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A	series	of	posts	about	the	linux	kernel	and	its	insides.

The	goal	is	simple	-	to	share	my	modest	knowledge	about	the	internals	of	the	linux	kernel	and	help	people	who	are
interested	in	linux	kernel	internals,	and	other	low-level	subject	matter.

Questions/Suggestions:	Feel	free	about	any	questions	or	suggestions	by	pinging	me	at	twitter	@0xAX,	adding	an	issue
or	just	drop	me	an	email.

Support	If	you	like		linux-insides		you	can	support	me	with:

	 	 	

Licensed	BY-NC-SA	Creative	Commons.

Feel	free	to	create	issues	or	pull-requests	if	you	have	any	problems.

Please	read	CONTRIBUTING.md	before	pushing	any	changes.

@0xAX

linux-insides

Support

LICENSE

Contributions

Author
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This	chapter	describes	the	linux	kernel	boot	process.	You	will	see	here	a	couple	of	posts	which	describe	the	full	cycle	of	the
kernel	loading	process:

From	the	bootloader	to	kernel	-	describes	all	stages	from	turning	on	the	computer	to	before	the	first	instruction	of	the
kernel;
First	steps	in	the	kernel	setup	code	-	describes	first	steps	in	the	kernel	setup	code.	You	will	see	heap	initialization,
querying	of	different	parameters	like	EDD,	IST	and	etc...
Video	mode	initialization	and	transition	to	protected	mode	-	describes	video	mode	initialization	in	the	kernel	setup	code
and	transition	to	protected	mode.
Transition	to	64-bit	mode	-	describes	preparation	for	transition	into	64-bit	mode	and	transition	into	it.
Kernel	Decompression	-	describes	preparation	before	kernel	decompression	and	directly	decompression.

Kernel	boot	process
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If	you	have	read	my	previous	blog	posts,	you	can	see	that	sometime	ago	I	started	to	get	involved	with	low-level
programming.	I	wrote	some	posts	about	x86_64	assembly	programming	for	Linux.	At	the	same	time,	I	started	to	dive	into
the	Linux	source	code.	I	have	a	great	interest	in	understanding	how	low-level	things	work,	how	programs	run	on	my
computer,	how	they	are	located	in	memory,	how	the	kernel	manages	processes	and	memory,	how	the	network	stack	works
on	low-level	and	many	many	other	things.	So,	I	decided	to	write	yet	another	series	of	posts	about	the	Linux	kernel	for
x86_64.

Note	that	I'm	not	a	professional	kernel	hacker	and	I	don't	write	code	for	the	kernel	at	work.	It's	just	a	hobby.	I	just	like	low-
level	stuff,	and	it	is	interesting	for	me	to	see	how	these	things	work.	So	if	you	notice	anything	confusing,	or	if	you	have	any
questions/remarks,	ping	me	on	twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.	I	appreciate	it.	All	posts	will	also	be
accessible	at	linux-insides	and	if	you	find	something	wrong	with	my	English	or	the	post	content,	feel	free	to	send	a	pull
request.

Note	that	this	isn't	the	official	documentation,	just	learning	and	sharing	knowledge.

Required	knowledge

Understanding	C	code
Understanding	assembly	code	(AT&T	syntax)

Anyway,	if	you	just	started	to	learn	some	tools,	I	will	try	to	explain	some	parts	during	this	and	the	following	posts.	Ok,	little
introduction	finished	and	now	we	can	start	to	dive	into	the	kernel	and	low-level	stuff.

All	code	is	actually	for	kernel	-	3.18.	If	there	are	changes,	I	will	update	the	posts	accordingly.

Despite	that	this	is	a	series	of	posts	about	Linux	kernel,	we	will	not	start	from	kernel	code	(at	least	in	this	paragraph).	Ok,
you	pressed	the	magic	power	button	on	your	laptop	or	desktop	computer	and	it	started	to	work.	After	the	motherboard
sends	a	signal	to	the	power	supply,	the	power	supply	provides	the	computer	with	the	proper	amount	of	electricity.	Once
motherboard	receives	the	power	good	signal,	it	tries	to	run	the	CPU.	The	CPU	resets	all	leftover	data	in	its	registers	and
sets	up	predefined	values	for	every	register.

80386	and	later	CPUs	define	the	following	predefined	data	in	CPU	registers	after	the	computer	resets:

IP										0xfff0

CS	selector	0xf000

CS	base					0xffff0000

The	processor	starts	working	in	real	mode	and	we	need	to	back	up	a	little	to	understand	memory	segmentation	in	this
mode.	Real	mode	is	supported	in	all	x86-compatible	processors,	from	8086	to	modern	Intel	64-bit	CPUs.	The	8086
processor	had	a	20-bit	address	bus,	which	means	that	it	could	work	with	0-2^20	bytes	address	space	(1	megabyte).	But	it
only	has	16-bit	registers,	and	with	16-bit	registers	the	maximum	address	is	2^16	or	0xffff	(64	kilobytes).	Memory
segmentation	is	used	to	make	use	of	all	of	the	address	space	available.	All	memory	is	divided	into	small,	fixed-size
segments	of	65535	bytes,	or	64	KB.	Since	we	cannot	address	memory	below	64	KB	with	16	bit	registers,	an	alternate
method	to	do	it	was	devised.	An	address	consists	of	two	parts:	the	beginning	address	of	the	segment	and	the	offset	from

Kernel	booting	process.	Part	1.

From	the	bootloader	to	kernel

The	Magic	Power	Button,	What	happens	next?
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the	beginning	of	this	segment.	To	get	a	physical	address	in	memory,	we	need	to	multiply	the	segment	part	by	16	and	add

the	offset	part:

PhysicalAddress	=	Segment	*	16	+	Offset

For	example	if		CS:IP		is		0x2000:0x0010	,	the	corresponding	physical	address	will	be:

>>>	hex((0x2000	<<	4)	+	0x0010)

'0x20010'

But	if	we	take	the	biggest	segment	part	and	offset:		0xffff:0xffff	,	it	will	be:

>>>	hex((0xffff	<<	4)	+	0xffff)

'0x10ffef'

which	is	65519	bytes	over	first	megabyte.	Since	only	one	megabyte	is	accessible	in	real	mode,		0x10ffef		becomes
	0x00ffef		with	disabled	A20.

Ok,	now	we	know	about	real	mode	and	memory	addressing.	Let's	get	back	to	register	values	after	reset.

	CS		register	consists	of	two	parts:	the	visible	segment	selector	and	hidden	base	address.	We	know	predefined		CS		base
and		IP		value,	logical	address	will	be:

0xffff0000:0xfff0

In	this	way	starting	address	formed	by	adding	the	base	address	to	the	value	in	the	EIP	register:

>>>	0xffff0000	+	0xfff0

'0xfffffff0'

We	get		0xfffffff0		which	is	4GB	-	16	bytes.	This	point	is	the	Reset	vector.	This	is	the	memory	location	at	which	CPU
expects	to	find	the	first	instruction	to	execute	after	reset.	It	contains	a	jump	instruction	which	usually	points	to	the	BIOS
entry	point.	For	example,	if	we	look	in	coreboot	source	code,	we	will	see	it:

				.section	".reset"

				.code16

.globl				reset_vector

reset_vector:

				.byte		0xe9

				.int			_start	-	(	.	+	2	)

				...

We	can	see	here	the	jump	instruction	opcode	-	0xe9	to	the	address		_start	-	(	.	+	2)	.	And	we	can	see	that		reset		section
is	16	bytes	and	starts	at		0xfffffff0	:

SECTIONS	{

				_ROMTOP	=	0xfffffff0;

				.	=	_ROMTOP;

				.reset	.	:	{

								*(.reset)

								.	=	15	;
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								BYTE(0x00);

				}

}

Now	the	BIOS	has	started	to	work.	After	initializing	and	checking	the	hardware,	it	needs	to	find	a	bootable	device.	A	boot
order	is	stored	in	the	BIOS	configuration.	The	function	of	boot	order	is	to	control	which	devices	the	kernel	attempts	to	boot.
In	the	case	of	attempting	to	boot	a	hard	drive,	the	BIOS	tries	to	find	a	boot	sector.	On	hard	drives	partitioned	with	an	MBR
partition	layout,	the	boot	sector	is	stored	in	the	first	446	bytes	of	the	first	sector	(512	bytes).	The	final	two	bytes	of	the	first
sector	are		0x55		and		0xaa		which	signals	the	BIOS	that	the	device	is	bootable.	For	example:

;

;	Note:	this	example	is	written	in	Intel	Assembly	syntax

;

[BITS	16]

[ORG		0x7c00]

boot:

				mov	al,	'!'

				mov	ah,	0x0e

				mov	bh,	0x00

				mov	bl,	0x07

				int	0x10

				jmp	$

times	510-($-$$)	db	0

db	0x55

db	0xaa

Build	and	run	it	with:

nasm	-f	bin	boot.nasm	&&	qemu-system-x86_64	boot

This	will	instruct	QEMU	to	use	the		boot		binary	we	just	built	as	a	disk	image.	Since	the	binary	generated	by	the	assembly
code	above	fulfills	the	requirements	of	the	boot	sector	(the	origin	is	set	to		0x7c00	,	and	we	end	with	the	magic	sequence).
QEMU	will	treat	the	binary	as	the	master	boot	record(MBR)	of	a	disk	image.

We	will	see:
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In	this	example	we	can	see	that	this	code	will	be	executed	in	16	bit	real	mode	and	will	start	at	0x7c00	in	memory.	After	the
start	it	calls	the	0x10	interrupt	which	just	prints		!		symbol.	It	fills	rest	of	510	bytes	with	zeros	and	finish	with	two	magic	bytes
	0xaa		and		0x55	.

You	can	see	binary	dump	of	it	with		objdump		util:

nasm	-f	bin	boot.nasm

objdump	-D	-b	binary	-mi386	-Maddr16,data16,intel	boot

A	real-world	boot	sector	has	code	for	continuing	the	boot	process	and	the	partition	table	instead	of	a	bunch	of	0's	and	an
exclamation	point	:)	Ok	so,	from	this	point	onwards	BIOS	hands	over	the	control	to	the	bootloader	and	we	can	go	ahead.

NOTE:	As	you	can	read	above	the	CPU	is	in	real	mode.	In	real	mode,	calculating	the	physical	address	in	memory	is	done
as	following:

PhysicalAddress	=	Segment	*	16	+	Offset

Same	as	I	mentioned	before.	But	we	have	only	16	bit	general	purpose	registers.	The	maximum	value	of	16	bit	register	is:
	0xffff	;	So	if	we	take	the	biggest	values	the	result	will	be:

>>>	hex((0xffff	*	16)	+	0xffff)

'0x10ffef'

Where		0x10ffef		is	equal	to		1MB	+	64KB	-	16b	.	But	a	8086	processor,	which	was	the	first	processor	with	real	mode.	It	had
20	bit	address	line	and		2^20	=	1048576.0		is	1MB.	So,	it	means	that	the	actual	memory	available	is	1MB.

General	real	mode's	memory	map	is:

0x00000000	-	0x000003FF	-	Real	Mode	Interrupt	Vector	Table

0x00000400	-	0x000004FF	-	BIOS	Data	Area
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0x00000500	-	0x00007BFF	-	Unused

0x00007C00	-	0x00007DFF	-	Our	Bootloader

0x00007E00	-	0x0009FFFF	-	Unused

0x000A0000	-	0x000BFFFF	-	Video	RAM	(VRAM)	Memory

0x000B0000	-	0x000B7777	-	Monochrome	Video	Memory

0x000B8000	-	0x000BFFFF	-	Color	Video	Memory

0x000C0000	-	0x000C7FFF	-	Video	ROM	BIOS

0x000C8000	-	0x000EFFFF	-	BIOS	Shadow	Area

0x000F0000	-	0x000FFFFF	-	System	BIOS

But	stop,	at	the	beginning	of	post	I	wrote	that	first	instruction	executed	by	the	CPU	is	located	at	the	address		0xFFFFFFF0	,
which	is	much	bigger	than		0xFFFFF		(1MB).	How	can	CPU	access	it	in	real	mode?	As	I	write	about	it	and	you	can	read	in
coreboot	documentation:

0xFFFE_0000	-	0xFFFF_FFFF:	128	kilobyte	ROM	mapped	into	address	space

At	the	start	of	execution	BIOS	is	not	in	RAM,	it	is	located	in	the	ROM.

There	are	a	number	of	bootloaders	which	can	boot	Linux,	such	as	GRUB	2	and	syslinux.	The	Linux	kernel	has	a	Boot
protocol	which	specifies	the	requirements	for	bootloaders	to	implement	Linux	support.	This	example	will	describe	GRUB	2.

Now	that	the	BIOS	has	chosen	a	boot	device	and	transferred	control	to	the	boot	sector	code,	execution	starts	from
boot.img.	This	code	is	very	simple	due	to	the	limited	amount	of	space	available,	and	contains	a	pointer	that	it	uses	to	jump
to	the	location	of	GRUB	2's	core	image.	The	core	image	begins	with	diskboot.img,	which	is	usually	stored	immediately	after
the	first	sector	in	the	unused	space	before	the	first	partition.	The	above	code	loads	the	rest	of	the	core	image	into	memory,
which	contains	GRUB	2's	kernel	and	drivers	for	handling	filesystems.	After	loading	the	rest	of	the	core	image,	it	executes
grub_main.

	grub_main		initializes	console,	gets	base	address	for	modules,	sets	root	device,	loads/parses	grub	configuration	file,	loads
modules	etc.	At	the	end	of	execution,		grub_main		moves	grub	to	normal	mode.		grub_normal_execute		(from		grub-
core/normal/main.c	)	completes	last	preparation	and	shows	a	menu	for	selecting	an	operating	system.	When	we	select	one
of	grub	menu	entries,		grub_menu_execute_entry		begins	to	be	executed,	which	executes	grub		boot		command.	It	starts	to
boot	the	selected	operating	system.

As	we	can	read	in	the	kernel	boot	protocol,	the	bootloader	must	read	and	fill	some	fields	of	kernel	setup	header	which
starts	at		0x01f1		offset	from	the	kernel	setup	code.	Kernel	header	arch/x86/boot/header.S	starts	from:

				.globl	hdr

hdr:

				setup_sects:	.byte	0

				root_flags:		.word	ROOT_RDONLY

				syssize:					.long	0

				ram_size:				.word	0

				vid_mode:				.word	SVGA_MODE

				root_dev:				.word	0

				boot_flag:			.word	0xAA55

The	bootloader	must	fill	this	and	the	rest	of	the	headers	(only	marked	as		write		in	the	Linux	boot	protocol,	for	example	this)
with	values	which	it	either	got	from	command	line	or	calculated.	We	will	not	see	description	and	explanation	of	all	fields	of
kernel	setup	header,	we	will	get	back	to	it	when	kernel	uses	it.	Anyway,	you	can	find	description	of	any	field	in	the	boot
protocol.

As	we	can	see	in	kernel	boot	protocol,	the	memory	map	will	be	the	following	after	kernel	loading:

Bootloader
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									|	Protected-mode	kernel		|

100000			+------------------------+

									|	I/O	memory	hole								|

0A0000			+------------------------+

									|	Reserved	for	BIOS						|	Leave	as	much	as	possible	unused

									~																								~

									|	Command	line											|	(Can	also	be	below	the	X+10000	mark)

X+10000		+------------------------+

									|	Stack/heap													|	For	use	by	the	kernel	real-mode	code.

X+08000		+------------------------+

									|	Kernel	setup											|	The	kernel	real-mode	code.

									|	Kernel	boot	sector					|	The	kernel	legacy	boot	sector.

							X	+------------------------+

									|	Boot	loader												|	

So	after	the	bootloader	transferred	control	to	the	kernel,	it	starts	somewhere	at:

0x1000	+	X	+	sizeof(KernelBootSector)	+	1

where		X		is	the	address	of	kernel	bootsector	loaded.	In	my	case		X		is		0x10000	,	we	can	see	it	in	memory	dump:

Ok,	now	the	bootloader	has	loaded	Linux	kernel	into	the	memory,	filled	header	fields	and	jumped	to	it.	Now	we	can	move
directly	to	the	kernel	setup	code.

Finally	we	are	in	the	kernel.	Technically	kernel	didn't	run	yet,	first	of	all	we	need	to	setup	kernel,	memory	manager,	process
manager	etc.	Kernel	setup	execution	starts	from	arch/x86/boot/header.S	at	the	_start.	It	is	a	little	strange	at	the	first	look,
there	are	many	instructions	before	it.

Actually	Long	time	ago	Linux	kernel	had	its	own	bootloader,	but	now	if	you	run	for	example:

qemu-system-x86_64	vmlinuz-3.18-generic

You	will	see:

Start	of	Kernel	Setup
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Actually		header.S		starts	from	MZ	(see	image	above),	error	message	printing	and	following	PE	header:

#ifdef	CONFIG_EFI_STUB

#	"MZ",	MS-DOS	header

.byte	0x4d

.byte	0x5a

#endif

...

...

...

pe_header:

				.ascii	"PE"

				.word	0

It	needs	this	for	loading	the	operating	system	with	UEFI.	Here	we	will	not	see	how	it	works	(we	will	these	later	in	the	next
parts).

So	the	actual	kernel	setup	entry	point	is:

//	header.S	line	292

.globl	_start

_start:

Bootloader	(grub2	and	others)	knows	about	this	point	(	0x200		offset	from		MZ	)	and	makes	a	jump	directly	to	this	point,
despite	the	fact	that		header.S		starts	from		.bstext		section	which	prints	error	message:

//

//	arch/x86/boot/setup.ld

//

.	=	0;																				//	current	position

.bstext	:	{	*(.bstext)	}		//	put	.bstext	section	to	position	0

.bsdata	:	{	*(.bsdata)	}

So	kernel	setup	entry	point	is:
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				.globl	_start

_start:

				.byte	0xeb

				.byte	start_of_setup-1f

1:

				//

				//	rest	of	the	header

				//

Here	we	can	see		jmp		instruction	opcode	-		0xeb		to	the		start_of_setup-1f		point.		Nf		notation	means	following:		2f		refers	to
the	next	local		2:		label.	In	our	case	it	is	label		1		which	goes	right	after	jump.	It	contains	rest	of	setup	header	and	right	after
setup	header	we	can	see		.entrytext		section	which	starts	at		start_of_setup		label.

Actually	it's	the	first	code	which	starts	to	execute	besides	previous	jump	instruction.	After	kernel	setup	got	the	control	from
bootloader,	first		jmp		instruction	is	located	at		0x200		(first	512	bytes)	offset	from	the	start	of	kernel	real	mode.	This	we	can
read	in	Linux	kernel	boot	protocol	and	also	see	in	grub2	source	code:

		state.gs	=	state.fs	=	state.es	=	state.ds	=	state.ss	=	segment;

		state.cs	=	segment	+	0x20;

It	means	that	segment	registers	will	have	following	values	after	kernel	setup	starts	to	work:

fs	=	es	=	ds	=	ss	=	0x1000

cs	=	0x1020

for	my	case	when	kernel	loaded	at		0x10000	.

After	jump	to		start_of_setup	,	it	needs	to	do	the	following	things:

Be	sure	that	all	values	of	all	segment	registers	are	equal
Setup	correct	stack	if	needed
Setup	bss
Jump	to	C	code	at	main.c

Let's	look	at	implementation.

First	of	all	it	ensures	that		ds		and		es		segment	registers	point	to	the	same	address	and	disable	interrupts	with		cli	
instruction:

				movw				%ds,	%ax

				movw				%ax,	%es

				cli

As	I	wrote	above,	grub2	loads	kernel	setup	code	at		0x10000		address	and		cs		at		0x1020		because	execution	doesn't	start
from	the	start	of	file,	but	from:

_start:

				.byte	0xeb

				.byte	start_of_setup-1f

Segment	registers	align
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	jump	,	which	is	512	bytes	offset	from	the	4d	5a.	Also	need	to	align		cs		from		0x10200		to		0x10000		as	all	other	segment
registers.	After	that	we	setup	the	stack:

				pushw				%ds

				pushw				$6f

				lretw

push		ds		value	to	stack,	and	address	of	6	label	and	execute		lretw		instruction.	When	we	call		lretw	,	it	loads	address	of
label		6		to	instruction	pointer	register	and		cs		with	value	of		ds	.	After	it	we	will	have		ds		and		cs		with	the	same	values.

Actually,	almost	all	of	the	setup	code	is	preparation	for	C	language	environment	in	the	real	mode.	The	next	step	is	checking
of		ss		register	value	and	making	of	correct	stack	if		ss		is	wrong:

				movw				%ss,	%dx

				cmpw				%ax,	%dx

				movw				%sp,	%dx

				je				2f

Generally,	it	can	be	3	different	cases:

	ss		has	valid	value	0x10000	(as	all	other	segment	registers	beside		cs	)
	ss		is	invalid	and		CAN_USE_HEAP		flag	is	set	(see	below)
	ss		is	invalid	and		CAN_USE_HEAP		flag	is	not	set	(see	below)

Let's	look	at	all	of	these	cases:

1.	 	ss		has	a	correct	address	(0x10000).	In	this	case	we	go	to	label	2:

2:					andw				$~3,	%dx

				jnz				3f

				movw				$0xfffc,	%dx

3:		movw				%ax,	%ss

				movzwl	%dx,	%esp

				sti

Here	we	can	see	aligning	of		dx		(contains		sp		given	by	bootloader)	to	4	bytes	and	checking	that	it	is	not	zero.	If	it	is	zero
we	put		0xfffc		(4	byte	aligned	address	before	maximum	segment	size	-	64	KB)	to		dx	.	If	it	is	not	zero	we	continue	to	use
	sp		given	by	bootloader	(0xf7f4	in	my	case).	After	this	we	put		ax		value	to		ss		which	stores	correct	segment	address
	0x10000		and	set	up	correct		sp	.	After	it	we	have	correct	stack:

Stack	Setup
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1.	 In	the	second	case	(	ss		!=		ds	),	first	of	all	put	_end	(address	of	end	of	setup	code)	value	in		dx	.	And	check		loadflags	
header	field	with		testb		instruction	too	see	if	we	can	use	heap	or	not.	loadflags	is	a	bitmask	header	which	is	defined
as:

#define	LOADED_HIGH								(1<<0)

#define	QUIET_FLAG								(1<<5)

#define	KEEP_SEGMENTS				(1<<6)

#define	CAN_USE_HEAP				(1<<7)

And	as	we	can	read	in	the	boot	protocol:

Field	name:				loadflags

		This	field	is	a	bitmask.

		Bit	7	(write):	CAN_USE_HEAP

				Set	this	bit	to	1	to	indicate	that	the	value	entered	in	the

				heap_end_ptr	is	valid.		If	this	field	is	clear,	some	setup	code

				functionality	will	be	disabled.

If		CAN_USE_HEAP		bit	is	set,	put		heap_end_ptr		to		dx		which	points	to		_end		and	add		STACK_SIZE		(minimal	stack	size	-	512
bytes)	to	it.	After	this	if		dx		is	not	carry,	jump	to		2		(it	will	not	be	carry,	dx	=	_end	+	512)	label	as	in	previous	case	and	make
correct	stack.

1.	 The	last	case	when		CAN_USE_HEAP		is	not	set,	we	just	use	minimal	stack	from		_end		to		_end	+	STACK_SIZE	:
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The	last	two	steps	that	need	to	happen	before	we	can	jump	to	the	main	C	code,	are	that	we	need	to	set	up	the	BSS	area,
and	check	the	"magic"	signature.	Firstly,	signature	checking:

cmpl				$0x5a5aaa55,	setup_sig

jne				setup_bad

This	simply	consists	of	comparing	the	setup_sig	against	the	magic	number		0x5a5aaa55	.	If	they	are	not	equal,	a	fatal	error	is
reported.

But	if	the	magic	number	matches,	knowing	we	have	a	set	of	correct	segment	registers,	and	a	stack,	we	need	only	setup	the
BSS	section	before	jumping	into	the	C	code.

The	BSS	section	is	used	for	storing	statically	allocated,	uninitialized,	data.	Linux	carefully	ensures	this	area	of	memory	is
first	blanked,	using	the	following	code:

				movw				$__bss_start,	%di

				movw				$_end+3,	%cx

				xorl				%eax,	%eax

				subw				%di,	%cx

				shrw				$2,	%cx

				rep;	stosl

First	of	all	the	__bss_start	address	is	moved	into		di	,	and	the		_end	+	3		address	(+3	-	aligns	to	4	bytes)	is	moved	into		cx	.
The		eax		register	is	cleared	(using	an		xor		instruction),	and	the	bss	section	size	(	cx	-	di	)	is	calculated	and	put	into		cx	.
Then,		cx		is	divided	by	four	(the	size	of	a	'word'),	and	the		stosl		instruction	is	repeatedly	used,	storing	the	value	of		eax	
(zero)	into	the	address	pointed	to	by		di	,	and	automatically	increasing		di		by	four	(this	occurs	until		cx		reaches	zero).	The
net	effect	of	this	code,	is	that	zeros	are	written	through	all	words	in	memory	from		__bss_start		to		_end	:

BSS	Setup
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That's	all,	we	have	the	stack,	BSS	and	now	we	can	jump	to	the		main()		C	function:

				calll	main

The		main()		function	is	located	in	arch/x86/boot/main.c.	What	will	be	there?	We	will	see	it	in	the	next	part.

This	is	the	end	of	the	first	part	about	Linux	kernel	internals.	If	you	have	questions	or	suggestions,	ping	me	in	twitter	0xAX,
drop	me	email	or	just	create	issue.	In	the	next	part	we	will	see	first	C	code	which	executes	in	Linux	kernel	setup,
implementation	of	memory	routines	as		memset	,		memcpy	,		earlyprintk		implementation	and	early	console	initialization	and
many	more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	PR	to	linux-internals.

Intel	80386	programmer's	reference	manual	1986
Minimal	Boot	Loader	for	Intel®	Architecture
8086
80386
Reset	vector
Real	mode
Linux	kernel	boot	protocol
CoreBoot	developer	manual
Ralf	Brown's	Interrupt	List
Power	supply
Power	good	signal

Jump	to	main

Conclusion

Links

Linux	Inside

18From	bootloader	to	kernel

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals/issues/new
https://github.com/0xAX/linux-internals
http://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/Real_mode
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://www.coreboot.org/Developer_Manual
http://www.ctyme.com/intr/int.htm
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_good_signal


We	started	to	dive	into	linux	kernel	internals	in	the	previous	part	and	saw	the	initial	part	of	the	kernel	setup	code.	We
stopped	at	the	first	call	to	the		main		function	(which	is	the	first	function	written	in	C)	from	arch/x86/boot/main.c.

In	this	part	we	will	continue	to	research	the	kernel	setup	code	and

see	what		protected	mode		is,
some	preparation	for	the	transition	into	it,
the	heap	and	console	initialization,
memory	detection,	cpu	validation,	keyboard	initialization
and	much	much	more.

So,	Let's	go	ahead.

Before	we	can	move	to	the	native	Intel64	Long	Mode,	the	kernel	must	switch	the	CPU	into	protected	mode.

What	is	protected	mode?	Protected	mode	was	first	added	to	the	x86	architecture	in	1982	and	was	the	main	mode	of	Intel
processors	from	the	80286	processor	until	Intel	64	and	long	mode	came.

The	main	reason	to	move	away	from	Real	mode	is	that	there	is	very	limited	access	to	the	RAM.	As	you	may	remember

from	the	previous	part,	there	is	only	220	bytes	or	1	Megabyte,	sometimes	even	only	640	Kilobytes	of	RAM	available	in	the
Real	mode.

Protected	mode	brought	many	changes,	but	the	main	one	is	the	difference	in	memory	management.	The	20-bit	address
bus	was	replaced	with	a	32-bit	address	bus.	It	allowed	access	to	4	Gigabytes	of	memory	vs	1	Megabyte	of	real	mode.	Also
paging	support	was	added,	which	you	can	read	about	in	the	next	sections.

Memory	management	in	Protected	mode	is	divided	into	two,	almost	independent	parts:

Segmentation
Paging

Here	we	will	only	see	segmentation.	Paging	will	be	discussed	in	the	next	sections.

As	you	can	read	in	the	previous	part,	addresses	consist	of	two	parts	in	real	mode:

Base	address	of	the	segment
Offset	from	the	segment	base

And	we	can	get	the	physical	address	if	we	know	these	two	parts	by:

PhysicalAddress	=	Segment	*	16	+	Offset

Memory	segmentation	was	completely	redone	in	protected	mode.	There	are	no	64	Kilobyte	fixed-size	segments.	Instead,
the	size	and	location	of	each	segment	is	described	by	an	associated	data	structure	called	Segment	Descriptor.	The

Kernel	booting	process.	Part	2.

First	steps	in	the	kernel	setup

Protected	mode
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segment	descriptors	are	stored	in	a	data	structure	called		Global	Descriptor	Table		(GDT).

The	GDT	is	a	structure	which	resides	in	memory.	It	has	no	fixed	place	in	the	memory	so,	its	address	is	stored	in	the	special
	GDTR		register.	Later	we	will	see	the	GDT	loading	in	the	Linux	kernel	code.	There	will	be	an	operation	for	loading	it	into
memory,	something	like:

lgdt	gdt

where	the		lgdt		instruction	loads	the	base	address	and	limit(size)	of	global	descriptor	table	to	the		GDTR		register.		GDTR		is	a
48-bit	register	and	consists	of	two	parts:

size(16-bit)	of	global	descriptor	table;
address(32-bit)	of	the	global	descriptor	table.

As	mentioned	above	the	GDT	contains		segment	descriptors		which	describe	memory	segments.	Each	descriptor	is	64-bits
in	size.	The	general	scheme	of	a	descriptor	is:

31										24								19						16														7												0

------------------------------------------------------------

|													|	|B|	|A|							|	|			|	|0|E|W|A|												|

|	BASE	31:24		|G|/|L|V|	LIMIT	|P|DPL|S|		TYPE	|	BASE	23:16	|	4

|													|	|D|	|L|	19:16	|	|			|	|1|C|R|A|												|

------------------------------------------------------------

|																													|																												|

|								BASE	15:0												|							LIMIT	15:0											|	0

|																													|																												|

------------------------------------------------------------

Don't	worry,	I	know	it	looks	a	little	scary	after	real	mode,	but	it's	easy.	For	example	LIMIT	15:0	means	that	bit	0-15	of	the
Descriptor	contain	the	value	for	the	limit.	The	rest	of	it	is	in	LIMIT	16:19.	So,	the	size	of	Limit	is	0-19	i.e	20-bits.	Let's	take	a
closer	look	at	it:

1.	 Limit[20-bits]	is	at	0-15,16-19	bits.	It	defines		length_of_segment	-	1	.	It	depends	on		G	(Granularity)	bit.

if		G		(bit	55)	is	0	and	segment	limit	is	0,	the	size	of	the	segment	is	1	Byte
if		G		is	1	and	segment	limit	is	0,	the	size	of	the	segment	is	4096	Bytes
if		G		is	0	and	segment	limit	is	0xfffff,	the	size	of	the	segment	is	1	Megabyte
if		G		is	1	and	segment	limit	is	0xfffff,	the	size	of	the	segment	is	4	Gigabytes

So,	it	means	that	if

if	G	is	0,	Limit	is	interpreted	in	terms	of	1	Byte	and	the	maximum	size	of	the	segment	can	be	1	Megabyte.
if	G	is	1,	Limit	is	interpreted	in	terms	of	4096	Bytes	=	4	KBytes	=	1	Page	and	the	maximum	size	of	the	segment
can	be	4	Gigabytes.	Actually	when	G	is	1,	the	value	of	Limit	is	shifted	to	the	left	by	12	bits.	So,	20	bits	+	12	bits	=

32	bits	and	232	=	4	Gigabytes.
2.	 Base[32-bits]	is	at	(0-15,	32-39	and	56-63	bits).	It	defines	the	physical	address	of	the	segment's	starting	location.

3.	 Type/Attribute	(40-47	bits)	defines	the	type	of	segment	and	kinds	of	access	to	it.

	S		flag	at	bit	44	specifies	descriptor	type.	If		S		is	0	then	this	segment	is	a	system	segment,	whereas	if		S		is	1	then
this	is	a	code	or	data	segment	(Stack	segments	are	data	segments	which	must	be	read/write	segments).

To	determine	if	the	segment	is	a	code	or	data	segment	we	can	check	its	Ex(bit	43)	Attribute	marked	as	0	in	the	above
diagram.	If	it	is	0,	then	the	segment	is	a	Data	segment	otherwise	it	is	a	code	segment.

A	segment	can	be	of	one	of	the	following	types:
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|											Type	Field								|	Descriptor	Type	|	Description

|-----------------------------|-----------------|------------------

|	Decimal																					|																	|

|													0				E				W			A	|																	|

|	0											0				0				0			0	|	Data												|	Read-Only

|	1											0				0				0			1	|	Data												|	Read-Only,	accessed

|	2											0				0				1			0	|	Data												|	Read/Write

|	3											0				0				1			1	|	Data												|	Read/Write,	accessed

|	4											0				1				0			0	|	Data												|	Read-Only,	expand-down

|	5											0				1				0			1	|	Data												|	Read-Only,	expand-down,	accessed

|	6											0				1				1			0	|	Data												|	Read/Write,	expand-down

|	7											0				1				1			1	|	Data												|	Read/Write,	expand-down,	accessed

|																		C				R			A	|																	|

|	8											1				0				0			0	|	Code												|	Execute-Only

|	9											1				0				0			1	|	Code												|	Execute-Only,	accessed

|	10										1				0				1			0	|	Code												|	Execute/Read

|	11										1				0				1			1	|	Code												|	Execute/Read,	accessed

|	12										1				1				0			0	|	Code												|	Execute-Only,	conforming

|	14										1				1				0			1	|	Code												|	Execute-Only,	conforming,	accessed

|	13										1				1				1			0	|	Code												|	Execute/Read,	conforming

|	15										1				1				1			1	|	Code												|	Execute/Read,	conforming,	accessed

As	we	can	see	the	first	bit(bit	43)	is		0		for	a	data	segment	and		1		for	a	code	segment.	The	next	three	bits(40,	41,	42,	43)
are	either		EWA	(Expansion	Writable	Accessible)	or	CRA(Conforming	Readable	Accessible).

if	E(bit	42)	is	0,	expand	up	other	wise	expand	down.	Read	more	here.
if	W(bit	41)(for	Data	Segments)	is	1,	write	access	is	allowed	otherwise	not.	Note	that	read	access	is	always	allowed	on
data	segments.
A(bit	40)	-	Whether	the	segment	is	accessed	by	processor	or	not.
C(bit	43)	is	conforming	bit(for	code	selectors).	If	C	is	1,	the	segment	code	can	be	executed	from	a	lower	level	privilege
for	e.g	user	level.	If	C	is	0,	it	can	only	be	executed	from	the	same	privilege	level.
R(bit	41)(for	code	segments).	If	1	read	access	to	segment	is	allowed	otherwise	not.	Write	access	is	never	allowed	to
code	segments.

1.	 DPL[2-bits]	(Descriptor	Privilege	Level)	is	at	bits	45-46.	It	defines	the	privilege	level	of	the	segment.	It	can	be	0-3
where	0	is	the	most	privileged.

2.	 P	flag(bit	47)	-	indicates	if	the	segment	is	present	in	memory	or	not.	If	P	is	0,	the	segment	will	be	presented	as	invalid
and	the	processor	will	refuse	to	read	this	segment.

3.	 AVL	flag(bit	52)	-	Available	and	reserved	bits.	It	is	ignored	in	Linux.

4.	 L	flag(bit	53)	-	indicates	whether	a	code	segment	contains	native	64-bit	code.	If	1	then	the	code	segment	executes	in
64	bit	mode.

5.	 D/B	flag(bit	54)	-	Default/Big	flag	represents	the	operand	size	i.e	16/32	bits.	If	it	is	set	then	32	bit	otherwise	16.

Segment	registers	don't	contain	the	base	address	of	the	segment	as	in	real	mode.	Instead	they	contain	a	special	structure	-
	Segment	Selector	.	Each	Segment	Descriptor	has	an	associated	Segment	Selector.		Segment	Selector		is	a	16-bit	structure:

-----------------------------

|							Index				|	TI	|	RPL	|

-----------------------------

Where,

Index	shows	the	index	number	of	the	descriptor	in	the	GDT.
TI(Table	Indicator)	shows	where	to	search	for	the	descriptor.	If	it	is	0	then	search	in	the	Global	Descriptor	Table(GDT)
otherwise	it	will	look	in	Local	Descriptor	Table(LDT).
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And	RPL	is	Requester's	Privilege	Level.

Every	segment	register	has	a	visible	and	hidden	part.

Visible	-	Segment	Selector	is	stored	here
Hidden	-	Segment	Descriptor(base,	limit,	attributes,	flags)

The	following	steps	are	needed	to	get	the	physical	address	in	the	protected	mode:

The	segment	selector	must	be	loaded	in	one	of	the	segment	registers
The	CPU	tries	to	find	a	segment	descriptor	by	GDT	address	+	Index	from	selector	and	load	the	descriptor	into	the
hidden	part	of	the	segment	register
Base	address	(from	segment	descriptor)	+	offset	will	be	the	linear	address	of	the	segment	which	is	the	physical
address	(if	paging	is	disabled).

Schematically	it	will	look	like	this:

The	algorithm	for	the	transition	from	real	mode	into	protected	mode	is:

Disable	interrupts
Describe	and	load	GDT	with		lgdt		instruction
Set	PE	(Protection	Enable)	bit	in	CR0	(Control	Register	0)
Jump	to	protected	mode	code

We	will	see	the	complete	transition	to	protected	mode	in	the	linux	kernel	in	the	next	part,	but	before	we	can	move	to
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protected	mode,	we	need	to	do	some	more	preparations.

Let's	look	at	arch/x86/boot/main.c.	We	can	see	some	routines	there	which	perform	keyboard	initialization,	heap
initialization,	etc...	Let's	take	a	look.

We	will	start	from	the		main		routine	in	"main.c".	First	function	which	is	called	in		main		is		copy_boot_params(void)	.	It	copies
the	kernel	setup	header	into	the	field	of	the		boot_params		structure	which	is	defined	in	the
arch/x86/include/uapi/asm/bootparam.h.

The		boot_params		structure	contains	the		struct	setup_header	hdr		field.	This	structure	contains	the	same	fields	as	defined	in
linux	boot	protocol	and	is	filled	by	the	boot	loader	and	also	at	kernel	compile/build	time.		copy_boot_params		does	two	things:

1.	 Copies		hdr		from	header.S	to	the		boot_params		structure	in		setup_header		field

2.	 Updates	pointer	to	the	kernel	command	line	if	the	kernel	was	loaded	with	the	old	command	line	protocol.

Note	that	it	copies		hdr		with		memcpy		function	which	is	defined	in	the	copy.S	source	file.	Let's	have	a	look	inside:

GLOBAL(memcpy)

				pushw				%si

				pushw				%di

				movw				%ax,	%di

				movw				%dx,	%si

				pushw				%cx

				shrw				$2,	%cx

				rep;	movsl

				popw				%cx

				andw				$3,	%cx

				rep;	movsb

				popw				%di

				popw				%si

				retl

ENDPROC(memcpy)

Yeah,	we	just	moved	to	C	code	and	now	assembly	again	:)	First	of	all	we	can	see	that		memcpy		and	other	routines	which	are
defined	here,	start	and	end	with	the	two	macros:		GLOBAL		and		ENDPROC	.		GLOBAL		is	described	in
arch/x86/include/asm/linkage.h	which	defines		globl		directive	and	the	label	for	it.		ENDPROC		is	described	in
include/linux/linkage.h	which	marks		name		symbol	as	function	name	and	ends	with	the	size	of	the		name		symbol.

Implementation	of		memcpy		is	easy.	At	first,	it	pushes	values	from		si		and		di		registers	to	the	stack	because	their	values	will
change	during	the		memcpy	,	so	it	pushes	them	on	the	stack	to	preserve	their	values.		memcpy		(and	other	functions	in	copy.S)
use		fastcall		calling	conventions.	So	it	gets	its	incoming	parameters	from	the		ax	,		dx		and		cx		registers.	Calling		memcpy	
looks	like	this:

memcpy(&boot_params.hdr,	&hdr,	sizeof	hdr);

So,

	ax		will	contain	the	address	of	the		boot_params.hdr		in	bytes
	dx		will	contain	the	address	of		hdr		in	bytes
	cx		will	contain	the	size	of		hdr		in	bytes.

	memcpy		puts	the	address	of		boot_params.hdr		into		si		and	saves	the	size	on	the	stack.	After	this	it	shifts	to	the	right	on	2
size	(or	divide	on	4)	and	copies	from		si		to		di		by	4	bytes.	After	this	we	restore	the	size	of		hdr		again,	align	it	by	4	bytes

Copying	boot	parameters	into	the	"zeropage"
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and	copy	the	rest	of	the	bytes	from		si		to		di		byte	by	byte	(if	there	is	more).	Restore		si		and		di		values	from	the	stack	in
the	end	and	after	this	copying	is	finished.

After	the		hdr		is	copied	into		boot_params.hdr	,	the	next	step	is	console	initialization	by	calling	the		console_init		function
which	is	defined	in	arch/x86/boot/early_serial_console.c.

It	tries	to	find	the		earlyprintk		option	in	the	command	line	and	if	the	search	was	successful,	it	parses	the	port	address	and
baud	rate	of	the	serial	port	and	initializes	the	serial	port.	Value	of		earlyprintk		command	line	option	can	be	one	of	the:

*	serial,0x3f8,115200

*	serial,ttyS0,115200

*	ttyS0,115200

After	serial	port	initialization	we	can	see	the	first	output:

if	(cmdline_find_option_bool("debug"))

								puts("early	console	in	setup	code\n");

The	definition	of		puts		is	in	tty.c.	As	we	can	see	it	prints	character	by	character	in	a	loop	by	calling	the		putchar		function.
Let's	look	into	the		putchar		implementation:

void	__attribute__((section(".inittext")))	putchar(int	ch)

{

				if	(ch	==	'\n')

								putchar('\r');

				bios_putchar(ch);

				if	(early_serial_base	!=	0)

								serial_putchar(ch);

}

	__attribute__((section(".inittext")))		means	that	this	code	will	be	in	the		.inittext		section.	We	can	find	it	in	the	linker	file
setup.ld.

First	of	all,		put_char		checks	for	the		\n		symbol	and	if	it	is	found,	prints		\r		before.	After	that	it	outputs	the	character	on	the
VGA	screen	by	calling	the	BIOS	with	the		0x10		interrupt	call:

static	void	__attribute__((section(".inittext")))	bios_putchar(int	ch)

{

				struct	biosregs	ireg;

				initregs(&ireg);

				ireg.bx	=	0x0007;

				ireg.cx	=	0x0001;

				ireg.ah	=	0x0e;

				ireg.al	=	ch;

				intcall(0x10,	&ireg,	NULL);

}

Here		initregs		takes	the		biosregs		structure	and	first	fills		biosregs		with	zeros	using	the		memset		function	and	then	fills	it
with	register	values.

Console	initialization
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				memset(reg,	0,	sizeof	*reg);

				reg->eflags	|=	X86_EFLAGS_CF;

				reg->ds	=	ds();

				reg->es	=	ds();

				reg->fs	=	fs();

				reg->gs	=	gs();

Let's	look	at	the	memset	implementation:

GLOBAL(memset)

				pushw				%di

				movw				%ax,	%di

				movzbl				%dl,	%eax

				imull				$0x01010101,%eax

				pushw				%cx

				shrw				$2,	%cx

				rep;	stosl

				popw				%cx

				andw				$3,	%cx

				rep;	stosb

				popw				%di

				retl

ENDPROC(memset)

As	you	can	read	above,	it	uses	the		fastcall		calling	conventions	like	the		memcpy		function,	which	means	that	the	function
gets	parameters	from		ax	,		dx		and		cx		registers.

Generally		memset		is	like	a	memcpy	implementation.	It	saves	the	value	of	the		di		register	on	the	stack	and	puts	the		ax	
value	into		di		which	is	the	address	of	the		biosregs		structure.	Next	is	the		movzbl		instruction,	which	copies	the		dl		value	to
the	low	2	bytes	of	the		eax		register.	The	remaining	2	high	bytes	of		eax		will	be	filled	with	zeros.

The	next	instruction	multiplies		eax		with		0x01010101	.	It	needs	to	because		memset		will	copy	4	bytes	at	the	same	time.	For
example,	we	need	to	fill	a	structure	with		0x7		with	memset.		eax		will	contain		0x00000007		value	in	this	case.	So	if	we	multiply
	eax		with		0x01010101	,	we	will	get		0x07070707		and	now	we	can	copy	these	4	bytes	into	the	structure.		memset		uses		rep;
stosl		instructions	for	copying		eax		into		es:di	.

The	rest	of	the		memset		function	does	almost	the	same	as		memcpy	.

After	that		biosregs		structure	is	filled	with		memset	,		bios_putchar		calls	the	0x10	interrupt	which	prints	a	character.
Afterwards	it	checks	if	the	serial	port	was	initialized	or	not	and	writes	a	character	there	with	serial_putchar	and		inb/outb	
instructions	if	it	was	set.

After	the	stack	and	bss	section	were	prepared	in	header.S	(see	previous	part),	the	kernel	needs	to	initialize	the	heap	with
the		init_heap		function.

First	of	all		init_heap		checks	the		CAN_USE_HEAP		flag	from	the		loadflags		in	the	kernel	setup	header	and	calculates	the	end	of
the	stack	if	this	flag	was	set:

				char	*stack_end;

				if	(boot_params.hdr.loadflags	&	CAN_USE_HEAP)	{

								asm("leal	%P1(%%esp),%0"

												:	"=r"	(stack_end)	:	"i"	(-STACK_SIZE));

or	in	other	words		stack_end	=	esp	-	STACK_SIZE	.

Heap	initialization
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Then	there	is	the		heap_end		calculation:

				heap_end	=	(char	*)((size_t)boot_params.hdr.heap_end_ptr	+	0x200);

which	means		heap_end_ptr		or		_end		+		512	(	0x200h	).	And	at	the	last	is	checked	that	whether		heap_end		is	greater	than
	stack_end	.	If	it	is	then		stack_end		is	assigned	to		heap_end		to	make	them	equal.

Now	the	heap	is	initialized	and	we	can	use	it	using	the		GET_HEAP		method.	We	will	see	how	it	is	used,	how	to	use	it	and	how
the	it	is	implemented	in	the	next	posts.

The	next	step	as	we	can	see	is	cpu	validation	by		validate_cpu		from	arch/x86/boot/cpu.c.

It	calls	the		check_cpu		function	and	passes	cpu	level	and	required	cpu	level	to	it	and	checks	that	the	kernel	launches	on	the
right	cpu	level.

check_cpu(&cpu_level,	&req_level,	&err_flags);

				if	(cpu_level	<	req_level)	{

				...

				return	-1;

				}

	check_cpu		checks	the	cpu's	flags,	presence	of	long	mode	in	case	of	x86_64(64-bit)	CPU,	checks	the	processor's	vendor
and	makes	preparation	for	certain	vendors	like	turning	off	SSE+SSE2	for	AMD	if	they	are	missing,	etc.

The	next	step	is	memory	detection	by	the		detect_memory		function.		detect_memory		basically	provides	a	map	of	available
RAM	to	the	cpu.	It	uses	different	programming	interfaces	for	memory	detection	like		0xe820	,		0xe801		and		0x88	.	We	will	see
only	the	implementation	of	0xE820	here.

Let's	look	into	the		detect_memory_e820		implementation	from	the	arch/x86/boot/memory.c	source	file.	First	of	all,	the
	detect_memory_e820		function	initializes	the		biosregs		structure	as	we	saw	above	and	fills	registers	with	special	values	for	the
	0xe820		call:

				initregs(&ireg);

				ireg.ax		=	0xe820;

				ireg.cx		=	sizeof	buf;

				ireg.edx	=	SMAP;

				ireg.di		=	(size_t)&buf;

	ax		contains	the	number	of	the	function	(0xe820	in	our	case)
	cx		register	contains	size	of	the	buffer	which	will	contain	data	about	memory
	edx		must	contain	the		SMAP		magic	number
	es:di		must	contain	the	address	of	the	buffer	which	will	contain	memory	data
	ebx		has	to	be	zero.

Next	is	a	loop	where	data	about	the	memory	will	be	collected.	It	starts	from	the	call	of	the		0x15		BIOS	interrupt,	which	writes
one	line	from	the	address	allocation	table.	For	getting	the	next	line	we	need	to	call	this	interrupt	again	(which	we	do	in	the
loop).	Before	the	next	call		ebx		must	contain	the	value	returned	previously:

CPU	validation

Memory	detection
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				intcall(0x15,	&ireg,	&oreg);

				ireg.ebx	=	oreg.ebx;

Ultimately,	it	does	iterations	in	the	loop	to	collect	data	from	the	address	allocation	table	and	writes	this	data	into	the
	e820entry		array:

start	of	memory	segment
size	of	memory	segment
type	of	memory	segment	(which	can	be	reserved,	usable	and	etc...).

You	can	see	the	result	of	this	in	the		dmesg		output,	something	like:

[				0.000000]	e820:	BIOS-provided	physical	RAM	map:

[				0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009fbff]	usable

[				0.000000]	BIOS-e820:	[mem	0x000000000009fc00-0x000000000009ffff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000000f0000-0x00000000000fffff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x000000003ffdffff]	usable

[				0.000000]	BIOS-e820:	[mem	0x000000003ffe0000-0x000000003fffffff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000fffc0000-0x00000000ffffffff]	reserved

The	next	step	is	the	initialization	of	the	keyboard	with	the	call	of	the		keyboard_init()		function.	At	first		keyboard_init	
initializes	registers	using	the		initregs		function	and	calling	the	0x16	interrupt	for	getting	the	keyboard	status.

				initregs(&ireg);

				ireg.ah	=	0x02;								/*	Get	keyboard	status	*/

				intcall(0x16,	&ireg,	&oreg);

				boot_params.kbd_status	=	oreg.al;

After	this	it	calls	0x16	again	to	set	repeat	rate	and	delay.

				ireg.ax	=	0x0305;				/*	Set	keyboard	repeat	rate	*/

				intcall(0x16,	&ireg,	NULL);

The	next	couple	of	steps	are	queries	for	different	parameters.	We	will	not	dive	into	details	about	these	queries,	but	will	get
back	to	it	in	later	parts.	Let's	take	a	short	look	at	these	functions:

The	query_mca	routine	calls	the	0x15	BIOS	interrupt	to	get	the	machine	model	number,	sub-model	number,	BIOS	revision
level,	and	other	hardware-specific	attributes:

int	query_mca(void)

{

				struct	biosregs	ireg,	oreg;

				u16	len;

				initregs(&ireg);

				ireg.ah	=	0xc0;

				intcall(0x15,	&ireg,	&oreg);

				if	(oreg.eflags	&	X86_EFLAGS_CF)

Keyboard	initialization

Querying
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								return	-1;				/*	No	MCA	present	*/

				set_fs(oreg.es);

				len	=	rdfs16(oreg.bx);

				if	(len	>	sizeof(boot_params.sys_desc_table))

								len	=	sizeof(boot_params.sys_desc_table);

				copy_from_fs(&boot_params.sys_desc_table,	oreg.bx,	len);

				return	0;

}

It	fills	the		ah		register	with		0xc0		and	calls	the		0x15		BIOS	interruption.	After	the	interrupt	execution	it	checks	the	carry	flag
and	if	it	is	set	to	1,	the	BIOS	doesn't	support	(MCA)[https://en.wikipedia.org/wiki/Micro_Channel_architecture].	If	carry	flag
is	set	to	0,		ES:BX		will	contain	a	pointer	to	the	system	information	table,	which	looks	like	this:

Offset				Size				Description				)

	00h				WORD				number	of	bytes	following

	02h				BYTE				model	(see	#00515)

	03h				BYTE				submodel	(see	#00515)

	04h				BYTE				BIOS	revision:	0	for	first	release,	1	for	2nd,	etc.

	05h				BYTE				feature	byte	1	(see	#00510)

	06h				BYTE				feature	byte	2	(see	#00511)

	07h				BYTE				feature	byte	3	(see	#00512)

	08h				BYTE				feature	byte	4	(see	#00513)

	09h				BYTE				feature	byte	5	(see	#00514)

---AWARD	BIOS---

	0Ah		N	BYTEs				AWARD	copyright	notice

---Phoenix	BIOS---

	0Ah				BYTE				???	(00h)

	0Bh				BYTE				major	version

	0Ch				BYTE				minor	version	(BCD)

	0Dh		4	BYTEs				ASCIZ	string	"PTL"	(Phoenix	Technologies	Ltd)

---Quadram	Quad386---

	0Ah	17	BYTEs				ASCII	signature	string	"Quadram	Quad386XT"

---Toshiba	(Satellite	Pro	435CDS	at	least)---

	0Ah		7	BYTEs				signature	"TOSHIBA"

	11h				BYTE				???	(8h)

	12h				BYTE				???	(E7h)	product	ID???	(guess)

	13h		3	BYTEs				"JPN"

Next	we	call	the		set_fs		routine	and	pass	the	value	of	the		es		register	to	it.	Implementation	of		set_fs		is	pretty	simple:

static	inline	void	set_fs(u16	seg)

{

				asm	volatile("movw	%0,%%fs"	:	:	"rm"	(seg));

}

This	function	contains	inline	assembly	which	gets	the	value	of	the		seg		parameter	and	puts	it	into	the		fs		register.	There
are	many	functions	in	boot.h	like		set_fs	,	for	example		set_gs	,		fs	,		gs		for	reading	a	value	in	it	etc...

At	the	end	of		query_mca		it	just	copies	the	table	which	pointed	to	by		es:bx		to	the		boot_params.sys_desc_table	.

The	next	step	is	getting	Intel	SpeedStep	information	by	calling	the		query_ist		function.	First	of	all	it	checks	the	CPU	level
and	if	it	is	correct,	calls		0x15		for	getting	info	and	saves	the	result	to		boot_params	.

The	following	query_apm_bios	function	gets	Advanced	Power	Management	information	from	the	BIOS.		query_apm_bios	
calls	the		0x15		BIOS	interruption	too,	but	with		ah		=		0x53		to	check		APM		installation.	After	the		0x15		execution,
	query_apm_bios		functions	checks		PM		signature	(it	must	be		0x504d	),	carry	flag	(it	must	be	0	if		APM		supported)	and	value	of
the		cx		register	(if	it's	0x02,	protected	mode	interface	is	supported).

Next	it	calls	the		0x15		again,	but	with		ax	=	0x5304		for	disconnecting	the		APM		interface	and	connecting	the	32-bit	protected
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mode	interface.	In	the	end	it	fills		boot_params.apm_bios_info		with	values	obtained	from	the	BIOS.

Note	that		query_apm_bios		will	be	executed	only	if		CONFIG_APM		or		CONFIG_APM_MODULE		was	set	in	configuration	file:

#if	defined(CONFIG_APM)	||	defined(CONFIG_APM_MODULE)

				query_apm_bios();

#endif

The	last	is	the		query_edd		function,	which	queries		Enhanced	Disk	Drive		information	from	the	BIOS.	Let's	look	into	the
	query_edd		implementation.

First	of	all	it	reads	the	edd	option	from	kernel's	command	line	and	if	it	was	set	to		off		then		query_edd		just	returns.

If	EDD	is	enabled,		query_edd		goes	over	BIOS-supported	hard	disks	and	queries	EDD	information	in	the	following	loop:

				for	(devno	=	0x80;	devno	<	0x80+EDD_MBR_SIG_MAX;	devno++)	{

								if	(!get_edd_info(devno,	&ei)	&&	boot_params.eddbuf_entries	<	EDDMAXNR)	{

												memcpy(edp,	&ei,	sizeof	ei);

												edp++;

												boot_params.eddbuf_entries++;

								}

								...

								...

								...

where		0x80		is	the	first	hard	drive	and	the	value	of		EDD_MBR_SIG_MAX		macro	is	16.	It	collects	data	into	the	array	of	edd_info
structures.		get_edd_info		checks	that	EDD	is	present	by	invoking	the		0x13		interrupt	with		ah		as		0x41		and	if	EDD	is
present,		get_edd_info		again	calls	the		0x13		interrupt,	but	with		ah		as		0x48		and		si		containing	the	address	of	the	buffer
where	EDD	information	will	be	stored.

This	is	the	end	of	the	second	part	about	Linux	kernel	internals.	In	the	next	part	we	will	see	video	mode	setting	and	the	rest
of	preparations	before	transition	to	protected	mode	and	directly	transitioning	into	it.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	a	PR	to	linux-internals.
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This	is	the	third	part	of	the		Kernel	booting	process		series.	In	the	previous	part,	we	stopped	right	before	the	call	of	the
	set_video		routine	from	the	main.c.	In	this	part,	we	will	see:

video	mode	initialization	in	the	kernel	setup	code,
preparation	before	switching	into	the	protected	mode,
transition	to	protected	mode

NOTE	If	you	don't	know	anything	about	protected	mode,	you	can	find	some	information	about	it	in	the	previous	part.	Also
there	are	a	couple	of	links	which	can	help	you.

As	I	wrote	above,	we	will	start	from	the		set_video		function	which	defined	in	the	arch/x86/boot/video.c	source	code	file.	We
can	see	that	it	starts	by	first	getting	the	video	mode	from	the		boot_params.hdr		structure:

u16	mode	=	boot_params.hdr.vid_mode;

which	we	filled	in	the		copy_boot_params		function	(you	can	read	about	it	in	the	previous	post).		vid_mode		is	an	obligatory	field
which	is	filled	by	the	bootloader.	You	can	find	information	about	it	in	the	kernel	boot	protocol:

Offset				Proto				Name								Meaning

/Size

01FA/2				ALL								vid_mode				Video	mode	control

As	we	can	read	from	the	linux	kernel	boot	protocol:

vga=<mode>

				<mode>	here	is	either	an	integer	(in	C	notation,	either

				decimal,	octal,	or	hexadecimal)	or	one	of	the	strings

				"normal"	(meaning	0xFFFF),	"ext"	(meaning	0xFFFE)	or	"ask"

				(meaning	0xFFFD).		This	value	should	be	entered	into	the

				vid_mode	field,	as	it	is	used	by	the	kernel	before	the	command

				line	is	parsed.

So	we	can	add		vga		option	to	the	grub	or	another	bootloader	configuration	file	and	it	will	pass	this	option	to	the	kernel
command	line.	This	option	can	have	different	values	as	we	can	mentioned	in	the	description,	for	example	it	can	be	an
integer	number		0xFFFD		or		ask	.	If	you	pass		ask		t		vga	,	you	will	see	a	menu	like	this:

Kernel	booting	process.	Part	3.
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which	will	ask	to	select	a	video	mode.	We	will	look	at	it's	implementation,	but	before	diving	into	the	implementation	we	have
to	look	at	some	other	things.

Earlier	we	saw	definitions	of	different	data	types	like		u16		etc.	in	the	kernel	setup	code.	Let's	look	on	a	couple	of	data	types
provided	by	the	kernel:

Type char short int long u8 u16 u32 u64

Size 1 2 4 8 1 2 4 8

If	you	read	source	code	of	the	kernel,	you'll	see	these	very	often	and	so	it	will	be	good	to	remember	them.

After	we	have		vid_mode		from	the		boot_params.hdr		in	the		set_video		function	we	can	see	call	to		RESET_HEAP		function.
	RESET_HEAP		is	a	macro	which	defined	in	the	boot.h.	It	is	defined	as:

#define	RESET_HEAP()	((void	*)(	HEAP	=	_end	))

If	you	have	read	the	second	part,	you	will	remember	that	we	initialized	the	heap	with	the		init_heap		function.	We	have	a
couple	of	utility	functions	for	heap	which	are	defined	in		boot.h	.	They	are:

#define	RESET_HEAP()

As	we	saw	just	above	it	resets	the	heap	by	setting	the		HEAP		variable	equal	to		_end	,	where		_end		is	just		extern	char
_end[];	

Kernel	data	types

Heap	API
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Next	is		GET_HEAP		macro:

#define	GET_HEAP(type,	n)	\

				((type	*)__get_heap(sizeof(type),__alignof__(type),(n)))

for	heap	allocation.	It	calls	internal	function		__get_heap		with	3	parameters:

size	of	a	type	in	bytes,	which	need	be	allocated
	__alignof__(type)		shows	how	type	of	variable	is	aligned
	n		tells	how	many	bytes	to	allocate

Implementation	of		__get_heap		is:

static	inline	char	*__get_heap(size_t	s,	size_t	a,	size_t	n)

{

				char	*tmp;

				HEAP	=	(char	*)(((size_t)HEAP+(a-1))	&	~(a-1));

				tmp	=	HEAP;

				HEAP	+=	s*n;

				return	tmp;

}

and	further	we	will	see	its	usage,	something	like:

saved.data	=	GET_HEAP(u16,	saved.x	*	saved.y);

Let's	try	to	understand	how		__get_heap		works.	We	can	see	here	that		HEAP		(which	is	equal	to		_end		after		RESET_HEAP()	)	is
the	address	of	aligned	memory	according	to		a		parameter.	After	it	we	save	memory	address	from		HEAP		to	the		tmp	
variable,	move		HEAP		to	the	end	of	allocated	block	and	return		tmp		which	is	start	address	of	allocated	memory.

