

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.dummies.com/cheatsheet/beginninghtml5css3
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com

by Ed Tittel and Chris Minnick

Beginning
HTML5 &

CSS3

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

Beginning HTML5 & CSS3 For Dummies®

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013942775
ISBN 978-1-118-65720-1 (pbk); ISBN 978-1-118-69075-8 (ebk); ISBN 978-1-118-69070-3 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents
Introduction ... 1

About this Book ... 2
Foolish Assumptions ... 3
Icons Used in This Book ... 4
Beyond the Book ... 4
Where to Go from Here ... 5

Part I: Getting Started with HTML and CSS on the Web ... 7

Chapter 1: An Overview of HTML and CSS on the Web 9
How and Where Web Pages Come to Life Online 10

HyperText ... 10
Content versus presentation .. 14
Web browsers .. 14
Getting to know Internet protocols ... 16

Understanding HTML and Its Versions ... 17
Different versions of HTML... 17
Creating HTML markup ... 18
Building HTML documents ... 19

Understanding the Role of CSS .. 20
Different versions here, too 20
Creating CSS markup ... 21

Dissecting a Simple Markup Example ... 22
Where’s the HTML? ... 22
Where’s the CSS?.. 23
A partnership of equals ... 23

Chapter 2: Meeting the Structure and Components of HTML25
Like Any Language: Syntax and Rules ... 25

Color-coding the markup .. 26
Breaking down the elements .. 27

Adding Attributes to Your HTML .. 29
Examining Entities in Markup .. 30

Non-ASCII characters ... 30
Character codes ... 31
(Special) tag characters .. 32

Organizing Web Pages .. 32
Organizing HTML text ... 34
Complementing and enhancing text .. 36

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

iv Beginning HTML5 & CSS3 For Dummies

Chapter 3: Creating and Viewing a Web Page .37
Before You Get Started ... 37
Creating a Page from Scratch ... 39

Step 0: Gather your tools .. 39
Step 1: Planning a simple design .. 40
Step 2: Writing some HTML .. 41
Step 3: Saving your page ... 44
Step 4: Viewing your page ... 46

Editing an Existing Web Page ... 47
Posting Your Page Online ... 49

Part II: Getting the Structure and Text Right 51

Chapter 4: HTML Documents Need Good Structure53
Establishing a Document Structure ... 53
HTML Document Organization Revisited ... 54
HTML DOCTYPE Starts Things Off .. 55
The <html> Element .. 56
Anatomy of the <head> ... 56

Meeting the <head> himself .. 57
Handling metadata with <meta> .. 57
Redirecting users to another page .. 58
Naming your page with a <title> .. 61

The <body> Is a BIG Container .. 61

Chapter 5: Text and Lists . .63
Formatting Text ... 63

Paragraphs .. 65
Headings.. 66

Controlling Text Blocks .. 68
Block quotes ... 68
Preformatted text ... 69
Horizontal rules.. 71

Organizing Information ... 73
Numbered lists ... 73
Bulleted lists ... 75
Definition lists .. 77
Nesting lists .. 79

Chapter 6: Tip-Top Tables in HTML . .81
How <table> Got a Bad Name in HTML ... 81
What’s in a Table? LOTS of Markup .. 82
Setting Up a Table Border .. 84

v Table of Contents

The Table Head (<thead>) and Its Elements .. 85
Managing Table Layouts ... 87
Making Good Table Bodies ... 89

Shaping a solid table ... 89
Sitting at the Footer of the Table ... 92
Exploring and Explaining a Table .. 92

Oh caption, my caption ... 93
Is the header dead yet? ... 93
Marching through the table body .. 94
Finishing with the footer ... 94

Chapter 7: Working with Forms in HTML . .97
Exploring Types of Web Forms ... 97

Search forms ... 98
Data collection forms .. 99

Creating Forms ... 100
Structure ... 101
Input tags .. 102
Input fields .. 103
Form validation .. 113

Processing Data ... 115
Processing forms on your pages .. 115

Designing User-Friendly Forms .. 117
Other Noteworthy Forms-Related Markup ... 118
Form Frameworks .. 120

Part III: Adding Links, Images, and Other Media 123

Chapter 8: Getting Hyper with Links in HTML125
Basic Links 101 ... 125

Exploring link options ... 127
Avoiding common mistakes ... 129

Customizing Links ... 130
Opening new windows .. 130
Specifying locations in web pages ... 132
Linking to non-HTML resources ... 134

Chapter 9: Working with Images in HTML . .139
The Role of Images in a Web Page ... 139
Creating Web-Friendly Images ... 140
Adding an Image to a Web Page ... 142

Image location .. 142
Using the element ... 143

vi Beginning HTML5 & CSS3 For Dummies

Adding alternative and title text .. 143
Specifying image size ... 146
Image borders and alignment... 149

Images That Link .. 149
Triggering links .. 149
Building image maps ... 150

Chapter 10: Managing Media and More in HTML 153
The Battle of the Media Formats ... 154

Meet the major audio formats .. 155
Meet the major video formats .. 156

Comparing Traditional and HTML5 Media Handling 157
Mastering HTML5 Media Markup .. 158

Making beautiful music with audio .. 158
Moving media with video .. 159
Undergoing the conversion experience .. 162

Working with Web Page Controls .. 163
Displaying a meter bar .. 163
Tracking progress on activities ... 165
Tracking and reporting on time ... 166
Updating HTML5 controls... 168

Part IV: Adopting CSS Style 169

Chapter 11: Advantages of Style Sheets .171
Advantages of Style Sheets ... 172

The four steps to style .. 173
Understanding the C in CSS .. 174
What CSS can do for a web page .. 174

Styling a Document with CSS ... 175
Using HTML5 Boilerplate .. 176
Normalize before you stylize .. 176
What you can do with CSS .. 180

Putting CSS in Its Place ... 182
Pixels, points, and dots — Oh my! ... 182
Understanding the viewport... 183
Property measurement values ... 184

About the CSS3 Standard .. 186

Chapter 12: CSS Structure and Syntax .191
Exploring CSS Structure and Syntax ... 191

Selectors and declarations ... 194
The selectors .. 195
Inheriting styles ... 204

Understanding the Cascade ... 205

vii Table of Contents

Chapter 13: Using Different Kinds of Style Sheets207
Applying Inline Styles .. 208
Getting to Know Internal Style Sheets .. 210

Understanding the <style> element ... 210
Figuring out internal style sheet scope ... 210

Working with External Style Sheets .. 212
CSS files ... 212
Link element attributes ... 213
Importing and when to use @import ... 214

Part V: Enhancing Your Pages’ Look and Feel 215

Chapter 14: Managing Layout and Positioning 217
Managing Layout .. 217

Tiny boxes .. 217
Block versus inline elements .. 219
Normal flow .. 222

Managing Positioning .. 225
About coordinates and offsets ... 226
Relative positioning ... 226
Absolute positioning ... 227
Floating .. 228

Using a Layout Generator ... 230

Chapter 15: Building with Boxes, Borders, and Buttons 233
Meeting the Box Model ... 233
Putting the Box Model into Practice ... 235

Specifying padding and margin widths ... 239
Adding borders .. 243
Aligning text .. 246
Indenting text ... 247
Creating buttons with CSS .. 247

Chapter 16: Using Colors and Backgrounds .251
Defining Color Values .. 251

Color names .. 251
Color numbers.. 253

Defining Color Definitions ... 255
Text .. 256
Links .. 256
Backgrounds ... 258
Advanced backgrounds .. 259

viii Beginning HTML5 & CSS3 For Dummies

Chapter 17: Web Typography .261
Finding Out about Fonts ... 261

Font family .. 262
Sizing ... 265

Trying Out Text Treatments .. 268
Embolden with bold .. 268
Emphasizing with italic ... 269
Changing capitalization ... 270
Getting fancy with the text-decoration property 271

Checking Out the Catchall Font Property .. 272
Experimenting with Web Fonts .. 273

Font file formats ... 273
Finding fonts ... 274
Linking fonts ... 274
Using Google Fonts .. 275

Chapter 18: CSS Text and Shadow Effects .281
Creating Shadows .. 282

text-shadow .. 282
box-shadow... 283

Creating Inset Text .. 284
Creating 3D Text .. 285
Creating a Letterpress Effect .. 286
Drop Shadows .. 287
Text Rotation .. 289

Chapter 19: Multimedia and Animation with CSS 291
Using CSS with Multimedia ... 291

Visual media styles .. 293
Paged media styles .. 299

Getting Animated ... 300
Using the animation properties ... 302
Creating animations with @keyframes .. 303
Animating color .. 303

Part VI: The Part of Tens ... 305

Chapter 20: Ten Keys to Mobile Web Design .307
Design for Different Mobile Devices .. 307
Design for People ... 310
Design for Small Screens .. 310
Design for Low Bandwidth ... 311

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

ix Table of Contents

Design for Touch ... 311
Design for Distracted Surfers ... 313
Test on Many Mobile Devices .. 313
Design for Simplicity ... 314
Set Up Mobile Web Addresses ... 314
Include a Link to the Desktop Site ... 315

Chapter 21: Ten HTML Do’s and Don’ts .317
Don’t Lose Sight of Your Content .. 317
Do Structure Your Documents and Your Site .. 318
Do Make the Most from the Least ... 318
Do Build Attractive Pages ... 319
Don’t Lose Track of Those Tags .. 319
Do Avoid Browser Dependencies .. 320
Don’t Make It Hard to Navigate Your Wild and Woolly Web 321
Don’t Think Revolution, Think Evolution ... 322
Don’t Get Stuck in the Two-Dimensional-Text Trap 323
Don’t Let Inertia Overcome You .. 323

Chapter 22: Ten Ways to Kill Web Bugs Dead 325
Make a List and Check It — Twice ... 325
Master Text Mechanics ... 326
Lack of Live Links — a Lousy Legacy .. 327
When Old Links Must Linger .. 328
Make Your Content Mirror Your World .. 328
Look for Trouble in All the Right Places ... 328
Cover All the Bases with Peer Reviews .. 329
Use the Best Tools of the Testing Trade .. 330
Schedule Site Reviews ... 330
Foster User Feedback .. 331
If You Give to Them, They’ll Give to You! .. 332

Chapter 23: Ten Cool HTML Tools and Technologies 333
WYSIWYG HTML Editors .. 334

Dreamweaver.. 334
Other WYSIWYG editors ... 335

Helper HTML Editors .. 335
Aptana Studio ... 335
Other helper editors .. 336

Inexpensive Graphics Editors .. 337
Professional Graphics Editors ... 337

Adobe Photoshop .. 338
Adobe Fireworks .. 338

W3C Link Checker .. 339

x Beginning HTML5 & CSS3 For Dummies

Other Link Checkers .. 339
HTML Validators .. 340
FTP Clients .. 341
Miscellaneous Helpful Web Tools ... 341

Part VII: Appendixes ... 343

Appendix A: Twitterati .345

Appendix B: About the Dummies HTML Site . .349
About WordPress .. 349

The dashboard ... 349
Appearance and themes ... 350
Pages and posts ... 351

Widgets ... 351
Responsive Design ... 352

HTML5 Cafe .. 352
The home page ... 352
About Us.. 354
The Menu .. 354
Contact Us... 354

HTML5 Boilerplate ... 355

Index ... 357

Introduction

A
nyone can create or edit web pages. Crafting such pages doesn’t
require an especially high IQ or an advanced degree. Creating or editing

web pages simply requires a desire to learn and enough gumption to see the
process through to its natural end — a page visible on the web.

In this book, we reveal the ins and outs of the markup languages that are the
web’s lifeblood — the HyperText Markup Language (HTML) used to capture
text, graphics, and other content, and the Cascading Style Sheets (CSS) lan-
guage used to make web pages look good wherever they appear. Because
HTML and CSS are basic building blocks for creating web pages, knowing how
to use them adds you to the fold of web authors and content developers.

If you’ve tried to build your own web pages but found it too daunting, it’s
okay to relax now. If you can dial a telephone or find your keys in the morn-
ing, you too can create web pages. No kidding!

This book keeps the technobabble to a minimum and sticks with plain
English whenever possible. Besides plain talk about hypertext, HTML, and
the web, we include lots of examples, plus tag-by-tag instructions to help you
build web pages with minimal fuss and bother. We also provide examples
about what to do with your web pages after you’ve built them, so you can
publish them online. We explain the differences between various flavors of
HTML (HTML4, HTML5, and even something called XHTML) so you can pick
the style that works best for you. Spoiler alert: We think you should choose
HTML5, but that choice is entirely up to you.

This book has its own companion website with HTML and CSS examples from
all of its chapters in usable form. In addition to the book content, we share
web-only content and live pointers to all of the widgets, websites, and other
cool stuff to which we refer, so you can use the techniques we show you to
embellish your own web pages and amaze your friends. Please visit www.
dummieshtml.com/html5cafe and start browsing from there. (Appendix B
in this book covers all of that material in more detail.)

http://www.dummieshtml.com/html5cafe
http://www.dummieshtml.com/html5cafe

2 Beginning HTML5 & CSS3 For Dummies

About this Book
Think of this book as a friendly, approachable guide to taking up HTML and
CSS and building readable, attractive web pages. These things aren’t hard to
pick up, but they pack lots of details. Topics covered in this book include the
following:

 ✓ Understanding web page structure and organization

 ✓ Uploading and publishing web pages for the whole world to see

 ✓ Checking and validating your web pages

 ✓ Diving deep into markup with HTML5 and CSS3

You too can build web pages without years of arduous training, advanced
aesthetic abilities, or ritual ablutions in ice-cold streams. If you can tell a
friend how to prepare your favorite mac-’n’-cheese, you can build a useful
web document. The purpose of this book isn’t to turn you into a rocket sci-
entist (or for that matter, to turn rocket science into HTML). Its purpose is
to show you the structural and technical elements needed for good-looking,
readable web pages and to give you the confidence to build some!

This book explains how to use HTML and CSS to get your pages up and run-
ning on the World Wide Web. We tell you what’s involved in structuring and
building effective web documents that can bring your ideas and information
to the online world — if that’s what you want to do — and maybe even have
some high-tech fun communicating them to others.

To make this book easier to read, keep in mind the following things about
working with the markup:

 ✓ As a convention for this book, all HTML and CSS markup appears in
monospaced type like this:
<head><title>What’s in a Title?</title></head>

 ✓ When you type HTML markup, CSS, or other related stuff, copy the
information exactly as you see it, including the angle brackets (< and >)
because they’re part of the magic that makes HTML and CSS work.

 ✓ The margins on a book page don’t have the same room as do the
vast reaches of cyberspace. Therefore, long lines of HTML and CSS
markup, or designations for web sites (called URLs, or Uniform Resource
Locators), may break across multiple lines. Remember, your computer
sees such lines as a single line of HTML or CSS, or as a single URL — so if
you type all of that text, be sure to put it all on one line. Don’t insert any
hard returns (or press the Enter key) if you see the line wrap. We show

3 Introduction

you that everything is supposed to be all on one line by breaking at a
punctuation character or space and then indenting any overage, like so:

www.infocadabra.transylvania.co/nexlus /plexus/lexus/
praxis/okay/this-is-all make-believe-but-real-
ones-get LONG.html

 ✓ HTML4 doesn’t care whether you type tag text in uppercase, lowercase,
or both (except for character entities, also known as character codes).
HTML5 and CSS, however, want tag text in lowercase only. Thus, to
make your work look as much like ours as possible, enter all HTML and
CSS tag text, and all other markup, in lowercase only.

 ✓ Our code listings may be color-coded, where specific colors signify dif-
ferent kinds of markup. We explain this in Chapter 2 in the section about
color-coding. (Note: All illustrations use pretty colors, too!)

One more thing: Readers may notice that we refer to the web, websites, and
so forth in this book, even though we also call it the World Wide Web. We’ve
decided to follow common usage, which no longer treats “web” as a proper
name. Finally, the wheels of progress have turned long enough to wear off the
top of the initial capital “W” in web!

Foolish Assumptions
Some say that making assumptions makes a fool out of both the person who
makes them and the person who falls subject to them. (And just who are they
anyway? We assume we know but . . . never mind.)

You don’t need to be a wizard in the arcane arts of programming, nor do you
require a PhD in computer science. You don’t even need a detailed sense of
what’s going on in the innards of your computer to deal with the material in
this book.

Even so, practicality demands that we make a few assumptions about you,
our gentle reader: You can turn your computer on and off, you know how to
use a mouse and a keyboard, and you want to build your own web pages for
fun, profit, or some reason entirely of your own. We also assume you have a
working Internet connection and a web browser.

If you can write a sentence and know the difference between a heading and a
paragraph, you can build and publish your own documents on the web. The
rest consists of details — and we help you with those.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.infocadabra.transylvania.co/nexlus%20/plexus/lexus/praxis/okay/this-is-all%20make-believe-but-real-ones-get%20LONG.html
http://www.infocadabra.transylvania.co/nexlus%20/plexus/lexus/praxis/okay/this-is-all%20make-believe-but-real-ones-get%20LONG.html
http://www.infocadabra.transylvania.co/nexlus%20/plexus/lexus/praxis/okay/this-is-all%20make-believe-but-real-ones-get%20LONG.html

4 Beginning HTML5 & CSS3 For Dummies

Icons Used in This Book
Here’s a list of the icons we use in this book to flag text and information
that’s especially noteworthy.

 This icon signals technical details that are informative or interesting but
aren’t absolutely essential for writing or understanding HTML and CSS.

 This icon flags useful information that makes HTML markup or other impor-
tant stuff even less complicated than you feared it might be.

 This icon points to stuff you shouldn’t skip — don’t overlook these reminders.
(The sanity or web page you save could be your own.)

 Watch out when you see this icon. It warns you against things you shouldn’t
attempt. Consequences can be severe if you ignore these admonitions.

 This icon points you to resources available online. Most notably, we steer
you to www.dummieshtml.com/html5cafe when we discuss example files
you can find there.

Beyond the Book
This section describes where readers can find the book’s companion content.
Some of it is available at www.dummies.com, and some of it — including all
the markup examples in the book — is available at www.dummieshtml.com/
html5cafe:

 ✓ Cheat Sheet: Visit www.dummies.com/cheatsheet/beginning
html5css3 to see a quick compendium of HTML and CSS markup,
plus some handy-dandy color charts.

 ✓ Extras: We’ve posted articles that extend the content covered in the
book, with one extra short article for Parts II through IV of this book.
Parts II and III deal with HTML, and Parts III and IV with CSS. The URL for
this material is www.dummies.com/extras/beginninghtml5css3.

 ✓ Updates: Each For Dummies technical book explains where readers can
find updates in case the book changes substantially. This is where any

http://www.dummieshtml.com
http://www.dummies.com
http://www.dummieshtml.com/html5cafe
http://www.dummieshtml.com/html5cafe
http://www.dummies.com/cheatsheet/beginninghtml5css3
http://www.dummies.com/cheatsheet/beginninghtml5css3
http://www.dummies.com/extras/beginninghtml5css3

5 Introduction

updates or corrections that we make to the book’s content and coverage
will appear, along with any errata we find and fix. The URL for this stuff
is also www.dummies.com/extras/beginninghtml5css3.

 For example, our book is chock-full of HTML5 and CSS 3 markup, and
the specifications for both HTML5 and CSS3 are still in development, so
changes are bound to occur in the months and years ahead.

 ✓ Companion files: Our book site offers per-chapter downloads with the
source HTML and/or CSS files for each chapter, and a one-shot-gets-
everything download for the whole book, all at www.dummieshtml/
html5cafe. See Appendix B for details about the Dummies HTML
website.

Where to Go from Here
This is where you hit the road. Where you start doesn’t matter. Don’t worry —
you can handle it. We know you’re ready to have the time of your life. Enjoy!

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummieshtml/html5cafe
http://www.dummieshtml/html5cafe

6 Beginning HTML5 & CSS3 For Dummies

Part I
Getting Started with HTML

and CSS on the Web

Visit www.dummies.com for more great For Dummies content online. Also, there’s a
website just for this book online at www.dummieshtml.com.

http://www.dummies.com/
http://www.dummieshtml.com

In this part . . .
 ✓ Taking in HTML from 10,000 feet (an overview)
 ✓ Understanding the role that Cascading Style Sheets (CSS) play

on the web
 ✓ Digging into HTML-speak: markup, elements, tags, entities, and

more
 ✓ Getting your web pages organized
 ✓ Creating and viewing your very first web page
 ✓ Moving pages from your PC to a web server online

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

1
An Overview of HTML
and CSS on the Web

In This Chapter
▶ Bringing web pages to life
▶ Understanding the role that HTML plays on web pages
▶ Appreciating what CSS does to give web pages style
▶ Exploring and analyzing simple markup examples

W
elcome to the wonderful world of the web, HTML, and CSS. With just
a little knowledge, some practice, and something to say, you can

create your own little virtual acre of cyberspace or improve on existing work.

 We use the term HTML throughout this book. Using this term lets us refer
to the HyperText Markup Language in general, including both HTML4 and
Markup Language), all in one go. Although HTML4 and HTML5 are different
(and XHTML differs from both of them, too), they’re all enough alike for this
reference to make sense.

This book is your down-and-dirty guide to understanding web documents,
sprucing up existing web pages, and crafting complex and exciting pages that
use intricate designs, multimedia, and scripting.

The best way to start working with HTML is to jump right in, so that’s what
this chapter does: It explains the basics of how HTML and CSS work behind the
scenes inside web pages, and it introduces you to their underlying building
blocks. When you’re done with this chapter, you’ll know how HTML and CSS
work so you can start creating or editing web pages right away — albeit very,
very simple ones.

10 Part I: Getting Started with HTML and CSS on the Web

How and Where Web Pages Come to Life Online
Web pages can accommodate many kinds of content, such as text, graphics,
forms, audio and video files, streaming media, and even interactive games.

Browse the web for only a moment or two, and you see a smorgasbord of
information and content displayed in many ways. Every website is different,
but all have one thing in common: HyperText Markup Language (also known
as HTML). You also run into Cascading Style Sheets (CSS) regularly.

Regardless of what information a web page contains, every page is cre-
ated using some form of HTML. HTML is the mortar that holds web pages
together: graphics, text, and other information are the bricks. CSS tells web
pages how they should look (and to some extent, behave) when on display.

 HTML files that produce web pages are simple text files, whether those files
contain HTML4, HTML5, or even XHTML. Same thing goes for CSS. Reliance
on simple text files, or documents, explains why the web works as well as it
does. Text is a universal way of representing data for computers. Any text
file you create on a Windows PC — including any HTML or CSS file — works
equally well on a Mac, Linux/Unix, or any other operating system.

But web pages aren’t merely text documents. Web pages are made using
special, attention-starved, sugar-loaded text called HTML or CSS. Each web
page uses its own specific sets of instructions and directives that you include
(along with your content) inside text files to specify what’s on the page and
how that page should look and behave. Stick with us to uncover everything
you need to know about HTML and CSS!

HyperText
Special instructions in HTML permit lines of text to point to (that is, link)
something else in cyberspace. Such pointers are called hyperlinks. Hyperlinks
are the glue that holds the World Wide Web together. In your web browser,
hyperlinks usually appear in blue and are underlined. When you click a
hyperlink, it takes you somewhere else.

 Hypertext or not, a web page is a text file, which means you can create and
edit a web page in any application that creates plain text (such as Notepad
or TextEdit). Some software tools offer fancy options (covered in Chapter 23)
to help you create web pages, but they generate the same text files you can
create using a plain-text editor. We recommend you start with a simple, free
web page editor named Aptana Studio. Visit www.aptana.com, where you
can download the program. (You can also find instructions for Windows,
Mac OS, and Linux.)

http://www.aptana.com/

11 Chapter 1: An Overview of HTML and CSS on the Web

 Steer clear of word processors such as WordPad or Microsoft Word when
creating HTML. These tools introduce all kinds of extra markup to web pages
that you don’t want gunking up your work. If you don’t believe us, try creat-
ing a web page inside Word and then look at all the stuff it adds inside some
other editor. You won’t believe your eyes!

The World Wide Web comes by its name honestly. It’s literally a web of
online pages hosted on web servers around the world, connected in trillions
of ways by hyperlinks that tie individual pages together. Without such links,
the web would be just a bunch of isolated, stand-alone documents. Boo hoo!

Much of the web’s value comes from its ability to link pages and other
resources (such as images, downloadable files, and media of all kinds) on a
single website, or across many websites. For example, USA.gov (www.usa.
gov) is a gateway website — its primary function is to provide access to
other websites. If you aren’t sure which government agency handles first-
time loans for homebuyers, or you want to take a tour of the Capitol, visit the
site shown in Figure 1-1 for information.

Figure 1-1: USA.gov uses hyperlinks to help visitors locate government information.

Web browsers were created specifically for the purpose of reading HTML
markup and displaying the resulting web pages such markup describes.
Markup lives in a text file (along with your content) to give orders to a
browser. For example, look at the web page shown in Figure 1-2. You can

http://www.usa.gov
http://www.usa.gov

12 Part I: Getting Started with HTML and CSS on the Web

see how the page is made up by examining its underlying HTML; its underly-
ing CSS governs its formatting, layout, and appearance.

This page includes a graphic, a title that describes the page (HTML5 Cafe:
Home), a brief welcome, navigation text, and not much else.

Here, different components of the page use different formatting:

 ✓ The title for the page appears in its browser tab.

 ✓ A brief and simple text navigation bar (HOME | ABOUT US | MENU |
CONTACT US) appears at the top border.

 ✓ The welcome statement is a text heading in large-format type, followed
by a brief description of what’s there.

 ✓ A coffee cup image appears next, followed by our favorite morning
slogan (powered by coffee).

Figure 1-2: This page incorporates multiple parts and numerous
bits of HTML and CSS.

13 Chapter 1: An Overview of HTML and CSS on the Web

The browser knows to display these components of the page in specific ways
thanks to the somewhat simplified HTML markup for this page we present in
Listing 1-1. Eventually we get around to all the real stuff that’s on the actual
web page, but for the moment, we present a stick-figure equivalent.

Listing 1-1: The HTML5 Cafe Home Page
<!DOCTYPE html>
 <head>
 <meta charset=”utf-8”>
 <title>HTML5 Cafe: Home</title>
 <meta name=”description” content=”sample site for 9781118657201”>
 <meta name=”viewport” content=”width=device-width”>
 <link rel=”stylesheet” href=”css/normalize.css”>
 <link rel=”stylesheet” href=”css/main.css”>
 </head>
 <body>
 <div id=”container”>
 <nav id=”topnav”>
 HOME |
 ABOUT US |
 MENU |
 CONTACT US
 </nav>
 <div id=”content”>
 <h1>Welcome to HTML5 Cafe!</h1>
 <p>Here you will find all sorts of delicious HTML5 and CSS3 treats.
 This is the sample site for <a href=
 “http://www.amazon.com/Beginning-HTML5-CSS3-Dummies-
 Computer/dp/1118657209”>Beginning HTML5 and CSS3 for Dummies,
 by Ed Tittel and
 Chris Minnick. To view
 all of the code samples from the book, visit the
 Menu.
 </p>
 <figure id=”home-image”>
 <img src=”img/pitr_Coffee_cup_icon.png”
 width=”400” height=”400” alt=”delicious coffee”>
 <figcaption class=”warning”>powered by coffee.</figcaption>
 </figure>
 </div>
 <footer>
 copyright © dummieshtml.com
 </footer>
 </div>
 </body>
</html>

14 Part I: Getting Started with HTML and CSS on the Web

Nearly all text enclosed between angle brackets (less-than and greater-than
signs, or < >) is an HTML tag (often called markup). For example, the p within
brackets (<p></p> tags) identifies text inside paragraphs. The markup
between <head> and </head> at the beginning of the document defines
data that describes the entire document, including the character set it uses
(charset=”uft-8”), the title that appears on the browser tab, description
and display information, and links to some standard style sheets to manage
the look and feel. The markup between <body> and </body> contains every-
thing you can actually see on the page (and some values that control how big
the included coffee cup image appears). That’s really all there is to it. You
embed the markup in a text file, along with text for readers to see, to instruct
the browser how to display your web page.

 Tags and the content between (and inside) them are also called elements.
Angle brackets < > enclose HTML markup; curly braces { } enclose CSS
markup. (You haven’t seen those yet, but they show up in the next chapter.)

Content versus presentation
Simply put, content is stuff you can see on a web page. When developers talk
about “web page content,” they often mean text information that appears
on a web page. But images are content, too, as is any of the various types
of multimedia that you find on many web pages nowadays, such as music,
videos, animations, slide shows, and all kinds of other stuff. In general, HTML
handles and packages content on web pages.

Equally simply, presentation is what stuff on a web page looks like when you
see it. When web developers talk about “presentation,” they’re referring to a
multitude of characteristics. These include a plethora of typography controls
for text (font family, font weight, font size, font color, and much more) but
also precise positioning controls that can determine exactly where elements
will appear as they’re displayed. CSS includes hundreds of presentation con-
trols, which define how web content looks and behaves when it’s displayed
somewhere, or printed, or even spoken (for those people making use of text-
to-speech rendering facilities).

Web browsers
The user’s primary tool in the web puzzle is called a web browser. Web
browsers are programs that read HTML and CSS instructions and then use
those instructions to make web page content appear on a screen.

 Always write your HTML with the idea that people will view the content using
a web browser. Just remember that there’s more than one kind of browser
out there, and each one comes in several versions.

15 Chapter 1: An Overview of HTML and CSS on the Web

Usually, web browsers request and display web pages that come from a web
server on the Internet. But you can also display HTML pages you’ve saved
on your own device before making them available on an Internet web server.
When you develop your own HTML documents (web pages), you view those
pages (called local pages) in your browser. You can use local pages to get a
good idea of what people will see after those pages go live on the Internet.

 Each web browser interprets HTML in its own way (though HTML5 is
designed to improve this situation). Thus, the same HTML may not look
exactly alike from one browser to the next. When you work with basic HTML,
variations will be minor, but as you add other elements (such as scripting
and multimedia), rendering markup can get hairy. Again, HTML5 is supposed
to fix many such problems, but HTML5 isn’t completely finished yet as we
write this book, so it’s still too early to tell whether that promise in theory
will be kept in practice.

Chapter 3 explains how to use a web browser to view a local copy of your
very first web page, in case you don’t already know how to do this.

 Some people use text-only web browsers such as Lynx because either:

 ✓ They’re visually impaired and can’t use a graphical display.

 ✓ They like a lean, fast web browser that displays only text.

A bevy of browsers
The web may be viewed through browsers of
many types, each in its own versions, and each
with its own feature sets. Some of the most pop-
ular web browsers include Microsoft Internet
Explorer, Mozilla Firefox, Apple Safari, and
Google Chrome. Other browsers, such as Lynx
and Opera, are also widely used. As an HTML
developer, you must think beyond your own
browser experience and preferences. That’s
because every user has his or her own personal
browser preferences and settings, and they are
by no means all alike — not even close!

Each browser renders HTML a bit differently.
Every browser handles JavaScript, multimedia,
style sheets, and other add-ins differently, too.
Throw in different operating systems, and a mix
of smartphones and tablets, plus notebook and
desktop PCs, and things get really interesting.

Usually differences between browsers are
minor. But sometimes a combination of HTML,
text, and media can bring a specific browser
to its knees. When you work with HTML, test
your pages on as many different browsers as
you can. Install at least four browsers on your
system for testing. We recommend the latest
versions of Internet Explorer, Safari, Chrome,
and Firefox.

If you want information about more browsers,
Yahoo! maintains a fairly complete list (over 60
items altogether):
http://dir.yahoo.com/computers_

and_internet/software/
internet/world_wide_web/
browsers

http://dir.yahoo.com/computers_and_internet/software/internet/world_wide_web/browsers/
http://dir.yahoo.com/computers_and_internet/software/internet/world_wide_web/browsers/
http://dir.yahoo.com/computers_and_internet/software/internet/world_wide_web/browsers/
http://dir.yahoo.com/computers_and_internet/software/internet/world_wide_web/browsers/

16 Part I: Getting Started with HTML and CSS on the Web

Getting to know Internet protocols
Under the hood, the Internet works because of extraordinarily durable and
capable sets of rules and formats for networked communication. These
things are called protocols, and they define the ways in which computers can
talk to each other across the Internet.

In fact the web is made up of billions of resources, each of them linkable. A
resource’s exact location is the key to linking to it. Without an exact address
(a Uniform Resource Locator, or URL), you can’t use the address bar in a web
browser to visit a web page directly.

 URLs are the standard addressing system for web resources. Each resource
(web page, site, or individual file) has a unique URL. URLs work a lot like your
postal address. Figure 1-3 identifies the components of a URL.

Protocol

Domain

http://www.domain.com/mainfolder/subfolder/file.html

Path

Filename

Figure 1-3: The components of a URL help it define an exact location for a file on the web.

The devil is in the protocol details
A collection of related protocols is often called
a protocol suite. For the Internet, that protocol
suite is TCP/IP taken from the abbreviation for the
names of two of its most important protocols —
namely the Transmission Control Protocol (TCP)
and the Internet Protocol (IP). Together, in fact,
both TCP and IP transport web communications
safely across the Internet. They also support
the HyperText Transfer Protocol, also known
as HTTP, which is what moves web pages and
ancillary materials (images, graphics, media,
and so forth) around the Internet.

HTTP isn’t the only protocol at work on the
Internet riding atop TCP and IP. The Simple
Mail Transfer Protocol (SMTP) and the Post

Office Protocol (POP) make e-mail possible, and
the File Transfer Protocol (FTP) allows you to
upload, download, move, copy, and delete files
and folders across the Internet. The good news
is that web browsers and web servers do all the
HTTP work for you, so you need only put your
pages on a server or type a URL into a browser.

To see how HTTP works, check out David
Gourley and Brian Totty’s chapter on HTTP
Messages, available through Google Books. Go
to http://books.google.com, search for
“understanding http transactions,” double-click
HTTP: The Definitive Guide in the results, and
browse around inside this excellent reference.

http://books.google.com

17 Chapter 1: An Overview of HTML and CSS on the Web

Each URL component helps to define the location of a web page or resource:

 ✓ Protocol: Specifies the protocol the browser should use to request the
resource. This is usually HTTP but could be HTTPS (Secure HTTP), FTP,
or something else.

 ✓ Domain: Points to the General website, such as www.usa.gov, where
the resource resides. A domain may host a few files (like a personal
website) or thousands of files (like a large government or corporate site,
such as www.usa.gov or www.ibm.com).

 ✓ Path: Names the sequence of folders through which to navigate to get to
a specific file or resource.

 For example, to get to a file in the services folder that resides in the
system folder, use the /system/services/ path.

 ✓ Filename: Specifies which file in a directory path the browser is to access.

Although the URL shown in Figure 1-3 is not publicly accessible, it points to a
domain and defines a path that leads to a specific resource named file.html:

http://www.domain.com/mainfolder/subfolder/file.html

Chapter 8 provides the complete details on how to use HTML and URLs to
add hyperlinks to your web pages, and Chapter 3 shows how to obtain a URL
for your website after you’re ready to move it to a web server.

Understanding HTML and Its Versions
You already know that HTML’s primary job is to label and accommodate
content on web pages. But HTML comes in various versions, each of which
handles content, but each of which is slightly different from the other. The
basic rules and components stay more or less the same, but some important
details differ. The following sections explore those versions and explain what
makes them different.

Different versions of HTML
HTML stands for HyperText Markup Language, markup developed in the
late 1980s and early 1990s to describe web pages. HTML is now enshrined in
numerous standard descriptions called specifications from the World Wide
Web Consortium (W3C) and the Web HyperText Application Technology
Working Group (WHATWG). Work on HTML specifications for versions 1–4
ended in 1999.

http://www.usa.gov
http://www.usa.gov
http://www.ibm.com

18 Part I: Getting Started with HTML and CSS on the Web

When you add an X in front of HTML, you get XHTML, a reworked version of
HTML based on the eXtensible Markup Language (XML). XML was designed to
work and behave well with computers, software, and the Internet.

The original versions (1–4, that is) of HTML included some irregularities that
could cause heartburn for software that reads HTML documents. XHTML was
designed to use an extremely regular and predictable syntax that’s easier
for software to handle. XHTML was supposed to replace HTML, but increas-
ing technical complexity in later versions caused it to fall by the wayside.
(XHTML 2.0 was so complicated, it was neither widely adopted nor used very
much at all.)

In 2004, the WHATWG began work on what is called a “Living Standard” for
what is called HTML5 today. It’s been in process for a long time now, and the
standard is finally nearing completion as we write this book. Some areas of
HTML5 are still under development or subject to unresolved controversy. We
steer clear of them in this book so that we can provide you with a solid foun-
dation for your web pages for the foreseeable future.

HTML5 already appears to be succeeding where XHTML did not. Even though
the standard is still under construction, HTML5 is widely adopted and
used on the web today. In fact, the HTML5 specification is in what’s called
“Candidate Recommendation” form as of December 2012. That’s one step
before final Recommendation status is reached; most experts expect that
final version to be approved and ratified in late 2013 or early 2014.

This book concentrates on the safe parts of HTML5, which use the same kind
of regular and straightforward syntax that XHTML offered, but is much sim-
pler to understand and use. Earlier books we’ve written show how to create
both HTML and XHTML; in this book, we stick to HTML5, period.

Creating HTML markup
HTML is a straightforward language for describing web page contents. Its
components are easy to use and come in three basic types:

 ✓ Elements: Identify different parts of an HTML document using tags.

 ✓ Attributes: Provide additional information about a particular instance of
an element.

 ✓ Entities: Non-ASCII text characters, such as the copyright symbol (©)
and accented letters (É). Entities come from the Standard Generic
Markup Language (SGML) used to define early HTML versions.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

19 Chapter 1: An Overview of HTML and CSS on the Web

 This chapter covers basic form and syntax for elements, attributes, and enti-
ties. Parts II through V of this book show how elements and attributes do the
following:

 ✓ Describe various kinds of text (such as paragraphs, articles, or tables).

 ✓ Create effects on a web page (such as changing fonts or colors, or creat-
ing buttons with rounded corners and beveled edges).

 ✓ Add images and links to a page.

 We provide links to some tables of basic entities on our companion website,
or you can consult the complete Unicode Character Code Charts at www.
unicode.org/charts, where you can find codes for nearly every known
human language, and a huge collection of abstract shapes and symbols. Find
this information by browsing around at this site:

www.dummieshtml.com/html5cafe

Building HTML documents
Building an HTML document requires assembling a sequence of elements.
Some of that sequence is prescribed, which means certain elements always
appear in a specific order. Other aspects of the sequence are optional, which
gives you the ability to pick and choose the elements for a particular page
that are best-suited to accommodate and deliver your content.

Hopefully, this helps to explain why building HTML documents often pro-
ceeds from predefined skeletons called templates. Because everybody knows
in advance what the prescribed HTML elements are and in what order they
must appear, there’s no reason why work on a web page can’t start with such
a skeleton — which is more or less content-free when you start work on it
anyway. Templates make it a little quicker and easier for you to flesh out your
web page (and to make sure you don’t forget any of its obligatory elements).

Human error on web pages is inevitable, so web browsers are designed to
do their best to compensate for errors and omissions in those pages. But
even though HTML5 is simple and straightforward, it comes with certain
basic requirements that must be met for a web page to display properly. We
get into those requirements in Chapter 2 and Parts II and III of this book. For
now, please accept that there are good reasons for following HTML’s rules
of the road, the best of which is that if you do, your pages should work (and
look good) in almost any web browser.

http://www.unicode.org/charts/
http://www.unicode.org/charts/
http://www.dummieshtml.com/html5cafe/

20 Part I: Getting Started with HTML and CSS on the Web

Basically, building a web page consists of inserting a sequence of HTML ele-
ments into a document, along with text and pointers to resources, to give the
page some content. This means adding elements (and sometimes providing
them with attributes and values), writing text, preparing images or media,
and so forth. When all the pieces are put together, you can check your work
to make sure that the page says what you want, does what you want, and
looks the way you want.

Understanding the Role of CSS
Cascading Style Sheets (CSS) manage web page presentation, and govern how
pages look and behave when on display to users (or being printed to paper
or listened to in a text-to-speech converter). CSS is another markup language
that mixes special symbols and keywords to define rules for handling specific
HTML elements (and even, specific instances of HTML elements, when “special
handling” is needed). CSS is best understood as a tool to manage formatting,
layout, and behavior on web pages.

CSS offers an incredible array of presentation controls, including positioning
and layout of document elements, identification and assignment of colors for
text and backgrounds, and selection and manipulation of specific typefaces,
called fonts, for textual information. CSS provides methods so that a single
page of markup can be presented in different styles for different forms of
rendering, so that a document can be tweaked and tuned for delivery on a
screen, a printed page, by voice, or even on a Braille-based tactile device.

When an author builds a web page, he or she can define a style sheet for
that document. Nevertheless, the reader’s web browser can override its
definitions with a different style sheet if the reader so chooses. CSS defines
a priority scheme, called the cascade, that defines which style rule should
be applied to individual HTML elements in a document. Such priorities or
weights are calculated to apply to style rules so that results are predictable
and repeatable.

Different versions here, too . . .
Like HTML, CSS has been around for a while. Today, three finalized versions
of CSS have been defined:

 ✓ Version 1, also called CSS Level 1, was published by the W3C in
December, 1996. This version defines all basic CSS capabilities, including
font properties such as typeface and emphasis, color for text and back-
grounds, text attributes for spacing between letters, words, and lines

21 Chapter 1: An Overview of HTML and CSS on the Web

of text, alignment values for text, images, and tables, margins, borders,
padding and positioning of elements, and unique identifiers and generic
classifications for groups of attributes.

 ✓ Version 2 (CSS Level 2), published in May 1998, adds absolute, relative,
and fixed positioning for elements, and a z-index to position multiple
layers on a document, along with media types, aural (sound) styles, bidi-
rectional text, and new font properties such as drop shadows.

 Version 2.1 (CSS Level 2 Revision 1, also known as CSS2.1) repaired
errors in CSS2. It went through many versions and revisions itself, first
reaching Candidate Recommendation status in February 2004. It wasn’t
finally published as a Recommendation until June 2011.

 ✓ Version 3 (CSS Level 3) is broken into a collection of items called mod-
ules, each of which extends features defined in CSS2. At present, 50
CSS modules have issued from the W3C’s CSS Working Group, but only
four have attained Recommendation status — namely, Media Queries,
Namespaces, Selectors Level 3, and Color. Others are relatively stable
and have reached Candidate Recommendation status, including the
Backgrounds and Borders module, as well as Multi-Column Layout. The
rest are still in various stages of completion.

 CSS4 follows the module approach introduced with CSS 3 so there is no
single, monolithic CSS4 specification. Only a few Level 4 modules are cur-
rently in development, because so few Level 3 modules have been completed.
(Image Values, Backgrounds and Borders, and Selectors are the best-known
Level 4 modules being worked on at present.)

Most modern web browsers, such as Internet Explorer versions 9 and 10,
Chrome versions 20 and later, Firefox version 17 or later, and so forth,
fully support CSS2.1. Support for CSS3 varies by module, where all of the
Recommendation status items are typically supported, but with varying
degrees of support for other modules. CSS4 enjoys little or no support from
these same browsers (except for experimental or beta implementation).

 As with HTML5, we provide information only about widely adopted and used
CSS markup in this book. We assume you want to build workable and predict-
able web pages and sites. That’s why we steer clear of specifications and
modules that aren’t well understood and widely implemented here.

Creating CSS markup
Interestingly, any HTML document can include style information written
using CSS markup. Nevertheless, most web developers isolate CSS markup in
separate style sheet documents and use links to those independent external

22 Part I: Getting Started with HTML and CSS on the Web

style sheets in their web pages (HTML documents). This technique helps
keep content separate from presentation, encourages reuse of style sheets,
and makes it easy to update presentation for multiple pages by editing the
style sheets they reference rather than having to incorporate changes into
a whole raft of web pages. Another important advantage to this approach is
that it encourages use of standard style sheets — like the ones you see refer-
enced in Listing 1-1 in this very chapter, in fact — where local customization
comes from reference to local style sheets.

Building a style sheet requires some knowledge of the HTML elements that
will appear on your web pages, and it requires you to define properties and
values to manage how those elements will look and where they should be
positioned on those pages. CSS offers incredible control over presentation,
which in turn requires extensive testing and tweaking to get things just right.
Furthermore, CSS permits classes or unique identifiers to be used, so you
can associate a set of style rules with a single type or even a single instance
of an HTML element on your pages. Thus, you can define basic style rules for
entire HTML elements and then override them with specific rules for things
such as page headers, page footers, certain types of paragraphs, and even
individual instances of HTML elements. This provides incredible power over
layout, look, and feel on web pages.

Dissecting a Simple Markup Example
Flip back to take another look at Listing 1-1. Careful examination of this short
listing shows quite a bit of HTML, but only indirect references to CSS.

Where’s the HTML?
The HTML elements you see in Listing 1-1 are as follows, in their order of
appearance:

 ✓ The <html> tag starts the web page, and </html> ends it.

 ✓ The markup between <head> and </head> defines general information
for the entire web page.

 ✓ The text inside the <title></title> element provides the page title.

 ✓ The <meta> element provides information about page content and dis-
play layout.

 ✓ A <link> element establishes a link to an external resource; in this
case, to two different CSS style sheets.

23 Chapter 1: An Overview of HTML and CSS on the Web

 ✓ The markup between <body> and </body> supplies actual page content.

 ✓ The <div></div> element defines two different content divisions on
the page, one for navigation, the other for page content.

 ✓ The navigation <nav></nav> element defines a navigation bar.

 ✓ The anchor <a> element defines hypertext links.

 ✓ The heading1 <h1></h1> element defines a level-1 heading.

 ✓ The paragraph <p></p> element defines a paragraph of text.

 ✓ A figure <figure></figure> element defines a graphic with a caption.

 ✓ The image element links to a graphic for display, with horizontal
and vertical dimensions and alternative text in case the image doesn’t
appear.

 ✓ A figure caption <figcaption></figcaption> element labels the
figure caption.

 ✓ A document footer <footer></footer> element defines text for the
bottom of the page.

Put all these elements together, add attribute values and text, and you have
the web page shown in Figure 1-2.

Where’s the CSS?
There is no CSS per se in Listing 1-1. Rather, you find links to two external
style sheets, one named main.css and the other normalize.css. As it hap-
pens, these two style sheets are the results of considerable work from the
HTML5 community to create standard HTML styling that looks the same (or
at least, very close) across multiple browsers. This project is called HTML5
Boilerplate, and it describes itself as “a professional front-end template
for building fast, robust, and adaptable web apps or sites.” Check it out at
http://html5boilerplate.com; you can also find a nice showcase of
cool examples based on this template at http://h5bp.net.

A partnership of equals
It’s tempting to treat CSS as an afterthought to HTML or somehow secondary
to HTML. You must have content before you can have presentation, right?
Although that’s true, you can’t deliver content without presentation, either,
and a good presentation is just as important to the success and usability of a
web page as is the content that it handles in a web browser.

http://html5boilerplate.com
http://h5bp.net/

24 Part I: Getting Started with HTML and CSS on the Web

That’s why it’s important to understand both HTML and CSS. You use HTML
to control what goes into a web page, and you use CSS to control where
and how it appears; what it looks (or sounds, or even feels) like; and how it
behaves. Both HTML and CSS are essential to a well-crafted web page, so you
should devote equal attention and energy to understanding both HTML and
CSS, neither one to the detriment of the other.

’Nuff said!

2
Meeting the Structure and

Components of HTML
In This Chapter
▶ Understanding syntax and rules in markup languages
▶ Examining entities in markup
▶ Organizing web pages
▶ Exploring a web page

W
orking with a markup language such as HTML requires that you
understand the conventions used to insert markup into a text file and

make sense of the sometimes-cryptic strings of text you may see as a result.
But as you dig into the details, it all starts to make a certain kind of sense —
a sense you should seek to develop and cultivate if you want to build or edit
markup on web pages. Stick with us here, please, as we talk you through
some important details involved in reading and understanding HTML.

Like Any Language: Syntax and Rules
HTML is called a markup language for a very good reason: It grabs ordinary,
normal text and inserts various strings into that text to define, organize, and
manage the flow and sequence of content on web pages. The inserted strings
define the markup, which web browsers — or other special programs known
as user agents — pore over and use (along with CSS, of course) to guide their
display of the content included.

Like any language, HTML is subject to a specific syntax, which defines the
order in which markup must or can appear in a web page. There are also lots
of interesting rules about what kinds of markup is legal in certain places but
illegal in others. This may seem like a difficult concept, but these restrictions
in HTML illustrate what this means and why it makes very good sense:

26 Part I: Getting Started with HTML and CSS on the Web

 ✓ The <caption> element is for providing a caption for a table. Thus it
can appear only inside <table> markup. If you want to provide a cap-
tion for a figure, you must use the <figcaption> element instead. You
need to employ the right markup for the right uses in HTML.

 ✓ HTML recognizes various kinds of lists, which can organize text items
with numbers or bullets, as the markup directs. List items employ the
 tags to identify individual items in such lists. That’s why
those particular tags are legal only if they occur within some kind of list
element, such as (an unordered, or bulleted list) or
 (an ordered, or numbered list).

 Chapter 5 covers lists in great detail. That chapter tells you about the
markup to create various lists in web pages using HTML.

 ✓ HTML supports all kinds of fields and input controls for online forms.
As with tables, forms-related elements can appear only inside a pair
of <form></form> tags. There are lots of forms-related elements and
attributes that can appear only in such a context. These include numer-
ous input types, various kinds of text boxes, button controls, and more.
All of them are legal only in a form, so they must occur between <form>
and </form> on a web page if they are to work.

 Chapter 7 covers forms in great detail. That chapter explains the markup
to create all kinds of forms on web pages using HTML.

Understanding HTML largely boils down to grasping how to create the markup
it uses (that’s the syntax) and understanding the order (or context) in which
individual markup elements may appear. Those are the rules for creating
valid or legal HTML. Much of this book is devoted to one or both of these
topics. The same observations are true for CSS also, by the way, except that
the syntax and the rules for its expression are different because CSS is a dif-
ferent markup language from HTML.

Color-coding the markup
As we present HTML and CSS information in our code examples in this book,
we use color-coding to help you distinguish what’s what by way of markup.
Here is a color key that you should keep in mind as you peruse our various
code listings elsewhere in the book:

27 Chapter 2: Meeting the Structure and Components of HTML

We colorize markup only in code listings and code blocks because it affects
readability too much when code appears in body copy — that is, within ordi-
nary paragraphs of text like this one. In paragraphs like this, we simply use
a different, monospaced font — as you’ve already seen in our discussions of
<form> and <table> markup (and other HTML elements) in the preceding
section.

One more thing: If you use an HTML editor, such as Aptana Studio, HTML-
Kit, Dreamweaver, KompoZer, or whatever, you find these tools also use text
color to help you identify different kinds of markup. Alas, none of them do
this in the exact same way, so the color scheme we present here in this book
will be different depending on the HTML editor you use.

Breaking down the elements
Elements are the building blocks for HTML. You use them to describe each
piece of text on your web page. Elements are made up of tags and the content
within (or between) those tags. In HTML, there are two main kinds of elements:

 ✓ Elements with content made up of a tag pair and whatever text sits
between the opening and closing tags in the pair

 ✓ Elements that insert something into the page, using a single tag

Tag pairs in HTML
Elements that describe content use a tag pair to mark the beginning and end,
with everything inbetween representing the element content. Tag pairs begin
with an opening tag, followed by some content, and end with a closing tag,
like this: <title>Titles Are Easy, Content Is Hard</title>.

Content — such as articles, asides, paragraphs, headings, tables, and lists —
always uses tag pairs, where

 ✓ The opening tag (<tag>) tells the browser, “The element begins here.”

 ✓ The closing tag (</tag>) tells the browser, “The element ends here.”

Actual content is the stuff between the opening and closing tags. Here’s a
paragraph snippet from Ed’s bio at www.edtittel.com/about/about-ed.
html:

<p>Ed Tittel has worked over 30 years in the computing
industry. He’s worked as a software developer and
development manager, a networking consultant, a trainer
and course developer, and a technical evangelist . . . </p>

http://www.edtittel.com/about/about-ed.html
http://www.edtittel.com/about/about-ed.html

28 Part I: Getting Started with HTML and CSS on the Web

Single tags
Elements that insert something into a page are called empty elements
(because they enclose no content) and use a single tag, like this: <single-
tag>. Images and line breaks insert something into an HTML file and use a
single tag (empty element) — namely, and
, respectively.

 In HTML5, empty elements don’t require special treatment. In an earlier ver-
sion known as XHTML (based on the XML markup language), empty elements
are required to end with a slash just before the closing angle bracket, so what
we wrote as <single-tag> on the previous page in HTML5 (and HTML4,
for that matter) would be written as <single-tag/>. For backward compat-
ibility with HTML4, this would often be written as <single-tag /> because
that space preceding the slash enabled older browsers to recognize the
element properly even if they didn’t parse the markup as XHTML. You may
encounter the extra space and the closing slash in pages you look at, so don’t
let it bother you. These contortions no longer apply in HTML5.

For example, the element references an image. When the browser dis-
plays the page, it replaces the element with the file that it points to.
(An attribute does the pointing, as is shown in the next section.)

 However appealing the concept may seem, you can’t make up your own
HTML elements. Legal elements for HTML belong to a very specific set — if
you use elements that don’t belong to that set, the browser simply ignores
them. The elements you can use are defined in the various HTML specifica-
tions. (The version of the HTML5 specification that was current as we were
writing this book can be found at www.w3.org/TR/html51.)

Nesting markup
Some HTML page structures can contain nested elements. Think of them as
suitcases that fit neatly inside one another. For example, a bulleted list uses
two kinds of elements:

 ✓ The element specifies that the list is unordered (bulleted).

 ✓ The element marks each item in the list. (The li stands for “list item.”)

When you combine elements using this approach, you must close all inside
list item elements before you close the unordered list element, like this:

 Item 1
 Item 2

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.w3.org/TR/html51/

29 Chapter 2: Meeting the Structure and Components of HTML

Adding Attributes to Your HTML
Attributes introduce variety or specificity into how an element describes con-
tent or how that element works or behaves. Attributes let you use elements
differently depending on the circumstances. For example, the element
uses the src attribute to specify a location for an image you want to display:

<img src=”images/header.png” alt=”header graphic”
 width=”800” height=”160” title=”banner graphic”>

In this bit of HTML, the element is a general flag to the browser that
you want to include an image. The attributes handle all the fine details:

 ✓ The src attribute provides the specifics for the image you want to use —
header.png in this case.

 ✓ The width and height attributes provide information about how to
display that image on the page.

 ✓ The alt attribute provides a text alternative to the image, which is useful
because a text-only browser can display the text, or a text-to-speech
reader can say it aloud for the visually impaired.

 ✓ The title attribute creates a pop-up text message that appears over
the image when a user moves the mouse inside its borders.

Chapter 9 describes the element and its attributes in glorious detail.

If you want to define attributes for any HTML element, they must appear
inside the opening tag for that element, or inside the only tag for an empty
element. They belong after the element name but before the closing angle
bracket in that tag, like this:

<tag attribute1=”value” attribute2=”value”>

 HTML5 syntax rules decree that attribute values must always appear inside
quotation marks, but you can include attributes and their values in any order
you like within the opening tag or a single tag for an empty element.

Every HTML element has a collection of attributes that may be used with it,
but you can’t mix and match attributes and elements however you please.
Some attributes can take any text as a value because that value might be any-
thing, such as the location of an image or a page to which you’d like to link.
Other attributes impose a specific list of values they can take, such as your
options for aligning text in a table cell (left, right, center, and so on).

30 Part I: Getting Started with HTML and CSS on the Web

The various HTML specifications define exactly which attributes you can use
with any given element, and which values (if explicitly defined) each attribute
can take.

Each chapter in Parts II and III covers the attributes you can use with each
HTML element mentioned therein. Also, please see our online content for
complete lists of deprecated HTML (and XHTML) tags and attributes. (Note:
In HTML-speak, deprecated means that a tag or attribute should no longer be
used, as it may become obsolete soon and will no longer be legal markup.)

Examining Entities in Markup
Text makes the web possible, but it’s subject to limitations. Entities, also known
as character entities, define codes to display special characters in your web
pages.

Non-ASCII characters
Basic American Standard Code for Information Interchange (ASCII) text
defines a fairly small number of characters (127 in the basic 7-bit codes; 255
in the 8-bit extended codes). It doesn’t include some special characters, such
as trademark symbols, fractions, and accented characters.

For example, if we translate a paragraph of text from Ed’s bio into German, the
result includes three u characters with umlauts (ü), depicted in Figure 2-1.

Figure 2-1: ASCII text can’t represent all text
characters, so HTML uses entities, too.

ASCII text doesn’t include an umlauted u, so HTML uses entities to repre-
sent such characters. The browser replaces the entity reference with the
character it stands for. Each entity begins with an ampersand (&) and ends

31 Chapter 2: Meeting the Structure and Components of HTML

with a semicolon (;). Entities originate from a markup language called SGML
and appear in a light blue font in Aptana Studio. In Listing 2-1, look in the
paragraph of text to find all three instances of the ü entity for each
umlauted u therein.

Listing 2-1: Adding an Umlaut

Character codes
Encodings for the ISO Latin-1 character set are supplied by default in all
modern web browsers. (Search for “ISO Latin-1 character set” to find a com-
plete table of values.) Thus, the character entities in that set may be used
directly in HTML markup without going through any special contortions.
However, using other encodings requires inclusion of special markup to tell
the browser to interpret Unicode character codes. (Unicode is an interna-
tional standard — ISO standard 10645, in fact — that embraces enough codes
to handle most human alphabets, plus plenty of symbols and non-alphabetic
characters, too.) This special markup takes this form:

<meta charset=”UTF-8”>

Because the charset value reads UTF-8, you can reference all common
Unicode values. (UTF-8 stands for UCS Transformation Format 8-bit, an
encoding format that represents all Unicode characters. Search for “Unicode
UTF-8 character table” to skim over its one-million-plus character codes.)

32 Part I: Getting Started with HTML and CSS on the Web

 Although today’s browsers support UTF-8 more or less universally, expect to
see support for UTF-16 character codes sometime soon. UTF-16 character
codes let browsers deal more effectively with non-Roman alphabets such as
Arabic, katakana (Japanese ideographs), and Hangul (Korean ideographs),
which some browsers struggle to render correctly and completely today.

(Special) tag characters
HTML-savvy software assumes that certain HTML characters, such as the left
and right angle brackets (less-than and greater-than signs in math notation)
are meant to be hidden and not displayed on your finished web pages. If you
actually want to display these characters on your pages, you must make your
wishes clear to the browser. The following entities enable display of charac-
ters that are normally part of hidden HTML markup:

 ✓ left angle bracket (<): <

 ✓ right angle bracket (>): >

 ✓ ampersand (&): &

If you need these symbols to appear, include their entities in your markup
like this:

<p>The paragraph element identifies some text as a Paragraph: </p>
<p><p>This is a paragraph</p></p>

Figure 2-2 shows how these entities appear inside a browser window.

Figure 2-2: Character entities enable display of
special characters in a browser window.

Organizing Web Pages
HTML documents — also known as web pages — always follow a regular, pre-
dictable structure. There’s also one special type of markup element, called a
comment, that lets content developers (that’s you) insert remarks that won’t
be displayed in any web browser, but will be readable to anyone who looks
at the HTML markup itself. You can do this for any web page you visit by

33 Chapter 2: Meeting the Structure and Components of HTML

choosing View➪Source in Internet Explorer or choosing equivalent opera-
tions in Chrome (Tools➪View Source), Firefox (Tools➪Web Developer➪Page
Source), and so forth.

In HTML, two special sequences of markup characters enclose a comment:

 ✓ Begin a comment with the string <!--

 ✓ End a comment with the string -->

HTML elements are organized into a structure, where

 ✓ Some elements may occur only inside other specific elements.

 ✓ Certain elements must appear within any well-structured HTML document,
err, web page.

In Listing 2-2, we use HTML comments to document basic HTML document
structure.

Listing 2-2: Documenting Basic HTML Structure

The preceding document is broken into two major divisions: a <head> and
a <body>. Within each of those divisions, certain kinds of elements appear.
Many combinations are possible: That’s what you see throughout this book!

34 Part I: Getting Started with HTML and CSS on the Web

 The file for the preceding example is named 02Listing01.html and
appears under the menu at the HTML5 Cafe (our complete collection of
examples and markup files found in this book, along with live links to any
URLs you encounter, organized by chapter number):

www.dummies.html\html5cafe\menu.html

Files associated with figures are named ccfigurenn.html, where cc is the
two-digit chapter number, and nn is the two-digit figure number.

Organizing HTML text
Beyond their mandatory division into head and body sections, text in the
body of an HTML document may be organized in any number of ways.

Document heads
Inside the <head> section, you may (and probably should) define all kinds of
labels and information, including a title. Such definitions help you describe
the document that follows, including the character sets it uses, metadata for
search engines and page descriptions, and instructions to the web server
that delivers your page, default style sheets, page refresh behavior, and lots
more. (Note: Metadata literally means “data about data” — in this case, it
means information about the web page that follows.) To find out more about
the HTML <meta> element, please visit these sites:

www.w3schools.com/tags/tag_meta.asp
www.quackit.com/html_5/tags/html_meta_tag.cfm
www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-

element.html

The <body> section is where real content lives in HTML documents and
where the vast majority of HTML elements and markup appears. In the fol-
lowing sections, we cover typical elements in an HTML <body>.

Document headings
Headings in HTML are usually denoted using elements <h1> through <h6>.
These are different from an HTML document <head> because they establish
running heads within document content in the <body>.

Text containers
The paragraph (<p>) element in HTML is probably the best known text con-
tainer, but HTML supports all kinds of other text containers, too. Other such
elements include the following (in alphabetical order):

http://www.dummies.html/html5cafe/menu.html
http://www.w3schools.com/tags/tag_meta.asp
http://www.quackit.com/html_5/tags/html_meta_tag.cfm
http://www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-element.html
http://www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-element.html

35 Chapter 2: Meeting the Structure and Components of HTML

 ✓ <article>: Represents an article, a piece of standalone content.

 ✓ <aside>: Represents content related to surround content that could
stand alone. (We use sidebars in For Dummies books for this kind of
thing.)

 ✓ <nav>: Declares the navigation section in an HTML document. This ele-
ment is usually reserved for tabs, buttons, or links to access major site
components.

 ✓ <header>: Presents standard content or information at the top of a web
page (banner, navigation aids, shared text, and so forth).

 ✓ <footer>: Presents standard content or information at the bottom of
a web page (copyright notices, minor navigation, feedback solicitation,
and so on).

HTML also includes all kinds of ways to emphasize or identify text inside
paragraphs or other text containers; Parts II and III of this book introduce the
important ones.

Lists
HTML supports easy definition of numerous kinds of lists, including bulleted
(unordered) lists, numbered (ordered) lists, and even lists of definitions
(which include terms and descriptions). You can nest lists within lists to create
as many levels of hierarchy as you might need. (Nesting your lists is particu-
larly useful when outlining a complex subject or modeling a table of contents
with numerous heading levels.) Chapter 5 covers lists in more detail.

Tables
In addition to a variety of listing mechanisms, HTML includes markup for
defining tables. Tables were really popular in the 1990s for managing complex
page layouts; today they’re used primarily for tables of information, as they
should be. Structure is part of how markup works, so within the definitions for
an HTML table, you can

 ✓ Distinguish between column heads, table data, and table footers or
comments.

