx Y , Z, R s0, R s1Ž .X Y

� � �P R s0, R s1 Xsx , Y , Z P Y Xsx , Z P Xsx ZŽ . Ž .Ž .X Ys ,1
� � �P R s0, R s1 Xs i , Y , Z P Y Xs i , Z P Xs i ZŽ . Ž .Ž .Ý X Y

is0

�P Ysy X , Z, R s1, R s0Ž .X Y

� � �P R s1, R s0 X , Ysy , Z P Ysy X , Z P X ZŽ .Ž .Ž .X Ys ,1
� � �P R s1, R s0 X , Ys j, Z P Ys j X , Z P X ZŽ .Ž .Ž .Ý X Y

js0

and

�P Xsx , Ysy Z, R s0, R s0Ž .X Y

� � �P R s0, R s0 Xsx , Ysy , Z P Ysy Xsx , Z P Xsx ZŽ .Ž .Ž .X Ys .1 1 � � �Ý Ý P R s0, R s0 Xs i , Ys j, Z P Ys j Xs i , Z P Xs i ZŽ .Ž .Ž .is0 js0 X Y

Ž � . Ž � . Ž .In addition to assuming the models for P Y X, Z and P X Z as in 16.17
Ž .and 16.22 , we need to model the probabilities of response for X and Y.

Further partitioning of the joint distribution of R and R is possible:X Y

� � �P R , R X , Y , Z sP R X , Y , Z, R P R X , Y , ZŽ . Ž . Ž .X Y X Y Y

� �sP R X , Y , Z, R P R X , Y , Z .Ž . Ž .Y X X
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Which partition is preferable is determined by the nature of the study. If Y is
observed first, for example, and the observation of X depends on whether Y
is observed or not, the first partition is the natural choice. We proceed with
the first partitioning. Let � denote the conditional probability of observingX

Ž .X given R and X, Y, Z :Y

�� sP R s1 X , Y , Z, RŽ .X X Y

and � the probability of observing Y given X, Y, Z:Y

�� sP R s1 X , Y , Z .Ž .Y Y

As in previous cases, we assume that the functional forms of � and � areX Y
known up to some unknown parameters.

We now specialize the development by assuming

� Xln s� q� Yq� Zq� R 16.51Ž .0 Y Z R YY1y� X

and
� Yln s� q� Xq� Z. 16.52Ž .0 X Z1y� Y

Ž .Note that � does not depend on X given Y, Z, and R and � does notX Y Y
Ž . Ž .depend on Y given X and Z, ignoring R . This does not imply that 16.48X

Ž � .is true, however, because P R X, Y, Z is a weighted average ofX
Ž � . Ž � .P R X, Y, Z, R for R s1 or 0, with weights � sP R X, Y, Z . WhileX Y Y Y Y

Ž .the averaged items are assumed independent of X in 16.51 , the weights � Y
Ž .from 16.52 still may depend on X. The missingness is still nonmonotonically

nonignorable because � depends on Y and � depends on X. LookingX Y
ahead to the discussion of MAR, however, the assumptions embodied in
Ž . Ž .16.51 and 16.52 are natural to make.

To compute conditional expectations for the score function for � , we fit
Ž .three more models to estimate 
 , � , and �. Assuming 16.22 , the score

function for 
 is

°n X y�� ln L i i~s RÝ X�
 ž /Z X y�Ž .¢ i i iis1

�E X Y , Z , R s0, R s1 y�Ž .i i i X Y ii i
q 1yR RŽ .X Yi i �Z E X Y , Z , R s0, R s1 y�� 0Ž .½ 5i i i i X Y ii i

¶�E X Z , R s0, R s0 y�Ž .i i X Y ii i •q 1yR 1yRŽ . Ž .X Xi i ß�Z E X Z , R s0, R s0 y�� 0Ž .½ 5i i i X Y ii i

s0. 16.53Ž .
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For � , we have

°
1

n Yi� ln L ~s R R y�Ž .Ý Y X Xi i iZ�� iis1 � 0RYi¢

�R yE � X , Z , R s1, R s0Ž .X X i i X Yi i i i

�E Y R y� X , Z , R s1, R s0� 4Ž .i X X i i X Yi i i i

qR 1yRŽ .X Yi i �Z R yE � X , Z , R s1, R s0Ž .½ 5i X X i i X Yi i i i� 0
�R R yE � X , Z , R s1, R s0Ž .½ 5Y X X i i X Yi i i i i

¶�R yE � Z , R s0, R s0Ž .X X i X Yi i i i

�E Y R y� Z , R s0, R s0� 4Ž .i X X i X Yi i i i •q 1yR 1yRŽ . Ž .X Yi i �Z R yE � Z , R s0, R s0Ž .½ 5i X X i X Yi i i i� 0
� ßR R yE � Z , R s0, R s0Ž .½ 5Y X X i X Yi i i i i

°
1

n Yi~s R R y�Ž .Ý Y X Xi i iZiis1 � 0
1¢

�1yE � X , Z , R s1, R s0Ž .X i i X Yi i i

�E Y 1y� X , Z , R s1, R s0� 4Ž .i X i i X Yi i iqR 1yRŽ .X Yi i

�Z 1yE � X , Z , R s1, R s0Ž .½ 5i X i i X Yi i i� 0
0

¶�yE � Z , R s0, R s0Ž .X i X Yi i i

�E Y y� Z , R s0, R s0Ž .� 4i X i X Y •i i iq 1yR 1yR s0. 16.54Ž .Ž . Ž .X Yi i
�yZ E � Z , R s0, R s0Ž .i X i X Yi i i� 0ß0
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Similarly for �,

°
1n

� ln L ~ Xs R i R y�Ž .Ý X Y Yi i i�� � 0is1 Zi¢

�R yE � Y , Z , R s0, R s1Ž .Y Y i i X Yi i i i

�E X R y� Y Z , R s0, R s1� 4Ž .q 1yR R i Y Y i i X YŽ . i i i iX Yi i � 0�Z R yE � Y , Z , R s0, R s1Ž .½ 5i Y Y i i X Yi i i i

¶�R yE � Z , R s0, R s0Ž .Y Y i X Yi i i i

•�E X R y� Z , R s0, R s0� 4Ž .q 1yR 1yR i Y Y i X YŽ . Ž . i i i iX Yi i � 0ß�Z R yE � Z , R s0, R s0Ž .½ 5i Y Y i X Yi i i i

°
1n ~ Xs R i R y�Ž .Ý X Y Yi i i� 0is1 Zi¢

�1yE � Y , Z , R s0, R s1Ž .Y i i X Yi i i

�E X 1y� Y Z , R s0, R s1� 4Ž .q 1yR R i Y i i X YŽ . i i iX Yi i � 0�Z 1yE � Y , Z , R s0, R s1Ž .½ 5i Y i i X Yi i i

¶�yE � Z , R s0, R s0Ž .Y i X Yi i i

•�yE X � Z , R s0, R s0� 4q 1yR 1yR s0.Ž . Ž . i Y i X YX Y i i ii i � 0� ßyZ E � Z , R s0, R s0Ž .i Y i X Yi i i

16.55Ž .

Ž . Ž . Ž . Ž .By solving equations 16.50 , 16.53 , 16.54 , and 16.55 simultaneously, we
obtain maximum likelihood estimates of � , 
 , � , and �. Solving the four
equations simultaneously may seem overwhelming, but it can be accom-
plished with widely available software. We describe the details below.



MISSING DATA546

Computation
The first step is to create an expanded dataset. We duplicate records with

Ž .pattern ii , one with Xs1 and the other with Xs0; the case weights
Ž � .attached to the duplicated records are P Xs1 Y, Z, R s1, R s0 andY X

Ž � .P Xs0 Y, Z, R s1, R s0 , respectively. We duplicate records withY X
Ž .pattern iii , one with Ys1 and the other with Ys0; the weights attached to

Ž � . Ž �the duplicated records are P Ys1 X, Z, R s0, R s1 and P Ys0 X,Y X
. Ž .Z, R s0, R s1 , respectively. We quadruplicate records with pattern iv :Y X

Ž . Ž . Ž . Ž .Ys1, Xs1 ; Ys1, Xs0 ; Ys0, Xs1 ; and Ys0, Xs0 . The
Ž �weights attached to the quadruplicated records are P Ys1, Xs1 Z, R s0,X

. Ž � . Ž �R s0 , P Ys1, Xs0 Z, R s0, R s0 , P Ys0, Xs1 Z, R s0,Y X Y X

. Ž � .R s0 , and P Ys0, Xs0 Z, R s0, R s0 , respectively.Y X Y
Given initial values of � , 
 , � , and �, we compute the case weights. The

weight for observed records is 1. The weight for the duplicated records from
Ž .pattern ii is

�wsP X Y , Z, R s0, R s1; � , � , 
 , �Ž .X Y

� � � �P R s0 Y , Z, R s1; � P R s1 X , Z ; � P Y X , Z ; � P X Z ; 
Ž . Ž .Ž . Ž .X Y Ys 1
� �P R s0 Y , Z, R s1; � P R s1 Xsx , Z ; �Ž . Ž .Ý X Y Y

xs0
� ��P Y Xsx , Z ; � P Xsx Z ; 
Ž . Ž .

� � �P R s1 X , Z ; � P Y X , Z ; � P X Z ; 
Ž . Ž .Ž .Ys .1
� � �P R s1 Xsx , Z ; � P Y Xsx , Z ; � P Xsx Z ; 
Ž . Ž .Ž .Ý Y

xs0

The weights associated with the duplicated and quadruplicated records from
Ž . Ž . Ž � . Ž �patterns iii and iv , P Y X, Z, R s1, R s0 and P Y, X Z, R s0,X Y X

.R s0 , respectively, are computed similarly. Once the weights are com-Y
puted, weighted logistic models for X, Y, R , and R are fitted using theX Y
expanded dataset with the computed weights. Using the new estimates of � ,
� , 
 , and �, the weights are updated and the procedure is repeated until
convergence. Standard errors can be computed by the jackknife technique.

We note that solution of the likelihood equations without assumptions
Ž . Ž .16.51 and 16.52 proceeds as above with some additional equations: in
Ž .16.54 ,

n

R R X R y�Ž .Ý X Y i X Xi i i i
is1

�q 1yR R E X R y� Y , Z , R s0, R s1� 4Ž . Ž .X Y i X X i i X Yi i i i i i

�qR 1yR E X R y� X , Z , R s1, R s0� 4Ž . Ž .X Y i X X i i X Yi i i i i i

�q 1yR 1yR E X R y� Z , R s0, R s0 s0,� 4Ž . Ž . Ž .X Y i X X i X Yi i i i i i
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Ž .and in 16.55 ,

n

R R Y R y�Ž .Ý X Y i Y Yi i i i
is1

�qR 1yR E Y R y� X , Z , R s1, R s0� 4Ž . Ž .X Y i Y Y i i X Yi i i i i i

�q 1yR R E Y R y� Y , Z , R s0, R s1� 4Ž . Ž .X Y i Y Y i i X Yi i i i i i

�q 1yR 1yR E Y R y� Z , R s0, R s0 s0,� 4Ž . Ž . Ž .X Y i Y Y i X Yi i i i i i

Beware of non-identifiability. As noted in Section 16.3, the missingness
Žpattern can be confounded with the nonresponse mechanism Mark and Gail,

.1994 . As in Section 16.6, sensitivity analysis is required. Model-checking
methods with missing data need further research.

MAR under Nonmonotone Missingness
For the nonmonotonically missing data shown in Table 16.24 to be MAR,

Ž .more restrictive missingness assumptions than 16.48 are needed. The fol-
Ž .lowing set of conditions, for example, satisfy 16.48 and yield a MAR

Ž .mechanism when missingness is nonmonotone Problem 16.10 :

� �P R X , Y , Z sP R Z ,Ž . Ž .Y Y

� �P R X , Y , Z, R s1 sP R Y , Z, R s1 , 16.56Ž .Ž . Ž .X Y X Y

� �P R X , Y , Z, R s0 sP R Z, R s0 .Ž . Ž .X Y X Y

Another example of MAR can be found under the nonmonotone missingness
Ž .pattern of Problem 16.11. Robins and Gill 1997 discuss MAR processes that

result in nonmonotonic missingness.
Ž .Under assumption 16.56 , R depends on neither X nor Y, given Z. If YY

Ž .is observed R s1 , R may depend on Y and Z, but not on X. However, ifY X
Ž .Y is not observed R s0 , R depends on neither X nor the unobserved Y,Y X

Ž . Ž . Ž .given Z. Assumption 16.56 specializes 16.51 with � s0 and 16.52 withY
� s0. The conditional expectations simplify toX

�P X Y , Z, R s0, R s1Ž .X Y

� � � �P R s0 Y , Z, R s1 P R s1 Z P Y X , Z P X ZŽ . Ž .Ž . Ž .X Y Ys 1
� � � �P R s0 Y , Z, R s1 P R s1 Z P Y Xsx , Z P Xsx ZŽ . Ž .Ž . Ž .Ý X Y Y

xs0

� �P Y X , Z P X ZŽ . Ž .
s ,1

� �P Y Xsx , Z P Xsx ZŽ . Ž .Ý
xs0
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�P Y X , Z, R s1, R s0Ž .X Y

� � � �P R s1 Z, R s0 P R s0 Z P Y X , Z P X ZŽ . Ž .Ž . Ž .X Y Ys 1
� � � �P R s1 Z, R s0 P R s0 Z P Ysy X , Z P X ZŽ .Ž .Ž . Ž .Ý X Y Y

ys0

� �P Y X , Z P X ZŽ . Ž .
s ,1

� �P Ysy X , Z P X ZŽ .Ž .Ý
ys0

and

�P X ,Y Z, R s0, R s0Ž .X Y

� � � �P R s0 Z, R s0 P R s0 Z P Y X , Z P X ZŽ . Ž .Ž . Ž .X Y Ys 1 1
�P R s0 Z, R s0Ž .Ý Ý X Y

xs0 ys0

� � ��P R s0 Z P Ysy Xsx , Z P Xsx ZŽ .Ž .Ž .Y

� �P Y X , Z P X ZŽ . Ž .
s . 16.57Ž .1 1

� �P Ysy Xsx , Z P Xsx ZŽ .Ž .Ý Ý
xs0 ys0

These relationships show that the conditional expectations of the missing
statistics given the observed data do not involve the nonresponse mecha-
nisms. That is, we do not need to estimate � or �. We can solve just two

Ž . Ž .equations, 16.50 and 16.53 , simultaneously to obtain a consistent estimate
of �. This is similar to the case of monotone missing data under MAR�when
only covariate X is missing and Y is observed, we need assumptions about
Ž � . Ž � . Ž Ž � ..P Y X, Z and P X Z or P X Y, Z , but not about the probability of

nonresponse.
Ž .The MAR missingness mechanism shown in 16.56 also simplifies the

Ž .score function for � shown in equation 16.50 . The contributions from
Ž . Ž . Ž � .patterns iii and iv become zero: since E Y X, Z, R s1, R s0 sX Y

Ž � . Ž � .E Y X, Z , we have E u X , Z , R s1, R s0 s0. Also, the relationshipi i i X Yi i
Ž � . Ž � . Ž � .E X, Y Z, R s0, R s0 sE X, Y Z leads to E Y Z, R s0, R s0X Y X Y

� Ž . � 4 Ž � .sE P X, Z Z, R s0, R s0 , and E u Z, R s0, R s0 s0. The scoreX Y X Y
equation reduces to

n
� ln L

�s R R u q 1yR R E u Y , Z , R s0, R s1 s0.Ž . Ž .Ý X Y i X Y i i i X Yi i i i i i��
is1

16.58Ž .
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Ž .The patterns with missing Y R s0 regardless of R do not contribute toY X
the score function of �. This result is similar to the case of missing outcome
data where the likelihood approach reduces to complete-record analysis. For

Ž .the score function of 
 , the contribution from pattern iv becomes zero:

1 �1yR 1yR E X Z, R s0, R s0 y� s0,� 4Ž . Ž . Ž .X Y X Yž /Z

Ž � . Ž � .because E X Z, R s0, R s0 sE X Z s�. While the score function forX Y
Ž . Ž .� utilizes the data with patterns i and ii , the score function for 
 utilizes

Ž . Ž . Ž .the data with patterns i , ii , and iii .
Ž � .To estimate � by imputation, the relationship P Y X, Z, R s1 sY

Ž � . Ž .P Y X, Z proved in Problem 16.10 shows that analysis using patterns i and
Ž . Ž . Ž .ii only R s1 regardless of R is valid under 16.56 . In these patterns,Y X

Ž � .only X is missing and therefore E X Y, Z, R s0, R s1 suffices forX Y
imputation. In fact, because

� � �E X Y , Z, R s0, R s1 sE X Y , Z, R s1, R s1 sE X Y , Z ,Ž .Ž . Ž .X Y X Y

Ž � .the imputation model E X Y, Z, R s0, R s1 can be consistently esti-X Y
mated using complete records only. If we restrict our attention to the data

Table 16.25. Hypothetical data for a pair of 2�2 tables with nonmonotonically
missing X and Y

R R Y X Z FrequenciesY X

1 1 1 1 1 8
1 1 1 1 0 14
1 1 1 0 1 22
1 1 1 0 0 14
1 1 0 1 1 7
1 1 0 1 0 9
1 1 0 0 1 11
1 1 0 0 0 14
1 0 1 ? 1 29
1 0 1 ? 0 22
1 0 0 ? 1 10
1 0 0 ? 0 10
0 1 ? 1 1 5
0 1 ? 1 0 6
0 1 ? 0 1 5
0 1 ? 0 0 8
0 0 ? ? 1 3
0 0 ? ? 0 3
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Ž . Ž . Žwith patterns i and ii Y completely observed and X missing monotoni-
.cally , the method described for missing covariates can be applied. We model

Ž � . Ž .P X Y, Z directly as in 16.20 , compute the conditional expectation, then
Ž . Žsolve 16.58 . This approach consists of two separate steps computing expec-

.tation and solving for � , whereas the likelihood approach requires alternat-
ing the two steps iteratively. Both approaches yield consistent estimates of �.

Table 16.26. Parameter estimates and standard errors for the
( )coefficients of 16.17 using three different methods

Method Estimate � � �0 X Z

Ž .Likelihood NI : parameter 0.4153 y0.0008 0.3308
Ž . Ž . Ž .16.22 , 16.51 , 16.52 se 0.3047 0.4438 0.3356

Ž .Likelihood MAR : parameter 0.4101 0.0121 0.3313
Ž . Ž .16.22 , 16.56 se 0.3063 0.4430 0.3358

Ž .Imputation MAR : parameter 0.4157 y0.0004 0.3298
Ž . Ž .16.20 , 16.56 se 0.3076 0.4449 0.3377

Table 16.27. Parameter estimates and standard errors of the imputation
and missingness models

Ž .Likelihood NI Estimate 
 
0 Z

Ž .16.22 parameter y0.2229 y0.4252
se 0.2577 0.3818

Estimate � � � �0 Y Z R Y

Ž .16.51 parameter 1.8768 y0.5728 y0.2280 y1.0517
se 0.5712 0.3426 0.3054 0.5257

Estimate � � �0 X Z

Ž .16.52 parameter 1.7165 y0.2811 0.2872
se 0.3801 0.4911 0.4247

Ž .Likelihood MAR Estimate 
 
0 Z

Ž .16.22 parameter y0.2157 y0.4256
se 0.2553 0.3807

Ž .Imputation MAR Estimate 	 	 	0 Y Z

Ž .16.20 parameter y0.1965 y0.0004 y0.5917
se 0.3772 0.4449 0.4385
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The likelihood approach is more efficient than the imputation approach,
Ž . Ž . Ž .because the data with patterns i , ii , and iii are used for the mle of the

Ž .nuisance parameter 
 , while only pattern i is used for the imputation
estimate. However, in practice the loss of efficiency by using the imputation

Ž .approach is typically small e.g. Table 16.17 , because the estimating equa-
tions for � are the same and the only difference arises from the imprecision
of the nuisance parameter 
 .

Example 16.7.1. Consider the nonmonotonically missing data in Table
16.25.

Results of fitting the models under nonmonotonic NI and MAR are shown
in Tables 16.26 and 16.27. SAS� code to fit these models is provided in
http:rrwww.wiley.comrstatistics. The complete-record Mantel-Haenszel
odds ratio is 0.9493 with log odds ratio y0.052. The total number of records
in the expanded data set is 313. While the estimates under MAR and NI
show little difference in Table 16.26, the maximum likelihood estimates
under MAR are only slightly more efficient than the imputation estimates
under MAR. Note that � s0 corresponds to MAR, while nonzero �X X
supports nonignorable missingness. The Wald test for H : � s0 from the0 X
likelihood NI model gives zsy0.2811r0.4911s0.5724, and we fail to reject
H . This might explain why the estimates under MAR and nonignorable0
missingness are similar.

PROBLEMS

Ž .16.1. Starting with the definitions in 16.1 , use Bayes’ theorem to verify the
following relations.
( ) Ž � .a Under the MAR mechanism represented by P R S, H sH

Ž � .P R S ,H

� �P H S, R s1 sP H S .Ž .Ž .H

( ) Ž � . Ž � .b Under MAR, P Ss1 Hs1, R s0 �P Ss1 Hs1, R s1 .H H

( ) Ž � .c Under the MCAR mechanism represented by P R S, H sH
Ž .P R ,H

� �P S, H R s1 sP S, H R s0 .Ž . Ž .H H

16.2. Derive an empirical variance estimate for � as follows. Let � sˆ1 1
Ž � . Ž � . Ž �P Ss1 Hs1 , P sP Hs1 Ss1, Rs1 , P sP Hs1 Ss0,1 2

. Ž .Rs1 , and let Msa qm P qc qm P . The estimate � , p , pˆo 1 1 o 2 2 1 1 2
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Ž .of � , P , P is the solution of the following three estimating equa-1 1 2
tions:

M� y a qm P� Ž .1 o 1 11

P a qb P yaŽ .U s s0.1 o o 1 0� 0 � 0P c qd P ycŽ .2 o o 2 0

Then � y� is approximately equivalent to the first element ofˆ1 1

� 1y1
y�U PU ,1½ 5� � , P , PŽ .1 1 2 � 0P2

where

M ym 1y� m �Ž .1 1 2 1
�U 0 a qb 0s ,o o� � , P , PŽ .1 1 2 � 00 0 c qdo o

and

m 1y� ym �Ž .1 1 1 2 1

M M a qb M c qdŽ . Ž .o o o o
y1

�U 1
s .0 0½ 5 a qb� � , P , PŽ . o o1 1 2

1� 00 0 c qdo o

The variance of � is the upper left corner element of the matrixˆ1

° ¶� �1y1 y1$y�U y�U~ •PVar U .1½ 5 ½ 5� � , P , P � � , P , PŽ . Ž .1 1 2 1 1 2¢ ß� 0P2

Ž .To estimate this matrix we evaluate the elements at � , p , p , butˆ1 1 2
� Ž .4the analytic derivation of Var U � , P , P is complicated. Instead1 1 2

� Ž .4we estimate Var U � , P , P empirically, by expressing U as a sum1 1 2
of independent random variables, and taking their sum of squared

w xdeviations. To this end, let X sI H s1 be the hypertension indica-i i
w xtor and Y sI S s1 be the smoking indicator for the ith record. Leti i

R be the observation indicator for H . Then a sÝ X Y R , m si i o i i i i 1
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Ž .Ý 1yR Y , and the other cell counts can be expressed similarly ini i i
terms of X , Y , and R . Theni i i

� �1 1

P PU s u ,Ý1 1i
i� 0 � 0P P2 2

Ž .where u � , P , P is given byi 1 1 2

X Y R q 1yR Y P q 1yX Y R� Ž . Ž .i i i i i 1 i i i
� 1 q 1yR 1yY P � y X Y R q 1yR Y P4 � 4Ž . Ž . Ž .i i 2 1 i i i i i 1Pu s .1i X Y R q 1yX Y R P yX Y R� 4Ž .i i i i i i 1 i i i� 0P2 � 0

X 1yY R q 1yX 1yY R P yX 1yY R� 4Ž . Ž . Ž . Ž .i i i i i i 2 i i i

Ž .The empirical variance estimate of U � P , P is then1 1 2

�° ¶� � �ˆ ˆ1 1 1
$~ •P p pVar U s u u .Ý1 1 1i i

i¢ ß� 0 � 0 � 0P p p2 2 2

( )16.3. a Using the notation of Section 16.2.2, show that the imputation
estimates can be written

a qa f pˆo m 1 1s pa qa qc qcˆ ˆo m o m

and

ˆb qb f qo m 1 1s .qˆ ˆb qb qd qdo m o m

( ) Ž .b Consider the joint distribution of a , b , m given n to beo o 1 1
Ž .multinomial with sample size n and probability vector P , P , P .1 a b m

Ž . Ž .Let g P , P , P sP r P qP . Use the delta method to showa b m a a b
Ž . Ž .that the variance of g a , b , m sa r a qb sp is given byo o 1 o o o 1

� Ž .34P P r n P qP , which is estimated consistently bya b 1 a b

a rn b rn a b p qŽ . Ž .o 1 o 1 o o 1 1s s .3 3 n ym1 1a qbŽ .n a qb rn� 4Ž . o o1 o o 1

Ž .Similarly, the variance of p is estimated by p q r n ym . By2 2 2 2 2
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conditional independence of p and p given n and n , conclude1 2 1 2
Ž .�that the variance-covariance matrix of p , p is1 2

p q1 1 0n ym$ p 1 11Cov s .p qž / 2 2p2 0� 0n ym2 2

p � p rpˆ1 1 1( )c Next, let h s s f . Show that1ž / ž / ž /p � q rqˆ2 2 1

p1
� h 2 2ž /p p rp yp rp2 2 1

s f f .1 2 2 2� p , pŽ . ž /yq rq q rq1 2 2 1

Ž .Using the results of part b , show that

�
p p1 1

� h � h° ¶ž / ž /p p� pˆ 2 21 1 ~ •Cov s Cov ž /ž / � p , p � p , pp� Ž . Ž .ˆ 1 2 1 222 ¢ ß

is estimated by the matrix

q rp q rp 1 12 1 1 2 2
� 1y� q y� 1y� � 1y� q� 4Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 2 2 ½ 5½ 5n ym n ym n ym n ym1 1 2 2 1 1 2 2

.
p rq p rq1 1 2 1 1 2 2y� 1y� � 1y� q � 1y� q� 4Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ� 01 1 2 2 2 2½ 5 ½ 5n ym n ym n ym n ym1 1 2 2 1 1 2 2

( )d Conclude that the estimated variance of � y� is given byˆ ˆ1 2

$ q rp q rp2 1 1 2 2Var � y� s � 1y� q� 4Ž .ˆ ˆ ˆ ˆŽ .1 2 1 1 ž /n ym n ym1 1 2 2

p rq p rq2 1 1 2 2q � 1y� q� 4Ž .ˆ ˆ2 2 ž /n ym n ym1 1 2 2

1 1
q2 � 1y� � 1y� q .� 4Ž . Ž .ˆ ˆ ˆ ˆ1 1 2 2 ž /n ym n ym1 1 2 2
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Demonstrate the equivalence of this expression to

2
$ q p1 1 1Var � y� s � 1y� q� 1y�Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆŽ .1 2 1 1 2 2( (½ 5n ym p q1 1 1 1

2q p1 2 2q � 1y� q� 1y� .Ž . Ž .ˆ ˆ ˆ ˆ1 1 2 2( (½ 5n ym p q2 2 2 2

Ž .16.4. From the likelihood given in 16.24 , derive the score equation for � ,

n
� ln L

�U s s R u q 1yR E u Y , Z , R s0Ž . Ž .Ý� i i i i i i i��
is1

Y yP X , ZŽ .i i in

X Y yP X , Z� 4Ž .s RÝ i i i ii
is1 � 0Z Y yP X , Z� 4Ž .i i i i

�Y yE P X , Z Y , Z , R s0� 4Ž .i i i i i i

�E X Y yP X , Z Y , Z , R s0� 4Ž .q 1yR s0.Ž . i i i i i i ii � 0�Z Y yE P X , Z Y , Z , R s0� 4Ž .i i i i i i i

and the score equation for 
 ,

n X y�� ln L i i
U s s RÝ
 i�
 ž /Z X y�Ž .i i iis1

�E X Y , Z , R s0 y�Ž .i i i i i
q 1yR s0.Ž .i �ž /Z E X Y , Z , R s0 y�� 4Ž .i i i i i i

Ž� .Ž .16.5. Show that the negative derivative of U � is�

1Ž� . n�U� �Xy s R P X , Z 1yP X , Z i 1, X , Z� 4� Ž . Ž . Ž .Ý i i i i i i i�� � 0is1 Zi

D D D Z�
1 i 2 i 1 i i

�D D D Zq 1yR ,Ž . 2 i 2 i 2 i ii
�� 0D Z D Z D Z Z1 i i 2 i i 1 i i i
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where

D scŽ� .P 1, Z 1yP 1, Z q 1ycŽ� . P 0, Z 0yP 1, Z� 4 � 4Ž . Ž . Ž . Ž .Ž .1 i i i i i i i

and

D scŽ� .P 1, Z 1yP 1, Z .� 4Ž . Ž .2 i i i i

Ž� .Ž .Show that the negative derivative of U 
 is


1Ž� . n�U
 �Xy s � 1y� i 1, X , Z .� Ž . Ž .Ý i i i i�
 � 0is1 Zi

16.6. Use Bayes’ theorem in the form

� � �P Xs1 Y , Z P Y Xs1, Z P Xs1 ZŽ . Ž . Ž .
s �

� � �P Xs0 Y , Z P Y Xs0, Z P Xs0 ZŽ . Ž . Ž .

Ž � . Ž � .to deduce the relationship between P X Z and P X Y, Z shown in
Ž .16.36 .

Ž . w16.7. Show that for U in 16.25 , EU s0. Hint. Let U sR u q� � � i i i
Ž . Ž � .1yR E u Y , Z , R s0 , so that U sÝ U . Show thati i i i i � i � i

� �E U Y , Z , R s1 sE u Y , Z , R s1Ž .Ž .� i i i i i i i i

and

� �E U Y , Z , R s0 sE u Y , Z , R s0 .Ž .Ž .� i i i i i i i i

Ž � . Ž � .Thus E U Y , Z s E u Y , Z , whence EU s Eu . But� i i i i i i � i i
Ž � . � Ž � .4 xE u X , Z s0, whence Eu sE E u X , Z s0.i i i i i i i

Ž . Ž .16.8. Show that the negative derivative of U � , 	 in 16.40 with respect�

to � is

1n�U � , 	Ž .� �Xy s R P X , Z 1yP X , Z i 1, X , Z� 4� Ž . Ž . Ž .Ý i i i i i i i�� � 0is1 Zi

D D D Z�
1 i 2 i 1 i i

�D D D Zq 1yR ,Ž . 2 i 2 i 2 i ii
�� 0D Z D Z D Z Z1 i i 2 i i 1 i i i
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where

D scŽ	 .P 1, Z 1yP 1, Z q 1ycŽ	 . P 0, Z 0yP 1, Z� 4 � 4Ž . Ž . Ž . Ž .Ž .1 i i i i i i i

D scŽ	 .P 1, Z 1yP 1, Z .� 4Ž . Ž .2 i i i i

and

exp 	 q	 Y q	 ZŽ .0 Y i Z iŽ	 . �c sP X s1 Y , Z s .Ž .i i i i 1qexp 	 q	 Y q	 ZŽ .0 Y i Z i

Ž . Ž .Show that the negative derivative of U � , 	 in 16.40 with respect�

to 	 is the asymmetric matrix

d d Y d Z�
1 i 1 i i 1 i in�U � , 	Ž .� �d d Y d Zy s 1yR ,� Ž .Ý 2 i 2 i i 2 i ii�	

�is1 � 0d Z d Y Z d Z Z1 i i 1 i i i 1 i i i

where

d s P 1, Z yP 0, Z cŽ	 . 1ycŽ	 .� 4Ž . Ž . Ž .1 i i i i i

and

d s Y yP 1, Z cŽ	 . 1ycŽ	 . .� 4Ž . Ž .2 i i i i i

Ž .Show that the negative derivative of U 	 is	

1n�U 	Ž . �	 Ž	 . Ž	 . Yy s R c 1yc i 1, Y , Z .� Ž .Ž .Ý i i i i i�	 � 0is1 Zi

16.9. When both Y and X are partially missing as in Section 16.7, show that
Ž .under assumptions 16.49 , complete-record analysis is valid, namely,

that

� �P Y X , Z, R s1, R s1 sP Y X , Z .Ž .Ž .X Y

Ž .16.10. Using the conditions given in 16.56 , verify that

� � �P Y X , Z, R s1 sP Y X , Z, R s0 sP Y X , Z .Ž .Ž . Ž .Y Y

Ž . Ž .Show also that 16.48 is satisfied, hence 16.56 is more restrictive
Ž .than 16.48 .
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Ž .16.11. Instead of 16.56 , assume the following nonmonotone missingness
pattern:

� �P R X , Y , Z sP R Z ,Ž . Ž .X X

� �P R X , Y , Z, R s1 sP R X , Z, R s1 ,Ž . Ž .Y X Y X

� �P R X , Y , Z, R s0 sP R X , Z, R s0 .Ž . Ž .Y X Y X

Show that MAR holds, that is,

� � �P Y X , Z, R s1 sP Y X , Z, R s0 sP Y X , Z .Ž .Ž . Ž .Y Y

Ž .Show also that 16.48 is satisfied, hence the nonmonotone missing-
Ž .ness pattern of this problem is also more restrictive than 16.48 .
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C H A P T E R 1 7

Misclassification: Effects,
Control, and Adjustment

We have so far assumed that every subject has been correctly designated as
diseased or nondiseased, and as exposed or unexposed to an antecedent
factor. This assumption is assuredly not valid. Such assignments, whether by
responses to a questionnaire, or by responses during an interview, or by
examination of case records, or by physical or chemical tests, or by any means
imaginable, can be wrong. For reasons of mishap�chance misreading, fail-
ure to hear a response, and so on�or because of unconscious bias, a subject
having the disease may be recorded as not having it, or the reverse. Record-
ing the presence or absence of the antecedent factor is equally vulnerable
to error.

In sampling methods I and II, either of the two characteristics studied can
be misclassified. In sampling method III, only the response variable can be
misclassified.

In this chapter, we consider the effects of misclassification, and give some
methods for reducing error and for estimating the extent of error. Section
17.1 presents in detail one example of the effects of misclassification. Section
17.2 describes algebraically how misclassification of one variable affects
measures of association. Section 17.3 is devoted to the case where both
variables are observed with error. In Section 17.4 we consider statistical
means of controlling for error. Algebraic results for probabilistic control are
presented in Section 17.5, and some techniques for experimental control of
error are discussed in Section 17.6. Section 17.7, a discussion of misclassifica-
tion in the more general setting of logistic regression models, is mathemati-
cally more challenging than the preceding sections.
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MISCLASSIFICATION: EFFECTS, CONTROL, AND ADJUSTMENT562

Table 17.1. Association between G-6-PD deficiency and subtype
of schizophrenia in Chicago

Diagnosis

G-6-PD Status Catatonic Paranoid Total

Heavy 15 6 21
Not heavy 57 99 156
Total 72 105 177

17.1. AN EXAMPLE OF THE EFFECTS OF MISCLASSIFICATION

Ž .Dern, Glynn, and Brewer 1963 studied the frequency of glucose-6-phos-
Ž .phate dehydrogenase G-6-PD deficiency in the erythrocytes of African-

American male schizophrenic patients in the Chicago area. G-6-PD
deficiency, inherited as a sex-linked error of metabolism, is found in about
10% to 15% of the African-American male population. The deficiency is
sometimes referred to as fava bean disease because affected individuals who
eat fava beans often suffer hemolysis, a breakdown of red blood cells. Anti-
malarial agents and other drugs also cause hemolysis in affected individuals.

The data provided by Dern, Glynn, and Brewer are summarized in Table
17.1. For these data, chi squared is 7.95, which indicates an association
significant at the 0.01 level.

The proportion of catatonics who are deficient, p s15r72s0.208, isC
contrasted with the proportion of paranoids who are deficient, p s6r105sP
0.057. The odds ratio is

15�99
os s4.34; 17.1Ž .6�57

that is, the odds that a catatonic is G-6-PD deficient are over four times the
odds that a paranoid is deficient.

Ž .Fieve et al. 1965 repeated the study at five state hospitals in the New
York City area. Results from four of the hospitals are given in Table 17.2.

Table 17.2. Association between G-6-PD deficiency and subtype
of schizophrenia in four New York State hospitals

Catatonic Paranoid

Hospital N % Deficient N % Deficient o

Central Islip 32 15.6 80 12.5 1.30
Pilgrim 78 16.7 76 6.6 2.84
Brooklyn 13 30.8 18 11.1 3.56
Kings Park 55 10.9 96 6.3 1.84
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Table 17.3. Association between G-6-PD deficiency and subtype
of schizophrenia at Rockland State Hospital

Catatonic Paranoid

N % Deficient N % Deficient o

28 7.1 29 24.1 0.24

The four individual odds ratios did not differ significantly; the Mantel-
Haenszel summary estimate of the common odds ratio,

� s2.09, 17.2Ž .ˆMH

Žwas significantly different from unity at the 0.05 level see Chapter 10 for
.methods of comparing and combining different odds ratios . The findings
Ž .from these four hospitals support Dern, Glynn, and Brewer’s 1963 original

finding but indicate a reduced degree of association.
At the fifth hospital, Rockland, the odds ratio was again significantly

Ž .different from unity Table 17.3 . The problem at Rockland State Hospital,
clearly, was that the odds ratio was significantly different from unity in the
reverse direction from that found previously.

The investigators quickly checked back with the administration at Rock-
land and breathed a sigh of relief when they discovered that half the
schizophrenic patients had been withheld because they were subjects in other
research investigations. The investigators therefore returned to Rockland to
study all the resident African-American male catatonics and paranoids. The
results from the second survey are in Table 17.4. The odds ratio was again
significantly different from unity at the 0.05 level, but even smaller than
before.

Thus the evidence of an association between G-6-PD deficiency and
subtype of schizophrenia unfortunately points in opposite directions. All we
need to complete the confusing picture is evidence of no association. Just
such data were provided by a sample of 426 patients at a Veterans Adminis-

Ž .tration hospital in Alabama Bowman et al., 1965 . The data are presented in
Table 17.5. For these data, p s10.4%, p s11.8%, os0.87, and chiC P
squared is 0.07.

Table 17.4. Association between G-6-PD deficiency and subtype
of schizophrenia at Rockland State Hospital—second sur©ey

Catatonic Paranoid

N % Deficient N % Deficient o

37 2.7 87 16.1 0.14
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Table 17.5. Association between G-6-PD deficiency and subtype
of schizophrenia at a VA hospital in Alabama

Diagnosis

G-6-PD Status Catatonic Paranoid Total

Deficient 17 31 48
Nondeficient 146 232 378
Total 163 263 426

Table 17.6. E©idence for ©arious directions of association
between G-6-PD deficiency and subtype of schizophrenia

Direction of Association Source o

Association greater among Chicago 4.34
catatonics Four New York hospitals 2.09

Association greater among Fifth New York hospital 0.14
paranoids

No difference Alabama 0.87

There is therefore evidence in the literature for positive association,
negative association, and no association. This conflicting evidence is summa-
rized in Table 17.6.

Attempting to account for this confusion, the New York investigators
looked first at the experimental techniques used in the three studies. The
techniques were not sufficiently dissimilar to explain the discrepancies; in
fact, the technique used at Rockland was identical to that used at the other
four hospitals in New York.

Differences in the drugs given the patients might conceivably have pro-
duced these discrepant findings. Within each study, therefore, odds ratios
were calculated for each major category of drug administered at the time of
the study. With only a few exceptions, for too few cases to have much impact,
the odds ratios for the specific drug categories within a study were in the
same direction as the overall value for the study.

Whatever the influences of differences in techniques of blood testing or
medication practices, they paled beside the unreliability of psychiatric diag-
nosis. A large literature indicates just how unreliable psychiatric diagnoses

Ž .were Zubin, 1967; Spitzer and Fleiss, 1974 . With respect to schizophrenia,
for example, only about 70% of patients given a diagnosis of schizophrenia by
one diagnostician received the same diagnosis from a second, and about 10%
of patients given a diagnosis other than schizophrenia by one diagnostician
received a diagnosis of schizophrenia from a second. The few published data
for subtypes of schizophrenia suggest that reliability was less for paranoid
and catatonic schizophrenia than for schizophrenia in general.
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In each of the three studies cited of G-6-PD deficiency and schizophrenia,
the then current hospital diagnoses were accepted uncritically, with no
attempt made to verify their accuracy. It is thus likely that the most impor-
tant source of the discrepancies was the unreliability of psychiatric diagnosis.

Prima facie evidence for diagnostic differences among the five New York
hospitals comes from the variability of the proportion of patients diagnosed
catatonic among those diagnosed either catatonic or paranoid. The differ-
ences among the five hospitals in the kinds of patients they receive are not
sufficient to account for the differences in their proportions of catatonics.
Problem 17.1 is devoted to these differences.

In the years since these studies were conducted, remarkable improvement
has occurred in the reliability of psychiatric diagnosis. Documentation of the
shortcomings described above spurred subsequent efforts to improve diag-

Žnostic reliability see e.g., Feighner, et al., 1972; Spitzer, Endicott, and
.Robins, 1978 . Today it is widely agreed that the recognition of substantial

diagnostic unreliability played a central role in the break with tradition found
in the 3rd edition of the Diagnostic and Statistical Manual of the American

Ž . Ž .Psychiatric Association 1980 and continued in its successors 1987, 1994
Ž .Klerman, 1983; Wilson, 1993 . These manuals, in contrast to their predeces-
sors, spell out operational criteria for symptoms and explicit decision rules
for diagnosis. We return to this point in Section 17.6.

Our discussion has focused on psychiatry, but psychiatry is not uniquely
plagued by inaccurate diagnoses. Unreliability exists in the diagnosis of

Ž .childhood disorders Derryberry, 1938; Bakwin 1945 ; in the diagnosis of
Ž .emphysema Fletcher, 1952 ; in the interpretation of electrocardiograms

Ž . ŽDavies, 1958 ; in the interpretation of X-rays Yerushalmy, 1947; Cochrane
. Žand Garland, 1958 ; in the certification of X-rays Yerushalmy, 1947;

.Cochrane and Garland, 1952 ; and in the certification of causes of death
Ž .Markush, Schaaf, and Seigel, 1967 . Reviews of diagnostic unreliability in

Ž .other branches of physical medicine are given by Garland 1960 and Koran
Ž .1975a, 1975b .

It may, in fact, be taken as axiomatic that the determination of the
presence or absence of any disease or condition and the determination of the
exact form of the condition when present are subject to error. Likewise, the
determination of the presence or absence of an antecedent factor is subject
to error.

17.2. THE ALGEBRA OF MISCLASSIFICATION

Misclassification can turn a truly strong positive association into one that is
less strongly positive or even apparently negative; a truly strong negative
association into one that is less strongly negative or even apparently positive;
and a nil association into one that is apparently strong. These facts contradict
the long-standing but erroneous impression that errors of misclassification

Ž .tend only to reduce the magnitude of association Newell, 1962 .
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Assume for simplicity that the classification of a person as diseased or not
is accurate, so that the only source of error is in the determination of
whether or not the factor under study was present. Let us consider the
comparison of women aged 55�64 newly diagnosed as having lung cancer
with similarly aged women newly diagnosed as having breast cancer, with
respect to whether they ever smoked.

We assume that the diagnoses are accurate but that the determination of
smoking history is subject to error. Two sources of error exist, one residing
with the informant and one with the person taking the history. With respect

Ž .to the informant e.g., the patient herself or a relative :

1. She may misunderstand the intent or phrasing of the question.
2. She may make an honest mistake in reporting what the patient’s

smoking status was.
Ž3. She may deliberately misrepresent the patient’s smoking status more

likely in claiming the patient never smoked when in fact she did than
.the reverse .

With respect to the person taking the history:

1. She may misunderstand the informant’s answer.
2. She may make an honest coding error.
3. She may apply different standards to recording responses for one type

of patient versus another. Suppose, for example, that the history-taker
bends over backwards to control for possible bias toward finding an
association. She may then record the statement, ‘‘I smoked once in a
while when I was a kid, but never since’’ as Never Smoked if made by a
lung cancer patient but as Ever Smoked if made by a breast cancer
patient.

Ž .Horwitz and Lysgaard-Hansen 1975 enumerate several other prevalent
sources of error and give prescriptions for their control. Here we study the

Ž .effects of these errors. The analysis is that of Keys and Kihlberg 1963 .
Others who have analyzed the effects of misclassification on measures of

Ž .association and on chi squared tests are Rogot 1961 , Mote and Anderson
Ž . Ž . Ž . Ž .1965 , Assakul and Proctor 1967 , Koch 1969 , Goldberg 1975 , and

Ž .Copeland et a1. 1977 .
Consider first the lung cancer patients, who, we assume, are identified

without error. Let P denote the true proportion of lung cancer patients whoL
ever smoked, so that 1yP is the true proportion who never smoked.L
Denote by E the complement of sensitivity and by F the complement ofL L
specificity for the lung cancer patients; that is, E is the probability that aL
lung cancer patient who actually smoked is recorded as not having smoked,
and F is the probability that a lung cancer patient who actually neverL
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smoked is recorded as having smoked. Whereas one would wish to estimate
P , the true proportion who ever smoked, one can, from the recordedL
histories, only estimate

p s 1yE P qF 1yP . 17.3Ž . Ž . Ž .L L L L L

The estimated proportion of lung cancer patients who ever smoked, p , is aL
fraction, 1yE , of those who truly ever smoked plus a fraction, F , of thoseL L
who truly never smoked.

The observable proportion p may be less than, equal to, or greater thanL
the true proportion P depending on the relative magnitudes of E and F .L L L
In fact,

FLp �P if �P ,L L LE qFL L

FLp sP if sP ,L L LE qFL L

FLp �P if �P .L L LE qFL L

If E and F are of approximately the same magnitude, there will beL L
overestimation if P is less than 0.5 and underestimation if P is greaterL L
than 0.5. Thus, even if the error rates are equal, the errors do not necessarily
cancel out.

Now let P denote the true proportion of breast cancer patients who everB
smoked, E the complement of their sensitivity, and F the complement ofB B
their specificity. For the breast cancer patients, therefore, one can estimate
only the proportion recorded as ever having smoked, say

p s 1yE P qF 1yP . 17.4Ž . Ž . Ž .B B B B B

The algebra of the effects of errors on the odds ratio is complicated
ŽDiamond and Lilienfeld, 1962a, 1962b; Goldberg, 1975; see Copeland et al.,

.1977, for a graphic study . Suppose, therefore, that the association between
smoking and type of cancer is measured simply by the difference between the
proportions who smoked. Instead of estimating the true difference, say

DsP yP , 17.5Ž .L B

we can only estimate dsp yp . This difference between the recordedL B
proportions is easily seen to reduce algebraically to

dsDq F yF qP E qF yP E qF , 17.6Ž . Ž . Ž . Ž .L B B B B L L L

which indicates that an estimate for d is typically biased for D.
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The estimated difference d may be less than, equal to, or greater than the
true difference D. It may even be of opposite sign, which means that an
association that is actually in one direction may be estimated as being in the
opposite direction.

This possibility of a reversal of the direction of association cannot arise in
the special case in which the two sensitivities are equal,

1yE s1yE s1yE, 17.7Ž .L B

say, and in which the two specificities are equal,

1yF s1yF s1yF , 17.8Ž .L B

Ž .say, and the sum of the two error rates is less than 1.0. By substituting 17.7
Ž . Ž .and 17.8 into 17.6 and simplifying, we find that the difference between the

recorded proportions is

dsD 1y EqF . 17.9� 4Ž . Ž .

Ž .The first point to notice about 17.9 is that d, the difference that can be
estimated, cannot possibly equal D, the true difference, whenever either
error rate is nonzero. The second point to notice is that, provided E plus F
is less than 1.0, the observed difference is in the same direction as the true
difference, but is numerically smaller�that is, is closer to zero. This situa-

Ž .tion, considered by Bross in a classic paper 1954 , has led to the erroneous
anticipation that misclassification always deflates the difference between two
rates. Equal sensitivities and equal specificities must, however, be considered

Ž .unusual see, e.g., Lilienfeld and Graham, 1958; Goldberg, 1975 . The third
point to notice is that when misclassification rates are large, in the sense that
EqF�1, a reversal of the direction of association occurs even with nondif-
ferential misclassification.

With respect to the odds ratio, the effect is, again, unpredictable. In the
particular case just considered, where E sE and the sum of the two ratesL B
is less than 1, the odds ratio is underestimated, as was the difference between
rates. Specifically, if � is the true odds ratio and o the odds ratio estimated
from misclassified data, then if ��1, we expect to find ��o�1. That is,
the estimated odds ratio is greater than unity, but not by as much as the true
value.

Even more care must be taken when interpreting analyses that adjust for
confounding factors measured with error. Here even nondifferential mea-
surement error in a covariate can cause an exaggeration of an association
between an outcome variable and an antecedent factor, for example, produc-
ing an effect when none truly exists. Remarkably, this exaggeration can occur
even if the outcome variable and antecedent factor are measured without
error, and even if the mismeasured covariate is a continuous and unbiased
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estimate of the true value. We discuss this less well-known but important
underadjustment phenomenon further in Section 17.7.

17.3. THE ALGEBRA OF MISCLASSIFICATION:
BOTH VARIABLES IN ERROR

The previous section was concerned only with errors in one of the two
variables under study. A general discussion of the more realistic situation in
which both variables are subject to misclassification is given by Keys and

Ž .Kihlberg 1963 . The following analysis and example, dealing with the deter-
Ž .mination of the odds ratio, are by Barron 1977 .

Let A denote the presence and A the absence of one of the two variables
under study, and B and B the presence and absence of the other variable.

Ž . Ž .Let P AB , P AB , and so on denote the various probabilities of joint
occurrence if both variables are categorized without error, and let

P AB P A BŽ . Ž .
�s 17.10Ž .

P AB P ABŽ . Ž .

denote the odds ratio accurately associating A and B.
Suppose, however, that both variables are subject to misclassification, with

probabilities of correct and incorrect classification given in Table 17.7. It is
assumed that the two errors operate independently.

Ž . Ž .Finally, let p AB , p AB , and so on denote the various probabilities of
joint occurrence when the variables are ascertained with error. Explicitly,

p AB sa b P AB qa b P AB qa b P AB qa b P A B ,Ž . Ž . Ž . Ž . Ž .1 1 1 2 2 1 2 2

17.11Ž .

p AB sa 1yb P AB qa 1yb P AB qa 1yb P ABŽ . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 2 2 1

qa 1yb P A B , 17.12Ž . Ž .Ž .2 2

p AB s 1ya b P AB q 1ya b P AB q 1ya b P ABŽ . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 2 2 1

q 1ya b P A B , 17.13Ž . Ž .Ž .2 2

Table 17.7. Probabilities of correct and incorrect classification of A and B

Classified Status Classified Status

True Status A A True Status B B

A a 1ya B b 1yb1 1 1 1

A a 1ya B b 1yb2 2 2 2



MISCLASSIFICATION: EFFECTS, CONTROL, AND ADJUSTMENT570

Table 17.8. Hypothetical joint probabilities of hypertension and
endometrial cancer if both were obser©ed without error

Endometrial Cancer

Hypertension B B

A 0.122 0.060
A 0.211 0.607

and

p A B s 1ya 1yb P AB q 1ya 1yb P ABŽ . Ž . Ž . Ž . Ž . Ž .Ž . 1 1 1 2

q 1ya 1yb P AB q 1ya 1yb P A B . 17.14Ž . Ž . Ž . Ž . Ž . Ž .Ž .2 1 2 2

The observable odds ratio is then

p AB p A BŽ . Ž .
os , 17.15Ž .

p AB p ABŽ . Ž .

Ž .which bears no necessary relation to � in 17.10 .
Ž . Ž .Suppose that, if hypertension A and endometrial cancer B were

observed without error in a hospitalized sample, their probabilities of joint
occurrence would be as in Table 17.8. Suppose further that the probability of
correctly ascertaining the presence of hypertension is a s0.90, of correctly1
ascertaining the absence of hypertension is 1ya s0.98, of correctly ascer-2
taining the presence of endometrial cancer is b s0.95, and of correctly1
ascertaining the absence of endometrial cancer is 1yb s0.98. These rates2

Žof correct ascertainment, all empirically determined see Barron, 1977, for
.references , are all high.

Ž . Ž .The observable rates of joint occurrence are, by 17.11 � 17.14 ,

p AB s0.110, 17.16Ž . Ž .

p AB s0.070, 17.17Ž . Ž .

p AB s0.220, 17.18Ž . Ž .

p A B s0.600. 17.19Ž .Ž .

The observable value of the odds ratio is then

0.110�0.600
os s4.29, 17.20Ž .0.970�0.220
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over 25% lower than the odds ratio from the accurate data of Table 17.8,

0.122�0.607
�s s5.85. 17.21Ž .0.060�0.211

17.4. STATISTICAL CONTROL FOR ERROR

Occasionally, an investigator has available two or more ways to determine the
Žstatus of a patient�one quite expensive but reliable i.e., subject to little

.error , the others relatively inexpensive but unreliable. To plan a survey or
comparative study on even a moderate scale, the investigator must, to keep
the cost of the study as low as possible, employ one of the unreliable devices
Ž .Rubin, Rosenbaum, and Cobb, 1956 .

If the investigator uses only an unreliable device, he or she runs the risk of
obtaining the kinds of biased estimates described in the preceding sections.
By assessing a subsample with both the unreliable and more reliable devices,
however, the investigator can estimate, for a relatively small added cost, the
rates of misclassification and thus correct the bias.

Consider, as an example, the determination of the current smoking habits
of a sample of subjects. The investigator can rely solely on the subject’s
report, sacrificing reliability for simplicity. A chemical test for the concentra-

Žtions of thiocyanates in the subject’s urine, saliva, or plasma Densen et al.
.1967 , on the other hand, would mean paying for precision.

Suppose that a sample of N newly hospitalized women diagnosed with
lung cancer is to be evaluated for smoking habits, and suppose that the
investigator chooses to rely on each woman’s verbal report on her current
smoking practice. For simplicity, each woman is characterized as either a

Ž .heavy smoker say, smoking ten or more cigarettes per day, on the average
or not. Let P denote the proportion who report heavy smoking.L

Self-reported smoking status has the virtue of being inexpensive but the
drawback of possibly excessive error. Suppose, therefore, that the investigator
decides to estimate the degree of error in the patients’ reports by taking a
subsample of size n out of the total of N lung cancer patients and, in
addition, testing their plasma concentration of thiocyanates. A positive result
on the test indicates the patient is a heavy smoker; a negative result indicates
she is not a heavy smoker.

The results of this blood test cannot establish the patient’s true status, not
only because the dichotomy between heavy and nonheavy smoking is impre-
cise but also because the results of the test are themselves subject to random
fluctuations. Nevertheless, because of its greater reproducibility, the blood
test may be viewed as a standard against which to compare verbal reports.

Let Table 17.9 represent the cross-classification of reported and tested
smoking status for the subsample of n lung cancer patients. The notation is

Ž .that of Tenenbein 1970, 1971 . From these data we estimate as n rn the00 0
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Table 17.9. Smoking status as determined by report and
by the standard blood test

Standard

Report Heavy Not Heavy Total

Heavy n n n00 01 0
Not Heavy n n n10 11 1

proportion of women, among those who report heavy smoking, who would be
assigned to the heavy smoking category by the standard, and as n rn the10 1
proportion of women, among those who do not report heavy smoking, who
would be assigned to the heavy smoking category by the standard. Recalling
that p is the overall proportion of women assigned to the heavy smokingL
category on the basis of verbal report, it is easily checked that an estimate of
the overall proportion who would have been so assigned by the standard is

n n00 10P̂ s p q 1yp . 17.22Ž . Ž .L L Ln n0 1

Whereas the estimated standard error of p is simply p 1yp rN , that' Ž .L L L
ˆof P is more complicated:L

ˆ ˆ$ P 1yPŽ . NynL Lˆse P s 1q 1yK , 17.23( Ž . Ž .Ž .L ½ 5N n

where
2

P̂ yn .n1yp Ž .L 10 1LKs � . 17.24Ž .p ˆ ˆL P 1yPŽ .L L

Ž . Ž .The estimate 17.22 and standard error 17.23 are derived by Tenenbein
Ž .1970, 1971 , who also gives criteria for choosing a reasonable value of n.