And	the	last	function	is:

static	inline	bool	heap_free(size_t	n)

{

				return	(int)(heap_end	-	HEAP)	>=	(int)n;

}

which	subtracts	value	of	the		HEAP		from	the		heap_end		(we	calculated	it	in	the	previous	part)	and	returns	1	if	there	is	enough
memory	for		n	.

That's	all.	Now	we	have	simple	API	for	heap	and	can	setup	video	mode.

Now	we	can	move	directly	to	video	mode	initialization.	We	stopped	at	the		RESET_HEAP()		call	in	the		set_video		function.	Next
is	the	call	to		store_mode_params		which	stores	video	mode	parameters	in	the		boot_params.screen_info		structure	which	is
defined	in	the	include/uapi/linux/screen_info.h.

If	we	will	look	at		store_mode_params		function,	we	can	see	that	it	starts	with	the	call	to		store_cursor_position		function.	As
you	can	understand	from	the	function	name,	it	gets	information	about	cursor	and	stores	it.

First	of	all		store_cursor_position		initializes	two	variables	which	has	type	-		biosregs	,	with		AH	=	0x3		and	calls		0x10		BIOS

Setup	video	mode
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interruption.	After	interruption	successfully	executed,	it	returns	row	and	column	in	the		DL		and		DH		registers.	Row	and
column	will	be	stored	in	the		orig_x		and		orig_y		fields	from	the	the		boot_params.screen_info		structure.

After		store_cursor_position		executed,		store_video_mode		function	will	be	called.	It	just	gets	current	video	mode	and	stores	it
in	the		boot_params.screen_info.orig_video_mode	.

After	this,	it	checks	current	video	mode	and	sets	the		video_segment	.	After	the	BIOS	transfers	control	to	the	boot	sector,	the
following	addresses	are	for	video	memory:

0xB000:0x0000					32	Kb					Monochrome	Text	Video	Memory

0xB800:0x0000					32	Kb					Color	Text	Video	Memory

So	we	set	the		video_segment		variable	to		0xB000		if	current	video	mode	is	MDA,	HGC,	VGA	in	monochrome	mode	or		0xB800	
in	color	mode.	After	setup	of	the	address	of	the	video	segment	font	size	needs	to	be	stored	in	the
	boot_params.screen_info.orig_video_points		with:

set_fs(0);

font_size	=	rdfs16(0x485);

boot_params.screen_info.orig_video_points	=	font_size;

First	of	all	we	put	0	to	the		FS		register	with		set_fs		function.	We	already	saw	functions	like		set_fs		in	the	previous	part.
They	are	all	defined	in	the	boot.h.	Next	we	read	value	which	is	located	at	address		0x485		(this	memory	location	is	used	to
get	the	font	size)	and	save	font	size	in	the		boot_params.screen_info.orig_video_points	.

	x	=	rdfs16(0x44a);

	y	=	(adapter	==	ADAPTER_CGA)	?	25	:	rdfs8(0x484)+1;

Next	we	get	amount	of	columns	by		0x44a		and	rows	by	address		0x484		and	store	them	in	the
	boot_params.screen_info.orig_video_cols		and		boot_params.screen_info.orig_video_lines	.	After	this,	execution	of	the
	store_mode_params		is	finished.

Next	we	can	see		save_screen		function	which	just	saves	screen	content	to	the	heap.	This	function	collects	all	data	which	we
got	in	the	previous	functions	like	rows	and	columns	amount	etc.	and	stores	it	in	the		saved_screen		structure,	which	is
defined	as:

static	struct	saved_screen	{

				int	x,	y;

				int	curx,	cury;

				u16	*data;

}	saved;

It	then	checks	whether	the	heap	has	free	space	for	it	with:

if	(!heap_free(saved.x*saved.y*sizeof(u16)+512))

								return;

and	allocates	space	in	the	heap	if	it	is	enough	and	stores		saved_screen		in	it.

The	next	call	is		probe_cards(0)		from	the	arch/x86/boot/video-mode.c.	It	goes	over	all	video_cards	and	collects	number	of
modes	provided	by	the	cards.	Here	is	the	interesting	moment,	we	can	see	the	loop:
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for	(card	=	video_cards;	card	<	video_cards_end;	card++)	{

		/*	collecting	number	of	modes	here	*/

}

but		video_cards		not	declared	anywhere.	Answer	is	simple:	Every	video	mode	presented	in	the	x86	kernel	setup	code	has
definition	like	this:

static	__videocard	video_vga	=	{

				.card_name				=	"VGA",

				.probe								=	vga_probe,

				.set_mode				=	vga_set_mode,

};

where		__videocard		is	a	macro:

#define	__videocard	struct	card_info	__attribute__((used,section(".videocards")))

which	means	that		card_info		structure:

struct	card_info	{

				const	char	*card_name;

				int	(*set_mode)(struct	mode_info	*mode);

				int	(*probe)(void);

				struct	mode_info	*modes;

				int	nmodes;

				int	unsafe;

				u16	xmode_first;

				u16	xmode_n;

};

is	in	the		.videocards		segment.	Let's	look	in	the	arch/x86/boot/setup.ld	linker	file,	we	can	see	there:

				.videocards				:	{

								video_cards	=	.;

								*(.videocards)

								video_cards_end	=	.;

				}

It	means	that		video_cards		is	just	memory	address	and	all		card_info		structures	are	placed	in	this	segment.	It	means	that	all
	card_info		structures	are	placed	between		video_cards		and		video_cards_end	,	so	we	can	use	it	in	a	loop	to	go	over	all	of	it.
After		probe_cards		executed	we	have	all	structures	like		static	__videocard	video_vga		with	filled		nmodes		(number	of	video
modes).

After		probe_cards		execution	is	finished,	we	move	to	the	main	loop	in	the		set_video		function.	There	is	infinite	loop	which
tries	to	setup	video	mode	with	the		set_mode		function	or	prints	a	menu	if	we	passed		vid_mode=ask		to	the	kernel	command
line	or	video	mode	is	undefined.

The		set_mode		function	is	defined	in	the	video-mode.c	and	gets	only	one	parameter,		mode		which	is	the	number	of	video
mode	(we	got	it	or	from	the	menu	or	in	the	start	of	the		setup_video	,	from	kernel	setup	header).

	set_mode		function	checks	the		mode		and	calls		raw_set_mode		function.	The		raw_set_mode		calls		set_mode		function	for	selected
card	i.e.		card->set_mode(struct	mode_info*)	.	We	can	get	access	to	this	function	from	the		card_info		structure,	every	video
mode	defines	this	structure	with	values	filled	depending	upon	the	video	mode	(for	example	for		vga		it	is		video_vga.set_mode	
function,	see	above	example	of		card_info		structure	for		vga	).		video_vga.set_mode		is		vga_set_mode	,	which	checks	the	vga
mode	and	calls	the	respective	function:
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static	int	vga_set_mode(struct	mode_info	*mode)

{

				vga_set_basic_mode();

				force_x	=	mode->x;

				force_y	=	mode->y;

				switch	(mode->mode)	{

				case	VIDEO_80x25:

								break;

				case	VIDEO_8POINT:

								vga_set_8font();

								break;

				case	VIDEO_80x43:

								vga_set_80x43();

								break;

				case	VIDEO_80x28:

								vga_set_14font();

								break;

				case	VIDEO_80x30:

								vga_set_80x30();

								break;

				case	VIDEO_80x34:

								vga_set_80x34();

								break;

				case	VIDEO_80x60:

								vga_set_80x60();

								break;

				}

				return	0;

}

Every	function	which	setups	video	mode,	just	calls		0x10		BIOS	interrupt	with	certain	value	in	the		AH		register.

After	we	have	set	video	mode,	we	pass	it	to	the		boot_params.hdr.vid_mode	.

Next		vesa_store_edid		is	called.	This	function	simply	stores	the	EDID	(Extended	Display	Identification	Data)	information	for
kernel	use.	After	this		store_mode_params		is	called	again.	Lastly,	if		do_restore		is	set,	screen	is	restored	to	an	earlier	state.

After	this	we	have	set	video	mode	and	now	we	can	switch	to	the	protected	mode.

We	can	see	the	last	function	call	-		go_to_protected_mode		in	the	main.c.	As	the	comment	says:		Do	the	last	things	and
invoke	protected	mode	,	so	let's	see	these	last	things	and	switch	into	the	protected	mode.

	go_to_protected_mode		defined	in	the	arch/x86/boot/pm.c.	It	contains	some	functions	which	make	last	preparations	before
we	can	jump	into	protected	mode,	so	let's	look	on	it	and	try	to	understand	what	they	do	and	how	it	works.

First	is	the	call	to		realmode_switch_hook		function	in	the		go_to_protected_mode	.	This	function	invokes	real	mode	switch	hook
if	it	is	present	and	disables	NMI.	Hooks	are	used	if	bootloader	runs	in	a	hostile	environment.	You	can	read	more	about
hooks	in	the	boot	protocol	(see	ADVANCED	BOOT	LOADER	HOOKS).

	readlmode_swtich		hook	presents	pointer	to	the	16-bit	real	mode	far	subroutine	which	disables	non-maskable	interrupts.
After		realmode_switch		hook	(it	isn't	present	for	me)	is	checked,	disabling	of	Non-Maskable	Interrupts(NMI)	occurs:

asm	volatile("cli");

outb(0x80,	0x70);				/*	Disable	NMI	*/

io_delay();

At	first	there	is	inline	assembly	instruction	with		cli		instruction	which	clears	the	interrupt	flag	(	IF	).	After	this,	external

Last	preparation	before	transition	into	protected	mode
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interrupts	are	disabled.	Next	line	disables	NMI	(non-maskable	interrupt).

Interrupt	is	a	signal	to	the	CPU	which	is	emitted	by	hardware	or	software.	After	getting	signal,	CPU	suspends	current
instructions	sequence,	saves	its	state	and	transfers	control	to	the	interrupt	handler.	After	interrupt	handler	has	finished	it's
work,	it	transfers	control	to	the	interrupted	instruction.	Non-maskable	interrupts	(NMI)	are	interrupts	which	are	always
processed,	independently	of	permission.	It	cannot	be	ignored	and	is	typically	used	to	signal	for	non-recoverable	hardware
errors.	We	will	not	dive	into	details	of	interrupts	now,	but	will	discuss	it	in	the	next	posts.

Let's	get	back	to	the	code.	We	can	see	that	second	line	is	writing		0x80		(disabled	bit)	byte	to	the		0x70		(CMOS	Address
register).	After	that	call	to	the		io_delay		function	occurs.		io_delay		causes	a	small	delay	and	looks	like:

static	inline	void	io_delay(void)

{

				const	u16	DELAY_PORT	=	0x80;

				asm	volatile("outb	%%al,%0"	:	:	"dN"	(DELAY_PORT));

}

Outputting	any	byte	to	the	port		0x80		should	delay	exactly	1	microsecond.	So	we	can	write	any	value	(value	from		AL	
register	in	our	case)	to	the		0x80		port.	After	this	delay		realmode_switch_hook		function	has	finished	execution	and	we	can
move	to	the	next	function.

The	next	function	is		enable_a20	,	which	enables	A20	line.	This	function	is	defined	in	the	arch/x86/boot/a20.c	and	it	tries	to
enable	A20	gate	with	different	methods.	The	first	is		a20_test_short		function	which	checks	is	A20	already	enabled	or	not
with		a20_test		function:

static	int	a20_test(int	loops)

{

				int	ok	=	0;

				int	saved,	ctr;

				set_fs(0x0000);

				set_gs(0xffff);

				saved	=	ctr	=	rdfs32(A20_TEST_ADDR);

				while	(loops--)	{

								wrfs32(++ctr,	A20_TEST_ADDR);

								io_delay();				/*	Serialize	and	make	delay	constant	*/

								ok	=	rdgs32(A20_TEST_ADDR+0x10)	^	ctr;

								if	(ok)

												break;

				}

				wrfs32(saved,	A20_TEST_ADDR);

				return	ok;

}

First	of	all	we	put		0x0000		to	the		FS		register	and		0xffff		to	the		GS		register.	Next	we	read	value	by	address		A20_TEST_ADDR	
(it	is		0x200	)	and	put	this	value	into		saved		variable	and		ctr	.

Next	we	write	updated		ctr		value	into		fs:gs		with		wrfs32		function,	then	delay	for	1ms,	and	then	read	the	value	into	the		GS	
register	by	address		A20_TEST_ADDR+0x10	,	if	it's	not	zero	we	already	have	enabled	A20	line.	If	A20	is	disabled,	we	try	to
enable	it	with	a	different	method	which	you	can	find	in	the		a20.c	.	For	example	with	call	of		0x15		BIOS	interrupt	with
	AH=0x2041		etc.

If		enabled_a20		function	finished	with	fail,	print	an	error	message	and	call	function		die	.	You	can	remember	it	from	the	first
source	code	file	where	we	started	-	arch/x86/boot/header.S:

die:
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				hlt

				jmp				die

				.size				die,	.-die

After	the	A20	gate	is	successfully	enabled,		reset_coprocessor		function	is	called:

outb(0,	0xf0);

outb(0,	0xf1);

This	function	clears	the	Math	Coprocessor	by	writing		0		to		0xf0		and	then	resets	it	by	writing		0		to		0xf1	.

After	this		mask_all_interrupts		function	is	called:

outb(0xff,	0xa1);							/*	Mask	all	interrupts	on	the	secondary	PIC	*/

outb(0xfb,	0x21);							/*	Mask	all	but	cascade	on	the	primary	PIC	*/

This	masks	all	interrupts	on	the	secondary	PIC	(Programmable	Interrupt	Controller)	and	primary	PIC	except	for	IRQ2	on	the
primary	PIC.

And	after	all	of	these	preparations,	we	can	see	actual	transition	into	protected	mode.

Now	we	setup	the	Interrupt	Descriptor	table	(IDT).		setup_idt	:

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

which	setups	the	Interrupt	Descriptor	Table	(describes	interrupt	handlers	and	etc.).	For	now	IDT	is	not	installed	(we	will	see
it	later),	but	now	we	just	load	IDT	with		lidtl		instruction.		null_idt		contains	address	and	size	of	IDT,	but	now	they	are	just
zero.		null_idt		is	a		gdt_ptr		structure,	it	as	defined	as:

struct	gdt_ptr	{

				u16	len;

				u32	ptr;

}	__attribute__((packed));

where	we	can	see	-	16-bit	length(	len	)	of	IDT	and	32-bit	pointer	to	it	(More	details	about	IDT	and	interruptions	we	will	see	in
the	next	posts).		__attribute__((packed))		means	here	that	size	of		gdt_ptr		minimum	as	required.	So	size	of	the		gdt_ptr	
will	be	6	bytes	here	or	48	bits.	(Next	we	will	load	pointer	to	the		gdt_ptr		to	the		GDTR		register	and	you	might	remember	from
the	previous	post	that	it	is	48-bits	in	size).

Next	is	the	setup	of	Global	Descriptor	Table	(GDT).	We	can	see		setup_gdt		function	which	sets	up	GDT	(you	can	read
about	it	in	the	Kernel	booting	process.	Part	2.).	There	is	definition	of	the		boot_gdt		array	in	this	function,	which	contains
definition	of	the	three	segments:

Setup	Interrupt	Descriptor	Table

Setup	Global	Descriptor	Table
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				static	const	u64	boot_gdt[]	__attribute__((aligned(16)))	=	{

								[GDT_ENTRY_BOOT_CS]	=	GDT_ENTRY(0xc09b,	0,	0xfffff),

								[GDT_ENTRY_BOOT_DS]	=	GDT_ENTRY(0xc093,	0,	0xfffff),

								[GDT_ENTRY_BOOT_TSS]	=	GDT_ENTRY(0x0089,	4096,	103),

				};

For	code,	data	and	TSS	(Task	State	Segment).	We	will	not	use	task	state	segment	for	now,	it	was	added	there	to	make
Intel	VT	happy	as	we	can	see	in	the	comment	line	(if	you're	interesting	you	can	find	commit	which	describes	it	-	here).	Let's
look	on		boot_gdt	.	First	of	all	note	that	it	has		__attribute__((aligned(16)))		attribute.	It	means	that	this	structure	will	be
aligned	by	16	bytes.	Let's	look	at	a	simple	example:

#include	<stdio.h>

struct	aligned	{

				int	a;

}__attribute__((aligned(16)));

struct	nonaligned	{

				int	b;

};

int	main(void)

{

				struct	aligned				a;

				struct	nonaligned	na;

				printf("Not	aligned	-	%zu	\n",	sizeof(na));

				printf("Aligned	-	%zu	\n",	sizeof(a));

				return	0;

}

Technically	structure	which	contains	one		int		field,	must	be	4	bytes,	but	here		aligned		structure	will	be	16	bytes:

$	gcc	test.c	-o	test	&&	test

Not	aligned	-	4

Aligned	-	16

	GDT_ENTRY_BOOT_CS		has	index	-	2	here,		GDT_ENTRY_BOOT_DS		is		GDT_ENTRY_BOOT_CS	+	1		and	etc.	It	starts	from	2,	because	first	is
a	mandatory	null	descriptor	(index	-	0)	and	the	second	is	not	used	(index	-	1).

	GDT_ENTRY		is	a	macro	which	takes	flags,	base	and	limit	and	builds	GDT	entry.	For	example	let's	look	on	the	code	segment
entry.		GDT_ENTRY		takes	following	values:

base	-	0
limit	-	0xfffff
flags	-	0xc09b

What	does	it	mean?	Segment's	base	address	is	0,	limit	(size	of	segment)	is	-		0xffff		(1	MB).	Let's	look	on	flags.	It	is
	0xc09b		and	it	will	be:

1100	0000	1001	1011

in	binary.	Let's	try	to	understand	what	every	bit	means.	We	will	go	through	all	bits	from	left	to	right:

1	-	(G)	granularity	bit
1	-	(D)	if	0	16-bit	segment;	1	=	32-bit	segment
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0	-	(L)	executed	in	64	bit	mode	if	1
0	-	(AVL)	available	for	use	by	system	software
0000	-	4	bit	length	19:16	bits	in	the	descriptor
1	-	(P)	segment	presence	in	memory
00	-	(DPL)	-	privilege	level,	0	is	the	highest	privilege
1	-	(S)	code	or	data	segment,	not	a	system	segment
101	-	segment	type	execute/read/
1	-	accessed	bit

You	can	read	more	about	every	bit	in	the	previous	post	or	in	the	Intel®	64	and	IA-32	Architectures	Software	Developer's
Manuals	3A.

After	this	we	get	length	of	GDT	with:

gdt.len	=	sizeof(boot_gdt)-1;

We	get	size	of		boot_gdt		and	subtract	1	(the	last	valid	address	in	the	GDT).

Next	we	get	pointer	to	the	GDT	with:

gdt.ptr	=	(u32)&boot_gdt	+	(ds()	<<	4);

Here	we	just	get	address	of		boot_gdt		and	add	it	to	address	of	data	segment	left-shifted	by	4	bits	(remember	we're	in	the
real	mode	now).

Lastly	we	execute		lgdtl		instruction	to	load	GDT	into	GDTR	register:

asm	volatile("lgdtl	%0"	:	:	"m"	(gdt));

It	is	the	end	of		go_to_protected_mode		function.	We	loaded	IDT,	GDT,	disable	interruptions	and	now	can	switch	CPU	into
protected	mode.	The	last	step	we	call		protected_mode_jump		function	with	two	parameters:

protected_mode_jump(boot_params.hdr.code32_start,	(u32)&boot_params	+	(ds()	<<	4));

which	is	defined	in	the	arch/x86/boot/pmjump.S.	It	takes	two	parameters:

address	of	protected	mode	entry	point
address	of		boot_params	

Let's	look	inside		protected_mode_jump	.	As	I	wrote	above,	you	can	find	it	in	the		arch/x86/boot/pmjump.S	.	First	parameter	will
be	in		eax		register	and	second	is	in		edx	.

First	of	all	we	put	address	of		boot_params		in	the		esi		register	and	address	of	code	segment	register		cs		(0x1000)	in	the
	bx	.	After	this	we	shift		bx		by	4	bits	and	add	address	of	label		2		to	it	(we	will	have	physical	address	of	label		2		in	the		bx	
after	it)	and	jump	to	label		1	.	Next	we	put	data	segment	and	task	state	segment	in	the		cs		and		di		registers	with:

movw				$__BOOT_DS,	%cx

Actual	transition	into	protected	mode
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movw				$__BOOT_TSS,	%di

As	you	can	read	above		GDT_ENTRY_BOOT_CS		has	index	2	and	every	GDT	entry	is	8	byte,	so		CS		will	be		2	*	8	=	16	,
	__BOOT_DS		is	24	etc.

Next	we	set		PE		(Protection	Enable)	bit	in	the		CR0		control	register:

movl				%cr0,	%edx

orb				$X86_CR0_PE,	%dl

movl				%edx,	%cr0

and	make	long	jump	to	the	protected	mode:

				.byte				0x66,	0xea

2:				.long				in_pm32

				.word				__BOOT_CS

where

	0x66		is	the	operand-size	prefix	which	allows	to	mix	16-bit	and	32-bit	code,
	0xea		-	is	the	jump	opcode,
	in_pm32		is	the	segment	offset
	__BOOT_CS		is	the	code	segment.

After	this	we	are	finally	in	the	protected	mode:

.code32

.section	".text32","ax"

Let's	look	at	the	first	steps	in	the	protected	mode.	First	of	all	we	setup	data	segment	with:

movl				%ecx,	%ds

movl				%ecx,	%es

movl				%ecx,	%fs

movl				%ecx,	%gs

movl				%ecx,	%ss

If	you	read	with	attention,	you	can	remember	that	we	saved		$__BOOT_DS		in	the		cx		register.	Now	we	fill	with	it	all	segment
registers	besides		cs		(	cs		is	already		__BOOT_CS	).	Next	we	zero	out	all	general	purpose	registers	besides		eax		with:

xorl				%ecx,	%ecx

xorl				%edx,	%edx

xorl				%ebx,	%ebx

xorl				%ebp,	%ebp

xorl				%edi,	%edi

And	jump	to	the	32-bit	entry	point	in	the	end:

jmpl				*%eax

Remember	that		eax		contains	address	of	the	32-bit	entry	(we	passed	it	as	first	parameter	into		protected_mode_jump	).
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That's	all	we're	in	the	protected	mode	and	stop	at	it's	entry	point.	What	happens	next,	we	will	see	in	the	next	part.

It	is	the	end	of	the	third	part	about	linux	kernel	internals.	In	next	part	we	will	see	first	steps	in	the	protected	mode	and
transition	into	the	long	mode.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any
mistakes,	please	send	me	a	PR	with	corrections	at	linux-internals.

VGA
VESA	BIOS	Extensions
Data	structure	alignment
Non-maskable	interrupt
A20
GCC	designated	inits
GCC	type	attributes
Previous	part

Conclusion

Links
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It	is	the	fourth	part	of	the		Kernel	booting	process		and	we	will	see	first	steps	in	the	protected	mode,	like	checking	that	cpu
supports	the	long	mode	and	SSE,	paging	and	initialization	of	the	page	tables	and	transition	to	the	long	mode	in	in	the	end
of	this	part.

NOTE:	will	be	much	assembly	code	in	this	part,	so	if	you	have	poor	knowledge,	read	a	book	about	it

In	the	previous	part	we	stopped	at	the	jump	to	the	32-bit	entry	point	in	the	arch/x86/boot/pmjump.S:

jmpl				*%eax

Remind	that		eax		register	contains	the	address	of	the	32-bit	entry	point.	We	can	read	about	this	point	from	the	linux	kernel
x86	boot	protocol:

When	using	bzImage,	the	protected-mode	kernel	was	relocated	to	0x100000

And	now	we	can	make	sure	that	it	is	true.	Let's	look	on	registers	value	in	32-bit	entry	point:

eax												0x100000				1048576

ecx												0x0								0

edx												0x0								0

ebx												0x0								0

esp												0x1ff5c				0x1ff5c

ebp												0x0								0x0

esi												0x14470				83056

edi												0x0								0

eip												0x100000				0x100000

eflags									0x46								[	PF	ZF	]

cs													0x10				16

ss													0x18				24

ds													0x18				24

es													0x18				24

fs													0x18				24

gs													0x18				24

We	can	see	here	that		cs		register	contains	-		0x10		(as	you	can	remember	from	the	previous	part,	it	is	the	second	index	in
the	Global	Descriptor	Table),		eip		register	is		0x100000		and	base	address	of	the	all	segments	include	code	segment	is	zero.
So	we	can	get	physical	address,	it	will	be		0:0x100000		or	just		0x100000	,	as	in	boot	protocol.	Now	let's	start	with	32-bit	entry
point.

We	can	find	definition	of	the	32-bit	entry	point	in	the	arch/x86/boot/compressed/head_64.S:

				__HEAD

				.code32

ENTRY(startup_32)

....

....

Kernel	booting	process.	Part	4.

Transition	to	64-bit	mode

32-bit	entry	point
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....

ENDPROC(startup_32)

First	of	all	why		compressed		directory?	Actually		bzimage		is	a	gzipped		vmlinux	+	header	+	kernel	setup	code	.	We	saw	the
kernel	setup	code	in	the	all	of	previous	parts.	So,	the	main	goal	of	the		head_64.S		is	to	prepare	for	entering	long	mode,	enter
into	it	and	decompress	the	kernel.	We	will	see	all	of	these	steps	besides	kernel	decompression	in	this	part.

Also	you	can	note	that	there	are	two	files	in	the		arch/x86/boot/compressed		directory:

head_32.S
head_64.S

We	will	see	only		head_64.S		because	we	are	learning	linux	kernel	for		x86_64	.		head_32.S		even	not	compiled	in	our	case.
Let's	look	on	the	arch/x86/boot/compressed/Makefile,	we	can	see	there	following	target:

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

				$(obj)/string.o	$(obj)/cmdline.o	\

				$(obj)/piggy.o	$(obj)/cpuflags.o

Note	on		$(obj)/head_$(BITS).o	.	It	means	that	compilation	of	the	head_{32,64}.o	depends	on	value	of	the		$(BITS)	.	We	can
find	it	in	the	other	Makefile	-	arch/x86/kernel/Makefile:

ifeq	($(CONFIG_X86_32),y)

								BITS	:=	32

								...

								...

else

								...

								...

								BITS	:=	64

endif

Now	we	know	where	to	start,	so	let's	do	it.

As	i	wrote	above,	we	start	in	the	arch/x86/boot/compressed/head_64.S.	First	of	all	we	can	see	before		startup_32		definition:

				__HEAD

				.code32

ENTRY(startup_32)

	__HEAD		defined	in	the	include/linux/init.h	and	looks	as:

#define	__HEAD								.section				".head.text","ax"

We	can	find	this	section	in	the	arch/x86/boot/compressed/vmlinux.lds.S	linker	script:

SECTIONS

{

				.	=	0;

				.head.text	:	{

								_head	=	.	;

Reload	the	segments	if	need
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								HEAD_TEXT

								_ehead	=	.	;

				}

Note	on		.	=	0;	.		.		is	a	special	variable	of	linker	-	location	counter.	Assigning	a	value	to	it,	is	an	offset	relative	to	the	offset
of	the	segment.	As	we	assign	zero	to	it,	we	can	read	from	comments:

Be	careful	parts	of	head_64.S	assume	startup_32	is	at	address	0.

Ok,	now	we	know	where	we	are,	and	now	the	best	time	to	look	inside	the		startup_32		function.

In	the	start	of	the		startup_32		we	can	see	the		cld		instruction	which	clears		DF		flag.	After	this,	string	operations	like		stosb	
and	other	will	increment	the	index	registers		esi		or		edi	.

The	Next	we	can	see	the	check	of		KEEP_SEGMENTS		flag	from		loadflags	.	If	you	remember	we	already	saw		loadflags		in	the
	arch/x86/boot/head.S		(there	we	checked	flag		CAN_USE_HEAP	).	Now	we	need	to	check		KEEP_SEGMENTS		flag.	We	can	find
description	of	this	flag	in	the	linux	boot	protocol:

Bit	6	(write):	KEEP_SEGMENTS

		Protocol:	2.07+

		-	If	0,	reload	the	segment	registers	in	the	32bit	entry	point.

		-	If	1,	do	not	reload	the	segment	registers	in	the	32bit	entry	point.

				Assume	that	%cs	%ds	%ss	%es	are	all	set	to	flat	segments	with

				a	base	of	0	(or	the	equivalent	for	their	environment).

and	if		KEEP_SEGMENTS		is	not	set,	we	need	to	set		ds	,		ss		and		es		registers	to	flat	segment	with	base	0.	That	we	do:

				testb	$(1	<<	6),	BP_loadflags(%esi)

				jnz	1f

				cli

				movl				$(__BOOT_DS),	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

remember	that		__BOOT_DS		is		0x18		(index	of	data	segment	in	the	Global	Descriptor	Table).	If		KEEP_SEGMENTS		is	not	set,	we
jump	to	the	label		1f		or	update	segment	registers	with		__BOOT_DS		if	this	flag	is	set.

If	you	read	previous	the	part,	you	can	remember	that	we	already	updated	segment	registers	in	the
arch/x86/boot/pmjump.S,	so	why	we	need	to	set	up	it	again?	Actually	linux	kernel	has	also	32-bit	boot	protocol,	so
	startup_32		can	be	first	function	which	will	be	executed	right	after	a	bootloader	transfers	control	to	the	kernel.

As	we	checked		KEEP_SEGMENTS		flag	and	put	the	correct	value	to	the	segment	registers,	next	step	is	calculate	difference
between	where	we	loaded	and	compiled	to	run	(remember	that		setup.ld.S		contains		.	=	0		at	the	start	of	the	section):

				leal				(BP_scratch+4)(%esi),	%esp

				call				1f

1:		popl				%ebp

				subl				$1b,	%ebp

Here		esi		register	contains	address	of	the	boot_params	structure.		boot_params		contains	special	field		scratch		with	offset
	0x1e4	.	We	are	getting	address	of	the		scratch		field	+	4	bytes	and	put	it	to	the		esp		register	(we	will	use	it	as	stack	for	these
calculations).	After	this	we	can	see	call	instruction	and		1f		label	as	operand	of	it.	What	does	it	mean		call	?	It	means	that	it
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pushes		ebp		value	in	the	stack,	next		esp		value,	next	function	arguments	and	return	address	in	the	end.	After	this	we	pop
return	address	from	the	stack	into		ebp		register	(	ebp		will	contain	return	address)	and	subtract	address	of	the	previous	label
	1	.

After	this	we	have	address	where	we	loaded	in	the		ebp		-		0x100000	.

Now	we	can	setup	the	stack	and	verify	CPU	that	it	has	support	of	the	long	mode	and	SSE.

The	next	we	can	see	assembly	code	which	setups	new	stack	for	kernel	decompression:

				movl				$boot_stack_end,	%eax

				addl				%ebp,	%eax

				movl				%eax,	%esp

	boots_stack_end		is	in	the		.bss		section,	we	can	see	definition	of	it	in	the	end	of		head_64.S	:

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

First	of	all	we	put	address	of	the		boot_stack_end		into		eax		register	and	add	to	it	value	of	the		ebp		(remember	that		ebp		now
contains	address	where	we	loaded	-		0x100000	).	In	the	end	we	just	put		eax		value	into		esp		and	that's	all,	we	have	correct
stack	pointer.

The	next	step	is	CPU	verification.	Need	to	check	that	CPU	has	support	of		long	mode		and		SSE	:

				call				verify_cpu

				testl				%eax,	%eax

				jnz				no_longmode

It	just	calls		verify_cpu		function	from	the	arch/x86/kernel/verify_cpu.S	which	contains	a	couple	of	calls	of	the		cpuid	
instruction.		cpuid		is	instruction	which	is	used	for	getting	information	about	processor.	In	our	case	it	checks	long	mode	and
SSE	support	and	returns		0		on	success	or		1		on	fail	in	the		eax		register.

If		eax		is	not	zero,	we	jump	to	the		no_longmode		label	which	just	stops	the	CPU	with		hlt		instruction	while	any	hardware
interrupt	will	not	happen.

no_longmode:

1:

				hlt

				jmp					1b

We	set	stack,	cheked	CPU	and	now	can	move	on	the	next	step.

Stack	setup	and	CPU	verification

Calculate	relocation	address
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The	next	step	is	calculating	relocation	address	for	decompression	if	need.	We	can	see	following	assembly	code:

#ifdef	CONFIG_RELOCATABLE

				movl				%ebp,	%ebx

				movl				BP_kernel_alignment(%esi),	%eax

				decl				%eax

				addl				%eax,	%ebx

				notl				%eax

				andl				%eax,	%ebx

				cmpl				$LOAD_PHYSICAL_ADDR,	%ebx

				jge				1f

#endif

				movl				$LOAD_PHYSICAL_ADDR,	%ebx

1:

				addl				$z_extract_offset,	%ebx

First	of	all	note	on		CONFIG_RELOCATABLE		macro.	This	configuration	option	defined	in	the	arch/x86/Kconfig	and	as	we	can	read
from	it's	description:

This	builds	a	kernel	image	that	retains	relocation	information

so	it	can	be	loaded	someplace	besides	the	default	1MB.

Note:	If	CONFIG_RELOCATABLE=y,	then	the	kernel	runs	from	the	address

it	has	been	loaded	at	and	the	compile	time	physical	address

(CONFIG_PHYSICAL_START)	is	used	as	the	minimum	location.

In	short	words,	this	code	calculates	address	where	to	move	kernel	for	decompression	put	it	to		ebx		register	if	the	kernel	is
relocatable	or	bzimage	will	decompress	itself	above		LOAD_PHYSICAL_ADDR	.

Let's	look	on	the	code.	If	we	have		CONFIG_RELOCATABLE=n		in	our	kernel	configuration	file,	it	just	puts		LOAD_PHYSICAL_ADDR		to
the		ebx		register	and	adds		z_extract_offset		to		ebx	.	As		ebx		is	zero	for	now,	it	will	contain		z_extract_offset	.	Now	let's	try
to	understand	these	two	values.

	LOAD_PHYSICAL_ADDR		is	the	macro	which	defined	in	the	arch/x86/include/asm/boot.h	and	it	looks	like	this:

#define	LOAD_PHYSICAL_ADDR	((CONFIG_PHYSICAL_START	\

																+	(CONFIG_PHYSICAL_ALIGN	-	1))	\

																&	~(CONFIG_PHYSICAL_ALIGN	-	1))

Here	we	calculates	aligned	address	where	kernel	is	loaded	(	0x100000		or	1	megabyte	in	our	case).		PHYSICAL_ALIGN		is	an
alignment	value	to	which	kernel	should	be	aligned,	it	ranges	from		0x200000		to		0x1000000		for	x86_64.	With	the	default
values	we	will	get	2	megabytes	in	the		LOAD_PHYSICAL_ADDR	:

>>>	0x100000	+	(0x200000	-	1)	&	~(0x200000	-	1)

2097152

After	that	we	got	alignment	unit,	we	adds		z_extract_offset		(which	is		0xe5c000		in	my	case)	to	the	2	megabytes.	In	the	end
we	will	get	17154048	byte	offset.	You	can	find		z_extract_offset		in	the		arch/x86/boot/compressed/piggy.S	.	This	file
generated	in	compile	time	by	mkpiggy	program.

Now	let's	try	to	understand	the	code	if		CONFIG_RELOCATABLE		is		y	.

First	of	all	we	put		ebp		value	to	the		ebx		(remember	that		ebp		contains	address	where	we	loaded)	and		kernel_alignment	
field	from	kernel	setup	header	to	the		eax		register.		kernel_alignment		is	a	physical	address	of	alignment	required	for	the
kernel.	Next	we	do	the	same	as	in	the	previous	case	(when	kernel	is	not	relocatable),	but	we	just	use	value	of	the
	kernel_alignment		field	as	align	unit	and		ebx		(address	where	we	loaded)	as	base	address	instead	of		CONFIG_PHYSICAL_ALIGN	
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and		LOAD_PHYSICAL_ADDR	.

After	that	we	calculated	address,	we	compare	it	with		LOAD_PHYSICAL_ADDR		and	add		z_extract_offset		to	it	again	or	put
	LOAD_PHYSICAL_ADDR		in	the		ebx		if	calculated	address	is	less	than	we	need.

After	all	of	this	calculation	we	will	have		ebp		which	contains	address	where	we	loaded	and		ebx		with	address	where	to
move	kernel	for	decompression.

Now	we	need	to	do	the	last	preparations	before	we	can	see	transition	to	the	64-bit	mode.	At	first	we	need	to	update	Global
Descriptor	Table	for	this:

				leal				gdt(%ebp),	%eax

				movl				%eax,	gdt+2(%ebp)

				lgdt				gdt(%ebp)

Here	we	put	the	address	from		ebp		with		gdt		offset	to		eax		register,	next	we	put	this	address	into		ebp		with	offset		gdt+2		and
load	Global	Descriptor	Table	with	the		lgdt		instruction.

Let's	look	on	Global	Descriptor	Table	definition:

				.data

gdt:

				.word				gdt_end	-	gdt

				.long				gdt

				.word				0

				.quad				0x0000000000000000				/*	NULL	descriptor	*/

				.quad				0x00af9a000000ffff				/*	__KERNEL_CS	*/

				.quad				0x00cf92000000ffff				/*	__KERNEL_DS	*/

				.quad				0x0080890000000000				/*	TS	descriptor	*/

				.quad			0x0000000000000000				/*	TS	continued	*/

It	defined	in	the	same	file	in	the		.data		section.	It	contains	5	descriptors:	null	descriptor,	for	kernel	code	segment,	kernel
data	segment	and	two	task	descriptors.	We	already	loaded	GDT	in	the	previous	part,	we're	doing	almost	the	same	here,	but
descriptors	with		CS.L	=	1		and		CS.D	=	0		for	execution	in	the	64	bit	mode.

After	we	have	loaded	Global	Descriptor	Table,	we	must	enable	PAE	mode	with	putting	value	of		cr4		register	into		eax	,
setting	5	bit	in	it	and	load	it	again	in	the		cr4		:

				movl				%cr4,	%eax

				orl				$X86_CR4_PAE,	%eax

				movl				%eax,	%cr4

Now	we	finished	almost	with	all	preparations	before	we	can	move	into	64-bit	mode.	The	last	step	is	to	build	page	tables,	but
before	some	information	about	long	mode.

Long	mode	is	the	native	mode	for	x86_64	processors.	First	of	all	let's	look	on	some	difference	between		x86_64		and		x86	.

It	provides	some	features	as:

Preparation	before	entering	long	mode

Long	mode
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New	8	general	purpose	registers	from		r8		to		r15		+	all	general	purpose	registers	are	64-bit	now
64-bit	instruction	pointer	-		RIP	
New	operating	mode	-	Long	mode
64-Bit	Addresses	and	Operands
RIP	Relative	Addressing	(we	will	see	example	if	it	in	the	next	parts)

Long	mode	is	an	extension	of	legacy	protected	mode.	It	consists	from	two	sub-modes:

64-bit	mode
compatibility	mode

To	switch	into	64-bit	mode	we	need	to	do	following	things:

enable	PAE	(we	already	did	it,	see	above)
build	page	tables	and	load	the	address	of	top	level	page	table	into		cr3		register
enable		EFER.LME	
enable	paging

We	already	enabled		PAE		with	setting	the	PAE	bit	in	the		cr4		register.	Now	let's	look	on	paging.

Before	we	can	move	in	the	64-bit	mode,	we	need	to	build	page	tables,	so,	let's	look	on	building	of	early	4G	boot	page
tables.

NOTE:	I	will	not	describe	theory	of	virtual	memory	here,	if	you	need	to	know	more	about	it,	see	links	in	the	end

Linux	kernel	uses	4-level	paging,	and	generally	we	build	6	page	tables:

One	PML4	table
One	PDP	table
Four	Page	Directory	tables

Let's	look	on	the	implementation	of	it.	First	of	all	we	clear	buffer	for	the	page	tables	in	the	memory.	Every	table	is	4096
bytes,	so	we	need	24	kilobytes	buffer:

				leal				pgtable(%ebx),	%edi

				xorl				%eax,	%eax

				movl				$((4096*6)/4),	%ecx

				rep				stosl

We	put	address	which	stored	in		ebx		(remember	that		ebx		contains	the	address	where	to	relocate	kernel	for
decompression)	with		pgtable		offset	to	the		edi		register.		pgtable		defined	in	the	end	of		head_64.S		and	looks:

				.section	".pgtable","a",@nobits

				.balign	4096

pgtable:

				.fill	6*4096,	1,	0

It	is	in	the		.pgtable		section	and	it	size	is	24	kilobytes.	After	we	put	address	to	the		edi	,	we	zero	out		eax		register	and
writes	zeros	to	the	buffer	with		rep	stosl		instruction.

Now	we	can	build	top	level	page	table	-		PML4		with:

Early	page	tables	initialization
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				leal				pgtable	+	0(%ebx),	%edi

				leal				0x1007	(%edi),	%eax

				movl				%eax,	0(%edi)

Here	we	get	address	which	stored	in	the		ebx		with		pgtable		offset	and	put	it	to	the		edi	.	Next	we	put	this	address	with	offset
	0x1007		to	the		eax		register.		0x1007		is	4096	bytes	(size	of	the	PML4)	+	7	(PML4	entry	flags	-		PRESENT+RW+USER	)	and	puts
	eax		to	the		edi	.	After	this	manipulations		edi		will	contain	the	address	of	the	first	Page	Directory	Pointer	Entry	with	flags	-
	PRESENT+RW+USER	.

In	the	next	step	we	build	4	Page	Directory	entry	in	the	Page	Directory	Pointer	table,	where	first	entry	will	be	with		0x7		flags
and	other	with		0x8	:

				leal				pgtable	+	0x1000(%ebx),	%edi

				leal				0x1007(%edi),	%eax

				movl				$4,	%ecx

1:		movl				%eax,	0x00(%edi)

				addl				$0x00001000,	%eax

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

We	put	base	address	of	the	page	directory	pointer	table	to	the		edi		and	address	of	the	first	page	directory	pointer	entry	to
the		eax	.	Put		4		to	the		ecx		register,	it	will	be	counter	in	the	following	loop	and	write	the	address	of	the	first	page	directory
pointer	table	entry	to	the		edi		register.

After	this		edi		will	contain	address	of	the	first	page	directory	pointer	entry	with	flags		0x7	.	Next	we	just	calculates	address
of	following	page	directory	pointer	entries	with	flags		0x8		and	writes	their	addresses	to	the		edi	.

The	next	step	is	building	of		2048		page	table	entries	by	2	megabytes:

				leal				pgtable	+	0x2000(%ebx),	%edi

				movl				$0x00000183,	%eax

				movl				$2048,	%ecx

1:		movl				%eax,	0(%edi)

				addl				$0x00200000,	%eax

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

Here	we	do	almost	the	same	that	in	the	previous	example,	just	first	entry	will	be	with	flags	-		$0x00000183		-		PRESENT	+	WRITE
+	MBZ		and	all	another	with		0x8	.	In	the	end	we	will	have	2048	pages	by	2	megabytes.

Our	early	page	table	structure	are	done,	it	maps	4	gigabytes	of	memory	and	now	we	can	put	address	of	the	high-level	page
table	-		PML4		to	the		cr3		control	register:

				leal				pgtable(%ebx),	%eax

				movl				%eax,	%cr3

That's	all	now	we	can	see	transition	to	the	long	mode.

First	of	all	we	need	to	set		EFER.LME		flag	in	the	MSR	to		0xC0000080	:

Transition	to	the	long	mode
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				movl				$MSR_EFER,	%ecx

				rdmsr

				btsl				$_EFER_LME,	%eax

				wrmsr

Here	we	put		MSR_EFER		flag	(which	defined	in	the	arch/x86/include/uapi/asm/msr-index.h)	to	the		ecx		register	and	call		rdmsr	
instruction	which	reads	MSR	register.	After		rdmsr		executed,	we	will	have	result	data	in	the		edx:eax		which	depends	on		ecx	
value.	We	check		EFER_LME		bit	with		btsl		instruction	and	write	data	from		eax		to	the		MSR		register	with		wrmsr		instruction.

In	next	step	we	push	address	of	the	kernel	segment	code	to	the	stack	(we	defined	it	in	the	GDT)	and	put	address	of	the
	startup_64		routine	to	the		eax	.

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

After	this	we	push	this	address	to	the	stack	and	enable	paging	with	setting		PG		and		PE		bits	in	the		cr0		register:

				movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

				movl				%eax,	%cr0

and	call:

lret

Remember	that	we	pushed	address	of	the		startup_64		function	to	the	stack	in	the	previous	step,	and	after		lret		instruction,
CPU	extracts	address	of	it	and	jumps	there.

After	all	of	these	steps	we're	finally	in	the	64-bit	mode:

				.code64

				.org	0x200

ENTRY(startup_64)

....

....

....

That's	all!

This	is	the	end	of	the	fourth	part	linux	kernel	booting	process.	If	you	have	questions	or	suggestions,	ping	me	in	twitter
0xAX,	drop	me	email	or	just	create	an	issue.

In	the	next	part	we	will	see	kernel	decompression	and	many	more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	PR	to	linux-internals.

Conclusion

Links
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Protected	mode
Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual	3A
GNU	linker
SSE
Paging
Model	specific	register
.fill	instruction
Previous	part
Paging	on	osdev.org
Paging	Systems
x86	Paging	Tutorial
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This	is	the	fifth	part	of	the		Kernel	booting	process		series.	We	saw	transition	to	the	64-bit	mode	in	the	previous	part	and	we
will	continue	from	this	point	in	this	part.	We	will	see	the	last	steps	before	we	jump	to	the	kernel	code	as	preparation	for
kernel	decompression,	relocation	and	directly	kernel	decompression.	So...	let's	start	to	dive	in	the	kernel	code	again.

We	stopped	right	before	jump	on	64-bit	entry	point	-		startup_64		which	located	in	the	arch/x86/boot/compressed/head_64.S
source	code	file.	We	already	saw	the	jump	to	the		startup_64		in	the		startup_32	:

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

				...

				...

				...

				pushl				%eax

				...

				...

				...

				lret

in	the	previous	part,		startup_64		starts	to	work.	Since	we	loaded	the	new	Global	Descriptor	Table	and	there	was	CPU
transition	in	other	mode	(64-bit	mode	in	our	case),	we	can	see	setup	of	the	data	segments:

				.code64

				.org	0x200

ENTRY(startup_64)

				xorl				%eax,	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

				movl				%eax,	%fs

				movl				%eax,	%gs

in	the	beginning	of	the		startup_64	.	All	segment	registers	besides		cs		points	now	to	the		ds		which	is		0x18		(if	you	don't
understand	why	it	is		0x18	,	read	the	previous	part).

The	next	step	is	computation	of	difference	between	where	kernel	was	compiled	and	where	it	was	loaded:

#ifdef	CONFIG_RELOCATABLE

				leaq				startup_32(%rip),	%rbp

				movl				BP_kernel_alignment(%rsi),	%eax

				decl				%eax

				addq				%rax,	%rbp

				notq				%rax

				andq				%rax,	%rbp

				cmpq				$LOAD_PHYSICAL_ADDR,	%rbp

				jge				1f

#endif

				movq				$LOAD_PHYSICAL_ADDR,	%rbp

1:

				leaq				z_extract_offset(%rbp),	%rbx

Kernel	booting	process.	Part	5.

Kernel	decompression

Preparation	before	kernel	decompression
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	rbp		contains	decompressed	kernel	start	address	and	after	this	code	executed		rbx		register	will	contain	address	where	to
relocate	the	kernel	code	for	decompression.	We	already	saw	code	like	this	in	the		startup_32		(	you	can	read	about	it	in	the
previous	part	-	Calculate	relocation	address),	but	we	need	to	do	this	calculation	again	because	bootloader	can	use	64-bit
boot	protocol	and		startup_32		just	will	not	be	executed	in	this	case.

In	the	next	step	we	can	see	setup	of	the	stack	and	reset	of	flags	register:

				leaq				boot_stack_end(%rbx),	%rsp

					pushq				$0

				popfq

As	you	can	see	above		rbx		register	contains	the	start	address	of	the	decompressing	kernel	code	and	we	just	put	this
address	with		boot_stack_end		offset	to	the		rsp		register.	After	this	stack	will	be	correct.	You	can	find	definition	of	the
	boot_stack_end		in	the	end	of		compressed/head_64.S		file:

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

It	located	in	the		.bss		section	right	before		.pgtable	.	You	can	look	at	arch/x86/boot/compressed/vmlinux.lds.S	to	find	it.

As	we	set	the	stack,	now	we	can	copy	the	compressed	kernel	to	the	address	that	we	got	above,	when	we	calculated	the
relocation	address	of	the	decompressed	kernel.	Let's	look	on	this	code:

				pushq				%rsi

				leaq				(_bss-8)(%rip),	%rsi

				leaq				(_bss-8)(%rbx),	%rdi

				movq				$_bss,	%rcx

				shrq				$3,	%rcx

				std

				rep				movsq

				cld

				popq				%rsi

First	of	all	we	push		rsi		to	the	stack.	We	need	save	value	of		rsi	,	because	this	register	now	stores	pointer	to	the
	boot_params		real	mode	structure	(you	must	remember	this	structure,	we	filled	it	in	the	start	of	kernel	setup).	In	the	end	of
this	code	we'll	restore	pointer	to	the		boot_params		into		rsi		again.

The	next	two		leaq		instructions	calculates	effective	address	of	the		rip		and		rbx		with		_bss	-	8		offset	and	put	it	to	the		rsi	
and		rdi	.	Why	we	calculate	this	addresses?	Actually	compressed	kernel	image	located	between	this	copying	code	(from
	startup_32		to	the	current	code)	and	the	decompression	code.	You	can	verify	this	by	looking	on	the	linker	script	-
arch/x86/boot/compressed/vmlinux.lds.S:

				.	=	0;

				.head.text	:	{

								_head	=	.	;

								HEAD_TEXT

								_ehead	=	.	;

				}

				.rodata..compressed	:	{

								*(.rodata..compressed)

				}

				.text	:				{
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								_text	=	.;					/*	Text	*/

								*(.text)

								*(.text.*)

								_etext	=	.	;

				}

Note	that		.head.text		section	contains		startup_32	.	You	can	remember	it	from	the	previous	part:

				__HEAD

				.code32

ENTRY(startup_32)

...

...

...

	.text		section	contains	decompression	code:

assembly

				.text

relocated:

...

...

...

/*

	*	Do	the	decompression,	and	jump	to	the	new	kernel..

	*/

...

And		.rodata..compressed		contains	compressed	kernel	image.

So		rsi		will	contain		rip		relative	address	of	the		_bss	-	8		and		rdi		will	contain	relocation	relative	address	of	the		̀ _bss	-

8	.	As	we	store	these	addresses	in	register,	we	put	the	address	of		_bss		to	the		rcx		register.	As	you	can	see	in	the
	vmlinux.lds.S	,	it	located	in	the	end	of	all	sections	with	the	setup/kernel	code.	Now	we	can	start	to	copy	data	from		rsi		to
	rdi		by	8	bytes	with		movsq		instruction.

Note	that	there	is		std		instruction	before	data	copying,	it	sets		DF		flag	and	it	means	that		rsi		and		rdi		will	be	decremeted
or	in	other	words,	we	will	crbxopy	bytes	in	backwards.

In	the	end	we	clear		DF		flag	with		cld		instruction	and	restore		boot_params		structure	to	the		rsi	.

After	it	we	get		.text		section	address	address	and	jump	to	it:

				leaq				relocated(%rbx),	%rax

				jmp				*%rax

	.text		sections	starts	with	the		relocated		label.	For	the	start	there	is	clearing	of	the		bss		section	with:

				xorl				%eax,	%eax

				leaq				_bss(%rip),	%rdi

				leaq				_ebss(%rip),	%rcx

				subq				%rdi,	%rcx

				shrq				$3,	%rcx

				rep				stosq

Last	preparation	before	kernel	decompression
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Here	we	just	clear		eax	,	put	RIP	relative	address	of	the		_bss		to	the		rdi		and		_ebss		to		rcx		and	fill	it	with	zeros	with		rep
stosq		instructions.

In	the	end	we	can	see	the	call	of	the		decompress_kernel		routine:

				pushq				%rsi

				movq				$z_run_size,	%r9

				pushq				%r9

				movq				%rsi,	%rdi

				leaq				boot_heap(%rip),	%rsi

				leaq				input_data(%rip),	%rdx

				movl				$z_input_len,	%ecx

				movq				%rbp,	%r8

				movq				$z_output_len,	%r9

				call				decompress_kernel

				popq				%r9

				popq				%rsi

Again	we	save		rsi		with	pointer	to		boot_params		structure	and	call		decompress_kernel		from	the
arch/x86/boot/compressed/misc.c	with	seven	arguments.	All	arguments	will	be	passed	through	the	registers.	We	finished	all
preparation	and	now	can	look	on	the	kernel	decompression.

As	i	wrote	above,		decompress_kernel		function	is	in	the	arch/x86/boot/compressed/misc.c	source	code	file.	This	function
starts	with	the	video/console	initialization	that	we	saw	in	the	previous	parts.	This	calls	need	if	bootloaded	used	32	or	64-bit
protocols.	After	this	we	store	pointers	to	the	start	of	the	free	memory	and	to	the	end	of	it:

				free_mem_ptr					=	heap;

				free_mem_end_ptr	=	heap	+	BOOT_HEAP_SIZE;

where		heap		is	the	second	parameter	of	the		decompress_kernel		function	which	we	got	with:

leaq				boot_heap(%rip),	%rsi

As	you	saw	about		boot_heap		defined	as:

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

where		BOOT_HEAP_SIZE		is		0x400000		if	the	kernel	compressed	with		bzip2		or		0x8000		if	not.

In	the	next	step	we	call		choose_kernel_location		function	from	the	arch/x86/boot/compressed/aslr.c.	As	we	can	understand
from	the	function	name	it	chooses	memory	location	where	to	decompress	the	kernel	image.	Let's	look	on	this	function.

At	the	start		choose_kernel_location		tries	to	find		kaslr		option	in	the	command	line	if		CONFIG_HIBERNATION		is	set	and		nokaslr	
option	if	this	configuration	option		CONFIG_HIBERNATION		is	not	set:

#ifdef	CONFIG_HIBERNATION

				if	(!cmdline_find_option_bool("kaslr"))	{

								debug_putstr("KASLR	disabled	by	default...\n");

								goto	out;

Kernel	decompression
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				}

#else

				if	(cmdline_find_option_bool("nokaslr"))	{

								debug_putstr("KASLR	disabled	by	cmdline...\n");

								goto	out;

				}

#endif

If	there	is	no		kaslr		or		nokaslr		in	the	command	line	it	jumps	to		out		label:

out:

				return	(unsigned	char	*)choice;

which	just	returns	the		output		parameter	which	we	passed	to	the		choose_kernel_location		without	any	changes.	Let's	try	to
understand	what	is	it		kaslr	.	We	can	find	information	about	it	in	the	documentation:

kaslr/nokaslr	[X86]

Enable/disable	kernel	and	module	base	offset	ASLR

(Address	Space	Layout	Randomization)	if	built	into

the	kernel.	When	CONFIG_HIBERNATION	is	selected,

kASLR	is	disabled	by	default.	When	kASLR	is	enabled,

hibernation	will	be	disabled.

It	means	that	we	can	pass		kaslr		option	to	the	kernel's	command	line	and	get	random	address	for	the	decompressed
kernel	(more	about	aslr	you	can	read	here).

Let's	consider	the	case	when	kernel's	command	line	contains		kaslr		option.

There	is	the	call	of	the		mem_avoid_init		function	from	the	same		aslr.c		source	code	file.	This	function	gets	the	unsafe
memory	regions	(initrd,	kernel	command	line	and	etc...).	We	need	to	know	about	this	memory	regions	to	not	overlap	them
with	the	kernel	after	decompression.	For	example:

				initrd_start		=	(u64)real_mode->ext_ramdisk_image	<<	32;

				initrd_start	|=	real_mode->hdr.ramdisk_image;

				initrd_size		=	(u64)real_mode->ext_ramdisk_size	<<	32;

				initrd_size	|=	real_mode->hdr.ramdisk_size;

				mem_avoid[1].start	=	initrd_start;

				mem_avoid[1].size	=	initrd_size;

Here	we	can	see	calculation	of	the	initrd	start	address	and	size.		ext_ramdisk_image		is	high	32-bits	of	the		ramdisk_image	
field	from	boot	header	and		ext_ramdisk_size		is	high	32-bits	of	the		ramdisk_size		field	from	boot	protocol:

Offset				Proto				Name								Meaning

/Size

...

...

...

0218/4				2.00+				ramdisk_image				initrd	load	address	(set	by	boot	loader)

021C/4				2.00+				ramdisk_size				initrd	size	(set	by	boot	loader)

...

And		ext_ramdisk_image		and		ext_ramdisk_size		you	can	find	in	the	Documentation/x86/zero-page.txt:

Offset				Proto				Name								Meaning

/Size

...
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...

...

0C0/004				ALL				ext_ramdisk_image	ramdisk_image	high	32bits

0C4/004				ALL				ext_ramdisk_size		ramdisk_size	high	32bits

...

So	we're	taking		ext_ramdisk_image		and		ext_ramdisk_size	,	shifting	they	left	on	32	(now	they	will	contain	low	32-bits	in	the
high	32-bit	bits)	and	getting	start	address	of	the		initrd		and	size	of	it.	After	this	we	store	these	values	in	the		mem_avoid	
array	which	defined	as:

#define	MEM_AVOID_MAX	5

static	struct	mem_vector	mem_avoid[MEM_AVOID_MAX];

where		mem_vector		structure	is:

struct	mem_vector	{

				unsigned	long	start;

				unsigned	long	size;

};

The	next	step	after	we	collected	all	unsafe	memory	regions	in	the		mem_avoid		array	will	be	search	of	the	random	address
which	does	not	overlap	with	the	unsafe	regions	with	the		find_random_addr		function.

First	of	all	we	can	see	align	of	the	output	address	in	the		find_random_addr		function:

minimum	=	ALIGN(minimum,	CONFIG_PHYSICAL_ALIGN);

you	can	remember		CONFIG_PHYSICAL_ALIGN		configuration	option	from	the	previous	part.	This	option	provides	the	value	to
which	kernel	should	be	aligned	and	it	is		0x200000		by	default.	After	that	we	got	aligned	output	address,	we	go	through	the
memory	and	collect	regions	which	are	good	for	decompressed	kernel	image:

for	(i	=	0;	i	<	real_mode->e820_entries;	i++)	{

				process_e820_entry(&real_mode->e820_map[i],	minimum,	size);

}

You	can	remember	that	we	collected		e820_entries		in	the	second	part	of	the	Kernel	booting	process	part	2.

First	of	all		process_e820_entry		function	does	some	checks	that	e820	memory	region	is	not	non-RAM,	that	the	start	address
of	the	memory	region	is	not	bigger	than	Maximum	allowed		aslr		offset	and	that	memory	region	is	not	less	than	value	of
kernel	alignment:

struct	mem_vector	region,	img;

if	(entry->type	!=	E820_RAM)

				return;

if	(entry->addr	>=	CONFIG_RANDOMIZE_BASE_MAX_OFFSET)

				return;

if	(entry->addr	+	entry->size	<	minimum)

				return;

After	this,	we	store	e820	memory	region	start	address	and	the	size	in	the		mem_vector		structure	(we	saw	definition	of	this
structure	above):
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region.start	=	entry->addr;

region.size	=	entry->size;

As	we	store	these	values,	we	align	the		region.start		as	we	did	it	in	the		find_random_addr		function	and	check	that	we	didn't
get	address	that	bigger	than	original	memory	region:

region.start	=	ALIGN(region.start,	CONFIG_PHYSICAL_ALIGN);

if	(region.start	>	entry->addr	+	entry->size)

				return;

Next	we	get	difference	between	the	original	address	and	aligned	and	check	that	if	the	last	address	in	the	memory	region	is
bigger	than		CONFIG_RANDOMIZE_BASE_MAX_OFFSET	,	we	reduce	the	memory	region	size	that	end	of	kernel	image	will	be	less	than
maximum		aslr		offset:

region.size	-=	region.start	-	entry->addr;

if	(region.start	+	region.size	>	CONFIG_RANDOMIZE_BASE_MAX_OFFSET)

								region.size	=	CONFIG_RANDOMIZE_BASE_MAX_OFFSET	-	region.start;

In	the	end	we	go	through	the	all	unsafe	memory	regions	and	check	that	this	region	does	not	overlap	unsafe	ares	with
kernel	command	line,	initrd	and	etc...:

for	(img.start	=	region.start,	img.size	=	image_size	;

									mem_contains(&region,	&img)	;

									img.start	+=	CONFIG_PHYSICAL_ALIGN)	{

								if	(mem_avoid_overlap(&img))

												continue;

								slots_append(img.start);

				}

If	memory	region	does	not	overlap	unsafe	regions	we	call		slots_append		function	with	the	start	address	of	the	region.
	slots_append		function	just	collects	start	addresses	of	memory	regions	to	the		slots		array:

				slots[slot_max++]	=	addr;

which	defined	as:

static	unsigned	long	slots[CONFIG_RANDOMIZE_BASE_MAX_OFFSET	/

															CONFIG_PHYSICAL_ALIGN];

static	unsigned	long	slot_max;

After		process_e820_entry		will	be	executed,	we	will	have	array	of	the	addresses	which	are	safe	for	the	decompressed	kernel.
Next	we	call		slots_fetch_random		function	for	getting	random	item	from	this	array:

if	(slot_max	==	0)

				return	0;

return	slots[get_random_long()	%	slot_max];

where		get_random_long		function	checks	different	CPU	flags	as		X86_FEATURE_RDRAND		or		X86_FEATURE_TSC		and	chooses
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method	for	getting	random	number	(it	can	be	obtain	with	RDRAND	instruction,	Time	stamp	counter,	programmable	interval
timer	and	etc...).	After	that	we	got	random	address	execution	of	the		choose_kernel_location		is	finished.