 ✓ Manage how rows and columns are defined, with controls that let you
span rows or columns for grouping and organization.

Cascading Style Sheets (CSS) markup
CSS markup may occur in separate style sheet documents, in a block of text
inside an HTML document <head>, in a style attribute for an individual
HTML element within the document body, or in some combination of all
three forms. CSS provides detailed control over font selection, use of color
for text and backgrounds, positioning of text and other elements on a page,
and (as the old Ronco ad intones) much, much more!

36 Part I: Getting Started with HTML and CSS on the Web

You can dig into CSS in more detail in Parts IV and V of this book, but we
cover bits and pieces of CSS throughout the book as appropriate for the sub-
ject matter at hand. You can build a website without using CSS (using CSS
requires more work), but it’s the right tool for precise control over look and
layout. Highly recommended!

Complementing and enhancing text
Text-only web pages get boring fast. A spot of color, a few links, and some
nice-looking images can do a lot to add visual interest to your pages and to
help you retain your viewers’ interest and attention. That’s why we devote
considerable attention to this subject matter in various parts of this book.

Inserting images in HTML documents
Adding an image to any HTML document is easy. Careful and well-planned
use of images adds greatly to web pages. Chapter 9 explains how to grab
images from text files and shows you how to include them in your web pages.
It also explains how to use complex markup to position and flow text around
graphics or images. Along the way, you discover how to select and use inter-
esting, compelling images to add allure and information to your content.

Links and navigation tools
Web page structure should help visitors find their way around collections of
pages, look for items of interest, and get where they want to go quickly and
easily. Links provide the mechanism to bring people and your web pages
together, so Chapter 8 shows how to do the following:

 ✓ Reference external items or resources

 ✓ Jump from one page to the next

 ✓ Jump around inside a page

 ✓ Add structure and organization to your pages

The importance of structure and organization increases in direct relation to
the amount of information you want to present to visitors. The more you’ve
got to say or show, the more structure and organization count.

Navigation tools (which establish standard mechanisms and tools for moving
around inside a website) provide ways to create and present your web page
(and site) structure to visitors so they can use organized menus of choices.

When you add it all up, your result should be a well-organized set of informa-
tion and images that is easy to understand, use, and navigate.

3
Creating and Viewing a Web Page

In This Chapter
▶ Planning what you practice and assembling the ingredients
▶ Working through the edit-save-test cycle
▶ Viewing your very first web page

C
reating your own web page may seem scary, but it’s definitely fun, too.
Experience shows that the best way to get started is to jump in with

both feet. You might splash around a bit at first, but you can keep your head
above water if you try.

This chapter walks you through the steps involved in creating a web page.
We don’t stop to explain every last bit of markup you use — we save that
for other chapters. Instead, we want to make you comfortable working with
markup and content to create and view a suitably simple web page.

Before You Get Started
Creating HTML documents differs from creating word processor documents
using an application such as Microsoft Word. The difference comes from
having to use two applications with HTML document creation:

 ✓ Your text or HTML editor, where you create the web pages

 ✓ Your web browser, where you view the results

38 Part I: Getting Started with HTML and CSS on the Web

Even though many HTML editors, such as Dreamweaver and HTML-Kit, pro-
vide a browser preview, it’s still important to preview your web pages inside
actual web browsers (such as Internet Explorer, Chrome, Firefox, and Safari)
so you can see them as your end users do. Editing inside one program and
then switching to another to look at your work might feel odd, but you’ll be
switching between the editor and the browser like a pro in no time.

 Because not all web browsers are created equal (or identical), web pages
may look different depending on the browser you use. Get in the habit and
regular practice of previewing web pages in multiple browsers so that you
see what your end users see when they open that page. We used Chrome to
make all the screenshots in this book, by the way.

To get started on your first web page, you need two types of software:

 ✓ The latest version of Aptana Studio: Studio 3 is the current version as
we write this book. Go to www.aptana.com to get your copy.

 We discuss these tools in more detail in Chapter 23, but here’s a thumb-
nail sketch: Aptana Studio is a web project tool that works on Windows,
Mac OS, and Linux PCs.

 ✓ A web browser: Internet Explorer, Chrome, Firefox, and Safari are the
most popular web browsers, so make sure to test your pages in each of
them if possible.

We use the free web Aptana Studio development toolkit in this book, and
here’s why:

 ✓ Working with markup: Although an advanced HTML editor, such as
Expression Web or Dreamweaver, often hides your HTML from you,
Aptana lets you interact directly with the markup. For your first page,
you want to see your HTML in all of its (limited) glory.

 When you become familiar with XHTML and CSS markup, syntax, and
structure, you can really start to make Aptana Studio sing. It’s a good
tool and provides great HTML5 and web page template support, handles
CSS3 nicely, and offers good PHP, Ruby, and Rails support.

 ✓ Keeping the code clean: Word processors decked out with bells and
whistles (such as Microsoft Word) often insert extra information behind
the scenes (for example, formatting instructions to display or print
files). You can’t see or change that information while you’re editing, but
it messes with your HTML. With Aptana, you don’t have to worry about
those bells and whistles making noise in the background.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.aptana.com

39 Chapter 3: Creating and Viewing a Web Page

Creating a Page from Scratch
Using HTML to create a web page from scratch takes four basic steps, plus a
little advance preparation (programmers like to start counting from zero, so
we assign “Step number 0” to the necessary preparation activities):

 0. Gather your tools.

 1. Plan your page design.

 2. Combine HTML and text in a text editor to make that design a reality.

 3. Save your page.

 4. View your page in a web browser.

Break out your text editor, fire up your web browser, and roll up your
sleeves.

Step 0: Gather your tools
As you collect your tools, be sure to collect your wits about you, too. If you
haven’t already downloaded and installed Aptana Studio, please do so. The
download is about 146MB (size varies slightly by the OS you use), so it might
take a while to transfer, depending on the speed of your Internet connection.
After you’ve downloaded the file, launch it on your PC. (It self-installs on all
three operating systems.)

 Next, if you want your code listings in Aptana studio on your screen to look
like ours do in the book, you need to visit the HTML5 Cafe and download our
special Aptana theme. You can find it listed as Book Theme on this menu:

www.dummieshtml.com/html5cafe/menu.html

After you get the theme (it’s only 17KB, so it should download in a flash),
choose Window➪Preferences➪Aptana Studio➪Themes. Finally, click the
Import button, select the downloaded theme, and then click Apply. Figure 3-1
shows what this looks like in Windows; other OSs look something like this
but not exactly the same.

http://www.dummieshtml.com/html5cafe/menu.html

40 Part I: Getting Started with HTML and CSS on the Web

Figure 3-1: After you import the Beginning HTML5 and CSS3 FD theme,
your Aptana preferences should look like this.

Step 1: Planning a simple design
We’ve discovered that a few minutes spent planning an approach to the page
at the outset makes creation faster and easier. You don’t have to create a
complicated diagram or an elaborate layout in this step. Just jot down some
ideas for what you want on the page and how you want it arranged.

 You don’t even have to be at your desk to plan a simple design. Take a note-
pad and pencil outside and design in the sun, or scribble on a napkin while
you’re having lunch. Remember, this is supposed to be fun!

Our example is a take on the traditional “Hello World!” exercise used in nearly
every programming language: The first thing you practice when programming a
new language is how to make “Hello World!” appear onscreen. In our example,
we create a short letter to the world instead, so the page is more substantial
with additional text. Figure 3-2 shows a basic design for this page.

41 Chapter 3: Creating and Viewing a Web Page

Figure 3-2: Taking a few minutes to sketch your page design
makes writing HTML easier.

The design for the page includes four components:

 ✓ A serviceable title: Hello World!

 ✓ A few paragraphs explaining how HTML can help you communicate with
the whole world

 ✓ A closing: Sincerely

 ✓ A signature

 You may want to choose a basic color scheme for your page, to start. For our
example, we chose a teal background and white text with the title as noted.

When you know what kind of information you want on the page, you can
move on to Step 2 — writing the markup.

Step 2: Writing some HTML
You have a couple of options when you’re ready to create your HTML. In the
end, you’ll probably use some combination of the two:

42 Part I: Getting Started with HTML and CSS on the Web

 ✓ If you already have some text that you just want to describe with HTML,
save that text as a plain text file and add HTML markup around it.

 ✓ Start creating markup and add the content while you go.

 Our example starts with some text created in a simple text editor such as
Notepad (PC) or TextEdit (Mac). Save your content as a text file. (Leave your
text editor open — you’re going to return to it in a minute.) Next, fire up
Aptana and choose File➪New➪Web Project. In the New Web Project window,
click Next, name your project BegHTML5&CSS3, browse to put the project in
an easy-to-remember location (we used a folder named Aptwork where we
keep all our Aptana projects), and then click Finish.

Next, choose File➪New➪File, pick your project folder in the Parent Folder
frame, and name your file html-letter.html in the File Name text box.
Now you can cut and paste the contents of your plain-text file into Aptana
and add markup around the text. When you’re done, you should see what’s
shown in Figure 3-3.

Figure 3-3: Here’s the plain text for our page, completely sans
markup in Aptana.

The following code shows you what you must add to this prose to turn it into
a fully functional HTML file. As you type HTML tags in Aptana, the program
creates complete tag pairs as soon as it recognizes what you’re typing. You’ll
have to cut the closing tags from where they appear and then paste them
where you want them to go, as shown in the following listing.

43 Chapter 3: Creating and Viewing a Web Page

Listing 3-1: The Complete HTML Page for the “Hello World!” Letter

The HTML markup includes a collection of markup elements and attributes
that describe the letter’s contents:

 ✓ The <html> element defines the document as an HTML document.

 ✓ The <head> element creates a header section for the document.

 ✓ The <title> element defines a document title that is displayed in the
browser’s title bar.

 The <title> element is inside the <head> element.

44 Part I: Getting Started with HTML and CSS on the Web

 ✓ The <body> element holds the text that appears in the browser window.

 The markup that follows the style attribute inside the <body> element
is CSS, otherwise known as the Cascading Style Sheets markup language.
This particular bit of CSS says we want white text on a teal background,
where the text is larger than usual, and in a sans-serif font. (You find out
all about styles and attributes in Chapters 11 and 12.)

 ✓ The <h1> element marks “To Everybody . . .” as a first-level heading.

 ✓ The <p> elements identify each paragraph of the document.

 Don’t worry about the ins and outs of how these HTML elements work.
They’re covered in detail beginning with Chapter 4. Also, a web page includes
graphics, scripts, and other elements that we deliberately avoid in this con-
trived and simple example to keep things, well, simple! We cover all these
things in profuse detail later in the book, though.

After you create an HTML page (or the first chunk of it that you want to
review), you must save it before you can see your work in a browser.

Step 3: Saving your page
You use an editor to create HTML documents and a web browser to view
them. Before you can let your browser loose on your HTML page, you must
save that page. When you’re just building a page, you should save a copy of
it to your local hard drive and view it locally with your browser. To save a
file in Aptana, click the Save icon on the toolbar at the top-left corner of the
window. (The icon looks like a small, blue floppy disk, for readers old enough
to know what that means.)

Choosing a location and name for your file
 When you save your file to a hard drive, keep the following in mind:

 ✓ You need to be able to find it again. Create a project folder on your
hard drive especially for your web pages. Call it something that makes
sense to you and be sure to put it somewhere easy to find. We put ours
on a project drive, in a project named BegHTML5&CSS34D. Choose
File➪New➪Web Project, click the Next button, and then select the
Default Project (No Template) option to set this up. Create a project
name that makes sense to you, such as LearningHTML.

 ✓ The name should make sense to you so you can identify file contents
without actually opening the file. Don’t put spaces in filenames. Some
operating systems — most notably Unix and Linux, the most popular
web-hosting operating systems around — don’t like spaces in filenames;

45 Chapter 3: Creating and Viewing a Web Page

use an underscore (_) or a hyphen (-) instead. Avoiding other punctua-
tion in filenames and keeping them short is also good.

 ✓ The name should work well in a web browser. Create a short descrip-
tive name for the page that tells you what it’s for or about. We used
html-letter.html for this example because it identifies the content
nicely. You may also use names to identify structure and content, such
as pt1-toc.html for a table of contents for part 1 of a complex page
sequence, and perhaps pt1-pg1.html, pt1-pg2.html, and so forth
for subsequent pages in that same sequence.

In our example, we saved our file in a project called BegHTML5&CSS3FD and
named it (drum roll, please) html-letter.html, as shown in Figure 3-4.

Figure 3-4: Use a handy location and logical project and
filenames for your web pages.

Using .htm or .html
You can actually choose from one of two suffixes for your pages: .html or
.htm. (Our example filename, html-letter.html, uses the .html suffix.)

 The shorter .htm is a relic from the 8.3 DOS days when filenames could only
include eight characters plus a three-character suffix that described the file’s
type. Today, operating systems can support filenames and suffixes that are
longer than three letters, so we suggest you stick with .html.

Web servers and web browsers handle both .htm and .html equally well.

 Stick with one filename approach. The .html and .htm files are treated the
same by browsers and servers, but because they’re different suffixes they
represent different filenames; therefore, html-letter.html is different
from html-letter.htm. This matters a lot when you create hyperlinks
(covered in Chapter 8).

46 Part I: Getting Started with HTML and CSS on the Web

Step 4: Viewing your page
After you save a copy of your web page, you’re ready to view it in a web
browser. Follow these steps to view your web page in Internet Explorer. (The
steps may be different if you’re using a different browser.):

 1. If you haven’t opened your browser, do that now.

 2. Choose File➪Open in Internet Explorer. If you’re using Chrome, press
Ctrl+O (in Windows) or ⌘+O (on the Mac).

 3. In the Open dialog box that appears, click the Browse button.

 4. In the new dialog box that appears, navigate your file system until you
find your HTML file and then select it so it appears in the File Name area.

 Figure 3-5 shows a highlighted HTML file ready to be opened.

Figure 3-5: Using Chrome to navigate to your web pages.

 5. Click the Open button.

 You’re brought to the Open dialog box. (Note: If you’re connected to the
Internet, some versions of Internet Explorer warn you that for security
reasons they must open a new browser window for your local file; this is
perfectly okay.)

 6. Click OK.

 The page appears in your web browser in all its glory, as shown in
Figure 3-6.

47 Chapter 3: Creating and Viewing a Web Page

Figure 3-6: Viewing a local file in Chrome.

 You aren’t actually viewing this file on the web just yet; you’re just viewing
a copy of it saved on your local hard drive. So don’t give anyone the URL for
this file — but do feel free to edit the HTML source file and view any changes
you make.

 An even faster way to view a web page locally in a browser is to drag and
drop the HTML file into an open browser window. You can do this from File
Explorer, Finder, or any program that gives you file-level access.

Editing an Existing Web Page
Chances are good that you’ll want to change one thing (at least) about your
page after you view it in a web browser for the first time. After all, you can’t
really see how the page looks when you’re creating the markup. You might
decide that a first-level heading is too big or that you really want purple text
on a green background (horrible idea, actually).

To make changes to the web page you’ve created in Aptana and are viewing
in a browser, repeat these steps until you’re happy with the final appearance:

 1. Leave the browser window with the HTML page display open and go
back to Aptana.

48 Part I: Getting Started with HTML and CSS on the Web

 2. If the HTML page isn’t open in Aptana, open it.

 You should have the same file open in both the browser and the text
editor, as shown in Figure 3-7.

Figure 3-7: Viewing an HTML file in your editor and web browser at the same time.

 3. Make your changes to the HTML and its content in the text editor.

 4. Save those changes.

 This is an important step. If you don’t save your changes, you won’t see
them in the web browser.

 5. Move back to the web browser and click the Refresh button.

 If you keep an HTML file open in both an editor and a browser while you
work, checking changes is a breeze. You can quickly save a change in the
editor, flip to the browser and refresh, flip back to the editor to make more
changes, save, then flip back to the browser and refresh again, and so on.

In our example letter, we decided — after our initial draft of the HTML page —
that we should add a date to the letter. Figure 3-8 shows the change we made
to the HTML to add the date, and the result appears in the browser.

 This approach to editing an HTML page applies only to pages saved on your
local hard drive. If you want to edit a page that you’ve stored on a web server,
you have to save a copy of the page to your hard drive, edit it, verify your
changes, and then upload the file again to the server, as discussed in the fol-
lowing section.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

49 Chapter 3: Creating and Viewing a Web Page

Figure 3-8: A change in the HTML displays in a browser after a quick save and refresh.

Posting Your Page Online
When you’re happy with your web page, it’s time to put it online. Here’s a
lightning-fast overview of that process:

 1. Find a web hosting provider to proffer your web pages.

 Your web host might be a company web server or a server that you pay
an Internet service provider (ISP) to use. If you don’t have a host yet,
double-check with your Internet ISP to find out whether you get web-
server access along with your service package. Regardless of where you
find space, get details from the provider on where to move your site’s
files and what URL to use.

 2. Use an FTP client or a web browser to make a connection to your web
server.

 Use the username and password, as specified in the information from
your hosting provider, to transfer files to your web server.

 3. Copy the HTML file from your hard drive to the web server.

 4. Use your web browser to view the file via the Internet.

For example, to host our letter online at www.dummieshtml.com, we used
the FileZilla FTP client to access the site and provided a login name and
password, which we set up on our server. A collection of folders and files
appeared.

http://www.dummieshtml.com/

50 Part I: Getting Started with HTML and CSS on the Web

We copied the file to the server with a simple drag-and-drop operation inside
FileZilla.

The URL for this page is www.dummieshtml.com/html5cafe/ch03/html-
letter.html, and that page is now served from the Internet instead of from
a local file system, as shown in Figure 3-9.

Figure 3-9: A file on a web server is available to anyone with
an Internet connection.

http://www.dummieshtml.com/html5cafe/ch03/html-letter.html
http://www.dummieshtml.com/html5cafe/ch03/html-letter.html

Part II
Getting the Structure and

Text Right

To find out more about HTML5 markup elements and attributes, visit www.dummies.
com/extras/beginninghtml5css3. You can also visit our book site at www.
dummieshtml.com.

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummies.com/extras/beginninghtml5css3
http://www.dummieshtml.com/
http://www.dummieshtml.com/

In this part . . .
 ✓ Digging into HTML document structure
 ✓ Building better bodies to go with great heads
 ✓ Appreciating block-level versus inline text elements
 ✓ Building better lists with bullets, numbers, or definitions
 ✓ Teasing out tables in HTML markup — using lots of

options!
 ✓ Soliciting user input or feedback by using HTML forms

4
HTML Documents Need

Good Structure
In This Chapter
▶ Creating basic HTML document structure
▶ Defining an HTML document header
▶ Creating a full-bodied HTML document

T
he framework for a simple HTML document consists of a head and body.
The head provides information about the document to the browser

(and sometimes also to the web server), and the body contains content that
appears in the browser window. The first step in creating any HTML docu-
ment is to define its framework.

This chapter covers all major elements needed to craft basic structure for an
HTML document — including its head and body. We also show you how to
tell a browser which version of HTML you’re using. Although version infor-
mation isn’t strictly necessary for users, browsers use it to make sure they
display document content correctly.

Establishing a Document Structure
Although no two HTML pages are alike — each employs a unique combina-
tion of content and elements to define a page — every properly constructed
HTML page follows the same basic document structure:

 ✓ A statement that identifies the document as an HTML document

 ✓ A document header

 ✓ A document body

Each time you create an HTML document, you start with these elements.
Then you fill in your content and markup to create an individual page.

54 Part II: Getting the Structure and Text Right

 Although a basic document structure is a requirement for every HTML docu-
ment, creating it over and over again can get monotonous. Most HTML-
editing tools set up basic document structure automatically whenever you
create a new document. Or you can check out the HTML5 Boilerplate project
(http://html5boilerplate.com) for a complete site-building template —
but first, you should probably work through this book so you’ll understand
better what you’ll find there.

HTML Document Organization Revisited
An HTML document consists of a collection of markup elements — some
required, many optional — where you can always find at least three elements:

 ✓ The <html></html> opening and closing tags follow the DOCTYPE dec-
laration and contain everything else inside the HTML document.

 ✓ The <head></head> opening and closing tags follow the opening
<html> tag. They contain definitions, labels, and information about the
HTML document body that follows.

 Only certain markup elements are legal inside an HTML document
head (which is another way of saying “may appear between the
<head> and </head> tags”). The legal elements include base, link,
meta, script, style, and title. (Collectively, these are known as
HTMLHeadElements in the language of the HTML5 specification.)

 ✓ The <body></body> opening and closing tags follow the closing </
head> tag. They include the content and related markup for the HTML
document. This is where 99 percent of the stuff that actually appears
inside a web browser lives.

 Any HTML markup element can appear in an HTML document body unless
that element is the DOCTYPE, a major organizational container (namely,
<html>, <head>, or <body>), or an element allowed only in a document head.

You could create an HTML document with no content in the <body>, but why
would you want to? It would display only a title and no other information. We
actually do just that later in this chapter, so you can observe this exercise in
futility without having to try it for yourself.

Likewise, you could build a complex body with only minimal markup in the
<head> section (the <title> element is required, all other head-only ele-
ments are optional), but users and search engines that find your page might
miss out on important info. That’s why a properly structured HTML document
includes a well-constructed <head> along with an equally well-crafted <body>.
For HTML documents, a body needs a head, and a head needs a body.

http://html5boilerplate.com/

55 Chapter 4: HTML Documents Need Good Structure

HTML DOCTYPE Starts Things Off
First up in any HTML document sits a Document Type Declaration (DTD), or
DOCTYPE declaration. This line of markup specifies which version of HTML
(or XHTML) you’re using and also lets browsers know how to interpret what
follows. We use the HTML5 specification in this chapter because that’s what
we want our readers to use. As an added bonus, it’s dead simple — much
more so than earlier HTML (and XHTML) versions, in fact.

Going back in time gets complicated
If you choose to create an HTML 4.01 or an XHTML 1.0 document by using previous versions of
markup languages, you must choose from three possible DOCTYPE declarations for each of the
following flavors:

 ✓ HTML 4 .01 Transitional: This is the most inclusive version of HTML 4.01, and it incorporates all
HTML structural elements as well as all presentation elements:
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>
 ✓ HTML 4 .01 Strict: This streamlined version of HTML excludes all presentation-related elements

in favor of style sheets as the means to drive page display:
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.

w3.org/TR/html4/strict.dtd”>
 ✓ HTML 4 .01 Frameset: This version begins with HTML 4.01 Transitional and adds all the elements

that make frames possible (frames are no longer recommended, though):
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>
 ✓ XHTML 1 .0 Transitional: This is the most inclusive version, as with HTML 4.01 Transitional:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 ✓ XHTML 1 .0 Strict: This version drops presentation markup, as in HTML 4.01 Strict:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 ✓ XHTML 1 .0 Frameset: This version adds the elements that make frames possible, as with HTML

4.01 Frameset, but see also the nearby warning about framesets (they’re no longer recom-
mended).
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

56 Part II: Getting the Structure and Text Right

HTML5 uses a minimal Document Type Declaration at the very outset of HTML
documents. Here’s what it looks like:

<!DOCTYPE html>

No kidding: That’s all you need. That’s as simple as HTML gets.

 Using HTML framesets or XHTML framesets is no longer considered a best
practice. It exposes pages to security problems and makes markup much
trickier to test and debug. That’s why we skip frame markup in this book!

 All the HTML DTDs are documented in detail at www.w3.org/TR/html401/
sgml/dtd.html; the XHTML DTDs are documented at www.w3.org/TR/
xhtml1/dtds.html.

The best possible course of action for you is to get with the HTML5 program
and breeze past all that old-fashioned HTML 4.01 and XHTML 1.0 stuff.

The <html> Element
After you specify the HTML DOCTYPE, you must add an <html> element to
contain all other HTML markup and document content in your page:

<!DOCTYPE html>

<html>

</html>

The opening <html> element says “Hey! HTML document starts here.” The
closing </html> element says, “Okay, this is the end of the document.
Game over!”

Anatomy of the <head>
HTML document structure is hierarchical, so an entire document includes
a head section. Thus, immediately following the opening <html> element is
where you define the head section, starting with an opening <head> element
and ending with a closing </head> element.

http://www.w3.org/TR/html401/sgml/dtd.html
http://www.w3.org/TR/html401/sgml/dtd.html
http://www.w3.org/TR/xhtml1/dtds.html
http://www.w3.org/TR/xhtml1/dtds.html

57 Chapter 4: HTML Documents Need Good Structure

Meeting the <head> himself
The head is one of two main components in any HTML document; the body is
the other main component. The head, or header, provides basic information
about the document, including its title and metadata (information about infor-
mation), such as keywords, character encoding, author information, and a
description. If you want to use an external style sheet within a page, informa-
tion about that style sheet also goes into the header. Please do likewise —
that is, add information to the head — if you want to establish a base for
URLs referenced in a document, or call a script.

 Chapter 11 provides a complete overview of creating Cascading Style Sheets
(CSS) and shows how to include them in HTML documents.

The <head> element, which defines the page header, immediately follows the
<html> opening element:

<!DOCTYPE html>

<html>
 <head>
 </head>
</html>

Handling metadata with <meta>
Literally, metadata means data or information about data. Thus, the meta ele-
ment is used to provide information about the HTML document inside which
it appears. All <meta> elements always appear inside the HTML <head>, and
may be used to define the character encoding — that is, the bit level codes
used to represent character data — inside an HTML document. They can also
define keywords for search engines, describe document content, identify the
document’s author, define a document refresh interval (the interval at which
a page automatically reloads itself), and more.

Listing 4-1 shows all of these things for a hypothetical HTML document.

Listing 4-1: An HTML Document
<!DOCTYPE html>

<html>
 <head>
 <meta charset=”UTF-8”> <!-- defines default HTML character codes -->
 <meta name=”keywords” content=”HTML, CSS, meta tag examples”>
 <meta name=”author” content=”Ed Tittel”> <!-- identifies author -->

58 Part II: Getting the Structure and Text Right

 <meta name=”description” content=”meta element discussion -->
 <meta http-equiv=”refresh” content=”1800”> <!-- refresh every 30 mins -->
 <title>Lots of head markup, no body</title>
 </head>
 <body></body>
</html>

A <meta> element that identifies a charset is required for a web page to
validate at validator.w3.org. (as is a <title> element, covered in the
next section). Don’t leave them out! For more information about the HTML
<meta> element, for which there are umpty-ump cases and examples, please
consult one or more of the following:

 ✓ HTML5: Edition for Web Authors (The meta Element)

www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-
element.html

 ✓ HTML <meta> Tag (W3Schools)

www.w3schools.com/tags/tag_meta.asp

 ✓ <meta> (Mozilla Developer Network)

https://developer.mozilla.org/en-US/docs/HTML/Element/
meta

If you take the time to enter the HTML markup from Listing 4-1, you see a web
page with the title “Lots of head markup, no body” but nothing else to show
for itself. If you can’t see the full title in the browser tab, hover the mouse
cursor over the title, and the whole thing appears in a small text box. If you’d
rather skip the text entry work, check out the screenshot in Figure 4-1.

Figure 4-1: A page with no content shows title text in the header but nothing else.

Redirecting users to another page
You can use metadata in your header to send messages to web browsers
about how they should display (or otherwise handle) your web pages. Web
builders commonly use the <meta> element this way to redirect page visitors

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-element.html
http://www.w3.org/TR/2011/WD-html5-author-20110705/the-meta-element.html
http://www.w3schools.com/tags/tag_meta.asp
https://developer.mozilla.org/en-US/docs/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/HTML/Element/meta

59 Chapter 4: HTML Documents Need Good Structure

from one page to another automatically. For example, if you’ve ever come
across a page that reads This page has moved. Please wait 10 sec-
onds to be automatically sent to the new location. (or some-
thing similar), you’ve seen this trick at work.

To use the <meta> element to send messages to the browser, here are the
general steps you need to follow:

 1. Use the http-equiv attribute in place of the name attribute.

 2. Choose from a predefined list of values that represent instructions for
the browser.

 These values use instructions that you can send to a browser in the
HTTP header, but changing the HTTP header for a document is harder
than embedding the instructions into the web page itself.

To instruct a browser to redirect users from one page to another, here’s what
you need to do in particular:

 1. Use the <meta> element with http-equiv=”refresh”.

 2. Adjust the value of the content attribute to specify how many sec-
onds before the refresh happens and what URL you want to access.

For example, the <meta> element line in the following markup creates a
refresh that jumps to www.w3.org after 15 seconds:

<!DOCTYPE html>

<html>
 <head>
 <title>All About Markup</title>
 <meta charset=”UTF-8”>
 <meta http-equiv=”refresh” content=”15; url=http://www.w3.org/”>
 </head>

 <body>
 <p>This page is still in development. Until we are done, please visit
 the W3C Website for the definitive
 collection of markup-related resources.
 </p>

 <p>Please wait 10 seconds to be automatically redirected to the W3C.</p>
 </body>
</html>

 Use metadata with caution when redirecting a web page. When some search
engines see metadata redirects in use, they may assume the site is trying
to create spam. This could result in your website or page being delisted, or
removed from a search engine’s listings. When you become a pro at using

60 Part II: Getting the Structure and Text Right

metadata to redirect, you can step up to the next level and try redirect-
ing using HTTP status code 301 to force a server-based redirect from an
*.htaccess file located in the root directory on your web server. Although
server-based 301 redirects are outside the scope of this book, a simple
Google search can lead you to a number of good resources, such as the 301
Redirects page at

http://support.google.com/webmasters/bin/answer.
py?hl=en&answer=93633

 Older web browsers may not know what to do with <meta> elements that
use the http-equiv element to redirect a page. Be sure to include some text
and a link on the page so a visitor can link manually to your new target page
if your <meta /> element fails to work. We discuss linking, which uses the
anchor (<a>) element, in Chapter 8.

If a user’s browser doesn’t know what to do with your redirect, the user
simply clicks a link, like the one shown in Figure 4-2, on the page to go to the
new page.

Figure 4-2: When you use a <meta> element to redirect a
page, include a link in case the redirect fails.

 You can use the http-equiv attribute with the <meta> element for a variety
of purposes, such as setting an expiration date for a page. To find out more
about what your http-equiv options are (and how to use them), check out
the Dictionary of HTML META Tags at

http://vancouver-webpages.com/META/metatags.detail.html

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=93633
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=93633
http://vancouver-webpages.com/META/metatags.detail.html

61 Chapter 4: HTML Documents Need Good Structure

Naming your page with a <title>
Every HTML page needs a descriptive title to tell visitors what the page
is about. This text appears in the title bar at the very top of the browser
window, as shown previously in Figure 4-1. A page title should be concise yet
informative. (For example, My Home Page isn’t as informative as Ed’s Web
Design Services.)

Define a page title by using the <title> element inside the <head> element:

<!DOCTYPE html>

<html>
 <head>
 <meta charset=”UTF-8” >
 <title>Ed’s Design Services</title>
 </head>
</html>

 Search engines use <title> content to list web pages in response to que-
ries. A page title may be the first thing a web surfer reads about a page, espe-
cially if she finds it via a search engine. In fact, a search engine will probably
list your page title among many others on a results page, which gives you
only one chance to grab a surfer’s attention and convince her to choose your
page. A well-crafted title can do just that.

 The title is also used for bookmarks/favorites and in a browser’s history, so
keep your titles short and sweet.

The <body> Is a BIG Container
After you set up a page header, create a title, and define some metadata,
you’re ready to create HTML markup and content that will show up in a
browser window. The body element holds your document content.

 If you want to see something in your browser window, put it in the <body>
element, like this:

<!DOCTYPE html>

<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Ed’s Web Design Services</title>
 <meta name=”keywords”

62 Part II: Getting the Structure and Text Right

 content=”Web consulting, page design, site construction”>
 <meta name=”description” content=”About Ed’s skills and services”>
 </head>

<body style=”color: white;
 background-color: teal;
 font-size: 1.2;
 font-family: sans-serif”>
 <h1>Ed’s Web Design Services</h1>
 <p>Ed has helped many Texas clients, large and small, to design and
 publish their company and professional web sites. He specializes in
 cutting-edge web designs, dynamic multimedia, and companion print-
 design solutions to suit all business needs.</p>

 <p>For more information, e-mail
 Ed Tittel</p>
 </body>
</html>

Figure 4-3 shows how a browser displays this complete HTML page:

 ✓ The content of the <title> element is in the window’s title bar.

 ✓ The <meta> elements don’t affect the page appearance at all.

 ✓ Only the text contained between the <h1> and <p> elements (in the
body element) actually appears in the browser window.

Figure 4-3: Only content in the <body> element appears in
the browser window.

5
Text and Lists

In This Chapter
▶ Working with basic blocks of text
▶ Manipulating text blocks
▶ Creating bulleted, numbered, and definition lists

H
TML documents include text, images, multimedia files, links, and other
bits of content that you mold into a web page by using markup ele-

ments and attributes. You use blocks of text to create such things as head-
ings, paragraphs, and lists. The first step in creating a solid HTML document
is laying a firm foundation to establish the document’s structure.

Formatting Text
Here’s an ultratechnical definition of a block of text: some chunk of content
that fills one or more lines inside an HTML element.

In fact, any HTML page is a collection of blocks of text:

 ✓ Every bit of content on your page must be part of some block element.

 ✓ Block elements usually end with a line break when rendered in a web
browser.

 ✓ Every block element sits inside the <body> element on your page. In
fact, <body> is the ultimate block!

64 Part II: Getting the Structure and Text Right

HTML recognizes several kinds of text blocks that you can use in your docu-
ment, including (but not limited to) the items shown in Table 5-1.

Table 5-1 A Majority of HTML5 Block-Level Elements
Element Description Element Description
article Article content header Section or page

header
aside Aside content h1–h6 Heading levels 1–6
blockquote Block quotation hr* Horizontal rule
body Page body p Paragraph
br1 Line break pre Preformatted text
div Division in web

page
section Section in web page

figure Groups image
and caption

table,
and so on2

HTML tables

footer Section or page
footer

ul, ol, dl Lists by type

 1 Denotes an empty element (single tag only, no pair).
 2 All table elements fall into this cell, but we don’t have room for them here. See Chapter 6 for details.

For more about HTML block elements, see “HTML5 Block Level Elements:
Complete List” at

www.tutorialchip.com/tutorials/html5-block-level-
elements-complete-list

Inline elements versus text blocks
The difference between inline elements and a
block of text is important. HTML elements in this
chapter describe blocks of text. An inline ele-
ment is a word or string of words inside a block
element (for example, text-emphasis elements,
such as or). Inline ele-
ments must be nested within a block element;

otherwise, your HTML document isn’t syntacti-
cally correct.

Inline elements, such as linking and formatting
elements, are designed to link from (or change
the appearance of) a few words or lines of con-
tent found inside those blocks.

http://www.tutorialchip.com/tutorials/html5-block-level-elements-complete-list/
http://www.tutorialchip.com/tutorials/html5-block-level-elements-complete-list/

65 Chapter 5: Text and Lists

Paragraphs
Paragraphs appear more often than any other text block in web pages.

 HTML browsers don’t recognize hard returns that you enter when you create
your page inside an editor. You must use a <p> tag to tell the browser to
package all text up to the next closing </p> tag as a paragraph.

Formatting
To create a paragraph, follow these steps:

 1. Add <p> in the body of the document.

 2. Type the content of the paragraph.

 3. Add </p> to close that paragraph.

Here’s what it looks like:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>All About Blocks</title>
 </head>

 <body>
 <p>This is a paragraph. It’s a very simple structure that you will use
 time and again in your web pages.</p>
 <p>This is another paragraph. What could be simpler to create?</p>
 </body>
</html>

This HTML page includes two paragraphs, each marked with a separate <p>
element. Most web browsers add a line break and a full line of white space
after every paragraph on your page, as shown in Figure 5-1.

Figure 5-1: Web browsers delineate paragraphs with line breaks.

66 Part II: Getting the Structure and Text Right

 Sloppy HTML coders don’t use the closing </p> tag when they create para-
graphs. Although some browsers permit this dubious practice without yelling,
omitting the closing tag isn’t good practice because it

 ✓ Isn’t correct syntax.

 ✓ Causes problems with style sheets.

 ✓ Can cause a page to appear inconsistently from one browser to another.

You can control paragraph formatting (color, style, size, and alignment) with
Cascading Style Sheets (CSS), covered in Chapters 11 through 19.

Headings
Headings break a document into sections. This book uses headings and sub-
headings to divide each chapter into sections, and you can do the same with
your web page. Headings

 ✓ Create an organizational structure.

 ✓ Break up the text flow on the page.

 ✓ Provide visual cues as to how pieces of content are grouped.

HTML includes six elements for different heading levels in documents:

 ✓ <h1> is the most prominent heading (Heading 1)

 ✓ <h6> is the least prominent heading (Heading 6)

 Follow numerical order from lowest to highest as you use HTML heading
levels. That is, don’t use a second-level heading until you use a first-level
heading, don’t use a third-level heading until you use a second, and so on. If
this doesn’t make sense to you, think about how the six heading styles work
in Microsoft Word and you’ll have it. Should you want to change how headings
look, Chapters 11 and 12 show you how to use style sheets for that purpose.

Formatting
To create a heading, follow these steps:

 1. Add <hn> in the body of your document.

 2. Type the content for the heading.

 3. Add </hn>.

67 Chapter 5: Text and Lists

 When used in this context, n means the number of the heading level you want
to create. For example, to create a first-level heading, you would substitute
the number 1 for n and would add <h1> to your page, for a second-level
heading, add <h2>, and so forth.

Browser displays
Every browser has a different way of displaying heading levels, as you see in
the next two sections.

Graphical browsers
Most graphical browsers use a distinctive size and typeface for headings:

 ✓ First-level headings (<h1>) are the largest (usually two or three font
sizes larger than the default text size for paragraphs).

 ✓ All headings use boldface type by default, and paragraph text uses plain
(nonbold) type by default.

 ✓ Sixth-level headings (<h6>) are the smallest and may be two or three
font sizes smaller than the default paragraph text.

The following snippet of HTML markup shows all six headings at work:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>All About Blocks: Headings 1-6</title>
 </head>

 <body>
 <h1>First-level heading</h1>
 <h2>Second-level heading</h2>
 <h3>Third-level heading</h3>
 <h4>Fourth-level heading</h4>
 <h5>Fifth-level heading</h5>
 <h6>Sixth-level heading</h6>
 </body>
</html>

Figure 5-2 shows the headings in the HTML page as rendered in a browser.

 Use CSS to control how headings look, including color, size, spacing, and
alignment.

68 Part II: Getting the Structure and Text Right

Figure 5-2: Web browsers display headings from level one to level six.

 By default, most browsers use Times Roman fonts for headings. The font
size decreases as the heading level increases. (Default sizes for first- through
sixth-level headings are, respectively, 24, 18, 14, 12, 10, and 8 point font.) You
can override any of this formatting by using CSS.

Text browsers
Text-only browsers use heading conventions that are different from those of
graphical browsers because text-only browsers use a single character size
and font to display all content. Some good text-only browsers to consider
include Lynx, ELinks, Cygwin, and MIRA.

Controlling Text Blocks
Blocks of text build the foundation of your page. You can break those blocks
into smaller pieces to better guide readers through your content.

Block quotes
A block quote is a quotation, or an excerpt from a copyrighted source, that you
set apart on a page. Use the <blockquote> element to enclose quotations:

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

69 Chapter 5: Text and Lists

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Famous Quotations</title>
 </head>

 <body>
 <h1>An Inspiring Quote</h1>
 <p>When I need a little inspiration to remind me of why I spend my days
 in the classroom, I just remember what Lee Iococca said:</p>
 <blockquote>
 In a completely rational society, the best of us would be teachers
 and the rest of us would have to settle for something else.
 </blockquote>
 </body>
</html>

Most web browsers display block quote content with a slight left indent, as
shown in Figure 5-3.

Figure 5-3: Web browsers typically indent a block
quote to separate it from paragraphs.

Preformatted text
Ordinarily, HTML ignores white space inside documents. That’s why a
browser won’t display any of a block element’s

 ✓ Hard returns.

 ✓ Line breaks.

 ✓ Large white spaces.

The following markup includes various hard returns, line breaks, and lots of
spaces. Figure 5-4 shows that the web browser ignores all of this.

70 Part II: Getting the Structure and Text Right

<p>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).</p>

Figure 5-4: Web browsers routinely ignore white space.

The preformatted text element (<pre>) instructs browsers to keep all white
space intact while it displays your content. (See the following sample.) Use
the <pre> element in place of the <p> element to make the browser apply all
your white space, as shown in Figure 5-5.

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>White Space</title>
 </head>

 <body>
 <pre>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).
 </pre>
 </body>
</html>

Figure 5-5: Use preformatted text to force browsers to recognize white space.

71 Chapter 5: Text and Lists

You may want the browser to display white spaces in an HTML page where
proper spacing is important, such as for

 ✓ Code samples

 ✓ Columnar data, numbers, or other format-sensitive text

 ✓ Text tables

 You could nest <pre> elements inside <blockquote> elements to carefully
control how lines of quoted text appear on the page. Or better yet, forget
about these tags and use CSS to position text blocks inside <div> elements.

Horizontal rules
Using a horizontal rule element (hr) lets you include solid straight lines
called rules on your page.

 The browser creates the rule based on the hr element, so users don’t wait
for a graphic to download. A horizontal rule is a good option to

 ✓ Break a page into logical sections.

 ✓ Separate headers and footers from the rest of the page.

Formatting
When you include an <hr> element on your page, as in the following HTML,
the browser replaces it with a line, as shown in Figure 5-6.

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Horizontal Rules</title>
 </head>

 <body>
 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr>

 <p>This is a paragraph preceded by a horizontal rule.</p>
 </body>
</html>

 A horizontal rule always sits on a line by itself; you can’t add the <hr> ele-
ment in the middle of a paragraph (or other block element) and expect the
rule to appear in the middle of the block.

72 Part II: Getting the Structure and Text Right

Figure 5-6: Use the <hr> element to add horizontal lines to your page.

The following bit of HTML creates a horizontal rule that takes up 45 percent
of the page width, is 4 pixels (px) high, is aligned to the center, and has
shading turned off:

 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr width=”45%” size=”4” align=”center” noshade=”noshade”>

 <p>This is a paragraph preceded by a horizontal rule.</p>

Figure 5-7 shows how adding attributes in the preceding example alters how
a rule appears. (Note: These attributes are deprecated, and best replaced
with CSS equivalents as described in Chapters 11 through 19. Deprecated
attributes are covered online, and the preceding HTML is not valid.)

Figure 5-7: Don’t use deprecated <hr> attributes; use CSS instead.

73 Chapter 5: Text and Lists

Organizing Information
Lists are powerful tools to group similar elements, and lists give visitors to
your site an easy way to zoom in on groups of information. Just about any-
thing fits in a list, from sets of instructions to collections of links.

Lists use a combination of elements — at least two components:

 ✓ A markup element that says, “Hey browser! The following items go in
a list.”

 ✓ Markup elements that say, “Hey browser! This is an item in the list.”

HTML supports three types of lists:

 ✓ Numbered lists

 ✓ Bulleted lists

 ✓ Definition lists

Numbered lists
A numbered list consists of at least two items, each prefaced by a number.
Use a numbered list when the order or priority of items is important.

You use two kinds of elements for a numbered list:

 ✓ The ordered list element () specifies a numbered list.

 ✓ List item elements () mark each item in the list.

Formatting
A numbered list with three items requires elements and content in the follow-
ing order:

 1.

 2.

 3. Content for the first list item

 4.

 5.

 6. Content for the second list item

 7.

74 Part II: Getting the Structure and Text Right

 8.

 9. Content for the third list item

 10.

 11.

The following markup defines a three-item numbered list:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Numbered Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-8 shows how a browser renders this markup. You don’t have to
specify a number for each item in a list; the browser identifies list items from
the markup and adds numbers, including a period after each one by default.

Figure 5-8: Use and tags to create a numbered list.

If you swap the first two items in the list, they’re still numbered in order
when the page appears, as shown in Figure 5-9.

75 Chapter 5: Text and Lists

 Wash car
 Feed cat
 Grocery shopping

Figure 5-9: Web browsers set numbers for your
list by their order of appearance.

Bulleted lists
A bulleted list contains one or more items each prefaced by a bullet (often
a big dot; this book uses check marks as bullets). Use this kind of list if the
items’ order isn’t necessary for understanding the information it presents.

Formatting
A bulleted list requires the following:

 ✓ The unordered list element () specifies a bulleted list.

 ✓ A list item element () marks each item in the list.

 ✓ The closing tag for the unordered list element () indicates that the
list has come to its end.

An unordered list (another name for bulleted list) with three items requires
elements and content in the following order:

 1.

 2.

 3. Content for the first list item

 4.

76 Part II: Getting the Structure and Text Right

 5.

 6. Content for the second list item

 7.

 8.

 9. Content for the third list item

 10.

 11.

The following markup formats a three-item list as a bulleted list:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Bulleted Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-10 shows how a browser renders this with bullets.

Figure 5-10: An unordered list uses bullets
instead of numbers to mark items.

77 Chapter 5: Text and Lists

 Use CSS to exert more control over the formatting of your lists, including the
ability to use your own graphics as bullet symbols.

Definition lists
Definition lists group terms and definitions into a single list and require three
elements to complete the list:

 ✓ <dl>: Holds the list definitions (dl = definition list)

 ✓ <dt>: Defines a term in the list (dt = definition term)

 ✓ <dd>: Defines a definition for a term (dd = definition list definition)

You can have as many terms (defined by <dt>) in a list (<dl>) as you need.
Each term can have one or more definitions (defined by <dd>).

Creating a definition list with two items requires tags and content in the fol-
lowing order:

 1. <dl>

 2. <dt>

 3. First term name

 4. </dt>

 5. <dd>

 6. Content for the definition of the first item

 7. </dd>

 8. <dt>

 9. Second term name

 10. </dt>

 11. <dd>

 12. Content for the definition of the second item

 13. </dd>

 14. </dl>

The following definition list includes three terms, one of which has two
definitions:

78 Part II: Getting the Structure and Text Right

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8” />
 <title>Definition Lists</title>
 </head>

 <body>
 <h1>Markup Language Definitions</h1>
 <dl>
 <dt>SGML</dt>
 <dd>The Standard Generalized Markup Language</dd>
 <dt>HTML</dt>
 <dd>The Hypertext Markup Language</dd>
 <dd>The markup language you use to create web pages.</dd>
 <dt>XML</dt>
 <dd>The Extensible Markup Language</dd>
 </dl>
 </body>
</html>

Figure 5-11 shows how a browser displays this HTML.

Figure 5-11: Definition lists group terms and their related definitions into one list.

 If you think items in a list are too close together, you can use CSS styles to
carefully control all aspects of list appearance, as shown in Chapters 14 and 17.

Note that definition lists often display differently inside different browsers,
and they aren’t always handled the same by search engines or text-to-speech
translators. About.com has a nice discussion of definition lists at

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

79 Chapter 5: Text and Lists

http://webdesign.about.com/od/htmltags/a/aa112006.htm

Alas, this means that definition lists may not be the best choice of formatting
for lists you create (even lists of definitions). For a more detailed discussion,
see the excellent coverage of this topic at

www.maxdesign.com.au/articles/definition

Nesting lists
You can create subcategories by nesting lists within lists. Some common uses
for nested lists include the following:

 ✓ Site maps and other navigation tools

 ✓ Tables of content for online books and papers

 ✓ Outlines

You can combine any of the three kinds of lists to create nested lists, such as
a multilevel table of contents or an outline that mixes numbered headings
with bulleted list items as the lowest outline level.

The following example starts with a numbered list that defines a list of things
to do for the day and uses three bulleted lists to break down those items fur-
ther into specific tasks:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Nested Lists</title>
 </head>
 <body>
 <h1>Things to do today</h1>

 Feed cat

 Rinse bowl
 Open cat food
 Mix dry and wet food in bowl
 Deliver on a silver platter to Pixel

 Wash car

 Vacuum interior
 Wash exterior
 Wax exterior

http://webdesign.about.com/od/htmltags/a/aa112006.htm
http://www.maxdesign.com.au/articles/definition

80 Part II: Getting the Structure and Text Right

 Grocery shopping

 Plan meals
 Clean out fridge
 Make list
 Go to store

 </body>
</html>

All nested lists follow the same markup pattern:

 ✓ Each list item in the top-level ordered list is followed by a complete
second-level list.

 ✓ The second-level lists sit inside the top-level list, not in the list items.

Figure 5-12 shows how a browser reflects this nesting in its display.

Figure 5-12: Nested lists combine lists for multilevel organization of information.

 While you build nested lists, watch opening and closing tags carefully. “Close
first what you opened last” is an important axiom. If you don’t open and close
tags properly, lists might not use consistent indents or numbers, or text might
be indented incorrectly because a list somewhere was never properly closed.

6
Tip-Top Tables in HTML

In This Chapter
▶ Understanding table capabilities and benefits
▶ Getting to know the pieces and parts of table markup
▶ Mapping out a table design
▶ Building simple tables
▶ Graduating to complex tables
▶ Making the most of best table practices and techniques

I
n HTML, tables make it easy to lay out data, text, and even images in a
grid. Tables help make it easy to present numerical data (which naturally

appears in tabular form in spreadsheets and other similar applications). But
tables also make it easy and convenient to present all kinds of information
that naturally falls into rows and columns, and to help maximize space when
introducing lots of terms or other items that would waste too much white
space if run up against the left or right margins on a page.

How <table> Got a Bad Name in HTML
Before we dig into the pile of markup you can use to contain and create tables
in an HTML document, we must first discuss and dismiss a massive wrong turn
that HTML markup took from the mid-1990s up through 2002. This was the
period before CSS really made itself a force to be reckoned with in managing
web page presentation, with its pinpoint controls over how elements are
placed and positioned in a web browser.

Essentially, tables became a go-to design tool for web page layout because
they were relatively easy to understand, specify, and use. Designers employed
tables to manage what pages looked like and where individual elements would
appear. This technique proved especially useful for creating multicolumn
page layouts — a technique still beloved by many web page designers even
today. But because CSS can handle such things more directly and easily,
there’s no reason to use tables for that purpose any more.

82 Part II: Getting the Structure and Text Right

However, the “table era” in web page design left a bad taste in the mouths
of many web page designers. Since then, too many of them have decided to
forgo tables altogether simply because they were put to inappropriate uses
at a time when CSS couldn’t pick up the slack.

Today, we think it’s time to redeem tables and to put them back to work
where it makes sense to use them. When you have lots of numbers, or numer-
ous fields of text information that fall naturally into rows and columns tables
can be useful and informative. What’s more, they provide the most com-
pact and intelligible way to present such information on a web page, so you
should use them for that purpose.

What’s in a Table? LOTS of Markup
The primary markup container for tables in HTML is the table element. That
is, you use the opening <table> tag to denote the start of a table, and you
add the closing </table> tag to end it. Also, the basic building blocks for
table data in HTML are the table row (<tr>) and table data (<td>) elements,
when a table consists of as many rows as there are <tr> elements (plus any
header or footer rows) and as many columns as the maximum number of
<td> elements in any given table row.

Between these opening and closing tags, you can find the following elements
in this very interesting and prescribed (in other words, mandatory) order:

 ✓ Zero or one <caption> elements to define a caption for a table (if
there’s one such element, or no caption for the table if it is absent). If it
is used, a <caption> element must follow immediately after the open-
ing <table> tag.

 ✓ Zero or one column group (<colgroup>) elements to define column
groupings for the table (if there’s one such element, or no column group-
ings if the element is absent). It must appear after any <caption> ele-
ment, if one is present, and before any of the following table elements.

 ✓ Zero or one table heading (<thead>) elements to define the heading
section for a table (if there’s one such element, or no table heading sec-
tion if the element is absent). Often, a first table heading row spans the
entire width of the table to identify the whole thing, and the first heading
row is followed by a second row of individual headings for each column
in the table.

 ✓ Zero or more table body (<tbody>) elements to identify actual con-
tent for the table. A table may have multiple <tbody> elements, so it’s
unusual in HTML in that a table can have only one head but multiple
bodies!

83 Chapter 6: Tip-Top Tables in HTML

 ✓ Zero or one table footer (<tfoot>) to provide information for the
bottom of a table. Browsers can use <thead>, <tbody>, and <tfoot>
to decide what to scroll (the table body, usually) and what to leave
always present on the screen. The table footer is a special case when
it comes to where in the sequence of table markup it can appear. It can
always appear last in the sequence (as it does in this list), but it can also
appear right after any of these elements that are present (in this order):
<caption>, <colgroup>, and <thead>. However, it would appear
before <tbody> and <tr> elements. In this special case, <tfoot>
cannot also appear at the end of the table. Not allowed!

 ✓ If there is no <tbody> element present (which would ordinarily define
the table body in a table with a defined table header and possibly also a
footer section), the table row (<tr>) element defines rows for the data
that the table actually presents. Inside each table row are as many table
data (<td>) elements as there are cells in that row.

 Because HTML table syntax and markup order can be tricky and complicated,
it’s even more worthwhile than usual to run all of your table markup through
the W3C validator (http://validator.w3.org) to make sure it’s correct.

The structure of an HTML table is easier to understand if we represent it by
using basic container markup only, with some hopefully illuminating com-
ments, like so:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Basic Table Markup Structure and Sequence</title>
 </head>
 <body>
 <table border=”1”>
 <caption>Table 6-1: HTML Markup Structure and Sequence</caption>
 <thead><tr><th>Element</th><th>Description</th></tr></thead>
 <!-- inside all table containers, you still use table rows -->
 <!-- this includes thead, tbody, and tfoot as shown here -->
 <!-- Use th for bold headings in both header and footer -->
 <tbody>
 <tr><td>table</td><td>overall table container</td></tr>
 <tr><td>caption</td><td>table caption text</td></tr>
 <tr><td>tbody</td><td>table body container</td></tr>
 <tr><td>tfoot</td><td>table footer container</td></tr>
 </tbody>
 <tfoot><tr><td>Element</td><td>Description</td></tr></tfoot>
 </table>
 </body>
</html>

http://validator.w3.org

84 Part II: Getting the Structure and Text Right

Figure 6-1 shows how a browser displays this table. (We added the
border=”1” entry to the table element to draw an outline around the edge
of each table cell, which makes the table stand out a little better.)

Figure 6-1: This simple table also illustrates
typical HTML table structure.

Setting Up a Table Border
As shown in the HTML document rendered earlier in Figure 6-1, you can
apply the border attribute to the table element like this:

<table border=”1”>

This is an interesting beast in that you must define the border as having the
value one (“1”) for it to validate properly. Even so, our various test brows-
ers showed us a border around the table as long as any value was supplied
for the border attribute. To turn off the border, we had to remove the

85 Chapter 6: Tip-Top Tables in HTML

border=”value” text entirely from the markup. Earlier versions of HTML used
the value to define the width of the border around the table. That’s no longer
the case for HTML5, where it’s strictly a toggle (turns on border if present, no
border if absent). You must use CSS to control table border thickness, shading,
color, and all the other great properties it allows you to manage.

The Table Head (<thead>) and Its Elements
In the preceding section, we discuss numerous elements associated with the
head of an HTML table, itself a table element called <thead>. Those table
elements are summarized in . . . wait for it . . . Table 6-1! (Alas, to build this
puppy, we had to use Word’s far-less-transparent table-handling features
rather than the glorious and crystal clear HTML markup we prefer.)

Table 6-1 HTML Table Head Markup
Element Description/Notes
caption Encloses a caption for the table (appears above the table

content).
colgroup Specifies properties for a group of columns within a table.

(Use the col element within a colgroup element to
apply properties on a per-column basis.)

col Specifies per-column properties within a column group.
thead Defines the overall container for table header content.
tr Identifies each row of content inside a table header.
th or td Use th for bold, centered column heads; use td for plain,

left-justified heads.

A complex table heading might have multiple rows of headings above the col-
umns and do interesting things with column properties. Here’s some slightly
more advanced markup to give you an idea of what this can mean. Here we
take the markup rendered in Figure 6-1 and snaz up the table headings and
column handling. Figure 6-2 shows the results.

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Basic Table Markup Structure and Sequence</title>
 </head>

86 Part II: Getting the Structure and Text Right

 <body>
 <table border=”1”>
 <caption>Table 6-1: HTML Markup Structure and Sequence</caption>
 <colgroup>
 <col style=”background-color: orange; font-size: 120%;”>
 <col style=”background-color: gray; color: white;”
 </colgroup>
 <thead>
 <tr> <th colspan=”2”>Table Markup Explained</th></tr>
 <tr><th>Element</th><th>Description</th></tr>
 </thead>
 <!-- inside all table containers, you still use table rows -->
 <!-- this includes thead, tbody, and tfoot as shown here -->
 <!-- Use th for bold headings in both header and footer -->
 <tbody>
 <tr><td>table</td><td>overall table container</td></tr>
 <tr><td>caption</td><td>table caption text</td></tr>
 <tr><td>tbody</td><td>table body container</td></tr>
 <tr><td>tfoot</td><td>table footer container</td></tr>
 </tbody>
 <tfoot><tr><th>Element</th><th>Description</th></tr></tfoot>
 </table>
 </body>
</html>

Figure 6-2: The table has two lines of heading information,
and the colors for table columns spice it up.

87 Chapter 6: Tip-Top Tables in HTML

Managing Table Layouts
If you look at things the right way, all the interesting capability and complex-
ity in HTML tables builds from three basic elements:

 ✓ Borders: Every basic table has exactly four edges that compose a
rectangle.

 ✓ Cells: These are the individual areas for data, information, images, or
whatever, inside the borders of a table.

 ✓ Cell span: Within the four-walled structure of a table, you can add or
delete cell walls (as shown with the cells on the right side of the table
in Figure 6-3). When you delete cell walls, you make a cell span multiple
rows or columns — and that’s exactly what makes tables so flexible in
accommodating different and interesting cell arrangements.

Figure 6-3: It’s not quite a Chinese puzzle box layout, but it is
visually interesting.

 Cell spanning and cell width work differently. When you span cells, you
change cell space by combining or merging cells. This step removes cell
walls, so to speak. When you adjust the dimensions of a cell, usually using
CSS width and height controls, you can specify how much space they will
occupy. In Figure 6-3, we show how you can create an interesting layout
simply by spanning the cells in the top and bottom rows (labeled 1 and 7),
with two left cells (cells 2 and 3) that span two rows, and three right cells
(cell 4 spanning two columns, and cells 5 and 6 side by side).

Leaving aside details on how to control overall table width and individual cell
heights and widths, here’s what the basic HTML for such a table looks like:

88 Part II: Getting the Structure and Text Right

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Table sketch</title>
 </head>
 <body>
 <table border=”1”>
 <tr><td colspan=”4”> 1 </td></tr>
 <tr><td rowspan=”3” > 2 </td>
 <td rowspan=”3” > 3 </td></tr>
 <tr><td colspan=”2”> 4 </td></tr>
 <tr><td> 5 </td><td> 6 </td></tr>
 <tr><td colspan=”4”> 7 </td></tr>
 </table>
 </body>
</html>

 Tables can become complex. You need to plan them carefully. You can find
the HTML file for the preceding figure on the book’s website at:

www.dummieshtml.com/html5cafe/ch06/06fig03.html

Careful examination of this file shows that we included numbers for each of
the boxes in that table, numbered 1 through 7, to demonstrate how the table
lays out. As you’re developing your own table structures, we encourage you
to take a similar approach so you can see and understand exactly what
you’re doing. Try labeling the individual boxes with incrementing numbers
so you can see how the organization plays itself out on a web page.

You don’t need to populate your table with real content or mess around
much with the sizing approach that the file contains in its CSS style sections.
(Using CSS style is covered in Chapters 11 through 19 of this book.) Count
the total number of cells across in your table (four in the example case pre-
sented in the preceding section), add one to that number, and then multiply
the result by four em-widths to get the table width (20em in the example).
Use 4em as the cell width in the table data (<td>) element style information,
and you’re good to go. If you keep the overall table width in sync with the
number of cells across, you can’t go wrong!

After you’ve worked out all the kinks with the arrangement of the individual
cells, you can start tweaking the style attributes to your heart’s content to
make the table as readable and attractive as possible. First, though, you’ll
want to get the arrangement right. After that, everything else is window
dressing.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.dummieshtml.com/html5cafe/ch06/06fig03.html

89 Chapter 6: Tip-Top Tables in HTML

Making Good Table Bodies
If you want to get a really good idea about the representational power
of HTML tables, you could do a lot worse than to check out the monthly
Employment Situation Summary that the United States Bureau of Labor
Statistics cranks out near the beginning of each month to report on the pre-
vious month’s employment (and unemployment) statistics. You can find
archived versions of these reports at:

www.bls.gov/schedule/archives/empsit_nr.htm

For the discussion that follows, we used the report archived for March 2013
as the data source. You can find that report at:

www.bls.gov/news.release/archives/empsit_04052013.htm

It was published on April 5, 2013, in case you’re wondering about the num-
bers at the end of the HTML filename you see. To open that page, you can
type the URL if you like, or visit the Chapter 6 section of our HTML5 Cafe
to access a live link. If you call that page up in your web browser and scroll
down a bit, you see a whole slew of tables, including Summary Tables A and
B, and then a bit farther down inside this mammoth document are Tables A-1
through A-15, and B-1 through B-9. That’s a lot of tables!

By all means, please dig into the source markup for these tables. (You can
access them by clicking the tool icon at the far top-right corner in Chrome,
then clicking Tools, and then clicking View Source. In Internet Explorer,
simply click the View menu and choose Source. Similar methods apply to
Firefox, Safari, Opera, and so forth.) The source markup is a great source of
information and inspiration for how to make good use of HTML table markup,
as well as how CSS helps you control the positioning, formatting, look, and
feel of such tables. It takes some time to puzzle through these examples
(they’re BIG), but they will repay your efforts with insight and understanding.
Try it: It’s a great way to hone your skills.

Shaping a solid table
For this table-construction exercise, you’re going to draw some data from the
hard-working economists and statisticians at the U.S. Bureau of Labor Statistics.
Go to www.bls.gov/news.release/archives/empsit_04052013.htm
and scroll down to Table B-9: Indexes of Aggregate Weekly Hours and Payroll,
shown in Figure 6-4. The figure no-doubt shows teeny-tiny type, but it should
nonetheless give you some idea of what you’re looking for online.

http://www.bls.gov/schedule/archives/empsit_nr.htm
http://www.bls.gov/news.release/archives/empsit_04052013.htm
http://www.bls.gov/news.release/archives/empsit_04052013.htm

90 Part II: Getting the Structure and Text Right

Figure 6-4: As tables in the Employment Situation Summary go, B-9 is simple and compact.

As you examine Table B-9, here’s what you see:

 1. The caption at the top is a sort of rust color and begins with
ESTABLISHMENT DATA Table B-9: Indexes of Aggregate. . . . This kind
of information is just what the caption element is intended to capture
and deliver.

 2. Below the caption is a set of table headings — a table header, in other
words — with a light gray background and various column headings.
At the left is a list of industries. Then the table has two sets of columns
(labeled Index of Aggregate Weekly Hours and Index of Aggregate
Weekly Payrolls), each with four columns of dates and a Percent Change
column from February to March 2013.

 3. The table body starts with text that reads Total Private and continues
down 19 rows until it gets to Other Services, with rows in column 1
(Industry) alternating between a white and a light blue background
color. After that, the two sets of columns spell out data for aggregate
weekly hours and weekly payrolls, respectively, with five individual
columns in each set: March 2012, January through March 2013, and a
percent change from the previous month (February 2013) to the present
month (March 2013).

