

Formal Languages & Automata

Ali Shakiba Vali-e-Asr University of Rafsanjan <ali.shakiba@vru.ac.ir>

More Basic Terms

- If *w* is a string, then *wⁿ* is the string obtained by repeating *w* for *n* times.
 - Special case: $w^0 = \lambda$ for all w.
- If Σ is an alphabet, then Σ^* is the set of strings obtained by concatenating zero or more symbols from Σ .
 - Σ^* always contains λ
 - $\Sigma^+ = \Sigma^* \{\lambda\}$ is the set of all nonempty strings

The * operator is known as the Kleene star.

• Even though Σ is finite, Σ^* and Σ^+ are infinite since there is no limit on the string lengths.

We Have Languages!

- Recall that a language has rules that determine whether a given string is a sentence in the language.
 - We often refer to strings in a language as sentences.
- Therefore, any subset of Σ^* is a language.
- The rules are those that determine membership in the subset.

Example Languages

- Let $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- The subset $\{a, aa, aab\}$ is a language on Σ .
 - The membership rule is trivial since we explicitly listed the members of the subset.
- It is a finite language because it contains a finite number of sentences.

- Let $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- The subset

$$L = \{a^n b^n : n \ge 0\}$$

- is a language on Σ .
 - The strings *aabb* and *aaaabbbb* are sentences in *L*.
 - The string *abb* is not a sentence in *L*.
- This is an infinite language.
 - Most interesting languages are infinite.

String Concatenation

- If you concatenate two sentences of a language, is the result always a sentence of the language?
 - Let $L = \{an : n \text{ is odd}\}$
 - Consider strings u and v in L.
 - Is *uv* in *L*?

Languages are Sets

- We can calculate the union, intersection, and difference of two languages.
 - Recall Georg Cantor.
- The complement of language *L* is

$$\overline{L} = \Sigma^* - L$$

• The reverse of a language is the set of all string reversals:

$$L^R = \{w^R : w \text{ in } L\}$$

40

Languages are Sets, *cont'd*

• The concatenation of two languages L_1 and L_2 :

$$L_1L_2 = \{xy : x \text{ in } L_1, y \text{ in } L_2\}$$

- L^n is L concatenated with itself n times.
 - $L^0 = \{\lambda\}$ and $L^1 = L$
- Star closure

• Positive closure

$$L^* = L^0 \cup L^1 \cup L^2 \dots$$
$$L^+ = L^1 \cup L^2 \dots$$

Infinite sets!

• Let

$$L = \{a^n b^n : n \ge 0\}$$

• Then

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n \ge 0, m \ge 0\}$$

- *n* and *m* are unrelated.
- The string *aabbaaabbb* is in *L*.
- The reverse

$$L^{R} = \{b^{n}a^{n} : n \ge 0\}$$

42

Rules of a Language

- The rules of a language must enable us to decide, in a finite amount of time, whether a given string is a sentence of the language.
- Two kinds of rules:
 - 1. Rules that tell us whether or not a string is a sentence of the language.
 - 2. Rules that tell us how to generate all the sentences of the language.

- Let $L_1 = \{aa, b\}$
- Then

 $L_1^* = \{\lambda \text{ plus any string composed of factors of } aa \text{ and } b\}$ = $\{\lambda \text{ plus all strings of } a's \text{ and } b's \text{ where the } a's \text{ are in even groups}$

- Let $L_2 = \{a, ab\}$
- Then
- $L_2^* = \{\lambda \text{ plus any string composed of factors of } a \text{ and } ab\}$ = $\{\lambda \text{ plus all strings of } a$'s and b's except those that start with band those that contain any double $b\}$
- Is the string *abaab* a sentence of L_2^* ?
 - Yes. We can factor the string as (ab)(a)(ab) and each factor is in L_2 .
 - This factoring is unique.

- Let $L_3 = \{aa, aaa\}$
- Then

 $L_3^* = \{\lambda \text{ plus any string composed of more than one } a\}$

- Is the string $a^7 = aaaaaaaa$ a sentence of L_3^* ?
 - Yes. We can factor the string as (aa)(aa)(aaa) or (aa)(aaa)(aa) or (aaa)(aa)(aa).
 - This factoring is not unique.

What is L^{**} ?