Now	let's	back	to	the	misc.c.	After	we	got	address	for	the	kernel	image,	there	need	to	do	some	checks	to	be	sure	that
gotten	random	address	is	correctly	aligned	and	address	is	not	wrong.

After	all	these	checks	will	see	the	familiar	message:

Decompressing	Linux...

and	call		decompress		function	which	will	decompress	the	kernel.		decompress		function	depends	on	what	decompression
algorithm	was	chosen	during	kernel	compilartion:

#ifdef	CONFIG_KERNEL_GZIP

#include	"../../../../lib/decompress_inflate.c"

#endif

#ifdef	CONFIG_KERNEL_BZIP2

#include	"../../../../lib/decompress_bunzip2.c"

#endif

#ifdef	CONFIG_KERNEL_LZMA

#include	"../../../../lib/decompress_unlzma.c"

#endif

#ifdef	CONFIG_KERNEL_XZ

#include	"../../../../lib/decompress_unxz.c"

#endif

#ifdef	CONFIG_KERNEL_LZO

#include	"../../../../lib/decompress_unlzo.c"

#endif

#ifdef	CONFIG_KERNEL_LZ4

#include	"../../../../lib/decompress_unlz4.c"

#endif

After	kernel	will	be	decompressed,	the	last	function		handle_relocations		will	relocate	the	kernel	to	the	address	that	we	got
from		choose_kernel_location	.	After	that	kernel	relocated	we	return	from	the		decompress_kernel		to	the		head_64.S	.	The
address	of	the	kernel	will	be	in	the		rax		register	and	we	jump	on	it:

jmp				*%rax

That's	all.	Now	we	are	in	the	kernel!

This	is	the	end	of	the	fifth	and	the	last	part	about	linux	kernel	booting	process.	We	will	not	see	posts	about	kernel	booting
anymore	(maybe	only	updates	in	this	and	previous	posts),	but	there	will	be	many	posts	about	other	kernel	internals.

Next	chapter	will	be	about	kernel	initialization	and	we	will	see	the	first	steps	in	the	linux	kernel	initialization	code.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	in	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

Conclusion
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address	space	layout	randomization
initrd
long	mode
bzip2
RDdRand	instruction
Time	Stamp	Counter
Programmable	Interval	Timers
Previous	part

Links
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You	will	find	here	a	couple	of	posts	which	describe	the	full	cycle	of	kernel	initialization	from	its	first	steps	after	the	kernel	has
decompressed	to	the	start	of	the	first	process	run	by	the	kernel	itself.

Note	That	there	will	not	be	description	of	the	all	kernel	initialization	steps.	Here	will	be	only	generic	kernel	part,	without
interrupts	handling,	ACPI,	and	many	other	parts.	All	parts	which	I'll	miss,	will	be	described	in	other	chapters.

First	steps	after	kernel	decompression	-	describes	first	steps	in	the	kernel.
Early	interrupt	and	exception	handling	-	describes	early	interrupts	initialization	and	early	page	fault	handler.
Last	preparations	before	the	kernel	entry	point	-	describes	the	last	preparations	before	the	call	of	the		start_kernel	.
Kernel	entry	point	-	describes	first	steps	in	the	kernel	generic	code.
Continue	of	architecture-specific	initializations	-	describes	architecture-specific	initialization.
Architecture-specific	initializations,	again...	-	describes	continue	of	the	architecture-specific	initialization	process.
The	End	of	the	architecture-specific	initializations,	almost...	-	describes	the	end	of	the		setup_arch		related	stuff.
Scheduler	initialization	-	describes	preparation	before	scheduler	initialization	and	initialization	of	it.
RCU	initialization	-	describes	the	initialization	of	the	RCU.
End	of	the	initialization	-	the	last	part	about	linux	kernel	initialization.

Kernel	initialization	process
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In	the	previous	post	(	Kernel	booting	process.	Part	5.	)	-	Kernel	decompression	we	stopped	at	the	jump	on	the
decompressed	kernel:

jmp				*%rax

and	now	we	are	in	the	kernel.	There	are	many	things	to	do	before	the	kernel	will	start	first		init		process.	Hope	we	will	see
all	of	the	preparations	before	kernel	will	start	in	this	big	chapter.	We	will	start	from	the	kernel	entry	point,	which	is	in	the
arch/x86/kernel/head_64.S.	We	will	see	first	preparations	like	early	page	tables	initialization,	switch	to	a	new	descriptor	in
kernel	space	and	many	many	more,	before	we	will	see	the		start_kernel		function	from	the	init/main.c	will	be	called.

So	let's	start.

Okay,	we	got	address	of	the	kernel	from	the		decompress_kernel		function	into		rax		register	and	just	jumped	there.
Decompressed	kernel	code	starts	in	the	arch/x86/kernel/head_64.S:

				__HEAD

				.code64

				.globl	startup_64

startup_64:

				...

				...

				...

We	can	see	definition	of	the		startup_64		routine	and	it	defined	in	the		__HEAD		section,	which	is	just:

#define	__HEAD								.section				".head.text","ax"

We	can	see	definition	of	this	section	in	the	arch/x86/kernel/vmlinux.lds.S	linker	script:

.text	:	AT(ADDR(.text)	-	LOAD_OFFSET)	{

				_text	=	.;

				...

				...

				...

}	:text	=	0x9090

We	can	understand	default	virtual	and	physical	addresses	from	the	linker	script.	Note	that	address	of	the		_text		is	location
counter	which	is	defined	as:

.	=	__START_KERNEL;

for		x86_64	.	We	can	find	definition	of	the		__START_KERNEL		macro	in	the	arch/x86/include/asm/page_types.h:

Kernel	initialization.	Part	1.

First	steps	in	the	kernel	code
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#define	__START_KERNEL				(__START_KERNEL_map	+	__PHYSICAL_START)

#define	__PHYSICAL_START		ALIGN(CONFIG_PHYSICAL_START,	CONFIG_PHYSICAL_ALIGN)

Here	we	can	see	that		__START_KERNEL		is	the	sum	of	the		__START_KERNEL_map		(which	is		0xffffffff80000000	,	see	post	about
paging)	and		__PHYSICAL_START	.	Where		__PHYSICAL_START		is	aligned	value	of	the		CONFIG_PHYSICAL_START	.	So	if	you	will	not
use	kASLR	and	will	not	change		CONFIG_PHYSICAL_START		in	the	configuration	addresses	will	be	following:

Physical	address	-		0x1000000	;
Virtual	address	-		0xffffffff81000000	.

Now	we	know	default	physical	and	virtual	addresses	of	the		startup_64		routine,	but	to	know	actual	addresses	we	must	to
calculate	it	with	the	following	code:

				leaq				_text(%rip),	%rbp

				subq				$_text	-	__START_KERNEL_map,	%rbp

Here	we	just	put	the		rip-relative		address	to	the		rbp		register	and	then	subtract		$_text	-	__START_KERNEL_map		from	it.	We
know	that	compiled	address	of	the		_text		is		0xffffffff81000000		and		__START_KERNEL_map		contains		0xffffffff81000000	,	so
	rbp		will	contain	physical	address	of	the		text		-		0x1000000		after	this	calculation.	We	need	to	calculate	it	because	kernel
can't	be	run	on	the	default	address,	but	now	we	know	the	actual	physical	address.

In	the	next	step	we	checks	that	this	address	is	aligned	with:

				movq				%rbp,	%rax

				andl				$~PMD_PAGE_MASK,	%eax

				testl				%eax,	%eax

				jnz				bad_address

Here	we	just	put	address	to	the		%rax		and	test	first	bit.		PMD_PAGE_MASK		indicates	the	mask	for		Page	middle	directory		(read
paging	about	it)	and	defined	as:

#define	PMD_PAGE_MASK											(~(PMD_PAGE_SIZE-1))

#define	PMD_PAGE_SIZE											(_AC(1,	UL)	<<	PMD_SHIFT)

#define	PMD_SHIFT							21

As	we	can	easily	calculate,		PMD_PAGE_SIZE		is	2	megabytes.	Here	we	use	standard	formula	for	checking	alignment	and	if
	text		address	is	not	aligned	for	2	megabytes,	we	jump	to		bad_address		label.

After	this	we	check	address	that	it	is	not	too	large:

				leaq				_text(%rip),	%rax

				shrq				$MAX_PHYSMEM_BITS,	%rax

				jnz				bad_address

Address	most	not	be	greater	than	46-bits:

#define	MAX_PHYSMEM_BITS							46

Okay,	we	did	some	early	checks	and	now	we	can	move	on.
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The	first	step	before	we	started	to	setup	identity	paging,	need	to	correct	following	addresses:

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

Here	we	need	to	correct		early_level4_pgt		and	other	addresses	of	the	page	table	directories,	because	as	I	wrote	above,
kernel	can't	be	run	at	the	default		0x1000000		address.		rbp		register	contains	actual	address	so	we	add	to	the
	early_level4_pgt	,		level3_kernel_pgt		and		level2_fixmap_pgt	.	Let's	try	to	understand	what	these	labels	means.	First	of	all
let's	look	on	their	definition:

NEXT_PAGE(early_level4_pgt)

				.fill				511,8,0

				.quad				level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

NEXT_PAGE(level3_kernel_pgt)

				.fill				L3_START_KERNEL,8,0

				.quad				level2_kernel_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.quad				level2_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

NEXT_PAGE(level2_kernel_pgt)

				PMDS(0,	__PAGE_KERNEL_LARGE_EXEC,

								KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

Looks	hard,	but	it	is	not	true.

First	of	all	let's	look	on	the		early_level4_pgt	.	It	starts	with	the	(4096	-	8)	bytes	of	zeros,	it	means	that	we	don't	use	first	511
	early_level4_pgt		entries.	And	after	this	we	can	see		level3_kernel_pgt		entry.	Note	that	we	subtract		__START_KERNEL_map	+
_PAGE_TABLE		from	it.	As	we	know		__START_KERNEL_map		is	a	base	virtual	address	of	the	kernel	text,	so	if	we	subtract
	__START_KERNEL_map	,	we	will	get	physical	address	of	the		level3_kernel_pgt	.	Now	let's	look	on		_PAGE_TABLE	,	it	is	just	page
entry	access	rights:

#define	_PAGE_TABLE					(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_USER	|	\

																									_PAGE_ACCESSED	|	_PAGE_DIRTY)

more	about	it,	you	can	read	in	the	paging	post.

	level3_kernel_pgt		-	stores	entries	which	map	kernel	space.	At	the	start	of	it's	definition,	we	can	see	that	it	filled	with	zeros
	L3_START_KERNEL		times.	Here		L3_START_KERNEL		is	the	index	in	the	page	upper	directory	which	contains		__START_KERNEL_map	
address	and	it	equals		510	.	After	it	we	can	see	definition	of	two		level3_kernel_pgt		entries:		level2_kernel_pgt		and
	level2_fixmap_pgt	.	First	is	simple,	it	is	page	table	entry	which	contains	pointer	to	the	page	middle	directory	which	maps
kernel	space	and	it	has:

#define	_KERNPG_TABLE			(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_ACCESSED	|	\

																									_PAGE_DIRTY)

Fix	base	addresses	of	page	tables
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access	rights.	The	second	-		level2_fixmap_pgt		is	a	virtual	addresses	which	can	refer	to	any	physical	addresses	even	under
kernel	space.

The	next		level2_kernel_pgt		calls		PDMS		macro	which	creates	512	megabytes	from	the		__START_KERNEL_map		for	kernel	text
(after	these	512	megabytes	will	be	modules	memory	space).

Now	we	know	Let's	back	to	our	code	which	is	in	the	beginning	of	the	section.	Remember	that		rbp		contains	actual	physical
address	of	the		_text		section.	We	just	add	this	address	to	the	base	address	of	the	page	tables,	that	they'll	have	correct
addresses:

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

At	the	first	line	we	add		rbp		to	the		early_level4_pgt	,	at	the	second	line	we	add		rbp		to	the		level2_kernel_pgt	,	at	the	third
line	we	add		rbp		to	the		level2_fixmap_pgt		and	add		rbp		to	the		level1_fixmap_pgt	.

After	all	of	this	we	will	have:

early_level4_pgt[511]	->	level3_kernel_pgt[0]

level3_kernel_pgt[510]	->	level2_kernel_pgt[0]

level3_kernel_pgt[511]	->	level2_fixmap_pgt[0]

level2_kernel_pgt[0]			->	512	MB	kernel	mapping

level2_fixmap_pgt[506]	->	level1_fixmap_pgt

As	we	corrected	base	addresses	of	the	page	tables,	we	can	start	to	build	it.

Now	we	can	see	set	up	the	identity	mapping	early	page	tables.	Identity	Mapped	Paging	is	a	virtual	addresses	which	are
mapped	to	physical	addresses	that	have	the	same	value,		1	:	1	.	Let's	look	on	it	in	details.	First	of	all	we	get	the		rip-
relative		address	of	the		_text		and		_early_level4_pgt		and	put	they	into		rdi		and		rbx		registers:

				leaq				_text(%rip),	%rdi

				leaq				early_level4_pgt(%rip),	%rbx

After	this	we	store	physical	address	of	the		_text		in	the		rax		and	get	the	index	of	the	page	global	directory	entry	which
stores		_text		address,	by	shifting		_text		address	on	the		PGDIR_SHIFT	:

				movq				%rdi,	%rax

				shrq				$PGDIR_SHIFT,	%rax

				leaq				(4096	+	_KERNPG_TABLE)(%rbx),	%rdx

				movq				%rdx,	0(%rbx,%rax,8)

				movq				%rdx,	8(%rbx,%rax,8)

where		PGDIR_SHIFT		is		39	.		PGDIR_SHFT		indicates	the	mask	for	page	global	directory	bits	in	a	virtual	address.	There	are
macro	for	all	types	of	page	directories:

#define	PGDIR_SHIFT					39

#define	PUD_SHIFT							30

#define	PMD_SHIFT							21

Identity	mapping	setup
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After	this	we	put	the	address	of	the	first		level3_kernel_pgt		to	the		rdx		with	the		_KERNPG_TABLE		access	rights	(see	above)
and	fill	the		early_level4_pgt		with	the	2		level3_kernel_pgt		entries.

After	this	we	add		4096		(size	of	the		early_level4_pgt	)	to	the		rdx		(it	now	contains	the	address	of	the	first	entry	of	the
	level3_kernel_pgt	)	and	put		rdi		(it	now	contains	physical	address	of	the		_text	)	to	the		rax	.	And	after	this	we	write
addresses	of	the	two	page	upper	directory	entries	to	the		level3_kernel_pgt	:

				addq				$4096,	%rdx

				movq				%rdi,	%rax

				shrq				$PUD_SHIFT,	%rax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

				incl				%eax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

In	the	next	step	we	write	addresses	of	the	page	middle	directory	entries	to	the		level2_kernel_pgt		and	the	last	step	is
correcting	of	the	kernel	text+data	virtual	addresses:

				leaq				level2_kernel_pgt(%rip),	%rdi

				leaq				4096(%rdi),	%r8

1:				testq				$1,	0(%rdi)

				jz				2f

				addq				%rbp,	0(%rdi)

2:				addq				$8,	%rdi

				cmp				%r8,	%rdi

				jne				1b

Here	we	put	the	address	of	the		level2_kernel_pgt		to	the		rdi		and	address	of	the	page	table	entry	to	the		r8		register.	Next
we	check	the	present	bit	in	the		level2_kernel_pgt		and	if	it	is	zero	we're	moving	to	the	next	page	by	adding	8	bytes	to		rdi	
which	contaitns	address	of	the		level2_kernel_pgt	.	After	this	we	compare	it	with		r8		(contains	address	of	the	page	table
entry)	and	go	back	to	label		1		or	move	forward.

In	the	next	step	we	correct		phys_base		physical	address	with		rbp		(contains	physical	address	of	the		_text	),	put	physical
address	of	the		early_level4_pgt		and	jump	to	label		1	:

				addq				%rbp,	phys_base(%rip)

				movq				$(early_level4_pgt	-	__START_KERNEL_map),	%rax

				jmp	1f

where		phys_base		mathes	the	first	entry	of	the		level2_kernel_pgt		which	is	512	MB	kernel	mapping.

After	that	we	jumped	to	the	label		1		we	enable		PAE	,		PGE		(Paging	Global	Extension)	and	put	the	physical	address	of	the
	phys_base		(see	above)	to	the		rax		register	and	fill		cr3		register	with	it:

1:

				movl				$(X86_CR4_PAE	|	X86_CR4_PGE),	%ecx

				movq				%rcx,	%cr4

				addq				phys_base(%rip),	%rax

				movq				%rax,	%cr3

Last	preparations
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In	the	next	step	we	check	that	CPU	support	NX	bit	with:

				movl				$0x80000001,	%eax

				cpuid

				movl				%edx,%edi

We	put		0x80000001		value	to	the		eax		and	execute		cpuid		instruction	for	getting	extended	processor	info	and	feature	bits.
The	result	will	be	in	the		edx		register	which	we	put	to	the		edi	.

Now	we	put		0xc0000080		or		MSR_EFER		to	the		ecx		and	call		rdmsr		instruction	for	the	reading	model	specific	register.

				movl				$MSR_EFER,	%ecx

				rdmsr

The	result	will	be	in	the		edx:eax	.	General	view	of	the		EFER		is	following:

63																																																																														32

	--------------------------------------------------------------------------------

|																																																																															|

|																																Reserved	MBZ																																			|

|																																																																															|

	--------------------------------------------------------------------------------

31																												16		15						14						13			12		11			10		9		8	7		1			0

	--------------------------------------------------------------------------------

|																														|	T	|							|							|				|			|			|			|			|			|			|

|	Reserved	MBZ																	|	C	|	FFXSR	|	LMSLE	|SVME|NXE|LMA|MBZ|LME|RAZ|SCE|

|																														|	E	|							|							|				|			|			|			|			|			|			|

	--------------------------------------------------------------------------------

We	will	not	see	all	fields	in	details	here,	but	we	will	learn	about	this	and	other		MSRs		in	the	special	part	about.	As	we	read
	EFER		to	the		edx:eax	,	we	checks		_EFER_SCE		or	zero	bit	which	is		System	Call	Extensions		with		btsl		instruction	and	set	it	to
one.	By	the	setting		SCE		bit	we	enable		SYSCALL		and		SYSRET		instructions.	In	the	next	step	we	check	20th	bit	in	the		edi	,
remember	that	this	register	stores	result	of	the		cpuid		(see	above).	If		20		bit	is	set	(	NX		bit)	we	just	write		EFER_SCE		to	the
model	specific	register.

				btsl				$_EFER_SCE,	%eax

				btl								$20,%edi

				jnc					1f

				btsl				$_EFER_NX,	%eax

				btsq				$_PAGE_BIT_NX,early_pmd_flags(%rip)

1:				wrmsr

If		NX		bit	is	supported	we	enable		_EFER_NX		and	write	it	too,	with	the		wrmsr		instruction.

In	the	next	step	we	need	to	update	Global	Descriptor	table	with		lgdt		instruction:

lgdt				early_gdt_descr(%rip)

where	Global	Descriptor	table	defined	as:

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)
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We	need	to	reload	Global	Descriptor	Table	because	now	kernel	works	in	the	userspace	addresses,	but	soon	kernel	will
work	in	it's	own	space.	Now	let's	look	on		early_gdt_descr		definition.	Global	Descriptor	Table	contains	32	entries:

#define	GDT_ENTRIES	32

for	kernel	code,	data,	thread	local	storage	segments	and	etc...	it's	simple.	Now	let's	look	on	the		early_gdt_descr_base	.	First
of		gdt_page		defined	as:

struct	gdt_page	{

				struct	desc_struct	gdt[GDT_ENTRIES];

}	__attribute__((aligned(PAGE_SIZE)));

in	the	arch/x86/include/asm/desc.h.	It	contains	one	field		gdt		which	is	array	of	the		desc_struct		structures	which	defined	as:

struct	desc_struct	{

									union	{

																	struct	{

																									unsigned	int	a;

																									unsigned	int	b;

																	};

																	struct	{

																									u16	limit0;

																									u16	base0;

																									unsigned	base1:	8,	type:	4,	s:	1,	dpl:	2,	p:	1;

																									unsigned	limit:	4,	avl:	1,	l:	1,	d:	1,	g:	1,	base2:	8;

																	};

									};

	}	__attribute__((packed));

and	presents	familiar	to	us	GDT	descriptor.	Also	we	can	note	that		gdt_page		structure	aligned	to		PAGE_SIZE		which	is	4096
bytes.	It	means	that		gdt		will	occupy	one	page.	Now	let's	try	to	understand	what	is	it		INIT_PER_CPU_VAR	.		INIT_PER_CPU_VAR		is
a	macro	which	defined	in	the	arch/x86/include/asm/percpu.h	and	just	concats		init_per_cpu__		with	the	given	parameter:

#define	INIT_PER_CPU_VAR(var)	init_per_cpu__##var

After	this	we	have		init_per_cpu__gdt_page	.	We	can	see	in	the	linker	script:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

As	we	got		init_per_cpu__gdt_page		in		INIT_PER_CPU_VAR		and		INIT_PER_CPU		macro	from	linker	script	will	be	expanded	we	will
get	offset	from	the		__per_cpu_load	.	After	this	calculations,	we	will	have	correct	base	address	of	the	new	GDT.

Generally	per-CPU	variables	is	a	2.6	kernel	feature.	You	can	understand	what	is	it	from	it's	name.	When	we	create		per-CPU	
variable,	each	CPU	will	have	will	have	it's	own	copy	of	this	variable.	Here	we	creating		gdt_page		per-CPU	variable.	There
are	many	advantages	for	variables	of	this	type,	like	there	are	no	locks,	because	each	CPU	works	with	it's	own	copy	of
variable	and	etc...	So	every	core	on	multiprocessor	will	have	it's	own		GDT		table	and	every	entry	in	the	table	will	represent	a
memory	segment	which	can	be	accessed	from	the	thread	which	ran	on	the	core.	You	can	read	in	details	about		per-CPU	
variables	in	the	Theory/per-cpu	post.

As	we	loaded	new	Global	Descriptor	Table,	we	reload	segments	as	we	did	it	every	time:

				xorl	%eax,%eax
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				movl	%eax,%ds

				movl	%eax,%ss

				movl	%eax,%es

				movl	%eax,%fs

				movl	%eax,%gs

After	all	of	these	steps	we	set	up		gs		register	that	it	post	to	the		irqstack		(we	will	see	information	about	it	in	the	next	parts):

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

where		MSR_GS_BASE		is:

#define	MSR_GS_BASE													0xc0000101

We	need	to	put		MSR_GS_BASE		to	the		ecx		register	and	load	data	from	the		eax		and		edx		(which	are	point	to	the		initial_gs	)
with		wrmsr		instruction.	We	don't	use		cs	,		fs	,		ds		and		ss		segment	registers	for	addressation	in	the	64-bit	mode,	but		fs	
and		gs		registers	can	be	used.		fs		and		gs		have	a	hidden	part	(as	we	saw	it	in	the	real	mode	for		cs	)	and	this	part	contains
descriptor	which	mapped	to	Model	specific	registers.	So	we	can	see	above		0xc0000101		is	a		gs.base		MSR	address.

In	the	next	step	we	put	the	address	of	the	real	mode	bootparam	structure	to	the		rdi		(remember		rsi		holds	pointer	to	this
structure	from	the	start)	and	jump	to	the	C	code	with:

				movq				initial_code(%rip),%rax

				pushq				$0

				pushq				$__KERNEL_CS

				pushq				%rax

				lretq

Here	we	put	the	address	of	the		initial_code		to	the		rax		and	push	fake	address,		__KERNEL_CS		and	the	address	of	the
	initial_code		to	the	stack.	After	this	we	can	see		lretq		instruction	which	means	that	after	it	return	address	will	be	extracted
from	stack	(now	there	is	address	of	the		initial_code	)	and	jump	there.		initial_code		defined	in	the	same	source	code	file
and	looks:

				__REFDATA

				.balign				8

				GLOBAL(initial_code)

				.quad				x86_64_start_kernel

				...

				...

				...

As	we	can	see		initial_code		contains	address	of	the		x86_64_start_kernel	,	which	defined	in	the	arch/x86/kerne/head64.c
and	looks	like	this:

asmlinkage	__visible	void	__init	x86_64_start_kernel(char	*	real_mode_data)	{

				...

				...

				...

}

It	has	one	argument	is	a		real_mode_data		(remember	that	we	passed	address	of	the	real	mode	data	to	the		rdi		register
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previously).

This	is	first	C	code	in	the	kernel!

We	need	to	see	last	preparations	before	we	can	see	"kernel	entry	point"	-	start_kernel	function	from	the	init/main.c.

First	of	all	we	can	see	some	checks	in	the		x86_64_start_kernel		function:

BUILD_BUG_ON(MODULES_VADDR	<	__START_KERNEL_map);

BUILD_BUG_ON(MODULES_VADDR	-	__START_KERNEL_map	<	KERNEL_IMAGE_SIZE);

BUILD_BUG_ON(MODULES_LEN	+	KERNEL_IMAGE_SIZE	>	2*PUD_SIZE);

BUILD_BUG_ON((__START_KERNEL_map	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON((MODULES_VADDR	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON(!(MODULES_VADDR	>	__START_KERNEL));

BUILD_BUG_ON(!(((MODULES_END	-	1)	&	PGDIR_MASK)	==	(__START_KERNEL	&	PGDIR_MASK)));

BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses)	<=	MODULES_END);

There	are	checks	for	different	things	like	virtual	addresses	of	modules	space	is	not	fewer	than	base	address	of	the	kernel
text	-		__STAT_KERNEL_map	,	that	kernel	text	with	modules	is	not	less	than	image	of	the	kernel	and	etc...		BUILD_BUG_ON		is	a
macro	which	looks	as:

#define	BUILD_BUG_ON(condition)	((void)sizeof(char[1	-	2*!!(condition)]))

Let's	try	to	understand	this	trick	works.	Let's	take	for	example	first	condition:		MODULES_VADDR	<	__START_KERNEL_map	.
	!!conditions		is	the	same	that		condition	!=	0	.	So	it	means	if		MODULES_VADDR	<	__START_KERNEL_map		is	true,	we	will	get		1		in
the		!!(condition)		or	zero	if	not.	After		2*!!(condition)		we	will	get	or		2		or		0	.	In	the	end	of	calculations	we	can	get	two
different	behaviors:

We	will	have	compilation	error,	because	try	to	get	size	of	the	char	array	with	negative	index	(as	can	be	in	our	case,
because		MODULES_VADDR		can't	be	less	than		__START_KERNEL_map		will	be	in	our	case);
No	compilation	errors.

That's	all.	So	interesting	C	trick	for	getting	compile	error	which	depends	on	some	constants.

In	the	next	step	we	can	see	call	of	the		cr4_init_shadow		function	which	stores	shadow	copy	of	the		cr4		per	cpu.	Context
switches	can	change	bits	in	the		cr4		so	we	need	to	store		cr4		for	each	CPU.	And	after	this	we	can	see	call	of	the
	reset_early_page_tables		function	where	we	resets	all	page	global	directory	entries	and	write	new	pointer	to	the	PGT	in
	cr3	:

for	(i	=	0;	i	<	PTRS_PER_PGD-1;	i++)

				early_level4_pgt[i].pgd	=	0;

next_early_pgt	=	0;

write_cr3(__pa_nodebug(early_level4_pgt));

soon	we	will	build	new	page	tables.	Here	we	can	see	that	we	go	through	all	Page	Global	Directory	Entries	(	PTRS_PER_PGD		is
	512	)	in	the	loop	and	make	it	zero.	After	this	we	set		next_early_pgt		to	zero	(we	will	see	details	about	it	in	the	next	post)	and
write	physical	address	of	the		early_level4_pgt		to	the		cr3	.		__pa_nodebug		is	a	macro	which	will	be	expanded	to:

((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

Next	to	start_kernel
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After	this	we	clear		_bss		from	the		__bss_stop		to		__bss_start		and	the	next	step	will	be	setup	of	the	early		IDT		handlers,	but
it's	big	theme	so	we	will	see	it	in	the	next	part.

This	is	the	end	of	the	first	part	about	linux	kernel	initialization.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

In	the	next	part	we	will	see	initialization	of	the	early	interruption	handlers,	kernel	space	memory	mapping	and	many	many
more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	PR	to	linux-internals.

Model	Specific	Register
Paging
Previous	part	-	Kernel	decompression
NX
ASLR

Conclusion

Links
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In	the	previous	part	we	stopped	before	setting	of	early	interrupt	handlers.	We	continue	in	this	part	and	will	know	more	about
interrupt	and	exception	handling.

Remember	that	we	stopped	before	following	loop:

					for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

								set_intr_gate(i,	early_idt_handlers[i]);

from	the	arch/x86/kernel/head64.c	source	code	file.	But	before	we	started	to	sort	out	this	code,	we	need	to	know	about
interrupts	and	handlers.

Interrupt	is	an	event	caused	by	software	or	hardware	to	the	CPU.	On	interrupt,	CPU	stops	the	current	task	and	transfer
control	to	the	interrupt	handler,	which	handles	interruption	and	transfer	control	back	to	the	previously	stopped	task.	We	can
split	interrupts	on	three	types:

Software	interrupts	-	when	a	software	signals	CPU	that	it	needs	kernel	attention.	These	interrupts	are	generally	used
for	system	calls;
Hardware	interrupts	-	when	a	hardware	event	happens,	for	example	button	is	pressed	on	a	keyboard;
Exceptions	-	interrupts	generated	by	CPU,	when	the	CPU	detects	error,	for	example	division	by	zero	or	accessing	a
memory	page	which	is	not	in	RAM.

Every	interrupt	and	exception	is	assigned	a	unique	number	which	called	-		vector	number	.		Vector	number		can	be	any
number	from		0		to		255	.	There	is	common	practice	to	use	first		32		vector	numbers	for	exceptions,	and	vector	numbers	from
	32		to		255		are	used	for	user-defined	interrupts.	We	can	see	it	in	the	code	above	-		NUM_EXCEPTION_VECTORS	,	which	defined
as:

#define	NUM_EXCEPTION_VECTORS	32

CPU	uses	vector	number	as	an	index	in	the		Interrupt	Descriptor	Table		(we	will	see	description	of	it	soon).	CPU	catch
interrupts	from	the	APIC	or	through	it's	pins.	Following	table	shows		0-31		exceptions:

----------------------------------------------------------------------------------------------

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																																|

----------------------------------------------------------------------------------------------

|0					|	#DE				|Divide	Error								|Fault|NO								|DIV	and	IDIV																										|

|---------------------------------------------------------------------------------------------

|1					|	#DB				|Reserved												|F/T		|NO								|																																						|

|---------------------------------------------------------------------------------------------

|2					|	---				|NMI																	|INT		|NO								|external	NMI																										|

|---------------------------------------------------------------------------------------------

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																																	|

|---------------------------------------------------------------------------------------------

|4					|	#OF				|Overflow												|Trap	|NO								|INTO		instruction																					|

|---------------------------------------------------------------------------------------------

|5					|	#BR				|Bound	Range	Exceeded|Fault|NO								|BOUND	instruction																					|

|---------------------------------------------------------------------------------------------

Kernel	initialization.	Part	2.

Early	interrupt	and	exception	handling

Some	theory
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|6					|	#UD				|Invalid	Opcode						|Fault|NO								|UD2	instruction																							|

|---------------------------------------------------------------------------------------------

|7					|	#NM				|Device	Not	Available|Fault|NO								|Floating	point	or	[F]WAIT													|

|---------------------------------------------------------------------------------------------

|8					|	#DF				|Double	Fault								|Abort|YES							|Ant	instrctions	which	can	generate	NMI|

|---------------------------------------------------------------------------------------------

|9					|	---				|Reserved												|Fault|NO								|																																						|

|---------------------------------------------------------------------------------------------

|10				|	#TS				|Invalid	TSS									|Fault|YES							|Task	switch	or	TSS	access													|

|---------------------------------------------------------------------------------------------

|11				|	#NP				|Segment	Not	Present	|Fault|NO								|Accessing	segment	register												|

|---------------------------------------------------------------------------------------------

|12				|	#SS				|Stack-Segment	Fault	|Fault|YES							|Stack	operations																						|

|---------------------------------------------------------------------------------------------

|13				|	#GP				|General	Protection		|Fault|YES							|Memory	reference																						|

|---------------------------------------------------------------------------------------------

|14				|	#PF				|Page	fault										|Fault|YES							|Memory	reference																						|

|---------------------------------------------------------------------------------------------

|15				|	---				|Reserved												|					|NO								|																																						|

|---------------------------------------------------------------------------------------------

|16				|	#MF				|x87	FPU	fp	error				|Fault|NO								|Floating	point	or	[F]Wait													|

|---------------------------------------------------------------------------------------------

|17				|	#AC				|Alignment	Check					|Fault|YES							|Data	reference																								|

|---------------------------------------------------------------------------------------------

|18				|	#MC				|Machine	Check							|Abort|NO								|																																						|

|---------------------------------------------------------------------------------------------

|19				|	#XM				|SIMD	fp	exception			|Fault|NO								|SSE[2,3]	instructions																	|

|---------------------------------------------------------------------------------------------

|20				|	#VE				|Virtualization	exc.	|Fault|NO								|EPT	violations																								|

|---------------------------------------------------------------------------------------------

|21-31	|	---				|Reserved												|INT		|NO								|External	interrupts																			|

----------------------------------------------------------------------------------------------

To	react	on	interrupt	CPU	uses	special	structure	-	Interrupt	Descriptor	Table	or	IDT.	IDT	is	an	array	of	8-byte	descriptors	like
Global	Descriptor	Table,	but	IDT	entries	are	called		gates	.	CPU	multiplies	vector	number	on	8	to	find	index	of	the	IDT	entry.
But	in	64-bit	mode	IDT	is	an	array	of	16-byte	descriptors	and	CPU	multiplies	vector	number	on	16	to	find	index	of	the	entry
in	the	IDT.	We	remember	from	the	previous	part	that	CPU	uses	special		GDTR		register	to	locate	Global	Descriptor	Table,	so
CPU	uses	special	register		IDTR		for	Interrupt	Descriptor	Table	and		lidt		instruuction	for	loading	base	address	of	the	table
into	this	register.

64-bit	mode	IDT	entry	has	following	structure:

127																																																																													96

	--------------------------------------------------------------------------------

|																																																																															|

|																																Reserved																																							|

|																																																																															|

	--------------------------------------------------------------------------------

95																																																																														64

	--------------------------------------------------------------------------------

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

	--------------------------------------------------------------------------------

63																															48	47						46		44			42				39													34				32

	--------------------------------------------------------------------------------

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	--------------------------------------------------------------------------------

31																																			15	16																																						0

	--------------------------------------------------------------------------------

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

	--------------------------------------------------------------------------------

Where:
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Offset	-	is	offset	to	entry	point	of	an	interrupt	handler;
DPL	-	Descriptor	Privilege	Level;
P	-	Segment	Present	flag;
Segment	selector	-	a	code	segment	selector	in	GDT	or	LDT
IST	-	provides	ability	to	switch	to	a	new	stack	for	interrupts	handling.

And	the	last		Type		field	describes	type	of	the		IDT		entry.	There	are	three	different	kinds	of	handlers	for	interrupts:

Task	descriptor
Interrupt	descriptor
Trap	descriptor

Interrupt	and	trap	descriptors	contain	a	far	pointer	to	the	entry	point	of	the	interrupt	handler.	Only	one	difference	between
these	types	is	how	CPU	handles		IF		flag.	If	interrupt	handler	was	accessed	through	interrupt	gate,	CPU	clear	the		IF		flag
to	prevent	other	interrupts	while	current	interrupt	handler	executes.	After	that	current	interrupt	handler	executes,	CPU	sets
the		IF		flag	again	with		iret		instruction.

Other	bits	reserved	and	must	be	0.

Now	let's	look	how	CPU	handles	interrupts:

CPU	save	flags	register,		CS	,	and	instruction	pointer	on	the	stack.
If	interrupt	causes	an	error	code	(like		#PF		for	example),	CPU	saves	an	error	on	the	stack	after	instruction	pointer;
After	interrupt	handler	executed,		iret		instruction	used	to	return	from	it.

Now	let's	back	to	code.

We	stopped	at	the	following	point:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handlers[i]);

Here	we	call		set_intr_gate		in	the	loop,	which	takes	two	parameters:

Number	of	an	interrupt;
Address	of	the	idt	handler.

and	inserts	an	interrupt	gate	in	the	nth		IDT		entry.	First	of	all	let's	look	on	the		early_idt_handlers	.	It	is	an	array	which
contains	address	of	the	first	32	interrupt	handlers:

extern	const	char	early_idt_handlers[NUM_EXCEPTION_VECTORS][2+2+5];

We're	filling	only	first	32	IDT	entries	because	all	of	the	early	setup	runs	with	interrupts	disabled,	so	there	is	no	need	to	set
up	early	exception	handlers	for	vectors	greater	than	32.		early_idt_handlers		contains	generic	idt	handlers	and	we	can	find	it
in	the	arch/x86/kernel/head_64.S,	we	will	look	it	soon.

Now	let's	look	on		set_intr_gate		implementation:

#define	set_intr_gate(n,	addr)																																											\

									do	{																																																												\

Fill	and	load	IDT

Linux	Inside

75Early	interrupts	handler

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S


																	BUG_ON((unsigned)n	>	0xFF);																													\

																	_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																											__KERNEL_CS);																																	\

																	_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																																	0,	0,	__KERNEL_CS);																					\

									}	while	(0)

First	of	all	it	checks	with	that	passed	interrupt	number	is	not	greater	than		255		with		BUG_ON		macro.	We	need	to	do	this
check	because	we	can	have	only	256	interrupts.	After	this	it	calls		_set_gate		which	writes	address	of	an	interrupt	gate	to	the
	IDT	:

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

									gate_desc	s;

									pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

									write_idt_entry(idt_table,	gate,	&s);

									write_trace_idt_entry(gate,	&s);

}

At	the	start	of		_set_gate		function	we	can	see	call	of	the		pack_gate		function	which	fills		gate_desc		structure	with	the	given
values:

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

								gate->zero1													=	0;

								gate->type														=	type;

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

As	mentioned	above	we	fill	gate	descriptor	in	this	function.	We	fill	three	parts	of	the	address	of	the	interrupt	handler	with	the
address	which	we	got	in	the	main	loop	(address	of	the	interrupt	handler	entry	point).	We	are	using	three	following	macro	to
split	address	on	three	parts:

#define	PTR_LOW(x)	((unsigned	long	long)(x)	&	0xFFFF)

#define	PTR_MIDDLE(x)	(((unsigned	long	long)(x)	>>	16)	&	0xFFFF)

#define	PTR_HIGH(x)	((unsigned	long	long)(x)	>>	32)

With	the	first		PTR_LOW		macro	we	get	the	first	2	bytes	of	the	address,	with	the	second		PTR_MIDDLE		we	get	the	second	2	bytes
of	the	address	and	with	the	third		PTR_HIGH		macro	we	get	the	last	4	bytes	of	the	address.	Next	we	setup	the	segment
selector	for	interrupt	handler,	it	will	be	our	kernel	code	segment	-		__KERNEL_CS	.	In	the	next	step	we	fill		Interrupt	Stack
Table		and		Descriptor	Privilege	Level		(highest	privilege	level)	with	zeros.	And	we	set		GAT_INTERRUPT		type	in	the	end.

Now	we	have	filled	IDT	entry	and	we	can	call		native_write_idt_entry		function	which	just	copies	filled		IDT		entry	to	the		IDT	:

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}
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After	that	main	loop	will	finished,	we	will	have	filled		idt_table		array	of		gate_desc		structures	and	we	can	load		IDT		with:

load_idt((const	struct	desc_ptr	*)&idt_descr);

Where		idt_descr		is:

struct	desc_ptr	idt_descr	=	{	NR_VECTORS	*	16	-	1,	(unsigned	long)	idt_table	};

and		load_idt		just	executes		lidt		instruction:

asm	volatile("lidt	%0"::"m"	(*dtr));

You	can	note	that	there	are	calls	of	the		_trace_*		functions	in	the		_set_gate		and	other	functions.	These	functions	fills		IDT	
gates	in	the	same	manner	that		_set_gate		but	with	one	difference.	These	functions	use		trace_idt_table		Interrupt
Descriptor	Table	instead	of		idt_table		for	tracepoints	(we	will	cover	this	theme	in	the	another	part).

Okay,	now	we	have	filled	and	loaded	Interrupt	Descriptor	Table,	we	know	how	the	CPU	acts	during	interrupt.	So	now	time	to
deal	with	interrupts	handlers.

As	you	can	read	above,	we	filled		IDT		with	the	address	of	the		early_idt_handlers	.	We	can	find	it	in	the
arch/x86/kernel/head_64.S:

				.globl	early_idt_handlers

early_idt_handlers:

				i	=	0

				.rept	NUM_EXCEPTION_VECTORS

				.if	(EXCEPTION_ERRCODE_MASK	>>	i)	&	1

				ASM_NOP2

				.else

				pushq	$0

				.endif

				pushq	$i

				jmp	early_idt_handler

				i	=	i	+	1

				.endr

We	can	see	here,	interrupt	handlers	generation	for	the	first	32	exceptions.	We	check	here,	if	exception	has	error	code	then
we	do	nothing,	if	exception	does	not	return	error	code,	we	push	zero	to	the	stack.	We	do	it	for	that	would	stack	was	uniform.
After	that	we	push	exception	number	on	the	stack	and	jump	on	the		early_idt_handler		which	is	generic	interrupt	handler	for
now.	As	i	wrote	above,	CPU	pushes	flag	register,		CS		and		RIP		on	the	stack.	So	before		early_idt_handler		will	be	executed,
stack	will	contain	following	data:

|--------------------|

|	%rflags												|

|	%cs																|

|	%rip															|

|	rsp	-->	error	code	|

|--------------------|

Now	let's	look	on	the		early_idt_handler		implementation.	It	locates	in	the	same	arch/x86/kernel/head_64.S.	First	of	all	we

Early	interrupts	handlers
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can	see	check	for	NMI,	we	no	need	to	handle	it,	so	just	ignore	they	in	the		early_idt_handler	:

				cmpl	$2,(%rsp)

				je	is_nmi

where		is_nmi	:

is_nmi:

				addq	$16,%rsp

				INTERRUPT_RETURN

we	drop	error	code	and	vector	number	from	the	stack	and	call		INTERRUPT_RETURN		which	is	just		iretq	.	As	we	checked	the
vector	number	and	it	is	not		NMI	,	we	check		early_recursion_flag		to	prevent	recursion	in	the		early_idt_handler		and	if	it's
correct	we	save	general	registers	on	the	stack:

				pushq	%rax

				pushq	%rcx

				pushq	%rdx

				pushq	%rsi

				pushq	%rdi

				pushq	%r8

				pushq	%r9

				pushq	%r10

				pushq	%r11

we	need	to	do	it	to	prevent	wrong	values	in	it	when	we	return	from	the	interrupt	handler.	After	this	we	check	segment
selector	in	the	stack:

				cmpl	$__KERNEL_CS,96(%rsp)

				jne	11f

it	must	be	equal	to	the	kernel	code	segment	and	if	it	is	not	we	jump	on	label		11		which	prints		PANIC		message	and	makes
stack	dump.

After	code	segment	was	checked,	we	check	the	vector	number,	and	if	it	is		#PF	,	we	put	value	from	the		cr2		to	the		rdi	
register	and	call		early_make_pgtable		(well	see	it	soon):

				cmpl	$14,72(%rsp)

				jnz	10f

				GET_CR2_INTO(%rdi)

				call	early_make_pgtable

				andl	%eax,%eax

				jz	20f

If	vector	number	is	not		#PF	,	we	restore	general	purpose	registers	from	the	stack:

				popq	%r11

				popq	%r10

				popq	%r9

				popq	%r8

				popq	%rdi

				popq	%rsi

				popq	%rdx

				popq	%rcx

				popq	%rax
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and	exit	from	the	handler	with		iret	.

It	is	the	end	of	the	first	interrupt	handler.	Note	that	it	is	very	early	interrupt	handler,	so	it	handles	only	Page	Fault	now.	We
will	see	handlers	for	the	other	interrupts,	but	now	let's	look	on	the	page	fault	handler.

In	the	previous	paragraph	we	saw	first	early	interrupt	handler	which	checks	interrupt	number	for	page	fault	and	calls
	early_make_pgtable		for	building	new	page	tables	if	it	is.	We	need	to	have		#PF		handler	in	this	step	because	there	are	plans
to	add	ability	to	load	kernel	above	4G	and	make	access	to		boot_params		structure	above	the	4G.

You	can	find	implementation	of	the		early_make_pgtable		in	the	arch/x86/kernel/head64.c	and	takes	one	parameter	-	address
from	the		cr2		register,	which	caused	Page	Fault.	Let's	look	on	it:

int	__init	early_make_pgtable(unsigned	long	address)

{

				unsigned	long	physaddr	=	address	-	__PAGE_OFFSET;

				unsigned	long	i;

				pgdval_t	pgd,	*pgd_p;

				pudval_t	pud,	*pud_p;

				pmdval_t	pmd,	*pmd_p;

				...

				...

				...

}

It	starts	from	the	definition	of	some	variables	which	have		*val_t		types.	All	of	these	types	are	just:

typedef	unsigned	long			pgdval_t;

Also	we	will	operate	with	the		*_t		(not	val)	types,	for	example		pgd_t		and	etc...	All	of	these	types	defined	in	the
arch/x86/include/asm/pgtable_types.h	and	represent	structures	like	this:

typedef	struct	{	pgdval_t	pgd;	}	pgd_t;

For	example,

extern	pgd_t	early_level4_pgt[PTRS_PER_PGD];

Here		early_level4_pgt		presents	early	top-level	page	table	directory	which	consists	of	an	array	of		pgd_t		types	and		pgd	
points	to	low-level	page	entries.

After	we	made	the	check	that	we	have	no	invalid	address,	we're	getting	the	address	of	the	Page	Global	Directory	entry
which	contains		#PF		address	and	put	it's	value	to	the		pgd		variable:

pgd_p	=	&early_level4_pgt[pgd_index(address)].pgd;

pgd	=	*pgd_p;

In	the	next	step	we	check		pgd	,	if	it	contains	correct	page	global	directory	entry	we	put	physical	address	of	the	page	global
directory	entry	and	put	it	to	the		pud_p		with:

Page	fault	handling
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pud_p	=	(pudval_t	*)((pgd	&	PTE_PFN_MASK)	+	__START_KERNEL_map	-	phys_base);

where		PTE_PFN_MASK		is	a	macro:

#define	PTE_PFN_MASK												((pteval_t)PHYSICAL_PAGE_MASK)

which	expands	to:

(~(PAGE_SIZE-1))	&	((1	<<	46)	-	1)

or

0b1111111111111111111111111111111111111111111111

which	is	46	bits	to	mask	page	frame.

If		pgd		does	not	contain	correct	address	we	check	that		next_early_pgt		is	not	greater	than		EARLY_DYNAMIC_PAGE_TABLES		which
is		64		and	present	a	fixed	number	of	buffers	to	set	up	new	page	tables	on	demand.	If		next_early_pgt		is	greater	than
	EARLY_DYNAMIC_PAGE_TABLES		we	reset	page	tables	and	start	again.	If		next_early_pgt		is	less	than		EARLY_DYNAMIC_PAGE_TABLES	,
we	create	new	page	upper	directory	pointer	which	points	to	the	current	dynamic	page	table	and	writes	it's	physical	address
with	the		_KERPG_TABLE		access	rights	to	the	page	global	directory:

if	(next_early_pgt	>=	EARLY_DYNAMIC_PAGE_TABLES)	{

				reset_early_page_tables();

				goto	again;

}

pud_p	=	(pudval_t	*)early_dynamic_pgts[next_early_pgt++];

for	(i	=	0;	i	<	PTRS_PER_PUD;	i++)

				pud_p[i]	=	0;

*pgd_p	=	(pgdval_t)pud_p	-	__START_KERNEL_map	+	phys_base	+	_KERNPG_TABLE;

After	this	we	fix	up	address	of	the	page	upper	directory	with:

pud_p	+=	pud_index(address);

pud	=	*pud_p;

In	the	next	step	we	do	the	same	actions	as	we	did	before,	but	with	the	page	middle	directory.	In	the	end	we	fix	address	of
the	page	middle	directory	which	contains	maps	kernel	text+data	virtual	addresses:

pmd	=	(physaddr	&	PMD_MASK)	+	early_pmd_flags;

pmd_p[pmd_index(address)]	=	pmd;

After	page	fault	handler	finished	it's	work	and	as	result	our		early_level4_pgt		contains	entries	which	point	to	the	valid
addresses.

Conclusion
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This	is	the	end	of	the	second	part	about	linux	kernel	internals.	If	you	have	questions	or	suggestions,	ping	me	in	twitter
0xAX,	drop	me	email	or	just	create	issue.	In	the	next	part	we	will	see	all	steps	before	kernel	entry	point	-		start_kernel	
function.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	PR	to	linux-internals.

GNU	assembly	.rept
APIC
NMI
Previous	part

Links
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This	is	the	third	part	of	the	Linux	kernel	initialization	process	series.	In	the	previous	part	we	saw	early	interrupt	and
exception	handling	and	will	continue	to	dive	into	the	linux	kernel	initialization	process	in	the	current	part.	Our	next	point	is
'kernel	entry	point'	-		start_kernel		function	from	the	init/main.c	source	code	file.	Yes,	technically	it	is	not	kernel's	entry	point
but	the	start	of	the	generic	kernel	code	which	does	not	depend	on	certain	architecture.	But	before	we	will	see	call	of	the
	start_kernel		function,	we	must	do	some	preparations.	So	let's	continue.

In	the	previous	part	we	stopped	at	setting	Interrupt	Descriptor	Table	and	loading	it	in	the		IDTR		register.	At	the	next	step
after	this	we	can	see	a	call	of	the		copy_bootdata		function:

copy_bootdata(__va(real_mode_data));

This	function	takes	one	argument	-	virtual	address	of	the		real_mode_data	.	Remember	that	we	passed	the	address	of	the
	boot_params		structure	from	arch/x86/include/uapi/asm/bootparam.h	to	the		x86_64_start_kernel		function	as	first	argument	in
arch/x86/kernel/head_64.S:

				/*	rsi	is	pointer	to	real	mode	structure	with	interesting	info.

							pass	it	to	C	*/

				movq				%rsi,	%rdi

Now	let's	look	at		__va		macro.	This	macro	defined	in	init/main.c:

#define	__va(x)																	((void	*)((unsigned	long)(x)+PAGE_OFFSET))

where		PAGE_OFFSET		is		__PAGE_OFFSET		which	is		0xffff880000000000		and	the	base	virtual	address	of	the	direct	mapping	of	all
physical	memory.	So	we're	getting	virtual	address	of	the		boot_params		structure	and	pass	it	to	the		copy_bootdata		function,
where	we	copy		real_mod_data		to	the		boot_params		which	is	declared	in	the	arch/x86/kernel/setup.h

extern	struct	boot_params	boot_params;

Let's	look	at	the		copy_boot_data		implementation:

static	void	__init	copy_bootdata(char	*real_mode_data)

{

				char	*	command_line;

				unsigned	long	cmd_line_ptr;

				memcpy(&boot_params,	real_mode_data,	sizeof	boot_params);

				sanitize_boot_params(&boot_params);

				cmd_line_ptr	=	get_cmd_line_ptr();

				if	(cmd_line_ptr)	{

								command_line	=	__va(cmd_line_ptr);

								memcpy(boot_command_line,	command_line,	COMMAND_LINE_SIZE);

				}

Kernel	initialization.	Part	3.

Last	preparations	before	the	kernel	entry	point

boot_params	again

Linux	Inside

82Last	preparations	before	the	kernel	entry	point

https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-2.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L114
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.h


}

First	of	all,	note	that	this	function	is	declared	with		__init		prefix.	It	means	that	this	function	will	be	used	only	during	the
initialization	and	used	memory	will	be	freed.

We	can	see	declaration	of	two	variables	for	the	kernel	command	line	and	copying		real_mode_data		to	the		boot_params		with
the		memcpy		function.	The	next	call	of	the		sanitize_boot_params		function	which	fills	some	fields	of	the		boot_params		structure
like		ext_ramdisk_image		and	etc...	if	bootloaders	which	fail	to	initialize	unknown	fields	in		boot_params		to	zero.	After	this	we're
getting	address	of	the	command	line	with	the	call	of	the		get_cmd_line_ptr		function:

unsigned	long	cmd_line_ptr	=	boot_params.hdr.cmd_line_ptr;

cmd_line_ptr	|=	(u64)boot_params.ext_cmd_line_ptr	<<	32;

return	cmd_line_ptr;

which	gets	the	64-bit	address	of	the	command	line	from	the	kernel	boot	header	and	returns	it.	In	the	last	step	we	check	that
we	got		cmd_line_pty	,	getting	its	virtual	address	and	copy	it	to	the		boot_command_line		which	is	just	an	array	of	bytes:

extern	char	__initdata	boot_command_line[];

After	this	we	will	have	copied	kernel	command	line	and		boot_params		structure.	In	the	next	step	we	can	see	call	of	the
	load_ucode_bsp		function	which	loads	processor	microcode,	but	we	will	not	see	it	here.

After	microcode	was	loaded	we	can	see	the	check	of	the		console_loglevel		and	the		early_printk		function	which	prints
	Kernel	Alive		string.	But	you'll	never	see	this	output	because		early_printk		is	not	initilized	yet.	It	is	a	minor	bug	in	the
kernel	and	i	sent	the	patch	-	commit	and	you	will	see	it	in	the	mainline	soon.	So	you	can	skip	this	code.

In	the	next	step	as	we	have	copied		boot_params		structure,	we	need	to	move	from	the	early	page	tables	to	the	page	tables
for	initialization	process.	We	already	set	early	page	tables	for	switchover,	you	can	read	about	it	in	the	previous	part	and
dropped	all	it	in	the		reset_early_page_tables		function	(you	can	read	about	it	in	the	previous	part	too)	and	kept	only	kernel
high	mapping.	After	this	we	call:

				clear_page(init_level4_pgt);

function	and	pass		init_level4_pgt		which	defined	also	in	the	arch/x86/kernel/head_64.S	and	looks:

NEXT_PAGE(init_level4_pgt)

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_PAGE_OFFSET*8,	0

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_START_KERNEL*8,	0

				.quad			level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

which	maps	first	2	gigabytes	and	512	megabytes	for	the	kernel	code,	data	and	bss.		clear_page		function	defined	in	the
arch/x86/lib/clear_page_64.S	let	look	on	this	function:

ENTRY(clear_page)

				CFI_STARTPROC

				xorl	%eax,%eax

				movl	$4096/64,%ecx

Move	on	init	pages
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				.p2align	4

				.Lloop:

				decl				%ecx

#define	PUT(x)	movq	%rax,x*8(%rdi)

				movq	%rax,(%rdi)

				PUT(1)

				PUT(2)

				PUT(3)

				PUT(4)

				PUT(5)

				PUT(6)

				PUT(7)

				leaq	64(%rdi),%rdi

				jnz				.Lloop

				nop

				ret

				CFI_ENDPROC

				.Lclear_page_end:

				ENDPROC(clear_page)

As	you	can	understart	from	the	function	name	it	clears	or	fills	with	zeros	page	tables.	First	of	all	note	that	this	function	starts
with	the		CFI_STARTPROC		and		CFI_ENDPROC		which	are	expands	to	GNU	assembly	directives:

#define	CFI_STARTPROC											.cfi_startproc

#define	CFI_ENDPROC													.cfi_endproc

and	used	for	debugging.	After		CFI_STARTPROC		macro	we	zero	out		eax		register	and	put	64	to	the		ecx		(it	will	be	counter).
Next	we	can	see	loop	which	starts	with	the		.Lloop		label	and	it	starts	from	the		ecx		decrement.	After	it	we	put	zero	from	the
	rax		register	to	the		rdi		which	contains	the	base	address	of	the		init_level4_pgt		now	and	do	the	same	procedure	seven
times	but	every	time	move		rdi		offset	on	8.	After	this	we	will	have	first	64	bytes	of	the		init_level4_pgt		filled	with	zeros.	In
the	next	step	we	put	the	address	of	the		init_level4_pgt		with	64-bytes	offset	to	the		rdi		again	and	repeat	all	operations
which		ecx		is	not	zero.	In	the	end	we	will	have		init_level4_pgt		filled	with	zeros.

As	we	have		init_level4_pgt		filled	with	zeros,	we	set	the	last		init_level4_pgt		entry	to	kernel	high	mapping	with	the:

init_level4_pgt[511]	=	early_level4_pgt[511];

Remember	that	we	dropped	all		early_level4_pgt		entries	in	the		reset_early_page_table		function	and	kept	only	kernel	high
mapping	there.

The	last	step	in	the		x86_64_start_kernel		function	is	the	call	of	the:

x86_64_start_reservations(real_mode_data);

function	with	the		real_mode_data		as	argument.	The		x86_64_start_reservations		function	defined	in	the	same	source	code
file	as	the		x86_64_start_kernel		function	and	looks:

void	__init	x86_64_start_reservations(char	*real_mode_data)

{

				if	(!boot_params.hdr.version)

								copy_bootdata(__va(real_mode_data));

				reserve_ebda_region();

				start_kernel();

}
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You	can	see	that	it	is	the	last	function	before	we	are	in	the	kernel	entry	point	-		start_kernel		function.	Let's	look	what	it	does
and	how	it	works.

First	of	all	we	can	see	in	the		x86_64_start_reservations		function	check	for		boot_params.hdr.version	:

if	(!boot_params.hdr.version)

				copy_bootdata(__va(real_mode_data));

and	if	it	is	not	we	call	again		copy_bootdata		function	with	the	virtual	address	of	the		real_mode_data		(read	about	about	it's
implementation).

In	the	next	step	we	can	see	the	call	of	the		reserve_ebda_region		function	which	defined	in	the	arch/x86/kernel/head.c.	This
function	reserves	memory	block	for	th		EBDA		or	Extended	BIOS	Data	Area.	The	Extended	BIOS	Data	Area	located	in	the	top
of	conventional	memory	and	contains	data	about	ports,	disk	parameters	and	etc...

Let's	look	on	the		reserve_ebda_region		function.	It	starts	from	the	checking	is	paravirtualization	enabled	or	not:

if	(paravirt_enabled())

				return;

we	exit	from	the		reserve_ebda_region		function	if	paravirtualization	is	enabled	because	if	it	enabled	the	extended	bios	data
area	is	absent.	In	the	next	step	we	need	to	get	the	end	of	the	low	memory:

lowmem	=	*(unsigned	short	*)__va(BIOS_LOWMEM_KILOBYTES);

lowmem	<<=	10;

We're	getting	the	virtual	address	of	the	BIOS	low	memory	in	kilobytes	and	convert	it	to	bytes	with	shifting	it	on	10	(multiply
on	1024	in	other	words).	After	this	we	need	to	get	the	address	of	the	extended	BIOS	data	are	with	the:

ebda_addr	=	get_bios_ebda();

where		get_bios_ebda		function	defined	in	the	arch/x86/include/asm/bios_ebda.h	and	looks	like:

static	inline	unsigned	int	get_bios_ebda(void)

{

				unsigned	int	address	=	*(unsigned	short	*)phys_to_virt(0x40E);

				address	<<=	4;

				return	address;

}

Let's	try	to	understand	how	it	works.	Here	we	can	see	that	we	converting	physical	address		0x40E		to	the	virtual,	where
	0x0040:0x000e		is	the	segment	which	contains	base	address	of	the	extended	BIOS	data	area.	Don't	worry	that	we	are	using
	phys_to_virt		function	for	converting	a	physical	address	to	virtual	address.	You	can	note	that	previously	we	have	used
	__va		macro	for	the	same	point,	but		phys_to_virt		is	the	same:

static	inline	void	*phys_to_virt(phys_addr_t	address)

{

									return	__va(address);

Last	step	before	kernel	entry	point
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}

only	with	one	difference:	we	pass	argument	with	the		phys_addr_t		which	depends	on		CONFIG_PHYS_ADDR_T_64BIT	:

#ifdef	CONFIG_PHYS_ADDR_T_64BIT

				typedef	u64	phys_addr_t;

#else

				typedef	u32	phys_addr_t;

#endif

This	configuration	option	is	enabled	by		CONFIG_PHYS_ADDR_T_64BIT	.	After	that	we	got	virtual	address	of	the	segment	which
stores	the	base	address	of	the	extended	BIOS	data	area,	we	shift	it	on	4	and	return.	After	this		ebda_addr		variables	contains
the	base	address	of	the	extended	BIOS	data	area.