Ž .Deming 1977 presents an interesting application of what is essentially
Tenenbein’s double-sampling scheme to a problem in survey sampling and
gives some further criteria for choosing a value of n. Chiacchierini and

Ž .Arnold 1977 extend Tenenbein’s scheme to the case where both variables
Ž .are subject to error, and Hochberg 1977 extends it to the case of multidi-

mensional cross-classification tables. Other approaches to the estimation of
Ž . Ž .correction factors are described by Harper 1964 , Bryson 1965 , and Press

Ž .1968 .
The following numerical example illustrates the algebra presented above.

Suppose that, of a total of 200 female lung cancer patients interviewed, 88
respond that they smoke ten or more cigarettes a day. The observed, but
biased, rate of heavy smoking among lung cancer patients is, by self-report,

p s0.44. 17.25Ž .L
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Table 17.10. Smoking status of 50 lung cancer patients
determined by report and by chemical test

Standard

Report Heavy Not Heavy Total

Heavy 18 2 20
Not Heavy 6 24 30

Suppose, further, that 50 of the 200 patients are also tested for levels of
serum thiocyanates, and that the resulting cross-classification is as given in
Table 17.10. Then n rn s18r20s0.90 and n rn s6r30s0.20 are the00 0 10 1

Ž .two correction factors, and substitution into 17.22 yields

P̂ s0.90�0.44q0.20�0.56s0.51, 17.26Ž .L

an improved estimate of the rate of heavy smoking in this group. Note that
Ž .the rate given in 17.25 is an underestimate by more than 10%.

ˆ Ž .To determine the standard error of P , the quantity K given by 17.24L
must first be calculated. It is

20.51y0.200.56 Ž .
Ks � s0.4894. 17.27Ž .0.44 0.51�0.49

Ž .Substitution of this value in 17.23 yields

$ 0.51�0.49 150ˆ 'se P s 1q0.5106� s 0.0032 s0.06 17.28Ž .Ž . (L ž /200 50

ˆas the estimated standard error of P .L
If the study is a comparative one, such as comparing the rates of heavy

smoking among lung cancer and breast cancer patients, then a subsample of
the breast cancer patients would also have to undergo the blood test.
Problem 17.3 gives some comparative data for analysis.

17.5. PROBABILISTIC CONTROL FOR ERROR

On occasion, external sources provide information on the magnitude of error.
In the example presented in Section 17.3, the rates of correct and incorrect
ascertainment of hypertension and endometrial cancer were from sources
other than those giving rise to the data on association between these two
diseases. The notation here is the same as that used in Section 17.3, and the

Ž .results are those of Barron 1977 .
Ž . Ž .In practice, one obtains the fallible estimates p AB , p AB , and so on,

and may have available from one source or another the values of a , a , b ,l 2 1
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Ž . Ž . Ž .and b see Table 17.7 . Equations 17.11 � 17.14 may be inverted to yield2
values for the underlying correct probabilities as follows, where

p A sp AB qp AB 17.29Ž . Ž . Ž . Ž .

and

p B sp AB qp AB . 17.30Ž . Ž . Ž . Ž .

The correct probabilities are

p AB qa b ya p B yb p AŽ . Ž . Ž .2 2 2 2P AB s , 17.31Ž . Ž .a ya b ybŽ . Ž .1 2 1 2

yp AB ya b qa p B qb p AŽ . Ž . Ž .2 1 2 1P AB s , 17.32Ž . Ž .a ya b ybŽ . Ž .1 2 1 2

yp AB ya b qa p B qb p AŽ . Ž . Ž .1 2 1 2P AB s , 17.33Ž . Ž .a ya b ybŽ . Ž .1 2 1 2

p AB qa b ya p B yb p AŽ . Ž . Ž .1 1 1 1P A B s . 17.34Ž .Ž . a ya b ybŽ . Ž .1 2 1 2

Ž . Ž . Ž .With p AB s0.110, p A s0.110q0.070s0.180, and p B s0.110q
w Ž . Ž .x0.220s0.330 see 17.16 � 17.18 and with a s0.9, a s0.02, b s0.95, and1 2 1

b s0.02, the correct probabilities are2

P AB s0.122, 17.35Ž . Ž .

P AB s0.060, 17.36Ž . Ž .

P AB s0.211, 17.37Ž . Ž .

P A B s0.607, 17.38Ž .Ž .

that is, identical to the values originally presented in Table 17.8.
When independent estimates of the probabilities of correct ascertainment

Ž . Ž .are available, 17.31 � 17.34 may be applied to obtain the correct probabili-
ties, and desired measures of association may be derived from these rather
than from the probabilities based on the erroneous observations. Explicit

Ž .formulas for standard errors are given by Selen 1986 via a likelihood
approach.
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17.6. EXPERIMENTAL CONTROL OF ERROR

It is almost always possible to modify a contemplated research design to
reduce the probable magnitude of error. Only a few of the large number of
techniques and ideas can be presented here. One procedure is modeled on
the double-blind feature of a properly designed clinical trial. In a double-blind
trial, patients are unaware which of the drugs being compared they take, and
investigators evaluate their responses without knowing which treatment they
received.

Keeping both patients and evaluators in the dark is obviously desirable for
studies in which the presence or absence of a disease and the presence or

Žabsence of an antecedent factor are determined at nearly the same time e.g.,
patients admitted to an acute treatment ward for whom neither previous

.records nor the opportunity for followup may exist . Diagnosticians who
know whether or not the factor is present may favor one or another of the
diagnoses under study. A form of control is to instruct diagnosticians not to
ask about the antecedent factor unless it is pathognomonic.

Evaluators seeking to establish the presence or absence of the factor may,
if they know the diagnosis, favor recording the factor as present or absent.
A form of control is to keep evaluators ignorant of the diagnosis.

Patients may respond differently if they know, or even believe, that they
have the disease being studied. A form of control is to keep patients ignorant
of the diagnosis until all background information of interest has been
collected. An ethical problem must be solved here: just how much can be

Žwithheld from patients, and for how long, must be determined ad hoc see
.Levin, 1954 .

We have so far taken for granted that the person responsible for making
the diagnosis is not the person responsible for eliciting information on the
background factors. The two roles are not always separable, but results from
a study in which the same person assumed both roles are always suspect. An
example of the bias which may arise is provided by a study of psychiatric

Ž .concomitants of systemic lupus erythematosus SLE .
ŽA number of reports suggested that the frequency both incidence and

.prevalence of psychological disturbance among SLE patients is unusually
Ž .high. As part of a study of this phenomenon Ganz et al. 1972 , a psychologist

interviewed, using a structured interview schedule, samples of SLE and
Ž .rheumatoid arthritis RA patients coming to clinics at four New York City

hospitals. RA patients were selected as a control group because there are
many similarities between the two diseases but few reports of psychiatric
complications in RA.

Sixty-eight SLE and 36 RA patients were interviewed, on the basis of
which each patient’s psychiatric symptomatology was characterized as severe
Ž .e.g., extreme anxiety or depression, and, occasionally, delusional thinking ,

Ž .moderate e.g., slight degrees of worrying and depression , or none. Every
attempt was made to keep the interviewer ignorant of the patients’ diagnoses.
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Table 17.11. Psychiatric symptomatology by diagnosis—results from inter©iew

Systemic Lupus Erythematosus Rheumatoid Arthritis

Ž . Ž .Symptoms N % N %

Ž . Ž .Severe 24 35% 9 25%
Ž . Ž .Moderate 19 28% 12 33%
Ž . Ž .None 25 37% 15 42%

Ž . Ž .Total 68 100% 36 100%

Table 17.11 gives the results of the categorization of symptomatology elicited
by the interview.

The proportions for the two diagnostic categories are similar. The chi
squared statistic, with 2 df, for comparing the two distributions is equal to
1.16, not significant at any meaningful level. Thus, on the basis of a struc-
tured interview conducted by an interviewer ignorant of the diagnosis, the
conclusion is that the degree of psychiatric symptomatology of SLE patients
does not differ essentially from that of RA patients.

As part of the study, the physicians notes on the same day as the interview
were also examined. The physician had not been told the results of the
interview. The same criteria used to characterize the interview data were

Ž .applied to the case notes Table 17.12 . The case notes were assessed by a
person other than the interviewer.

The proportions for the two diagnostic categories are quite different. For
example, nearly a third of the SLE patients, as opposed to only 6% of the RA
patients, were characterized on the basis of the case notes as having psychi-
atric symptoms of some kind. The value of chi squared for the data of Table
17.12 is 8.27, indicating a difference significant at the 0.05 level.

A possible explanation of the difference is that a self-perpetuating myth is
in operation. As more and more reports indicate a high frequency of
psychological disturbance among SLE patients, more and more clinicians are
influenced to observe and record its presence. In itself, this awareness is not
a bad thing. But if vigilance recording disturbances for SLE patients comes at
the expense of equal care for patients with other disorders, then the scientific
value of these observations becomes highly questionable.

Table 17.12. Psychiatric symptomatology by diagnosis—results from case notes

Systemic Lupus Erythematosus Rheumatoid Arthritis

Ž . Ž .Symptoms N % N %

Ž . Ž .Severe 5 7% 0 0%
Ž . Ž .Moderate 15 22% 2 6%
Ž . Ž .None 48 71% 34 94%

Ž . Ž .Total 68 100% 36 100%
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It therefore seems clear that an investigator should rely on a person
ignorant of the status of the patient for the collection of background and
other information. The desirability of a structured interview or questionnaire
�where the questions to be asked and the probes to be made are set forth
explicitly, and where the responses are precoded�may be less clear.

Establishing the questions to be asked ensures that each interviewer
covers the same ground and that each subject is asked the same questions in
the same way, reducing differences in interviewing style and biases due to
different kinds of patients being interviewed differently. Precoded responses
not only procure the data in a form suitable for data entry and analysis, but
also reduce errors inherent in interpreting verbal, sometimes anecdotal
reports.

Refinement of standardized interviews, with obligatory questions that
elicit information about symptoms, and use of stated algorithms to reach a

Ždiagnosis, have been crucial in improving reliability Spitzer et al., 1967;
Wing, et al., 1967; Spitzer et al., 1970; Endicott and Spitzer, 1978; Spitzer

.et al., 1992; Williams et al., 1992; First et al., 1996; Hasin and Miele, 1997 .
Interviewers can be trained to high levels of interrater reliability using these

Ž .instruments Ventura et al., 1998 and, overall, the evidence suggests that
these efforts have substantially improved the reproducibility of psychiatric

Žresearch over that which prevailed prior to the 1980s see, e.g., Riskind et al.,
Ž1987; Skre et al., 1991. Problems and controversy remain Clark, Watson, and

.Reynolds, 1995; Nathan and Langenbucher, 1999 . The substantial gains in
reliability are not uniform across diagnostic categories. The very high levels
of comorbidity found with the existing nomenclature cause some to wonder if
the categories themselves require revision. And disputes over the advantages
of categorical vs. dimensional classification are still very much alive today.

The need for such procedures in psychiatry and bronchopulmonary
medicine is due mainly to the variability among clinicians in the way they
elicit information from patients and, having elicited the data, in the way they
interpret their findings. Similar factors are present in almost every branch of
medicine, and there is no compelling reason why the idea of the structured
interview cannot be extended. Its applicability is clear in the interview for

Ž .history see, e.g., Medical Research Council, 1966 , but rather subtle in the
Ž .assessment of X-ray negatives, electrocardiogram EKG tracings, and the

like. An important reason for diagnostic disagreement in heart disease,
for example, is that different cardiologists interpret EKGs differently; even
the same cardiologist may, on two occasions, interpret the same EKG
differently. Surely many of these differences would be reduced if cardiolo-
gists were instructed to note, on a precoded form, what the abnormalities
were that they thought they detected in each wave of the EKG. The same
idea can certainly be applied to the recording of lesions thought to be
detected from an X-ray negative.

Having information recorded on such forms, in addition to increasing
uniformity, serves yet another purpose. The data, provided they are suitably
recorded, can be quantified to provide a more objective gradation of disease
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severity than that based on clinical judgment. The major difficulty in the use
of such forms, assuming that someone has the fortitude and patience to
develop, validate, and if necessary revise one, is that clinicians unfamiliar
with them might resent having to use them. Considering, however, that such
techniques bring medical and epidemiological research closer to the ideal of
all scientific endeavor�that all criteria be publicly specified and thus that
every study be reproducible�not using them is virtually impossible to justify.

17.7.� MISCLASSIFICATION IN LOGISTIC REGRESSION MODELS

In this section we examine misclassification in the general context of the
logistic regression model. As we did for the one- and two-sample problems,
we indicate the sources of the bias in studies that measure only the misclassi-
fied variables with no validation. It is always good practice to plan a
validation subsample, and we present a method that allows correct inferences
with such data for a misclassified exposure variable.

In addition to the possible causes of misclassification given in Section 17.2,
misclassification in a binary variable can often be viewed as the result of
dichotomizing an underlying continuous variable measured with error. For
example, let a disease indicator Y be 1 if the underlying continuous severity

w xof illness, say �, is greater than a fixed threshold � , so that YsI ��� . If
the dichotomization is based on ��s�q� rather than �, where � is a

� w � xrandom error, the resulting binary variable Y sI � �� will not agree
completely with Y, causing misclassification in the disease indicator. Mea-
surement error problems are extensively studied in the context of nonlinear

Ž .regression models by Carroll, Ruppert, and Stefanski 1995 .
Statistical problems arising from surrogate variables are similar to those

arising from misclassified variables. In the smoking status example of Section
17.4, the more reliable determination by blood test is invasive and expensive,
while the less reliable verbal report is noninvasive and inexpensive. The
verbal report may therefore have to serve as a surrogate for the blood test
determination, but, in all such cases, one must decide whether to use a
surrogate by itself and thereby to risk a biased study, or together with a more
reliable determination, at least for a subsample, and thereby increase costs.
In the latter case, we knowingly permit a degree of measurement error for
pragmatic reasons, but retain an ability to adjust the study results statistically
on the basis of the validation subsample. Similar remarks apply to surrogate
markers for outcome variables, but here an additional uncertainty obtains,
especially in the context of clinical trials, where effective modification of a
surrogate marker by a treatment does not necessarily translate into effective
modification of a clinical outcome of importance by that treatment.

When inferences are drawn ignoring misclassification error, parameter
estimates can be biased and hypothesis tests can lose power, even if they
maintain the correct Type I error. This problem has been studied by many
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Ž .authors. Greenland and Robins 1985 , examining the bias due to exposure
misclassification in the presence of other covariates, note that the bias cannot
be dealt with by the usual methods for control of confounding. Greenland
Ž .1982 points out that misclassification of an exposure produces more severe
bias and power loss in matched case-control studies than in unmatched

Ž .studies. Lagakos 1988 shows that a test statistic based on a misclassified
exposure is valid under the null hypothesis, but the asymptotic relative
efficiency is the squared correlation between the exposure variable measured

Ž .with and without error. Hsieh and Walter 1988 and Reade-Christopher and
Ž .Kupper 1991 study the effect of misclassification error on association

Ž .measures such as the relative risk and attributable risk. Prentice 1989 and
Ž .Hsieh 1991 study the case in which an outcome variable is misclassified.
Ž .Prentice 1989 presents a condition for a misclassified or surrogate outcome

Ž .to produce a valid hypothesis test in a randomized clinical trial. Hsieh 1991
investigates the effect of a misclassified outcome on attributable risk. Green-

Ž .land 1988 provides variance estimators for the bias-corrected estimate of a
log odds ratio, when the error rates are estimated from an external source or

Ž .a subsample from the data at hand. Greenland and Brenner 1993 demon-
strate how to correct misclassification in ecologic analysis using error rates
estimated from an external source.

Below we consider the case of misclassification of an exposure variable
alone, an outcome variable alone, both, or neither, but with mismeasurement
of another covariate. Let the binary outcome of interest be denoted by Y, the
exposure by X, and the other covariates by Z, all measured without error.
The misclassified or mismeasured versions will be denoted with asterisks, Y � ,
X � , and Z� , respectively.

Misclassification of Exposure
To begin, assume the true model for the variables measured without error,
Ž � .P Ys1 X, Z , has the linear logistic form

�P Ys1 X , ZŽ .
ln s� q� Xq� Z.0 X Z�1yP Ys1 X , ZŽ .

Ž . Ž .�s � , � , � contains the parameter s of interest. While X need not be0 X Z
a binary exposure for the general linear logistic regression model, we can
illustrate all the important ideas simply with the binary case. If only the

� Ž � .misclassified X is observed, one cannot directly estimate P Y X, Z but
Ž � � .only P Y X , Z . To proceed, suppose that

� � �P Y X , X , Z sP Y X , Z , 17.39Ž . Ž . Ž .

that is, Y is conditionally independent of X � given X and Z. In the smoking
Ž .status example, 17.39 would imply that smoking status by verbal report does

not alter the likelihood of lung cancer among those whose smoking status by
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blood test is fixed at X with other covariates fixed at Z. This assumption
may be reasonable in many situations and is frequently used in the mismea-

Ž .surement literature see, e.g., Begg and Lagakos, 1992 . Let the distribution
� Ž � � .of X given X and Z be denoted by P X X , Z . Table 17.10 provides an

Ž � � .example of an empirical determination of P X X , Z when there are no
covariates Z. Then we have

1
� � �� � �P Y X , Z s P Y X , X , Z P X X , ZŽ . Ž . Ž .Ý

Xs0

1
�� �s P Y X , Z P X X , Z . 17.40Ž . Ž . Ž .Ý

Xs0

Ž � . Ž � � .Although P Y X, Z is linear in the logit scale, P Y X , Z is generally not.
Ž � � .For example, if P X X , Z is itself linear logistic, with

� �P X X , ZŽ . �
�ln s	 q	 X q	 Z, 17.41Ž .� 0 X Z�1yP X X , ZŽ .

then

� �P Ys1 X , ZŽ .

exp � q� ZŽ . 10 Zs �½ 5½ 5 �1qexp � q� Z 1qexp 	 q	 X q	 ZŽ . Ž .0 Z 0 X Z

exp � q� q� Z exp 	 q	 � X �q	 ZŽ . Ž .0 X Z 0 X Zq ,�½ 5 ½ 5�1qexp � q� q� Z 1qexp 	 q	 X q	 ZŽ . Ž .0 X Z 0 X Z

which is not of linear logistic form unless � s0. One can verify that ifX
Ž � � . Ž � . �� s0, then P Y X , Z sP Y X, Z , so a test statistic for � s0 using XX X

Ž � � .would be valid. However, in estimating � , if we specify P Y X , ZX
incorrectly as linear logistic, say

� �P Ys1 X , ZŽ . � � � �ln s� q� X q� Z, 17.42Ž .� 0 X Z�1yP Ys1 X , ZŽ .

then the naive estimate for � � is inconsistent for � .X X
Ž � � . Ž � � .If the correct forms of P Y X , Z and P X X , Z were known, we

Ž � . Ž . �could solve for P Y X, Z by inverting equations 17.40 for X s1 and
� Ž � � . Ž � � .X s0. Usually P Y X , Z is not known and P X X , Z must be esti-

mated from jointly observed exposures, so we need a more sophisticated
estimation procedure, which we consider below.
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Misclassification of Outcome
Next suppose the outcome variable Y alone is misclassified. If we observe
Ž � . Ž � � . Ž � .Y , X, Z , we can only estimate P Y X, Z directly, but not P Y X, Z .

Ž .Analogous to 17.40 , we have

1
� �� � �P Y X , Z s P Y Y , X , Z P Y X , Z . 17.43Ž . Ž . Ž . Ž .Ý

Ys0

Ž � . Ž � � .Again, if P Y X, Z is linear in the logit scale, then P Y X, Z generally is
Ž � � .not. For example, if we assume that P Y Y, X, Z is linear logistic, say

� �P Y s1 Y , X , ZŽ .
ln s
 q
 Yq
 Xq
 Z, 17.44Ž .� 0 Y X Z�1yP Y s1 Y , X , ZŽ .

then

� �P Y s1 X , ZŽ .

exp 
 q
 Xq
 ZŽ . 10 X Zs ½ 5½ 51qexp 
 q
 Xq
 Z 1qexp � q� Xq� ZŽ . Ž .0 X Z 0 X Z

exp 
 q
 q
 Xq
 Z exp � q� Xq� ZŽ . Ž .0 Y X Z 0 X Zq ,½ 5 ½ 51qexp 
 q
 q
 Xq
 Z 1qexp � q� Xq� ZŽ . Ž .0 Y X Z 0 X Z

which is not of linear logistic form, and a naive analysis using Y � in place of
Ž � � .Y would yield an inconsistent estimate of � . Even when � s0, P Y X, ZX X

still depends on X through 
 . Therefore, a test for � s0 based on Y �
X X

Ž .will be biased if 
 �0. Prentice 1989 points out that 
 should be zeroX X
for a hypothesis test for � s0 to be valid.X

Misclassification of Both Exposure and Outcome
� Ž . Ž . Ž � � .Substituting X for X in 17.43 and then using 17.40 for P Y X , Z we

have

1
� � � � �� � �P Y X , Z s P Y Y , X , Z P Y X , ZŽ . Ž . Ž .Ý

Ys0

1 1
� � �� � �s P Y Y , X , Z P Y X , Z P X X , ZŽ . Ž . Ž .Ý Ý

Ys0 Xs0

1 1
� � �� � �.s P X X , Z P Y Y , X , Z P Y X , Z .Ž . Ž . Ž .Ý Ý

Xs0 Ys0

17.45Ž .
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Thus, the estimable probability of Y � given X � and Z is a linear combina-
tion of the correct conditional probabilities of Y given X and Z, with weights
given by products of probabilities of correct and incorrect classification, in
one case of X given X � and in the other case of Y � given Y and X, each

Ž . Ž . Ž .given Z. Equation 17.45 is reminiscent of 17.11 � 17.14 for the joint
Ž � � � � .probabilities P X sx , Y sy , especially if the error rates of observing

� � Ž � � � .Y given Y do not depend on X . In that case, if � s0 then P Y X , ZX
does not depend on X � , so a test of � s0 will be valid. However, consistentX
estimation of � in the nonnull case is complicated and will not be given byX
fitting a linear logistic model for Y � given X � and Z.

( )Mismeasurement of Co©ariate Z Underadjustment Bias
Now suppose X and Y are classified without error, but that the covariate Z

Žhas measurement error. Bias in the coefficient � still the parameter ofX
.interest that often results in this situation is called underadjustment bias. It is

most easily understood in the case of a continuous covariate Z which has a
bilinear regression relation with its surrogate Z� , that is,

� � � � � � � �E Z X , Z saqbXqcZ and E Z X , Z sa qb Xqc Z . 17.46Ž . Ž . Ž .

Ž .For simplicity we have also assumed in 17.46 that the correlations and
variance ratios between Z� and Z are the same for both Xs1 and Xs0,
so that both regressions are additive in X and Z. For example, if Z is
normally distributed, and Z�sZq� , where � is normally distributed with
Ž � . �E � X, Z s0, then Z and Z are bivariate normal and have bilinear

regressions. In fact, in this case Z� is an unbiased estimator of the true value
of Z for each exposure value X. We have asbs0, and the regression of
Z� on Z is the same line for both Xs1 and Xs0.

Ž .Now consider for a moment a linear rather than linear logistic model for
the outcome Y as a function of X and Z:

� � �E Y X , Z sE Y X , Z, Z s� q� Xq� Z. 17.47Ž . Ž . Ž .0 X Z

This equation states that Y depends only on the true covariate value Z
rather than the mismeasured value. Then

� � � � � � � �E Y X , Z sE E Y X , Z, Z X , Z s� q� Xq� E Z X , Z� 4Ž . Ž . Ž .0 X Z

s � qa�� q � qb�� Xqc�� Z� . 17.48Ž . Ž . Ž .0 Z X Z Z

Thus the adjusted linear effect of X given Z� will be seen as the adjusted
risk difference

� � � � �P Ys1 Xs1, Z yP Ys1 Xs0, Z s� qb� 17.49Ž . Ž . Ž .X Z

rather than � . Bias in the estimated coefficient of X will therefore occurX
Ž . Ž . �unless either i � s0, such that Z has no true effect on Y, or ii b s0,Z
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that is, the regression of Z on Z� is the same for Xs1 and Xs0. Note,
however, that in the case where Z� is an unbiased estimator of Z or, more
generally, when the regression of Z� on Z is the same for Xs1 and Xs0,
there will be unequal regressions of Z on Z� , that is, b� �0, whenever
Ž � . Ž � . �E Z Xs1 �E Z Xs0 . That is because the regression of Z on Z has a

different slope than the regression of Z� on Z, so that if the regression line
of Z� on Z is the same for both values of X, but with different mean points,
the regression lines of Z on Z� through their respective mean points will be
distinct lines.

If Z is a true potential confounder, that is, correlated with X and with an
independent effect on Y, underadjustment bias will occur. Robbins and Levin
Ž .1983 analyze this phenomenon for the linear model under consideration
and provide a simple formula for the bias. Specifically, the linear regression

Ž .coefficient 17.49 can be expressed as a linear combination of the true
Ž � .coefficient � and the crude risk difference P yP sP Ys1 Xs1 yX 1 0

Ž � . Ž � . Ž � . 2P Ys1 Xs0 sE Y Xs1 yE Y Xs0 , with weights � and 1y� , re-
spectively, where � is the product-moment correlation between Z and Z� :

� � � � 2 2 � 4P Ys1 Xs1, Z yP Ys1 Xs0, Z s� � q 1y� P yP .Ž . Ž . Ž .X 1 0

17.50Ž .

Ž .Even if the true adjusted effect of X on Y given Z is zero � s0 , thereX
will be an apparent effect of X on Y whenever there is an imperfect

Ž . �surrogate ��1 and there are exposure group differences in Z or Z , even
if Z� is an unbiased estimator of Z. Nondifferential mismeasurement creates
a bias away from zero when the mismeasurement is in an adjustment
covariate. The bias increases as Z� becomes a poorer surrogate for Z, that
is, as � decreases in magnitude.

Note also that underadjustment bias does not occur if the regressions of Z
on Z� are the same for each level of exposure. They are not under the
random mismeasurement model, as explained above. Depending on the
context, it is an empirical question whether that model or an alternative
mismeasurement model specifying that the regressions of Z on Z� are the
same, best describes the facts. It may be, for example, that for given levels of

Ž � . Ž .qualifications for a job Z , average productivity Z is the same for men
Ž . Ž � � .and women X , that is, E Z Z , X is the same for men and women. Even

if qualifications are an imperfect surrogate for true productivity, and even if
men and women have different average levels of qualifications, use of Z�

instead of Z as an adjustment factor in a regression equation of salary levels
against sex will not exhibit underadjustment bias. Therefore caution is always
in order when considering mismeasurement models. Finkelstein and Levin
Ž .2001 discuss these two mismeasurement models and their implications in
the Title VII law of equal employment opportunity and antidiscrimination
litigation.
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( )Table 17.13. Hypothetical joint probabilities of an antecedant exposure X ,
( )disease indicator Y , and a potential confounder Z, all classified without error

Zs1 Zs0

Ž .Disease sY Disease

Ž .Exposure sX 1 0 Total Exposure 1 0 Total

1 0.05 0.05 0.10 1 0.04 0.16 0.20

0 0.05 0.05 0.10 0 0.12 0.48 0.60

Total 0.10 0.10 0.20 Total 0.16 0.64 0.80

Qualitatively similar relations occur with the logistic regression model for
Y. We shall merely illustrate here with a numerical example using a binary
covariate Z rather than a continuous one. In this case, a surrogate Z� of Z
with misclassification error cannot be an unbiased estimator of the true Z

Ž � � .because, even with nondifferential misclassification, E Z X, Z sa q0
Ž . Ž � � .a ya Z, where a sP Z s1 Zs j for js1 and 0; unless there is1 0 j
perfect agreement, a �0 and a ya �1. This does not affect the argu-0 1 0
ments given above�in our example we will still have equal regressions of Z�

on Z given X.
Suppose we have joint probabilities of an antecedent factor X, disease

indicator Y, and covariate Z, as in Table 17.13. These are assumed to hold
irrespective of Z� , given Z. The true odds ratios associating X and Y are

Ž . Ž .then each null: � s1 and � s 0.04�0.48 r 0.12�0.16 s1 in stratum1 0
Zs1 and Zs0, respectively. The linear logistic model specified here is

�P Ys1 X , ZŽ .
ln s yln 4 q ln 4 Z,Ž . Ž .�1yP Ys1 X , ZŽ .

corresponding to the linear model

� � �P Ys1 X , Z sP Ys1 X , Z, Z s0.2q0.3Z.Ž . Ž .

Now suppose the distribution of Z� given X and Z is

� 1 3 1�P Z s1 X , Z s q y ZŽ . Ž .13 4 13

3 if Zs1 ,Ž .4s 17.51Ž .1½ if Zs0 .Ž .13
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� ( )Table 17.14. Joint distribution of X, Z, and Z implied by Table 17.12 and 17.51

Xs1 Xs0

Z Z

� �Z 1 0 Total Z 1 0 Total

1 0.075 0.015 0.090 1 0.075 0.046 0.121

0 0.025 0.185 0.210 0 0.025 0.554 0.579

Total 0.1 0.2 0.3 Total 0.1 0.6 0.7

This expression gives the same conditional probabilities of correct classifica-
Ž . Ž .tion if Zs1 or misclassification if Zs0 as are in Table 17.10, such as

would be the case, say, if we were regarding smoking status as an adjustment
Ž .covariate rather than as the antecedent risk factor. Note that 17.51 also

gives the same classification probabilities for each level of exposure. The
� Ž � � .joint distribution of Z , Z, and X is given by multiplying P Z s1 X, Z in

Ž . Ž .17.51 by the joint distribution of X, Z obtained from the margins of Table
17.13. The resulting joint distribution of Z� , Z, and X is given in Table 17.14
Ž .see Problem 17.5 . Note, however, that now the conditional distribution of Z
given X and Z� does depend on X. The conditional probabilities of Z given
X and Z� derived from Table 17.14 can be summarized as follows:

� � � �P Zs1 X , Z s0.043q0.076 Xq0.576Z q0.135 XZ , 17.52Ž . Ž .

which is an interactive rather than additive model, because the variance
ratios and correlations between Z� and Z differ at the two levels of X : for
example, � s0.38 for Xs1 and � s0.52 for Xs0. Finally, taking condi-1 0

Ž � . Ž � � .tional expectations of P Ys1 X, Z sP Ys1 X, Z, Z with respect to the
conditional distribution of Z given X and Z� yields

� �Ž .P Ys1 X , Z

� � � � � �� 4Ž . Ž .sE P Ys1 X , Z, Z X , Z s0.2q0.3P Zs1 X , Z

Ž . � �s 0.2q0.3�0.043 q0.3�0.076 Xq0.3�0.576Z q0.3�0.135 XZ

s0.2129q0.0228 Xq0.1728Z�q0.0405XZ�

0.4490 for Xs1 or 0.3857 for Xs0 when Z�s1,s 17.53Ž .�½ 0.2357 for Xs1 or 0.2129 for Xs0 when Z s0.
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� � Ž .The odds ratio in the Z s 1 stratum is � s 0.4490r0.5510 r1
Ž . � �0.3857r0.6143 s 1.30, and in the Z s 0 stratum is � s0
Ž . Ž .0.2357r0.7643 r 0.2129r0.7871 s1.14, creating an association between X
and Y where none truly exists. An additive logistic model fit to data with
these underlying probabilities would estimate a coefficient for � fallingX
between ln 1.30 and ln 1.14. Note how the assumption of the misclassification

Ž . Ž � � .model 17.51 is subtly different from the assumption that P Zs1 Z , X is
the same irrespective of X, such as was used earlier in Section 17.4 in the
context of Table 17.10.

Adjustment with Double Sampling for Misclassification of Exposure
As suggested above, we need to know the relation between the variables
measured with and without error in order to estimate the logistic regression
parameters of interest. Double sampling or two-stage designs have been
widely used to address this problem. At the first stage, the mismeasured

Ž .variable surrogate or misclassified variable is observed for all subjects; at
the second stage, a random subsample with sampling fraction f is selected,
and the more reliable variable is measured for the selected subsample. This
subsample is often called a validation set, for example, when a gold-standard
variable is measured at the second stage. The sample fraction f is typically
small. In another variation, the second stage is devoted to sampling a second
imperfect variable. If the latter variable is inexpensive to measure, the
sampling fraction f may be large or even 100%.

Table 17.10 is an example of the results of a validation sample collected
Ž � � .cross-sectionally that provides information on P X, X Z and therefore

Ž � � .also P X X , Z . If independent samples of X are observed at both levels of
the misclassified exposure X � , then similar information is available. We shall
restrict attention to the case where the binary exposure X is the only variable
measured with error, and where the second-stage sample is a validation set in
which a standard, reliable measurement is available. Only minor modifica-
tions are required for the case of two imperfect exposure measures.

The analytical methods for misclassified variables are similar to those for
missing data. Since the surrogate or misclassified variable is observed for all
records, but the second-stage variable is observed only for the validation set,
the problem can be framed as one of a monotonically missing exposure
variable; and because the two-stage design uses either cross-sectional or
stratified random sampling at the second stage, the missingness mechanism is

Žknown to be either MCAR or MAR, respectively see Chapter 16 for
.terminology . However, the size of the validation set is relatively small, so an

Žanalysis based only on complete records i.e., using only the standard mea-
.surement , while unbiased, would have too little precision. Here we present a

likelihood-based method that utilizes all the data. Given the similarity to the
missing-data problem, one could also use an imputation or weighting method

Ž .as described in Chapter 16. Spiegelman and Casella 1997 use the weighting
method for misclassified data.
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Let S be the indicator for selection into the subsample: if X is observed,
Ss1. X � is observed for all records. Since the selection is made at random,

Ž � . Ž .we have P Ss1 Y, X, Z sP Ss1 . Combining contributions from the
validation and nonvalidation subsamples, the likelihood function is

n
S 1ySi iLs L L , 17.54Ž .Ł i1 i2

is1

where

1yYY ii� �L sP S s1 P Y s1 X , Z 1yP Y s1 X , Z� 4Ž . Ž . Ž .i1 i i i i i i i

and

1
Y� � i� �L s P S s0 P X sx X , Z P Y s1 X sx , X , ZŽ . Ž . Ž .Ýi2 i i i i i i i i

xs0

1yY i��� 1yP Y s1 X sx , X , Z� 4Ž .i i i i

1
Y� i� �sP S s0 P X sx X , Z P Y s1 X sx , ZŽ . Ž . Ž .Ýi i i i i i i

xs0

�
1yY i�1yP Y s1 X sx , Z ,� 4Ž .i i i

Ž � � . Ž .and where P X sx X , Z follows 17.41 . Note that, as constant factors,i i i
Ž .P S does not affect maximization of the likelihood function over � and 	 .i

Ž . Ž � . � Ž .4Let P � , X , Z sP Y s1 X , Z s1r 1qexpy � q� X q� Z .i i i i i i 0 X i Z i
Ž .The score equation for � derived from the logarithm of 17.54 has the

following form:

Y yP � , X , ZŽ .i i i in
� ln L X Y yP � , X , Z� 4Ž .s SÝ i i i i ii��

is1 � Z Y yP � , X , Z� 4Ž .i i i i i

��Y yE P � , X , Z X , Y , Z� 4Ž .i i i i i i i
��E X Y yP � , X , Z X , Y , Z� 4Ž .q 1yS s0, 17.55Ž . Ž .i i i i i i i ii

� 0�Z Y yE P � , X , Z X , Y , Z� 4Ž .i i i i i i i i

where the expectations are taken with respect to the conditional distribution
of X given X � , Y , and Z , which we evaluate momentarily. Also, leti i i i
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Ž . Ž � . Ž � � . 	 s 	 , X , Z sE X X , Z . The score equation for 	 isi i i i i i i

X y 	Ž .i in
� ln L �X X y 	� 4Ž .s SÝ i i ii�	

is1 � Z X y 	� 4Ž .i i i

��E X X , Y , Z y 	Ž .Ž .i i i i i
� ��X E X X , Y , Z y 	� 4Ž .q 1yS s0. 17.56Ž .Ž . Ž .i i i i i ii

� 0�Z E X X , Y , Z y 	� 4Ž .Ž .i i i i i i

Ž . Ž . Ž . Ž .Equations 17.55 and 17.56 differ from equations 16.27 and 16.28 for
logistic regression models with missing covariates only in that the condition-
ing arguments in the expectations include X � in addition to Y and Z .i i i

The conditional distribution of X given X � , Y , and Z is obtained fromi i i i
Bayes theorem:

� �P X s1 X , Y , ZŽ .i i i i

� � �P Y X s1, Z P X s1 X , ZŽ . Ž .i i i i i is ,� �� � � �P Y X s1, Z P X s1 X , Z qP Y X s0, Z P X s0 X , ZŽ . Ž . Ž . Ž .i i i i i i i i i i i i

which can be evaluated for given values of � and 	 from the logistic model
Ž . Ž � � .for Y and 17.41 for P X X , Z . The conditional expectation of X giveni i i i i

X � , Y , and Z is thusi i i

� � � �E X X , Y , Z sP X s1 X , Y , Z , 17.57Ž .Ž . Ž .i i i i i i i i

Ž .the conditional expectation of P � , X , Z isi i i

� � � �E P � , X , Z X , Y , Z sP � , 1, Z P X s1 X , Y , Z� 4Ž . Ž . Ž .i i i i i i i i i i i i

� �qP � , 0, Z P X s0 X , Y , Z , 17.58Ž . Ž .Ž .i i i i i i

Ž .and the conditional expectation of X P � , X , Z isi i i i i

� � � �E X P � , X , Z X , Y , Z sP � , 1, Z P X s1 X , Y , Z . 17.59� 4Ž . Ž . Ž .Ž .i i i i i i i i i i i i i

ˆComputation of � and 	 can be carried out iteratively using a Newton-ˆ
Ž . Ž .Raphson algorithm using expressions 17.55 � 17.59 . A simpler way is to use

the expanded-dataset method described in Section 16.4. When one has
missing data, a record with a missing binary value is duplicated, one with the
value 1 filled in, the other with the value 0. In the case of mismeasured data,
even though the mismeasured value is observed as a 1, say, we add a
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duplicate record with the value appearing as Xs0, and, vice versa, if the
value observed is a 0, we add a duplicate record with the value Xs1. Given

Ž � � .an initial value of � and 	 , the conditional expectations P X s1 X , Y , Zi i i i
Ž � � .and P X s0 X , Y , Z are evaluated and used as weights for the dupli-i i i i

cated records, just as for the missing data procedure. Then with the ex-
panded data set and weights, two regular weighted logistic regression models
are fit, one for X and one for Y, which yield new estimates for � and 	 . The
entire process is iterated until convergence occurs.

The use of double sampling to estimate misclassification errors and to
correct for bias in logistic regression coefficients has been studied by many
authors. A double sampling scheme for estimating misclassification probabili-

Ž . Ž .ties was first proposed by Tenenbein 1970, 1971 . Palmgren 1987 finds that
double sampling is irrelevant for testing equality of two proportions when the
probabilities of misclassification are equal in the two populations. Chernoff

Ž .and Haitovsky 1990 provide optimal designs to compare two proportions.
Ž .Zelen and Haitovsky 1991 examine the asymptotic relative efficiency of

tests based on a misclassified outcome in 2�2, 2�2�K , and paired sample
cases. These authors also suggest conditional resampling, in which the

Ž .sampling probability depends on Y. Chen 1979 and Espeland and Odoroff
Ž .1985 propose likelihood methods for utilizing the validation sample to
adjust for misclassification error in log-linear models. Correcting bias due to
misclassification of the outcome variable in the context of logistic regression

Ž . Ž .is studied by Pepe 1992 , Magder and Hughes 1997 , and Cheng and Hsueh
Ž . Ž .1999 . For measurement error in exposure, Stefansky 1985 and Armstrong
Ž .1985 propose a method applicable to generalized linear models with contin-

Ž .uous or categorical covariates. Spiegelman 1994 considers sample size
Ž .issues, and Elton and Duffy 1983 investigate a likelihood-based method.

The case in which both outcome and exposure variables are prone to error is
Ž .considered by Espeland and Hui 1987 . Some authors present methods

Žbased on an estimating-equation approach Liu and Liang, 1991, 1992; Wang,
.Carroll, and Liang, 1996; Wang and Pepe, 2000 . Interesting applications in

Ž .epidemiology and economics can be found in Lee and Forey 1996 , Stewart
Ž . Ž .et al. 1998 , and Pfeffermann, Skinner, and Humphreys 1998 . Wacholder,

Ž .Armstrong, and Hartge 1993 examine the case where the validation set is
also measured with error. When two imperfect exposure measurements are

Ž . Ž .available, Duffy, Rohan, and Day 1989 and Kosinski and Flanders 1999
propose likelihood-based methods.

PROBLEMS

17.1. The text cited the differences among the five New York state hospitals
in the proportions of patients diagnosed catatonic, out of all those
diagnosed either catatonic or paranoid.
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( )a The frequencies are given below. Calculate the indicated propor-
tions.

Proportion
Hospital Catatonic Paranoid Total Catatonic

Central Islip 32 80 112 sp1
Pilgrim 78 76 154 sp2
Brooklyn 13 18 31 sp3
Kings Park 55 96 151 sp4
Rockland 37 87 124 sp5

Total 215 357 572 sp

( )b The chi squared statistic for comparing a series of proportions is
Ž .given by 9.4 . Calculate chi squared for the proportions deter-
Ž .mined in a .

( )c Refer the value just calculated to Table A.2 with 4 df. At what
significance level would the hypothesis of no difference in propor-
tions be rejected? What would you conclude about the standards
for the differential diagnosis of catatonic and paranoid schizophre-
nia in the five hospitals?

17.2. Suppose that the rate of smoking among women aged 55�64 who were
newly diagnosed as having lung cancer is P s0.50, and suppose thatL
the error rates are E s0.25 and F s0.05.L l

( ) w Ž .xa What is the value of p see 17.3 , the estimated proportion ofL
such women who ever smoked?

Suppose that the rate of smoking among women aged 55�64 who
were newly diagnosed as having breast cancer is P s0.40, and supposeB
that the error rates are E sE s0.10.B F

( ) w Ž .xb What is the value of p see 17.4 , the estimated proportion ofB
such women who ever smoked?

( )c What is the value of P yP ? What is the value of p yp ? HowL B L B
do these compare?

( )d What is the odds ratio as a function of P and P ? What is theL B
odds ratio as a function of p and p ? How do these compare?L B

17.3. We considered, in Section 17.4, a means of correcting for the bias in an
observed proportion. We now consider the comparison of two propor-
tions, both of which are subject to error.
( )a The value of p , the rate of heavy smoking among lung cancerL

patients based on verbal report, was 0.44. Suppose that 200 women
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with cancer of the breast are interviewed, with 60 of them indicat-
ing that they are heavy smokers. What is the value of p , the rateB
of heavy smoking among breast cancer patients? What is the value
of the odds ratio measuring the degree of association between type
of cancer and heavy smoking?

( )b Based on the determination of smoking status by both response to
interview and chemical test for 50 lung cancer patients, the rate of
heavy smoking was adjusted to P s0.51. Suppose that 50 breastL
cancer patients are likewise given a chemical test in addition to an
interview, with the following results:

Chemical Test

Report Heavy Not Heavy Total

Heavy 18 0 18
Not Heavy 2 30 32

What are the values of the two correction factors, n rn and00 0
n rn , which are to be applied to p ? What value of P results10 1 B B
from the adjustment

n n00 10P s p q 1yp ?Ž .B B Bn n0 1

What is the value of the odds ratio associated with the adjusted
rates? Does the association between heavy smoking and type of

Ž .cancer now appear weaker or stronger than in a ?
( )c Suppose instead that the cross-classification for the subsample of

50 breast cancer patients yielded the following results:

Chemical Test

Report Heavy Not Heavy Total

Heavy 16 2 18
Not Heavy 7 25 32

What are the values of the correction factors, n rn and n rn ?00 0 10 1
What is the resulting value of P ? What is the resulting value ofB
the odds ratio? Does the association appear weaker or stronger

Ž .than in a ?

17.4. Suppose that the value of the correction factor n rn was the same00 0
for the two kinds of patients and that the value of the correction factor
n rn was likewise the same. What is a simple expression for P yP10 1 L B
as a function of p yp and of the difference n rn yn rn ?L B 00 0 10 1



MISCLASSIFICATION: EFFECTS, CONTROL, AND ADJUSTMENT592

Ž .17.5. Confirm the numerical values in Table 17.14 and expressions 17.52
Ž . wand 17.53 . Hint. Use Bayes’ theorem to write

� � �P Z Z, X P Z XŽ . Ž .��P Z X , Z sŽ . � �P Z XŽ .

� � �P Z Z, X P Z XŽ . Ž . xs .� �� � � �P Z Zs1, X P Zs1 X qP Z Zs0, X P Zs0 XŽ . Ž . Ž . Ž .
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C H A P T E R 1 8

The Measurement of
Interrater Agreement

The statistical methods described in the preceding chapter for controlling for
error are applicable only when the rates of misclassification are known from
external sources or are estimable by applying a well-defined standard classifi-
cation procedure to a subsample of the group under study. For some
variables of importance, however, no such standard is readily apparent.

To assess the extent to which a given characterization of a subject is
reliable, it is clear that we must have a number of subjects classified more
than once, for example by more than one rater. The degree of agreement
among the raters provides no more than an upper bound on the degree of
accuracy present in the ratings, however. If agreement among the raters is
good, then there is a possibility, but by no means a guarantee, that the ratings
do in fact reflect the dimension they are purported to reflect. If their
agreement is poor, on the other hand, then the usefulness of the ratings is
severely limited, for it is meaningless to ask what is associated with the
variable being rated when one cannot even trust those ratings to begin with.

In this chapter we consider the measurement of interrater agreement
when the ratings are on categorical scales. Section 18.1 is devoted to the case
of the same two raters per subject. Section 18.2 considers weighted kappa to
incorporate a notion of distance between rating categories. Section 18.3 is
devoted to the case of multiple ratings per subject with different sets of
raters. Applications to other problems are indicated in Section 18.4. Section
18.5* relates the results of the preceding sections to the theory presented in
Chapter 15 on correlated binary variables.

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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Table 18.1. Diagnoses on ns100 subjects by two raters

Rater B

Rater A Psychotic Neurotic Organic Total

Psychotic 0.75 0.01 0.04 0.80
Neurotic 0.05 0.04 0.01 0.10
Organic 0 0 0.10 0.10

Total 0.80 0.05 0.15 1.00

18.1. THE SAME PAIR OF RATERS PER SUBJECT

Suppose that each of a sample of n subjects is rated independently by the
same two raters, with the ratings being on a categorical scale consisting of k
categories. Consider the hypothetical example of Table 18.1, in which each
cell entry is the proportion of all subjects classified into one of ks3
diagnostic categories by rater A and into another by rater B. Thus, for
example, 5% of all subjects were diagnosed neurotic by rater A and psychotic
by rater B.

Suppose it is desired to measure the degree of agreement on each
category separately as well as across all categories. The analysis begins by
collapsing the original k�k table into a 2�2 table in which all categories
other than the one of current interest are combined into a single ‘‘all others’’
category. Table 18.2 presents the results in general, as well as for neurosis
from Table 18.1 in particular. It must be borne in mind that the entries a, b,
c, and d in the general table refer to proportions of subjects, not to their
numbers.

The simplest and most frequently used index of agreement is the overall
proportion of agreement, say

p saqd. 18.1Ž .o

Table 18.2. Data for measuring agreement on a single category

General For Neurosis

Rater B Rater B

Given All All
Rater A Category Others Total Rater A Neurosis Others Total

Given
category a b p Neurosis 0.04 0.06 0.101

All others c d q All others 0.01 0.89 0.901

Total p q 1 Total 0.05 0.95 1.002 2
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Table 18.3. Values of se©eral indices of agreement from data of Table 18.1
�Category p p � p A �o s r s

Psychotic 0.90 0.94 0.88 0.75 0.84 0.69
Neurotic 0.93 0.53 0.06 0.96 0.75 0.50
Organic 0.95 0.80 0.60 0.97 0.89 0.77

p , or a simple variant of it such as 2 p y1, has been proposed as theo o
Ž .agreement index of choice by Holley and Guilford 1964 and by Maxwell

Ž .1977 . For neurosis, the overall proportion of agreement is

p s0.04q0.89s0.93.o

This value, along with the overall proportions of agreement for the other two
categories, is given in the column labeled p in Table 18.3. The conclusiono
that might be drawn from these values is that agreement is, effectively,
equally good on all three categories, with agreement on organic disorders
being somewhat better than on neurosis, and agreement on neurosis being
somewhat better than on psychosis.

Suppose the category under study is rare, so that the proportion d,
representing agreement on absence, is likely to be large and thus to inflate
the value of p . A number of indices of agreement have been proposed thato
are based only on the proportions a, b, and c. Of all of them, only the
so-called proportion of specific agreement, say

2 a a
p s s , 18.2Ž .s 2 aqbqc p

Ž .where ps p qp r2, has a sensible probabilistic interpretation. Let one of1 2
the two raters be selected at random, and let attention be focused on the
subjects assigned to the category of interest. The quantity p is the condi-s
tional probability that the second rater will also make an assignment to that
category, given that the randomly selected first rater did. This index was first

Ž .proposed by Dice 1945 as a measure of similarity.
The proportion of specific agreement on neurosis is

2�0.04
p s s0.53,s 2�0.04q0.06q0.01

and the values for all three categories are presented in the column headed ps
in Table 18.3. The conclusions based on p are rather different from thoses
based on p . Agreement now seems best on psychosis, rather less good ono
organic disorders, and much poorer than either on neurosis.
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Define qs1yp, or

1 bqc
qs q qq sdq , 18.3Ž . Ž .1 22 2

Ž .and suppose that q�p. Goodman and Kruskal 1954 proposed

aqd yq 2 ay bqcŽ . Ž .
� s s 18.4Ž .r 1yq 2 aq bqcŽ .

as an index of agreement; it is motivated less by notions of agreement than by
a consideration of the frequencies of correct predictions of a subject’s
category when predictions are made with and without knowledge of the joint
ratings. � assumes its maximum value of q1 when there is completer
agreement, but assumes its minimum value of y1 whenever as0, irrespec-

w Ž .tive of the value of d not, as Goodman and Kruskal 1954, p. 758 imply,
xonly when aqds0 .

For neurosis,

2�0.04y 0.06q0.01Ž .
� s s0.06,r 2�0.04q 0.06q0.01Ž .

and the values of � for all three categories are listed under the indicatedr
column of Table 18.3. Because of the identity

� s2 p y1, 18.5Ž .r s

the categories are ordered on � exactly as on p .r s
The proportion of specific agreement ignores the proportion d. If, instead,

we choose to ignore a, we would calculate the corresponding index, say

d 2 d�p s s , 18.6Ž .s 2 dqbqcq

where qs1yp. For neurosis

2�0.89�p s s0.96,s 2�0.89q0.06q0.01

and this value and the other two are presented in the indicated column of
Table 18.3. Yet a different picture emerges from these values than from

Ž .earlier ones. Agreement with respect to absence on organic disorders and
on neurosis seems to be equally good and apparently substantially better than
on psychosis.
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Rather than having to choose between p and p� , Rogot and Goldbergs s
Ž .1966 proposed simply taking their mean, say

1 a d�As p qp s q , 18.7Ž . Ž .s s2 p qp q qq1 2 1 2

as an index of agreement. For neurosis,

0.04 0.89
As q s0.75.0.10q0.05 0.90q0.95

As seen in the indicated column of Table 18.3, the index A orders the three
categories in yet a new way: agreement on organic disorders is better than on
psychosis, and agreement on organic disorders and on psychosis is better
than on neurosis.

Yet other indices of agreement between two raters have been proposed
Že.g., Fleiss, 1965; Armitage, Blendis, and Smyllie, 1966; Rogot and Goldberg,

.1966; and Bennett, 1972 , but it should already be clear that there must be
more to the measurement of interrater agreement than the arbitrary selec-
tion of an index of agreement.

The new dimension is provided by a realization that, except in the most
Ž .extreme circumstances either p sq s0 or p sq s0 , some degree of1 2 2 1

Ž .agreement is to be expected by chance alone see Table 18.4 . For example, if
rater A employs one set of criteria for distinguishing between the presence
and the absence of a condition, and if rater B employs an entirely different
and independent set of criteria, then all the observed agreement is explain-
able by chance.

Different opinions have been stated on the need to incorporate chance-ex-
pected agreement into the assessment of interrater reliability. Rogot and

Ž .Goldberg 1966 , for example, emphasize the importance of contrasting
observed with expected agreement when comparisons are to be made be-
tween different pairs of raters or different kinds of subjects. Goodman and

Table 18.4. Chance-expected proportions of joint judgments
by two raters, for data of Table 18.2

General For Neurosis

Rater B Rater B

Given All All
Rater A Category Others Total Rater A Neurosis Others Total

Given
category p p p q p Neurosis 0.005 0.095 0.101 2 1 2 1

All others q p q q q All others 0.045 0.855 0.901 2 1 2 1

Total p q 1 Total 0.05 0.95 12 2
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Ž .Kruskal 1954, p. 758 , on the other hand, contend that chance-expected
agreement need not cause much concern, that the observed degree of

Žagreement may usually be assumed to be in excess of chance. Even if one is
willing to grant this assumption, one should nevertheless check whether the

.excess is trivially small or substantially large.
Ž .Armitage, Blendis, and Smyllie 1966, p. 102 occupy a position between

that of Rogot and Goldberg and that of Goodman and Kruskal. They
appreciate the necessity for introducing chance-expected agreement when-
ever different sets of data are being compared, but claim that too much
uncertainty exists as to how the correction for chance is to be incorporated
into the measure of agreement.

There does exist, however, a natural means for correcting for chance.
Consider any index that assumes the value 1 when there is complete agree-

Žment. Let I denote the observed value of the index calculated from theo
.proportions in Table 18.2 , and let I denote the value expected on the basise

Ž .of chance alone calculated from the proportions in Table 18.4 .
The obtained excess beyond chance is I yI , whereas the maximumo e

possible excess is 1yI . The ratio of these two differences is called kappa,e

I yIo e�s . 18.8Ž .ˆ 1yIe

Kappa is a measure of agreement with desirable properties. If there is
complete agreement, �sq1. If observed agreement is greater than or equalˆ
to chance agreement, �G0, and if observed agreement is less than or equalˆ
to chance agreement, �F0. The minimum value of � depends on theˆ ˆ
marginal proportions. If they are such that I s0.5, then the minimum equalse
y1. Otherwise, the minimum is between y1 and 0.

It may be checked by simple algebra that, for each of the indices of
agreement defined abo®e, the same value of � results after the chance-ˆ

Ž . Ž .expected value is incorporated as in 18.8 see Problem 18.1 :

2 adybcŽ .
�s . 18.9Ž .ˆ p q qp q1 2 2 1

An important unification of various approaches to the indexing of agreement
is therefore achieved by introducing a correction for chance-expected agree-
ment.

For neurosis,

2 0.04�0.89y0.06�0.01Ž .
�s s0.50.ˆ 0.10�0.95q0.05�0.90

This value and the other two are presented in the final column of Table 18.3.
Ž .They are close to those found by Spitzer and Fleiss 1974 in a review of the
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literature on the reliability of psychiatric diagnosis. Agreement is best on
organic disorders, less good on psychosis, and poorest on neurosis.

Ž .The kappa statistic was first proposed by Cohen 1960 . Variants of kappa
Ž . Ž .have been proposed by Scott 1955 and by Maxwell and Pilliner 1968 . All

Ž .have interpretations as intraclass correlation coefficients see Ebel, 1951 . The
intraclass correlation coefficient is a widely used measure of interrater

Ž .reliability for the case of quantitative ratings. As shown by Fleiss 1975 and
Ž . ŽKrippendorff 1970 , only kappa is identical except for a term involving the

.factor 1rn, where n is the number of subjects to that version of the
Ž .intraclass correlation coefficient due to Bartko 1966 in which a difference

Ž .between the raters in their base rates i.e., a difference between p and p1 2
is considered a source of unwanted variability.