- Every string in L^{**} is composed of factors from L^* .
- Every string in L^* is composed of factors from L.
- Therefore, every string in L^{**} is composed of factors from L.
- Therefore, every string in L^{**} is also a string in L^* :

$$L^{**} \subseteq L^*$$

• For any set $S, S \subseteq S^*$. So let $S = L^*$. Then

$$L^* \subseteq L^{**}$$

• Therefore, $L^{**} = L^*$.

Grammars

- The grammar of a language is the set of rules that determine whether or not a sentence is in the language.
- Example: From English grammar:

<sentence> → <noun phrase> <predicate>
<noun phrase> → <article> <noun>
<predicate> → <verb>

• If *<article>* is "a" or "the", *<noun>* is "boy" or "dog", and *<verb>* is "runs" or "walks", then proper sentences are "a boy runs" and "the dog walks".

Grammars, cont'd

• A grammar G is defined as the quadruple

$$G = (V, T, S, P)$$

where:

- *V* is a finite set of objects called variables
- *T* is a finite set of objects called terminal symbols
- *S* in *V* is a special symbol called the start variable
- *P* is a finite set of production rules

Production Rules

- The production rules specify how the grammar transforms one string to another.
- They define a language associated with the grammar.
- All production rules are of the form $x \to y$ where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$.

Derivations

• If we apply to the string w = uxvthe production rule

 $x \rightarrow y$

we obtain the new string

z = uyv

• We say that *w* derives *z*, or *z* is derived from *w* and write

$$w \Rightarrow z$$

51

Derivations, cont'd

- We can derive successive strings by applying production rules of the grammar in any order.
- We can use a production rule whenever it is applicable, and we can apply it as often as we desire.

• If

$$W_1 \Longrightarrow W_2 \Longrightarrow ... \Longrightarrow W_n$$

then w_1 derives w_n , and we can write

$$W_1 \stackrel{*}{\Rightarrow} W_n$$

52

Language Generation by a Grammar

- By applying the production rules in a different order, a grammar can generate many strings.
- The set of all such terminal strings is the language generated by the grammar.
 - AKA the language defined by the grammar.
- Let G = (V, T, S, P) be a grammar. Then the set

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}$$

is the language generated by G.

Sentential Forms

• If $w \in L(G)$, then the sequence

$$S \Longrightarrow w_1 \Longrightarrow w_2 \Longrightarrow ... \Longrightarrow w_n \Longrightarrow w$$

is a derivation of the sentence *w*.

- The strings S, w_1, w_2, \dots, w_n are sentential forms of the derivation.
- Sentential forms can contain both variables and terminals.

Grammar Examples

• Let grammar $G = (\{S\}, \{a, b\}, S, P)$ with *P* given by $S \rightarrow aSb$

$$S \rightarrow \lambda$$

• Then

sentential forms $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

so we can write

 $S \stackrel{*}{\Rightarrow} aabb$

• Therefore, the string *aabb* is in the language

$$L(G) = \{a^n b^n : n \ge 0\}$$

55

Grammar Examples, cont'd

• Find a grammar that generates the language

$$L = \{a^{n}b^{n+1} : n \ge 0\}$$

• The language is similar to the previous example but with an extra *b*. We add the production rule

 $S \rightarrow Ab$

• Therefore, $G = (\{S, A\}, \{a, b\}, S, P)$ with the production rules

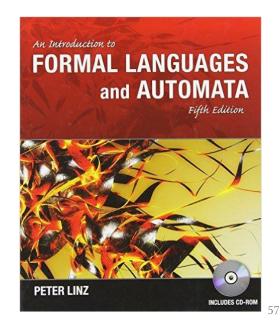
$$S \to Ab$$

$$A \to aAb$$

$$A \to \lambda$$
56

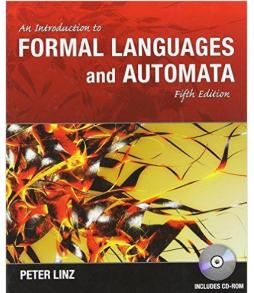
We have learnt ...

• Chapter 1



Next session, we will learn ...

- Sections 2.1 to 2.2
 - (Non)deterministic Finite Automata



Do not forget ...

- Install JFLAP on your machine
- Solve the first set of assignments
- Due, next Tuesday!