In	the	next	step	we	check	that	address	of	the	extended	BIOS	data	area	and	low	memory	is	not	less	than		INSANE_CUTOFF	
macro

if	(ebda_addr	<	INSANE_CUTOFF)

				ebda_addr	=	LOWMEM_CAP;

if	(lowmem	<	INSANE_CUTOFF)

				lowmem	=	LOWMEM_CAP;

which	is:

#define	INSANE_CUTOFF								0x20000U

or	128	kilobytes.	In	the	last	step	we	get	lower	part	in	the	low	memory	and	extended	bios	data	area	and	call
	memblock_reserve		function	which	will	reserve	memory	region	for	extended	bios	data	between	low	memory	and	one
megabyte	mark:

lowmem	=	min(lowmem,	ebda_addr);

lowmem	=	min(lowmem,	LOWMEM_CAP);

memblock_reserve(lowmem,	0x100000	-	lowmem);

	memblock_reserve		function	is	defined	at	mm/block.c	and	takes	two	parameters:

base	physical	address;
region	size.

and	reserves	memory	region	for	the	given	base	address	and	size.		memblock_reserve		is	the	first	function	in	this	book	from
linux	kernel	memory	manager	framework.	We	will	take	a	closer	look	on	memory	manager	soon,	but	now	let's	look	at	its
implementation.

In	the	previous	paragraph	we	stopped	at	the	call	of	the		memblock_reserve		function	and	as	i	sad	before	it	is	the	first	function
from	the	memory	manager	framework.	Let's	try	to	understand	how	it	works.		memblock_reserve		function	just	calls:

memblock_reserve_region(base,	size,	MAX_NUMNODES,	0);

First	touch	of	the	linux	kernel	memory	manager	framework
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function	and	passes	4	parameters	there:

physical	base	address	of	the	memory	region;
size	of	the	memory	region;
maximum	number	of	numa	nodes;
flags.

At	the	start	of	the		memblock_reserve_region		body	we	can	see	definition	of	the		memblock_type		structure:

struct	memblock_type	*_rgn	=	&memblock.reserved;

which	presents	the	type	of	the	memory	block	and	looks:

struct	memblock_type	{

									unsigned	long	cnt;

									unsigned	long	max;

									phys_addr_t	total_size;

									struct	memblock_region	*regions;

};

As	we	need	to	reserve	memory	block	for	extended	bios	data	area,	the	type	of	the	current	memory	region	is	reserved	where
	memblock		structure	is:

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;

									struct	memblock_type	reserved;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

and	describes	generic	memory	block.	You	can	see	that	we	initialize		_rgn		by	assigning	it	to	the	address	of	the
	memblock.reserved	.		memblock		is	the	global	variable	which	looks:

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt								=	1,

				.memory.max								=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up								=	false,

				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

We	will	not	dive	into	detail	of	this	varaible,	but	we	will	see	all	details	about	it	in	the	parts	about	memory	manager.	Just	note
that		memblock		variable	defined	with	the		__initdata_memblock		which	is:

#define	__initdata_memblock	__meminitdata
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and		__meminit_data		is:

#define	__meminitdata				__section(.meminit.data)

From	this	we	can	conclude	that	all	memory	blocks	will	be	in	the		.meminit.data		section.	After	we	defined		_rgn		we	print
information	about	it	with		memblock_dbg		macros.	You	can	enable	it	by	passing		memblock=debug		to	the	kernel	command	line.

After	debugging	lines	were	printed	next	is	the	call	of	the	following	function:

memblock_add_range(_rgn,	base,	size,	nid,	flags);

which	adds	new	memory	block	region	into	the		.meminit.data		section.	As	we	do	not	initlieze		_rgn		but	it	just	contains
	&memblock.reserved	,	we	just	fill	passed		_rgn		with	the	base	address	of	the	extended	BIOS	data	area	region,	size	of	this
region	and	flags:

if	(type->regions[0].size	==	0)	{

				WARN_ON(type->cnt	!=	1	||	type->total_size);

				type->regions[0].base	=	base;

				type->regions[0].size	=	size;

				type->regions[0].flags	=	flags;

				memblock_set_region_node(&type->regions[0],	nid);

				type->total_size	=	size;

				return	0;

}

After	we	filled	our	region	we	can	see	the	call	of	the		memblock_set_region_node		function	with	two	parameters:

address	of	the	filled	memory	region;
NUMA	node	id.

where	our	regions	represented	by	the		memblock_region		structure:

struct	memblock_region	{

				phys_addr_t	base;

				phys_addr_t	size;

				unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

				int	nid;

#endif

};

NUMA	node	id	depends	on		MAX_NUMNODES		macro	which	is	defined	in	the	include/linux/numa.h:

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

where		NODES_SHIFT		depends	on		CONFIG_NODES_SHIFT		configuration	parameter	and	defined	as:

#ifdef	CONFIG_NODES_SHIFT

		#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

		#define	NODES_SHIFT					0

#endif
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	memblick_set_region_node		function	just	fills		nid		field	from		memblock_region		with	the	given	value:

static	inline	void	memblock_set_region_node(struct	memblock_region	*r,	int	nid)

{

									r->nid	=	nid;

}

After	this	we	will	have	first	reserved		memblock		for	the	extended	bios	data	area	in	the		.meminit.data		section.
	reserve_ebda_region		function	finished	its	work	on	this	step	and	we	can	go	back	to	the	arch/x86/kernel/head64.c.

We	finished	all	preparations	before	the	kernel	entry	point!	The	last	step	in	the		x86_64_start_reservations		function	is	the	call
of	the:

start_kernel()

function	from	init/main.c	file.

That's	all	for	this	part.

It	is	the	end	of	the	third	part	about	linux	kernel	internals.	In	next	part	we	will	see	the	first	initialization	steps	in	the	kernel
entry	point	-		start_kernel		function.	It	will	be	the	first	step	before	we	will	see	launch	of	the	first		init		process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

BIOS	data	area
What	is	in	the	extended	BIOS	data	area	on	a	PC?
Previous	part

Conclusion

Links
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If	you	have	read	the	previous	part	-	Last	preparations	before	the	kernel	entry	point,	you	can	remember	that	we	finished	all
pre-initialization	stuff	and	stopped	right	before	the	call	to	the		start_kernel		function	from	the	init/main.c.	The		start_kernel	
is	the	entry	of	the	generic	and	architecture	independent	kernel	code,	although	we	will	return	to	the		arch/		folder	many
times.	If	you	look	inside	of	the		start_kernel		function,	you	will	see	that	this	function	is	very	big.	For	this	moment	it	contains
about		86		calls	of	functions.	Yes,	it's	very	big	and	of	course	this	part	will	not	cover	all	the	processes	that	occur	in	this
function.	In	the	current	part	we	will	only	start	to	do	it.	This	part	and	all	the	next	which	will	be	in	the	Kernel	initialization
process	chapter	will	cover	it.

The	main	purpose	of	the		start_kernel		to	finish	kernel	initialization	process	and	launch	the	first		init		process.	Before	the
first	process	will	be	started,	the		start_kernel		must	do	many	things	such	as:	to	enable	lock	validator,	to	initialize	processor
id,	to	enable	early	cgroups	subsystem,	to	setup	per-cpu	areas,	to	initialize	different	caches	in	vfs,	to	initialize	memory
manager,	rcu,	vmalloc,	scheduler,	IRQs,	ACPI	and	many	many	more.	Only	after	these	steps	we	will	see	the	launch	of	the
first		init		process	in	the	last	part	of	this	chapter.	So	much	kernel	code	awaits	us,	let's	start.

NOTE:	All	parts	from	this	big	chapter		Linux	Kernel	initialization	process		will	not	cover	anything	about	debugging.
There	will	be	a	separate	chapter	about	kernel	debugging	tips.

As	I	wrote	above,	the		start_kernel		function	is	defined	in	the	init/main.c.	This	function	defined	with	the		__init		attribute	and
as	you	already	may	know	from	other	parts,	all	functions	which	are	defined	with	this	attribute	are	necessary	during	kernel
initialization.

#define	__init						__section(.init.text)	__cold	notrace

After	the	initialization	process	will	be	finished,	the	kernel	will	release	these	sections	with	a	call	to	the		free_initmem		function.
Note	also	that		__init		is	defined	with	two	attributes:		__cold		and		notrace	.	The	purpose	of	the	first		cold		attribute	is	to	mark
that	the	function	is	rarely	used	and	the	compiler	must	optimize	this	function	for	size.	The	second		notrace		is	defined	as:

#define	notrace	__attribute__((no_instrument_function))

where		no_instrument_function		says	to	the	compiler	not	to	generate	profiling	function	calls.

In	the	definition	of	the		start_kernel		function,	you	can	also	see	the		__visible		attribute	which	expands	to	the:

#define	__visible	__attribute__((externally_visible))

where		externally_visible		tells	to	the	compiler	that	something	uses	this	function	or	variable,	to	prevent	marking	this
function/variable	as		unusable	.	You	can	find	the	definition	of	this	and	other	macro	attributes	in	include/linux/init.h.

Kernel	initialization.	Part	4.

Kernel	entry	point

A	little	about	function	attributes

First	steps	in	the	start_kernel

Linux	Inside

90Kernel	entry	point

https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-3.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/0xAX/linux-insides/blob/master/Initialization/README.md
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h


At	the	beginning	of	the		start_kernel		you	can	see	the	definition	of	these	two	variables:

char	*command_line;

char	*after_dashes;

The	first	represents	a	pointer	to	the	kernel	command	line	and	the	second	will	contain	the	result	of	the		parse_args		function
which	parses	an	input	string	with	parameters	in	the	form		name=value	,	looking	for	specific	keywords	and	invoking	the	right
handlers.	We	will	not	go	into	the	details	related	with	these	two	variables	at	this	time,	but	will	see	it	in	the	next	parts.	In	the
next	step	we	can	see	a	call	to	the:

lockdep_init();

function.		lockdep_init		initializes	lock	validator.	Its	implementation	is	pretty	simple,	it	just	initializes	two	list_head	hashes
and	sets	the		lockdep_initialized		global	variable	to		1	.	Lock	validator	detects	circular	lock	dependencies	and	is	called
when	any	spinlock	or	mutex	is	acquired.

The	next	function	is		set_task_stack_end_magic		which	takes	address	of	the		init_task		and	sets		STACK_END_MAGIC	
(	0x57AC6E9D	)	as	canary	for	it.		init_task		represents	the	initial	task	structure:

struct	task_struct	init_task	=	INIT_TASK(init_task);

where		task_struct		stores	all	the	information	about	a	process.	I	will	not	explain	this	structure	in	this	book	because	it's	very
big.	You	can	find	its	definition	in	include/linux/sched.h.	At	this	moment		task_struct		contains	more	than		100		fields!
Although	you	will	not	see	the	explanation	of	the		task_struct		in	this	book,	we	will	use	it	very	often	since	it	is	the
fundamental	structure	which	describes	the		process		in	the	Linux	kernel.	I	will	describe	the	meaning	of	the	fields	of	this
structure	as	we	meet	them	in	practice.

You	can	see	the	definition	of	the		init_task		and	it	initialized	by	the		INIT_TASK		macro.	This	macro	is	from
include/linux/init_task.h	and	it	just	fills	the		init_task		with	the	values	for	the	first	process.	For	example	it	sets:

init	process	state	to	zero	or		runnable	.	A	runnable	process	is	one	which	is	waiting	only	for	a	CPU	to	run	on;
init	process	flags	-		PF_KTHREAD		which	means	-	kernel	thread;
a	list	of	runnable	task;
process	address	space;
init	process	stack	to	the		&init_thread_info		which	is		init_thread_union.thread_info		and		initthread_union		has	type	-
	thread_union		which	contains		thread_info		and	process	stack:

union	thread_union	{

				struct	thread_info	thread_info;

				unsigned	long	stack[THREAD_SIZE/sizeof(long)];

};

Every	process	has	its	own	stack	and	it	is	16	killobytes	or	4	page	frames.	in		x86_64	.	We	can	note	that	it	is	defined	as	array
of		unsigned	long	.	The	next	field	of	the		thread_union		is	-		thread_info		defined	as:

struct	thread_info	{

								struct	task_struct						*task;

								struct	exec_domain						*exec_domain;

								__u32																			flags;	

								__u32																			status;

								__u32																			cpu;

								int																					saved_preempt_count;
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								mm_segment_t												addr_limit;

								struct	restart_block				restart_block;

								void	__user													*sysenter_return;

								unsigned	int												sig_on_uaccess_error:1;

								unsigned	int												uaccess_err:1;

};

and	occupies	52	bytes.	The		thread_info		structure	contains	architecture-specific	information	on	the	thread.	We	know	that
on		x86_64		the	stack	grows	down	and		thread_union.thread_info		is	stored	at	the	bottom	of	the	stack	in	our	case.	So	the
process	stack	is	16	killobytes	and		thread_info		is	at	the	bottom.	The	remaining	thread_size	will	be		16	killobytes	-	62	bytes
=	16332	bytes	.	Note	that		thread_unioun		represented	as	the	union	and	not	structure,	it	means	that		thread_info		and	stack
share	the	memory	space.

Schematically	it	can	be	represented	as	follows:

+-----------------------+

|																							|

|																							|

|								stack										|

|																							|

|_______________________|

|										|												|

|										|												|

|										|												|

|__________↓____________|													+--------------------+

|																							|													|																				|

|						thread_info						|<----------->|					task_struct				|

|																							|													|																				|

+-----------------------+													+--------------------+

http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-
construct

So	the		INIT_TASK		macro	fills	these		task_struct's		fields	and	many	many	more.	As	I	already	wrote	about,	I	will	not	describe
all	the	fields	and	values	in	the		INIT_TASK		macro	but	we	will	see	them	soon.

Now	let's	go	back	to	the		set_task_stack_end_magic		function.	This	function	defined	in	the	kernel/fork.c	and	sets	a	canary	to
the		init		process	stack	to	prevent	stack	overflow.

void	set_task_stack_end_magic(struct	task_struct	*tsk)

{

				unsigned	long	*stackend;

				stackend	=	end_of_stack(tsk);

				*stackend	=	STACK_END_MAGIC;	/*	for	overflow	detection	*/

}

Its	implementation	is	simple.		set_task_stack_end_magic		gets	the	end	of	the	stack	for	the	given		task_struct		with	the
	end_of_stack		function.	The	end	of	a	process	stack	depends	on	the		CONFIG_STACK_GROWSUP		configuration	option.	As	we	learn
in		x86_64		architecture,	the	stack	grows	down.	So	the	end	of	the	process	stack	will	be:

(unsigned	long	*)(task_thread_info(p)	+	1);

where		task_thread_info		just	returns	the	stack	which	we	filled	with	the		INIT_TASK		macro:

#define	task_thread_info(task)		((struct	thread_info	*)(task)->stack)
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As	we	got	the	end	of	the	init	process	stack,	we	write		STACK_END_MAGIC		there.	After		canary		is	set,	we	can	check	it	like	this:

if	(*end_of_stack(task)	!=	STACK_END_MAGIC)	{

								//

								//	handle	stack	overflow	here

								//

}

The	next	function	after	the		set_task_stack_end_magic		is		smp_setup_processor_id	.	This	function	has	an	empty	body	for
	x86_64	:

void	__init	__weak	smp_setup_processor_id(void)

{

}

as	it	not	implemented	for	all	architectures,	but	some	such	as	s390	and	arm64.

The	next	function	in		start_kernel		is		debug_objects_early_init	.	Implementation	of	this	function	is	almost	the	same	as
	lockdep_init	,	but	fills	hashes	for	object	debugging.	As	I	wrote	about,	we	will	not	see	the	explanation	of	this	and	other
functions	which	are	for	debugging	purposes	in	this	chapter.

After	the		debug_object_early_init		function	we	can	see	the	call	of	the		boot_init_stack_canary		function	which	fills
	task_struct->canary		with	the	canary	value	for	the		-fstack-protector		gcc	feature.	This	function	depends	on	the
	CONFIG_CC_STACKPROTECTOR		configuration	option	and	if	this	option	is	disabled,		boot_init_stack_canary		does	nothing,
otherwise	it	generates	random	numbers	based	on	random	pool	and	the	TSC:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

After	we	got	a	random	number,	we	fill	the		stack_canary		field	of		task_struct		with	it:

current->stack_canary	=	canary;

and	write	this	value	to	the	top	of	the	IRQ	stack	with	the:

this_cpu_write(irq_stack_union.stack_canary,	canary);	//	read	below	about	this_cpu_write

Again,	we	will	not	dive	into	details	here,	we	will	cover	it	in	the	part	about	IRQs.	As	canary	is	set,	we	disable	local	and	early
boot	IRQs	and	register	the	bootstrap	CPU	in	the	CPU	maps.	We	disable	local	IRQs	(interrupts	for	current	CPU)	with	the
	local_irq_disable		macro	which	expands	to	the	call	of	the		arch_local_irq_disable		function	from	include/linux/percpu-
defs.h:

static	inline	notrace	void	arch_local_irq_enable(void)

{

								native_irq_enable();

}

Where		native_irq_enable		is		cli		instruction	for		x86_64	.	As	interrupts	are	disabled	we	can	register	the	current	CPU	with
the	given	ID	in	the	CPU	bitmap.
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The	current	function	from	the		start_kernel		is		boot_cpu_init	.	This	function	initializes	various	CPU	masks	for	the	bootstrap
processor.	First	of	all	it	gets	the	bootstrap	processor	id	with	a	call	to:

int	cpu	=	smp_processor_id();

For	now	it	is	just	zero.	If	the		CONFIG_DEBUG_PREEMPT		configuration	option	is	disabled,		smp_processor_id		just	expands	to	the
call	of		raw_smp_processor_id		which	expands	to	the:

#define	raw_smp_processor_id()	(this_cpu_read(cpu_number))

	this_cpu_read		as	many	other	function	like	this	(	this_cpu_write	,		this_cpu_add		and	etc...)	defined	in	the
include/linux/percpu-defs.h	and	presents		this_cpu		operation.	These	operations	provide	a	way	of	optimizing	access	to	the
per-cpu	variables	which	are	associated	with	the	current	processor.	In	our	case	it	is		this_cpu_read	:

__pcpu_size_call_return(this_cpu_read_,	pcp)

Remember	that	we	have	passed		cpu_number		as		pcp		to	the		this_cpu_read		from	the		raw_smp_processor_id	.	Now	let's	look	at
the		__pcpu_size_call_return		implementation:

#define	__pcpu_size_call_return(stem,	variable)																									\

({																																																																						\

								typeof(variable)	pscr_ret__;																																				\

								__verify_pcpu_ptr(&(variable));																																	\

								switch(sizeof(variable))	{																																						\

								case	1:	pscr_ret__	=	stem##1(variable);	break;																		\

								case	2:	pscr_ret__	=	stem##2(variable);	break;																		\

								case	4:	pscr_ret__	=	stem##4(variable);	break;																		\

								case	8:	pscr_ret__	=	stem##8(variable);	break;																		\

								default:																																																								\

																__bad_size_call_parameter();	break;																					\

								}																																																															\

								pscr_ret__;																																																					\

})

Yes,	it	looks	a	little	strange	but	it's	easy.	First	of	all	we	can	see	the	definition	of	the		pscr_ret__		variable	with	the		int		type.
Why	int?	Ok,		variable		is		common_cpu		and	it	was	declared	as	per-cpu	int	variable:

DECLARE_PER_CPU_READ_MOSTLY(int,	cpu_number);

In	the	next	step	we	call		__verify_pcpu_ptr		with	the	address	of		cpu_number	.		__veryf_pcpu_ptr		used	to	verify	that	the	given
parameter	is	a	per-cpu	pointer.	After	that	we	set		pscr_ret__		value	which	depends	on	the	size	of	the	variable.	Our
	common_cpu		variable	is		int	,	so	it	4	bytes	in	size.	It	means	that	we	will	get		this_cpu_read_4(common_cpu)		in		pscr_ret__	.	In
the	end	of	the		__pcpu_size_call_return		we	just	call	it.		this_cpu_read_4		is	a	macro:

#define	this_cpu_read_4(pcp)							percpu_from_op("mov",	pcp)

which	calls		percpu_from_op		and	pass		mov		instruction	and	per-cpu	variable	there.		percpu_from_op		will	expand	to	the	inline
assembly	call:

The	first	processor	activation
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asm("movl	%%gs:%1,%0"	:	"=r"	(pfo_ret__)	:	"m"	(common_cpu))

Let's	try	to	understand	how	it	works	and	what	it	does.	The		gs		segment	register	contains	the	base	of	per-cpu	area.	Here	we
just	copy		common_cpu		which	is	in	memory	to	the		pfo_ret__		with	the		movl		instruction.	Or	with	another	words:

this_cpu_read(common_cpu)

is	the	same	as:

movl	%gs:$common_cpu,	$pfo_ret__

As	we	didn't	setup	per-cpu	area,	we	have	only	one	-	for	the	current	running	CPU,	we	will	get		zero		as	a	result	of	the
	smp_processor_id	.

As	we	got	the	current	processor	id,		boot_cpu_init		sets	the	given	CPU	online,	active,	present	and	possible	with	the:

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

All	of	these	functions	use	the	concept	-		cpumask	.		cpu_possible		is	a	set	of	CPU	ID's	which	can	be	plugged	in	at	any	time
during	the	life	of	that	system	boot.		cpu_present		represents	which	CPUs	are	currently	plugged	in.		cpu_online		represents
subset	of	the		cpu_present		and	indicates	CPUs	which	are	available	for	scheduling.	These	masks	depend	on	the
	CONFIG_HOTPLUG_CPU		configuration	option	and	if	this	option	is	disabled		possible	==	present		and		active	==	online	.
Implementation	of	the	all	of	these	functions	are	very	similar.	Every	function	checks	the	second	parameter.	If	it	is		true	,	it
calls		cpumask_set_cpu		or		cpumask_clear_cpu		otherwise.

For	example	let's	look	at		set_cpu_possible	.	As	we	passed		true		as	the	second	parameter,	the:

cpumask_set_cpu(cpu,	to_cpumask(cpu_possible_bits));

will	be	called.	First	of	all	let's	try	to	understand	the		to_cpu_mask		macro.	This	macro	casts	a	bitmap	to	a		struct	cpumask	*	.
CPU	masks	provide	a	bitmap	suitable	for	representing	the	set	of	CPU's	in	a	system,	one	bit	position	per	CPU	number.	CPU
mask	presented	by	the		cpu_mask		structure:

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

which	is	just	bitmap	declared	with	the		DECLARE_BITMAP		macro:

#define	DECLARE_BITMAP(name,	bits)	unsigned	long	name[BITS_TO_LONGS(bits)]

As	we	can	see	from	its	definition,	the		DECLARE_BITMAP		macro	expands	to	the	array	of		unsigned	long	.	Now	let's	look	at	how
the		to_cpumask		macro	is	implemented:

#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\
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																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

I	don't	know	about	you,	but	it	looked	really	weird	for	me	at	the	first	time.	We	can	see	a	ternary	operator	here	which	is		true	
every	time,	but	why	the		__check_is_bitmap		here?	It's	simple,	let's	look	at	it:

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

Yeah,	it	just	returns		1		every	time.	Actually	we	need	in	it	here	only	for	one	purpose:	at	compile	time	it	checks	that	the	given
	bitmap		is	a	bitmap,	or	in	other	words	it	checks	that	the	given		bitmap		has	a	type	of		unsigned	long	*	.	So	we	just	pass
	cpu_possible_bits		to	the		to_cpumask		macro	for	converting	the	array	of		unsigned	long		to	the		struct	cpumask	*	.	Now	we
can	call		cpumask_set_cpu		function	with	the		cpu		-	0	and		struct	cpumask	*cpu_possible_bits	.	This	function	makes	only	one
call	of	the		set_bit		function	which	sets	the	given		cpu		in	the	cpumask.	All	of	these		set_cpu_*		functions	work	on	the	same
principle.

If	you're	not	sure	that	this		set_cpu_*		operations	and		cpumask		are	not	clear	for	you,	don't	worry	about	it.	You	can	get	more
info	by	reading	the	special	part	about	it	-	cpumask	or	documentation.

As	we	activated	the	bootstrap	processor,	it's	time	to	go	to	the	next	function	in	the		start_kernel.		Now	it	is
	page_address_init	,	but	this	function	does	nothing	in	our	case,	because	it	executes	only	when	all		RAM		can't	be	mapped
directly.

The	next	call	is		pr_notice	:

#define	pr_notice(fmt,	...)	\

				printk(KERN_NOTICE	pr_fmt(fmt),	##__VA_ARGS__)

as	you	can	see	it	just	expands	to	the		printk		call.	At	this	moment	we	use		pr_notice		to	print	the	Linux	banner:

pr_notice("%s",	linux_banner);

which	is	just	the	kernel	version	with	some	additional	parameters:

Linux	version	4.0.0-rc6+	(alex@localhost)	(gcc	version	4.9.1	(Ubuntu	4.9.1-16ubuntu6)	)	#319	SMP

The	next	step	is	architecture-specific	initializations.	The	Linux	kernel	does	it	with	the	call	of	the		setup_arch		function.	This	is
a	very	big	function	like		start_kernel		and	we	do	not	have	time	to	consider	all	of	its	implementation	in	this	part.	Here	we'll
only	start	to	do	it	and	continue	in	the	next	part.	As	it	is		architecture-specific	,	we	need	to	go	again	to	the		arch/		directory.
The		setup_arch		function	defined	in	the	arch/x86/kernel/setup.c	source	code	file	and	takes	only	one	argument	-	address	of
the	kernel	command	line.

This	function	starts	from	the	reserving	memory	block	for	the	kernel		_text		and		_data		which	starts	from	the		_text		symbol

Print	linux	banner
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Linux	Inside

96Kernel	entry	point

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c


(you	can	remember	it	from	the	arch/x86/kernel/head_64.S)	and	ends	before		__bss_stop	.	We	are	using		memblock		for	the
reserving	of	memory	block:

memblock_reserve(__pa_symbol(_text),	(unsigned	long)__bss_stop	-	(unsigned	long)_text);

You	can	read	about		memblock		in	the	Linux	kernel	memory	management	Part	1..	As	you	can	remember		memblock_reserve	
function	takes	two	parameters:

base	physical	address	of	a	memory	block;
size	of	a	memory	block.

We	can	get	the	base	physical	address	of	the		_text		symbol	with	the		__pa_symbol		macro:

#define	__pa_symbol(x)	\

				__phys_addr_symbol(__phys_reloc_hide((unsigned	long)(x)))

First	of	all	it	calls		__phys_reloc_hide		macro	on	the	given	parameter.	The		__phys_reloc_hide		macro	does	nothing	for		x86_64	
and	just	returns	the	given	parameter.	Implementation	of	the		__phys_addr_symbol		macro	is	easy.	It	just	subtracts	the	symbol
address	from	the	base	address	of	the	kernel	text	mapping	base	virtual	address	(you	can	remember	that	it	is
	__START_KERNEL_map	)	and	adds		phys_base		which	is	the	base	address	of		_text	:

#define	__phys_addr_symbol(x)	\

	((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

After	we	got	the	physical	address	of	the		_text		symbol,		memblock_reserve		can	reserve	a	memory	block	from	the		_text		to
the		__bss_stop	-	_text	.

In	the	next	step	after	we	reserved	place	for	the	kernel	text	and	data	is	reserving	place	for	the	initrd.	We	will	not	see	details
about		initrd		in	this	post,	you	just	may	know	that	it	is	temporary	root	file	system	stored	in	memory	and	used	by	the	kernel
during	its	startup.	The		early_reserve_initrd		function	does	all	work.	First	of	all	this	function	gets	the	base	address	of	the
ram	disk,	its	size	and	the	end	address	with:

u64	ramdisk_image	=	get_ramdisk_image();

u64	ramdisk_size		=	get_ramdisk_size();

u64	ramdisk_end			=	PAGE_ALIGN(ramdisk_image	+	ramdisk_size);

All	of	these	parameters	are	taken	from		boot_params	.	If	you	have	read	the	chapter	about	Linux	Kernel	Booting	Process,	you
must	remember	that	we	filled	the		boot_params		structure	during	boot	time.	The	kernel	setup	header	contains	a	couple	of
fields	which	describes	ramdisk,	for	example:

Field	name:				ramdisk_image

Type:								write	(obligatory)

Offset/size:				0x218/4

Protocol:				2.00+

		The	32-bit	linear	address	of	the	initial	ramdisk	or	ramfs.		Leave	at

		zero	if	there	is	no	initial	ramdisk/ramfs.

Reserve	memory	for	initrd
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So	we	can	get	all	the	information	that	interests	us	from		boot_params	.	For	example	let's	look	at		get_ramdisk_image	:

static	u64	__init	get_ramdisk_image(void)

{

								u64	ramdisk_image	=	boot_params.hdr.ramdisk_image;

								ramdisk_image	|=	(u64)boot_params.ext_ramdisk_image	<<	32;

								return	ramdisk_image;

}

Here	we	get	the	address	of	the	ramdisk	from	the		boot_params		and	shift	left	it	on		32	.	We	need	to	do	it	because	as	you	can
read	in	the	Documentation/x86/zero-page.txt:

0C0/004				ALL				ext_ramdisk_image	ramdisk_image	high	32bits

So	after	shifting	it	on	32,	we're	getting	a	64-bit	address	in		ramdisk_image		and	we	return	it.		get_ramdisk_size		works	on	the
same	principle	as		get_ramdisk_image	,	but	it	used		ext_ramdisk_size		instead	of		ext_ramdisk_image	.	After	we	got	ramdisk's
size,	base	address	and	end	address,	we	check	that	bootloader	provided	ramdisk	with	the:

if	(!boot_params.hdr.type_of_loader	||

				!ramdisk_image	||	!ramdisk_size)

				return;

and	reserve	memory	block	with	the	calculated	addresses	for	the	initial	ramdisk	in	the	end:

memblock_reserve(ramdisk_image,	ramdisk_end	-	ramdisk_image);

It	is	the	end	of	the	fourth	part	about	the	Linux	kernel	initialization	process.	We	started	to	dive	in	the	kernel	generic	code
from	the		start_kernel		function	in	this	part	and	stopped	on	the	architecture-specific	initializations	in	the		setup_arch	.	In	the
next	part	we	will	continue	with	architecture-dependent	initialization	steps.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	a	PR	to	linux-internals.

GCC	function	attributes
this_cpu	operations
cpumask
lock	validator
cgroups
stack	buffer	overflow
IRQs
initrd
Previous	part
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In	the	previous	part,	we	stopped	at	the	initialization	of	an	architecture-specific	stuff	from	the	setup_arch	function	and	will
continue	with	it.	As	we	reserved	memory	for	the	initrd,	next	step	is	the		olpc_ofw_detect		which	detects	One	Laptop	Per
Child	support.	We	will	not	consider	platform	related	stuff	in	this	book	and	will	miss	functions	related	with	it.	So	let's	go
ahead.	The	next	step	is	the		early_trap_init		function.	This	function	initializes	debug	(	#DB		-	raised	when	the		TF		flag	of
rflags	is	set)	and		int3		(	#BP	)	interrupts	gate.	If	you	don't	know	anything	about	interrupts,	you	can	read	about	it	in	the	Early
interrupt	and	exception	handling.	In		x86		architecture		INT	,		INTO		and		INT3		are	special	instructions	which	allow	a	task	to
explicitly	call	an	interrupt	handler.	The		INT3		instruction	calls	the	breakpoint	(	#BP	)	handler.	You	can	remember,	we	already
saw	it	in	the	part	about	interrupts:	and	exceptions:

----------------------------------------------------------------------------------------------

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																																|

----------------------------------------------------------------------------------------------

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																																	|

----------------------------------------------------------------------------------------------

Debug	interrupt		#DB		is	the	primary	means	of	invoking	debuggers.		early_trap_init		defined	in	the	arch/x86/kernel/traps.c.
This	functions	sets		#DB		and		#BP		handlers	and	reloads	IDT:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

We	already	saw	implementation	of	the		set_intr_gate		in	the	previous	part	about	interrupts.	Here	are	two	similar	functions
	set_intr_gate_ist		and		set_system_intr_gate_ist	.	Both	of	these	two	functions	take	two	parameters:

number	of	the	interrupt;
base	address	of	the	interrupt/exception	handler;
third	parameter	is	-		Interrupt	Stack	Table	.		IST		is	a	new	mechanism	in	the		x86_64		and	part	of	the	TSS.	Every	active
thread	in	kernel	mode	has	own	kernel	stack	which	is	16	killobytes.	While	a	thread	in	user	space,	kernel	stack	is	empty
except		thread_info		(read	about	it	previous	part)	at	the	bottom.	In	addition	to	per-thread	stacks,	there	are	a	couple	of
specialized	stacks	associated	with	each	CPU.	All	about	these	stack	you	can	read	in	the	linux	kernel	documentation	-
Kernel	stacks.		x86_64		provides	feature	which	allows	to	switch	to	a	new		special		stack	for	during	any	events	as	non-
maskable	interrupt	and	etc...	And	the	name	of	this	feature	is	-		Interrupt	Stack	Table	.	There	can	be	up	to	7		IST	
entries	per	CPU	and	every	entry	points	to	the	dedicated	stack.	In	our	case	this	is		DEBUG_STACK	.

	set_intr_gate_ist		and		set_system_intr_gate_ist		work	by	the	same	principle	as		set_intr_gate		with	only	one	difference.
Both	of	these	functions	checks	interrupt	number	and	call		_set_gate		inside:

BUG_ON((unsigned)n	>	0xFF);

_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

as		set_intr_gate		does	this.	But		set_intr_gate		calls		_set_gate		with	dpl	-	0,	and	ist	-	0,	but		set_intr_gate_ist		and
	set_system_intr_gate_ist		sets		ist		as		DEBUG_STACK		and		set_system_intr_gate_ist		sets		dpl		as		0x3		which	is	the	lowest

Kernel	initialization.	Part	5.
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privilege.	When	an	interrupt	occurs	and	the	hardware	loads	such	a	descriptor,	then	hardware	automatically	sets	the	new

stack	pointer	based	on	the	IST	value,	then	invokes	the	interrupt	handler.	All	of	the	special	kernel	stacks	will	be	setted	in	the
	cpu_init		function	(we	will	see	it	later).

As		#DB		and		#BP		gates	written	to	the		idt_descr	,	we	reload		IDT		table	with		load_idt		which	just	cals		ldtr		instruction.	Now
let's	look	on	interrupt	handlers	and	will	try	to	understand	how	they	works.	Of	course,	I	can't	cover	all	interrupt	handlers	in
this	book	and	I	do	not	see	the	point	in	this.	It	is	very	interesting	to	delve	in	the	linux	kernel	source	code,	so	we	will	see	how
	debug		handler	implemented	in	this	part,	and	understand	how	other	interrupt	handlers	are	implemented	will	be	your	task.

As	you	can	read	above,	we	passed	address	of	the		#DB		handler	as		&debug		in	the		set_intr_gate_ist	.	lxr.free-electorns.com
is	a	great	resource	for	searching	identificators	in	the	linux	kernel	source	code,	but	unfortunately	you	will	not	find		debug	
handler	with	it.	All	of	you	can	find,	it	is		debug		definition	in	the	arch/x86/include/asm/traps.h:

asmlinkage	void	debug(void);

We	can	see		asmlinkage		attribute	which	tells	to	us	that		debug		is	function	written	with	assembly.	Yeah,	again	and	again
assembly	:).	Implementation	of	the		#DB		handler	as	other	handlers	is	in	this	arch/x86/kernel/entry_64.S	and	defined	with	the
	idtentry		assembly	macro:

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

	idtentry		is	a	macro	which	defines	an	interrupt/exception	entry	point.	As	you	can	see	it	takes	five	arguments:

name	of	the	interrupt	entry	point;
name	of	the	interrupt	handler;
has	interrupt	error	code	or	not;
paranoid	-	if	this	parameter	=	1,	switch	to	special	stack	(read	above);
shift_ist	-	stack	to	switch	during	interrupt.

Now	let's	look	on		idtentry		macro	implementation.	This	macro	defined	in	the	same	assembly	file	and	defines		debug	
function	with	the		ENTRY		macro.	For	the	start		idtentry		macro	checks	that	given	parameters	are	correct	in	case	if	need	to
switch	to	the	special	stack.	In	the	next	step	it	checks	that	give	interrupt	returns	error	code.	If	interrupt	does	not	return	error
code	(in	our	case		#DB		does	not	return	error	code),	it	calls		INTR_FRAME		or		XCPT_FRAME		if	interrupt	has	error	code.	Both	of
these	macros		XCPT_FRAME		and		INTR_FRAME		do	nothing	and	need	only	for	the	building	initial	frame	state	for	interrupts.	They
uses		CFI		directives	and	used	for	debugging.	More	info	you	can	find	in	the	CFI	directives.	As	comment	from	the
arch/x86/kernel/entry_64.S	says:		CFI	macros	are	used	to	generate	dwarf2	unwind	information	for	better	backtraces.	They
don't	change	any	code.		so	we	will	ignore	them.

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				/*	Sanity	check	*/

				.if	\shift_ist	!=	-1	&&	\paranoid	==	0

				.error	"using	shift_ist	requires	paranoid=1"

				.endif

				.if	\has_error_code

				XCPT_FRAME

				.else

				INTR_FRAME

				.endif

				...

DB	handler
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				...

				...

You	can	remember	from	the	previous	part	about	early	interrupts/exceptions	handling	that	after	interrupt	occurs,	current
stack	will	have	following	format:

				+-----------------------+

				|																							|

+40	|									SS												|

+32	|									RSP											|

+24	|								RFLAGS									|

+16	|									CS												|

+8		|									RIP											|

	0		|							Error	Code						|	<----	rsp

				|																							|

				+-----------------------+

The	next	two	macro	from	the		idtentry		implementation	are:

				ASM_CLAC

				PARAVIRT_ADJUST_EXCEPTION_FRAME

First		ASM_CLAC		macro	depends	on		CONFIG_X86_SMAP		configuration	option	and	need	for	security	resason,	more	about	it	you
can	read	here.	The	second		PARAVIRT_ADJUST_EXCEPTION_FRAME		macro	is	for	handling	handle	Xen-type-exceptions	(this
chapter	about	kernel	initializations	and	we	will	not	consider	virtualization	stuff	here).

The	next	piece	of	code	checks	is	interrupt	has	error	code	or	not	and	pushes		$-1		which	is		0xffffffffffffffff		on		x86_64	
on	the	stack	if	not:

				.ifeq	\has_error_code

				pushq_cfi	$-1

				.endif

We	need	to	do	it	as		dummy		error	code	for	stack	consistency	for	all	interrupts.	In	the	next	step	we	subscract	from	the	stack
pointer		$ORIG_RAX-R15	:

				subq	$ORIG_RAX-R15,	%rsp

where		ORIRG_RAX	,		R15		and	other	macros	defined	in	the	arch/x86/include/asm/calling.h	and		ORIG_RAX-R15		is	120	bytes.
General	purpose	registers	will	occupy	these	120	bytes	because	we	need	to	store	all	registers	on	the	stack	during	interrupt
handling.	After	we	set	stack	for	general	purpose	registers,	the	next	step	is	checking	that	interrupt	came	from	userspace
with:

testl	$3,	CS(%rsp)

jnz	1f

Here	we	checks	first	and	second	bits	in	the		CS	.	You	can	remember	that		CS		register	contains	segment	selector	where	first
two	bits	are		RPL	.	All	privilege	levels	are	integers	in	the	range	0–3,	where	the	lowest	number	corresponds	to	the	highest
privilege.	So	if	interrupt	came	from	the	kernel	mode	we	call		save_paranoid		or	jump	on	label		1		if	not.	In	the		save_paranoid	
we	store	all	general	purpose	registers	on	the	stack	and	switch	user		gs		on	kernel		gs		if	need:

				movl	$1,%ebx
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				movl	$MSR_GS_BASE,%ecx

				rdmsr

				testl	%edx,%edx

				js	1f

				SWAPGS

				xorl	%ebx,%ebx

1:				ret

In	the	next	steps	we	put		pt_regs		pointer	to	the		rdi	,	save	error	code	in	the		rsi		if	it	is	and	call	interrupt	handler	which	is	-
	do_debug		in	our	case	from	the	arch/x86/kernel/traps.c.		do_debug		like	other	handlers	takes	two	parameters:

pt_regs	-	is	a	structure	which	presents	set	of	CPU	registers	which	are	saved	in	the	process'	memory	region;
error	code	-	error	code	of	interrupt.

After	interrupt	handler	finished	its	work,	calls		paranoid_exit		which	restores	stack,	switch	on	userspace	if	interrupt	came
from	there	and	calls		iret	.	That's	all.	Of	course	it	is	not	all	:),	but	we	will	see	more	deeply	in	the	separate	chapter	about
interrupts.

This	is	general	view	of	the		idtentry		macro	for		#DB		interrupt.	All	interrupts	are	similar	on	this	implementation	and	defined
with	idtentry	too.	After		early_trap_init		finished	its	work,	the	next	function	is		early_cpu_init	.	This	function	defined	in	the
arch/x86/kernel/cpu/common.c	and	collects	information	about	a	CPU	and	its	vendor.

The	next	step	is	initialization	of	early		ioremap	.	In	general	there	are	two	ways	to	comminicate	with	devices:

I/O	Ports;
Device	memory.

We	already	saw	first	method	(	outb/inb		instructions)	in	the	part	about	linux	kernel	booting	process.	The	second	method	is
to	map	I/O	physical	addresses	to	virtual	addresses.	When	a	physical	address	is	accessed	by	the	CPU,	it	may	refer	to	a
portion	of	physical	RAM	which	can	be	mapped	on	memory	of	the	I/O	device.	So		ioremap		used	to	map	device	memory	into
kernel	address	space.

As	i	wrote	above	next	function	is	the		early_ioremap_init		which	re-maps	I/O	memory	to	kernel	address	space	so	it	can
access	it.	We	need	to	initialize	early	ioremap	for	early	initialization	code	which	needs	to	temporarily	map	I/O	or	memory
regions	before	the	normal	mapping	functions	like		ioremap		are	available.	Implementation	of	this	function	is	in	the
arch/x86/mm/ioremap.c.	At	the	start	of	the		early_ioremap_init		we	can	see	definition	of	the		pmd		point	with		pmd_t		type
(which	presents	page	middle	directory	entry		typedef	struct	{	pmdval_t	pmd;	}	pmd_t;		where		pmdval_t		is		unsigned	long	)
and	make	a	check	that		fixmap		aligned	in	a	correct	way:

pmd_t	*pmd;

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

	fixmap		-	is	fixed	virtual	address	mappings	which	extends	from		FIXADDR_START		to		FIXADDR_TOP	.	Fixed	virtual	addresses	are
needed	for	subsystems	that	need	to	know	the	virtual	address	at	compile	time.	After	the	check		early_ioremap_init		makes	a
call	of	the		early_ioremap_setup		function	from	the	mm/early_ioremap.c.		early_ioremap_setup		fills		slot_virt		arry	of	the
	unsigned	long		with	virtual	addresses	with	512	temporary	boot-time	fix-mappings:

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

				slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

After	this	we	get	page	middle	directory	entry	for	the		FIX_BTMAP_BEGIN		and	put	to	the		pmd		variable,	fills	with	zeros		bm_pte	

Early	ioremap	initialization
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which	is	boot	time	page	tables	and	call		pmd_populate_kernel		function	for	setting	given	page	table	entry	in	the	given	page
middle	directory:

pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

That's	all	for	this.	If	you	feeling	missunderstanding,	don't	worry.	There	is	special	part	about		ioremap		and		fixmaps		in	the
Linux	Kernel	Memory	Management.	Part	2	chapter.

After	early		ioremap		was	initialized,	you	can	see	the	following	code:

ROOT_DEV	=	old_decode_dev(boot_params.hdr.root_dev);

This	code	obtains	major	and	minor	numbers	for	the	root	device	where		initrd		will	be	mounted	later	in	the		do_mount_root	
function.	Major	number	of	the	device	identifies	a	driver	associated	with	the	device.	Minor	number	referred	on	the	device
controlled	by	driver.	Note	that		old_decode_dev		takes	one	parameter	from	the		boot_params_structure	.	As	we	can	read	from
the	x86	linux	kernel	boot	protocol:

Field	name:				root_dev

Type:								modify	(optional)

Offset/size:				0x1fc/2

Protocol:				ALL

		The	default	root	device	device	number.		The	use	of	this	field	is

		deprecated,	use	the	"root="	option	on	the	command	line	instead.

Now	let's	try	understand	what	is	it		old_decode_dev	.	Actually	it	just	calls		MKDEV		inside	which	generates		dev_t		from	the	give
major	and	minor	numbers.	It's	implementation	pretty	easy:

static	inline	dev_t	old_decode_dev(u16	val)

{

									return	MKDEV((val	>>	8)	&	255,	val	&	255);

}

where		dev_t		is	a	kernel	data	type	to	present	major/minor	number	pair.	But	what's	the	strange		old_		prefix?	For	historical
reasons,	there	are	two	ways	of	managing	the	major	and	minor	numbers	of	a	device.	In	the	first	way	major	and	minor
numbers	occupied	2	bytes.	You	can	see	it	in	the	previous	code:	8	bit	for	major	number	and	8	bit	for	minor	number.	But	there
is	problem	with	this	way:	256	major	numbers	and	256	minor	numbers	are	possible.	So	16-bit	integer	was	replaced	with	32-
bit	integer	where	12	bits	reserved	for	major	number	and	20	bits	for	minor.	You	can	see	this	in	the		new_decode_dev	
implementation:

static	inline	dev_t	new_decode_dev(u32	dev)

{

									unsigned	major	=	(dev	&	0xfff00)	>>	8;

									unsigned	minor	=	(dev	&	0xff)	|	((dev	>>	12)	&	0xfff00);

									return	MKDEV(major,	minor);

}

After	calculation	we	will	get		0xfff		or	12	bits	for		major		if	it	is		0xffffffff		and		0xfffff		or	20	bits	for		minor	.	So	in	the	end	of

Obtaining	major	and	minor	numbers	for	the	root	device

Linux	Inside

104Continue	architecture-specific	boot-time	initializations

https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md


execution	of	the		old_decode_dev		we	will	get	major	and	minor	numbers	for	the	root	device	in		ROOT_DEV	.

The	next	point	is	the	setup	of	the	memory	map	with	the	call	of	the		setup_memory_map		function.	But	before	this	we	setup
different	parameters	as	information	about	a	screen	(current	row	and	column,	video	page	and	etc...	(you	can	read	about	it	in
the	Video	mode	initialization	and	transition	to	protected	mode)),	Extended	display	identification	data,	video	mode,
bootloader_type	and	etc...:

				screen_info	=	boot_params.screen_info;

				edid_info	=	boot_params.edid_info;

				saved_video_mode	=	boot_params.hdr.vid_mode;

				bootloader_type	=	boot_params.hdr.type_of_loader;

				if	((bootloader_type	>>	4)	==	0xe)	{

								bootloader_type	&=	0xf;

								bootloader_type	|=	(boot_params.hdr.ext_loader_type+0x10)	<<	4;

				}

				bootloader_version		=	bootloader_type	&	0xf;

				bootloader_version	|=	boot_params.hdr.ext_loader_ver	<<	4;

All	of	these	parameters	we	got	during	boot	time	and	stored	in	the		boot_params		structure.	After	this	we	need	to	setup	the
end	of	the	I/O	memory.	As	you	know	the	one	of	the	main	purposes	of	the	kernel	is	resource	management.	And	one	of	the
resource	is	a	memory.	As	we	already	know	there	are	two	ways	to	communicate	with	devices	are	I/O	ports	and	device
memory.	All	information	about	registered	resources	available	through:

/proc/ioports	-	provides	a	list	of	currently	registered	port	regions	used	for	input	or	output	communication	with	a	device;
/proc/iomem	-	provides	current	map	of	the	system's	memory	for	each	physical	device.

At	the	moment	we	are	interested	in		/proc/iomem	:

cat	/proc/iomem

00000000-00000fff	:	reserved

00001000-0009d7ff	:	System	RAM

0009d800-0009ffff	:	reserved

000a0000-000bffff	:	PCI	Bus	0000:00

000c0000-000cffff	:	Video	ROM

000d0000-000d3fff	:	PCI	Bus	0000:00

000d4000-000d7fff	:	PCI	Bus	0000:00

000d8000-000dbfff	:	PCI	Bus	0000:00

000dc000-000dffff	:	PCI	Bus	0000:00

000e0000-000fffff	:	reserved

		000e0000-000e3fff	:	PCI	Bus	0000:00

		000e4000-000e7fff	:	PCI	Bus	0000:00

		000f0000-000fffff	:	System	ROM

As	you	can	see	range	of	addresses	are	shown	in	hexadecimal	notation	with	its	owner.	Linux	kernel	provides	API	for
managing	any	resources	in	a	general	way.	Global	resources	(for	example	PICs	or	I/O	ports)	can	be	divided	into	subsets	-
relating	to	any	hardware	bus	slot.	The	main	structure		resource	:

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

presents	abstraction	for	a	tree-like	subset	of	system	resources.	This	structure	provides	range	of	addresses	from		start		to

Memory	map	setup
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	end		(	resource_size_t		is		phys_addr_t		or		u64		for		x86_64	)	which	a	resource	covers,		name		of	a	resource	(you	see	these
names	in	the		/proc/iomem		output)	and		flags		of	a	resource	(All	resources	flags	defined	in	the	include/linux/ioport.h).	The
last	are	three	pointers	to	the		resource		structure.	These	pointers	enable	a	tree-like	structure:

+-------------+						+-------------+

|													|						|													|

|				parent			|------|				sibling		|

|													|						|													|

+-------------+						+-------------+

							|

							|

+-------------+

|													|

|				child				|	

|													|

+-------------+

Every	subset	of	resources	has	root	range	resources.	For		iomem		it	is		iomem_resource		which	defined	as:

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

EXPORT_SYMBOL(iomem_resource);

TODO	EXPORT_SYMBOL

	iomem_resource		defines	root	addresses	range	for	io	memory	with		PCI	mem		name	and		IORESOURCE_MEM		(	0x00000200	)	as	flags.
As	i	wrote	about	our	current	point	is	setup	the	end	address	of	the		iomem	.	We	will	do	it	with:

iomem_resource.end	=	(1ULL	<<	boot_cpu_data.x86_phys_bits)	-	1;

Here	we	shift		1		on		boot_cpu_data.x86_phys_bits	.		boot_cpu_data		is		cpuinfo_x86		structure	which	we	filled	during	execution
of	the		early_cpu_init	.	As	you	can	understand	from	the	name	of	the		x86_phys_bits		field,	it	presents	maximum	bits	amount
of	the	maximum	physical	address	in	the	system.	Note	also	that		iomem_resource		passed	to	the		EXPORT_SYMBOL		macro.	This
macro	exports	the	given	symbol	(	iomem_resource		in	our	case)	for	dynamic	linking	or	in	another	words	it	makes	a	symbol
accessible	to	dynamically	loaded	modules.

As	we	set	the	end	address	of	the	root		iomem		resource	address	range,	as	I	wrote	about	the	next	step	will	be	setup	of	the
memory	map.	It	will	be	produced	with	the	call	of	the		setup_memory_map		function:

void	__init	setup_memory_map(void)

{

								char	*who;

								who	=	x86_init.resources.memory_setup();

								memcpy(&e820_saved,	&e820,	sizeof(struct	e820map));

								printk(KERN_INFO	"e820:	BIOS-provided	physical	RAM	map:\n");

								e820_print_map(who);

}

First	of	all	we	call	look	here	the	call	of	the		x86_init.resources.memory_setup	.		x86_init		is	a		x86_init_ops		structure	which
presents	platform	specific	setup	functions	as	resources	initializtion,	pci	initialization	and	etc...	Initiaization	of	the		x86_init		is
in	the	arch/x86/kernel/x86_init.c.	I	will	not	give	here	the	full	description	because	it	is	very	long,	but	only	one	part	which
interests	us	for	now:
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struct	x86_init_ops	x86_init	__initdata	=	{

				.resources	=	{

												.probe_roms													=	probe_roms,

												.reserve_resources						=	reserve_standard_io_resources,

												.memory_setup											=	default_machine_specific_memory_setup,

				},

				...

				...

				...

}

As	we	can	see	here		memry_setup		field	is		default_machine_specific_memory_setup		where	we	get	the	number	of	the	e820
entries	which	we	collected	in	the	boot	time,	sanitize	the	BIOS	e820	map	and	fill		e820map		structure	with	the	memory	regions.
As	all	regions	collect,	print	of	all	regions	with	printk.	You	can	find	this	print	if	you	execute		dmesg		command,	you	must	see
something	like	this:

[				0.000000]	e820:	BIOS-provided	physical	RAM	map:

[				0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009d7ff]	usable

[				0.000000]	BIOS-e820:	[mem	0x000000000009d800-0x000000000009ffff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000000e0000-0x00000000000fffff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x00000000be825fff]	usable

[				0.000000]	BIOS-e820:	[mem	0x00000000be826000-0x00000000be82cfff]	ACPI	NVS

[				0.000000]	BIOS-e820:	[mem	0x00000000be82d000-0x00000000bf744fff]	usable

[				0.000000]	BIOS-e820:	[mem	0x00000000bf745000-0x00000000bfff4fff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000bfff5000-0x00000000dc041fff]	usable

[				0.000000]	BIOS-e820:	[mem	0x00000000dc042000-0x00000000dc0d2fff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000dc0d3000-0x00000000dc138fff]	usable

[				0.000000]	BIOS-e820:	[mem	0x00000000dc139000-0x00000000dc27dfff]	ACPI	NVS

[				0.000000]	BIOS-e820:	[mem	0x00000000dc27e000-0x00000000deffefff]	reserved

[				0.000000]	BIOS-e820:	[mem	0x00000000defff000-0x00000000deffffff]	usable

...

...

...

The	next	two	steps	is	parsing	of	the		setup_data		with		parse_setup_data		function	and	copying	BIOS	EDD	to	the	safe	place.
	setup_data		is	a	field	from	the	kernel	boot	header	and	as	we	can	read	from	the		x86		boot	protocol:

Field	name:				setup_data

Type:								write	(special)

Offset/size:				0x250/8

Protocol:				2.09+

		The	64-bit	physical	pointer	to	NULL	terminated	single	linked	list	of

		struct	setup_data.	This	is	used	to	define	a	more	extensible	boot

		parameters	passing	mechanism.

It	used	for	storing	setup	information	for	different	types	as	device	tree	blob,	EFI	setup	data	and	etc...	In	the	second	step	we
copy	BIOS	EDD	informantion	from	the		boot_params		structure	that	we	collected	in	the	arch/x86/boot/edd.c	to	the		edd	
structure:

static	inline	void	__init	copy_edd(void)

{

					memcpy(edd.mbr_signature,	boot_params.edd_mbr_sig_buffer,

												sizeof(edd.mbr_signature));

					memcpy(edd.edd_info,	boot_params.eddbuf,	sizeof(edd.edd_info));

					edd.mbr_signature_nr	=	boot_params.edd_mbr_sig_buf_entries;

					edd.edd_info_nr	=	boot_params.eddbuf_entries;

}

Copying	of	the	BIOS	Enhanced	Disk	Device	information
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The	next	step	is	initialization	of	the	memory	descriptor	of	the	init	process.	As	you	already	can	know	every	process	has	own
address	space.	This	address	space	presented	with	special	data	structure	which	called		memory	descriptor	.	Directly	in	the
linux	kernel	source	code	memory	descriptor	presented	with		mm_struct		structure.		mm_struct		contains	many	different	fields
related	with	the	process	address	space	as	start/end	address	of	the	kernel	code/data,	start/end	of	the	brk,	number	of
memory	areas,	list	of	memory	areas	and	etc...	This	structure	defined	in	the	include/linux/mm_types.h.	As	every	process	has
own	memory	descriptor,		task_struct		structure	contains	it	in	the		mm		and		active_mm		field.	And	our	first		init		process	has	it
too.	You	can	remember	that	we	saw	the	part	of	initialization	of	the	init		task_struct		with		INIT_TASK		macro	in	the	previous
part:

#define	INIT_TASK(tsk)		\

{

				...

				...

				...

				.mm	=	NULL,									\

				.active_mm		=	&init_mm,	\

				...

}

	mm		points	to	the	process	address	space	and		active_mm		points	to	the	active	address	space	if	process	has	no	own	as	kernel
threads	(more	about	it	you	can	read	in	the	documentation).	Now	we	fill	memory	descriptor	of	the	initial	process:

				init_mm.start_code	=	(unsigned	long)	_text;

				init_mm.end_code	=	(unsigned	long)	_etext;

				init_mm.end_data	=	(unsigned	long)	_edata;

				init_mm.brk	=	_brk_end;

with	the	kernel's	text,	data	and	brk.		init_mm		is	memory	descriptor	of	the	initial	process	and	defined	as:

struct	mm_struct	init_mm	=	{

				.mm_rb										=	RB_ROOT,

				.pgd												=	swapper_pg_dir,

				.mm_users							=	ATOMIC_INIT(2),

				.mm_count							=	ATOMIC_INIT(1),

				.mmap_sem							=	__RWSEM_INITIALIZER(init_mm.mmap_sem),

				.page_table_lock	=		__SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),

				.mmlist									=	LIST_HEAD_INIT(init_mm.mmlist),

				INIT_MM_CONTEXT(init_mm)

};

where		mm_rb		is	a	red-black	tree	of	the	virtual	memory	areas,		pgd		is	a	pointer	to	the	page	global	directory,		mm_users		is
address	space	users,		mm_count		is	primary	usage	counter	and		mmap_sem		is	memory	area	semaphore.	After	that	we	setup
memory	descriptor	of	the	initiali	process,	next	step	is	initialization	of	the	intel	Memory	Protection	Extensions	with
	mpx_mm_init	.	The	next	step	after	it	is	initialization	of	the	code/data/bss	resources	with:

				code_resource.start	=	__pa_symbol(_text);

				code_resource.end	=	__pa_symbol(_etext)-1;

				data_resource.start	=	__pa_symbol(_etext);

				data_resource.end	=	__pa_symbol(_edata)-1;

				bss_resource.start	=	__pa_symbol(__bss_start);

				bss_resource.end	=	__pa_symbol(__bss_stop)-1;

We	already	know	a	little	about		resource		structure	(read	above).	Here	we	fills	code/data/bss	resources	with	the	physical
addresses	of	they.	You	can	see	it	in	the		/proc/iomem		output:

Memory	descriptor	initialization
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00100000-be825fff	:	System	RAM

		01000000-015bb392	:	Kernel	code

		015bb393-01930c3f	:	Kernel	data

		01a11000-01ac3fff	:	Kernel	bss

All	of	these	structures	defined	in	the	arch/x86/kernel/setup.c	and	look	like	typical	resource	initialization:

static	struct	resource	code_resource	=	{

				.name				=	"Kernel	code",

				.start				=	0,

				.end				=	0,

				.flags				=	IORESOURCE_BUSY	|	IORESOURCE_MEM

};

The	last	step	which	we	will	cover	in	this	part	will	be		NX		configuration.		NX-bit		or	no	execute	bit	is	63-bit	in	the	page
directory	entry	which	controls	the	ability	to	execute	code	from	all	physical	pages	mapped	by	the	table	entry.	This	bit	can
only	be	used/set	when	the		no-execute		page-protection	mechanism	is	enabled	by	the	setting		EFER.NXE		to	1.	In	the
	x86_configure_nx		function	we	check	that	CPU	has	support	of		NX-bit		and	it	does	not	disabled.	After	the	check	we	fill
	__supported_pte_mask		depend	on	it:

void	x86_configure_nx(void)

{

								if	(cpu_has_nx	&&	!disable_nx)

																__supported_pte_mask	|=	_PAGE_NX;

								else

																__supported_pte_mask	&=	~_PAGE_NX;

}

It	is	the	end	of	the	fifth	part	about	linux	kernel	initialization	process.	In	this	part	we	continued	to	dive	in	the		setup_arch	
function	which	makes	initialization	of	architecutre-specific	stuff.	It	was	long	part,	but	we	not	finished	with	it.	As	i	already
wrote,	the		setup_arch		is	big	function,	and	I	am	really	not	sure	that	we	will	cover	full	of	it	even	in	the	next	part.	There	were
some	new	interesting	concepts	in	this	part	like		Fix-mapped		addresses,	ioremap	and	etc...	Don't	worry	if	they	are	unclear	for
you.	There	is	special	part	about	these	concepts	-	Linux	kernel	memory	management	Part	2..	In	the	next	part	we	will
continue	with	the	initialization	of	the	architecture-specific	stuff	and	will	see	parsing	of	the	early	kernel	parameteres,	early
dump	of	the	pci	devices,	direct	Media	Interface	scanning	and	many	many	more.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

mm	vs	active_mm
e820
Supervisor	mode	access	prevention
Kernel	stacks
TSS
IDT
Memory	mapped	I/O
CFI	directives

Conclusion

Links
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In	the	previous	part	we	saw	architecture-specific	(	x86_64		in	our	case)	initialization	stuff	from	the	arch/x86/kernel/setup.c
and	finished	on		x86_configure_nx		function	which	sets	the		_PAGE_NX		flag	depends	on	support	of	NX	bit.	As	I	wrote	before
	setup_arch		function	and		start_kernel		are	very	big,	so	in	this	and	in	the	next	part	we	will	continue	to	learn	about
architecture-specific	initialization	process.	The	next	function	after		x86_configure_nx		is		parse_early_param	.	This	function
defined	in	the	init/main.c	and	as	you	can	understand	from	its	name,	this	function	parses	kernel	command	line	and	setups
different	some	services	depends	on	give	parameters	(all	kernel	command	line	parameters	you	can	find	in	the
Documentation/kernel-parameters.txt).	You	can	remember	how	we	setup		earlyprintk		in	the	earliest	part.	On	the	early
stage	we	looked	for	kernel	parameters	and	their	value	with	the		cmdline_find_option		function	and		__cmdline_find_option	,
	__cmdline_find_option_bool		helpers	from	the	arch/x86/boot/cmdline.c.	There	we're	in	the	generic	kernel	part	which	does
not	depend	on	architecture	and	here	we	use	another	approach.	If	you	are	reading	linux	kernel	source	code,	you	already
can	note	calls	like	this:

early_param("gbpages",	parse_direct_gbpages_on);

	early_param		macro	takes	two	parameters:

command	line	parameter	name;
function	which	will	be	called	if	given	parameter	passed.

and	defined	as:

#define	early_param(str,	fn)	\

								__setup_param(str,	fn,	fn,	1)

in	the	include/linux/init.h.	As	you	can	see		early_param		macro	just	makes	call	of	the		__setup_param		macro:

#define	__setup_param(str,	unique_id,	fn,	early)																\

								static	const	char	__setup_str_##unique_id[]	__initconst	\

																__aligned(1)	=	str;	\

								static	struct	obs_kernel_param	__setup_##unique_id						\

																__used	__section(.init.setup)																			\

																__attribute__((aligned((sizeof(long)))))								\

																=	{	__setup_str_##unique_id,	fn,	early	}

This	macro	defines		__setup_str_*_id		variable	(where		*		depends	on	given	function	name)	and	assigns	it	to	the	given
command	line	parameter	name.	In	the	next	line	we	can	see	definition	of	the		__setup_*		variable	which	type	is
	obs_kernel_param		and	its	initialization.		obs_kernel_param		structure	defined	as:

struct	obs_kernel_param	{

								const	char	*str;

								int	(*setup_func)(char	*);

								int	early;

};

and	contains	three	fields:

Kernel	initialization.	Part	6.
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name	of	the	kernel	parameter;
function	which	setups	something	depend	on	parameter;
field	determinies	is	parameter	early	(1)	or	not	(0).