Ž .Landis and Koch 1977a have characterized different ranges of values for
kappa with respect to the degree of agreement they suggest. For most
purposes, values greater than 0.75 or so may be taken to represent excellent
agreement beyond chance, values below 0.40 or so may be taken to represent
poor agreement beyond chance, and values between 0.40 and 0.75 may be
taken to represent fair to good agreement beyond chance.

Often, a composite measure of agreement across all categories is desired.
An overall value of kappa may be defined as a weighted average of the
individual kappa values, where the weights are the denominators of the

w Ž .xindividual kappas i.e., the quantities p q qp q in 18.9 . An equivalent1 2 2 1
and more suggestive formula is based on arraying the data as in Table 18.5.

The overall proportion of observed agreement is, say,

k

p s p , 18.10Ž .Ýo i i
is1

and the overall proportion of chance-expected agreement is, say,

k

p s p p . 18.11Ž .Ýe i . . i
is1

Table 18.5. Joint proportions of ratings by two raters
on a scale with k categories

Rater B

Rater A 1 2 ��� k Total

1 p p ��� p p11 12 1k 1.
2 p p ��� p p21 22 2k 2.. . . . .. . . . .. . . . .
k p p ��� p pk1 k 2 k k k .

Total p p ��� p 1.1 .2 . k
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The overall value of kappa is then, say,

p ypo e�̂s . 18.12Ž .1ype

For the data of Table 18.1,

p s0.75q0.04q0.10s0.89o

and

p s0.80�0.80q0.10�0.05q0.10�0.15s0.66,e

so that

0.89y0.66
�̂s s0.68.1y0.66

ŽFor testing the hypothesis that the ratings are independent so that the
. Ž .underlying value of kappa is zero , Fleiss, Cohen, and Everitt 1969 showed

that the appropriate standard error of kappa is estimated by

k$ 1 2ˆse � s p qp y p p p qp , 18.13Ž . Ž . Ž .Ý0 e e i . . i i . . i('1yp nŽ .e is1

Ž .where p is defined in 18.11 . The hypothesis may be tested against thee
alternative that agreement is better than chance would predict by referring
the quantity

k̂
zs 18.14$ Ž .

ˆse �Ž .0

to tables of the standard normal distribution and rejecting the hypothesis if z
Žis sufficiently large a one-sided test is more appropriate here than a

.two-sided test .
For the data at hand,

$ 1 2'ˆse � s 0.66q0.66 y1.0285 s0.076Ž .0 '1y0.66 100Ž .

and

0.68
zs s8.95.0.076

The overall value of kappa is therefore statistically highly significant, and, by
virtue of its magnitude, it indicates a good degree of agreement beyond
chance.
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Table 18.6. Kappas for indi©idual categories and across all categories of Table 18.1
$

Ž .Category p p � se � zˆ ˆo e 0

Psychotic 0.90 0.68 0.69 0.100 6.90
Neurotic 0.93 0.86 0.50 0.093 5.38
Organic 0.95 0.78 0.77 0.097 7.94
Overall 0.89 0.66 0.68 0.076 8.95

Ž . Ž .Formulas 18.10 � 18.14 apply even when k, the number of categories, is
equal to two. They may therefore be applied to the study of each category’s
reliability, as shown in Table 18.6 for the data of Table 18.1.

Note that the overall value of kappa is equal to the sum of the individual
Ž .differences p yp i.e., of the numerators of the individual kappas dividedo e

Žby the sum of the individual differences 1yp i.e., of the denominators ofe
.the individual kappas ,

0.90y0.68 q 0.93y0.86 q 0.95y0.78 0.46Ž . Ž . Ž .
�̂s s s0.68,0.681y0.68 q 1y0.86 q 1y0.78Ž . Ž . Ž .

ˆconfirming that � is a weighted average of the individual � ’s.ˆ
ŽFor testing the hypothesis that the underlying value of kappa either

.overall or for a single category is equal to a prespecified value � other than
Ž .zero, Fleiss, Cohen, and Everitt 1969 showed that the appropriate standard

error of � is estimated byˆ

$ 'AqByC
se � s , 18.15Ž . Ž .ˆ '1yp nŽ .e

where

k
2As p 1y p qp 1y� , 18.16Ž . Ž . Ž .ˆÝ i i i . . i

is1

2 2Bs 1y� p p qp , 18.17Ž . Ž . Ž .ˆ ÝÝ i j . i j .
i�j

2Cs �yp 1y� . 18.18Ž . Ž .ˆ ˆe

The hypothesis that � is the underlying value would be rejected if the
critical ratio

� ��y�ˆzs 18.19$ Ž .
se �Ž .ˆ

were found to be significantly large from tables of the normal distribution.
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Ž .An approximate 100 1y� % confidence interval for � is

$ $
�yz se � F�F�qz se � . 18.20Ž . Ž . Ž .ˆ ˆ ˆ ˆ�r2 �r2

Consider testing the hypothesis that the overall value of kappa underlying
Ž . Ž .the data in Table 18.1 is 0.80. The three quantities 18.16 � 18.18 needed to

ˆdetermine the standard error of � are

2As0.75 1y 0.80q0.80 1y0.68Ž . Ž .
2q0.04 1y 0.10q0.05 1y0.68Ž . Ž .
2q0.10 1y 0.10q0.15 1y0.68Ž . Ž .

s0.2995,
2 2 2Bs 1y0.68 0.01 0.80q0.10 q0.04 0.80q0.10Ž . Ž . Ž .

2 2q0.05 0.05q0.80 q0.01 0.05q0.10Ž . Ž .
2 2q0 0.15q0.80 q0 0.15q0.10Ž . Ž .

s0.0079,
2Cs 0.68y0.66 1y0.68 s0.2198.Ž .

Thus

$ '0.2995q0.0079y0.2198ˆse � s s0.087Ž . '1y0.66 100Ž .

and

� �0.68y0.80
zs s1.38,0.087

so the hypothesis that �s0.80 is not rejected.
Ž .Suppose one wishes to compare and combine g G2 independent esti-

mates of kappa. The theory of Section 10.1 applies. Define, for the mth
Ž .estimate, V � to be the squared standard error of � , that is, the squareˆ ˆm m m

Ž .of the expression in 18.15 . The combined estimate of the supposed common
value of kappa is, say,

g
�̂mÝ V �Ž .ˆm mms1

� s . 18.21Ž .ˆ goverall 1Ý V �Ž .ˆm mms1
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To test the hypothesis that the g underlying values of kappa are equal, the
value of

2g
� y�ˆ ˆŽ .m overall2� s 18.22Ž .Ýequal � ’s V �Ž .ˆm mms1

may be referred to tables of chi squared with gy1 df. The hypothesis is
rejected if the value is significantly large. The limits of an approximate

Ž .100 1y� % confidence interval for the supposed common underlying value
are given by

1
� �z . 18.23Ž .ˆ goverall �r2 1) Ý V �Ž .ˆm mms1

18.2. WEIGHTED KAPPA

Ž . Ž .Cohen 1968 see also Spitzer et al. 1967 generalized his kappa measure of
interrater agreement to the case where the relative seriousness of each
possible disagreement could be quantified. Suppose that, independently of

Žthe data actually collected, agreement weights, say w is1, . . . , k; jsi j
. 2 Ž1, . . . , k , are assigned on rational or clinical grounds to the k cells see

.Cicchetti, 1976 . The weights are restricted to lie in the interval 0Fw F1i j
and to be such that

w s1 18.24Ž .i i

Ž .i.e., exact agreement is given maximal weight ,

0Fw �1 for i� j 18.25Ž .i j

Ž .i.e., all disagreements are given less than maximal weight , and

w sw 18.26Ž .i j ji

Ž .i.e., the two raters are considered symmetrically .
The observed weighted proportion of agreement is, say,

k k

p s w p , 18.27Ž .Ý ÝoŽw . i j i j
is1 js1

where the proportions p are arrayed as in Table 18.5, and the chance-i j
expected weighted proportion of agreement is, say,

k k

p s w p p . 18.28Ž .Ý ÝeŽw . i j i . . j
is1 js1
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Weighted kappa is then given by

p ypoŽw . eŽw .
� s . 18.29Ž .ˆw 1ypeŽw .

ŽNote that, when w s0 for all i� j i.e., when all disagreements are consid-i j
.ered as being equally serious , then weighted kappa becomes identical to the

Ž .overall kappa given in 18.12 .
The interpretation of the magnitude of weighted kappa is like that of

unweighted kappa: � G0.75 or so signifies excellent agreement, for mostˆw
purposes, and � F0.40 or so signifies poor agreement.ˆw

Suppose that the k categories are ordered and that the decision is made to
apply a two-way analysis of variance to the data resulting from taking the

Ž .numerals 1, 2, . . . , k as bona fide measurements. Bartko 1966 gives a for-
mula for the intraclass correlation coefficient derived from this analysis of

Ž .variance, and Fleiss and Cohen 1973 have shown that, aside from a term
involving the factor 1rn, the intraclass correlation coefficient is identical to
weighted kappa provided the weights are taken as

2iy jŽ .
w s1y . 18.30Ž .i j 2ky1Ž .

Ž . Ž .Independently of Cohen 1968 , Cicchetti and Allison 1971 proposed a
statistic for measuring interrater reliability that is formally identical to
weighted kappa. They suggested that the weights be taken as

� �iy j
w s1y . 18.31Ž .i j ky1

The sampling distribution of weighted kappa was derived by Fleiss, Cohen,
Ž . Ž .and Everitt 1969 and confirmed by Cicchetti and Fleiss 1977 , Landis and

Ž . Ž . Ž .Koch 1977a , Fleiss and Cicchetti 1978 , and Hubert 1978 . For testing the
hypothesis that the underlying value of weighted kappa is zero, the appropri-
ate estimated standard error of � isˆw

k k$ 21 2se � s p p w y w qw yp , 18.32Ž .Ž .ˆ Ž .Ý Ý0 w i . . j i j i . . j eŽw .)'1yp nŽ .eŽw . is1 js1

where
k

w s p w 18.33Ž .Ýi . . j i j
js1

and
k

w s p w , 18.34Ž .Ý. j i . i j
is1
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The hypothesis may be tested by referring the value of the critical ratio

�̂wzs 18.35$ Ž .
se �Ž .ˆ0 w

to tables of the standard normal distribution.
For testing the hypothesis that the underlying value of weighted kappa is

equal to a prespecified � other than zero, the appropriate formula for thew
estimated standard error of � isˆw

$ 1
se � sŽ .ˆw '1yp nŽ .eŽw .

k k
2 2

� p w y w qw 1y� y � yp 1y� .Ž . Ž .ˆ ˆ ˆŽ .Ý Ý i j i j i . . j w w eŽw . w)
is1 js1

18.36Ž .

The hypothesis may be tested by referring the value of the critical ratio

� �� y�ˆw wzs 18.37$ Ž .
se �Ž .ˆw

to tables of the standard normal distribution and rejecting the hypothesis if
the critical ratio is too large.

Ž .It may be shown see Problem 18.4 that the standard errors of un-
Ž . Ž .weighted kappa given in 18.13 and 18.15 are special cases of the standard

Ž . Ž .errors of weighted kappa given in 18.32 and 18.36 when w s1 for all ii i
and w s0 for all i� j.i j

Some attempts have been made to generalize kappa to the case where
Žeach subject is rated by each of the same set of more than two raters Light,

. Ž .1971; Landis and Koch, 1977a . Kairam et al. 1993 use the multivariate
multiple noncentral hypergeometric distribution to study kappa in the case of
mG2 fixed raters with a prespecified interview schedule of subjects. Their
analysis allows some subjects not to be seen by some raters. We consider in

Ž .the next section the problem of different raters for different subjects when i
Ž . Ž .ks2 with varying m , or ii k�2 with m sm for all i. Kraemer 1980i i

considered the case in which k�2 with varying m .i

18.3. MULTIPLE RATINGS PER SUBJECT WITH DIFFERENT RATERS

Suppose that a sample of n subjects has been studied, with m being thei
number of ratings on the ith subject. The raters responsible for rating one
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subject are not assumed to be same as those responsible for rating another.
Suppose, further, that ks2, that is, that the ratings consist of classifications
into one of two categories; the case k�2 will be considered later in this

Ž .section. Finally, let x denote the number of arbitrarily defined positivei
ratings on subject i, so that m yx is the number of negative ratings on him.i i

Identities between intraclass correlation coefficients and kappa statistics
will be exploited to derive a kappa statistic by starting with an analysis of

Ž .variance applied to the data forming a one-way layout obtained by coding a
positive rating as 1 and a negative rating as 0. This was precisely the

Ž .approach taken by Landis and Koch 1977b , except that they took the
number of degrees of freedom for the mean square between subjects to be
ny1 instead of, as below, n.

Define the overall proportion of positive ratings to be

Ýn xis1 ips , 18.38Ž .nm

where

Ýn mis1 ims , 18.39Ž .n

the mean number of ratings per subject. If the number of subjects is large
Ž . Ž .say, nG20 , the mean square between subjects BMS is approximately
equal to

2n x ym pŽ .1 i iBMSs 18.40Ž .Ýn miis1

Ž .and the mean square within subjects WMS is equal to

n x m yxŽ .1 i i iWMSs . 18.41Ž .Ý mn my1Ž . iis1

Technically, the intraclass correlation coefficient should be estimated as

BMSyWMS
rs , 18.42Ž .BMSq m y1 WMSŽ .0

where

2nÝ m ymŽ .is1 im smy . 18.43Ž .0 n ny1 mŽ .

If n is at all large, though, m and m will be very close in magnitude. If m0 0
Ž .is replaced by m in 18.42 , the resulting expression for the intraclass
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correlation coefficient, and therefore for kappa, is

BMSyWMS
�sˆ BMSq my1 WMSŽ .

n x m yxŽ .i i iÝ miis1
s1y , 18.44Ž .

n my1 pqŽ .

where qs1yp.
� has the following properties. If there is no subject-to-subject variation inˆ

Žthe proportion of positive ratings i.e., if x rm sp for all i, with p not equali i
.to either 0 or 1 , then there is more disagreement within subjects than

between subjects. In this case � may be seen to assume its minimum value ofˆ
Ž .y1r my1 .

If the several proportions x rm vary exactly as binomial proportions withi i
parameters m and a common probability p, then there is as much similarityi
within subjects as between subjects. In this case, the value of � is equal to 0.ˆ

If each proportion x rm assumes either the values 0 or 1, then there isi i
perfect agreement within subjects. In this case, � may be seen to assume theˆ
value 1.

Consider the hypothetical data of Table 18.7 on ns25 subjects. For these
data, the mean number of ratings per subject is

81
ms s3.24,25

Table 18.7. Hypothetical ratings by different sets of raters on ns25 subjects

Number of Number of
Subject Raters, Positive Ratings,

i m x i m xi i i i

1 2 2 14 4 3
2 2 0 15 2 0
3 3 2 16 2 2
4 4 3 17 3 1
5 3 3 18 2 1
6 4 1 19 4 1
7 3 0 20 5 4
8 5 0 21 3 2
9 2 0 22 4 0

10 4 4 23 3 0
11 5 5 24 3 3
12 3 3 25 2 2
13 4 4 Total 81 46
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the overall proportion of positive ratings is

46
ps s0.568,25�3.24

Ž .and the value of Ý x m yx rm isi i i i

25 x m yxŽ .i i i s6.30.Ý miis1

Ž .The value of kappa in 18.44 for these ratings is therefore

6.30
�s1yˆ 25 3.24y1 �0.568�0.432Ž .

s0.54,

indicating only a modest degree of interrater agreement.
Ž .Fleiss and Cuzick 1979 derived the standard error of � appropriate forˆ

testing the hypothesis that the underlying value of kappa is 0. Define m toH
be the harmonic mean of the number of ratings per subject, that is,

n
m s . 18.45Ž .nH Ý 1rmis1 i

The standard error of � is estimated byˆ

$ mym 1y4 pqŽ .Ž .1 Hse � s 2 m y1 q , 18.46Ž . Ž .Ž .ˆ0 H( mpqmy1 nmŽ .' H

and the hypothesis may be tested by referring the value of the critical ratio

�̂
zs 18.47$ Ž .

se �Ž .ˆ0

to tables of the standard normal distribution.
For the data of Table 18.7,

25
m s s2.935H 8.5167
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and

$ 1
se � sŽ .ˆ0 '3.24y1 25�2.935Ž .

3.24y2.935 1y4�0.568�0.432Ž . Ž .
� 2 2.935y1 qŽ .( 3.24�0.568�0.432

s0.103.

Ž .The value of the critical ratio in 18.47 is then

0.54
zs s5.24,0.103

indicating that � is significantly greater than zero.ˆ
Suppose, now, that the number of categories into which ratings are made

is kG2. Denote by p the overall proportion of ratings in category j and by �̂j j
Ž .the value of kappa for category, j, js1, . . . , k. Landis and Koch 1977b

proposed taking the weighted average

kÝ p q �̂js1 j j j
�̂s 18.48Ž .

kÝ p qjs1 j j

as an overall measure of interrater agreement, where q s1yp . The stan-j j
ˆdard error of � has yet to be derived, when the numbers of ratings per

subject vary, to test the hypothesis that the underlying value is zero.
When, however, the number of ratings per subject is constant and equal to

ˆm, simple expressions for � , � , and their standard errors are available.ˆj
Ž .Define x to be the number of ratings on subject i is1, . . . , n into categoryi j

Ž .j js1, . . . , k ; note that

k

x sm 18.49Ž .Ý i j
js1

for all i. The value of � is thenˆj

Ýn x myxŽ .is1 i j i j
� s1y , 18.50Ž .ˆj nm my1 p qŽ . j j

ˆand the value of � is

nm2yÝn Ýk x 2
is1 js1 i j

�̂s1y . 18.51Ž .
knm my1 Ý p qŽ . js1 j j
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Table 18.8. Fi©e ratings on each of ten subjects into
one of three categories

Number of Ratings into Category
3

2Subject 1 2 3 xÝ i j
js1

1 1 4 0 17
2 2 0 3 13
3 0 0 5 25
4 4 0 1 17
5 3 0 2 13
6 1 4 0 17
7 5 0 0 25
8 0 4 1 17
9 1 0 4 17

10 3 0 2 13

Total 20 12 18 174

Algebraically equivalent versions of these formulas were first presented by
Ž .Fleiss 1971 , who showed explicitly how they represent chance-corrected

measures of agreement.
Table 18.8 presents hypothetical data representing, for each of ns10

subjects, ms5 ratings into one of ks3 categories.
The three overall proportions are p s20r50s0.40, p s12r50s0.24,1 2

Ž .and p s18r50s0.36. For category 1, the numerator in expression 18.503
for � isˆ1

10

x 5yx s1� 5y1 q2� 5y2 q ���q3� 5y3 s34,Ž . Ž . Ž . Ž .Ý i1 i1
is1

and thus

34
� s1y s0.29.ˆ1 10�5�4�0.40�0.60

ˆ Ž .Similarly, � s0.67 and � s0.35. The overall value of � is, by 18.51 ,ˆ ˆ2 3

10�25y174
�̂s1y s0.42.

10�5�4� 0.40�0.60q0.24�0.76q0.36�0.64Ž .

Alternatively,

0.40�0.60 �0.29q 0.24�0.76 �0.67q 0.36�0.64 �0.35Ž . Ž . Ž .
�̂s 0.40�0.60q0.24�0.76q0.36�0.64

s0.42.
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When the numbers of ratings per subject are equal, Fleiss, Nee, and
Ž .Landis 1979 derived and confirmed the following formulas for the approxi-

ˆmate standard errors of � and � , each appropriate for testing the hypothesisˆj
that the underlying value is zero:

$ '2ˆse � sŽ .0 k 'Ý p q nm my1Ž .js1 j j

2k k

� p q y p q q yp , 18.52Ž .Ž .Ý Ýj j j j j j)ž /js1 js1

and

2
se � s . 18.53Ž .ˆŽ .0 j (nm my1Ž .

Ž .Note that se � is independent of p and q ! Further, it is easily checkedˆ0 j j j
Ž . Ž .that formula 18.53 is a special case of 18.46 when the m ’s are all equal,i

because then msm sm.H
For the data of Table 18.8,

3

p q s0.40�0.60q0.24�0.76q0.36�0.64s0.6528Ý j j
js1

and

3

p q q yp s0.40�0.60� 0.60y0.40 q0.24�0.76� 0.76y0.24Ž . Ž .Ž .Ý j j j j
js1

q0.36�0.64� 0.64y0.36Ž .
s0.2074,

so that

$ '2 2'ˆse � s 0.6528 y0.2074 s0.072.Ž .0 '0.6528 10�5�4

Because

�̂ 0.42
zs s s5.83,$ 0.072ˆse �Ž .0

Žthe overall value of kappa is significantly different from zero although its
.magnitude indicates only mediocre reliability .
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Ž .The approximate standard error of each � is, by 18.53 ,ˆj

2
se � s s0.10.ˆ (Ž .0 j 10�5�4

Ž .Each individual kappa is significantly different p�0.01 from zero, but only
� approaches a value suggestive of fair reliability.ˆ2

Various approaches have been taken to obtain the standard error of � .
Ž . Ž .Fleiss and Davies 1982 and Bloch and Kraemer 1989 obtain an asymptotic

Ž .variance, and a jackknife technique is proposed by Fleiss and Davies 1982 ,
Ž . Ž . Ž .Schouten 1986 , and Flack 1987 . Flack 1987 proposes a skewness-

corrected confidence interval using a jackknife estimate of the third moment
Ž .of the distribution of delete-one � statistics. Donner and Eliasziw 1992

obtain a standard error with a method based on a goodness-of-fit test statistic
Ž .frequently used for clustered binary data. Lee and Tu 1994 propose yet

another confidence interval for � in the case of two raters with binary
Ž .ratings, by reparameterizing � as a monotone function of p . Garner 199111

obtains the standard error conditioning on the margins. Hale and Fleiss
Ž .1993 give two variance estimates of � depending on whether the rater

Ž .effect is treated as fixed or random. Lipsitz, Laird, and Brennan 1994
provide an asymptotic variance of � statistics based on the theory of
estimating equations.

18.4. FURTHER APPLICATIONS

Even though the various kappa statistics were originally developed and were
illustrated here for the measurement of interrater agreement, their applica-
bility extends far beyond this specific problem. In fact, they are useful for
measuring, on categorical data, such constructs as ‘‘similarity,’’ ‘‘concordance,’’
and ‘‘clustering.’’ Some examples will be given.

1. In a study of the correlates or determinants of drug use among
teenagers, it may be of interest to determine how concordant the attitudes
toward drug use are between each subject’s same-sex parent and the subject’s

Ž .best friend. Either unweighted kappa or weighted kappa Section 18.1 may
be used, with rater A replaced by parent and rater B by best friend.

2. Suppose that m monitoring stations are set up in a city to measure
levels of various pollutants and that, on each of n days, each station is

Žcharacterized by whether or not the level of a specified pollutant e.g., sulfur
.dioxide exceeds an officially designated threshold. The version of kappa

Ž .presented in Section 18.3 may be applied to describe how well or poorly the
several stations agree.

3. Consider a study of the role of familial factors in the development of a
condition such as adolescent hypertension. Suppose that n sibships are
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studied and that m is the number of siblings in the ith sibship. The versioni
of kappa presented in Section 18.3 may be applied to describe the degree to
which there is familial aggregation in the condition.

4. Many of the indices of agreement cited in Section 18.1 are used in
Ž .numerical taxonomy Sneath and Sokal, 1973 to describe the degree of

Ž .similarity between different study units; in fact, p 18.2 was originallys
Ž . Žproposed for this purpose by Dice 1945 . Suppose that two units people,

.languages, or whatever are being compared with respect to whether they
possess or do not possess each of n dichotomous characteristics. The propor-
tions a�d in the left-hand part of Table 18.2 then refer to the proportion of
all n characteristics that both units possess, the proportion that one possesses
but the other does not, and so on. Corrections for chance-expected similarity
in this kind of problem are as important as corrections for chance-expected

Ž .agreement in the case of interrater reliability. Bloch and Kraemer 1989
discuss kappa as a measure of agreement and association.

5. Studies in which several controls are matched with each case or each
experimental unit were discussed in Section 13.3. If the several controls in
each matched set were successfully matched, the responses by the controls
from the same set should be more similar than the responses by controls
from different sets. The version of kappa presented in Section 18.2 may be
used to describe how successful the matching was.

6. Although � is widely used in psychology and educational research, its
Ž .application extends to periodontal research Boushka et al., 1990 , economet-

Ž . Žrics Hirschberg and Slottje, 1989 , veterinary epidemiology Shourkri,
. Ž .Martin, and Mian, 1995 , anesthesiology Posner et al., 1990 , neurology

Ž . Ž .Kairam et al., 1993 , and radiology Musch et al., 1984 .

Whether used to measure agreement, or, more generally, similarity, kappa
in effect treats all the raters or units symmetrically. When one or more of the

Žsources of ratings may be viewed as a standard, however two of ms5 raters,
e.g., may be senior to the others, or one of the air pollution monitoring
stations in example 2 may employ more precise measuring instruments than

.the others , kappa may no longer be appropriate, and the procedures
Ž . Ž .described by Light 1971 , Williams 1976 , and Wackerley, McClave, and

Ž .Rao 1978 should be employed instead.

18.5.* INTERRATER AGREEMENT AS ASSOCIATION IN
A MULTIVARIATE BINARY VECTOR

Many problems of interrater agreement can be solved in the framework of
Ž .clustered categorical data see Chapter 15 . For a binary rating, the notion of

interrater agreement is closely related to the correlation among the binary
ratings clustered within a subject. Specifically, suppose there are m raters,i
each of whom gives a two-category rating to subject i for is1, . . . , n. Let the
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binary indicator Y be 1 if rater j judges subject i positive, and 0 if negative,i j
Ž .for js1, . . . , m . Then Y s Y , . . . , Y � constitutes a vector of binaryi i i1 im i

outcomes, and the dependence among its components can be characterized
Ž .by the intraclass correlation coefficient ICC or kappa, among many other

measures. When m is the same for all i, the ICC and � are identical.i
One way to specify the distribution of the Y ’s is to consider all possiblei j

2 m i mutually exclusive response profiles and assume a 2 m i-variate multino-
mial distribution. Some authors specify the multivariate distribution of Yi
this way, while some focus on the distribution of the total number of positive
ratings for subject i, Y , and assume it has a beta-binomial distribution; iniq
either case they express kappa in terms of the parameters of the chosen

Ž .distribution and obtain the maximum likelihood estimate mle . See Ver-
Ž . Ž .ducci, Mack, and DeGroot 1988 , Shoukri, Martin, and Mian 1995 , Shoukri

Ž . Ž .and Mian 1995 , and Barlow 1996 . Other authors construct a multivariate
Ž .distribution using a latent class model; see Aickin 1990 , Agresti and Lang

Ž . Ž .1993 , and Uebersax 1993 .
In a different approach, the pairwise association between Y and Y cani j i k

be expressed as a function of kappa without making a full distributional
Ž .assumption. Landis and Koch 1977b structure the correlation using a

random effects model. They assume

Y sPqs qe ,i j i i j

where P is the probability of a positive rating, the s ’s are independent andi
identically distributed with mean 0 and variance � 2, the e ’s are similarlys i j
distributed with mean 0 and variance � 2, and the s ’s and e ’s are mutuallye i i j
independent. Then Y and Y are conditionally independent given thei j i k
random effect s which is unique to subject i, but are marginally correlated,i
because they share the random effect s . See Section 15.5.2 at expressioni
Ž .15.42 . The intraclass correlation coefficient is

� 2
s	s .2 2� q�s e

The authors use a moment estimator to estimate 	 and derive its standard
error.

Ž .Lipsitz, Laird, and Brennan 1994 propose a class of estimators for kappa
Ž .using an estimating-equation approach see Section 15.5.1 . Assuming that

Ž .each subject has the same probability of a positive rating, say PsP Y s1 ,i j
and the same joint probability of being rated positive by a pair of raters for

Ž . Ž .all pairs of raters, P sE Y Y sP Y s1, Y s1 , kappa can be written11 i j i k i j i k
as a function of the probability of agreement under two assumptions: nonin-
dependence among the elements of Y , and independence. The probability ofi
agreement without assuming independence, P , isa

P sP Y s1, Y s1 qP Y s0, Y s0Ž . Ž .a i j ik i j i k

sP q 1yP y PyP sP q1y2 PqP . 18.54� 4Ž . Ž . Ž .11 11 11 11
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The chance-expected probability of agreement, P , is the probability ofe
agreement under marginal independence among the elements in Y :i

22P sP q 1yP . 18.55Ž . Ž .e

With

P yP 1yPa e a�s s1y ,1yP 1yPe e

Ž . Ž .after substitution of 18.54 and 18.55 we have

PyP11�s1y . 18.56Ž .P 1yPŽ .

We can rewrite P in terms of P and � thus:11

P sP 2q�P 1yP .Ž .11

Ž .Lipsitz, Laird, and Brennan 1994 construct a class of estimating equations
each of whose solutions becomes an estimate of kappa. Based on the

Ž . � Ž .4 Ž .identities E Y sm P and E Y Y y1 sP m m y1 , the authorsiq i iq iq 11 i i
construct a joint estimating equation,

U PŽ .1
s0ž /U � , PŽ .2

with

n Y ym Piq iU P s ,Ž . Ý1 ®iis1

and

n Y Y y1 yP m m y1Ž . Ž .iq iq 11 i iU � , P s ,Ž . Ý2 wiis1

where ® and w are weights to be chosen. The estimating equation isi i
� Ž .4 � Ž .4unbiased, that is, E U P sE U � , P s0 for all � and P, and, as1 2

explained in Section 15.5.1, the solution is consistent and asymptotically
normal. Applying further results from the standard theory of estimating
equations, the variance of � has a sandwich-type estimator which can beˆ
obtained easily. A convenience of this approach is that on choosing the
weights ® and w appropriately, the solution of the estimating equationi i
coincides with existing kappa statistics, including the kappa statistic of Fleiss
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Ž . Ž .1971 and the weighted kappa statistic of Schouten 1986 . For example,
Fleiss’ kappa can be obtained by solving

n n
ˆ ˆU P s U s Y ym P s0 18.57Ž .Ž . Ž .Ý Ý1 i1 iq i

is1 is1

and

n n Y m yYŽ .iq i iqˆ ˆ ˆyU � , P s U s y 1y� P 1yP mŽ .Ž . Ž .ˆ ˆÝ Ý2 2 i i½ 5m y1iis1 is1

s0. 18.58Ž .

Ž .The sandwich-type variance of Lipsitz, Laird, and Brennan 1994 is asymp-
totically equivalent to the jackknife variance estimate proposed by Schouten
Ž .1986 . The sandwich variance of Fleiss’ kappa statistic has the form

Ž . 2Var � sÝ V , whereˆ i i

1y� 1y2 PŽ . Ž .
U y U2 i 1 imV s .i nP 1yPŽ .

The authors also show that the asymptotic relative efficiency against the mle
Ž .assuming a beta-binomial distribution Verducci, Mack, and DeGroot, 1988

Ž .is highest for Fleiss’ kappa, lower for weighted kappa Schouten, 1986 , and
lowest for unweighted kappa, where both ® and w are constants.i i

The estimating-equation approach can be extended to the regression case
in which kappa is modeled as a function of covariates. Alternative ways of
incorporating covariates and testing homogeneity of kappa across covariate

Ž . Ž .levels are discussed by Barlow, Lai, and Azen 1991 , Barlow 1996 , and
Ž .Donner, Eliasziew, and Klar 1996 .

Both mle and estimating-equation estimators require a large sample size
for inferences to be valid. Small-sample properties of kappa estimates have

Ž . Ž . Ž .been studied by Koval and Blackman 1996 and Gross 1986 . Lau 1993
provides higher-order kappa-type statistics for a dichotomous attribute with
multiple raters.

Several authors investigate alternative measures of agreement. Kupper
Ž .and Hafner 1989 discuss correcting for chance agreement when the raters’

attribute selection probabilities are equal, and use a hypergeometric distribu-
Ž .tion. O’Connell and Dobson 1984 describe a class of agreement measures

Ž .in which kappa is a special case. Uebersax 1993 considers a measure of
Ž .agreement based on a latent-class model. Aickin 1990 uses a mixture of

distributions assuming independent ratings and perfect agreement, and takes
the mixing probability as a measure of agreement. He finds that his measure
of agreement has a kappa-like form, but tends to be larger than Cohen’s
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Ž .kappa except in the case of uniform margins. Agresti 1992 and Banerjee,
Ž .Capozzoli, and McSweeney 1999 give a review of measures of agreement,

Ž .and Smeeton 1985 describes the early history of kappa.

PROBLEMS

Ž .18.1. Prove that, when each of the indices of agreement given by 18.1 ,
Ž . Ž . Ž . Ž .18.2 , 18.4 , 18.6 , and 18.7 is corrected for chance-expected agree-

Ž . Ž .ment using formula 18.8 , the same formula for kappa 18.9 is ob-
tained.

Ž .18.2. Prove that, when ks2, the square of the critical ratio given in 18.14
is identical to the standard chi squared statistic without the continuity
correction.

18.3. Suppose that gs3 independent reliability studies of a given kind of
rating have been conducted, with results as follows:

Ž . Ž . Ž .Study 1 ns20 Study 2 ns20 Study 3 ns30

Rater B Rater D Rater F

Rater A q y Rater C q y Rater E q y

q 0.60 0.05 q 0.75 0.10 q 0.50 0.20
y 0.20 0.15 y 0.05 0.10 y 0.10 0.20

( )a What are the three values of kappa? What are their standard
w Ž .x werrors see 18.15 ? What is the overall value of kappa see

Ž .x18.21 ?
( ) wb Are the three estimates of kappa significantly different? Refer the

Ž . xvalue of the statistic in 18.22 to tables of chi squared with 2 df.
( ) Ž .c Using 18.23 , find an approximate 95% confidence interval for the

common value of kappa.

18.4. Prove that, when w s1 for all i and w s0 for all i� j, the standard-i i i j
Ž . Ž .error formulas 18.13 and 18.32 are identical. Prove that, with this

Ž .same system of agreement weights, the standard-error formulas 18.15
Ž .and 18.36 are identical.

Ž . Ž .18.5. Prove that, when ks2, formulas 18.52 and 18.53 are identical.
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C H A P T E R 1 9

The Standardization of Rates

One of the most frequently occurring problems in epidemiology and vital
statistics is the comparison of the rate for some event or characteristic across
different populations or for the same population over time. If the popula-
tions were similar with respect to factors associated with the event under
study�factors such as age, sex, race, or marital status�there would be no

Ž .problem in comparing the o®erall rates synonyms are total and crude rates
as they stand.

If the populations are not similarly constituted, however, the direct com-
parison of the overall rates may be misleading. Algebraically, the problem
with such a comparison is as follows. Let p , . . . , p denote the proportions of1 I
all members of one of the populations being compared who fall into the

Ž .various strata age intervals, socioeconomic groups, etc. , there being I strata
in all. Thus Ý p s1. If c denotes the rate specific to the ith stratum of thisi i i
population, then the overall or crude rate for it is

I

cs c p . 19.1Ž .Ý i i
is1

If the distribution for the second population across the I strata is repre-
sented by the proportions P , . . . , P , so that Ý P s1, and if C denotes the1 I i i i
rate specific to the ith stratum in the second population, then the crude rate
for this population is

I

Cs C p . 19.2Ž .Ý i i
is1
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The difference between the two crude rates is

dscyC , 19.3Ž .

and it is easy to check that

I Ip qP c qCi i i ids c yC q p yP 19.4Ž . Ž . Ž .Ý Ýi i i i2 2
is1 is1

Ž . Ž .see Kitagawa, 1955; Hemphill and Ament, 1970 . Miettinen 1972 con-
ducted a similar analysis for the ratio of two crude rates.

It is thus seen that the difference between the two crude rates has two
components. One of them,

I p qPi id s c yC , 19.5Ž . Ž .Ý1 i i2
is1

is a true summarization of the differences between the two schedules of
specific rates, differences that are usually of major interest. However, the
second component,

I c qCi id s p yP , 19.6Ž . Ž .Ý2 i i2
is1

is a summarization of the differences between the two sets of population
distributions, differences that are of little if any interest.

Ž .A number of conclusions can be drawn from the representation 19.4 :

1. If the two population distributions are equal, that is, if p sP , . . . ,1 1
p sP , then d s0 and the difference between the crude rates indeedI I 2
summarizes the differences between the schedules of specific rates.

2. If the two schedules of specific rates are equal, that is, if c sC , . . . ,1 1
c sC , then d s0 and the difference between the crude rates measuresI I 1
only the difference in population distributions across the strata, a difference
usually of no importance.

3. For any given value of d , that is, for a given summarization of the1
differences between two schedules of specific rates, the apparent difference
between the two populations measured by d may be unaltered, increased,
decreased, or even changed in sign depending on the differences between the
two population distributions. The effect of d is an additive one if the first2
population has a larger proportion of its members in the strata where the
rates are high than does the second�that is, if p �P in those strata wherei i
Ž .c qC r2 is large�and the effect of d is a subtractive one if the reversei i 2
holds. It is these kinds of effects that explain why, when each of one
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population’s specific rates is greater than another’s, the first population’s
crude rate may nevertheless be lower than the second’s.

Section 19.1 presents some reasons for standardization, and some warn-
ings against its uncritical use. Section 19.2 defines two types of standardiza-
tion, direct and indirect, and sets the stage for a comparison of the two.
Section 19.3 describes the indirect method of standardization, and Section
19.4 illustrates how it can give misleading results. Section 19.5 describes the
direct method of standardization, Section 19.6 presents some other methods
of standardization, and Section 19.7 discusses techniques for standardizing
on two correlated dimensions.

19.1. REASONS FOR AND WARNINGS AGAINST STANDARDIZATION

It is to prevent anomalies of the sort described in conclusions 2 and 3 above
Ž .that resort is made to standardization synonymously, adjustment in the

comparison of two or more schedules of specific rates. Standardization
should, never, however, substitute for a comparison of the specific rates

Žthemselves. It is these that characterize the experience morbidity, mortality,
.or whatever the rate refers to of the population being studied.

Ž .Woolsey has pointed out that ‘‘The specific rates are essential because it
is only through the analysis of specific rates that an accurate and detailed

Ž .study can be made of the variation of the phenomenon under study among
Ž . Ž .population classes’’ 1959, p. 60 . Elveback 1966 , too, stresses the impor-

tance of studying the specific rates and strongly criticizes the calculation of
adjusted rates.

One criticism of the adjustment of rates is that if the specific rates vary in
different ways across the various strata, then no single method of standard-
ization will indicate that these differences exist. Standardization will, on the

Žcontrary, tend to mask these differences. As one example see Kitagawa,
.1966 , there is the contrast between the age-specific death rates for white

males resident in metropolitan counties of the United States in 1960 and
those for white males resident in nonmetropolitan counties. Up to age 40, the
rates in metropolitan counties are lower than in nonmetropolitan counties;
after age 40, the reverse is true. No single summary comparison will reveal
this information. On the contrary, at least two summary comparisons are
needed.

Ž .Another example is provided by data reported by El-Badry 1969 . He
points out that in Ceylon, India, and Pakistan, mortality among males occurs
at a lower rate than among females in many age categories. Single summary
indices for males and females might mask this phenomenon and thus fail to

Ž .reveal data suggestive of further research. Doll and Cook 1967 , in addition,
cite the inadequacy of a single index for summarizing age- and sex-specific
incidence rates.
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Bearing in mind that there is no substitute for examining the specific rates
themselves, we may consider some of the reasons for standardization.

1. A single summary index for a population is more easily compared with
other summary indices than are entire schedules of specific rates.

2. If some strata are composed of small numbers of people, the associated
specific rates may be too imprecise and unreliable for use in detailed
comparisons.

3. For small populations, or for some groups of especial interest, specific
rates may not exist. This may be the case for selected occupational groups
and for populations from geographic areas especially demarcated for a single

Ž .study. In such cases, only the total number of events e.g., deaths may be
available and not their subdivision by strata.

Ž .Other reasons for standardization are given by Woolsey 1959 , Kalton
Ž . Ž .1968 , and Cochran 1968 , who in addition studied the effects of varying

Ž .the number of strata, I. Mausner and Bahn 1974, p. 138 give an elegant
summary of the advantages and disadvantages of analyzing crude, specific,
and adjusted rates.

19.2. TWO TYPES OF STANDARDIZATION: DIRECT AND INDIRECT

There are two types of standardization, direct and indirect. Both types
express the standardized rate as a product of two terms, the crude rate of the
standard population, say c , and a ratio which determines whether theS
standardization is direct or indirect:

ÝI c pis1 i ic sc Ratio scindirect S indirect S IÝ c pis1 Si i

and

ÝI c pis1 i S ic sc Ratio sc ,direct S direct S IÝ c pis1 Si S i

where c and p denote, respectively, the specific rate and the proportion ofi i
the population in stratum i of the study population, and where c andSi
p denote their counterparts in the standard population. In both ratios,Si
the numerator and denominator use, respectively, the rates of the study
population and those of the standard population. In the ratio for indirect

Ž .standardization, the rates are multiplied adjusted by the study-population
distribution, whereas in the ratio for direct standardization, the rates are
multiplied by the standard-population distribution.
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The above two expressions can be simplified. The numerator of cindirect
reduces to the crude rate of the study population, say c. Let the number of
events in the study population in stratum i be Y and the total studyi

Ž .population size be N. Then c sYr Np , andi i i

I IÝ Yis1 ics c p s .Ý i i N
is1

Then

ÝI Yis1 ic sc Ratio sc . 19.7Ž .indirect S indirect S INÝ c pis1 Si i

Thus Ratio is the ratio of the total observed number of events to thatindirect
which would be expected if the standard population rates were applied to the
study population’s strata.

Simplification also occurs in c . The denominator of c is nothingdirect direct
but the crude rate of the standard population:

I

c s c p ,ÝS Si S i
is1

so that c reduces todirect

II IÝ c p Ý Y pis1 i S i is1 i S ic sc s c p s . 19.8Ž .Ýdirect S i S ic NS is1

Standard errors of the standardized rates can be obtained assuming p ,i
p , and c are known constants, and the Y ’s are independent PoissonSi S i i

Ž .random variables. Equation 19.7 shows that the indirect rate is a multiple of
Ý Y , which is a sum of independent Poisson random variables, and thereforei i
a Poisson random variable itself. We can set an exact confidence interval

Ž . Ž .using the method of Section 12.1 at 12.5 see also Ulm, 1990 . Specifically,
Ž .an exact 100 1y� % confidence interval by the equal-tail method for cindirect

is

� 2 � 2
2 t , �r2 2 tq2 , 1y� r2

c , c ,S Sž /2 E 2 E

where tsÝ Y is the total number of events in the study population, andi i
where EsNÝ c p is the expected number of events in the standardi S i i

Ž .population, and also the denominator of 19.7 .
Alternatively, an approximate confidence interval can be constructed

Ž . Ž .based on the square-root transformation Vandenbroucke, 1982 . Swift 1995
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Ž .applied the approximate bootstrap method of DiCiccio and Efron 1992 to
Ž .set a skewness-corrected confidence interval. As shown in equation 19.8 ,

c has the form of a weighted sum of Poisson random variables. Dobsondirect
Ž .et al. 1991 propose an exact confidence interval for weighted Poisson

parameters. Approximate confidence intervals are also given in Fay and
Ž . Ž .Feuer 1997 and Fay 1999 .

19.3. INDIRECT STANDARDIZATION

The second and third reasons just given for standardization, the unreliability
and possibly even the unavailability of some specific rates, lead to perhaps
the most frequently adopted method of standardization, the so-called indirect
method. The ingredients necessary for its implementation are:

1. The crude rate for the population being studied, c.
2. The distribution across the various strata for that population, p , . . . , p .1 I

3. The schedule of specific rates for a selected standard population,
c , . . . , c .S1 S I

4. The crude rate for the standard population, c .S

The first calculation in indirect standardization is of the overall rate that
would obtain if the schedule of specific rates for the standard population
were applied to the given population. It is

I

c�s c p . 19.9Ž .Ý Si i
is1

The indirect adjusted rate is then

c
c sc ; 19.10Ž .indirect S c�

that is, the crude rate for the standard population, c , multiplied by the ratioS
of the actual crude rate for the given population, c, to the crude rate, c�, that
would exist if the given population were subject to the standard population’s
schedule of rates.

Ž .As an example, consider the following data from Stark and Mantel 1966 .
In the state of Michigan, from 1950 to 1964, 731,177 infants were the first-

Ž .born to their mothers; of these, 412 had Down’s syndrome trisomy 21 , giving
a crude rate of cs56.3 Down’s births, per 100,000 first-born live births. In
the same 15-year interval, 442,811 infants were the fifth-born or later to their
mothers; of these, 740 were Down’s births, giving a crude rate of Cs167.1
Down’s births, per 100,000 fifth-born or later live births.
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Table 19.1. An example of indirect standardization

Birth Order
Specific Rates

First Fifth or LaterMaternal for All Michigan
Age per 100,000, c p c p P c PSi i Si i i Si i

Under 20 42.5 0.315 13.4 0.001 0.0
20�24 42.5 0.451 19.2 0.069 2.9
25�29 52.3 0.157 8.2 0.279 14.6
30�34 87.7 0.054 4.7 0.339 29.7
35�39 264.0 0.019 5.0 0.235 62.0
40 and over 864.4 0.004 3.5 0.078 67.4

Ž . Ž .Sum 54.0 sc� 176.6 sC�

The comparison as it stands is not a fair one, because maternal age is
known to be associated with both birth order and Down’s syndrome. Some
method has therefore to be applied to adjust for possible differences between
the first-born and later-born in maternal age distributions. Table 19.1 illus-
trates indirect adjustment.

The selected standard population was all the live births in Michigan
during the years 1950�1964. The crude rate of Down’s syndrome for the state
as a whole was c s89.5 per 100,000 live births, and the rates specific forS
maternal age are given in the column headed c in the table. For the infantsSi
born first and born fifth or later, the maternal age distributions are given in

Ž .the columns headed p and P . The results of applying formula 19.9 arei i
shown in the bottom row of the table.

To review, we are given the crude rates

cs56.3 Down’s births per 100,000 first-borns 19.11Ž .

and

Cs167.1 Down’s births per 100,000 fifth- or later-borns. 19.12Ž .

By applying the rates of Down’s syndrome specific to maternal age for the
state of Michigan as a whole, we would have expected

c�s54.0 Down’s syndrome per 100,000 first-borns,

and

C�s176.6 Down’s syndrome per 100,000 fifth- or later-borns.

Given the crude rate for the entire state,

c s89.5 Down’s syndrome per 100,000 live births,S
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Ž .we find, by 14.8 , the indirect adjusted rates

56.3
c s89.5�indirect 54.0

s93.3 Down’s syndrome per 100,000 first-borns 19.13Ž .
and

167.1
C s89.5�indirect 176.6

s84.7 Down’s syndrome per 100,000 fifth- or later-borns. 19.14Ž .

Ž . Ž .By just comparing the crude rates given in 19.11 and 19.12 , we would
conclude that there was a threefold increase in the risk of Down’s syndrome
from first-borns to infants born fifth or later. By comparing the adjusted rates

Ž . Ž .given by 19.13 and 19.14 , on the other hand, we would conclude that there
was no effective difference in the risk of Down’s syndrome.

It seems that the apparent greater risk of Down’s syndrome for later
Ž . Ž .births, suggested by a comparison of the crude rates in 19.11 and 19.12 , is

a reflection of differences in maternal age distribution. Proportionately more
mothers of later-born infants are in the older age categories, where the
specific rates are higher, than are mothers of first-born infants. After adjust-
ment for differences in the maternal age distributions, it appears that, if
anything, the rate of Down’s syndrome in later-born infants is somewhat less
than the rate in first-born infants.

19.4. A FEATURE OF INDIRECT STANDARDIZATION

Consider the data of Table 19.2, giving hypothetical sex-specific mortality
Ž .rates per 1000 in each of two groups. The two sets of sex-specific rates are

equal, but the unequal sex distributions in the two groups yield unequal
overall rates. For group 1, the crude rate is

cs2.0�0.60q1.0�0.40s1.6 deathsr1000, 19.15Ž .

and for group 2 the crude rate is

Cs2.0�0.80q1.0�0.20s1.8 deathsr1000. 19.16Ž .

Table 19.2. Sex-specific mortality rates in two groups

Group 1 Group 2

Sex p Rater1000 P Rater1000i i

Male 0.60 2.0 0.80 2.0
Female 0.40 1.0 0.20 1.0
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Suppose, now, that the two sets of sex-specific rates could have been
obtained only with the greatest difficulty, so that the only data actually
available were the two sex distributions and the two crude rates. Indirect
adjustment would therefore have to be resorted to. For the population
chosen as the standard, suppose that the crude rate is

c s1.5 deathsr1000, 19.17Ž .S

and that the sex-specific rates are

c s2.2 deathsr1000 males 19.18Ž .S1

and

c s0.9 deathsr1000 females. 19.19Ž .S2

The expected crude rate in group 1 is

c�s2.2�0.60q0.9�0.40s1.68 deathsr1000, 19.20Ž .

yielding an indirect adjusted rate of

1.6
c s1.5� s1.43 deathsr1000. 19.21Ž .indirect 1.68

The expected crude rate in group 2 is

C�s2.2�0.80q0.9�0.20s1.94 deathsr1000, 19.22Ž .

so that, for group 2,

1.8
C s1.5� s1.39 deathsr1000. 19.23Ž .indirect 1.94

Ž . Ž .The two adjusted rates given by 19.21 and 19.23 are more nearly equal
Ž . Ž .than the two unadjusted rates given by 19.15 and 19.16 , reflecting more

accurately the equality of sex-specific rates indicated in Table 19.2. It is a bit
disquieting, however, that equality of the two schedules of specific rates has
not been reflected in precise equality of the two indirect adjusted rates. This
is a defect of indirect adjustment that does not afflict direct adjustment, the
method to be considered next. Neither in this example nor in most other
instances is the distortion great, however. Furthermore, such distortion will
not occur if the standard population is the composite of the two populations
studied.

It is clear that indirect standardization does not completely adjust for
differences in population composition. Thus when attempting to explain
variability across groups of indirect adjusted rates, one should bear in mind
that, whereas variation of schedules of specific rates accounts for most of it,
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variation in population composition may still account for some of it. Addi-
Ž .tional criticisms of indirect adjustment are given by Yule 1934 and Kil-

Ž . Ž .patrick 1963 . Breslow and Day 1975 , however, present a particular mathe-
Žmatical model for the specific rates each specific rate is assumed to be the

product of two terms, one descriptive of the stratum and the other of the
.population under which indirect standardization is appropriate.

19.5. DIRECT STANDARDIZATION

The method of standardization used second most frequently is the so-called
direct method. Direct standardization may be applied only when the schedule
of specific rates for a given population is available. The data necessary for its
implementation are:

1. The schedule of specific rates for the population being studied, say
c , . . . , c .1 I

2. The distribution across the various strata for a selected standard
population, say p , . . . , p .S1 S I

The direct adjusted rate is then simply

I

c s c p . 19.24Ž .Ýdirect i S i
is1

The term direct refers to working directly with the specific rates of the
population being studied, in distinction to what was done in the method
previously presented.

As an example, let us consider the same event, Down’s syndrome studied
in Section 19.3. Table 19.3 gives the maternal age distribution for all infants

( )Table 19.3. An example of direct standardization rates per 100,000

Birth Order
Distribution

First Fifth or LaterMaternal for All of
Age Michigan, p c c p C C pSi i i Si i i Si

Under 20 0.113 46.5 5.3 0 0.0
20�24 0.330 42.8 14.1 26.1 8.6
25�29 0.278 52.2 14.5 51.0 14.2
30�34 0.173 101.3 17.5 74.7 12.9
35�39 0.084 274.5 23.1 251.7 21.1
40 and over 0.022 819.1 18.0 857.8 18.9

Ž . Ž .Sum 92.5 sc 75.7 sCdirect direct
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Ž .born in the state of Michigan from 1950 to 1964 the standard distribution ,
and the rates of Down’s syndrome specific to maternal age for first-borns and

Ž .for infants born fifth or later data from Stark and Mantel, 1966 .
The conclusion drawn from a comparison of these direct adjusted rates is

the same as that drawn before from the indirect adjusted rates: the rates of
Down’s syndrome are about the same for infants born first and for infants
born fifth or later. Such concordance between the conclusions drawn from
comparisons of indirect and direct adjusted rates is usually, although not
invariably, the case.

Given the consistent contrast between the specific rates shown in Table
19.3�in five of the six maternal age categories, the rate of Down’s syndrome
among first-borns was slightly greater than the rate among infants born fifth
or later�there was clearly no compelling reason for any standardization at
all. The specific rates spoke for themselves. The only legitimate reason for
standardization in such a case is the one cited first at the conclusion of
Section 19.1, namely, the greater simplicity of working with a single summary
index than of working with an entire schedule of specific rates.

There is one decided advantage to direct over indirect standardization. If,
stratum by stratum, the specific rate in one group is equal to the specific rate
in a second group, then, no matter which population is chosen as standard,
the direct adjusted rates will be equal. Consider, for example, the specific
rates presented in Table 19.2. The direct adjusted rate for group 1 is

c s2.0�p q1.0�p , 19.25Ž .direct S1 S2

and that for group 2 is obviously the same.
Direct standardization has a more general property. Consistent inequali-

ties among specific rates, stratum by stratum, yield direct adjusted rates
bearing the same inequalities. Thus if each specific rate in group 1 is greater
than the corresponding rate in group 2, the direct adjusted rate for group 1
will be greater than that for group 2, no matter what the composition of the
standard population.

These features of direct adjusted rates are actually quite trivial, for the
circumstances leading to them are fully described by the specific rates
themselves. Here the adjusted rates serve merely as convenient summariza-
tions.

An important point to bear in mind is that an adjusted rate, no matter
which method of adjustment is used, has meaning only when compared with
a similarly adjusted rate. Its magnitude means little in and of itself. For the
rates of Table 19.2, for example, the direct adjusted rate varies from 1.25

Ž .through 1.50 to 1.75 as the standard sex distribution varies from 0.25, 0.75
Ž . Ž .through 0.50, 0.50 to 0.75, 0.25 . No matter which standard is used, the

direct adjusted rates for the two groups will be identical. The magnitude of
the rate, however, is seen to depend strongly on the composition of the

Ž .standard population. Spiegelman and Marks 1966 have shown that, in the
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direct standardization of mortality rates, the choice of a standard population
generally has little effect on the differences between adjusted rates, and
tends to affect only their individual magnitudes.

When the specific rates in the groups being compared do not bear
consistent relations across the strata, then any kind of overall standardization
is questionable. Problem 19.1 is concerned with the comparison of two
groups for which the specific rates of one are higher than those for the other
in some strata but are lower in other strata. It is shown that, depending on
the strata in which the standard population is concentrated, either of the two
groups can end up with the larger adjusted rate. The standard population
may even be chosen to give equal adjusted rates. In addition, the phe-
nomenon of a crossover in specific rates is lost by the usual methods of
standardization.

A compromise calls for the calculation of a number of adjusted rates, one
for each contiguous set of strata in which the specific rates bear consistent
relations over the groups being compared. This device is illustrated in
Problem 19.1, where two such sets of strata may be constituted. The division
of the strata into such sets is not always easy, and sometimes may have to be
forced. Nevertheless, working with a number of adjusted rates is preferable
to working with one overall adjusted rate that may be more of a distortion
than a summarization.