 4. The table footer includes three footnotes numbered 1 through 3. The
special marker, (p), indicates preliminary (that is, not final) data.

91 Chapter 6: Tip-Top Tables in HTML

Guess what? You already know how to mark up all of this data! We don’t spell
out all the details completely, though you’re welcome to play around with
this information to recreate the table if you like. We can tell you how to build
such a table by the numbers, as it were:

 1. The table caption can be captured inside a caption element.
You can use the line break (
) element to break the line after
ESTABLISHMENT DATA and before the actual detailed caption that
begins Table B-9: Indexes of Aggregate. . . . Use the line break element
again to break the line before stating the scale indicator “[2002=100].”

 2. All of the headings should be contained inside a <thead> element. You
use the table heading (<th>) element for each heading cell, so it will be
centered and in boldface inside each such cell. The Industry cell should
take a rowspan=”2” attribute so it fills the entire height of the header
area at left, and the Index of . . . cells should each take a colspan=”5”
attribute so each one covers the four date and percent change columns
for its category. All three of those items will appear in the first table
heading row, each in its own table heading (<th>) cell. The remain-
ing ten items appear in the second table heading row in their order of
appearance in the table. Each of those ten items also appears in its own
table heading (<th>) cell. Setting widths for the Industry and various
date and percentage columns in the CSS for the header sets widths for
the entire rest of the table.

 3. In the table body, one row corresponds to each line of data from the
online source, starting with the industry name at left and then continu-
ing with the numerical values for dates and percentages in each of the
two groups at the right. This task involves 11 table data (<td>) elements
for each row shown in that table. Very simple, very mechanical, very
easy.

 4. The table footer entries all appear in a footer section, which should take
a colspan=”11” attribute to flow across the entire width of the table.
The Footnotes legend can appear inside a single table row (<tr>) and
table data (<td>) cell, the latter set to boldface. (Don’t use <th>, or the
footnote text will be centered.) Each remaining footnote appears inside
a single table row and table data cell as indicated in the table.

By using these techniques, you can create a solid, attractive table for pre-
senting numerical and textual data. If you take your time and think your way
through what you want your users to see, you can build a preliminary struc-
ture in HTML. Then you can start arranging cells and tweaking them until you
get them just right. You and Goldilocks — what a team!

92 Part II: Getting the Structure and Text Right

Sitting at the Footer of the Table
As the table example from the preceding section shows, you can do all kinds
of interesting things with the footer. Here are some ideas for information that
you might want to include, should your data require interpretation, explana-
tion, or additional information:

 ✓ Use footnotes with numeric or letter keys to provide information about
specific entries. Where such entries recur, one common footnote entry
works well to label such information. For instance, in the table from
Figure 6-4, the (p) for preliminary occurs in multiple column headings,
but has just one footnote.

 ✓ If your table features icons, specific graphical elements, or special char-
acters as labels, you can use the footer to provide a legend or a key for
such things. You can set up a simple two-column layout with the icon or
whatever on the left and its explanation or value on the right.

 ✓ When you reproduce tabular data from an online or published source,
you can use a footer entry to provide proper attribution to the source,
along with a link to the original (which many owners of copyrighted
material require you to include).

 ✓ When your tables repeat over time — as with the U.S. Bureau of Labor
Statistics reports — you can include notes in the footer to explain what’s
new, what’s been removed, or what’s changed as the content and layout
adapt to fluid events and situations.

 ✓ Where data cell values result from specific calculations or corrections,
you can use footer information to document the calculations that apply,
or the corrections used to produce the data shown.

We could go on forever in this vein, but we have to imagine you have the idea
by this point and can go on to spin out more ideas and applications for table
footers. Go ahead: Knock yourself out. We approve!

Exploring and Explaining a Table
 We have uploaded the HTML markup for Table B-9 to the HTML5 Cafe web-

site. You can find it at:

www.dummieshtml.com/html5cafe/ch06/TableB-9.html

http://www.dummieshtml.com/html5cafe/ch06/TableB-9.html

93 Chapter 6: Tip-Top Tables in HTML

If you look through this markup, you can see that we did an almost-perfect
job of predicting how the table was architected. In fact, the only item we got
wrong deals with the table footer — of which there isn’t one. Instead, the U.S.
Bureau of Labor Statistics page designers elected to include straightforward
text paragraphs for the footnote head, and each of the footnotes that follow,
before closing out the table markup. This keeps the text inside the table
frame without obligating column management for text data that’s intended to
span the entire width of the table anyway.

Oh caption, my caption
The caption uses a line break element to separate the all-caps ESTABLISHMENT
DATA from the actual table name (Table B-9: Indexes of Aggregate Weekly
Hours . . .). But the separation of the scale information ([2002=100]) depends
on use of a pair of span elements in the thead section, which forces a line
break when transitioning from the main caption text to this supplementary
label.

If you examine the table header source code in the file, you also find that
they use inter-document links (explained in Chapter 8) to make it easy to
jump directly to footnotes as they appear in the table. (Savvy users employ a
Back button or backspace key to return to whence they jumped, too.) These
are all nice touches worth emulating.

Is the header dead yet?
With all apologies to Glenn Frey for this section title, there’s nothing to
complain about in how the U.S. Bureau of Labor Statistics designers put this
table head together in the table shown earlier in Figure 6-4. They used the
rowspan and colspan attributes in the first table row to get the layout as it
appears, and the column headings in the second row march out in sequence
just as they should.

As you look at the source code, notice how the designer lays out each row in
the table: You see a pair of <tr></tr> tags for each row, along with just the
right number of data cells (usually denoted <td></td>). But because we’re
in the header section for this table, you can use table heading (<th>) markup
to make up a complete table row by creating the proper number of cells.

 You can say what you like about the Feds, but this is some of the most read-
able production HTML we’ve ever seen. Even if it isn’t HTML5 (yet), it’s
incredibly clean, well laid out, and easy to read and follow. (Maybe all those
taxpayer dollars aren’t being wasted after all.)

94 Part II: Getting the Structure and Text Right

Marching through the table body
If you look at the individual table rows in the markup, you can see the same
regular, predictable structure repeating for each one. The difference between
the Industry cells (which appear with alternating blue and white backgrounds)
hinges on the alternating presence or absence of a greenbar class for the
table row in which they reside. Each table row follows a regular structure, with
a table heading (<th>) cell in the industry column at the far left, and table data
(<td>) cells for all remaining data in the other ten cells in each row.

Here’s the markup for one row in the body of Table B-9 to give you a taste of
what it looks and reads like:

<tr>
 <th id=”ces_table9.r.1”><p class=”sub0”>Total private</p></th>
 <td>103.5</td>
 <td>104.7</td>
 <td>105.5</td>
 <td>105.6</td>
 <td>0.1</td>
 <td>136.0</td>
 <td>139.7</td>
 <td>141.2</td>
 <td>141.3</td>
 <td>0.1</td>
</tr>

The special datavalue CSS class formats data value cells (columns 2
through 11) with a unique CSS identifier (ces_table9.r.1) for the left-
most cell. A paragraph class (sub0) designates CSS for the heading that
reads “Total Private” in the preceding HTML snippet. That’s how detailed
layout, positioning, and appearance controls are applied to table information
throughout. But what’s most noteworthy is how simple, regular, and pre-
dictable the overall markup is. Our best guess: A program is generating that
HTML automatically, probably from a spreadsheet somewhere.

Finishing with the footer
We admit it once again: We expected to see a table footer (<tfoot> element)
at the bottom of the table shown earlier in Figure 6-4. What we saw instead
was a second table body (<tbody>) with a single table row (and yes, with a
single data cell <td colspan=”11”>). However, within that lone table data
cell, the content is laid out in a single paragraph (using the <p> element),
with manual line breaks (
) between each individual footnote. Here’s
what that markup looks like:

95 Chapter 6: Tip-Top Tables in HTML

<tbody>
 <tr class=”footnotes”>
 <td class=”footnotes” colspan=”11”>
 <p class=”footnotes”>
 Footnotes

(1) Data relate to production

employees in mining and logging and manufacturing, construction
employees in construction, and nonsupervisory employees in
the service-providing industries. These groups account for
approximately four-fifths of the total employment on private
nonfarm payrolls.

(2) The indexes of aggregate
weekly hours are calculated by dividing the current month’s
estimates of aggregate hours by the corresponding 2002 annual
average aggregate hours. Aggregate hours estimates are the product
of estimates of average weekly hours and employment.

(3) The indexes of aggregate
weekly payrolls are calculated by dividing the current month’s
estimates of aggregate weekly payrolls by the corresponding 2002
annual average aggregate weekly payrolls. Aggregate payrolls
estimates are the product of estimates of average hourly earnings,
average weekly hours, and employment.

(p) Preliminary

 </p>
 </td>
 </tr>
</tbody>

There’s absolutely nothing wrong with this approach, but there’s no reason
why the designers couldn’t have used the <tfoot> element instead, either.
That’s the nice thing about learning HTML: When you get acquainted with the
structure and the syntax, you quickly discover that you have many ways to
do what needs to be done. This one works quite nicely and is very readable.

96 Part II: Getting the Structure and Text Right

7
Working with Forms in HTML

In This Chapter
▶ Using forms in your web pages
▶ Creating forms
▶ Working with form data
▶ Designing easy-to-use forms
▶ Making forms easy with a form framework

M
ost of the HTML you write helps you display content and information
for your users. Sometimes, however, you want a web page to gather

information from users instead of giving static information to them. HTML
form markup elements give you a healthy collection of tags and attributes for
creating forms to collect information from visitors to your site.

This chapter covers the many uses for forms. It also shows you how to
use form markup tags to solicit information from your users, reviews your
options for working with data you receive, and gives you tips on creating
easy-to-use forms that help users provide the information you’re looking for.

Exploring Types of Web Forms
The web contains millions of forms, and every form is driven by the same
set of markup tags. Web forms can be short or long, simple or complex, with
myriad uses. But forms all fall into one of two broad categories:

 ✓ Search forms that let users search a site or the entire web

 ✓ Data collection forms that provide information for online shopping,
technical support, site preferences, personalization, and more

 Before you create any form, you must determine what kind of data your visitors
will search for on your site and/or what kind of data you need to collect from
visitors. Data drives the form elements that you use and how you put them
together on a page.

98 Part II: Getting the Structure and Text Right

Search forms
Search forms help you give visitors information.

The following search forms are from the friendly folks at the Internal Revenue
Service (IRS). The difference between these search forms is the data the IRS
site needs from you for its search:

 ✓ The IRS forms and publications search page (shown in Figure 7-1) is a
simple, multifaceted search form featuring current IRS documents to
help visitors search for tax forms and publications. This type of page
can pinpoint relevant responses for searches by document number or
title. Visitors can

 • Choose the best option to meet their search criteria.

 • Look at all relevant options.

 ✓ There’s a whole list of File Fillable Forms that permit online filing for
most of the common IRS tax forms, including Form 1040ES (estimated
tax), Form 1040A (and all the related schedules, of which there are about
two dozen), and many more.

 ✓ You can use the Online Payment Agreement (OPA) form to set up a pay-
ment plan with the IRS. It’s a two-parter where you pick from a number
of radio buttons to describe your status and situation in the first part,
and then provide your taxpayer ID, date of birth, and so forth in the
second part.

Figure 7-1: The IRS forms search page offers access to forms and related publications.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

99 Chapter 7: Working with Forms in HTML

 Searches come in all shapes and sizes, so the search forms that drive those
searches come in all shapes and sizes, too. A short keyword search might do
the trick, or you might need a more sophisticated search method.

Data collection forms
Data collection forms receive information you want to process or save. When
you create a form that collects information, the information you need is what
drives the structure and complexity of the form:

 ✓ Just a little: If you need just a little information, the form may be short
and (relatively) sweet.

 Example: The Library of Congress (LoC) uses a form to collect informa-
tion from teachers to subscribe to a free electronic newsletter, as shown
in Figure 7-2. The LoC doesn’t need much information to set up the sub-
scription, so the form is short and simple.

Figure 7-2: A free subscription form collects basic information.

 ✓ Lots: If you need a lot of information, your form may be several pages
long.

 Example: RateGenius uses long and detailed forms to gather the infor-
mation it needs to help customers refinance a vehicle loan. The page in
Figure 7-3 shows just the first two of numerous panes that a visitor must
fill out to provide all the necessary information.

100 Part II: Getting the Structure and Text Right

Figure 7-3: Some sites use many detailed forms to collect necessary data.

Creating Forms
HTML forms can present information to users, using text and images. But it
can also proffer various types of other methods of presenting information,
including the following:

 ✓ Text input fields, including in-line, single line, or multiple lines

 ✓ Data selection tools, such as radio buttons (which let you pick one
option from a group)

 ✓ Pick lists, which let you fill in a value from a predefined set of options

 ✓ Check boxes, which enable you to pick zero, one, or more values from a
predefined set of inputs

All in all, HTML form markup tags and attributes help you

 ✓ Define the overall form structure.

 ✓ Tell the web browser how to handle form data.

 ✓ Create input objects, such as text fields and drop-down lists.

 Every form has the same basic structure. Also, which input elements you use
depends upon the data you’re presenting and collecting.

101 Chapter 7: Working with Forms in HTML

Structure
The <form> element is a content and input container: It works much like the
paragraph (<p>) element, which contains paragraph text, or like the division
(<div>) element, which contains various types of sub-elements in a logical
document section. Thus, all input elements associated with a single form are

 ✓ Contained within a <form> element.

 ✓ Processed by the same form handler.

 A form handler is a program on the web server (or a simple mailto: URL)
that manages the data a user sends to you through the form. A web browser
can only gather information through forms; it doesn’t know what to do with
the information after it has grabbed it. You must provide another mechanism
to actually do something useful with data you collect in any form. (This chap-
ter covers form handlers in brief later in the “Processing Data” section.)

Attributes
You always use these two key attributes with the <form> tag:

 ✓ action: The URL for the form handler

 ✓ method: How you want form data to be sent to the form handler

 Your form handler dictates which of the following values to use for
method. (Your hosting or service provider probably has a document that
describes how to invoke your local web server’s form handler, including
those oh-so-necessary details — and probably some examples, too.)

 • get sends the form data to the form handler on the URL.

 • post sends the form data in the HyperText Transfer Protocol
(HTTP) header.

 Webmonkey reviews the difference between get and post in its “Add HTML
Forms to Your Site” article at www.webmonkey.com/2010/02/add_html_
forms_to_your_site. You can also find a great discussion of HTML5 forms
markup at http://msdn.microsoft.com/en-us/magazine/hh547102.
aspx.

Markup
The markup in Listing 7-1 creates a form that uses the post method to send
user-entered information to a form handler (guestbook.php) to be pro-
cessed on the web server.

http://www.webmonkey.com/2010/02/add_html_forms_to_your_site
http://www.webmonkey.com/2010/02/add_html_forms_to_your_site
http://msdn.microsoft.com/en-us/magazine/hh547102.aspx
http://msdn.microsoft.com/en-us/magazine/hh547102.aspx

102 Part II: Getting the Structure and Text Right

Listing 7-1: A Simple Form Processed by a Form Handler
<!DOCTYPE html>
<html>
<head>
 <title>Forms</title>
 <meta charset=”UTF-8” />
</head>
<body>
 <form action=”bin/guestbook.php” method=”post”>

 <!-- form input elements go here -->

 </form>
</body>
</html>

 The value of the action attribute is a URL, so you can use absolute or rela-
tive URLs to point to a form handler on your server. Absolute and relative
URLs are covered in more detail in Chapter 8.

Input tags
The tags you use to solicit input from your site visitors make up the bulk of
any form. HTML supports a variety of input options, from text fields to radio
buttons and from files to images.

Every input control associates some value with a name:

 ✓ When you create the control, you give it a name.

 ✓ The control sends back a value based on what the user does in the form.

For example, if you create a text field that collects a user’s first name, you
might name the field firstname. When the user types her first name in the
field and submits the form, the value associated with firstname is whatever
name the user typed in the field.

 The whole point of a form is to gather values associated with input controls,
so how you set the name and value for each control is important. The follow-
ing sections explain how you should work with names and values for each of
the input controls.

The <input> element (and by extension, the empty <input ... > tag) is
the major player when it comes to using HTML forms to solicit user input.
Inside the <input> element is where you define the kinds of input you want

103 Chapter 7: Working with Forms in HTML

to collect, and how you package and present the input fields and cues you
present to users so they can give you what you’re asking for.

Input fields
You can use a variety of input field types in your forms, such as text,
password, radio (button), checkbox, hidden, search, tel (telephone
number), url, email (address), datetime, date, month, week, time,
datetime-local, number, range (sets a range of numeric values), color,
and more. Not all fields require values for name and type attributes (for
example, text box or password fields), but it’s a good idea to provide users
with explanatory labels and examples of input data any time they might have
questions about formats — such as when pondering whether to include
dashes or spaces in credit card numbers. Check boxes and radio buttons,
on the other hand, require such information so they can be properly labeled
when the browser shows users what selections are available.

 For input elements that require a user to select an option (a check box or
radio button) rather than typing something into a field, you define both the
name and the value. When the user selects a check box or a radio button
and then clicks Submit, the form returns the name and value assigned to the
element.

We discuss these two types of input fields in the upcoming section, “Check
boxes and radio buttons.”

Text fields
Text fields are single-line fields into which users type information. When you
need to offer the user the opportunity to fill in more than one line, you use a
text box, as we discuss in the upcoming section, “Multiline text boxes.”

Here’s how to create a single-line text field:

 1. Define the input type as a text field by using the <input /> element
with the type attribute set to text.
<input type=”text”>

 2. Then use the name attribute to give the input field a name.
<input type=”text” name=”firstname”>

 The user supplies the value when she types in the field.

The following markup creates two text input fields, one for a first name and
one for a last name:

104 Part II: Getting the Structure and Text Right

<form action=”bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname”>
 Last Name: <input type=”text” name=”lastname”>

</form>

 In addition to the <input > elements, the preceding markup includes list
(and) elements and some text to label each input field. By them-
selves, most form elements don’t give many clues about the type of informa-
tion you want them to enter. Lists are covered in more detail in Chapter 5.

You must use HTML block and inline elements to format the appearance
of your form and also to supply the necessary text. Figure 7-4 shows how a
browser displays this kind of HTML. (To see the markup that produced this
figure, visit www.dummieshtml.com/html5cafe/ch07/07fig04.html.)

Figure 7-4: Text entry fields in a form.

You can control the size of a text field with these attributes:

 ✓ size: The length (in characters) of the text field

 ✓ maxlength: The maximum number of characters the user can type into
the field

The following markup creates a form that sets both fields to a size of 30
(characters long) and a maxlength of 25 (characters long). Even though
each field will be about 30 characters long, a user can type only 25 characters
into each field, as shown in Figure 7-5. (Setting the size attribute greater
than maxlength ensures that the text field will always have some white
space between the user input and the end of the field box on display; you
don’t have to do this yourself, but we find it visually pleasing.)

http://www.dummieshtml.com/html5cafe/ch07/07fig04.html

105 Chapter 7: Working with Forms in HTML

<form action=”bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25”>
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25”>

</form>

Figure 7-5: You can specify the length and maximum
number of characters for a text field.

Password fields
A password field is a special text field that doesn’t display what the user
types. Each keystroke is represented on the screen by a placeholder charac-
ter, such as an asterisk or a bullet, so that someone looking over the user’s
shoulder can’t see what they type.

You create a password field by using the <input> element with the type
attribute set to password, as follows:

<form action=”bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25”>
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25”>
 Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25”>

</form>

Password fields are programmed like text fields.

106 Part II: Getting the Structure and Text Right

Figure 7-6 shows how a browser replaces what you type with bullets. Note:
Depending on the browser’s default settings, some browsers replace the text
with asterisks or some other character.

Figure 7-6: Password fields mask the text a user enters.

Check boxes and radio buttons
If only a finite set of possible values is available to the user, you can give him
a collection of options to choose from:

 ✓ Check boxes: Choose more than one option.

 ✓ Radio buttons: Choose only one option.

 Radio buttons differ from check boxes in an important way: Users can
select a single radio button from a set of options but can select any
number of check boxes (including none, one, or more than one).

 If many choices are available (more than half a dozen), use a drop-down list
instead of radio buttons or check boxes. We show you how to create those in
the upcoming section, “Drop-down list fields.”

To create radio buttons and check boxes, take these steps:

 1. Use the <input> element with the type attribute set to radio or
checkbox.

 2. Create each option with these attributes:

 • name: Give the option a name.

 • value: Specify what value is returned if the user selects the option.

 You can also use the checked attribute (with a value of checked) to specify
that an option should be already selected when the browser displays the
form. This is a good way to specify a default selection.

107 Chapter 7: Working with Forms in HTML

This markup shows how to format check box and radio button options:

<form action=”bin/guestbook.php” method=”post”>
<p>What are some of your favorite foods?</p>
<ul style=”list-style-type: none;”>
 <input type=”checkbox” name=”food” value=”pizza” checked=”checked”>
 Pizza
 <input type=”checkbox” name=”food” value=”icecream”>Ice Cream
 <input type=”checkbox” name=”food” value=”eggsham”>Green Eggs
 and Ham

<p>What is your gender?</p>
<ul style=”list-style-type: none;”>
 <input type=”radio” name=”gender” value=”male”>Male
 <input type=”radio” name=”gender” value=”female” checked=”checked”>
 Female

</form>

The result is shown in Figure 7-7.

Figure 7-7: Radio and text buttons let users
select from a list of predefined options.

In the preceding markup, each set of options uses the same name for each
input control but gives a different value to each option. You give each item in
a set of options the same name to let the browser know they’re part of a set.
If you want to, you can select as many check boxes as you like by default in
the page markup — simply include checked=”checked” in each <input>
element you want selected in advance.

108 Part II: Getting the Structure and Text Right

Hidden fields
A hidden field lets you collect name and value information that the user can’t
see along with the rest of the form data. Hidden fields are useful for keeping
track of information associated with the form, such as its version or name.

 If your Internet service provider (ISP) provides a generic application for a
guest book or feedback form, you might have to put your name and e-mail
address in the form’s hidden fields so that the data goes specifically to you.

To create a hidden field, here’s what you do:

 1. Use the <input> element with its type attribute set to hidden.

 2. Supply the name and value pair you want to send to the form handler.

Here’s an example of markup for a hidden field:

<form action=”bin/guestbook.php” method=”post”>
<input type=”hidden” name=”e-mail” value=”me@mysite.com”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25”>
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25”>
 Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25”>

</form>

 As a rule, using an e-mail address in a hidden field is just asking for that
address to be picked up by spammers. If your ISP says that this is how you
should do your feedback form, ask for suggestions as to how you can mini-
mize the damage. Surfers to your page can’t see your e-mail address, but
spammers’ spiders can read the markup. At a minimum, you would hope that
your ISP supports one of the many JavaScript encryption tools available to
obscure e-mail addresses from harvesters.

File upload fields
A form can receive documents and other files, such as images, from users.
When a user submits the form, the browser grabs a copy of the file and sends
it with the other form data. To create a file upload field, this is what you do:

 1. Use the <input> element with the type attribute set to file.

 The file itself is the form field value.

 2. Use the name attribute to give the control a name.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

109 Chapter 7: Working with Forms in HTML

Here’s an example of markup for a file upload field:

<form action=”bin/guestbook.php” method=”post”>
<p>Please submit your resume in Microsoft Word or plain text format:

 <input type=”file” name=”resume”>
</p>
</form>

Browsers render a file upload field with a Browse button (or a button simi-
larly named) that allows a user to navigate a local hard drive and select a file
to send, as shown in Figure 7-8.

Figure 7-8: A file upload field rendered as a Choose File button.

 When you accept users’ files through a form, you may receive files that are
either huge or perhaps virus-infected. Consult with whomever is programming
your form handler to discuss options to protect the system where files get
saved. Several barriers can help minimize your risks, including the following:

 ✓ Virus-scanning software

 ✓ Restrictions on file size

 ✓ Restrictions on file type

Drop-down list fields
Drop-down lists are a great way to give users lots of options in a small
amount of screen space. You use two tags to create a drop-down list:

 ✓ <select> creates the list.

 Use a name attribute with the <select> element to name your list.

 ✓ A collection of <option> elements identifies individual list options.

 The value attribute assigns a unique value for each <option> element.

110 Part II: Getting the Structure and Text Right

Here’s a markup example for a drop-down list:

<form action=”bin/guestbook.php” method=”post”>
<p>What is your favorite food?</p>
 <select name=”food”>
 <option value=”pizza”>Pizza</option>
 <option value=”icecream”>Ice Cream</option>
 <option value=”eggsham”>Green Eggs and Ham</option>
 </select>
</form>

The browser turns this markup into a drop-down list with three items, as
shown in Figure 7-9.

Figure 7-9: A drop-down list.

 You can also enable users to select more than one item from a drop-down list
by changing the default settings of your list:

 ✓ If you want your users to be able to choose more than one option (by
holding down the Ctrl [Windows] or ⌘ [Mac] key while clicking options
in the list), add the multiple attribute to the <select> tag. The value
of multiple is multiple.

 If you give a stand-alone attribute a value, that value must be the
same as the name for the attribute itself (that is, both multiple and
multiple=”multiple” are legal).

 ✓ By default, the browser displays only one option until the user clicks the
drop-down menu arrow to display the rest of the list. Use the size attri-
bute with the <select> tag to specify how many options to show.

 If you specify fewer than the total number of options, the browser
includes a scroll bar with the drop-down list.

111 Chapter 7: Working with Forms in HTML

You can specify that one of the options in the drop-down list be already
selected when the browser loads the page, just as you can specify a check
box or radio button to be selected. Simply add the selected attribute for
the <option> tag you want as the default. Use this when one choice is very
likely, knowing that users can override your default selection quickly and
easily.

Multiline text boxes
If a single-line text field doesn’t offer enough room for a response, create a
text box instead of a text field:

 ✓ The <textarea> element defines the box and its parameters.

 ✓ The rows attribute specifies the height of the box in rows based on the
font in the text box.

 ✓ The cols attribute specifies the width of the box in columns based on
the font in the text box.

The text that the user types into the box provides the value, so you need only
give the box a name with the name attribute:

<form action=”bin/guestbook.php” method=”post”>
 <p> Please include any comments here.</p>
 <textarea rows=”10” cols=”40” name=”comments”>
...comments here...
 </textarea>
</form>

 Any text you include between the <textarea> and </textarea> tags
appears in the text box in the browser, as shown in Figure 7-10. The user then
enters information in the text box and overwrites your text.

Figure 7-10: A text box.

112 Part II: Getting the Structure and Text Right

Submit and Reset buttons
Submit and Reset buttons help the user tell the browser what to do with the
form. You can create buttons to either submit or reset your form, using the
<input> element with the following type and value attributes:

 ✓ Submit: Visitors have to tell a browser when they’re done with a form
and want to send the contents. You create a button to submit the form
to you by using the following markup:
<input type=”submit” value=”Submit”>

 You don’t use the name attribute for the Submit and Reset buttons.
Instead, you use the value attribute to specify how the browser labels
the buttons for display.

 ✓ Reset: Visitors need to clear the form if they want to start all over again
or decide not to fill it out. You create a button to reset (clear) the form
by using the following markup:
<input type=”reset” value=”Clear”>

 You can set the value to anything you want to appear on the button. In our
example, we set ours to Clear. Of course, you can use something that’s
more appropriate to your website if you’d like.

Listing 7-2 shows an example of markup to create Submit and Reset buttons
named Send and Clear, respectively.

Listing 7-2: A Complete Multipart Form
<!DOCTYPE html>
<html>
<head>
 <title>Basic Form Markup</title>
 <meta charset=”UFT-8” />
 <style type=”text/css”>
 h1 {background-color: silver;
 color: black;
 font-size: 1.2em;
 font-family: Arial, Verdana, sans-serif;}
 hr {color: blue;
 width: thick;}
 body {font-size: 12pt;
 color: brown;
 font-family: Tahoma, Bodoni, sans-serif;
 line-height: 0.8em;}
 </style>

113 Chapter 7: Working with Forms in HTML

</head>
<body>
 <h1>Multi-Part Form</h1>
 <hr />
 <div>
 <form action=”bin/guestbook.php” method=”post”>
 <h1>Name and Password</h1>
 <p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25”></p>
 <p>Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25”></p>
 <p>Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25”></p>
 <h1>Favorite Foods</h1>
 <p>What are some of your favorite foods?</p>
 <p><input type=”checkbox” name=”food” value=”pizza”
 checked=”checked”>Pizza</p>
 <p><input type=”checkbox” name=”food” value=”icecream”>
 Ice Cream</p>
 <p><input type=”checkbox” name=”food” value=”eggsham”>
 Green Eggs and Ham</p>
 <h1>Gender Information</h1>
 <p>What is your gender?</p>
 <p><input type=”radio” name=”gender” value=”male”>Male</p>
 <p><input type=”radio” name=”gender” value=”female”>Female</p>

 <p style=”line-height: 2em; margin: 2em;”>
 <input type=”submit” value=”Send”>
 <input type=”reset” value=”Clear”>
 </p>
 </form>
 </div>
 <hr>
</body>
</html>

Figure 7-11 shows how a browser renders these buttons in a form.

Form validation
No matter how brilliant your site’s visitors may be, there’s always a chance
that they’ll enter data you aren’t expecting or perhaps leave some important
field unfilled. JavaScript to the rescue!

114 Part II: Getting the Structure and Text Right

Figure 7-11: Submit and Reset buttons are labeled
as Send and Clear.

Form validation is the process of checking data the user enters before it’s put
into your database. You can check the data either with local JavaScript or
PHP scripts on your server.

JavaScript
You can validate entries in JavaScript before data goes to the server. This
means that visitors don’t wait for your server to check the data. They’re told
quickly (before they click Submit, if you want) if there’s a problem.

 If you want to use JavaScript in your forms and on your website, you can read
more about it online at these sites:

 ✓ www.w3schools.com/js/default.asp

 ✓ www.quirksmode.org/js/forms.html

 ✓ www.webmonkey.com/2010/02/javascript_tutorial

http://www.w3schools.com/js/default.asp
http://www.quirksmode.org/js/forms.html
http://www.webmonkey.com/2010/02/javascript_tutorial

115 Chapter 7: Working with Forms in HTML

PHP
You need to validate your form data on the server side because users can
surf with JavaScript turned off. (They’ll have a slower validation process.)
Find out more about PHP at these sites:

 ✓ www.4guysfromrolla.com/webtech/LearnMore/Validation.asp

 ✓ ww35.php101.com/book

Processing Data
Getting form data is really only half the form battle. You create form elements
to get data from users, but then you have to do something with that data. Of
course, your form and your data are unique every time, so no single, generic
form handler can manage the data for every form. Before you can find (or
write) a program that handles your form data, you must know what you want
to do with it. For example:

 ✓ If you just want to receive comments from a web form by e-mail, you
might need only a simple mailto: URL.

 ✓ If a form gathers information from users to display in a guest book, you

 • Add the data to a text file or a small database that holds the
entries.

 • Create a web page that displays the guest-book entries.

 ✓ If you want to use a shopping cart, you need programs and a database
that can handle inventory, customer order information, shipping data,
and cost calculations.

 Your web-hosting provider — whether it’s an internal IT group or an ISP you
pay monthly — has the final say in what kind of applications you can use on
your website to handle form data. If you want to use forms on your site, be
sure that your hosting provider supports the applications you need to run
on the server to process form input data (which normally uses the post or
get method that we discuss earlier in this chapter). Chapter 3 includes more
information on finding the right ISP to host your pages.

Processing forms on your pages
Typically, form data is processed in some way or another by some kind of
program running on a web server. It might be a PHP script written in some
programming language such as Perl, Java, or AppleScript, or a different han-
dler program written using PHP, Apache, Java Server Pages (JSP), ASP, or

http://www.4guysfromrolla.com/webtech/LearnMore/Validation.asp
http://ww35.php101.com/book

116 Part II: Getting the Structure and Text Right

other programs that run on web servers to process user input. These pro-
grams make data from your form useful by

 ✓ Putting it into a database or sharing it with some other kind of program.

 ✓ Creating customized HTML based on the data.

 ✓ Writing the data to a flat file.

 Flat file is computer-geek speak for a plain, unadorned text file, or one
that uses commas or tab characters on individual lines of text to sepa-
rate field values (also known as CSV for comma-separated values or TSV
for tab-separated values).

You don’t have to be a programmer to make the most of forms. Many ISPs
support (and provide) scripts for processing common forms, such as guest
books, comment forms, and even shopping carts. Your ISP may give you

 ✓ All the information you need to get an input-processing program up and
running

 ✓ HTML to include in your pages so they can interact with that program

 You can tweak the markup that manages how the form appears in the canned
HTML you get from an ISP, but don’t change the form itself — especially the
<form> tag names and values. The web-server program uses these to make
the entire process work.

Several online script repositories provide free scripts that you can download
and use along with your forms. Many of these also come with some generic
HTML you can dress up and tweak to fit your website. You simply drop the
program that processes the form into the folder on your site that holds pro-
grams (sometimes called php-bin, often something else), add the HTML
to your page, and you’re good to go. Some choice places on the web to find
scripts you can download and put to work immediately are

 ✓ Matt’s Script archive: www.scriptarchive.com/nms.html

 ✓ The PHP Resource Index: http://php.resourceindex.com

 ✓ The Developer.com Network: www.developer.com

Handling forms is beyond the scope of this book, but you can find out more
about them from these friendly For Dummies titles:

 ✓ PHP and MySQL For Dummies, 4th Edition (2009)

www.dummies.com/store/product/PHP-and-MySQL-For-
Dummies-4th-Edition.productCd-0470527587.html

http://www.scriptarchive.com/nms.html
http://php.resourceindex.com
http://www.developer.com
http://www.dummies.com/store/product/PHP-and-MySQL-For-Dummies-4th-Edition.productCd-0470527587.html
http://www.dummies.com/store/product/PHP-and-MySQL-For-Dummies-4th-Edition.productCd-0470527587.html

117 Chapter 7: Working with Forms in HTML

 ✓ HTML5 Programming with JavaScript For Dummies (2013)

www.dummies.com/store/product/HTML5-Programming-with-
JavaScript-For-Dummies.productCd-1118431669.
html

Designing User-Friendly Forms
Designing useful forms is a different undertaking from designing easy-to-use
forms. Your form may gather the data that you need, but if your form is dif-
ficult for visitors to use, they may abandon it before they’re done.

 As you use the markup elements from this chapter, along with the other ele-
ments that drive page layout, keep the following guidelines in mind:

 ✓ Provide textual cues for all your forms. Be clear about the information
you want and the format you need.

 For example, tell users details such as whether

 • Dates must be entered as mm/dd/yy (versus mm/dd/yyyy).

 • The number of characters a field can take is limited.

 As we explain earlier in this chapter, you can limit character by
using the maxlength attribute.

 ✓ Use field width and character limits to provide visual clues. For exam-
ple, if users should enter a credit card number as xxxx-xxxx-xxxx-xxxx,
consider creating four text fields — one for each part of the number.

 ✓ Group similar fields. A logical grouping of fields makes filling out a form
easier. It’s confusing if you ask for the visitor’s first name, then birthday,
and then last name.

 ✓ Break long forms into easy-to-manage sections. Forms in short chunks
are less intimidating and more likely to be completed.

 Major online retailers (such as Amazon.com — www.amazon.com) use
this method to get the detail they need for orders without making the
process too painful.

 ✓ Mark required fields clearly. If some parts of your form can’t be left
blank when users submit the form, mark those fields clearly.

 You can identify required fields by

 • Making them bold

 • Using a different color

 • Placing an asterisk beside them

 ✓ Write helpful, friendly error messages. Make sure your form validation
feedback makes sense to site visitors (check them with a group of testers

http://www.dummies.com/store/product/HTML5-Programming-with-JavaScript-For-Dummies.productCd-1118431669.html
http://www.dummies.com/store/product/HTML5-Programming-with-JavaScript-For-Dummies.productCd-1118431669.html
http://www.dummies.com/store/product/HTML5-Programming-with-JavaScript-For-Dummies.productCd-1118431669.html
http://www.amazon.com

118 Part II: Getting the Structure and Text Right

just to make sure). Nothing turns visitors away like cryptic unhelpful
message. (“Type 42 error” may mean something to a programmer, but
not to anybody else.)

 ✓ Tell users what kind of information they need for the form. If users
need any information in their hands before they fill out your form, a form
gateway page can detail everything users should have before they start
filling out the form.

 The series of forms that RateGenius uses to gather information for car loans
and loan refinancing are excellent examples of long forms that collect a vari-
ety of different kinds of data by using all the available form markup elements.
Visit www.rategenius.com to review its form techniques.

Other Noteworthy Forms-Related Markup
Table 7-1 lists other forms-related HTML markup attributes that you might
find in HTML files.

Table 7-1 Other Forms-Related (X)HTML Attributes
Name Function/Value Equals Value Types Related

Element(s)
Accept Lists acceptable MIME

types for file upload
CS Media types <form>

<input />

accept-
charset

Lists character encodings Character set
encodings

<form>

Checked Preselects option for
select lists

“checked” <input />

Disabled Disables form elements “disabled” <button>
<input>
<optgroup>
<option>
<select>
<textarea>

Enctype Specifies encoding
method for form input
data

Media type <form>

For Points to ID reference
from other attributes

Idref <label>

Label Identifies a group of
options in a form

Text <optgroup>

Label Specifies an option
name in a form

Text <option>

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

http://www.rategenius.com

119 Chapter 7: Working with Forms in HTML

Name Function/Value Equals Value Types Related
Element(s)

Method HTTP method to use
when submitting a form

{“get”|
”put”}

<form>

Multiple Permits selection of mul-
tiple options in a form

“multiple” <select>

Name Names a specific form
control

CDATA <button>
<textarea>

Name Names a specific form
input field

CDATA <select>

Name Names a form for script
access

CDATA <form>

Readonly Blocks editing of text
fields within a form

“readonly” <input />
<textarea

Size Specifies number of
lines of text to display
for a drop-down menu

Number <select>

Tabindex Defines tabbing order
for form fields

Number <a><area />
<button>
<input />
<object>
<select>
<textarea>

Type Defines button function
in a form

{“button”|
”reset”|
”submit”}

<button>

Type Specifies type of input
required for form input
field

{“button”|
”checkbox”|
”file”|
”hidden”|
”image”|
”password”|
”radio”|
”reset”|
”submit”|
”text”}

<input />

Value Supplies a value to
send to the server
when clicked

CDATA <button>

Value Associates values
with radio buttons and
check boxes

CDATA <input />

120 Part II: Getting the Structure and Text Right

Here’s a key for the Value Types Column in Table 7-1:

 ✓ CDATA: SGML character data type permits all keyboard characters to
be used.

 ✓ CS Media Types: Case-sensitive type names such as “text/html” “image/
gif” or “text/css.”

 ✓ Character set encodings: Usually UTF-8, ISO-LATIN-1, or ISO-8859-1.
For a more complete list, see www.w3schools.com/TAGS/ref_
charactersets.asp.

 ✓ MIME: Abbreviation for Multi-part Internet Mail Extensions, a standard
method to encode various document and data types for e-mail attach-
ments and for HTTP. For more info, see http://en.wikipedia.org/
wiki/MIME.

Form Frameworks
Form frameworks basically put all the building blocks for building, validating,
and processing forms data together into a single coherent collection of tools
and code. When you know how to use a framework, it’s trivial to build com-
plex robust forms of your own — at least, as long as that framework is avail-
able on your web server.

 ✓ Wufoo (http://wufoo.com): Wufoo is an HTML form builder that
helps you create contact forms, online surveys, and invitations so you
can collect data, registrations, and online payments you need without
writing a single line of code. Quick and easy!

 ✓ jQuery Validation Plugins (http://docs.jquery.com/Plugins/
Validation): Even though jQuery makes it easy to write your own vali-
dation plugins, there are still a lot of subtleties you must worry about.
For example, you need a standard library of validation methods. (Think
of e-mails, URLs, and credit card numbers.) You need to place error mes-
sages into web documents and then show and hide them when appropri-
ate. You want to react to more than just a submit event, like keyup or
blur. You may need different ways to specify validation rules, based on
the server-side environment in use for a particular project. And after all,
you don’t want to reinvent the wheel, do you?

 ✓ Validatious (http://validatious.org/learn/examples): Validatious
offers easy form validation with unobtrusive JavaScript support, using a
predefined CSS class named validate. This makes validations simply
a matter of adding validator names to form elements, such as input,
select, textarea, and so forth. It’s not a complete forms framework
but does make the validation part — often the trickiest for newbies and
professionals alike — smooth and straightforward.

http://www.w3schools.com/TAGS/ref_charactersets.asp
http://www.w3schools.com/TAGS/ref_charactersets.asp
http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/MIME
http://wufoo.com
http://docs.jquery.com/Plugins/Validation
http://docs.jquery.com/Plugins/Validation
http://validatious.org/learn/examples

121 Chapter 7: Working with Forms in HTML

In addition, many web-oriented development environments (such as Visual
Studio, Web Expressions, ASP.NET, and so forth) also include extensive
form design and processing components. These work like frameworks, too,
but generally require you to work within their overall environments to take
advantage of their often awesome capabilities.

122 Part II: Getting the Structure and Text Right

Part III
Adding Links, Images, and

Other Media

To explore some great resources on HTML links, web images, and media, visit www.
dummies.com/extras/beginninghtml5css3. You can also find examples
from the book by chapter at www.dummieshtml.com/html5cafe/Chxx, where
xx is a two-digit chapter number, such as 08.

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummies.com/extras/beginninghtml5css3
http://www.dummieshtml.com/html5cafe/Chxx

In this part . . .
 ✓ Following links is what interconnects the web
 ✓ Building and using better hyperlinks
 ✓ Using images to add visual interest to web pages
 ✓ Making the most of graphics and images online
 ✓ Driving HTML5 to new heights of media madness
 ✓ Crafting user-friendly web page controls and dashboards

8
Getting Hyper with Links in HTML

In This Chapter
▶ Creating simple links
▶ Opening linked pages in new windows
▶ Setting up links to locations within a web page
▶ Creating links to things other than web pages

H
yperlinks, or simply links, connect HTML pages and other resources on
the web. When you include a link on your page, you enable visitors to

travel from your page to another website, another page on your site, or even
another location on the same page. Without links, a page stands alone, dis-
connected from the rest of the web. With links, that page becomes part of the
almost boundless collection of information that is the World Wide Web.

Basic Links 101
To create a link, you need

 ✓ A web address (called a Uniform Resource Locator; URL) for the website
or file that’s your link target. This usually starts with http://.

 ✓ Some text in your web page to label or describe the link. Make sure that
the text you use says something useful about the resource being linked.

 ✓ An anchor element (<a>) with an href attribute to bring it all together.
The element to create links is called an anchor element because you
use it to anchor a URL to some text on your page. When users view your
page in a browser, they can click the text to activate the link and visit
the page whose URL you specified in that link. You insert the full URL
in the href attribute to tell the link where to go.

 You can think of the structure of a basic link as a cheeseburger (or your pre-
ferred vegan substitute). The URL is the patty, the link text is the cheese, and
the anchor tags are the buns. Tasty, yes?

126 Part III: Adding Links, Images, and Other Media

For example, if you have a web page that describes HTML standards, you
may want to refer web surfers to the World Wide Web Consortium (W3C) —
the organization that governs all things related to HTML standards. A basic
link to the W3C website, www.w3.org, looks like this:

<p>The World Wide Web Consortium is the
 standards body that oversees the ongoing development of the HTML
 specifications, and the WHATWG helps out with HTML5.</p>

You specify the link URL (http://www.w3.org) in the anchor element’s href
attribute. The text (World Wide Web Consortium) between the anchor
element’s opening and closing tags (<a> and) describes the link.

Figure 8-1 shows how a browser displays this bit of markup.

Figure 8-1: A paragraph with a link to the W3C.

Anchor elements aren’t block elements
Anchor elements are inline elements — that is,
they apply to a few words or characters within a
block of text (the text that you want to use as a link)
instead of defining formatting for entire blocks of
text. The anchor element typically sits inside a para-
graph (<p>) or some other block element, such
as a division (<div>), section (<section>),
heading (<h1> through <h6>), or list item
(). When you create a link, you should
always create it within a block element. Turn to
Chapter 5 for more information on block elements.

Although many web browsers display anchors
correctly even if you don’t nestle them inside block

elements, some browsers (such as the following)
don’t handle this breach of HTML syntax well:

 ✓ Text-only browsers for hand-held devices or
mobile phones

 ✓ Text-to-speech readers for the visually
impaired

Text-based browsers rely on block elements
to divide up the sections of your page properly.
Without a block element, these browsers might
display your links in the wrong places!

http://www.w3.org/

127 Chapter 8: Getting Hyper with Links in HTML

 You can also anchor URLs to images so that users can click an image to acti-
vate a link. For more about creating images that link, see Chapter 9. For a
detailed discussion of the ins and outs of URLs, see Chapter 1.

Exploring link options
You can link to a variety of online resources:

 ✓ Other HTML pages (either on your website or on another website)

 ✓ Different locations on the same HTML page

 ✓ Resources that aren’t even HTML pages at all, such as e-mail addresses,
pictures, and text files or downloads for visitors

 Link locations, captions, and destinations exert a huge influence on how site
visitors perceive links. Chapter 2 covers best practices for using links in your
site design. The kind of link you create is determined by what you link to and
how you formulate your link markup.

Absolute links
An absolute link uses a complete URL to connect browsers to a web page or
online resource.

Links that use a complete URL to point to a resource are called absolute
because they provide a complete, stand-alone path to another web resource.
When you link to a page on someone else’s website, the web browser needs
every bit of information in the URL to find that page. The browser starts with
the domain in the URL and works its way through the path to a specific file.

 When you link to files on someone else’s site, you must always use absolute
URLs in the href attribute of the anchor element. Here’s an example:

http://www.website.com/directory/page.html

Relative links
A relative link uses a kind of shorthand to specify a URL for a resource you’re
pointing to.

Use the following guidelines with relative links in your HTML pages:

 ✓ Create relative links between resources in the same domain.

 ✓ Because both resources are in the same domain, you may omit domain
information from the URL.

 A relative URL uses the location of the resource you link from to identify
the location of the resource you link to (for example, page.html).

128 Part III: Adding Links, Images, and Other Media

A relative link is similar to telling someone that he or she needs to go to the
Eastside Mall. If the person already knows where the Eastside Mall is, he or
she doesn’t need additional directions. Web browsers behave the same way.

 If you use relative links on your site, your links still work if you change

 ✓ Servers.

 ✓ Domain names.

Simple links
You can take advantage of relative URLs when you create a link between
pages on the same website. If you want to make a link from http://www.
mysite.com/home.html to http://www.mysite.com/about.html, you
can use this simplified, relative URL in an anchor element on home.html:

<p>Learn more about our company.</p>

 When a browser sees a link without a domain name, the browser assumes
that the link is relative and uses the domain and path from the linking page
to find the linked page. The preceding example works only if home.html and
about.html are in the same directory, though.

Site links
As your site grows more complex and you organize your files into various
folders, you can still use relative links. However, you must provide additional
information in the relative URL to help the browser find files that don’t reside
in the same directory as the file from which you’re linking.

Use ../ (two periods and a slash) before the filename to indicate that the
browser should move up one level in the directory structure.

The markup for this directory navigation process looks like this:

Documentation home

The notation in this anchor element instructs the browser to take these steps:

 1. Move up one folder from the folder the linking document is stored in.

 2. Find a folder called docs.

 3. Inside that folder, find a file called home.html.

 When you create a relative link, the location of the file to which you link is
always relative to the file from which you link. As you create a relative URL,
trace the path a browser takes if it starts on the page you’re linking from to
get to the page to which you’re linking. That path defines the URL you need.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

129 Chapter 8: Getting Hyper with Links in HTML

Avoiding common mistakes
Every web resource — site, page, or image — has a unique URL. Even one
incorrect letter in a URL creates a broken link, which leads to an error page
(usually the HTTP error 404 File or directory not found).

 URLs are so finicky that a simple typo — sometimes even a mistake in capital-
ization — breaks a link. Be sure to proofread your work and heed the follow-
ing tips, which help you steer clear of avoidable missteps.

If a URL doesn’t work, try these tactics:

 ✓ Check the capitalization. Some web servers (Linux and Unix, most nota-
bly) are case-sensitive (they distinguish between capital and lowercase
letters). For example, such servers treat the filenames Bios.html and
bios.html as different files on the web server. That means any browser
looking for a particular URL must use uppercase and lowercase letters
when necessary. Be sure that the capitalization in the link matches the
capitalization for the URL.

 To avoid problems with files on your website, follow a standard naming
convention. Often, using only lowercase letters can simplify your life.

 ✓ Check the extension. Bios.htm and Bios.html are two different
files. If your link’s URL uses one extension and the actual filename uses
another, your link won’t work.

 To avoid problems with extensions on your website, pick either .html
or .htm and stick to that extension.

 ✓ Check the filename. For example, bio.html and bios.html are two
different files.

 ✓ Copy and paste. Avoid retyping a URL if you can copy it. The best and
most foolproof way to create a URL that works is as follows:

 a. Load a page in your browser.

 b. Copy the URL from the browser’s address or link text box.

 c. Paste the URL into your HTML markup.

The copy-and-paste method for grabbing URLs presumes that you’re grab-
bing them from a website somewhere. If you open a local file on your PC in a
browser, you see something that looks like this: file:///I:/H4D8e/html_
letter.html. Here’s how to decipher it:

 ✓ file:/// is a common browser convention used to identify the docu-
ment as a file in your local file system. It’s used in Internet Explorer,
Chrome, Firefox, and Safari but not Opera (we checked): It uses
localhost/C: for local filesystem and drive designations instead.

130 Part III: Adding Links, Images, and Other Media

 ✓ I:/ is a drive letter.

 ✓ H4D8e/ is a folder or directory on that drive.

 ✓ html_letter.html — the rightmost text element, in this case — is the
name of the HTML file you opened.

You can’t use URLs like this on a website, so please — don’t try to!

 Most people have had at least one letter returned and marked undeliverable
because of an incomplete or inaccurate address. When the address isn’t cor-
rect, the post office has no way to locate the intended recipient. The same
is true for URLs. Without a fully formed URL, web servers don’t know how to
locate the target web page. URLs generally take the following form:

 ✓ Protocol identifier followed by a colon (:) — This is generally either
http for Hypertext Transport Protocol, https for secure-server sites,
or ftp for file transfer sites.

 ✓ Hostname — This is generally either a domain name such as edtittel.
com or an IP address. The hostname is always preceded by two slashes
(//).

 ✓ Directory path — Directory paths are preceded by a forward slash (/),
and they direct the user to the specific web page being sought.

Thus, a fully formed URL takes this general form: <protocolidentifier>:
//<hostname>/<directorypath>. And, for example, a fully formed URL is
http://www.mywebsite.com/mywebpage.

Customizing Links
You can customize links to

 ✓ Open linked documents in new windows

 ✓ Link to specific locations within a web page of your own

 ✓ Link to items other than HTML pages, such as

 • Portable Document Format (PDF) files

 • Compressed files

 • Word processing documents

Opening new windows
The web works because you can link pages on your website to pages on
other people’s websites by using a simple anchor element. When you link to
someone else’s site, though, you send users away from your own site.

131 Chapter 8: Getting Hyper with Links in HTML

To keep users on your site, HTML can open the linked page in a new window or in
a new tab inside the same browser window. (Internet Explorer, Firefox, Chrome,
and other browsers open new tabs. You can set Internet Explorer and other
browser preferences to open in a new window instead of a new tab if you prefer.)
The simple addition of the target attribute to an anchor element opens that link
in a new browser window (or tab) instead of opening it in the current window:

<p>The World Wide Web Consortium
is the standards body that oversees the ongoing development of the XHTML
specification.</p>

When you give a target attribute a _blank value, this tells the browser to
do the following:

 1. Keep the linking page open in the current window.

 2. Open the linked page in a new window or tab.

The result of using the target=”_blank” attribute is shown in Figure 8-2,
which depicts a new tab open for the W3C site.

Figure 8-2: Use the target attribute to open a new Internet
Explorer window or tab for a linked file.

The importance of http:// in HTML links
Browsers make surfing the web as easy as pos-
sible. If you type www .sun .com, sun .com, or often
even just sun in your browser’s address window,
the browser obligingly brings up http://www.
oracle.com/us/sun/index.html.
Although this technique works when you type
URLs into your browser window, it doesn’t work
when you’re writing markup.

The URLs that you use in your HTML markup
must be fully formed (complete in every detail).
Browsers won’t interpret URLs that don’t
include the page protocol. If you forget the
http://, your link may not work!

http://www.oracle.com/us/sun/index.html
http://www.oracle.com/us/sun/index.html

132 Part III: Adding Links, Images, and Other Media

 Pop-up windows irritate some users. Use them with care — and sparingly. You
can use JavaScript to control the size, location, and appearance of pop-up
windows as well as to put buttons on them to help users close them quickly.
Check out Dr. Dobb’s article “Introduction to JavaScript Pop-up Windows” for
all the details on how to manage window appearance, size, and position on
the screen when it appears. Find it online at:

www.drdobbs.com/web-development/introduction-to-
javascript-pop-up-window/184412937

Specifying locations in web pages
Locations within web pages can be marked for direct access by links on

 ✓ The same page.

 ✓ The same website.

 ✓ Other websites.

We discuss each method in upcoming sections.

Keep these considerations in mind when adding links to web pages:

 ✓ Several short pages may present information more conveniently for
readers than one long page with internal links.

 Links within large pages work nicely for quick access to directories,
tables of contents, and glossaries.

 ✓ Intradocument linking works best on your own website, where you can
create and control the markup.

 When you link to spots on someone else’s website, you’re at its man-
ager’s mercy because that person controls linkable spots. Your links will
break if a site designer removes or renames a spot to which you link.

Naming link locations
To identify and create a location within a page for direct access from other
links, use an empty anchor element with the name attribute, like this:

The id attribute also works as an anchor element. It’s often cleaner to use
this method depending on your page design approach. (If you use id attri-
butes for CSS, it may be easier to remember and more consistent overall.)

 The anchor element that marks the spot doesn’t affect the appearance of any
surrounding content. You can mark spots wherever you need them without
worrying about how your pages look (or change) as a result.

http://www.drdobbs.com/web-development/introduction-to-javascript-pop-up-window/184412937
http://www.drdobbs.com/web-development/introduction-to-javascript-pop-up-window/184412937

133 Chapter 8: Getting Hyper with Links in HTML

Linking within the same page
Links can help users navigate a single web page. Intradocument hyperlinks
include such familiar features as

 ✓ Back to Top links.

 ✓ Tables of contents.

An intradocument hyperlink, also known as a named document link, uses a
URL like this:

Back to top

 The pound sign (#) indicates that you’re pointing to a spot on the same page,
not on another page.

Listing 8-1 shows how two anchor elements combine to link to a spot on the
same page. (Documents that use intradocument links are usually longer. This
document is short so you can easily see how to use the top anchor element.)

Listing 8-1: Intradocument Hyperlinks
<!DOCTYPE html>
<html>
 <head>
 <title>Intradocument Hyperlinks at Work</title>
 <meta charset=”UTF-8”>
 </head>
 <body>
 <h1>Web-Based Training</h1>

 <p>Given the importance of the Web to businesses and other organizations,
 individuals who seek to improve job skills, or fulfill essential job
 functions, are turning to HTML and XML for training, particularly to
 HTML5. We believe this provides an outstanding opportunity for
 participation in an active and lucrative adult and continuing education
 market.</p>
 <p>Back to top</p>
 </body>
</html>

Figure 8-3 shows how this HTML markup appears in a web browser. If the
user clicks the Back to Top link, the browser jumps back to the top spot —
marked by . The text for this example is short, but
you can see how it works by resizing your browser window (making it tall
and narrow) to display only two or three words per line of text.

134 Part III: Adding Links, Images, and Other Media

Figure 8-3: Use anchor elements to mark and link spots on a page.

Linking within the same website
You can combine intradocument and interdocument links to send visitors
to a spot on a different web page on your site. Thus, to link to a spot named
descriptions on a page named home.html on your site, use this markup:

<p>Review the document descriptions
 to find the documentation for your particular product.</p>

Linking on other websites
If you know that a page on another site has spots marked, you can use an
absolute URL to point to a particular spot on that page, like this:

<p>Find out how to

register for upcoming training courses led by our instructors.</p>

 Be sure to check all links regularly to catch and fix the broken ones.

Gizmodo updated its “Best Free Web Site Link Checker” article in April 2013,
just as we were writing this book. You can find the article here:

www.techsupportalert.com/best-free-web-site-link-
checker.htm

Linking to non-HTML resources
Links can connect to virtually any kind of file, such as the following:

http://www.techsupportalert.com/best-free-web-site-link-checker.htm
http://www.techsupportalert.com/best-free-web-site-link-checker.htm

135 Chapter 8: Getting Hyper with Links in HTML

 ✓ Word processing documents

 ✓ Spreadsheets

 ✓ PDFs

 ✓ Compressed files

 ✓ Multimedia

Two typical uses for non-HTML links are software and PDF download pages.

File downloads
Non-web files must nevertheless be accessed via the Internet, so they possess
unique URLs, just like HTML pages. Any file on a web server (regardless of its
type) can be linked using a URL.

For instance, if you want your users to download a PDF file named doc.pdf
and a Zip archive called software.zip from a web page, you use this HTML:

<h1>Download the new version of our software</h1>
<p>Software</p>
<p>Documentation</p>

You can’t know how any user’s browser will respond to a click on a link that
leads to a non-web file. The browser may

 ✓ Prompt the user to save the file.

 ✓ Display the file without downloading it (common for PDFs).

 ✓ Display an error message (if the browser can’t handle or doesn’t recog-
nize the type of file involved).

 Because you can’t know how a browser will respond, help users download
files successfully by providing

 ✓ As much information as possible about the file formats in use

 ✓ Any special tools they need to work with the files

 • Compressed files: To work with the contents of a Zip file, the users
need a compression utility, such as WinZip or ZipIt, if their operat-
ing systems don’t support Zip files natively.

 • PDFs: To view a PDF file, users need the free Adobe Acrobat Reader
(or some equivalent, such as Nitro PDF Reader).

136 Part III: Adding Links, Images, and Other Media

You can make download markup more user-friendly by adding supporting
text and links, like this:

<h1>Download our new software</h1>
 <p> Software (1.2 MB compressed ZIP file)</p>
 <p>Note:
 You need a zip utility such as
 7Zip (Windows) or
 ZipIt (Macintosh)
 to open a ZIP file.</p>
 <p>Documentation (440 KB PDF file) </p>
 <p>Note:You need the free
 Adobe Reader
 to view a PDF file.</p>

Figure 8-4 shows how a browser renders this HTML, and the dialog box it dis-
plays when you click the Software link.

Figure 8-4: Chrome automatically downloads the Zip file.

E-mail addresses
A link to an e-mail address can automatically open a new e-mail addressed to
exactly the right person.

 This is a great way to help users send you e-mail with comments and requests.

An e-mail link uses the standard anchor element and an href attribute. The
value of the href attribute is the target e-mail address, prefaced with mailto:.

<p>Send us your
 comments.</p>

137 Chapter 8: Getting Hyper with Links in HTML

The user’s browser configuration controls how the browser handles an e-mail
link. Most browsers follow these two basic steps automatically:

 1. Open a new message window in the default e-mail program.

 2. Insert the address from the href attribute into the To field of the message.

 Unfortunately, web page mailto: links are a prime source of e-mail
addresses for spammers. Creating a form to receive feedback is often a better
idea; better still, use JavaScript encryption on the e-mail address. (For more
info, see Steven Chapman’s great article “Hiding Your Email Address” at
http://javascript.about.com/library/blemail1.htm.)

We generally tend to provide our e-mail addresses in the form: ed at
edtittel dot com, knowing that people are smart enough to substitute @
for at and . for dot, and also knowing that address-harvesters usually aren’t
that canny. If you elect to use a form instead, be aware that this too can pres-
ent security issues — always be sure to check your input, or take steps to
avoid so-called SQL injection attacks. For more info, see Colin Mackay’s arti-
cle “SQL Injection Attacks and Some Tips on How to Prevent Them” at www.
codeproject.com/KB/database/SQLInjectionAttacks.aspx.

Media links
One of the very coolest features about HTML5 is its greatly enhanced capa-
bility to grab and play back or display media files inside your web browser.
Earlier HTML and XHTML versions usually required a specific player pro-
gram to grab and interpret media files, but HTML5 brings audio, video, and
multimedia playback right into the browser. A series of W3C specifications
describes how this all works:

 ✓ The <audio> element takes a URL that points to some kind of audio file
as the value of its src attribute. See this page:

www.w3.org/TR/html5/embedded-content-0.html#audio

 ✓ The <video> element takes a URL that points to some kind of video file
as the value for its src attribute. See this page:

www.w3.org/TR/html5/embedded-content-0.html#video

 ✓ The <source> element can take a URL that points to some type of
media (src attribute) and to a related player or codec to interpret that
media (type and media attributes). See this page:

www.w3.org/TR/html5/embedded-content-0.html#the-
source-element

http://javascript.about.com/library/blemail1.htm
http://www.codeproject.com/KB/database/SQLInjectionAttacks.aspx
http://www.codeproject.com/KB/database/SQLInjectionAttacks.aspx
http://www.w3.org/TR/html5/embedded-content-0.html%23audio
http://www.w3.org/TR/html5/embedded-content-0.html%23video
http://www.w3.org/TR/html5/embedded-content-0.html#the-source-element
http://www.w3.org/TR/html5/embedded-content-0.html#the-source-element

138 Part III: Adding Links, Images, and Other Media

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

9
Working with Images in HTML

In This Chapter
▶ Determining the right format for your images
▶ Adding images to web pages
▶ Creating images and image maps that trigger links

W
eb-page designers use images to deliver important information, direct
site navigation, and contribute to overall look and feel on a web

page. However, you have to use images properly, or you risk reducing their
effectiveness.

This chapter is a crash course in using images on web pages. You find out
which image formats are web-friendly and how to use HTML elements to add
images to your web pages. You also discover how to attach links to an image
and how to create image maps for a web page.

The Role of Images in a Web Page
Images in websites may be logos or clickable navigation aids, or they may
display content; they can also make a page look prettier or serve to unify
or illustrate a page’s theme. A perfect example of the many different ways
images can enhance and contribute to web pages is the White House home
page at www.whitehouse.gov, shown in Figure 9-1, where the White House
logo, photos, and a nice menu bar appear to good effect.

 When used well, images are a key element of page design. When used poorly,
though, they can make a page unreadable, unintelligible, or frustrating.

http://www.whitehouse.gov

140 Part III: Adding Links, Images, and Other Media

Figure 9-1: The White House web page uses images in a variety of ways.

Creating Web-Friendly Images
You can create and save graphics in many ways, but only a few formats are
actually appropriate for images you intend to use on the web. As you create
web-friendly images, you must pay attention to file formats and sizes.

Often, graphics file formats are specific to operating systems or software
applications. Because you can’t predict what a visitor’s computer and soft-
ware will be (other than he or she will use some sort of web browser), you
need images that anyone can view with any browser. This means you need
to use cross-platform file formats that users can view with any version of
Microsoft Windows, the Mac OS, or Linux.