Note	that		__set_param		macro	defines	with		__section(.init.setup)		attribute.	It	means	that	all		__setup_str_*		will	be	placed
in	the		.init.setup		section,	moreover,	as	we	can	see	in	the	include/asm-generic/vmlinux.lds.h,	they	will	be	placed	between
	__setup_start		and		__setup_end	:

#define	INIT_SETUP(initsetup_align)																\

																.	=	ALIGN(initsetup_align);								\

																VMLINUX_SYMBOL(__setup_start)	=	.;	\

																*(.init.setup)																					\

																VMLINUX_SYMBOL(__setup_end)	=	.;

Now	we	know	how	parameters	are	defined,	let's	back	to	the		parse_early_param		implementation:

void	__init	parse_early_param(void)

{

								static	int	done	__initdata;

								static	char	tmp_cmdline[COMMAND_LINE_SIZE]	__initdata;

								if	(done)

																return;

								/*	All	fall	through	to	do_early_param.	*/

								strlcpy(tmp_cmdline,	boot_command_line,	COMMAND_LINE_SIZE);

								parse_early_options(tmp_cmdline);

								done	=	1;

}

The		parse_early_param		function	defines	two	static	variables.	First		done		check	that		parse_early_param		already	called	and
the	second	is	temporary	storage	for	kernel	command	line.	After	this	we	copy		boot_command_line		to	the	temporary	commad
line	which	we	just	defined	and	call	the		parse_early_options		function	from	the	the	same	source	code		main.c		file.
	parse_early_options		calls	the		parse_args		function	from	the	kernel/params.c	where		parse_args		parses	given	command	line
and	calls		do_early_param		function.	This	function	goes	from	the		__setup_start		to		__setup_end	,	and	calls	the	function	from
the		obs_kernel_param		if	a	parameter	is	early.	After	this	all	services	which	are	depend	on	early	command	line	parameters
were	setup	and	the	next	call	after	the		parse_early_param		is		x86_report_nx	.	As	I	wrote	in	the	beginning	of	this	part,	we
already	set		NX-bit		with	the		x86_configure_nx	.	The	next		x86_report_nx		function	the	arch/x86/mm/setup_nx.c	just	prints
information	about	the		NX	.	Note	that	we	call		x86_report_nx		not	right	after	the		x86_configure_nx	,	but	after	the	call	of	the
	parse_early_param	.	The	answer	is	simple:	we	call	it	after	the		parse_early_param		because	the	kernel	support		noexec	
parameter:

noexec								[X86]

												On	X86-32	available	only	on	PAE	configured	kernels.

												noexec=on:	enable	non-executable	mappings	(default)

												noexec=off:	disable	non-executable	mappings

We	can	see	it	in	the	booting	time:

After	this	we	can	see	call	of	the:

				memblock_x86_reserve_range_setup_data();
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function.	This	function	defined	in	the	same	arch/x86/kernel/setup.c	source	code	file	and	remaps	memory	for	the		setup_data	
and	reserved	memory	block	for	the		setup_data		(more	about		setup_data		you	can	read	in	the	previous	part	and	about
	ioremap		and		memblock		you	can	read	in	the	Linux	kernel	memory	management).

In	the	next	step	we	can	see	following	conditional	statement:

				if	(acpi_mps_check())	{

#ifdef	CONFIG_X86_LOCAL_APIC

								disable_apic	=	1;

#endif

								setup_clear_cpu_cap(X86_FEATURE_APIC);

				}

The	first		acpi_mps_check		function	from	the	arch/x86/kernel/acpi/boot.c	depends	on		CONFIG_X86_LOCAL_APIC		and
	CNOFIG_x86_MPPARSE		configuration	options:

int	__init	acpi_mps_check(void)

{

#if	defined(CONFIG_X86_LOCAL_APIC)	&&	!defined(CONFIG_X86_MPPARSE)

								/*	mptable	code	is	not	built-in*/

								if	(acpi_disabled	||	acpi_noirq)	{

																printk(KERN_WARNING	"MPS	support	code	is	not	built-in.\n"

																							"Using	acpi=off	or	acpi=noirq	or	pci=noacpi	"

																							"may	have	problem\n");

																	return	1;

								}

#endif

								return	0;

}

It	checks	the	built-in		MPS		or	MultiProcessor	Specification	table.	If		CONFIG_X86_LOCAL_APIC		is	set	and		CONFIG_x86_MPPAARSE		is
not	set,		acpi_mps_check		prints	warning	message	if	the	one	of	the	command	line	options:		acpi=off	,		acpi=noirq		or
	pci=noacpi		passed	to	the	kernel.	If		acpi_mps_check		returns		1		which	means	that

we	disable	local	APIC	and	clears		X86_FEATURE_APIC		bit	in	the	of	the	current	CPU	with	the		setup_clear_cpu_cap		macro.	(more
about	CPU	mask	you	can	read	in	the	CPU	masks).

In	the	next	step	we	make	a	dump	of	the	PCI	devices	with	the	following	code:

#ifdef	CONFIG_PCI

				if	(pci_early_dump_regs)

								early_dump_pci_devices();

#endif

	pci_early_dump_regs		variable	defined	in	the	arch/x86/pci/common.c	and	its	value	depends	on	the	kernel	command	line
parameter:		pci=earlydump	.	We	can	find	defition	of	this	parameter	in	the	drivers/pci/pci.c:

early_param("pci",	pci_setup);

	pci_setup		function	gets	the	string	after	the		pci=		and	analyzes	it.	This	function	calls		pcibios_setup		which	defined	as
	__weak		in	the	drivers/pci/pci.c	and	every	architecture	defines	the	same	function	which	overrides		__weak		analog.	For
example		x86_64		architecture-depened	version	is	in	the	arch/x86/pci/common.c:

Early	PCI	dump
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char	*__init	pcibios_setup(char	*str)	{

								...

								...

								...

								}	else	if	(!strcmp(str,	"earlydump"))	{

																pci_early_dump_regs	=	1;

																return	NULL;

								}

								...

								...

								...

}

So,	if		CONFIG_PCI		option	is	set	and	we	passed		pci=earlydump		option	to	the	kernel	command	line,	next	function	which	will	be
called	-		early_dump_pci_devices		from	the	arch/x86/pci/early.c.	This	function	checks		noearly		pci	parameter	with:

if	(!early_pci_allowed())

								return;

and	returns	if	it	was	passed.	Each	PCI	domain	can	host	up	to		256		buses	and	each	bus	hosts	up	to	32	devices.	So,	we
goes	in	a	loop:

for	(bus	=	0;	bus	<	256;	bus++)	{

																for	(slot	=	0;	slot	<	32;	slot++)	{

																								for	(func	=	0;	func	<	8;	func++)	{

																								...

																								...

																								...

																								}

																}

}

and	read	the		pci		config	with	the		read_pci_config		function.

That's	all.	We	will	no	go	deep	in	the		pci		details,	but	will	see	more	details	in	the	special		Drivers/PCI		part.

After	the		early_dump_pci_devices	,	there	are	a	couple	of	function	related	with	available	memory	and	e820	which	we	collected
in	the	First	steps	in	the	kernel	setup	part:

				/*	update	the	e820_saved	too	*/

				e820_reserve_setup_data();

				finish_e820_parsing();

				...

				...

				...

				e820_add_kernel_range();

				trim_bios_range(void);

				max_pfn	=	e820_end_of_ram_pfn();

				early_reserve_e820_mpc_new();

Let's	look	on	it.	As	you	can	see	the	first	function	is		e820_reserve_setup_data	.	This	function	does	almost	the	same	as
	memblock_x86_reserve_range_setup_data		which	we	saw	above,	but	it	also	calls		e820_update_range		which	adds	new	regions	to
the		e820map		with	the	given	type	which	is		E820_RESERVED_KERN		in	our	case.	The	next	function	is		finish_e820_parsing		which
sanitazes		e820map		with	the		sanitize_e820_map		function.	Besides	this	two	functions	we	can	see	a	couple	of	functions	related
to	the	e820.	You	can	see	it	in	the	listing	which	is	above.		e820_add_kernel_range		function	takes	the	physical	address	of	the

Finish	with	memory	parsing
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kernel	start	and	end:

u64	start	=	__pa_symbol(_text);

u64	size	=	__pa_symbol(_end)	-	start;

checks	that		.text			.data		and		.bss		marked	as		E820RAM		in	the		e820map		and	prints	the	warning	message	if	not.	The	next
function		trm_bios_range		update	first	4096	bytes	in		e820Map		as		E820_RESERVED		and	sanitizes	it	again	with	the	call	of	the
	sanitize_e820_map	.	After	this	we	get	the	last	page	frame	number	with	the	call	of	the		e820_end_of_ram_pfn		function.	Every
memory	page	has	an	unique	number	-		Page	frame	number		and		e820_end_of_ram_pfn		function	returns	the	maximum	with	the
call	of	the		e820_end_pfn	:

unsigned	long	__init	e820_end_of_ram_pfn(void)

{

				return	e820_end_pfn(MAX_ARCH_PFN);

}

where		e820_end_pfn		takes	maximum	page	frame	number	on	the	certain	architecture	(	MAX_ARCH_PFN		is		0x400000000		for
	x86_64	).	In	the		e820_end_pfn		we	go	through	the	all		e820		slots	and	check	that		e820		entry	has		E820_RAM		or		E820_PRAM		type
because	we	calcluate	page	frame	numbers	only	for	these	types,	gets	the	base	address	and	end	address	of	the	page	frame
number	for	the	current		e820		entry	and	makes	some	checks	for	these	addresses:

for	(i	=	0;	i	<	e820.nr_map;	i++)	{

								struct	e820entry	*ei	=	&e820.map[i];

								unsigned	long	start_pfn;

								unsigned	long	end_pfn;

								if	(ei->type	!=	E820_RAM	&&	ei->type	!=	E820_PRAM)

												continue;

								start_pfn	=	ei->addr	>>	PAGE_SHIFT;

								end_pfn	=	(ei->addr	+	ei->size)	>>	PAGE_SHIFT;

								if	(start_pfn	>=	limit_pfn)

												continue;

								if	(end_pfn	>	limit_pfn)	{

												last_pfn	=	limit_pfn;

												break;

								}

								if	(end_pfn	>	last_pfn)

												last_pfn	=	end_pfn;

}

				if	(last_pfn	>	max_arch_pfn)

								last_pfn	=	max_arch_pfn;

				printk(KERN_INFO	"e820:	last_pfn	=	%#lx	max_arch_pfn	=	%#lx\n",

													last_pfn,	max_arch_pfn);

				return	last_pfn;

After	this	we	check	that		last_pfn		which	we	got	in	the	loop	is	not	greater	that	maximum	page	frame	number	for	the	certain
architecture	(	x86_64		in	our	case),	print	inofmration	about	last	page	frame	number	and	return	it.	We	can	see	the		last_pfn		in
the		dmesg		output:

...

[				0.000000]	e820:	last_pfn	=	0x41f000	max_arch_pfn	=	0x400000000

...
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After	this,	as	we	have	calculated	the	biggest	page	frame	number,	we	calculate		max_low_pfn		which	is	the	biggest	page
frame	number	in	the		low	memory		or	bellow	first		4		gigabytes.	If	installed	more	than	4	gigabytes	of	RAM,		max_low_pfn		will	be
result	of	the		e820_end_of_low_ram_pfn		function	which	does	the	same		e820_end_of_ram_pfn		but	with	4	gigabytes	limit,	in	other
way		max_low_pfn		will	be	the	same	as		max_pfn	:

if	(max_pfn	>	(1UL<<(32	-	PAGE_SHIFT)))

				max_low_pfn	=	e820_end_of_low_ram_pfn();

else

				max_low_pfn	=	max_pfn;

high_memory	=	(void	*)__va(max_pfn	*	PAGE_SIZE	-	1)	+	1;

Next	we	calculate		high_memory		(defines	the	upper	bound	on	direct	map	memory)	with		__va		macro	which	returns	a	virtual
address	by	the	given	physical.

The	next	step	after	manipulations	with	different	memory	regions	and		e820		slots	is	collecting	information	about	computer.
We	will	get	all	information	with	the	Desktop	Management	Interface	and	following	functions:

dmi_scan_machine();

dmi_memdev_walk();

First	is		dmi_scan_machine		defined	in	the	drivers/firmware/dmi_scan.c.	This	function	goes	through	the	System	Management
BIOS	structures	and	extracts	informantion.	There	are	two	ways	specified	to	gain	access	to	the		SMBIOS		table:	get	the	pointer
to	the		SMBIOS		table	from	the	EFI's	configuration	table	and	scanning	the	physycal	memory	between		0xF0000		and		0x10000	
addresses.	Let's	look	on	the	second	approach.		dmi_scan_machine		function	remaps	memory	between		0xf0000		and		0x10000	
with	the		dmi_early_remap		which	just	expands	to	the		early_ioremap	:

void	__init	dmi_scan_machine(void)

{

				char	__iomem	*p,	*q;

				char	buf[32];

				...

				...

				...

				p	=	dmi_early_remap(0xF0000,	0x10000);

				if	(p	==	NULL)

												goto	error;

and	iterates	over	all		DMI		header	address	and	find	search		_SM_		string:

memset(buf,	0,	16);

for	(q	=	p;	q	<	p	+	0x10000;	q	+=	16)	{

								memcpy_fromio(buf	+	16,	q,	16);

								if	(!dmi_smbios3_present(buf)	||	!dmi_present(buf))	{

												dmi_available	=	1;

												dmi_early_unmap(p,	0x10000);

												goto	out;

								}

								memcpy(buf,	buf	+	16,	16);

}

	_SM_		string	must	be	between		000F0000h		and		0x000FFFFF	.	Here	we	copy	16	bytes	to	the		buf		with		memcpy_fromio		which	is
the	same		memcpy		and	execute		dmi_smbios3_present		and		dmi_present		on	the	buffer.	These	functions	check	that	first	4	bytes
is		_SM_		string,	get		SMBIOS		version	and	gets		_DMI_		attributes	as		DMI		structure	table	length,	table	address	and	etc...	After

DMI	scanning
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one	of	these	function	will	finish	to	execute,	you	will	see	the	result	of	it	in	the		dmesg		output:

[				0.000000]	SMBIOS	2.7	present.

[				0.000000]	DMI:	Gigabyte	Technology	Co.,	Ltd.	Z97X-UD5H-BK/Z97X-UD5H-BK,	BIOS	F6	06/17/2014

In	the	end	of	the		dmi_scan_machine	,	we	unmap	the	previously	remaped	memory:

dmi_early_unmap(p,	0x10000);

The	second	function	is	-		dmi_memdev_walk	.	As	you	can	understand	it	goes	over	memory	devices.	Let's	look	on	it:

void	__init	dmi_memdev_walk(void)

{

				if	(!dmi_available)

								return;

				if	(dmi_walk_early(count_mem_devices)	==	0	&&	dmi_memdev_nr)	{

								dmi_memdev	=	dmi_alloc(sizeof(*dmi_memdev)	*	dmi_memdev_nr);

								if	(dmi_memdev)

												dmi_walk_early(save_mem_devices);

				}

}

It	checks	that		DMI		available	(we	got	it	in	the	previous	function	-		dmi_scan_machine	)	and	collects	information	about	memory
devices	with		dmi_walk_early		and		dmi_alloc		which	defined	as:

#ifdef	CONFIG_DMI

RESERVE_BRK(dmi_alloc,	65536);

#endif

	RESERVE_BRK		defined	in	the	arch/x86/include/asm/setup.h	and	reserves	space	with	given	size	in	the		brk		section.

init_hypervisor_platform();

x86_init.resources.probe_roms();

insert_resource(&iomem_resource,	&code_resource);

insert_resource(&iomem_resource,	&data_resource);

insert_resource(&iomem_resource,	&bss_resource);

early_gart_iommu_check();

The	next	step	is	parsing	of	the	SMP	configuration.	We	do	it	with	the	call	of	the		find_smp_config		function	which	just	calls
function:

static	inline	void	find_smp_config(void)

{

								x86_init.mpparse.find_smp_config();

}

inside.		x86_init.mpparse.find_smp_config		is	a		default_find_smp_config		function	from	the	arch/x86/kernel/mpparse.c.	In	the
	default_find_smp_config		function	we	are	scanning	a	couple	of	memory	regions	for		SMP		config	and	return	if	they	are	not:

SMP	config
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if	(smp_scan_config(0x0,	0x400)	||

												smp_scan_config(639	*	0x400,	0x400)	||

												smp_scan_config(0xF0000,	0x10000))

												return;

First	of	all		smp_scan_config		function	defines	a	couple	of	variables:

unsigned	int	*bp	=	phys_to_virt(base);

struct	mpf_intel	*mpf;

First	is	virtual	address	of	the	memory	region	where	we	will	scan		SMP		config,	second	is	the	pointer	to	the		mpf_intel	
structure.	Let's	try	to	understand	what	is	it		mpf_intel	.	All	information	stores	in	the	multiprocessor	configuration	data
structure.		mpf_intel		presents	this	structure	and	looks:

struct	mpf_intel	{

								char	signature[4];

								unsigned	int	physptr;

								unsigned	char	length;

								unsigned	char	specification;

								unsigned	char	checksum;

								unsigned	char	feature1;

								unsigned	char	feature2;

								unsigned	char	feature3;

								unsigned	char	feature4;

								unsigned	char	feature5;

};

As	we	can	read	in	the	documentation	-	one	of	the	main	functions	of	the	system	BIOS	is	to	construct	the	MP	floating	pointer
structure	and	the	MP	configuration	table.	And	operating	system	must	have	access	to	this	information	about	the
multiprocessor	configuration	and		mpf_intel		stores	the	physical	address	(look	at	second	parameter)	of	the	multiprocessor
configuration	table.	So,		smp_scan_config		going	in	a	loop	through	the	given	memory	range	and	tries	to	find		MP	floating
pointer	structure		there.	It	checks	that	current	byte	points	to	the		SMP		signature,	checks	checksum,	checks	that		mpf-
>specification		is	1	(it	must	be		1		or		4		by	specification)	in	the	loop:

while	(length	>	0)	{

if	((*bp	==	SMP_MAGIC_IDENT)	&&

				(mpf->length	==	1)	&&

				!mpf_checksum((unsigned	char	*)bp,	16)	&&

				((mpf->specification	==	1)

				||	(mpf->specification	==	4)))	{

								mem	=	virt_to_phys(mpf);

								memblock_reserve(mem,	sizeof(*mpf));

								if	(mpf->physptr)

												smp_reserve_memory(mpf);

				}

}

reserves	given	memory	block	if	search	is	successful	with		memblock_reserve		and	reserves	physical	address	of	the
multiprocessor	configuration	table.	All	documentation	about	this	you	can	find	in	the	-	MultiProcessor	Specification.	More
details	you	can	read	in	the	special	part	about		SMP	.

In	the	next	step	of	the		setup_arch		we	can	see	the	call	of	the		early_alloc_pgt_buf		function	which	allocates	the	page	table
buffer	for	early	stage.	The	page	table	buffer	will	be	place	in	the		brk		area.	Let's	look	on	its	implementation:

Additional	early	memory	initialization	routines
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void		__init	early_alloc_pgt_buf(void)

{

								unsigned	long	tables	=	INIT_PGT_BUF_SIZE;

								phys_addr_t	base;

								base	=	__pa(extend_brk(tables,	PAGE_SIZE));

								pgt_buf_start	=	base	>>	PAGE_SHIFT;

								pgt_buf_end	=	pgt_buf_start;

								pgt_buf_top	=	pgt_buf_start	+	(tables	>>	PAGE_SHIFT);

}

First	of	all	it	get	the	size	of	the	page	table	buffer,	it	will	be		INIT_PGT_BUF_SIZE		which	is		(6	*	PAGE_SIZE)		in	the	current	linux
kernel	4.0.	As	we	got	the	size	of	the	page	table	buffer,	we	call		extend_brk		function	with	two	parameters:	size	and	align.	As
you	can	understand	from	its	name,	this	function	extends	the		brk		area.	As	we	can	see	in	the	linux	kernel	linker	script		brk	
in	memory	right	after	the	BSS:

				.	=	ALIGN(PAGE_SIZE);

				.brk	:	AT(ADDR(.brk)	-	LOAD_OFFSET)	{

								__brk_base	=	.;

								.	+=	64	*	1024;								/*	64k	alignment	slop	space	*/

								*(.brk_reservation)				/*	areas	brk	users	have	reserved	*/

								__brk_limit	=	.;

				}

Or	we	can	find	it	with		readelf		util:

After	that	we	got	physical	address	of	the	new		brk		with	the		__pa		macro,	we	calculate	the	base	address	and	the	end	of	the
page	table	buffer.	In	the	next	step	as	we	got	page	table	buffer,	we	reserve	memory	block	for	the	brk	are	with	the
	reserve_brk		function:

static	void	__init	reserve_brk(void)

{

				if	(_brk_end	>	_brk_start)

								memblock_reserve(__pa_symbol(_brk_start),

																	_brk_end	-	_brk_start);

				_brk_start	=	0;

}

Note	that	in	the	end	of	the		reserve_brk	,	we	set		brk_start		to	zero,	because	after	this	we	will	not	allocate	it	anymore.	The
next	step	after	reserving	memory	block	for	the		brk	,	we	need	to	unmap	out-of-range	memory	areas	in	the	kernel	mapping
with	the		cleanup_highmap		function.	Remeber	that	kernel	mapping	is		__START_KERNEL_map		and		_end	-	_text		or
	level2_kernel_pgt		maps	the	kernel		_text	,		data		and		bss	.	In	the	start	of	the		clean_high_map		we	define	these	parameters:

unsigned	long	vaddr	=	__START_KERNEL_map;

unsigned	long	end	=	roundup((unsigned	long)_end,	PMD_SIZE)	-	1;

pmd_t	*pmd	=	level2_kernel_pgt;

pmd_t	*last_pmd	=	pmd	+	PTRS_PER_PMD;

Now,	as	we	defined	start	and	end	of	the	kernel	mapping,	we	go	in	the	loop	through	the	all	kernel	page	middle	directory
entries	and	clean	entries	which	are	not	between		_text		and		end	:
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for	(;	pmd	<	last_pmd;	pmd++,	vaddr	+=	PMD_SIZE)	{

								if	(pmd_none(*pmd))

												continue;

								if	(vaddr	<	(unsigned	long)	_text	||	vaddr	>	end)

												set_pmd(pmd,	__pmd(0));

}

After	this	we	set	the	limit	for	the		memblock		allocation	with	the		memblock_set_current_limit		function	(read	more	about
	memblock		you	can	in	the	Linux	kernel	memory	management	Part	2),	it	will	be		ISA_END_ADDRESS		or		0x100000		and	fill	the
	memblock		information	according	to		e820		with	the	call	of	the		memblock_x86_fill		function.	You	can	see	the	result	of	this
function	in	the	kernel	initialization	time:

MEMBLOCK	configuration:

	memory	size	=	0x1fff7ec00	reserved	size	=	0x1e30000

	memory.cnt		=	0x3

	memory[0x0]				[0x00000000001000-0x0000000009efff],	0x9e000	bytes	flags:	0x0

	memory[0x1]				[0x00000000100000-0x000000bffdffff],	0xbfee0000	bytes	flags:	0x0

	memory[0x2]				[0x00000100000000-0x0000023fffffff],	0x140000000	bytes	flags:	0x0

	reserved.cnt		=	0x3

	reserved[0x0]				[0x0000000009f000-0x000000000fffff],	0x61000	bytes	flags:	0x0

	reserved[0x1]				[0x00000001000000-0x00000001a57fff],	0xa58000	bytes	flags:	0x0

	reserved[0x2]				[0x0000007ec89000-0x0000007fffffff],	0x1377000	bytes	flags:	0x0

The	rest	functions	after	the		memblock_x86_fill		are:		early_reserve_e820_mpc_new		alocates	additional	slots	in	the		e820map		for
MultiProcessor	Specification	table,		reserve_real_mode		-	reserves	low	memory	from		0x0		to	1	megabyte	for	the	trampoline	to
the	real	mode	(for	rebootin	and	etc...),		trim_platform_memory_ranges		-	trims	certain	memory	regions	started	from
	0x20050000	,		0x20110000		and	etc...	these	regions	must	be	excluded	because	Sandy	Bridge	has	problems	with	these
regions,		trim_low_memory_range		reserves	the	first	4	killobytes	page	in		memblock	,		init_mem_mapping		function	reconstructs
direct	memory	mapping	and	setups	the	direct	mapping	of	the	physical	memory	at		PAGE_OFFSET	,		early_trap_pf_init		setups
	#PF		handler	(we	will	look	on	it	in	the	chapter	about	interrupts)	and		setup_real_mode		function	setups	trampoline	to	the	real
mode	code.

That's	all.	You	can	note	that	this	part	will	not	cover	all	functions	which	are	in	the		setup_arch		(like		early_gart_iommu_check	,
mtrr	initalization	and	etc...).	As	I	already	wrote	many	times,		setup_arch		is	big,	and	linux	kernel	is	big.	That's	why	I	can't
cover	every	line	in	the	linux	kernel.	I	don't	think	that	we	missed	something	important,...	but	you	can	say	something	like:
each	line	of	code	is	important.	Yes,	it's	true,	but	I	missed	they	anyway,	because	I	think	that	it	is	not	real	to	cover	full	linux
kernel.	Anyway	we	will	often	return	to	the	idea	that	we	have	already	seen,	and	if	something	will	be	unfamiliar,	we	will	cover
this	theme.

It	is	the	end	of	the	sixth	part	about	linux	kernel	initialization	process.	In	this	part	we	continued	to	dive	in	the		setup_arch	
function	again	It	was	long	part,	but	we	not	finished	with	it.	Yes,		setup_arch		is	big,	hope	that	next	part	will	be	last	about	this
function.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

MultiProcessor	Specification
NX	bit

Conclusion
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This	is	the	seventh	parth	of	the	Linux	Kernel	initialization	process	which	covers	internals	of	the		setup_arch		function	from
the	arch/x86/kernel/setup.c.	As	you	can	know	from	the	previous	parts,	the		setup_arch		function	does	some	architecture-
specific	(in	our	case	it	is	x86_64)	initialization	stuff	like	reserving	memory	for	kernel	code/data/bss,	early	scanning	of	the
Desktop	Management	Interface,	early	dump	of	the	PCI	device	and	many	many	more.	If	you	have	read	the	previous	part,
you	can	remember	that	we've	finished	it	at	the		setup_real_mode		function.	In	the	next	step,	as	we	set	limit	of	the	memblock
to	the	all	mapped	pages,	we	can	see	the	call	of	the		setup_log_buf		function	from	the	kernel/printk/printk.c.

The		setup_log_buf		function	setups	kernel	cyclic	buffer	which	length	depends	on	the		CONFIG_LOG_BUF_SHIFT		configuration
option.	As	we	can	read	from	the	documentation	of	the		CONFIG_LOG_BUF_SHIFT		it	can	be	between		12		and		21	.	In	the	internals,
buffer	defined	as	array	of	chars:

#define	__LOG_BUF_LEN	(1	<<	CONFIG_LOG_BUF_SHIFT)

static	char	__log_buf[__LOG_BUF_LEN]	__aligned(LOG_ALIGN);

static	char	*log_buf	=	__log_buf;

Now	let's	look	on	the	implementation	of	th		setup_log_buf		function.	It	starts	with	check	that	current	buffer	is	empty	(It	must
be	empty,	because	we	just	setup	it)	and	another	check	that	it	is	early	setup.	If	setup	of	the	kernel	log	buffer	is	not	early,	we
call	the		log_buf_add_cpu		function	which	increase	size	of	the	buffer	for	every	CPU:

if	(log_buf	!=	__log_buf)

				return;

if	(!early	&&	!new_log_buf_len)

				log_buf_add_cpu();

We	will	not	research		log_buf_add_cpu		function,	because	as	you	can	see	in	the		setup_arch	,	we	call		setup_log_buf		as:

setup_log_buf(1);

where		1		means	that	is	is	early	setup.	In	the	next	step	we	check		new_log_buf_len		variable	which	is	updated	length	of	the
kernel	log	buffer	and	allocate	new	space	for	the	buffer	with	the		memblock_virt_alloc		function	for	it,	or	just	return.

As	kernel	log	buffer	is	ready,	the	next	function	is		reserve_initrd	.	You	can	remember	that	we	already	called	the
	early_reserve_initrd		function	in	the	fourth	part	of	the	Kernel	initialization.	Now,	as	we	reconstructed	direct	memory
mapping	in	the		init_mem_mapping		function,	we	need	to	move	initrd	to	the	down	into	directly	mapped	memory.	The
	reserve_initrd		function	starts	from	the	definition	of	the	base	address	and	end	address	of	the		initrd		and	check	that
	initrd		was	provided	by	a	bootloader.	All	the	same	as	we	saw	it	in	the		early_reserve_initrd	.	But	instead	of	the	reserving
place	in	the		memblock		area	with	the	call	of	the		memblock_reserve		function,	we	get	the	mapped	size	of	the	direct	memory
area	and	check	that	the	size	of	the		initrd		is	not	greater	that	this	area	with:

mapped_size	=	memblock_mem_size(max_pfn_mapped);

if	(ramdisk_size	>=	(mapped_size>>1))

				panic("initrd	too	large	to	handle,	"

										"disabling	initrd	(%lld	needed,	%lld	available)\n",

Kernel	initialization.	Part	7.

The	End	of	the	architecture-specific	initializations,
almost...
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										ramdisk_size,	mapped_size>>1);

You	can	see	here	that	we	call		memblock_mem_size		function	and	pass	the		max_pfn_mapped		to	it,	where		max_pfn_mapped	
contains	the	highest	direct	mapped	page	frame	number.	If	you	do	not	remember	what	is	it		page	frame	number	,	explanation
is	simple:	First		12		bits	of	the	virtual	address	represent	offset	in	the	physical	page	or	page	frame.	If	we	will	shift	right	virtual
address	on		12	,	we'll	discard	offset	part	and	will	get		Page	Frame	Number	.	In	the		memblock_mem_size		we	go	through	the	all
memblock		mem		(not	reserved)	regions	and	calculates	size	of	the	mapped	pages	amount	and	return	it	to	the		mapped_size	
variable	(see	code	above).	As	we	got	amount	of	the	direct	mapped	memory,	we	check	that	size	of	the		initrd		is	not	greater
than	mapped	pages.	If	it	is	greater	we	just	call		panic		which	halts	the	system	and	prints	popular	Kernel	panic	message.	In
the	next	step	we	print	information	about	the		initrd		size.	We	can	see	the	result	of	this	in	the		dmesg		output:

[0.000000]	RAMDISK:	[mem	0x36d20000-0x37687fff]

and	relocate		initrd		to	the	direct	mapping	area	with	the		relocate_initrd		function.	In	the	start	of	the		relocate_initrd	
function	we	try	to	find	free	area	with	the		memblock_find_in_range		function:

relocated_ramdisk	=	memblock_find_in_range(0,	PFN_PHYS(max_pfn_mapped),	area_size,	PAGE_SIZE);

if	(!relocated_ramdisk)

				panic("Cannot	find	place	for	new	RAMDISK	of	size	%lld\n",

											ramdisk_size);

The		memblock_find_in_range		function	tries	to	find	free	area	in	a	given	range,	in	our	case	from		0		to	the	maximum	mapped
physical	address	and	size	must	equal	to	the	aligned	size	of	the		initrd	.	If	we	didn't	find	area	with	the	given	size,	we	call
	panic		again.	If	all	is	good,	we	start	to	relocated	RAM	disk	to	the	down	of	the	directly	mapped	meory	in	the	next	step.

In	the	end	of	the		reserve_initrd		function,	we	free	memblock	memory	which	occupied	by	the	ramdisk	with	the	call	of	the:

memblock_free(ramdisk_image,	ramdisk_end	-	ramdisk_image);

After	we	relocated		initrd		ramdisk	image,	the	next	function	is		vsmp_init		from	the	arch/x86/kernel/vsmp_64.c.	This
function	initializes	support	of	the		ScaleMP	vSMP	.	As	I	already	wrote	in	the	previous	parts,	this	chapter	will	not	cover	non-
related		x86_64		initialization	parts	(for	example	as	the	current	or		ACPI		and	etc...).	So	we	will	miss	implementation	of	this	for
now	and	will	back	to	it	in	the	part	which	will	cover	techniques	of	parallel	computing.

The	next	function	is		io_delay_init		from	the	arch/x86/kernel/io_delay.c.	This	function	allows	to	override	default	default	I/O
delay		0x80		port.	We	already	saw	I/O	delay	in	the	Last	preparation	before	transition	into	protected	mode,	now	let's	look	on
the		io_delay_init		implementation:

void	__init	io_delay_init(void)

{

				if	(!io_delay_override)

								dmi_check_system(io_delay_0xed_port_dmi_table);

}

This	function	check		io_delay_override		variable	and	overrides	I/O	delay	port	if		io_delay_override		is	set.	We	can	set
	io_delay_override		variably	by	passing		io_delay		option	to	the	kernel	command	line.	As	we	can	read	from	the
Documentation/kernel-parameters.txt,		io_delay		option	is:

io_delay=				[X86]	I/O	delay	method

				0x80
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								Standard	port	0x80	based	delay

				0xed

								Alternate	port	0xed	based	delay	(needed	on	some	systems)

				udelay

								Simple	two	microseconds	delay

				none

								No	delay

We	can	see		io_delay		command	line	parameter	setup	with	the		early_param		macro	in	the	arch/x86/kernel/io_delay.c

early_param("io_delay",	io_delay_param);

More	about		early_param		you	can	read	in	the	previous	part.	So	the		io_delay_param		function	which	setups
	io_delay_override		variable	will	be	called	in	the	do_early_param	function.		io_delay_param		function	gets	the	argument	of	the
	io_delay		kernel	command	line	parameter	and	sets		io_delay_type		depends	on	it:

static	int	__init	io_delay_param(char	*s)

{

								if	(!s)

																return	-EINVAL;

								if	(!strcmp(s,	"0x80"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0X80;

								else	if	(!strcmp(s,	"0xed"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0XED;

								else	if	(!strcmp(s,	"udelay"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_UDELAY;

								else	if	(!strcmp(s,	"none"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_NONE;

								else

																return	-EINVAL;

								io_delay_override	=	1;

								return	0;

}

The	next	functions	are		acpi_boot_table_init	,		early_acpi_boot_init		and		initmem_init		after	the		io_delay_init	,	but	as	I
wrote	above	we	will	not	cover	ACPI	related	stuff	in	this		Linux	Kernel	initialization	process		chapter.

In	the	next	step	we	need	to	allocate	area	for	the	Direct	memory	access	with	the		dma_contiguous_reserve		function	which
defined	in	the	drivers/base/dma-contiguous.c.		DMA		area	is	a	special	mode	when	devices	comminicate	with	memory	without
CPU.	Note	that	we	pass	one	parameter	-		max_pfn_mapped	<<	PAGE_SHIFT	,	to	the		dma_contiguous_reserve		function	and	as	you
can	understand	from	this	expression,	this	is	limit	of	the	reserved	memory.	Let's	look	on	the	implementation	of	this	function.
It	starts	from	the	definition	of	the	following	variables:

phys_addr_t	selected_size	=	0;

phys_addr_t	selected_base	=	0;

phys_addr_t	selected_limit	=	limit;

bool	fixed	=	false;

where	first	represents	size	in	bytes	of	the	reserved	area,	second	is	base	address	of	the	reserved	area,	third	is	end	address
of	the	reserved	area	and	the	last		fixed		parameter	shows	where	to	place	reserved	area.	If		fixed		is		1		we	just	reserve	area
with	the		memblock_reserve	,	if	it	is		0		we	allocate	space	with	the		kmemleak_alloc	.	In	the	next	step	we	check		size_cmdline	
variable	and	if	it	is	not	equal	to		-1		we	fill	all	variables	which	you	can	see	above	with	the	values	from	the		cma		kernel
command	line	parameter:

Allocate	area	for	DMA
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if	(size_cmdline	!=	-1)	{

			...

			...

			...

}

You	can	find	in	this	source	code	file	definition	of	the	early	parameter:

early_param("cma",	early_cma);

where		cma		is:

cma=nn[MG]@[start[MG][-end[MG]]]

								[ARM,X86,KNL]

								Sets	the	size	of	kernel	global	memory	area	for

								contiguous	memory	allocations	and	optionally	the

								placement	constraint	by	the	physical	address	range	of

								memory	allocations.	A	value	of	0	disables	CMA

								altogether.	For	more	information,	see

								include/linux/dma-contiguous.h

If	we	will	not	pass		cma		option	to	the	kernel	command	line,		size_cmdline		will	be	equal	to		-1	.	In	this	way	we	need	to
calculate	size	of	the	reserved	area	which	depends	on	the	following	kernel	configuration	options:

	CONFIG_CMA_SIZE_SEL_MBYTES		-	size	in	megabytes,	default	global		CMA		area,	which	is	equal	to		CMA_SIZE_MBYTES	*	SZ_1M		or
	CONFIG_CMA_SIZE_MBYTES	*	1M	;
	CONFIG_CMA_SIZE_SEL_PERCENTAGE		-	percentage	of	total	memory;
	CONFIG_CMA_SIZE_SEL_MIN		-	use	lower	value;
	CONFIG_CMA_SIZE_SEL_MAX		-	use	higher	value.

As	we	calculated	the	size	of	the	reserved	area,	we	reserve	area	with	the	call	of	the		dma_contiguous_reserve_area		function
which	first	of	all	calls:

ret	=	cma_declare_contiguous(base,	size,	limit,	0,	0,	fixed,	res_cma);

function.	The		cma_declare_contiguous		reserves	contiguous	area	from	the	given	base	address	and	with	given	size.	After	we
reserved	area	for	the		DMA	,	next	function	is	the		memblock_find_dma_reserve	.	As	you	can	understand	from	its	name,	this
function	counts	the	reserved	pages	in	the		DMA		area.	This	part	will	not	cover	all	details	of	the		CMA		and		DMA	,	because	they
are	big.	We	will	see	much	more	details	in	the	special	part	in	the	Linux	Kernel	Memory	management	which	covers
contiguous	memory	allocators	and	areas.

The	next	step	is	the	call	of	the	function	-		x86_init.paging.pagetable_init	.	If	you	will	try	to	find	this	function	in	the	linux
kernel	source	code,	in	the	end	of	your	search,	you	will	see	the	following	macro:

#define	native_pagetable_init								paging_init

which	expands	as	you	can	see	to	the	call	of	the		paging_init		function	from	the	arch/x86/mm/init_64.c.	The		paging_init	
function	initializes	sparse	memory	and	zone	sizes.	First	of	all	what's	zones	and	what	is	it		Sparsemem	.	The		Sparsemem		is	a
special	foundation	in	the	linux	kernen	memory	manager	which	used	to	split	memory	area	to	the	different	memory	banks	in

Initialization	of	the	sparse	memory
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the	NUMA	systems.	Let's	look	on	the	implementation	of	the		paginig_init		function:

void	__init	paging_init(void)

{

								sparse_memory_present_with_active_regions(MAX_NUMNODES);

								sparse_init();

								node_clear_state(0,	N_MEMORY);

								if	(N_MEMORY	!=	N_NORMAL_MEMORY)

																node_clear_state(0,	N_NORMAL_MEMORY);

								zone_sizes_init();

}

As	you	can	see	there	is	call	of	the		sparse_memory_present_with_active_regions		function	which	records	a	memory	area	for
every		NUMA		node	to	the	array	of	the		mem_section		structure	which	contains	a	pointer	to	the	structure	of	the	array	of		struct
page	.	The	next		sparse_init		function	allocates	non-linear		mem_section		and		mem_map	.	In	the	next	step	we	clear	state	of	the
movable	memory	nodes	and	initialize	sizes	of	zones.	Every		NUMA		node	is	devided	into	a	number	of	pieces	which	are	called
-		zones	.	So,		zone_sizes_init		function	from	the	arch/x86/mm/init.c	initializes	size	of	zones.

Again,	this	part	and	next	parts	do	not	cover	this	theme	in	full	details.	There	will	be	special	part	about		NUMA	.

The	next	step	after		SparseMem		initialization	is	setting	of	the		trampoline_cr4_features		which	must	contain	content	of	the		cr4	
Control	register.	First	of	all	we	need	to	check	that	current	CPU	has	support	of	the		cr4		register	and	if	it	has,	we	save	its
content	to	the		trampoline_cr4_features		which	is	storage	for		cr4		in	the	real	mode:

if	(boot_cpu_data.cpuid_level	>=	0)	{

				mmu_cr4_features	=	__read_cr4();

				if	(trampoline_cr4_features)

								*trampoline_cr4_features	=	mmu_cr4_features;

}

The	next	function	which	you	can	see	is		map_vsyscal		from	the	arch/x86/kernel/vsyscall_64.c.	This	function	maps	memory
space	for	vsyscalls	and	depends	on		CONFIG_X86_VSYSCALL_EMULATION		kernel	configuration	option.	Actually		vsyscall		is	a
special	segment	which	provides	fast	access	to	the	certain	system	calls	like		getcpu		and	etc...	Let's	look	on	implementation
of	this	function:

void	__init	map_vsyscall(void)

{

								extern	char	__vsyscall_page;

								unsigned	long	physaddr_vsyscall	=	__pa_symbol(&__vsyscall_page);

								if	(vsyscall_mode	!=	NONE)

																__set_fixmap(VSYSCALL_PAGE,	physaddr_vsyscall,

																													vsyscall_mode	==	NATIVE

																													?	PAGE_KERNEL_VSYSCALL

																													:	PAGE_KERNEL_VVAR);

								BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

}

In	the	beginning	of	the		map_vsyscal		we	can	see	definition	of	two	variables.	The	first	is	extern	valirable		__vsyscall_page	.	As
variable	extern,	it	defined	somewhere	in	other	source	code	file.	Actually	we	can	see	definition	of	the		__vsyscall_page		in	the
arch/x86/kernel/vsyscall_emu_64.S.	The		__vsyscall_page		symbol	points	to	the	aligned	calls	of	the		vsyscalls		as
	gettimeofday		and	etc...:

vsyscall	mapping
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				.globl	__vsyscall_page

				.balign	PAGE_SIZE,	0xcc

				.type	__vsyscall_page,	@object

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				...

				...

				...

The	second	variable	is		physaddr_vsyscall		which	just	stores	physical	address	of	the		__vsyscall_page		symbol.	In	the	next
step	we	check	the		vsyscall_mode		variable,	and	if	it	is	not	equal	to		NONE		which	is		EMULATE		by	default:

static	enum	{	EMULATE,	NATIVE,	NONE	}	vsyscall_mode	=	EMULATE;

And	after	this	check	we	can	see	the	call	of	the		__set_fixmap		function	which	calls		native_set_fixmap		with	the	same
parameters:

void	native_set_fixmap(enum	fixed_addresses	idx,	unsigned	long	phys,	pgprot_t	flags)

{

								__native_set_fixmap(idx,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

}

void	__native_set_fixmap(enum	fixed_addresses	idx,	pte_t	pte)

{

								unsigned	long	address	=	__fix_to_virt(idx);

								if	(idx	>=	__end_of_fixed_addresses)	{

																BUG();

																return;

								}

								set_pte_vaddr(address,	pte);

								fixmaps_set++;

}

Here	we	can	see	that		native_set_fixmap		makes	value	of		Page	Table	Entry		from	the	given	physical	address	(physical
address	of	the		__vsyscall_page		symbol	in	our	case)	and	calls	internal	function	-		__native_set_fixmap	.	Internal	function	gets
the	virtual	address	of	the	given		fixed_addresses		index	(	VSYSCALL_PAGE		in	our	case)	and	checks	that	given	index	is	not
greated	than	end	of	the	fix-mapped	addresses.	After	this	we	set	page	table	entry	with	the	call	of	the		set_pte_vaddr		function
and	increase	count	of	the	fix-mapped	addresses.	And	in	the	end	of	the		map_vsyscall		we	check	that	virtual	address	of	the
	VSYSCALL_PAGE		(which	is	first	index	in	the		fixed_addresses	)	is	not	greater	than		VSYSCALL_ADDR		which	is		-10UL	<<	20		or
	ffffffffff600000		with	the		BUILD_BUG_ON		macro:

BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

Now		vsyscall		area	is	in	the		fix-mapped		area.	That's	all	about		map_vsyscall	,	if	you	do	not	know	anything	about	fix-mapped
addresses,	you	can	read	Fix-Mapped	Addresses	and	ioremap.	More	about		vsyscalls		we	will	see	in	the		vsyscalls	and
vdso		part.

Getting	the	SMP	configuration
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You	can	remember	how	we	made	a	search	of	the	SMP	configuration	in	the	previous	part.	Now	we	need	to	get	the		SMP	
configurtaion	if	we	found	it.	For	this	we	check		smp_found_config		variable	which	we	set	in	the		smp_scan_config		function	(read
about	it	the	previous	part)	and	call	the		get_smp_config		function:

if	(smp_found_config)

				get_smp_config();

The		get_smp_config		expands	to	the		x86_init.mpparse.default_get_smp_config		function	which	defined	in	the
arch/x86/kernel/mpparse.c.	This	function	defines	pointer	to	the	multiprocessor	floating	pointer	structure	-		mpf_intel		(you
can	read	about	it	in	the	previous	part)	and	does	some	checks:

struct	mpf_intel	*mpf	=	mpf_found;

if	(!mpf)

				return;

if	(acpi_lapic	&&	early)

			return;

Here	we	can	see	that	multiprocessor	configuration	was	found	in	the		smp_scan_config		function	or	just	return	from	the
function	if	not.	The	next	check	check	that	it	is	early.	And	as	we	did	this	checks,	we	start	to	read	the		SMP		configuration.	As
we	finished	to	read	it,	the	next	step	is	-		prefill_possible_map		function	which	makes	preliminary	filling	of	the	possible	CPUs
	cpumask		(more	about	it	you	can	read	in	the	Introduction	to	the	cpumasks).

Here	we	are	getting	to	the	end	of	the		setup_arch		function.	The	rest	function	of	course	make	important	stuff,	but	details
about	these	stuff	will	not	will	not	be	included	in	this	part.	We	will	just	take	a	short	look	on	these	functions,	because	although
they	are	important	as	I	wrote	above,	but	they	cover	non-generic	kernel	features	related	with	the		NUMA	,		SMP	,		ACPI		and
	APICs		and	etc...	First	of	all,	the	next	call	of	the		init_apic_mappings		function.	As	we	can	understand	this	function	sets	the
address	of	the	local	APIC.	The	next	is		x86_io_apic_ops.init		and	this	function	initializes	I/O	APIC.	Please	note	that	all
details	related	with		APIC	,	we	will	see	in	the	chapter	about	interrupts	and	exceptions	handling.	In	the	next	step	we	reserve
standard	I/O	resources	like		DMA	,		TIMER	,		FPU		and	etc...,	with	the	call	of	the		x86_init.resources.reserve_resources		function.
Following	is		mcheck_init		function	initializes		Machine	check	Exception		and	the	last	is		register_refined_jiffies		which
registers	jiffy	(There	will	be	separate	chapter	about	timers	in	the	kernel).

So	that's	all.	Finally	we	have	finished	with	the	big		setup_arch		function	in	this	part.	Of	course	as	I	already	wrote	many	times,
we	did	not	see	full	details	about	this	function,	but	do	not	worry	about	it.	We	will	be	back	more	than	once	to	this	function	from
different	chapters	for	understanding	how	different	platform-dependent	parts	are	initialized.

That's	all,	and	now	we	can	back	to	the		start_kernel		from	the		setup_arch	.

As	I	wrote	above,	we	have	finished	with	the		setup_arch		function	and	now	we	can	back	to	the		start_kernel		function	from
the	init/main.c.	As	you	can	remember	or	even	you	saw	yourself,		start_kernel		function	is	very	big	too	as	the		setup_arch	.
So	the	couple	of	the	next	part	will	be	dedicated	to	the	learning	of	this	function.	So,	let's	continue	with	it.	After	the
	setup_arch		we	can	see	the	call	of	the		mm_init_cpumask		function.	This	function	sets	the	cpumask)	pointer	to	the	memory
descriptor		cpumask	.	We	can	look	on	its	implementation:

The	rest	of	the	setup_arch

Back	to	the	main.c
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static	inline	void	mm_init_cpumask(struct	mm_struct	*mm)

{

#ifdef	CONFIG_CPUMASK_OFFSTACK

								mm->cpu_vm_mask_var	=	&mm->cpumask_allocation;

#endif

								cpumask_clear(mm->cpu_vm_mask_var);

}

As	you	can	see	in	the	init/main.c,	we	passed	memory	descriptor	of	the	init	process	to	the		mm_init_cpumask		and	here	depend
on		CONFIG_CPUMASK_OFFSTACK		configuration	option	we	set	or	clear	TLB	switch		cpumask	.

In	the	next	step	we	can	see	the	call	of	the	following	function:

setup_command_line(command_line);

This	function	takes	pointer	to	the	kernel	command	line	allocates	a	couple	of	buffers	to	store	command	line.	We	need	a
couple	of	buffers,	because	one	buffer	used	for	future	reference	and	accessing	to	command	line	and	one	for	parameter
parsing.	We	will	allocate	space	for	the	following	buffers:

	saved_command_line		-	will	contain	boot	command	line;
	initcall_command_line		-	will	contain	boot	command	line.	will	be	used	in	the		do_initcall_level	;
	static_command_line		-	will	contain	command	line	for	parameters	parsing.

We	will	allocate	space	with	the		memblock_virt_alloc		function.	This	function	calls		memblock_virt_alloc_try_nid		which
allocates	boot	memory	block	with		memblock_reserve		if	slab	is	not	available	or	uses		kzalloc_node		(more	about	it	will	be	in
the	linux	memory	management	chapter).	The		memblock_virt_alloc		uses		BOOTMEM_LOW_LIMIT		(physicall	address	of	the
	(PAGE_OFFSET	+	0x1000000)		value)	and		BOOTMEM_ALLOC_ACCESSIBLE		(equal	to	the	current	value	of	the		memblock.current_limit	)
as	minimum	address	of	the	memory	egion	and	maximum	address	of	the	memory	region.

Let's	look	on	the	implementation	of	the		setup_command_line	:

static	void	__init	setup_command_line(char	*command_line)

{

								saved_command_line	=

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								initcall_command_line	=

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								static_command_line	=	memblock_virt_alloc(strlen(command_line)	+	1,	0);

								strcpy(saved_command_line,	boot_command_line);

								strcpy(static_command_line,	command_line);

	}

Here	we	can	see	that	we	allocate	space	for	the	three	buffers	which	will	contain	kernel	command	line	for	the	different
purposes	(read	above).	And	as	we	allocated	space,	we	storing		boot_comand_line		in	the		saved_command_line		and
	command_line		(kernel	command	line	from	the		setup_arch		to	the		static_command_line	).

The	next	function	after	the		setup_command_line		is	the		setup_nr_cpu_ids	.	This	function	setting		nr_cpu_ids		(number	of	CPUs)
according	to	the	last	bit	in	the		cpu_possible_mask		(more	about	it	you	can	read	in	the	chapter	describes	cpumasks	concept).
Let's	look	on	its	implementation:

void	__init	setup_nr_cpu_ids(void)

{

								nr_cpu_ids	=	find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS)	+	1;

}
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Here		nr_cpu_ids		represents	number	of	CPUs,		NR_CPUS		represents	the	maximum	number	of	CPUs	which	we	can	set	in
configuration	time:

Actually	we	need	to	call	this	function,	because		NR_CPUS		can	be	greater	than	actual	amount	of	the	CPUs	in	the	your
computer.	Here	we	can	see	that	we	call		find_last_bit		function	and	pass	two	parameters	to	it:

	cpu_possible_mask		bits;
maximim	number	of	CPUS.

In	the		setup_arch		we	can	find	the	call	of	the		prefill_possible_map		function	which	calculates	and	writes	to	the
	cpu_possible_mask		actual	number	of	the	CPUs.	We	call	the		find_last_bit		function	which	takes	the	address	and	maximum
size	to	search	and	returns	bit	number	of	the	first	set	bit.	We	passed		cpu_possible_mask		bits	and	maximum	number	of	the
CPUs.	First	of	all	the		find_last_bit		function	splits	given		unsigned	long		address	to	the	words:

words	=	size	/	BITS_PER_LONG;

where		BITS_PER_LONG		is		64		on	the		x86_64	.	As	we	got	amount	of	words	in	the	given	size	of	the	search	data,	we	need	to
check	is	given	size	does	not	contain	partial	words	with	the	following	check:

if	(size	&	(BITS_PER_LONG-1))	{

									tmp	=	(addr[words]	&	(~0UL	>>	(BITS_PER_LONG

																																	-	(size	&	(BITS_PER_LONG-1)))));

									if	(tmp)

																	goto	found;

}

if	it	contains	partial	word,	we	mask	the	last	word	and	check	it.	If	the	last	word	is	not	zero,	it	means	that	current	word
contains	at	least	one	set	bit.	We	go	to	the		found		label:
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found:

				return	words	*	BITS_PER_LONG	+	__fls(tmp);

Here	you	can	see		__fls		function	which	returns	last	set	bit	in	a	given	word	with	help	of	the		bsr		instruction:

static	inline	unsigned	long	__fls(unsigned	long	word)

{

								asm("bsr	%1,%0"

												:	"=r"	(word)

												:	"rm"	(word));

								return	word;

}

The		bsr		instruction	which	scans	the	given	operand	for	first	bit	set.	If	the	last	word	is	not	partial	we	going	through	the	all
words	in	the	given	address	and	trying	to	find	first	set	bit:

while	(words)	{

				tmp	=	addr[--words];

				if	(tmp)	{

found:

								return	words	*	BITS_PER_LONG	+	__fls(tmp);

				}

}

Here	we	put	the	last	word	to	the		tmp		variable	and	check	that		tmp		contains	at	least	one	set	bit.	If	a	set	bit	found,	we	return
the	number	of	this	bit.	If	no	one	words	do	not	contains	set	bit	we	just	return	given	size:

return	size;

After	this		nr_cpu_ids		will	contain	the	correct	amount	of	the	avaliable	CPUs.

That's	all.

It	is	the	end	of	the	seventh	part	about	the	linux	kernel	initialization	process.	In	this	part,	finally	we	have	finsihed	with	the
	setup_arch		function	and	returned	to	the		start_kernel		function.	In	the	next	part	we	will	continue	to	learn	generic	kernel
code	from	the		start_kernel		and	will	continue	our	way	to	the	first		init		process.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

Desktop	Management	Interface
x86_64
initrd
Kernel	panic
Documentation/kernel-parameters.txt
ACPI

Conclusion

Links
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Direct	memory	access
NUMA
Control	register
vsyscalls
SMP
jiffy
Previous	part
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This	is	the	eighth	part	of	the	Linux	kernel	initialization	process	and	we	stopped	on	the		setup_nr_cpu_ids		function	in	the
previous	part.	The	main	point	of	the	current	part	is	scheduler	initialization.	But	before	we	will	start	to	learn	initialization
process	of	the	scheduler,	we	need	to	do	some	stuff.	The	next	step	in	the	init/main.c	is	the		setup_per_cpu_areas		function.
This	function	setups	areas	for	the		percpu		variables,	more	about	it	you	can	read	in	the	special	part	about	the	Per-CPU
variables.	After		percpu		areas	up	and	running,	the	next	step	is	the		smp_prepare_boot_cpu		function.	This	function	does	some
preparations	for	the	SMP:

static	inline	void	smp_prepare_boot_cpu(void)

{

									smp_ops.smp_prepare_boot_cpu();

}

where	the		smp_prepare_boot_cpu		expands	to	the	call	of	the		native_smp_prepare_boot_cpu		function	(more	about		smp_ops		will
be	in	the	special	parts	about		SMP	):

void	__init	native_smp_prepare_boot_cpu(void)

{

								int	me	=	smp_processor_id();

								switch_to_new_gdt(me);

								cpumask_set_cpu(me,	cpu_callout_mask);

								per_cpu(cpu_state,	me)	=	CPU_ONLINE;

}

The		native_smp_prepare_boot_cpu		function	gets	the	number	of	the	current	CPU	(which	is	Bootstrap	processor	and	its		id		is
zero)	with	the		smp_processor_id		function.	I	will	not	explain	how	the		smp_processor_id		works,	because	we	alread	saw	it	in
the	Kernel	entry	point	part.	As	we	got	processor		id		number	we	reload	Global	Descriptor	Table	for	the	given	CPU	with	the
	switch_to_new_gdt		function:

void	switch_to_new_gdt(int	cpu)

{

								struct	desc_ptr	gdt_descr;

								gdt_descr.address	=	(long)get_cpu_gdt_table(cpu);

								gdt_descr.size	=	GDT_SIZE	-	1;

								load_gdt(&gdt_descr);

								load_percpu_segment(cpu);

}

The		gdt_descr		variable	represents	pointer	to	the		GDT		descriptor	here	(we	already	saw		desc_ptr		in	the	Early	interrupt	and
exception	handling).	We	get	the	address	and	the	size	of	the		GDT		descriptor	where		GDT_SIZE		is		256		or:

#define	GDT_SIZE	(GDT_ENTRIES	*	8)

and	the	address	of	the	descriptor	we	will	get	with	the		get_cpu_gdt_table	:

static	inline	struct	desc_struct	*get_cpu_gdt_table(unsigned	int	cpu)

{
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Scheduler	initialization

Linux	Inside

133Scheduler	initialization

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-7.md
http://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html


								return	per_cpu(gdt_page,	cpu).gdt;

}

The		get_cpu_gdt_table		uses		per_cpu		macro	for	getting		gdt_page		percpu	variable	for	the	given	CPU	number	(bootstrap
processor	with		id		-	0	in	our	case).	You	can	ask	the	following	question:	so,	if	we	can	access		gdt_page		percpu	variable,
where	it	was	defined?	Actually	we	alread	saw	it	in	this	book.	If	you	have	read	the	first	part	of	this	chapter,	you	can
remember	that	we	saw	definition	of	the		gdt_page		in	the	arch/x86/kernel/head_64.S:

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)

and	if	we	will	look	on	the	linker	file	we	can	see	that	it	locates	after	the		__per_cpu_load		symbol:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

and	filled		gdt_page		in	the	arch/x86/kernel/cpu/common.c:

DEFINE_PER_CPU_PAGE_ALIGNED(struct	gdt_page,	gdt_page)	=	{	.gdt	=	{

#ifdef	CONFIG_X86_64

				[GDT_ENTRY_KERNEL32_CS]								=	GDT_ENTRY_INIT(0xc09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_CS]								=	GDT_ENTRY_INIT(0xa09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_DS]								=	GDT_ENTRY_INIT(0xc093,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER32_CS]				=	GDT_ENTRY_INIT(0xc0fb,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_DS]				=	GDT_ENTRY_INIT(0xc0f3,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_CS]				=	GDT_ENTRY_INIT(0xa0fb,	0,	0xfffff),

				...

				...