19.6. SOME OTHER SUMMARY INDICES

Ž . Ž .Woolsey 1959 and Kitagawa 1964 have reviewed a number of approaches
to the standardization of rates. Formulas for determining standard errors

Ž . Ž .have been given by Chiang 1961 and Keyfitz 1966 .
One sometimes encounters variations of the two kinds of adjusted rates

considered so far. With respect to indirect standardization, the quantity

cc indirectSMRs s 19.26Ž .c� cS

may be used, where c is the rate for the standard population. This quantity,S
Ž .called the standardized mortality ratio or the standard mortality figure when

the event studied is mortality, is merely the ratio of the actual to the expected
crude rate. This is the quantity Ratio defined in Section 19.2. The SMRindirect
can be calculated for deaths from all causes or for deaths from a specific

Ž .cause. Kupper et al. 1978 have shown how, under some modest assump-
tions, inferences about the SMR for a specific cause of death can be based on
an analysis of proportional mortality rates, that is, the ratios of numbers of
deaths from a specific cause to the number of deaths from all causes. Gail
Ž .1978 presents methods for analyzing variations in the SMR across different
populations.
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The corresponding ratio for direct adjustment,

cdirectCMFs , 19.27Ž .cS

is dubbed the comparati®e mortality figure when applied to mortality. This is
the quantity Ratio defined in Section 19.2.direct

Some other methods of adjustment exist but are less frequently used than
the ones so far studied. One is a simple average of the crude and the direct
adjusted rates,

I
1 1CMRs cqc s p qp c , 19.28Ž . Ž . Ž .Ýdirect Si i i2 2

is1

and is referred to as the comparati®e mortality rate when mortality is studied.
Its infrequent use is testimony to its virtual uninterpretability.

Two indices are available for use with age-specific rates that in effect give
equal weight to each year of age. Let n denote the number of years in thei
ith age interval, so that if, for example, the first age interval is 0�4 years,

Ž .then n s5. The first such index see Yule, 1934 is1

ÝI n cis1 i iEADRs , 19.29Ž .IÝ nis1 i

named the equi®alent a®erage death rate when applied to mortality. This index
may be viewed as a direct adjusted rate where each year of age is assumed to
have the same number of people.

Ž .The second such index see Yerushalmy, 1951, and Elveback, 1966 is

I cinÝ i cSiis1MIs , 19.30Ž .I

nÝ i
is1

named the mortality index when applied to mortality. The mortality index is a
simple average of the ratios of specific rates, with weights given by the
numbers of years in the varous age intervals.

The usefulness of these two indices is limited because of the questionable
validity of assigning equal importance to each year of age.

Ž .An index similar to 19.30 is

I ciRMIs p , 19.31Ž .Ý i cSiis1
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named the relati®e mortality index when applied to mortality. The relative
mortality index is also an average of the ratios of the actual specific rates to
the standard population’s specific rates, but is weighted by the given popula-
tion’s actual age distribution.

An equivalent expression is

ÝI e rcis1 i S iRMIs , 19.32Ž .N

Ž .where e is the observed number of deaths in general, of events in the ithi
stratum and N is the total number of people in the given population. It is
thus seen that one only needs, for the given population, its total size and the
distribution over its strata of its total number of events in order to calculate
the relative mortality index. An implication is that the relative mortality index
may be calculated in years between censuses when, say, the age distribution
of the population is not available but when the age distribution of deaths may
be determined from registration data.

19.7. ADJUSTMENT FOR TWO FACTORS

Table 19.4 presents data on the incidence of Down’s syndrome specific both
to birth order and to maternal age. The two methods to be described, the
first based on direct and the second on indirect standardization, are useful

Table 19.4. Distribution of disco©ered Down’s syndrome and of total li©e births
aby maternal age and birth order, Michigan, 1950–1964

Birth OrderMaternal
Age 1 2 3 4 5q Total

107 25 3 1 0 136
Under 20 230,061 72,202 15,050 2,293 327 319,933

141 150 71 26 8 396
20�24 329,449 326,701 175,702 68,800 30,666 931,318

60 110 114 64 63 411
25�29 114,920 208,667 207,081 132,424 123,419 786,511

40 84 103 89 112 428
30�34 39,487 83,228 117,300 98,301 149,919 488,235

39 82 108 137 262 628
35�39 14,208 28,466 45,026 46,075 104,088 237,863

25 39 75 96 295 530
40 and over 3,052 5,375 8,660 9,834 34,392 61,312

412 490 474 413 740 2,529
Total 731,177 724,639 568,819 357,727 442,811 2,825,173
aValues in cells are numbers of Down’s births found per live birth. Data from Stark and Mantel
Ž .1966 .
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(Table 19.5. Incidence rates of disco©ered Down’s syndrome number of Down’s
)births found per 100,000 li©e births by maternal age and birth order

Birth Order AdjustedMaternal Crude
aAge 1 2 3 4 5q Rate Rate

Under 20 46.5 34.6 19.9 43.6 0 42.5 30.4
20�24 42.8 45.9 40.4 37.8 26.1 42.5 39.9
25�29 52.2 52.7 55.1 48.3 51.0 52.3 52.2
30�34 101.3 100.9 87.8 90.5 74.7 87.7 92.9
35�39 274.5 288.1 239.9 297.3 251.7 264.0 270.3
40 and over 819.1 725.6 866.1 976.2 857.8 864.4 830.4

Crude rate 56.3 67.6 83.3 115.5 167.1 89.5
b cAdjusted rate 92.3 91.2 85.1 92.7 75.5 88.0

aThe last column contains rates specific for maternal age and directly adjusted for birth order,
with the standard birth-order distribution being that of the total sample.
bThe last row contains rates specific for birth order and directly adjusted for maternal age, with
the standard maternal age distribution being that of the total sample.
c Whenever the two standard distributions are those of the total sample, the overall rates based
on the two series of directly adjusted rates will be equal to each other, but not necessarily to the
overall crude rate.

when two factors are both associated with some disorder and with each
other, and when one wishes to identify and measure their separate effects.

Simultaneous Direct Adjustment
Table 19.5 presents the various specific rates, the crude rates, and the direct
adjusted rates.

In this case the specific rates speak for themselves. Within none of the
maternal age categories is there any appreciable variation in the rates of
Down’s syndrome specific to birth order. The increasing gradient with birth
order of the crude rates is therefore likely to be only a reflection of the
association between birth order and maternal age, and not of any direct
relationship between birth order and the incidence of Down’s syndrome.

Maternal age, on the other hand, is seen to be strongly associated with the
incidence of Down’s syndrome. Within each birth-order category, there is a
clear increase in the incidence rate with increasing maternal age.

The direct adjusted rates shown in the last row and last column of Table
19.5 serve only to summarize the information provided by the 30 specific
rates: little effect of birth order but a strong effect of maternal age on the
incidence of Down’s syndrome. In fact, direct adjustment is appropriate only

Žbecause of the consistency found both within maternal age categories rather
.little variability among the birth-order-specific rates and within birth-order

Ž .categories a clear gradient with increasing maternal age .

Simultaneous Indirect Adjustment
If all the specific rates are available, and all are based on samples of
sufficient size to possess adequate precision, then simultaneous direct adjust-
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Table 19.6. Distribution of total li©e births by maternal age and birth order,
o©erall crude rates, and indirectly adjusted rates

Birth Order AdjustedMaternal Crude
aAge 1 2 3 4 5q Rate Rate

Under 20 230,061 72,202 15,050 2,293 327 42.5 62.7
20�24 329,449 326,701 175,702 68,800 30,666 42.5 51.9
25�29 114,920 208,667 207,081 132,424 123,419 52.3 49.9
30�34 39,487 83,228 117,300 98,301 149,919 87.7 70.9
35�39 14,208 28,466 45,026 46,075 104,088 264.0 192.6
40 and over 3,052 5,375 8,660 9,834 34,392 864.4 582.9

cCrude rate 56.3 67.6 83.3 115.5 167.1 89.5 79.2
b cAdjusted rate 93.0 92.7 87.3 94.3 84.8 90.7

The last column contains rates specific for maternal age and indirectly adjusted for birth order,
with the standard set of rates specific for birth order being that of the total sample. Thus, for
example,

42.5�9.31318
c s51.9s89.5� .20 � 24Ž indirect. 56.3�3.29449q ���q167.1�0.30666

bThe last row contains rates specific for birth order and indirectly adjusted for maternal age,
with the standard set of rates specific for maternal age being that of the total sample. Thus, for
example,

67.6�7.24639
c s92.7s89.5� .2Žindirect. 42.5�0.72202q ���q864.4�0.05375

c The overall rates based on the two series of indirectly adjusted rates will almost never equal
each other, nor will either of them equal the overall crude rate.

ment, the method just described, may be applied. If the specific rates are not
available or are based on small sample sizes, then a method due to Mantel

Ž .and Stark 1968 , based on indirect adjustment, may be applied.
It might have happened that the data required to calculate rates specific

for maternal age and birth order simultaneously did not exist. In fact, the
only data available might have been those in Table 19.6, together with the
crude rates for birth order and for maternal age.

In contrast to the summarizing role played by the direct adjusted rates, the
indirect adjusted rates, presented in the last row and last column of Table
19.6, must almost of necessity be calculated when the schedules of specific
rates do not exist. They must be interpreted with a great deal of caution,
however.

Two awkward features of the indirectly adjusted rates can be seen. For
one thing, they do not yield equal overall rates. For another, the indirectly
adjusted rates for some of the maternal age categories are totally out of the

Žrange of the specific rates compare, e.g., the indirect adjusted rate of 62.7
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for the first maternal age category with the specific rates ranging from 0 to
.46.5, as seen in Table 19.5 .

As a means of correcting these and possibly other anomalies, Mantel and
Ž .Stark 1968 recommend the following procedure.

1. Beginning with the schedule of crude rates specific to maternal age,
obtain the indirect adjusted rates specific for birth order. These have already
been calculated and appear in the final row of Table 19.6.

2. Using these latter rates as the standard schedule, calculate the indirect
adjusted rates specific for maternal age. Multiply the obtained rates by the

Ž . Ž .ratio of the expected total crude rate 90.7 to the actual crude rate 89.5 :

Maternal age Under 20 20�24 25�29 30�34 35�39 40 and Over

Adjusted rate 41.6 42.0 52.4 89.0 270.3 892.9

For example, 41.6 is calculated as

42.5 90.7 42.5�90.7
41.6s �89.5� s ,92.7 89.5 92.7

where 42.5 is the crude rate in the first maternal age category, 90.7 is the
overall expected crude rate, and

93.0�2.30061q92.7�0.72202q ���q84.8�0.00327
92.7s .3.19933

3. Continue in the same manner, each time using the previous set of
indirect adjusted rates for one of the two variables to generate a new set for
the other variable. Multiply each rate in the new set by the ratio of the
expected total crude rate based on the previous set to the actual total crude
rate.

4. Stop the process when successive sets of rates are unchanged. Here,
about four cycles were necessary.

5. The sets of rates we end up with are

Maternal age Under 20 20�24 25�29 30�34 35�39 40 and Over

Adjusted rate 41.0 41.8 52.6 89.7 273.3 904.5

for maternal age, and

Birth order 1 2 3 4 5q

Adjusted rate 95.2 93.7 87.3 93.6 83.6

for birth order.
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6. These two schedules of rates have the property that either, when used
as the standard, implies the other. Furthermore, each of these rates happens
for these data to lie within the range of the specific rates. This need not
always occur with the Mantel-Stark adjustment method. Finally, their ad-
justed rates both yield the same expected total rate, 91.2. This final property
would not have held had we not, at every step, multiplied the general set of
rates by the ratio of the total expected rate based on the preceding set of
rates to the total observed rate.

The inferences from these adjusted rates are the same as were drawn
previously: a strong effect of maternal age and little if any effect of birth
order. Recall, however, that here we have made no use at all of the specific
rates.

The Mantel-Stark procedure has the property that it will yield the same
results no matter what set of rates one starts with, although the number of
steps will vary with the starting set.

Several authors consider regression models for the standardized mortal-
Ž . Žityrmorbidity ratio SMR Berry, 1970; Breslow and Day, 1975; Gail, 1978;

. Ž .Fay, 1999 . The approach of Gail 1978 is typical. For example, let Y be thei j
Žnumber of deaths or events in stratum i of population j is1, . . . , I,

.js1, . . . , J . Y is assumed to be a Poisson random variable with meani j
N p c , where N is the total size of population j, p is the proportion ofj i j i j j i j
population j in stratum i, and c is the event rate in stratum i in studyi j
population j. It is further assumed that c sc � , where c is the event ratei j S i j S i
of stratum i for the standard population and � is the rate ratio comparingj
the study population with the standard population. Note that � is thej
estimand of the SMR. The mean of the Poisson random variable Y isi j
� sN p c � , ori j j i j S i j

ln � s ln Np c q ln � .Ž .i j i j S i j

The maximum likelihood estimate of � can be obtained by maximizing thej
likelihood function

I J y� Yi j i je �i j
.Ł Ł Y !i jis1 js1

This is a Poisson regression problem which can be solved by the methods of
Chapter 12. Note that because the number of people at risk, Np , and thei j

Ž .event rate of the standard population are assumed known, ln Np c shouldi j S i
be declared as an offset in standard programs for Poisson regression.

Testing equality of SMRs across different populations can be accom-
plished using the standard likelihood ratio, Wald, or score tests, and regres-
sion models of the form ln � s	 q	 X for population-level covariates arej 0 X j
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Ž .straightforward to fit. McCullagh and Nelder 1989, ch. 5 show how Poisson
regression models can be used to draw inferences about � . Clayton andj

Ž .Kaldor 1987 considered the case in which Y are not independent. Wheni j
the strata represent geographical areas, the number of events may be
correlated due to spatial proximity. The authors assume the Y ’s are condi-i j
tionally independent given � , with � distributed as gamma variates. This is aj j

Ž .random effects model for Poisson outcomes see Section 12.3 .

PROBLEMS

Ž .19.1. The following data are from Table 2 of Discher and Feinberg 1969 .

Age-Specific Rates of Abnormal Lung Functioning in Males
Employed in Manufacturing or Service Industries

Manufacturing Services

Age Interval Number % Abnormal Number % Abnormal

20�29 403 2.2 256 4.8
30�39 688 3.2 525 3.2
40�49 683 2.2 599 2.8
50�59 539 6.9 453 6.6
60q 133 12.8 155 9.0

( )a Comparing the age-specific rates for the two kinds of industries,
what conclusions would you be willing to draw?

( )b What do you think would be gained by calculating an age-adjusted
rate for each kind of industry and then comparing the adjusted
rates? What do you think might be lost?

( )c Consider the three following standard age distributions:

Standard

Age Interval 1 2 3

20�29 0.25 0.05 0.07
30�39 0.25 0.05 0.75
40�49 0.30 0.10 0.06
50�59 0.10 0.40 0.06
60q 0.10 0.40 0.06

( )1 The first standard distribution is concentrated below age 49.
What are the values of the two direct adjusted rates using this
standard? What are the direction and magnitude of the differ-
ence between them?
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( )2 The second standard distribution is concentrated above age 50.
What are the values of the two direct adjusted rates using this
standard? What are the direction and magnitude of the differ-
ence between them?

( )3 The third standard distribution is concentrated in the age
interval 30�39. What are the values of the two direct adjusted
rates using this standard? What are the direction and magni-
tude of the difference between them?

( )d Using the age distribution of the total sample as a standard,
calculate two direct adjusted rates for both kinds of industries, one
for the age interval 20�49 and the other for the interval 50 and
over. Do the comparisons now seem fair to the data?
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Table A.1. Critical ©alues of the normal distribution

Z P Z P Z P

0.0 1.0000 1.2 0.2301 2.4 0.0164
0.1 0.9203 1.282 0.20 2.5 0.0124
0.126 0.90 1.3 0.1936 2.576 0.01
0.2 0.8415 1.4 0.1615 2.6 0.0093
0.3 0.7642 1.440 0.15 2.7 0.0069
0.385 0.70 1.5 0.1336 2.8 0.0051
0.4 0.6892 1.6 0.1096 2.813 0.005
0.5 0.6171 1.645 0.10 2.9 0.0037
0.524 0.60 1.7 0.0891 3.0 0.0027
0.6 0.5485 1.8 0.0719 3.090 0.002
0.674 0.50 1.9 0.0574 3.1 0.0019
0.7 0.4839 1.960 0.05 3.2 0.0014
0.8 0.4237 2.0 0.0455 3.3 0.0010
0.842 0.40 2.1 0.0357 3.4 0.0007
0.9 0.3681 2.2 0.0278 3.5 0.0005
1.0 0.3173 2.242 0.025 3.6 0.0003
1.036 0.30 2.3 0.0214 3.7 0.0002
1.1 0.2713 2.326 0.02 3.8 0.0001

Psarea in the tails of the normal curve below yZ and above qZ. In a test of significance,
P is the significance level associated with the obtained value of Z.

The total area under the normal curve to the right of Z is 1yPr2 if Z is negative, and is
Pr2 if Z is positive.

Suppose one must find that value of Z such that the total area under the normal curve to the
right of Z is 1yB. If 1yB is greater than 0.50, take the value of Z corresponding to Ps2 B,
and affix a minus sign to it. If 1yB is less than 0.50, take the value of Z corresponding to

Ž .Ps2 1yB .
Source. Adapted from Tables 1 and 4 of Biometrika tables for statisticians, Vol. I, 2nd ed. E. S.

Ž .Pearson and H. O. Hartley Eds. , Cambridge University Press, 1958.
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Table A.2. Critical ©alues of the chi squared distribution
( )cutting off probability � in upper tail

Critical ValueDegrees of
Freedom �s0.10 0.05 0.025 0.01 0.005 0.001

1 2.706 3.841 5.024 6.635 7.879 10.38
2 4.605 5.991 7.378 9.210 10.60 13.82
3 6.251 7.815 9.348 11.34 12.84 16.27
4 7.779 9.488 11.14 13.28 14.86 18.47
5 9.236 11.07 12.83 15.09 16.75 20.52

6 10.64 12.59 14.45 16.81 18.55 22.46
7 12.02 14.07 16.01 18.48 20.28 24.32
8 13.36 15.51 17.53 20.09 21.95 26.12
9 14.68 16.92 19.02 21.67 23.59 27.88

10 15.99 18.31 20.48 23.21 25.19 29.59

11 17.28 19.68 21.92 24.72 26.76 31.26
12 18.55 21.03 23.34 26.22 28.30 32.91
13 19.81 22.36 24.74 27.69 29.82 34.53
14 21.06 23.68 26.12 29.14 31.32 36.12
15 22.31 25.00 27.49 30.58 32.80 37.70

16 23.54 26.30 28.85 32.00 34.27 39.25
17 24.77 27.59 30.19 33.41 35.72 40.79
18 25.99 28.87 31.53 34.81 37.16 42.31
19 27.20 30.14 32.85 36.19 38.58 43.82
20 28.41 31.41 34.17 37.57 40.00 45.32

25 34.38 37.65 40.65 44.31 46.93 52.62
30 40.26 43.77 46.98 50.89 53.67 59.70
40 51.81 55.76 59.34 63.69 66.77 73.40
60 74.40 79.08 83.30 88.38 91.95 99.61

100 118.5 124.3 129.6 135.8 140.2 149.4
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Ž .Table A.2. Concluded

Critical ValueDegrees of
Freedom �s0.90 0.95 0.975 0.99 0.995 0.999

1 0.01579 0.003932 0.0009821 0.0001571 0.00003927 0.000001571
2 0.2107 0.1026 0.0506 0.02010 0.01003 0.002001
3 0.5844 0.3518 0.2158 0.1148 0.07172 0.02430
4 1.064 0.7107 0.4844 0.2971 0.2070 0.09080
5 1.610 1.145 0.8312 0.5543 0.4117 0.2102

6 2.204 1.635 1.237 0.8721 0.6757 0.3811
7 2.833 2.167 1.690 1.239 0.9893 0.5985
8 3.490 2.733 2.180 1.646 1.344 0.8571
9 4.168 3.325 2.700 2.088 1.735 1.152

10 4.865 3.940 3.247 2.558 2.156 1.479

11 5.578 4.575 3.816 3.053 2.603 1.834
12 6.304 5.226 4.404 3.571 3.074 2.214
13 7.042 5.892 5.009 4.107 3.565 2.617
14 7.790 6.571 5.629 4.660 4.075 3.041
15 8.547 7.261 6.262 5.229 4.601 3.483

16 9.312 7.962 6.908 5.812 5.142 3.942
17 10.09 8.672 7.564 6.408 5.697 4.416
18 10.86 9.390 8.231 7.015 6.265 4.905
19 11.65 10.12 8.907 7.633 6.844 5.407
20 12.44 10.85 9.591 8.260 7.434 5.921

25 16.47 14.61 13.12 11.52 10.52 8.649
30 20.60 18.49 16.79 14.95 13.79 11.59
40 29.05 26.51 24.43 22.16 20.71 17.92
60 46.46 43.19 40.48 37.48 35.53 31.74

100 82.36 77.93 74.22 70.06 67.33 61.92
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Table A.4. Sample sizes per group for a two-tailed test of two proportions

P s0.051

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.10 0.01 1368 1025 863 762 686 624 572 525 407
0.02 1235 911 760 665 595 538 489 446 339
0.05 1054 758 621 536 474 423 381 344 252
0.10 910 637 513 437 381 336 299 267 188
0.20 758 512 402 336 288 250 219 192 128

0.15 0.01 447 337 285 253 228 209 192 177 139
0.02 404 300 252 221 199 180 165 151 117
0.05 345 251 207 179 160 143 130 118 88
0.10 299 212 172 147 130 115 103 93 67
0.20 250 171 136 115 99 87 77 68 47

0.20 0.01 241 183 155 138 125 115 106 98 77
0.02 218 163 137 121 109 99 91 84 65
0.05 187 136 113 99 88 79 72 66 50
0.10 162 115 94 81 72 64 58 52 38
0.20 135 94 75 64 55 49 44 39 28

0.25 0.01 157 120 102 91 83 76 70 65 52
0.02 142 107 90 80 72 66 61 56 44
0.05 122 90 75 65 58 53 48 44 34
0.10 106 76 62 54 48 43 39 35 26
0.20 88 62 50 42 37 33 29 26 19

0.30 0.01 113 87 74 66 60 55 51 48 38
0.02 102 77 66 58 53 48 44 41 33
0.05 88 65 54 48 43 39 35 32 25
0.10 76 55 45 39 35 32 29 26 20
0.20 64 45 36 31 27 24 22 20 14

0.35 0.01 86 66 57 51 46 43 40 37 30
0.02 78 59 50 45 41 37 34 32 25
0.05 67 50 42 37 33 30 28 25 20
0.10 58 42 35 30 27 25 22 20 16
0.20 48 34 28 24 21 19 17 16 12

0.40 0.01 68 53 45 41 37 34 32 30 24
0.02 62 47 40 36 33 30 28 26 21
0.05 53 39 33 29 27 24 22 21 16
0.10 46 34 28 24 22 20 18 17 13
0.20 38 27 22 19 17 15 14 13 10

0.45 0.01 55 43 37 33 31 28 26 25 20
0.02 50 38 33 29 27 25 23 21 17
0.05 43 32 27 24 22 20 18 17 14
0.10 37 27 23 20 18 16 15 14 11
0.20 31 22 18 16 14 13 12 11 8

0.50 0.01 46 36 31 28 26 24 22 21 17
0.02 41 32 27 25 23 21 19 18 15
0.05 35 27 23 20 18 17 16 14 12
0.10 31 23 19 17 15 14 13 12 9
0.20 26 19 15 13 12 11 10 9 7
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Ž .Table A.4. Continued

Ž .P s0.05 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.55 0.01 38 30 26 24 22 20 19 18 15
0.02 35 27 23 21 19 18 17 16 13
0.05 30 23 19 17 16 14 13 12 10
0.10 26 19 16 14 13 12 11 10 8
0.20 21 16 13 11 10 9 9 8 6

0.60 0.01 32 26 22 20 19 18 16 16 13
0.02 29 23 20 18 17 15 14 13 11
0.05 25 19 16 15 14 12 12 11 9
0.10 22 16 14 12 11 10 9 9 7
0.20 18 13 11 10 9 8 7 7 5

0.65 0.01 28 22 19 18 16 15 14 14 11
0.02 25 20 17 16 14 13 13 12 10
0.05 21 16 14 13 12 11 10 9 8
0.10 18 14 12 11 10 9 8 8 6
0.20 15 11 10 9 8 7 7 6 5

0.70 0.01 23 19 17 15 14 13 13 12 10
0.02 21 17 15 14 13 12 11 10 9
0.05 18 14 12 11 10 10 9 8 7
0.10 16 12 10 9 9 8 7 7 6
0.20 13 10 8 7 7 6 6 5 4

0.75 0.01 20 16 15 13 13 12 11 11 9
0.02 18 15 13 12 11 10 10 9 8
0.05 15 12 11 10 9 8 8 7 6
0.10 13 10 9 8 7 7 7 6 5
0.20 11 8 7 6 6 5 5 5 4

0.80 0.01 17 14 13 12 11 10 10 9 8
0.02 15 13 11 10 10 9 9 8 7
0.05 13 10 9 8 8 7 7 7 6
0.10 11 9 8 7 7 6 6 5 5
0.20 9 7 6 6 5 5 5 4 4

0.85 0.01 15 12 11 10 10 9 9 8 7
0.02 13 11 10 9 8 8 8 7 6
0.05 11 9 8 7 7 7 6 6 5
0.10 9 8 7 6 6 5 5 5 4
0.20 8 6 5 5 5 4 4 4 3

0.90 0.01 12 10 9 9 8 8 8 7 7
0.02 11 9 8 8 7 7 7 7 6
0.05 9 8 7 6 6 6 6 5 5
0.10 8 6 6 5 5 5 5 4 4
0.20 6 5 5 4 4 4 4 3 3

0.95 0.01 10 9 8 8 7 7 7 7 6
0.02 9 8 7 7 7 6 6 6 5
0.05 8 6 6 6 5 5 5 5 4
0.10 6 5 5 5 4 4 4 4 4
0.20 5 4 4 4 4 3 3 3 3
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Ž .Table A.4. Continued

P s0.101

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.15 0.01 2137 1595 1340 1179 1060 963 880 806 620
0.02 1928 1416 1176 1027 916 826 749 682 513
0.05 1642 1174 957 823 725 646 579 520 375
0.10 1415 984 787 667 579 509 450 399 275
0.20 1175 787 613 508 433 373 324 281 182

0.20 0.01 627 471 397 351 316 288 264 243 189
0.02 566 419 349 306 274 248 226 206 157
0.05 483 348 286 247 219 196 176 159 117
0.10 417 293 236 201 176 156 139 124 88
0.20 347 236 185 155 133 116 102 89 60

0.25 0.01 316 238 202 179 162 147 136 125 98
0.02 285 212 178 156 140 127 116 107 82
0.05 244 177 146 127 113 101 91 83 62
0.10 211 149 121 104 91 81 73 65 47
0.20 176 120 96 81 70 61 54 48 33

0.30 0.01 196 149 126 112 102 93 86 79 63
0.02 178 133 112 98 89 81 74 68 53
0.05 152 111 92 80 71 64 58 53 40
0.10 131 94 76 66 58 52 47 42 31
0.20 110 76 61 51 45 39 35 31 22

0.35 0.01 136 104 88 79 72 66 61 56 45
0.02 123 93 78 69 62 57 52 48 38
0.05 105 77 64 56 50 45 41 38 29
0.10 91 65 54 46 41 37 33 30 22
0.20 76 53 43 36 32 28 25 22 16

0.40 0.01 101 77 66 59 54 49 46 42 34
0.02 91 69 58 52 47 43 39 36 29
0.05 78 58 48 42 38 34 31 29 22
0.10 68 49 40 35 31 28 25 23 17
0.20 56 40 32 27 24 21 19 17 13

0.45 0.01 78 60 51 46 42 39 36 33 27
0.02 71 54 46 41 37 34 31 29 23
0.05 60 45 38 33 30 27 25 23 18
0.10 52 38 31 27 24 22 20 18 14
0.20 44 31 25 22 19 17 15 14 10

0.50 0.01 62 48 41 37 34 31 29 27 22
0.02 56 43 37 33 30 27 25 23 19
0.05 48 36 30 27 24 22 20 19 15
0.10 42 30 25 22 20 18 16 15 12
0.20 35 25 20 18 16 14 13 11 9
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Ž .Table A.4. Continued

Ž .P s0.10 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.55 0.01 51 39 34 31 28 26 24 23 19
0.02 46 35 30 27 25 23 21 20 16
0.05 39 29 25 22 20 18 17 16 12
0.10 34 25 21 18 16 15 14 13 10
0.20 28 20 17 15 13 12 11 10 7

0.60 0.01 42 33 28 26 24 22 20 19 16
0.02 38 29 25 23 21 19 18 17 14
0.05 32 24 21 18 17 15 14 13 11
0.10 28 21 17 15 14 13 12 11 8
0.20 23 17 14 12 11 10 9 8 6

0.65 0.01 35 27 24 22 20 19 17 16 14
0.02 31 24 21 19 18 16 15 14 12
0.05 27 20 18 16 14 13 12 11 9
0.10 23 17 15 13 12 11 10 9 7
0.20 19 14 12 10 9 8 8 7 6

0.70 0.01 29 23 20 19 17 16 15 14 12
0.02 26 21 18 16 15 14 13 12 10
0.05 22 17 15 13 12 11 11 10 8
0.10 19 15 13 11 10 9 9 8 7
0.20 16 12 10 9 8 7 7 6 5

0.75 0.01 25 20 17 16 15 14 13 12 11
0.02 22 18 15 14 13 12 11 11 9
0.05 19 15 13 12 11 10 9 9 7
0.10 16 13 11 10 9 8 8 7 6
0.20 14 10 9 8 7 6 6 6 4

0.80 0.01 21 17 15 14 13 12 11 11 9
0.02 19 15 13 12 11 11 10 9 8
0.05 16 13 11 10 9 9 8 8 6
0.10 14 11 9 8 8 7 7 6 5
0.20 11 9 7 7 6 6 5 5 4

0.85 0.01 18 14 13 12 11 11 10 10 8
0.02 16 13 11 11 10 9 9 8 7
0.05 13 11 9 9 8 8 7 7 6
0.10 11 9 8 7 7 6 6 6 5
0.20 10 7 6 6 5 5 5 4 4

0.90 0.01 15 12 11 10 10 9 9 8 7
0.02 13 11 10 9 9 8 8 7 6
0.05 11 9 8 7 7 7 6 6 5
0.10 10 8 7 6 6 5 5 5 4
0.20 8 6 6 5 5 4 4 4 3

0.95 0.01 12 10 9 9 8 8 8 7 7
0.02 11 9 8 8 7 7 7 7 6
0.05 9 8 7 6 6 6 6 5 5
0.10 8 6 6 5 5 5 5 4 4
0.20 6 5 5 4 4 4 4 3 3
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Ž .Table A.4. Continued

P s0.151

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.20 0.01 2810 2094 1756 1545 1388 1259 1149 1052 806
0.02 2534 1858 1541 1343 1198 1078 977 888 664
0.05 2157 1538 1252 1075 945 840 751 674 483
0.10 1856 1287 1027 868 753 660 582 515 351
0.20 1539 1027 797 659 559 480 415 360 228

0.25 0.01 783 586 494 435 392 357 326 300 232
0.02 707 521 434 380 340 307 279 254 193
0.05 603 433 354 305 270 241 216 195 142
0.10 520 363 292 248 216 191 169 151 106
0.20 432 291 228 190 163 141 123 108 71

0.30 0.01 380 286 241 213 193 176 161 148 116
0.02 343 254 213 187 167 152 138 126 97
0.05 293 212 174 151 134 120 108 98 72
0.10 253 178 144 123 108 95 85 76 54
0.20 211 143 113 95 82 71 63 55 38

0.35 0.01 229 173 147 130 118 108 99 91 72
0.02 207 154 130 114 102 93 85 78 60
0.05 177 129 106 92 82 74 67 61 45
0.10 153 109 88 76 67 59 53 48 35
0.20 128 88 70 59 51 45 39 35 24

0.40 0.01 155 118 100 89 81 74 68 63 50
0.02 140 105 89 78 70 64 59 54 42
0.05 120 88 73 63 57 51 46 42 32
0.10 104 74 60 52 46 41 37 33 25
0.20 87 60 48 41 35 31 28 25 18

0.45 0.01 113 86 73 65 60 55 50 47 37
0.02 102 77 65 57 52 47 44 40 32
0.05 87 64 53 47 42 38 34 32 24
0.10 75 54 44 39 34 31 28 25 19
0.20 63 44 35 30 26 23 21 19 14

0.50 0.01 86 66 56 50 46 42 39 36 29
0.02 78 59 50 44 40 37 34 31 25
0.05 66 49 41 36 32 29 27 25 19
0.10 57 42 34 30 26 24 22 20 15
0.20 48 34 27 23 21 18 16 15 11

0.55 0.01 67 52 45 40 37 34 31 29 24
0.02 61 46 39 35 32 29 27 25 20
0.05 52 39 33 29 26 24 22 20 16
0.10 45 33 27 24 21 19 17 16 12
0.20 38 27 22 19 17 15 13 12 9



APPENDIX A: NUMERICAL TABLES 665

Ž .Table A.4. Continued

Ž .P s0.15 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.60 0.01 54 42 36 33 30 28 26 24 20
0.02 49 37 32 29 26 24 22 21 17
0.05 42 31 26 23 21 19 18 16 13
0.10 36 27 22 19 17 16 14 13 10
0.20 30 22 18 15 14 12 11 10 8

0.65 0.01 44 34 30 27 25 23 21 20 16
0.02 40 31 26 24 22 20 19 17 14
0.05 34 26 22 19 18 16 15 14 11
0.10 29 22 18 16 15 13 12 11 9
0.20 25 18 15 13 11 10 9 9 7

0.70 0.01 36 29 25 23 21 19 18 17 14
0.02 33 26 22 20 18 17 16 15 12
0.05 28 21 18 16 15 14 13 12 9
0.10 24 18 15 14 12 11 10 10 8
0.20 20 15 12 11 10 9 8 7 6

0.75 0.01 30 24 21 19 18 16 15 15 12
0.02 27 21 19 17 16 14 13 13 11
0.05 23 18 15 14 13 12 11 10 8
0.10 20 15 13 11 10 10 9 8 7
0.20 17 12 10 9 8 8 7 6 5

0.80 0.01 25 20 18 16 15 14 13 13 11
0.02 23 18 16 14 13 12 12 11 9
0.05 19 15 13 12 11 10 9 9 7
0.10 17 13 11 10 9 8 8 7 6
0.20 14 10 9 8 7 7 6 6 4

0.85 0.01 21 17 15 14 13 12 12 11 9
0.02 19 15 13 12 11 11 10 10 8
0.05 16 13 11 10 9 9 8 8 6
0.10 14 11 9 8 8 7 7 6 5
0.20 12 9 8 7 6 6 5 5 4

0.90 0.01 18 14 13 12 11 11 10 10 8
0.02 16 13 11 11 10 9 9 8 7
0.05 13 11 9 9 8 8 7 7 6
0.10 11 9 8 7 7 6 6 6 5
0.20 10 7 6 6 5 5 5 4 4

0.95 0.01 15 12 11 10 10 9 9 8 7
0.02 13 11 10 9 8 8 8 7 6
0.05 11 9 8 7 7 7 6 6 5
0.10 9 8 7 6 6 5 5 5 4
0.20 8 6 5 5 5 4 4 4 3
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Ž .Table A.4. Continued

P s0.201

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.25 0.01 3386 2522 2114 1858 1668 1512 1379 1262 965
0.02 3053 2236 1853 1615 1438 1294 1172 1064 794
0.05 2597 1850 1504 1290 1134 1007 900 806 575
0.10 2235 1547 1233 1041 901 789 695 614 417
0.20 1852 1232 955 788 668 572 494 426 268

0.30 0.01 915 685 576 507 456 415 379 348 268
0.02 826 608 506 442 395 356 324 295 222
0.05 704 504 412 355 313 279 250 225 163
0.10 607 423 339 288 250 220 195 174 121
0.20 504 339 265 220 188 162 141 123 80

0.35 0.01 433 325 274 242 219 199 183 168 131
0.02 391 289 242 212 190 172 156 143 109
0.05 334 240 197 171 151 135 122 110 81
0.10 288 202 163 139 122 107 96 85 61
0.20 240 162 128 107 92 80 70 62 41

0.40 0.01 256 193 164 145 131 120 110 101 79
0.02 232 172 144 127 114 103 94 86 66
0.05 198 143 118 102 91 82 74 67 50
0.10 171 121 98 84 74 65 58 52 38
0.20 142 97 77 65 56 49 43 38 26

0.45 0.01 171 129 110 98 88 81 74 69 54
0.02 154 115 97 85 77 70 64 59 46
0.05 132 96 79 69 62 56 50 46 35
0.10 114 81 66 57 50 45 40 36 26
0.20 95 65 52 44 38 34 30 27 19

0.50 0.01 122 93 79 71 64 59 54 50 40
0.02 110 83 70 62 56 51 47 43 34
0.05 94 69 57 50 45 41 37 34 26
0.10 82 58 48 41 37 33 29 27 20
0.20 68 47 38 32 28 25 22 20 14

0.55 0.01 92 70 60 54 49 45 41 38 31
0.02 83 63 53 47 43 39 36 33 26
0.05 71 52 44 38 34 31 28 26 20
0.10 61 44 36 32 28 25 23 21 16
0.20 51 36 29 25 22 19 17 15 11
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Ž .Table A.4. Continued

Ž .P s0.20 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.60 0.01 71 55 47 42 38 35 33 31 25
0.02 64 49 42 37 34 31 28 26 21
0.05 55 41 34 30 27 25 23 21 16
0.10 47 35 29 25 22 20 18 17 13
0.20 40 28 23 20 17 15 14 13 9

0.65 0.01 56 44 38 34 31 29 27 25 20
0.02 51 39 33 30 27 25 23 21 17
0.05 44 33 27 24 22 20 18 17 13
0.10 38 28 23 20 18 16 15 14 11
0.02 31 22 18 16 14 13 11 10 8

0.70 0.01 46 36 31 28 25 24 22 21 17
0.02 41 32 27 24 22 21 19 18 14
0.05 35 26 22 20 18 17 15 14 11
0.10 30 22 19 17 15 14 12 11 9
0.20 25 18 15 13 12 11 10 9 7

0.75 0.01 37 29 25 23 21 20 18 17 14
0.02 34 26 23 20 19 17 16 15 12
0.05 29 22 19 17 15 14 13 12 10
0.10 25 18 16 14 12 11 10 10 8
0.20 21 15 12 11 10 9 8 7 6

0.80 0.01 31 24 21 19 18 17 16 15 12
0.02 28 22 19 17 16 15 14 13 11
0.05 23 18 16 14 13 12 11 10 8
0.10 20 15 13 12 11 10 9 8 7
0.20 17 12 10 9 8 8 7 6 5

0.85 0.01 25 20 18 16 15 14 13 13 11
0.02 23 18 16 14 13 12 12 11 9
0.05 19 15 13 12 11 10 9 9 7
0.10 17 13 11 10 9 8 8 7 6
0.20 14 10 9 8 7 7 6 6 4

0.90 0.01 21 17 15 14 13 12 11 11 9
0.02 19 15 13 12 11 11 10 9 8
0.05 16 13 11 10 9 9 8 8 6
0.10 14 11 9 8 8 7 7 6 5
0.20 11 9 7 7 6 6 5 5 4

0.95 0.01 17 14 13 12 11 10 10 9 8
0.02 15 13 11 10 10 9 9 8 7
0.05 13 10 9 8 8 7 7 7 6
0.10 11 9 8 7 7 6 6 5 5
0.20 9 7 6 6 5 5 5 4 4



APPENDIX A: NUMERICAL TABLES668

Ž .Table A.4. Continued

P s0.251

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.30 0.01 3867 2878 2411 2119 1902 1723 1572 1438 1098
0.02 3486 2552 2114 1841 1639 1474 1334 1211 902
0.05 2965 2110 1714 1470 1291 1145 1023 916 652
0.10 2550 1764 1404 1185 1025 897 789 696 471
0.20 2112 1404 1087 895 758 649 559 482 301

0.35 0.01 1023 765 643 566 509 462 423 387 298
0.02 923 679 564 493 440 397 360 328 247
0.05 786 563 459 395 348 310 278 250 181
0.10 678 472 378 320 278 245 217 192 133
0.20 562 377 294 244 208 179 156 136 88

0.40 0.01 476 357 301 266 240 218 200 183 142
0.02 430 317 265 232 207 188 171 156 118
0.05 366 264 216 187 165 147 133 120 88
0.10 316 221 178 152 133 117 104 93 65
0.20 263 178 140 117 100 87 76 67 44

0.45 0.01 278 209 177 156 141 129 118 109 85
0.02 251 186 156 137 123 111 101 93 71
0.05 214 155 127 110 98 88 79 72 53
0.10 185 130 105 90 79 70 63 56 40
0.20 154 105 83 70 60 52 46 41 28

0.50 0.01 182 138 117 104 94 86 79 73 57
0.02 165 123 103 91 82 74 68 62 48
0.05 141 102 85 74 65 59 53 48 36
0.10 121 86 70 60 53 47 42 38 28
0.20 101 70 55 47 41 36 31 28 20

0.55 0.01 129 98 83 74 67 62 57 53 42
0.02 117 87 74 65 59 53 49 45 35
0.05 99 73 60 53 47 43 39 35 27
0.10 86 61 50 43 38 34 31 28 21
0.20 72 50 40 34 29 26 23 21 15

0.60 0.01 96 73 62 56 51 47 43 40 32
0.02 86 65 55 49 44 40 37 34 27
0.05 74 54 45 40 36 32 29 27 21
0.10 64 46 38 33 29 26 24 21 16
0.20 53 37 30 26 22 20 18 16 12



APPENDIX A: NUMERICAL TABLES 669

Ž .Table A.4. Continued

Ž .P s0.25 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.65 0.01 73 56 48 43 39 36 34 31 25
0.02 66 50 43 38 34 32 29 27 21
0.05 57 42 35 31 28 25 23 21 17
0.10 49 36 29 26 23 21 19 17 13
0.20 41 29 23 20 18 16 14 13 9

0.70 0.01 58 45 38 34 32 29 27 25 21
0.02 52 40 34 30 28 25 23 22 17
0.05 44 33 28 25 22 20 19 17 14
0.10 38 28 23 20 18 17 15 14 11
0.20 32 23 19 16 14 13 12 10 8

0.75 0.01 46 36 31 28 26 24 22 21 17
0.02 42 32 27 25 22 21 19 18 15
0.05 35 27 23 20 18 17 15 14 11
0.10 31 23 19 17 15 14 12 11 9
0.20 26 18 15 13 12 11 10 9 7

0.80 0.01 37 29 25 23 21 20 18 17 14
0.02 34 26 23 20 19 17 16 15 12
0.05 29 22 19 17 15 14 13 12 10
0.10 25 18 16 14 12 11 10 10 8
0.20 21 15 12 11 10 9 8 7 6

0.85 0.01 30 24 21 19 18 16 15 15 12
0.02 27 21 19 17 16 14 13 13 11
0.05 23 18 15 14 13 12 11 10 8
0.10 20 15 13 11 10 10 9 8 7
0.20 17 12 10 9 8 8 7 6 5

0.90 0.01 25 20 17 16 15 14 13 12 11
0.02 22 18 15 14 13 12 11 11 9
0.05 19 15 13 12 11 10 9 9 7
0.10 16 13 11 10 9 8 8 7 6
0.20 14 10 9 8 7 6 6 6 4

0.95 0.01 20 16 15 13 13 12 11 11 9
0.02 18 15 13 12 11 10 10 9 8
0.05 15 12 11 10 9 8 8 7 6
0.10 13 10 9 8 7 7 7 6 5
0.20 11 8 7 6 6 5 5 5 4



APPENDIX A: NUMERICAL TABLES670

Ž .Table A.4. Continued

P s0.301

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.35 0.01 4251 3163 2650 2328 2089 1892 1726 1578 1204
0.02 3832 2804 2322 2022 1800 1618 1464 1329 989
0.05 3259 2318 1882 1613 1416 1256 1122 1004 714
0.10 2803 1937 1541 1300 1124 983 865 762 514
0.20 2320 1541 1192 981 830 710 611 527 327

0.40 0.01 1108 827 695 612 550 499 456 418 322
0.02 999 734 610 532 475 428 389 354 266
0.05 851 608 496 427 376 334 300 269 194
0.10 733 510 408 345 300 264 233 207 142
0.20 608 407 317 263 224 193 167 145 94

0.45 0.01 508 381 321 283 255 232 213 195 151
0.02 459 338 282 247 221 200 182 166 126
0.05 391 281 230 199 175 157 141 127 93
0.10 337 236 190 161 141 124 110 98 69
0.20 280 189 148 124 106 92 80 70 47

0.50 0.01 293 220 186 165 149 135 124 114 89
0.02 264 196 164 144 129 117 106 97 75
0.05 225 163 134 116 103 92 83 75 56
0.10 194 137 111 95 83 73 66 59 42
0.20 162 110 87 73 63 55 48 42 29

0.55 0.01 190 144 122 108 98 89 82 76 60
0.02 172 128 107 94 85 77 71 65 50
0.05 147 106 88 76 68 61 55 50 38
0.10 127 90 73 63 55 49 44 39 29
0.20 105 72 57 48 42 37 33 29 20

0.60 0.01 133 101 86 76 69 63 59 54 43
0.02 120 90 76 67 60 55 50 46 36
0.05 103 75 62 54 48 44 40 36 27
0.10 89 63 52 45 39 35 32 29 21
0.20 74 51 41 35 30 27 24 21 15



APPENDIX A: NUMERICAL TABLES 671

Ž .Table A.4. Continued

Ž .P s0.30 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.65 0.01 98 75 64 57 52 47 44 41 32
0.02 88 66 56 50 45 41 38 35 27
0.05 75 55 46 40 36 33 30 27 21
0.10 65 47 38 33 30 27 24 22 16
0.20 54 38 31 26 23 20 18 16 12

0.70 0.01 74 57 49 44 40 37 34 32 25
0.02 67 51 43 38 35 32 29 27 22
0.05 57 42 36 31 28 26 23 21 17
0.10 49 36 30 26 23 21 19 17 13
0.20 41 29 24 20 18 16 14 13 9

0.75 0.01 58 45 38 34 32 29 27 25 21
0.02 52 40 34 30 28 25 23 22 17
0.05 44 33 28 25 22 20 19 17 14
0.10 38 28 23 20 18 17 15 14 11
0.20 32 23 19 16 14 13 12 10 8

0.80 0.01 46 36 31 28 25 24 22 21 17
0.02 41 32 27 24 22 21 19 18 14
0.05 35 26 22 20 18 17 15 14 11
0.10 30 22 19 17 15 14 12 11 9
0.20 25 18 15 13 12 11 10 9 7

0.85 0.01 36 29 25 23 21 19 18 17 14
0.02 33 26 22 20 18 17 16 15 12
0.05 28 21 18 16 15 14 13 12 9
0.10 24 18 15 14 12 11 10 10 8
0.20 20 15 12 11 10 9 8 7 6

0.90 0.01 29 23 20 19 17 16 15 14 12
0.02 26 21 18 16 15 14 13 12 10
0.05 22 17 15 13 12 11 11 10 8
0.10 19 15 13 11 10 9 9 8 7
0.20 16 12 10 9 8 7 7 6 5

0.95 0.01 23 19 17 15 14 13 13 12 10
0.02 21 17 15 14 13 12 11 10 9
0.05 18 14 12 11 10 10 9 8 7
0.10 16 12 10 9 9 8 7 7 6
0.20 13 10 8 7 7 6 6 5 4



APPENDIX A: NUMERICAL TABLES672

Ž .Table A.4. Continued

P s0.351

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.40 0.01 4540 3377 2828 2484 2229 2019 1841 1683 1284
0.02 4092 2993 2478 2157 1920 1726 1562 1417 1054
0.05 3479 2474 2008 1721 1511 1340 1196 1070 760
0.10 2992 2067 1644 1386 1198 1047 921 812 547
0.20 2476 1644 1271 1046 885 756 650 560 347

0.45 0.01 1168 872 732 644 579 526 480 440 338
0.02 1053 774 642 561 500 451 409 372 279
0.05 897 641 522 449 395 352 315 283 204
0.10 772 537 429 363 316 277 245 217 149
0.20 640 429 334 276 235 202 176 152 98

0.50 0.01 530 397 334 295 265 241 221 203 157
0.02 478 352 294 257 230 208 189 172 131
0.05 407 293 239 207 182 163 146 132 96
0.10 351 246 197 168 146 129 115 102 71
0.20 292 197 154 128 110 95 83 73 48

0.55 0.01 302 227 192 169 153 139 128 118 92
0.02 272 202 169 148 133 120 110 100 77
0.05 232 168 138 119 106 95 85 77 57
0.10 200 141 114 97 85 75 67 60 43
0.20 167 113 89 75 65 56 49 43 29

0.60 0.01 194 147 124 110 100 91 84 77 61
0.02 175 130 109 96 87 79 72 66 51
0.05 149 109 90 78 69 62 56 51 38
0.10 129 91 74 64 56 50 45 40 29
0.20 108 74 59 49 43 37 33 29 20

0.65 0.01 134 102 87 77 70 64 59 55 43
0.02 121 91 76 68 61 55 51 47 36
0.05 104 76 63 55 49 44 40 36 28
0.10 89 64 52 45 40 35 32 29 21
0.20 75 52 41 35 30 27 24 21 15



APPENDIX A: NUMERICAL TABLES 673

Ž .Table A.4. Continued

Ž .P s0.35 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.70 0.01 98 75 64 57 52 47 44 41 32
0.02 88 66 56 50 45 41 38 35 27
0.05 75 55 46 40 36 33 30 27 21
0.10 65 47 38 33 30 27 24 22 16
0.20 54 38 31 26 23 20 18 16 12

0.75 0.01 73 56 48 43 39 36 34 31 25
0.02 66 50 43 38 34 32 29 27 21
0.05 57 42 35 31 28 25 23 21 17
0.10 49 36 29 26 23 21 19 17 13
0.20 41 29 23 20 18 16 14 13 9

0.80 0.01 56 44 38 34 31 29 27 25 20
0.02 51 39 33 30 27 25 23 21 17
0.05 44 33 27 24 22 20 18 17 13
0.10 38 28 23 20 18 16 15 14 11
0.20 31 22 18 16 14 13 11 10 8

0.85 0.01 44 34 30 27 25 23 21 20 16
0.02 40 31 26 24 22 20 19 17 14
0.05 34 26 22 19 18 16 15 14 11
0.10 29 22 18 16 15 13 12 11 9
0.20 25 18 15 13 11 10 9 9 7

0.90 0.01 35 27 24 22 20 19 17 16 14
0.02 31 24 21 19 18 16 15 14 12
0.05 27 20 18 16 14 13 12 11 9
0.10 23 17 15 13 12 11 10 9 7
0.20 19 14 12 10 9 8 8 7 6

0.95 0.01 28 22 19 18 16 15 14 14 11
0.02 25 20 17 16 14 13 13 12 10
0.05 21 16 14 13 12 11 10 9 8
0.10 18 14 12 11 10 9 8 8 6
0.20 15 11 10 9 8 7 7 6 5



APPENDIX A: NUMERICAL TABLES674

Ž .Table A.4. Continued

P s0.401

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.45 0.01 4732 3520 2947 2589 2322 2104 1918 1753 1337
0.02 4265 3119 2582 2248 2001 1798 1627 1476 1097
0.05 3626 2578 2093 1793 1573 1395 1245 1114 791
0.10 3118 2153 1713 1444 1248 1090 959 845 568
0.20 2581 1712 1323 1089 921 787 677 582 360

0.50 0.01 1204 898 754 664 597 542 495 453 348
0.02 1086 797 662 578 515 464 421 383 287
0.05 924 660 538 463 407 362 324 291 210
0.10 796 553 442 374 325 285 252 223 153
0.20 660 441 343 284 242 208 180 157 100

0.55 0.01 540 405 341 301 271 246 225 207 160
0.02 488 359 299 262 234 212 192 175 133
0.05 415 298 244 211 186 166 149 134 98
0.10 358 250 201 171 149 131 117 104 73
0.20 298 201 157 131 112 97 85 74 49

0.60 0.01 305 229 193 171 154 141 129 119 93
0.02 275 204 170 149 134 121 111 101 77
0.05 235 169 139 120 107 96 86 78 58
0.10 202 142 115 98 86 76 68 61 43
0.20 168 114 90 76 65 57 50 44 30

0.65 0.01 194 147 124 110 100 91 84 77 61
0.02 175 130 109 96 87 79 72 66 51
0.05 149 109 90 78 69 62 56 51 38
0.10 129 91 74 64 56 50 45 40 29
0.20 108 74 59 49 43 37 33 29 20

0.70 0.01 133 101 86 76 69 63 59 54 43
0.02 120 90 76 67 60 55 50 46 36
0.05 103 75 62 54 48 44 40 36 27
0.10 89 63 52 45 39 35 32 29 21
0.20 74 51 41 35 30 27 24 21 15
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Ž .Table A.4. Continued

Ž .P s0.40 Continued1

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.75 0.01 96 73 62 56 51 47 43 40 32
0.02 86 65 55 49 44 40 37 34 27
0.05 74 54 45 40 36 32 29 27 21
0.10 64 46 38 33 29 26 24 21 16
0.20 53 37 30 26 22 20 18 16 12

0.80 0.01 71 55 47 42 38 35 33 31 25
0.02 64 49 42 37 34 31 28 26 21
0.05 55 41 34 30 27 25 23 21 16
0.10 47 35 29 25 22 20 18 17 13
0.20 40 28 23 20 17 15 14 13 9

0.85 0.01 54 42 36 33 30 28 26 24 20
0.02 49 37 32 29 26 24 22 21 17
0.05 42 31 26 23 21 19 18 16 13
0.10 36 27 22 19 17 16 14 13 10
0.20 30 22 18 15 14 12 11 10 8

0.90 0.01 42 33 28 26 24 22 20 19 16
0.02 38 29 25 23 21 19 18 17 14
0.05 32 24 21 18 17 15 14 13 11
0.10 28 21 17 15 14 13 12 11 8
0.20 23 17 14 12 11 10 9 8 6

0.95 0.01 32 26 22 20 19 18 16 16 13
0.02 29 23 20 18 17 15 14 13 11
0.05 25 19 16 15 14 12 12 11 9
0.10 22 16 14 12 11 10 9 9 7
0.20 18 13 11 10 9 8 7 7 5



APPENDIX A: NUMERICAL TABLES676

Ž .Table A.4. Continued

P s 0.451

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.50 0.01 4828 3591 3007 2641 2369 2146 1956 1788 1364
0.02 4352 3182 2635 2293 2041 1834 1659 1505 1119
0.05 3700 2630 2135 1829 1605 1423 1270 1136 806
0.10 3181 2197 1747 1472 1273 1112 978 861 579
0.20 2633 1747 1350 1110 939 802 690 593 367

0.55 0.01 1216 907 762 670 603 547 499 458 352
0.02 1097 805 668 583 520 469 425 387 290
0.05 933 667 543 467 411 366 328 294 212
0.10 804 558 446 378 328 288 254 255 155
0.20 667 446 347 287 244 210 182 158 101

0.60 0.01 540 405 341 301 271 246 225 207 160
0.02 488 359 299 262 234 212 192 175 133
0.05 415 298 244 211 186 166 149 134 98
0.10 358 250 201 171 149 131 117 104 73
0.20 298 201 157 131 112 97 85 74 49

0.65 0.01 302 227 192 169 153 139 128 118 92
0.02 272 202 169 148 133 120 110 100 77
0.05 232 168 138 119 106 95 85 77 57
0.10 200 141 114 97 85 75 67 60 43
0.20 167 113 89 75 65 56 49 43 29

0.70 0.01 190 144 122 108 98 89 82 76 60
0.02 172 128 107 94 85 77 71 65 50
0.05 147 106 88 76 68 61 55 50 38
0.10 127 90 73 63 55 49 44 39 29
0.20 105 72 57 48 42 37 33 29 20

0.75 0.01 129 98 83 74 67 62 57 53 42
0.02 117 87 74 65 59 53 49 45 35
0.05 99 73 60 53 47 43 39 35 27
0.10 86 61 50 43 38 34 31 28 21
0.20 72 50 40 34 29 26 23 21 15