These three compressed graphics formats are best for general use on the web:

 ✓ Graphics Interchange Format (GIF): Images saved as GIFs often are
smaller than those saved in other file formats. GIF supports up to 256
colors only, so if you try to save an image created with millions of colors
as a GIF, you lose image quality. GIF is the best format for less-complex,
non-photographic images, such as line art, clip art, or icons.

 ✓ Joint Photographic Experts Group (JPEG): The JPEG file format supports
24-bit color (millions of colors) and complex images, such as photographs.
JPEG is cross-platform and application-independent. A good image editing

141 Chapter 9: Working with Images in HTML

tool can help you tweak the compression so you can strike an optimum
balance between the image’s quality and its file size.

 ✓ Portable Network Graphics (PNG): PNG is the latest cross-platform and
application-independent image file format. It was created to combine the
best aspects of GIF and JPEG. PNG has the same compression as GIF but
supports 24-bit color (and even 32-bit color) like JPEG does.

Any good graphics editing tool, such as those mentioned in Chapter 23, lets
you save images in any of these formats. Experiment with them to see how
converting a graphic from one format to another changes its appearance and
file size. Then choose whichever format produces the best results.

Table 9-1 shows guidelines for choosing a file format for images by type.

Table 9-1 Choosing the Right File Format for an Image
File Format Best Used For Watch Out
GIF Line art, icons, and images

with few colors and less detail
Don’t use this format if you have
a complex image or photo.

JPEG Photos or images with millions
of colors and lots of detail

Don’t use with line art.
Compromises quality when
you compress the file.

PNG Photos or images with millions
of colors and lots of detail

Don’t use with line art. Offers
best balance between quality
and file size.

 Each of the following sites offers a complete overview of graphics formats:

 ✓ W3C’s “Graphics on the Web” article at www.w3.org/Graphics

 ✓ Quackit.com’s Web Graphics Tutorial at www.quackit.com/web_
graphics/tutorial

As you ponder your page design, consider this: General graphics effects
such as colored or image-based backgrounds, gradients, buttons, and so
forth may not require graphics at all. Before you leap to the conclusion that
what your page needs is graphics, graphics, and more graphics, consult
Chapters 15 and 16. Chapter 15 tackles buttons, boxes, and borders, and
Chapter 16 covers use of color and backgrounds, all from a CSS perspective.
You may not need as many graphics as you thought, and if you use CSS for
such things, your pages will load faster, and your users will thank you for it.
This goes double or triple for users on smartphones or tablets where lots of
graphics could drive them to distraction (or to leave your site for good).

http://www.w3.org/Graphics
http://www.quackit.com/web_graphics/tutorial
http://www.quackit.com/web_graphics/tutorial

142 Part III: Adding Links, Images, and Other Media

Adding an Image to a Web Page
When an image is ready for the web, you need to use the correct markup to
add it to your page, but you also need to know where to store your image.

Image location
You can store images for your website in several places. Image storage works
best if it uses relative URLs stored somewhere on the website with your other
HTML files. You can store images in the same root as your HTML files, which
gets confusing if you have a lot of files, or you can create a graphics or
images directory in the root file for your website.

 Relative links connect resources from the same website. You use absolute
links between resources on two different websites. Turn to Chapter 8 for a
complete discussion of the differences between relative and absolute links.

Here are three compelling reasons to store images on your own site:

 ✓ Control: When images reside on your site, you have complete control
over them. You know your images aren’t going to disappear or change,
and you can work to optimize them.

 ✓ Speed: If you link to images on another site, you never know when that
site may go down or respond unbelievably slowly. Linking to images on
someone else’s site also causes the other site’s owner to pay for band-
width required to display it on your pages — on another site!

 ✓ Copyright: If you show images from another site on your pages, you may
violate copyright laws. If you must do this, obtain permission from the
copyright holder to store and display images on your website.

Optimizing images
As you build graphics for your web page, maintain a healthy balance between file quality and file
size. If you poke around with your favorite search engine, you can find good tutorials on trimming
image file sizes and optimizing entire sites for fast download. For tips and tricks to help you build
pages that download quickly, review these handy resources:

 ✓ Optimizing images:

www.yourhtmlsource.com/optimisation/imageoptimisation.html

 ✓ Optimizing web graphics:

www.websiteoptimization.com/speed/12

http://www.yourhtmlsource.com/optimisation/imageoptimisation.html
http://www.websiteoptimization.com/speed/12

143 Chapter 9: Working with Images in HTML

Using the element
The image () element is an empty element (sometimes called a singleton
tag) that enables you to specify the place on the page where you want your
image to go.

 An empty element uses only one tag, with neither a distinct opening nor a
distinct closing tag.

The following markup places an image named 07fg02-cd.jpg, which is
saved in the same directory as the (X)HTML file, between two paragraphs:

<!DOCTYPE html>
<html>
<head>
 <meta charset=”UTF-8”>
 <title>Optical Disks at Work</title>
</head>
 <body>
 <h1>CD/DVD as a Storage Medium</h1>
 <p>CD-ROMs and DVDs have become a standard storage option in today’s computing
 world because they are inexpensive and easy to use.</p>

 <p>To read from a CD or DVD, you only need a standard CD-ROM drive, but to
 create CDs or DVDs, you need a DVD burner (all DVD burners can read
 and write CDs as well).</p>
 </body>
</html>

A web browser replaces the img element with the image file provided as the
value for the src attribute, as shown in Figure 9-2.

The src attribute is like the href attribute that you use with an anchor
(<a>) element. The src attribute specifies the location for the image you
want to display on your page. The preceding example points to an image file
in the same folder as the HTML file referencing it.

Adding alternative and title text
Alternative text describes an image so those users who can’t see the images
for some reason can access that text to find out more about the image.
Adding alternative text (often referred to by developers as “alt text”) is a
good practice because it accounts for the following types of users:

 ✓ Visually impaired users who may not be able to see images and must
rely on alternative text for a text-to-speech reader to read to them

 ✓ Users who access the website from a phone browser with limited graph-
ics capabilities

 ✓ Users with slow Internet connections who choose not to display images

144 Part III: Adding Links, Images, and Other Media

Figure 9-2: Use the element to place
graphics in a web page.

 Some search engines and cataloging tools use alternative text to index images.

Most of your users will see your images, but be prepared for those who
won’t. The HTML specifications require that you provide alternative text to
describe each image on a web page. Use the alt attribute with the img ele-
ment to add this information to your markup, like so:

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”UTF-8”>
 <title>Inside the Orchestra</title>
 </head>

 <body>
 <p>Among the different sections of the orchestra you will find:</p>
 <p> Strings</p>
 <p> Brass</p>
 <p><img src=”09fg03-woodwinds.jpg” alt=”clarinet and saxophone”
 title=”clarinet and saxophone”> Woodwinds</p>
 </body>
</html>

145 Chapter 9: Working with Images in HTML

When browsers don’t display an image (or can’t, as with text-only browsers
such as Lynx), they display alternative text instead, as shown in Figure 9-3.
(We turned images off in Internet Explorer because Chrome didn’t cooperate.)

Figure 9-3: When a browser doesn’t show an
image, it shows alternative text.

When browsers show an image, browsers — including Internet Explorer,
Firefox, Chrome, Safari, and Opera — show title text as pop-up tips when
you hover your mouse pointer over an image for a few seconds, as shown in
Figure 9-4. This requires adding a title attribute to each element,
which is why it’s also included in the preceding markup. Note: alt text is
required for a page to validate, but title text is not required.

146 Part III: Adding Links, Images, and Other Media

Figure 9-4: A browser displays title text as a pop-up tip.

This means you can use alternative text to describe the image to those who
can’t see it and/or title text to provide useful (or amusing) information about
the same image.

 The W3C’s Web Accessibility Initiative (WAI) includes helpful tips for creat-
ing useful and usable alternatives to visual content at this site:

www.w3.org/TR/WCAG10-TECHS/#gl-provide-equivalents

 You may see suggestions to use alt text for so-called keyword stuffing from
presumptive SEO experts. Search engines look for certain words in web pages
and may sometimes use them to rank certain pages higher in their search
results. Thus, some people take this to mean that using keywords in alt text
improves page rankings. This is bogus. All we have to say is, “Don’t do it!”

Specifying image size
Use the height and width attributes with the element to let the browser
know just how tall and wide an image is (the default unit is pixels, or px):

<p><img src=”07fg03-trumpet.jpg”
 width=”50” height=”70” alt=”trumpet” />Brass</p>

http://www.w3.org/TR/WCAG10-TECHS/#gl-provide-equivalents

147 Chapter 9: Working with Images in HTML

Most browsers download the HTML and text associated with a page before
they download the page graphics. Instead of making users wait for the whole
page to download, browsers typically display the text first and then fill in
graphics as they become available. If you tell the browser how big a graphic
is, the browser can reserve a spot for it in the page display. This speeds the
process of populating graphics — and other stuff — on the web page.

 You can check the width and height of an image in pixels in any image editing
program or in the image viewers built into Windows and the Mac OS. (You
may be able simply to view the properties of the image in either Windows or
the Mac OS to see its height and width.)

Another good use of the height and width attributes is to create colored
lines on a page by using just a small colored square. For example, this
markup adds a 10-x-10-px blue box to a web page:

Use the element height and width attributes to set image height and
width. Thus we use these values to create a 10-x-10-px blue box in a browser
window (shown at the top of Figure 9-5) even though the original image is 600
x 600 pixels. In general, it’s safe to reduce image dimensions using these attri-
butes although you’ll always want to check the results carefully during test-
ing. With any kind of aspect sensitive image, you want to maintain its aspect
ratio by dividing the original dimensions by some common value.

Figure 9-5: A series of small blue boxes.

148 Part III: Adding Links, Images, and Other Media

Figure 9-5 also shows boxes with dimensions of 20 x 20 and 50 x 50 px. Here
are the changes to the values for height and width in the markup to pro-
duce the other two boxes:

 Using this technique, you can turn a single image like the blue box (only
2.39K in size) into a variety of lines and even boxes:

 ✓ This technique can ensure that all dividers and other border elements
on your page use the same color because they’re all based on the same
graphic.

 ✓ If you decide you want to change all your blue lines to green, you just
change the image. Every line you created changes colors.

 When you specify an image’s height and width that are different from the
image’s actual height and width, you rely on the browser to scale the image
display. This trick works great for single-color images (such as the blue
box), but it doesn’t work well for images with multiple colors or images that
contain actual photos. The browser doesn’t size images well, and you wind
up with a distorted picture. Figure 9-6 shows how badly a browser handles
enlarging a trumpet image when the markup multiplies the image height by
four and its width by two (note the resemblance to a flugelhorn!):

<p><img src=”09fg03-trumpet.jpg” width=”200” height=”124” alt=”trumpet”
Title = “trumpet” />Brass</p>

Figure 9-6: Don’t use a browser to resize
complex images; use a graphics editor!

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

149 Chapter 9: Working with Images in HTML

 If you need several sizes for the same image — as for a logo or navigation
button — use a large image as the master for that graphic and make smaller
versions. This trick gives you better control over the final look and feel of
each image.

Image borders and alignment
You must use CSS to control image borders, positioning, alignment, spacing,
text flow, and more. We cover those details in Chapters 14 and 15. In case
we haven’t made this sufficiently clear already, we strongly urge you to use
CSS for borders, positioning, and alignment for both text and images, and let
HTML do the job it does best: representing and pointing to actual content.

Images That Link
Web pages often use images for navigation. They’re prettier than plain-text
links, and you can add both form and function on your page with one element.

Triggering links
To create an image that triggers a link, you substitute an element in
place of text to which you would anchor your link. This markup links text:

<p>Visit the W3C</p>

This markup replaces the text Visit the W3C with an appropriate icon:

 <p><img src=”w3.jpg”
 alt=”Visit the W3C Web Site”
 title = “Visit the W3C Web Site” height=”75” width=”131”
 style=”border: solid blue; padding: 0.1em; margin: 2.0em;”></p>

The preceding markup creates a linked image to http://www.w3.org. In
the preceding example, the alternative text now reads Visit the W3C Web
Site, so users who can’t see the image know where the link goes. When a
user moves the mouse pointer over the image, the cursor changes from an
arrow into a pointing hand (or any icon the browser uses for a link).

We include a blue border around this image as a visual cue to let users know
it serves as a link. The border appears as a blue outline (shown in Figure 9-7).

150 Part III: Adding Links, Images, and Other Media

Figure 9-7: Combine image and anchor
elements to create a linked image.

A quick click of the image launches the W3C website. It’s as simple as that.

 You can set the border of any image you use in a link to 0 if you want to keep
the browser from surrounding your image with a blue line. Without that line,
however, users need other visual (or alternative text) clues so they know
that an image is a link. Be sure images that serve as links scream to the user
(tastefully of course), “I’m a link!” In all cases, if the automatic outline is elimi-
nated, you should build an outline into the graphic itself or add a caption
that indicates that the image serves as a link.

Building image maps
When you use an element with an anchor element to create a linking
image, you can attach only one link to that image. To create a larger image
that connects links to different regions on the page, you need an image map.

To create an image map, you need two things:

 ✓ An image with distinct areas obvious to users

 For example, an image of a park might show a playground, a picnic area,
and a pond area.

 ✓ Markup to map the different regions on the map to different URLs

Elements and attributes
Use the element to add the map image into your page, just as you
would any other image. In addition, include the usemap attribute to let the
browser know that image map information should go with that image. The
value of the usemap attribute is the name of your map.

You use two elements and a collection of attributes to define the image map:

151 Chapter 9: Working with Images in HTML

 ✓ map holds the map information. The map element uses the name attri-
bute to identify the map. The value of name should match the value of
usemap in the element that goes with the map.

 ✓ area links specific parts of the map to URLs. The area element takes
these attributes to define the specifics for each section of the map:

 • shape: Specifies the shape of the region (a clickable hot spot that
makes the image map work). You can choose from rect (rectangle),
circle, and poly (a triangle or polygon).

 • coords: Defines the region’s coordinates.

 A rectangle’s coordinates include the left, right, top, and bottom
points.

 A circle’s coordinates include the x and y coordinates for the
center of the circle as well as the circle’s radius.

 A polygon’s coordinates are a collection of x and y coordinates for
every vertex in the polygon.

 To determine image coordinates, you can use an image map editor
such as Mapedit from www.boutell.com/mapedit or a graphics
editor such as PaintShop Photo Pro from www.corel.com. Mapedit
also records those coordinates for you.

 • href: Specifies the URL to which the region links (can be absolute
or relative).

 • alt: Provides alternative text for the image region.

Markup
The following defines a three-region map called NavMap linked to the graphics
file named 09fg08-navmap.gif:

<img src=”09fg08-navmap.gif” width=”302” height=”30” usemap=”#NavMap”
 style=”border: 0px; border: 2.0em;”>
<map name=”NavMap”>
 <area shape=”rect” coords=”0,0,99,30” href=”home.html” alt=”Home”
 title=”Home”>
 <area shape=”rect” coords=”102,0,202,30” href=”about.html” alt=”About”
 title=”About”>
 <area shape=”rect” coords=”202,0,301,30” href=”products.html”
 alt=”Products” title=”Products”>
</map>

Figure 9-8 shows how a browser displays this markup.

When the mouse sits over a region in the map, the cursor turns into a pointing
hand (just as it changes over any other hyperlink). So take advantage of the
title text to include useful information about the link and to make the map
more accessible to the visually impaired.

http://www.boutell.com/mapedit
http://www.corel.com

152 Part III: Adding Links, Images, and Other Media

Figure 9-8: Image maps turn different areas of an image into linking regions.

 A common use for image maps is to turn maps of places (states, countries,
and such) into linkable maps. Here are some online resources you can use:

 ✓ The About.com image map tutorial at
http://webdesign.about.com/od/imagemaps/a/aabg051899a.htm

 provides more details on building image maps by hand.

 ✓ HTMLGoodies has a great collection of image map tutorials and informa-
tion at
www.htmlgoodies.com/tutorials/image_maps/index.php

 ✓ For a more fully fleshed HTML file that implements the preceding image
map example, see this book’s website at
www.dummieshtml.com/html5cafe/ch09/09fig08.html

Creating image maps by hand can be tricky. Use an image editor to identify
each point in your map and then create the proper markup for it. Most HTML
tools include utilities to help you make image maps. If you take advantage of
such a tool, you can create image maps quickly and with few errors. Find out
more about HTML tools in Chapter 23.

 Exercise caution when using image maps. If you’re creating a visual aid
(something like a map with links to different countries shown therein, for
example), using an image map makes perfect sense. On the other hand, you
should never use a graphic with image maps for your main navigation. (Well,
you could, but you wouldn’t like the results!) Always use HTML and CSS
for the main website navigation, or if you must use a graphical image map,
include a text-based alternative along with that map so that visually impaired
site visitors can also navigate by using the alternative controls instead.

In general, the best thing for navigation is to use text for button labels and
to let CSS handle the work involved in making buttons look good. Chapter 15
discusses some truly great techniques to make text buttons pop.

http://webdesign.about.com/od/imagemaps/a/aabg051899a.htm
http://www.htmlgoodies.com/tutorials/image_maps/index.php
http://www.dummieshtml.com/html5cafe/ch09/09fig08.html

10
Managing Media and

More in HTML
In This Chapter
▶ Understanding media support in HTML5
▶ Working with audio, video, and more
▶ Crafting useful web page controls
▶ Working with frames in web pages . . . or not?

I
ncreasingly, the web is becoming more than just a medium for accessing
text and images. On the one hand, the web is embracing an ever-widening

array of media, such as audio, video, and other forms of streaming media
(video calls, video conferences, live audio, and so on). On the other hand, the
web provides a platform for all kinds of interactive applications that provide
services, crunch numbers, and do the kinds of things that people once called
on computers to run locally and autonomously through their web browsers
instead. Writing web-enabled software is beyond the scope of this book, but
dealing with media in HTML5 is not.

 HTML5 adds standard ways of playing media to the basic markup mix. Earlier
versions of HTML had to rely on browser plug-ins to handle any kind of
media. There was no guarantee that the right plug-in would be available for
various specific kinds of media on your particular browser, even if plug-ins
might be available for other browsers.

This chapter provides a quick tutorial on using various types of media in
your web pages. You find out which media formats are web-friendly and how
to use HTML5 elements to incorporate media into your web pages. You also
discover how to use plug-ins for media, to support older browsers that may
not accommodate the new media-handling capabilities in HTML5.

154 Part III: Adding Links, Images, and Other Media

The Battle of the Media Formats
In getting HTML5 to the point where it could offer reasonable built-in media
playback, there was quite a bit of discussion involved within the standards
bodies’ working groups that defined this kind of markup. This is a sport that
Texans sometimes call ’cussin’ and discussin’, where the ratio of the former
to the latter varies directly with the heat of the debate. And, given that the
debate got pretty hot in this arena from time to time, there were no doubt
meetings where the various interests involved turned the air blue!

Here’s where things currently stand with media in HTML5. First, the current
HTML5 specification recommends support for the royalty-free Ogg Vorbis
(audio) and Ogg Theora (video) formats. But browser makers can choose to
support whichever audio and video formats they like. Alas, this means that
content authors (that’s you) cannot assume any particular format will work
in all browsers. That’s a drag, as the upcoming Table 10-1 reveals.

The HTML Working Group (the folks who decide what goes into the HTML5
specification, also known as WHATWG at www.whatwg.org) believes it is desir-
able to specify at least one audio and video format for all browsers to support.
What makes a media format ideal? An ideal format should do the following:

 ✓ Support good compression to keep file sizes and bandwidth consump-
tion down

The long tail of web software
In statistics, the long tail refers to that portion of
a distribution of numbers that follows the head
or primary part of that kind of data. The head
is where the bulk of the values concentrate,
but there are also a lot of values distributed
over a very long sequence at the tail end of the
graph. In retail sales terminology, the long tail
describes a strategy for selling a large number
of unique or specialized items in fairly small
quantities (the tail end of the distribution) in
addition to a small number of popular items sold
in very large quantities (the head of the distribu-
tion). This long tail adds to the overall market
and increases sales overall.

For web browsers (and software in general), the
long tail describes continued use of old software

in smaller numbers over a long period of time,
even after newer, more capable versions
become available. That explains why, even
though Internet Explorer is available in version
10 as we write this chapter, and Google Chrome
is at version 27, some users are still running IE
versions 6 or lower, and Chrome versions back
in the teens. Web designers have to decide
whether or not to support this long tail: If they
do, they have to build pages that provide work-
arounds when they want to use newer features,
such as the built-in HTML5 media handling
capabilities, but don’t want to preclude users
running older browsers from accessing such
media, which requires running the right plug-in
to play it back. Your call!

http://www.whatwg.org

155 Chapter 10: Managing Media and More in HTML

 ✓ Support good image or sound quality to deliver a positive media
experience

 ✓ Impose low decode processor overhead to keep media from over-
whelming the playback device

 ✓ Be royalty-free so browser makers and users don’t need to worry about
licensing issues or potential patent infringements

 ✓ Include a hardware decoder for the format because mobile devices
often can’t carry the processing load to decode media, especially video

Meet the major audio formats
A quick search of audio file formats shows that there are over 30 entries in
this crowded field. For the purposes of this book, however, we focus on the
major players supported in the most popular web browsers, as shown in
Table 10-1 (which appears later in this chapter, in the “Comparing Traditional
and HMTL5 Media Handling” section). As is also the case with video, you
can find both royalty-free and proprietary formats in our short list. The
name inside the first set of parentheses after each format name identifies a
common file extension associated with that format.

 ✓ Ogg Vorbis (Ogg; royalty-free): A lossy audio compression format dis-
tributed free of royalty or licensing fees with other open and free media
projects. Vorbis is a music-oriented format, but Ogg also supports Opus
(a human speech compression format) and the lossless FLAC compres-
sion format. Ogg is distributed under the open BSD license. Both FLAC
and Vorbis are extremely popular music formats, with Vorbis preferred
for the web because its compression, whereas lossy (which means some
sound fidelity is sacrificed in the interests of saving on bandwidth)
is well suited for streaming online delivery. The file extension, .ogg,
comes from the name of the container in which Vorbis files are most
commonly carried. (The same extension is also used for Theora video as
noted in the next section.)

 ✓ MP3 (MP3; proprietary): This proprietary lossy audio compression format
is one of the most widely used formats for audio files at present — it’s
possibly even the most widely used format. MP3 stands for MPEG-2 Layer
3, which in turn identifies the efforts of the Motion Picture Experts Group
to create a usable digital audio format that makes acceptable trade-offs
between audio fidelity and file size. (An audio file created using a 128
kilobits per second streaming rate setting for MP3 produces a listenable
file that is less than 10 percent of the size of its original CD audio counter-
part.) MP3 files can be compressed at higher or lower bitrates to delib-
erately trade audio quality against file size (lower quality, smaller files)
or file size against audio quality (higher quality, bigger files). The PC is a
long-time supporter of MP3, which is very commonly used in Windows
software of all kinds, including Internet Explorer for the web.

156 Part III: Adding Links, Images, and Other Media

 ✓ Waveform Audio File Format, or WAVE (WAV; royalty-free): Usually
known as WAV (thanks to its file extension), this audio format supports
both compressed and uncompressed audio formats. WAV is a joint effort
from IBM and Microsoft but requires no licensing or royalty payments.
WAV works with numerous widely available audio codecs (encoders/
decoders, which translate analog audio signals into digital patterns for
storage, and digital patterns into analog audio signals for playback). The
biggest issue with WAV is that its PC origin means it’s not as widely sup-
ported on Mac OS, Linux/Unix, or mobile device operating systems.

Each of these audio formats has its pros and cons, but Vorbis appears poised
to become most widely supported. In fact, the Web Hypertext Application
Technology Working Group (WHATWG) recommends that all browser makers
include Ogg Vorbis and Theora support in future offerings.

Meet the major video formats
As with audio, many, many potential video formats are available for use on
the web. But for the purposes of this book, we focus on the major players
that are supported in the most popular web browsers included in Table
10-1 (which appears in the next section, “Comparing Traditional and HTML5
Media Handling”). As with audio, you can find both royalty-free and propri-
etary formats here, too. Here’s a list of the major players (the name inside
the first set of parentheses after each format name identifies a common file
extension associated with that format):

 ✓ Ogg Theora (Ogg; royalty-free): A free lossy video compression format
distributed free of royalty or licensing fees with other open and free media
projects. Ogg Theora is more or less the same in capability and bitrate
efficiency as MPEG-4, or early versions of Windows Media Video (WMV),
or RealVideo. Theora files make use of the Ogg container for delivery.
(The same container also serves the Vorbis or FLAC audio formats.)

 ✓ H.264 (MP4; proprietary): More formally known as MPEG-4, H.264 or AVC
(Advanced Video Coding) is a proprietary codec standard developed
jointly by the ITU-T Video Coding Experts Group and the ISO/IEC JTC1
Motion Picture Experts Group (MPEG). This codec supports HD video
and is widely used in

 • Videos from Vimeo, YouTube, and the iTunes Store.

 • Web software such as the Adobe Flash Player, Microsoft Silverlight.

 • HDTV terrestrial, cable, and satellite feeds.

 ✓ VP8/9 (WebM; royalty-free): Free audio-video format designed for use
with HTML5 video, a WebM file combines VP8 or VP9 video and Vorbis
audio streams. It works natively with Firefox, Opera, and Chrome, and
with plug-ins for Internet Explorer and Safari. The Google WebM hard-
ware decoder is available to semiconductor companies at no cost, and it
incurs no licensing or royalty fees.

157 Chapter 10: Managing Media and More in HTML

Each of these video formats has its pros and cons, but Theora and WebM
appear poised to become most widely supported, and WHATWG is recom-
mending that all browser makers include Ogg Vorbis and Theora support in
future offerings.

Comparing Traditional and
HTML5 Media Handling

HTML5 supports a variety of media tags (and media formats) for media
playback in web browsers. Because HTML5 remains something of a work in
progress, not all formats work for all media in all browsers, as shown in Table
10-1. However, if you stick to the common denominators, you can find a way
to deliver what you want to the biggest possible audience. And no matter
what, given the WHATWG’s recommendations, the Ogg formats (Vorbis,
Theora, and so forth) look like good bets.

 To read the discussions included in the HTML Living Standard document for
audio and video elements in Section 4.8 “Embedded Content,” please visit
this page:

www.whatwg.org/specs/web-apps/current-work/
multipage/#auto-toc-4

Table 10-1 Media Support in Modern Browsers
Browser Video

Formats
Audio
Formats

Ogg
Theora

H.264 VP8/9
(WebM)

Ogg
Vorbis

MP3 WAV

Internet
Explorer
9.0+

MI* 9.0 MI* No Yes No

Mozilla
Firefox
3.6+

3.5 No 4.0 Yes No Yes

Google
Chrome
6.0+

3.0 No 6.0 Yes Yes Yes

Safari 5.0+ MI* 3 MI* No Yes Yes
Opera 10.6+ 3.5 3.1 MI* Yes No Yes

 Sources: Developer.Mozilla.org “Using HTML5 audio and video”; MSDN Magazine “Working
with Media in HTML5.”

 * MI means “manual installation required.”

http://www.whatwg.org/specs/web-apps/current-work/multipage/#auto-toc-4
http://www.whatwg.org/specs/web-apps/current-work/multipage/#auto-toc-4

158 Part III: Adding Links, Images, and Other Media

Mastering HTML5 Media Markup
Simply stated, there are two primary media elements for HTML5, both of
which are absurdly easy to use. The audio element is named <audio>, and
the video element is named <video>. In HTML5, the browser determines
which players are built-in and thus available for use. You need to plan your
use of audio and video accordingly, as you see in the sections on these two
media elements that follow next, <audio> first, <video> second.

Making beautiful music with audio
Of course, there’s more to the <audio> element than music — it happily
plays back any kind of audio file, but we simply can’t resist a good headline
opportunity. Here’s a simplified version of what audio markup looks like:

<audio src=”sounds.ogg” controls>Alternatives</audio>

Here the src attribute points to the audio file you’d like to have played back.
It specifies the location for the audio object for playback. The location must
be a valid URI (Uniform Resource Identifier) that, just like a URL, identifies
where the browser should look for the audio file.

The controls entry stands in for a number of control attributes you can use
to manage audio playback and behavior, as follows (presented in alphabeti-
cal order):

 ✓ autoplay: Tells the browser to start playing audio as soon as the object
file is loaded. The only legal value for this attribute is autoplay but no
value is strictly required in HTML5.

 ✓ controls: Tells the browser to display an onscreen widget to control
audio playback (usually with Pause/Play buttons, a progress bar, and
volume controls). As with autoplay, the only legal value for this attribute
is controls, but no value is strictly required in HTML5.

 ✓ loop: Tells the browser to go back to the beginning and keep playing
when it gets to the end of the object file. Here, too, the only legal value
for this attribute is loop, and no value is strictly required.

 ✓ preload: Tells the browser whether it should preload the object file,
and if so how it should be preloaded. Possible values include

 • none: Doesn’t load any part of the audio file when the page loads

 • metadata: Loads only the audio metadata when the page loads. It
also sets up playback but doesn’t have data loaded yet.

 • auto: Loads entire audio file when the page loads

 The preload attribute is ignored if autoplay is present.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

159 Chapter 10: Managing Media and More in HTML

The Alternatives section is very interesting and quite helpful in supporting
older browsers. Page visitors see, or run, the content inside the <audio>
</audio> tags only if their browser doesn’t support the audio element
(because their browser ignores tags it doesn’t recognize), but HTML5-savvy
browsers are smart enough to skip such alternative directions. This is where
you can call plug-ins for specific players and different file formats because
you know that only visitors who can’t use the built-in HTML5 audio playback
capabilities will encounter this markup. We take advantage of this in the
example that follows to show you how to call other file formats in case your
chosen format can’t be played. As shown, a browser that lacks HTML5 audio
support would display the word Alternatives onscreen!

Here’s some markup that won’t play back an .ogg audio file until the user
triggers the Play button on the onscreen controls, with continuous looping as
long as the page stays onscreen. We also provide WAV and MP3 alternatives
for older browsers:

<audio controls preload=”none” loop>
 <source src=”sound.ogg” type=”audio/ogg”>
 <source src=”sound.wav” type=”audio/x-wav”>
 <source src=”sound.mp3” type=”audio/mpeg”>
 <p>Browser does not support HTML5 audio; alternate playback provided.</p>
</audio>

 By default, if you don’t include a src attribute in the opening <audio> tag,
the target for the first <source> element is played in a browser that recog-
nizes the HTML5 <audio> element. This setup makes it easy to stack up your
playback options in the Alternatives section, starting with the one you want
most, and so on. If players for the three formats are not available, no sounds
will be played at all. As soon as the browser finds a player to match the type
of sound file (.ogg first, .wav second, .mp3 third), the browser uses the
player to play the sound, and then the browser continues processing the
remainder of the HTML document that follows.

Figure 10-1 shows what this page inside a properly constructed HTML file
with some additional text and information looks like onscreen in Chrome.

Moving media with video
Unlike audio, which doesn’t actually require much (or any) space on the
screen, video requires an onscreen frame, as well as more sophisticated and
more numerous controls. That’s why although the two markup elements are
similar, video comes with considerably more baggage, even though the basic
structure of the element remains the same as before:

<video src=”video.ogg” controls>Alternatives</video>

160 Part III: Adding Links, Images, and Other Media

Time elapsedPlay/pause

Playback progress Volume status

Figure 10-1: An audio control bar displayed in Chrome.

Here the src attribute points to the video file you’d like to have played back.
It specifies the name of the video object file for playback and must be a valid
URI. Example: src=”video.ogg”.

The list of control attributes for video is considerably longer and a bit more
complicated, too:

 ✓ autoplay: Tells the browser to start playing video as soon as the object
file is loaded. Examples: autoplay or autoplay=”autoplay”.

 ✓ controls: Tells the browser to display an onscreen widget to control
video playback (usually with Pause/Play buttons, a progress bar, and
volume controls). Examples: controls or controls=”controls”.

 ✓ height: Sets the height, in pixels, of the box inside which the video will
display. Example: height=”480”.

 ✓ loop: Tells the browser to go back to the beginning and keep play-
ing when it gets to the end of the object file. Examples: loop or
loop=”loop”.

 ✓ mediagroup: Used for synchronizing playback of multiple videos
or media elements (such as a sign language track or an SAP track).

161 Chapter 10: Managing Media and More in HTML

Takes a string value, where all items with the same mediagroup
value are treated together as members of that group. Example:
mediagroup=”movie”.

 ✓ muted: Sets audio output state for playback; if present, audio is muted
when playback begins. Use this when loud or startling audio might oth-
erwise bother page visitors so that they can elect to turn on audio if
they like. Examples: muted or muted=”muted”.

 ✓ poster: Specifies an image to display while the video file is not avail-
able (hasn’t loaded yet). Example: poster=”poster.jpg”.

 ✓ preload: Tells the browser whether it should preload the object file,
and if so how it should be preloaded. Possible values include:

 • none: Does not load any part of the video file when the page loads

 • metadata: Loads only the video metadata when the page loads. It
also sets up playback but doesn’t have data loaded yet.

 • auto: Loads entire video file when the page loads

 The preload attribute is ignored if autoplay is present.

 ✓ width: Sets the width, in pixels, of the box inside which the video dis-
plays. Example: width=”640”.

The following markup displays a video snippet from Wikipedia:

<video controls poster=”poster.png”
 src=”http://upload.wikimedia.org/wikipedia/commons/5/5c/Cat.ogg”
 width=”640” height=”480”>
 <source src=”cat.webm” type=”video/webm”>
 <source src=”cat.mp4” type=”video/mp4”>
 <p> Browser does not support HTML5 video; alternate playback provided.</p>
</video>

Figure 10-2 shows what this page inside a properly constructed HTML file
with some additional text and information looks like onscreen in Chrome,
just after the video concludes playback.”? The control bar for video is nearly
identical to the control bar for audio. The difference is that the video control
bar has a frame control at the far right. Please note also that alternatives
for video playback work the same as they do for audio feedback, so you can
stack your preferred player first for HTML5 browsers to use if they can, fol-
lowed by other players in whatever order you prefer.

162 Part III: Adding Links, Images, and Other Media

Frame control

Volume status

Time elapsed

Play/pause

Playback progress

Figure 10-2: A video control bar displayed in Chrome.

Undergoing the conversion experience
So, what if you want to follow our lead and provide alternative file formats for
your audio or video files? To make them available in the big three formats of
each kind (.ogg, .wav, and .mp3 for audio; and .ogg, .mp4, and .webm for
video), you need some conversion tools. Here are some good resources to
help you get started down that path so that when you make files available,
you can reach the broadest possible audience:

 ✓ About.com, “4 Free Audio Converter Software Programs”

http://pcsupport.about.com/od/fileextensions/tp/free-
audio-converter.htm

 ✓ About.com, “5 Free Video Converter Programs and Online Services”

http://pcsupport.about.com/od/fileextensions/tp/free-
video-converter.htm

 Thanks to these excellent articles, we’re pretty sure you can find something
suitable for either category. If you don’t find what you need, you can do what
we do when faced with such a dilemma: Simply search for “free audio con-
verter” or “free video converter” and keep trying candidates until something
sticks.

http://pcsupport.about.com/od/fileextensions/tp/free-audio-converter.htm
http://pcsupport.about.com/od/fileextensions/tp/free-audio-converter.htm
http://pcsupport.about.com/od/fileextensions/tp/free-video-converter.htm
http://pcsupport.about.com/od/fileextensions/tp/free-video-converter.htm

163 Chapter 10: Managing Media and More in HTML

Working with Web Page Controls
The controls attribute that HTML5 so helpfully provides for both the audio
and video elements sets the stage for our next discussion where we present
the various onscreen progress bars, gauges, and meters that HTML5 makes
available for on-page use. The following sections look at the markup elements
involved — meter, progress, and time — and include online examples at
the tail end of each element. The section ends with a quick tutorial on how to
update controls in real time on your web pages.

Displaying a meter bar
The HTML5 <meter> element lets you display a meter bar for various coun-
ters that you might manage over time to show readings for various metrics.
The <meter> element includes these numerical attributes, whose values may
be integers (that is, whole numbers) or decimal numbers:

 ✓ value: The current measured value for your meter

 ✓ high: States a value considered to be high for readings on this meter

 ✓ low: States a value considered to be low for readings on this meter

 ✓ max: Sets the upper bound for readings on this meter and its display

 ✓ min: Sets the lower bound for readings on this meter and its display

 ✓ optimum: States a value considered to be optimal for readings on this
meter

Mastering media in HTML5
After you start working with the audio and video
elements (and the ever-helpful support source
element, too), you’ll get a feel for making good
use of audio and video in your web pages.
But what we present here is just the tip of an
enormous and incredibly interesting iceberg of
information and activity. For more details on the
various audio and video formats, search online
for this generic phrase:

Play back format in HTML5

where you substitute your chosen format name
(Ogg, Vorbis, Theora, MP4, MP3, WebM, or
WAV,) for the format element therein. When
we tried that approach in researching this
chapter, we found oodles of great material
readily available. You should, too!

164 Part III: Adding Links, Images, and Other Media

Here’s a fully tricked-out markup example, shown in Figure 10-3 displayed in
Chrome:

<meter high=”90” low=”10” max=”100” min=”0” optimum=”50”
 value=”44”>Center-seeking meter</meter>

Figure 10-3 shows the meter in the context of a complete HTML file, with
some use of CSS to set off the meter display. The meter’s current value falls
just below the optimal halfway mark.

Figure 10-3: A simple centering meter.

 The high, low, and optimum attributes as well as the text enclosed between
the opening <meter> and closing </meter> tags do not appear in the
browser display of the meter. It’s probably best to think of this information
as a kind of built-in documentation to help explain how the meter works.

To see and play around with meter markup (and value settings), visit this page:

www.quackit.com/html_5/tags/html_meter_tag.cfm

For a nice demo of a meter at work (as you type into a text box, the character
count goes up and the green meter bar gets longer), visit this page:

http://jsfiddle.net/RBUmQ/1/

The following is a snippet of HTML markup that shows three different meter
bars: one for storage space consumption, one for voter turnout, and one for
tickets sold. Don’t scratch your head too much about it: It’s just a contrived
example.

http://www.quackit.com/html_5/tags/html_meter_tag.cfm
http://jsfiddle.net/RBUmQ/1/

165 Chapter 10: Managing Media and More in HTML

<p>Storage space usage: <meter value=”6” max=”8”>6 blocks used
 (out of 8 total)</meter> </p>
<p>Voter turnout:
 <meter value=”0.75”></meter></p>
<p>Tickets sold: <meter min=”0” max=”100” value=”75”></meter></p>

Tracking progress on activities
Whereas the meter element is designed to handle readings that can go up
or down over time, the progress element is designed to report on activities
that go one way only: up! Think of a typical progress bar that shows how far
along you are on a software download, a file copy, or an install maneuver,
and you’ve mastered the progress bar concept.

This simplicity makes the progress element something of a one-trick pony
in the HTML5 world, and explains why it takes exactly two attributes:

 ✓ max: The value that represents completion of the task whose progress is
being measured by this control

 ✓ value: The current value for the amount of progress achieved

Here’s an example of some progress markup:

<progress max=”100” value=”44”>progress bar</progress>

Figure 10-4 shows a static snapshot of the bar displayed in Chrome. At run-
time, green in the progress bar fills in from left to right (that is, start to end),
showing that something is — or should be — happening.

Figure 10-4: The progress element tracks
completion of a task.

166 Part III: Adding Links, Images, and Other Media

To fool around with progress bar markup online, visit this page:

www.quackit.com/html_5/tags/html_progress_tag.cfm

For a great demo (with access to underlying HTML5 markup and JavaScript
for dynamic update of a progress bar), visit this page:

http://developerdrive.com/demo/progress_bar/demo.html

Here’s a fun tutorial on what you can do with CSS and the progress element
(see Parts IV and V of this book for many more details on working with CSS):

http://css-tricks.com/css3-progress-bars

Tracking and reporting on time
HTML5 adds a lot more data smarts to its repertoire, as compared with
earlier HTML versions. Among these kinds of elements and their attributes,
<time> permits content developers to use (and update) time values on their
web pages in a variety of interesting ways.

The secret to <time> in HTML5 lies in understanding the kinds of values
that this element’s sole attribute — datetime — can take. This data type is
called a date or time string and accommodates many forms for representing
such information. The HTML5 specification explains how this works as follows:

The time element represents either a time on a 24 hour clock, or a precise
date in the proleptic Gregorian calendar, optionally with a time and a time-
zone offset.

This explanation could use some further explanation. Here’s a list of the
formats time and date attributes embrace, including examples in case you
prefer the “monkey-see, monkey-do” method of comprehension:

 ✓ Valid time HH:MM[:SS][.fff]: A 24-hour time where two-digit hours and
minutes values are required, and seconds are optional, as are decimal
fractions of a second. This means 8 a.m. is “08:00” but that 8 p.m. is
“20:00”.

 ✓ Valid date YYYY-MM-DD: A complete date where four-digit year, two-
digit month, and two-digit day of month values are all required.

 ✓ Valid date and time with timezone offset: Combines the previous two
value types — date first and time second with a T in the middle — and
then adds a timezone offset to include timezone information. Thus 4
p.m. on September 11, 2001 Central (US) Time is “2001-09-11T16:00-
06:00”. Timezones range from –12:00 to +14:00, and you can use the
capital letter Z (Zulu time) to denote +00:00 for Coordinated Universal
Time (UTC) also known as Greenwich Mean Time (GMT).

http://www.quackit.com/html_5/tags/html_progress_tag.cfm
http://developerdrive.com/demo/progress_bar/demo.html
http://css-tricks.com/css3-progress-bars/

167 Chapter 10: Managing Media and More in HTML

What does the “proleptic Georgian calendar” stuff mean? It means that for
<time> element values, time begins at 0 AD (no BC dates, in other words).
But because <time> is intended to provide time stamps and time values, this
shouldn’t be a problem for most content developers who will use this ele-
ment to keep track of things like publication dates, most recent update dates,
and so forth. The nice thing about time in HTML5 is that the content between
the opening <time> and closing </time> tags is intended to be human-
readable, and the value of the datetime attribute is intended to be machine-
readable, so both humans reading web pages and computers handling them
can read and use time information included in such pages.

Who knew that dealing with <time> could take so much time? The following
example markup shows the preceding example formats in HTML5:

<time datetime=”20:00”>eight PM</time>
<time datetime=”2001-09-11”>another day of infamy (adoi)</time>
<time datetime=”2001-09-11T16:00”>4 PM adoi</time>
<time datetime=”2001-09-11T16:00-06:00”>4 PM adoi Central (US) time</time>

The result is shown in Figure 10-5. Note that only HTML cares about the
datetime attribute value; humans see the corresponding text enclosed
within the <time> element instead.

One important take-away from this set of examples should be the idea that
careful labeling of the content inside the <time> element is important
because it tells page visitors about time in their web browsers. But of course,
if that’s not why you’re recording time, you needn’t put any text inside the
<time> element at all.

Figure 10-5: Example time markup displayed in Chrome.

To fool around with <time> markup online, visit this page:

www.quackit.com/html_5/tags/html_time_tag.cfm

http://www.quackit.com/html_5/tags/html_time_tag.cfm

168 Part III: Adding Links, Images, and Other Media

There’s no real reason to update the datetime attribute in a <time> element,
so we skip the pointers to JavaScript updating techniques in this section. That
doesn’t stop us from returning to that subject in the next section, though.

Updating HTML5 controls
We can share the secret to updating HTML5 controls in one word: JavaScript.
Though it’s not the only scripting tool available to web content developers
(that’s you!), it is probably the most popular and widely used of such tools.
To make a progress bar show progress or a meter measure change over time,
you need some way to update the value associated with the value attribute
as the web page is processed. JavaScript offers lots of good ways to do this,
including responding to events in the browser environment, polling changes
to local variables, counting time (or other values), and so forth.

To really understand how to use the <progress> or <meter> elements in
HTML5, you have to understand JavaScript (or another web-friendly script-
ing language). That’s outside the scope of this particular book, though we
did include examples you can imitate to take the “monkey-see, monkey-do”
approach to putting this markup to work. If you want to do it right, however,
you’ll want to add to your reading list. In particular, you might find these
other For Dummies books of great interest:

 ✓ HTML5 Programming with JavaScript For Dummies, by John Paul
Mueller (April 2013), more or less picks up where we leave off here.

 ✓ PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies, by Steve
Suehring and Janet Valade (April 2013), covers a full range of HTML5-
related programming topics and tools. The book is designed as a
comprehensive reference.eb

oo
k

D
ow

nl
oa

de
d

F
ro

m
 :

<
w

w
w

.B
oo

k-
E

xp
er

ts
.o

rg
>

Part IV
Adopting CSS Style

To find out more about CSS markup and best practices, visit www.dummies.com/
extras/beginninghtml5css3. Find the examples for these chapters at www.
html4dummies.com/html5cafe in the sections labeled Ch11 through Ch13.

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummies.com/extras/beginninghtml5css3
http://www.html4dummies.com/html5cafe
http://www.html4dummies.com/html5cafe

In this part . . .
 ✓ Understanding the oh-so-crucial distinction between content

and appearance
 ✓ Working your way through CSS units of measure
 ✓ Digging into CSS syntax and structure by using selectors and

declarations
 ✓ Using classes and IDs to focus style on elements or

instances
 ✓ Working with inline, internal, and external style sheets
 ✓ Resolving multiple style selectors through the CSS cascade

11
Advantages of Style Sheets

In This Chapter
▶ Understanding the role of style sheets
▶ Discovering Cascading Style Sheets (CSS)
▶ Understanding the viewport
▶ Using different types of measurement units

C
ascading Style Sheets (CSS) is the language web page authors use to tell
a browser (or another user agent) how to format an HTML document.

Remember: HTML5 is primarily a language for defining the structure (like the
bones and muscles) of a document. The structural elements of a page, such
as headings (<h1> through <h6>) and body text, don’t affect how those ele-
ments look. By applying styles to those elements, though, you can specify an
element’s layout on the page and add design attributes (such as fonts, colors,
and text indentation). CSS is the tool that lets you add skin (and even fancy
clothing) to the structure created by your HTML markup and content.

Style sheets give you precise control over how structural elements appear on
a web page. Better yet, you can create one style sheet for an entire website to
keep the layout and look of your content consistent from page to page. And
here’s the icing on this cake: Style sheets are easy to build and even easier to
integrate into web pages. In fact, with style sheets, you can

 ✓ Add style markup to individual HTML elements (called inline style).

 ✓ Create sequences of style instructions in the head of an HTML document
(called an internal style sheet).

 ✓ Refer to a separate stand-alone style sheet via a link or other reference
(called an external style sheet) inside your HTML document.

 ✓ Style an HTML document differently depending on whether it’s being
viewed on a desktop computer or a mobile phone.

172 Part IV: Adopting CSS Style

In short, you can add style to a web page in lots of ways.

In the early days of HTML, you could add style and lay out an HTML docu-
ment by using presentational HTML elements or by using certain HTML ele-
ments for purposes other than what they were designed for. Presentational
HTML elements specify how content should look. You may occasionally
still see some old HTML code that uses these presentational elements to do
things that are better done with CSS. For example, prior to CSS, the only way
to arrange elements in a grid was by using the <table> element. Today,
CSS provides much more flexible ways to lay out a page (as we show you in
Chapter 14). The element (which is no longer a part of the HTML
specification) used to be the only way to change the font face or size of HTML
text. As the next few chapters demonstrate, designers can use CSS to do
everything that the old element used to do, and much, much more.

 In HTML5, presentational elements and attributes were officially deprecated
(made obsolete). As a result, there is no guarantee that certain old HTML4
and earlier presentational elements will continue to work in the future —
not that you would ever consider using them anyway, right? We discuss
deprecated markup in more detail on this book’s website at www.dummies
html.com.

Most modern browsers handle CSS3 well, but a few tricks are necessary in
certain cases. We stick mostly to the safe stuff here, but we give you a taste
of some of the cutting-edge features that are coming soon to a browser near
you. Where necessary, we point you to resources on the web and tools that
you can use to make sure that your web pages work correctly on nearly every
web browser that is in use today.

Advantages of Style Sheets
HTML’s formatting capabilities are limited by design. When you want tight
control over the display of your web pages, style sheets are the way to go:

 ✓ Style sheets give you more flexibility than markup can.

 ✓ HTML5 no longer includes display-oriented (or presentational) elements
and attributes, and these may cease to be supported by browsers in the
future.

Style sheets supply lots of tools to format web pages with precise controls.
With style sheets, you can

 ✓ Control every aspect of page display. Specify the amount of space
between lines, character spacing, page margins, image placement, and
more. You can also specify positioning of elements on your pages.

http://www.dummieshtml.com
http://www.dummieshtml.com

173 Chapter 11: Advantages of Style Sheets

 ✓ Apply changes globally. Ensure consistent design across an entire web-
site by applying the same style sheet to every web page.

 You can modify the look and feel of an entire site by changing just one
document (the style sheet) instead of the markup on every page. Need
to change the look for a heading? Redefine that heading’s style attri-
butes in the style sheet and save the sheet. The heading’s look changes
throughout your site.

 ✓ Instruct browsers to control appearance. Provide web browsers with
more information about how you want your pages to appear than you
can communicate using HTML.

 ✓ Create dynamic pages. With CSS3, anyone can easily animate HTML
elements with just a couple lines of simple code.

The four steps to style
The gist of how style sheets work is as follows:

 1. Select elements in a document (using selectors) that you want to add
style to.

 2. Write declarations that apply to the selectors. Each declaration consists
of a property name and a value. The declarations specify how you want
the selected markup to be styled.

 For example, you could specify that every first-level heading (<h1>) be
displayed in yellow Garamond 24-point type with a purple background
(not that you would, but you could).

 3. Link style rules and markup.

 4. The browser does the rest.

The combination of at least one selector and at least one declaration is called
a style rule. Listing 11-1 shows a simple style rule that contains one selector
and four declarations:

Listing 11-1: A Simple Style Rule

174 Part IV: Adopting CSS Style

Understanding the C in CSS
Cascading is the process that browsers use to determine which style will
apply to an element. Imagine, for example, that one style rule declares that
paragraph text should be yellow, and then another rule declares that para-
graph text should be purple. Through a somewhat complex set of rules,
browsers decide which rule will actually apply to any single paragraph.

To visualize how cascading works, you can picture HTML elements falling
down steps on their way to the viewer’s browser. Along the way, they pick
up styles such as size, color, weight, and so forth. All other things being
equal, styles that the HTML element picks up later will be of higher impor-
tance to the browser.

When it’s all said and done, the cascading rules are decided and the browser
decides how to display a web page. Although the details of how the cascade
works aren’t important right now, it’s very important for the web developer
to know that every web browser follows the same rules (the cascading rules)
in the event of conflicting styles.

What CSS can do for a web page
You can accomplish a (growing) list of tasks with CSS. You can:

 ✓ Specify font type, size, color, and effects.

 ✓ Set background colors and images.

 ✓ Control many aspects of text layout, including alignment and spacing.

 ✓ Set margins and borders.

 ✓ Control list display.

 ✓ Define table layout and display.

 ✓ Automatically generate content for standard page elements, such as
counters and footers.

 ✓ Control cursor display.

 ✓ Create transitions.

 ✓ Animate the values of CSS properties by using keyframe animation.

 ✓ Design multicolumn layouts.

 ✓ Use any of thousands of fonts in your web pages.

 ✓ Define aural style sheets for text-to-speech readers.

175 Chapter 11: Advantages of Style Sheets

Styling a Document with CSS
Listing 11-2 shows the HTML markup for the home page of the HTML5 Cafe.
Notice that all the markup describes the purpose of the content — not how it
should be presented.

Listing 11-2: A Simple Semantic HTML5 Document

Figure 11-1 shows the markup from Listing 11-2 rendered in a web browser.
Notice that it’s a very plain document with no styles applied other than the
defaults.

 It’s not quite true to say that an HTML document with no CSS styles applied
is unstyled. Even though you may not have applied styles to the document,
each web browser contains a built-in style sheet that is called the default style
sheet. This default style sheet is similar between browsers but not necessarily
identical. The default style sheet sets the baseline styles that you can modify
with your own CSS document. The default style sheet specifies that content
in an <h1> element is bolded and 2em in size, for example.

176 Part IV: Adopting CSS Style

Figure 11-1: An unstyled HTML document uses the default
browser styles.

Using HTML5 Boilerplate
For HTML5Cafe.com, we borrowed heavily from an open source project
called HTML5 Boilerplate (www.html5boilerplate.com). HTML5 Boilerplate
is a template for creating HTML5 websites. It combines the experience and
knowledge of hundreds of web developers in order to make web develop-
ment easier. Did we mention that it’s free?

Normalize before you stylize
The default styles are meant to serve as a baseline from which you can
add your own styles. However, you might notice something peculiar about
these default styles: They’re not very attractive! Also, some browsers don’t
quite follow the same rules as everyone else. (We’re looking straight at you,
Internet Explorer 6 and 7!) So, it’s a good idea to establish your own baseline
that fixes some of the ugliness of the default styles and addresses many of
the inconsistencies between browsers.

Once again, our friends in the open source community came through with
the perfect solution: normalize.css, a style sheet that seeks to eliminate
many of the differences between browsers’ default styles. You can download
normalize.css from http://git.io/normalize. (It’s also part of the
HTML5 Boilerplate.) We don’t explain the details of how normalize.css works,
although you can certainly open it in Aptana Studio or any text editor and
analyze it to your heart’s content. The main thing about it is that it just works.

http://git.io/normalize

177 Chapter 11: Advantages of Style Sheets

After you’ve saved a copy of normalize.css into your project, you can use
an HTML <link> element to apply it to your web page. We talk more about
the <link> element and the different ways to apply styles to a web page in the
next few chapters. To apply normalize.css to the HTML5 Cafe home page,
we simply add this element within the <head> element of the document:

<link rel=”stylesheet” href=”css/normalize.css”>

After applying normalize.css to our web page, it looks like Figure 11-2.

Figure 11-2: The HTML5 Cafe’s index.html with
normalize.css applied.

If you compare Figure 11-4 with Figure 11-3, you can find a number of signifi-
cant differences:

 ✓ The margins around the edges of the page are removed.

 ✓ The font has been changed to a sans-serif font. (Much easier on the eyes,
don’t you think?)

 ✓ The left margin has been removed from the image and its caption.

 ✓ The space has been removed from under the image caption.

What normalize.css does is give us a blank canvas upon which we can add
our own styles. So, in this next step, we add styles!

178 Part IV: Adopting CSS Style

HTML5 Boilerplate provides another style sheet in addition to normalize.
css that’s called main.css. This style sheet includes a few more styles that
make a default web page look a bit better. Before you even add any of your
own styles, simply including main.css in your document will make it look
better. The main.css file also includes some helper CSS rules. Helper CSS
rules define handy styles that are used fairly commonly in many different
websites.

To include main.css, we use the following <link> element within the
<head> element of index.html:

<link rel=”stylesheet” href=”css/main.css”>

The result of adding the default main.css style sheet is shown in Figure 11-3.

Figure 11-3: HTML5 Cafe’s index.html with HTML5
Boilerplate’s default main.css applied.

The differences here are a bit more subtle than between Figure 11-4 and
Figure 11-3. The main thing that happened is that the line height has been
adjusted slightly. Other changes that were made affect only HTML elements
that aren’t currently used by HTML5 Cafe’s home page.

Now (finally!) it’s time to get to the good stuff: adding your own style to the
web page. If you open up main.css in your code editor and scroll down a

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

179 Chapter 11: Advantages of Style Sheets

bit, you see a section labeled Author’s Custom Styles. That’s you it’s talking
about! This is where you can put your own CSS and really make HTML5 Cafe
sparkle.

Figure 11-4 shows the CSS markup that we added to the custom styles section
of main.css.

Figure 11-4: Our custom styles for HTML5 Cafe’s index.html

Although we haven’t yet talked about the syntax of CSS style rules, if you look
at it for a moment, you can see that it’s mostly pretty readable.

We get into much more detail about CSS selectors and properties in the next
chapter. For now, just look it over and marvel at the results, as shown in
Figure 11-5.

180 Part IV: Adopting CSS Style

Figure 11-5: HTML5 Cafe’s index.html with our custom
styles applied.

What you can do with CSS
You have a healthy collection of properties to work with as you write your
style rules. You can control just about every aspect of a page’s display —
from borders to font sizes and everything inbetween:

 ✓ Background properties control the background colors associated with
blocks of text and with images. You can also use these properties to
attach background colors to your page or to individual elements, such
as horizontal rules.

 ✓ Border properties control borders associated with a page, lists, tables,
images, and block elements (such as paragraphs). You can specify
border width, color, style, and distance from element content.

 ✓ Float and Alignment properties control how elements (such as images)
flow on the page relative to other elements. You can use these properties
to integrate images and tables with the text on your page.

 ✓ List properties control how lists appear on your page, such as

 • Managing list markers

 • Using images in place of bullets

 ✓ Margin properties control the margins of the page and margins around
block elements, tables, and images. These properties extend ultimate
control over the white space on your page.

181 Chapter 11: Advantages of Style Sheets

 ✓ Padding properties control the amount of white space around any
block element on the page. When you use these with margin and border
properties, you can create complex layouts.

 ✓ Positioning properties control where elements sit on the page; you can
use them to put elements in specific places on the page.

 ✓ Size properties control how much space (in height and width) your ele-
ments (both text and images) take up on your page. They’re especially
handy for limiting the size of text boxes and images.

 ✓ Table properties control the layout of tables. You can use them to
control cell spacing and other table-layout specifics.

 ✓ Text properties control how text appears on a page. You can set such
properties as font size, font family, height, text color, letter and line
spacing, alignment, and white space. These properties give you more
control over text with style sheets than the font HTML element can.

 ✓ Transition properties create effects in which the value of another style
changes smoothly over time. For example, with transitions you can
specify that a button should grow when a user takes a certain action, or
that an element should change colors, or appear to fade-in.

 ✓ Transform properties control rotation, skewing, scaling, and translation
(or positioning) of 2D and 3D objects. Figure 11-6 shows an example of
something that can be done with transform properties.

Figure 11-6: You can use transform properties to modify objects in 2D and 3D.

182 Part IV: Adopting CSS Style

 Entire books and websites are devoted to the fine details of using each and
every property in these categories. We suggest one of these references:

 ✓ CSS Web Design For Dummies by Richard Mansfield

 ✓ The Book of CSS3 by Peter Gasston

 ✓ CSS: The Definitive Guide by Eric A. Meyer

 ✓ Jens Meiert’s continuously updated CSS properties references on the
web at http://meiert.com/en/indices/css-properties

 Although CSS syntax is straightforward, combining CSS styles with markup
to fine-tune a page layout can get a little complicated. To become a CSS guru,
you just need to:

 ✓ Know how the different properties work.

 ✓ Experiment to observe how different browsers handle CSS.

 ✓ Practice conveying your message on the web using CSS.

Putting CSS in Its Place
Before we go any further, we need to explain a few things about the environ-
ment in which CSS lives and does its work. CSS is most often used to apply
styles to a web page when it’s displayed in a web browser — whether that
browser is on a desktop computer, a laptop computer, a tablet computer, or
a mobile phone.

You can also use CSS to format HTML for printing, for text-to-speech devices,
for projectors, or for any device that can read HTML content.

Because you’ll most often be formatting HTML for display on some sort of
screen, we focus on this scenario here. But, keep in mind that CSS is not
limited to working just with screens.

Pixels, points, and dots — Oh my!
Except for their sizes, desktop, laptop, and mobile devices are all pretty simi-
lar. They all display text and images on color screens by changing the colors
of tiny dots of light, called pixels. In fact, if you look closely enough at your
computer’s monitor (or perhaps use a magnifying glass if you have a very
high-resolution monitor), you can probably see the individual pixels that
make up every image your monitor or screen displays.

http://meiert.com/en/indices/css-properties/

183 Chapter 11: Advantages of Style Sheets

Even though the images on screens are made up of pixels, the size and the
proximity of each dot to its neighbor (this is called the pixel density) varies
between devices and monitors.

In addition, it’s possible, and quite common, for computer users to change the
number of pixels, known as the resolution, displayed on their screens. You may
be familiar with the concept of resolution from adjusting it while setting up your
computer or from purchasing a TV. Common resolution settings are 640 x 480,
800 x 600, and 1024 x 768. The first number typically refers to the width (in
pixels) of the device, and the second refers to the height.

If you’re following along, you may be wondering now how a device with a
fixed number of physical pixels can sometimes display 800 x 600 pixels and
sometimes 1024 x 768 pixels. The key is in a concept called display pixels, or,
for our purposes, CSS pixels.

CSS pixels are a layer on top of the actual physical dots of light that make up
images on your screen and the dots as they are presented to you. When you
make a picture on your screen be 300 pixels wide, you’re talking about CSS
pixels. This distinction is good to know, especially when you’re working with
mobile devices, where it’s common to zoom in or out on content. An object
that is 300 display pixels wide may actually be 600 device pixels wide if the
user’s zoom level is 200 percent.

Display pixels are also sometimes referred to as points or dots, but we encour-
age you to not use these terms, because they’re typically used to describe
sizes for printing and only cause confusion on the web.

 Fully understanding all the inner workings of display resolution and pixel
density and the like isn’t necessary in order to write CSS, or even to be a very
good web designer. We mention these concepts here so that you’re aware of
them and so that you know that when we talk about pixels, we’re not actually
talking about the physical dots of light on your monitor (device pixels), but
rather, a unit of measurement equal to at least one device pixel, but usually
more — depending on the user’s device.

Now that you know the difference between a device pixel and a CSS pixel, we
talk briefly about how to measure things on the web.

Understanding the viewport
The viewport is the window through which a person sees your awesome web
pages. In its simplest terms, it’s the area of the web browser in which web pages
are displayed. Like a window, the viewport is just a space through which you
can view something else (a web page, in this case).

184 Part IV: Adopting CSS Style

There are two big differences between how physical windows work and how
the viewport works, however:

 ✓ On a desktop computer, users can resize the viewport by resizing the
browser window. This would be like changing the size of a window in your
home based on how much of the scene outside you want to be able to see
at any time. (Another option would be to move closer to or farther away
from the window, which is called zooming in the web browser world.)

 ✓ The viewport tells the web page its width, which allows the web page to
rearrange itself to fit the window. Imagine rearranging objects outside
and resizing them so that you can see them from within your room. It’s
like that.

Newer ways of laying out web pages depend on knowing the viewport width
and rearranging elements in the browser dynamically to provide a great
user experience to people using differently sized viewports. Using viewports
and dynamic arrangement of elements is the main idea behind a type of web
design called responsive design.

Responsive design came about in response to the increasing number of
people who are surfing the web with their smartphones or tablet computers.
The idea is that rather than forcing the user to resize or zoom in on your web
page, the web page itself should respond to the size of the device viewing it
and dynamically reflow content to improve the reading experience on a wider
variety of devices.

Property measurement values
Many HTML properties use measurement values. We tell you which measure-
ment values go with which properties throughout this book. Standard property
measurements dictate the size of a property in two ways: absolute value mea-
surements and relative value measurements.

Absolute value measurements dictate a specific length or height using one of
these values:

 ✓ Inches, such as .5in

 ✓ Centimeters, such as 3cm

 ✓ Millimeters, such as 4mm

 ✓ Picas, such as 1pc

 There are six picas in an inch.