				...

more	about		percpu		variables	you	can	read	in	the	Per-CPU	variables	part.	As	we	got	address	and	size	of	the		GDT	
descriptor	we	case	reload		GDT		with	the		load_gdt		which	just	execute		lgdt		instruct	and	load		percpu_segment		with	the
following	function:

void	load_percpu_segment(int	cpu)	{

				loadsegment(gs,	0);

				wrmsrl(MSR_GS_BASE,	(unsigned	long)per_cpu(irq_stack_union.gs_base,	cpu));

				load_stack_canary_segment();

}

The	base	address	of	the		percpu		area	must	contain		gs		register	(or		fs		register	for		x86	),	so	we	are	using		loadsegment	
macro	and	pass		gs	.	In	the	next	step	we	writes	the	base	address	if	the	IRQ	stack	and	setup	stack	canary	(this	is	only	for
	x86_32	).	After	we	load	new		GDT	,	we	fill		cpu_callout_mask		bitmap	with	the	current	cpu	and	set	cpu	state	as	online	with	the
setting		cpu_state		percpu	variable	for	the	current	processor	-		CPU_ONLINE	:

cpumask_set_cpu(me,	cpu_callout_mask);

per_cpu(cpu_state,	me)	=	CPU_ONLINE;

So,	what	is	it		cpu_callout_mask		bitmap...	As	we	initialized	bootstrap	processor	(procesoor	which	is	booted	the	first	on		x86	)
the	other	processors	in	a	multiprocessor	system	are	known	as		secondary	processors	.	Linux	kernel	uses	two	following
bitmasks:
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	cpu_callout_mask	

	cpu_callin_mask	

After	bootstrap	processor	initialized,	it	updates	the		cpu_callout_mask		to	indicate	which	secondary	processor	can	be
initialized	next.	All	other	or	secondary	processors	can	do	some	initialization	stuff	before	and	check	the		cpu_callout_mask		on
the	boostrap	processor	bit.	Only	after	the	bootstrap	processor	filled	the		cpu_callout_mask		this	secondary	processor,	it	will
continue	the	rest	of	its	initialization.	After	that	the	certain	processor	will	finish	its	initialization	process,	the	processor	sets	bit
in	the		cpu_callin_mask	.	Once	the	bootstrap	processor	finds	the	bit	in	the		cpu_callin_mask		for	the	current	secondary
processor,	this	processor	repeats	the	same	procedure	for	initialization	of	the	rest	of	a	secondary	processors.	In	a	short
words	it	works	as	i	described,	but	more	details	we	will	see	in	the	chapter	about		SMP	.

That's	all.	We	did	all		SMP		boot	preparation.

In	the	next	step	we	can	see	the	call	of	the		build_all_zonelists		function.	This	function	sets	up	the	order	of	zones	that
allocations	are	preferred	from.	What	are	zones	and	what's	order	we	will	understand	now.	For	the	start	let's	see	how	linux
kernel	considers	physical	memory.	Physical	memory	may	be	arranged	into	banks	which	are	called	-		nodes	.	If	you	has	no
hardware	with	support	for		NUMA	,	you	will	see	only	one	node:

$	cat	/sys/devices/system/node/node0/numastat	

numa_hit	72452442

numa_miss	0

numa_foreign	0

interleave_hit	12925

local_node	72452442

other_node	0

Every		node		presented	by	the		struct	pglist	data		in	the	linux	kernel.	Each	node	devided	into	a	number	of	special	blocks
which	are	called	-		zones	.	Every	zone	presented	by	the		zone	struct		in	the	linux	kernel	and	has	one	of	the	type:

	ZONE_DMA		-	0-16M;
	ZONE_DMA32		-	used	for	32	bit	devices	that	can	only	do	DMA	areas	below	4G;
	ZONE_NORMAL		-	all	RAM	from	the	4GB	on	the		x86_64	;
	ZONE_HIGHMEM		-	absent	on	the		x86_64	;
	ZONE_MOVABLE		-	zone	which	contains	movable	pages.

which	are	presented	by	the		zone_type		enum.	Information	about	zones	we	can	get	with	the:

$	cat	/proc/zoneinfo

Node	0,	zone						DMA

		pages	free					3975

								min						3

								low						3

								...

								...

Node	0,	zone				DMA32

		pages	free					694163

								min						875

								low						1093

								...

								...

Node	0,	zone			Normal

		pages	free					2529995

								min						3146

								low						3932

								...

								...

Build	zonelists
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As	I	wrote	above	all	nodes	are	described	with	the		pglist_data		or		pg_data_t		structure	in	memory.	This	structure	defined	in
the	include/linux/mmzone.h.	The		build_all_zonelists		function	from	the	mm/page_alloc.c	constructs	an	ordered		zonelist	
(of	different	zones		DMA	,		DMA32	,		NORMAL	,		HIGH_MEMORY	,		MOVABLE	)	which	specifies	the	zones/nodes	to	visit	when	a	selected
	zone		or		node		cannot	satisfy	the	allocation	request.	That's	all.	More	about		NUMA		and	multiprocessor	systems	will	be	in	the
special	part.

Before	we	will	start	to	dive	into	linux	kernel	scheduler	initialization	process	we	must	to	do	a	couple	of	things.	The	fisrt	thing
is	the		page_alloc_init		function	from	the	mm/page_alloc.c.	This	function	looks	pretty	easy:

void	__init	page_alloc_init(void)

{

								hotcpu_notifier(page_alloc_cpu_notify,	0);

}

and	initializes	handler	for	the		CPU		hotplug.	Of	course	the		hotcpu_notifier		depends	on	the		CONFIG_HOTPLUG_CPU	
configuration	option	and	if	this	option	is	set,	it	just	calls		cpu_notifier		macro	which	expands	to	the	call	of	the
	register_cpu_notifier		which	adds	hotplug	cpu	handler	(	page_alloc_cpu_notify		in	our	case).

After	this	we	can	see	the	kernel	command	line	in	the	initialization	output:

And	a	couple	of	functions	as		parse_early_param		and		parse_args		which	are	handles	linux	kernel	command	line.	You	can
remember	that	we	already	saw	the	call	of	the		parse_early_param		function	in	the	sixth	part	of	the	kernel	initialization	chapter,
so	why	we	call	it	again?	Answer	is	simple:	we	call	this	function	in	the	architecture-specific	code	(	x86_64		in	our	case),	but
not	all	architecture	calls	this	function.	And	we	need	in	the	call	of	the	second	function		parse_args		to	parse	and	handle	non-
early	command	line	arguments.

In	the	next	step	we	can	see	the	call	of	the		jump_label_init		from	the	kernel/jump_label.c.	and	initializes	jump	label.

After	this	we	can	see	the	call	of	the		setup_log_buf		function	which	setups	the	printk	log	buffer.	We	already	saw	this	function
in	the	seventh	part	of	the	linux	kernel	initialization	process	chapter.

The	next	is		pidhash_init		function.	As	you	know	an	each	process	has	assigned	unique	number	which	called	-		process
identification	number		or		PID	.	Each	process	generated	with	fork	or	clone	is	automatically	assigned	a	new	unique		PID	
value	by	the	kernel.	The	management	of		PIDs		centered	around	the	two	special	data	structures:		struct	pid		and		struct
upid	.	First	structure	represents	information	about	a		PID		in	the	kernel.	The	second	structure	represents	the	information	that
is	visible	in	a	specific	namespace.	All		PID		instances	stored	in	the	special	hash	table:

static	struct	hlist_head	*pid_hash;

This	hash	table	is	used	to	find	the	pid	instance	that	belongs	to	a	numeric		PID		value.	So,		pidhash_init		initializes	this	hash.
In	the	start	of	the		pidhash_init		function	we	can	see	the	call	of	the		alloc_large_system_hash	:

pid_hash	=	alloc_large_system_hash("PID",	sizeof(*pid_hash),	0,	18,

																																			HASH_EARLY	|	HASH_SMALL,

																																			&pidhash_shift,	NULL,

The	rest	of	the	stuff	before	scheduler	initialization

PID	hash	initialization
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																																			0,	4096);

The	number	of	elements	of	the		pid_hash		depends	on	the		RAM		configuration,	but	it	can	be	between		2^4		and		2^12	.	The
	pidhash_init		computes	the	size	and	allocates	the	required	storage	(which	is		hlist		in	our	case	-	the	same	as	doubly
linked	list,	but	contains	one	pointer	instead	on	the	struct	hlist_head].	The		alloc_large_system_hash		function	allocates	a	large
system	hash	table	with		memblock_virt_alloc_nopanic		if	we	pass		HASH_EARLY		flag	(as	it	in	our	case)	or	with		__vmalloc		if	we
did	no	pass	this	flag.

The	result	we	can	see	in	the		dmesg		output:

$	dmesg	|	grep	hash

[				0.000000]	PID	hash	table	entries:	4096	(order:	3,	32768	bytes)

...

...

...

That's	all.	The	rest	of	the	stuff	before	scheduler	initialization	is	the	following	functions:		vfs_caches_init_early		does	early
initialization	of	the	virtual	file	system	(more	about	it	will	be	in	the	chapter	which	will	describe	virtual	file	system),
	sort_main_extable		sorts	the	kernel's	built-in	exception	table	entries	which	are	between		__start___ex_table		and
	__stop___ex_table,	,	and		trap_init		initializies	trap	handlers	(morea	about	last	two	function	we	will	know	in	the	separate
chapter	about	interrupts).

The	last	step	before	the	scheduler	initialization	is	initialization	of	the	memory	manager	with	the		mm_init		function	from	the
init/main.c.	As	we	can	see,	the		mm_init		function	initializes	different	part	of	the	linux	kernel	memory	manager:

page_ext_init_flatmem();

mem_init();

kmem_cache_init();

percpu_init_late();

pgtable_init();

vmalloc_init();

The	first	is		page_ext_init_flatmem		depends	on	the		CONFIG_SPARSEMEM		kernel	configuration	option	and	initializes	extended
data	per	page	handling.	The		mem_init		releases	all		bootmem	,	the		kmem_cache_init		initializes	kernel	cache,	the
	percpu_init_late		-	replaces		percpu		chunks	with	those	allocated	by	slub,	the		pgtable_init		-	initilizes	the		vmalloc_init		-
initializes		vmalloc	.	Please,	NOTE	that	we	will	not	dive	into	details	about	all	of	these	functions	and	concepts,	but	we	will	see
all	of	they	it	in	the	Linux	kernem	memory	manager	chapter.

That's	all.	Now	we	can	look	on	the		scheduler	.

And	now	we	came	to	the	main	purpose	of	this	part	-	initialization	of	the	task	scheduler.	I	want	to	say	again	as	I	did	it	already
many	times,	you	will	not	see	the	full	explanation	of	the	scheduler	here,	there	will	be	special	chapter	about	this.	Ok,	next
point	is	the		sched_init		function	from	the	kernel/sched/core.c	and	as	we	can	understand	from	the	function's	name,	it
initializes	scheduler.	Let's	start	to	dive	in	this	function	and	try	to	understand	how	the	scheduler	initialized.	At	the	start	of	the
	sched_init		function	we	can	see	the	following	code:

#ifdef	CONFIG_FAIR_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

#ifdef	CONFIG_RT_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

Scheduler	initialization
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First	of	all	we	can	see	two	configuration	options	here:

	CONFIG_FAIR_GROUP_SCHED	

	CONFIG_RT_GROUP_SCHED	

Both	of	this	options	provide	two	different	planning	models.	As	we	can	read	from	the	documentation,	the	current	scheduler	-
	CFS		or		Completely	Fair	Scheduler		used	a	simple	concept.	It	models	process	scheduling	as	if	the	system	had	an	ideal
multitasking	processor	where	each	process	would	receive		1/n		processor	time,	where		n		is	the	number	of	the	runnable
processes.	The	scheduler	uses	the	special	set	of	rules	used.	These	rules	determine	when	and	how	to	select	a	new	process
to	run	and	they	are	called		scheduling	policy	.	The	Completely	Fair	Scheduler	supports	following		normal		or		non-real-time	
scheduling	policies:		SCHED_NORMAL	,		SCHED_BATCH		and		SCHED_IDLE	.	The		SCHED_NORMAL		is	used	for	the	most	normal
applications,	the	amount	of	cpu	each	process	consumes	is	mostly	determined	by	the	nice	value,	the		SCHED_BATCH		used	for
the	100%	non-interactive	tasks	and	the		SCHED_IDLE		runs	tasks	only	when	the	processor	has	not	to	run	anything	besides
this	task.	The		real-time		policies	are	also	supported	for	the	time-critial	applications:		SCHED_FIFO		and		SCHED_RR	.	If	you've
read	something	about	the	Linux	kernel	scheduler,	you	can	know	that	it	is	modular.	It	means	that	it	supports	different
algorithms	to	schedule	different	types	of	processes.	Usually	this	modularity	is	called		scheduler	classes	.	These	modules
encapsulate	scheduling	policy	details	and	are	handled	by	the	scheduler	core	without	the	core	code	assuming	too	much
about	them.

Now	let's	back	to	the	our	code	and	look	on	the	two	configuration	options		CONFIG_FAIR_GROUP_SCHED		and
	CONFIG_RT_GROUP_SCHED	.	The	scheduler	operates	on	an	individual	task.	These	options	allows	to	schedule	group	tasks	(more
about	it	you	can	read	in	the	CFS	group	scheduling).	We	can	see	that	we	assign	the		alloc_size		variables	which	represent
size	based	on	amount	of	the	processors	to	allocate	for	the		sched_entity		and		cfs_rq		to	the		2	*	nr_cpu_ids	*	sizeof(void
**)		expression	with		kzalloc	:

ptr	=	(unsigned	long)kzalloc(alloc_size,	GFP_NOWAIT);

#ifdef	CONFIG_FAIR_GROUP_SCHED

								root_task_group.se	=	(struct	sched_entity	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

								root_task_group.cfs_rq	=	(struct	cfs_rq	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

#endif

The		sched_entity		is	struture	which	defined	in	the	include/linux/sched.h	and	used	by	the	scheduler	to	keep	track	of	process
accounting.	The		cfs_rq		presents	run	queue.	So,	you	can	see	that	we	allocated	space	with	size		alloc_size		for	the	run
queue	and	scheduler	entity	of	the		root_task_group	.	The		root_task_group		is	an	instance	of	the		task_group		structure	from
the	kernel/sched/sched.h	which	contains	task	group	related	information:

struct	task_group	{

				...

				...

				struct	sched_entity	**se;

				struct	cfs_rq	**cfs_rq;

				...

				...

}

The	root	task	group	is	the	task	group	which	belongs	every	task	in	system.	As	we	allocated	space	for	the	root	task	group
scheduler	entity	and	runqueue,	we	go	over	all	possible	CPUs	(	cpu_possible_mask		bitmap)	and	allocate	zeroed	memory
from	a	particular	memory	node	with	the		kzalloc_node		function	for	the		load_balance_mask			percpu		variable:

DECLARE_PER_CPU(cpumask_var_t,	load_balance_mask);
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Here		cpumask_var_t		is	the		cpumask_t		with	one	difference:		cpumask_var_t		is	allocated	only		nr_cpu_ids		bits	when	the
	cpumask_t		always	has		NR_CPUS		bits	(more	about		cpumask		you	can	read	in	the	CPU	masks	part).	As	you	can	see:

#ifdef	CONFIG_CPUMASK_OFFSTACK

				for_each_possible_cpu(i)	{

								per_cpu(load_balance_mask,	i)	=	(cpumask_var_t)kzalloc_node(

																cpumask_size(),	GFP_KERNEL,	cpu_to_node(i));

				}

#endif

this	code	depends	on	the		CONFIG_CPUMASK_OFFSTACK		configuration	option.	This	configuration	options	says	to	use	dynamic
allocation	for		cpumask	,	instead	of	putting	it	on	the	stack.	All	groups	have	to	be	able	to	rely	on	the	amount	of	CPU	time.	With
the	call	of	the	two	following	functions:

init_rt_bandwidth(&def_rt_bandwidth,

																		global_rt_period(),	global_rt_runtime());

init_dl_bandwidth(&def_dl_bandwidth,

																		global_rt_period(),	global_rt_runtime());

we	initialize	bandwidth	management	for	the		SCHED_DEADLINE		real-time	tasks.	These	functions	initializes		rt_bandwidth		and
	dl_bandwidth		structures	which	are	store	information	about	maximum		deadline		bandwith	of	the	system.	For	example,	let's
look	on	the	implementation	of	the		init_rt_bandwidth		function:

void	init_rt_bandwidth(struct	rt_bandwidth	*rt_b,	u64	period,	u64	runtime)

{

								rt_b->rt_period	=	ns_to_ktime(period);

								rt_b->rt_runtime	=	runtime;

								raw_spin_lock_init(&rt_b->rt_runtime_lock);

								hrtimer_init(&rt_b->rt_period_timer,

																					CLOCK_MONOTONIC,	HRTIMER_MODE_REL);

								rt_b->rt_period_timer.function	=	sched_rt_period_timer;

}

It	takes	three	parameters:

address	of	the		rt_bandwidth		structure	which	contains	information	about	the	allocated	and	consumed	quota	within	a
period;
	period		-	period	over	which	real-time	task	bandwidth	enforcement	is	measured	in		us	;
	runtime		-	part	of	the	period	that	we	allow	tasks	to	run	in		us	.

As		period		and		runtime		we	pass	result	of	the		global_rt_period		and		global_rt_runtime		functions.	Which	are		1s		second
and	and		0.95s		by	default.	The		rt_bandwidth		structure	defined	in	the	kernel/sched/sched.h	and	looks:

struct	rt_bandwidth	{

								raw_spinlock_t										rt_runtime_lock;

								ktime_t																	rt_period;

								u64																					rt_runtime;

								struct	hrtimer										rt_period_timer;

};

As	you	can	see,	it	contains		runtime		and		period		and	also	two	following	fields:

	rt_runtime_lock		-	spinlock	for	the		rt_time		protection;
	rt_period_timer		-	high-resolution	kernel	timer	for	unthrottled	of	real-time	tasks.
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So,	in	the		init_rt_bandwidth		we	initialize		rt_bandwidth		period	and	runtime	with	the	given	parameters,	initialize	the	spinlock
and	high-resolution	time.	In	the	next	step,	depends	on	the	enabled	SMP,	we	make	initialization	of	the	root	domain:

#ifdef	CONFIG_SMP

				init_defrootdomain();

#endif

The	real-time	scheduler	requires	global	resources	to	make	scheduling	decision.	But	unfortenatelly	scalability	bottlenecks
appear	as	the	number	of	CPUs	increase.	The	concept	of	root	domains	was	introduced	for	improving	scalability.	The	linux
kernel	provides	special	mechanism	for	assigning	a	set	of	CPUs	and	memory	nodes	to	a	set	of	task	and	it	is	called	-
	cpuset	.	If	a		cpuset		contains	non-overlapping	with	other		cpuset		CPUs,	it	is		exclusive	cpuset	.	Each	exclusive	cpuset
defines	an	isolated	domain	or		root	domain		of	CPUs	partitioned	from	other	cpusets	or	CPUs.	A		root	domain		presented	by
the		struct	root_domain		from	the	kernel/sched/sched.h	in	the	linux	kernel	and	its	main	purpose	is	to	narrow	the	scope	of	the
global	variables	to	per-domain	variables	and	all	real-time	scheduling	decisions	are	made	only	within	the	scope	of	a	root
domain.	That's	all	about	it,	but	we	will	see	more	details	about	it	in	the	chapter	about	scheduling	about	real-time	scheduler.

After		root	domain		initialization,	we	make	initialization	of	the	bandwidth	for	the	real-time	tasks	of	the	root	task	group	as	we
did	it	above:

#ifdef	CONFIG_RT_GROUP_SCHED

				init_rt_bandwidth(&root_task_group.rt_bandwidth,

												global_rt_period(),	global_rt_runtime());

#endif

In	the	next	step,	depends	on	the		CONFIG_CGROUP_SCHED		kernel	configuration	option	we	initialze	the		siblings		and		children	
lists	of	the	root	task	group.	As	we	can	read	from	the	documentation,	the		CONFIG_CGROUP_SCHED		is:

This	option	allows	you	to	create	arbitrary	task	groups	using	the	"cgroup"	pseudo

filesystem	and	control	the	cpu	bandwidth	allocated	to	each	such	task	group.

As	we	finished	with	the	lists	initialization,	we	can	see	the	call	of	the		autogroup_init		function:

#ifdef	CONFIG_CGROUP_SCHED

									list_add(&root_task_group.list,	&task_groups);

									INIT_LIST_HEAD(&root_task_group.children);

									INIT_LIST_HEAD(&root_task_group.siblings);

									autogroup_init(&init_task);

#endif

which	initializes	automatic	process	group	scheduling.

After	this	we	are	going	through	the	all		possible		cpu	(you	can	remember	that		possible		CPUs	store	in	the
	cpu_possible_mask		bitmap	of	possible	CPUs	that	can	ever	be	available	in	the	system)	and	initialize	a		runqueue		for	each
possible	cpu:

for_each_possible_cpu(i)	{

				struct	rq	*rq;

				...

				...

				...

Each	processor	has	its	own	locking	and	individual	runqueue.	All	runnalble	tasks	are	stored	in	an	active	array	and	indexed
according	to	its	priority.	When	a	process	consumes	its	time	slice,	it	is	moved	to	an	expired	array.	All	of	these	arras	are
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stored	in	the	special	structure	which	names	is		runqueu	.	As	there	are	no	global	lock	and	runqueu,	we	are	going	through	the
all	possible	CPUs	and	initialize	runqueue	for	the	every	cpu.	The		runque		is	presented	by	the		rq		structure	in	the	linux	kernel
which	defined	in	the	kernel/sched/sched.h.

rq	=	cpu_rq(i);

raw_spin_lock_init(&rq->lock);

rq->nr_running	=	0;

rq->calc_load_active	=	0;

rq->calc_load_update	=	jiffies	+	LOAD_FREQ;

init_cfs_rq(&rq->cfs);

init_rt_rq(&rq->rt);

init_dl_rq(&rq->dl);

rq->rt.rt_runtime	=	def_rt_bandwidth.rt_runtime;

Here	we	get	the	runque	for	the	every	CPU	with	the		cpu_rq		macto	which	returns		runqueues		percpu	variable	and	start	to
initialize	it	with	runqueu	lock,	number	of	running	tasks,		calc_load		relative	fields	(	calc_load_active		and		calc_load_update	)
which	are	used	in	the	reckoning	of	a	CPU	load	and	initialization	of	the	completely	fair,	real-time	and	deadline	related	fields
in	a	runqueue.	After	this	we	initialize		cpu_load		array	with	zeros	and	set	the	last	load	update	tick	to	the		jiffies		variable
which	determines	the	number	of	time	ticks	(cycles),	since	the	system	boot:

for	(j	=	0;	j	<	CPU_LOAD_IDX_MAX;	j++)

				rq->cpu_load[j]	=	0;

rq->last_load_update_tick	=	jiffies;

where		cpu_load		keeps	history	of	runqueue	loads	in	the	past,	for	now		CPU_LOAD_IDX_MAX		is	5.	In	the	next	step	we	fill
	runqueue		fields	which	are	related	to	the	SMP,	but	we	will	not	cover	they	in	this	part.	And	in	the	end	of	the	loop	we	initialize
high-resolution	timer	for	the	give		runqueue		and	set	the		iowait		(more	about	it	in	the	separate	part	about	scheduler)	number:

init_rq_hrtick(rq);

atomic_set(&rq->nr_iowait,	0);

Now	we	came	out	from	the		for_each_possible_cpu		loop	and	the	next	we	need	to	set	load	weight	for	the		init		task	with	the
	set_load_weight		function.	Weight	of	process	is	calculated	through	its	dynamic	priority	which	is	static	priority	+	scheduling
class	of	the	process.	After	this	we	increase	memory	usage	counter	of	the	memory	descriptor	of	the		init		process	and	set
scheduler	class	for	the	current	process:

atomic_inc(&init_mm.mm_count);

current->sched_class	=	&fair_sched_class;

And	make	current	process	(it	will	be	the	first		init		process)		idle		and	update	the	value	of	the		calc_load_update		with	the	5
seconds	interval:

init_idle(current,	smp_processor_id());

calc_load_update	=	jiffies	+	LOAD_FREQ;

So,	the		init		process	will	be	run,	when	there	will	be	no	other	candidates	(as	it	is	the	first	process	in	the	system).	In	the	end
we	just	set		scheduler_running		variable:

scheduler_running	=	1;

Linux	Inside

141Scheduler	initialization

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://en.wikipedia.org/wiki/Symmetric_multiprocessing


That's	all.	Linux	kernel	scheduler	is	initialized.	Of	course,	we	missed	many	different	details	and	explanations	here,	because
we	need	to	know	and	understand	how	different	concepts	(like	process	and	process	groups,	runqueue,	rcu	and	etc...)	works
in	the	linux	kernel	,	but	we	took	a	short	look	on	the	scheduler	initialization	process.	All	other	details	we	will	look	in	the
separate	part	which	will	be	fully	dedicated	to	the	scheduler.

It	is	the	end	of	the	eighth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we	looked	on	the	initialization	process
of	the	scheduler	and	we	will	continue	in	the	next	part	to	dive	in	the	linux	kernel	initialization	process	and	will	see
initialization	of	the	RCU	and	many	more.

and	other	initialization	stuff	in	the	next	part.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

CPU	masks
high-resolution	kernel	timer
spinlock
Run	queue
Linux	kernem	memory	manager
slub
virtual	file	system
Linux	kernel	hotplug	documentation
IRQ
Global	Descriptor	Table
Per-CPU	variables
SMP
RCU
CFS	Scheduler	documentation
Real-Time	group	scheduling
Previous	part
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This	is	ninth	part	of	the	Linux	Kernel	initialization	process	and	in	the	previous	part	we	stopped	at	the	scheduler	initialization.
In	this	part	we	will	continue	to	dive	to	the	linux	kernel	initialization	process	and	the	main	purpose	of	this	part	will	be	to	learn
about	initialization	of	the	RCU.	We	can	see	that	the	next	step	in	the	init/main.c	after	the		sched_init		is	the	call	of	the
	preempt_disablepreempt_disable	.	There	are	two	macros:

	preempt_disable	

	preempt_enable	

for	preemption	disabling	and	enabling.	First	of	all	let's	try	to	understand	what	is	it		preempt		in	the	context	of	an	operating
system	kernel.	In	a	simple	words,	preemption	is	ability	of	the	operating	system	kernel	to	preempt	current	task	to	run	task
with	higher	priority.	Here	we	need	to	disable	preemption	because	we	will	have	only	one		init		process	for	the	early	boot
time	and	we	no	need	to	stop	it	before	we	will	call		cpu_idle		function.	The		preempt_disable		macro	defined	in	the
include/linux/preempt.h	and	depends	on	the		CONFIG_PREEMPT_COUNT		kernel	configuration	option.	This	maco	implemeted	as:

#define	preempt_disable()	\

do	{	\

								preempt_count_inc();	\

								barrier();	\

}	while	(0)

and	if		CONFIG_PREEMPT_COUNT		is	not	set	just:

#define	preempt_disable()																							barrier()

Let's	look	on	it.	First	of	all	we	can	see	one	difference	between	these	macro	implementations.	The		preempt_disable		with
	CONFIG_PREEMPT_COUNT		contains	the	call	of	the		preempt_count_inc	.	There	is	special		percpu		variable	which	stores	the	number
of	held	locks	and		preempt_disable		calls:

DECLARE_PER_CPU(int,	__preempt_count);

In	the	first	implementation	of	the		preempt_disable		we	increment	this		__preempt_count	.	There	is	API	for	returning	value	of
the		__preempt_count	,	it	is	the		preempt_count		function.	As	we	called		preempt_disable	,	first	of	all	we	increment	preemption
counter	with	the		preempt_count_inc		macro	which	expands	to	the:

#define	preempt_count_inc()	preempt_count_add(1)

#define	preempt_count_add(val)		__preempt_count_add(val)

where		preempt_count_add		calls	the		raw_cpu_add_4		macro	which	adds		1		to	the	given		percpu		variable	(	__preempt_count	)	in
our	case	(more	about		precpu		variables	you	can	read	in	the	part	about	Per-CPU	variables).	Ok,	we	increased
	__preempt_count		and	th	next	step	we	can	see	the	call	of	the		barrier		macro	in	the	both	macros.	The		barrier		macro	inserts
an	optimization	barrier.	In	the	processors	with		x86_64		architecture	independent	memory	access	operations	can	be
performed	in	any	order.	That's	why	we	need	in	the	oportunity	to	point	compiler	and	processor	on	compliance	of	order.	This
mechanism	is	memory	barrier.	Let's	consider	simple	example:

Kernel	initialization.	Part	9.
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preempt_disable();

foo();

preempt_enable();

Compiler	can	rearrange	it	as:

preempt_disable();

preempt_enable();

foo();

In	this	case	non-preemptible	function		foo		can	be	preempted.	As	we	put		barrier		macro	in	the		preempt_disable		and
	preempt_enable		macros,	it	prevents	the	compiler	from	swapping		preempt_count_inc		with	other	statements.	More	about
barriers	you	can	read	here	and	here.

In	the	next	step	we	can	see	following	statement:

if	(WARN(!irqs_disabled(),

					"Interrupts	were	enabled	*very*	early,	fixing	it\n"))

				local_irq_disable();

which	check	IRQs	state,	and	disabling	(with		cli		instruction	for		x86_64	)	if	they	are	enabled.

That's	all.	Preemption	is	disabled	and	we	can	go	ahead.

In	the	next	step	we	can	see	the	call	of	the		idr_init_cache		function	which	defined	in	the	lib/idr.c.	The		idr		library	used	in	a
various	places	in	the	linux	kernel	to	manage	assigning	integer		IDs		to	objects	and	looking	up	objects	by	id.

Let's	look	on	the	implementation	of	the		idr_init_cache		function:

void	__init	idr_init_cache(void)

{

								idr_layer_cache	=	kmem_cache_create("idr_layer_cache",

																																sizeof(struct	idr_layer),	0,	SLAB_PANIC,	NULL);

}

Here	we	can	see	the	call	of	the		kmem_cache_create	.	We	already	called	the		kmem_cache_init		in	the	init/main.c.	This	function
create	generalized	caches	again	using	the		kmem_cache_alloc		(more	about	caches	we	will	see	in	the	Linux	kernel	memory
management	chapter).	In	our	case,	as	we	are	using		kmem_cache_t		it	will	be	used	the	slab	allocator	and		kmem_cache_create	
creates	it.	As	you	can	seee	we	pass	five	parameters	to	the		kmem_cache_create	:

name	of	the	cache;
size	of	the	object	to	store	in	cache;
offset	of	the	first	object	in	the	page;
flags;
constructor	for	the	objects.

and	it	will	create		kmem_cache		for	the	integer	IDs.	Integer		IDs		is	commonly	used	pattern	for	the	to	map	set	of	integer	IDs	to
the	set	of	pointers.	We	can	see	usage	of	the	integer	IDs	for	example	in	the	i2c	drivers	subsystem.	For	example
drivers/i2c/i2c-core.c	which	presentes	the	core	of	the		i2c		subsystem	defines		ID		for	the		i2c		adapter	with	the		DEFINE_IDR	
macro:

Initialization	of	the	integer	ID	management
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static	DEFINE_IDR(i2c_adapter_idr);

and	than	it	uses	it	for	the	declaration	of	the		i2c		adapter:

static	int	__i2c_add_numbered_adapter(struct	i2c_adapter	*adap)

{

		int					id;

		...

		...

		...

		id	=	idr_alloc(&i2c_adapter_idr,	adap,	adap->nr,	adap->nr	+	1,	GFP_KERNEL);

		...

		...

		...

}

and		id2_adapter_idr		presents	dynamically	calculated	bus	number.

More	about	integer	ID	management	you	can	read	here.

The	next	step	is	RCU	initialization	with	the		rcu_init		function	and	it's	implementation	depends	on	two	kernel	configuration
options:

	CONFIG_TINY_RCU	

	CONFIG_TREE_RCU	

In	the	first	case		rcu_init		will	be	in	the	kernel/rcu/tiny.c	and	in	the	second	case	it	will	be	defined	in	the	kernel/rcu/tree.c.	We
will	see	the	implementation	of	the		tree	rcu	,	but	first	of	all	about	the		RCU		in	general.

	RCU		or	read-copy	update	is	a	scalable	high-performance	synchronization	mechanism	implemented	in	the	Linux	kernel.	On
the	early	stage	the	linux	kernel	provided	support	and	environment	for	the	concurently	running	applications,	but	all	execution
was	serialized	in	the	kernel	using	a	single	global	lock.	In	our	days	linux	kernel	has	no	single	global	lock,	but	provides
different	mechanisms	including	lock-free	data	structures,	percpu	data	structures	and	other.	One	of	these	mechanisms	is	-
the		read-copy	update	.	The		RCU		technique	designed	for	rarely-modified	data	structures.	The	idea	of	the		RCU		is	simple.	For
example	we	have	a	rarely-modified	data	structure.	If	somebody	wants	to	change	this	data	structure,	we	make	a	copy	of	this
data	structure	and	make	all	changes	in	the	copy.	In	the	same	time	all	other	users	of	the	data	structure	use	old	version	of	it.
Next,	we	need	to	choose	safe	moment	when	original	version	of	the	data	structure	will	have	no	users	and	update	it	with	the
modified	copy.

Of	course	this	description	of	the		RCU		is	very	simplified.	To	understand	some	details	about		RCU	,	first	of	all	we	need	to	learn
some	terminology.	Data	readers	in	the		RCU		executed	in	the	critical	section.	Everytime	when	data	reader	joins	to	the	critical
section,	it	calls	the		rcu_read_lock	,	and		rcu_read_unlock		on	exit	from	the	critical	section.	If	the	thread	is	not	in	the	critical
section,	it	will	be	in	state	which	called	-		quiescent	state	.	Every	moment	when	every	thread	was	in	the		quiescent	state	
called	-		grace	period	.	If	a	thread	wants	to	remove	element	from	the	data	structure,	this	occurs	in	two	steps.	First	steps	is
	removal		-	atomically	removes	element	from	the	data	structure,	but	does	not	release	the	physical	memory.	After	this	thread-
writer	announces	and	waits	while	it	will	be	finsihed.	From	this	moment,	the	removed	element	is	available	to	the	thread-
readers.	After	the		grace	perioud		will	be	finished,	the	second	step	of	the	element	removal	will	be	started,	it	just	removes
element	from	the	physical	memory.

There	a	couple	implementations	of	the		RCU	.	Old		RCU		called	classic,	the	new	implemetation	called		tree		RCU.	As	you
already	can	undrestand,	the		CONFIG_TREE_RCU		kernel	configuration	option	enables	tree		RCU	.	Another	is	the		tiny		RCU
which	depends	on		CONFIG_TINY_RCU		and		CONFIG_SMP=n	.	We	will	see	more	details	about	the		RCU		in	general	in	the	separate
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chapter	about	synchronization	primitives,	but	now	let's	look	on	the		rcu_init		implementation	from	the	kernel/rcu/tree.c:

void	__init	rcu_init(void)

{

									int	cpu;

									rcu_bootup_announce();

									rcu_init_geometry();

									rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

									rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

									__rcu_init_preempt();

									open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

									/*

										*	We	don't	need	protection	against	CPU-hotplug	here	because

										*	this	is	called	early	in	boot,	before	either	interrupts

										*	or	the	scheduler	are	operational.

										*/

									cpu_notifier(rcu_cpu_notify,	0);

									pm_notifier(rcu_pm_notify,	0);

									for_each_online_cpu(cpu)

																	rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

									rcu_early_boot_tests();

}

In	the	beginning	of	the		rcu_init		function	we	define		cpu		variable	and	call		rcu_bootup_announce	.	The		rcu_bootup_announce	
function	is	pretty	simple:

static	void	__init	rcu_bootup_announce(void)

{

								pr_info("Hierarchical	RCU	implementation.\n");

								rcu_bootup_announce_oddness();

}

It	just	prints	information	about	the		RCU		with	the		pr_info		function	and		rcu_bootup_announce_oddness		which	uses		pr_info	
too,	for	printing	different	information	about	the	current		RCU		configuration	which	depends	on	different	kernel	configuration
options	like		CONFIG_RCU_TRACE	,		CONFIG_PROVE_RCU	,		CONFIG_RCU_FANOUT_EXACT		and	etc...	In	the	next	step,	we	can	see	the	call	of
the		rcu_init_geometry		function.	This	function	defined	in	the	same	source	code	file	and	computes	the	node	tree	geometry
depends	on	amount	of	CPUs.	Actually		RCU		provides	scalability	with	extremely	low	internal	to	RCU	lock	contention.	What	if
a	data	structure	will	be	read	from	the	different	CPUs?		RCU		API	provides	the		rcu_state		structure	wihch	presents	RCU
global	state	including	node	hierarchy.	Hierachy	presented	by	the:

struct	rcu_node	node[NUM_RCU_NODES];

array	of	structures.	As	we	can	read	in	the	comment	which	is	above	definition	of	this	structure:

The	root	(first	level)	of	the	hierarchy	is	in	->node[0]	(referenced	by	->level[0]),	the	second

level	in	->node[1]	through	->node[m]	(->node[1]	referenced	by	->level[1]),	and	the	third	level

in	->node[m+1]	and	following	(->node[m+1]	referenced	by	->level[2]).		The	number	of	levels	is

determined	by	the	number	of	CPUs	and	by	CONFIG_RCU_FANOUT.

Small	systems	will	have	a	"hierarchy"	consisting	of	a	single	rcu_node.

The		rcu_node		structure	defined	in	the	kernel/rcu/tree.h	and	contains	information	about	current	grace	period,	is	grace	period
completed	or	not,	CPUs	or	groups	that	need	to	switch	in	order	for	current	grace	period	to	proceed	and	etc...	Every
	rcu_node		contains	a	lock	for	a	couple	of	CPUs.	These		rcu_node		structures	embedded	into	a	linear	array	in	the		rcu_state	
structure	and	represeted	as	a	tree	with	the	root	in	the	zero	element	and	it	covers	all	CPUs.	As	you	can	see	the	number	of
the	rcu	nodes	determined	by	the		NUM_RCU_NODES		which	depends	on	number	of	available	CPUs:
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#define	NUM_RCU_NODES	(RCU_SUM	-	NR_CPUS)

#define	RCU_SUM	(NUM_RCU_LVL_0	+	NUM_RCU_LVL_1	+	NUM_RCU_LVL_2	+	NUM_RCU_LVL_3	+	NUM_RCU_LVL_4)

where	levels	values	depend	on	the		CONFIG_RCU_FANOUT_LEAF		configuration	option.	For	example	for	the	simplest	case,	one
	rcu_node		will	cover	two	CPU	on	machine	with	the	eight	CPUs:

+-----------------------------------------------------------------+

|		rcu_state																																																						|

|																	+----------------------+																								|

|																	|									root									|																								|

|																	|							rcu_node							|																								|

|																	+----------------------+																								|

|																				|																|																											|

|															+----v-----+							+--v-------+																			|

|															|										|							|										|																			|

|															|	rcu_node	|							|	rcu_node	|																			|

|															|										|							|										|																			|

|									+------------------+					+----------------+													|

|									|																		|								|													|													|

|									|																		|								|													|													|

|				+----v-----+				+-------v--+			+-v--------+		+-v--------+				|

|				|										|				|										|			|										|		|										|				|

|				|	rcu_node	|				|	rcu_node	|			|	rcu_node	|		|	rcu_node	|				|

|				|										|				|										|			|										|		|										|				|

|				+----------+				+----------+			+----------+		+----------+				|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

+---------|-----------------|-------------|---------------|-------+

										|																	|													|															|

+---------v-----------------v-------------v---------------v--------+

|																	|																|															|															|

|					CPU1								|						CPU3						|						CPU5					|					CPU7						|

|																	|																|															|															|

|					CPU2								|						CPU4						|						CPU6					|					CPU8						|

|																	|																|															|															|

+------------------------------------------------------------------+

So,	in	the		rcu_init_geometry		function	we	just	need	to	calculate	the	total	number	of		rcu_node		structures.	We	start	to	do	it
with	the	calculation	of	the		jiffies		till	to	the	first	and	next		fqs		which	is		force-quiescent-state		(read	above	about	it):

d	=	RCU_JIFFIES_TILL_FORCE_QS	+	nr_cpu_ids	/	RCU_JIFFIES_FQS_DIV;

if	(jiffies_till_first_fqs	==	ULONG_MAX)

								jiffies_till_first_fqs	=	d;

if	(jiffies_till_next_fqs	==	ULONG_MAX)

								jiffies_till_next_fqs	=	d;

where:

#define	RCU_JIFFIES_TILL_FORCE_QS	(1	+	(HZ	>	250)	+	(HZ	>	500))

#define	RCU_JIFFIES_FQS_DIV					256

As	we	calculated	these	jiffies,	we	check	that	previous	defined		jiffies_till_first_fqs		and		jiffies_till_next_fqs		variables
are	equal	to	the	ULONG_MAX	(their	default	values)	and	set	they	equal	to	the	calculated	value.	As	we	did	not	touch	these
variables	before,	they	are	equal	to	the		ULONG_MAX	:

static	ulong	jiffies_till_first_fqs	=	ULONG_MAX;

static	ulong	jiffies_till_next_fqs	=	ULONG_MAX;

Linux	Inside

147RCU	initialization

http://en.wikipedia.org/wiki/Jiffy_%28time%29
http://www.rowleydownload.co.uk/avr/documentation/index.htm?http://www.rowleydownload.co.uk/avr/documentation/ULONG_MAX.htm


In	the	next	step	of	the		rcu_init_geometry	,	we	check	that		rcu_fanout_leaf		didn't	chage	(it	has	the	same	value	as
	CONFIG_RCU_FANOUT_LEAF		in	compile-time)	and	equal	to	the	value	of	the		CONFIG_RCU_FANOUT_LEAF		configuration	option,	we	just
return:

if	(rcu_fanout_leaf	==	CONFIG_RCU_FANOUT_LEAF	&&

				nr_cpu_ids	==	NR_CPUS)

				return;

After	this	we	need	to	compute	the	number	of	nodes	that	can	be	handled	an		rcu_node		tree	with	the	given	number	of	levels:

rcu_capacity[0]	=	1;

rcu_capacity[1]	=	rcu_fanout_leaf;

for	(i	=	2;	i	<=	MAX_RCU_LVLS;	i++)

				rcu_capacity[i]	=	rcu_capacity[i	-	1]	*	CONFIG_RCU_FANOUT;

And	in	the	last	step	we	calcluate	the	number	of	rcu_nodes	at	each	level	of	the	tree	in	the	loop.

As	we	calculated	geometry	of	the		rcu_node		tree,	we	need	to	back	to	the		rcu_init		function	and	next	step	we	need	to
initialize	two		rcu_state		structures	with	the		rcu_init_one		function:

rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

The		rcu_init_one		function	takes	two	arguments:

Global		RCU		state;
Per-CPU	data	for		RCU	.

Both	variables	defined	in	the	kernel/rcu/tree.h	with	its		percpu		data:

extern	struct	rcu_state	rcu_bh_state;

DECLARE_PER_CPU(struct	rcu_data,	rcu_bh_data);

About	this	states	you	can	read	here.	As	I	wrote	above	we	need	to	initialize		rcu_state		structures	and		rcu_init_one		function
will	help	us	with	it.	After	the		rcu_state		initialization,	we	can	see	the	call	of	the		__rcu_init_preempt		which	depends	on	the
	CONFIG_PREEMPT_RCU		kernel	configuration	option.	It	does	the	same	that	previous	functions	-	initialization	of	the
	rcu_preempt_state		structure	with	the		rcu_init_one		function	which	has		rcu_state		type.	After	this,	in	the		rcu_init	,	we	can
see	the	call	of	the:

open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

function.	This	function	registers	a	handler	of	the		pending	interrupt	.	Pending	interrupt	or		softirq		supposes	that	part	of
actions	cab	be	delayed	for	later	execution	when	the	system	will	be	less	loaded.	Pending	interrupts	represeted	by	the
following	structure:

struct	softirq_action

{

								void				(*action)(struct	softirq_action	*);

};
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which	defined	in	the	include/linux/interrupt.h	and	contains	only	one	field	-	handler	of	an	interrupt.	You	can	know	about
	softirqs		in	the	your	system	with	the:

$	cat	/proc/softirqs

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7

										HI:										2										0										0										1										0										2										0										0

							TIMER:					137779					108110					139573					107647					107408					114972						99653						98665

						NET_TX:							1127										0										4										0										1										1										0										0

						NET_RX:								334								221					132939							3076								451								361								292								303

							BLOCK:							5253							5596										8								779							2016						37442									28							2855

BLOCK_IOPOLL:										0										0										0										0										0										0										0										0

					TASKLET:									66										0							2916								113										0									24						26708										0

							SCHED:					102350						75950						91705						75356						75323						82627						69279						69914

					HRTIMER:								510								302								368								260								219								255								248								246

									RCU:						81290						68062						82979						69015						68390						69385						63304						63473

The		open_softirq		function	takes	two	parameters:

index	of	the	interrupt;
interrupt	handler.

and	adds	interrupt	handler	to	the	array	of	the	pending	interrupts:

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

								softirq_vec[nr].action	=	action;

}

In	our	case	the	interrupt	handler	is	-		rcu_process_callbacks		which	defined	in	the	kernel/rcu/tree.c	and	does	the		RCU		core
processing	for	the	current	CPU.	After	we	registered		softirq		interrupt	for	the		RCU	,	we	can	see	the	following	code:

cpu_notifier(rcu_cpu_notify,	0);

pm_notifier(rcu_pm_notify,	0);

for_each_online_cpu(cpu)

				rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

Here	we	can	see	registration	of	the		cpu		notifier	which	needs	in	sysmtems	which	supports	CPU	hotplug	and	we	will	not	dive
into	details	about	this	theme.	The	last	function	in	the		rcu_init		is	the		rcu_early_boot_tests	:

void	rcu_early_boot_tests(void)

{

								pr_info("Running	RCU	self	tests\n");

								if	(rcu_self_test)

																	early_boot_test_call_rcu();

									if	(rcu_self_test_bh)

																	early_boot_test_call_rcu_bh();

									if	(rcu_self_test_sched)

																early_boot_test_call_rcu_sched();

}

which	runs	self	tests	for	the		RCU	.

That's	all.	We	saw	initialization	process	of	the		RCU		subsystem.	As	I	wrote	above,	more	about	the		RCU		will	be	in	the
separate	chapter	about	synchronization	primitives.

Rest	of	the	initialization	process
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Ok,	we	already	passed	the	main	theme	of	this	part	which	is		RCU		initialization,	but	it	is	not	the	end	of	the	linux	kernel
initialization	process.	In	the	last	paragraph	of	this	theme	we	will	see	a	couple	of	functions	which	work	in	the	initialization
time,	but	we	will	not	dive	into	deep	details	around	this	function	by	different	reasons.	Some	reasons	not	to	dive	into	details
are	following:

They	are	not	very	important	for	the	generic	kernel	initialization	process	and	can	depend	on	the	different	kernel
configuration;
They	have	the	character	of	debugging	and	not	important	too	for	now;
We	will	see	many	of	this	stuff	in	the	separate	parts/chapters.

After	we	initilized		RCU	,	the	next	step	which	you	can	see	in	the	init/main.c	is	the	-		trace_init		function.	As	you	can
understand	from	its	name,	this	function	initialize	tracing	subsystem.	More	about	linux	kernel	trace	system	you	can	read	-
here.

After	the		trace_init	,	we	can	see	the	call	of	the		radix_tree_init	.	If	you	are	familar	with	the	different	data	structures,	you
can	understand	from	the	name	of	this	function	that	it	initializes	kernel	implementation	of	the	Radix	tree.	This	function
defined	in	the	lib/radix-tree.c	and	more	about	it	you	can	read	in	the	part	about	Radix	tree.

In	the	next	step	we	can	see	the	functions	which	are	related	to	the		interrupts	handling		subsystem,	they	are:

	early_irq_init	

	init_IRQ	

	softirq_init	

We	will	see	explanation	about	this	functions	and	their	implementation	in	the	special	part	about	interrupts	and	exceptions
handling.	After	this	many	different	functions	(like		init_timers	,		hrtimers_init	,		time_init		and	etc...)	which	are	related	to
different	timing	and	timers	stuff.	More	about	these	function	we	will	see	in	the	chapter	about	timers.

The	next	couple	of	functions	related	with	the	perf	events	-		perf_event-init		(will	be	separate	chapter	about	perf),
initialization	of	the		profiling		with	the		profile_init	.	After	this	we	enable		irq		with	the	call	of	the:

local_irq_enable();

which	expands	to	the		sti		instruction	and	making	post	initialization	of	the	SLAB	with	the	call	of	the		kmem_cache_init_late	
function	(As	I	wrote	above	we	will	know	about	the		SLAB		in	the	Linux	memory	management	chapter).

After	the	post	initialization	of	the		SLAB	,	next	point	is	initialization	of	the	console	with	the		console_init		function	from	the
drivers/tty/tty_io.c.

After	the	console	initialization,	we	can	see	the		lockdep_info		function	which	prints	information	about	the	Lock	dependency
validator.	After	this,	we	can	see	the	initialization	of	the	dynamic	allocation	of	the		debug	objects		with	the
	debug_objects_mem_init	,	kernel	memory	leack	detector	initialization	with	the		kmemleak_init	,		percpu		pageset	setup	with	the
	setup_per_cpu_pageset	,	setup	of	the	NUMA	policy	with	the		numa_policy_init	,	setting	time	for	the	scheduler	with	the
	sched_clock_init	,		pidmap		initialization	with	the	call	of	the		pidmap_init		function	for	the	initial		PID		namespace,	cache
creation	with	the		anon_vma_init		for	the	private	virtual	memory	areas	and	early	initialization	of	the	ACPI	with	the
	acpi_early_init	.

This	is	the	end	of	the	ninth	part	of	the	linux	kernel	initialization	process	and	here	we	saw	initialization	of	the	RCU.	In	the	last
paragraph	of	this	part	(	Rest	of	the	initialization	process	)	we	went	thorugh	the	many	functions	but	did	not	dive	into
details	about	their	implementations.	Do	not	worry	if	you	do	not	know	anything	about	these	stuff	or	you	know	and	do	not
understand	anything	about	this.	As	I	wrote	already	many	times,	we	will	see	details	of	implementations,	but	in	the	other	parts
or	other	chapters.
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It	is	the	end	of	the	ninth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we	looked	on	the	initialization	process
of	the		RCU		subsystem.	In	the	next	part	we	will	continue	to	dive	into	linux	kernel	initialization	process	and	I	hope	that	we	will
finish	with	the		start_kernel		function	and	will	go	to	the		rest_init		function	from	the	same	init/main.c	source	code	file	and
will	see	that	start	of	the	first	process.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

lock-free	data	structures
kmemleak
ACPI
IRQs
RCU
RCU	documentation
integer	ID	management
Documentation/memory-barriers.txt
Runtime	locking	correctness	validator
Per-CPU	variables
Linux	kernel	memory	management
slab
i2c
Previous	part

Conclusion

Links

Linux	Inside

151RCU	initialization

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals
http://en.wikipedia.org/wiki/Concurrent_data_structure
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/tree/master/Documentation/RCU
https://lwn.net/Articles/103209/
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-8.html


This	is	tenth	part	of	the	chapter	about	linux	kernel	initialization	process	and	in	the	previous	part	we	saw	the	initialization	of
the	RCU	and	stopped	on	the	call	of	the		acpi_early_init		function.	This	part	will	be	the	last	part	of	the	Kernel	initialization
process	chapter,	so	let's	finish	with	it.

After	the	call	of	the		acpi_early_init		function	from	the	init/main.c,	we	can	see	the	following	code:

#ifdef	CONFIG_X86_ESPFIX64

				init_espfix_bsp();

#endif

Here	we	can	see	the	call	of	the		init_espfix_bsp		function	which	depends	on	the		CONFIG_X86_ESPFIX64		kernel	configuration
option.	As	we	can	understand	from	the	function	name,	it	does	something	with	the	stack.	This	function	defined	in	the
arch/x86/kernel/espfix_64.c	and	prevents	leaking	of		31:16		bits	of	the		esp		register	during	returning	to	16-bit	stack.	First	of
all	we	install		espfix		page	upper	directory	into	the	kernel	page	directory	in	the		init_espfix_bs	:

pgd_p	=	&init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)];

pgd_populate(&init_mm,	pgd_p,	(pud_t	*)espfix_pud_page);

Where		ESPFIX_BASE_ADDR		is:

#define	PGDIR_SHIFT					39

#define	ESPFIX_PGD_ENTRY	_AC(-2,	UL)

#define	ESPFIX_BASE_ADDR	(ESPFIX_PGD_ENTRY	<<	PGDIR_SHIFT)

Also	we	can	find	it	in	the	Documentation/arch/x86_64/mm:

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

After	we've	filled	page	global	directory	with	the		espfix		pud,	the	next	step	is	call	of	the		init_espfix_random		and
	init_espfix_ap		functions.	The	first	function	returns	random	locations	for	the		espfix		page	and	the	second	enables	the
	espfix		the	current	CPU.	After	the		init_espfix_bsp		finished	to	work,	we	can	see	the	call	of	the		thread_info_cache_init	
function	which	defined	in	the	kernel/fork.c	and	allocates	cache	for	the		thread_info		if	its	size	is	less	than		PAGE_SIZE	:

#	if	THREAD_SIZE	>=	PAGE_SIZE

...

...

...

void	thread_info_cache_init(void)

{

								thread_info_cache	=	kmem_cache_create("thread_info",	THREAD_SIZE,

																																														THREAD_SIZE,	0,	NULL);

								BUG_ON(thread_info_cache	==	NULL);

}

...

...

Kernel	initialization.	Part	10.

End	of	the	linux	kernel	initialization	process
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...

#endif

As	we	already	know	the		PAGE_SIZE		is		(_AC(1,UL)	<<	PAGE_SHIFT)		or		4096		bytes	and		THREAD_SIZE		is		(PAGE_SIZE	<<
THREAD_SIZE_ORDER)		or		16384		bytes	for	the		x86_64	.	The	next	function	after	the		thread_info_cache_init		is	the		cred_init	
from	the	kernel/cred.c.	This	function	just	allocates	space	for	the	credentials	(like		uid	,		gid		and	etc...):

void	__init	cred_init(void)

{

									cred_jar	=	kmem_cache_create("cred_jar",	sizeof(struct	cred),

																																					0,	SLAB_HWCACHE_ALIGN|SLAB_PANIC,	NULL);

}

more	about	credentials	you	can	read	in	the	Documentation/security/credentials.txt.	Next	step	is	the		fork_init		function	from
the	kernel/fork.c.	The		fork_init		function	allocates	space	for	the		task_struct	.	Let's	look	on	the	implementation	of	the
	fork_init	.	First	of	all	we	can	see	definitions	of	the		ARCH_MIN_TASKALIGN		macro	and	creation	of	a	slab	where	task_structs	will
be	allocated:

#ifndef	CONFIG_ARCH_TASK_STRUCT_ALLOCATOR

#ifndef	ARCH_MIN_TASKALIGN

#define	ARCH_MIN_TASKALIGN						L1_CACHE_BYTES

#endif

								task_struct_cachep	=

																kmem_cache_create("task_struct",	sizeof(struct	task_struct),

																								ARCH_MIN_TASKALIGN,	SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

#endif

As	we	can	see	this	code	depends	on	the		CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR		kernel	configuration	option.	This	configuration
option	shows	the	presence	of	the		alloc_task_struct		for	the	given	architecture.	As		x86_64		has	no		alloc_task_struct	
function,	this	code	will	not	work	and	even	will	not	be	compiled	on	the		x86_64	.

After	this	we	can	see	the	call	of	the		arch_task_cache_init		function	in	the		fork_init	:

void	arch_task_cache_init(void)

{

								task_xstate_cachep	=

																kmem_cache_create("task_xstate",	xstate_size,

																																		__alignof__(union	thread_xstate),

																																		SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

								setup_xstate_comp();

}

The		arch_task_cache_init		does	initialization	of	the	architecture-specific	caches.	In	our	case	it	is		x86_64	,	so	as	we	can	see,
the		arch_task_cache_init		allocates	space	for	the		task_xstate		which	represents	FPU	state	and	sets	up	offsets	and	sizes	of
all	extended	states	in	xsave	area	with	the	call	of	the		setup_xstate_comp		function.	After	the		arch_task_cache_init		we
calculate	default	maximum	number	of	threads	with	the:

set_max_threads(MAX_THREADS);

where	default	maximum	number	of	threads	is:

Allocating	cache	for	init	task
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#define	FUTEX_TID_MASK		0x3fffffff

#define	MAX_THREADS					FUTEX_TID_MASK

In	the	end	of	the		fork_init		function	we	initalize	signal	handler:

init_task.signal->rlim[RLIMIT_NPROC].rlim_cur	=	max_threads/2;

init_task.signal->rlim[RLIMIT_NPROC].rlim_max	=	max_threads/2;

init_task.signal->rlim[RLIMIT_SIGPENDING]	=

								init_task.signal->rlim[RLIMIT_NPROC];

As	we	know	the		init_task		is	an	instance	of	the		task_struct		structure,	so	it	contains		signal		field	which	represents	signal
handler.	It	has	following	type		struct	signal_struct	.	On	the	first	two	lines	we	can	see	setting	of	the	current	and	maximum
limit	of	the		resource	limits	.	Every	process	has	an	associated	set	of	resource	limits.	These	limits	specify	amount	of
resources	which	current	process	can	use.	Here		rlim		is	resource	control	limit	and	presented	by	the:

struct	rlimit	{

								__kernel_ulong_t								rlim_cur;

								__kernel_ulong_t								rlim_max;

};

structure	from	the	include/uapi/linux/resource.h.	In	our	case	the	resource	is	the		RLIMIT_NPROC		which	is	the	maximum
number	of	process	that	use	can	own	and		RLIMIT_SIGPENDING		-	the	maximum	number	of	pending	signals.	We	can	see	it	in
the:

cat	/proc/self/limits

Limit																					Soft	Limit											Hard	Limit											Units					

...

...

...

Max	processes													63815																63815																processes	

Max	pending	signals							63815																63815																signals			

...

...

...

The	next	function	after	the		fork_init		is	the		proc_caches_init		from	the	kernel/fork.c.	This	function	allocates	caches	for	the
memory	descriptors	(or		mm_struct		structure).	At	the	beginning	of	the		proc_caches_init		we	can	see	allocation	of	the
different	SLAB	caches	with	the	call	of	the		kmem_cache_create	:

	sighand_cachep		-	manage	information	about	installed	signal	handlers;
	signal_cachep		-	manage	information	about	process	signal	descriptor;
	files_cachep		-	manage	information	about	opened	files;
	fs_cachep		-	manage	filesystem	information.

After	this	we	allocate		SLAB		cache	for	the		mm_struct		structures:

mm_cachep	=	kmem_cache_create("mm_struct",

																									sizeof(struct	mm_struct),	ARCH_MIN_MMSTRUCT_ALIGN,

																									SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK,	NULL);

After	this	we	allocate		SLAB		cache	for	the	important		vm_area_struct		which	used	by	the	kernel	to	manage	virtual	memory

Initialization	of	the	caches
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space:

vm_area_cachep	=	KMEM_CACHE(vm_area_struct,	SLAB_PANIC);

Note,	that	we	use		KMEM_CACHE		macro	here	instead	of	the		kmem_cache_create	.	This	macro	defined	in	the	include/linux/slab.h
and	just	expands	to	the		kmem_cache_create		call:

#define	KMEM_CACHE(__struct,	__flags)	kmem_cache_create(#__struct,\

																sizeof(struct	__struct),	__alignof__(struct	__struct),\

																(__flags),	NULL)

The		KMEM_CACHE		has	one	difference	from		kmem_cache_create	.	Take	a	look	on		__alignof__		operator.	The		KMEM_CACHE		macro
aligns		SLAB		to	the	size	of	the	given	structure,	but		kmem_cache_create		uses	given	value	to	align	space.	After	this	we	can	see
the	call	of	the		mmap_init		and		nsproxy_cache_init		functions.	The	first	function	initalizes	virtual	memory	area		SLAB		and	the
second	function	initializes		SLAB		for	namespaces.

The	next	function	after	the		proc_caches_init		is		buffer_init	.	This	function	defined	in	the	fs/buffer.c	source	code	file	and
allocate	cache	for	the		buffer_head	.	The		buffer_head		is	a	special	structure	which	defined	in	the	include/linux/buffer_head.h
and	used	for	managing	buffers.	In	the	start	of	the		bufer_init		function	we	allocate	cache	for	the		struct	buffer_head	
structures	with	the	call	of	the		kmem_cache_create		function	as	we	did	it	in	the	previous	functions.	And	calcuate	the	maximum
size	of	the	buffers	in	memory	with:

nrpages	=	(nr_free_buffer_pages()	*	10)	/	100;

max_buffer_heads	=	nrpages	*	(PAGE_SIZE	/	sizeof(struct	buffer_head));

which	will	be	equal	to	the		10%		of	the		ZONE_NORMAL		(all	RAM	from	the	4GB	on	the		x86_64	).	The	next	function	after	the
	buffer_init		is	-		vfs_caches_init	.	This	function	allocates		SLAB		caches	and	hashtable	for	different	VFS	caches.	We	already
saw	the		vfs_caches_init_early		function	in	the	eighth	part	of	the	linux	kernel	initialization	process	which	initialized	caches
for		dcache		(or	directory-cache)	and	inode	cache.	The		vfs_caches_init		function	makes	post-early	initialization	of	the
	dcache		and		inode		caches,	private	data	cache,	hash	tables	for	the	mount	points	and	etc...	More	details	about	VFS	will	be
described	in	the	separate	part.	After	this	we	can	see		signals_init		function.	This	function	defined	in	the	kernel/signal.c	and
allocates	a	cache	for	the		sigqueue		structures	which	represents	queue	of	the	real	time	signals.	The	next	function	is
	page_writeback_init	.	This	function	initializes	the	ratio	for	the	dirty	pages.	Every	low-level	page	entry	contains	the		dirty		bit
which	indicates	whether	a	page	has	been	written	to	when	set.