0.80 0.01 92 70 60 54 49 45 41 38 31
0.02 83 63 53 47 43 39 36 33 26
0.05 71 52 44 38 34 31 28 26 20
0.10 61 44 36 32 28 25 23 21 16
0.20 51 36 29 25 22 19 17 15 11

0.85 0.01 67 52 45 40 37 34 31 29 24
0.02 61 46 39 35 32 29 27 25 20
0.05 52 39 33 29 26 24 22 20 16
0.10 45 33 27 24 21 19 17 16 12
0.20 38 27 22 19 17 15 13 12 9

0.90 0.01 51 39 34 31 28 26 24 23 19
0.02 46 35 30 27 25 23 21 20 16
0.05 39 29 25 22 20 18 17 16 12
0.10 34 25 21 18 16 15 14 13 10
0.20 28 20 17 15 13 12 11 10 7

0.95 0.01 38 30 26 24 22 20 19 18 15
0.02 35 27 23 21 19 18 17 16 13
0.05 30 23 19 17 16 14 13 12 10
0.10 26 19 16 14 13 12 11 10 8
0.20 21 16 13 11 10 9 9 8 6



APPENDIX A: NUMERICAL TABLES 677

Ž .Table A.4. Continued

P s0.501

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.55 0.01 4828 3591 3007 2641 2369 2146 1956 1788 1364
0.02 4352 3182 2635 2293 2041 1834 1659 1505 1119
0.05 3700 2630 2135 1829 1605 1423 1270 1136 806
0.10 3181 2197 1747 1472 1273 1112 978 861 579
0.20 2633 1747 1350 1110 939 802 690 593 367

0.60 0.01 1204 898 754 664 597 542 495 453 348
0.02 1086 797 662 578 515 464 421 383 287
0.05 924 660 538 463 407 362 324 291 210
0.10 796 553 442 374 325 285 252 223 153
0.20 660 441 343 284 242 208 180 157 100

0.65 0.01 530 397 334 295 265 241 221 203 157
0.02 478 352 294 257 230 208 189 172 131
0.05 407 293 239 207 182 163 146 132 96
0.10 351 246 197 168 146 129 115 102 71
0.20 292 197 154 128 110 95 83 73 48

0.70 0.01 293 220 186 165 149 135 124 114 89
0.02 264 196 164 144 129 117 106 97 75
0.05 225 163 134 116 103 92 83 75 56
0.10 194 137 111 95 83 73 66 59 42
0.20 162 110 87 73 63 55 48 42 29

0.75 0.01 182 138 117 104 94 86 79 73 57
0.02 165 123 103 91 82 74 68 62 48
0.05 141 102 85 74 65 59 53 48 36
0.10 121 86 70 60 53 47 42 38 28
0.20 101 70 55 47 41 36 31 28 20

0.80 0.01 122 93 79 71 64 59 54 50 40
0.02 110 83 70 62 56 51 47 43 34
0.05 94 69 57 50 45 41 37 34 26
0.10 82 58 48 41 37 33 29 27 20
0.20 68 47 38 32 28 25 22 20 14

0.85 0.01 86 66 56 50 46 42 39 36 29
0.02 78 59 50 44 40 37 34 31 25
0.05 66 49 41 36 32 29 27 25 19
0.10 57 42 34 30 26 24 22 20 15
0.20 48 34 27 23 21 18 16 15 11

0.90 0.01 62 48 41 37 34 31 29 27 22
0.02 56 43 37 33 30 27 25 23 19
0.05 48 36 30 27 24 22 20 19 15
0.10 42 30 25 22 20 18 16 15 12
0.20 35 25 20 18 16 14 13 11 9

0.95 0.01 46 36 31 28 26 24 22 21 17
0.02 41 32 27 25 23 21 19 18 15
0.05 35 27 23 20 18 17 16 14 12
0.10 31 23 19 17 15 14 13 12 9
0.20 26 19 15 13 12 11 10 9 7



APPENDIX A: NUMERICAL TABLES678

Ž .Table A.4. Continued

P s0.551

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.60 0.01 4732 3520 2947 2589 2322 2104 1918 1753 1337
0.02 4265 3119 2582 2248 2001 1798 1627 1476 1097
0.05 3626 2578 2093 1793 1573 1395 1245 1114 791
0.10 3118 2153 1713 1444 1248 1090 959 845 568
0.20 2581 1712 1323 1089 921 787 677 582 360

0.65 0.01 1168 872 732 644 579 526 480 440 338
0.02 1053 774 642 561 500 451 409 372 279
0.05 897 641 522 449 395 352 315 283 204
0.10 772 537 429 363 316 277 245 217 149
0.20 640 429 334 276 235 202 176 152 98

0.70 0.01 508 381 321 283 255 232 213 195 151
0.02 459 338 282 247 221 200 182 166 126
0.05 391 281 230 199 175 157 141 127 93
0.10 337 236 190 161 141 124 110 98 69
0.20 280 189 148 124 106 92 80 70 47

0.75 0.01 278 209 177 156 141 129 118 109 85
0.02 251 186 156 137 123 111 101 93 71
0.05 214 155 127 110 98 88 79 72 53
0.10 185 130 105 90 79 70 63 56 40
0.20 154 105 83 70 60 52 46 41 28

0.80 0.01 171 129 110 98 88 81 74 69 54
0.02 154 115 97 85 77 70 64 59 46
0.05 132 96 79 69 62 56 50 46 35
0.10 114 81 66 57 50 45 40 36 26
0.20 95 65 52 44 38 34 30 27 19

0.85 0.01 113 86 73 65 60 55 50 47 37
0.02 102 77 65 57 52 47 44 40 32
0.05 87 64 53 47 42 38 34 32 24
0.10 75 54 44 39 34 31 28 25 19
0.20 63 44 35 30 26 23 21 19 14

0.90 0.01 78 60 51 46 42 39 36 33 27
0.02 71 54 46 41 37 34 31 29 23
0.05 60 45 38 33 30 27 25 23 18
0.10 52 38 31 27 24 22 20 18 14
0.20 44 31 25 22 19 17 15 14 10

0.95 0.01 55 43 37 33 31 28 26 25 20
0.02 50 38 33 29 27 25 23 21 17
0.05 43 32 27 24 22 20 18 17 14
0.10 37 27 23 20 18 16 15 14 11
0.20 31 22 18 16 14 13 12 11 8
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Ž .Table A.4. Continued

P s0.601

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.65 0.01 4540 3377 2828 2484 2229 2019 1841 1683 1284
0.02 4092 2993 2478 2157 1920 1726 1562 1417 1054
0.05 3479 2474 2008 1721 1511 1340 1196 1070 760
0.10 2992 2067 1644 1386 1198 1047 921 812 547
0.20 2476 1644 1271 1046 885 756 650 560 347

0.70 0.01 1108 827 695 612 550 499 456 418 322
0.02 999 734 610 532 475 428 389 354 266
0.05 851 608 496 427 376 334 300 269 194
0.10 733 510 408 345 300 264 233 207 142
0.20 608 407 317 263 224 193 167 145 94

0.75 0.01 476 357 301 266 240 218 200 183 142
0.02 430 317 265 232 207 188 171 156 118
0.05 366 264 216 187 165 147 133 120 88
0.10 316 221 178 152 133 117 104 93 65
0.20 263 178 140 117 100 87 76 67 44

0.80 0.01 256 193 164 145 131 120 110 101 79
0.02 232 172 144 127 114 103 94 86 66
0.05 198 143 118 102 91 82 74 67 50
0.10 171 121 98 84 74 65 58 52 38
0.20 142 97 77 65 56 49 43 38 26

0.85 0.01 155 118 100 89 81 74 68 63 50
0.02 140 105 89 78 70 64 59 54 42
0.05 120 88 73 63 57 51 46 42 32
0.10 104 74 60 52 46 41 37 33 25
0.20 87 60 48 41 35 31 28 25 18

0.90 0.01 101 77 66 59 54 49 46 42 34
0.02 91 69 58 52 47 43 39 36 29
0.05 78 58 48 42 38 34 31 29 22
0.10 68 49 40 35 31 28 25 23 17
0.20 56 40 32 27 24 21 19 17 13

0.95 0.01 68 53 45 41 37 34 32 30 24
0.02 62 47 40 36 33 30 28 26 21
0.05 53 39 33 29 27 24 22 21 16
0.10 46 34 28 24 22 20 18 17 13
0.20 38 27 22 19 17 15 14 13 10
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Ž .Table A.4. Continued

P s0.651

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.70 0.01 4251 3163 2650 2328 2089 1892 1726 1578 1204
0.02 3833 2804 2322 2022 1800 1618 1464 1329 989
0.05 3259 2318 1882 1613 1416 1256 1122 1004 714
0.10 2803 1937 1541 1300 1124 983 865 762 514
0.20 2320 1541 1192 981 830 710 611 527 327

0.75 0.01 1023 765 643 566 509 462 423 387 298
0.02 923 679 564 493 440 397 360 328 247
0.05 786 563 459 395 348 310 278 250 181
0.10 678 472 378 320 278 245 217 192 133
0.20 562 377 294 244 208 179 156 136 88

0.80 0.01 433 325 274 242 219 199 183 168 131
0.02 391 289 242 212 190 172 156 143 109
0.05 334 240 197 171 151 135 122 110 81
0.10 288 202 163 139 122 107 96 85 61
0.20 240 162 128 107 92 80 70 62 41

0.85 0.01 229 173 147 130 118 108 99 91 72
0.02 207 154 130 114 102 93 85 78 60
0.05 177 129 106 92 82 74 67 61 45
0.10 153 109 88 76 67 59 53 48 35
0.20 128 88 70 59 51 45 39 35 24

0.90 0.01 136 104 88 79 72 66 61 56 45
0.02 123 93 78 69 62 57 52 48 38
0.05 105 77 64 56 50 45 41 38 29
0.10 91 65 54 46 41 37 33 30 22
0.20 76 53 43 36 32 28 25 22 16

0.95 0.01 86 66 57 51 46 43 40 37 30
0.02 78 59 50 45 41 37 34 32 25
0.05 67 50 42 37 33 30 28 25 20
0.10 58 42 35 30 27 25 22 20 16
0.20 48 34 28 24 21 19 17 16 12



APPENDIX A: NUMERICAL TABLES 681

Ž .Table A.4. Continued

P s0.701

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.75 0.01 3867 2878 2411 2119 1902 1723 1572 1438 1098
0.02 3486 2552 2114 1841 1639 1474 1334 1211 902
0.05 2965 2110 1714 1470 1291 1145 1023 916 652
0.10 2550 1764 1404 1185 1025 897 789 696 471
0.20 2112 1404 1087 895 758 649 559 482 301

0.80 0.01 915 685 576 507 456 415 379 348 268
0.02 826 608 506 442 395 356 324 295 222
0.05 704 504 412 355 313 279 250 225 163
0.10 607 423 339 288 250 220 195 174 121
0.20 504 339 265 220 188 162 141 123 80

0.85 0.01 380 286 241 213 193 176 161 148 116
0.02 343 254 213 187 167 152 138 126 97
0.05 293 212 174 151 134 120 108 98 72
0.10 253 178 144 123 108 95 85 76 54
0.20 211 143 113 95 82 71 63 55 38

0.90 0.01 196 149 126 112 102 93 86 79 63
0.02 178 133 112 98 89 81 74 68 53
0.05 152 111 92 80 71 64 58 53 40
0.10 131 94 76 66 58 52 47 42 31
0.20 110 76 61 51 45 39 35 31 22

0.95 0.01 113 87 74 66 60 55 51 48 38
0.02 102 77 66 58 53 48 44 41 33
0.05 88 65 54 48 43 39 35 32 25
0.10 76 55 45 39 35 32 29 26 20
0.20 64 45 36 31 27 24 22 20 14
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P s0.751

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.80 0.01 3386 2522 2114 1858 1668 1512 1379 1262 965
0.02 3053 2236 1853 1615 1438 1294 1172 1064 794
0.05 2597 1850 1504 1290 1134 1007 900 806 575
0.10 2235 1547 1233 1041 901 789 695 614 417
0.20 1852 1232 955 788 668 572 494 426 268

0.85 0.01 783 586 494 435 392 357 326 300 232
0.02 707 521 434 380 340 307 279 254 193
0.05 603 433 354 305 270 241 216 195 142
0.10 520 363 292 248 216 191 169 151 106
0.20 432 291 228 190 163 141 123 108 71

0.90 0.01 316 238 202 179 162 147 136 125 98
0.02 285 212 178 156 140 127 116 107 82
0.05 244 177 146 127 113 101 91 83 62
0.10 211 149 121 104 91 81 73 65 47
0.20 176 120 96 81 70 61 54 48 33

0.95 0.01 157 120 102 91 83 76 70 65 52
0.02 142 107 90 80 72 66 61 56 44
0.05 122 90 75 65 58 53 48 44 34
0.10 106 76 62 54 48 43 39 35 26
0.20 88 62 50 42 37 33 29 26 19



APPENDIX A: NUMERICAL TABLES 683

Ž .Table A.4. Continued

P s0.801

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.85 0.01 2810 2094 1756 1545 1388 1259 1149 1052 806
0.02 2534 1858 1541 1343 1198 1078 977 888 664
0.05 2157 1538 1252 1075 945 840 751 674 483
0.10 1856 1287 1027 868 753 660 582 515 351
0.20 1539 1027 797 659 559 480 415 360 228

0.90 0.01 627 471 397 351 316 288 264 243 189
0.02 566 419 349 306 274 248 226 206 157
0.05 483 348 286 247 219 196 176 159 117
0.10 417 293 236 201 176 156 139 124 88
0.20 347 236 185 155 133 116 102 89 60

0.95 0.01 241 183 155 138 125 115 106 98 77
0.02 218 163 137 121 109 99 91 84 65
0.05 187 136 113 99 88 79 72 66 50
0.10 162 115 94 81 72 64 58 52 38
0.20 135 94 75 64 55 49 44 39 28

P s0.851

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.90 0.01 2137 1595 1340 1179 1060 963 880 806 620
0.02 1928 1416 1176 1027 916 826 749 682 513
0.05 1642 1174 957 823 725 646 579 520 375
0.10 1415 984 787 667 579 509 450 399 275
0.20 1175 787 613 508 433 373 324 281 182

0.95 0.01 447 337 285 253 228 209 192 177 139
0.02 404 300 252 221 199 180 165 151 117
0.05 345 251 207 179 160 143 130 118 88
0.10 299 212 172 147 130 115 103 93 67
0.20 250 171 136 115 99 87 77 68 47

P s901

Power

P � 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.502

0.95 0.01 1368 1025 863 762 686 624 572 525 407
0.02 1235 911 760 665 595 538 489 446 339
0.05 1054 758 621 536 474 423 381 344 252
0.10 910 637 513 437 381 336 299 267 188
0.20 758 512 402 336 288 250 219 192 128
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Table A.5. 20,000 random digits

08939 53632 41345 65379 20165 32576 13967 90616 17995 92422
92578 23668 08801 39792 59541 99117 58830 60923 36068 68101
83994 91054 90377 22776 23263 34593 98191 77811 83144 98563
43080 71414 40760 01831 44145 48387 93018 22618 98547 87716
39372 46789 26381 37186 85684 79426 05395 17538 56671 82181

83046 58644 04452 98912 53406 30224 00687 32099 86414 29590
99808 32539 96961 88917 60847 64826 41332 64557 15354 11111
28478 70870 68912 75644 33648 21097 23745 52593 01849 37760
09916 19651 28659 95093 12626 19919 05879 56003 83100 94572
19537 66067 20569 28808 87722 67059 12851 73573 25776 92500

23013 05574 26320 07754 09642 88068 41626 57139 68199 94938
55838 80585 80967 60540 34528 62310 63106 17843 39104 74036
92279 87344 93556 75233 09394 79265 91047 32891 77925 71530
27850 23332 89336 26026 52130 78544 02090 05645 15060 39550
01760 54605 11794 79312 69728 04554 99775 57659 47981 68954

81889 70751 87501 88247 41966 57574 67745 88304 20118 25964
74722 14654 15425 60665 25162 04987 03467 75915 24282 62456
56196 75068 44643 92240 51651 79743 13598 63901 61020 91003
96842 62021 00543 45073 65545 87612 35765 26079 34589 72821
25619 98328 59393 71401 93871 20611 78830 87477 15390 05044

91746 05084 04781 82933 54564 80986 94843 40178 87483 63288
92384 84706 76778 98313 98875 08427 60687 88272 83448 06237
86390 62208 95735 14535 25591 22730 06059 31786 36181 31016
60458 83606 57510 92609 38061 94881 26736 06489 98303 31419
03783 39922 05489 73630 92379 91602 18193 84741 44704 05558

31011 36035 37113 98362 56149 51634 04468 62096 32361 35301
20555 05621 48728 41776 12101 96615 70781 55151 93876 66892
56466 36766 12400 43510 49456 05140 85736 68155 37306 10438
26875 67304 61950 65962 38223 35676 70043 99178 64677 95457
90648 84770 92791 93814 27760 22232 83545 01183 55188 20482

26197 72840 01264 52019 00739 36259 10905 39097 36437 66743
72522 34445 53975 13840 97262 59007 78685 41044 38103 59216
12370 41270 36290 46307 51230 90614 82613 80148 37371 02895
81028 60112 31415 47478 02131 85480 93699 92876 13958 47867
61573 38634 77650 18189 10283 97999 95442 90657 84963 93863

98511 46300 91199 30492 62159 98525 31710 03540 35844 83200
76606 10834 75548 55779 54744 26450 66001 57949 53685 00567
20237 16311 15733 47599 43998 35594 17577 85113 52487 48900
21022 86025 26951 87480 82317 06580 98627 32536 07573 52612
47512 11564 41777 46581 03492 01722 78900 57901 37307 02727

80598 59041 28861 41793 91007 69907 00376 73086 35132 53014
01892 34226 88327 21926 36607 22307 04376 25491 13563 51955
89657 70349 15176 57916 10911 44218 67108 04678 24097 02476
97983 65616 11841 80504 76452 34176 16986 94328 13091 29592
59727 92033 14654 59622 25844 18460 78162 02832 13528 55683

12340 72894 26303 01771 73895 27432 99536 50328 06141 83886
48049 33318 67463 04914 22316 89663 37132 15825 60759 22131
85953 16537 25639 05004 99269 50577 10036 05022 39800 93605
03426 78111 37828 23967 03350 04397 96227 37787 60680 23993
97837 71085 45973 36073 02680 91425 24425 23725 22521 21601
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26916 67086 60270 57846 04646 07258 01734 45079 54869 23505
47205 71678 05222 86233 70398 46287 44139 48247 92230 19157
84869 36794 56943 10512 50582 08884 98068 08447 68071 32397
81740 98868 57546 55461 14850 89946 06024 26626 05543 93616
11808 28306 63559 26600 87569 86007 27922 93468 09509 15841

09464 14219 00130 72813 35704 58905 32091 62397 85560 51783
40656 77886 01411 07490 32240 26028 66002 61762 76551 03442
31693 59176 69817 86317 89547 60424 56618 95888 65770 31622
97799 02197 32987 78146 71992 28633 23868 85504 98216 19756
34590 29732 67082 34899 05654 19830 68088 30054 67535 34721

00504 90537 38681 17248 55362 76935 63352 87699 56022 46835
76814 39363 44851 14836 85357 78617 03482 13336 48678 72047
94171 16606 52092 63096 09752 90644 56092 20751 19678 31311
10758 82747 99662 53243 22501 55820 32406 92052 60659 35477
66933 82305 91425 07804 24003 73777 26634 95806 35126 48503

74883 12771 02671 01090 82498 85176 68569 44827 51844 07616
79102 06066 24478 92267 33300 69392 16652 75381 02415 36065
94649 43308 08005 58253 77473 40559 46096 11540 54375 22388
44952 68217 04728 14414 43931 33854 07744 41771 80933 09655
29531 90289 75949 43091 75005 62207 98196 29316 92128 88918

04355 25867 16008 63243 35388 43138 40330 53741 59469 73144
03640 63541 48488 19060 77959 96217 75666 88042 47261 91184
21749 09836 63276 91133 77308 43654 66146 03991 28629 35848
57425 21919 14688 90852 12918 59833 42736 17916 22868 75963
49962 16108 46986 36939 98761 60113 71822 89915 93090 49299

57985 04214 03417 82576 64699 45011 87770 21525 39212 41547
96374 04318 58540 12375 47382 72917 11063 10129 61201 76044
05457 48338 40916 10453 94473 72759 86299 62959 01064 39749
28918 15769 34348 64162 75841 77582 82921 99286 49425 02973
73010 11300 10710 62560 78969 10771 53899 26454 73627 03681

59435 23480 05967 24479 93169 38697 93658 13676 39128 11680
17929 02455 53366 98097 08284 66830 26423 57062 04563 13822
41862 26768 83848 62175 18414 50906 39708 80097 23206 18358
01294 42540 43590 78681 79771 70501 05062 95860 29602 14866
22775 02858 12165 47273 74148 19427 49227 20518 80065 95722

53747 60983 82171 44180 25536 55599 03762 22186 99253 95841
81766 28025 32247 41257 57319 72602 19740 65016 12435 89463
24862 44004 40269 45574 11018 55941 36479 15404 64110 46027
99169 80770 92093 25630 24942 18977 89382 65496 88534 41734
53600 45992 93546 47348 42169 26882 81774 48703 56244 99137

88627 39523 39496 81268 32137 61411 79234 22696 23073 34171
97367 76657 83638 11912 18723 05129 62265 27431 04195 78294
32005 87382 36246 31037 60009 80722 44244 38968 35608 62938
57154 76478 44478 78561 71064 19331 76406 84452 19058 54278
54146 36375 30932 58210 70875 01355 70257 09341 23730 58309

36283 92917 30953 49460 18185 63965 20121 45041 89156 29563
74973 83767 27843 13152 28328 51597 54624 63371 88603 61277
70237 69924 87413 95159 84237 48986 35781 73808 20817 60630
76426 12882 89455 20792 19655 30803 07915 70264 50346 69701
65088 63220 93521 92145 11180 37773 26018 16150 62735 31062
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21755 50969 10016 01373 18088 96168 14217 19786 90759 66476
82024 93860 24943 04919 05019 85844 69890 46740 51431 87922
64649 96595 97725 16988 22404 81529 87537 91453 60886 42239
05455 52581 66391 25111 53143 92863 78886 37547 15306 53911
85711 29066 02999 56394 11372 60689 61784 24499 90934 25106

32230 67428 14496 80119 50249 80419 30275 57878 74784 27806
93773 12383 30343 70604 50537 67783 51863 01132 40022 29939
19436 47161 08039 23786 70362 08094 15302 18963 76059 85683
29564 06230 71308 71770 88850 87166 23344 55564 23287 39647
28294 12945 23018 21604 22457 40306 39721 75568 95922 95419

09211 96490 96042 07837 82647 25343 08236 21325 53823 31010
01652 30822 70058 42947 27160 76437 14177 97132 55193 56972
45091 57793 40937 25483 84462 77419 04356 29363 36969 57549
12567 57462 31667 72844 52056 56741 71936 20944 78241 80949
81524 60599 29872 33841 34193 00587 95783 69415 54442 01910

21482 11696 76840 55775 43085 56535 51444 99849 36099 17950
82810 35306 66543 81499 90106 07145 31914 27172 75808 10295
79498 84331 90497 84000 89528 81166 81247 56983 10673 51195
11109 05896 35392 59285 37186 89548 02607 09712 34804 21413
15244 98745 55271 42923 60096 74268 04743 60039 17547 64932

31666 05605 48629 41332 10329 89982 46927 71723 07996 02466
42826 34764 23143 25983 47607 51791 82282 27570 24876 01128
82881 87130 76850 76921 69879 26981 32973 55008 33291 04669
28391 28322 14413 31579 59754 74317 08112 79815 05879 16938
48719 39869 00739 45610 67010 91567 46312 53765 05780 50798

52763 59397 81517 54521 93475 70156 79661 46562 62420 55458
70967 26680 21377 88141 36450 25424 24495 18149 88435 67268
07692 40737 75193 84524 30406 21722 56673 44542 57189 42256
38832 52688 66638 25632 54050 93604 75178 08625 75145 73248
63182 19854 50484 24217 90941 27692 47680 36849 91973 20190

93388 78611 31175 79544 96694 64262 15325 13587 43599 39302
43423 06816 50091 39199 84373 53446 61320 86900 69517 35003
84358 91122 87506 04936 42059 07924 69016 42775 35505 28060
48808 40305 02561 52614 92636 82287 60001 19417 76491 84195
16750 42742 05696 49496 45709 28786 61339 08953 01668 29427

61552 04467 72828 96765 25138 79942 53404 00946 25034 41690
24829 73764 19122 50857 33043 40546 45884 10391 49390 02819
72401 09034 02594 34257 82193 84846 69338 52408 90406 70765
10932 28706 73841 84692 43581 99260 03325 26610 29737 38927
65930 45238 78052 61167 64536 36708 39425 06176 82227 37781

86639 79801 99050 76091 65094 05740 48597 39918 02130 53520
01947 29996 62454 04755 66442 55854 37146 20187 86811 39179
53770 70012 36138 86720 95077 89978 84171 95222 13796 25774
30475 50884 31026 28195 89935 85855 05715 61588 18092 54261
62739 88081 63832 90260 67072 90095 36914 10629 31549 93630

77844 24386 45720 54845 17591 11938 13307 72402 14648 36263
85747 88110 56936 48625 79327 38333 16052 51315 63422 18693
41361 79928 07316 24546 81431 67669 73127 29744 20315 54192
42317 66171 16169 01470 63300 66571 29722 79191 07644 33148
30088 82194 22366 94453 65418 42430 65820 13046 85896 97958
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14679 06451 06588 81467 29514 43874 97618 90837 66459 81223
89204 04220 22479 96891 79032 02169 01727 90834 29465 59280
90491 09422 42113 67877 28245 58572 97229 56225 62283 67668
45465 63773 73453 66756 39456 35932 60485 39521 92761 00876
70407 14550 53641 90888 62562 57373 81180 70722 93714 25780

11254 35507 11749 50931 99843 40677 45472 06738 31180 26435
77992 30030 78254 99249 91207 54003 03149 32871 68881 17444
84733 51402 45811 12247 61182 56872 90592 31698 74858 63867
09476 82052 07023 03671 58821 19882 89900 60456 53637 77719
83577 01987 59725 40464 05258 67372 56907 35085 98351 74336

60855 96100 28905 08526 91010 69331 96888 57348 72097 16448
49813 50842 56729 82794 86204 72075 56610 90983 36404 99578
69832 22786 08230 44306 91759 51802 84976 43633 97016 89399
63245 74878 80059 06446 18147 50861 41846 93322 83316 59991
10105 20707 33291 13385 80687 63653 55732 61518 67517 51439

00977 42906 48644 05707 96448 27318 95873 29376 13401 16019
75501 08838 73515 61548 07645 91940 82831 69523 71658 04241
80525 44978 45143 66055 90038 45735 64065 72771 60040 05302
91446 00959 82739 87803 82164 02753 77038 37448 31342 51018
24031 85017 93826 97797 42345 73895 62266 08538 90827 68122

91285 34606 86074 04984 55238 86574 22300 54630 27078 70794
81062 49226 65798 51749 18313 44134 99983 02693 16310 73623
94945 07061 87861 63618 90956 73170 20417 63972 00075 24697
47508 62774 49067 29437 35021 45184 55918 28848 69823 59308
27440 30866 38231 51593 65475 28517 81818 34260 69189 06796

18072 47268 20958 00335 13388 77308 43355 64352 95916 96329
14722 21374 95744 82090 30844 46254 99924 83255 00209 51956
09853 91508 60367 38631 88481 83202 02881 68468 84877 93045
94373 28832 23632 82309 81160 46174 46608 64077 64988 13237
94526 48016 37362 92027 15906 67185 59957 55076 90844 49373

78640 27483 57136 95467 58574 92235 26245 27355 27918 21312
76610 67852 17624 95070 11800 15172 84826 72409 71016 74412
07321 74221 79429 08584 36645 42613 25865 71671 97244 38423
55337 86213 19237 39510 63919 27925 92274 02322 83458 79852
27987 49253 43638 18546 18533 44280 98884 94782 78736 19373

07610 71301 59319 14196 51309 80085 18726 91587 80992 61663
41047 91314 78463 48950 87529 84618 19947 58119 69184 92035
29552 48994 27991 27000 10082 17489 14188 27732 38692 82566
47166 39897 14884 30234 47445 12559 48351 77069 27255 69909
74159 15772 27203 21269 82781 05262 86541 71890 52467 67787

34518 97021 71462 55582 90333 41760 37564 49543 59181 09194
22533 52449 11893 99313 88836 39198 35665 61203 46236 26586
43385 21033 35736 25113 29055 48307 28348 35323 56803 22908
26224 51169 70990 65422 53620 32916 14914 93239 25205 12074
45601 64938 79216 90857 32195 75453 62960 98682 25443 64524

58151 68188 85768 00919 33595 93299 57440 04948 12724 31809
76340 71754 43465 15001 98816 57885 57961 26798 39138 93645
09625 14943 03037 83731 75049 96716 04849 58650 08254 21673
55746 39415 34777 53925 10558 78021 73106 36443 60700 36211
70966 99897 60680 65010 43936 78523 75711 47553 03918 95528
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37906 67684 64945 80515 98580 66844 13841 81451 64133 51736
33214 33660 03036 15271 64298 48348 11405 33299 97141 83158
24673 99616 75635 57261 62852 61758 04883 73473 96889 20071
48424 09907 23621 52564 02788 43652 36819 28046 36901 68989
81824 70042 83835 72632 81280 33986 72398 28508 19464 60208

86072 74558 72701 65183 36787 34078 73381 33580 41052 44089
95065 73583 85914 53236 46186 97991 72273 51718 59845 93607
23036 95754 67198 41400 43613 89077 41942 49956 22261 83956
03385 64705 57768 64255 65622 15430 01983 73023 20295 64558
04689 47109 40454 18734 48321 21315 93002 66173 60023 64576

47246 02296 88556 10674 67034 06143 33545 45982 73986 30075
14570 16742 69321 65249 67601 18364 01776 45378 56279 29273
69122 51274 85540 51772 40770 78669 05078 22446 88971 31817
90157 54589 16114 05382 87269 75173 65610 17102 12127 18837
03879 53737 87508 41417 60925 92795 08442 15497 17004 62546

22236 70503 22890 02810 10852 39816 41230 89031 63119 77428
96497 82130 24298 06620 21037 66636 10484 63177 84701 39611
75355 95630 95584 12836 16760 85032 59349 90801 10663 46768
84645 86953 59912 76888 22124 40748 45370 05479 24547 97967
66878 19564 15482 16818 61566 18034 54106 62327 87010 61112

83586 51499 56724 76848 50567 11768 15509 87138 83245 15223
42133 15790 15539 51120 66864 41105 44854 99171 91340 55499
10936 66119 98287 94653 83328 48089 38583 98693 44910 81224
83154 67905 59041 43101 27232 75480 07791 67427 34439 99786
88765 34520 08226 38677 58026 00065 78152 68330 06605 24659

88509 09116 58112 66633 76782 60996 74937 00650 29469 70960
60539 24597 02726 94980 45345 17247 95374 17014 43723 09207
61732 87526 69563 29647 51811 44040 97946 91308 66335 76237
60406 76296 14122 98066 61291 85153 59295 89395 02711 11708
45845 69699 05584 06215 87034 66264 14275 89270 07145 39440

72327 79003 23073 27408 56790 94062 53259 72995 58638 94869
41471 95004 96783 25663 82927 66588 53186 19823 40260 63150
16553 30969 36833 42272 22134 52349 14887 18182 75107 87002
46044 93244 45068 31210 81646 08985 19099 33722 30442 79154
00942 93267 51118 67305 43765 56843 47168 71421 04014 81289

51611 78061 03866 20642 89054 48544 89778 01766 02593 99660
74620 50774 33064 41415 50910 32721 38133 34307 62641 67084
38731 28630 23199 81522 80336 48317 66878 66416 96592 81803
21487 92695 62781 42431 89552 55433 26629 60878 25607 05738
03962 72124 97090 33420 26704 59442 16319 62932 30719 17924

31070 25105 70997 00037 61248 67153 51682 05715 69150 63466
58445 79472 50823 89685 80704 77058 36012 22548 11179 64137
84211 28033 10300 09500 64296 00270 22957 35313 05259 13737
35087 86887 05537 51242 57611 84488 88429 70179 25215 19675
91108 69575 97474 58666 74734 20403 49813 15245 43150 21696

41824 55683 57679 44922 50418 98213 35513 29157 55322 69516
19196 89530 64420 80747 04696 01452 66444 85596 15581 23122
98495 82872 10780 18824 15923 26125 13436 45495 52042 02791
48367 65082 55187 45381 75601 45172 90624 37190 07520 10413
94793 75039 97093 07207 69403 51555 84698 44192 02867 19475
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91046 70999 06579 00484 43692 57795 53540 01085 24645 38105
06824 97998 26567 77415 25388 55594 05067 30055 34726 37855
14595 46870 49867 77370 15416 96161 38219 63861 39195 60419
09751 14737 00661 71330 22026 90185 42872 45571 87570 15285
03574 83877 71094 71667 90150 95901 64049 21185 50667 13340

24033 24135 28513 53860 66540 14499 88130 98287 96551 94717
99341 43590 67468 12497 67768 94135 54895 82151 98848 53733
32760 12964 82939 80956 39285 07097 89021 70247 20290 89516
54491 21296 37353 32456 58553 59215 28308 36913 66700 67981
07583 33673 33787 99662 93888 66367 53206 21934 52744 19057

39647 66364 41356 50860 32955 39987 43329 00091 10580 62660
80732 20453 96128 92692 90996 11743 51493 03267 56168 07600
40090 72135 71999 82780 48686 47093 44383 42461 55315 49745
00632 56081 30796 80045 03103 98211 61335 84114 52662 58949
79731 47847 69497 86357 92669 78799 38769 23422 91608 38848

08614 02049 34765 90145 27982 56589 87690 16839 11823 19391
09935 85090 21118 60897 75323 03859 45248 36755 13296 48981
74216 04471 58876 13015 48205 72092 98703 43385 71982 41419
00677 31291 81644 08248 14690 13905 51216 82150 31951 52357
26580 88272 90406 41986 74259 13682 13754 59388 32537 60731

71552 82733 52426 69959 47917 57872 15979 75022 06320 62721
19442 52160 37978 58426 08753 26686 81330 47810 54884 99014
00122 09604 56525 52716 07567 70954 57616 07110 24118 80713
67216 76877 56318 46014 69224 01212 84256 94624 09438 05009
45110 25576 47459 54570 00287 10586 60938 70350 73650 08754

89671 59232 48355 57037 07029 28837 09759 99012 06245 46358
21941 14417 89031 04431 25308 11970 44044 56533 42796 47979
02705 84418 82163 33219 59841 60076 21881 90604 46695 64728
68115 26133 43759 27355 70302 75614 20963 45249 82820 89682
92707 49102 60251 19581 75228 75131 73738 66245 33821 06721

35939 55142 07399 48110 22069 99420 97897 92602 74539 13811
12019 47810 78689 41839 42832 80434 97117 58792 78698 43063
50092 12981 27059 45518 29575 67789 40553 33217 34323 06982
32986 35078 13588 65822 72642 43450 06917 50448 40435 88575
67536 08040 40407 70084 56838 10269 50074 08019 97450 12526

98106 75894 72414 51431 56860 78280 57941 43121 37253 35425
77276 44827 73475 37404 63144 42226 85056 30301 16297 25073
03764 96921 47652 13621 52855 94537 91525 98316 66168 12161
77455 55276 34556 09855 48125 00049 67169 02566 10876 42160
55073 50995 10314 02925 24721 22000 09511 59060 68761 81026

67299 74565 41692 79065 99163 83388 07859 96658 09217 85375
29298 07412 80784 17996 80921 23560 13066 66357 80544 86050
91407 73988 21260 61665 78651 16919 93657 09667 15090 03532
85379 80488 14514 62693 45528 08934 43846 82672 01415 64436
73877 63341 15148 20821 88589 44145 67572 08120 40576 70372

57044 08909 40062 60187 00559 61672 65001 34955 24717 33706
79784 75348 34030 26050 50030 65726 44081 72952 40980 89306
67019 98358 86971 36607 36901 91939 19522 89680 62379 67151
41496 44616 94227 63819 34868 34838 95217 57756 89580 17676
99834 39917 40995 86715 51336 27577 03438 72434 03659 70046
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Ž .Table A.5. Continued

87340 93621 75668 11412 87464 22069 45241 72818 29736 23057
70713 16765 64165 34106 27152 55954 91352 44525 44980 69154
10102 38228 38442 86601 73625 62341 11417 07431 41828 84087
28072 11642 17204 98450 35856 29088 51820 49122 28351 28007
12884 25234 35447 85574 94423 96364 28378 02991 62542 48328

27094 27605 21783 82254 97475 44559 90078 39433 25896 00475
69789 14454 58626 21664 02351 19124 93582 89374 94004 59659
11915 34559 00117 89667 36950 14694 55609 01408 07963 35106
38964 17831 56305 77347 57337 47900 71366 97092 40254 67697
43892 54073 29411 89805 74131 36540 52057 83475 32340 42757

65481 08075 59117 82023 60088 22314 93095 57736 08564 31758
13466 94974 48647 37115 84859 75118 86979 45810 92049 40000
11558 09341 52027 28088 00284 48909 90897 05195 13099 31837
73126 52226 55216 61265 70639 72451 98949 41632 59251 80815
51628 82433 29946 37772 57118 02761 02502 90157 18424 99129

28958 81585 28890 39072 74422 94883 99498 43036 62730 89054
69755 17039 74438 93269 89674 98623 84667 20393 60353 78578
28290 62543 20640 60954 79960 31174 67404 23853 36480 04202
96886 43500 89025 42647 54653 44096 72699 39322 81643 35955
80940 62044 43802 04416 32270 53875 32820 12044 76883 52900

25451 76608 30584 94033 88940 87339 23568 55358 20032 21972
51540 11490 05081 27069 16685 56486 88750 24122 45978 58768
38809 03936 74336 10590 94518 71798 80119 34531 86118 05922
60470 09522 12897 91680 34003 78900 67368 94108 58328 02998
93030 31200 49927 18762 63223 10480 93871 68905 68583 91355

30880 63084 00584 35748 09225 33618 18680 09517 88981 48227
88533 97152 86114 42311 78843 92251 43919 33256 04265 26280
19299 79270 01925 98119 71388 45254 29028 66878 40017 38202
69054 70503 01526 74633 34061 32661 89417 42554 50565 20407
67352 20450 16530 15129 41996 15818 16940 59277 03202 85715

85468 41376 79039 01850 99744 81812 93169 22705 97709 81907
12057 35180 02566 98772 69539 28280 43827 08444 56220 61323
61951 19798 61229 89189 84075 01746 53801 07092 58342 86217
92224 77389 34320 09414 47608 00915 77016 53859 30015 95353
01982 53711 04423 43139 19021 25871 84038 71386 71973 89367

88443 26351 62114 35523 54106 04932 42631 11399 84712 05686
71700 79026 28855 61893 11658 12915 72563 19139 61766 98345
34173 19937 12062 92936 49051 57880 05821 14005 31644 63815
98089 14200 02395 86565 97833 07913 66981 30666 81164 10981
35414 13649 63167 56163 68467 05339 15824 46897 38963 11698

19522 11849 95389 65695 35664 22725 15372 87703 87868 37883
36480 77931 39265 34212 51883 03389 53384 89802 58350 41882
26138 79888 44088 45532 76396 48583 03931 86340 82657 18881
69367 46269 53313 03455 40910 14365 18002 78724 10321 53409
27566 84710 60165 98597 50090 13172 28217 50750 50546 46520

24208 26566 41518 10015 86420 28387 92538 99744 65618 96011
85497 48885 23833 03027 03664 94744 35480 60186 41792 09076
78331 88300 24816 54195 01822 23175 22655 27351 60205 15074
48594 55901 98052 85207 28770 05754 75593 01764 30247 65604
21400 37964 35184 69430 99920 74647 48604 19798 81347 09895
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Ž .Table A.5. Concluded

27247 74427 01337 38176 17021 58543 98070 61531 86549 65516
14156 95285 44308 08275 50878 30794 26858 84002 62289 17713
45673 14618 76646 28312 80058 25534 32686 66307 03660 25200
18256 82731 32083 47921 98771 61337 79083 22463 23032 36026
08862 28939 93878 02811 71963 06475 91182 88814 12247 74153

34694 40786 32471 27744 74229 95669 05957 74718 94691 95680
21859 70031 23453 10432 51516 15202 27567 28584 23404 83160
88328 81523 94184 31389 40680 61577 03337 65833 64959 97256
98901 18100 18490 48034 21791 98440 94518 81149 36224 87001
95993 92944 93729 25874 11685 37237 18258 74414 82159 23219

99886 90343 43080 45388 84604 99135 33371 08008 47709 14181
55707 06608 38286 70240 76861 29006 82287 32662 55387 38363
31696 44902 84149 00774 47296 76811 35197 19884 02527 36204
94480 41042 95933 06218 73908 87481 59713 70946 88258 91030
51854 91851 84421 79859 19367 97465 10491 85755 20110 48867

12205 33427 90714 43441 44220 74345 48089 19423 83736 27611
12035 23714 33964 90354 36447 05492 04934 80168 36601 98093
59152 72070 00051 51676 09597 92497 68607 79172 57563 32830
78914 78012 57844 44952 49118 90138 98763 81334 99134 62792
84548 42156 91999 72590 07545 91955 83829 75373 97778 08310

69856 44345 37359 25052 14076 58986 27231 32509 49973 07253
93760 97283 39850 63554 22674 64053 80248 05012 07838 01917
40959 28502 02379 57758 25133 30976 59655 79147 37982 15567
51562 69272 51570 85970 51690 36403 53207 91615 70820 00385
64929 86104 32268 18664 21571 61451 74567 94342 94943 20582

69002 28768 51591 50633 39475 81155 31652 59516 72230 97730
36308 38281 02907 72917 11332 11740 68452 05049 14222 39893
11359 09112 52439 32620 23768 49023 80229 40159 18894 51933
41544 81869 17314 67064 46558 75767 35582 31585 69270 31356
64702 06004 53711 68222 25934 41607 16231 22923 91454 42414

31398 06654 57345 84180 88969 76195 56445 52913 09476 80635
98527 65438 05890 46391 25333 34481 78886 62987 67946 40786
33203 32139 94004 74772 02591 42598 32264 10207 70859 33289
62005 72426 76511 07230 54774 63575 88484 58723 55982 07384
40465 76337 93835 75973 11321 84168 03118 61194 39104 83876

51313 52998 56165 60010 54571 87333 32852 11115 71019 26079
17303 69107 58913 31510 58840 69451 87141 97787 02447 34599
85562 01985 41848 33221 22690 37149 18677 77720 98226 89880
55239 22513 37930 24957 08372 25614 78337 39488 31896 35980
28818 49087 35155 69148 98487 68591 25162 33651 75444 49804

19825 70717 45870 38769 19778 69745 40464 15079 26297 22066
95718 75713 92817 75483 17542 25903 97538 52096 34734 39538
24624 91901 29784 51594 41504 84679 34535 45096 59754 52661
78177 95113 67082 46472 75090 32286 17907 16865 40027 88378
70022 24726 18150 86370 54867 51867 17396 37574 68877 75099

30696 08284 73441 66084 35537 18463 90940 79472 58367 34949
84393 91813 91338 21704 08183 53759 48903 09586 17386 18038
51751 48159 23192 05719 25583 02027 81915 73246 02237 54207
05106 42768 10657 79027 78247 58237 45199 47058 75553 29795
98790 24578 58358 28940 48422 30065 44593 96972 80495 10221
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Table A.6. Natural logarithm of ln x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0 0.00000 0.00995 0.01980 0.02956 0.03922 0.04879 0.05827 0.06766 0.07696 0.08618
1.1 0.09531 0.10436 0.11333 0.12222 0.13103 0.13976 0.14842 0.15700 0.16551 0.17395
1.2 0.18232 0.19062 0.19885 0.20701 0.21511 0.22314 0.23111 0.23902 0.24686 0.25464
1.3 0.26236 0.27003 0.27763 0.28518 0.29267 0.30010 0.30748 0.31481 0.32208 0.32930
1.4 0.33647 0.34359 0.35066 0.35767 0.36464 0.37156 0.37844 0.38526 0.39204 0.39878
1.5 0.40546 0.41211 0.41871 0.42527 0.43178 0.43825 0.44468 0.45107 0.45742 0.46373
1.6 0.47000 0.47623 0.48243 0.48858 0.49470 0.50077 0.50682 0.51272 0.51879 0.52473
1.7 0.53063 0.53649 0.54232 0.54812 0.55388 0.55961 0.56531 0.57098 0.57661 0.58221
1.8 0.58779 0.59333 0.59884 0.60432 0.60977 0.61518 0.62058 0.62594 0.63127 0.63658
1.9 0.64185 0.64710 0.65232 0.65752 0.66269 0.66783 0.67294 0.67803 0.68310 0.68813
2.0 0.69315 0.69813 0.70310 0.70804 0.71295 0.71784 0.72271 0.72755 0.73237 0.73716
2.1 0.74194 0.74669 0.75142 0.75612 0.76081 0.76547 0.77011 0.77473 0.77932 0.78390
2.2 0.78846 0.79299 0.79751 0.80200 0.80648 0.81093 0.81536 0.81978 0.82417 0.82855
2.3 0.83291 0.83725 0.84157 0.84587 0.85015 0.85441 0.85866 0.86289 0.86710 0.87129
2.4 0.87547 0.87963 0.88377 0.88789 0.89200 0.89609 0.90016 0.90422 0.90826 0.91228
2.5 0.91629 0.92028 0.92426 0.92822 0.93216 0.93609 0.94001 0.94391 0.94779 0.95166
2.6 0.95551 0.95935 0.96317 0.96698 0.97078 0.97456 0.97833 0.98208 0.98582 0.98954
2.7 0.99325 0.99695 1.00063 1.00430 1.00796 1.01160 1.01523 1.01885 1.02245 1.02604
2.8 1.02962 1.03318 1.03674 1.04028 1.04380 1.04732 1.05082 1.05431 1.05779 1.06126
2.9 1.06471 1.06815 1.07158 1.07500 1.07841 1.08180 1.08519 1.08856 1.09192 1.09527
3.0 1.09861 1.10194 1.10526 1.10856 1.11186 1.11514 1.11841 1.12168 1.12493 1.12817
3.1 1.13140 1.13462 1.13783 1.14103 1.14422 1.14740 1.15057 1.15373 1.15688 1.16002
3.2 1.16315 1.16627 1.16938 1.17248 1.17557 1.17865 1.18173 1.18479 1.18784 1.19089
3.3 1.19392 1.19695 1.19996 1.20297 1.20597 1.20896 1.21194 1.21491 1.21787 1.22083
3.4 1.22377 1.22671 1.22964 1.23256 1.23547 1.23837 1.24127 1.24415 1.24703 1.24990
3.5 1.25276 1.25562 1.25846 1.26130 1.26413 1.26695 1.26976 1.27256 1.27536 1.27815
3.6 1.28093 1.28371 1.28647 1.28923 1.29198 1.29473 1.29746 1.30019 1.30291 1.30563
3.7 1.30833 1.31103 1.31372 1.31641 1.31908 1.32175 1.32442 1.32707 1.32972 1.33237
3.8 1.33500 1.33763 1.34025 1.34286 1.34547 1.34807 1.35067 1.35325 1.35583 1.35841
3.9 1.36098 1.36354 1.36609 1.36864 1.37118 1.37371 1.37624 1.37877 1.38128 1.38379
4.0 1.38629 1.38879 1.39128 1.39377 1.39624 1.39872 1.40118 1.40364 1.40610 1.40854
4.1 1.41099 1.41342 1.41585 1.41828 1.42070 1.42311 1.42551 1.42792 1.43031 1.43270
4.2 1.43508 1.43746 1.43983 1.44220 1.44456 1.44692 1.44927 1.45161 1.45395 1.45629
4.3 1.45861 1.46094 1.46325 1.46557 1.46787 1.47017 1.47247 1.47476 1.47705 1.47933
4.4 1.48160 1.48387 1.48614 1.48840 1.49065 1.49290 1.49515 1.49739 1.49962 1.50185
4.5 1.50408 1.50630 1.50851 1.51072 1.51293 1.51513 1.51732 1.51951 1.52170 1.52388
4.6 1.52606 1.52823 1.53039 1.53256 1.53471 1.53687 1.53901 1.54116 1.54330 1.54543
4.7 1.54756 1.54969 1.55181 1.55392 1.55604 1.55814 1.56025 1.56235 1.56444 1.56653
4.8 1.56861 1.57070 1.57277 1.57485 1.57691 1.57898 1.58104 1.58309 1.58514 1.58719
4.9 1.58923 1.59127 1.59331 1.59534 1.59736 1.59939 1.60141 1.60342 1.60543 1.60744
5.0 1.60944 1.61143 1.61343 1.61542 1.61741 1.61939 1.62137 1.62334 1.62531 1.62728
5.1 1.62924 1.63120 1.63315 1.63511 1.63705 1.63900 1.64094 1.64287 1.64480 1.64673
5.2 1.64866 1.65058 1.65250 1.65441 1.65632 1.65823 1.66013 1.66203 1.66393 1.66582
5.3 1.66771 1.66959 1.67147 1.67335 1.67523 1.67710 1.67896 1.68083 1.68269 1.68454
5.4 1.68640 1.68825 1.69009 1.69194 1.69378 1.69561 1.69745 1.69928 1.70110 1.70293
5.5 1.70475 1.70656 1.70838 1.71019 1.71199 1.71380 1.71560 1.71739 1.71919 1.72098
5.6 1.72277 1.72455 1.72633 1.72811 1.72988 1.73166 1.73342 1.73519 1.73695 1.73871
5.7 1.74047 1.74222 1.74397 1.74572 1.74746 1.74920 1.75094 1.75267 1.75440 1.75613
5.8 1.75786 1.75958 1.76130 1.76302 1.76473 1.76644 1.76815 1.76985 1.77156 1.77326
5.9 1.77495 1.77664 1.77834 1.78002 1.78171 1.78339 1.78507 1.78675 1.78842 1.79009
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Ž .Table A.6. Concluded

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

6.0 1.79176 1.79342 1.79509 1.79675 1.79840 1.80006 1.80171 1.80336 1.80500 1.80665
6.1 1.80829 1.80993 1.81156 1.81319 1.81482 1.81645 1.81808 1.81970 1.82132 1.82293
6.2 1.82455 1.82616 1.82777 1.82938 1.83098 1.83258 1.83418 1.83578 1.83737 1.83896
6.3 1.84055 1.84213 1.84372 1.84530 1.84688 1.84845 1.85003 1.85160 1.85317 1.85473
6.4 1.85630 1.85786 1.85942 1.86097 1.86253 1.86408 1.86563 1.86718 1.86872 1.87026
6.5 1.87180 1.87334 1.87487 1.87641 1.87794 1.87946 1.88099 1.88251 1.88403 1.88555
6.6 1.88707 1.88858 1.89009 1.89160 1.89311 1.89462 1.89612 1.89762 1.89912 1.90061
6.7 1.90211 1.90360 1.90509 1.90657 1.90806 1.90954 1.91102 1.91250 1.91398 1.91545
6.8 1.91692 1.91839 1.91986 1.92132 1.92279 1.92425 1.92571 1.92716 1.92862 1.93007
6.9 1.93152 1.93297 1.93441 1.93586 1.93730 1.93874 1.94018 1.94162 1.94305 1.94448
7.0 1.94591 1.94734 1.94876 1.95019 1.95161 1.95303 1.95444 1.95586 1.95727 1.95868
7.1 1.96009 1.96150 1.96291 1.96431 1.96571 1.96711 1.96851 !.96990 1.97130 1.97269
7.2 1.97408 1.97547 1.97685 1.97824 1.97962 1.98100 1.98238 1.98376 1.98513 1.98650
7.3 1.98787 1.98924 1.99061 1.99197 1.99334 1.99470 1.99606 1.99742 1.99877 2.00013
7.4 2.00148 2.00283 2.00418 2.00553 2.00687 2.00821 2.00955 2.01089 2.01223 2.01357
7.5 2.01490 2.01623 2.01757 2.01889 2.02022 2.02155 2.02287 2.02419 2.02551 2.02683
7.6 2.02815 2.02946 2.03078 2.03209 2.03340 2.03471 2.03601 2.03732 2.03862 2.03992
7.7 2.04122 2.04252 2.04381 2.04511 2.04640 2.04769 2.04898 2.05027 2.05156 2.05284
7.8 2.05412 2.05540 2.05668 2.05796 2.05924 2.06051 2.06179 2.06306 2.06433 2.06560
7.9 2.06686 2.06813 2.06939 2.07065 2.07191 2.07317 2.07443 2.07568 2.07694 2.07819
8.0 2.07944 2.08069 2.08194 2.08318 2.08443 2.08567 2.08691 2.08815 2.08939 2.09063
8.1 2.09186 2.09310 2.09433 2.09556 2.09679 2.09802 2.09924 2.10047 2.10169 2.10291
8.2 2.10413 2.10535 2.10657 2.10779 2.10900 2.11021 2.11142 2.11263 2.11384 2.11505
8.3 2.11625 2.11746 2.11866 2.11986 2.12106 2.12226 2.12346 2.12465 2.12585 2.12704
8.4 2.12823 2.12942 2.13061 2.13180 2.13298 2.13417 2.13535 2.13653 2.13771 2.13889
8.5 2.14007 2.14124 2.14242 2.14359 2.14476 2.14593 2.14710 2.14827 2.14943 2.15060
8.6 2.15176 2.15292 2.15408 2.15524 2.15640 2.15756 2.15871 2.15987 2.16102 2.16217
8.7 2.16332 2.16447 2.16562 2.16677 2.16791 2.16905 2.17020 2.17134 2.17248 2.17361
8.8 2.17475 2.17589 2.17702 2.17815 2.17929 2.18042 2.18155 2.18267 2.18380 2.18493
8.9 2.18605 2.18717 2.18830 2.18942 2.19053 2.19165 2.19277 2.19388 2.19500 2.19611
9.0 2.19722 2.19833 2.19944 2.20055 2.20166 2.20276 2.20387 2.20497 2.20607 2.20717
9.1 2.20827 2.20937 2.21047 2.21157 2.21266 2.21375 2.21485 2.21594 2.21703 2.21812
9.2 2.21920 2.22029 2.22137 2.22246 2.22354 2.22462 2.22570 2.22678 2.22786 2.22894
9.3 2.23001 2.23109 2.23216 2.23323 2.23431 2.23538 2.23644 2.23751 2.23858 2.23965
9.4 2.24071 2.24177 2.24283 2.24390 2.24496 2.24601 2.24707 2.24813 2.24918 2.25024
9.5 2.25129 2.25234 2.25339 2.25444 2.25549 2.25654 2.25759 2.25863 2.25968 2.26072
9.6 2.26176 2.26280 2.26384 2.26488 2.26592 2.26696 2.26799 2.26903 2.27006 2.27109
9.7 2.27213 2.27316 2.27419 2.27521 2.27624 2.27727 2.27829 2.27932 2.28034 2.28136
9.8 2.28238 2.28340 2.28442 2.28544 2.28646 2.28747 2.28849 2.28950 2.29051 2.29152
9.9 2.29253 2.29354 2.29455 2.29556 2.29657 2.29757 2.29858 2.29958 2.30058 2.30158

ln 10s2.30259.
If x�10, express x as y�10 n, where 1�y�10 and n is an integer. Then ln xs ln yqn ln 10.
For example, 974s9.74�102, so that ys9.74 and ns2. Therefore, ln 974s ln 9.74q2 ln 10s
2.27624q2�2.30259s6.88142.
If x�1, express x as yr10 n, where 1�y�10 and n is an integer. Then ln xs ln yyn ln 10.
For example, 0.974s9.74r10, so that ys9.74 and ns1. Therefore, ln 0.974s ln 9.74y ln 10s
2.27624y2.30259sy0.02635.
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Table A.7. Percentage points of Bartholomew’s test for order when
ms3 proportions are compared