185 Chapter 11: Advantages of Style Sheets

 ✓ Points, such as 16pt. As previously mentioned, pt is a unit that is typi-
cally used for print, and you should refrain from using it in CSS that is
styling HTML displayed on a screen.

 There are 12 points in a pica.

 ✓ Pixels, such as 13px. (Defined as the smallest possible visible point of
light that can be displayed, the pixel maps to at least 1 physical pixel on
your screen.)

Keep in mind that a measurement of 1in does not necessarily mean 1 inch
on the screen. The CSS specification defines an inch to be 96 device pixels. If
your screen has a resolution lower than 96 pixels per inch, such as the very
common 72 pixels per inch, a CSS inch won’t actually be a screen inch.

 The most commonly used absolute method for specifying widths and heights,
as well as for positioning elements on the screen is px, and that’s what we
recommend. Although you can use inches or centimeters, it’s best to stay
away from them when you’re designing for the web.

Relative value measurements base length or height on the current value of
the element being measured. Relative values have the ability to scale based
on factors such as the user’s browser size or default font size, so using them
for font sizes is considered a best practice . Relative values include the
following:

 ✓ p%: A percentage of the current font-size value, such as 150%.

 For example, you can define a font size of 75% for all paragraphs. The
default style sheet for most browsers defined the base font size as 16px.
So, a setting of 75 percent would cause the paragraph font size to be
12px (16 × 0.75=12).

 ✓ ex: A value that is relative to the x-height of the current font. An x-height
is the equivalent of the height of the lowercase character of a font, such
as 1.5ex.

 ✓ em: A value that is relative to the current font size, such as 2em. For any
given typeface, 1em is equivalent to its point size. (Thus, a 16pt font has
an em size of 16pt. Get it?)

 In fact, both 1em and 100% equal the current font size.

When you’re specifying the size of type in your web pages, we recommend
sticking with using relative sizes specified with em, which we discuss further
in the “A clever em trick” sidebar.

186 Part IV: Adopting CSS Style

About the CSS3 Standard
Whereas both CSS1 and CSS2 were proposed, debated, and finally recom-
mended as big, monolithic standards for Cascading Style Sheets, CSS3 is a
collection of many individual modules. If you visit the CSS Level 3 (the formal
name for what we and others blithely call CSS3 instead) works-in-progress
page at the W3C website (www.w3.org/Style/CSS/current-work.html),
you can see a list of all the CSS modules in various levels of completion. In
Table 11-1, we present these modules with brief descriptions.

Table 11-1 CSS Level 3 Modules, Descriptions, and Standards Status
Name Description
Grid Template
Layout

Describes a new method for positioning elements using
constraints on their mutual alignment and flexibility of
motion, where a layout grid defines the basic template

CSS Speech An audio module that enables authors to control how
documents are rendered using speech synthesis

A clever em trick
To make em easier to work with and to calcu-
late, many professional web developers use a
clever trick. Employ this trick, and you will be
among the font size elite.

Recall that the default base font size in the
browser is equal to 16px. In other words, if you
don’t apply any styling to a document, text in
paragraphs will be 16 pixels tall. So, by default,
1em is equal to 16px. This is way too large
for most web page designs. Most web pages
are designed with a base font size of 12px or
10px. If you want to specify a 10px font size
using ems, you can say .625em. This requires
math, however. Math is hard.

An easier way is to simply adjust the value of
1em to be 10px. You can do this by globally

adjusting the size of the base font to 62.5 per-
cent using the following CSS rule:
body {font-size:62.5%;}

Now, you can use em measurements just as a
designer might use px measurements, but just
shift the decimal point over one spot to the left.
For example, if you want <h1> elements to be
24px, that will be 2.4em (2.4 times the base
font size of 10px).

This approach to font sizing gives you the best
of both worlds: the ability to know exactly how
large your fonts will be and to work with them
easily in relation to absolutely sized objects on
the screen, while also making sure that users
who want or need to increase the font size will
have the ability to do so.

http://www.w3.org/Style/CSS/current-work.html

187 Chapter 11: Advantages of Style Sheets

Name Description
Backgrounds and
Borders

Describes background colors and images and describes
border styles, including background image stretch, images
for borders, rounded corners, and shadows

Basic User
Interface

Features for styling interactive, dynamic web page
aspects, including form element appearance to denote
state, plus cursors and colors for GUI use

Box Model Describes block-level content in normal flow, where
document elements are laid out as rectangular boxes in
sequence or nested orders that together comprise a hori-
zontal or vertical (for Chinese and Japanese) flow

Marquee Contains properties to control speed and direction of a
marquee area, a scrolling mechanism that moves text
through a region with no user intervention involved; used
mostly on mobile devices

Cascading and
Inheritance

Describes how values are assigned to properties, where
cascading describes how multiple style sheets are com-
bined, and inheritance involves parent value assignments
or initial value settings

Color Specifies color-related CSS controls, including transpar-
ency and notations for the color value-type

Fonts Properties to select and adjust fonts, including emboss
and outline effects, kerning, smoothing, and anti-aliasing

Generated Content
for Paged Media

Advanced printing properties that go beyond the Paged
Media module, including creating footnotes, cross-references,
and generation of running headers from section titles

Image Values and
Replaced Content

Defines how to deposit content on a page before, after, or
instead of some element, where content can be text or an
image or some other external object

Hyperlink
Presentation

Properties to control how hyperlinks are presented, includ-
ing controls on which hyperlinks are active, where targets
are shown when a user traverses a link, and more

Line Layout Describes alignment of text and other boxes on a line;
expands vertical-align property for CSS1/2 to
support alignment of multiple script types, including non-
Roman alphabets and ideographs

Lists Properties for styling lists, especially for bullet types, num-
bering systems, and use of images (especially for bullets)
within list displays

Math Properties for styling mathematical formulae, based on
the presentational elements in the XML-based MathML
application

(continued)

188 Part IV: Adopting CSS Style

Table 11-1 (continued)
Name Description
Multicolumn
Layout

New properties to flow content into flexibly defined colum-
nar layouts

Namespaces Explains how CSS selectors can be extended to select ele-
ments based on XML-derived namespaces that can distin-
guish among multiple uses of the same element name from
one another across multiple style sheets

Object Model The Document Object Model (DOM) specifies functions
used in programming libraries and web browsers to
manipulate HTML, XML, and CSS documents; addresses
functions for adding and deleting rules and changing prop-
erties in CSS style sheets, for APIs called the CSS Object
Model or CSSOM

CSSOM View
Module

Tool APIs to enable authors to inspect and manipulate
document view information, including position data for ele-
ment layout boxes, width of script viewports, and element
scrolling

Paged Media Extends print control properties from CSS2 with controls
for running headers, footers, and page numbers

Positioning Covers properties for absolute, fixed, and relative position-
ing of elements, to take them out of normal document flow
and place them elsewhere on a page

Presentation
Levels

Tools for stepping forward and backward through multiple
renderings of a document, especially useful for slide pre-
sentations, outline views, and so forth

Ruby Properties to manipulate Ruby positions, for small annota-
tions on top of or next to ideograms or words in Chinese
and Japanese (often used to hint pronunciation or mean-
ing for difficult ideograms)

Style Attribute
Syntax

Rules for expressing CSS markup as part of HTML and
other markup language attributes (SVG)

Syntax Generic, forward-compatible grammar which all levels
of CSS must follow; value syntax restrictions for specific
properties are addressed in other modules

Tables Table layout controls, including rows, columns, cells,
captions, borders, and alignment (same as in CSS2 but
described in more detail in CSS3)

Text Text-related properties from CSS2 with new properties for
dealing with text in different languages and scripts with
special emphasis on International Layout; text properties
also covered in the Text Layout and Line Grid modules

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

189 Chapter 11: Advantages of Style Sheets

Name Description
Line Grid Describes text where symbols in a line are aligned to an

invisible grid, so all symbols line up vertically, commonly
used for text composed of ideographs as in Japanese

Values and Units Describes common values and units associated with CSS
properties, along with describing how specified values
from a style sheet get processed into computed values or
actual values at runtime

Fonts Describes how to download fonts for use within a docu-
ment (also used within SVG, an XML-based stroke graph-
ics rendering markup application)

Behavioral
Extensions

Defines the binding property from the XML-based XML
Binding Language, or XBL, to CSS, for associating ele-
ments in a document with scripts, event handlers, and CSS

Flexible Box
Layout

Defines the box and inline-box keywords for the CSS
display property, which causes an element to be dis-
played as a row or column of child elements, with controls
over order and space distribution

Transforms Defines properties to apply rotations, translations, or other
visual transformations to an element box (same as in SVG)

Transitions Properties to animate transitions between pseudo-classes,
as when an element enters or leaves the hover state, with
values for delay and value transitions between pairs of
values (old/new, on/off, and so on)

Animations Specifies properties that change their values during an ani-
mation, what sequence of values they take, and how long
they hold each value

If you’re interested in more information about current work on CSS3 (or other related
efforts), please visit the W3C’s Current Work page at www.w3.org/Style/CSS/
current-work.html.

http://www.w3.org/Style/CSS/current-work.html
http://www.w3.org/Style/CSS/current-work.html

190 Part IV: Adopting CSS Style

12
CSS Structure and Syntax

In This Chapter
▶ Using selectors and declarations
▶ Creating style rules
▶ Discovering CSS properties
▶ Understanding inheritance and the style cascade

I
n this chapter, we talk about the rules, or syntax, of CSS. Once you under-
stand how CSS goes about locating elements and applying styles to them,

we’ll get into more details about the important topic of cascading. So far,
we’ve only touched on the topic of cascading but it’s vital to understanding
how to use CSS.

Exploring CSS Structure and Syntax
A style sheet is made of style rules. Each style rule has two parts:

 ✓ Selector: Specifies the markup element to which style rules apply

 ✓ Declaration: Specifies how content described by the markup looks

You use a set of punctuation marks and special characters to define a style
rule. The syntax for a style rule always follows this pattern:

selector {declaration;}

A semicolon always follows each declaration to make it easier for computers
to distinguish them. As we explain later in this chapter, a single selector may
include one or more declarations. Furthermore, each declaration breaks
down into two subitems:

192 Part IV: Adopting CSS Style

 ✓ Properties are aspects of how the computer displays text and graphics
(for example, font size or background color).

 ✓ Values provide data to specify how you want text and images to look on
your page (for example, a 24pt font size or a yellow background).

You separate the property from the value in a declaration with a colon, and
each declaration ends with a semicolon:

selector {property: value;}

The CSS specification lists exactly which properties you work with in your
style rules and the different values they take. Most properties are pretty self-
explanatory (color and border, for example). See Chapter 11 for a quick
rundown of properties included in CSS.

Style sheets override a browser’s internal (default) display rules; your style
declarations affect the final appearance of the page in the user’s browser.
This means that you control how your content looks and create a more con-
sistent and appropriate experience for visitors.

Figure 12-1 shows a simple HTML page with all three heading levels (plus
some body text) without the style sheet applied. The browser uses its default
settings to display the headings in different font sizes.

Figure 12-1: An HTML page without style specifications.

To spruce things up a bit, you might apply the following style rules to this page:

193 Chapter 12: CSS Structure and Syntax

body {font-family: Arial;}

h1 {color: teal;
 font-size: 3em;}

h2 {color: maroon;
 font-size: 2em;}

h3 {color: black;
 font-size: 1.5em;}

p {font-style: italic;}

Figure 12-2 shows the same web page with the styles applied. Things look
very different because the body text is changed to a sans-serif font, header
titles are set for different colors, paragraph text is italic, and heading sizes
are magnified beyond their usual settings.

Figure 12-2: An HTML page with custom style rules in effect.

 Users can change their preferences so that their browsers ignore your style
sheets (although most users will use your sheets). For example, a person who
has trouble reading small text may override your style sheet to make the text
larger. If you don’t anticipate this in your design, a larger font size may cause
your site to look bad or even to not work at all. Test web pages with style sheets
turned off to be sure they look good (or acceptable) without your style sheets.

For detailed instructions on disabling or altering style sheets, see Jim Thatcher’s
discussion “Reading Web Pages without CSS” at www.jimthatcher.com/
webcourseb.htm. The instructions vary by web browser, but you can use
accessibility plug-ins to manage or disable style sheets.

http://www.jimthatcher.com/webcourseb.htm
http://www.jimthatcher.com/webcourseb.htm

194 Part IV: Adopting CSS Style

Selectors and declarations
You probably want a style rule to affect the display of more than one prop-
erty for any given selector. You can create several style rules for a single
selector, each with one declaration, like this:

h1 {color: teal;}
h1 {font-family: Arial;}
h1 {font-size: 3em;}

However, such a large collection of style rules can be hard to manage. CSS
allows you to combine several declarations in a single style rule that affects
multiple display characteristics for a single selector, like this:

h1 {color: teal;
 font-family: Arial;
 font-size: 3em;}

All the declarations for the h1 selector are within the same set of brackets
({}) and are separated by semicolons (;). You can put as many declarations
as you want in a style rule; just end each declaration with a semicolon.

 From a purely technical standpoint, white space is irrelevant in style sheets
(just as it is in HTML), but you should use a consistent spacing scheme to
make it easy to read and edit your style sheets. One exception to this white
space rule occurs when you declare multiple font names in the font-
family declaration. See the “Font family” sidebar for more information.

You can make the same set of declarations apply to a collection of selectors,
too: You just separate the selectors with commas. The following style rule
applies the declarations for text color, font family, and font size to the h1, h2,
and h3 selectors:

Font family
When assigning values to the font-family property, you can use a list of comma-separated
font names. These names must match fonts available to a user’s web browser. If a font name
includes spaces — such as Times New Roman — enclose it in quotation marks.
h1 {font-family: Verdana, “Times New Roman”, serif;}

In the preceding rule, the browser knows to use Verdana first; if that’s not available, it looks for
Times New Roman, and then it uses a generic serif font as its last option. Chapter 17 covers the
use of fonts in CSS.

195 Chapter 12: CSS Structure and Syntax

h1, h2, h3 {color: teal;
 font-family: Arial;
 font-size: 2.5em;}

 Style sheet syntax relies heavily on punctuation, so mind your colons and
commas or a style rule might not work exactly as you expect. If that happens,
make sure that you’re not using a semicolon where you need a colon, or a
parenthesis where you need a curly bracket. Watch out for semicolons, too!
Validation tools help catch these lapses: Use them. The W3C CSS validation
service at http://jigsaw.w3.org/css-validator helps find problems
in your style sheets.

The selectors
Before you can style an element, you need to tell the browser which element
you want to style. This is where the selector comes in. CSS contains several
ways to select elements, ranging from the very broad (select everything) to
the very specific (select only one particular instance of an element).

The universal selector
The most basic selector of all is the universal selector. The universal selector
matches any element type. The symbol for the universal selector is the aster-
isk (*). Here’s the universal selector being used to set the margin on every
element in the document to 0:

* {margin: 0px;}

The universal selector is useful as a tool for taking a shortcut through the
thickets of complex selectors that are sometimes required to address ele-
ments that are nested deep within a document. For example, suppose it’s St.
Patrick’s Day and you want to change the color of every element to green.
You can do this, and override the base color of every element, by using a uni-
versal selector:

* {color: green;}

That’s some powerful stuff! To see the universal selector in action, follow
these steps:

 1. Open Aptana Studio if it isn’t already open.

 2. Open index.html for editing.

 This is the home page of the HTML5 Cafe site, and it should look some-
thing like the markup in Listing 12-1.

http://jigsaw.w3.org/css-validator

196 Part IV: Adopting CSS Style

Listing 12-1: The HTML Markup for the HTML5 Cafe Home Page

 If you preview the home page in a browser at this point, it should
resemble Figure 12-3.

Figure 12-3: The HTML5 Cafe home page.

197 Chapter 12: CSS Structure and Syntax

 3. Insert a new line right before </head>.

 4. Type the following:
<style>
 * {color: green;}
</style>

 5. Save your changes to index.html and open the file in your web
browser.

 You see something similar to Figure 12-4.

Figure 12-4: Top o’ the mornin’ to ya! That’s a lot of green.

You may be surprised that more things didn’t turn green in Figure 12-5. For
example, the border around the page and the navigation links kept their old
colors. The reason is in the definition of the universal selector:

The universal selector selects any element type.

In other words, styles rules with the universal selector are applied to every
element, but any element in the document may be styled differently if you
use one of the other, more specific, selectors. This is what’s happening here.

Here’s a more interesting example of the universal selector. In this example,
we add a CSS transform effect to every element in the document:

 1. Assuming that you still have index.html open in Aptana Studio,
delete the previous CSS rule you created (but leave the beginning and
ending <style> tags in place).

198 Part IV: Adopting CSS Style

 2. Type the following rule between the <style> and </style> tags.
* {-webkit-transform: rotate(100deg);
 -moz-transition: rotate(100deg);
 -ms-transition: rotate(100deg);
 -o-transition: rotate(100deg);}

 This rule rotates every element in the document 100 degrees. When you
preview the document in your browser, you now see something like the
web page in Figure 12-5.

Figure 12-5: Who jumbled up the web page?

The universal selector is the most blunt tool in our shed. For more precise
CSS work, additional selectors are available.

 You may occasionally see CSS declarations containing property:value
pairs that are identical except for a few characters at the beginning that start
with a dash, as in the last example.

 -webkit-transform: rotate(100deg);
 -moz-transition: rotate(100deg);
 -ms-transition: rotate(100deg);
 -o-transition: rotate(100deg);

These characters — such as webkit and moz — at the beginning of the prop-
erty name are called browser prefixes. Because some of the CSS3 properties
are not yet final, browser creators implemented their own versions of these
CSS3 features, and named them with browser prefixes to indicate that they
aren’t the standard versions of the properties.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

199 Chapter 12: CSS Structure and Syntax

Each declaration in the preceding rule is targeted at a different web browser,
or type of web browser. The first browser prefix, -webkit, is used with Google
Chrome and Apple Safari (among others). The second browser prefix, -moz,
is used by Mozilla’s Firefox browser. The -o prefix belongs to the Opera
browser. The -ms prefix is for Microsoft’s Internet Explorer.

In most cases, vendor-specific properties work the same (or close to the
same) as one another, and as the latest version of the unfinished standard
property. As CSS3 properties become standards, browser prefixes will
become unnecessary. For now, however, it’s a good idea, and required in
many cases, to use them for certain CSS3 properties.

Element type selectors
Element type selectors select a particular type of element. For example, you
may want to change the size of every <h1> element in your document or
change the font style of paragraph text. Here’s an example of an element type
selector in a rule that changes the font size of the <h1> element to 3em.

h1 {font-size: 3em;}

The element type selector works the same as the universal selector, except
only with one element type. For example, if you wanted to only rotate the
coffee cup image on the HTML5 Cafe home page, you could do so by simply
changing the universal selector from the previous example to img. Here’s the
new declaration:

img {-webkit-transform: rotate(100deg);
 -moz-transition: rotate(100deg);
 -ms-transition: rotate(100deg);
 -o-transition: rotate(100deg);}

When you preview the page, it looks like Figure 12-6.

But, what if you had multiple images on this page and wanted only one of
them to be rotated? For that, you need yet another, more specific, selector.

ID selectors
ID selectors select an element according to its ID attribute. Because the ID
attribute is designed to be unique within an HTML document, the ID selector
is a good way to address just one particular element.

For example, if you look at the HTML for the HTML5 Cafe home page, you
see that it contains two <div> elements. One of these elements encloses the
entire contents of the <body> and has an ID value of container. The other
element surrounds just the center content area (excluding the navigation and
the footer) and has an ID value of content.

200 Part IV: Adopting CSS Style

Figure 12-6: The cup spilleth over.

To use an ID selector, you preface the value of the ID you want to select with
a # symbol. For example, if you want to change the background color on the
div with the ID of content, you would use the following declaration:

#content {background-color: aquamarine;}

Class selectors
Sometimes you need style rules that apply only to specific instances of an
HTML markup element. For example, if you want a style rule that applies only
to paragraphs that hold copyright information, you need a way to tell the
browser that a rule has a limited scope.

To target a style rule closely, combine the class attribute with a markup
element. The following examples show HTML for two kinds of paragraphs:

 ✓ A regular paragraph (without a class attribute)
<p>This is a regular paragraph.</p>

 ✓ A class attribute with the value of copyright
<p class=”copyright”>This is a paragraph of class

copyright © 2013.</p>

To create a style rule that applies only to the copyright paragraph, follow the
paragraph selector in the style rule with

 ✓ A period (.)

 ✓ The value of the class attribute, such as copyright

201 Chapter 12: CSS Structure and Syntax

The resulting rule looks like this:

p.copyright {font-family: Arial;
 font-size: 12px;
 color: white;
 background: teal;}

By combining an element type selector (p) with a class selector (.copyright),
we can specify that the following rules apply only to p elements with this class
attribute. This style rule specifies that all paragraphs of class copyright
display white text on a teal background in 12px Arial font.

To test out this new copyright class, add a paragraph tag with a copyright
class to the copyright info in the footer of HTML5 Cafe’s index.html:

<footer>
 <p class=”copyright”>copyright © dummieshtml.com</p>
</footer>

Figure 12-7 shows how a browser applies this style only to a paragraph where
class equals copyright and not to the other paragraph on the page.

Figure 12-7: Classes can target your style rules more precisely.

You can also create style-rule classes that aren’t associated with any element,
like the following example:

.warning {color: red;
 font-weight: bold;
 font-size: 1.5em;}

202 Part IV: Adopting CSS Style

You can use this style class with any element by adding class=”warning”
to that element. Figure 12-8 shows how a browser applies the warning style
to the paragraph and heading, but not to the block quote, as in this HTML:

<p>This is a paragraph without the warning class applied.</p>
<blockquote>This is a block quote without a defined class.</blockquote>
<h1 class=”warning”>Warnings</h1>
<p class=”warning”>This is a paragraph with the warning class applied.</p>

Figure 12-8: You can use class selectors to create style rules
that work with any element.

You can also use the span element to selectively apply custom styles to
inline content (or to create arbitrary content containers that extend from the
opening tag to its closing counterpart):

<p>This is a paragraph without the warning class
applied only to the words “warning class.”</p>

To see this declaration in action, add it inside the <style> element in
index.html and then place class=”warning” within the starting tag of
one of the elements containing text in index.html.

<figcaption class=”warning”>powered by coffee.</figcaption>

When you preview the document in a browser, the text inside of <fig
caption> should now be red, bold, and larger, as shown in Figure 12-9.

Other selectors
CSS includes other selector types as well, which are somewhat more
advanced and less commonly used than the four we cover in the preceding
sections. These are:

 ✓ Adjacent sibling selector: Selects elements only when they are next to
another specified element.
h1 + p {font-style: italic; }

 The preceding example applies to any <p> that directly follows an <h1>.

203 Chapter 12: CSS Structure and Syntax

Figure 12-9: Using a class selector to apply style to an element.

 ✓ Attribute selector: Selects elements based on the values of their attributes.
img[src=”chris.jpg”] {border: 6px solid purple;}

 This rule applies a thick purple border to any with a src attribute
equal to chris.jpg.

 ✓ Child selector: Selects elements that are a direct child of another element.
For example, in this HTML, the is a direct child of <p>, but the <a>
is not.
<p>It is important to remember this picture.</p>

 To use a child selector, type > between the parent and its direct child
that you want to target.
p>em {color:red;}

 ✓ Descendant selector: Selects elements that are lower on the document
tree than a specified element. For example, this rule targets any <p> that
is nested within a <footer>:
footer p {font-size: 50%;}

 Note that descendant selectors apply to all descendants that match
the selector, not just to the first descendant. So, the preceding example
matches the <p> in this HTML:
<footer><p>copyright 2013</p></footer>

204 Part IV: Adopting CSS Style

 as well as the one in this HTML:
<footer><div><p>copyright 2013</p></div></footer>

 ✓ Pseudo-classes: Selects elements based on properties that aren’t in the
document tree. For example, you can use a pseudo-class to apply a style
to an element when the user hovers the mouse over the element, or to
change the style of a link that has been visited previously.
a:hover{text-decoration:none;}

 In this example, the underline is removed from links when the user
points at the link with the mouse.

 The list of possible pseudo-classes includes the following:

 • :first-child

 • :link

 • :visited

 • :hover

 • :active

 • :focus

 • :lang(n)

Inheriting styles
A basic concept in HTML (and markup in general) is nesting tags:

 ✓ Every valid HTML document nests within <html> and </html> tags.

 ✓ Everything a browser displays in a window is nested within <body> and
</body> tags. (That’s just the beginning, really.)

The CSS specification recognizes that you often nest one element inside
another and wants to be sure that styles associated with the parent element
find their way to the child element. This mechanism is called inheritance.

When you assign a style to an element, the same style applies to all elements
nested inside that element. For example, a style rule for the body element
that sets page background, text color, font size, font family, and margins
looks like this:

body {background: teal;
 color: white;
 font-size: 18px;
 font-family: Garamond;
 margin-left: 72px;
 margin-right: 72px;
 margin-top: 72px;}

205 Chapter 12: CSS Structure and Syntax

 To set style rules for the entire document, set them in the body element.
Changing the font for the entire page, for example, is much easier to do that
way; it beats changing every single element one at a time.

When you link the following HTML to the preceding style rule, which applies
only to the body element, that formatting is inherited by all subordinate
elements:

<body>
 <p>This paragraph inherits the page styles.</p>
 <h1>As does this heading</h1>

 As do the items in this list
 Item
 Item

</body>

Understanding the Cascade
Multiple style sheets can affect page elements and build upon each other. It’s
like inheriting styles within a web page. This is the cascading part of CSS.

Cascading is how CSS deals with situations in which two or more style rules
have declarations that apply to the same element and property. The three
principles of cascading to keep in mind are:

 ✓ Origin: Did the user specify one of the style rules? If so, this is the most
important one and wins in a conflict.

 ✓ Specificity: ID selectors beat class selectors. Class selectors beat element
type selectors.

Pay attention to inheritance!
When you build complex style sheets to guide
the appearance of every aspect of a page, keep
inheritance in mind. For instance, if you set mar-
gins for a page in a body style rule, all margins
you set for every other element on the page are
based on margins set for the body. If you know
how your style rules work together, you can use
inheritance to minimize style rule repetition and
create a cohesive display for your page.

This chapter covers basic CSS syntax, but you
can fine-tune your style rules with advanced
techniques. A complete overview of CSS
syntax rules is available in the “CSS Structure
and Rules” tutorial by the Web Design Group at
www.htmlhelp.com/reference/css/
structure.html.

http://www.htmlhelp.com/reference/css/structure.html
http://www.htmlhelp.com/reference/css/structure.html

206 Part IV: Adopting CSS Style

 ✓ Proximity: How close is the style to the element being styled? The next
chapter shows you that there are three places where style rules can be
defined. The one that’s closest to the element being styled, or that is
read last by the browser, wins in a conflict.

For example, here’s a simple bit of HTML markup with a couple of elements:

<body>
 <div id=”content”>
 <p class=”information”>This is the content.</p>
 </div>
</body>

Here’s part of a style sheet that’s applied to this HTML:

body {font-family: Arial;}
div {color: green;}
p {font-size: 18px;
 color: blue;}
.information {font-size: 16px;}

Notice that these style rules apply two different font sizes and two different
colors to the <p> element. The browser needs to resolve this conflict, and
it does so by using the principles of origin, specificity, and proximity. In this
particular case, after all the conflicts are resolved the text inside the <p>
element has the following rules applied to it:

font-family: Arial;
color: blue;
font-size: 16px;

Even though two different font sizes and two different colors apply to the
paragraph text in this example, text can only be one color and one size at
a time. By applying the three principles of the cascade, the browser has
resolved the conflict and the winning styles have been chosen.

13
Using Different Kinds

of Style Sheets
In This Chapter
▶ Using inline styles
▶ Styling a page with the <style> element
▶ Using external style sheets
▶ Styling a site with external style sheets

W
hen you finish creating your style rules, you’re ready to connect
them to your HTML page by using one of these options:

 ✓ Insert style information into your document. You can either

 • Use the style attribute to add style information directly to a tag.

 This is an inline style.

 • Use the <style> element to build a style sheet into a web page.

 This is an internal style sheet.

 ✓ Use an external style sheet. You can either

 • Use the <link> tag to link your web page to an external style sheet.

 • Use the CSS @import statement to import an external style sheet
into the web page.

208 Part IV: Adopting CSS Style

Applying Inline Styles
Each element in an HTML document has a special, optional attribute named
style. Web page authors use the style attribute to apply CSS rules to that
single element without having to worry about using a selector. Style rules
applied in this way are called inline styles.

Listing 13-1 shows a sample HTML document that has been styled entirely
with inline styles.

Listing 13-1: An HTML Document Styled with Inline Styles

One thing you may notice about this document is that it’s wordy. Because
inline styles apply only to the element they’re inside of, using inline styles
requires a lot of typing.

The result of all this typing is a web page that looks exactly like the original
HTML5 Cafe home page.

Inline styles are also difficult to maintain. Imagine if you wrote the document
from Figure 13-1 and then wanted to change the color that’s applied to the
link elements. You’d need to carefully go through the markup and change the
color for each link to the new value. In this particular example, that might
take only a few moments. But what if the document had many more links?

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

209 Chapter 13: Using Different Kinds of Style Sheets

For example, what if it was a hyperlinked index for a book? You could spend
hours going through and modifying the inline styles for each link.

Figure 13-1: The result of styling the HTML5 Cafe home page with inline styles.

Of course, no one would actually build a website this way.

In fact, if there’s any chance that you’ll ever want to reuse or modify a
style, you shouldn’t use inline styles. So, when should you use inline styles?
Practically never.

As always, there are exceptions to our opinion that you should never use
inline styles. However, most of them have to do with working around bugs in
programs that will be using the CSS. For example, if you’re writing an HTML
e-mail, it’s necessary to use inline styles to ensure compatibility with certain
e-mail programs. For normal day-to-day web development, do your future
self a favor (as well as anyone else who might need to edit your markup) and
don’t use inline styles.

The one thing that’s good about inline styles is that they’re nearly at the top
of the CSS cascade. In other words, a style applied using an inline style takes
precedence over any other style that may apply to that element.

 Once again, there are exceptions to our statements about inline styles taking
precedence over every other style. The exceptions are as follows:

210 Part IV: Adopting CSS Style

 ✓ User style sheet: These are styles defined by someone inside of their own
web browser. For example, users with vision disabilities may universally
adjust font sizes in their browsers to make web pages easier to read.

 ✓ The !important attribute: The !important attribute is like an escape
hatch from the cascade. To use !important, put it after the value in a
CSS declaration, immediately before the semicolon. For example:
p {color: purple !important;}

 When you use !important, you bypass the normal cascade, and the
style with the !important attribute is applied. Period.

Okay. We know of one small exception to the !important exception. When
a user’s style sheet also specifies the same declaration as !important, the
declaration marked as !important can lose the cascade battle. This situa-
tion is really rare, however, and applies only to that one user’s browser. So,
effectively, you can count on !important to mean “do it, no matter what!”

Getting to Know Internal Style Sheets
Like inline styles, an internal style sheet lives inside your HTML page. Unlike
inline styles, the rules in an internal style sheet use selectors and can apply
to multiple elements within a document.

Understanding the <style> element
To create an internal style sheet, just add style rules to the <style> element
in the document header. You can include as many (or as few) style rules as
you want in an internal style sheet.

The style element doesn’t require any attributes in HTML5. In previous ver-
sions of HTML, a type attribute was required, which explicitly specified that
the style rules were CSS style rules. This was pretty much always redundant,
however, because CSS was the only type of style rule anyone was using in
HTML. The elimination of such silly and redundant requirements is just one
of the beautiful things about HTML5.

Figuring out internal style sheet scope
Rules defined in an internal style sheet apply to just the HTML document in
which they appear. It’s common to use internal style sheets when your entire
website is just that one page, or when a single page needs to have some
styles that are different from the rest of the pages in the site.

Listing 13-2 shows how you can rewrite the example from Chapter 11 (and
from Figure 13-1) using an internal style sheet. Notice how much cleaner the
HTML is in this example.

211 Chapter 13: Using Different Kinds of Style Sheets

Listing 13-2: Internal Style Sheets Use Selectors and Apply to a Single
Document

212 Part IV: Adopting CSS Style

If you need to change the color of the top navigation links in this document
to red, you can do so by just making one edit: Simply change the value of the
color property. So, the #topnav a rule before the change looks like this:

#topnav a {
 color:#FFFFFF;
 text-decoration: none;
 }

and after the change, it might look like this:

#topnav a {
 color:#FF0000;
 text-decoration: none;
 }

 In this example, we specify the color using what’s called hexadecimal nota-
tion. We talk more about the different ways of naming colors in HTML in
Chapter 16. For now, just know that the first two characters (after the #)
specify the amount of red, the third and fourth characters specify the amount
of green, and the fifth and sixth specify the amount of blue. By combining
different amounts of each color, you can create exactly 16,777,216 different
colors.

 The benefit of using an internal style sheet is convenience: Your style rules
are on the same page as your markup, so you can tweak both quickly. If you
want the same style rules to control the appearance of more than one HTML
page, move those styles from individual web pages to an external style sheet.

Working with External Style Sheets
An external style sheet holds all your style rules in a separate text document
that you can reference from any HTML file on your site. You must maintain a
separate style sheet file, but an external style sheet offers benefits for overall
site maintenance. If your site’s pages use the same style sheet, you can change
any formatting characteristic on all pages with a change to the style sheet.

CSS files
External style sheets follow the same format as internal style sheets except that
they aren’t enclosed within a <style> element. Instead, external style sheets
are made up of one or more CSS rules in a file saved with the extension .css.

In earlier chapters, we present a couple of examples of external style sheets.
For example, in Chapter 11, we look at normalize.css and main.css.

213 Chapter 13: Using Different Kinds of Style Sheets

Link element attributes
Listing 13-3 shows the <head> element from a page in the HTML5 Cafe site,
which includes both the normalize.css and main.css style sheets. Any
number of external style sheets may be included in the <head> of a document.

Listing 13-3: The <head> Element from a Page in the HTML5 Cafe Site

Notice the two <link> elements in this markup. The <link> element is most
often used to link to style sheets. Two attributes are required when you use
<link> to link to an external style sheet.

The rel attribute indicates the relationship between the linked document
and the document that’s linking to it. When you’re linking to a style sheet, the
rel attribute should always have a value of stylesheet.

The other required attribute is href. As with the <a> element, the href attri-
bute contains the path to the linked file. The href attribute in the <link>
element can take either of the following:

 ✓ A relative link (a style sheet on your own site)

 ✓ An absolute link (a style sheet that doesn’t reside on your own site)

To quickly add style to your web page (or to experiment to see how browsers
handle different styles), use an absolute URL to point to one of the W3C’s
Core Style sheets. Read more about them at www.w3.org/StyleSheets/
Core. Chapter 8 covers the difference between relative and absolute links.

Usually, you shouldn’t use a style sheet that doesn’t reside on your website,
because you want control of your site’s look and feel.

 We recommend using an external style sheet for every website. Even if your
website currently contains only one page, it will likely grow in the future,
and you’ll be glad that you had the foresight to set things up the right way
in the first place. Then you’ll remember that we advised you to do just that,
and you’ll turn to your co-worker and say, “I need to buy Ed and Chris a beer.

http://www.w3.org/StyleSheets/Core
http://www.w3.org/StyleSheets/Core

214 Part IV: Adopting CSS Style

That advice they gave me was exactly right!” Of course, we’re not going to
share a single beer, so we’ll do our best to provide you with at least one more
beer-worthy tip in this book — and hopefully many more than that.

Importing and when to use @import
Another way to include CSS in your HTML document is with the @import
statement. The @import statement instructs the browser to load an external
style sheet and use its styles. You use it within the <style> element but
before any of the individual style rules, like so:

<style>
 @import “http://www.somesite.edu/stylesheet.css”;
</style>

You can also use the @import statement within external style sheets to create
a sort of super-external style sheet. For example, you can have an external
style sheet that references other external style sheets. However, just because
you could do something doesn’t mean that it’s the best thing to do.

The truth is that @import is convenient but otherwise not good for much.
You could organize your CSS styles into multiple external style sheets and
then link them together or import them into the <style> element in a page.
Unfortunately, this added complexity can have a negative impact on the
performance of your web pages.

Most experts agree that the best way to use style sheets is to have as few
external style sheets as possible and use the <link> element to include
them in the <head> of each HTML page in your site.

Part V
Enhancing Your Pages’

Look and Feel

To access some great CSS resources for buttons, colors, fonts, and text effects, visit
www.dummies.com/extras/beginninghtml5css3. Also, all links and
markup examples are available online at www.dummieshtml.com/html5cafe in
the sections labeled Ch14 through Ch19.

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummieshtml.com/html5cafe

In this part . . .
 ✓ Breaking into CSS box models for HTML elements
 ✓ Perfecting HTML element positioning with CSS markup
 ✓ Building page elements with CSS buttons, borders, and

backgrounds
 ✓ Working with color in CSS to add contrast, drama, and read-

ability to your pages
 ✓ Managing typography on web pages with CSS
 ✓ Crafting careful and dramatics text effects with CSS
 ✓ Creating animations with CSS, including using colors and

objects

14
Managing Layout and Positioning

In This Chapter
▶ Understanding the box model
▶ Positioning objects on a page
▶ Floating elements
▶ Using a layout generator

I
t’s time to start getting the details of how CSS helps you format a web
page. In this chapter, we cover the important issue of how to position ele-

ments in a web page. We also discuss the two categories of elements where
CSS is concerned. Finally, we show you an online tool that you can use to
create complex website layouts easily.

If you need a refresher on CSS style rules and properties, read Chapter 12 (a
high-level overview of CSS and how it works). Then you can return to this
chapter and put CSS into action.

Managing Layout
You can use CSS to lay out your pages so that images and blocks of text

 ✓ Appear exactly where you want them to.

 ✓ Fit exactly within the amount of space you want them to occupy.

As is the case with every CSS change you make to a web page, positioning
elements is all about changing the default behavior of HTML elements in the
browser.

Tiny boxes
CSS treats each visible element in an HTML document as a rectangle. A line of
text is a rectangle. An image of a circle is a rectangle. A picture of your cat is
a rectangle. Figure 14-1 illustrates this point by drawing rectangles on a web
page in approximately the places where CSS does.

218 Part V: Enhancing Your Pages’ Look and Feel

Figure 14-1: CSS draws a rectangular box around each element.

If you ever want to see the box that an HTML element lives in, one way is
by putting a border on it using CSS. Figure 14-2 shows a <p> element with a
red 2-pixel wide border around it. For convenience, and so we can show you
everything in the same screen, we’ve used inline styling here.

Figure 14-2: A paragraph element with a border.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

219 Chapter 14: Managing Layout and Positioning

 In Figures 14-2 and Figure 14-3, we’re using the Chrome DevTools, which are
built into Google’s Chrome web browser, to show the markup and the
browser window at the same time. The Chrome DevTools are extremely help-
ful for testing, debugging, analyzing, and building web pages. If you want to
see and work with the tools, you can press Ctrl+Shift+I in Windows or
Option+Control+I on the Mac OS when you have the Chrome browser open.

Figure 14-3 shows a red border around another element — the <a> element
around Chris Minnick’s name.

Well, now. That’s certainly interesting. Notice that the border around Chris
Minnick wraps from one line to the next. The rectangle is there, but it’s been
broken into two parts.

To understand what’s going on here, we need to explain the difference
between inline and block-level elements.

Figure 14-3: A border around an a element.

Block versus inline elements
For the purpose of laying out a web page, HTML elements that get displayed
in a browser all fall into one of two categories:

220 Part V: Enhancing Your Pages’ Look and Feel

 ✓ Block elements, such as <p> and <div>, form a block on the page. They
take up the full width available to them and begin on a new line. Block-
level elements may contain other block-level elements as well as inline
elements.

 ✓ Inline elements, such as and <a> do not start a new line. They
are used inside of block elements. It’s not valid HTML to put block-level
elements within inline elements.

There is a third basic type of element where the elements aren’t displayed.
This list includes <meta>, <link>, and other elements that serve a function
in the web page but don’t show up when you view it in a browser.

Listing 14-1 shows a block-level element, <p>, with several inline elements
inside of it.

Listing 14-1: Block-Level Elements May Contain Inline Elements

 In HTML5, the terms block-level and inline have been replaced with a more
complex set of categories. HTML5’s equivalent term for block-level is flow
content, and inline elements correspond to HTML5’s phrasing content. HTML5
has several other categories of content that aren’t important as we talk about
CSS layout.

CSS uses the terms block and inline, and so even though HTML no longer
contains these terms, it’s still the best way to understand and group HTML
elements for the purpose of arranging them in a browser.

Table 14-1 lists all of HTML5’s block-level elements.

221 Chapter 14: Managing Layout and Positioning

Table 14-1 HTML5’s Block-Level Elements
<address> <figure> <hr>

<article> <footer> <noscript>

<aside> <form>

<audio> <form> <output>

<blockquote> <h1> <p>

 <h2> <pre>

<canvas> <h3> <section>

<dd> <h4> <table>

<div> <h5> <tfoot>

<dl> <h6>

<fieldset> <header> <video>

<figcaption> <hrgroup>

Table 14-2 lists all of the inline elements.

Table 14-2 HTML5’s Inline Elements
<a> <small>

<abbr> <i>

 <kbd>

<bdi> <mark> <sub>

<bdo> <q> <sup>

 <rp> <time>

<cite> <rt> <u>

<code> <ruby> <var>

<data> <s> <wbr>

<dfn> <samp>

 For complete details on what each of these elements does, visit the HTML
reference at dev.w3.org/html5/html-author/.

222 Part V: Enhancing Your Pages’ Look and Feel

By default, with no CSS applied by the web pages’ author, HTML elements
appear on the screen in the same order as you type them into your markup in
what’s called normal flow, which we discuss next.

Normal flow
Normal flow specifies that blocks are stacked upon each other vertically,
starting at the top of the block that contains them. Inline elements flow hori-
zontally from left to right.

Figure 14-4 illustrates normal flow.

Figure 14-4: An example of normal flow.

If normal flow is how you want your page to be laid out, you’re in luck:
There’s nothing more that you need to do than to just write your HTML
markup, then stand back and admire the logic and simplicity of normal flow.

There are many times, however, when normal flow just won’t cut it. For that,
CSS provides plenty of tools for overriding and readjusting elements in an
HTML page. Much of the rest of this chapter is dedicated to demonstrating
non-normal flow, or out of flow elements.

Compare the section of the home page of www.nasa.gov as shown in Figure
14-5 with the same section, minus all of the CSS shown in Figure 14-6. Can you
see how the elements in the plain version match up with the elements in the
styled version?

http://www.nasa.gov

223 Chapter 14: Managing Layout and Positioning

Figure 14-5: An example of what’s possible by taking elements out of flow.

Figure 14-6: Remove the CSS, and everything flows normally,
if not beautifully or efficiently.

The HTML5 Cafe website is much less complicated than the NASA site (it’s
not rocket science, after all), and it was designed to work pretty well even
without any external style sheets, as shown in Figure 14-6.

However, if you compare Figure 14-7 with the styled version of the page in
Figure 14-8, it’s clear that we did some work to a few of the elements to posi-
tion them just where we want them on the page:

 ✓ The content block has been centered in the window.

 ✓ The navigation has been centered in the content block.

 ✓ The coffee cup image and its caption have been centered in the content
block.

 ✓ The copyright statement has been right-aligned in the content block.

224 Part V: Enhancing Your Pages’ Look and Feel

Figure 14-7: The normal flow version of HTML5 Cafe.

Figure 14-8: The styled version of HTML5 Cafe.

225 Chapter 14: Managing Layout and Positioning

Before we move on to explaining just how these elements were positioned
(which we do in Chapter 15), we need to explain how CSS positioning works.

Managing Positioning
CSS provides several ways to specify exactly where an element should appear on
a page. The kinds of properties involved are discussed in the following sections.

How a browser positions an element in a browser is determined by the
position property. Position has 5 possible values:

 ✓ static: Static is the default. When position is set to static, elements
flow according to the rules of normal flow.

 ✓ inherit: Specifies that the current element should use the same value
for position as its parent element.

Putting absolute and relative in perspective
Think about how you might answer the ques-
tion “Where are you?” There are several ways
to answer this question (besides with “None of
your business!”, of course.)

The first way is by telling your location in regards
to something else. For example, you might say,

“Walking my dog.”

or

“In my car.”

This type of location information is relative to
something else (your dog or your car, in these
examples). When the dog and car move, you move.

The other type of location information that you
might give is an actual address or a specific,
unchanging location. For example, you could say,

“In San Jose.”

or even

“At 1313 Mockingbird Lane.”

This type of information is absolute. You’re at
this location, and the location is a fixed place
on the map.

Of course, we can get philosophical on you here
and remind you that everything is relative and
that there are no absolutes — and it’s just a
matter of what it’s relative to. In the first case
(“walking my dog”), your position is relative to
the dog. In the second case (“1313 Mockingbird
Lane”), your position is relative to the city. In
another case (“California”), your position is
relative to the United States.

Keep this example in mind as we go through this
chapter. CSS positioning works much the same
way.

226 Part V: Enhancing Your Pages’ Look and Feel

 ✓ fixed: Specifies that the element should be fixed to the background and
not move, even if the page is scrolled.

 ✓ absolute: The element is positioned relative to its first positioned
ancestor element.

 ✓ relative: The element is positioned relative to its normal position.

CSS positioning is a little tricky to understand at first, but when you get it, it’s
very powerful. So we spend a bit of time explaining the position element,
and specifically its two most important values: relative and absolute.

About coordinates and offsets
When you position an object using fixed, absolute, or relative positioning,
you do so by specifying an offset. The offset tells the browser the distance to
move the object. The four offset properties — top, right, bottom, and left —
correspond with the four edges of the box that you’re positioning.

Relative positioning
When you use relative positioning, you’re offsetting the element from its
current position, relative to its parent element. To demonstrate relative posi-
tioning, Figure 14-9 shows a document with a <div> element containing text
that’s relatively positioned within another <div>.

Figure 14-9: The paragraph is positioned
relative to its parent element.

Listing 14-2 shows the HTML markup for this page.

227 Chapter 14: Managing Layout and Positioning

Listing 14-2: The HTML Markup for Figure 14-9

Notice that the inside box (containing text) has been moved down and to the
left of the upper-left corner of the containing box (with the id=”main-box”
attribute).

If you were to move the outside (containing) box in this example by chang-
ing the value of the margin property or through another means, the resulting
configuration of these two elements would remain the same. They would just
be in a different place in the browser window.

Absolute positioning
Sometimes, you just want to position something in a particular location on
your web page, not relative to another element. This is the function of
position: absolute.

Take a look at the CSS in Listing 14-3. This is the same markup we show you
in Listing 14-2, except with the value of the position property changed to
absolute.

228 Part V: Enhancing Your Pages’ Look and Feel

Listing 14-3: The Position Has Been Changed to Absolute

When viewed in a browser, the result is Figure 14-10. Notice that the inner
box is now positioned relative to the upper-left corner of the browser
window, not the parent <div>. In fact, the parent <div> has no effect on the
positioned <div> at all here. We can move the parent <div> completely out
of the picture, and the absolutely positioned <div> stays right where it’s at.

Figure 14-10: The inner box is
now absolutely positioned.

Floating
Another way to take boxes out of the normal flow of the web page is by using
the float property. You can float a box to the left or to the right, which will
take the box out of the normal flow and push it as far as possible in the speci-
fied direction. Because it’s no longer in the normal flow, objects and text
that are still in the normal flow will flow around it. The About Us page on the

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

229 Chapter 14: Managing Layout and Positioning

HTML5 Cafe website uses the float property to wrap text around the author
pictures, as shown in Figure 14-11.

Figure 14-11: The float property can be used to wrap text
around images.

The float property has four possible values:

 ✓ float: left moves the selected element as far left as possible and
forces other content to wrap to the right of it.

 ✓ float: right moves the selected element as far right as possible and
forces other content to wrap to the left of it.

 ✓ float: none is the default setting and specifies that the element will
follow the normal flow.

 ✓ float: inherit specifies that the element should be floated the same
as its parent element.

 Remember that block elements take up as much horizontal space as they have
available to them, unless you specifically set the width property. This fact
has caused many web developers hours and hours of problems while they try
to figure out why a floated element doesn’t work the way they expect. Simply
remember to always specify a width when you float an element, and you’ll
thank us later.

230 Part V: Enhancing Your Pages’ Look and Feel

Using a Layout Generator
By combining CSS positioning and floats, you can do amazing things with
web page layouts. For example, you might want to have a website with a left
or right column for navigation. Or, you might want to have a three-column
layout with the main content in the middle of the page. Or, you might want to
use a grid system so that you can position elements pretty much where ever
you want in the browser.

Each of these different options is shown in Figure 14-12.

Figure 14-12: Examples of different types of web page layouts.

All of these are possible and are commonly done with CSS. Because they’re so
common, people have created tools, called layout generators, for automatically
generating the CSS necessary to create different layouts. One such layout
generator is the one created by Generate It!, which resides at www.generate
it.net/layout-generator.

Figure 14-13 shows the interface for the Generate It! Layout Generator.

http://www.generateit.net/layout-generator
http://www.generateit.net/layout-generator

231 Chapter 14: Managing Layout and Positioning

Figure 14-13: An example of a CSS layout generator.

This layout generator uses a series of forms where you can specify different
attributes of the layout that you want to generate. These include the following:

 ✓ Whether the layout should be fixed (always the same width), or liquid
(the width changes based on the width of the browser)

 ✓ Whether the layout should be left-aligned in the browser window, or
centered (if it’s set to a fixed width)

 ✓ The default width of the layout

 ✓ Whether to include a header, horizontal menu, and footer as well as the
attributes of each

232 Part V: Enhancing Your Pages’ Look and Feel

 ✓ The number of columns in the layout

 ✓ The width of each of the columns

 ✓ Background colors for the columns and the page as a whole

When you’re done filling out the form, click the Create Layout button, and the
CSS and HTML for the layout you designed appear, as shown in Figure 14-14.

Figure 14-14: A layout generated by the layout generator.

If you’re happy with this layout (and who wouldn’t be happy, with all those
happy colors?), click the Download Layout link and download a .zip file
containing starter HTML and CSS files. You can customize these and insert
your own content, and away you go!

15
Building with Boxes,
Borders, and Buttons

In This Chapter
▶ Working with the CSS box model
▶ Positioning blocks
▶ Aligning text
▶ Indenting text
▶ Creating buttons with CSS

C
hapter 14 describes the difference between block and inline elements,
and how to arrange both in the browser window. In this chapter, we go

inside those elements to show you how to change the spacing between ele-
ments, change the spacing inside of elements, assign borders to elements,
align the content of elements, and more!

Meeting the Box Model
As we show you in Chapter 14, each element in an HTML document is repre-
sented as a rectangular box. You also see how these boxes stack up depending
on whether they’re inline or block-level elements. In this section, we talk about
those rectangles and the ways in which you can change them using CSS.

234 Part V: Enhancing Your Pages’ Look and Feel

Figure 15-1 shows what is known as the CSS box model.

The box model has four types of space, or to put it another way, four edges.
These four spaces/edges are as follows:

 ✓ Content: Content is the rectangle that’s filled up by your text, image,
video, or whatever.

 ✓ Padding: Padding is the space between the edge of your content and the
border. You can control the width of the padding with the padding-
top, padding-right, padding-bottom, and padding-left proper-
ties or with the shorthand padding property, as you see shortly.

 ✓ Border: The border area lies beyond the padding. To change the width
of the border, you use the border-width property or the shorthand
border property.

 ✓ Margin: Margin is outside of the element’s border and is what separates
one box from another. To control the width of the margin, you use the
margin-top, margin-right, margin-bottom, and margin-left
properties or the shorthand margin property.

Figure 15-2 makes it all real by showing how it applies to a picture of a cute
cat on a web page. Throughout the rest of this chapter, we show you how to
implement elements of the box model.

 www.w3.org/TR/css3-background Copyright © 24 July 2012 World Wide Web Consortium,
(Massachusetts Institute of Technology, European Research Consortium for Informatics

and Mathematics, Keio University). All Rights Reserved. www.w3.org/Consortium/
Legal/2002/copyright-documents-20021231

Figure 15-1: A diagram of the CSS box model.

http://www.w3.org/TR/css3-background/
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

235 Chapter 15: Building with Boxes, Borders, and Buttons

Figure 15-2: The CSS box model in practice.

Putting the Box Model into Practice
To demonstrate the box model, we once again visit the HTML5 Cafe. Look
again at the markup for the home page, shown in Listing 15-1. Find the
<figure> element, which we’ve highlighted for you.

As you may recall from Chapter 14, <figure> is a block-level element.

The coffee cup image and its caption are the content of the <figure> ele-
ment. Content takes up as much space as is needed to draw a rectangle
around it. In this case, the image is 400 pixels wide and 400 pixels tall. Below
the image, the caption has a certain line height, which is determined by the
size of the caption text and the value of the line height. The total height of
the <figcaption> element in this case is 22px. The combined height of the
coffee cup image and the caption, then, is 422px. The width of the figure is
still 400px.

236 Part V: Enhancing Your Pages’ Look and Feel

Listing 15-1: The Markup for the HTML Café Home Page

The actual amount of space taken up by the figure element is greater than
400px, however. Remember that figure is a block-level element and that
block-level elements take up the entire width available to them if you don’t
explicitly specify a width.

So, the width of the figure element here is actually determined by the width
of the <div> element that holds it.

Figure 15-3 shows your good friend the Chrome DevTools Elements Panel
with the <figure> element highlighted. Notice that the coffee cup pic-
ture has been highlighted in two colors and that a tiny box model diagram
appears in the lower-right corner of the screen.

If you match the colors overlaid on and around the coffee cup image with the
colors in the box model diagram, you find that the coffee cup icon represents
the most inner part of the box model (the content), as we already determined.
The space around the coffee cup matches up with the margin color in the
box model.

237 Chapter 15: Building with Boxes, Borders, and Buttons

Figure 15-3: The <figure> element inside the Chrome DevTools.

The top and bottom margins around the image are set to 10px. This is a direct
result of the style rule that we applied to the figure element (by selecting its ID):

#home-image {width: 400px;
 margin: 10px auto;}

 In this case, we chose to apply the style to the coffee cup by selecting its ID,
home-image. It would have also worked to select this image using an ele-
ment type selector, figure. If we had selected it that way, however, these
styles would be applied to every figure element on the site, which may not be
exactly what we want. A combination of an element selector and an ID selec-
tor would perhaps be the most complete way to select this particular image.
The resulting selector would be figure#home-image.

Notice also that the border and padding colors are missing from around the
coffee cup. Because we haven’t set a border or padding on the figure ele-
ment, they are set to 0.

We can add a border and padding to the coffee cup picture by adding a
couple of new declarations:

238 Part V: Enhancing Your Pages’ Look and Feel

#home-image {width: 400px;
 margin: 10px auto;
 padding: 10px 10px 10px 10px;
 border: 10px solid black;}

With a border and padding added to the #home-image CSS rule, the box
model diagram in Chrome DevTools changes, as shown in Figure 15-4.

Figure 15-4: The <figure> element with padding and a border.

 Note that several properties in the previous CSS rule, called shorthand
properties, take multiple values, such as margin and padding. Shorthand
properties collect values from multiple related CSS properties (such as
margin-top, margin-right, margin-bottom, and margin-left, for
example). As far as CSS is concerned, there is no difference between writing
a separate declaration for each of the properties in a shorthand property, or
using the shorthand property. If you learn and use the shorthand properties
consistently, you save yourself some typing, and your CSS files will be some-
what smaller. We show you some of the shorthand properties in this chapter
and the next as they come up.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

239 Chapter 15: Building with Boxes, Borders, and Buttons

Specifying padding and margin widths
Padding and margin are both names for spacing around content. margin
creates an empty zone around the box (outside of the border), and padding
defines the space between the border of the box and the content inside
the box.

Margin
The margin of an element is the space between the element and another ele-
ment. It can be set as a fixed length, as a percentage, or as auto. These are
the important things to know about margin:

 ✓ The margin doesn’t have a background color.

 ✓ The margin is outside of the border.

 ✓ Margins “collapse” in certain cases.

Margin collapsing is the property of margins when two elements are stacked
on top of each other, only one of the margins will actually be used. For
example, if two <div> elements — each with the top and bottom margins
set to 10px — are stacked on top of each other, you would expect the margin
between the bottom of the first element and the top of the second element to
be 20px, as shown in Figure 15-5.

Figure 15-5: What you would expect. But, not
what happens!

240 Part V: Enhancing Your Pages’ Look and Feel

In reality, however, what happens by default is that only the larger margin
will be used. In this case, both margins are 10px, so the combined margin
will be 10px, as shown in Figure 15-6.

Figure 15-6: What actually happens. The smaller
margin collapses.

But, if the first element had a 20px bottom margin and the second element had
a 40px margin, the combined margin on the touching edge would be 40px wide.

 Collapsing margins seems like a simple enough concept. But, as always, there
are some exceptions to the rule and complicating scenarios. Margins collapse
only for block-level elements that are in the normal flow of the document.
So, if an element is absolutely positioned or floated, margin collapse doesn’t
happen. Also, if one element has a negative top or bottom margin, the nega-
tive and positive margins will be added together to come up with the final
combined margin. Confused yet? Don’t worry about it. It actually will make
sense after you practice and gain experience working with margins.

Each element has four margin properties, which correspond to the four
edges of the element’s box model:

 ✓ margin-top specifies the top margin.

 ✓ margin-right specifies the right margin.

 ✓ margin-bottom specifies the bottom margin.

 ✓ margin-left specifies the left margin.

241 Chapter 15: Building with Boxes, Borders, and Buttons

A value of auto for any of the margin properties causes the browser to calcu-
late the margin width automatically, depending on the space available.

 You can use the auto value of the margin property to center elements hori-
zontally. The trick is to set both the right and left margins of the element to
auto. The browser splits the available space between them, which leaves the
element centered in its container. Cool trick, huh?

Padding
Padding is the space between an element’s content and its border. If a back-
ground color or image is set for an element, padding takes on the background.

You can specify the amount of padding for each edge of an element as a fixed
measurement or as a percentage.

As with margin, there are four individual properties, which correspond to
each of the four edges:

 ✓ padding-top sets the padding on the top.

 ✓ padding-right sets the padding on the right.

 ✓ padding bottom sets the padding on the bottom.

 ✓ padding-left sets the padding on the left.

Shortcut properties
Padding and margin both have shorthand properties that can save you a bit
of typing. The shorthand property for setting the margins is simply margin.
The shorthand property for setting the padding is padding.

The following rules explain how to set shorthand properties for padding and
margin:

 ✓ If all the sides have the same value, a single value works. For example,
margin: 10px; sets the values of margin-top, margin-right,
margin-bottom, and margin-left to 10px.

 ✓ If top and bottom margins are the same, and if left and right margins are
also the same, you can use just two numbers for the margin or padding
shortcut. For example: margin: 10px 20px; sets the top and bottom
margins to 10px and the right and left margins to 20px.

 ✓ If the top and bottom values are different but the right and left values
are the same, you can use three values. For example, padding: 10px
30px 20px; sets the top padding to 10px, the right and left padding to
30px, and the bottom padding to 20px.

242 Part V: Enhancing Your Pages’ Look and Feel

 ✓ All other cases require you to use four values with the shorthand prop-
erty. For example, padding: 3px 2px 18px 4px; sets the padding
on each side of the content to one of the values. Of course, it’s always
fine to use four values, even if it’s not required. For example, there’s
nothing wrong with writing padding: 3px 3px 3px 3px;, even
though it would be shorter to write just padding: 3px;.

 To remember what’s what, think of the edges of an element box in clockwise
order, starting with the top edge: top, right, bottom, and then left. One
easy way to remember the order of the edges in shortcut properties is to
remember that the first letters are the consonants in the word TRouBLe.
As in, “You’ll be in big TRBL if you don’t remember the order of the edges
correctly!”

Here are some examples of margin and padding rules and the effect they have
in the Chrome DevTools box model diagram. First, set top and bottom padding
to 0px and left and right padding to 10px:

padding: 0px 10px;

Figure 15-7 shows the resulting diagram for the element containing this
declaration.

Figure 15-7: The result of using the padding
shortcut property with two values.

Next, here’s how you would set the top and bottom margins to 20px and
40px, respectively, and set the left and right margins to 15px:

margin: 20px 15px 40px;

Figure 15-8 shows the resulting diagram for the element containing this
declaration.

243 Chapter 15: Building with Boxes, Borders, and Buttons

Figure 15-8: The result of using the margin
shortcut property with three values.

And how about if you want to set all of the margins to 12px? That’s easy:

margin: 12px;

Figure 15-9 shows the resulting diagram for the element containing this
declaration.

Figure 15-9: The result of using the margin
shortcut property with one value.

Adding borders
Between the padding and the margin is the border. Borders are like a picture
frame for your content. They can be very simple — perhaps just a thin black
line — or they can be quite ornate. With CSS3, you can even use images for
borders and create rounded corners on you borders!

The simplest way to create a border is by using the three basic border
properties: border-width, border-style, and border-color.

244 Part V: Enhancing Your Pages’ Look and Feel

border-width
border-width is a shorthand property for the four longhand properties
that determine the thickness of the border: border-top-width, border-
right-width, border-bottom-width, and border-left-width.

You can set the border width using a keyword or an explicit value. The three
keywords that you can use to set the border width are

 ✓ thin.

 ✓ medium.

 ✓ thick.

If you require more precision than just what a certain browser decides is
thin, medium, or thick, you can set the border-width property in pixels,
ems, or another measurement unit.

border-style
border-style is a shorthand for the four properties used to set border styles:
border-top-style, border-right-style, border-bottom-style,
and border-left-style. By using the border-style property, you can
set them all at one time, just as you did with the margin and padding short-
hand properties. The border-style property has nine possible values. The
following list describes how each border looks, as shown in Figure 15-10:

 ✓ border-style: none: The border has no style. In other words, it isn’t
displayed.

 ✓ border-style: dotted: The border is made up of dots. This is the
style of border used on the HTML5 Cafe website.

 ✓ border-style: dashed: The border is made up of dashes. Dashes are
similar to dots, but longer.

 ✓ border-style: solid: The border is a solid line.

 ✓ border-style: double: The border is made up of two lines that add
up to the total width of the border you set.

 ✓ border-style: groove: The border has a 3D groove effect. It’s the
opposite of the ridge style.

 ✓ border-style: ridge: The border has a 3D ridge effect. It will appear
to come out of the page.

 ✓ border-style: inset: The border makes the box appear to be inset,
or embedded.

 ✓ border-style: outset: The border makes the box appear to be
raised up, or embossed.

245 Chapter 15: Building with Boxes, Borders, and Buttons

Figure 15-10: Each of the different styles of border.

 As with the padding and margin properties, it’s possible to have different
border widths and border styles on each of the four sides of a box. You can
accomplish this by setting the longhand properties for each edge separately
or by using multiple values in the shorthand property. For example, border-
style: solid dotted; puts a solid border on the top and bottom of the
box, and a dotted border on the left and right.

border-color
As with the previous two properties, border-color is actually a shorthand
combination of the four longhand properties: border-top-color, border-
right-color, border-bottom-color, and border-left-color.

You can specify the color using any one of the ways to name colors in CSS
(which we talk about in detail in Chapter 16).

The border shorthand property
If three separate border-related properties are too many for you, you’re in
luck! The border property is a super shorthand property that lets you set
the border-width, border-style, and border-color all at once.