After	all	of	this	preparations	we	need	to	create	the	root	for	the	proc	filesystem.	We	will	do	it	with	the	call	of	the
	proc_root_init		function	from	the	fs/proc/root.c.	At	the	start	of	the		proc_root_init		function	we	allocate	the	cache	for	the
inodes	and	register	a	new	filesystem	in	the	system	with	the:

err	=	register_filesystem(&proc_fs_type);

						if	(err)

																return;

As	I	wrote	above	we	will	not	dive	into	details	about	VFS	and	different	filesystems	in	this	chapter,	but	will	see	it	in	the	chapter
about	the		VFS	.	After	we've	registered	a	new	filesystem	in	the	our	system,	we	call	the		proc_self_init		function	from	the
TOfs/proc/self.c	and	this	function	allocates		inode		number	for	the		self		(	/proc/self		directory	refers	to	the	process
accessing	the		/proc		filesystem).	The	next	step	after	the		proc_self_init		is		proc_setup_thread_self		which	setups	the
	/proc/thread-self		directory	which	contains	information	about	current	thread.	After	this	we	create		/proc/self/mounts	

Creation	of	the	root	for	the	procfs
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symllink	which	will	contains	mount	points	with	the	call	of	the

proc_symlink("mounts",	NULL,	"self/mounts");

and	a	couple	of	directories	depends	on	the	different	configuration	options:

#ifdef	CONFIG_SYSVIPC

								proc_mkdir("sysvipc",	NULL);

#endif

								proc_mkdir("fs",	NULL);

								proc_mkdir("driver",	NULL);

								proc_mkdir("fs/nfsd",	NULL);

#if	defined(CONFIG_SUN_OPENPROMFS)	||	defined(CONFIG_SUN_OPENPROMFS_MODULE)

								proc_mkdir("openprom",	NULL);

#endif

								proc_mkdir("bus",	NULL);

								...

								...

								...

								if	(!proc_mkdir("tty",	NULL))

																	return;

								proc_mkdir("tty/ldisc",	NULL);

								...

								...

								...

In	the	end	of	the		proc_root_init		we	call	the		proc_sys_init		function	which	creates		/proc/sys		directory	and	initializes	the
Sysctl.

It	is	the	end	of		start_kernel		function.	I	did	not	describe	all	functions	which	are	called	in	the		start_kernel	.	I	missed	it,
because	they	are	not	so	important	for	the	generic	kernel	initialization	stuff	and	depend	on	only	different	kernel
configurations.	They	are		taskstats_init_early		which	exports	per-task	statistic	to	the	user-space,		delayacct_init		-
initializes	per-task	delay	accounting,		key_init		and		security_init		initialize	diferent	security	stuff,		check_bugs		-	makes	fix	up
of	the	some	architecture-dependent	bugs,		ftrace_init		function	executes	initialization	of	the	ftrace,		cgroup_init		makes
initialization	of	the	rest	of	the	cgroup	subsystem	and	etc...	Many	of	these	parts	and	subsystems	will	be	described	in	the
other	chapters.

That's	all.	Finally	we	passed	through	the	long-long		start_kernel		function.	But	it	is	not	the	end	of	the	linux	kernel
initialization	process.	We	haven't	run	the	first	process	yet.	In	the	end	of	the		start_kernel		we	can	see	the	last	call	of	the	-
	rest_init		function.	Let's	go	ahead.

The		rest_init		function	defined	in	the	same	source	code	file	as		start_kernel		function,	and	this	file	is	init/main.c.	In	the
beginning	of	the		rest_init		we	can	see	call	of	the	two	following	functions:

				rcu_scheduler_starting();

				smpboot_thread_init();

The	first		rcu_scheduler_starting		makes	RCU	scheduler	active	and	the	second		smpboot_thread_init		registers	the
	smpboot_thread_notifier		CPU	notifier	(more	about	it	you	can	read	in	the	CPU	hotplug	documentation.	After	this	we	can	see
the	following	calls:

kernel_thread(kernel_init,	NULL,	CLONE_FS);

pid	=	kernel_thread(kthreadd,	NULL,	CLONE_FS	|	CLONE_FILES);

First	steps	after	the	start_kernel
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Here	the		kernel_thread		function	(defined	in	the	kernel/fork.c)	creates	new	kernel	thread.As	we	can	see	the		kernel_thread	
function	takes	three	arguments:

Function	which	will	be	executed	in	a	new	thread;
Parameter	for	the		kernel_init		function;
Flags.

We	will	not	dive	into	details	about		kernel_thread		implementation	(we	will	see	it	in	the	chapter	which	will	describe	scheduler,
just	need	to	say	that		kernel_thread		invokes	clone).	Now	we	only	need	to	know	that	we	create	new	kernel	thread	with
	kernel_thread		function,	parent	and	child	of	the	thread	will	use	shared	information	about	a	filesystem	and	it	will	start	to
execute		kernel_init		function.	A	kernel	thread	differs	from	an	user	thread	that	it	runs	in	a	kernel	mode.	So	with	these	two
	kernel_thread		calls	we	create	two	new	kernel	threads	with	the		PID	=	1		for		init		process	and		PID	=	2		for		kthread	.	We
already	know	what	is		init		process.	Let's	look	on	the		kthread	.	It	is	special	kernel	thread	which	allows	to		init		and
different	parts	of	the	kernel	to	create	another	kernel	threads.	We	can	see	it	in	the	output	of	the		ps		util:

$	ps	-ef	|	grep	kthradd

alex					12866		4767		0	18:26	pts/0				00:00:00	grep	kthradd

Let's	postpone		kernel_init		and		kthreadd		for	now	and	will	go	ahead	in	the		rest_init	.	In	the	next	step	after	we	have
created	two	new	kernel	threads	we	can	see	the	following	code:

				rcu_read_lock();

				kthreadd_task	=	find_task_by_pid_ns(pid,	&init_pid_ns);

				rcu_read_unlock();

The	first		rcu_read_lock		function	marks	the	beginning	of	an	RCU	read-side	critical	section	and	the		rcu_read_unlock		marks
the	end	of	an	RCU	read-side	critical	section.	We	call	these	functions	because	we	need	to	protect	the		find_task_by_pid_ns	.
The		find_task_by_pid_ns		returns	pointer	to	the		task_struct		by	the	given	pid.	So,	here	we	are	getting	the	pointer	to	the
	task_struct		for	the		PID	=	2		(we	got	it	after		kthreadd		creation	with	the		kernel_thread	).	In	the	next	step	we	call		complete	
function

complete(&kthreadd_done);

and	pass	address	of	the		kthreadd_done	.	The		kthreadd_done		defined	as

static	__initdata	DECLARE_COMPLETION(kthreadd_done);

where		DECLARE_COMPLETION		macro	defined	as:

#define	DECLARE_COMPLETION(work)	\

									struct	completion	work	=	COMPLETION_INITIALIZER(work)

and	expands	to	the	definition	of	the		completion		structure.	This	structure	defined	in	the	include/linux/completion.h	and
presents		completions		concept.	Completions	are	a	code	synchronization	mechanism	which	is	provide	race-free	solution	for
the	threads	that	must	wait	for	some	process	to	have	reached	a	point	or	a	specific	state.	Using	completions	consists	of	three
parts:	The	first	is	definition	of	the		complete		structure	and	we	did	it	with	the		DECLARE_COMPLETION	.	The	second	is	call	of	the
	wait_for_completion	.	After	the	call	of	this	function,	a	thread	which	called	it	will	not	continue	to	execute	and	will	wait	while
other	thread	did	not	call		complete		function.	Note	that	we	call		wait_for_completion		with	the		kthreadd_done		in	the	beginning
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of	the		kernel_init_freeable	:

wait_for_completion(&kthreadd_done);

And	the	last	step	is	to	call		complete		function	as	we	saw	it	above.	After	this	the		kernel_init_freeable		function	will	not	be
executed	while		kthreadd		thread	will	not	be	set.	After	the		kthreadd		was	set,	we	can	see	three	following	functions	in	the
	rest_init	:

				init_idle_bootup_task(current);

				schedule_preempt_disabled();

				cpu_startup_entry(CPUHP_ONLINE);

The	first		init_idle_bootup_task		function	from	the	kernel/sched/core.c	sets	the	Scheduling	class	for	the	current	process
(	idle		class	in	our	case):

void	init_idle_bootup_task(struct	task_struct	*idle)

{

									idle->sched_class	=	&idle_sched_class;

}

where		idle		class	is	a	low	priority	tasks	and	tasks	can	be	run	only	when	the	processor	doesn't	have	to	run	anything
besides	this	tasks.	The	second	function		schedule_preempt_disabled		disables	preempt	in		idle		tasks.	And	the	third	function
	cpu_startup_entry		defined	in	the	kernel/sched/idle.c	and	calls		cpu_idle_loop		from	the	kernel/sched/idle.c.	The
	cpu_idle_loop		function	works	as	process	with		PID	=	0		and	works	in	the	background.	Main	purpose	of	the		cpu_idle_loop		is
usage	of	the	idle	CPU	cycles.	When	there	are	no	one	process	to	run,	this	process	starts	to	work.	We	have	one	process	with
	idle		scheduling	class	(we	just	set	the		current		task	to	the		idle		with	the	call	of	the		init_idle_bootup_task		function),	so	the
	idle		thread	does	not	do	useful	work	and	checks	that	there	is	not	active	task	to	switch:

static	void	cpu_idle_loop(void)

{

								...

								...

								...

								while	(1)	{

																while	(!need_resched())	{

																...

																...

																...

																}

								...

								}

More	about	it	will	be	in	the	chapter	about	scheduler.	So	for	this	moment	the		start_kernel		calls	the		rest_init		function
which	spawns	an		init		(	kernel_init		function)	process	and	become		idle		process	itself.	Now	is	time	to	look	on	the
	kernel_init	.	Execution	of	the		kernel_init		function	starts	from	the	call	of	the		kernel_init_freeable		function.	The
	kernel_init_freeable		function	first	of	all	waits	for	the	completion	of	the		kthreadd		setup.	I	already	wrote	about	it	above:

wait_for_completion(&kthreadd_done);

After	this	we	set		gfp_allowed_mask		to		__GFP_BITS_MASK		which	means	that	already	system	is	running,	set	allowed	cpus/mems
to	all	CPUs	and	NUMA	nodes	with	the		set_mems_allowed		function,	allow		init		process	to	run	on	any	CPU	with	the
	set_cpus_allowed_ptr	,	set	pid	for	the		cad		or		Ctrl-Alt-Delete	,	do	preparation	for	booting	of	the	other	CPUs	with	the	call	of
the		smp_prepare_cpus	,	call	early	initcalls	with	the		do_pre_smp_initcalls	,	initialization	of	the		SMP		with	the		smp_init		and
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initialization	of	the	lockup_detector	with	the	call	of	the		lockup_detector_init		and	initialize	scheduler	with	the
	sched_init_smp	.

After	this	we	can	see	the	call	of	the	following	functions	-		do_basic_setup	.	Before	we	will	call	the		do_basic_setup		function,
our	kernel	already	initialized	for	this	moment.	As	comment	says:

Now	we	can	finally	start	doing	some	real	work..

The		do_basic_setup		will	reinitialize	cpuset	to	the	active	CPUs,	initialization	of	the		khelper		-	which	is	a	kernel	thread	which
used	for	making	calls	out	to	userspace	from	within	the	kernel,	initialize	tmpfs,	initialize		drivers		subsystem,	enable	the
user-mode	helper		workqueue		and	make	post-early	call	of	the		initcalls	.	We	can	see	openinng	of	the		dev/console		and	dup
twice	file	descriptors	from		0		to		2		after	the		do_basic_setup	:

if	(sys_open((const	char	__user	*)	"/dev/console",	O_RDWR,	0)	<	0)

				pr_err("Warning:	unable	to	open	an	initial	console.\n");

(void)	sys_dup(0);

(void)	sys_dup(0);

We	are	using	two	system	calls	here		sys_open		and		sys_dup	.	In	the	next	chapters	we	will	see	explanation	and
implementation	of	the	different	system	calls.	After	we	opened	initial	console,	we	check	that		rdinit=		option	was	passed	to
the	kernel	command	line	or	set	default	path	of	the	ramdisk:

if	(!ramdisk_execute_command)

				ramdisk_execute_command	=	"/init";

Check	user's	permissions	for	the		ramdisk		and	call	the		prepare_namespace		function	from	the	init/do_mounts.c	which	checks
and	mounts	the	initrd:

if	(sys_access((const	char	__user	*)	ramdisk_execute_command,	0)	!=	0)	{

				ramdisk_execute_command	=	NULL;

				prepare_namespace();

}

This	is	the	end	of	the		kernel_init_freeable		function	and	we	need	return	to	the		kernel_init	.	The	next	step	after	the
	kernel_init_freeable		finished	its	execution	is	the		async_synchronize_full	.	This	function	waits	until	all	asynchronous
function	calls	have	been	done	and	after	it	we	will	call	the		free_initmem		which	will	release	all	memory	occupied	by	the
initialization	stuff	which	located	between		__init_begin		and		__init_end	.	After	this	we	protect		.rodata		with	the
	mark_rodata_ro		and	update	state	of	the	system	from	the		SYSTEM_BOOTING		to	the

system_state	=	SYSTEM_RUNNING;

And	tries	to	run	the		init		process:

if	(ramdisk_execute_command)	{

				ret	=	run_init_process(ramdisk_execute_command);

				if	(!ret)

								return	0;

				pr_err("Failed	to	execute	%s	(error	%d)\n",

											ramdisk_execute_command,	ret);

}
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First	of	all	it	checks	the		ramdisk_execute_command		which	we	set	in	the		kernel_init_freeable		function	and	it	will	be	equal	to
the	value	of	the		rdinit=		kernel	command	line	parameters	or		/init		by	default.	The		run_init_process		function	fills	the	first
element	of	the		argv_init		array:

static	const	char	*argv_init[MAX_INIT_ARGS+2]	=	{	"init",	NULL,	};

which	represents	arguments	of	the		init		program	and	call		do_execve		function:

argv_init[0]	=	init_filename;

return	do_execve(getname_kernel(init_filename),

				(const	char	__user	*const	__user	*)argv_init,

				(const	char	__user	*const	__user	*)envp_init);

The		do_execve		function	defined	in	the	include/linux/sched.h	and	runs	program	with	the	given	file	name	and	arguments.	If
we	did	not	pass		rdinit=		option	to	the	kernel	command	line,	kernel	starts	to	check	the		execute_command		which	is	equal	to
value	of	the		init=		kernel	command	line	parameter:

				if	(execute_command)	{

								ret	=	run_init_process(execute_command);

								if	(!ret)

												return	0;

								panic("Requested	init	%s	failed	(error	%d).",

														execute_command,	ret);

				}

If	we	did	not	pass		init=		kernel	command	line	parameter	too,	kernel	tries	to	run	one	of	the	following	executable	files:

if	(!try_to_run_init_process("/sbin/init")	||

				!try_to_run_init_process("/etc/init")	||

				!try_to_run_init_process("/bin/init")	||

				!try_to_run_init_process("/bin/sh"))

				return	0;

In	other	way	we	finish	with	panic:

panic("No	working	init	found.		Try	passing	init=	option	to	kernel.	"

						"See	Linux	Documentation/init.txt	for	guidance.");

That's	all!	Linux	kernel	initialization	process	is	finished!

It	is	the	end	of	the	tenth	part	about	the	linux	kernel	initialization	process.	And	it	is	not	only		tenth		part,	but	this	is	the	last
part	which	describes	initialization	of	the	linux	kernel.	As	I	wrote	in	the	first	part	of	this	chapter,	we	will	go	through	all	steps	of
the	kernel	initialization	and	we	did	it.	We	started	at	the	first	architecture-independent	function	-		start_kernel		and	finished
with	the	launch	of	the	first		init		process	in	the	our	system.	I	missed	details	about	different	subsystem	of	the	kernel,	for
example	I	almost	did	not	cover	linux	kernel	scheduler	or	we	did	not	see	almost	anything	about	interrupts	and	exceptions
handling	and	etc...	From	the	next	part	we	will	start	to	dive	to	the	different	kernel	subsystems.	Hope	it	will	be	interesting.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any

Conclusion
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mistakes	please	send	me	PR	to	linux-internals.
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You	will	find	a	couple	of	posts	which	describe	an	interrupts	and	an	exceptions	handling	in	the	linux	kernel.

Interrupts	and	Interrupt	Handling.	Part	1.	-	describes	an	interrupts	handling	theory.
Start	to	dive	into	interrupts	in	the	Linux	kernel	-	this	part	starts	to	describe	interrupts	and	exceptions	handling	related
stuff	from	the	early	stage.
Early	interrupt	handlers	-	third	part	describes	early	interrupt	handlers.
Interrupt	handlers	-	fourth	part	describes	first	non-early	interrupt	handlers.
Implementation	of	exception	handlers	-	descripbes	implementation	of	some	exception	handlers	as	double	fault,	divide
by	zero	and	etc.
Handling	Non-Maskable	interrupts	-	describes	handling	of	non-maskable	interrupts	and	the	rest	of	interrupts	handlers
from	the	architecture-specific	part.
Dive	into	external	hardware	interrupts	-	this	part	describes	early	initialization	of	code	which	is	related	to	handling	of
external	hardware	interrupts.
Non-early	initialization	of	the	IRQs	-	this	part	describes	non-early	initialization	of	code	which	is	related	to	handling	of
external	hardware	interrupts.
Softirq,	Tasklets	and	Workqueues	-	this	part	describes	softirqs,	tasklets	and	workqueues	concepts.

Interrupts	and	Interrupt	Handling
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This	is	the	first	part	of	the	new	chapter	of	the	linux	insides	book.	We	have	come	a	long	way	in	the	previous	chapter	of	this
book.	We	started	from	the	earliest	steps	of	kernel	initialization	and	finished	with	the	launch	of	the	first		init		process.	Yes,
we	saw	several	initialization	steps	which	are	related	to	the	various	kernel	subsystems.	But	we	did	not	dig	deep	into	the
details	of	these	subsystems.	With	this	chapter,	we	will	try	to	understand	how	the	various	kernel	subsystems	work	and	how
they	are	implemented.	As	you	can	already	understand	from	the	chapter's	title,	the	first	subsystem	will	be	interrupts.

We	have	already	heard	of	the	word		interrupt		in	several	parts	of	this	book.	We	even	saw	a	couple	of	examples	of	interrupt
handlers.	In	the	current	chapter	we	will	start	from	the	theory	i.e.

What	are		interrupts		?
What	are		interrupt	handlers	?

We	will	then	continue	to	dig	deeper	into	the	details	of		interrupts		and	how	the	Linux	kernel	handles	them.

So...,	First	of	all	what	is	an	interrupt?	An	interrupt	is	an		event		which	is	raised	by	software	or	hardware	when	its	needs	the
CPU's	attention.	For	example,	we	press	a	button	on	the	keyboard	and	what	do	we	expect	next?	What	should	the	operating
system	and	computer	do	after	this?	To	simplify	matters	assume	that	each	peripheral	device	has	an	interrupt	line	to	the
CPU.	A	device	can	use	it	to	signal	an	interrupt	to	the	CPU.	However	interrupts	are	not	signaled	directly	to	the	CPU.	In	the
old	machines	there	was	a	PIC	which	is	a	chip	responsible	for	sequentially	processing	multiple	interrupt	requests	from
multiple	devices.	In	the	new	machines	there	is	an	Advanced	Programmable	Interrupt	Controller	commonly	known	as	-
	APIC	.	An		APIC		consists	of	two	separate	devices:

	Local	APIC	

	I/O	APIC	

The	first	-		Local	APIC		is	located	on	each	CPU	core.	The	local	APIC	is	responsible	for	handling	the	CPU-specific	interrupt
configuration.	The	local	APIC	is	usually	used	to	manage	interrupts	from	the	APIC-timer,	thermal	sensor	and	any	other	such
locally	connected	I/O	devices.

The	second	-		I/O	APIC		provides	multi-processor	interrupt	management.	It	is	used	to	distribute	external	interrupts	among
the	CPU	cores.	More	about	the	local	and	I/O	APICs	will	be	covered	later	in	this	chapter.	As	you	can	understand,	interrupts
can	occur	at	any	time.	When	an	interrupt	occurs,	the	operating	system	must	handle	it	immediately.	But	what	does	it	mean
	to	handle	an	interrupt	?	When	an	interrupt	occurs,	the	operating	system	must	ensure	the	following	steps:

The	kernel	must	pause	execution	of	the	current	process;	(preempt	current	task);
The	kernel	must	search	for	the	handler	of	the	interrupt	and	transfer	control	(execute	interrupt	handler);
After	the	interrupt	handler	completes	execution,	the	interrupted	process	can	resume	execution.

Of	course	there	are	numerous	intricacies	involved	in	this	procedure	of	handling	interrupts.	But	the	above	3	steps	form	the
basic	skeleton	of	the	procedure.

Addresses	of	each	of	the	interrupt	handlers	are	maintained	in	a	special	location	referred	to	as	the	-		Interrupt	Descriptor
Table		or		IDT	.	The	processor	uses	a	unique	number	for	recognizing	the	type	of	interruption	or	exception.	This	number	is
called	-		vector	number	.	A	vector	number	is	an	index	in	the		IDT	.	There	is	limited	amount	of	the	vector	numbers	and	it	can
be	from		0		to		255	.	You	can	note	the	following	range-check	upon	the	vector	number	within	the	Linux	kernel	source-code:

Interrupts	and	Interrupt	Handling.	Part	1.

Introduction

What	is	an	Interrupt?
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BUG_ON((unsigned)n	>	0xFF);

You	can	find	this	check	within	the	Linux	kernel	source	code	related	to	interrupt	setup	(eg.	The		set_intr_gate	,		void
set_system_intr_gate		in	arch/x86/include/asm/desc.h).	First	32	vector	numbers	from		0		to		31		are	reserved	by	the
processor	and	used	for	the	processing	of	architecture-defined	exceptions	and	interrupts.	You	can	find	the	table	with	the
description	of	these	vector	numbers	in	the	second	part	of	the	Linux	kernel	initialization	process	-	Early	interrupt	and
exception	handling.	Vector	numbers	from		32		to		255		are	designated	as	user-defined	interrupts	and	are	not	reserved	by	the
processor.	These	interrupts	are	generally	assigned	to	external	I/O	devices	to	enable	those	devices	to	send	interrupts	to	the
processor.

Now	let's	talk	about	the	types	of	interrupts.	Broadly	speaking,	we	can	split	interrupts	into	2	major	classes:

External	or	hardware	generated	interrupts;
Software-generated	interrupts.

The	first	-	external	interrupts	are	received	through	the		Local	APIC		or	pins	on	the	processor	which	are	connected	to	the
	Local	APIC	.	The	second	-	software-generated	interrupts	are	caused	by	an	exceptional	condition	in	the	processor	itself
(sometimes	using	special	architecture-specific	instructions).	A	common	example	for	an	exceptional	condition	is		division	by
zero	.	Another	example	is	exiting	a	program	with	the		syscall		instruction.

As	mentioned	earlier,	an	interrupt	can	occur	at	any	time	for	a	reason	which	the	code	and	CPU	have	no	control	over.	On	the
other	hand,	exceptions	are		synchronous		with	program	execution	and	can	be	classified	into	3	categories:

	Faults	

	Traps	

	Aborts	

A		fault		is	an	exception	reported	before	the	execution	of	a	"faulty"	instruction	(which	can	then	be	corrected).	If	corrected,	it
allows	the	interrupted	program	to	be	resume.

Next	a		trap		is	an	exception	which	is	reported	immediately	following	the	execution	of	the		trap		instruction.	Traps	also	allow
the	interrupted	program	to	be	continued	just	as	a		fault		does.

Finally	an		abort		is	an	exception	that	does	not	always	report	the	exact	instruction	which	caused	the	exception	and	does	not
allow	the	interrupted	program	to	be	resumed.

Also	we	already	know	from	the	previous	part	that	interrupts	can	be	classified	as		maskable		and		non-maskable	.	Maskable
interrupts	are	interrupts	which	can	be	blocked	with	the	two	following	instructions	for		x86_64		-		sti		and		cli	.	We	can	find
them	in	the	Linux	kernel	source	code:

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

and

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

These	two	instructions	modify	the		IF		flag	bit	within	the	interrupt	register.	The		sti		instruction	sets	the		IF		flag	and	the		cli	
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instruction	clears	this	flag.	Non-maskable	interrupts	are	always	reported.	Usually	any	failure	in	the	hardware	is	mapped	to
such	non-maskable	interrupts.

If	multiple	exceptions	or	interrupts	occur	at	the	same	time,	the	processor	handles	them	in	order	of	their	predefined	priorities.
We	can	determine	the	priorities	from	the	highest	to	the	lowest	in	the	following	table:

+----------------------------------------------------------------+

|														|																																																	|

|			Priority			|	Description																																					|

|														|																																																	|

+--------------+-------------------------------------------------+

|														|	Hardware	Reset	and	Machine	Checks															|

|					1								|	-	RESET																																									|

|														|	-	Machine	Check																																	|

+--------------+-------------------------------------------------+

|														|	Trap	on	Task	Switch																													|

|					2								|	-	T	flag	in	TSS	is	set																										|

|														|																																																	|

+--------------+-------------------------------------------------+

|														|	External	Hardware	Interventions																	|

|														|	-	FLUSH																																									|

|					3								|	-	STOPCLK																																							|

|														|	-	SMI																																											|

|														|	-	INIT																																										|

+--------------+-------------------------------------------------+

|														|	Traps	on	the	Previous	Instruction															|

|					4								|	-	Breakpoints																																			|

|														|	-	Debug	Trap	Exceptions																									|

+--------------+-------------------------------------------------+

|					5								|	Nonmaskable	Interrupts																										|

+--------------+-------------------------------------------------+

|					6								|	Maskable	Hardware	Interrupts																				|

+--------------+-------------------------------------------------+

|					7								|	Code	Breakpoint	Fault																											|

+--------------+-------------------------------------------------+

|					8								|	Faults	from	Fetching	Next	Instruction											|

|														|	Code-Segment	Limit	Violation																				|

|														|	Code	Page	Fault																																	|

+--------------+-------------------------------------------------+

|														|	Faults	from	Decoding	the	Next	Instruction							|

|														|	Instruction	length	>	15	bytes																			|

|					9								|	Invalid	Opcode																																		|

|														|	Coprocessor	Not	Available																							|

|														|																																																	|

+--------------+-------------------------------------------------+

|					10							|	Faults	on	Executing	an	Instruction														|

|														|	Overflow																																								|

|														|	Bound	error																																					|

|														|	Invalid	TSS																																					|

|														|	Segment	Not	Present																													|

|														|	Stack	fault																																					|

|														|	General	Protection																														|

|														|	Data	Page	Fault																																	|

|														|	Alignment	Check																																	|

|														|	x87	FPU	Floating-point	exception																|

|														|	SIMD	floating-point	exception																			|

|														|	Virtualization	exception																								|

+--------------+-------------------------------------------------+

Now	that	we	know	a	little	about	the	various	types	of	interrupts	and	exceptions,	it	is	time	to	move	on	to	a	more	practical	part.
We	start	with	the	description	of	the		Interrupt	Descriptor	Table	.	As	mentioned	earlier,	the		IDT		stores	entry	points	of	the
interrupts	and	exceptions	handlers.	The		IDT		is	similar	in	structure	to	the		Global	Descriptor	Table		which	we	saw	in	the
second	part	of	the	Kernel	booting	process.	But	of	course	it	has	some	differences.	Instead	of		descriptors	,	the		IDT		entries
are	called		gates	.	It	can	contain	one	of	the	following	gates:

Interrupt	gates
Task	gates
Trap	gates.
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in	the		x86		architecture.	Only	long	mode	interrupt	gates	and	trap	gates	can	be	referenced	in	the		x86_64	.	Like	the		Global
Descriptor	Table	,	the		Interrupt	Descriptor	table		is	an	array	of	8-byte	gates	on		x86		and	an	array	of	16-byte	gates	on
	x86_64	.	We	can	remember	from	the	second	part	of	the	Kernel	booting	process,	that		Global	Descriptor	Table		must	contain
	NULL		descriptor	as	its	first	element.	Unlike	the		Global	Descriptor	Table	,	the		Interrupt	Descriptor	Table		may	contain	a
gate;	it	is	not	mandatory.	For	example,	you	may	remember	that	we	have	loaded	the	Interrupt	Descriptor	table	with	the		NULL	
gates	only	in	the	earlier	part	while	transitioning	into	protected	mode:

/*

	*	Set	up	the	IDT

	*/

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

from	the	arch/x86/boot/pm.c.	The		Interrupt	Descriptor	table		can	be	located	anywhere	in	the	linear	address	space	and	the
base	address	of	it	must	be	aligned	on	an	8-byte	boundary	on		x86		or	16-byte	boundary	on		x86_64	.	Base	address	of	the
	IDT		is	stored	in	the	special	register	-		IDTR	.	There	are	two	instructions	on		x86	-compatible	processors	to	modify	the		IDTR	
register:

	LIDT	

	SIDT	

The	first	instruction		LIDT		is	used	to	load	the	base-address	of	the		IDT		i.e.	the	specified	operand	into	the		IDTR	.	The	second
instruction		SIDT		is	used	to	read	and	store	the	contents	of	the		IDTR		into	the	specified	operand.	The		IDTR		register	is	48-bits
on	the		x86		and	contains	following	information:

+-----------------------------------+----------------------+

|																																			|																						|

|					Base	address	of	the	IDT							|			Limit	of	the	IDT			|

|																																			|																						|

+-----------------------------------+----------------------+

47																																16	15																				0

Looking	at	the	implementation	of		setup_idt	,	we	have	prepared	a		null_idt		and	loaded	it	to	the		IDTR		register	with	the
	lidt		instruction.	Note	that		null_idt		has		gdt_ptr		type	which	is	defined	as:

struct	gdt_ptr	{

								u16	len;

								u32	ptr;

}	__attribute__((packed));

Here	we	can	see	the	definition	of	the	structure	with	the	two	fields	of	2-bytes	and	4-bytes	each	(a	total	of	48-bits)	as	we	can
see	in	the	diagram.	Now	let's	look	at	the		IDT		entries	structure.	The		IDT		entries	structure	is	an	array	of	the	16-byte	entries
which	are	called	gates	in	the		x86_64	.	They	have	the	following	structure:

127																																																																													96

+-------------------------------------------------------------------------------+

|																																																																															|

|																																Reserved																																							|

|																																																																															|

+--------------------------------------------------------------------------------

95																																																																														64

+-------------------------------------------------------------------------------+

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|
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+-------------------------------------------------------------------------------+

63																															48	47						46		44			42				39													34				32

+-------------------------------------------------------------------------------+

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	-------------------------------------------------------------------------------+

31																																			16	15																																						0

+-------------------------------------------------------------------------------+

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

+-------------------------------------------------------------------------------+

To	form	an	index	into	the	IDT,	the	processor	scales	the	exception	or	interrupt	vector	by	sixteen.	The	processor	handles	the
occurrence	of	exceptions	and	interrupts	just	like	it	handles	calls	of	a	procedure	when	it	sees	the		call		instruction.	A
processor	uses	an	unique	number	or		vector	number		of	the	interrupt	or	the	exception	as	the	index	to	find	the	necessary
	Interrupt	Descriptor	Table		entry.	Now	let's	take	a	closer	look	at	an		IDT		entry.

As	we	can	see,		IDT		entry	on	the	diagram	consists	of	the	following	fields:

	0-15		bits	-	offset	from	the	segment	selector	which	is	used	by	the	processor	as	the	base	address	of	the	entry	point	of
the	interrupt	handler;
	16-31		bits	-	base	address	of	the	segment	select	which	contains	the	entry	point	of	the	interrupt	handler;
	IST		-	a	new	special	mechanism	in	the		x86_64	,	will	see	it	later;
	DPL		-	Descriptor	Privilege	Level;
	P		-	Segment	Present	flag;
	48-63		bits	-	second	part	of	the	handler	base	address;
	64-95		bits	-	third	part	of	the	base	address	of	the	handler;
	96-127		bits	-	and	the	last	bits	are	reserved	by	the	CPU.

And	the	last		Type		field	describes	the	type	of	the		IDT		entry.	There	are	three	different	kinds	of	handlers	for	interrupts:

Interrupt	gate
Trap	gate
Task	gate

The		IST		or		Interrupt	Stack	Table		is	a	new	mechanism	in	the		x86_64	.	It	is	used	as	an	alternative	to	the	the	legacy	stack-
switch	mechanism.	Previously	The		x86		architecture	provided	a	mechanism	to	automatically	switch	stack	frames	in
response	to	an	interrupt.	The		IST		is	a	modified	version	of	the		x86		Stack	switching	mode.	This	mechanism	unconditionally
switches	stacks	when	it	is	enabled	and	can	be	enabled	for	any	interrupt	in	the		IDT		entry	related	with	the	certain	interrupt
(we	will	soon	see	it).	From	this	we	can	understand	that		IST		is	not	necessary	for	all	interrupts.	Some	interrupts	can	continue
to	use	the	legacy	stack	switching	mode.	The		IST		mechanism	provides	up	to	seven		IST		pointers	in	the	Task	State
Segment	or		TSS		which	is	the	special	structure	which	contains	information	about	a	process.	The		TSS		is	used	for	stack
switching	during	the	execution	of	an	interrupt	or	exception	handler	in	the	Linux	kernel.	Each	pointer	is	referenced	by	an
interrupt	gate	from	the		IDT	.

The		Interrupt	Descriptor	Table		represented	by	the	array	of	the		gate_desc		structures:

extern	gate_desc	idt_table[];

where		gate_desc		is:

#ifdef	CONFIG_X86_64

...

...

...
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typedef	struct	gate_struct64	gate_desc;

...

...

...

#endif

and		gate_struct64		defined	as:

struct	gate_struct64	{

								u16	offset_low;

								u16	segment;

								unsigned	ist	:	3,	zero0	:	5,	type	:	5,	dpl	:	2,	p	:	1;

								u16	offset_middle;

								u32	offset_high;

								u32	zero1;

}	__attribute__((packed));

Each	active	thread	has	a	large	stack	in	the	Linux	kernel	for	the		x86_64		architecture.	The	stack	size	is	defined	as
	THREAD_SIZE		and	is	equal	to:

#define	PAGE_SHIFT						12

#define	PAGE_SIZE							(_AC(1,UL)	<<	PAGE_SHIFT)

...

...

...

#define	THREAD_SIZE_ORDER							(2	+	KASAN_STACK_ORDER)

#define	THREAD_SIZE		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)

The		PAGE_SIZE		is		4096	-bytes	and	the		THREAD_SIZE_ORDER		depends	on	the		KASAN_STACK_ORDER	.	As	we	can	see,	the
	KASAN_STACK		depends	on	the		CONFIG_KASAN		kernel	configuration	parameter	and	equals	to	the:

#ifdef	CONFIG_KASAN

				#define	KASAN_STACK_ORDER	1

#else

				#define	KASAN_STACK_ORDER	0

#endif

	KASan		is	a	runtime	memory	debugger.	So...	the		THREAD_SIZE		will	be		16384		bytes	if		CONFIG_KASAN		is	disabled	or		32768		if	this
kernel	configuration	option	is	enabled.	These	stacks	contain	useful	data	as	long	as	a	thread	is	alive	or	in	a	zombie	state.
While	the	thread	is	in	user-space,	the	kernel	stack	is	empty	except	for	the		thread_info		structure	(details	about	this
structure	are	available	in	the	fourth	part	of	the	Linux	kernel	initialization	process)	at	the	bottom	of	the	stack.	The	active	or
zombie	threads	aren't	the	only	threads	with	their	own	stack.	There	also	exist	specialized	stacks	that	are	associated	with
each	available	CPU.	These	stacks	are	active	when	the	kernel	is	executing	on	that	CPU.	When	the	user-space	is	executing
on	the	CPU,	these	stacks	do	not	contain	any	useful	information.	Each	CPU	has	a	few	special	per-cpu	stacks	as	well.	The
first	is	the		interrupt	stack		used	for	the	external	hardware	interrupts.	Its	size	is	determined	as	follows:

#define	IRQ_STACK_ORDER	(2	+	KASAN_STACK_ORDER)

#define	IRQ_STACK_SIZE	(PAGE_SIZE	<<	IRQ_STACK_ORDER)

or		16384		bytes.	The	per-cpu	interrupt	stack	represented	by	the		irq_stack_union		union	in	the	Linux	kernel	for		x86_64	:

union	irq_stack_union	{

				char	irq_stack[IRQ_STACK_SIZE];

				struct	{

								char	gs_base[40];

								unsigned	long	stack_canary;
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				};

};

The	first		irq_stack		field	is	a	16	kilobytes	array.	Also	you	can	see	that		irq_stack_union		contains	structure	with	the	two
fields:

	gs_base		-	The		gs		register	always	points	to	the	bottom	of	the		irqstack		union.	On	the		x86_64	,	the		gs		register	is
shared	by	per-cpu	area	and	stack	canary	(more	about		per-cpu		variables	you	can	read	in	the	special	part).	All	per-cpu
symbols	are	zero	based	and	the		gs		points	to	the	base	of	per-cpu	area.	You	already	know	that	segmented	memory
model	is	abolished	in	the	long	mode,	but	we	can	set	base	address	for	the	two	segment	registers	-		fs		and		gs		with	the
Model	specific	registers	and	these	registers	can	be	still	be	used	as	address	registers.	If	you	remember	the	first	part	of
the	Linux	kernel	initialization	process,	you	can	remember	that	we	have	set	the		gs		register:

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

where		initial_gs		points	to	the		irq_stack_union	:

GLOBAL(initial_gs)

.quad				INIT_PER_CPU_VAR(irq_stack_union)

	stack_canary		-	Stack	canary	for	the	interrupt	stack	is	a		stack	protector		to	verify	that	the	stack	hasn't	been
overwritten.	Note	that		gs_base		is	an	40	bytes	array.		GCC		requires	that	stack	canary	will	be	on	the	fixed	offset	from	the
base	of	the		gs		and	its	value	must	be		40		for	the		x86_64		and		20		for	the		x86	.

The		irq_stack_union		is	the	first	datum	in	the		percpu		area,	we	can	see	it	in	the		System.map	:

0000000000000000	D	__per_cpu_start

0000000000000000	D	irq_stack_union

0000000000004000	d	exception_stacks

0000000000009000	D	gdt_page

...

...

...

We	can	see	its	definition	in	the	code:

DECLARE_PER_CPU_FIRST(union	irq_stack_union,	irq_stack_union)	__visible;

Now,	its	time	to	look	at	the	initialization	of	the		irq_stack_union	.	Besides	the		irq_stack_union		definition,	we	can	see	the
definition	of	the	following	per-cpu	variables	in	the	arch/x86/include/asm/processor.h:

DECLARE_PER_CPU(char	*,	irq_stack_ptr);

DECLARE_PER_CPU(unsigned	int,	irq_count);

The	first	is	the		irq_stack_ptr	.	From	the	variable's	name,	it	is	obvious	that	this	is	a	pointer	to	the	top	of	the	stack.	The
second	-		irq_count		is	used	to	check	if	a	CPU	is	already	on	an	interrupt	stack	or	not.	Initialization	of	the		irq_stack_ptr		is
located	in	the		setup_per_cpu_areas		function	in	arch/x86/kernel/setup_percpu.c:
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void	__init	setup_per_cpu_areas(void)

{

...

...

#ifdef	CONFIG_X86_64

for_each_possible_cpu(cpu)	{

				...

				...

				...

				per_cpu(irq_stack_ptr,	cpu)	=

												per_cpu(irq_stack_union.irq_stack,	cpu)	+

												IRQ_STACK_SIZE	-	64;

				...

				...

				...

#endif

...

...

}

Here	we	go	over	all	the	CPUs	on-by-one	and	setup		irq_stack_ptr	.	This	turns	out	to	be	equal	to	the	top	of	the	interrupt
stack	minus		64	.	Why		64	?	If	you	remember,	we	set	the	stack	canary	in	the	beginning	of	the		start_kernel		function	from	the
init/main.c	with	the	call	of	the		boot_init_stack_canary		function:

static	__always_inline	void	boot_init_stack_canary(void)

{

				u64	canary;

				...

				...

				...

#ifdef	CONFIG_X86_64

				BUILD_BUG_ON(offsetof(union	irq_stack_union,	stack_canary)	!=	40);

#endif

				//

				//	getting	canary	value	here

				//

				this_cpu_write(irq_stack_union.stack_canary,	canary);

				...

				...

				...

}

Note	that		canary		is		64		bits	value.	That's	why	we	need	to	subtract		64		from	the	size	of	the	interrupt	stack	to	avoid
overlapping	with	the	stack	canary	value.	Initialization	of	the		irq_stack_union.gs_base		is	in	the		load_percpu_segment		function
from	the	arch/x86/kernel/cpu/common.c:

TODO	maybe	more	about	the	wrmsl

void	load_percpu_segment(int	cpu)

{

								...

								...

								...

								loadsegment(gs,	0);

								wrmsrl(MSR_GS_BASE,	(unsigned	long)per_cpu(irq_stack_union.gs_base,	cpu));

}

and	as	we	already	know		gs		register	points	to	the	bottom	of	the	interrupt	stack:

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx
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				wrmsr				

				GLOBAL(initial_gs)

				.quad				INIT_PER_CPU_VAR(irq_stack_union)

Here	we	can	see	the		wrmsr		instruction	which	loads	the	data	from		edx:eax		into	the	Model	specific	register	pointed	by	the
	ecx		register.	In	our	case	model	specific	register	is		MSR_GS_BASE		which	contains	the	base	address	of	the	memory	segment
pointed	by	the		gs		register.		edx:eax		points	to	the	address	of	the		initial_gs		which	is	the	base	address	of	our
	irq_stack_union	.

We	already	know	that		x86_64		has	a	feature	called		Interrupt	Stack	Table		or		IST		and	this	feature	provides	the	ability	to
switch	to	a	new	stack	for	events	non-maskable	interrupt,	double	fault	and	etc...	There	can	be	up	to	seven		IST		entries	per-
cpu.	Some	of	them	are:

	DOUBLEFAULT_STACK	

	NMI_STACK	

	DEBUG_STACK	

	MCE_STACK	

or

#define	DOUBLEFAULT_STACK	1

#define	NMI_STACK	2

#define	DEBUG_STACK	3

#define	MCE_STACK	4

All	interrupt-gate	descriptors	which	switch	to	a	new	stack	with	the		IST		are	initialized	with	the		set_intr_gate_ist		function.
For	example:

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

...

...

...

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

where		&nmi		and		&double_fault		are	addresses	of	the	entries	to	the	given	interrupt	handlers:

asmlinkage	void	nmi(void);

asmlinkage	void	double_fault(void);

defined	in	the	arch/x86/kernel/entry_64.S

idtentry	double_fault	do_double_fault	has_error_code=1	paranoid=2

...

...

...

ENTRY(nmi)

...

...

...

END(nmi)

When	an	interrupt	or	an	exception	occurs,	the	new		ss		selector	is	forced	to		NULL		and	the		ss		selector’s		rpl		field	is	set	to
the	new		cpl	.	The	old		ss	,		rsp	,	register	flags,		cs	,		rip		are	pushed	onto	the	new	stack.	In	64-bit	mode,	the	size	of
interrupt	stack-frame	pushes	is	fixed	at	8-bytes,	so	we	will	get	the	following	stack:
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+---------------+

|															|

|						SS							|	40

|						RSP						|	32

|					RFLAGS				|	24

|						CS							|	16

|						RIP						|	8	

|			Error	code		|	0

|															|

+---------------+

If	the		IST		field	in	the	interrupt	gate	is	not		0	,	we	read	the		IST		pointer	into		rsp	.	If	the	interrupt	vector	number	has	an	error
code	associated	with	it,	we	then	push	the	error	code	onto	the	stack.	If	the	interrupt	vector	number	has	no	error	code,	we	go
ahead	and	push	the	dummy	error	code	on	to	the	stack.	We	need	to	do	this	to	ensure	stack	consistency.	Next	we	load	the
segment-selector	field	from	the	gate	descriptor	into	the	CS	register	and	must	verify	that	the	target	code-segment	is	a	64-bit
mode	code	segment	by	the	checking	bit		21		i.e.	the		L		bit	in	the		Global	Descriptor	Table	.	Finally	we	load	the	offset	field
from	the	gate	descriptor	into		rip		which	will	be	the	entry-point	of	the	interrupt	handler.	After	this	the	interrupt	handler	begins
to	execute.	After	an	interrupt	handler	finishes	its	execution,	it	must	return	control	to	the	interrupted	process	with	the		iret	
instruction.	The		iret		instruction	unconditionally	pops	the	stack	pointer	(	ss:rsp	)	to	restore	the	stack	of	the	interrupted
process	and	does	not	depend	on	the		cpl		change.

That's	all.

It	is	the	end	of	the	first	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We	saw	some	theory	and	the	first
steps	of	the	initialization	of	stuff	related	to	interrupts	and	exceptions.	In	the	next	part	we	will	continue	to	dive	into	interrupts
and	interrupts	handling	-	into	the	more	practical	aspects	of	it.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	a	PR	to	linux-internals.

PIC
Advanced	Programmable	Interrupt	Controller
protected	mode
long	mode
kernel	stacks
Task	State	Segement
segmented	memory	model
Model	specific	registers
Stack	canary
Previous	chapter

Conclusion

Links
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We	saw	some	theory	about	an	interrupts	and	an	exceptions	handling	in	the	previous	part	and	as	I	already	wrote	in	that	part,
we	will	start	to	dive	into	interrupts	and	exceptions	in	the	Linux	kernel	source	code	in	this	part.	As	you	already	can	note,	the
previous	part	mostly	described	theoretical	aspects	and	since	this	part	we	will	start	to	dive	directly	into	the	Linux	kernel
source	code.	We	will	start	to	do	it	as	we	did	it	in	other	chapters,	from	the	very	early	places.	We	will	not	see	the	Linux	kernel
source	code	from	the	earliest	code	lines	as	we	saw	it	for	example	in	the	Linux	kernel	booting	process	chapter,	but	we	will
start	from	the	earliest	code	which	is	related	to	the	interrupts	and	exceptions.	Since	this	part	we	will	try	to	go	through	the	all
interrupts	and	exceptions	related	stuff	which	we	can	find	in	the	Linux	kernel	source	code.

If	you've	read	the	previous	parts,	you	can	remember	that	the	earliest	place	in	the	Linux	kernel		x86_64		architecture-specifix
source	code	which	is	related	to	the	interrupt	is	located	in	the	arch/x86/boot/pm.c	source	code	file	and	represents	the	first
setup	of	the	Interrupt	Descriptor	Table.	It	occurs	right	before	the	transition	into	the	protected	mode	in	the
	go_to_protected_mode		function	by	the	call	of	the		setup_idt	:

void	go_to_protected_mode(void)

{

				...

				setup_idt();

				...

}

The		setup_idt		function	defined	in	the	same	source	code	file	as	the		go_to_protected_mode		function	and	just	loads	address
of	the		NULL		interrupts	descriptor	table:

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

where		gdt_ptr		represents	special	48-bit		GTDR		register	which	must	contain	base	address	of	the		Global	Descriptor	Table	:

struct	gdt_ptr	{

				u16	len;

				u32	ptr;

}	__attribute__((packed));

Of	course	in	our	case	the		gdt_ptr		does	not	represent		GDTR		register,	but		IDTR		since	we	set		Interrupt	Descriptor	Table	.
You	will	not	find		idt_ptr		structure,	because	if	it	had	been	in	the	Linux	kernel	source	code,	it	would	have	been	the	same	as
	gdt_ptr		but	with	different	name.	So,	as	you	can	understand	there	is	no	sense	to	have	two	similar	structures	which	are
differ	only	in	a	name.	You	can	note	here,	that	we	do	not	fill	the		Interrupt	Descriptor	Table		with	entries,	because	it	is	too
early	to	handle	any	interrupts	or	exceptions	for	this	moment.	That's	why	we	just	fill	the		IDT		with	the		NULL	.

And	after	the	setup	of	the	Interrupt	descriptor	table,	Global	Descriptor	Table	and	other	stuff	we	jump	into	protected	mode	in
the	-	arch/x86/boot/pmjump.S.	More	about	it	you	can	read	in	the	part	which	describes	transition	to	the	protected	mode.

We	already	know	from	the	earliest	parts	that	entry	of	the	protected	mode	located	in	the		boot_params.hdr.code32_start		and

Interrupts	and	Interrupt	Handling.	Part	2.

Start	to	dive	into	interrupt	and	exceptions	handling	in	the
Linux	kernel
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you	can	see	that	we	pass	the	entry	of	the	protected	mode	and		boot_params		to	the		protected_mode_jump		in	the	end	of	the
arch/x86/boot/pm.c:

protected_mode_jump(boot_params.hdr.code32_start,

																(u32)&boot_params	+	(ds()	<<	4));

The		protected_mode_jump		defined	in	the	arch/x86/boot/pmjump.S	and	gets	these	two	parameters	in	the		ax		and		dx	
registers	using	one	of	the	8086	calling	convention:

GLOBAL(protected_mode_jump)

				...

				...

				...

				.byte				0x66,	0xea								#	ljmpl	opcode

2:				.long				in_pm32												#	offset

				.word				__BOOT_CS								#	segment

...

...

...

ENDPROC(protected_mode_jump)

where		in_pm32		contains	jump	to	the	32-bit	entrypoint:

GLOBAL(in_pm32)

				...

				...

				jmpl				*%eax	//	%eax	contains	address	of	the	`startup_32`

				...

				...

ENDPROC(in_pm32)

As	you	can	remember	32-bit	entry	point	is	in	the	arch/x86/boot/compressed/head_64.S	assembly	file,	although	it	contains
	_64		in	the	its	name.	We	can	see	the	two	similar	files	in	the		arch/x86/boot/compressed		directory:

	arch/x86/boot/compressed/head_32.S	.
	arch/x86/boot/compressed/head_64.S	;

But	the	32-bit	mode	entry	point	the	the	second	file	in	our	case.	The	first	file	even	not	compiled	for		x86_64	.	Let's	look	on	the
arch/x86/boot/compressed/Makefile:

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

...

...

We	can	see	here	that		head_*		depends	on	the		$(BITS)		variable	which	depends	on	the	architecture.	You	can	find	it	in	the
arch/x86/Makefile:

ifeq	($(CONFIG_X86_32),y)

...

				BITS	:=	32

else

				BITS	:=	64

				...

endif

Now	as	we	jumped	on	the		startup_32		from	the	arch/x86/boot/compressed/head_64.S	we	will	not	find	anything	related	to
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the	interrupt	handling	here.	The		startup_32		contains	code	that	makes	preparations	before	transition	into	the	long	mode
and	directly	jumps	in	it.	The		long	mode		entry	located		startup_64		and	it	makes	preparation	before	the	kernel	decompression
that	occurs	in	the		decompress_kernel		from	the	arch/x86/boot/compressed/misc.c.	After	kernel	decompressed,	we	jump	on
the		startup_64		from	the	arch/x86/kernel/head_64.S.	In	the		startup_64		we	start	to	build	identity-mapped	pages.	After	we
have	built	identity-mapped	pages,	checked	NX	bit,	made	setup	of	the		Extended	Feature	Enable	Register		(see	in	links),
updated	early		Global	Descriptor	Table		wit	the		lgdt		instruction,	we	need	to	setup		gs		register	with	the	following	code:

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

We	already	saw	this	code	in	the	previous	part	and	not	time	to	know	better	what	is	going	on	here.	First	of	all	pay	attention	on
the	last		wrmsr		instruction.	This	instruction	writes	data	from	the		edx:eax		registers	to	the	model	specific	register	specified	by
the		ecx		register.	We	can	see	that		ecx		contains		$MSR_GS_BASE		which	declared	in	the	arch/x86/include/uapi/asm/msr-index.h
and	looks:

#define	MSR_GS_BASE													0xc0000101

From	this	we	can	understand	that		MSR_GS_BASE		defines	number	of	the		model	specific	register	.	Since	registers		cs	,		ds	,
	es	,	and		ss		are	not	used	in	the	64-bit	mode,	their	fields	are	ignored.	But	we	can	access	memory	over		fs		and		gs	
registers.	The	model	specific	register	provides		back	door		to	the	hidden	parts	of	these	segment	registers	and	allows	to	use
64-bit	base	address	for	segment	register	addressed	by	the		fs		and		gs	.	So	the		MSR_GS_BASE		is	the	hidden	part	and	this	part
is	mapped	on	the		GS.base		field.	Let's	look	on	the		initial_gs	:

GLOBAL(initial_gs)

				.quad				INIT_PER_CPU_VAR(irq_stack_union)

We	pass		irq_stack_union		symbol	to	the		INIT_PER_CPU_VAR		macro	which	just	concatenates		init_per_cpu__		prefix	with	the
given	symbol.	In	our	case	we	will	get		init_per_cpu__irq_stack_union		symbol.	Let's	look	on	the	linker	script.	There	we	can
see	following	definition:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(irq_stack_union);

It	tells	us	that	address	of	the		init_per_cpu__irq_stack_union		will	be		irq_stack_union	+	__per_cpu_load	.	Now	we	need	to
understand	where	are		init_per_cpu__irq_stack_union		and		__per_cpu_load		and	what	they	mean.	The	first		irq_stack_union	
defined	in	the	arch/x86/include/asm/processor.h	with	the		DECLARE_INIT_PER_CPU		macro	which	expands	to	call	of	the
	init_per_cpu_var		macro:

DECLARE_INIT_PER_CPU(irq_stack_union);

#define	DECLARE_INIT_PER_CPU(var)	\

							extern	typeof(per_cpu_var(var))	init_per_cpu_var(var)

#define	init_per_cpu_var(var)		init_per_cpu__##var

If	we	will	expand	all	macro	we	will	get	the	same		init_per_cpu__irq_stack_union		as	we	got	after	expanding	of	the
	INIT_PER_CPU		macro,	but	you	can	note	that	it	is	already	not	just	symbol,	but	variable.	Let's	look	on	the
	typeof(percpu_var(var))		expression.	Our		var		is		irq_stack_union		and		per_cpu_var		macro	defined	in	the
arch/x86/include/asm/percpu.h:
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#define	PER_CPU_VAR(var)								%__percpu_seg:var

where:

#ifdef	CONFIG_X86_64

				#define	__percpu_seg	gs

endif

So,	we	accessing		gs:irq_stack_union		and	geting	its	type	which	is		irq_union	.	Ok,	we	defined	the	first	variable	and	know	its
address,	now	let's	look	on	the	second		__per_cpu_load		symbol.	There	are	a	couple	of	percpu	variables	which	are	located
after	this	symbol.	The		__per_cpu_load		defined	in	the	include/asm-generic/sections.h:

extern	char	__per_cpu_load[],	__per_cpu_start[],	__per_cpu_end[];

and	presented	base	address	of	the		per-cpu		variables	from	the	data	area.	So,	we	know	address	of	the		irq_stack_union	,
	__per_cpu_load		and	we	know	that		init_per_cpu__irq_stack_union		must	be	placed	right	after		__per_cpu_load	.	And	we	can
see	it	in	the	System.map:

...

...

...

ffffffff819ed000	D	__init_begin

ffffffff819ed000	D	__per_cpu_load

ffffffff819ed000	A	init_per_cpu__irq_stack_union

...

...

...

Now	we	know	about		initia_gs	,	so	let's	book	to	the	our	code:

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

Here	we	specified	model	specific	register	with		MSR_GS_BASE	,	put	64-bit	address	of	the		initial_gs		to	the		edx:eax		pair	and
execute		wrmsr		instruction	for	filling	the		gs		register	with	base	address	of	the		init_per_cpu__irq_stack_union		which	will	be
bottom	of	the	interrupt	stack.	After	this	we	will	jump	to	the	C	code	on	the		x86_64_start_kernel		from	the
arch/x86/kernel/head64.c.	In	the		x86_64_start_kernel		function	we	do	the	last	preparations	before	we	jump	into	the	generic
and	architecture-independent	kernel	code	and	on	of	these	preparations	is	filling	of	the	early		Interrupt	Descriptor	Table	
with	the	interrupts	handlres	entries	or		early_idt_handlers	.	You	can	remember	it,	if	you	have	read	the	part	about	the	Early
interrupt	and	exception	handling	and	can	remember	following	code:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handlers[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

but	I	wrote		Early	interrupt	and	exception	handling		part	when	Linux	kernel	version	was	-		3.18	.	For	this	day	actual	version
of	the	Linux	kernel	is		4.1.0-rc6+		and		Andy	Lutomirski		sent	the	patch	and	soon	it	will	be	in	the	mainline	kernel	that
changes	behaviour	for	the		early_idt_handlers	.	NOTE	While	I	wrote	this	part	the	patch	already	turned	in	the	Linux	kernel
source	code.	Let's	look	on	it.	Now	the	same	part	looks	like:
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for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

AS	you	can	see	it	has	only	one	difference	in	the	name	of	the	array	of	the	interrupts	handlers	entry	points.	Now	it	is
	early_idt_handler_arry	:

extern	const	char	early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];

where		NUM_EXCEPTION_VECTORS		and		EARLY_IDT_HANDLER_SIZE		are	defined	as:

#define	NUM_EXCEPTION_VECTORS	32

#define	EARLY_IDT_HANDLER_SIZE	9

So,	the		early_idt_handler_array		is	an	array	of	the	interrupts	handlers	entry	points	and	contains	one	entry	point	on	every
nine	bytes.	You	can	remember	that	previous		early_idt_handlers		was	defined	in	the	arch/x86/kernel/head_64.S.	The
	early_idt_handler_array		is	defined	in	the	same	source	code	file	too:

ENTRY(early_idt_handler_array)

...

...

...

ENDPROC(early_idt_handler_common)

It	fills		early_idt_handler_arry		with	the		.rept	NUM_EXCEPTION_VECTORS		and	contains	entry	of	the		early_make_pgtable		interrupt
handler	(more	about	its	implementation	you	can	read	in	the	part	about	Early	interrupt	and	exception	handling).	For	now	we
come	to	the	end	of	the		x86_64		architecture-specific	code	and	the	next	part	is	the	generic	kernel	code.	Of	course	you
already	can	know	that	we	will	return	to	the	architecture-specific	code	in	the		setup_arch		function	and	other	places,	but	this	is
the	end	of	the		x86_64		early	code.

The	next	stop	after	the	arch/x86/kernel/head_64.S	is	the	biggest		start_kernel		function	from	the	init/main.c.	If	you've	read
the	previous	chapter	about	the	Linux	kernel	initialization	process,	you	must	remember	it.	This	function	does	all	initialization
stuff	before	kernel	will	launch	first		init		process	with	the	pid	-		1	.	The	first	thing	that	is	related	to	the	interrupts	and
exceptions	handling	is	the	call	of	the		boot_init_stack_canary		function.

This	function	sets	the	canary	value	to	protect	interrupt	stack	overflow.	We	already	saw	a	little	some	details	about
implementation	of	the		boot_init_stack_canary		in	the	previous	part	and	now	let's	take	a	closer	look	on	it.	You	can	find
implementation	of	this	function	in	the	arch/x86/include/asm/stackprotector.h	and	its	depends	on	the
	CONFIG_CC_STACKPROTECTOR		kernel	configuration	option.	If	this	option	is	not	set	this	function	will	not	do	anything:

#ifdef	CONFIG_CC_STACKPROTECTOR

...

...

...

#else

static	inline	void	boot_init_stack_canary(void)

{

}

#endif

Setting	stack	canary	for	the	interrupt	stack
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If	the		CONFIG_CC_STACKPROTECTOR		kernel	configuration	option	is	set,	the		boot_init_stack_canary		function	starts	from	the	check
stat		irq_stack_union		that	represents	per-cpu	interrupt	stack	has	offset	equal	to	forty	bytes	from	the		stack_canary		value:

#ifdef	CONFIG_X86_64

								BUILD_BUG_ON(offsetof(union	irq_stack_union,	stack_canary)	!=	40);

#endif

As	we	can	read	in	the	previous	part	the		irq_stack_union		represented	by	the	following	union:

union	irq_stack_union	{

				char	irq_stack[IRQ_STACK_SIZE];

				struct	{

								char	gs_base[40];

								unsigned	long	stack_canary;

				};

};

which	defined	in	the	arch/x86/include/asm/processor.h.	We	know	that	unioun	in	the	C	programming	language	is	a	data
structure	which	stores	only	one	field	in	a	memory.	We	can	see	here	that	structure	has	first	field	-		gs_base		which	is	40	bytes
size	and	represents	bottom	of	the		irq_stack	.	So,	after	this	our	check	with	the		BUILD_BUG_ON		macro	should	end
successfully.	(you	can	read	the	first	part	about	Linux	kernel	initialization	process	if	you're	interesting	about	the		BUILD_BUG_ON	
macro).