�

c 0.10 0.05 0.025 0.01 0.005

0.0 2.952 4.231 5.537 7.289 8.628
0.1 2.885 4.158 5.459 7.208 8.543
0.2 2.816 4.081 5.378 7.122 8.455
0.3 2.742 4.001 5.292 7.030 8.360
0.4 2.664 3.914 5.200 6.932 8.258
0.5 2.580 3.820 5.098 6.822 8.146
0.6 2.486 3.715 4.985 6.700 8.016
0.7 2.379 3.593 4.852 6.556 7.865
0.8 2.251 3.446 4.689 6.377 7.677
0.9 2.080 3.245 4.465 6.130 7.413
1.0 1.642 2.706 3.841 5.413 6.635

Source: Reproduced from Table A.1 of Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and
Brunk, H. D., Statistical inference under order restrictions, New York: Wiley, 1972.
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Table A.8. Percentage points of Bartholomew’s test for order when ms4
proportions are compared

c1

c � 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.72

0.0 0.10 4.010
0.05 5.435
0.025 6.861
0.01 8.746
0.005 10.171

0.1 0.10 3.952 3.891
0.05 5.372 5.305
0.025 6.794 6.724
0.01 8.676 8.601
0.005 10.098 10.020

0.2 0.10 3.893 3.827 3.758
0.05 5.307 5.235 5.160
0.025 6.725 6.649 6.570
0.01 8.602 8.522 8.437
0.005 10.022 9.939 9.851

0.3 0.10 3.831 3.760 3.685 3.606
0.05 5.239 5.162 5.080 4.993
0.025 6.653 6.571 6.484 6.391
0.01 8.525 8.438 8.346 8.246
0.005 9.942 9.852 9.756 9.653

0.4 0.10 3.765 3.688 3.607 3.519 3.423
0.05 5.166 5.083 4.994 4.898 4.791
0.025 6.575 6.486 6.392 6.289 6.174
0.01 8.442 8.348 8.247 8.137 8.014
0.005 9.855 9.758 9.653 9.539 9.411

0.5 0.10 3.695 3.610 3.521 3.423 3.313 3.187
0.05 5.088 4.997 4.898 4.791 4.670 4.528
0.025 6.491 6.394 6.289 6.173 6.043 5.891
0.01 8.352 8.246 8.136 8.013 7.873 7.709
0.005 9.761 9.654 9.537 9.409 9.264 9.092

0.6 0.10 3.617 3.523 3.422 3.310 3.183 3.031 2.837
0.05 5.002 4.900 4.789 4.665 4.524 4.354 4.135
0.025 6.398 6.289 6.170 6.038 5.886 5.702 5.462
0.01 8.251 8.135 8.008 7.867 7.703 7.504 7.244
0.005 9.656 9.535 9.404 9.256 9.085 8.877 8.604

0.7 0.10 3.530 3.422 3.305 3.172 3.017 2.822 2.550 1.987
0.05 4.904 4.787 4.657 4.510 4.337 4.118 3.805 3.137
0.025 6.291 6.166 6.027 5.870 5.682 5.443 5.100 4.346
0.01 8.135 8.002 7.854 7.684 7.482 7.223 6.846 6.000
0.005 9.534 9.395 9.242 9.065 8.853 8.581 8.183 7.279

0.8 0.10 3.427 3.296 3.151 2.981 2.770 2.473 1.642
0.05 4.787 4.644 4.483 4.294 4.056 3.715 2.706
0.025 6.163 6.011 5.838 5.634 5.375 4.999 3.841
0.01 7.994 7.832 7.647 7.427 7.146 6.734 5.412
0.005 9.385 9.217 9.025 8.795 8.500 8.064 6.635

0.9 0.10 3.291 3.110 2.897 2.621 2.166
0.05 4.631 4.432 4.195 3.883 3.353
0.025 5.990 5.778 5.523 5.182 4.591
0.01 7.804 7.577 7.303 6.933 6.277
0.005 9.183 8.948 8.661 8.273 7.576

1.0 0.10 2.952
0.05 4.231
0.025 5.537
0.01 7.289
0.005 8.628

The table is symmetric in c and c .1 2

Source: Reproduced from Table A.2 of Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and
Brunk, H. D., Statistical inference under order restrictions, New York: Wiley, 1972.
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Table A.9. Percentage points of Bartholomew’s test for order when up to
ms12 proportions based on equal sample sizes are compared

�

m 0.10 0.05 0.025 0.01 0.005

3 2.580 3.820 5.098 6.822 8.146
4 3.187 4.528 5.891 7.709 9.092
5 3.636 5.049 6.471 8.356 9.784
6 3.994 5.460 6.928 8.865 10.327
7 4.289 5.800 7.304 9.284 10.774
8 4.542 6.088 7.624 9.639 11.153
9 4.761 6.339 7.901 9.946 11.480

10 4.956 6.560 8.145 10.216 11.767
11 5.130 6.758 8.363 10.458 12.025
12 5.288 6.937 8.561 10.676 12.257

Source: Reproduced from Table A.3 of Barlow, R. E., Bartholomew, D. J. Bremner, J. M., and
Brunk, H. D., Statistical inference under order restrictions, New York: Wiley, 1972.
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Table A.10. The logit transformation

� Ž .4 � Ž .4P 1yP �s ln Pr 1yP �s ln Pr 1yP P 1yP
0.999 0.001 6.9068 9.0 0.9999 0.0001

0.99 0.01 4.5951 8.5 0.9998 0.0002
0.98 0.02 3.8918 8.0 0.9997 0.0003
0.97 0.03 3.4761 7.5 0.9994 0.0006
0.96 0.04 3.1781 7.0 0.9991 0.0009
0.95 0.05 2.9444 6.5 0.9985 0.0015
0.94 0.06 2.7515 6.0 0.9975 0.0025
0.93 0.07 2.5867 5.5 0.9959 0.0041
0.92 0.08 2.4423 5.0 0.9933 0.0067
0.91 0.09 2.3136 4.5 0.9890 0.0110
0.90 0.10 2.1972 4.0 0.9820 0.0180
0.89 0.11 2.0907 3.9 0.9802 0.0198
0.88 0.12 1.9924 3.8 0.9781 0.0219
0.87 0.13 1.9010 3.7 0.9759 0.0241
0.86 0.14 1.8153 3.6 0.9734 0.0266
0.85 0.15 1.7346 3.5 0.9707 0.0293
0.84 0.16 1.6582 3.4 0.9677 0.0323
0.83 0.17 1.5856 3.3 0.9644 0.0356
0.82 0.18 1.5163 3.2 0.9608 0.0392
0.81 0.19 1.4500 3.1 0.9569 0.0431
0.80 0.20 1.3863 3.0 0.9526 0.0474
0.79 0.21 1.3249 2.9 0.9478 0.0522
0.78 0.22 1.2657 2.8 0.9427 0.0573
0.77 0.23 1.2083 2.7 0.9370 0.0630
0.76 0.24 1.1527 2.6 0.9309 0.0691
0.75 0.25 1.0986 2.5 0.9241 0.0759
0.74 0.26 1.0460 2.4 0.9168 0.0832
0.73 0.27 0.9946 2.3 0.9089 0.0911
0.72 0.28 0.9445 2.2 0.9002 0.0998
0.71 0.29 0.8954 2.1 0.8909 0.1091
0.70 0.30 0.8473 2.0 0.8808 0.1192
0.69 0.31 0.8001 1.9 0.8699 0.1301
0.68 0.32 0.7538 1.8 0.8581 0.1419
0.67 0.33 0.7082 1.7 0.8455 0.1545
0.66 0.34 0.6633 1.6 0.8320 0.1680
0.65 0.35 0.6190 1.5 0.8176 0.1824
0.64 0.36 0.5754 1.4 0.8022 0.1978
0.63 0.37 0.5322 1.3 0.7858 0.2142
0.62 0.38 0.4895 1.2 0.7685 0.2315
0.61 0.39 0.4473 1.1 0.7503 0.2497
0.60 0.40 0.4055 1.0 0.7311 0.2689
0.59 0.41 0.3640 0.9 0.7109 0.2891
0.58 0.42 0.3228 0.8 0.6900 0.3100
0.57 0.43 0.2819 0.7 0.6682 0.3318
0.56 0.44 0.2412 0.6 0.6457 0.3543
0.55 0.45 0.2007 0.5 0.6225 0.3775
0.54 0.46 0.1603 0.4 0.5987 0.4013
0.53 0.47 0.1201 0.3 0.5744 0.4256
0.52 0.48 0.0800 0.2 0.5498 0.4502
0.51 0.49 0.0400 0.1 0.5250 0.4750
0.50 0.50 0.0000 0.0 0.5000 0.5000

1Values of � require a minus sign for P� .2
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The Basic Theory of Maximum
Likelihood Estimation

This appendix contains a synopsis of the basic properties of maximum
likelihood estimation. Suppose Y , . . . , Y are statistically independent ran-1 n

Ž � .dom variables with distribution governed by f Y � , where � is an unknowni
parameter indexing a parametric family of distributions. For absolutely

Ž � .continuous random variables, f Y � denotes the probability density func-i
Ž � .tion of Y ; for discrete random variables, f Y � denotes the point probabil-i i

Ž � . Ž .ity function P Y � . The likelihood function, denoted by L � , is simply thei
joint probability of observing values Y sy , . . . , Y sy when viewed as a1 1 n n
function of the parameter � :

n

�L � s f y � .Ž . Ž .Łn i
is1

Any value of � that maximizes the likelihood function is called a maximum
ˆŽ .likelihood estimate mle , � , and satisfiesn

ˆL � GL �Ž .Ž .n

ˆŽ .for all � . The subscript n in L � and � reminds us that the likelihoodn n
function and mle depend on the sample size n. There need not be a unique

Žvalue of � that maximizes the likelihood function see, e.g., Sections 16.8 and
.16.9 , but for the most part the likelihood functions considered in this book

have at most one local maximum, which is a global maximum, and a unique �
that achieves that maximum value.

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.
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Because it is simpler to deal with sums than products, the natural
ˆlogarithm of the likelihood function is most convenient to use, and if �n

maximizes the log likelihood function, it also maximizes the likelihood
function. The derivative of the log likelihood function is called the score

Ž .function, U � :n

nd d
�U � s ln L � s ln f y � .Ž . Ž . Ž .Ýn n id� d�

is1

Usually we can find the maximum likelihood estimate by solving the likeli-
ˆ ˆŽ . Ž .hood equation, U � s0 for � . Since U � depends on the observationsn n n n

Ž .Y , . . . , Y , U � is a random variable for each � , that is, is a random function1 n n
ˆof � , and thus its root � is a random variable as well.n

The negative second derivative of the log likelihood function is the
Ž .obser®ed information, I � :n

n2 2d d d
�I � sy ln L � sy ln f y � sy U � .Ž . Ž . Ž .Ž .Ýn n i n2 2 d�d� d�is1

Generally, the observed information depends on the data, and so is also a
Ž . Ž .random variable. The expected value of I � , say i � , is called the expectedn n

information or Fisher information, after R. A. Fisher, who first investigated
the properties of the log likelihood function and its derivatives. In some

Žspecial cases e.g., an exponential family of distributions with natural param-
. Ž .eterization , I � does not depend on the observations Y , in which case then i

observed information and expected information are the same.
Ž . Ž .It turns out that the expected value of U � is 0 and the variance of U �n n

Ž . Ž � . Ž .is i � . The proof is as follows. Because f Y � is a density or probabilityn
Ž .function, it integrates or sums to 1 over all values of Y in the sample space

for each value of � . We write this with the single notation

�1s f y � dy for all � .Ž .H

Differentiating this identity with respect to � yields

d d d
� � � �0s f y � dys f y � dys ln f y � f y � dyŽ . Ž . Ž . Ž .H H H½ 5d� d� d�

d
�sE ln f Y � sEU � rn. B.1Ž . Ž . Ž .n½ 5d�

Ž .For the second equality in B.1 , we have assumed that one can express the
derivative of the integral as the integral of the derivative; mild regularity
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Ž � .conditions on the parametric family of densities f Y � allow this inter-
Ž .change of operations. Differentiating B.1 with respect to � we have

d d
� �0s ln f y � f y � dyŽ . Ž .H½ 5d� d�

d2
� �s ln f y � f y � dyŽ . Ž .H 2½ 5d�

d d
� � �q ln f y � ln f y � f y � dy.Ž . Ž . Ž .H½ 5 ½ 5d� d�

It follows that

22d d
� � � �y ln f y � dy f y � dys ln f y � f y � dy. B.2Ž .Ž . Ž . Ž . Ž .H H½ 52½ 5 d�d�

Ž .Summing B.2 over each value y , and using the statistical independence ofi
Ž . Ž � .the components drd� ln f Y � of the score function, we findi

n n2 2d d
� � �i � sE y ln f Y � s y ln f y � f y � dyŽ . Ž . Ž . Ž .Ý Ý Hn i i i i2 2½ 5½ 5d� d�is1 is1

n n2d d
� � �s ln f y � f y � dy s Var ln f Y �Ž . Ž . Ž .Ý ÝH i i i i½ 5 ½ 5d� d�

is1 is1

n d
�sVar ln f Y � sVar U � .� 4Ž .Ž .Ý i n½ 5d�

is1

Now let � denote the true value of � . The maximum likelihood estimate0
ˆof � has three important statistical properties. First, it is consistent, that is, �n

Žconverges to � as n™�, both in probability and almost surely weak and0
.strong convergence . This result is remarkably subtle to prove rigorously, and

Ž .instead we give only a heuristic argument. Let A � be defined as the0
function of � equal to 1rn times the expected value of the score function,
where the expectation is taken with respect to the true value � of � :0

n1 1 d
� �A � sE U � s ln f y � f y � dy .Ž . Ž . Ž . Ž .Ý H0 0 n i i 0 i½ 5 ½ 5n n d�

is1

Ž . � 4The subscript 0 on A � and E � reminds us that the expectation is taken0 0
Ž .with respect to � , for any value of � in the function U � . Now for � near0 n

Ž . Ž .� , A � is a decreasing function of � do you see why? , and takes value 00 0
Ž . Ž . � Ž . 4at �s� , because by B.1 , A � sE U � rn s0. On the other hand,0 0 0 0 n 0

ˆŽ .U � rn is a random decreasing function of � , and takes value 0 at �s� ,n n
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ˆ ˆŽ .because U � s0, by definition of � . As n increases, the random functionn n
Ž . Ž .U � rn converges to its expected value A � for each � by the strong lawn 0

ˆof large numbers. Because the two curves merge as n increases, the root �n
Ž . Ž .of U � rn where it crosses the x axis is forced to approach the root � ofn 0

Ž .A � .0
Second, the maximum likelihood estimator is asymptotically normally dis-

tributed, that is, with increasing accuracy as n increases, the mle has an
approximate normal distribution. To see this, use a Taylor expansion about
� to write0

d �ˆ ˆ0sU � sU � q � y� U �Ž . Ž .Ž . Ž .n n n 0 n 0 n nd�

ˆ �sU � y � y� I � , B.3Ž . Ž . Ž .Ž .n 0 n 0 n n

� ˆ Ž .where � is some number that lies between � and � . Rewrite B.3 asn n 0
follows:

U � r i �'Ž . Ž .n 0 n 0 ˆs i � � y� . B.4' Ž . Ž .Ž .� n 0 n 0I � ri �Ž . Ž .n n n 0

Ž . Ž .Since U � has mean 0, has variance i � , and is a sum of independentn 0 n 0
Ž .and identically distributed random variables, the numerator of B.4 is

ˆdistributed asymptotically as standard normal. By consistency of � and then
Ž .strong law of large numbers, the denominator of B.4 approaches 1. Thus by

Ž .Slutsky’s theorem, the right-hand side of B.4 also has an asymptotic stan-
dard normal distribution. We use this conclusion to justify the approximation

ˆmost often used in practice, that � is approximately normally distributed inn
Ž .y1large samples with mean � and variance i � . Furthermore, the vari-0 n 0

ˆ y1Ž .ance may be consistently estimated by i � and used to find the standardn n
Ž .error of the mle, if i � can be easily calculated. Most often in practice, onen

ˆ y1Ž .uses I � , the reciprocal of the observed information evaluated at then n
ˆŽ . Ž .mle of � , to consistently estimate Var � . Thus, a large-sample 100 1y� %n

ˆ ˆ 1r2Ž .confidence interval for � is given by � �z rI � .0 n �r2 n n
Third, under mild regularity conditions, the maximum likelihood estimator

is asymptotically efficient, meaning that the large-sample variance of any other
estimator of � will be no smaller than that of the mle. Thus in large samples,
the mle makes the fullest use possible of the information contained in the
data.

When the parameter � is a vector in p dimensions, the above relations
Ž .generalize as follows. The score function U � is defined as the p-vector ofn

partial derivatives of the log likelihood function with respect to � , . . . , � .1 p
The observed information is the p�p matrix of negative second partial

Ž . wŽ 2 . Ž .xderivatives of the log likelihood function, I � s y� r�� �� ln L � .n i j n
The maximum likelihood estimate of � is then asymptotically multivariate
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normally distributed in p dimensions, with mean � and variance-covariance0
matrix consistently estimated by the inverse observed information matrix,

ˆ y1Ž .I � .n n
ˆŽ .Except in simple cases, the likelihood equation U � s0 does not have an n

ˆclosed form solution, and one must solve for � iteratively. The Newton-n
ˆ ŽRaphson algorithm may be used to calculate � when p is not too large sayn

. Ž0.p�100 . Starting from some initial value � , one iteratively updates the
approximation to the mle via

y1Ž�q1. Ž� . Ž� . Ž� .� s� qI � U �Ž . Ž .n n

� Ž�q1.for �s0, 1, . . . . When the update becomes sufficiently small, e.g., � y
Ž� . y8 Ž�q1. ˆ�� �10 , convergence is declared and � is taken as the mle � . Inn

order for the Newton-Raphson algorithm to converge, the initial estimate
should not be too far from the actual mle. Often a consistent, but not
necessarily efficient, estimate of � , such as a weighted least-squares esti-0

ˆmate, is used for the initial estimate of � . The Newton-Raphson algorithmn
is quadratically convergent, meaning that after a few iterations, the number
of correct decimal places doubles after each successive iteration. Typically
only four or five iterations suffice for double-precision accuracy.

( )Example 1 The Binomial Distribution . Suppose that Y has the bino-i
Ž . nmial distribution, Bin N , � , for is1, . . . , n. Let Y sÝ Y and N si q is1 i q

Ýn N . The likelihood function isis1 i

n n YqN N �i iN yY NY i i qiL � s � 1y� s 1y� .Ž . Ž . Ž .Ł Łn ž /½ 5 ½ 5 1y�ž / ž /Y Yis1 is1i i

Ž .Although the Y are not identically distributed, L � is equivalent to thei
likelihood function that would arise from N binary observations Z , . . . , Zq 1 Nq

Ž . Nqidentically distributed as Bin 1, � with Ý Z sY :is1 i q

Yq� NqL � s 1y� .Ž . Ž .n ž /1y�

Note that two likelihood functions are said to be equi®alent if their ratio does
not depend on the parameter � . Equivalent likelihood functions have identi-
cal score functions, mle’s, and information.

The score function is

n Y N yY Y N yYi i i q q qU � s y s y ,Ž . Ýn ž /� 1y� � 1y�
is1
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the observed information is

n Y N yY Y N yYi i i q q qI � s q s q ,Ž . Ýn 2 2 2 2½ 5� �1y� 1y�Ž . Ž .is1

and the expected information is

n N � N yN � Ni i i qi � s q s .Ž . Ýn 2 2½ 5 � 1y�Ž .� 1y�Ž .is1

In this case the maximum likelihood estimate can be obtained noniteratively:
ˆ ˆ y1Ž . Ž .� sY rN . The variance of � is i � s� 1y� rN . If we define then q q n n q

� Ž .4likelihood as a function of the log odds parameter �s ln �r 1y� instead
of � , then the likelihood function is

L � sexp � Y yN ln 1qe � ,Ž . Ž .� 4n q q

the score function is

N e �
qU � sY y ,Ž .n q �1qe

the mle of � is

Yq�̂ s ln ,n N yYq q

and the observed information is

N e �
qI � s ,Ž .n 2�1qeŽ .

Ž . Ž .which does not depend on Y . Therefore i � sI � . The asymptotici n n
ˆ y1 y1Ž . Ž . � 4variance of � is i � sI � , and is consistently estimated by 1rYn n n q

� Ž .4q 1r N yY . The log-odds parameter � is called the natural parameter,q q

because it multiplies the sufficient statistic Y in the likelihood function, andq

this example illustrates an exponential family distribution with natural pa-
Ž .rameterization a so-called canonical exponential family distribution .

( )Example 2 Simple Linear Logistic Regression . Suppose that, given
covariate values X , . . . , X , the conditional distribution of Y given X is1 n i i

Ž .binomial, Bin 1, � , for is1, . . . , n, withi

� �q� X ieiln s�q� X , so that � s .i i �q� X i1y� 1qei



APPENDIX B: THE BASIC THEORY OF MAXIMUM LIKELIHOOD ESTIMATION704

Ž .The unknown parameter is now the vector � , � . Even though the binary
variables are not identically distributed, the main properties of maximum
likelihood estimation continue to hold so long as the information grows
without bound as n becomes large. The likelihood function is now the
product of the conditional probabilities given X ,i

n n exp Y �q� X� 4Ž .1yY i iY iiL � , � s � 1y� sŽ . Ž .Ł Łn i i 1qexp �q� XŽ .iis1 is1

n

exp � Y q� X YÝq i iž /
is1s ,n

1qexp �q� X� 4Ž .Ł i
is1

and the score function is the vector

�
ln L � , �Ž . n �q� Xn i�� 1 e

U � , � s s Y yŽ . Ýn i �q� Xž /� iXž / 1qeiis1ln L � , �Ž .� 0n��

Ý Y y�Ž .i i
s .ž /ÝX Y y�Ž .i i i

Again, in this natural parameterization, the observed information and the
expected information are the same because the observed information does
not depend on Y :i

� 2 � 2

y ln L y ln Ln n2 �� ����
I � , � sŽ .n 2 2� �

y ln L y ln L� 0n n2�� �� ��

n n

� 1y� X � 1y�Ž . Ž .Ý Ýi i i i i
is1 is1

s .n n
2X � 1y� X � 1y�Ž . Ž .Ý Ý� 0i i i i i i

is1 is1

The maximum likelihood estimates of � and � may be calculated iteratively
by the Newton-Raphson algorithm. The reader may verify that the square

y1 ˆŽ .roots of the diagonal elements of I � , � evaluated at the mle’s � and �ˆn
ˆ Ž . Ž .are the estimated standard errors of � and � shown in 11.6 and 11.7 ,ˆ

respectively, and the off-diagonal element of the inverse information matrix
ˆ Ž .is the covariance of � and � shown in 11.8 .ˆ
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Answers to Selected Problems

Ž .Problem 1.2. We are given the value P B s0.001.

( ) Ž � . Ž � . Ž .a P A B s0.99 and P A B s0.01. By 1.11 ,

PPVs0.99 0.001 r 0.99 0.001 q0.01 1y0.001 s0.0902.� 4Ž . Ž . Ž .

Ž .By 1.12 ,

NPVs 1y0.01 1y0.001 r 1y0.01 1y0.001 q 1y0.99 0.001� 4Ž . Ž . Ž . Ž . Ž .
s0.99999

Ž .so that one per 100,000 of those found negative have the disease . The
positive predictive value is too low for most purposes.

( ) Ž � . Ž � .b Now, P A B s0.98 and P A B s0.0001. For the new definition of
a positive result,

PPVs0.98 0.001 0.98 0.001 q0.0001 1y0.001 s0.9075� 4Ž . Ž . Ž .

and

NPVs 1y0.0001 1y0.001 r 1y0.0001 1y0.001 q 1y0.98 0.001� 4Ž . Ž . Ž . Ž . Ž .
s0.99998

Ž .so that two per 100,000 of those found negative have the disease .
Ž .The positive predictive value is ten times larger than it was in part a , and

the negative predictive value is still very close to 1.0.

Statistical Methods for Rates and Proportions, Third Edition
By Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik
ISBN 0-471-52629-0 Copyright � 2003 John Wiley & Sons, Inc.

705



APPENDIX C: ANSWERS TO SELECTED PROBLEMS706

( ) Ž . Ž .c The proportion who are positive on the first test is, by 1.8 , P A s
0.99�0.001q0.01�0.999s0.01098, or 1,098 individuals per 100,000 tested.
Therefore, 98,902 per 100,000 will be negative on the first test and will not
have to be released.

Problem 1.3

( ) Ž . Ž .a 1 40,000 of the neurotics live alone. 2 200 of them will be hospital-
Ž . Ž .ized. 3 60,000 of the neurotics live with their families. 4 360 of them will

Ž . Ž . Ž . Ž � .be hospitalized. 5 p s200r 200q360 s0.357. 6 p �P A B .1 1

( ) Ž . Ž .b 1 200,000 nonneurotics live alone. 2 1000 of them will be hospital-
Ž . Ž .ized. 3 800,000 nonneurotics live with their families. 4 1800 of them will be

Ž . Ž . Ž . Ž � .hospitalized. 5 p s1000r 1000q1800 s0.357. 6 p �P A B .2 2

( ) Ž � . Ž � .c p is equal to p even though P A B is much larger than P A B .1 2

Problem 2.5 We are given the values of ns100 and ps0.05.

( ) Ž . Ž .a By 2.17 , P s0.01. By 2.18 , P s0.15.L U

( ) Ž .'b The value of z pqrn q1r 2n is 0.06, so the lower and upper�r2
Ž .99% confidence limits on P using 2.19 are y0.01 and 0.11.

( ) Ž . Ž .c The interval in b is narrower than the interval in a , but the fact that
Ž .the lower limit is negative in b raises doubts about its validity. If the

Ž .continuity correction in 2.19 were ignored, the limits of the interval would
Ž .be the same to two decimal places as in b . The fault does not lie in the

continuity correction.

Problem 4.4 We would like to distinguish between P s0.45 for placebo and1
P s0.65 for an active drug with a one-tailed test.2

( )a For a one-tailed test with a significant level of 0.01, we use z s2.3260.01

Ž .in 4.14 ; for a power of 0.95, we use z s1.645. The value of P is 0.55.0.05
� w Ž .1r2 ŽThus n s 2.326 2 � 0.55 � 0.45 q 1.645 0.45 � 0.55 q 0.65 �

.1r2 x2 2 Ž .0.35 r0.2 s191.85. By 4.15 , ns201.73, or 202 patients per treatment.
Alternatively, look in Table A.4 under P s0.45, P s0.65, �s0.021 2

Ž .recall that we are considering a one-tailed test , and powers0.95.
( ) Ž .b If �s0.05 still for a one-tailed test and 1y�s0.80, then 85

patients per group will be needed.
( ) Ž .c If ns52, the value of z from 4.17 is 0.20. The corresponding�

Žpower is 0.58. Table A.1 gives the value Ps0.8415 as corresponding to
zs0.2. The area under the normal curve above the value 0.20 is Pr2s

.0.42, and the power is 1yPr2s0.58.

Problem 4.5 We wish to distinguish between the probabilities P s0.25 and1
P s0.40.2

( ) ( ) Ž . Ž .a , b We apply 4.19 and 4.18 for each value of r, using z s2.576�

and z s1.645, to find the value of n sm. The value of n is then rm, so� 1 2
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Ž .that the total sample size is n qn sm rq1 . The total cost is 10n q12n1 2 1 2
Ž .s10mq12 rmsm 10q12 r . The complete table is

Ratio of Total Total
Ž .Sample Sizes r n n Sample Size Cost1 2

0.5 530 265 795 $8,480
0.6 473 284 757 8,138
0.7 432 302 734 7,944
0.8 401 321 722 7,862
0.9 377 339 716 7,838
1 357 357 714 7,854

ŽThe total cost is minimized when rs0.9 i.e., when n s377 and n s1 2
Ž . .0.9 377 s339 .
( )c If the total cost must be $6,240 and if the investigator decides to

Ž .employ the value rs0.9, the value of m is ms6240r 10q12�0.9 s300.
� Ž . � Ž . Ž .The value of m , from 4.20 , is m s300y 0.9q1 r 0.9�0.15 s285.93.

Ž .To solve 4.19 for z , note that, for rs0.9 we have Ps0.32 and P Qs�

0.2176. Therefore,

' '0.15 0.9�285.93 y2.576 0.9q1 �0.2176Ž .
z s s1.17.� '0.9�0.25�0.75q0.40�0.60

The power of the test is found, by interpolating in Table A.1, to be
approximately 0.88.

Problem 6.4

( )a
Hospital Diagnosis

Schizophrenia Affective Total

New York 82 24 106
London 51 67 118
Total 133 91 224

Project Diagnosis

Schizophrenia Affective Total

New York 43 53 96
London 33 85 118
Total 76 138 214
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Computer Diagnosis

Schizophrenia Affective Total

New York 67 27 94
London 56 37 93
Total 123 64 187

( )b
Odds Ratio

Ž .Source from 6.16

Hospital 4.49
Project 2.09
Computer 1.64

The odds ratio for the project and computer diagnoses are close, and both
differ substantially from the odds ratio for the hospital diagnosis.

( )c
Source o o�

Hospital 4.49 4.41
Project 2.09 2.08
Computer 1.63 1.63

Problem 6.9 For the values of n in Table 6.1 and of N in Table 6.6, thei j i j
2 Ž .2value of � sÝÝ n yN rN is 3.32, which is close to the value 3.25i j i j i j

Ž .found in 6.65 .

Problem 6.10 For an initial approximation of � Ž1.s5.37, the value of X isU
527.75, and that of Y is 401.48; the value of N is therefore 14.45, and that11

1of W is 0.1993. The value of F, with the continuity correction taken as q ,2

is y0.73, so the iterative process must be undertaken.
1The value of T is 0.9345, that of U is 0.0049, and that of V, with q 2

1replacing y , is 1.5428. The second approximation to the upper limit on the2
Ž .odds ratio is therefore, from 6.72 ,

y0.73Ž2.� s5.37y s5.84.U 1.5428

For this value of the odds ratio, N s14.87 and Ws0.2016. The value of11
F is 0.01, which is sufficiently close to zero to stop the iterative procedure.
The upper 95% confidence limit for the odds ratio underlying the data of
Table 6.1 is � s5.84.U

Problem 6.12

( )a For nonwhite live births, the estimated risk of infant mortality at-
tributable to low birthweight is

0.0140�0.8625y0.1147�0.0088
r s s0.557,A 0.0228�0.8713

which is equal, to two decimal places, to the value for white live births.
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( ) Ž . Ž .b By 6.99 , the standard error of ln 1y r isA

$ 0.1147q0.557 0.0140q0.8625Ž .
se ln 1y r s s0.043.Ž . (A 37,840�0.0088

A 95% confidence interval for the parameter is the interval from 0.518 to
Ž .0.593. It overlaps well with the interval found in 6.105 for white live births,

but is somewhat wider. The number of nonwhite live births is less than the
number of white live births, however, so the difference in interval lengths is
expected.

Problem 6.15.

( )a The exact two-sided 95% confidence interval for the blindnessrO2
Ž .odds ratio using the point probability method is 0, 0.887 . At � s0.88747,U

Žthe noncentral hypergeometric distribution for the reference cell low O ,2
.blind is as follows:

Ž �P Xsx Ts64, ms6,
.x ns28, �s�U

0 0.0352
1 0.1693
2 0.3169
3 0.2955
4 0.1446
5 0.0352
6 0.0033

Ž .At � , the p-value is pval 0, � s0.0352q0.0033s0.0737�0.05. SlightlyU U
larger values of � cause the point probability at xs5 to exceed that atU
xs0, thus causing xs5 to be excluded from the tail region, resulting in
p-values less than 0.05. � s0.88747 is the least upper bound of odds ratiosU

Ž .with pval 0, � �0.05.
$

� �( ) Ž .b An approximate 95% confidence interval for Ls ln � is l �1.96 se l ,
where

0.5 30.5Ž . Ž .�l s ln sy2.497
6.5 28.5Ž . Ž .

Ž � .corresponding to o s0.0823 , and

$ 1 1 1 1�se l s q q q s1.4905.Ž . (0.5 30.5 6.5 28.5

Ž .The approximate confidence interval for L is y2.497�1.96 1.4905 s
Ž .y5.418, 0.4244 . Exponentiating, the confidence interval for � is
Ž .0.0044, 1.53 . This is not satisfactory. The lower limit excludes values close to
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�s0 that are obviously supported by the data. More importantly, the
interval includes �s1, in contradiction to the exact test.

( )c For the mortality table,

12.5 36.5Ž . Ž .�l s ln s0.5218
9.5 28.5Ž . Ž .

Ž � .corresponding to o s1.685 . This compares reasonably well with

12 36Ž . Ž .
ls ln s0.5390

9 28Ž . Ž .

and os1.714. The standard error is estimated to be

$ 1 1 1 1�se l s q q q s0.4977.Ž . (12.5 28.5 9.5 36.5

The approximate confidence interval is

0.5218�1.96 0.4977 s y0.4537, 1.497 ,Ž . Ž .

Ž .and exponentiating, we have 0.6353, 4.468 . This compares reasonably well
Ž .with the exact 0.6146, 4.730 although it is too narrow.

Problem 7.3.

( )a
Smokers Nonsmokers Total

Cases 26 9 34
Controls 73 141 214

Total 99 149 248

2Uncorrected � s21.95
�s0.30

( )b
Smokers Nonsmokers Total

Cases 163 51 214
Controls 12 22 34

Total 175 73 248

2Uncorrected � s23.60
�s0.31

Ž . Ž .The phi coefficients in a and b are close.
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( )c
Smokers Nonsmokers Total

Cases 94 30 124
Controls 42 82 124

Total 136 112 248

2Uncorrected � s44.03
�s0.42

Ž . Ž . Ž .The phi coefficient in c differs appreciably from those in a and b . The
Ž . Ž . Žpercentage difference between the coefficients in a and c is 100 0.42y

.0.30 r0.30s40%.

Problem 7.4.

( )a The required value of n is 807.. .

( )b The required value of N is 702. The percentage reduction from n toP . .
Ž .N is 100 807y702 r807s13%.P

( )c The required value of N is 398. The percentage reduction from n toR . .
Ž .N is 100 807y398 r807s51%. The percentage reduction from N to NR P R

Ž .is 100 702y398 r702s43%.

Problem 7.5.

� �P B A yP B AŽ . Ž .
�R s P A BŽ .A ½ 5�P B AŽ .

�� P A B P BŽ .P A B P B P AŽ .Ž . Ž . Ž .
s y½ 5P A P BŽ . Ž .P AŽ .

� �P A B P A yP A B P AŽ . Ž . Ž .P A Ž .Ž .
� �sP A B yP A B sŽ . Ž . 1yP AŽ .P AŽ .
� � �P A B y P A B qP A B P A �Ž . Ž . Ž .� 4Ž . P A B yP AŽ . Ž .

s s .
1yP A 1yP AŽ . Ž .

Problem 7.7.

P P11 21yP qP P qP� �P A B yP A BŽ . Ž . 11 12 21 227.23 s sŽ . P� 211yP A BŽ . 1y P qP21 22

P P yP P11 22 12 21s ,
P P qPŽ .22 11 12

Ž � . Ž � .using the representation P A B sP rP and P A B sP rP . At the11 1. 21 2 .
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same time,

P P P1 12 21 11�7.32 s 1y P A B s 1yŽ . Ž .ž / ž /o P P P11 22 1 .

P P yP P P P P yP P11 22 12 21 11 11 22 12 21s s .P P P qP P P qPŽ .11 22 11 12 22 11 12

Problem 7.8. Sens s 50r50 s 1.0, Spec s 63r66 s 0.9545, 1 y Spec s
Ž � .P q D s0.0455.

P DPPV Sens Ž .( )a s � , which is estimated by1yPPV 1ySpec P DŽ .

1 40
� s0.00879,0.0455 99,960

so

$
$ 0.00879 PPV
PPVs s0.00872 and ln sy4.734.$1q0.00879 1yPPV

1nyxqPPV 40 2( )b ln s ln RRq ln . Using to estimate QrP,11yPPV 99,960 xq 2we have

$
$ $ $PPV 0.5 63.5
se ln sse ln RR s q� 4$ (½ 5 50 50.5 66 3.5Ž . Ž .1yPPV

s0.5245.

Thus an approximate 95% confidence interval for ln RR and thus ln PPV
odds is

4.734�1.96 0.5245 s y5.762,y3.706 ,Ž . Ž .

Ž .and exponentiating gives 0.00314, 0.0246 for the PPV odds, and using
Ž .PPVsoddsr 1qodds yields an approximate 95% confidence interval for

Ž .PPV of 0.003, 0.024 .

Problem 8.1

( ) Ž .a The value of the critical ratio with continuity correction is 5.54. The
difference between improvement rates is significant in the second hospital.

( )b The simple difference between the two improvement rates is d s0.752$
Ž .y0.35s0.40. Its estimated standard error is se d s0.06. The critical ratio2

for testing the significance of the difference between d s0.20 and d s0.401 2
is zs2.17. The two are significantly different at the 0.05 level.
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( )c The relative difference between the two improvement rates in the
Ž . Ž .second hospital is p s 0.75y0.35 r 1y0.35 s0.62. The value of L iseŽ2. 2

y0.97, and the estimated standard error of L is 0.19. The critical ratio for2
comparing L and L is1 2

y0.69y y0.97Ž .
zs s0.83,

2 2'0.28 q0.19

so that the two relative differences do not differ significantly.

Problem 8.2

( )a For the sample of patients given the treatments in the order AB, we
have ns20 and p s15r20s0.75.1

( )b For the sample of patients given the treatments in the order BA, we
Žhave ms15 and p s5r15s0.33. Recall that p is the proportion out of2 2

.m who had a good response to the treatment given first, i.e., to B.
( )c The value of the critical ratio for comparing p and p , with the1 2

continuity correction, is 2.14. The effects of treatments A and B are
significantly different.

Problem 9.3.

( )a
Proportion

Sample n Affective

1 105 0.019
2 192 0.068
3 145 0.166

Overall 442 0.088

The value of chi squared is 18.18 with 2 df. The proportions diagnosed
affective differ significantly at better than the 0.01 level.

( )b p s0.051 and n s297. The value of chi squared for the differ-1, 2 1, 2
ence between p and p is 16.06; the difference is significant at better than1, 2 3
the 0.01 level. The value of chi squared for the difference between p and p1 2
is 2.03, so the difference is not significant.

2 2( )c � s� s18.18, and

105�145
cs s0.39.(297�337

The hypothesized ordering is significant at better than the 0.01 level.
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Problem 9.5.

( )a The mean ridit for group B, with A as the reference, is 0.963. The
probability is 0.963 that a randomly selected member of group B will
experience an injury at least as serious as that experienced by a randomly
selected member of group A.

( )b The mean ridit for group A, with B as the reference, is 0.037, exactly
Ž .the complement of the value found in a .

( ) Ž .c The standard error of the mean ridit from 9.40 is equal to 0.040.
( ) Ž .d The standard error of the mean ridit from 9.45 is equal to 0.041, only

Ž .slightly larger than the value found in c .

Problem 9.6.

( ) w xa There are mutually exclusive events that constitute the event X �X ,2 0
so

P X �X sP X �X �X qP X �X �X qP X �X �X .Ž . Ž . Ž . Ž .2 0 1 2 0 2 1 0 2 0 1

Similarly,

P X �X sP X �X �X qP X �X �X qP X �X �XŽ . Ž . Ž . Ž .2 1 0 2 1 2 0 1 2 1 0

and

P X �X sP X �X �X qP X �X �X qP X �X �X .Ž . Ž . Ž . Ž .1 0 2 1 0 1 2 0 1 0 2

Subtracting the first expression from the sum of the other two expressions
yields

P X �X qP X �X yP X �XŽ . Ž . Ž .2 1 1 0 2 0

sP X �X �X qP X �X �X qP X �X �X ,Ž . Ž . Ž .1 0 2 0 2 1 2 1 0

which gives the result.
( )b If X , X , and X are identically distributed, then the six events0 1 2

w x w x w x w x wX �X �X , X �X �X , X �X �X , X �X �X , X �X �2 1 0 2 0 1 1 2 0 1 0 2 0 2
x w xX , and X �X �X are equally likely and exhaust the possibilities1 0 1 2

Ž .ignoring ties, which occur with zero probability . Thus the probability of
1each event is , and so6

1P X �X �X qP X �X �X qP X �X �X s ,Ž . Ž . Ž .1 0 2 0 2 1 2 1 0 2

leading to no bias.
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Problem 9.7.�

( )a
PP P PŽ iy1. , 1i1 i1 21 Ž1. Ž1.ln s ln q ln q ���qln sL q ���qL .iy1 1P P P P11 Ž iy1. , 1 Ž iy2. , 1 11

Similarly,

Pi2 Ž2. Ž2. Ž1. Ž1.ln sL q ���qL s iy1 �qL q ���qL .Ž .iy1 1 iy1 1P12

Thus

P rPi2 12� s ln s iy1 � .Ž .i P rPi1 11

Substituting this in the noncentral multiple hypergeometric probability func-
tion yields

kn n1 . k .
��� exp � iy1 nŽ .Ý i2½ 5ž / ž /n n12 k 2 is2�P n , . . . , n n , n , . . . , n , � s .Ž .12 k 2 1 1 . k . kn n1 . k .

��� exp � iy1 uŽ .Ý Ý i½ 5ž / ž /u u1 kugD is2

Ž .Multiplying numerator and denominator by the constant exp � n. .
Ž .sexp �n q ���q�n yields the equivalent expression1 . k .

kn n1 . k .
��� exp � inÝ i2½ 5ž / ž /n n12 k 2 is1�P n , . . . , n n , n , . . . , n , � s .Ž .12 k 2 1 1 . k . kn n1 . k .

��� exp � iuÝ Ý i½ 5ž / ž /u u1 kugD is1

( )b The derivative of the log of the above expression with respect to � at
�s0 is

kn n1 . k .
��� iuÝ Ý ik kž / ž /u u1 kugD is1in y s i n yEUŽ .Ý Ýi2 i2 in n1 . k .is1 is1

���Ý ž / ž /u u1 kugD

k

s i n yn p ,Ž .Ý i2 2 i
is1
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where U , . . . , U has a central multiple hypergeometric distribution given1 k
sample size n and margins n , . . . , n , with mean EU sn n rn sn p2 1 . k . i 2 i . . . 2 i

�w Ž .xŽ .and covariance matrix n n r n y1 Diag yp p .2 1 . . p

( )c

n p qn p n p qn p1 i1 2 i2 1 i1 2 i2n yn p sn yn sn p yi2 2 i i2 2 2 i2½ 5ž / ž /n qn n qn1 2 1 2

n n1 2s p yp .Ž .i2 i1n qn1 2

Thus

k kn n1 2Ss a n yn p s a p yp .Ž .Ž .Ý Ýi i2 2 i i i2 i1n . .is1 is1

Also,

2k kn n1 2 2�Var S sVar S n , n , . . . , n , �s0 s p a y p aŽ . Ž . Ý Ý0 2 1 . k . i i i in y1 ½ 5ž /. . is1 is1

k kn n n n21 2 1 2 2s p a ya s s with a s p a .Ž .Ý Ýi i w a w i in y1 n y1. . . .is1 is1

Thus

kn n 11 2 a p yp yŽ .Ý i i2 i11 n 2. .S y is12 s n n1 2Var S' 20 sa(n y1. .

k 1 1 1
a p yp y qŽ .Ý i i2 i1 ž /2 n n1 2 n y1is1 . .s .( n1 1 . .

s qa( n n1 2

Problem 10.1

( ) 2a The value of � is 0.02, confirmation, if any was needed, of the2 vs 3
virtual equality of the odds ratios in studies 2 and 3.

� �( )b The weighted average of L and L is L s0.862. The value of2 3 2, 3
�2� is 9.40, indicating that L is significantly different from L at the1 vs Ž2, 3. 1 2, 3

Ž .0.01 level the appropriate critical value for chi squared is 9.21 .
( ) Ž . Ž .c The sum of the chi squared values in a and b is 9.42, equal except

2 Ž .for rounding errors to the value of � found in 10.18 .homog
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Problem 10.2.

( ) wa The mean log odds ratio for groups 2 and 3 is L s0.862 see2, 3
Ž .xProblem 10.1 b , with an estimated standard error of

$ 1
se L s s0.160.Ž .2, 3 � �w qw' 2 3

The value of � 2 for these two groups isassoc

2
L2, 32� s s29.03,$assoc ž /se LŽ .2, 3

so the mean log odds ratio is significantly different from zero.
( )b An approximate 95% confidence interval for the underlying log odds

ratio is
$

L �1.96 se L ,Ž .2, 3 2, 3

or the interval from 0.548 to 1.176.
( ) Ž .c The mean odds ratio is equal to antilog 0.862 s2.37. An approxi-

Ž .mate 95% confidence interval is the interval from antilog 0.548 to
Ž .antilog 1.176 , that is, from 1.73 to 3.24.

Problem 10.3. The sum of kq1 hypergeometric variables with minimum
Ž . Ž .value max l , 0 and maximum value min m , n for hs1, . . . , kq1 can beh h h1

kq1 Ž . kq1 Ž .no less than Ý max l , 0 and no greater than Ý min m , n . Thus chs1 h hs1 k h1 j
kq1 Ž . kq1 Ž .is nonzero only if Ý max l , 0 F jFÝ min m , n . Since a inhs1 h hs1 h h1 i

Ž .10.28 is nonzero only if

k k

iF min m , n and iG max l , 0Ž . Ž .Ý Ýh h1 h
hs1 hs1

Ž . Ž .and b is nonzero only if jy iGmax l , 0 and jy iFmin m , n ,jyi kq1 kq1 kq1, 1
k Ž .it follows that i must be no greater than the smaller of Ý min m , n andhs1 h h1

Ž . k Ž .jymax l , 0 , and must be no smaller than the larger of Ý max l , 0kq1 hs1 h
Ž .and jymin m , n .kq1 kq1, 1

Problem 10.4. The probability that X qX s6 is obtained from the convolu-1 2
1 16 36 16 1Ž .tion of , , , , with itself:70 70 70 70 70

36 1 16 16 1 36 328
c s � q � q � s f0.0669.6 270 70 70 70 70 70 70
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Ž . Ž . Ž . Ž .The probabilities of observing X , X s 4, 2 , 3, 3 , or 2, 4 , given X qX1 2 1 2
Ž .s6, are, from 10.31 , respectively,

1 36 16 16 36 1
� � � 36 256 3670 70 70 70 70 70, , s , , .ž /328 328 328 328 328 328� 02 2 270 70 70

Ž .The two-tailed p-value is 36q36 r328s0.22.

Ž .Problem 10.8. From 10.97 ,

�C jq1 n , n , mŽ .i . i1 i� �P X s jq1 n , n , m , � s � P X s j n , n , m , � .Ž . Ž .i i . i1 i i i i i . i1 i i�C j n , n , mŽ .i . i1 i

Ž � .Suppressing n and n from the notation, let G � m denote the posteriori . i1 � i
distribution of � given m . Integrating both sides against dG yieldsi �

	
� � �P X s jq1 m s P X s jq1 m , � dG � mŽ . Ž . Ž .Hi i i i i � i i

0

	�C jq1 mŽ .i � �s � P X s j m , � dG � mŽ . Ž .H i i i i � i i�C j mŽ . 0i

	
� �� P X s j m , � dG � mŽ . Ž .H i i i i � i i�C jq1 mŽ .i 0s

	�C j mŽ .i � �P X s j m , � dG � mŽ . Ž .H i i i � i i
0

�
	

� �P X s j m ,� dG � mŽ . Ž .H i i i � i i
0

�C jq1 mŽ .i � �s E � X s j, m �P X s j m ,Ž . Ž .i i i i i�C j mŽ .i

since the posterior density of � given X s j and X qY sm isi i i i i

� �P X s j m , � dG � mŽ . Ž .i i i � i i .
	

� �P X s j m , � dG � mŽ . Ž .H i i i � i i
0

Problem 12.2.�

( ) Ž . Ž .Y 	 Ž . y Ž . � Ž .a 
 t sE 1q t sÝ p 1q t , where p sP Ysy . Thus 
 tY ys0 y y Y
	 Ž . yy1 	sÝ yp 1q t , and evaluating at ts0 gives Ý yp sEY. Theys1 y ys0 y

reader should note that term-by-term differentiation in the series is justified
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Ž .by the convergence of 
 t in a neighborhood of ts0. To see this, noteY
� �that for h F� ,

y y y1qh y1 y yŽ . iy1iy1s h F hÝ Ýž / ž /h i iis1 is1

yy 1q� y1y Ž .iy1F � s .Ý ž / �iis1

w Ž . Ž .x 	 wŽ . y xTherefore, the series 
 h y
 0 rhsÝ p 1qh y1 rh is abso-Y Y ys0 y
Ž . � �lutely convergent if 
 t exists for t F� , and the limit as h™0 exists byY

Ž r .Ž .the dominated convergence theorem. Repeating the argument shows 
 tY
	 Ž . Ž .Ž . yyrsÝ y yy1 ��� yy rq1 1q t p , and evaluating at ts0 yieldsysr y

Ž r .Ž . Ž r .
 0 sEY .Y

( ) Ž .b Y�Poisson � , and we have

yy	 	y� y 1q t �� 41q t e � Ž .Ž .Y y�
 t sE 1q t s seŽ . Ž . Ý ÝY y! y!
ys0 ys0

sey�qŽ 1qt .�set� .

Ž r .Ž . r t� Ž r . rIt follows that 
 t s� e and EY s� .Y

( ) Ž2. Ž . 2 Ž2.c y sy yy1 implies y sy qy;

y Ž3.sy yy1 yy2 sy3y3 y2q2 ysy3y3 y Ž2.qy q2 yŽ . Ž . Ž .
sy3y3 y Ž2.yy

implies y3sy Ž3.q3 y Ž2.qy; and

y Ž4.sy yy1 yy2 yy3 sy4y6 y3q11 y2y6 yŽ . Ž . Ž .

sy4y6 y Ž3.q3 y Ž2.qy q11 y Ž2.qy y6 ysy4y6 y Ž3.y7y Ž2.yyŽ . Ž .

implies y4sy Ž4.q6 y Ž3.q7y Ž2.qy.
( ) Ž .d Similar to b .
( )e We have

m x x1 nx x1 n
 t s P ��� P 1q t ��� 1q tŽ . Ž . Ž .ÝX 1 n 1 nxž /
x

m
s P 1q t q ���qP 1q t� 4Ž . Ž .1 1 n n

mn

s 1q P t .Ý i iž /
is1
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Then

 r1 � � �qr nr r1 t ���  rn t 
 tŽ .Ž .1 n X

Ž .my r q � � �qrr q � � �qr n r n 1 n1 n ism Ł P 1qÝ P tŽ .is1 i is1 i i

implies EX Ž r1. ��� X Ž rn.smŽ r1q � � �qr n.Ł n P ri.1 n is1 i
n 2 n 2 2( ) Ž . Ž .f TsÝ Y yY sÝ Y y m rn , whereY sSrnsmrn. Thusis1 i n is1 i n

n n2 2m m2 2� �E T Ssm s E Y Ssm y s EX y ,Ž . Ž .Ý Ýi in n
is1 is1

Ž Ž .. 2 Ž2. Ž Ž2. 2 .where X�Mult m, 1rn, . . . , 1rn . Now EX sEX qEX s m rnn i i i
Ž .q mrn , whence

Ž2. 2 m my1 2m m m mŽ .
�E T Ssm sn q y s qmyŽ . 2ž /n n n nn

1 ny1
sm 1y sm .ž / ž /n n

( )g We have

n n2m2 2�Var T Ssm sVar Y y Ssm sVar Y SsmŽ . Ý Ýi i½ 5n ž /
is1 is1

n
2sVar X ,Ý iž /

is1

Ž Ž ..where X�Mult m, 1rn, . . . , 1rn . Thenn

22
2 2�Var T Ssm sE X y E XŽ . Ý Ýi iž / ž /½ 5

i i

24 2 2 2 2 2s EX q2 E X X y EX y2 EX EXŽ .Ž .Ý Ý Ý Ýi i j i i j
i i�j i i�j

24 2 2 2 2 2sn EX y EX qn ny1 E X X y EX EXŽ . � 4Ž . Ž . Ž . Ž .½ 51 1 1 2 1 2

2Ž4. Ž3. Ž2. 2sn EX q6EX q7EX qEX y EXŽ .½ 51 1 1 1 1

2Ž2. Ž2. 2qn ny1 E X qX X qX y EXŽ . Ž . Ž . Ž .½ 51 1 2 2 1

mŽ4. mŽ3. mŽ2. m
sn q6 q7 q qn ny1Ž .4 3 2½ 5nn n n

�

2Ž4. Ž3. Ž2. Ž2.m m m m m2q2 q yn q4 3 2 2½ 5 ½ 5nn n n n
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mŽ4. mŽ3. mŽ4.ymŽ2.mŽ2. mŽ3. mŽ3.

s y q q6 y24 3 2 3 2n n n n n

2mŽ3.y2mmŽ2. mŽ2. mŽ2.
Ž2. 2q q7 y qm ym qmn n n

m my1 Ž3.mŽ .
s my2 my3 ym my1 q4� 4Ž . Ž . Ž .2 2n n

2 mŽ2.

q m my1 my2ym q6Ž . Ž .n n

m my1 Ž3. Ž2. Ž2.m m mŽ .
s y4 my2 y2 q4 y4 q6� 4Ž .2 2 n nn n

mŽ3. mŽ2. mŽ3. mŽ2. mŽ2.

sy4 y2 q4 y4 q62 2 2 n nn n n

mŽ2. mŽ2. mŽ2. 1 mŽ2.

sy2 q2 s2 1y s2 ny1 .Ž .2 2ž /n n nn n

( ) Ž . Ž2. Ž .2h SsY q ���qY �Poisson n� , which implies ES s n� by part1 n
Ž .b , and Var Ssn�. Then

� �Var TsE Var T S qVar E T S� 4 � 4Ž . Ž .
Ž2. S ny12S Ž .

sE ny1 qVarŽ . ½ 52½ 5 nn

22 ny1 ny1Ž . Ž2.s ES q Var S2 ž /nn

22 ny1 ny1Ž . 2s n� q n�Ž . Ž .2 ž /nn

� � 4s ny1q2n� ny1Ž .n

and

Var TT � 2n� �Ž .2Var S sVar s s 1q � .Ž .n ½ 52ž /ny1 n ny1 nny1Ž .

Problem 13.1. For comparing the proportions of patients diagnosed affec-
Ž � � .2 Ž .tively ill, the value of McNemar’s statistic is 20y10 y1 r 20q10 s2.70.

The difference is not statistically significant.
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For comparing the proportions diagnosed something other than
Ž � �schizophrenic or affectively ill, the value of McNemar’s statistic is 15y5 y

.2 Ž .1 r 15q5 s4.05. Because this fails to exceed 5.99, the difference is not
statistically significant.

Problem 13.2.

( )a The value of the Stuart-Maxwell chi squared statistic is 10.43 with 2
df. The two outcome distributions differ significantly.

( )b The value of d is 70y50sq20, that of d is 10y20sy10, and1 3
that of d yd is q30. The new treatment seems to be superior to the1 3
standard in that it is associated with a greater net improvement. The value of

Ž .the test statistic in 13.20 is 9.57, so that the new treatment is significantly
better than the standard.

Problem 14.3. By Bayes’ theorem,

� �P Ys1 X , Z, Ss1 P Ss1 Ys1, X , ZŽ . Ž .
s

� �P Ys0 X , Z, Ss1 P Ss1 Ys0, X , ZŽ . Ž .

� �P Ys1 X , Z P Ss1 X , ZŽ . Ž .
� ,

� �P Ys0 X , Z P Ss1 X , ZŽ . Ž .

and by unbiased sampling,

� �P Ss1 Ys1, X , Z P Ss1 Ys1, ZŽ . Ž .
s ;

� �P Ss1 Ys0, X , Z P Ss1 Ys0, ZŽ . Ž .

then take logs. For the second equality,

� � � �P Ss1 Ys1, Z P Ys1 Ss1, Z P Ss1 Z P Ys1 ZŽ . Ž . Ž . Ž .
s ;

� � � �P Ss1 Ys0, Z P Ys0 Ss1, Z P Ss1 Z P Ys0 ZŽ . Ž . Ž . Ž .