Here’s the format for the border property:

border: width style color;

So, if you wanted a blue, 1 pixel wide, solid border, you could use the following
declaration:

border: 1px solid blue;

Easy as that! The border shorthand property comes in very handy when you
just need a simple border.

246 Part V: Enhancing Your Pages’ Look and Feel

Aligning text
If you examine the CSS that’s responsible for styling the center-aligned
content in the HTML5 Cafe style sheet, a pattern emerges. Here’s the CSS for
the navigation:

#topnav {width:100%;
 text-align: center;
 background-color: #000000;
 height: 24px;
 color: #FFFFFF;}

Here’s the CSS for the coffee cup image:

#logo {font-size: 2em;
 text-transform: uppercase;
 font-weight: bold;
 text-align: center;}

Here’s the CSS for the copyright notice:

footer {font-size: .7em;
 text-align: right;}

Notice that in each of these three cases, the text-align property is present
and responsible for the positioning of the element.

The text-align property does just what it sounds like — it aligns text
within another element. The truth, however, is that CSS doesn’t much care
whether content is text, images, video, or another type of content when it
comes to how the text-align property works. The text-align property
just aligns all of the content in a block, horizontally, in one of four ways,
depending on the value that you give the property. You may also just tell the
current element to do the same thing as its parent element. Here are all the
possible values of text-align:

 ✓ text-align: left aligns content with the left edge of the block.

 ✓ text-align: center centers content in the block.

 ✓ text-align: right aligns content with the right edge of the block.

 ✓ text-align: justify stretches lines of text so that each line has an
equal length.

 ✓ text-align: inherit specifies that the current element should have
the same text-align value as its parent element.

247 Chapter 15: Building with Boxes, Borders, and Buttons

Indenting text
You can define the amount of space that should precede the first line of a
paragraph by using the text-indent property.

 Using the text-indent property doesn’t indent the whole paragraph, only
the first line. To accomplish indenting a whole paragraph, you need to use
CSS box properties, such as margin-left and margin-right.

Syntax for indenting text
The style declaration used to indent text is

selector {text-indent: value;}

Here, value must be one of the standard length-property measurement
values (listed in Chapter 11).

Markup for indenting text
To create a class that can be used to indent quotations by 2em, you may
write a CSS rule like the following:

.quotation {font-style: italic; text-indent: 2em;}

Creating buttons with CSS
CSS, and especially CSS3, is capable of doing many jobs that you previously
needed to use images for. One of these is the job of making really good-looking
buttons.

CSS3 has several great new properties for rounding box corners, creating
gradient effects, and adding shadows to boxes and text. We show you some
of the great new capabilities and how they work in the next chapters. Right
now, however, we take a look at what they’re capable of doing.

As we show with the layout generator in Chapter 14, there are services on
the web that make the job of creating complex CSS effects very easy. Another
such service is a button generator. The button generator that we look at here
is the CSS3 Button Generator at http://css3button.net. When you first
arrive at http://css3button.net, a random button color and style is
presented to you, as shown in Figure 15-11.

http://css3button.net
http://css3button.net

248 Part V: Enhancing Your Pages’ Look and Feel

Preview of button

Adjustable button properties The CSS view

Figure 15-11: The home screen for http://css3button.net.

The upper-left portion of the interface shows a preview of your button. The
site presents the button on a background to make it easier to see light-colored
borders and shadows.

Below the preview are the various properties of the button that you can
adjust. When you change any of these properties, the button preview is
instantly updated. Go ahead and try changing some of them!

The best part of the CSS Button Generator is in a dark gray box in the lower
right: the CSS view. When you’re happy with your button, you can select and
copy the HTML and CSS for the button and paste them into your own HTML
and CSS documents. Because it’s just CSS, you can reuse this button style
over and over in your website for different buttons with only a minimal effect
on page load time.

Figure 15-12 shows the CSS markup for a custom button that we came up
with. Figure 15-13 shows several instances of that button with different labels
on them.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

249 Chapter 15: Building with Boxes, Borders, and Buttons

Figure 15-12: The CSS for our wild and crazy button.

Figure 15-13: Our wild and crazy
button in action.

250 Part V: Enhancing Your Pages’ Look and Feel

16
Using Colors and Backgrounds

In This Chapter
▶ Using color keywords
▶ Reading hex codes
▶ Working with backgrounds

T
he web would be a pretty drab place without color. Imagine watching
your favorite cat videos in grayscale. Life on the web just wouldn’t be

nearly as much fun. This book, in fact, wouldn’t be as much fun in black and
white, which is the primary reason it’s printed in full color.

Fortunately, we don’t need to live in a gray world. Your computer, laptop,
tablet, or smartphone is capable of displaying millions of different colors. CSS
is capable of instructing it to display those colors in infinite combinations. In
this chapter, we show you the different ways to specify colors in CSS, how to
assign colors to elements, and how to work with backgrounds.

Defining Color Values
CSS defines color values in two ways:

 ✓ Name: You choose from a limited list.

 ✓ Number: Pick the exact amounts of each of the primary colors to create
the precise colors that you need.

Color names
The CSS3 Color specification includes 16 basic color names that you can use
to define colors in your pages. Figure 16-1 shows these colors. The numbers
that start with a pound sign (#) are in hexadecimal notation. Hexadecimal
notation is a system of numbering that starts at 00 (which is the same as 0 in
the decimal system we’re more familiar with) and ends at FF (which is equiv-
alent to 255 in the decimal system).

252 Part V: Enhancing Your Pages’ Look and Feel

Name #RGB Code Color Name #RGB Code Color
Black #000000 Silver #C0C0C0

Gray #808080 White #FFFFF

Maroon #800000 Red #FF0000

Purple #800080 Fuchsia #FF00FF

Green #008000 Lime #00FF00

Olive #808000 Yellow #FFFF00

Navy #000080 Blue #0000FF

Teal #008080 Aqua #00FFFF

Figure 16-1: Basic Named Color Values in CSS.

You can safely use color names in your CSS markup and be confident that
browsers will recognize them and use the correct colors in your web pages.
You can also compare the colors onscreen to those on this printed page to
see how print and digital displays can sometimes differ. (In some cases, it
may be the color balance on your screen that’s off; in others, the color the
printer tried to match on the page may not be precisely correct — it’s not as
easy as you might think!)

 Visit www.htmlhelp.com/reference/html40/values.html#color to
see how your browser displays these colors. If you can, view this page on
two or three different computers to see how a different browser, operating
system, graphics card, and monitor can subtly change the display.

The following CSS style declaration says that all text within <p> tags should
be blue:

p {color: blue;}

http://www.htmlhelp.com/reference/html40/values.html#color

253 Chapter 16: Using Colors and Backgrounds

In addition to these 16 basic colors, the CSS3 Color specification defines
a much longer list of extended color keywords that are supported by web
browsers. This list includes such lovely colors as bisque, burlywood, mint-
cream, and thistle.

 Visit www.w3.org/wiki/CSS3/Color/Extended_color_keywords to see
the full list of extended color keywords.

Color numbers
Even the list of extended color keywords can be pretty limiting. To allow you
to use any color you want, CSS provides additional methods for web page
designers to specify their own colors.

Hexadecimal color codes
One way to specify colors in CSS is by using a hex triplet. A hex triplet (often
called a hex code for short) is a series of three numbers, written in hexadeci-
mal notation. The first number represents the color red. The second number
represents green. The third number represents blue. The amount of each
primary color that goes into the mix is determined by the size of the number,
with 00 indicating that there should be none of that color, and FF indicating
that there should be as much of that color as possible.

For example, the following hex triplet indicates pure blue:

#0000FF

This hex triplet is exactly equivalent to the CSS keyword blue that you met
earlier. Hex code can represent many more colors than just the basic ones,
however. For example, here’s a shade of blue that has more complexity,
looks more serious, and is serene, but not sad:

#386F96

Lovely color, isn’t it? A fun party game that we web developers sometimes
play after we’ve had too much coffee is “name that color.” The goal of the
game is to guess the numeric value for a color just by looking at it. After
you’ve been working with web colors for a while, you may find yourself get-
ting pretty good at this game. Try it out with this fairly easy example, shown
in Figure 16-2.

http://www.w3.org/wiki/CSS3/Color/Extended_color_keywords

254 Part V: Enhancing Your Pages’ Look and Feel

Figure 16-2: See if you can guess the
approximate hex code of this color.

The correct answer is #FF00FF, which is also known as Fuchsia. Fuchsia is
the result of combining maximum parts red and blue, with no green.

 You can play the HTML color guessing game in the privacy of your own home
or office by visiting http://mallory.jemts.com.

If you know a color’s hex code, you have all you need to use that color in
your HTML page.

 When you use hex code to define a color, you should always precede it with a
pound sign (#). Otherwise, it may not display properly in some web browsers.

The following CSS style declaration makes all text contained by <p> tags
blue:

p {color: #0000FF;}

RGB values
If hex codes just confuse you, fear not! You can also use decimal RGB values
to define color. These value types aren’t as common as hexadecimal values,
but they’re just as effective, and you don’t need to grow six more digits to
count them on your fingers:

 ✓ rgb(r,g,b): The r, g, and b are integers between 0 and 255 that
(respectively) represent the red, green, and blue levels of the color.

 ✓ rgb(r%,g%,b%): The r%, g%, and b% represent (respectively) the per-
centage of red, green, and blue of the color.

http://mallory.jemts.com

255 Chapter 16: Using Colors and Backgrounds

 Every color can be defined as a mixture of red, green, and blue (RGB). You
can use either an RGB value or the equivalent hex code to describe a color’s
RGB value to a web browser. For more information about hexadecimal nota-
tion, please visit the “Tutorial on Hexadecimal Color” at www.lts.com/
class/hextoc.htm.

Defining Color Definitions
You can define individual colors for any text on the web page, as well as
define a background color for the entire web page or some portion thereof.

CSS uses the following properties to define colors:

 ✓ color defines the font color and is also used to define colors for links
in their various states (link, active, focus, visited, and hover; see
the upcoming section, “Links”).

 ✓ background or background-color defines the background color for
the entire page or defines the background for a particular element (for
example, a background color for all first-level headings, similar to the
idea of highlighting something in a Word document).

Finding any color’s hex code
You can’t just wave your magic wand and come up with the hex code for any color, but that doesn’t
mean that you can’t find the hex code through less magical means. Color converters follow a pre-
cise formula that changes a color’s standard RGB notation into hexadecimal notation. Because
you have better things to do with your time than compute hex codes, you have several options for
figuring out the code for your color of choice, including web-safe colors shown on this book’s online
Cheat Sheet (www.dummies.com/cheatsheet/beginninghtml5css3). None of these
make you use a calculator:

 ✓ On the web: Some good sources for hexadecimal color charts are

 www.webmonkey.com/2010/02/color_charts

 www.colorschemer.com/online.html

 You simply find a color you like and type the hex code listed next to it into your HTML.

 ✓ Using image editing software: Many image editing applications, such as Adobe Photoshop
or Adobe Fireworks, display the hexadecimal notation for any color. Even the Microsoft Word
color picker shows you hex codes for colors in an image. If you have an image you like that you
want to use as a color source for your web page, open the image in your favorite editor and find
out what the colors’ hex codes are.

http://www.lts.com/class/hextoc.htm
http://www.lts.com/class/hextoc.htm
http://www.dummies.com/cheatsheet/beginninghtml5css3
http://www.webmonkey.com/2010/02/color_charts
http://www.colorschemer.com/online.html

256 Part V: Enhancing Your Pages’ Look and Feel

Text
You can change the color of text on your web page with three steps:

 1. Determine the selector.

 For example, will the color apply to all first-level headings, to all para-
graphs, or to a specific paragraph?

 2. Use the color property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is

selector {color: value;}

Here is a collection of style declarations where we use the color property
to assign text color to the body element (and hence, to all other subsidiary
HTML elements that can occur in a document body, except where other
specifications override that selection as with the h1 element):

body {color: olive; font-family: Verdana, sans-serif;
 background-color: #FFFFFF; font-size: 85%;}
hr {text-align: center;}
.navbar {font-size: 75%; text-align: center;}
h1 {color: #808000;}
p.chapternav {text-align: center;}
.footer {font-size: 80%;}

Note that in the preceding CSS rules, the color for all text on the page is
defined by using a body selector. Color is applied to all text in the body of
the document unless otherwise defined. To illustrate this at work, the first-
level heading is defined as forest green, using hexadecimal notation.

Links
HTML links often have different colors based on their current state. By state,
we don’t mean Michigan or Texas, but rather the link’s current status with
regard to the particular user — whether the current user has visited the link
previously, for example.

Normal CSS selectors aren’t capable of styling elements based on their cur-
rent state, so we need to employ a special type of selector here.

Pseudo classes allow you to define style rules based on information outside
the document tree.

257 Chapter 16: Using Colors and Backgrounds

 The document tree is a hierarchical representation for all elements in a document,
much like a family tree, where every element has a parent and may contain a
child. The document tree doesn’t — and can’t — contain information about
whether a user has previously visited a certain link (for example). This is what
we mean when we say that something is outside the document tree.

The five common pseudo classes that you can use with hyperlinks are

 ✓ :link defines formatting for links that haven’t been visited.

 ✓ :visited defines formatting for links that have been visited.

 ✓ :focus defines formatting for links that are selected by the keyboard
(for example, by pressing Tab) and are about to be activated by press-
ing Enter.

 ✓ :hover defines formatting for links when the mouse cursor hovers over
them.

 ✓ :active defines formatting for links when they are selected (clicked by
the mouse, or activated by pressing Enter).

 The pseudo class name is preceded by a colon (:).

Pseudo classes can be used with

 ✓ Elements (such as the <a> element that defines hyperlinks).

 ✓ Classes.

 ✓ IDs.

For example, to define the style rules for visited and unvisited links, use the
following syntax:

 ✓ The following sets the color of any hyperlink pointing to an unvisited
URL to red by using its hexadecimal value:
a:link {color: #FF0000;}

 ✓ The following sets any hyperlink that points to a visited URL to appear
in the named color green:
a:visited {color: green;}

 ✓ The following designates unvisited links with a class of internal to
appear in (named color) yellow (see Chapter 12 for a discussion of CSS
classes):
a.internal:link {color: yellow;}

258 Part V: Enhancing Your Pages’ Look and Feel

 Links can occupy multiple states at one time. For example, a link can be vis-
ited and hovered over at the same time. Always define link style rules in the
following order: :link, :visited, :visible, :focus, :hover, :active.

 CSS applies “last rule seen” to display your page. Thus, if you put the pseudo
class selectors in the wrong order, your results may not be what you want.
For example, if visited follows hover and the two have overlapping rules,
hover effects apply only to links that haven’t yet been visited.

The following CSS rules render the document with olive, as the color for links
that haven’t been visited, and with yellow, as the color of visited links:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive;}
a:visited {color: yellow;}

 The CSS specification defines :link and :visited as mutually exclusive,
and it’s up to the browser application to determine when to change the state
(visited versus unvisited) for any given link. For example, a browser might
determine that a link is unvisited if you clear your history data.

Backgrounds
To change the background color for your web page, or for a section of that
page, follow these steps:

 1. Determine the selector.

 For example, will the color apply to the entire background, or will it
apply only to a specific section?

 2. Use the background-color or background property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is

selector {background-color: value;}

In the following collection of style declarations, the first style declaration
uses the background-color property and sets it to light green by using
hexadecimal notation:

body {color: #808000; font-family: Verdana, sans-serif;
 background-color: #EAF3DA; font-size: 85%;}

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

259 Chapter 16: Using Colors and Backgrounds

 You can apply a background color to a block of text — for example, a para-
graph — just like you define a background color for the entire page.

You use background as a shorthand property for all individual background
properties, or use background-color to set just the color, like this:

selector {background: value value value;}

For more about shorthand properties, see Chapter 15.

Advanced backgrounds
Lining up multiple elements so that their backgrounds align perfectly and,
likewise, mixing and matching multiple backgrounds can be difficult to
achieve. It might take many lines of markup to get this job done right, espe-
cially working with CSS1 or CSS2. However, with CSS3, you can apply multiple
backgrounds to a single element easily, and then use it to provide a back-
drop for an element or a group of subsidiary elements. For example, on the
backgrounds example page at www.dummieshtml.com/html5cafe/ch16/
backgrounds/index.html, we combine three background images and
apply them to one <div>.

The relevant CSS3 markup looks like this:

.customBackground {
 margin: 0px auto;
 width: 400px;
 height: 200px;
 border-radius: 10px;
 background:
 url(images/top.gif) top left repeat-x,
 url(images/bottom.gif) bottom left repeat-x,
 url(images/middle.gif) center repeat;
 }

The trick to this markup lies in the background specification, where we
reference URLs for images for the three different backgrounds named top.
gif, bottom.gif, and middle.gif, respectively. We use the repeat-x
attribute to repeat the top and bottom horizontally. Using repeat means
that middle.gif is repeated both horizontally and vertically. The top.gif
background applies the dark to medium blue shading at the top of the frame,
bottom.gif does likewise from the bottom, and middle.gif supplies the
dots. The result is the image shown in Figure 16-3.

http://www.dummieshtml.com/html5cafe/ch16/backgrounds/index.html
http://www.dummieshtml.com/html5cafe/ch16/backgrounds/index.html

260 Part V: Enhancing Your Pages’ Look and Feel

Figure 16-3: Here we artfully repeat three backgrounds
to blend dots against two shaded backgrounds.

 If you want to explore advanced multiple background techniques in more
detail, CSS3.info has some excellent coverage of multiple backgrounds at
www.css3.info/preview/multiple-backgrounds.

http://www.css3.info/preview/multiple-backgrounds

17
Web Typography

In This Chapter
▶ Changing font sizes
▶ Emboldening with bold
▶ Emphasizing with italic
▶ Changing capitalization
▶ Using web fonts
▶ Working with online font libraries

T
ypography is defined as the art and technique of arranging type in order
to make language visible. Even more than just making language visible,

however, typography has been shown to have a dramatic impact on whether
people believe and assign value to what an author is saying. Despite the
growing amount of video, images, and audio on the Internet, most websites
are still primarily focused on conveying information through text. How the
text looks has a major impact on how a website looks and how easy it is for
people to read.

When you get the hang of working with text, the options for making your
website more readable and more expressive are endless!

Finding Out about Fonts
A font is a set of characters that share a similar design. Examples of fonts
include Times New Roman, Helvetica, Arial, and the dreaded Comic Sans.
Cascading Style Sheets (CSS) gives you many different techniques for working
with fonts. These techniques range from selecting a font, to making text bold
or italic, to changing the color and size of text, and much more.

262 Part V: Enhancing Your Pages’ Look and Feel

As you saw with border, margin, and padding, you can define individual font
properties for different HTML5 elements with

 ✓ Individual CSS properties, such as font-family, line-height, and
font-size

 ✓ A group of font properties in the catchall shorthand font property

Keep this in mind as you journey into the sometimes mind-boggling array
of font properties. We show you the long way of doing things first, but the
shorthand properties are often more commonly used.

Font family
To define the font face by using the CSS font-family property:

 1. Identify the selector for the style declaration.

 For example, making p the selector defines a font family for all <p> tags.

 2. Add the property name font-family.

 Browsers can access a limited number of font families by default.
Different browsers on different operating systems can access differ-
ent sets of font families. To deal with this situation, CSS allows you to
specify multiple font families in case a browser doesn’t support the font
family you prefer. You can list multiple font family names, separated by
commas. For example, it’s common to see font-family declarations
that look like this:
font-family: Arial, Helvetica, sans-serif;

 This declaration lists, in order, the designer’s preference for which font
family should be used. The browser uses the first name in the list avail-
able on the computer on which it’s running.

 If a limited number of available font families sounds like a real bummer
to you, hang on! With CSS3, this limitation has been lifted, as you see
later in this chapter.

 3. Define a value for the property (the name of the font family).

 Use single or double quotation marks around any font family names that
include spaces.

To format all first-level headings to use the Verdana font, use a style rule like
this:

h1 {font-family: Verdana, Helvetica, sans-serif;}

263 Chapter 17: Web Typography

In the preceding declaration, two more font families appear in case some-
one’s browser doesn’t support the Verdana font family.

 We recommend including these font families in your style declarations:

 ✓ Common: At least one of these common font families:

 ✓ Generic: At least one of these generic font families:

Different elements may be formatted using different font families. These rules
define a different font family for hyperlinks (see Figure 17-1):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
hr {text-align: center;}
a {font-family: Courier, “Courier New”, monospace;}

264 Part V: Enhancing Your Pages’ Look and Feel

Figure 17-1: The font family for hyperlinks differs from the
font family for the rest of the text.

Sizing text fonts with CSS
In addition to the font size names (xx-small,
x-small, small, medium, large, x-large,
or xx-large), you can also assign font sizes
by using the following CSS units of measure: px
(pixels), pt (points), % (percent), or em (the m-height
for the font in use, whatever it may be). Pixels are
a fixed-size unit that depends on the resolution of
the user’s monitor and doesn’t scale. Designers
are fond of using px for font sizes, because they
allow a level of precision in translating from design
files to Web pages. However, the use of px for
specifying font sizes can have a negative impact
on accessibility by the visually impaired, and on the
scalability for smaller devices.

Points are a unit that is more commonly used
for print than screen measurements. They have
the same downside as pixels in that they are a
fixed unit.

The em is the most widely used unit in sizing
fonts in CSS nowadays, and this approach
is considered a best practice for sizing fonts
using style sheets. Choosing em units for font
sizes makes it quick and easy for you to size
type relative to your underlying font. For more
information on using these units, which take the
form font-size: 2em; (to double font size)
or font-size: 0.8em; (to reduce a font to
80 percent of the base), see Chapter 11.

The percent unit operates very much like the
em unit. The current font-size is equal to
100 percent. If you want to make the font size
half as large you can set the font-size to 50
percent, if you want to make it 25 percent larger
you can set it to 125 percent, and so on.

265 Chapter 17: Web Typography

Sizing
The following properties allow you to control the dimensions of your text.

Font size
The style declaration to specify the size of text is

selector {font-size: value;}

The value of the declaration can be

 ✓ One of the standard font-property measurement values (listed in
Chapter 11)

 ✓ One of these user-defined keywords:

 xx-small, x-small, small, medium, large, x-large, or xx-large

 The actual size of each font size keyword is determined by the browser,
not by the style rule.

The following rules define

 ✓ A base font size of 85 percent for all text.

 ✓ A size in ems for all first-level headings.

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
h1 {font-family: “Trebuchet MS”, Verdana, Geneva, Arial, Helvetica,
sans-serif; font-size: 2em; line-height: 2.5em; color: teal;}

The result appears in Figure 17-2.

Line height
The line height of a paragraph is the amount of space between each line
within the paragraph.

 Line height is like line spacing in a word processor.

To alter the amount of space between lines of a paragraph, use the line-
height property:

selector {line-height: value;}

266 Part V: Enhancing Your Pages’ Look and Feel

Figure 17-2: The body text is set to 85 percent, and first-level
headings are set to 2em.

The value of the line-height property can be either

 ✓ One of the standard font property measurement values (listed above
and in Chapter 11)

 ✓ A number that multiplies the element’s font size, such as 1.5

We assign a quotation class to the first paragraph throughout this chapter
so you can see the changes. This allows us to apply these styles to the first
paragraph by using

<p class=”quotation”>

in the HTML document.

The following rules style the first paragraph in italics, indent that paragraph,
and increase the line height to increase readability (see Figure 17-3):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-serif;
 font-size: 2em; line-height: 2.5em; color: teal;}
.quotation {font-style: italic; text-indent: 2em; line-height: 150%;}

267 Chapter 17: Web Typography

Figure 17-3: Any element that belongs to the quotation
class gets the same formatting.

Character spacing
You can increase or reduce the amount of spacing between letters or words
by using these properties:

 ✓ word-spacing: The style declaration for word-spacing is
selector {word-spacing: value;}

 Designers call the space between words tracking.

 ✓ letter-spacing: The style declaration for letter-spacing is
selector {letter-spacing: value;}

 Designers call the space between letters kerning.

The value of either spacing property must be a length defined by a standard
font property measurement value (listed in Chapter 11).

The following rule increases the letter spacing (kerning) of the first para-
graph (see Figure 17-4):

.quotation {font-style: italic; text-indent: 10pt; line-
height: 150%; letter-spacing: 0.2em;}

268 Part V: Enhancing Your Pages’ Look and Feel

Figure 17-4: Kerning can be larger or smaller than the font’s
normal spacing.

Trying Out Text Treatments
CSS allows you to decorate your text by using boldface, italics, underline,
overline, or strikethrough. CSS3 includes text effects such as inset text, drop
shadows, and much more, which we talk about in Chapter 18.

Embolden with bold
Boldface font is one of the more common text embellishments a designer can
use. To apply boldface in HTML, use the tag or the tag. However,
CSS provides you with more control over the font weight of the bolded text.

Syntax for applying bold
This style declaration uses the font-weight property:

selector {font-weight: value;}

The value of the font-weight property may be one of the following:

 ✓ bold: Renders the text in an average bold weight

 ✓ bolder: Relative value that renders a font weight bolder than the
current weight (possibly assigned by a parent element)

 ✓ lighter: Relative value that renders a font weight lighter than the
current weight (possibly assigned by a parent element)

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

269 Chapter 17: Web Typography

 ✓ normal: Removes any bold formatting

 ✓ One of these integer values: 100 (lightest); 200, 300, 400 (normal); 500,
600, 700 (standard bold); 800, 900 (darkest)

Markup for applying bold
The following example bolds hyperlinks (see Figure 17-5), turns the under-
line off, and changes the color to green once a link is visited. We did this to
Chris’s page and the Company History items to show you what it looks like.

body {color: black; font-family: Arial, sans-serif; font-size: 85%;}
a {font-weight: bold;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: green; text-decoration: none;}

Figure 17-5: All hyperlinks are bolded.

Emphasizing with italic
Italics are commonly used to set off quotations or to emphasize text. To apply
italics in HTML5, use the <i> or tags. However, CSS provides you with
more control over the font style of text through the font-style property.

Syntax for applying italic
This style declaration uses the font-style property:

selector {font-style: value;}

270 Part V: Enhancing Your Pages’ Look and Feel

The value of the font-style property may be one of the following:

 ✓ italic: Renders the text in italics (a special font that usually slopes to
the right)

 ✓ oblique: Renders the text as oblique (a different slanted version of a
normal font; seldom if ever used for font definitions)

 ✓ normal: Removes any italic or oblique formatting

Markup for applying italic
The following example assigns an italic font style to the first-level heading:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: teal; font-family: “MS Trebuchet”, Arial, Helvetica, sans-serif;
 text-transform: uppercase; font-style: italic; font-weight: 800;
 font-size: 2em; line-height: 30pt; text-align: center;}

Changing capitalization
You use the text-transform property to set capitalization in your document.

Syntax for changing capitalization
This style declaration uses the text-transform property:

selector {text-transform: value;}

The value of the text-transform property may be one of the following:

 ✓ capitalize: Capitalizes the first character in every word

 ✓ uppercase: Renders all letters of the text of the specified element in
uppercase

 ✓ lowercase: Renders all letters of the text of the specified element in
lowercase

 ✓ none: Keeps the value of the inherited element

Markup for changing capitalization
The following example renders the first-level heading in uppercase (shown in
Figure 17-6):

body {color: black; font-family: Arial, sans-serif; font-size: 85%;}
 a {font-weight: bold;}
 a:link {color: olive; text-decoration: underline;}
 a:visited {color: green; text-decoration: none;}
 h1 {font-family: “Trebuchet MS”, verdana, geneva, arial, helvetica, sans-

serif; font-size: 2em; line-height: 2.5em; color: teal; text-
transform: uppercase; text-align: center}

271 Chapter 17: Web Typography

Figure 17-6: The first-level heading is rendered in all uppercase.

Getting fancy with the text-decoration property
The text-decoration property is a shorthand property for three new CSS3
text-decoration properties:

 ✓ text-decoration-color

 ✓ text-decoration-line

 ✓ text-decoration-style

Most often, however, the text-decoration property is simply used to add
or remove underlines, overlines, or line-through to text.

Syntax for text decoration
This style declaration uses the text-decoration property:

selector {text-decoration: value;}

The value of the text-decoration property may be one of the following:

 ✓ underline: Underlines text

 ✓ overline: Renders the text with a line over it

 ✓ line-through: Renders the text with a line through it

 ✓ none: Removes any text decoration

 There is one more possible value for the text-decoration: blink. Blinking
text was probably the first form of animation on the web, and it was horribly
over-used in the early days of web browsers. As a result, it got a very bad
reputation and fell very much out of favor. In fact, blinking text became so
unpopular that at least one HTML editor would reportedly delete your docu-
ment if it detected blinking text!

The blink value of text-decoration isn’t supported by every browser,
and we hesitate to even mention it here. But, you may be the person who

272 Part V: Enhancing Your Pages’ Look and Feel

invents an ingenious use for blinking text and brings it back from the brink.
Best of luck with that!

 Keep in mind also that blinking and scrolling text can present issues for
people with seizure disorders, vestibular disease, and other similar health
concerns and should be avoided for those reasons too.

Markup for text decoration
The following example changes the link when the mouse hovers over it. In
this case, it turns off any underlining for a link:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: olive; text-decoration: underline;}
a:hover {color: olive; text-decoration: none;}

Checking Out the Catchall Font Property
You can summarize many font properties in one style declaration by using
the shorthand font property. When it’s used, only one style rule is needed
to define a combination of font properties:

selector {font: style variant weight size/line-height font-family;}

The value of the font property is a list of any values that correspond to the
various font properties:

 ✓ The following values must be defined in the following order although
they aren’t all required:

 • font-size (required)

 • line-height (optional)

 If line height is specified, it must be separated from the font-
size value by a forward slash.

 • font-family (required)

 The font-family value list must be the last value in the font
declaration.

 Use commas to separate multiple font family names. For example, you
can use the following style declaration to create a specific style for para-
graph text that specifies font-size, line-height, and font-family
in that (required) order:
p {font: 1.5em bold 150% Arial, Helvetica, sans-serif;}

273 Chapter 17: Web Typography

 ✓ The following values are optional and may occur in any order within the
declaration as long as they come before font-size and font-family.
Individual values are separated by spaces:

 • font-style

 • font-variant

 • font-weight

For example, you can use the following style declaration to create a specific
style for a first-level heading that uses all of the required and optional values
of the font shorthand property:

h1 {font: italic small-caps bold 2em/150% Arial, Helvetica, sans-serif;}

Experimenting with Web Fonts
CSS2 introduced the ability to download fonts to a user’s web browser using
the @font-face rule. However, @font-face got off to a rocky start, and
was actually removed from the specification in CSS 2.1. It wasn’t until CSS3
that it was added back in.

Today, @font-face is supported by almost every browser available and
gives Web designers far more choices when choosing fonts than they ever
had before.

Font file formats
Fonts come in various file formats. Font file formats are similar to image file
formats in that different formats have different strengths and weaknesses.
Also, different browsers feature support for different file formats.

Deciding which file format to use is often a matter of seeing what format the
font you want to use comes in. The following are the most frequently used
font file formats:

 ✓ TrueType has been around since the 1980s and is the standard format
for the Microsoft system fonts.

 ✓ OpenType is based on TrueType and was developed by Microsoft and
Adobe together. OpenType fonts support some advanced typographical
features that aren’t supported by TrueType. For Web Fonts, however,
you’re probably better off using TrueType fonts because of a bug in the
way OpenType fonts are displayed in Windows.

 ✓ Embedded OpenType (EOT) is an Internet Explorer–only font file
format. EOT fonts are the only way to use web fonts on older versions of
Internet Explorer (before 9).

274 Part V: Enhancing Your Pages’ Look and Feel

 ✓ Web Open Font Format (WOFF) isn’t really a new font format, but a way
to package TrueType and OpenType fonts for ease of use on the web.

Finding fonts
With web fonts, you can apply almost any font you can find to your web
pages. However, having the ability doesn’t mean that it’s a good idea or that
it’s legal.

Many fonts are owned by companies that charge designers licensing fees to
use their fonts. These companies, called type foundries, are concerned that
the @font-face rule allows people to distribute their fonts without paying
fees. To make sure that you’re not using a font that you don’t have the right
to distribute, you should do one of the following:

 ✓ Purchase the fonts from a foundry site, such as www.fonts.com, and
make sure that you read the licensing agreement.

 ✓ Pay for a service that allows you to select fonts from a database of
commercial fonts to use on your site. An example of such a site is
www.typekit.com.

 ✓ Use open source fonts. These are fonts that are made available with
much less restrictive license agreements by their owners. The fonts in
Google’s Font Directory, which we look at in the next section, may be
used for free on any website. Pretty awesome, huh?

Linking fonts
After you’ve found a font that you want to use, the next step is to link to it.
This is where the @font-face rule comes in. The @font-face rule has the
following structure:

@font-face {
 font-family: value;
 src: value;
 font-variant: value;
 font-weight: value;
 font-style: value;
}

 Notice that font-face doesn’t look like the other parts of CSS that you’ve
seen so far. It starts with a @ symbol, for one. @font-face is what’s called
an at-rule. An at-rule’s function is to give instructions to the CSS parser. In
the case of @font-face, it gives instructions about what a particular font-
family is and where it may be found.

The value of the font-family property is the name of the font. This must
be a different value from any other font names used by your website, obvi-
ously. Other than that requirement, it can be pretty much anything you want.

http://www.fonts.com/
http://www.typekit.com

275 Chapter 17: Web Typography

Generally, however, the font-family is the name that the creator of the
font has given the font.

The value of the src property is the location of the font file. It can be a URL
or a reference to the font on the user’s computer. You can specify multiple
values for the src property, and the user’s browser will try them in order
and select one that it can use.

In the following example, the font named Baskerville will be used if the user
has it on his computer. If that font isn’t found, the font named Buenard-
Regular.ttf will be used.

@font-face {
 font-family: MyBaskerville;
 src: local(“Baskerville”),
 url(“Buenard-Regular.ttf”);
}

 If you use a URL for the value of the src property, it may be an absolute or
relative URL. If you use a relative URL, make sure that you upload the file to
the same web server as your HTML and CSS documents.

Using Google Fonts
The Google Font Library is a repository of hundreds of freely available, and
high-quality, fonts that anyone can use in any way at all — including on web-
sites or in print.

The Google Fonts website, shown in Figure 17-7, lets you sort through the dif-
ferent available fonts, search for fonts, and preview what the fonts look like
with sample text.

Figure 17-7: The grumpy wizards at Google have given the web a major gift.

276 Part V: Enhancing Your Pages’ Look and Feel

To use a Google Font on your website, you can just follow these steps:

 1. Locate the font you want to use.

 For this demonstration, we look at the sans-serif font family called
Roboto. Figure 17-8 shows the preview of Roboto on Google Fonts.

Figure 17-8: The Roboto font family, from Google Fonts.

 2. Click the Quick-use button in the lower right of the font preview box.

 The Quick-use button is that one that looks like a box with an arrow
pointing to the right.

 3. Choose the styles that you’ll use.

 A style is a variation on a font, such as a bolder version, or an italic version.
Figure 17-9 shows the font style selection area on the Quick Use page.

Figure 17-9: Select your styles.

 4. Choose the character sets that you want.

 A character set is a collection of characters for a specific language or
type of language. The default character set is usually Latin, which

277 Chapter 17: Web Typography

contains the characters that are used in the Western European lan-
guages, including English, French, Spanish, German, Italian, Portuguese,
Icelandic, Dutch, Danish, Swedish, and Norwegian. Figure 17-10 shows
the character set selection area.

Figure 17-10: Select your character set.

 Each additional font style or character set that you select will increase
the page load time, because each character set must be downloaded
from Google before it can appear on your web page. So, if you expect to
use only one character set, choose only that one. You can always come
back and modify your selections later if you need to.

 5. Copy the standard <link> element from the Quick Use page and paste
it into the <head> section of each HTML document that will make use
of this font family.

 Figure 17-11 shows the code section from the Quick Use page on Google
Fonts. Listing 17-1 shows the link element pasted into the head of the
HTML5 Cafe home page.

Figure 17-11: The generated font family link code from Google Fonts.

 When you include this link code in your HTML document, you’re actu-
ally including a style sheet from Google that contains the @font-face
rule for the particular fonts you selected.

278 Part V: Enhancing Your Pages’ Look and Feel

Listing 17-1: The Link Code Placed in the <head> Element

 6. Use the new font family by adding the name of it to CSS font rules.

 For example, to change the <h1> elements in HTML5 Cafe to the Roboto
font family, type this CSS rule into the main.css file:
h1 {font-family: ‘Roboto’, sans-serif;}

 Note that we use the generic font-family sans serif as a backup font in the
previous CSS rule. This is to make sure that some sans-serif font will be used
instead of Roboto if the browser happens to not support web fonts.

When you preview the HTML5 Cafe home page in a browser with the new font
rule and the new linked font-family, it should resemble Figure 17-12.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

279 Chapter 17: Web Typography

Figure 17-12: The HTML5 Cafe home page with the <h1>
text in Roboto.

The difference between Roboto and the default sans-serif font that the site
was using may be pretty subtle. For something dramatic and crazy, we’ve
changed the header to a handwriting-style font family called Rock Salt in
Figure 17-13.

Figure 17-13: The HTML5 Cafe home page with the <h1>
text in Rock Salt.

280 Part V: Enhancing Your Pages’ Look and Feel

18
CSS Text and Shadow Effects

In This Chapter
▶ Creating shadows
▶ Creating inset text
▶ Creating 3D text
▶ Creating a letterpress effect
▶ Adding drop shadows
▶ Rotating text

C
SS3 contains many new properties that web developers and design-
ers can use to style, alter, transform, customize, tweak, and enhance

text. The result of all these new properties is that the need to use images to
achieve desired text effects is greatly reduced.

You get the following benefits out of being able to use styled text rather than
images:

 ✓ Text takes up less storage space and therefore it downloads faster than
images.

 ✓ Text can be read by screen readers and other types of alternative
browsers for people with disabilities. Images cannot.

 ✓ Search engines can read and index text, which makes it easier for people
to find your content. Text inside of images cannot be indexed.

CSS3 and the latest crop of web browsers are turning the web into a designer’s
paradise. If you know how to use the latest font-related CSS properties, the
effects that you can achieve are impressive!

Most of the best CSS text effects rely on tricks of light and shadow. When you
understand shadows, you can use them to create stunning effects not just
with text but with any object on your web pages.

282 Part V: Enhancing Your Pages’ Look and Feel

Creating Shadows
Shadows are a great tool for adding an illusion of depth to a web page. CSS3
has two properties for creating shadows:

 ✓ text-shadow: Adds a shadow to each letter in a text block

 ✓ box-shadow: Adds a shadow to any box element

By applying shadows in different ways, you can create effects such as drop
shadows, letterpress text, and 3D text. We get to those later in this chapter,
but first we show you the basics.

text-shadow
The simplest form of the text-shadow property looks like this:

h1 {text-shadow: 0.1em 0.1em #aaaaaa}

The syntax of this simple form of the text-shadow is:

text-shadow: offset-x offset-y color;

The offset-x and offset-y values tell how far horizontally (x-axis) and
vertically (y-axis) to move the shadow relative to the text. You can specify
the offset by using any of the standard measurement units in CSS. The color
sets the color of the shadow and can be specified using any of the standard
methods for naming colors in CSS.

The preceding example applies a gray (#aaaaaa) shadow 0.1em to the right
and 0.1em down from the normal first level heading text. The result when
applied to the HTML5 Cafe home page is shown in Figure 18-1.

Figure 18-1: A simple text shadow on the h1 element.

The text-shadow property has another, optional, parameter: the blur-
radius. The blur-radius makes the shadow fuzzy and lighter. The larger
the blur-radius value, the larger and lighter the blur will be. Like the
offset, the blur-radius is a standard CSS length value.

283 Chapter 18: CSS Text and Shadow Effects

To set the blur-radius, add a space and a length after the color.

text-shadow: 0.1em 0.1em #aaaaaa .2em;

When applied to the <h1> element, the result is shown in Figure 18-2.

Figure 18-2: A text shadow with a blur radius of 0.2em.

box-shadow
The box-shadow property creates one or more shadows for an element. Like
the text-shadow property, the simplest use of a box-shadow requires only
three values: offset-x, offset-y, and color.

.author img {
 margin-right: 10px;
 float: left;
 box-shadow: 4px 4px #777777;}

Figure 18-3 shows a box-shadow applied to Ed’s picture on the About Us
page of the HTML5 Cafe site.

Figure 18-3: A simple shadow on Ed’s picture.

To add a blur effect to the shadow, you can put the blur-radius after the
offset-y:

.author img {
 margin-right: 10px;
 float: left;
 box-shadow: 4px 4px 6px #777777;}

284 Part V: Enhancing Your Pages’ Look and Feel

The result is a more realistic and subtle shadow, as shown in Figure 18-4.

Figure 18-4: A shadow with a blur-radius applied.

Creating Inset Text
Inset text is text that appears to recede into the background. The key to inset
text is to use a text shadow that’s lighter than the text background color.
This causes the text to look like it’s inset and a shadow is being cast inside
the letters. The more contrast between the shadow and the text and back-
ground, the more pronounced the effect will be.

For this example, we use the following HTML:

<h1 class=”insetText”>Welcome to HTML5 Café!</h1>

To create inset text, we recommend creating a class selector in your external
style sheet. For example:

.insetText {text-shadow: 0px 1px 0px #ffffff;}

When applied to text, this rule creates a white shadow that is 1px lower than
the text it’s applied to. For the white shadow to be visible, the background
must not be white. So, we set it to blue by creating and applying an additional
class. Here’s the new class:

.bgBlue{background-color:#999999;padding:4px;}

Now, take a look at the HTML with this class added. Notice that you can add
multiple classes to the same element by separating them with spaces.

<h2 class=”insetText bgGray”>Welcome to HTML5 Café!</
h2>

You can see the result in Figure 18-5.

285 Chapter 18: CSS Text and Shadow Effects

Figure 18-5: The light shadow and darker background makes
the text appear inset.

Creating 3D Text
Three-dimensional text is the opposite of inset text. In 3D text, the text
appears to protrude from the page or even float above the page!

The key to 3D text is to use multiple text shadows together. We also introduce
another new feature of CSS3 to help with this trick: opacity. Here’s an example:

text-shadow: 0px 3px 0px #b2a98f,
 0px 7px 5px rgba(0,0,0,0.15),
 0px 12px 1px rgba(0,0,0,0.1),
 0px 17px 17px rgba(0,0,0,1);

We know this may look cryptic right now, but when you understand what
we’ve done, it’s actually pretty simple. Before we get to that, take a look at
Figure 18-6, which shows the result of applying opacity to the HTML5 Cafe
<h1> element.

Figure 18-6: A 3D effect applied to the <h1> on HTML5 Cafe.

Now, take a closer look at what’s going on here.

First of all, this declaration has four shadows. Each shadow is separated by
a comma, and the semicolon that ends the whole text-shadow declaration
comes at the end. Each shadow has four properties. From the earlier “text-
shadows” section, you know that these are offset-x, offset-y, blur-
radius, and color.

286 Part V: Enhancing Your Pages’ Look and Feel

But, look closely at the color property for each of the shadows. Here’s
something you haven’t seen before: RGBA. The “A” in RGBA stands for alpha.
When it comes to how transparency works in image editing software, alpha
compositing is the process of combining an image with its background to give
the illusion of transparency. In RGBA color, the A is a fourth value that ranges
from 0 to 1. A value of 0 is completely transparent (just background, that is),
and a value of 1 is completely opaque (just the image or the text shadow).

So, in the HTML5 Cafe header example, you’re adjusting the transparency of
blurred shadows that are offset different amounts from the text to give the
appearance of hovering text. Pretty cool, huh?

 Shadows and text effects can get pretty complicated, as you’re starting to
see. However, when you have the basic understanding of how they work, you
don’t need to always figure them out and write them by hand. Websites such
as the 3D CSS Text Generator at www.3dcsstext.com can handle most of
the hard work of creating the CSS markup for you.

Creating a Letterpress Effect
You can use transparency along with a new property called background-
clip to do a much more realistic inset, or letterpress, effect than the simple
one we created earlier in this chapter.

Here’s the CSS:

h1 {
 background-color: #666666;
 -webkit-background-clip: text;
 -moz-background-clip: text;
 background-clip: text;
 color: transparent;
 text-shadow: 0px 3px 3px rgba(255,255,255,0.5);}

Notice that your old friends, the browser prefixes (also known as vendor pre-
fixes), are back. The background-clip property isn’t fully standardized just
yet, so browsers have implemented their own versions of it.

 As of this writing, background-clip: text is experimental. We include
this technique here to demonstrate the amazing things that you can do with
CSS, but make sure to test thoroughly on multiple browsers before you use
this technique on a live website.

The background-clip property specifies whether the background extends
under the border of the object. In this case, we’re using a value of text. The
most common use of this property is to add a background image to text,
which can be used to create some really cool effects.

http://www.3dcsstext.com

287 Chapter 18: CSS Text and Shadow Effects

However, what you’re doing here is adding a background on the inside of trans-
parent text that has a shadow. So, what you get is just the shadow showing on
the inside of text. The effect ends up looking like the image in Figure 18-7.

Figure 18-7: Using background-clip and transparency
to create a realistic letterpress effect.

To better understand how this works, try removing the background-clip
property to see just the shadow, as shown in Figure 18-8. (Remember that the
so-called color of the text is set to transparent.)

Figure 18-8: Transparent text with a shadow without
background-clip:text.

Without the background-clip property in place, it becomes apparent that
its purpose is to just remove (or clip) everything outside of the borders of
each letter.

Drop Shadows
Text isn’t the only type of markup that you can apply shadows to. You can
also create effects with box shadows. One very popular effect is called a drop
shadow. Drop shadows give objects on a flat screen (or paper for that matter)
more depth.

Figure 18-9 shows a picture with a drop shadow applied by using the box-
shadow property.

288 Part V: Enhancing Your Pages’ Look and Feel

Figure 18-9: A picture with a drop shadow
applied using box-shadow.

This technique is simple, fast, and works in most browsers today. However, it
has one big drawback: The drop shadow has to be a box.

In this example, it looks like a picture of the cat is hovering. But what if you
want something a bit more sophisticated? What if you want the shadow to
follow the shape of the cat?

Just a couple years ago, we would have said that you couldn’t do it. You
would need to add the shadow in an image editing program.

Happily, things change. Today, you can use the new CSS3 filter property to
add a real drop shadow to a non-rectangular image — and the shadow even
works in some percentage of your users’ browsers.

Here’s what the CSS looks like:

 .shadowfilter {
 -webkit-filter: drop-shadow(9px 9px 9px rgba(0,0,0,0.5));
 }

And here’s how you can apply it to an image:

<img src=”images/Gerald_G_Cartoon_Cat_Walking500px.fw.png” alt=”cat”
class=”shadowfilter”>

The result (at least when viewed in a WebKit browser (such as Google
Chrome or Apple Safari) is shown in Figure 18-10. Get ready to impress even
your hardest-to-impress web developer friends with this one.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

289 Chapter 18: CSS Text and Shadow Effects

Figure 18-10: A drop shadow applied using the
CSS drop-shadow filter.

 Explaining how CSS filter effects work is beyond the scope of this book, but if
you want to know more, check out the great tutorial at this site:

www.html5rocks.com/en/tutorials/filters/understanding-css

Text Rotation
You can use the CSS3 transform property to rotate objects and text to create
interesting effects.

 For something to be rotated, it must be a block-level element or have its dis-
play property set to block.

Here’s the syntax for rotating an element with CSS transform:

selector {transform: rotate(value);}

The value inside the parentheses after rotate must be a positive or negative
number of degrees that the element should be rotated. For example:

transform: rotate(-45deg);

 Prefixes are currently necessary for transform to work in most browsers. So
make sure to test any experimental CSS properties in multiple browsers —
there’s a chance that they may not work as you expect because of changes
in the browser or the (still evolving) specification.

http://www.html5rocks.com/en/tutorials/filters/understanding-css/

290 Part V: Enhancing Your Pages’ Look and Feel

To apply rotation to the figure caption under the image on the HTML5 Cafe,
use this style rule:

.warning {-webkit-transform: rotate(90deg);
 -moz-transform: rotate(90deg);
 transform: rotate(90deg);}

Because elements are rotated around their center point, it’s often neces-
sary to adjust their position to place them exactly where you want them to
appear. For the following figure, we added relative positioning to the rotated
warning class:

.warning {-webkit-transform: rotate(90deg);
 -moz-transform: rotate(90deg);
 transform: rotate(90deg);
 position: relative;
 top: -30px;
 right: -215px;}

The result is shown in Figure 18-11.

Figure 18-11: Rotated text.

19
Multimedia and Animation

with CSS
In This Chapter
▶ Creating a print style sheet
▶ Using paged media styles
▶ Switching styles with @media
▶ Understanding keyframes
▶ Animating color

O
ne of the best things about HTML5 and CSS3 is the increased ability
of web designers to venture beyond the computer screen. With just

HTML5 and CSS3, you can make your web pages available on different types
of media, and you can enable multimedia capabilities. In the not-so-distant
past, scripting, plug-ins, and additional software were required in order to do
much of anything interesting on the web. Not so today!

In Chapter 17, we introduce you to the @font-face rule, which gives design-
ers the ability to use any font they want in web designs. In Chapter 18, we
introduce you to shadows and transform, which give designers the ability to
handle complex effects without the use of a paint or photo manipulation tool.
In this chapter, we take a look at two more CSS3 capabilities, media queries
and animation, which are both rapidly changing the way we design and think
of web pages.

Using CSS with Multimedia
CSS3 is useful for much more than styling text for desktop browsers.

People use web pages with their phones, tablets, projectors, TVs, and even
watches and glasses. Some people even print out web pages for reading later.

292 Part V: Enhancing Your Pages’ Look and Feel

With different style sheets, you can style the same content to work well on all
these different devices. The key is to detect the type — or size — of device
the user has and then serve them a custom style sheet for that particular
device or media. Unfortunately, detecting what type of device a user is using
is a best guess scenario. Viewport size is the only thing we can be sure of.

With the @media rule, you can specify how you want your web pages to look
or behave on different media types.

Table 19-1 lists all the media types that CSS can recognize, as well as their uses.

Table 19-1 Recognized Media Types
Media Type Description
All Suitable for all devices
braille For Braille tactile-feedback devices
embossed For paged Braille printers
handheld For hand-held devices (such as those with a small screen,

monochrome monitor, and limited bandwidth)
print For paged, opaque material and for documents viewed

onscreen but in Print Preview mode
projection For projected presentations, such as projectors or

transparencies
screen For color computer screens
speech For speech synthesizers
tty For media that use a fixed-pitch character grid, such as

teletypes, terminals, or portable devices with limited display
capabilities

tv For television-type devices (such as those with low resolution,
color capability, limited-scrollability screens, and some sound
available)

CSS can make changes to customize how the same pages

 ✓ Render onscreen

 ✓ Print

 A nifty color background might make your page a mess when it’s printed
on a black-and-white laser printer, but proper use of print-media styles
can keep this sort of thing from happening!

 ✓ Sound when read out loud

293 Chapter 19: Multimedia and Animation with CSS

Certain CSS properties apply only to specific types of media. For example, the
page-break-before property, which specifies where a page break should
occur, applies only to printed media. Other properties apply to multiple
media. For example, width and font-family are important to all the visual
media types (such as projection, screen, and print) but may require different
values for each of these media types.

Visual media styles
Table 19-2 lists the CSS properties you’re most likely to use in a typical web
page. Our online content for this book includes brief descriptions of the most
commonly used CSS properties and HTML tags and attributes.

Table 19-2 Visual Media Styles
Property Values Default Value Description
background-
color

Any color, by
name or hex code

Transparent Background
color of the
associated
element

background-
image

URL None Image URL as
background for
element

Color Any color, by
name or hex code

Up to you. Color of the fore-
ground text

font-family Any named
font: cursive,
fantasy,
monospace,
sans-serif,
serif

Up to you. (Stick
to common
fonts.)

Font for render-
ing related ele-
ment content

font-size Number + unit,
xx-small,
x-small,
small,
smaller,
medium, large,
larger x,
large xx,
large %,
Length (px,
em, cm)

Medium Size of the font
for rendering
related element
content

(continued)

294 Part V: Enhancing Your Pages’ Look and Feel

Table 19-2 (continued)
Property Values Default Value Description
font-weight Normal, bold,

bolder,
lighter, 100,
200, 300, 400,
500, 600, 700,
800, 900

normal 400
is the same as
normal 700
is the same as
bold

Weight (how
bold or light) at
which the font
should appear

line-height Normal number
+ unit % Length
(px, em, cm)

Normal Vertical spacing
between lines
of text

text-align Left, right,
center,
justify

Up to you;
normal text
direction

Determines how
text on the page
gets aligned

text-
decoration

None,
underline,
overline,
line-through,
blink

None Special text
effects

list-style-
image

URL None URL for an image
to display as a
list bullet

list-style-
position

Inside,
outside

Outside Wrap list text
inside or outside
bullet points

list-style-
type

Disc, circle,
square, deci-
mal, decimal-
leading-zero,
lower-alpha,
upper-
alpha, none,
armenian,
georgian,
lower-greek,
lower-latin,
lower-roman,
upper-latin,
upper-roman

Disc Bullet type on
lists

295 Chapter 19: Multimedia and Animation with CSS

Property Values Default Value Description
Display Block, inline,

none
Inline Format of a

defined section
for a block
element

Top Number and unit
auto

Auto Absolute posi-
tioning: sets the
top edge of an
element above
or below the top
edge of the con-
taining element

Relative posi-
tioning: sets the
top edge of an
element above
or below its
normal position

Right Percentage
number + unit
auto

Auto Absolute position-
ing: sets the right
edge of an ele-
ment to the right
or left of its con-
taining element.

Relative posi-
tioning: sets the
right edge of an
element to the
right or left of its
normal position

Bottom Percentage
number + unit
auto

Auto Absolute posi-
tioning: sets
bottom edge
of the element
below bottom
edge of its con-
taining element

Relative posi-
tioning: sets the
bottom edge
of the element
below its normal
position

(continued)

296 Part V: Enhancing Your Pages’ Look and Feel

Table 19-2 (continued)
Property Values Default Value Description
Left Percentage

number + unit
auto

Auto Absolute position-
ing: sets left edge
of an element to
the right or left
edge of its con-
taining element

Relative posi-
tioning: sets the
left edge of an
element to the
left or right of its
current position.

Position Static,
absolute,
relative,
fixed

Static Method by which
an element box is
laid out, relative
to positioning
context

Visibility Collapse,
visible,
hidden,
inherit

Inherit Indicates
whether an
object will dis-
play on the page

z-index Number auto Auto Stacking order
for objects — 1
always puts the
object at the
very back

border-
style

None, dotted,
dashed, solid,
double,
groove, ridge,
inset, outset

Not defined Style displayed for
object borders;
can be broken out
into border-
top-style,
border-
right-style,
border-
bottom-
style, and
border-left-
style

297 Chapter 19: Multimedia and Animation with CSS

Property Values Default Value Description
border-
width

Thin, medium,
thick, Number

Not defined Width of border
around an
object; can
be broken out
into border-
top-width,
border-
right-width,
border-
bottom-
width, and
border-
left-width

border-
color

Any color, by
name or hex code
transparent

Not defined Color of object’s
border; can be
broken out into
border-top-
color,
border-
right-color,
border-
bottom-
color, and
border-
left-color

Border Border-width
+ border-
style + bor-
der-color

Not defined Combined
features for
border around
object; can be
broken out into
border-top,
border-
right,
border-
bottom, and
border-left

Float Left, right,
none

None Specifies
whether object
should float to
one side or other
for document

Height Number + unit
auto

Auto Display height
for object

(continued)

298 Part V: Enhancing Your Pages’ Look and Feel

Table 19-2 (continued)
Property Values Default Value Description
Width Number + unit

auto
Auto Display width for

object
Margin Number + unit

auto
Not defined Display margins

for object; can
be broken out
into margin-
top, margin-
right,
margin-
bottom, and
margin-left

Padding Number + unit
auto

Not defined Display blank
space around
object; can be
broken out into
padding-top,
padding-
right,
padding-
bottom, and
padding-
left

Cursor Auto, cross
hair, default,
pointer, move,
text, help,
URL, e-resize,
n-resize,
ne-resize,
nw-resize,
progress,
s-resize,
se-resize,
sw-resize,
w-resize,
inherit

Auto Cursor appear-
ance in browser
window

 All the properties listed in Table 19-2 are safe to use in any visual browser
today. If you’re unsure whether something will work in all browsers, the best
way to find out is to test, of course. However, a lot of different browsers out
are available, and it’s often difficult and impractical to have different versions
of a browser installed on the same computer. Professional web developers

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

299 Chapter 19: Multimedia and Animation with CSS

visit http://caniuse.com as a first step to find out what tricks might be
necessary to get a property working with a certain browser.

Paged media styles
CSS can customize how a page looks when it’s printed. We recommend these
guidelines:

 ✓ Replace sans-serif fonts with serif fonts.

 Serif fonts, which have small lines trailing from the edges of letters and
symbols (called serifs) are easier to read than sans-serif fonts.

 ✓ Insert advertisements that

 • Make sense when they aren’t animated

 • Are useful without clicking

In general, paged media styles help ensure that text looks as good when it’s
printed as it does in a web browser. Paged media styles also help you hide
irrelevant content when pages are printed (banners, ads, and so forth), thus
reducing wasted paper and user frustration. See Table 19-3 for an explanation
of paged media properties in CSS.

Table 19-3 Paged Media Styles
Property Values Default

Value
Description

Orphans Number 2 The minimum number
of lines in a paragraph
that must be left at the
bottom of a page

page-break-
after

Auto, always,
avoid, left,
right

Auto The page-breaking
behavior after an
element

page-break-
before

Auto, always,
avoid, left,
right

Auto The page-breaking
behavior before an
element

page-break-
inside

Auto, avoid Auto The page-breaking
behavior inside an
element

Widows Number 2 The minimum number of
lines in a paragraph that
must be left at the top of
a page

http://caniuse.com/

300 Part V: Enhancing Your Pages’ Look and Feel

The example in Listing 19-1 uses these options for paged media styles:

 ✓ Make the output black text on a white background.

 ✓ Replace sans-serif fonts with serif fonts.

Listing 19-1: Adding a Print Style Sheet
<!DOCTYPE html>
<html>
<head>
<title>This is my page</title>
<style type=”text/css”>
 body {background-color: black; color: white; font-family: sans-serif;}

 @media print {
 body {background-color: white; color: black; font-family: serif}
 }
</style>
</head>
<body>
 This page will look very different when sent to the printer.
</body>
</html>

If you’re now wondering why none of the properties in Table 19-3 were
set but other properties were, it’s because (in this example) their defaults
worked fine. Just because those page properties can be set doesn’t mean that
you can’t set other properties also — it isn’t an either/or situation.

Getting Animated
CSS animations provide a very simple way to animate transitions between styles.
Unlike other ways of doing animation on the web, CSS animation requires no
scripting and no plug-ins. It also generally performs better and uses fewer system
resources (CPU cycles and memory) than other types of animation.

Before we get to the details, we step back and review some basic animation
concepts.

Animation works by displaying a series of images to create the illusion of
movement.

If you have two points, all you need to create an animation of something
moving in a straight line between those points is a length of time that the
movement should take. In this most basic example, the beginning and ending
points are known and everything inbetween can be inferred or computed.
The known points in the animation are called keyframes.

301 Chapter 19: Multimedia and Animation with CSS

In traditional hand-drawn animation, keyframes are drawn by a senior artist,
and the frames between keyframes are drawn by an assistant. These frames
between the keyframes are called inbetweens.

In CSS animation, the CSS author creates keyframes, and the browser draws
the inbetweens.

If you want the object to move in a way other than a straight line, you can
specify additional keyframes between the beginning and ending points.
Figure 19-1 shows an illustration of animation path involving start and end
points and a keyframe between them. We’ve placed partially transparent
frames between the keyframes to show some of the inbetweens.

CSS animations can be used to smoothly change the size of an element, change
its color, rotate it, or move it from one location to another, for example.

 For a list of all the animatable CSS properties, visit

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
animated_properties

Speech styles
Speech synthesizers, which convert text into
speech, aren’t just for the visually impaired.
They’re also useful for web users who

 ✓ Have reading problems

 ✓ Need information while driving

The following example recommends voices to
be played using male and female characters to
make it clear which characters are speaking:
<style>
 @media speech {
 p.stanley {voice-family:

male;}
 p.stella {voice-family:

female;}
 }

</style>

Usually, you don’t have to worry much about
adding speech styles to your page. Today’s
speech synthesizers should work just fine if

 ✓ Your page is mostly text.

 ✓ You don’t have a strong opinion about how it
sounds, so any clearly male or female voice
will do.

That said, you can find a complete listing of all
speech style properties on this book’s compan-
ion website.

Note: Most people who use these technologies
have either set up their own custom styles or
are used to the default styles, which are used to
convey specific meanings to the listener. It can
be disruptive to the user if they are unexpect-
edly different. Change voices with caution.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties

302 Part V: Enhancing Your Pages’ Look and Feel

Figure 19-1: Keyframe animation.

Using the animation properties
The CSS animation properties configure how an animation will run. They
don’t actually animate anything — that’s the job of the @keyframes rule.

The animation property is a shorthand for the following subproperties:

 ✓ animation-name: Used for assigning a name to an animation’s keyframes.

 ✓ animation-duration: Specifies how long the animation should take
to run.

 ✓ animation-timing-function: Used to specify acceleration curves
that determine how the animation transitions through the keyframes.
For example, an animation may start and end slowly and move faster in
the middle.

 ✓ animation-delay: Configures the delay before the start of the animation.

 ✓ animation-iteration-count: Tells how many times to run the
animation.

 ✓ animation-direction: Can be used to set an animation to run back-
wards when it reaches the end.

The following example configures an animation of the <figure> element on
the home page of HTML5 Cafe:

#home-image {animation-duration: 4s;
 animation-name: slideup;}

303 Chapter 19: Multimedia and Animation with CSS

At this point, there’s no animation. But, you’ve set the stage by specifying
that an animation named slideup should be applied and that it should take
four seconds to run.

The animation named slideup doesn’t exist yet. To create it, we need to use
the @keyframes rule.

Creating animations with @keyframes
In the most basic use of @keyframes, you specify the beginning and end and
then name the animation. After you’ve named an animation, it’s available to
be used by any element, through the animation-name property. Here’s a
simple animation that animates the bottom margin of an element from a nega-
tive value to 0:

@keyframes slideup {
 from {margin-top: 200px;}
 to {margin-top: 0px;}

When defined and called as part of a style rule for an element, this new ani-
mation will transition from margin-top: 200px to margin-top: 0px. The
result is that the #home-image will slide up into position after it’s loaded.

 Ah, but only if it were so simple! Once again, CSS animation is still not quite
finished and approved, so vendor prefixes may be necessary. To avoid
adding a whole lot of extra code here, we’ve left them out. However, be aware
that you may need to add -moz or -webkit to the animation properties and
the @keyframe rule in order for them to work in your browser.

Animating color
You can also use CSS animation to gradually change the color of an element
from one color to another. When you do this, the color will start at the from
value and transition through the RGB scale until it reaches the next keyframe.

For example, here’s a color animation that goes from red to blue:

@keyframes redtoblue {
 from {color: #ff0000;}
 to {color: #0000ff;}

To apply this animation to an object, just add the animation-name and
animation-duration (along with any of the other animation subproperties
you want to specify) to a style rule, as follows:

h1 {animation-name:redtoblue;
 animation-duration: 8s;}

304 Part V: Enhancing Your Pages’ Look and Feel

This animation takes exactly eight seconds to run. When it’s done, the color
of the <h1> element resets to the color it was before the transition. So, if you
want the color to remain blue after the animation happens, add a color decla-
ration to the style rule.

Figure 19-2 shows, as best as we can in print, the animation from red to blue.

Figure 19-2: Animating color from red to blue.

Part VI
The Part of Tens

Visit www.dummies.com/extras/beginninghtml5css3 for more great For
Dummies content online. All the links that appear in these chapters are also available
online in ready-to-click form at www.dummieshtml.com/html5cafe in items
Ch20 through Ch23.

http://www.dummies.com/extras/beginninghtml5css3
http://www.dummieshtml.com/html5cafe

In this part . . .
 ✓ Manufacturing magnificent mobile web designs with HTML5

and CSS3
 ✓ Minding your HTML (and CSS) Ps and Qs
 ✓ Exterminating web bugs in HTML and CSS . . . with

prejudice!
 ✓ Discovering some amazing and cool HTML tools and

technologies
 ✓ Getting your hands on the best online markup references and

resources

20
Ten Keys to Mobile Web Design

In This Chapter
▶ Understanding different mobile devices
▶ Optimizing for small screens
▶ Designing for distracted users
▶ Testing on different devices

T
here’s no doubt today that mobile devices have gone mainstream. Today’s
marketplace boasts a wide array of products, many competing manufactur-

ers, and oodles of innovative features. However, before we wax too eloquent,
we should clarify that we aren’t talking about skimobiles, mobile homes, or
even Mobile, Alabama. Rather, we’re talking about the mobile web, which serves
those portable multi-use phones and other devices (such as the iPad or a
Wi-Fi–connected portable GPS) that are so easy to carry around and integrate
into everyday life.

Mobile devices are unbeatable for quick access to directions and maps,
checking out product reviews or comparisons, finding contact information,
or simply surfing the Internet while on the go. Because of this, we think
understanding mobile web design is important, too. That way, you can use
your new skills and knowledge to account for the many unique challenges
that mobile access can pose, and perhaps build a better website as a result.

Design for Different Mobile Devices
Unfortunately, the more you look around at the different types of mobile
devices, the more it seems like there’s no ready way to categorize them all or
no single approach to implement web pages in their limited display space.

For example, you can find mobile devices categorized by one or more of the
following characteristics:

 ✓ Input device (touchscreen, stylus, keyboard, or touchpad)

 ✓ Operating system (Symbian, Windows Mobile, Apple iOS, Android)

308 Part VI: The Part of Tens

 ✓ Processor and memory

 ✓ Screen size

 ✓ Internet access

 ✓ Connectivity (Bluetooth, USB)

 ✓ Other cool features (camera, video, ringtones, games)

This list could go on and on. Basically, you get the idea that there are almost as
many ways to profile mobile devices as there are mobile devices themselves.

On the most basic level, the safest and easiest way to classify mobile devices
is into three groups:

 ✓ Smartphone: A smartphone is a phone that includes computer-like features,
such as an operating system integrated into the phone, more powerful
processor and memory, the capability to install and run custom applica-
tions, wireless access, color display, and advanced input capabilities.
Because of these features, it also comes at a higher costs — it’s more
expensive to buy and costlier to use. The iPhone, shown in Figure 20-1,
is one of the most popular smartphones.

Figure 20-1: An Apple iPhone.

 ✓ Feature phone: Feature phones usually incorporate less powerful pro-
cessors and memory, have a basic and proprietary operating system,
offer limited application possibilities (if any), and cost less than smart-
phones. (Feature phones often cost less than half of what smartphones

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

309 Chapter 20: Ten Keys to Mobile Web Design

do and, with more limited data handling capabilities, often cost about
half as much for monthly service as well.) A typical example of a feature
phone is the Nokia phone shown in Figure 20-2.

Figure 20-2: A standard Nokia feature phone.

310 Part VI: The Part of Tens

 ✓ Tablet: A tablet is generally larger than a phone and doesn’t have cell-
phone capabilities. More powerful tablets are beginning to replace lap-
tops and even desktop computers for some users.

 Here’s the bad news: Not only do phones differ in features and prices, but
they also display websites differently. Feature phones have extremely limited
CSS and JavaScript support — if they have any such support at all. However,
before you throw your hands up in the air, we recommend learning more
about mobile website design in the following sections. Feature phones aren’t
all bad, nor are smartphones all good. For both types of devices, some web-
site compromises are necessary.

Design for People
When you start thinking about how to design mobile version(s) of your web-
site so you can produce the best possible results for visitors using mobile
devices, you need to ponder the unique challenges that the mobile web can
pose for your site’s design and implementation. You also need to have a clear
picture of who will be using your mobile website.

 Every single one of your mobile website’s users will be human, and there’s at
least as much variation in people as there is in mobile devices. Unlike mobile
devices, however, you can’t — and shouldn’t even try — to design with every
possible user in mind.

Do your research and think about exactly who your target users are. Are they
young or old? Male or female? Do they live in cities? Get as specific as you
can when you define your users’ profiles and think about the scenarios in
which they will use your mobile website.

Creating a profile of your target user and usage scenarios is called user-centric
design.

Design for Small Screens
If every mobile phone had the same screen size, we might not have needed to
write about mobile web design for this book. Although you have many other
considerations to think about when creating mobile websites or pages, lim-
ited display real estate is one of the most important to keep in mind.

 Creating a single design with a fixed width doesn’t work if you want to take
best advantage of real estate available on each screen. Also, remember that
many smartphones can be rotated, so the user may view your page in both
landscape and portrait views.

311 Chapter 20: Ten Keys to Mobile Web Design

Design for Low Bandwidth
Smaller screen size isn’t the only thing that limits how well you can dis-
play images and multimedia on a cellphone; limited bandwidth is another
important factor when designing and building a website for mobile access.
Although a growing number of mobile users can take advantage of faster 3G
and 4G mobile networks, many mobile device users are still hampered by
connections best described as painfully slow.

The same challenges of limited bandwidth that throttled early web design and
access for pioneering users in the early to mid-1990s now slow the mobile
Internet. It lags far behind high-speed DSL and cable modem connections from
a desktop or notebook computer.

 As you design a mobile version of your site, follow these tips so that your site
provides tolerable service for visitors with low-bandwidth connections:

 ✓ Be ruthless with images and multimedia files. Limit your mobile site
to a precious few images to help tell your story and add visual interest.
Keep things small and simple.

 ✓ Replace banners and button images with text links. Text links work on
any device and consume only minimal storage space and bandwidth.

 ✓ Be careful when including multimedia. For example, don’t put video or
audio files on the front page of a mobile site. Instead, link to multimedia
files so they’re optional for mobile browsers. Also, include warnings
about file size and the way the media displays on different devices.

Design for Touch
Most smartphones today are touch enabled. Compared with a mouse pointer,
a person’s finger is a pretty clumsy and imprecise instrument.

 That means you need to do the following:

 ✓ Make links easy to see and click. Buttons and links should be big
enough and have enough space between them to make it easy to tap
them with a fat fingertip.

 ✓ Limit the total number of links, especially on the low-end version of
your site. Help people move through your site by leading them from
one short list of links to another until they reach the content that serves
them best.

 ✓ Organize link levels. Don’t include too many levels with your links.
Consider adding breadcrumbs to help users find their way back through
your site. Breadcrumbs are a list of links, usually at the top of a page,
that help users identify where they are in the structure of the site. The

312 Part VI: The Part of Tens

links to each section and subsection are ahead of the current page in
the site’s structure, from the home page all the way down to the current
page (which is accessible through the browser’s address box).

 ✓ Use a navigation menu, not a navigation bar. Although most desktop
websites include a navigation bar that links to all main sections in a
site at the top of every page, that’s generally not the best use for real
estate on a small screen. Instead, consider including one link at the top
of every page with a name like Menu, and then link it to a navigation bar.
Figure 20-3 shows this technique as it’s used on the mobile version of
this book’s companion website, www.dummieshtml.com.

Figure 20-3: The mobile version of www.dummies
html.com with a collapsed menu link.

 Including a list of links to all the main pages of your site on every page
may not be worth the download time, but creating a small site map and
including a link to that page from every other page on the site provides
a similar option without lots of extra overhead. Use this strategy to
include a list of links at the bottom of each page along with a Menu link
up top that jumps visitors to the links at the bottom.

 ✓ Consider back and forward buttons. Back and forward buttons help
users move through many pages of content or images.

http://www.dummieshtml.com

313 Chapter 20: Ten Keys to Mobile Web Design

Design for Distracted Surfers
One of the biggest differences between how people use mobile devices and
how they use desktop computers is that when someone uses a mobile device,
it’s often not the primary thing that they’re doing. For example, a user of your
mobile website may be looking up your address while she’s on the way to a
meeting with you. Or, she might be grocery shopping and looking up product
information on the web. She even might be socializing with friends and trying
to settle an argument over how old Tina Yothers is. (CelebrityAgeMachine.
com works well for settling these arguments, by the way.)

The bottom line is that mobile users tend to be distracted. Here are a few
quick tips to make your mobile site easier for distracted visitors to use:

 ✓ Make key information, such as your address and phone number, easy to
find right away.

 ✓ Make all links big and easy to click.

 ✓ Use text and contrasting background colors so the text is easy to read,
even in low light (or on a display that’s hard to read in strong sunlight).

Test on Many Mobile Devices
To appreciate the challenges of the mobile web, surf to your own website on
a mobile phone. However, don’t stop at one phone, especially if that phone
is an iPhone or Android. The iPhone and Android may get all the headlines
(and a majority of the traffic on the mobile web), but they’re not the only
phones likely to visit your site. Those same sites viewed on a BlackBerry or a
Windows Phone may be completely unreadable.

Although you can test your mobile site by using online emulators, such as
the high-end testing site at DeviceAnywhere (www.deviceanywhere.com),
the best way is to hold a device in your hand so you can see how your site
feels and looks on that phone.

 Visit a mobile phone store and be really nice to the salespeople while you
test your sites on their phones. Better yet, compare notes with friends and
family. Ask people to visit your website on different phones and watch what
they do, how they find their way around (or where they get lost), and how
hard it is for them to get to the information they need when they interact
with your site.

http://www.deviceanywhere.com

314 Part VI: The Part of Tens

Design for Simplicity
Even on the best mobile devices, typing and clicking links can be a challenge.
Always make links big and easy to click for mobile visitors and don’t overload
any page with too many options.

The best approach is to lead users through a series of simple choices, limiting
options to no more than five to seven big links at any stage. Directing visitors
to increasingly specific sets of links is best until users can choose the infor-
mation they want or need.

 When possible, avoid drop-down lists or anything else that uses AJAX or
JavaScript around links. At the very least, provide alternatives when avoiding
JavaScript is unrealistic. Because many mobile devices don’t support these
types of web technologies, it makes these links impossible to use.

Some information, such as contact information, should never be more than
one click away. In nearly all cases, including your phone number on the main
page of your mobile site is good practice — after all, you know your visitor
has a phone handy!

Set Up Mobile Web Addresses
So that everyone with a mobile phone can easily get to the URL of your
mobile site (by typing as little as possible), set up multiple mobile addresses
and direct them all to the mobile version of your site.

Until a clear winner appears in the mobile URL game, use all the most
common addresses to increase the odds that your visitors find you on their
first try.

The following are typical mobile URLs in common use on the mobile web:

 ✓ m.yourdomain.com: Recommended for ease of typing.

 ✓ wap.yourdomain.com: This is a common address for sites created
using the WML (Wireless Markup Language).

 ✓ yourdomain.com/mobile: Common alternative because of easy server
setup.

 ✓ yourdomain.com/i: For versions built specifically for the iPhone.

 ✓ yourdomain.mobi: Requires registering a .mobi version of your
domain name, which many sites don’t seem to bother with.

315 Chapter 20: Ten Keys to Mobile Web Design

Whatever you do, drop the www. — no one should ever have to type those
three letters and that dot again on the modern web.

Your mobile site may not actually be a separate site. One popular alternative
to creating separate sites for mobile and desktop users is to utilize media
queries (as discussed in Chapter 19), to switch between different style sheets
depending on the size of the user’s browser window. Web designers call this
technique for creating mobile websites responsive design.

Include a Link to the Desktop Site
Always include a link to the full, desktop version of your site on your mobile
site. This link helps people who may be familiar with your desktop site and
prefer to use it even on their smartphone where it may not work as well.

In addition, it’s always possible that someone with a tablet device that
receives the mobile site may find it easier to use the full version of the site
rather than the mobile version.

 Making it as easy as possible for the mobile user to use your website is the
key to mobile web design.

316 Part VI: The Part of Tens

21
Ten HTML Do’s and Don’ts

In This Chapter
▶ Concentrating on content
▶ Going easy on the graphics, bells, whistles, and roaring dinosaurs
▶ Creating well-formulated HTML and then testing, testing, testing
▶ Keeping it interesting after the building is over

B
y itself, HTML is neither particularly complex nor extremely difficult.
HTML ain’t rocket science, as some high-tech wags (including a few

rocket scientists) have put it. Nevertheless, important do’s and don’ts can
make or break the web pages you build with HTML and CSS. Consider these
humble suggestions as guidelines for making the most of your markup with-
out losing touch with your users (or watching your page blow up on its
launch pad).

If points we make throughout this book seem to crop up here, too — espe-
cially regarding proper and improper use of HTML — it’s no accident. Heed
ye well the prescriptions and avoid ye the maledictions. But hey, they’re your
pages. You can do what you want. Your users will decide the ultimate out-
come. (We’d never say, “We told you so.” Would we?)

Don’t Lose Sight of Your Content
Any website lives or dies by its content. That a site is meaningful, that it
delivers information directly, easily, and efficiently, and that a user can rea-
sonably expect to find something new and interesting there with each new
visit — all are pluses. But all those things (and more) rest on solid, useful
content that gives visitors a reason to come (and return) to your site.

So we return to the crucial question of payload: page content. Why? Well, as
Darrell Royal (legendary football coach of the University of Texas Longhorns
in the ’60s and ’70s) is rumored to have said to his players, “Dance with who
brung ya.” In normal English (as opposed to Texan), this means that you
should stick with the people who’ve supported you all along, and give your
loyalty to those who’ve given it to you.

318 Part VI: The Part of Tens

We’re not sure what this means for football, but for web pages it means keep-
ing faith with your users and keeping content paramount. If you don’t have
strong, solid, informative content, users quickly get that empty feeling that
hits when pages are content free. When that happens, they’ll be off to richer
hunting grounds online, looking for content wherever it can be found.

 To satisfy user hunger, put your strongest content on your site’s major
pages. Save the frills and supplementary materials for secondary pages. The
short statement of this principle for any kind of markup is “Tags are impor-
tant, but what’s between the tags — the content — is what really counts.”

Do Structure Your Documents and Your Site
For users, a clear roadmap of your content is as important for a single home
page as it is for an online encyclopedia. When longer or more complex docu-
ments grow into a full-fledged website, a roadmap becomes more important
still. This map ideally takes the form of (you guessed it) a flow chart of page
organization and links. If you like pictures with a purpose, the chart could
appear in graphic form in an explicitly labeled site map.

We’re strong advocates of top-down page design: Don’t start writing content
or placing tags until you understand what you want to say and how you want
to organize your material. Start building your HTML document or documents
using paper and pencil (or your modeling tool of choice). Sketch out rela-
tionships within the content and among your pages. Know what and where
you’re building before rolling out the heavy equipment.

 Good content flows from good organization. It helps you stay on track during
page design, testing, delivery, and maintenance. Organization helps users
find their way through your site. Need we say more? Well, yes: Don’t forget
that organization changes over time. Revisit and critique your organization
and structure on a regular basis — and don’t be afraid to change either one
to keep up with changes in your website’s content or focus.

Do Make the Most from the Least
Markup, scripting, and style sheets make much possible, but not all possibili-
ties deserve implementation — websites can’t live by snazzy graphics, spe-
cial effects, and blinking marquees alone. Let your design and content drive
the markup, graphics, and interaction. With good design and content, your
site will do its job without befuddling your visitors.

 Gratuitous links to useless information are nobody’s friend; if you’re tempted
to link to a webcam that shows a dripping faucet — resist, resist, resist!

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

319 Chapter 21: Ten HTML Do’s and Don’ts

Structure and images exist to highlight content. The more bells, whistles, and
dinosaur yowls dominate a page, the more they distract visitors from content.
Use structure and graphics sparingly, wisely, and carefully. Anything more
impedes content delivery. Go easy on animations, links, and layout tags, or risk
having your message (even your page) devoured by a hungry T. Rex.

Do Build Attractive Pages
When users visit web pages with a consistent framework that focuses on
content, they’re likely to feel welcome. The important thing is to supplement
content with graphics and links — don’t overwhelm users with a surfeit of
pictures and links. Making web pages pretty and easy to navigate adds to a
site’s basic appeal and makes your cyber-campers even happier.

 If you need inspiration, cruise the web and look for layouts and graphics that
work for you. If you take the time to analyze what you like, you can work from
other people’s design principles without having to steal details from their lay-
outs or looks (which isn’t a good idea anyway).

When designing web documents, start with a basic, standard page layout.
Pick a small, interesting set of graphical symbols or icons and adopt a consis-
tent navigation style. Use graphics sparingly (yes, you’ve heard this before);
make them as small as possible — limit size, number of colors, shading, and
so on, while retaining visual appeal. After you build simple, consistent naviga-
tion tools, label them clearly and use them consistently. Your pages can be
appealing and informative given enough time and effort.

Don’t Lose Track of Those Tags
If you start with solid markup and good content — and then plow through
what you’ve built to make sure everything works the way it should (and com-
municates what it ought) — you’re on your way to a great website. But after
construction is over, testing begins. And only when testing produces positive
results should you open your virtual doors to the public.

Although you’re building documents, it’s easy to forget to use closing tags,
even when they’re required (for example, the that closes the opening
anchor tag <a>). When you’re testing web pages, some browsers can com-
pensate for such errors, leaving you with a false sense of security.

 The web is no place to depend on the kindness of strangers. Scrutinize your
tags to head off possible problems from browsers that might not be quite
so understanding (or lax, as the case may be). Validation (using http://
validator.w3.org) is always a good idea, too.

http://validator.w3.org
http://validator.w3.org

320 Part VI: The Part of Tens

As for claims that some HTML authoring tool vendors make (“You don’t have
to know any HTML!”), all we can say is, “Uh-huh, suuurre. . . .” HTML is a big
part of what makes web pages work; if you understand it, you can trouble-
shoot with minimal fuss. Also, only you can ensure that your pages’ inner
workings are correct and complete, whether you build them yourself or a
program builds them for you.

We could go on and on about this, but we’ll exercise some mercy and confine
our remarks to the most pertinent items:

 ✓ Keep track of tags while you write or edit HTML by hand. If you open a
tag — be it an anchor, a text area, or whatever — create the closing tag
for it right then and there, even if you have content to add. Most HTML
editors do this for you.

 ✓ Use a syntax checker to validate your work during the testing process.
Syntax checkers are automatic tools that find missing tags or errors. Use
these syntax checkers whether you build pages by hand or with soft-
ware. The free W3C validator lives at http://validator.w3.org.

 ✓ Test pages with as many browsers as you can. This not only alerts you
to missing tags but can also reveal potential design flaws or browser
issues (covered in the later section, “Do Avoid Browser Dependencies”).
This exercise also emphasizes the need for alternate text. That’s why we
check our pages with Lynx (a character-only browser). Ask friends, col-
leagues, and co-workers to check out your work, and tell them to use as
many browsers as they can, too. Please!

 ✓ Always follow HTML document syntax and layout rules. Just because
browsers don’t require elements such as html, head, and body doesn’t
mean you can omit them. It means browsers don’t care whether or not
you use them. But browsers are not your audience. Your users (and
future browsers) may indeed care.

 Although HTML isn’t exactly a programming language, it makes sense to treat
it like one. Following formats and syntax helps you avoid trouble, and care-
fully testing and rechecking your work ensures a high degree of quality and
compliance with standards, as well as a relatively trouble-free website.

Do Avoid Browser Dependencies
When building web pages, the temptation to view the web only in terms of your
favorite browser is hard to avoid. That’s why you must recall that users view
the web in general (and your pages in particular) from many perspectives —
and through many different browsers.

During the design and writing phases, you’ll probably hop between HTML
and a browser view of your work. At that point, you should switch among

http://validator.w3.org

321 Chapter 21: Ten HTML Do’s and Don’ts

browsers and test your pages using different ones (including at least one
text-only browser like Lynx). This helps you visualize your pages better and
helps keep you focused on content. Using a text-only browser is also a great
way to ensure that visually impaired visitors can still relate to your site.

 Check out the Spoon Browser Sandbox page at www.spoon.net/browsers.
It lets you emulate numerous browsers on a Windows PC, including multiple
versions of IE, Firefox, Chrome, Safari, and Opera. Additionally, you can use
free public Telnet servers with Lynx (a character-mode browser) installed.
Also, visit http://brainstormsandraves.com/articles/browsers/
lynx for a good discussion of using Lynx when testing web pages. (You can
also find pointers to Lynx downloads for Windows, DOS, Mac OS, and other
platforms there.) There’s even a free Firefox plug-in for Lynx previews inside
a pop-up window available at https://addons.mozilla.org/en-US/
firefox/addon/1944.

During testing and maintenance, browse your pages from many points of
view. Work from multiple platforms; try both graphical and character-mode
browsers on each page. Testing takes time but repays that effort with pages
that are easy for everyone to read and follow. It also helps viewers who come
at your materials from many platforms and helps your pages achieve true
independence from any single viewpoint. Why limit your options?

 If several pages on your site use the same basic HTML, create a template for
those pages (include both an HTML skeleton and one or more external CSS
style sheets). Test that template with as many browsers as you can. When
you’re sure the template is browser-independent, use it to create other pages.
This helps every page look good, regardless of the browser that visitors use,
and moves you closer to real HTML enlightenment.

Don’t Make It Hard to Navigate
Your Wild and Woolly Web

Users who view the splendor of your site don’t want to be told you can’t get
there from here. Aids to navigation are vital amenities on a quality website.
A navigation bar requires a consistent placement and use of controls to help
users get from A to B. To help users minimize (or even avoid) scrolling,
use links judiciously and be careful to observe what constitutes a complete
screen (or screenful) of text. Text anchors make it easy to move to previous
and next screens, as well as to the top, index, and bottom of any document.
Just that easy, just that simple — or so it appears to the user.

 We believe in low-scroll pages: Users should have to scroll no more than one
screenful from a point of focus or entry to find a navigation aid that lets them
jump (not scroll) to their next point of interest. If users must scroll, vertical
scrolling is okay, but horizontal scrolling is an absolute no-no!

http://www.spoon.net/browsers
http://brainstormsandraves.com/articles/browsers/lynx
http://brainstormsandraves.com/articles/browsers/lynx
https://addons.mozilla.org/en-US/firefox/addon/1944
https://addons.mozilla.org/en-US/firefox/addon/1944

322 Part VI: The Part of Tens

We don’t believe navigation bars are mandatory or that names for controls
should always be the same. But we do believe that the more control you give
users over their browsing, the better they like it. The longer a document gets,
the more important controls become; they work best if they occur about
every 30 lines (or with a set of always-visible page controls).

Don’t Think Revolution, Think Evolution
The tendency to sit on one’s fundament, if not rest on one’s laurels, after
launching a website is nearly irresistible. It’s okay to sit down, but it isn’t
okay to leave things alone for too long or to let them go stale from lack of
attention and refreshment. If you stay interested in what’s on your site after
it’s ready for prime time, your content probably won’t go past its expiration
date. Do what you can (and what you must) to stay on top of things, and
you’ll stay engaged — as should your site visitors!

Over time, web pages change and grow. Keep a fresh eye on your work and
keep recruiting fresh eyes from the ranks of those who haven’t seen your
work before to avoid what we call organic acceptance. (You might know this
term better as complacency or even indifference.)

This concept is best explained by the analogy of your face in the mirror: You
see it every day; you know it too well, so you aren’t as sensitive as someone
else to how your face changes over time. Then you see yourself on video, or
in a photograph, or through the eyes of an old friend. At that point, changes
obvious to the world reveal themselves to you as you exclaim, “I’ve gone
completely gray!” or “My spare tire could mount on a semi!”

Changes to web pages are usually evolutionary, not revolutionary. They
proceed in small daily steps; big leaps are rare. Nevertheless, you must stay
sensitive to the underlying infrastructure and readability of your content
as pages evolve. Maybe the lack of onscreen links to each section of your
Product Catalog didn’t matter when you had only three products — but now
that you offer 25, they’re a must. You’ve heard that form follows function; in
web terms, the structure of your site needs to follow changes in its content. If
you regularly evaluate your site’s effectiveness at communicating, you know
when it’s time to make changes, large or small.

This is why user feedback is crucial. If you don’t get feedback through forms
or other means, solicit some from your users. If you’re not sure how you’re
doing, consider this: If you don’t ask for feedback, how can you tell?

323 Chapter 21: Ten HTML Do’s and Don’ts

Don’t Get Stuck in the Two-Dimensional-Text Trap
Because of centuries of printed material and the linear nature of books, our
mindsets also need adjustment. The text trap is of our own making, and comes
from a lifetime of experience in reading printed materials. But the nonlinear
potentials of hypermedia give new meaning to the term document, especially
on the web. (Hypermedia is digital content that includes text, images, video,
sound, and so forth, along with hyperlinks, and it provides many ways to escape
the text trap.) It can be tempting to pack pages full of capabilities until they
resemble a Pony Express dynamite shipment that gallops off in several direc-
tions at once. Be safe: Judge hypermedia by whether it

 ✓ Adds interest

 ✓ Expands on your content

 ✓ Makes a serious — and relevant — impact on users

Within these constraints, such material can vastly improve any user’s experi-
ence of your site.

Stepping intelligently outside old-fashioned linear thinking about text can
improve your users’ experience with your site and make your information
more accessible. That’s why we encourage careful use of document indexes,
cross-references, links to related documents, and other tools to help users
navigate your site.

Keep thinking about the impact of links as you look at other people’s web
materials; it’s the quickest way to escape the linear-text trap. If you’re seeking
a model for website behavior, don’t use your new trifold four-color brochure,
however eye-popping it may be. Instead, think about how customer-service
talks to new customers on the phone: “How can I help you today?”

Don’t Let Inertia Overcome You
When dealing with web materials post-publication, it’s only human to goof off
after finishing a big job. Site maintenance isn’t as heroic or inspiring as creation,
but it involves most of the activity required to keep things functioning — that
is, ensure links still work, images still appear, interactive materials work as they
should, and so forth. Sites that aren’t maintained often become ghost sites;
users stop visiting when developers stop working on them. Never fear — a
little work and attention to detail keep pages working and current. If you start
with something valuable and keep adding value, a site’s value appreciates
over time — just like any other property. Start with something valuable and
leave it alone, and it loses function and value.

324 Part VI: The Part of Tens

Consider your site from the viewpoint of a master aircraft mechanic: Correct
maintenance is a real, vital, and on-going accomplishment, without which you
risk a crash. A website, as a vehicle for important information, deserves regu-
lar attention; maintaining a website requires discipline and respect.

 Keeping up with change translates into creating (and adhering to) a regu-
lar maintenance schedule. Make it somebody’s job to spend time on a site
regularly; check to make sure the job’s getting done. If people get tagged to
handle regular site updates, changes, and improvements, they flog other par-
ticipants to give them tasks when scheduled site maintenance rolls around.
Pretty soon, everybody’s involved in keeping things working — just as they
should be. This keeps visitors coming back for more!

22
Ten Ways to Kill Web Bugs Dead

In This Chapter
▶ Avoiding gaffes in markup and spelling
▶ Keeping links hot and fresh
▶ Gathering beta testers to check, double-check, and triple-check your site
▶ Applying user feedback to your site

A
fter you put the finishing touches on a set of pages but before you go
public on the web for the entire world to see, it’s time to put them

through their paces. Testing remains the best way to ensure site quality and
effectiveness.

Thorough testing must include content review, analysis of HTML and CSS
syntax and semantics, link checks, and various checks to make darn sure that
what’s built is what you really want. Read this chapter for gems of testing
wisdom (learned from a lifetime of web adventures) as we seek to rid your
web pages of bugs, errors, and lurking infelicities. Out! Out! Darned Spot!

Make a List and Check It — Twice
A sense of urgency that things must work well and look good on a website
never fails to goad you to keep your site humming along. That said, if you
work from a visual diagram of how your site is (or should be) organized,
you’ll be well equipped to check structure, organization, and navigation.
Likewise, put your pages through their paces regularly (or at least each time
they change) with a spell checker, and you’ll be able to avoid unwanted tpyos.

Your design should include a roadmap (often called a site map) that tells you
what’s where in every individual HTML document and style sheet in your
site. The site map also clues you into the relationships among your site’s
pages. Keep this map up to date as you move from design to implementa-
tion. (In our experience, things always change as you go down this path.) As
you continually update your site map, be sure to include all intra- and inter-
document links.

326 Part VI: The Part of Tens

A site map provides the foundation for a test plan. Yep, that’s right — effective
testing isn’t random. Use your site map to

 ✓ Investigate and check every page and every link systematically.

 ✓ Make sure everything works as you think it should — and that what you
built has some relationship (however surprising) to your design.

 ✓ Define the list of things to check as you go through the testing process.

 ✓ Check everything at least twice (red suit and reindeer harness optional).

Master Text Mechanics
By the time any collection of web pages comes together, you’re looking at
thousands of words, if not more. Yet many web pages are published without
a spell check, which is why we suggest — no, demand — that you include a
spell check as a step when testing and checking your materials. (Okay, we
can’t force you, but you know it’s for your own good.) Many HTML tools,
such as Aptana, Kompozer, and Dreamweaver, include built-in spell check-
ers, the first spell-check tools you should use. These HTML editors also know
how to ignore markup and just check your text.

Even if you use HTML tools only occasionally and hack out most of your
markup by hand, do a spell check before posting your documents to the
web. (For a handy illustration of why this step matters, keep a log of spelling
and grammatical errors you find during your web travels. Be sure to include
a note on how those gaffes reflect on the people who created the pages
involved. Get the message?)

 You can use your favorite word processor to spell check your pages. Before
you check them, add HTML and CSS markup to your custom dictionary, and
pretty soon the spell checker runs more smoothly — getting stuck only on
URLs and odd strings that occasionally occur in web documents.

If you prefer a different approach, try any of the many HTML-based spell-
checking services now available on the web. We like the free Lite Edition of
the CSE HTML Validator (www.freehtmlvalidator.com).

If the CSE HTML Validator Lite spell checker doesn’t float your boat, visit a
search engine and search for web page spell check. Doing so lets you produce
a list of spell-checking tools made for web pages.

One way or another, persist until you root out all typos and misspellings.
Your users may not thank you for your impeccable use of language, but if
they don’t trip over errors while exploring your work, they’ll think more
highly of your pages (and their creator), even if they don’t know why.

http://www.freehtmlvalidator.com

327 Chapter 22: Ten Ways to Kill Web Bugs Dead

 Don’t forget to put your eyeballs on the copy and thoroughly proofread the
text, too. No spell checker in the world will recognize “It’s time two go too the
store” as badly mangled text, although you should catch that right away.
Better yet, hire a professional editor or proofreader to help out during testing.

Lack of Live Links — a Lousy Legacy
New content and active connections to current, relevant resources are the
hallmarks of a well-tended website. You can’t achieve these goals without
regular (sometimes, constant) effort, so plan for ongoing activity. The rewards
can be huge — starting with a genuine sense of users’ excitement at what
new marvels and treasures reveal themselves on their next visit to your site.
Such anticipation is impossible to fake.

We performed an unscientific, random-sample test to double-check our own
suspicions; users told us that positive impressions of a particular site are
proportional to the number of working links they find there. The moral of this
survey: Always check your links. This is as true after you publish your pages
as it is before they’re made public. Nothing irritates users more than a link
that produces the dreaded 404 File Not Found error instead of the good stuff
they seek! Remember — link checks are as indispensable to page maintenance
as they are to testing.

 If you’re long on 21st-century street smarts, hire a robot to do this job for
you: They work long hours (no coffee breaks), don’t charge much, and check
every last link in your site (and beyond, if you let them). The best thing about
robots is that you schedule them to work at your pleasure: They always show
up on time, always do a good job, and never complain (though we haven’t
found one that brings homemade cookies or remembers birthdays). All you
do is search online for phrases like link checker. There are lots to choose
from! To begin with, you might use these:

 ✓ W3C Link Checker (http://validator.w3.org/checklink): It’s
easy to use and less work to set up, too.

 ✓ Online Link Checker (www.2bone.com/links/linkchecker.shtml):
This is another good option that is free.

 ✓ REL Link Checker Light (www.relsoftware.com/rlc/downloads):
This is a free version of REL Software’s commercial Web Link Validator,
and it’s good enough for smaller hobby, personal, or modest business sites.

 ✓ Xenu Link Sleuth (http://home.snafu.de/tilman/xenulink.
html): This is another free package you can try.

http://validator.w3.org/checklink
http://www.2bone.com/links/linkchecker.shtml
http://www.relsoftware.com/rlc/downloads
http://home.snafu.de/tilman/xenulink.html
http://home.snafu.de/tilman/xenulink.html

328 Part VI: The Part of Tens

 If a URL points to one page that simply points to another (a pointer), you
can’t leave that link alone. Sure, it works, but for how long? And how annoy-
ing! Therefore, if your link-checking expedition shows a pointer that merely
points to another pointer (yikes), do your users a favor by updating the URL
to point directly to the real location. You save users time, reduce Internet
traffic, and earn good cyberkarma.

When Old Links Must Linger
If you must leave a URL active after it becomes outdated to give your users
time to bookmark your new location, instruct browsers to jump straight from
the old page to the new by including the following HTML command inside the
old doc’s <head>:

<meta http-equiv=”refresh” content=”0”; url=”newurlhere”>

This nifty line of code tells a browser that it should refresh the page. The delay
before switching to the new page is specified by the value of the content
attribute, and the destination URL is determined by the value of the url attri-
bute. If you build such a page, also include a plain-vanilla link in its <body>
section, so users with older browsers can follow that link manually instead
of automatically. You might also want to add text that tells visitors to update
their bookmarks with the new URL. Getting there may not be half the fun, but
it’s the whole objective.

Make Your Content Mirror Your World
When it comes to content, the best way to keep things fresh is to keep up
with the world in which your site resides. When things change, disappear, or
pop up in that world, similar events should occur on your website. Because
something new is always happening, be sure to provide visitors a reason to
keep coming back. What’s more, if you can accurately and honestly reflect
(and reflect upon) what’s happening in your world of interest, you’ll grab
loyalty, respect, and continued patronage.

Look for Trouble in All the Right Places
There’s an ongoing need for quality control in any kind of public content, but
that need is particularly acute on the web, where the whole world can stop
by (and where success often follows the numbers of those who drop in and
return). You must check your work while you’re building the site and then
continue to check your work over time. This practice forces you to revisit
your material with new and shifting perspectives and to evaluate what’s new

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

329 Chapter 22: Ten Ways to Kill Web Bugs Dead

and what’s changed in the world around you. That’s why testing and check-
ing are never really over; they just come and go — preferably, on a regular
schedule!

You and a limited group of handpicked users should thoroughly test your site
before you share it with the rest of the world — and more than once. This
process is called beta testing, and it’s a bona fide, five-star must for a well-built
website, especially if it’s for business use. When the time comes to beta-test
your site, bring in as rowdy and ornery a crowd as you can find. If you have
picky customers (or colleagues who are pushy, opinionated, or argumenta-
tive), you might have found them a higher calling: Such people make ideal
beta testers — that is, if you can get them to cooperate.

 Don’t wait until the very last minute to test your website. Sometimes the
glitches found during the beta-test phase can take weeks to fix. Take heed:
Test early and test often; you’ll thank us in the end.

Beta testers will use your pages in ways you never imagined possible. They
interpret your content to mean things you never intended in a million years.
They drive you crazy and crawl all over your cherished beliefs and principles.
These colleagues also find gotchas, big and small, that you never knew existed.
They catch typos that spell checkers couldn’t. They tell you things you left
out and things that you should have omitted. They give you a fresh perspec-
tive on your web pages, and they help you see them from extreme points of
view. And they do all this before your users do! Trust us, that’s a blessing —
even if it’s in disguise.

 The results of all this suffering, believe it or not, are positive. Your pages will
be clearer, more direct, and more correct than they would have been had
you tested them by yourself. (If you don’t believe us, of course, you could try
skipping this step. And when real users start banging on your site, forgive us
if we don’t watch.)

Cover All the Bases with Peer Reviews
If you’re creating a simple home page or a collection of facts and figures about
your private obsession, this tip may not apply to you. Feel free to read it
anyway — it just might come in handy down the road.

If your pages express views and content that represent an organization,
chances are about 100 percent that you should run your pages through
peer-and-management review before publishing them to the world. In fact,
we recommend that you build reviews into each step along the way as you
build your site — starting by getting knowledgeable feedback on such basic
aspects as the overall design, writing copy for each page, and the final assembly
of your pages into a functioning site. These reviews help you avoid potential
stumbling blocks, such as unintentional off-color humor or unintended political

330 Part VI: The Part of Tens

statements. If you have any doubts about copyright matters, references, logo
usage, or other important details, bring the legal department in. (If you don’t
have one, you may want to consider a little consulting help for this purpose.
Paying to avoid legal trouble beforehand is always cheaper than paying to get
out of such trouble after the fact.)

 Building a sign-off process into reviews so you can prove that responsible
parties reviewed and approved your materials is a good idea. We hope you
don’t have to be that formal about publishing your web pages, but it’s far, far
better to be safe than sorry. (This process might best be called covering your
bases, or perhaps it’s really covering something else? You decide.)

Use the Best Tools of the Testing Trade
When you grind through your completed web pages, checking your links and
your HTML, remember that automated help is available. If you visit the W3C
validator at http://validator.w3.org, you’ll be well on your way to find-
ing computerized assistance to make your HTML pure as air, clean as the
driven snow, and standards-compliant as, ah, really well-written HTML. (Do we
know how to mix a metaphor, or what?)

Likewise, using link checkers covered earlier in the chapter is smart; run
them regularly to check links on your pages. These faithful servants tell you if
something isn’t current, and they tell you where to find links that need fixing.

Schedule Site Reviews
Every time you change or update your site, you should test its functionality,
run a spell check, perform a beta test, and otherwise jump through important
hoops to put your best foot forward online. But sometimes you’ll make just
a small change — a new phone number or address, a single product listing, a
change of name or title — and you won’t go through the whole formal testing
process.

That’s perfectly understandable — but one thing inevitably leads to another,
and so on. Plus, if you solicit feedback, chances are good that you’ll learn
something that points out a problem you’d never noticed or considered
before. Schedule periodic site reviews, even if you’ve made no big changes
or updates since the last review. Information grows stale, things change, and
tiny errors have a way of creeping in as one small change succeeds another.

If there’s any code on your site (JavaScript, Active Server Pages, Java Server
Pages, or whatever), you’ll want to give it a thorough workout and inspection,
too. A pool-shooting buddy of ours who works in quality control for a major

http://validator.w3.org

331 Chapter 22: Ten Ways to Kill Web Bugs Dead

technology company was recently assigned to review a website built to provide
real-time security and error information to developers who use its products.
He told us that it was obvious the developers didn’t try everything, in every
possible combination, at the same time. When he did so, he broke things they
didn’t know could be broken. Better to do this yourself (or hire somebody to do
it for you) and fix it in advance rather than pay the price of public humiliation.

Just as you take your car in for an oil change or replace your air-conditioning
filter, plan to check your website regularly. Most big organizations we talk to
do this every three months or so; some do it more often. Although you might
think you have no bugs to catch, errors to fix, or outdated information to
refresh, you’ll often be surprised by what a review turns up. Make this part of
your routine, and your surprises will be less painful — and require less work
to remedy!

Foster User Feedback
Who better to tell you what works and what doesn’t than those who use (and
hopefully, depend on) your site? Who better to say what’s not needed and
what’s missing? But if you want user feedback to foster site growth and evo-
lution, you must not only ask for it, you have to encourage it to flow freely
and honestly in your direction. Then you need to act on that feedback to
keep those wellsprings working.

Even after you publish your site, testing never ends. (Are you having flash-
backs to high school or college yet? We sure are.) You may not think of user
feedback as a form (or consequence) of testing, but it represents the best
reality check your web pages are ever likely to get, which is why doing every-
thing you can — including offering prizes or other tangibles — to get users to
fill out HTML forms on your website is a good idea.

This reality check is also why reading all feedback you get is a must. Go
out and solicit as much feedback as you can handle. Carefully consider all
feedback that you read and implement the ideas that can improve your web
offerings. Oh, and it’s a really good idea to respond to feedback with personal
e-mail to make sure your users know you’re reading what they’re saying. If
you don’t have time to do that, make some.

 The most finicky and picky of users can be an incredible asset: Who better to
pick over your newest pages and to point out the small, subtle flaws they so
revel in finding? Your users can develop a real stake in boosting your site’s
success, too. Working with users gets them more involved and helps guide
the content of your web pages. Who could ask for more? Put it this way: You
may yet find out, and it could be very helpful.

332 Part VI: The Part of Tens

If You Give to Them, They’ll Give to You!
Sometimes, simply asking for feedback or providing surveys for users to fill
out doesn’t produce the results you want — either in quality or in volume.
Remember the days when you’d occasionally get a dollar bill in the mail to
encourage you to fill out a form? It’s hard to deliver cold, hard cash via the
Internet, but a little creativity on your part should make it easy for you to
offer your users something of value in exchange for their time and input. It
could be an extra month on a subscription, discounts on products or ser-
vices, or some kind of freebie by mail. (Maybe you can finally unload those
stuffed Gila monsters you bought for that trade show last year.)

 There’s another way you can give back to your users that might not cost
you too much. An offer to send participants the results of your survey, or to
otherwise share what you learn, may be all the incentive participants need to
take the time to give you feedback or answer questions. Just remember that
you’re asking your users to give of their time and energy, so it’s only polite to
offer something in return.

23
Ten Cool HTML Tools and

Technologies
In This Chapter
▶ Identifying your HTML toolbox needs
▶ Discovering a favorite HTML editor
▶ Adding a graphics application to your toolbox
▶ Authoring systems for the web
▶ Understanding essential utilities for web publishing

H
TML documents are made of plain text, which means you can build one
using a no-frills text editor such as Notepad (PC) or TextEdit (Mac).

Once upon a time, that was all web authors used. But as the web has evolved,
so have the tools used to create web pages. Nowadays, web authoring is
complex enough that a simple text editor doesn’t cut it unless

 ✓ You don’t care (much) about graphics and HTML validation.

 ✓ You’re on a quick in-and-out mission to make small changes to an existing
HTML document.

After you gain more experience with HTML, you’ll build your own HTML tool-
box. This chapter is designed to help you stock that toolbox. In fact, some of
these tools may already be on your system, quietly waiting to help you create
amazing web pages.

 When you go shopping for items for your HTML toolbox, look for good buys.
Students and educators often qualify for big discounts on major-brand soft-
ware — if you’re in that category, use a search engine to look for “educational
software discount.” But careful shopping can save anybody money on just about
any software purchase. Try comparison-shopping at sites such as CNET Shopper
(http://shopper.cnet.com) or PC Magazine (www.pcmag.com/shop).

http://shopper.cnet.com
http://www.pcmag.com/shop

334 Part VI: The Part of Tens

WYSIWYG HTML Editors
WYSIWYG (what you see is what you get; pronounced wiz-eee-wig) editors do
everything but your laundry. Lots of WYSIWYG editors offer code views the
way helper editors do (see the following section), plus a lot more.

A WYSIWYG editor creates markup for you while you create and lay out
web page content on your monitor, often by dragging and dropping visual
elements or working through GUI menus and options. As you work, the
WYSIWYG editor shields your eyes from bare markup. These tools are like
word processors or page-layout programs; they do lots of work for you.

 WYSIWYG editors make your work easier and save hours of endless coding —
you have a life, right? — but you should use WYSIWYG editors only during
the design stage. For example, you can use a WYSIWYG editor to create a
complex table in under a minute during initial design work. Later, when the
site is live, you would then use an HTML helper editor to refine and tweak
your HTML markup directly.

Dreamweaver
Dreamweaver is among the best of WYSIWYG web development tools for
Mac and PC systems. Many (if not most) web developers use Dreamweaver.
Dreamweaver is an all-in-one product that supports

 ✓ Website creation

 ✓ Maintenance

 ✓ Content management

The current version, Adobe Dreamweaver CC, belongs to a suite of products —
Adobe Creative Cloud, usually abbreviated CC — that work together to pro-
vide a full spectrum of Internet solutions. Adobe CC comes in a big bundle
that includes such components as InDesign, Photoshop, Illustrator, Acrobat
Professional, Dreamweaver, After Effects, Premiere Pro, Soundbooth,
Encore, and more. For $50 a month, you can buy the Adobe Creative Cloud
Collection and get all these components. For $20 a month, you can get just
Dreamweaver CC without the extras.

Dreamweaver features an easy-to-follow GUI so you can style web pages
using CSS without even knowing what a style rule is. Many of the benefits
of Dreamweaver stem from its sleek user interface and its respect for clean
HTML. You can find more information on Dreamweaver by visiting the Adobe
website at www.adobe.com/products/dreamweaver.

http://www.adobe.com/products/dreamweaver

335 Chapter 23: Ten Cool HTML Tools and Technologies

Other WYSIWYG editors
The following editors have many fans, and both produce great web pages:

 ✓ KompoZer is a web page editor that offers text and WYSIWYG editors,
along with color coding, automatic code completion, HTML validation,
nice site management chops, and more good stuff. Plus, it’s free. Check
it out at http://kompozer.net.

 ✓ Microsoft Expression Web 4 is a Windows-based web package that offers
a code editor (text) and a visual editor (WYSIWYG), along with scripting
tools, great graphics support, search engine optimization (SEO) tools,
and more. It retails for $150 or so, but if you shop around, you can find
it for under $100; there’s a free version, too. Check it out at http://
msdn.microsoft.com/en-us/expression/cc197140.aspx.

This is just a small sample. For even more WYSIWYG options, try searching
for “WYSIWYG HTML editor” on the web.

Helper HTML Editors
An HTML helper works the way it sounds. It helps you create HTML, but it
doesn’t do all the markup work for you. HTML is displayed raw — tags and
all. You can reach right into the code and tweak it (provided you have this
book). This is often called a code view or markup view.

Good helpers save time and lighten your load. Functions like these make
HTML development easier and more fun:

 ✓ Tags are a different color than content.

 ✓ The spell checker knows tags aren’t misspelled words.

 Use a helper editor when you’re building complex tables or multilevel lists.
The more complex your markup, the more help a helper editor can provide!

Aptana Studio
Aptana Studio is a full-blown development tool that supports JavaScript,
Personal Home Page (PHP), CSS, and HTML. Aptana also provides a very
full-featured HTML editor that’s well suited for beginners and professionals.
Aptana requires some HTML knowledge to use but assists you at every step.

We like the Aptana interface and its many facilities. You can

 ✓ Automatically sync directories with your FTP server.

 ✓ Incorporate all kinds of cool plug-ins. (Aptana is based on Eclipse, a well-
known and widely used integrated development environment, or IDE.)

http://kompozer.net
http://msdn.microsoft.com/en-us/expression/cc197140.aspx
http://msdn.microsoft.com/en-us/expression/cc197140.aspx

336 Part VI: The Part of Tens

Aptana makes it easy to work with other languages, such as Ruby on
Rails, jQuery, Python, and more, using widely available plug-ins.

 ✓ Create, edit, and validate CSS, JavaScript, HTML, and PHP.

 ✓ Use automatic code completion and text-coloring capabilities to sepa-
rate HTML, CSS, JavaScript, and so forth.

 ✓ Take advantage of a huge collection of documentation and tutorials and
active community support and interaction.

 Aptana is an open source project, which means it’s free. You can download
Aptana from www.aptana.com. If you’re not inclined to tackle a do-it-yourself
type of web development environment, check out our other contenders in
the following section.

Other helper editors
You can find lots of great HTML helper editors. Here’s our slate of alternatives:

 ✓ Komodo Edit is a classy, highly functional software package that gets high
ratings from everyday users and experts. It’s not WYSIWIG, but it gets the
job done. Komodo includes lots of great features and functions, including
built-in validators for CSS, HTML, and accessibility features; color coding
and tag completion for HTML and XML; multi-file search and replace;
and support for web-related languages, such as Perl, Python, Tcl, PHP,
JavaScript; and much more.

 Komodo Edit is a free, scaled-down version of the $295 Komodo IDE
product from ActiveState.com. Unless you also develop software,
Komodo Edit should meet your needs well and completely.

 Download the free version from www.activestate.com/komodo-
edit/downloads. It supports Windows, Mac OS X, and Linux.

 ✓ HTML-Kit is a compact Windows tool with

 • Menu-driven support for both HTML and Cascading Style Sheets
(CSS) markup

 • A nice preview window for a browser’s-eye view of your markup

 If you want to download HTML-Kit, go to www.chami.com/html-kit.
You can download a free version or register your copy for $65 and
obtain a bunch of extra tools, including a spiffy table designer, a log
analyzer, and a nifty graphical HTML/XML editor that lets you view and
navigate all those documents through their syntactical structure.

 ✓ Open Source Notepad++ offers useful and functional support for HTML
and CSS, among lots of other languages and markup. Find it at http://
notepad-plus-plus.org.

http://www.aptana.com
http://www.activestate.com/komodo-edit/downloads
http://www.activestate.com/komodo-edit/downloads
http://www.chami.com/html-kit
http://notepad-plus-plus.org
http://notepad-plus-plus.org

337 Chapter 23: Ten Cool HTML Tools and Technologies

Inexpensive Graphics Editors
Graphics applications are beasts. They can do marvelous things, but figuring
out how to use them can be overwhelming at first. Even scaled-down toolsets
(such as Photoshop Elements) take time and genuine effort to understand
and use well.

 If you aren’t artistically inclined, consider paying someone else to do your
graphics work. Graphics applications can be pricey and complicated. But
you should have some kind of high-function (if not high-end) graphics pro-
gram to tweak images should you need to. Our highest rating goes to Adobe
Photoshop, but considering its cost and the average newbie HTML hacker’s
budget, we discuss a lower-cost alternative first.

At around $120 (with discounts as low as $60), Adobe Photoshop Elements is
an affordable PC- and Mac-based starter version of the full-blown Photoshop
(the gold standard for graphics). You can do almost anything with Photoshop
Elements you might need for beginner- or intermediate-level graphics editing.

This product is for you if you want to add images to your site, but you don’t
want to work with graphics all the time or use fancy special effects. To find
out more about Photoshop Elements, visit www.adobe.com/products/
photoshop-elements.html.

 If you’re really on a tight budget, check out these graphic editors:

 ✓ Paint Shop Pro Photo X5: This PC-only graphics editor is a good buy
because it does nearly everything that Photoshop does and costs less
than Photoshop Elements. You need to shop around to find the lowest
price, though. (Corel charges $80 or $90 for this package.)

 ✓ GIMP: If you’re really on a shoestring budget, check out the free GNU Image
Manipulation Program, better known as GIMP. It’s an open source pack-
age whose functionality rivals that of Photoshop without the expensive
price tag. GIMP supports a user-customizable interface, offers all kinds
of sophisticated image and photo enhancements, and includes digital
retouching, broad device support, and tons of graphics file formats. It
works with Linux, Windows, Mac OS X, Sun OpenSolaris, and the FreeBSD
operating systems. Check it out at www.gimp.org and then download it!

Professional Graphics Editors
If you work with photographs or other high-resolution, high-quality images or
artwork, you may need one of these web graphics tools.

http://www.adobe.com/products/photoshop-elements.html
http://www.adobe.com/products/photoshop-elements.html
http://www.gimp.org

338 Part VI: The Part of Tens

Adobe Photoshop
If it weren’t so darned expensive, we’d grant top honors to Photoshop CC.
Alas, $20 a month is too high for many novices’ budgets. Wondering whether
to upgrade from Photoshop Elements? Adobe mentions these capabilities
among its top reasons to upgrade:

 ✓ Improved file browser: Shows and tells you more about more kinds of
graphics files and gives you more powerful search tools.

 ✓ Shadow/Highlight correction: Powerful built-in tools add or manipulate
shadows and highlights in images.

 ✓ More powerful color controls: Color palettes and color-matching tools
with detailed controls that Elements lacks.

 ✓ Text on a path: Full-blown Photoshop lets you define any kind of path
graphically and then instructs your text to follow that path. This capabil-
ity supports fancy layouts that Elements can’t match.

If you need to use sophisticated visual effects, edits, or tweaks on high-resolution
photorealistic images, full-blown Photoshop is your best bet. For basic websites,
however, Photoshop is overkill — it can do just about anything to photos or
images of all kinds, which of course is why it’s the most popular professional
graphics editing tool.

Like its little brother Photoshop Elements, full-blown Photoshop works
with both Mac and PC operating systems. The current version is Adobe
Photoshop CC. It’s included in all of the Adobe product suites.

 Photoshop CC add-ons and plug-ins provide specialized functions — such
as complex textures or special graphics effects. This extensibility is nice
because graphics professionals who need such capabilities can buy them
(most cost $100 and up, with $300 being a pretty typical price) and add them
without muss or fuss. But those who don’t need them don’t have to pay extra
for the base-level software.

Adobe Fireworks
Fireworks is a graphics program designed specifically for web use, so it offers
lots of nice features and functions for that purpose. The current version is
Adobe Fireworks CC. Fireworks has one killer feature — it lets you save por-
table network graphics (PNG) files with layers defined that work more or less
the same way that Photoshop Document (PSD) files do.

Fireworks is tightly integrated with other Adobe products and therefore is
of potentially great interest if you’re using (or considering) Dreamweaver.
Simply put, this combination of Adobe products makes it very easy to add
graphical spice to web pages.

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

339 Chapter 23: Ten Cool HTML Tools and Technologies

For more information about Fireworks and related Adobe products, check
out www.adobe.com/products/fireworks.

W3C Link Checker
A broken link on your site can be embarrassing. To spare your users the
dreaded 404 Object Not Found error message, use a link checker to make
sure your links are correctly formatted before and after you publish on the
web. Many HTML editors and web servers include built-in local link checkers,
and they may even scour the web to check external links.

 Other websites may change or disappear after you publish your pages.
Regularly check your links to make sure they still work. The worst broken
link is one that points to a page on your own site, which is no longer there.

The W3C link-checking tool is free, easy to use, and works surprisingly
quickly (thanks to HP donating the servers to support the W3C). Here’s how
it works: You drop a URL in for a document you want to check, and the tool
comes back to you with information about the links it finds on that page. It
even does recursive checking if you click the Check Linked Documents check
box on the submission page. Try this champion link checker for yourself at
http://validator.w3.org/checklink.

You can also download a version of this tool that you can run on your own
machine from http://validator.w3.org/docs/checklink.html. You
have a couple of download options:

 ✓ Grab a compiled version for your computer and operating system and
run it as-is.

 ✓ Grab the source code and tweak it for your needs and situation.

Other Link Checkers
The following programs are pretty good link checkers. They just require a
little elbow grease to learn and use. Better yet, their price is right: free!

 ✓ LinkScan/QuickCheck: LinkScan offers a real-time, single-page link
check and a free evaluation software package that can handle sites with
up to 500,000 documents. It creates an annotated, color-coded listing of
each HTML or XHTML document it parses. This software makes it easy
to find broken or suspect links, missing image files, and so forth.

 Check it out at www.elsop.com/quick.

http://www.adobe.com/products/fireworks
http://validator.w3.org/checklink
http://validator.w3.org/docs/checklink.html
http://www.elsop.com/quick

340 Part VI: The Part of Tens

 ✓ LinkChecker: LinkChecker offers free, complex, and sophisticated link-
checking services, including color-coded output, support for lots of pro-
tocols and services, all kinds of URL filters and link-checking controls,
cookie checks, HTML and CSS syntax checks, and lots more.

 To find out more, take a look at http://wummel.github.io/link
checker/.

HTML Validators
Validation compares a document to a set of document rules — a Document Type
Definition (DTD), an XML Schema, or whatever other rules explicitly describe
its syntax and structure. Simply put, validation checks the actual markup and
content against the rules that govern it and flags any deviations it finds.

Typically, a document author follows this process:

 1. Create an HTML document in an HTML editor.

 For example, imagine this step results in a file called mypage.htm.

 2. Submit mypage.htm to an HTML or XHTML validation site for inspec-
tion and validation.

 If any problems or syntax errors are detected, the validator reports such
errors in an annotated version of the original HTML document.

 3. If the validator reports errors, the author corrects those errors and
resubmits the document for validation.

 Sometimes, breaking HTML rules is the only way for your page to look
right in older web browsers. But document rules exist for a reason:
Nonstandard or incorrect HTML markup often produces odd or unpre-
dictable results.

Browsers usually forgive markup errors. Most browsers identify HTML pages
without an html element. But someday, markup languages may be so com-
plex and precise that browsers won’t be able to guess whether you’re pub-
lishing in HTML or another markup language. Get the markup right from the
beginning and save yourself a bunch of trouble later.

 HTML validation is built into many HTML editors, including Dreamweaver
and all the other WYSIWIG and HTML Helper tools we mention at the outset
of this chapter. You can find validators at

 ✓ W3C validator: The W3C has a free, web-based validation system avail-
able at http://validator.w3.org. It provides copious output about
what errors or inconsistencies it finds in your documents until you fix
them all. It also includes an option for viewing annotated source code so
you can see exactly where it’s finding items it doesn’t like. This is a great

http://wummel.github.io/linkchecker/
http://wummel.github.io/linkchecker/
http://validator.w3.org

341 Chapter 23: Ten Cool HTML Tools and Technologies

tool, and it is well worth using. This tool is a vital element in building a
solid, well-crafted website of any kind, and it helps you fix errors and
address browser issues with panache.

 ✓ Built-in validators: Many tools in this chapter offer HTML validation.
These include HTML-Kit, Aptana Studio, Dreamweaver, and Expression
Web. Use ’em if you got ’em; get ’em if you don’t!

FTP Clients
After you create your website on your computer, you must share it with the
world. So you need a tool to transfer your web pages to your web server.
One convenient way to accomplish this task is through FTP (File Transfer
Protocol). Many HTML editors include FTP support, but you can also use a
separate FTP client to upload and download files to your web server. FTP has
been around since the early days of the Internet (way before the web arrived).

After you select a server host and you know how to access a web server
(your service provider should supply you with this information), you must
upload your pages to that server. That means you need FTP or some reason-
able facsimile thereof.

All FTP programs are similar and easy to operate. We recommend these:

 ✓ FileZilla is a fast, capable, free, open source FTP program with an
intuitive drag-and-drop user interface. It’s available online at http://
filezilla-project.org.

 ✓ Cyberduck (open source for the Mac) is available at http://cyber
duck.ch.

 ✓ Cute FTP Lite (shareware, costs $25, but offers great functionality and
ease of use) is available at www.cuteftp.com.

 ✓ Fetch for the Mac is located at http://fetchsoftworks.com.

Miscellaneous Helpful Web Tools
Miscellaneous tools can help you manage and control your website. Here,
we present you with a collection of items that you can try out to see whether
they deliver functionality that justifies downloading, learning, and using them
(we think they’re nifty, but, ultimately, that’s up to you to decide):

 ✓ HTML-Kit supports plug-ins to add functions, such as link checks and
spell checks. Most of these plug-ins are free or inexpensive. Check out
www.chami.com/html-kit/plugins.

http://filezilla-project.org
http://filezilla-project.org
http://cyberduck.ch
http://cyberduck.ch
http://www.cuteftp.com
http://fetchsoftworks.com
http://www.chami.com/html-kit/plugins

342 Part VI: The Part of Tens

 ✓ Easy HTML Construction Kit offers a collection of useful conversion,
reformatting, and template management tools for a paltry $25 at www.
hermetic.ch/html.htm.

 ✓ Firebug is a Firefox plug-in you can use to help you debug programs and
web pages. It lets you click sections of a page and then examine their
individual properties and behaviors. Find it at http://getfirebug.com.

 ✓ Browser Sandbox comes from spoon.net; it provides a tool that lets you
run multiple versions of IE, Firefox, Safari, Chrome, and Opera inside the
following browsers: IE (6, 7, 8), Firefox (2, 3, 3.5), Safari (3, 4), Chrome (all
versions), and Opera (9, 10). Browse to http://spoon.net/browsers.

 ✓ Dropbox makes it easy to synchronize files and directories across mul-
tiple computers anywhere on the Internet. It supports Windows, Mac,
Linux, and various smartphone operating systems. Look it up at www.
dropbox.com.

 ✓ Google Analytics provides a plethora of statistics about visitors to your
website, including user origin, operating system (OS), web browser, and
oodles more. Want to understand your audience? Get Google Analytics
free at www.google.com/analytics.

 ✓ Crazy Egg and Clickdensity offer heat maps that illustrate exactly how
people are using (and moving through) your website. No matter what or
how you think your users might be using your site, these tools tell you
what’s really happening. Find them at www.crazyegg.com and www.
clickdensity.com.