1Ž � . Ž � .but for matched pairs, P Ys1 Ss1, Z sP Ys0 Ss1, Z s , whence2

� �P Ss1 Ys1, Z P Ys1 ZŽ . Ž .
ln syln .

� �P Ss1 Ys0, Z P Ys0 ZŽ . Ž .

Problem 16.10. First note that

� � � �A P R X , Z sP R Y , Z sP R X , Y , Z sP R Z .Ž . Ž . Ž . Ž . Ž .Y Y Y Y

To see this write

� � � �P R X , Z sE P R X , Y , Z sE P R Z sP R Z ,Ž . Ž . Ž . Ž .Y Y � X , Z Y Y � X , Z Y Y
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Ž � .because P R Z is constant with respect to Y. Similarly,Y

� � � �P R Y , Z sE P R X , Y , Z sE P R Z sP R Z ,Ž . Ž . Ž . Ž .Y X � Y , Z Y X � Y , Z Y Y

Ž � .because P R Z is constant with respect to X. By Bayes’ theorem,Y

� � � � �P Y X , Z, R sP R X , Y , Z P Y X , Z rP R X , Z sP Y X , Z .Ž . Ž .Ž . Ž . Ž .Y Y Y

Also note that

� � �B P R Y , Z, R s0 sP R X , Y , Z, R s0 sP R Z, R s0 .Ž . Ž . Ž . Ž .X Y X Y X Y

To see this, write

� �P R Y , Z, R s0 sE P R X , Y , Z, R s0Ž . Ž .X Y X � Y , Z , R s0 X YY

� �sE P R Z, R s0 sP R Z, R s0 ,Ž . Ž .X � Y , Z , R s0 X Y X YY

Ž � . Ž .because P R Z, R s0 is constant with respect to X. Then 16.48 isX Y
satisfied because

� � �P R X , Y , Z sP R X , Y , Z, R s1 P R s1 X , Y , ZŽ . Ž . Ž .X X Y Y

� �qP R X , Y , Z, R s0 P R s0 X , Y , ZŽ . Ž .X Y Y

� �s P R Y , Z, R s1 P R s1 Y , ZŽ . Ž .X Y Y
w Ž .x w Ž .xby 16 .56 by A

� �q P R Y , Z, R s0 P R s0 Y , ZŽ . Ž .X Y Y
w Ž .x w Ž .xby B by A

�sP R Y , Z .Ž .X

Problem 16.11. Given:
( ) Ž � . Ž � .a P R X, Y, Z sP R Z ,X X

( ) Ž � . Ž � .b P R X, Y, Z, R s1 sP R X, Z, R s1 , andY X Y X

( ) Ž � . Ž � .c P R X, Y, Z, R s0 sP R X, Z, R s0 .Y X Y X
First note that

� � � �A P R X , Z sP R Y , Z sP R X , Y , Z sP R Z .Ž . Ž . Ž . Ž . Ž .X X X X

Ž . Ž . Ž .Assumptions a , b , and c simply interchange the role of X and Y in
Ž .16.56 . Use the same proof as in Problem 16.10, interchanging X and Y.

Ž .This gives 16.48 .



APPENDIX C: ANSWERS TO SELECTED PROBLEMS724

Also note that, again by interchange of the role of X and Y and the proof
of Problem 16.10,

� � �B P R X , Z, R s0 sP R X , Y , Z, R s0 sP R Z, R s0 .Ž . Ž . Ž . Ž .Y X Y X Y X

Then by Bayes’ theorem,

� � � � �P Y X , Z, R sP R X , Y , Z P Y X , Z rP R X , Z sP Y X , Z ,Ž . Ž .Ž . Ž . Ž .Y Y Y

Ž � . Ž � .so it suffices to show P R X, Y, Z sP R X, Z . Again, this follows byY Y
interchange of X and Y in Problem 16.10. For a direct proof, write

� � �P R X , Y , Z sP R X , Y , Z, R s1 P R s1 X , Y , ZŽ . Ž . Ž .Y Y X X

� �qP R X , Y , Z, R s0 P R s0 X , Y , ZŽ . Ž .Y X X

� �s P R X , Z, R s1 P R s1 X , ZŽ . Ž .Y X X
w Ž .x w Ž .xby b by A

� �q P R X , Z, R s0 P R s0 X , ZŽ . Ž .Y X Y
w Ž .x w Ž .xby B by A

�sP R X , Z .Ž .Y

Problem 17.1.

( )a
Hospital n Proportion Catatonic

1 112 0.286
2 154 0.506
3 31 0.419
4 151 0.364
5 124 0.298

Overall 572 0.376

( )b The value of chi squared for comparing these five proportions is 18.51.
( )c The critical value of chi squared with 4 df for the 0.001 significance

level is 18.47. The standards for the differential diagnosis of catatonic and
Ž .paranoid schizophrenia are significantly different p�0.001 across the five

hospitals.

Problem 17.2.

( ) Ž .Ž . Ž .Ž .a The value of P is 0.50, but that of p is 0.75 0.50 q 0.05 0.50 sL L
0.40.

( ) Ž .Ž . Ž .Ž .b The value of P is 0.40, but that of p is 0.9 0.40 q 0.1 0.60 s0.42.B B

( )c The value of DsP yP is 0.10, but that of dsp yp sy0.02.L B L B
They are of opposite sign.
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( )d The value of the odds ratio as a function of P and P isL B
Ž .Ž . Ž .Ž .0.50 0.60 r 0.40 0.50 s1.50, but the value of the odds ratio as a function

Ž .Ž . Ž .Ž .of p and p is 0.40 0.58 r 0.42 0.60 s0.92. They are on opposite sidesL B
of unity.

Problem 17.3.

( )a p s 60r200 s 0.30, and the value of the odds ratio isB
Ž .Ž . Ž .Ž .0.44 0.70 r 0.30 0.56 s1.83.

( )b The value of n rn is 18r18s1, and that of n rn is 2r32s0.06.00 0 10 1
Ž .Ž . Ž .Ž .The resulting value of P is 1 0.30 q 0.06 0.70 s0.34. The value of theB

Ž .Ž . Ž .Ž .odds ratio for the adjusted rates of smoking is 0.51 0.66 r 0.34 0.49 s2.02.
Ž .The association seems to be stronger than in a .

( )c The values of n rn is 16r18s0.89 and that of n rn is 7r32s0.22.00 0 10 1
Ž .Ž . Ž .Ž .The resulting value of P is 0.89 0.30 q 0.22 0.70 s0.42. The resultingB

Ž .Ž . Ž .Ž .value of the odds ratio is 0.51 0.58 r 0.42 0.49 s1.44. The association
Ž .seems to be weaker than in a .

Problem 18.3.

( )a

$
Ž .Study n p � A B C se �ˆ ˆe

1 20 0.59 0.39 0.0742 0.0784 0.0009 0.21
2 20 0.71 0.48 0.0820 0.0393 0.0123 0.25
3 30 0.54 0.35 0.0714 0.1196 0.0000 0.17

Ž . 2 2The value of the numerator of 18.21 is 0.39r0.21 q 0.48r0.25 q
0.35r0.172s28.63, and the value of the denominator is 1r0.212q1r0.252q
1r0.172s73.28. The overall value of kappa is 28.63r73.28s0.39.

( ) Ž . Ž .2 2b The value of the chi squared statistic in 18.22 is 0.39y0.39 r0.21
Ž .2 2 Ž .2 2q 0.48y0.39 r0.25 q 0.35y0.39 r0.17 s0.18 with 2 df. The three es-

timates of kappa do not differ significantly.
( )c An approximate 95% confidence interval for the common value of

'kappa is 0.39�1.96� 1r73.28 , or the interval from 0.16 to 0.62. The
Žoverall value of kappa is significantly different from zero the confidence

.interval does not contain the value 0 , but the magnitude of kappa indicates
Žlittle better than fair chance-corrected agreement even the upper 95%

.confidence limit, 0.62, is low .

Problem 19.1.

( )a The rates of abnormal lung functioning in service industries are
greater than or equal to those in manufacturing industries for employees
aged 50 years, but are smaller for employees aged 50 or over.
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( )b The only gain would be the simplicity of comparing just two adjusted
rates. The major losses would be the failure to describe the crossover
phenomenon and the strong dependence of the direction of the difference
between the two adjusted rates on the age distribution of the standard.

( )c
Adjusted Rates

Standard Manufac. Service Difference

1 3.98% 4.40% Service�manufac.
2 8.37% 6.92% Manufac.�service
3 3.87% 3.84% Approximately equal

( )d
Adjusted Rates

Age Interval Manufac. Service Difference

20�49 2.58% 3.37% Service�manufac.
G50 8.23% 7.14% Manufac.�service



Author Index

Numbers in italics indicate pages where references appear.

727



AUTHOR INDEX728

Bass, H. E., 593
Bayrakci, C., 592
Beck, A. T., 596
Bedrick, E. J., 421, 437
Begg, M. D., 461, 488, 580, 592
Benfante, R., 157
Bennett, B. M., 63, 375, 394, 403, 602, 623
Bennett, D. E., 438
Berchick, R. J., 596
Berger, A., 99, 140, 393, 403
Berkson, J., 10, 15, 95, 122, 140
Berry, D. A., 212, 230
Berry, G., 644, 646
Bertell, R., 151, 158
Bhapkar, V. P., 381, 393, 403
Bigger, J. T., 168, 183
Billewicz, W. Z., 398, 403
Birch, M. W., 254, 279
Birkett, N., 448, 488
Birley, J. L. T., 597
Bishop, Y. M. M., xxii, 235, 238. 279, 287, 335,

338, 340, 371
Blackman, N. J.-M., 621, 625
Blendis, L. M., 602, 603, 623
Blettner, M., 471, 490
Bloch, D. A., 617, 618, 623
Blyth, C. R., 42, 49
Bock, R. D., 287, 314, 335, 338
Boden-Albala, B., 439, 490
Boos, D. D., 461, 490
Borus, J., 597
Boushka, W. M., 618, 623
Bowman, J. E., 563, 592
Box, G. E. P., 212, 230
Box, J. F., 244, 279
Brambilla, D., 624
Brauninger, G., 594
Bregman, D. J., 394, 396, 405
Bremner, J. M., 230, 693, 694
Brennan, T. A., 617, 619, 620, 621, 625
Brenner, H., 579, 594
Breslow, N. E., 185, 235, 251, 252, 279, 282,

371, 399, 408, 416, 438, 461, 490, 636, 644,
646

Brewer, G. J., 562, 563, 592, 593
Brillinger, D. R., 359, 371
Brody, J., 179, 183
Brookmeyer, R., 427, 435, 438
Bross, I. D. J., 200, 230, 233, 255, 279, 373,

403, 568, 592
Brown, B. W., 233
Brown, C., 238, 258, 281, 308, 339
Brown, G., 596

Brown, G. W., 10, 15
Brown, S. M., 392, 393, 406
Brunk, H. D., 230, 693, 694
Bryson, M. R., 572, 592
Buck, C., 448, 488
Byar, D. P., 175, 183, 238, 258, 281
Byrne, C., 438, 439

Cameron, A. C., 363, 371
Campbell, D. T., 180, 183
Canner, P. L., 176, 183
Caplan, R. A., 625
Capozzoli, M., 622, 623
Cappelleri, J. C., 180, 183, 186
Carey, V., 489
Carlin, B. P., 212, 230
Carlin, J. B., 231
Carroll, J. B., 99, 140
Carroll, R. J., 409, 435,438, 439, 535, 560, 578,

589, 592, 597
Carter, L. L., 592
Casagrande, J. T., 72, 83, 84
Casella, M., 586, 596
Castellan, N. J., 189, 230
Chalmers, T. C., 184
Chambers, D. S., 154, 158
Chapman, D. G., 194, 195, 231
Chase, G. R., 398, 403
Chassan, J. B., 196, 231
Checkoway, H., 593
Chen, C.-F., 387, 406
Chen, M.-H., 535, 558
Chen, T. T., 589, 592
Chen, X., 72, 84, 490
Cheney, F. W., 625
Cheng, K. F., 589, 592
Chernoff, H., 275, 279, 589, 592
Chiacchierini, R. P., 572, 593
Chiang, C. L., 638, 646
Cicchetti, D. V., 608, 609, 623, 624
Clark, L. A., 577, 593
Clarke, C., 244, 279
Clayton, D., 645, 646
Clopper, C. J., 43, 49
Cobb, S., 571, 596
Cochran, W. G., 194, 209, 231, 253, 256, 279,

389, 392, 394, 398, 399, 403, 630, 646
Cochrane, A. L., 6, 15, 565, 593
Cohen, G., 594
Cohen, J., 80, 84, 596, 604, 605, 606, 608, 609,

623, 624, 626
Colditz, G. A., 438
Collings, B. J., 363, 371



AUTHOR INDEX 729

Colton, T., 176, 183
Committee for the Assessment of Biometric

Aspects of Controlled Trials of
Hypoglycemic Agents, 160, 185

Connett, J. E., 394, 403
Connolly, J. L., 438, 439
Conover, W. J., 58, 63
Cook, J. A., 216, 231
Cook, P., 629, 646
Cook, T. D., 180, 183
Cooper, J. E., 140, 226, 231, 239, 279, 597
Copeland, J. R. M., 140, 231, 279
Copeland, K. T., 566, 567, 593
Cornfield, J., xx®i, 67, 84, 94, 103, 114, 124,

140, 149, 157, 176, 183, 246, 251, 280,
376, 403

Coulter, D., 624
Cox, D. R., xxii, xx®, 106, 124, 140, 185, 235,

280, 335, 338, 384, 403
Craddock, J. M., 95, 141
Cressie, N., 218, 225, 231
Crowder, M., 471. 488
Cutler, S. J., 94
Cuzick, J., 624

Dancis, J., 84
Darlington, R. B., 84
Davidian, M., 477, 488
Davidow, B., 593
Davies, L. G., 565, 593
Davies, M., 597, 617, 624
Davis, K. B., 183
Dawson, J. D., 481, 488
Day, N. E., 235, 279, 399, 408, 416, 438, 589,

593, 636, 644, 646
Day, R. L., 83, 84
Dean, C. B., 363, 371
Dear, K. B. G., 470, 488, 530, 558
DeGroot, M. H., 619, 621, 626
Dell, R. B., 84
Delmore, T., 16
DeMets, D. L., 159, 160, 183, 184, 268,

280
Deming, W. E., 571, 593, 594
Dempster, A. P., 526. 558
Densen, P. M., 571, 593
Dern, R. J., 562, 563, 593
Derryberry, M., 565, 593
Dersimonian, R., 267, 280
Desmond, D. W., 490
Detre, K., 185
Diamond, E. L., 567, 593
Dice, L. R., 600, 618, 623

DiCiccio, T., 632, 646
Diggle, P. J., 483, 488
Discher, D. P., 645, 646
Dixon, W. J., 95, 141
Dobson, A. J., 621, 625, 632, 646
Doll, R., 154, 157, 346, 371, 388, 403, 629, 646
Donald, A., 442, 460, 461, 488
Donner, A., 442, 448, 460, 461, 488, 617, 621,

623, 624
Dorn, H. F., 189, 231
Duffy, S. W., 589, 593
Duncan, O. D., 338
Dunford, R., 623
Dunnett, C. W., 163, 183
Dupont, W. D., 394, 403
Dyke, G. V., 106, 141

Ebel, R. L., 604, 624
Eberhardt, K. R., 61, 63
Eberle, E., 646
Ederer, F., 84
Edwards, A. L., 375, 403
Edwards, A. W. F., 103, 141
Edwards, J. H., 106, 141
Edwards, W., xx®i
Efron, B., 93, 9, 176, 183, 212, 231, 348, 371,

632, 646
Egan, D. A., 183
Eichenwald, K., 179, 184
Eisenstein, R. B., 592
Ejigou, A., 269, 280, 376, 387, 394, 403, 404
Elashoff, R. M., 245, 283, 438
El-Badry, M. A., 629, 646
Eliasziw, M., 617, 621, 623, 624
Elkind, M., 439
Ellenberg, J. H., 183
Ellenberg, S. S., 160, 177, 178, 183
Elton, R. A., 589, 593
Elveback, L. R., 629, 639, 646
Endicott, J., 565, 577, 593, 596, 626
Espeland, M. A., 589, 593
Everitt, B. S., xxii, 95, 106, 141, 142, 159, 183,

235, 280, 381, 382, 384, 390, 404, 605,
606, 609, 624

Ewell, M., 435, 43

Farewell, V. T., 409, 438
Fay, M. P., 632, 644, 646
Feighner, J.P., 565, 593
Feigl, P., 80, 84
Feinberg, H. C., 645, 646
Feinstein, A. R., 95, 122, 141, 153, 157



AUTHOR INDEX730

Feuer, E. J., 632, 646
Fienberg, S. E., xxii, 106, 141, 235, 238, 279,

280, 287, 335, 338, 340, 371
Fieve, R. R., 562, 594
Finkelstein, M. O., 126, 141, 178, 180, 183,

209, 212, 231, 583, 594
Finney, D. J., 57, 63, 259, 280, 338
First, M. B., 594, 596, 597
Firth, D., 362, 371
Fisher, B. 594
Fisher, L. D., 168, 183
Fisher, N., 352, 372
Fisher, R. A., 56, 63, 67, 84, 86, 94, 98, 141,

244, 280
Fitzmaurice, G. M., 471, 484, 488, 520, 558
Flack, V. F., 617, 624
Flanders, W. D., 589, 595
Fleiss, J. L., 9, 16, 72, 73, 76, 84, 85, 90, 93,

94, 106, 119, 128, 141, 233, 254, 265, 268,
280, 281, 381, 382, 384, 389, 394, 396,
404, 563, 594, 596, 602, 603, 604, 605,
606, 609, 615, 616, 617, 620, 623, 624, 626

Fleming, T. R., 160, 183, 519, 520, 559
Fletcher, C. M., 565, 594
Fligner, M. A., 61, 63
Flood, C. R., 95, 141
Forey, B. A., 589, 595
Fox, T. F., 159, 184
Francis, R. E., xx®
Free, S. M., 164, 185
Freedman, L. S., 184
Freireich, E. J., 175, 184
Friedewald, W. T., 183
Friedman, L. M., 159, 160, 184
Frieman, J. A., 184
Friend, N., 233
Frischer, H., 592
Frome, E. L., 346, 348, 370, 371
Furberg, C., 159, 160, 184

Gabrielsson, A., 393, 405
Gail, M. H., 183, 209, 231, 413, 438, 547, 559,

638, 644, 647
Galen, R. S., 6, 15
Gallant, R., 477, 488
Gambino, S. R., 6, 15
Gan, R., 490
Ganz, V. H., 575, 594
Garland, L. H., 231, 565, 593, 594
Garner, J. B., 617, 624
Gart, J. J., 102, 105, 119, 141, 143, 164, 184,

239, 243, 246, 247, 251, 254, 262, 280, 382,
404

Gehan, E. A., 175, 184

Gelman, A., 212, 231
Gent, M., 163, 183
Gibbon, M., 594, 596, 597
Gibbons, J. D., 175, 184
Gibbons, L. E., 435, 438
Gill, R. D., 547, 559
Gilson, J. C., 625
Gladen, B., 6, 16
Glaser, S. L., 597
Glynn, M. F., 562, 563, 593
Gokhale, D. V., 312, 338
Gold, R. Z., 393, 403
Goldberg, I. D., 602, 603, 625
Goldberg, J. D., 566, 567, 568, 594
Gong, G., 348, 372
Goodman, L. A., 95, 99, 100, 141, 142, 254,

280, 287, 338, 601, 602, 603, 624
Gordon, R. S., 159, 185
Graham, P., 597
Graham, S., 568, 595
Gray, P. G., 154, 157
Gray, R., 245, 282
Green, L. M., 9, 16
Green, M. F., 597
Greenberg, B. G., 124, 142
Greenhouse, S. W., 9, 16, 58, 63, 72, 84, 94,

176, 183
Greenland, S., 80, 84, 153, 157, 251, 282, 461,

490, 579, 594
Grizzle, J. E., 58, 63, 106, 142, 165, 184, 308,

334, 338, 381, 404
Gross, S. T., 621, 624
Guilford, J. P., 600, 624
Gurian, J., 84
Gurland, B. J., 140, 179, 594
Guy, L. P., 84
Guze, S.B., 593

Haenszel, W., 10, 16, 140, 153, 154, 158, 250,
251, 281, 376, 384, 403, 404

Hafner, K. B., 621, 625
Haitovsky, Y., 589, 592, 597
Haldane, J. B. S., 105, 106, 136, 142
Hale, C. A., 617, 624
Halperin, M., 69, 84, 176, 183
Hammond, E. C., 140, 153, 157
Hankey, B. F., 110, 142, 251, 281
Hankinson, S., 154, 158, 436, 439
Hanzawa, L. K., 490
Harlow, S. D., 281
Harman, H. H., 99, 142
Harper, D., 572, 594
Hartge, P., 589, 597
Hartley, H. O., 57, 63, 649



AUTHOR INDEX 731

Haseman, J. K., 72, 84
Hasin, D., 577, 594
Hastie, T. A., 410, 438
Hatch, M., 209, 231
Hauck, W. W., 252, 280, 461, 488
Hauser, W. A., 439, 489, 490
Hedges, L. V., 265, 280
Hemphill, F. M., 628, 647
Herrera, L., 153, 158
Higgins, I. T. T., 625
Hill, A. B., 86, 94, 154, 157, 159, 184, 373,

388, 403, 404
Hill, A. P., 408, 439
Hill, J. R., 421, 437
Hirayama, T., 200, 233
Hirji, K. F., 245, 280, 282, 283, 420, 438
Hirschberg, J. G., 618, 624
Hochberg, Y., 572, 594
Holbrook, R. H., 593
Holford, T. R., 185, 408, 438
Holland, P. W., xxii, 235, 238, 251, 256, 279,

280, 282, 335, 338, 340, 371, 461, 489
Holland, W. W., 6, 15
Holley, J. W., 600, 624
Holly, E. A., 233
Horn-Ross, P. L., 597
Horvitz, D. G., 5, 16, 501, 558
Horwitz, O., 566, 594
Hosmer, D. W., 235, 280, 307, 335, 338, 435,

438
Howard, S. V., 185
Howes, M. J., 597
Hsieh, C.-C., 579, 594
Hsu, P., 63
Hsueh, H. M., 589, 592
Hubert, L. J., 609, 624
Hughes, J. P., 589, 595
Hui, S. L., 589, 593
Humphreys, K., 589, 595
Hunter, D., 439
Hutzler, M., 231

Ibrahim, J. G., 216, 231, 526, 531, 535, 558,
559

Ibrahim, M. A., 154, 157, 200, 232
Institute of Medicine Committee on Strategies

for Small-Number-Participant Clinical
Research Trials, 175, 180, 184

Ireland, C. T., 381, 404
Irwin, J. O., 56, 63, 189, 231
Isaacs, A. D., 597

Jackson, G. L., 164, 185
Jacobs, T. W., 416, 438

Jennison, C., 160, 184
Jewell, N. P., 377, 404, 469, 490
Jick, H., 154, 157
Joffres, M. R., 153, 157
Johnson, W. E., 482, 490
Jones, E. W., 593
Jones, M. P., 270, 272, 275, 281
Jones, R. N., 625

Kadane, J. B., 212, 232
Kairam, R., 610, 618, 624
Kaiser, G. C., 183
Kaldor, J., 645, 646
Kalish, L. A., 399, 404
Kalton, G., 630, 647
Kane, J., 597
Kannel, W. B., 168, 184
Kantor, S., 200, 232
Kargman, D. E., 439, 490
Kastenbaum, M. A., 189, 232
Kastner, C., 471, 490
Kay, J., 348, 371
Keeler, E., 9, 16
Kelsey, J. L., 408, 438
Kendell, R. E., 140, 231, 279
Kernohan, W., 233
Keyfitz, N., 638, 647
Keys, A., 566, 569, 594
Kihlberg, J. K., 566, 569, 594
Kilpatrick, S. J., 636, 647
Kim, B. S., 216, 232
Kimball, A. W., 189, 232
Kinney, A., 232, 281, 338
Kitagawa, E. M., 628, 629, 638, 647
Klar, N., 621, 624
Kleinbaum, D. G., 154, 157, 436, 438
Klemetti, A., 154, 157
Klerman, G. L., 565, 594
Kline, J., 217, 231, 232, 277, 281, 293, 338,

624
Knoke, J. D., 189, 232
Koch, G. G., 334, 338, 381, 387, 404, 566, 595,

604, 609, 610, 611, 614, 619, 625
Kolata, G., 179, 184
Kong, F., 246, 281
Koran, L. M., 565, 595
Korn, E. L., 481, 487, 488
Kosinski, A. S., 589, 595
Kou, S., 246, 281
Koval, J. J., 621, 625
Kraemer, H. C., 610, 617, 618, 623, 625
Kramer, M., 72, 84
Kringlen, E., 596



AUTHOR INDEX732

Krippendorff, K., 604, 625
Kruskal, W. H., 95, 99, 100, 141, 142, 601, 603,

624
Ku, H. H., 381, 404
Kuban, K., 624
Kuebler, R. R., 184
Kuk, A. Y. C., 15, 16, 533, 558
Kullback, S., 312, 338, 381, 404
Kupper, L. L., 80, 84, 154, 157, 436, 438, 579,

596, 621, 625, 638, 647
Kuritz, S. J., 379, 404
Kuulasmaa, K., 646

Lachin, J. M., 69, 84, 394, 404, 488
Lagakos, S. W., 481, 488, 579, 580, 592, 595
Lai, M.-Y., 621, 623
Lai, T.-L., 175, 176, 180, 184, 212, 232
Laird, N. M., 267, 280, 476, 484, 488, 490, 520,

526, 535, 558, 617, 619, 620, 621, 625
Lancaster, H. O., 41, 49, 189, 232
Landis, J. R., 379, 404, 604, 609, 610, 611, 614,

616, 619, 624, 625
Lang, J. B., 619, 623
Langenbucher, J., 577, 595
Lanman, J. T., 83, 84
Lansky, L., 624
Latscha, R., 63
Lau, T.-S., 621, 625
Lawless, J. F., 216, 231, 233, 359, 363, 371
Le, C. T., 80, 84, 269, 28, 387, 406
Lee, J., 233
Lee, J. J., 617, 625
Lee, P. N., 589, 595
Lee, Y. J., 77, 84
Lefkopoulou, M., 468, 488
Lehmann, E. L., 145, 149, 157, 314, 339
Lellouch, J., 177, 186
Lem, S., x®iii
Lemeshow, S., 235, 280, 307, 335, 338
Lemke, J. H., 281
Leppik, I., 489
Leroux, B. G., 470, 489
Levin, B., 42, 49, 72, 84, 110, 126, 142, 160,

167, 168, 178, 180, 183, 184, 186, 209,
212, 220, 231, 232, 245, 246, 272, 275,
281, 287, 308, 338, 339, 387, 394, 396,
399, 404, 409, 416, 420, 428, 431, 438, 479,
488, 583, 594, 596

Levin, M. L., 125, 142, 151, 153, 157, 158, 575,
595

Levine, R. J., 159, 175, 178, 185
Lew, D., 531, 560
Li, W. K., 533, 558

Liang, K.-Y., 216, 232, 233, 269, 272, 275, 281,
387, 399, 404, 427, 428, 435, 438, 439,
461, 463, 464, 465, 467, 470, 476, 483, 488,
490, 532, 558, 589, 595, 597

Liberman, R. P., 597
Lieberman, G. J., 57, 63
Light, R. J., 610, 618, 625
Lilienfeld, A. M., 140, 567, 568, 593, 595
Lin, I.-F., 154, 158, 436, 438, 439, 456, 489
Lin, X., 266, 281
Lindman, H., xx®i
Lindor, N. M., 439
Lindsey, J. K., 348, 371
Linet, M., 427, 435, 438
Lipsitz, S. R., 435, 438, 470, 471, 484, 488,

489, 519, 526, 530, 531, 535, 558, 559,
560, 617, 619, 620, 621, 625

Little, R. J. A., 520, 537, 559
Liu, X., 589, 595
Llambes, J. L., 158
London, S. J., 416, 438, 439
Lord, F. M., 99, 142
Louis, T. A., 212, 230
Lui, K.-J., 379, 404
Lustbader, E., 421, 439
Lynn, H. S., 410, 439
Lysgaard-Hansen, B., 566, 594

Mack, M. E., 619, 621, 626
MacLean, C. J., 157
Maclure, M., 154, 158, 436, 439
MacMahon, B., 144, 158
Magder, L. S., 589, 595
Mahoney, D. W., 439
Mainland, D., 10, 16, 153, 158, 159, 185
Mak, T. K., 533, 558
Mancl, L. A., 470, 489
Mantel, N., 9, 10, 16, 58, 63, 77, 84, 110, 142,

153, 154, 158, 185, 195, 209, 232, 238, 250,
251, 254, 258, 259, 281, 308, 339, 376,
384, 394, 404, 632, 637, 642, 643, 647

Margolin, B. H., 216, 232, 363, 371
Mark, S. D., 547, 559
Marks, H. H., 637, 647
Markush, R. E., 128, 142, 565, 595
Marshall, L. M., 416, 439
Marshall, P., 624
Martin, S. W., 618, 619, 625
Martinez, Y. N., 623
Massey, F. J., 95, 141
Mausner, J. S., 630, 647
Maxwell, A. E., xx®, 106, 142, 381, 404, 600,

604, 625



AUTHOR INDEX 733

McClave, J. T., 618, 626
McCullagh, P., 206, 232, 316, 339, 359, 360,

371, 428, 439, 463, 489, 645, 647
McCulloch, C. E., 409, 439
McHugh, R. B., 80, 84, 269, 280, 376, 387,

394, 403, 404
McKinlay, S. M., 254, 255, 256, 281, 399, 405
McMichael, A. J., 593, 647
McNeil, B. J., 9, 16
McNemar, Q., 375, 405
McPherson, K., 185
McSweeney, L., 622, 623
Medical Research Council, 577, 595
Mehta, C. R., 245, 279, 280, 281, 282, 420,

438
Meier, P., 159, 160, 164, 183, 185, 269, 282
Mian, I. U. H., 618, 619, 625
Miele, G., 577, 594
Miettinen, O. S., 148, 158, 256, 282, 373, 375,

385, 387, 398, 405, 628, 647
Miller, R. G., 191, 232, 382, 405
Mintz, J., 597
Mock, M. B., 183
Mode, C. J., 210, 232
Molenberghs, G., 471, 488
Moolgavkar, S., 421, 439
Moore, D. H., 438, 468, 488
Morel, J. G., 216, 232
Morgenstern, H., 154, 157, 436, 438
Morris, C., 212, 231
Morris, M. D., 348, 371
Morrow, R. H., 385, 405
Morton, R., 216, 232
Moses, L. E., 93, 94
Most, B. M., 647
Mosteller, F., 103, 142, 287, 339, 375, 405
Mote, V. L., 58, 63, 566, 595
Moulton, L. H., 482, 489
Munoz, A., 235, 282, 466, 489˜
Munoz, R., 593
Murphy, S. A., 519, 520, 559
Musch, D. C., 618, 625

Nadel, E., 489
Nagaraj, N. K., 216, 232
Nam, J., 194, 195, 231
Nathan, P., 577, 595
National Center for Health Statistics, 192, 232
National Coal Board, 308, 339
Navarrette, A., 158
Naylor, A. F., 239, 282
Nee, J. C. M., 616, 624
Neerchal, N. K., 216, 232

Nelder, J. A., 359, 371, 428, 439, 463, 489,
645, 647

Nelson, F. D., 535, 559
Neugebauer, R., 481, 489
Newcombe, R. G., 43, 49
Newell, D. J., 565, 595
Newman, B., 128, 142
Neyman, J., 9, 16, 408, 439
Nissen-Meyer, S., 9, 16
Novick, M. R., 99, 142
Nuako, K. W., 416, 439
Nunnally, J., 99, 142

O’Connell, D. L., 621, 625
O’Gorman, T. W., 281
O’Neill, R. T., 80, 84
Oakford, R. V., 93, 94
Odoroff, C. L., 254, 282, 589, 593
O’Hara-Hines, R. J., 216, 233
Olkin, I., 175, 184, 265, 280, 282
Olson, D. R., 348, 372
Onstad, S., 596
Owen, D. B., 57, 63

Paik, M. C., 154, 158, 409, 416, 431, 435, 436,
438, 439, 456, 470, 471, 473, 489, 490,
520, 533, 559

Palmer, C. E., 153, 158
Palmgren, J., 589, 595
Panageas, K. S., 461, 488
Parides, M. K., 183, 220, 233
Park, T., 470, 489
Parker, R. A., 394, 396, 405
Parzen, M., 435, 438
Pasternack, B. S., 259, 282
Patel, N. R., 245, 279, 280, 281, 282, 420, 438
Patterson, H. D., 106, 141
Paul, S. R., 216, 230, 233
Pavate, M. V., 58, 63
Peacock, P. B., 124, 142
Pearl, R., 9, 16
Pearson, E. S., 43, 49, 57, 58, 63, 649
Pearson, K., 53, 63
Peduzzi, P., 166, 185
Pepe, M. S., 519, 520, 533, 559, 589, 595, 597
Peterson, H., 535, 558
Peto, J., 185
Peto, R., 166, 185, 269, 282
Pfeffermann, D., 589, 595
Phillips, A., 251, 282, 461, 489
Piantadosi, S., 159, 185, 209, 231, 413, 438
Pickles, A., 159, 183
Pike, M. C., 72, 83, 84, 185, 385, 405, 408, 438



AUTHOR INDEX734

Piland, N. F., 352, 372
Pilliner, A. E. G., 604, 625
Pirro, M., 490
Pitman, J., 343, 371
Plackett, R. L., 58, 63, 371
Pocock, S. J., 93, 94, 159, 176, 185
Pope, H. G., 597
Posner, K. L., 618, 625
Pregibon, D., 421, 439
Prentice, R. L., 408, 409, 411,439, 484, 489,

490, 579, 581, 596
Press, S. J., 212, 233, 572, 596
Prihoda, T. J., 623
Proctor, C. H., 566, 592
Pugh, T. F., 144, 158
Pyke, R., 409, 411, 439

Qaqish, B., 470, 489, 490
Qin, J., 532, 558

Radhakrishna, S., 250, 282
Rand Corporation, 94
Rao, J. N. K., 442, 444, 461, 489
Rao, P. V., 618, 626
Raz, J., 281
Reade-Christopher, S. J., 579, 596
Reed, D. M., 157
Reilly, M., 519. 533, 559
Reinfurt, D. W., 387, 404
Reis, I. M., 245, 282
Remington, R. D., 69, 85
Reynolds, S., 577, 593
Rimmer, J., 154, 158
Riskind, J. H., 577, 596
Ritov, Y., 559
Robbins, H., 61, 63, 176, 178, 180, 183, 184,

185, 209, 212, 218, 231, 232, 233, 583, 596
Roberts, R. S., 10, 16
Robins, E., 565, 593, 596
Robins, J., 251, 282, 461, 471, 490, 517, 531,

537, 541, 547, 559, 560, 579, 594
Rockhill, B., 128, 142
Rodriguez, E., 624
Rogan, W. J., 6, 16
Rogot, E., 84, 566, 596, 602, 603, 625
Rohan, T. E., 589, 593
Rolnitzky, L. M., 183, 471
Rosenbaum, J., 571, 596
Rosenbaum, P. R., 256, 282, 283, 399, 405
Rosner, B., 235, 282, 489
Roth, H. P., 159, 185
Rotnitzky, A., 469, 490, 531, 537, 541, 559,

560
Roundsaville, B., 597

Roy, S. N., 314, 339
Royall, R. M., 159, 185
Rubin, D. B., 231, 256, 282, 283, 399, 403,

405, 493, 514, 515, 526, 533, 558, 559, 560
Rubin, T., 571, 596
Ruppert, D., 578, 592
Ryan, L. M., 216, 231, 468, 488

Sacco, R. L., 431, 435, 439, 456, 489, 490
Sackett, D. L., 10, 16, 154, 158
Sampson, P. D., 625
Sandifer, M. W., 9, 16
Santner, T. J., 142
Sato, T., 252, 283
Satten, G. A., 80, 84, 435, 439
Savage, L. J., xx®i
Saxen, L., 154, 157´
Schaaf, W. E., 565, 595
Schall, R., 371
Scharfstein D. O., 537, 559, 560
Schenker, N., 515, 560
Scherer, J., 646
Schlesselman, J. J., 153, 158, 183, 256, 283,

394, 395, 396, 405
Schneiderman, M. A., 94
Schnitt, S. J., 438, 439
Schork, M. A., 69, 85
Schouten, H. J. A., 617, 621, 625
Schouten, J. P., 489
Schuster, J. J., 375, 406
Schwartz, D., 177, 186
Scott, A. J., 442, 444, 461, 489
Scott, E. L., 408, 439
Scott, W. A., 604, 625
Seeger, P., 393, 405
Segal, M., 489
Seigel, D. G., 565, 595
Selen, J., 574, 596
Self, S. G., 216, 232, 233, 269, 272, 275, 281,

387, 404
Selvin, S., 202, 233
Senchaudhuri, P., 245, 282
Severini, T. A., 410, 439
Shah, B. V., 5, 16
Shaid, D. J., 439
Shaner, A., 597
Sharpe, L., 140, 231, 279
Shea, S., 439, 490
Sheehe, P. R., 239, 262, 283
Sheps, M. C., 67, 85, 95, 123, 142, 158, 162,

186
Shimkin, M. B., 140
Shneyer, L., 520, 558
Shoukri, M. M., 618. 619, 625



AUTHOR INDEX 735

Shrout, P. E., 287, 308, 338, 339
Siegmund, D. O., 160, 180, 184, 186, 212, 232
Siems, D. M., 439
Simmons, W. R., 5, 16
Simon, R. H., 93, 94, 176, 183, 185, 186
Simon, R. J., 140, 231
Skinner, C., 589, 595
Skre, I., 577, 596
Slottje, D. J., 618, 624
Smeeton, N. C., 622, 625
Smith, H., 184
Smith, H. L., 352, 372
Smith, J. A., 394, 403
Smith, P. G., 72, 83, 84, 185, 408, 439
Smith, R., 159, 186
Smoking and Health, see Advisory Committee
Smyllie, H. C., 602, 603, 623
Sneath, P. H. A., 618, 626
Snell, E. J., 124, 141, 199, 233, 280
Snell, M. K., 142, 235, 335, 338
Sobel, M., 175, 184
Sokal, R. R., 618, 626
Somes, G. W., 393, 403
Sowden, R. R., 308, 338
Spiegelman, D., 586, 589, 596
Spiegelman, M., 637, 647
Spitzer, R. L., 200, 233, 563, 565, 577, 593,

594, 596, 597, 603, 608, 626
Spitzer, W. O., 16
Staniswalis, J. G., 410, 439
Stanley, J. C., 180, 183
Stark, C. R., 632, 637, 642, 643, 647
Starmer, C. F., 334, 338, 381, 404
Steer, R. A., 596
Stefanski, L. A., 578, 589, 592, 596
Stein, Z., 232, 281, 338
Stern, H. S., 231
Stevens, W. L., 114, 143
Stevenson, J. M., 348, 372
Stewart, S. L., 589, 597
Stewart, W. F., 428, 438
Still, H. A., 43, 49
Stiratelli, R., 476, 490
Stram, D. O., 482, 490
Strawderman, R. L., 246, 283
Stuart, A., 375, 381, 406
Suissa, S., 375, 406
Susser M., 232, 281, 338, 489
Swallen, K. C., 597
Swift, M. B., 631, 647
Symons, M. J., 647

Tan, W. Y., 209, 231
Tang, M.-L., 280

Tarone, R. E., 252, 283
Tate, M. W., 392, 393, 406
Tatemichi, T. K., 473, 490
Taves, D. R., 176, 186
Taylor, J. W., 151, 158
Tenenbein, A., 571, 572, 589, 597
Thall, P. F., 348, 372
Thomas, D. G., 119, 141, 143
Thompson, D. J., 501, 558
Tiao, G. C., 211, 230
Tibshirani, R. J., 348, 371, 410, 438
Torgersen, S., 596
Trivedi, P. K., 363, 371
Trochim, W. M. K., 180, 183, 186
Truog, R. D., 177, 186
Tsiatis, A. A., 307, 339
Tu, Z. N., 617, 625
Turnbull, B., 160, 184
Tytun, A., 73, 76, 84

Uebersax, J. S., 619, 621, 626
Ulm, K., 631, 647
Underwood, R. E., 375, 403
Ury, H. K., 72, 73, 76, 84, 85, 387, 406

Vandenbroucke, J. P., 631, 647
Van der Vaart, A. W., 519, 520, 559
Vanzon, D. J., 421, 439
Velez-Borras, J., 624
Ventura, J., 577, 597
Verducci, J. S., 619, 621, 626
Vessey, M. P., 154, 157
Vollset, S. E., 43, 49, 245, 280, 283
Vonesh, E. F., 348, 372

Wacholder, S., 154, 158, 436, 439, 589, 597
Wackerley, D. D., 618, 626
Waller, L. A., 216, 233
Walter, S. D., 75, 85, 128, 143, 151, 152, 158,

162, 186, 579, 594
Wang, C.-Y., 409, 438, 597
Wang, N., 589, 597
Wang, N. S., 517, 559
Wang, S., 409, 438
Wang, Y.-G., 519, 531, 533, 560
Warburton, D., 231, 232, 281, 338
Ward, R. J., 625
Ware, J. H., 177, 183, 186, 476, 490
Warner, S. L., 5, 16
Watson, D., 577, 593
Wedderburn, R. W. M., 360, 372, 560
Wei, L. J., 482, 488, 490
Weil, C. S., 444, 490
Weinberg, C. R., 128, 142, 154, 158, 436, 439



AUTHOR INDEX736

Weinstein, G. S., 167, 168, 186
Weinstein, M. C., 175, 186
Wells, M. T., 246, 283
West, D. W., 597
White, C., 10, 16, 408, 438
White, S. J., 176, 184
Whitehead, J., 160, 186
Whittemore, A. S., 216, 233, 348, 372, 481,

487, 488
Wieand, S., 413, 438
Williams, G. W., 444, 490, 618, 626
Williams, J. B., 577, 594, 596, 597
Wilson, E. B., 43, 49
Wilson, J. R., 216, 233
Wilson, M., 565, 597
Wing, J. K., 577, 597
Winkelstein, W., 200, 232
Winokur, G., 593
Winsor, C. P., 106, 143
Wittchen, H. U., 597
Wittes, J., 185
Wood, C. L., 195, 233
Woodruff, R.A., 593
Woolf, B., 105, 143
Woolsey, T. D., 630, 638, 647
Woolson, R. F., 281

Worcester, J., 398, 406
Wu, M. C., 535, 560
Wynder, E. L., 140, 154, 158, 200, 233

Xie, F., 471, 490

Yano, K., 157
Yates, F., 57, 63, 192, 233, 256, 283
Yerushalmy, J., 5, 6, 16, 153, 158, 565, 597,

639, 647
Ying, Z., 246, 281
Youkeles, L. H., 398, 406
Yule, G. U., 101, 143, 636, 639, 647

Zeger, S. L., 399, 404, 416, 439, 463, 464, 465,
467, 470, 476, 482, 483, 488, 489, 490

Zelen, M., 90, 94, 176, 177, 186, 244, 283, 589,
597

Zelterman, D., 216, 233, 269, 283, 387, 406
Zhang, C.-H., 180, 185, 212, 218, 233
Zhang, J., 461, 490
Zhao, L. P., 470, 471, 484, 488, 489, 490, 519,

530, 531, 558, 559, 560
Ziegler, A., 470, 471, 490
Zubin, J., 50, 63, 563, 597
Zweifel, J. R., 102, 141



Subject Index

737



SUBJECT INDEX738

Ž .Association Continued
need for control group in estimating, 153
in prospective study, 144�147
in retrospective study, 124, 147�154
in selected samples, 9
test for significance of, see Chi squared test;

Critical ratio test; Normal curve test
between two explanatory variables, 632�634,

640
Asymptotic

equivalence, 302
relative efficiency, 487, 589, 621

Attenuation bias, see Errors of
misclassification, underadjustment bias

Attributable risk
confidence limits, 132
from cross-sectional study, 125�129, 138
definition of attributable risk among

exposed, 126
definition of population

attributable risk fraction, 125�126
etiologic fraction, 126
with misclassification error, 579
and prevalence of exposure, 126
from retrospective study, 151�153, 156
standard error for, 128, 132, 152

Bartholomew’s test for order, 195�198
Bartlett’s correction for bias, 246
Bayes’ theorem, 3, 5, 8, 12, 127, 290, 410, 415,

418, 437, 527, 551, 556, 588, 592. See also
Empirical Bayes

Bayesian inference
empirical, see Empirical Bayes
subjective, 24, 211

Berkson’s fallacy, 9�13, 14
Berkson’s risk difference, 123, 131
Bias. See also Confounding factors

in assignment to groups, 561
in association, 9�13, 153�154, 567
from as-treated analysis, 166
Berkson’s, 153
from carry-over effect, 165
in clinical trial, 89�93, 165
in complete record analysis, see Missing data
from completers-only or compliers-only

analysis, 166
from confounding, 166
control of, 86, 89�93, 153�154, 255�256,

399
experimental, 575�578
probabilistic, 573�574
statistical, 571�573

correction
Bartlett’s, 246
in ecologic analysis with misclassification,

579
Haldane’s 103, 136�137, 266
in logistic regression with

misclassification, 589
in missing data, see Missing data, bias

correction
in proportions with misclassification error,

571�573, 590�591
in odds ratio with matched pairs, 377, 436
variance estimation in odds ratio

corrected for misclassification error, 579
in estimated difference between rates,

567�569
in estimated odds ratio, 569�571
evasive answer, 15
from historical data, 153, 175, 179
overcompensation for, 50, 566
in prospective analysis of retrospective

studies with matched pairs, 411�416
in prospective study, 153
from recall, 153
in retrospective study, 153�154
selection, 9, 14, 154

in matched samples, 435�436
sources of, 9, 153�154, 399, 410, 563�565,

575, 577�578, 582�586
survivor effect, 168
underadjustment, 582�586

Biased coin randomization, 93�94, 176
Bias reduction

from as-randomized or intent-to-treat
analysis, 165�168

from carry-over effect, 165
by double sampling scheme, 586�589
in log odds estimators, 103, 106, 136
by matching, 175
by minimization, 176
with misclassification, 579, 589
in retrospective studies, 154
by stratification, 176

Binary outcome variable, 284, 302
Binomial

coefficient, 18
distribution, see Distributions
homogeneity tests, see Homogeneity
variation, 210

Bioassay model, 286, 292
Blind evaluation, 90, 92, 165, 575, 577�578
Blindness, 83, 139
Breathlessness, see Respiratory disease
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Cancer
breast, 178, 286, 566, 590�591
endometrial, 570, 573
general, 200
leukemia, 344
lung, 104, 123, 189, 255, 297, 346, 349, 370,

566, 579, 590�591
ovarian, 156
prostate, 179

Canonical link, 315
Carry-over effect in crossover study, 165
Case-control study, see Retrospective study
Case rate, 7, 13
Case weights, see Missing data, logistic

regression with MAR covariates
Causal inference, 256
Central limit theorem, 26, 270, 292, 343, 464
Changes in study conditions over time, 90
Chi squared distribution, see Distributions
Chi squared statistic

as basis for measure of association, 98�100
continuity correction in, see Continuity

correction
for goodness of fit, see Goodness of fit

statistics
equivalence of formulas for, 53, 62, 188�189,

199, 227
as function of total sample size, 98
Mantel-Haenszel, 253, 460. See also

Mantel-Haenszel procedure
as measure of association, 97�100
partitioning of, see Partitioning of chi

squared
Pearson’s, 53, 343
for random proportions, 214
for slope with quantitatively ordered

matched samples, 393
Chi squared test

for average degree of association, 236�237,
248

Cochran’s pooled, 253, 257
for comparing independent samples, 189,

196
for comparing independent values of kappa,

608
for comparing proportions in 2�2�2

tables with clustered data, 452, 453
for comparing two frequency distributions

from independent samples, 199
from matched pairs, 381�384
with m proportions, 188
from 2�2�2 tables with clustered data,

455
effects of misclassification errors on, 566

for fourfold table, 50, 53, 55
for general contingency table, 95, 188�189
for goodness of fit, see Goodness of fit

statistics
for homogeneity of association, 236�237,

247, 252
in meta-analysis, 266

for homogeneity of kappa, 608
or hypothesized value of odds ratio, 113,

115
for linearity, 194�195
on logarithm of odds ratio, 115, 240
Mantel-Haenszel’s, see Mantel-Haenszel

procedure
for matched pairs, see McNemar’s test
for matched samples, see Cochran’s Q test
for method I sampling, 53, 97
for method II sampling, 53�55
for multiple controls per case, 385�386, 400
one-tailed, 58�60
for ordered samples, see Bartholomew’s test

for order
overall, for m proportions, 194
power of, 145, 146, 149, 151, 198
significance level for, 50
for slope of line, 194�195
with small frequencies, 95, 106
suggested by data, 190, 276, 384
on table of total frequencies, 262
theory of, for comparing independent

measures, 235�238
for total association, 236
as two-tailed test, 58

Clinical trial
adaptive designs for, 94, 176�177
alternatives to simple randomization in,

175�180
as randomized analysis, see Clinical trial,

intent-to-treat
assured allocation design, 178�180
as treated analysis, 166
blinding in, 92
carry-over effect in crossover design, 165
clinical equipoise in, 160
comparing two independent, 180�181
completers-only analysis, 166
complexities of conducting, 33
compliers-only analysis, 166
crossover design for, 163�165, 181
crossovers in, 165

effect on power, 166
difference between independent proportions

in, 55, 161, 180�181
double blind, 575
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Ž .Clinical trial Continued
dropouts in, 69, 165
efficacy design, 182
equivalence design, 168�174, 181
ethical issues in, 59, 159, 169
as example of method III sampling, 55
factors affecting power in, 165�175
group randomized, 440
group sequential methods in, 160
inferiority design, 171
informed consent in, 177�178
intent-to-treat principle, 165�168

avoiding bias, 165�166
effect of crossovers on power, 166
in Zelen’s randomized consent design, 177

interim monitoring in, 160, 168
layout of data from, 161, 164
length of, 165
masking in, see Clinical trials, blinding
matching in, 90, 93, 163, 373, 377�380,

383�384, 388, 398
monitoring committees for, 160
multicenter, 89
noninferiority design, 168�174, 181
phases I, II, III, 17, 30, 44
placebo use in, 162, 169, 179
pragmatic, 177
prerandomization designs, 178
problems in executing, 159�160, 165�168,

175�180
randomization in, 86, 89�94, 175�176, 388
regression discontinuity design, 180
relative difference in, 162�163, 181, 379�380
reluctance to participate in, 176�180
risk-based allocation design, 178�180
sample size in, 66, 69, 74, 81�82, 159
selection design, 174�175
sequential methods in, 160
serial entry of patients in, 176
surrogate outcome in, 579
simple comparative trial, 161�163
specifying important difference in, 65�69
stratification in, 93, 176
Zelen’s design for, 177�178

Clumped data, 365
Clustered data, 359. See also Correlated binary

data
Clustering

interrater agreement as problem of, 618�622
kappa as measure of, 617�618

Cochran’s method for pooling data, 253, 257
Cochran’s Q test, 389�394

as a conditional score test, 426

as a generalized Mantel-Haenszel chi
squared test, 389, 401�402

partitioning of, 390
Cohort study, see Prospective study
Collapsible tables, 263
Combining evidence from fourfold tables,

234�283
Combining log odds ratios, 238�241
Comparative mortality figure, 639
Comparative mortality rate, 639
Comparative studies, see Method II sampling
Comparison of procedures for combining odds

ratios, 254�255
Comparisons suggested by data, 190, 276, 382,

384
Complete record analysis, see Missing data
Conditional

distributions, see Distributions
expected cell frequencies, 109�111,

113�116, 120
with missing data, 498

independence, 475
leading to marginal correlation, 476

likelihood, 228. See also Likelihood function;
Logistic regression

for random effects models, 477�479
logistic regression, see Logistic regression
maximum likelihood estimate, see Maximum

likelihood estimation
probability

definition of, 2�3, 11
in evaluating screening test, 6
with two conditions, 11

resampling, 589
score statistics, variance of, 229
score test, 208, 229, 426. See also Matched

sample regression
Conditioning, 107, 128
Confidence interval

for attributable risk
from cross-sectional study, 128�129
from retrospective study, 151�152
among exposed, 132

for common log odds ratio, 241, 252
for common odds ratio, 241, 243, 249�250,

252
for difference

between independent proportions, 60,
161�162

between proportions with matching, 378,
380

for general measures of association,
129�135, 238
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for kappa, 607, 608, 622
for logarithm of odds ratio, 116�119, 241
for logit-transformed probability, 295
for marginal mean proportion, 214
for odds ratio

approximate methods, 116�119
from cross-sectional study, 116�119,

138
exact methods, 111�112
with matching, 377
from prospective study, 147
from retrospective study, 150

for phi coefficient, 119�122, 133�135
for a Poisson mean

approximate, 343
exact, 342

for relative difference
in cross-sectional studies, 119, 133
between independent proportions, 163
between proportions with matching, 379
from retrospective study, 152

for relative risk, 74�75, 79, 119�122, 132
for single proportion, 22�26, 28�29, 34�36,

43�44, 46, 48
for standardized rate, 631�632
theoretical basis of

approximate, 22�26, 28�29
coverage property, 24, 46
exact, 22
methods to be avoided, 119�122
test-based, 23, 37�43

Confidence region, 38
Confounding factors. See also Bias

controlled by matching, 373, 255�256,
398�399

controlled by stratification, 255�256, 399
effect on, and adjustment of, attributable

risk, 127
example of, 255�256, 373
if left uncontrolled, 255
potential, 263�265, 278

Consistency, see Estimators
Contingency table, multiway, 288
Continuity correction, 27, 57, 116, 138, 375,

395
accuracy of, 72�73
in chi squared statistic, 50, 53�54, 55�58,

190, 239
critique of, 58
logically consistent use of, 72�73
in McNemar’s test, 375, 395
sample size with, 32�34, 43, 72, 76, 81
sample size without, 32, 72, 76
not in chi squared statistic, 385�386, 400

Continuous distribution
as approximation to discrete distribution, 57
dichotomizing, 198, 578
underlying ordered outcome variable,

198�200
Control group

concurrent, 179
in determining relative difference, 123
for estimating association, 153�154, 575�578
historical, 75, 179
matched with cases, 255�256, 373, 374, 384
more than one, 154, 387
sources of, 153�154

Controlled trial, see Clinical trial
Convolution, 242
Cook’s distance, 422
Cornfield�Gart procedure, 246�250, 255
Coronary artery disease, 167
Correction

for bias, see Bias correction
continuity, see Continuity correction
for misclassification, see Misclassification

Correlated binary data
cluster sampling, 440, 441, 444
conditional independence plus

heterogeneity yields marginal
correlation, 475�476, 486

conditioning on previous outcomes,
482�484

design considerations, 448
effect of clustering on inference, 441
family studies, 441, 476
generalized estimating equations for, 461,

462�475
for multivariate binary data, 463

inference for the difference between two
proportions, 444�448

when exposure is constant within clusters,
444�447, 486

when exposure varies within clusters,
447�448

inference for Mantel-Haenszel odds ratio,
460�462

inference for a single proportion, 441�444
inference for 2�2�2 tables, 448

comparing joint distributions for subject-
specific changes, 454�455, 458

comparing proportions between exposures
at each time point, 450, 456

comparing proportions between time
points within each exposure group, 452,
457

dependent tables, 450�458
independent rows and tables, 458�460
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Ž .Correlation binary data Continued
layout of data for, see Layout of data,

from clustered data
odds ratio hypotheses in, 453�454
overdispersed cell counts with

independent rows and tables, 458�460
polytomous logistic regression model for,

455
subject-specific changes, 454�455, 458

intraclass correlation coefficient, see
Intraclass correlation coefficient

multivariate binary
data, see Correlated binary data,

generalized estimating equations
distributions, 484�485

overdispersion in, 442
power considerations, 448�449
random effects model for, 475�480, 645

conditional likelihood, 477�479
marginal likelihood, 477
subject-specific, 476

repeated measurements, 440
sample size considerations, 448�449
summarizing by

individual, 480, 481
time, 481, 482

variance inflation factor, see Variance
Correlation coefficient, 99

intraclass, see Intraclass correlation
coefficient

Coverage probability, 24, 41, 46
Critical ratio test

for average degree of association, 237
for comparing two clinical trials, 180�181
for comparing two independent proportions,

54, 61, 76, 161
with clustered data, 445

continuity correction in, 27, 53, 161
for equivalence trial, 172
for kappa against hypothesized value, 606,

610
for kappa against zero, 605, 610, 613, 616,

622
for logistic regression coefficient, 221
for method II sampling, 54
for method III sampling, 161
for noninferiority trial, 170
one-tailed, 59, 77, 80, 82
power of, 58
in ridit analysis, 203�204
sample size for, 69�73, 75�77, 77�78
for single proportion, 27
two-tailed, 58�60
Wald test, 302

Critical values

of Bartholomew’s test, 693�694
of the chi squared distribution, 650�651
of the F distribution, 652�659
of the normal distribution, 649

Crossover design, 163�165, 181
Crossovers in clinical trial, see Clinical trial
Cross-product ratio, see Odds ratio
Cross-sectional study. See also Method I

sampling
chi squared test for, 50, 54
compared to prospective study, 99, 145, 150,

155�156
compared to retrospective study, 99,

148�151, 155�156
description of, 51�53, 95
layout of data for, 52

Crude rate, see Overall rate

Delete-one statistics, see Jackknife technique
Delta method, 36, 46, 129�135, 295, 335, 337
Delusional thinking, 575
Depression, 67, 74, 575
Design alternative, 167
Detectable effect size, 34, 65, 79
Deviance

in logistic regression, 301
in Poisson regression, 352

Diagnostic errors, 136, 562�565, 575, 589�590
Diagnostic statistics for matched samples,

421�422, 433�434
Diagnostic test, 5, 8�9, 13�14, 388. See also

Screening test
Dichotomy, see Variable
Difference between proportions, in clinical

trial, 55, 161, 180�181
with clustered data, 445�447, 447�448
comparing two independent, 60, 161,

180�181
confidence interval for

independent samples, 60, 162
matched pairs, 378�380

corrected for misclassification error,
590�591

effect of misclassification errors on,
567�568, 590

errors in inference about, 64�65
important magnitude of, 65�69
lack of invariance of, 67, 124
layout of data for, 54
in matched pairs, 374�375, 378
as measure of association, 122�125
as measure of treatment effect, 161
with multiple controls per case, 384�385
one-tailed test of, 59�60, 80, 81
sample size for detecting, 69�73, 75�77
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small in magnitude, 64, 65
standard error

from independent samples, 60, 70, 161
from matched pairs, 375, 378�379
with several matched controls per case,

385
test for significance

with clustered data, 445
from independent samples, 54�55, 161
with several matched controls per case,

385
two-tailed test of, 59�60

Direct standardization of rates
comparison with indirect standardization,

636, 637
with consistent differences between specific

rates, 637
description and illustration of, 636�638
with inconsistent differences between

specific rates, 638, 645�646
standard population in, 636�638, 645�646
for two factors, 640�641

Discordance probability, 395, 396
Discordant pairs, 376, 395
Discriminant problem, 290�292
Distributions

asymmetrical, 37
Bernoulli, see Distributions, binary
beta, 222, 223, 225
beta-binomial, 222, 442, 515
binary, 464

multivariate, 484�485, 487, 618�622
binomial, 17�24, 350, 394, 700
chi squared, 50, 54, 115, 248, 252, 292, 303,

305, 335, 341�342, 369, 381, 389, 452, 453,
455, 460

conditional, 56, 244, 344, 369
discrete, 37
exponential family of, see Exponential family
F, 25
gamma, 292, 335, 350, 358, 369, 645
hypergeometric

central, 58, 134
defined, 56�57
Fisher-Irwin exact, 51, 56
mean and variance of, 109�111, 113�114,

138
multiple, 228
noncentral, 106�111, 242, 245, 246,

269�270, 272�273
noncentral multiple, 228, 323�324

log normal, 271
multinomial, 130, 137, 205, 344, 367�369.

See also Multinomial response model;
Multinomial sampling

negative binomial, 358�359
normal

as alternative to logistic model, 106, 335
bivariate, 336
as an exponential family, 350
multivariate, 130, 360, 420, 464
as result of central limit theorem, 26
univariate, 26

Poisson, 335, 340�345, 350, 358, 366�369,
631, 644�645

posterior, 223, 230, 514
prior, 211
skewness of, 343
uniform, 88, 222

Dominating measure, see Exponential family
of distributions

Downs syndrome, see Trisomy 21
Dropouts

and length of trial, 69, 165
sample size to anticipate, 69

Effect modifier, 298
Efficacy trial design, see Clinical trial
Efficiency

of estimators, see Estimators
of matching, 398

E-M algorithm, see Expectation-maximization
algorithm

Empirical Bayes, 179�180, 211, 272
general, 211, 212, 218�221

identity, 218, 225, 273
parametric, 211, 222�226

Equal allocation method, Equal-tail method,
see P-values, exact two-sided

Equal sample sizes
deliberate departures from, 75, 82
in design of study, 69
for ordered samples, 197
and sensitivity of statistical comparisons, 89

Equivalence trial, see Clinical trial
Equivalent average death rate, 639
Errors of inference, 19�20, 64�65. See also

Power; Significance level; Type I error;
Type II error

Errors of misclassification
adjustment for, with double sampling,

586�589
algebra of, 565�571
control and correction for bias

experimental, 575�578
probabilistic, 573�574
statistical, 571�573, 590�591

differential, 568
double sampling scheme, 572, 586�589
effects of, 561�565, 565�569
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Ž .Errors of misclassification Continued
estimation of, 571�573
experimental control of, 575�578
interrater reliability to reduce, 577
in logistic regression. See also Logistic

regression, with misclassification
in covariate, 582�586
in exposure, 579
in outcome, 581

nondifferential, 568, 583
power loss and bias greater in matched

studies, 579
random mismeasurement model, 580, 583
similarity to missing data problems, 586
sources of, 562, 564, 576�578, 582�586
statistical control of, 571�573
in surrogate variable, 578, 579, 586
two-stage sampling, see Errors in

misclassification, double sampling
scheme. See also Logistic regression,
with misclassification

ubiquity of, 562, 565
underadjustment bias, 569, 582�586
unreliability due to, see Unreliability
validation sample, 586, 589
in variables being studied, 569�571, 573�574

Estimating
equation, 251, 460, 462�463, 505, 506, 508,

519, 528, 530, 532, 589, 619�621
function, 360, 462

Estimators
biased, 224
consistency of, 251, 341, 402, 698
efficiency of, 341, 699

asymptotic relative, 487
maximum likelihood, see Maximum

likelihood estimation
minimum variance, 213, 341
point, 27
ratio unbiased, 215
shrinkage, 223
skewed, 343
unbiased, 213, 341, 582
weighted least squares, 193, 334

Ethical issues
in clinical trials, 59, 159

clinical equipoise, 160
placebo controls, 162, 169

in eliciting information, 575
in one-tailed versus two-tailed test, 59

Etiologic
fraction, see Attributable risk
research, 124, 127, 166, 290, 409

Evidence, weighing of, 20, 306. See also
Likelihood ratio

Exact inference
for common odds ratio, 241�246

confidence intervals, 243
p-values, 243

for homogeneity of odds ratios, 244
McNemar’s test, 376, 394
for a Poisson mean, 341�342
for the ratio of two Poisson means, 344�345
for a single odds ratio

confidence intervals, 111�112
hypothesis tests, 106�111
p-values, 107�109

for a single proportion, 18, 41
confidence intervals, test-based, 22�23
hypothesis tests, 18, 56
p-values, 37�43

for two proportions, 51
Excess risk, 123. See also Relative difference
Expanded dataset, see Missing data, logistic

regression with MAR covariates
Ž .Expectation-maximization E-M algorithm,

525�527
Expected cell frequency

in chi squared test, 55�56
in comparing independent samples, 54, 62
conditional, 109�111, 113�116, 120
for hypothesized value of odds ratio,

109�111, 113�114
minimum for analyzing single proportion,

26
minimum for chi squared test, 56
minimum for Mantel-Haenszel test, 254
in testing for independence, 55�56, 62

Expected value
definition, 1
posterior, 223

Expit transform, 285
Exponential family of distributions, 246,

314�315, 323, 484, 697, 701
canonical, 701
dominating measure, 314, 323
natural parameters, 309, 314, 318, 323, 337,

701, 702
normalizing constant, 314, 484
quadratic, for multivariate binary data, 484
sufficient statistics, 314, 318, 319, 323, 337,

350
minimal, 315

Extended Mantel-Haenszel statistic, see
Mantel-Haenszel method

Factor analysis, using phi coefficient, 99
Factorial moment generating function, 366
False positivernegative rate, 6, 13. See also

Predictive value
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Family studies, see Correlated binary data
F distribution, 25
Finite population, 229
Fisher information, see Information
Fisher-Irwin test, 51, 56, 107, 139
Fixed effects, 210
Follow up study, see Prospective study
Fourfold table. See also Logistic regression

in case of independence, 54�57
with clustered data, 444�449
combining data from more than one,

234�283
‘‘exact’’ analysis of, 55�57, 106�112
layout of, for clustered data, 445, 447, 450,

454, 458
for matched pairs, 374, 378
for method I sampling, 52, 97, 98
for method II sampling, 54
for retrospective study, 54, 148

model example, 51
odds ratio regression model, 243
significance test for, 50�51

Frequency, see Relative frequency

General contingency table
association in, 95
chi squared test for, 95, 188
identifying sources of significance in,

189�192
small sample sizes in, 95

General empirical Bayes, see Empirical Bayes
Generalized estimating equations

asymptotic normality of estimates from, 464,
483, 485

cautions using, 471
computation for, 470
consistency of estimates from, 463, 464
efficiency of, 470, 487
estimating equation, 462
estimating function, 462

versus score function, 464
extensions, 470
inference with

likelihood type statistics, 469
score type statistics, 468
Wald type statistics, 467

illustrated, 471
for Mantel-Haenszel odds ratio, 460
marginal probabilities in, 462
missing data in, 471, 473. See also Missing

data
for multivariate binary data, 463�471
sandwich variance estimate, 465, 474
unbiasedness of, 463

working correlation matrix, 464
autoregressive form, 466, 474
empirical, 467, 475
estimation of, 465�467
intraclass correlation form, 466, 474

Generalized Mantel-Haenszel test, see
Mantel-Haenszel method

Geometric mean, 316
Goodman-Kruskal index of agreement, 601
Goodness of fit statistics

asymptotic distribution of, 302, 304�305, 337
asymptotic equivalence of, 302, 304�305, 337
for binomial data, 219�221, 324
chi squared, for frequency data, 206,

220�221
comparison of, 303, 354�357
likelihood ratio, 301, 304�307, 312, 349, 354,

644
Pearson’s chi squared for Poisson variables,

343
for Poisson data, 349
scaled Pearson statistic, 344, 357
score test statistic, 302, 644. See also Score

test, conditional
Wald test statistic, 302, 354�356, 644

Gradient
in proportions, 192
vector, 131, 139

Grouped data, 304, 308, 330, 334
Grouping methods, 307, 334
Growth models, 478�479

Haldane’s correction for bias, 103, 136�137,
266

Harmonic mean, 79, 82, 613
Heart disease, 1
Hemorrhage, intracerebral, 30
Heterogeneity

in meta-analysis, 266
of odds ratios, 245, 269, 274
of proportions, 209�226

test for in large sparse case, 219
Historical data, 153, 175, 179
Homogeneity

of association, need to examine, 237. See
also Association, homogeneity of

of binomial proportions, 188, 210, 325
in large sparse case, 218�221, 222�226

of kappa, 608, 621,
of odds ratios, 236�237, 252, 302

in large sparse case, 269�276
Hospitalized samples

association estimated from, 9�13
bias in studying, 11�13
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Ž .Hospitalized samples Continued
control for bias in, 154
obtaining data on, 575�578

Hypergeometric distribution, see Distributions
Hyperparameters, 211
Hypertension, 491

Incomplete adjustment, in indirect
standardization, 635. See also Errors of
misclassification, underadjustment bias

Identifying sources of significance
for general contingency table, 190
with independent samples, 190�192
with many fourfold tables, 276
with matched pairs, 382�383, 400
with several matched samples, 389�392

Independence
and Bayes’ theorem, 12
definition of, 2�3, 13, 52
expected cell frequencies under, 55�56, 62
in population, not in selected sample, 9�13
and proportions in fourfold table, 52�53, 58
in selected sample, not in population, 14�15
test for, 54
value of odds ratio under, 102

Independent samples
chi squared test for, 190, 196, 198
comparisons among, 189�192
layout of data from, 54, 188
ordered, see Ordered samples

Indirect standardization of rates
comparison with direct standardization, 636
deficiencies in, 634�636, 642�643
description of, 632�634
illustrated, 632�633
mathematical model underlying, 630�632,

644�645
for two factors, 640�644

Inference, mode of
Bayesian, 24
degrees of belief, 24
empirical Bayes, 218, 220, 225, 272�276
frequentist, 19, 24
subjective, 24

Inferiority trial design, see Clinical trial
Inflation of variance, see Variance
Information

analysis of information, 304, 306
basic theory, 697, 699, 701
Fisher, 333, 697, 699, 701

equivalence of observed and expected in
canonical exponential families, 701, 702

expected, 333, 351, 360, 697, 699, 701, 702

observed, 333, 346, 351, 697, 699, 701, 702
inverse as asymptotic variance of maximum

likelihood estimate, 699, 700, 702
as variance of score statistic, 697

Informed consent, 177, 178
Injuries, 198�205
Interaction. See also Effect modifier

detection of, 399
in logistic regression models, 104, 296�300

first order, 298
higher order, 298

in Poisson regression models, 349, 355, 357,
369

Interim analysis, 168
Interview

control of errors in, 575�579
errors in, 561, 566, 571, 575�587
measuring error in, see Kappa
structure in, 575�578

Intraclass correlation coefficient, 213, 441,
442�443, 448, 451, 604, 609, 611, 619

effect on sample size and power in clustered
data, 448�449

Invariance of odds ratio, see Odds ratio,
invariance

Inverse logit transformation, 285, 295
Iterative proportional fitting algorithm, 335

Jackknife technique, 461, 509�510, 512, 517,
526, 529, 530, 547, 617

Jensen’s inequality, 219, 224, 229, 274

Kappa
as chance-corrected measure of agreement,

603, 605
combined estimate of common value, 607
confidence interval for, 607, 608, 622
covariate adjustment for, 621
for dichotomous variable, 603, 611�614
estimating equations for, 619�621
homogeneity test for, 608, 621
independent estimates of, 607, 622
interpretation also as measure of

concordance, clustering, similarity,
617�618

interpreting magnitude of, 604, 609
as intraclass correlation coefficient, 604, 609,

611
latent-class model for, 621
as measure of agreement in multivariate

binary vector, 620�621
mixture model for measure of agreement,

621



SUBJECT INDEX 747

for more than dichotomous variable,
604�607, 608�610, 614�617

range of variation of, 603, 612
ratings per subject

for constant number of, 614�617
for multiple, 610�617
for varying numbers of, 610�614

relation to analysis of variance, 611�612
relative efficiency of Fleiss’ kappa, 621
small sample properties of, 621
standard error, 605, 606, 609, 613, 616, 622
in study of matching, 618
test for significance of, 605, 606, 610, 613,

616
testing hypothesized value of, 606
in unifying indices of agreement, 603
weighted, 608�610

Kronecker product, 331�332, 338

Lady tasting tea, 244, 277
Large sparse case, 210, 251, 253, 269�276
Latent-class model, for kappa, 621
Layout of data

from clinical trial, 161, 164
from clustered data

for joint distribution in 2�2�2 tables,
454

for marginal proportions in 2�2�2
tables, 450

for 2�2�2 tables collapsed over time,
458

for two proportions, 445
from independent samples, 188
from matched pairs, 374, 378, 381
from matched samples, 388
from method I sampling, 52, 97
from method II sampling, 54, 145, 148
for missing data

for data with observation indicator, 494,
496, 540

for fourfold table, 498
for pooled data obtained by summing

fourfold tables, 510
for several fourfold tables, 505

for more than dichotomous outcome, 199
for multiple controls per case, 385
from prospective study, 145
from quantitatively ordered samples,

192
from retrospective study, 148

Leukemia, see Cancer
Likelihood equation, 111. See also Likelihood

function

basic theory, 697
for conditional logistic regression, 420
for general logistic regression, 333
for multivariate binary data, 485
for Poisson regression, 351

Likelihood function. See also Likelihood
equation

basic theory, 696, 700, 702
in conditional logistic regression, 418�419,

423, 425�426, 428, 430, 478
with correlated binary data, 462, 469,

477�478, 483
equivalence of, 700
in logistic regression, 300�301, 303, 304�305,

332�333, 337, 702
with missing data, 518, 520�522, 534,

541�542
in Poisson regression, 350�351, 354, 362,

644
Likelihood ratio

log of, 300�303
linearity of, 292, 335, 336
method, see P-values, exact two-sided
in a screening test, 8
as weight of evidence, 20

Likelihood ratio statistic
asymptotic distribution of, 303, 305
asymptotic equivalence to other statistics,

302, 337
compared with Wald test, 303, 354
defined, 40
generalized, 40, 275, 276, 300�303, 312
as goodness of fit statistic, see Goodness of

fit statistics
logarithm of, 40�41
in a screening test, 8
as weight of evidence, 20

Linear trend in proportions
for independent samples, 192�195
for matched samples, 392�393

Link functions
canonical, 315, 317
identity, 349
log, 349, 350, 360
logistic, 463

Livebirth
probabilities, 210, 226
rate, 210

Locomotor disease, 10, 11
Log likelihood function, see Likelihood

function
Log likelihood ratio, see Likelihood ratio
Log-linear models for multi-way contingency

tables, see Logistic regression
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Logarithm of odds ratio
confidence interval for

from independent studies, 241, 252,
265�269

from single study, 116�119
estimation of, 105�106, 111, 267
from independent studies, 238�241, 242�243
under logistic model, 105�106
under normal model, 106
standard error of

for independent studies, 238�239,
251�252, 267

for single study, 105
for testing homogeneity of, 244�245,

252�253, 269�276
for testing hypothesized value of odds ratio,

107�109, 115, 241�243
Logistic model, logit model, see Logistic

regression
Logistic regression, 284�339, 409

alternative to, 106
applications of, 104�105, 235
arrays in, see Logistic regression, general
binary, 288

simple, 292�296
multiple, 296�300

for comparing two frequency distributions,
199

conditional, 243, 246, 408, 409, 416�427,
427�431

illustrated, 431�434. See also Matched
sample regression

description of, 104�105
estimation in

maximum likelihood, see Maximum
likelihood estimation

weighted least squares, 334
general, 325�335

dominating measure array, 327
frequency data array, 326
logistic regression coefficient array,

328
model cell probabilities array, 327
natural parameter array, 327
response design array, 326
sample design array, 326

with grouped data, 304, 307, 334
information matrix, 333
likelihood equations, 333. See also

Likelihood
logit models, 287
logit parameters

adjacent, 205�206, 220�221, 228, 274, 316,
325

canonical link for, 315, 317

conditional, 316, 317
cumulative, 206, 316
logistic link in generalized estimating

equations, 463
logit transformation, 285
log-linear models, 286, 287, 289, 312,

319�323
log odds

parameter, see Logistic regression, logit
parameters

reference, 296
transformation, see Logistic regression,

logit transformation. See also Logarithm
of odds ratio

with misclassification, 578
correcting for bias, 589
in covariate, 582�586. See also Errors in

misclassification, underadjustment bias
double sampling scheme for correction of,

586�589
in exposure, 579�580
model nonlinearities, 580
in outcome, 581
in outcome and exposure, 581�582
sample size issues, 589
score equation in double sampling, 588
variance estimation for bias corrected log

odds ratio, 579
with missing data, see Missing data, logistic

regression
model types

additive, 296
constant odds ratio, 337
interactive, 296�300
nested, 301, 318
saturated, 301, 304, 316, 321, 337
unsaturated, 322

multiple, 290
odds ratio under, 104�105
polytomous, 205, 274�275, 288, 308�313

for double dichotomy, 308, 339, 455
for noncentral hypergeometric
distribution, 323�324
for testing binomial homogeneity in large

sparse case, 325
use in 2�2�2 tables with clustered data,

455
preferable to linear model, 192
proportional odds model

adjacent, 205, 208, 220�221, 228, 316, 317
cumulative, 206, 316, 317

prospective modelling for retrospective
studies, 409, 411, 412
bias when used with matched pairs

designs, 411�416
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for qualitatively ordered outcomes, 205�209
score equation in double sampling, 588
score function for, 332
simple, 290, 701
slope coefficient, 292. See also Correlated

binary data
Longitudinal studies, 442, 478
Long-term trial

dropouts in, 69, 165
sample size for, 69

Mantel-Haenszel method, 250�254
chi squared statistic, 253
with clustered data, 460�462
common odds ratio estimated by, 247, 250,

271, 277, 376, 386, 563
as conditional maximum likelihood

estimate, 376, 415
compared to Cochran’s method, 248, 253
compared to Cornfield-Gart method, 248
compared to other methods, 254�255
compared to pooled chi squared, 399�400
as conditional score test, 306
extended, 209
generalized, 389, 401�402
lower bound for test statistic in 1 : r

matching, 399�400
with matched pairs, 254, 277, 374
with multiple controls per case, 384, 386,

397, 399�400
sample size requirements, 254
for testing significance of association, 248,

253, 277
Mantel-Stark method of standardization,

643�644
Marginal

correlation, 475
due to heterogeneity, 476

frequencies, 56
likelihood, 477, 487
mean proportion, 212�217, 223, 515
models, 475, 476, 479
probabilities, 279, 462, 475, 476
proportions in 2�2�2 tables with

clustered data, 454
variance, 210, 212, 223, 358, 515

Markov model, 483
Matched pairs

in clinical trial, 90, 163, 373, 377�380,
383�384, 398

confidence interval for
difference between proportions with, 378,

380
odds ratio with, 252, 376�377
relative difference with, 379�380

difference between proportions with, 375,
378�379

identifying sources of significance, 382�383,
400

layout of data from, 374, 378, 381
Mantel-Haenszel method, 254, 277, 374
more than dichotomous outcome with,

380�384
with ordered outcome variable, 383�384, 400
randomization with, 90
relative difference with, 379, 380
in retrospective study, 374
significance test for, see McNemar’s test;

Stuart-Maxwell test
standard error

of difference between proportions with,
378, 380

of odds ratio with, 252, 376
of relative difference with, 379�380

Matched sample regression, 407�439
computation for, 420, 422
conditional logistic regression, 408, 416�431

conditional information matrix, 420, 428,
430

conditional likelihood, formal definition,
417�418, 423, 425, 428, 429, 430

conditional maximum likelihood
estimator, 419

conditional score function, 419, 426, 428,
430

indirect modeling with prospective analysis
for matched pairs, bias in, 409�416,
436�437

missing covariates in, 434�435
with multiple risk factors, 407
for one case matched to several controls,

417�421
goodness of fit statistics, 421

with polytomous outcomes, 428�429
for prospective design, 407
for retrospective design, 407
selection bias in, 435�436
unbiased sampling, 410
with varying numbers of cases and controls,

427�428
Matched samples

analysis of, 387�394
Mantel-Haenszel estimator used in, 251
with m distinct types, see Matching
with multiple controls per case, see

Matching
sample size determination, 394�398
tests of odds ratio homogeneity in, 269�276
unbiased sampling in, 410

Matching. See also Matched sample regression
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Ž .Matching Continued
advantages of, 255, 398�399
alternatives to, 255�256, 398
of cases and controls, 373, 374, 384, 387, 407
in clinical trial, 90, 163, 373, 377�380,

383�384, 388, 398, 407
for controlling confounding factors, 154,

255�256, 373, 398�399
on date of event, 399
gain in efficiency with, 398
limitations of, 255�256, 399
with m distinct types, 387�394

representing a quantitative ordering, 392
with many matched sets, 254�255
with more than dichotomous outcome,

380�384
with multiple controls per case, 384�387,

618
for multiple risk factors, 407
number of characteristics for, 398, 399
odds ratio with, 252, 376�377, 386
with polytomous outcome, 380�384
precision of comparisons with, 373, 387, 398
in prospective study, 373, 377, 388, 398
randomization with, 90, 373, 388
in retrospective study, 373, 374, 388, 398
sample size for, 394�398
with time limit on study, 398

Matrix manipulations
Kronecker product, 331�332
multiplication, 131
vectorization, 332

Maximum likelihood estimation
of adjacent odds ratio, 206
asymptotic distribution of, 699
basic theory, 696�702
of beta-binomial parameters, 223, 224, 225
conditional maximum likelihood estimate,

111, 243, 324, 376, 387, 415
of common odds ratio, 269, 271
computation for, 420
for odds ratio with matched samples, 376,

387, 415
standard error for log, 111

consistency of, 341, 698
efficiency of, 341, 699
for a constrained proportion, 170, 172
of logistic regression coefficients, 294, 300,

302, 333
with missing covariates, see Missing data,

logistic regression with MAR covariates
Neyman-Scott inconsistency in matched

samples, 408
of nuisance parameters, 246

of Poisson
intensity parameter, 344, 644
mean, 346, 351
regression coefficients, 351

Maximum quasilikelihood estimate,
360�361

McNemar’s test, 375, 377, 382, 400
power of, 375
as special case of Mantel-Haenszel test, 254,

277
Measure of agreement, see Agreement; Kappa
Measure of association. See also Attributable

risk; Difference between proportions;
Logarithm of odds ratio; Odds ratio; Phi
coefficient; Relative difference

chi squared as, 97�100
conclusions depending on choice of, 124
critical ratio as, 258�260
effects of misclassification errors on,

565�569
effects of unreliability on, 598
function of chi squared as, 97�100
general, 235�238
homogeneity of, 234, 237�238
invariance of, 99, 105�106, 124, 149
phi coefficient, see Phi coefficient
in several independent groups, 235�238
significance of association, 97
standards for selection of, 124, 149
and validity of retrospective study, 124
Yule’s, 101

Meta-analysis, choosing between fixed and
random, 269�270

fixed effects, 265
random effects, 211, 265�269

Method I sampling. See also Cross-sectional
study

association in, 51�53, 95�97, 188
chi squared test for, 50, 53, 97
compared to method II sampling, 145�147,

148�149, 155�156, 188
description of, 51�53
estimation in, 97
layout of data from, 52, 97
misclassification errors in, 561
odds ratio in, 100�102
phi coefficient only valid in, 155
randomization in, 86, 87
sample size for, 64
statistical hypothesis appropriate for, 58

Method II sampling. See also Prospective
study; Retrospective study

compared to method I sampling, 145�147,
148�149, 155�156, 187
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critical ratio test for, 54�55
description of, 53�55
layout of data from, 54, 145, 148
matching in, 373
misclassification errors in, 561
randomization in, 86
sample size for, 64
statistical hypothesis appropriate for, 58

Method III sampling. See also Clinical trial
critical ratio test for, 161, 187
description of, 55
matching in, 373
misclassification errors in, 561
randomization in, 86, 89�93
sample size for, 64
statistical hypothesis appropriate for, 58

Mid-p correction
defined, 41
not assured to work, 42, 48

Miscarriage, see Spontaneous abortion
Misclassification errors, see Errors of

misclassification
Missing data

bias in complete-recorded analysis with, 497,
498, 500, 518, 505, 510

case-weighting, see Missing data, logistic
regression with MAR covariates

Ž .complete-record CR analysis, 434, 496, 499,
500, 518, 519, 534, 540, 557

consistency of estimates, 498, 499, 506, 507
estimating equations for, 505, 506, 508, 528,

530, 532
expanded dataset methods, see Missing data,

logistic regression with MAR covariates;
Missing data, nonignorable

imputation methods, 435, 497�501, 502, 527.
See also Missing data, logistic regression
with MAR covariates; Missing data,
nonignorable; Missing data,
nonmonotonic; Missing data, in a 2�2
table; Missing data, in several 2�2
tables

multiple, 514�517
single, 517, 553

layout of data for, see Layout of data, for
missing data

logistic regression with MAR covariates,
517�534

case-weighting for expanded dataset
method, 526, 529, 589
comparisons between methods, 532�533
complete record analysis, 518, 519
consistency of estimates, 518, 527,

528�529

estimating equations, 528, 530, 532
expanded datasets, 525, 526, 529, 588

Ž .expectation-maximization EM algorithm
for, 525�527

illustrated, 533�534
imputation methods for, 519, 520, 527�530
jackknife variance estimation, 526, 529,

530
likelihood methods for, 519, 520�527
models conditioning on observation

indicator, 519, 531�532
Newton-Raphson iteration

separate solution method, 525�527, 528
single joint method, 522

observation indicator, use as outcome in
weighting method, 530

pattern mixture model, 520
sandwich variance, 529
score equation, 521, 555
selection model, 520
separate-solution method, 525�527, 528
weighting methods for, 519, 530, 586

logistic regression with MAR outcomes,
534�535

Ž .missing at random MAR , 434, 493, 496,
498, 499, 500, 506, 507, 512, 515, 518,
538, 547�548, 551, 586

Ž .missing completely at random MCAR , 435,
493, 498, 499, 507, 518, 533, 541, 551,
586

missingness indicator, 494
missingness patterns, 495�496
missingness probability, 494, 508
monotone missingness, 495�496, 586. See

also Missing data, nonignorable
nonignorable, 493, 535�551. See also Missing

data, nonmonotone
expanded datasets, 536
illustrated, 551
imputation approach for, 549�550
likelihood approach for, 535�537
MAR under, 547�551
nonidentifiability in, 537�538
sensitivity analysis for, 537�540
variance estimation, by jackknife, 546

nonmonotone, 495�496, 540�551. See also
Missing data, nonignorable

comparison of approaches, 550
complete record analysis, 540�541, 557
computation, 546�547
illustrated, 551
imputation approach, 549�550
likelihood approach, 541�549
MAR under, 543, 547�551, 557, 558
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Ž .Missing data Continued
nonresponse mechanisms, defined, 493�494

missing at random, 493
missing completely at random, 493
monotone, 495
nonignorable, 493, 535�540
nonmonotone, 495, 540

observation indicator, 434, 494
Mantel-Haenszel odds ratio, see Missing

data, in several 2�2 tables
sensitivity analysis for nonignorable,

537�540
similarity with misclassification error, 586
in 2�2 tables, one, 496�504

imputation methods, 496�501, 553
two paradigms for estimation, 502
variance estimation, formulas for,

503�504, 553�555
weighting methods, 501�502

in 2�2 tables, several, 505�517
comparison of methods, 512�513
complete record analysis, 505
consistency of Mantel-Haenszel odd

ratio, 505, 506, 508
efficiency of Mantel-Haenszel odds ratio,

510
illustration, 512�513
imputation methods, 506�508, 510�511,

533
Mantel-Haenszel odds ratio, 505�513

with missing exposure or outcome,
505�510

with missing stratification variable,
510�512

multiple imputation method, 514�517
variance estimation by jackknife, 509�510,

512, 517
variance estimation by multiple

imputation, 516�517
weighting methods, 508�509, 511

variance estimation for, 503�504
consistency of, 497, 512, 517
empirical 509, 529, 551�553
by jackknife, 461, 509�510, 512, 517, 526,

529, 530, 547
by multiple imputation, 514, 517

weighting methods, 435, 505�502, 535, 586.
See also Missing data, logistic regression
with MAR covariates; Missing data, in
one 2�2 table; Missing data, in several
2�2 tables

Mixture model for measuring agreement, 621
Mixture model score statistic, 269, 271

Model embedding method, 307
Models, see Logistic regression; Matched

sample regression; Poisson regression
Moment generating function, see Factorial

moment generating function
More than dichotomous outcome

agreement on, 599, 604�608, 608�610,
614�617

in case of independent samples, 198�202
in case of matched pairs, 380�384
kappa for, 604�608, 614�617
McNemar’s test in case of, 380�384, 400
sample size for, 69

Mortality figure, comparative, 639
Mortality index, 639
Mortality rate, comparative, 639
Multinomial distribution, see Distributions
Multinomial response model, 208, 220, 228,

274, 287, 290, 308�313, 314�335
for binomial data, 324�325
general, 325�335
for noncentral multiple hypergeometric

distribution, 323�324
particular, with responses

cross-classified, 319
nested, 318
ordered, 315
unordered, 314

saturated, 301, 304, 316, 321
unsaturated, 322

Multinomial sampling, 95. See also Cross-
sectional sampling; Method I sampling

Multiple controls per case, 384�387, 618
Multiple imputation, see Missing data,

variance estimation for
Multiple significance tests on same data,

191�192, 382
Multivariate confounder score, 256

Natural parameters, see Exponential family of
distributions

Naturalistic sampling, see Cross-sectional
study; Method I sampling

Nested models, 301
Network algorithm, 245
Neurosis, 14
Newton-Raphson method, 116�119, 334, 485,

522, 524, 525, 588, 700, 702
Newtons method, see Newton-Raphson

method
Noncentral hypergeometric distribution, see

Distributions
Nonconfounding, operational, 263�265, 278
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Noninferiority, see Clinical trial
Normal curve test, see Critical ratio test
Normal distribution, see Distribution
Numerical grading applied to ordered

categories, 199�200
Nursing homes, illustrating Poisson regression,

352�357, 364�366

Observation indicator, 434
Observational studies, 256. See also Method

II sampling
Odds

adjacent, see Logistic regression, logit
parameters

conditional, 205
cumulative, see Logistic regression, logit

parameters
definition, 8, 100
derived from ridit analysis, 202
equality of two, under independence, 135
under logistic model, 104�105
as measure of risk, 100
posterior, 8

estimation of expected, 218, 224�226, 230
prior, 8

Odds ratio
adjacent, 205, 206
advantages over other measures, 103,

153�154
as approximate relative risk, 67, 103, 135
as measure of discrepancy between

proportions, 61
in case of independence, 102
common, 241�243, 246�250, 250�254
compared to relative difference, 123�125
comparison of procedures for analyzing,

254�255
from cross-sectional study, 116�119, 138
with matched pairs, 376�377
in prospective study, 146�147
in retrospective study, 149�150

confidence interval for, in several fourfold
tables, 241, 243, 249�250

constant, 234, 337
Cornfield-Gart procedure for, 246�250
corrected for misclassification errors,

578�589, 590�591
criticisms of, 122�125
cross-product ratio, 102

of cell expectations, 110
ratio of expected cross-products, 110

derivation of, 67�68, 100�101
effects of misclassification errors on,

562�565, 568, 569�571

estimate of
conditional maximum likelihood, 111
with matched pairs, 376
in method I sampling, 102
with multiple controls per case, 386
in prospective study, 146�147
in retrospective study, 149�150, 155
for small cell frequencies, 106�111

exact inference for, 106�111, 111�112,
241�246

homogeneity of, 240, 244�245, 247�248
in matched samples, 269�276, 387

invariance of, 104�105, 124�125, 149, 155,
410, 425, 437

logarithm of, 105�106. See also Logistic
regression

Mantel-Haenszel estimate of, 247, 250�251,
255, 376

precision of estimated, 102�103, 106, 111,
146, 150

regression model, 243
in sample size determination, 67�68
significance of pooled estimate of, 240�241,

243, 248, 253
standard error of

with matched pairs, 376
in method I sampling, 102�103
in prospective study, 146
in retrospective study, 150
testing hypothesized value of, 107�108,

111, 113�116
Offset, 347, 363, 644
One-tailed test

description of, 20, 58�60
ethical problem in, 59�60
power of, 59
sample size for, 77, 82
significance level for, 59

Operational nonconfounding, 263�265, 278.
See also Potential confounding

Ordered outcome variable
derived from underlying continuum, 200,

201
with independent samples, 198�205
logistic model for, 199
with matched pairs, 383�384

Ordered partitions, in conditional logistic
regression, 429�431

Ordered samples
qualitatively ordered, 195�198
quantitatively ordered, 192�195, 392�393

Orthogonal contrasts, 318
Overall odds ratio, see Odds ratio, common
Overall proportion of agreement, 599�600, 604
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Overall rate. See also Marginal mean
proportion

in case of independence, 2�3
difference between two, 627�629
limited value of, 2
as weighted average of specific rates, 4

Overdispersed data, 216, 340, 357, 442. See
also Poisson regression, overdispersion

Overdispersion parameter, 213, 358
estimation of, 362�363

constant, 358, 362
nonconstant, 359, 362�363
tests for, 363�364

Parametric family of distributions, 696
Parsimony in log-linear models, 322
Partitioning of chi squared

for homogeneity of association, 276
for independent samples, 189�192, 194�195
for matched samples, 390�392
for several fourfold tables, 236�238
suggested by data, 190, 276

Pearson chi squared, see Chi squared statistic;
Goodness of fit statistics

Periodontal studies, 442
Phi coefficient

comparing two, 99
confidence interval for, 119�122, 133�135
as correlation coefficient, 99
deficiencies in, 99, 149
definition of, 98
in factor analysis, 99
lack of invariance of, 99, 149, 155
in prospective study, 147
in retrospective study, 149, 155
standard error for, 133�135
validity only in method I sampling, 99, 149,

155
Placebo, see Clinical trial
Point probability method, see P-values, exact

two-sided
Poisson distribution, see Distributions
Poisson regression, 340�372, 644

asymptotic variance of coefficients, 351, 361,
369

comparison of goodness of fit statistics for,
354�357

deviance, 352
goodness of fit for, see Goodness of fit

statistics
identity link function, 349, 350
illustrated, 352�357, 364�366
intensity parameter, 344
interaction terms, 349, 355, 357, 369

log likelihood function, 350, 362
log likelihood ratio statistic, 349, 354�356
log link function, 349, 350, 360
mean of Poisson variable, 341
model types

simple, 345�348
multiple, 348�357
multiplicative, 346
overdispersion, 357, 358�366
saturated, 349

multinomial distribution from Poisson
variables conditioned on sum, 344

offset for person-years exposure, 347
overdispersed data in, 357
overdispersion, 358�366

constant, 358, 362
estimation of, 362�363
nonconstant, 359, 362�363
parameter, 358, 361
score test for, 363�364
testing of, 363�364

process, 344, 346
rate, 340
scaled Pearson goodness of fit statistic, 344,

347
score function, 350
standard error of estimated coefficients,

347�348
standardized residuals, 357, 365�366
sufficient statistics, 350
unbiased estimate of mean and variance,

341
variance of Poisson outcome, 341, 366
Wald test statistic, 354�356

Polytomous outcome, 380�384. See also
Logistic regression

Pooling data, 262
Posterior

density, 278
distribution, see Distributions
expected value of odds ratio, 279
mean, 223
odds, see Odds

Post hoc comparisons, see Comparisons
suggested by data

Potential confounding, 263�265, 278, 583. See
also Operational nonconfounding

Power. See also Type II error
of Bartholomew’s test, 196, 198
under budgetary restrictions, 65
of chi squared test for linearity, 194
with clustered data, 448�449
for a collection of 2 x 2 tables, 235
with continuity correction, 57�58, 171
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of critical ratio test, 61�62, 171
definition of, 30, 65
effect of crossovers on power, 166�168
in efficacy trial design, 173�174, 181�182
with equal sample sizes, 70�73, 145, 188
in equivalence trial design, 169�174,

181�182
factors affecting power in, 165�175
in inferiority trial, 171, 181�182
of likelihood ratio goodness of fit statistic,

306
loss greater in matched studies with

misclassification error, 579
of McNemar’s test, 375
with matching, 394�398, 398�399
with multiple controls per case, 387
in noninferiority trial, 169�174, 181�182
of one-tailed test, 59, 82
for predetermined sample sizes, 70�73, 78
of prospective study, 145, 146�147, 148, 150
of retrospective study, 147, 149, 150
of single sample study, 30�31, 73, 79, 81
in sample size determination, 70�73, 74
selection of value of, 74
with stratification, 256
with unequal sample sizes, 75�77, 171

Precision
with equal sample sizes, 147, 151, 188
of estimated odds ratio, 147, 148�149,

150�151, 254
as function of standard error, 235
with matching, 373, 398, 399
with multiple controls per case, 387
of prospective study, 147
sample size necessary for specified, 155
of specific rate, 630, 641�642
with stratification, 256

Precoded responses, 577�578
Predictive value

negative, 6�9, 14
positive, 6�9, 14, 157

Prefactor-postfactor multivariate model, 314
Prematurity, 66, 74, 76, 83, 139, 179
Prevalence. See also Case rate

odds, 8
rate, 6�7, 17

Prior distribution, see Distributions
Probability, 1

of discordance, 395, 396
marginal, in generalized estimating

equations, 462
rule of total, 4

Probit transform, 287
Propensity score, 256

Proportion, 1
marginal mean, 212�217, 441
in 2�2�2 tables with clustered data, 454
for two proportions with clustered data, 445
of specific agreement, 600

Proportional mortality rate, 638
Proportional odds model, see Logistic

regression, proportional odds model
Prospective study

association in, 144�147
compared to cross-sectional study, 99, 145,

150, 155�156
compared to retrospective study, 99,

149�151, 153�154, 155�156
description of, 53�54
designed to replicate retrospective study, 68
invalidity of phi coefficient in, 155
layout of data from, 145
matching in, 373, 377, 388, 398
method II sampling underlying, 144
odds ratio in, 146�147
power of, 145, 146�147, 148, 150
precision of, 146�147, 148, 150�151
sources of bias in, 153

Pseudorandom, see Random number
generators

Psychometrics, 100
Psychosis, 599
Public health, 123, 166
P-value

alternative definitions of exact, two-sided,
37�43, 46�48

introduced, 19
conservatism of exact, 42
exact, two-sided

equal allocation method, 21, 37, 44, 108,
111

likelihood ratio method, 40�41, 46�47,
108

point probability method, 37�39, 56,
108�109, 111, 243

tail probability method, 39�40, 46�47, 108
mid-p correction

defined, 41
not assured to work, 42, 48

Q-Q plot of standardized residuals, 357,
365�366

Qualitatively ordered outcome variable,
198�205, 383�384

Qualitatively ordered samples, 195�198
Quantal response, 286
Quantitatively ordered samples, 192�195,

392�393
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Ž .Quantitatively ordered samples Continued
estimate, maximum, 360�361
function, 362

Quasi-score function, 360, 362, 462

Random digits, table of, 684
Random effects, 210, 253. See also Correlated

binary data
in meta-analysis, 211

Random number generators, 88
multiplicative congruential, 88
properties of

chaotic, 88
uniformly distributed, 88

pseudorandom, 88
Random variables, see Distributions
Randomization

in clinical trial, 89
adaptive, 94, 176

alternatives to simple, 175�180
in assignment to treatments, 86, 89�93
with biased coin technique, 93
blinding in, 92�93
criticisms of, 175
in crossover study, 163�164
imbalance with, 93
within intervals of time, 89
for matched pairs, 90
for matched samples, 373, 388
necessity of, 86, 175
with permuted blocks, 90�92
simple, 87�89
in selection of sample, 86, 87, 96
with stratification, 93
test, 209
variations on simple, 93�94

Randomized controlled trial, see Clinical trial
Randomized response technique, 5, 15
Randomness in true proportions, 209�226
Random sample

simple, 86�89, 96
systematic, 96

Rank order analysis, 202
Rate ratio, see Relative risk
Rates, general, 1

of admission, 11
of autopsy, 13
false negative, 6
false positive, 6
of hospitalization, 11
livebirth, 210
specific, 2
stratum-specific, 4

Regression models
logistic, see Logistic regression

matched sample, see Matched sample
regression

Poisson, see Poisson regression
Relative difference

in clinical trial
with independent samples, 162�163, 181
with matched pairs, 379�380

compared to attributable risk, 152, 156
compared to odds ratio, 123�125
comparing two independent, 162, 181
confidence interval for

with independent samples, 163
with matched pairs, 380

as modified simple difference, 123�124
in sample size determination, 66�67
standard error of

from cross-sectional samples, 133, 139
from independent samples, 162�163
with matched pairs, 379

Relative efficiency, see Estimators
Relative frequency, 1
Relative mortality index, 639�640
Relative risk. See also Odds ratio

confidence interval for, 119�122, 132
as component of attributable risk, 126,

132
definition of, 103
with misclassification error, 579
Poisson incidence rate ratio, 345, 644

Reliability. See also Agreement; Kappa
and accuracy, 598
and biased estimation, 567�568, 571
and cost, 571
of diagnosis or ratings, 564�565, 577, 598,

604
of recollections, 153
of subjective grading, 198

Repeated measurements, see Correlated
binary data

Replication of previous research, sample size
needed in, 67

Residuals, 221
standardized, 335, 357, 365

Respiratory disease, 65, 308, 337
Ž .Retrolental fibroplasia RLF , 83

Retrospective study
compared to cross-sectional study, 99,

149�151, 155�156
compared to prospective study, 99, 149�151,

153�154, 155�156
confidence interval for odds ratio in,

150�151
confounding factors in, 373
criticisms of, 153�154
description of, 54, 147
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important difference between proportions
in, 67�68

invalidity of phi coefficient in, 149, 155
layout of data from, 148
matching in, 255�256, 373, 374�377, 388,

394, 398, 409
method II sampling in, 144
odds ratio in, 123�125, 149, 155
power of, 148�149, 151
precision of, 151
prospective analysis for, 411�416
sample size for, 68
sources of error in, 153�154
stratification in, 255�256
superiority over other study designs, 124,

148�149, 151, 154, 155�156
validity of, 124, 153�154, 155�156

Rheumatoid arthritis, 575�576
Ridit analysis, 198�205, 205�208
Rogot-Goldberg index of agreement, 602
Rule of five, 112

for the Mantel-Haenszel procedure, 254
Rule of total probability, 4

Saddlepoint approximation, double, 245, 420,
431

Sample size
for clinical trial, 66, 74, 82
with clustered data, 448�449
for collection of fourfold tables, 235
comparing cross-sectional, prospective, and

retrospective approaches, 155
for comparing several treatments, 69
use of continuity correction with, 72�73
detectable effect size and, 79
for detecting specified difference, 69�73,

75�77, 79
for differential costs, 82
with drop-outs, 69
effect on statistical significance, 98
for efficacy trial design, 173�174, 182
equal in two groups, 69�73
for equivalence trial design, 169�174, 182
for inferiority trial design, 171
interpolation in tables, 78�79
issues in logistic regression with

misclassification, 589
large, 60�62, 64, 65, 81�83
for long-term trial, 69
for matched samples, 394�398
mathematics of, 69
for more than dichotomous outcome, 69
for noninferiority trial design, 169�174, 182
one sample size given, 78
for one-tailed test, 77, 82

prespecified, 65, 73
for replicating previous research, 67, 68, 74
required for analyzing single proportion, 19,

26, 29�36, 44�46
required for chi squared test, 25
required for Mantel-Haenszel procedure,

175
small, 25, 55�57, 65, 83, 106�112
for specified precision, 34�36, 79, 80,

155�156
for specified width of confidence interval,

34
tables, 73, 660
unequal in two groups, 75�77, 77�78, 82
without continuity correction, 32, 69�72, 76,

80�81
Sampling methods

I, cross-sectional, multinomial, or
naturalistic, 51, 95�96, 119, 561

II, purposive, 53, 119, 561
III, randomized, 55, 119, 159�186, 561
comparative. See also Prospective study;

Retrospective study
prospective, cohort, forward-going, or

follow-up, 54, 144�158
retrospective, 54, 68, 144�158.

comparison of retrospective versus
prospective approach, 153�154

without replacement, 229
Sandwich variance, see Variance
Saturated model, 301, 304, 316, 321, 337, 411
Schizophrenia, 136, 239, 303, 382, 562, 564,

590
Score

function. See also Likelihood function
basic theory, 697, 699, 700, 702
conditional, 246, 419, 426, 428, 430
for logistic regression, 332, 702
for Poisson regression, 350
profile, 246

statistic, 209, 229
asymptotic equivalence to other statistics,

302, 337
as goodness of fit statistic, see Goodness

of fit statistics
for overdispersion, 363�364

test
advantage over Wald test, 427
conditional, 208, 306
defined, 302
Mantel-Haenszel procedure as, 306
mixture model, 269�272

Scores, assigning, 199, 208�209
Screening test

error rates of, 6
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Ž .Screening test Continued
outcomes of, 5
predictive value of, positive and negative, 5
repetition of, 9, 13�14
sensitivity of, 6�7, 13�14
specificity of, 6�7, 13�14

Selected samples, association in, 9�13, 14�15
Selection bias, in matched samples, 435�436
Selection indicator, 410
Sensitivity, 6�7, 13�14, 566�567
Sensitivity analysis, 399, 537�540. See also

Missing data, nonignorable
Serial entry of patients over time, 89, 176
Sexually transmitted disease, 285
Significance level. See also Type I error

for comparisons suggested by data, 190, 276,
382, 384

in controlling Type I error, 64
introduced, 19
for one-tailed test, 59, 77, 82
selecting a value of, 73
and value of power, 74

Single proportion
confidence interval for, 2�25, 25�26, 28�29
p-values, alternative definitions for, 37�43,

46�48
sample size for, 29�36
standard error of, 26
test of hypothesis for, 18�22, 27�28

Slope of straight line. See also Logistic
regression

with independent samples, 193�194, 220,
226

with matched samples, 392�393
Small frequencies. See also Exact inference

chi squared test with, 95
Cochran’s Q test with, 393�394

Source of sample, bias in, 9�13, 153�154
Specificity, 6�7, 13�14, 566�567
Specific rate

in case of independence, 2
as component of overall rate, 4�5, 627
consistencies in, 637
definition of, 2
inconsistencies in, 634�636, 638, 645�646
need for comparing, 629�630
precision of, 630, 641�642
ratio of, 103, 640
unavailability of, 630, 642

Spontaneous abortion, 210, 217�218, 277, 285,
293, 298

Standard error
of attributable risk

from cross-sectional study, 128, 132
among exposed, 132

from retrospective study, 152
of Berkson’s risk difference, 131
of cell frequency in general fourfold table,

109,
114, 246

for comparing two relative differences, 181
by delta method, 36, 129�135
of difference

between mean ridits, 203
between proportions with clustered data,

445�447, 447�448
between proportions from independent

samples, 54, 60, 61, 69�70, 131, 132,
161, 181

between proportions from matched pairs,
375, 378

between proportions with matched
controls per case, 385

of kappa, 605, 606, 609, 610, 613, 616
of logarithm of conditional mle, 111
of logarithm of odds ratio, 106, 111, 115,

239, 251�252
of logarithm of relative risk, 132
of logistic regression coefficients, 294�295,

336
of Mantel-Haenszel log odds ratio, 251�252

with clustered data, 460�462
of marginal mean proportion, 214
of mean log odds ratio, 240�241

in meta-analysis, 267
of mean measure of association, 236
of mean ridit, 202, 203, 227
of measures of association, 129�135
of odds ratio

in fourfold table, 102, 103, 146, 10
with matched pairs, 252, 376
with missing data, see Missing data,

variance estimation for
with multiple controls per case, 252, 387
in prospective study, 147
in retrospective study, 150

of phi coefficient, 133�135
of Poisson regression coefficients, 347�348,

351, 356
and precision, 235
of proportion corrected for misclassification

error, 572
of ratio of two proportions, 132
of relative difference

from cross-sectional samples, 133, 139
from independent samples, 162, 163
with matched pairs, 379
from retrospective study, 152

of relative risk, 132
of single proportion, 26
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of standardized difference, 257
of standardized rate, 631, 638

Standardization of rates
criticisms of, 629�630
direct method, see Direct standardization

of rates
indirect method, see Indirect

standardization of rates
miscellaneous methods, 638�640
reasons for, 629�630, 637�638
for two factors, 640�645

Standardization of variables, 31
Standardized difference, 256�258

ŽStandardized mortality ratio or standardized
morbidity ratio, standardized mortality

.figure, or SMR , 638
regression models for, 644�645

Standardized rate
magnitude of, 637�638
standard error of, 631, 638

Standard population
in direct standardization, 636�637
effect on standardized rate, 637�638,

645�646
in indirect standardization, 632�634
in ridit analysis, 200�201, 204, 227�228

Stratification
for adjusting attributable risk, 128
as alternative to matching, 234, 255�256
in clinical trial, 93, 175�176
imbalance with, 93, 175�176
into large number of strata, 254�255,

269�276
randomization with, 93�94
into small number of strata, 254

Stroke, 17, 30, 431�434, 455�458, 460,
471�475, 479�480

Stuart-Maxwell test, 381�384, 400
Subject serves as own control:

for comparing experimental conditions, 388
in two-period crossover study, 163

Subject-specific models, 454�455, 476
Sufficient statistics, see Exponential family of

distributions
Summation observed vs. summation expected

procedure, 260�262
Summation of chi procedure, 258�260
Surrogate variable, see Variables
Survey research, 52

and attributable risk, 128
weighting method used in, 501

Survivor effect, 168
Synergism, see Interaction

Ž .Systemic lupus erythematosus SLE , 575�576

Tabulation of data, see Layout of data
Tail-probability method, see P-values, exact

two-sided
Tarone’s test of homogeneity, 252
Taylor expansion, 336, 421, 468, 699
Tenenbeins double sampling scheme, 571�573
Tests, see indi®idual tests, e.g., critical ratio;

likelihood ratio; score
Time limit on study and matching, 398
Total rate, see Overall rate
Toxicology, 216
Transformations

arcsine-square-root, 46
logit, 285. See also Logistic regression, logit

parameters
variance-stabilizing, 37, 46

Trisomy, 293, 298, 305, 632�634, 636�637,
640�644

Ž .Down’s syndrome trisomy 21 , 632�634,
636�637, 640�644

Tuberculosis, 9, 159
Two-tailed test, description of, 20�22, 58�60
Type I error, 19, 64�65, 70, 73. See also

Significance level
Type II error, 19, 65, 74. See also Power

Unbiased estimation, see Estimators
Unbiased sampling in matched-sample studies,

410, 436
Underadjustment bias, see Errors of

misclassification
Unequal sample sizes, 75�77, 82
Unreliability of diagnoses in

psychiatry, 564�565, 577
other disorders, 565, 577

Urn model, 209
U statistics, 482

Validation sample, 586, 589
Variables

binary, 284, 411
categorical, 288, 411
continuous, 198�200, 307, 411, 578,

696
dichotomous, 288, 374
discrete, 288, 696
double dichotomy, 308
explanatory, 295, 304, 312
multivariate, 288
polytomous, 288
surrogate, 578, 579, 586
univariate, 288

Variance. See also Standard error
asymptotic
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Ž .Variance Continued
of logistic regression coefficients, 333
of Poisson regression coefficients, 351,

361, 369
components, 214
of conditional score statistic, 229
consistent estimation of, 699�700
empirical estimate, with missing data, 509,

529, 551�553
factors affecting, with clustered data, 442
inflation factor, 213, 216, 441, 442, 459, 486
of overdispersed data, 441
sandwich form in generalized estimating

equations, 465, 529, 621
of score statistic, 697

Variance�covariance matrix, 333, 351, 355,
420, 554

Vectorization of a matrix, 332
Vital statistics, 2, 65, 627, 630, 638�640

Wald test
asymptotic equivalence to other statistics,

302, 337

critical ratio, 302, 303, 312, 354, 355�356,
365

as goodness of fit statistic, 302
Weight of evidence, see Evidence
Weighted average

in Bartholomew’s test, 196�197
for marginal mean proportion, 213
overall rate as, 4
sample size, 213
standard error of, 236
standard errors used in, 235, 236
weights in, 4, 277

Weighted kappa, 608�610
Wheeze, see Respiratory disease
Works assuredly, 21, 38�44, 47

Yates’ correction, see Continuity correction
Yule’s measures of association, 101

Zelen’s designs for a clinical trial, 177�178
Zelen’s exact test of odds ratio homogeneity,

244
Zone of indifference, 169
Z-score test, see Critical ratio test
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