 ✓ iPhone Tester and iPad Peek provide helpful tools to see how your
website looks on an iPhone and iPad without having to buy or otherwise
obtain one. Check them out at www.iphonetester.com and www.
ipadpeek.com.

http://www.hermetic.ch/html.htm
http://www.hermetic.ch/html.htm
http://getfirebug.com
http://spoon.net/browsers
http://www.dropbox.com
http://www.dropbox.com
http://www.google.com/analytics
http://www.crazyegg.com
http://www.clickdensity.com
http://www.clickdensity.com
http://www.iphonetester.com
http://www.ipadpeek.com
http://www.ipadpeek.com

Part VII
Appendixes

Visit www.dummies.com for more great For Dummies content online. Also, there’s a
website just for this book online at www.dummieshtml.com.

http://www.dummies.com/
http://www.dummieshtml.com

In this part . . .
 ✓ A listing of our Twitter supporters
 ✓ A quick tour of the Dummies HTML website

Appendix A
Twitterati

T
hanks to all our Twitter followers: filipbrocke, Deidreggtc, InstituteOfFun,
TheFatPanther, Georgettatzer, BeccaD4wn, TheRealJ_Hen, kriszankumar,

JCMorgan3, TheBimber, SeatingSupply, JBColeLtd, Stereo_89, cxrana,
brandeerenee, MICHELEANNICCH3, marksuth, BozzPulsa, 1ashishsharma,
rgregorylee, amalausline, SwaggerByHUGS, norsk_kriger, CraigFairlie,
jhbucf94, rakbar, Yathu7, RankBetter, apuraelpasomula, AshleyJStokes,
krkarki1, m_belarrem, realft1, SStg950, customicons, _hutch__, uxidea,
wxmanmac, LosDragonflyos, hereiamraja, S_Beya, ed2go, yshakh, tjtigers18,
SALTandMARROW, louie_fahd, helloaisha, MichaelGpics, JonahLupton,
insanen, spoutFIRE, lagantzufgy8, danielclayton, NikkiGuest, CarnegieKaty,
NC10WebTeam, netgenie4, J2L2C, componentmedia, arfanmahmood, Acrovin,
Amin_Rafiq, codexstudios_, jinovince, ike185, munirlodin, DesignDisease,
Avi_bisram, ningraj69, CM_Masen, EuropeLinkLtd, PaulDavidJones, jmoralesamo,
ReyFirlit, ogvweb, k2Designing, Dom_TC, elijah2fernande, lenabucatariu,
WebbyTreats, ianpanrita, jezmow, ace_cinta, Jmdesignpt, woodenecho,
JohanThePro, Knipuit, govault, conneqtive, onvert, rezaghassemipro,
HuchotaRangi, jjangel8, Idanah, MarvinRosenthal, chrisminnick, 42function,
MIST_images, AMcGlamry, atstudiosuk, CBGCMUM, publicSusmit,
JimAtkWebDesign, solstudioim, caproductdesign, pojekLLC, Geraldzzki,
Mario70me, Afnadesign, harimur, Bluegala, karteldk, UImanion, bettingjobs_
kh, kobe_ru, epic_ouch, DesignDigger, bluekdev, Yuko_Kawashima, kingof
bitching, vremarketing, itlac, olallis, sara_samy0123, 1realitycreator,
MommyCita72, mhctoledo, alltechdesigns, ekrem_koc, RHAWK78, saorabhkr,
designtampa, quintenheyninck, goldsource, dragongala, BoomThemes,
HomeLeads1, ArizonaCascade, CarrauScott, cLuTcHSoLuTiOnZ, LongHornDeliver,
wpzoom, milkywayNo7, Bloggerine, tuberide_70, DeebiesOnline, KlygoWebDesign,
akwitter, sriaditya2, Teapot_Nick, ttabito, pb127, Metrodesk, PRoberts633,
ignacionimo, FurkanDinler, ProfessorOge, geekocitycomp, ZombieCafe,
aCcO_bOLeRo, landlbrowne, TEENYMEDUSA, Goognostic, webmynesystem,
DANNYCHARRON, dom_chester, FreeWebsiteForU, katja_bak, SEO_
Expertindia, softepi, StiMis075, agwebdeveloper, FreelanceMingle, Author,
konyakov, RFerrero, rissyroos, infinitydesignd, furor_s, moongoon, isa_
corolla, NSD_HomeMaker, Fafimeku, ealaycock, ameerrokhri, dianagraphics,
nikkifoxxdesign, sxsw11tweets1, asaraach, ele_cee, likerye, grgretz, janblogt,
maria_jahan11, bizvertsgraphic, orangepleasure, LookAndFeelArt, llanero6,
FAME900, CandidKilsborne, DealsFromNYC, webpappa, effective_web,

346 Part VII: Appendixes

zavoinu, gudanglontar, molokodesigns, RealDarrenpb, E2_Solutions,
RynoTheGreat, rdownsdesign, Jmdtechnologies, Frumatictr, aggregatedesign,
Dezmembrariro, Sozohosting, studentlife1, LouveniaShearon, hlinke, _loulaj,
CatLadyGeek, cochdraig, Anetta_K, meghanDD7, shailaja10, cstoughton9,
ScrantonWebDev, Distimpareason, IndianHinduName, dongalbraith,
elenaandreeva, marcelfelixcom, BlandBrands, cocojaylee, TheVaasaCentaur,
chieund37, looveeru, reTWEET_you, TheSchool, doomtop, Uxrevisions,
shetech, invioeguru, JumpBiest, kashmircreative, jobaerulkaes, pilotjobupdate,
flashnewsonline, mascotads, LuckychairNews, nizhaloviyam, stephenho1mes,
pixelsharing, BeautyBleak, BoricuaSpliff, yuji_ko_info, kareemoff,
MiaGemsJewelry, dericious, PolarCentric, webwales, wendas_tweets, Certo,
hoylandweb, imaria, Mlpup, Ricksta82, saub09, viktor_kkk, jkatke, noufanweb,
Cleverfidel, SMHMAG, mstlaurent, karezzy, wmarshid, deadmeta4, Nimadera,
kburton23, robertosolanom, nationalnet, rashanoureldin, anthonycmain,
ivokhin, anthonyroose, condomiami, apsace, KennthPang, CarHeDa,
LorenzoVl, paulcredmond, theinklog, webvana, web_mint, w3Servcies,
DomDanson, marcvangijn, jmanzitti, RichardConroy, danaeaguilar, Lamc82,
phlipper, creative_cakery, Robert_Cummings, janinegrand, swkolupailo,
scott2211, tweetHOOPLA, freundedwerbung, jeclark, susannahpryal,
alexconner, shaun_capehart, cehwitham, mslaurenlou, PoorKidOnCrack, favz,
bryandowning, danieladr, berit_jensen, Ingenious_mind, brianarn, urbandave,
steddie1, wedeacon, Ade_101, RedHottopDesign, romymk, ronaldberner, eddo32,
djbolton, lookwebdesign, andersandersson, Pumpki, taur_in, melissapillon,
pgaboury, just_tuts, afreehour, stefan_persson, hamptonsmedia, leahjs_,
phatchopolis, timferrell, prosurf_pl, adietz, RorschachDesign, pyhrus,
gorazdmurnik, kennydelaney, POwall, sambang, LawrenceTaur, kevinpfab, mrkiji,
heitortsergent, hoshman6000, MisaAmiya, jaymanpandya, mannersandpoise,
myCodeHeroes, mikelitchfield, adorephoto, andymeek, Mcroyle, SixFourWeb,
klawrenc, dhulk, nixonmedia, ColorStormCo, 360construct, Alicia_Staples,
jonathanbaltz, KimKritzinger, kevinoh, mmarnall, _norrsken_, Brain_Pulse,
KSSpengler, big_matt_b, bregtcolpaert, alistaircalder, jeffkan, danfauver, thek1w1,
pacotix, Jay_Searra, mrstolt, Xand49, neur0tica, thaiszorghi, woodleader,
gibbon77, Sophie_Will_, thezenmonkey, nicolasrauber, domlussier, tomhermans,
sg4380, atomrow, MattTyas, disseny_web, Atzimba, jmz360, george_elias,
schofeld, jchawner, krukinternet, suzannehullah, jaytem, kylebellamy,
MatthewCooney, geoffcampbell1, crumenos, perfectc_nl, reiot, buraksarica,
toejklemme, ChristinaBruun, arthurbrownjr, simplybcreative, cab3llc,
SayHidk, neilnand, the18, urosgruber, Elisje, marvos, WVMagicDesign,
ValentinoVelez, Blueys, aariste, JJ_Web, Moja_Baba, mikeheaver, MichaelHermus,
dawny_cupcake, Shane_Howell, virtualizacia, bbisser, HappinessBook,
galovesongs, iamrewind, emilyrumbelow, attawayUCM, alexswerdlow, ShunaP,
eduardofaria, delphikit, vi_rox, SkyZee, adhipg, christodhunter, designpatrol,
nickjvm, sillybear, persocon, JustinRhodes, IcarusWingz, axing, ns_museum,
aminabbasian, stephenwalcher, celinemontheard, marklkelly, lollyjayne9,
peachleen, aleksandar_k, OrionCards, prokka, phelo, Fubart, fievelwill,
chillman2, sonicdivx, Didifournier, zimmic, thejaycarlson, blindacre,
JamesEggers, marzhal, CynthiaSavard, mantebridts, coldwellbanker, metslifer,
jkintscher, MathRivest, usingJquery, kaybrex, macx, Jaeesen, PatrykNr2010,
MelGibbNZ, omersilent, SUEL_Design, shawnhud, apaatsio, twit_asim,

347 Appendix A: Twitterati

piuleony_, crashmaster007, Tara_Nielsen_, magalocr, viktoralarsson, Grayski,
sealpond_se, amberweinberg, iamrobertv, t_films, donroyco, creativeye,
JimmyJamesDc, GrayJunior, srikanthpanaman, forensick, imrelentless,
spaceghost65, StevenHook, seanodotcom, andreaDuquette, vivek2562,
marcogallen, Dharmangp, twelveofour, mitsubstanz, inxilpro, KristerKari,
JeroenEijkhof, chris_gg, torrentroot, darkforce_er, goncaloborrega, GillBoron,
hameedraha, blaneywebdesign, atatz, siderakis, jabridesign, stewartritchie,
reggielamson, albertlo, eirikhm, AhtiK, vherrin, chrisajohnso, metalchic,
MMudassir, neilthurlwell, amyberger, TechAsNeeded, naamyo, edmeehan,
alphahost, stefstivala, mmahgoub, juneja_23ravi, InDieta, javierland, grfxdznr,
dswtech, iAndroid_SA, actionmoviefrea, OgleMedia, smashingmag, ayoungh,
gustotech, sansansihoke, infocuswebsolu, normalnorman, EdGraphicsLLC,
anaura, justinmcgarry, worpeddesign, jnelson74, MrJonMay, BKB_mschroeder,
Vtomatis, almakov, msux, 1111theatre, timjgleeson, snow_burger, ryan_yates,
moshner, mattrogowski, iconfinder, whitbreaddesign, leanderdirkse, MJKilgore,
shahrilabdullah, coaststudios, sunilsk, AaronKalair, garethspictures, abulafio,
dalesimpson, chucke, moo_marketing, bretbouchard, brendadhk, juarezpaf,
LisaWeik, davidvivero, Brer, Yuibox, Kathryn_Wells, FrankS, tudorizer,
tumbledesign, ibrahimali, JeffAwesome, ronwikso, systematiqa, BrianBBrian,
japellerano, robbygoodwin, jamescchristie, piksal, josephj60, riscaa,
anthonypants, chucken, mgjesdal, Fontlicious, spyn, cameronbaney, 10For2,
mike_o_sullivan, chrislevy, javaph, brad_slavin, Larsenal, davidnilsson, scans007,
maguay, andrewinebarger, mixrecords, jessamazing, AddictToSystems,
iThorning, mcgrafics, anderschdk, JaswinderVirdee, jayjdk, Velehto, jbayone,
ot, charlesboyung, SonicInteractiv, tyson, ImpressiveWebs, hagel, eckermanj,
petechappell, micahbrich, doodlemoonch, maartenmachiels, yngveh,
userintuitive, 3ch0, web2000, jhontr, brianmark, afxjzs, jeffersonnoble,
gmcbride, tombrokeoff, JimFl, bloodycheese, katevanderploeg, CrapSandviche,
Buffalo_Gruden, The_Slade, TexasMonique, cinderstudios, poneal, thereal
geddylee, 38thirty, andrewingram, yummygum, ljohndotnet, kworry, Danger_
Mouse, UncleBumpy, rafaeluzzi, kielabokkie, johncloys, hunefalk, illustrationdan,
rmanzanet, cmaddison, fabbrikk, NateReid, felipus, Maximegalon, edhassinger,
SelAromDotNet, DouglasRogers, robrubinoff, gregrwilkinson, adambrehm,
AnthonyLatona, ciberch, cs188, ekochman, alec_, IoNPulse, davidmcooper,
FWatervoort, AlwaysTyred

348 Part VII: Appendixes

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

Appendix B
About the Dummies HTML Website

T
he Dummies HTML website (www.dummieshtml.com) contains every
example from this book, as well as blog posts from Ed and Chris, links to

great HTML and CSS resources, and the occasional correction to the occa-
sional error that may have slipped through the cracks during our extensive
editing and fact-checking process.

The site itself can also serve as an example of good web design and construc-
tion practices. In this appendix, we cover some of the thinking, tools, and
techniques that went into the building of www.dummieshtml.com.

About WordPress
As with the previous edition of the Dummies HTML website, we chose to use
WordPress as our content management system.

WordPress is free software for creating websites and blogs. WordPress makes
it easy for anyone to set up and manage a website that contains all of the
features you’d expect a blog to have, including the following:

 ✓ Unlimited pages and blog posts

 ✓ Reader comment functionality

 ✓ A media library for storing your images, videos, and sound files

 ✓ Customizable menus

WordPress is also highly customizable, and thousands of people have built
themes for customizing how a site looks and plug-ins for changing how it
works.

The dashboard
Figure B-1 shows the WordPress dashboard. Each WordPress site has its own
dashboard, where you can access the various functions of the site and create
new content.

http://www.dummieshtml.com
http://www.dummieshtml.com

350 Part VII: Appendixes

Figure B-1: The WordPress Dashboard.

Appearance and themes
From the Dashboard, you can access the Appearance and Themes adminis-
tration items. Figure B-2 shows the Manage Themes screen for the Dummies
HTML site.

Figure B-2: The WordPress Manage Themes screen.

351 Appendix B: About the Dummies HTML Website

We chose a theme called Twenty Twelve for our site. However, hundreds
of other themes are available, and you can find and install many of them by
going to the Install Themes screen, shown in Figure B-3.

Figure B-3: The WordPress Install Themes screen.

Pages and posts
After you’ve installed WordPress and selected a theme, you’ll spend most of
your time creating either posts or pages.

Posts are individual content items, such as blog posts or articles, that can be
tagged, categorized, displayed in lists, and commented on by readers. You
can access the blog posts on the Dummies HTML site by clicking the Blog link
in the menu that runs horizontally across the top of each page.

Pages make up the structure of a WordPress site. Your site’s home page, the
About the Author (or About the Company) page, and content you wouldn’t
typically categorize or list goes on pages. On the Dummies HTML site, the
Welcome, Downloads, Errata, Store, About Us, Links, and Contact Us pages
are all pages.

Widgets
If you look at any page of the Dummies HTML WordPress site, you see a column
to the right of the main content that remains the same as you go from page to
page. This is called a sidebar. The items within the sidebar are widgets.

352 Part VII: Appendixes

Currently, the site has three sidebar widgets:

 ✓ Search: Use this text box to locate specific content on the site.

 ✓ Connect With Us: Click the icons in this widget to follow us on Twitter,
like us on Facebook, or subscribe to our RSS feed.

 ✓ Recent Comments: See what questions and comments people are leaving
on our posts and pages here!

Responsive Design
The Dummies HTML website uses a responsive design to ensure that it will
work and look good on any size of desktop or mobile device. However, you
don’t need to open the site on a mobile device to see how this responsive
design works. To test it, just resize your browser window gradually from
wide to thin and watch as the content and menu items reflow to fit the cur-
rent screen size. When the browser width is reduced to the width of a smart-
phone, the menu is reduced to a single collapsible link to save space.

Figure B-4 shows the progression of the site design from its maximum width
to its minimum width.

HTML5 Cafe
The HTML5 Cafe website that we built to demonstrate features of HTML5
and CSS3 discussed throughout this book can be accessed at www.dummies
html.com/html5cafe or by clicking the HTML5 Cafe link in the menu of the
Dummies HTML website.

HTML5 Cafe is made up of four main web pages, two style sheets, and three
images.

The home page
The HTML5 Cafe home page, shown in Figure B-5, establishes the purpose of
the site, displays a simple coffee cup graphic, and contains the caption (and
Chris’s personal 5:30 a.m. writing mantra) “powered by coffee.”

If you view the source of the home page, you see some code that should be
familiar to anyone who has read the chapters of this book.

 A quick shortcut to view the source markup of a web page in most browsers
is to press CTRL + U (on Windows) or CMD + OPTION + U (on the Mac).

http://www.dummieshtml.com/html5cafe
http://www.dummieshtml.com/html5cafe

353 Appendix B: About the Dummies HTML Website

Figure B-4: Responsive web designs adapt to the browser width.

Figure B-5: The HTML5 Cafe home page.

354 Part VII: Appendixes

About Us
The About Us page of HTML5 Cafe, shown in Figure B-6 displays bios for Ed
and Chris, the authors of the book you now hold in your hands. As with every
About Us page we’ve ever seen, the photos on this page were designed to
make us look much better and friendlier than we are in real life. We almost
look like guys you might want to reach out to and say “hi” or perhaps find out
what we’ve been up to. Just in case you decide that you do want to do that,
we’ve linked our names to our respective blogs.

Figure B-6: The HTML5 Cafe About Us page.

The Menu
The Menu page, shown in Figure B-7, is where we’ve stashed all of the
examples from each chapter of the book. The chapter links here are linked to
.zip files containing working HTML5 and CSS3 code that you can try out on
your own computer. If you don’t feel like retyping all of the book’s examples,
simply download the examples from each chapter as you work your way
through the book.

Contact Us
The Contact Us page is a very common web convention for providing a page
of information about how to get in touch with the creator of the site, or
locate the company, or get directions or operating hours.

On our Contact Us page, we provide a simple contact form for demonstration
purposes. If you want to contact us (the authors), one way would be to use
this form to send us a message.

355 Appendix B: About the Dummies HTML Website

Figure B-7: The HTML5 Cafe Menu.

HTML5 Boilerplate
We built the CSS and HTML for HTML5 Cafe by using HTML5 Boilerplate.
HTML5 Boilerplate is a free and open source template for creating HTML5
websites.

What’s great about HTML5 Boilerplate is that its authors have collected the
best of the known and agreed-upon best practices and necessary tricks that
web authors have discovered for writing HTML5 web pages into one neat
package. To use HTML5 Boilerplate and take advantage of countless hours of
professional web developers’ energy and know-how, all you need to do is go
to www.html5boilerplate.com and download the latest version.

HTML5 Boilerplate downloads as a single .zip file. After unzipping it, you
find a number of files and directories. The most important of these is index.
html. Start with a copy of HTML5 Boilerplate’s index.html for each file
in your website, and you’ll be well on your way to moving from beginning
HTML5 and CSS3 to advanced HTML5 and CSS3.

http://www.html5boilerplate.com

356 Part VII: Appendixes

• Symbols •
! important attribute, 210
// (slashes), 130
@font-face rule, 273–274, 277
@import statements, 214
@keyframes rule, 302–303
{ } (curly braces), 14
< > (angle brackets), 14

• A •
<a> element, 125
absolute hyperlinks, 142
absolute positioning, 227–228
action attribute, 101–102
adjacent-sibling selectors, 202
Advanced Video Coding (AVC), 156
alt attribute, 29
alternative text (“alt text”)

image maps, using with, 151
keyword stuffing, 146
overview of, 143
search engine indexing, 144

American Standard Code for Information
Interchange (ASCII), 30

anchors, 125–126
angle brackets (< >), 14
animation, CSS
@keyframes rule, 303
advantages of, 301
changing colors gradually, 303–304
online resources, 301
overview, 301–302
vendor prefixes, 303

animation properties, 302
Aptana Studio

advantages of, 38
download information, 10
Dummies Book Theme, downloading, 39
features of, 335–336
local pages, editing, 47–48
web pages, editing, 48

area element, 151

<article> element, 35
ASCII (American Standard Code for

Information Interchange), 30
<aside> element, 35
@font-face rule, 273–274, 277
@import statements, 214
@keyframes rule, 302–303
at-rule, 274
attribute selector, 203
attributes. See also individual attributes by

name
defined, 18
elements, adding to, 20
forms-related, table of, 118–120
naming stand-alone values, 110
overview of, 29
rules for placing, 29–30

audio codecs, 156
audio support. See web page media
<audio> element, 158
auto property, 239–241
autoplay attribute, 158, 160
AVC (Advanced Video Coding), 156

• B •
background property, 255, 259
background-color property, 255
backgrounds

colors, changing, 258–259
matching multiple elements, 259
online resources for, 260

bandwidth limitations, 311
beta-testing, 329. See also website testing
block-level elements, 64, 126, 220–221
<blockquote> element, 68–69
blur-radius value, 282–284
body

defined, 53
importance of, 54

<body> element, 14, 44
border properties, 234
border property, 192, 245
border-color property, 245

Index

358 Beginning HTML5 & CSS3 For Dummies

borders
border-width properties, setting, 243–244
defined, 234
shorthand for styles, using, 244–245

border-style property, 244–245
border-width property, 244–245
box-shadow property, 283–284
broken link diagnosis, 129
browser prefixes

animation, using with, 303
overview, 198–199
shadow effects, using with, 286
text transformations, using with, 289

Browser Sandbox, 321, 342
browsers. See web browsers
button generator, 247–248

• C •
<caption> element, 26, 82, 85
cascading

deciding principles, 205–206
defined, 174

Cascading Style Sheets 3 (CSS3)
border enhancements, 247–249
browser prefixes, 198–199
browser support for, 21, 172
color keywords, adding, 251–253
effects, adding to buttons and boxes, 247–249
filter properties, 288
font choices, expanding, 262, 271–272
importing fonts with @font-face, 281–284
modules, 186–189
multiple backgrounds, applying, 259
multiple media types, 291
online resources for, 166, 186, 189, 260
opacity control, adding, 285
shadow control, adding, 281–284
text rotation support, 289

Cascading Style Sheets (CSS). See also online
resources; specific CSS features; syntax,
CSS; web page creation

absolute versus relative value
measurements, 184–185

advantages of, 171–174
background color, changing, 258–259
color, controlling with, 26–27, 35, 66, 251–255
color-coding key, 26–27
default style sheet, 175–176
deprecated <hr> attributes, replacing

with, 72

device versus display pixels, 182–183
differing syntax and markup order, 26
environments affected by, 182
graphics, avoiding for speed, 141
heading appearance, controlling with, 67
HTML, relationship to, 1, 10, 20–24, 171
image borders and alignment,

controlling, 149
Level 3 modules, descriptions, and

standards, 186–189
overview, 20–22, 171–173
property controls, list of, 180–181
responsive design, 184, 352
style options, list of, 174
table appearance, controlling, 94
table border properties, controlling, 84–85
table width and height, controlling, 87
text color, changing, 256
versions of, 20–21
viewport overview, 183–184

case-sensitivity, 129
character codes

ISO Latin-1 character set, 31
UTF-8 versus UTF-16 Unicodes, 31–32

character entities
codes for, 19
defined, 18, 30
displaying hidden tag characters, 32
encoding non-ASCII text, 30–31
online resources for codes, 19

check boxes, 106–107
checkbox attribute, 106
checked attribute, 106
child selector, 203
circle attribute, 151
class selectors, 200–202
Clickdensity, 342
codecs, 156
<col> element, 85
<colgroup> element, 82, 85
color

animating gradual changes, 303–304
backgrounds, changing, 258–259
coding markups with, 26–27
controlling with CSS, 26–27
current state, indicating with, 256–258
forms, enhancing with, 117
graphics, providing without, 146–148
hexadecimal notation, adjusting with, 212,

253–254
JPEG format, advantages of, 140–141
keywords for, 251–253

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

359 Index

online resources, 252–253, 255
PNG format, advantages of, 140–141
RGB values, adjusting with, 253–254
style sheets, advantages of, 171, 174, 180–181
text, enhancing with, 36

color property, 192, 255, 283, 285
cols attribute, 111
colspan attribute, 93
comma-separated values (CSV), 116
compatibility issues, 28, 55
content

defined, 234
driving markup with, 318–319
placement of important material, 318
proofreading thoroughly, 326–327
refreshing regularly, 317–318, 328
space usage, 236–237

controls attribute, 158, 160
coords attribute, 151
copyright value, 200–201
Crazy Egg, 342
CSE HTML Validator Lite, 326
CSS (Cascading Style Sheets). See also online

resources; specific CSS features; syntax,
CSS; web page creation

absolute versus relative value
measurements, 184–185

advantages of, 171–174
background color, changing, 258–259
color, controlling with, 26–27, 35, 66, 251–255
color-coding key, 26–27
default style sheet, 175–176
deprecated <hr> attributes, replacing

with, 72
device versus display pixels, 182–183
differing syntax and markup order, 26
environments affected by, 182
graphics, avoiding for speed, 141
heading appearance, controlling with, 67
HTML, relationship to, 1, 10, 20–24, 171
image borders and alignment,

controlling, 149
Level 3 modules, descriptions, and

standards, 186–189
overview, 20–22, 171–173
property controls, list of, 180–181
responsive design, 184, 352
style options, list of, 174
table appearance, controlling, 94
table border properties, controlling, 84–85
table width and height, controlling, 87

text color, changing, 256
versions of, 20–21
viewport overview, 183–184

“CSS Structure and Rules” (Web Design
Group), 205

CSS3 (Cascading Style Sheets 3)
border enhancements, 247–249
browser prefixes, 198–199
browser support for, 21, 172
color keywords, adding, 251–253
effects, adding to buttons and boxes,

247–249
filter properties, 288
font choices, expanding, 262, 271–272
importing fonts with @font-face, 281–284
modules, 186–189
multiple backgrounds, applying, 259
multiple media types, 291
online resources for, 166, 186, 189, 260
opacity control, adding, 285
shadow control, adding, 281–284
text rotation support, 289

CSS3 Button Generator, 24 7–248
CSV (comma-separated values), 116
curly braces ({ }), 14
Cute FTP Lite, 341
Cyberduck, 341

• D •
date formats, 166
date strings, 166–168
<datetime> attribute, 166–168
<dd> element, 77
debugging tools, 219
declarations, 173, 191–192, 194–195
delisted, 59
deprecated attributes and elements

defined, 172
examples of, 72

descendant selector, 203–204
DevTools (Chrome), 219
Dictionary of HTML META Tags, 60
<div> element, 101
<dl> element, 77
DOCTYPE declaration, 54–56
document testing. See website testing
document tree, 257
Document Type Declaration (DTD), 54–56
domains, 17
Dreamweaver, 38, 334

360 Beginning HTML5 & CSS3 For Dummies

drop shadows, 287–289
Dropbox, 342
drop-down lists, 109–111
<dt> element, 77
DTD (Document Type Declaration), 54–56
Dummies HTML website, 349

• E •
Easy HTML Construction Kit, 342
element type selectors, 199
elements. See also individual elements by

name; markups; tags
anchors, 125–126
angle brackets, 14
block-level, 64, 126, 221
curly braces, 14
defined, 19
deprecated, 72, 172
empty, 143
examples of, 22–23
flow content, 220
HTML documents, assembling for, 19–20
inline, 126, 220–221
media, 158–162
nested markups, 28
normal flow versus out of flow, 222
online resources, 221
phrasing content, 220
placing in documents, 54

em values
adjusting for relative value measurements,

186
defined, 185

e-mail addresses
in hidden fields, 108
online security resources, 137
security issues, 137

Embedded OpenType (EOT) font format, 273
empty elements (singleton tags), 143
entities. See also character codes

defined, 18, 30
displaying hidden tag characters, 32
encoding non-ASCII text, 30–31
online resources for codes, 19

EOT (Embedded OpenType) font format, 273
eXtensible Markup Language (XML), 18
external style sheets, CSS
@import statements, accessing with, 214
advantages of, 212

defined, 171
filename protocols, 212
<link> elements, accessing with, 213
required elements for, 213

• F •
feedback

inviting user comments, 331
rewarding user participation, 332

Fetch, 341
<figcaption> element, 26, 234
<figure> element, 235–236
file attribute, 108
file download links, 135
File Transfer Protocol (FTP), 16
filenames, 17, 44–45, 129
FileZilla FTP client, 49–50, 341
Firebug, 342
FLAC audio format, 155
flat file, 116
float properties, 228–229
flow content, 220
flowcharts, 318
 element, 172
@font-face rule, 273–274, 277
font-family property, 194, 262–263,

274–275
fonts

blinking, managing, 271–272
bold, applying, 268–269
capitalization, changing, 270–271
family declarations, recommended, 263
finding, 274
font-family property, 262–263
formats, choosing, 273–274
Google Font Library, 275–279
italic, applying, 269–270
legal issues, 274
line height, adjusting, 265–266
line-through, managing, 271
linking, 274–275
online, accessing, 264–265, 277
online resources for, 274
overlines, managing, 271
quotation class, assigning, 266
scrolling, managing, 271–272
shorthand properties, 262, 271–273
sizing, 264–268
spacing, adjusting, 267

361 Index

text rotation, 289–290
underlines, managing, 271

font-style property, 269–270
<footer> element, 35
footers

adding back buttons, 93
footnote suggestions, 92
setup options, 94–95

form frameworks, 120–121
form handlers, 101
form markup elements, 97
form validation. See validation
<form> element, 26, 101
forms. See web page forms
FTP, 116
FTP clients, 49–50, 341

• G •
gateways, 11
Generate it! Layout Generator, 230–232
get method, 101
GIF (Graphics Interchange Format), 140
GIMP, 337
Google Analytics, 342
Google Font Library, 275–279
graphics. See also web page images

avoiding unnecessary images, 141
limiting use of, 318–319
online resources for, 141

graphics editors
affordable, 337
professional, 337–339

Graphics Interchange Format (GIF), 140
“Graphics on the Web” (W3C), 141

• H •
<h1> element

creating heading levels, 66–68
marking headings with, 44

H.264 video format, 156–157
HD video support, 156
<head> element, 14, 34, 56–57
<header> element, 35
headers

defined, 53
importance of, 54
overview, 57

headings
appearance, controlling with CSS, 67
formatting with element levels, 66–67
organizing web pages with, 66

height attribute, 29, 160
helper HTML editors

overview, 335
suggested, 335–336

hex code, 253
hex triplet, 253
hexadecimal notation, 212, 253
hidden attribute, 108
hidden input fields, 108
high attribute, 163
horizontal rules, 71–72
hostname, 130
<hr> element, 71–72
href attribute, 125–127, 136, 151
HTML (HyperText Markup Language). See

also online resources; specific features by
name; tools, HTML; validation

browser viewing variations, 15, 38
character entities, 30–32
color-coding for clarity, 26–27
CSS, relationship to, 1, 10, 20–24, 171
differences in versions, 3, 17–18
elements, adjusting with attributes, 29–30
example of, 22–23
filename protocols, 44–45
framesets, 56
main components of, 18
marking elements with single tags, 28
marking elements with tag pairs, 27
overview, 10, 18–19
syntax and rules, 25–26
templates, 19

HTML editors, 10, 27, 38, 335–336
<html> element, 54
HTML5 (HyperText Markup Language 5)

advantages over previous versions, 18
audio markup, writing, 158–159
browser media support, 157
compatibility issues, 28
date and time tracking, 166–168
media enhancements, 137, 153
online resources for, 1, 4–5
video markup, writing, 159–162

“HTML5 Block Level Elements: Complete
List”, 64

HTML5 Boilerplate site, 23, 54, 176–178, 355

362 Beginning HTML5 & CSS3 For Dummies

HTML5 Cafe, 34, 352–353
HTML-Kit, 38, 336, 341
HTTP (HyperText Transfer Protocol), 16, 130
http-equiv attribute, 59–60
HTTPS (Secure HTTP), 17
hyperlinks

absolute versus relative, 127, 142
addresses, forming properly, 130
anchoring to images, 127
broken, checking for, 134
broken, diagnosing, 129
checking continuously, 327–328
copy-and-paste issues, 129–130
creating, requirements for, 125
creating simple, 128
current state, indicating with color, 256–258
destination options, 127
direct pointers, checking for, 328
e-mail access, supplying, 136–137
external style sheets, accessing with, 213
file utilities, 135–136
HTML5 media advantages, 137
image maps, creating, 150–151
images as triggers, 149–150
improving website experience with, 323
inserting into HTML, 36
interdocument access, 134
intradocument access, 132–133
limiting use of, 318–319
location of URL, 126
for mobile devices, 311
mobile site, connecting to desktop

version, 315
navigating Internet with, 10–11
online fonts, accessing, 274–275, 277
online resources, 132, 134, 151–152, 330,

339–340
opening new windows, 130–131
overview, 125
refreshing outdated URLs, 328
specifying site links, 128
user feedback, rewarding, 332
websites, accessing other, 134

hypermedia, 323
HyperText Transfer Protocol (HTTP), 16, 130

• I •
icons, explained, 4
id attribute, 132
ID selectors, 199–200

image maps
creating linkable, 150–151
online resources, 151–152

images. See graphics; web page images
 element, 28, 143
@import statements, 214
! important attribute, 210
inbetweens, 301. See also animation, CSS
inheritance rules, 204–205
inline elements, 220–221
inline styles

! important attribute actions, 210
advantages of, 209
defined, 207
disadvantages of, 208–209
location of, 171
user style sheet interactions, 210

input controls, 102–103
input fields

check boxes versus radio buttons, 106–107
drop-down lists, 109–111
explanatory labels, adding, 103
file uploads, 108–109
hidden, 108
passwords, 105–106
reset buttons, 112–114
submit buttons, 112–114
text, 103–105
text boxes, 111
types of, 103

<input> element, 102–104
interactive applications, 153
internal style sheets, CSS

advantages of, 210
defined, 207
location of, 210
scope of values, adjusting, 210–212

Internet Protocol (IP), 16
Internet protocols

defined, 16–17
specifications, 17

Internet Service Provider (ISP), 49
iPad Peek, 342
iPhone Tester, 342
ISP (Internet Service Provider), 49

 • J •
JavaScript

controlling pop-up windows, 132
online resources for, 114

363 Index

suggested reading, 168
updating HTML5 controls, 168

JPEG (Joint Photographic Experts Group), 140
jQuery Validation Plugins site, 120

• K •
keyframes, 300–301. See also animation, CSS
@keyframes rule, 302–303
keyword stuffing, 146
Komodo Edit, 336
KompoZer, 335

• L •
layout management, CSS. See also fonts;

mobile devices, designing for; web page
text formatting

absolute positioning, 227–228
border declarations, adding, 237–238
border styles, setting, 244–245
border widths, specifying, 243–244
box model overview, 233–234
buttons, creating, 247–248
debugging with Chrome DevTools, 219
float properties, 228–229
ID versus figure selectors, 237
layout generators, 230–232
margin widths, specifying, 239–241
normal flow versus out of flow, 222
offsets, specifying, 226
online resources, 230, 247–248
out of flow advantages, 223–224
padding declarations, adding, 237–238
padding widths, specifying, 241–243
positioning elements with CSS, 217–218
positioning options, 225–226
relative positioning, 226–227
shorthand properties, 238, 241–245
text alignment, 246
text indenting, 247

letterpress effect, 286–287
letter-spacing declaration, 267
 element, 26, 28
line height, 265
line-height property, 265–266
link checkers, 327, 339–340
LinkChecker, 340

links
absolute versus relative, 127, 142
addresses, forming properly, 130
anchoring to images, 127
broken, checking for, 134
broken, diagnosing, 129
checking continuously, 327–328
copy-and-paste issues, 129–130
creating, requirements for, 125
creating simple, 128
current state, indicating with color, 256–258
destination options, 127
direct pointers, checking for, 328
e-mail access, supplying, 136–137
external style sheets, accessing

with, 213
file utilities, 135–136
HTML5 media advantages, 137
image maps, creating, 150–151
images as triggers, 149–150
improving website experience with, 323
inserting into HTML, 36
interdocument access, 134
intradocument access, 132–133
limiting use of, 318–319
location of URL, 126
for mobile devices, 311
mobile site, connecting to desktop

version, 315
navigating Internet with, 10–11
online fonts, accessing, 274–275, 277
online resources, 132, 134, 151–152, 330,

339–340
opening new windows, 130–131
overview, 125
refreshing outdated URLs, 328
specifying site, 128
user feedback, rewarding, 332
websites, accessing other, 134

LinkScan/QuickCheck, 339
lists

appearance, controlling with CSS, 78
definition, online resources for, 79
formatting, 73–75
nesting within other lists, 79–80

local pages, 15
long tail support, 154
loop attribute, 158
lossy, 155
low attribute, 163

364 Beginning HTML5 & CSS3 For Dummies

• M •
margin properties, 234
margins

auto calculations, 241
collapse, 239–240
definition of, 234
shorthand property rules, 241–243
specifying properties for, 240–241

markups. See also elements; tags
angle brackets, 14
Aptana Studio, advantages of, 38
color-coding, 26
for CSS, creating, 21–22
curly braces, 14
defined, 14
example of, 22–23
for HTML, creating, 18–20
nested, 28
single tags, 28
syntax and rules, 25–26
word processors, avoiding, 11, 38

max attribute, 163
maxlength attribute, 104
media elements, 158–162
media support. See web page media
mediagroup attribute, 160
<meta> element

Dictionary of HTML META Tags, 60
overview, 57–58
redirecting pages with, 58–60

metadata
overview of, 57–58
redirecting pages with, 58–60

<meter> element, 163–165
method attribute, 101
Microsoft Expression Web 4, 335
MIME (Multi-part Internet Mail

Extensions), 120
min attribute, 163, 165
mobile devices, designing for

classifying device types, 307–310
limited bandwidth, working with, 311
linking to desktop site, 315
pages, keeping simple, 314
responsive design, value of, 184, 352
testing on multiple platforms, 313
touch-screen limitations, 311–312
user needs, considering, 310, 313
web addresses, keeping simple, 314–315

MP3 audio format, 155
MPEG (Motion Picture Experts Group), 156
MPEG-4 video format, 156
multimedia, advantages of using, 323
multiple attribute, 110
multiple media displays, CSS. See also mobile

devices, designing for
adapting from screen to print, 299–300
CSS media types, 292
customizing for specific media, 292–293
device detection, 291–292
paged media styles, 299
visual media styles, 293–298

muted attribute, 161

• N •
name attribute, 103, 106
<nav> element, 35
navigation tools

inserting into HTML, 36
providing for websites, 321–322

nested markups, 28
nesting elements, 204–205
nesting lists

common uses for, 79
formatting rules, 80

• O •
offsets, 226
offset-x property, 283, 285
offset-y property, 283, 285
Ogg Theora video format

overview, 156
WHATWG recommendations for, 157

Ogg Vorbis audio format
overview, 155
WHATWG recommendations for, 156

 element
creating numbered lists with, 73–75
using with elements, 26, 28

Online Link Checker, 327
online resources

browser compatibility, checking, 298–299,
321, 342

codes for entities, 19
color codes, finding, 253–255
CSS animation properties, 301

365 Index

CSS articles and markups, 4–5, 182
CSS button generator, 247–248
CSS filter tutorial, 289
CSS style sheets, 176–178
CSS syntax rules, 205
CSS3 changes, 166, 186, 189, 260
CSS3 standards, 189
debugging web pages, 342
definition list discussions, 79
deprecated attributes and elements, 172
Dictionary of HTML META Tags, 60
disabling style sheets, 193
Dummies HTML website, 349
elements usage details, 221
embedded content discussions, 157
form framework sites, 120–121
forms, help for on Webmonkey, 101
FTP programs, 341
Generate it! Layout Generator, 230–232
graphics editors, 151, 337–339
graphics formats, 141
HTML helper editors, 335–336
HTML tools, 341–342
HTML WYSIWYG editors, 334–335
“HTML5 Block Level Elements: Complete

List”, 64
HTML5 Boilerplate site, 23, 176–178, 355
HTML5 Cafe, 34, 39, 86, 92, 152
HTML5 pointers, 1, 4–5
image map editor, 151
image map tutorials, 152
iPhone display testing, 342
JavaScript information, 114,132
link checkers, 327, 339–340
media format conversion tools, 162
<meta> element help, 58
meter displays, 164
multiple background techniques, 260
optimizing images, 142
PHP scripts, 115–116
progress bar displays, 166
sample form markup, 104
sample table layout, 92–93
software shopping, 333
spell checkers, 326
SQL injection attacks, avoiding, 137
synchronizing files, 342
syntax validator, 320
table markup validator, 83
template management, 342

W3C validator, 330
website analysis, 342
website link checker, 134
WYSIWYG editors, 334–335

Open Source Notepad++, 336
OpenType font format, 273
optimum attribute, 163
<option> element, 109
Opus audio format, 155

• P •
<p> element, 14, 44
padding

defined, 234
shorthand properties rules, 241–243
specifying properties for, 241

padding properties, 234
paragraph formatting. See also web page text

formatting
block quotes, 68–69
controlling with CSS, 66
<p> element, creating with, 65–66
white space, keeping intact, 69–71

password attribute, 105
passwords, input field, 105–106
paths, 17
peer review, 329–330
PHP scripts, 115–116
phrasing content, 220
picas, 184
pixels

defined, 182, 185
device versus CSS display, 183

PNG (Portable Network Graphic), 141
points, 185
poly attribute, 151
Portable Network Graphic (PNG), 141
post method, 101–102
poster attribute, 161
<pre> element, 70–71
prefixes. See browser prefixes; vendor

prefixes
preformatted text element (<pre>), 70–71
preload attribute, 158, 160, 161
professional graphics editors, 337–339
protocol identifiers, 130
protocols, Internet, 16–17
pseudo-classes

366 Beginning HTML5 & CSS3 For Dummies

indicating link status with, 256–258
overview, 204
rules for usage, 257

• R •
radio attribute, 106
radio buttons, 106–107
rect attribute, 151
redirecting pages, using metadata in headers,

58–60
REL Link Checker, 327
<rel> attribute, 213
relative hyperlinks, 142
relative positioning, 226–227
relative value measurements, 185–186
reset buttons, 112–114
responsive design, 184, 352
RGB values, 253–254
rows attribute, 111

• S •
secure HTPP (HTPPS), 17
security

e-mail issues, 108, 137
SQL injection attacks, 137

<select> element, 109
selected attribute, 111
selectors, CSS

adjacent-sibling type, 202
attribute type, 203
child type, 203
choosing elements with, 173
class type, 200–202
declarations, 194–195
defined, 191
descendant type, 203–204
element type, 199
ID type, 199–200
pseudo-class type, 204
universal type, 195–199
validation tools, 195

shadows
box, 283–284
drop, 287–289
inset text, 284–285
letterpress effect, 286–287
online resources for, 289

text, 282–283
3-D text, 285–286

shape attribute, 151
shorthand properties

backgrounds, 259
borders, 244–245
fonts, 262, 271–273
margins and padding, 241–243
overview, 238

Simple Mail Transfer Protocol (SMTP), 16
singleton tags (empty elements), 143
site maintenance, 317–318, 322, 323–324
size attribute, 104
slashes (//), 130
SMTP (Simple Mail Transfer Protocol), 16
<source> element, 137, 158
specifications, 17
spellchecking, 326–327
Spoon Browser Sandbox, 321
SQL injection attacks, 137
src attribute, 29, 143
streaming media, 153
style sheets. See also online resources;

specific CSS features; syntax, CSS; web
page creation

absolute versus relative value
measurements, 184–185

advantages of, 171–174
background color, changing, 258–259
color, controlling with, 26–27, 35, 66, 251–

255
color-coding key, 26–27
default style sheet, 175–176
deprecated <hr> attributes, replacing with,

72
device versus display pixels, 182–183
differing syntax and markup order, 26
environments affected by, 182
graphics, avoiding for speed, 141
heading appearance, controlling with, 67
HTML, relationship to, 1, 10, 20–24, 171
image borders and alignment,

controlling, 149
Level 3 modules, descriptions, and

standards, 186–189
overview, 20–22, 171–173
property controls, list of, 180–181
responsive design, 184, 352
style options, list of, 174
table appearance, controlling, 94

367 Index

table border properties, controlling, 84–85
table width and height, controlling, 87
text color, changing, 256
versions of, 20–21
viewport overview, 183–184

<style> element, 210
submit buttons, 112–114
syntax, CSS. See also selectors, CSS

browser prefixes, 198–199
cascading, 205–206
declarations, 191–192
font-family property, 194
inheritance rules, 204–205
online resources, 195, 205
overview, 191–193
style rules, 191
user overrides of styles, 193

• T •
<table> element

including captions within, 26
using with <tr> and <td> elements, 82

tables. See web page tables
tab-separated values (TSV), 116
tags. See also elements; markups

angle brackets, 14
closing immediately, 320
curly braces, 14
defining content elements with pairs, 27
marking empty elements with single, 28
nesting lists, caution with, 80
validation of, 319

target attribute, 131
<tbody> element, 82
TCP (Transmission Control Protocol), 16
<td> element, 82, 85
templates

building HTML documents with, 19
testing on multiple browsers, 320

testing. See website testing
text, CSS. See also fonts; shadows; web page

text formatting
advantages of using, 281
importance of typography, 261
for mobile devices, 311
rotation, 289–290
sizing, 264–268

text blocks
defined, 63
formatting paragraphs, 65–66
HTML5 block-level elements, 64
inline elements versus, 64, 220
online resources for, 64

text boxes, 111
text editors, disadvantages of, 333
text-align property, 246
<textarea> element, 111
text-indent property, 247
text-shadow property, 282–283
text-transform property, 270
<tfoot> element, 83
<tfooter> element, 83
<th> element, 85, 93
<thead> element, 82, 85
Theora video format. See Ogg Theora video

format
time formats, 166
time strings, 166–168
<time> element, 166–168
title attribute, 29, 145
<title> element, 43, 61
tools, HTML

deals on, 333
FTP clients, 341
graphics editors, 337–33
helper HTML editors, 335–336
link checkers, 339–340
miscellaneous, 341–342
text editors, disadvantages of, 333
validators, 340–341
WYSIWYG editors, 334–335

touch-screen limitations, 311–312
<tr> element, 82, 85
transform property, 289–290
Transmission Control Protocol (TCP), 16
TrueType font format, 273
TSV (tab-separated values), 116
type attribute, 103, 106, 137
type foundries, 274. See also fonts

• U •
 element

creating bulleted lists, 75–76
using with elements, 26, 28

368 Beginning HTML5 & CSS3 For Dummies

Unicode Character Code Charts, 19
universal selectors, 195–199
URI (Uniform Resource Identifier), 158
URL (Uniform Resource Locator)

checking broken link filenames, 129
components of, 16–17
copy-and-paste issues, 129–130
creating links with, 125
file download links, 135–136
forming properly, 130
forms, using with, 101–103
htm versus html extensions, 129
for mobile devices, 314–315
processing data with, 115
refreshing outdated links, 328

usemap attribute, 150–151
user agents, 25
user style sheets, 205

• V •
validation

checking forms, 113–115, 117, 120
online resources for, 120, 340
overview, 340
suggested software for, 335, 340–341

Validatious website, 120
validators, HTML, 340–341
value attribute, 106, 163–165
vendor prefixes

animation, 303
overview, 198–199
shadow effects, 286
text transformations, 289

video format conversion, 162
video support. See web page media
<video> element, 137, 158
viewport

overview, 183–184
responsive design, 184, 352

visually impaired access, 15, 29, 126, 143,
151–152

VP8/9 audio-video format, 156–157

• W •
W3C (World Wide Web Consortium)

general discussion, 17
“Graphics on the Web,” 141
website address, 126

W3C Link Checker, 327, 339

W3C validation service, 83, 195, 330
WAV (Waveform Audio File Format), 156
Web Accessibility Initiative (WAI), 146
web addresses

checking broken link filenames, 129
components of, 16–17
copy-and-paste issues, 129–130
creating links with, 125
file download links, 135–136
forming properly, 130
forms, using with, 101–103
htm versus html extensions, 129
for mobile devices, 314–315
processing data with, 115
refreshing outdated links, 328

web browsers
alternative text, displaying, 143–145
anchor elements, displaying, 126
headings, displaying on graphical browsers,

67–68
headings, displaying on text-only browsers,

68
HTML, considering when writing, 15
HTML viewing variations, 15, 38
local pages, viewing, 15, 46–47
online resources for, 298–299, 321
popular choices for, 15
relationship to HTML and CSS, 11–13, 14–15
source markups, checking with, 89
testing on, 15, 38, 298–299, 320

Web Design Group, 205
Web Graphics Tutorial (Quackit), 141
Web HyperText Application Technology

Working Group (WHATWG), 17–18
Web Open Font Format (WOFF), 274
web page content

versus presentation, 14
keeping current, 328

web page creation
Aptana Studio, 10, 39–40
basic steps, 39, 54
<body> elements, setting up, 61–62
DOCTYPE declaration, writing, 55–56
ease of, 2
editing, 48
headers, defining, 56–57
<htm1> elements, adding, 56
HTML5 Boilerplate site, 23, 54, 176–178, 355
informative titles, writing, 61
local pages, editing, 47–48
local pages, viewing, 46–47

eb
oo

k
D

ow
nl

oa
de

d
F

ro
m

 :
<

w
w

w
.B

oo
k-

E
xp

er
ts

.o
rg

>

369 Index

markup, adding to text files, 41–44
metadata, inserting into headers, 57–58
multimedia, using wisely, 318–319, 323
naming and saving files, 44–45
navigation, adding, 321–322
organizing with flow charts, 318
planning simple designs, 40–41
posting pages online, 49–50
required markup elements, 54
text, displaying in browsers, 62
with text editors, 10
user feedback, getting, 322

web page forms
action attributes, using, 101
attributes related to, 118–120
browse buttons, adding, 109
check boxes, creating, 106–107
data collection examples, 99–100
default choices, adding, 111
drop-down lists, creating, 109–111
file upload fields, creating, 108–109
hidden fields, creating, 108
information options, types of, 100
<input> elements, 102–103
method attributes, using, 101
multiple options, adding, 110
naming input controls, 102–103
obtaining scripts from ISPs, 116
online resources for, 101
password fields, creating, 105–106
processing data from, 115–116
radio buttons, creating, 106–107
reset buttons, creating, 112–114
scroll bars, adding, 110
search examples, 98–99
submit buttons, creating, 112–114
text fields, creating, 103–105
upload risks, managing, 109
user-friendly, designing, 117–118
validating data entries, 113–115

web page images
alignment controls, 149
alternative text, adding, 143–146
borders, 149
cross-platform formats, 140–141
enhancing download speed, 146–147
formats, 141
keyword stuffing, 144
local storing, 142
mobile devices, limiting for, 311
navigating links, creating, 149–150

online resources for, 141–142
overview, 140
relative versus absolute links, 142
scaling, 146–148
search engine indexing, 144
title text, adding, 145–146

web page media
alternative file formats, providing, 162
audio formats supported, 155–156
audio markup, writing, 158–159
browser support, 157
desirable format features, 154–155
format conversion, 162
HD video support, 156
HTML5, advantages of, 153
long tail support, providing, 154
meter bars, displaying, 163–165
MP3 compression trade-offs, 155
online resources for, 157, 162, 164, 166
progress bar displays, creating, 165–166
video formats supported, 156–157
video markup, writing, 159–162
video playback displays, creating, 160

web page organization
bulleted lists, formatting, 75–76
color, inserting, 36
CSS markups, 35–36
definition lists, formatting, 77–79
document heads, defining text with, 34
hidden comments, 32–33
hierarchy, creating with lists, 35
images, inserting, 36
links, inserting, 36
numbered lists, formatting, 73–75
required markup elements, 54
specified structure, 33
tables, 35
text containers, 34–35

web page tables
appearance, controlling with CSS, 94
appropriate versus inappropriate uses,

81–82
back buttons, adding to footers, 93
basic elements of, 87
border attributes, applying, 84–85
captions, 93
elements of, 82–83
footer setup options, 94–95
footer usage options, 92
header elements, 85
online resources for, 83, 88–89, 92–93

370 Beginning HTML5 & CSS3 For Dummies

web page tables (continued)
overview, 81
sample layouts, 89–91, 94
spanning rows and columns, 87–88
syntax and markup order, 83–84
width, calculating, 88

web page text formatting. See also layout
management, CSS

block quotes, 68–69
headings, organizing with, 66–68
HTML5 block-level elements, 64
paragraph formatting, 65–66
text blocks, rules for, 63
white space, keeping intact, 69–71

WebM video format, 156–157
website maintenance, 317–318, 322, 323–324
website testing

beta-testing benefits, 329
checking links continuously, 327–328, 330
online resources for, 320–321, 326–327
overview, 325
peer review, 329–330
planning for, 326
proofreading thoroughly, 327
scheduling routine procedures, 328–331
site maps, usefulness of, 325
spell-checkers, using, 326
tag usage, tracking, 320
user feedback, 322, 331

WHATWG (Web HyperText Application
Technology Working Group), 17–18

width attribute, 29, 161
WMV (Windows Media Video), 156
WOFF (Web Open Font Format), 274
word processors

avoiding for writing HTML, 11, 38
versus HTML editors, 37

WordPress
advantages of, 349
creating pages and posts, 351
dashboard overview, 349
sidebar widgets, adding, 351–352
themes, 350–351

word-spacing declaration, 267
World Wide Web Consortium. See W3C
World Wide Web (WWW)

gateways, 11
Internet protocols, 16–17
Internet Service Providers, 49
navigating with hyperlinks, 10–11

Wufoo, 120
WYSIWYG editors

overview, 334
suggested choices for, 334–335

• X •
Xenu Link Sleuth, 327
XML (eXtensible Markup Language), 18

About the Authors
Ed Tittel is a freelance writer, a consultant, and an occasional expert legal
witness on web technologies who works at home near beautiful Austin,
Texas. Ed has written for the computer trade press since 1986 and has
worked on more than 140 books. Ed has worked on many other titles for
Wiley, too, including numerous For Dummies books on subjects that range
from Carrier Ethernet to XML. His full-length titles cover NetWare, Windows
Server, and XML; Ed’s custom topics include Unified Threat Management,
XBRL, Data Center Networking, and lots more.

Ed blogs, provides expert insight and Q&A, and writes for numerous
TechTarget websites, including SearchNetworking.com, SearchSecurity.com,
and SearchWindows.com. He also writes for Tom’s IT Pro, the CIO Magazine
website, and EmergingEdTech.com. When he’s not busy working, Ed likes to
travel, shoot pool and spend time with his family. He also loves to spend time
in the kitchen cookin’ like crazy, or sous-cheffin’ for his equally cuisine-happy
and lovely wife, Dina. Contact Ed via e-mail at ed@edtittel.com.

Chris Minnick is the CEO of Minnick Web Services, LLC, a company that
specializes in developing websites and mobile apps for media companies.
He also teaches a very popular online course called “Creating Mobile Apps
with HTML5” for Ed2Go; is the author of several books, including WebKit
For Dummies; and writes articles on web development and mobile apps for
websites and print magazines. Chris’s weekly newsletter goes to thousands
of readers, including some of the most influential people in media and the
webChris has been involved with numerous mobile and web startups and
is active as a mentor and hackathon judge in his adopted hometown of
Sacramento, California. In addition to running the most fun business in the
world and enjoying the heck out of his writing, Chris is also a winemaker,
a musician, a swimmer, and an enthusiastic (if unsophisticated) cook and
eater. Contact Chris via email at chris@minnick.com.

Authors’ Acknowledgments
Ed Tittel: Wow! It’s hard to believe this will be essentially the 14th edition
overall for HTML For Dummies. Of all the books I’ve worked on, this one has
covered more time and versions than any of the others By itself, it accounts
for around ten percent of my overall book output. So thanks again readers,
for keeping this book going strong. We’d also like to thank those same read-
ers and the Wiley editors for providing welcome feedback to drive continu-
ing improvement of this book. Don’t stop now — keep telling us what you
want. Especially, tell us what you liked and didn’t like about this full-color
bookLet me also thank some people from previous editions, including Jeff
Noble, whose recent elevation to the directorial ranks at CA necessitated his
withdrawal from this edition, plus Steve James, J. Michael Stewart, Natanya

mailto:ed@edtittel.com
http://www.wiley.com/WileyCDA/WileyTitle/productCd-111812720X.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-111812720X.html
mailto:chris@minnick.com

Anderson, Dori Smith, Tom Negrino, Mary Burmeister, Brock Kyle, Chelsea
Valentine, Dawn Davidson, and Kim Lindros. And, of course, I’m indebted
to my co-author and friend, Chris Minnick, for adding so much real-world
insight, experience, and a more mobile-friendly outlook to our coverage. I
am grateful for your ideas, your hard work, and your experience in reach-
ing budding web experts. Thanks, too, to Mary Kyle Inks, who expertly
project managed this effort. At Wiley, I must thank Bob Woerner and Nicole
Sholly for their outstanding efforts, and Virginia Sanders, Claudia Snell, and
Patrick Redmond for their efforts on copy editing, technical editing, design,
layout, content, and coverage. A special shout-out to the friendly folks in
Composition Services for artful page layouts, and for keeping all the color-
coded elements straight. And finally, many, many thanks to my agent at
Waterside Productions, Carole Jelen, who not only brought me this book to
start with, but who’s helped make it such a star over the past 18 years it’s
been in print.

Thanks to my lovely wife, Dina Kutueva-Tittel, and our ever-inquisitive son,
Gregory, for putting up with my sometimes whacky and intense schedule.
Thanks again to my Dad, Al Tittel, for all he’s done for my family and me, and
for dropping in two or more times a year, Texas heat notwithstanding. I hope
you’re around to see our 15th edition come to print! Finally, profound thanks
and remembrances to Cecilia Katherine Kociolek Tittel (4/3/1919–9/11/2009).
Thanks, Mom, for encouraging my love of words and writing: I still miss you
every day.

Chris Minnick: Thanks to Ed Tittel for giving me the opportunity to work on
this book. You’ve been a mentor and friend to me for many years. Your skills,
professionalism, and generosity continue to inspire me and it’s such a plea-
sure to work with you. Thanks to everyone else who worked on this book and
whom Ed has already thanked, but especially to our project manager Mary
Kyle, our editor Nicole Sholly, and my agent Carole Jelen.

Thank you so much to my lovely and awesome wife, Margaret, who has
always been there for me in good times and less good times, understands
my silly work schedule, and always has such great ideas, advice, and
perspectives. Thanks to my family, without whom I wouldn’t be the guy I am
today (or perhaps even be alive): my mom Patricia Minnick, my dad Patrick
Minnick, my brother David, my sister Kathy, and my sister Beth.

Thanks to my team at Minnick Web Services, including our facilitator, Eva
Holland, for her coordination and help with the class and client wrangling.
Thanks especially to my long-time colleague and friend, Priscila Hoffman, for
standing by me and MWS for so long and for answering the door when the
U.S. Marshals visited. Thanks to Steven Konopacki and Conrad Vachon for
teaching me to write and teach and to say mysterious and unexpected things
that make people wonder and remember. Finally, thanks to my good friends
Jeff Schwarzschild for reminding me that there’s always something to be
enthusiastic about, and Sam Hubbard for reminding me to figure out where
I’m going to put down that heavy object before I start moving it!

Publisher’s Acknowledgments

Executive Editor: Bob Woerner
Senior Project Editor: Nicole Sholly
Copy Editor: Virginia Sanders
Technical Editor: Claudia Snell
Editorial Assistant: Anne Sullivan
Senior Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond
Cover Image: © iStockphoto.com/

OlgaYakovenko

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Table of Contents
	Introduction
	About this Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with HTML and CSS on the Web
	Chapter 1: An Overview of HTML and CSS on the Web
	How and Where Web Pages Come to Life Online
	Understanding HTML and Its Versions
	Understanding the Role of CSS
	Dissecting a Simple Markup Example

	Chapter 2: Meeting the Structure and Components of HTML
	Like Any Language: Syntax and Rules
	Adding Attributes to Your HTML
	Examining Entities in Markup
	Organizing Web Pages

	Chapter 3: Creating and Viewing a Web Page
	Before You Get Started
	Creating a Page from Scratch
	Editing an Existing Web Page
	Posting Your Page Online

	Part II: Getting the Structure and Text Right
	Chapter 4: HTML Documents Need Good Structure
	Establishing a Document Structure
	HTML Document Organization Revisited
	HTML DOCTYPE Starts Things Off
	The <html> Element
	Anatomy of the <head>
	The <body> Is a BIG Container

	Chapter 5: Text and Lists
	Formatting Text
	Controlling Text Blocks
	Organizing Information

	Chapter 6: Tip-Top Tables in HTML
	How <table> Got a Bad Name in HTML
	What’s in a Table? LOTS of Markup
	Setting Up a Table Border
	The Table Head (<thead>) and Its Elements
	Managing Table Layouts
	Making Good Table Bodies
	Sitting at the Footer of the Table
	Exploring and Explaining a Table

	Chapter 7: Working with Forms in HTML
	Exploring Types of Web Forms
	Creating Forms
	Processing Data
	Designing User-Friendly Forms
	Other Noteworthy Forms-Related Markup
	Form Frameworks

	Part III: Adding Links, Images, and Other Media
	Chapter 8: Getting Hyper with Links in HTML
	Basic Links 101
	Customizing Links

	Chapter 9: Working with Images in HTML
	The Role of Images in a Web Page
	Creating Web-Friendly Images
	Adding an Image to a Web Page
	Images That Link

	Chapter 10: Managing Media and More in HTML
	The Battle of the Media Formats
	Comparing Traditional and HTML5 Media Handling
	Mastering HTML5 Media Markup
	Working with Web Page Controls

	Part IV: Adopting CSS Style
	Chapter 11: Advantages of Style Sheets
	Advantages of Style Sheets
	Styling a Document with CSS
	Putting CSS in Its Place
	About the CSS3 Standard

	Chapter 12: CSS Structure and Syntax
	Exploring CSS Structure and Syntax
	Understanding the Cascade

	Chapter 13: Using Different Kinds of Style Sheets
	Applying Inline Styles
	Getting to Know Internal Style Sheets
	Working with External Style Sheets

	Part V: Enhancing Your Pages’ Look and Feel
	Chapter 14: Managing Layout and Positioning
	Managing Layout
	Managing Positioning
	Using a Layout Generator

	Chapter 15: Building with Boxes, Borders, and Buttons
	Meeting the Box Model
	Putting the Box Model into Practice

	Chapter 16: Using Colors and Backgrounds
	Defining Color Values
	Defining Color Definitions

	Chapter 17: Web Typography
	Finding Out about Fonts
	Trying Out Text Treatments
	Checking Out the Catchall Font Property
	Experimenting with Web Fonts

	Chapter 18: CSS Text and Shadow Effects
	Creating Shadows
	Creating Inset Text
	Creating 3D Text
	Creating a Letterpress Effect
	Drop Shadows
	Text Rotation

	Chapter 19: Multimedia and Animation with CSS
	Using CSS with Multimedia
	Getting Animated

	Part VI: The Part of Tens
	Chapter 20: Ten Keys to Mobile Web Design
	Design for Different Mobile Devices
	Design for People
	Design for Small Screens
	Design for Low Bandwidth
	Design for Touch
	Design for Distracted Surfers
	Test on Many Mobile Devices
	Design for Simplicity
	Set Up Mobile Web Addresses
	Include a Link to the Desktop Site

	Chapter 21: Ten HTML Do’s and Don’ts
	Don’t Lose Sight of Your Content
	Do Structure Your Documents and Your Site
	Do Make the Most from the Least
	Do Build Attractive Pages
	Don’t Lose Track of Those Tags
	Do Avoid Browser Dependencies
	Don’t Make It Hard to Navigate Your Wild and Woolly Web
	Don’t Think Revolution, Think Evolution
	Don’t Get Stuck in the Two-Dimensional-Text Trap
	Don’t Let Inertia Overcome You

	Chapter 22: Ten Ways to Kill Web Bugs Dead
	Make a List and Check It — Twice
	Master Text Mechanics
	Lack of Live Links — a Lousy Legacy
	When Old Links Must Linger
	Make Your Content Mirror Your World
	Look for Trouble in All the Right Places
	Cover All the Bases with Peer Reviews
	Use the Best Tools of the Testing Trade
	Schedule Site Reviews
	Foster User Feedback
	If You Give to Them, They’ll Give to You!

	Chapter 23: Ten Cool HTML Tools and Technologies
	WYSIWYG HTML Editors
	Helper HTML Editors
	Inexpensive Graphics Editors
	Professional Graphics Editors
	W3C Link Checker
	Other Link Checkers
	HTML Validators
	FTP Clients
	Miscellaneous Helpful Web Tools

	Part VII: Appendixes
	Appendix A: Twitterati
	Appendix B: About the Dummies HTML Website
	About WordPress
	Widgets
	Responsive Design
	HTML5 Boilerplate

	Index
	About the Authors