After	this	we	calculate	new		canary		value	based	on	the	random	number	and	Time	Stamp	Counter:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

and	write		canary		value	to	the		irq_stack_union		with	the		this_cpu_write		macro:

this_cpu_write(irq_stack_union.stack_canary,	canary);

more	about		this_cpu_*		operation	you	can	read	in	the	Linux	kernel	documentation.

The	next	step	in	the	init/main.c	which	is	related	to	the	interrupts	and	interrupts	handling	after	we	have	set	the		canary		value
to	the	interrupt	stack	-	is	the	call	of	the		local_irq_disable		macro.

This	macro	defined	in	the	include/linux/irqflags.h	header	file	and	as	you	can	understand,	we	can	disable	interrupts	for	the
CPU	with	the	call	of	this	macro.	Let's	look	on	its	implementation.	First	of	all	note	that	it	depends	on	the
	CONFIG_TRACE_IRQFLAGS_SUPPORT		kernel	configuration	option:

#ifdef	CONFIG_TRACE_IRQFLAGS_SUPPORT

...

#define	local_irq_disable()	\

									do	{	raw_local_irq_disable();	trace_hardirqs_off();	}	while	(0)

...

#else

...

Disabling/Enabling	local	interrupts
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#define	local_irq_disable()					do	{	raw_local_irq_disable();	}	while	(0)

...

#endif

They	are	both	similar	and	as	you	can	see	have	only	one	difference:	the		local_irq_disable		macro	contains	call	of	the
	trace_hardirqs_off		when		CONFIG_TRACE_IRQFLAGS_SUPPORT		is	enabled.	There	is	special	feature	in	the	lockdep	subsystem	-
	irq-flags	tracing		for	tracing		hardirq		and		stoftirq		state.	In	ourcase		lockdep		subsytem	can	give	us	interesting
information	about	hard/soft	irqs	on/off	events	which	are	occurs	in	the	system.	The		trace_hardirqs_off		function	defined	in
the	kernel/locking/lockdep.c:

void	trace_hardirqs_off(void)

{

									trace_hardirqs_off_caller(CALLER_ADDR0);

}

EXPORT_SYMBOL(trace_hardirqs_off);

and	just	calls		trace_hardirqs_off_caller		function.	The		trace_hardirqs_off_caller		checks	the		hardirqs_enabled		filed	of	the
current	process	increment	the		redundant_hardirqs_off		if	call	of	the		local_irq_disable		was	redundant	or	the
	hardirqs_off_events		if	it	was	not.	These	two	fields	and	other		lockdep		statistic	related	fields	are	defined	in	the
kernel/locking/lockdep_internals.h	and	located	in	the		lockdep_stats		structure:

struct	lockdep_stats	{

...

...

...

int					softirqs_off_events;

int					redundant_softirqs_off;

...

...

...

}

If	you	will	set		CONFIG_DEBUG_LOCKDEP		kernel	configuration	option,	the		lockdep_stats_debug_show		function	will	write	all	tracing
information	to	the		/proc/lockdep	:

static	void	lockdep_stats_debug_show(struct	seq_file	*m)

{

#ifdef	CONFIG_DEBUG_LOCKDEP

				unsigned	long	long	hi1	=	debug_atomic_read(hardirqs_on_events),

																													hi2	=	debug_atomic_read(hardirqs_off_events),

																													hr1	=	debug_atomic_read(redundant_hardirqs_on),

				...

				...

				...	

				seq_printf(m,	"	hardirq	on	events:													%11llu\n",	hi1);

				seq_printf(m,	"	hardirq	off	events:												%11llu\n",	hi2);

				seq_printf(m,	"	redundant	hardirq	ons:									%11llu\n",	hr1);

#endif

}

and	you	can	see	its	result	with	the:

$	sudo	cat	/proc/lockdep

	hardirq	on	events:													12838248974

	hardirq	off	events:												12838248979

	redundant	hardirq	ons:															67792

	redundant	hardirq	offs:									3836339146

	softirq	on	events:																38002159

	softirq	off	events:															38002187

	redundant	softirq	ons:																			0
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	redundant	softirq	offs:																		0

Ok,	now	we	know	a	little	about	tracing,	but	more	info	will	be	in	the	separate	part	about		lockdep		and		tracing	.	You	can	see
that	the	both		local_disable_irq		macros	have	the	same	part	-		raw_local_irq_disable	.	This	macro	defined	in	the
arch/x86/include/asm/irqflags.h	and	expands	to	the	call	of	the:

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

And	you	already	must	remember	that		cli		instruction	clears	the	IF	flag	which	determines	ability	of	a	processor	to	handle
and	interrupt	or	an	exception.	Besides	the		local_irq_disable	,	as	you	already	can	know	there	is	an	inverse	macr	-
	local_irq_enable	.	This	macro	has	the	same	tracing	mechanism	and	very	similar	on	the		local_irq_enable	,	but	as	you	can
understand	from	its	name,	it	enables	interrupts	with	the		sti		instruction:

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

Now	we	know	how		local_irq_disable		and		local_irq_enable		work.	It	was	the	first	call	of	the		local_irq_disable		macro,	but
we	will	meet	these	macros	many	times	in	the	Linux	kernel	source	code.	But	for	now	we	are	in	the		start_kernel		function
from	the	init/main.c	and	we	just	disabled		local		interrupts.	Why	local	and	why	we	did	it?	Previously	kernel	provided	a
method	to	disable	interrupts	on	all	processors	and	it	was	called		cli	.	This	function	was	removed	and	now	we	have
	local_irq_{enabled,disable}		to	disable	or	enable	interrupts	on	the	current	processor.	After	we've	disabled	the	interrupts
with	the		local_irq_disable		macro,	we	set	the:

early_boot_irqs_disabled	=	true;

The		early_boot_irqs_disabled		variable	defined	in	the	include/linux/kernel.h:

extern	bool	early_boot_irqs_disabled;

and	used	in	the	different	places.	For	example	it	used	in	the		smp_call_function_many		function	from	the	kernel/smp.c	for	the
checking	possible	deadlock	when	interrupts	are	disabled:

WARN_ON_ONCE(cpu_online(this_cpu)	&&	irqs_disabled()

																					&&	!oops_in_progress	&&	!early_boot_irqs_disabled);

The	next	functions	after	the		local_disable_irq		are		boot_cpu_init		and		page_address_init	,	but	they	are	not	related	to	the
interrupts	and	exceptions	(more	about	this	functions	you	can	read	in	the	chapter	about	Linux	kernel	initialization	process).
The	next	is	the		setup_arch		function.	As	you	can	remember	this	function	located	in	the	arch/x86/kernel/setup.c	source	code
file	and	makes	initialization	of	many	different	architecture-dependent	stuff.	The	first	interrupts	related	function	which	we	can
see	in	the		setup_arch		is	the	-		early_trap_init		function.	This	function	defined	in	the	arch/x86/kernel/traps.c	and	fills
	Interrupt	Descriptor	Table		with	the	couple	of	entries:

Early	trap	initialization	during	kernel	initialization
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void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

#ifdef	CONFIG_X86_32

								set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

								load_idt(&idt_descr);

}

Here	we	can	see	calls	of	three	different	functions:

	set_intr_gate_ist	

	set_system_intr_gate_ist	

	set_intr_gate	

All	of	these	functions	defined	in	the	arch/x86/include/asm/desc.h	and	do	the	similar	thing	but	not	the	same.	The	first
	set_intr_gate_ist		function	inserts	new	an	interrupt	gate	in	the		IDT	.	Let's	look	on	its	implementation:

static	inline	void	set_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

}

First	of	all	we	can	see	the	check	that		n		which	is	vector	number	of	the	interrupt	is	not	greater	than		0xff		or	255.	We	need	to
check	it	because	we	remember	from	the	previous	part	that	vector	number	of	an	interrupt	must	be	between		0		and		255	.	In
the	next	step	we	can	see	the	call	of	the		_set_gate		function	that	sets	a	given	interrupt	gate	to	the		IDT		table:

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate_desc	s;

								pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

								write_idt_entry(idt_table,	gate,	&s);

								write_trace_idt_entry(gate,	&s);

}

Here	we	start	from	the		pack_gate		function	which	takes	clean		IDT		entry	represented	by	the		gate_desc		structure	and	fills	it
with	the	base	address	and	limit,	Interrupt	Stack	Table,	Privilege	level,	type	of	an	interrupt	which	can	be	one	of	the	following
values:

	GATE_INTERRUPT	

	GATE_TRAP	

	GATE_CALL	

	GATE_TASK	

and	set	the	present	bit	for	the	given		IDT		entry:

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

Linux	Inside

181Start	to	dive	into	interrupts

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
http://en.wikipedia.org/wiki/Interrupt_vector_table
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level


								gate->zero1													=	0;

								gate->type														=	type;

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

After	this	we	write	just	filled	interrupt	gate	to	the		IDT		with	the		write_idt_entry		macro	which	expands	to	the
	native_write_idt_entry		and	just	copy	the	interrupt	gate	to	the		idt_table		table	by	the	given	index:

#define	write_idt_entry(dt,	entry,	g)											native_write_idt_entry(dt,	entry,	g)

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}

where		idt_table		is	just	array	of		gate_desc	:

extern	gate_desc	idt_table[];

That's	all.	The	second		set_system_intr_gate_ist		function	has	only	one	difference	from	the		set_intr_gate_ist	:

static	inline	void	set_system_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0x3,	ist,	__KERNEL_CS);

}

Do	you	see	it?	Look	on	the	fourth	parameter	of	the		_set_gate	.	It	is		0x3	.	In	the		set_intr_gate		it	was		0x0	.	We	know	that
this	parameter	represent		DPL		or	privilege	level.	We	also	know	that		0		is	the	highest	privilge	level	and		3		is	the	lowest.Now
we	know	how		set_system_intr_gate_ist	,		set_intr_gate_ist	,		set_intr_gate		are	work	and	we	can	return	to	the
	early_trap_init		function.	Let's	look	on	it	again:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

We	set	two		IDT		entries	for	the		#DB		interrupt	and		int3	.	These	functions	takes	the	same	set	of	parameters:

vector	number	of	an	interrupt;
address	of	an	interrupt	handler;
interrupt	stack	table	index.

That's	all.	More	about	interrupts	and	handlers	you	will	know	in	the	next	parts.

It	is	the	end	of	the	second	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We	saw	the	some	theory	in	the
previous	part	and	started	to	dive	into	interrupts	and	exceptions	handling	in	the	current	part.	We	have	started	from	the
earliest	parts	in	the	Linux	kernel	source	code	which	are	related	to	the	interrupts.	In	the	next	part	we	will	continue	to	dive	into
this	interesting	theme	and	will	know	more	about	interrupt	handling	process.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Conclusion
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Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

IDT
Protected	mode
List	of	x86	calling	conventions
8086
Long	mode
NX
Extended	Feature	Enable	Register
Model-specific	register
Process	identifier
lockdep
irqflags	tracing
IF
Stack	canary
Union	type
thiscpu*	operations
vector	number
Interrupt	Stack	Table
Privilege	level
Previous	part
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This	is	the	third	part	of	the	chapter	about	an	interrupts	and	an	exceptions	handling	and	in	the	previous	part	we	stoped	in	the
	setup_arch		function	from	the	arch/x86/kernel/setup.c	on	the	setting	of	the	two	exceptions	handlers	for	the	two	following
exceptions:

	#DB		-	debug	exception,	transfers	control	from	the	interrupted	process	to	the	debug	handler;
	#BP		-	breakpoint	exception,	caused	by	the		int	3		instruction.

These	exceptions	allow	the		x86_64		architecture	to	have	early	exception	processing	for	the	purpose	of	debugging	via	the
kgdb.

As	you	can	remember	we	set	these	exceptions	handlers	in	the		early_trap_init		function:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

from	the	arch/x86/kernel/traps.c.	We	already	saw	implementation	of	the		set_intr_gate_ist		and		set_system_intr_gate_ist	
functions	in	the	previous	part	and	now	we	will	look	on	the	implementation	of	these	early	exceptions	handlers.

Ok,	we	set	the	interrupts	gates	in	the		early_trap_init		function	for	the		#DB		and		#BP		exceptions	and	now	time	is	to	look	on
their	handlers.	But	first	of	all	let's	look	on	these	exceptions.	The	first	exceptions	-		#DB		or	debug	exception	occurs	when	a
debug	event	occurs,	for	example	attempt	to	change	the	contents	of	a	debug	register.	Debug	registers	are	special	registers
which	present	in	processors	starting	from	the	Intel	80386	and	as	you	can	understand	from	its	name	they	are	used	for
debugging.	These	registers	allow	to	set	breakpoints	on	the	code	and	read	or	write	data	to	trace,	thus	tracking	the	place	of
errors.	The	debug	registers	are	privileged	resources	available	and	the	program	in	either	real-address	or	protected	mode	at
	CPL		is		0	,	that's	why	we	have	used		set_intr_gate_ist		for	the		#DB	,	but	not	the		set_system_intr_gate_ist	.	The	verctor
number	of	the		#DB		exceptions	is		1		(we	pass	it	as		X86_TRAP_DB	)	and	has	no	error	code:

----------------------------------------------------------------------------------------------

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																																|

----------------------------------------------------------------------------------------------

|1					|	#DB				|Reserved												|F/T		|NO								|																																						|

----------------------------------------------------------------------------------------------

The	second	is		#BP		or	breakpoint	exception	occurs	when	processor	executes	the	INT	3	instruction.	We	can	add	it	anywhere
in	our	code,	for	example	let's	look	on	the	simple	program:

//	breakpoint.c

#include	<stdio.h>

int	main()	{

				int	i;

				while	(i	<	6){

Interrupts	and	Interrupt	Handling.	Part	3.
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								printf("i	equal	to:	%d\n",	i);

								__asm__("int3");

								++i;

				}

}

If	we	will	compile	and	run	this	program,	we	will	see	following	output:

$	gcc	breakpoint.c	-o	breakpoint

i	equal	to:	0

Trace/breakpoint	trap

But	if	will	run	it	with	gdb,	we	will	see	our	breakpoint	and	can	continue	execution	of	our	program:

$	gdb	breakpoint

...

...

...

(gdb)	run

Starting	program:	/home/alex/breakpoints	

i	equal	to:	0

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	1

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	2

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

...

...

...

Now	we	know	a	little	about	these	two	exceptions	and	we	can	move	on	to	consideration	of	their	handlers.

As	you	can	note,	the		set_intr_gate_ist		and		set_system_intr_gate_ist		functions	takes	an	addresses	of	the	exceptions
handlers	in	the	second	parameter:

	&debug	;
	&int3	.

You	will	not	find	these	functions	in	the	C	code.	All	that	can	be	found	in	in	the		*.c/*.h		files	only	definition	of	this	functions	in
the	arch/x86/include/asm/traps.h:

asmlinkage	void	debug(void);

asmlinkage	void	int3(void);

But	we	can	see		asmlinkage		descriptor	here.	The		asmlinkage		is	the	special	specificator	of	the	gcc.	Actually	for	a		C	
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functions	which	are	will	be	called	from	assembly,	we	need	in	explicit	declaration	of	the	function	calling	convention.	In	our
case,	if	function	maked	with		asmlinkage		descriptor,	then		gcc		will	compile	the	function	to	retrieve	parameters	from	stack.
So,	both	handlers	are	defined	in	the	arch/x86/kernel/entry_64.S	assembly	source	code	file	with	the		idtentry		macro:

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

Actually		debug		and		int3		are	not	interrupts	handlers.	Remember	that	before	we	can	execute	an	interrupt/exception
handler,	we	need	to	do	some	preparations	as:

When	an	interrupt	or	exception	occured,	the	processor	uses	an	exception	or	interrupt	vector	as	an	index	to	a	descriptor
in	the		IDT	;
In	legacy	mode		ss:esp		registers	are	pushed	on	the	stack	only	if	privilege	level	changed.	In	64-bit	mode		ss:rsp	
pushed	on	the	stack	everytime;
During	stack	switching	with		IST		the	new		ss		selector	is	forced	to	null.	Old		ss		and		rsp		are	pushed	on	the	new	stack.
The		rflags	,		cs	,		rip		and	error	code	pushed	on	the	stack;
Control	transfered	to	an	interrupt	handler;
After	an	interrupt	handler	will	finish	its	work	and	finishes	with	the		iret		instruction,	old		ss		will	be	poped	from	the	stack
and	loaded	to	the		ss		register.
	ss:rsp		will	be	popped	from	the	stack	unconditionally	in	the	64-bit	mode	and	will	be	popped	only	if	there	is	a	privilege
level	change	in	legacy	mode.
	iret		instruction	will	restore		rip	,		cs		and		rflags	;
Interrupted	program	will	continue	its	execution.

				+--------------------+

+40	|								ss										|

+32	|							rsp										|

+24	|						rflags								|

+16	|								cs										|

	+8	|							rip										|

		0	|				error	code						|

				+--------------------+

Now	we	can	see	on	the	preparations	before	a	process	will	transfer	control	to	an	interrupt/exception	handler	from	practical
side.	As	I	already	wrote	above	the	first	thirteen	exceptions	handlers	defined	in	the	arch/x86/kernel/entry_64.S	assembly	file
with	the	idtentry	macro:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

This	macro	defines	an	exception	entry	point	and	as	we	can	see	it	takes		five		arguments:

	sym		-	defines	global	symbol	with	the		.globl	name	.
	do_sym		-	an	interrupt	handler.
	has_error_code:req		-	information	about	error	code,	The		:req		qualifier	tells	the	assembler	that	the	argument	is
required;
	paranoid		-	shows	us	how	we	need	to	check	current	mode;
	shift_ist		-	shows	us	what's	stack	to	use;

As	we	can	see	our	exceptions	handlers	are	almost	the	same:

Linux	Inside

186Interrupt	handlers

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S#L967


idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

The	differences	are	only	in	the	global	name	and	name	of	exceptions	handlers.	Now	let's	look	how		idtentry		macro
implemented.	It	starts	from	the	two	checks:

				.if	\shift_ist	!=	-1	&&	\paranoid	==	0

				.error	"using	shift_ist	requires	paranoid=1"

				.endif

				.if	\has_error_code

				XCPT_FRAME

				.else

				INTR_FRAME

				.endif

First	check	makes	the	check	that	an	exceptions	uses		Interrupt	stack	table		and		paranoid		is	set,	in	other	way	it	emits	the
erorr	with	the	.error	directive.	The	second		if		clause	checks	existence	of	an	error	code	and	calls		XCPT_FRAME		or		INTR_FRAME	
macros	depends	on	it.	These	macros	just	expand	to	the	set	of	CFI	directives	which	are	used	by		GNU	AS		to	manage	call
frames.	The		CFI		directives	are	used	only	to	generate	dwarf2	unwind	information	for	better	backtraces	and	they	don't
change	any	code,	so	we	will	not	go	into	detail	about	it	and	from	this	point	I	will	skip	all	code	which	is	related	to	these
directives.	In	the	next	step	we	check	error	code	again	and	push	it	on	the	stack	if	an	exception	has	it	with	the:

.ifeq	\has_error_code

				pushq_cfi	$-1

.endif

The		pushq_cfi		macro	defined	in	the	arch/x86/include/asm/dwarf2.h	and	expands	to	the		pushq		instruction	which	pushes
given	error	code:

				.macro	pushq_cfi	reg

				pushq	\reg

				CFI_ADJUST_CFA_OFFSET	8

				.endm

Pay	attention	on	the		$-1	.	We	already	know	that	when	an	exception	occrus,	the	processor	pushes		ss	,		rsp	,		rflags	,		cs	
and		rip		on	the	stack:

#define	RIP								16*8

#define	CS								17*8

#define	EFLAGS				18*8

#define	RSP								19*8

#define	SS								20*8

With	the		pushq	\reg		we	denote	that	place	before	the		RIP		will	contain	error	code	of	an	exception:

#define	ORIG_RAX				15*8

The		ORIG_RAX		will	contain	error	code	of	an	exception,	IRQ	number	on	a	hardware	interrupt	and	system	call	number	on
system	call	entry.	In	the	next	step	we	can	see	thr		ALLOC_PT_GPREGS_ON_STACK		macro	which	allocates	space	for	the	15	general
purpose	registers	on	the	stack:
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.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

subq				$15*8+\addskip,	%rsp

CFI_ADJUST_CFA_OFFSET	15*8+\addskip

.endm

After	this	we	check		paranoid		and	if	it	is	set	we	check	first	three		CPL		bits.	We	compare	it	with	the		3		and	it	allows	us	to
know	did	we	come	from	userspace	or	not:

.if	\paranoid

		.if	\paranoid	==	1

				CFI_REMEMBER_STATE

				testl	$3,	CS(%rsp)

				jnz	1f

		.endif

		call	paranoid_entry

.else

		call	error_entry

.endif

If	we	came	from	userspace	we	jump	on	the	label		1		which	starts	from	the		call	error_entry		instruction.	The		error_entry	
saves	all	registers	in	the		pt_regs		structure	which	presetens	an	interrupt/exception	stack	frame	and	defined	in	the
arch/x86/include/uapi/asm/ptrace.h.	It	saves	common	and	extra	registers	on	the	stack	with	the:

SAVE_C_REGS	8

SAVE_EXTRA_REGS	8

from		rdi		to		r15		and	executes	swapgs	instruction.	This	instruction	provides	a	method	to	for	the	Linux	kernel	to	obtain	a
pointer	to	the	kernel	data	structures	and	save	the	user's		gsbase	.	After	this	we	will	exit	from	the		error_entry		with	the		ret	
instruction.	After	the		error_entry		finished	to	execute,	since	we	came	from	userspace	we	need	to	switch	on	kernel	interrupt
stack:

				movq	%rsp,%rdi

				call	sync_regs

We	just	save	all	registers	to	the		error_entry		in	the		error_entry	,	we	put	address	of	the		pt_regs		to	the		rdi		and	call
	sync_regs		function	from	the	arch/x86/kernel/traps.c:

asmlinkage	__visible	notrace	struct	pt_regs	*sync_regs(struct	pt_regs	*eregs)

{

				struct	pt_regs	*regs	=	task_pt_regs(current);

				*regs	=	*eregs;

				return	regs;

}

This	function	switchs	off	the		IST		stack	if	we	came	from	usermode.	After	this	we	switch	on	the	stack	which	we	got	from	the
	sync_regs	:

movq	%rax,%rsp

movq	%rsp,%rdi

and	put	pointer	of	the		pt_regs		again	in	the		rdi	,	and	in	the	last	step	we	call	an	exception	handler:

call	\do_sym
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So,	realy	exceptions	handlers	are		do_debug		and		do_int3		functions.	We	will	see	these	function	in	this	part,	but	little	later.
First	of	all	let's	look	on	the	preparations	before	a	processor	will	transfer	control	to	an	interrupt	handler.	In	another	way	if
	paranoid		is	set,	but	it	is	not	1,	we	call		paranoid_entry		which	makes	almost	the	same	that		error_entry	,	but	it	checks
current	mode	with	more	slow	but	accurate	way:

ENTRY(paranoid_entry)

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				...

				...

				movl	$MSR_GS_BASE,%ecx

				rdmsr

				testl	%edx,%edx

				js	1f				/*	negative	->	in	kernel	*/

				SWAPGS

				...

				...

				ret

END(paranoid_entry)

If		edx		wll	be	negative,	we	are	in	the	kernel	mode.	As	we	store	all	registers	on	the	stack,	check	that	we	are	in	the	kernel
mode,	we	need	to	setup		IST		stack	if	it	is	set	for	a	given	exception,	call	an	exception	handler	and	restore	the	exception
stack:

				.if	\shift_ist	!=	-1

				subq	$EXCEPTION_STKSZ,	CPU_TSS_IST(\shift_ist)

				.endif

				call	\do_sym

				.if	\shift_ist	!=	-1

				addq	$EXCEPTION_STKSZ,	CPU_TSS_IST(\shift_ist)

				.endif

The	last	step	when	an	exception	handler	will	finish	it's	work	all	registers	will	be	restored	from	the	stack	with	the
	RESTORE_C_REGS		and		RESTORE_EXTRA_REGS		macros	and	control	will	be	returned	an	interrupted	task.	That's	all.	Now	we	know
about	preparation	before	an	interrupt/exception	handler	will	start	to	execute	and	we	can	go	directly	to	the	implementation	of
the	handlers.

Both	handlers		do_debug		and		do_int3		defined	in	the	arch/x86/kernel/traps.c	source	code	file	and	have	two	similar	things:	All
interrupts/exceptions	handlers	marked	with	the		dotraplinkage		prefix	that	expands	to	the:

#define	dotraplinkage	__visible

#define	__visible	__attribute__((externally_visible))

which	tells	to	compiler	that	something	else	uses	this	function	(in	our	case	these	functions	are	called	from	the	assembly
interrupt	preparation	code).	And	also	they	takes	two	parameters:

pointer	to	the		pt_regs		structure	which	contains	registers	of	the	interrupted	task;
error	code.

First	of	all	let's	consider		do_debug		handler.	This	function	starts	from	the	getting	previous	state	with	the		ist_enter		function
from	the	arch/x86/kernel/traps.c.	We	call	it	because	we	need	to	know,	did	we	come	to	the	interrupt	handler	from	the	kernel

Implementation	of	ainterrupts	and	exceptions	handlers
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mode	or	user	mode.

prev_state	=	ist_enter(regs);

The		ist_enter		function	returns	previous	state	context	state	and	executes	a	couple	preprartions	before	we	continue	to
handle	an	exception.	It	starts	from	the	check	of	the	previous	mode	with	the		user_mode_vm		macro.	It	takes		pt_regs		structure
which	contains	a	set	of	registers	of	the	interrupted	task	and	returns		1		if	we	came	from	userspace	and		0		if	we	came	from
kernel	space.	According	to	the	previous	mode	we	execute		exception_enter		if	we	are	from	the	userspace	or	inform	RCU	if
we	are	from	krenel	space:

...

if	(user_mode_vm(regs))	{

				prev_state	=	exception_enter();

}	else	{

				rcu_nmi_enter();

				prev_state	=	IN_KERNEL;

}

...

...

...

return	prev_state;

After	this	we	load	the		DR6		debug	registers	to	the		dr6		variable	with	the	call	of	the		get_debugreg		macro	from	the
arch/x86/include/asm/debugreg.h:

get_debugreg(dr6,	6);

dr6	&=	~DR6_RESERVED;

The		DR6		debug	register	is	debug	status	register	contains	information	about	the	reason	for	stopping	the		#DB		or	debug
exception	handler.	After	we	loaded	its	value	to	the		dr6		variable	we	filter	out	all	reserved	bits	(	4:12		bits).	In	the	next	step
we	check		dr6		register	and	previous	state	with	the	following		if		condition	expression:

if	(!dr6	&&	user_mode_vm(regs))

				user_icebp	=	1;

If		dr6		does	not	show	any	reasons	why	we	caught	this	trap	we	set		user_icebp		to	one	which	means	that	user-code	wants	to
get	SIGTRAP	signal.	In	the	next	step	we	check	was	it	kmemcheck	trap	and	if	yes	we	go	to	exit:

if	((dr6	&	DR_STEP)	&&	kmemcheck_trap(regs))

				goto	exit;

After	we	did	all	these	checks,	we	clear	the		dr6		register,	clear	the		DEBUGCTLMSR_BTF		flag	which	provides	single-step	on
branches	debugging,	set		dr6		register	for	the	current	thread	and	increase		debug_stack_usage		per-cpu)	variable	with	the:

set_debugreg(0,	6);

clear_tsk_thread_flag(tsk,	TIF_BLOCKSTEP);

tsk->thread.debugreg6	=	dr6;

debug_stack_usage_inc();

As	we	saved		dr6	,	we	can	allow	irqs:
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static	inline	void	preempt_conditional_sti(struct	pt_regs	*regs)

{

								preempt_count_inc();

								if	(regs->flags	&	X86_EFLAGS_IF)

																local_irq_enable();

}

more	about		local_irq_enabled		and	related	stuff	you	can	read	in	the	second	part	about	interrupts	handling	in	the	Linux
kernel.	In	the	next	step	we	check	the	previous	mode	was	virtual	8086	and	handle	the	trap:

if	(regs->flags	&	X86_VM_MASK)	{

				handle_vm86_trap((struct	kernel_vm86_regs	*)	regs,	error_code,	X86_TRAP_DB);

						preempt_conditional_cli(regs);

						debug_stack_usage_dec();

						goto	exit;

}

...

...

...

exit:

				ist_exit(regs,	prev_state);

If	we	came	not	from	the	virtual	8086	mode,	we	need	to	check		dr6		register	and	previous	mode	as	we	did	it	above.	Here	we
check	if	step	mode	debugging	is	enabled	and	we	are	not	from	the	user	mode,	we	enabled	step	mode	debugging	in	the		dr6	
copy	in	the	current	thread,	set		TIF_SINGLE_STEP		falg	and	re-enable	Trap	flag	for	the	user	mode:

if	((dr6	&	DR_STEP)	&&	!user_mode(regs))	{

								tsk->thread.debugreg6	&=	~DR_STEP;

								set_tsk_thread_flag(tsk,	TIF_SINGLESTEP);

								regs->flags	&=	~X86_EFLAGS_TF;

}

Then	we	get		SIGTRAP		signal	code:

si_code	=	get_si_code(tsk->thread.debugreg6);

and	send	it	for	user	icebp	traps:

if	(tsk->thread.debugreg6	&	(DR_STEP	|	DR_TRAP_BITS)	||	user_icebp)

				send_sigtrap(tsk,	regs,	error_code,	si_code);

preempt_conditional_cli(regs);

debug_stack_usage_dec();

exit:

				ist_exit(regs,	prev_state);

In	the	end	we	disabled		irqs	,	decrement	value	of	the		debug_stack_usage		and	exit	from	the	exception	handler	with	the
	ist_exit		function.

The	second	exception	handler	is		do_int3		defined	in	the	same	source	code	file	-	arch/x86/kernel/traps.c.	In	the		do_int3		we
makes	almost	the	same	that	in	the		do_debug		handler.	We	get	the	previous	state	with	the		ist_enter	,	increment	and
decrement	the		debug_stack_usage		per-cpu	variable,	enabled	and	disable	local	interrupts.	But	of	course	there	is	one
difference	between	these	two	handlers.	We	need	to	lock	and	than	sync	processor	cores	during	breakpoint	patching.

That's	all.
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It	is	the	end	of	the	third	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We	saw	the	initialization	of	the
Interrupt	descriptor	table	in	the	previous	part	with	the		#DB		and		#BP		gates	and	started	to	dive	into	preparation	before	control
will	be	transfered	to	an	exception	handler	and	implementation	of	some	interrupt	handlers	in	this	part.	In	the	next	part	we	will
continue	to	dive	into	this	theme	and	will	go	next	by	the		setup_arch		function	and	will	try	to	understand	interrupts	handling
related	stuff.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

Debug	registers
Intel	80385
INT	3
gcc
TSS
GNU	assembly	.error	directive
dwarf2
CFI	directives
IRQ
system	call
swapgs
SIGTRAP
Per-CPU	variables
kgdb
ACPI
Previous	part

Conclusion

Links
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This	is	fourth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in	the	previous	part	we	saw	first	early
	#DB		and		#BP		exceptions	handlers	from	the	arch/x86/kernel/traps.c.	We	stopped	on	the	right	after	the		early_trap_init	
function	that	called	in	the		setup_arch		function	which	defined	in	the	arch/x86/kernel/setup.c.	In	this	part	we	will	continue	to
dive	into	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	for		x86_64		and	continue	to	do	it	from	from	the	place
where	we	left	off	in	the	last	part.	First	thing	which	is	related	to	the	interrupts	and	exceptions	handling	is	the	setup	of	the		#PF	
or	page	fault	handler	with	the		early_trap_pf_init		function.	Let's	start	from	it.

The		early_trap_pf_init		function	defined	in	the	arch/x86/kernel/traps.c.	It	uses		set_intr_gate		macro	that	filles	Interrupt
Descriptor	Table	with	the	given	entry:

void	__init	early_trap_pf_init(void)

{

#ifdef	CONFIG_X86_64

									set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

}

This	macro	defined	in	the	arch/x86/include/asm/desc.h.	We	already	saw	macros	like	this	in	the	previous	part	-
	set_system_intr_gate		and		set_intr_gate_ist	.	This	macro	checks	that	given	vector	number	is	not	greater	than		255	
(maximum	vector	number)	and	calls		_set_gate		function	as		set_system_intr_gate		and		set_intr_gate_ist		did	it:

#define	set_intr_gate(n,	addr)																																		\

do	{																																																												\

								BUG_ON((unsigned)n	>	0xFF);																													\

								_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																		__KERNEL_CS);																																	\

								_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																								0,	0,	__KERNEL_CS);																					\

}	while	(0)

The		set_intr_gate		macro	takes	two	parameters:

vector	number	of	a	interrupt;
address	of	an	interrupt	handler;

In	our	case	they	are:

	X86_TRAP_PF		-		14	;
	page_fault		-	the	interrupt	handler	entry	point.

The		X86_TRAP_PF		is	the	element	of	enum	which	defined	in	the	arch/x86/include/asm/traprs.h:

enum	{

				...

				...

				...

Interrupts	and	Interrupt	Handling.	Part	4.
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				...

				X86_TRAP_PF,												/*	14,	Page	Fault	*/

				...

				...

				...

}

When	the		early_trap_pf_init		will	be	called,	the		set_intr_gate		will	be	expanded	to	the	call	of	the		_set_gate		which	will	fill
the		IDT		with	the	handler	for	the	page	fault.	Now	let's	look	on	the	implementation	of	the		page_fault		handler.	The
	page_fault		handler	defined	in	the	arch/x86/kernel/entry_64.S	assembly	source	code	file	as	all	exceptions	handlers.	Let's
look	on	it:

trace_idtentry	page_fault	do_page_fault	has_error_code=1

We	saw	in	the	previous	part	how		#DB		and		#BP		handlers	defined.	They	were	defined	with	the		idtentry		macro,	but	here	we
can	see		trace_idtentry	.	This	macro	defined	in	the	same	source	code	file	and	depends	on	the		CONFIG_TRACING		kernel
configuration	option:

#ifdef	CONFIG_TRACING

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	trace(\sym)	trace(\do_sym)	has_error_code=\has_error_code

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#else

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#endif

We	will	not	dive	into	exceptions	Tracing	now.	If		CONFIG_TRACING		is	not	set,	we	can	see	that		trace_idtentry		macro	just
expands	to	the	normal		idtentry	.	We	already	saw	implementation	of	the		idtentry		macro	in	the	previous	part,	so	let's	start
from	the		page_fault		exception	handler.

As	we	can	see	in	the		idtentry		definition,	the	handler	of	the		page_fault		is		do_page_fault		function	which	defined	in	the
arch/x86/mm/fault.c	and	as	all	exceptions	handlers	it	takes	two	arguments:

	regs		-		pt_regs		structure	that	holds	state	of	an	interrupted	process;
	error_code		-	error	code	of	the	page	fault	exception.

Let's	look	inside	this	function.	First	of	all	we	read	content	of	the	cr2	control	register:

dotraplinkage	void	notrace

do_page_fault(struct	pt_regs	*regs,	unsigned	long	error_code)

{

				unsigned	long	address	=	read_cr2();

				...

				...

				...

}

This	register	contains	a	linear	address	which	caused		page	fault	.	In	the	next	step	we	make	a	call	of	the		exception_enter	
function	from	the	include/linux/context_tracking.h.	The		exception_enter		and		exception_exit		are	functions	from	context
tracking	subsytem	in	the	Linux	kernel	used	by	the	RCU	to	remove	its	dependency	on	the	timer	tick	while	a	processor	runs
in	userspace.	Almost	in	the	every	exception	handler	we	will	see	similar	code:

enum	ctx_state	prev_state;
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prev_state	=	exception_enter();

...

...	//	exception	handler	here

...

exception_exit(prev_state);

The		exception_enter		function	checks	that		context	tracking		is	enabled	with	the		context_tracking_is_enabled		and	if	it	is	in
enabled	state,	we	get	previous	context	with	te		this_cpu_read		(more	about		this_cpu_*		operations	you	can	read	in	the
Documentation).	After	this	it	calls		context_tracking_user_exit		function	which	informs	that	Inform	the	context	tracking	that
the	processor	is	exiting	userspace	mode	and	entering	the	kernel:

static	inline	enum	ctx_state	exception_enter(void)

{

								enum	ctx_state	prev_ctx;

								if	(!context_tracking_is_enabled())

																return	0;

								prev_ctx	=	this_cpu_read(context_tracking.state);

								context_tracking_user_exit();

								return	prev_ctx;

}

The	state	can	be	one	of	the:

enum	ctx_state	{

				IN_KERNEL	=	0,

				IN_USER,

}	state;

And	in	the	end	we	return	previous	context.	Between	the		exception_enter		and		exception_exit		we	call	actual	page	fault
handler:

__do_page_fault(regs,	error_code,	address);

The		__do_page_fault		is	defined	in	the	same	source	code	file	as		do_page_fault		-	arch/x86/mm/fault.c.	In	the	bingging	of	the
	__do_page_fault		we	check	state	of	the	kmemcheck	checker.	The		kmemcheck		detects	warns	about	some	uses	of	uninitialized
memory.	We	need	to	check	it	because	page	fault	can	be	caused	by	kmemcheck:

if	(kmemcheck_active(regs))

								kmemcheck_hide(regs);

				prefetchw(&mm->mmap_sem);

After	this	we	can	see	the	call	of	the		prefetchw		which	executes	instruction	with	the	same	name	which	fetches
X86_FEATURE_3DNOW	to	get	exclusive	cache	line.	The	main	purpose	of	prefetching	is	to	hide	the	latency	of	a	memory
access.	In	the	next	step	we	check	that	we	got	page	fault	not	in	the	kernel	space	with	the	following	conditiion:

if	(unlikely(fault_in_kernel_space(address)))	{

...

...

...

}

where		fault_in_kernel_space		is:
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static	int	fault_in_kernel_space(unsigned	long	address)

{

								return	address	>=	TASK_SIZE_MAX;

}

The		TASK_SIZE_MAX		macro	expands	to	the:

#define	TASK_SIZE_MAX			((1UL	<<	47)	-	PAGE_SIZE)

or		0x00007ffffffff000	.	Pay	attention	on		unlikely		macro.	There	are	two	macros	in	the	Linux	kernel:

#define	likely(x)						__builtin_expect(!!(x),	1)

#define	unlikely(x)				__builtin_expect(!!(x),	0)

You	can	often	find	these	macros	in	the	code	of	the	Linux	kernel.	Main	purpose	of	these	macros	is	optimization.	Sometimes
this	situation	is	that	we	need	to	check	the	condition	of	the	code	and	we	know	that	it	will	rarely	be		true		or		false	.	With
these	macros	we	can	tell	to	the	compiler	about	this.	For	example

static	int	proc_root_readdir(struct	file	*file,	struct	dir_context	*ctx)

{

								if	(ctx->pos	<	FIRST_PROCESS_ENTRY)	{

																int	error	=	proc_readdir(file,	ctx);

																if	(unlikely(error	<=	0))

																								return	error;

...

...

...

}

Here	we	can	see		proc_root_readdir		function	which	will	be	called	when	the	Linux	VFS	needs	to	read	the		root		directory
contents.	If	condition	marked	with		unlikely	,	compiler	can	put		false		code	right	after	branching.	Now	let's	back	to	the	our
address	check.	Comparison	between	the	given	address	and	the		0x00007ffffffff000		will	give	us	to	know,	was	page	fault	in
the	kernel	mode	or	user	mode.	After	this	check	we	know	it.	After	this		__do_page_fault		routine	will	try	to	understand	the
problem	that	provoked	page	fault	exception	and	then	will	pass	address	to	the	approprite	routine.	It	can	be		kmemcheck		fault,
spurious	fault,	kprobes	fault	and	etc.	Will	not	dive	into	implementation	details	of	the	page	fault	exception	handler	in	this
part,	because	we	need	to	know	many	different	concepts	which	are	provided	by	the	Linux	kerne,	but	will	see	it	in	the	chapter
about	the	memory	management	in	the	Linux	kernel.

There	are	many	different	function	calls	after	the		early_trap_pf_init		in	the		setup_arch		function	from	different	kernel
subsystems,	but	there	are	no	one	interrupts	and	exceptions	handling	related.	So,	we	have	to	go	back	where	we	came	from
-		start_kernel		function	from	the	init/main.c.	The	first	things	after	the		setup_arch		is	the		trap_init		function	from	the
arch/x86/kernel/traps.c.	This	function	makes	initialization	of	the	remaining	exceptions	handlers	(remember	that	we	already
setup	3	handlres	for	the		#DB		-	debug	exception,		#BP		-	breakpoint	exception	and		#PF		-	page	fault	exception).	The
	trap_init		function	starts	from	the	check	of	the	Extended	Industry	Standard	Architecture:

#ifdef	CONFIG_EISA

								void	__iomem	*p	=	early_ioremap(0x0FFFD9,	4);

								if	(readl(p)	==	'E'	+	('I'<<8)	+	('S'<<16)	+	('A'<<24))

																EISA_bus	=	1;

								early_iounmap(p,	4);

Back	to	start_kernel
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#endif

Note	that	it	depends	on	the		CONFIG_EISA		kernel	configuration	parameter	which	represetns		EISA		support.	Here	we	use
	early_ioremap		function	to	map		I/O		memory	on	the	page	tables.	We	use		readl		function	to	read	first		4		bytes	from	the
mapped	region	and	if	they	are	equal	to		EISA		string	we	set		EISA_bus		to	one.	In	the	end	we	just	unmap	previously	mapped
region.	More	about		early_ioremap		you	can	read	in	the	part	which	describes	Fix-Mapped	Addresses	and	ioremap.

After	this	we	start	to	fill	the		Interrupt	Descriptor	Table		with	the	different	interrupt	gates.	First	of	all	we	set		#DE		or		Divide
Error		and		#NMI		or		Non-maskable	Interrupt	:

set_intr_gate(X86_TRAP_DE,	divide_error);

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

We	use		set_intr_gate		macro	to	set	the	interrupt	gate	for	the		#DE		exception	and		set_intr_gate_ist		for	the		#NMI	.	You	can
remember	that	we	already	used	these	macros	when	we	have	set	the	interrupts	gates	for	the	page	fault	handler,	debug
handler	and	etc,	you	can	find	explanation	of	it	in	the	previous	part.	After	this	we	setup	exception	gates	for	the	following
exceptions:

set_system_intr_gate(X86_TRAP_OF,	&overflow);

set_intr_gate(X86_TRAP_BR,	bounds);

set_intr_gate(X86_TRAP_UD,	invalid_op);

set_intr_gate(X86_TRAP_NM,	device_not_available);

Here	we	can	see:

	#OF		or		Overflow		exception.	This	exception	indicates	that	an	overflow	trap	occurred	when	an	special	INTO	instruction
was	executed;
	#BR		or		BOUND	Range	exceeded		exception.	This	exception	indeicates	that	a		BOUND-range-exceed		fault	occured	when	a
BOUND	instruction	was	executed;
	#UD		or		Invalid	Opcode		exception.	Occurs	when	a	processor	attempted	to	execute	invalid	or	reserved	opcode,
processor	attempted	to	execute	instruction	with	invalid	operand(s)	and	etc;
	#NM		or		Device	Not	Available		exception.	Occurs	when	the	processor	tries	to	execute		x87	FPU		floating	point	instruction
while		EM		flag	in	the	control	register		cr0		was	set.

In	the	next	step	we	set	the	interrupt	gate	for	the		#DF		or		Double	fault		exception:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

This	exception	occurs	when	processor	detected	a	second	exception	while	calling	an	exception	handler	for	a	prior
exception.	In	usual	way	when	the	processor	detects	another	exception	while	trying	to	call	an	exception	handler,	the	two
exceptions	can	be	handled	serially.	If	the	processor	cannot	handle	them	serially,	it	signals	the	double-fault	or		#DF	
exception.

The	following	set	of	the	interrupt	gates	is:

set_intr_gate(X86_TRAP_OLD_MF,	&coprocessor_segment_overrun);

set_intr_gate(X86_TRAP_TS,	&invalid_TSS);

set_intr_gate(X86_TRAP_NP,	&segment_not_present);

set_intr_gate_ist(X86_TRAP_SS,	&stack_segment,	STACKFAULT_STACK);

set_intr_gate(X86_TRAP_GP,	&general_protection);

set_intr_gate(X86_TRAP_SPURIOUS,	&spurious_interrupt_bug);

set_intr_gate(X86_TRAP_MF,	&coprocessor_error);

set_intr_gate(X86_TRAP_AC,	&alignment_check);
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Here	we	can	see	setup	for	the	following	exception	handlers:

	#CSO		or		Coprocessor	Segment	Overrun		-	this	exception	indicates	that	math	coprocessor	of	an	old	processor	detected	a
page	or	segment	violation.	Modern	processors	do	not	generate	this	exception
	#TS		or		Invalid	TSS		exception	-	indicates	that	there	was	an	error	related	to	the	Task	State	Segment.
	#NP		or		Segement	Not	Present		exception	indicates	that	the		present	flag		of	a	segment	or	gate	descriptor	is	clear	during
attempt	to	load	one	of		cs	,		ds	,		es	,		fs	,	or		gs		register.
	#SS		or		Stack	Fault		exception	indicates	one	of	the	stack	related	conditions	was	detected,	for	example	a	not-present
stack	segment	is	detected	when	attempting	to	load	the		ss		register.
	#GP		or		General	Protection		exception	indicates	that	the	processor	detected	one	of	a	class	of	protection	violations
called	general-protection	violations.	There	are	many	different	conditions	that	can	cause	general-procetion	exception.
For	example	loading	the		ss	,		ds	,		es	,		fs	,	or		gs		register	with	a	segment	selector	for	a	system	segment,	writing	to	a
code	segment	or	a	read-only	data	segment,	referencing	an	entry	in	the		Interrupt	Descriptor	Table		(following	an
interrupt	or	exception)	that	is	not	an	interrupt,	trap,	or	task	gate	and	many	many	more.
	Spurious	Interrupt		-	a	hardware	interrupt	that	is	unwanted.
	#MF		or		x87	FPU	Floating-Point	Error		exception	caused	when	the	x87	FPU	has	detected	a	floating	point	error.
	#AC		or		Alignment	Check		exception	Indicates	that	the	processor	detected	an	unaligned	memory	operand	when
alignment	checking	was	enabled.

After	that	we	setup	this	exception	gates,	we	can	see	setup	of	the		Machine-Check		exception:

#ifdef	CONFIG_X86_MCE

				set_intr_gate_ist(X86_TRAP_MC,	&machine_check,	MCE_STACK);

#endif

Note	that	it	depends	on	the		CONFIG_X86_MCE		kernel	configuration	option	and	indicates	that	the	processor	detected	an
internal	machine	error	or	a	bus	error,	or	that	an	external	agent	detected	a	bus	error.	The	next	exception	gate	is	for	the
SIMD	Floating-Point	exception:

set_intr_gate(X86_TRAP_XF,	&simd_coprocessor_error);

which	indicates	the	processor	has	detected	an		SSE		or		SSE2		or		SSE3		SIMD	floating-point	exception.	There	are	six	classes
of	numeric	exception	conditions	that	can	occur	while	executing	an	SIMD	floating-point	instruction:

Invalid	operation
Divide-by-zero
Denormal	operand
Numeric	overflow
Numeric	underflow
Inexact	result	(Precision)

In	the	next	step	we	fill	the		used_vectors		array	which	defined	in	the	arch/x86/include/asm/desc.h	header	file	and	represents
	bitmap	:

DECLARE_BITMAP(used_vectors,	NR_VECTORS);

of	the	first		32		interrupts	(more	about	bitmaps	in	the	Linux	kernel	you	can	read	in	the	part	which	describes	cpumasks	and
bitmaps)

for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)
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				set_bit(i,	used_vectors)

where		FIRST_EXTERNAL_VECTOR		is:

#define	FIRST_EXTERNAL_VECTOR											0x20

After	this	we	setup	the	interrupt	gate	for	the		ia32_syscall		and	add		0x80		to	the		used_vectors		bitmap:

#ifdef	CONFIG_IA32_EMULATION

								set_system_intr_gate(IA32_SYSCALL_VECTOR,	ia32_syscall);

								set_bit(IA32_SYSCALL_VECTOR,	used_vectors);

#endif

There	is		CONFIG_IA32_EMULATION		kernel	configuration	option	on		x86_64		Linux	kernels.	This	option	provides	ability	to	execute
32-bit	processes	in	compatibility-mode.	In	the	next	parts	we	will	see	how	it	works,	in	the	meantime	we	need	only	to	know
that	there	is	yet	another	interrupt	gate	in	the		IDT		with	the	vector	number		0x80	.	In	the	next	step	we	maps		IDT		to	the	fixmap
area:

__set_fixmap(FIX_RO_IDT,	__pa_symbol(idt_table),	PAGE_KERNEL_RO);

idt_descr.address	=	fix_to_virt(FIX_RO_IDT);

and	write	its	address	to	the		idt_descr.address		(more	about	fix-mapped	addresses	you	can	read	in	the	second	part	of	the
Linux	kernel	memory	management	chapter).	After	this	we	can	see	the	call	of	the		cpu_init		function	that	defined	in	the
arch/x86/kernel/cpu/common.c.	This	function	makes	initialization	of	the	all		per-cpu		state.	In	the	beginnig	of	the		cpu_init	
we	do	the	following	things:	First	of	all	we	wait	while	current	cpu	is	initialized	and	than	we	call	the		cr4_init_shadow		function
which	stores	shadow	copy	of	the		cr4		control	register	for	the	current	cpu	and	load	CPU	microcode	if	need	with	the	following
function	calls:

wait_for_master_cpu(cpu);

cr4_init_shadow();

load_ucode_ap();

Next	we	get	the		Task	State	Segement		for	the	current	cpu	and		orig_ist		structure	which	represents	origin		Interrupt	Stack
Table		values	with	the:

t	=	&per_cpu(cpu_tss,	cpu);

oist	=	&per_cpu(orig_ist,	cpu);

As	we	got	values	of	the		Task	State	Segement		and		Interrupt	Stack	Table		for	the	current	processor,	we	clear	following	bits	in
the		cr4		control	register:

cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

with	this	we	disable		vm86		extension,	virtual	interrupts,	timestamp	(RDTSC	can	only	be	executed	with	the	highest	privilege)
and	debug	extension.	After	this	we	reload	the		Glolbal	Descripto	Table		and		Interrupt	Descriptor	table		with	the:

				switch_to_new_gdt(cpu);

				loadsegment(fs,	0);

				load_current_idt();
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After	this	we	setup	array	of	the	Thread-Local	Storage	Descriptors,	configure	NX	and	load	CPU	microcode.	Now	is	time	to
setup	and	load		per-cpu		Task	State	Segements.	We	are	going	in	a	loop	through	the	all	exception	stack	which	is
	N_EXCEPTION_STACKS		or		4		and	fill	it	with		Interrupt	Stack	Tables	:

				if	(!oist->ist[0])	{

								char	*estacks	=	per_cpu(exception_stacks,	cpu);

								for	(v	=	0;	v	<	N_EXCEPTION_STACKS;	v++)	{

												estacks	+=	exception_stack_sizes[v];

												oist->ist[v]	=	t->x86_tss.ist[v]	=

																				(unsigned	long)estacks;

												if	(v	==	DEBUG_STACK-1)

																per_cpu(debug_stack_addr,	cpu)	=	(unsigned	long)estacks;

								}

				}

As	we	have	filled		Task	State	Segements		with	the		Interrupt	Stack	Tables		we	can	set		TSS		descriptor	for	the	current
processor	and	load	it	with	the:

set_tss_desc(cpu,	t);

load_TR_desc();

where		set_tss_desc		macro	from	the	arch/x86/include/asm/desc.h	writes	given	descriptor	to	the		Global	Descriptor	Table		of
the	given	processor:

#define	set_tss_desc(cpu,	addr)	__set_tss_desc(cpu,	GDT_ENTRY_TSS,	addr)

static	inline	void	__set_tss_desc(unsigned	cpu,	unsigned	int	entry,	void	*addr)

{

								struct	desc_struct	*d	=	get_cpu_gdt_table(cpu);

								tss_desc	tss;

								set_tssldt_descriptor(&tss,	(unsigned	long)addr,	DESC_TSS,

																														IO_BITMAP_OFFSET	+	IO_BITMAP_BYTES	+

																														sizeof(unsigned	long)	-	1);

								write_gdt_entry(d,	entry,	&tss,	DESC_TSS);

}

and		load_TR_desc		macro	expands	to	the		ltr		or		Load	Task	Register		instruction:

#define	load_TR_desc()																										native_load_tr_desc()

static	inline	void	native_load_tr_desc(void)

{

								asm	volatile("ltr	%w0"::"q"	(GDT_ENTRY_TSS*8));

}

In	the	end	of	the		trap_init		function	we	can	see	the	following	code:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

...

...

...

#ifdef	CONFIG_X86_64

								memcpy(&nmi_idt_table,	&idt_table,	IDT_ENTRIES	*	16);

								set_nmi_gate(X86_TRAP_DB,	&debug);

								set_nmi_gate(X86_TRAP_BP,	&int3);

#endif
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Here	we	copy		idt_table		to	the		nmi_dit_table		and	setup	exception	handlers	for	the		#DB		or		Debug	exception		and		#BR		or
	Breakpoint	exception	.	You	can	remember	that	we	already	set	these	interrupt	gates	in	the	previous	part,	so	why	do	we	need
to	setup	it	again?	We	setup	it	again	because	when	we	initialized	it	before	in	the		early_trap_init		function,	the		Task	State
Segement		was	not	ready	yet,	but	now	it	is	ready	after	the	call	of	the		cpu_init		function.

That's	all.	Soon	we	will	consider	all	handlers	of	these	interrupts/exceptions.

It	is	the	end	of	the	fourth	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We	saw	the	initialization	of	the
Task	State	Segment	in	this	part	and	initialization	of	the	different	interrupt	handlers	as		Divide	Error	,		Page	Fault		excetpion
and	etc.	You	can	noted	that	we	saw	just	initialization	stuf,	and	will	dive	into	details	about	handlers	for	these	exceptions.	In
the	next	part	we	will	start	to	do	it.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

page	fault
Interrupt	Descriptor	Table
Tracing
cr2
RCU
thiscpu*	operations
kmemcheck
prefetchw
3DNow
CPU	caches
VFS
Linux	kernel	memory	management
Fix-Mapped	Addresses	and	ioremap
Extended	Industry	Standard	Architecture
INT	isntruction
INTO
BOUND
opcode
control	register
x87	FPU
MCE	exception
SIMD
cpumasks	and	bitmaps
NX
Task	State	Segment
Previous	part

Conclusion

Links
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This	is	the	fifth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in	the	previous	part	we	stopped	on
the	setting	of	interrupt	gates	to	the	Interrupt	descriptor	Table.	We	did	it	in	the		trap_init		function	from	the
arch/x86/kernel/traps.c	source	code	file.	We	saw	only	setting	of	these	interrupt	gates	in	the	previous	part	and	in	the	current
part	we	will	see	implementation	of	the	exception	handlers	for	these	gates.	The	preparation	before	an	exception	handler	will
be	executed	is	in	the	arch/x86/entry/entry_64.S	assembly	file	and	occurs	in	the	idtentry	macro	that	defines	exceptions	entry
points:

idtentry	divide_error																				do_divide_error																			has_error_code=0

idtentry	overflow																								do_overflow																							has_error_code=0

idtentry	invalid_op																								do_invalid_op																			has_error_code=0

idtentry	bounds																												do_bounds																							has_error_code=0

idtentry	device_not_available												do_device_not_available											has_error_code=0

idtentry	coprocessor_segment_overrun				do_coprocessor_segment_overrun	has_error_code=0

idtentry	invalid_TSS																				do_invalid_TSS																			has_error_code=1

idtentry	segment_not_present												do_segment_not_present											has_error_code=1

idtentry	spurious_interrupt_bug												do_spurious_interrupt_bug							has_error_code=0

idtentry	coprocessor_error																do_coprocessor_error											has_error_code=0

idtentry	alignment_check																do_alignment_check															has_error_code=1

idtentry	simd_coprocessor_error												do_simd_coprocessor_error							has_error_code=0

The		idtentry		macro	does	following	preparation	before	an	actual	exception	handler	(	do_divide_error		for	the		divide_error	,
	do_overflow		for	the		overflow		and	etc.)	will	get	control.	In	another	words	the		idtentry		macro	allocates	place	for	the
registers	(pt_regs	structure)	on	the	stack,	pushes	dummy	error	code	for	the	stack	consistency	if	an	interrupt/exception	has
no	error	code,	checks	the	segment	selector	in	the		cs		segment	register	and	switches	depends	on	the	previous
state(userspace	or	kernelspace).	After	all	of	these	preparations	it	makes	a	call	of	an	actual	interrupt/exception	handler:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				...

				...

				...

				call				\do_sym

				...

				...

				...

END(\sym)

.endm

After	an	exception	handler	will	finish	its	work,	the		idtentry		macro	restores	stack	and	general	purpose	registers	of	an
interrupted	task	and	executes	iret	instruction:

ENTRY(paranoid_exit)

				...

				...

				...

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				REMOVE_PT_GPREGS_FROM_STACK	8

				INTERRUPT_RETURN

END(paranoid_exit)

where		INTERRUPT_RETURN		is:

Interrupts	and	Interrupt	Handling.	Part	5.

Implementation	of	exception	handlers
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#define	INTERRUPT_RETURN				jmp	native_iret

...

ENTRY(native_iret)

.global	native_irq_return_iret

native_irq_return_iret:

iretq

More	about	the		idtentry		macro	you	can	read	in	the	thirt	part	of	the	http://0xax.gitbooks.io/linux-
insides/content/interrupts/interrupts-3.html	chapter.	Ok,	now	we	saw	the	preparation	before	an	exception	handler	will	be
executed	and	now	time	to	look	on	the	handlers.	First	of	all	let's	look	on	the	following	handlers:

divide_error
overflow
invalid_op
coprocessor_segment_overrun
invalid_TSS
segment_not_present
stack_segment
alignment_check

All	these	handlers	defined	in	the	arch/x86/kernel/traps.c	source	code	file	with	the		DO_ERROR		macro:

DO_ERROR(X86_TRAP_DE,					SIGFPE,		"divide	error",																divide_error)

DO_ERROR(X86_TRAP_OF,					SIGSEGV,	"overflow",																				overflow)

DO_ERROR(X86_TRAP_UD,					SIGILL,		"invalid	opcode",														invalid_op)

DO_ERROR(X86_TRAP_OLD_MF,	SIGFPE,		"coprocessor	segment	overrun",	coprocessor_segment_overrun)

DO_ERROR(X86_TRAP_TS,					SIGSEGV,	"invalid	TSS",																	invalid_TSS)

DO_ERROR(X86_TRAP_NP,					SIGBUS,		"segment	not	present",									segment_not_present)

DO_ERROR(X86_TRAP_SS,					SIGBUS,		"stack	segment",															stack_segment)

DO_ERROR(X86_TRAP_AC,					SIGBUS,		"alignment	check",													alignment_check)

As	we	can	see	the		DO_ERROR		macro	takes	4	parameters:

Vector	number	of	an	interrupt;
Signal	number	which	will	be	sent	to	the	interrupted	process;
String	which	describes	an	exception;
Exception	handler	entry	point.

This	macro	defined	in	the	same	souce	code	file	and	expands	to	the	function	with	the		do_handler		name:

#define	DO_ERROR(trapnr,	signr,	str,	name)																														\

dotraplinkage	void	do_##name(struct	pt_regs	*regs,	long	error_code)					\

{																																																																							\

								do_error_trap(regs,	error_code,	str,	trapnr,	signr);												\

}

Note	on	the		##		tokens.	This	is	special	feature	-	GCC	macro	Concatenation	which	concatenates	two	given	strings.	For
example,	first		DO_ERROR		in	our	example	will	expands	to	the:

dotraplinkage	void	do_divide_error(struct	pt_regs	*regs,	long	error_code)					\

{

				...

}

We	can	see	that	all	functions	which	are	generated	by	the		DO_ERROR		macro	just	make	a	call	of	the		do_error_trap		function
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from	the	arch/x86/kernel/traps.c.	Let's	look	on	implementation	of	the		do_error_trap		function.

The		do_error_trap		function	starts	and	ends	from	the	two	following	functions:

enum	ctx_state	prev_state	=	exception_enter();

...

...

...

exception_exit(prev_state);

from	the	include/linux/context_tracking.h.	The	context	tracking	in	the	Linux	kernel	subsystem	which	provide	kernel
boundaries	probes	to	keep	track	of	the	transitions	between	level	contexts	with	two	basic	initial	contexts:		user		or		kernel	.
The		exception_enter		function	checks	that	context	tracking	is	enabled.	After	this	if	it	is	enabled,	the		exception_enter		reads
previous	context	and	compares	it	with	the		CONTEXT_KERNEL	.	If	the	previous	context	is		user	,	we	call		context_tracking_exit	
function	from	the	kernel/context_tracking.c	which	inform	the	context	tracking	subsystem	that	a	processor	is	exiting	user
mode	and	entering	the	kernel	mode:

if	(!context_tracking_is_enabled())

				return	0;

prev_ctx	=	this_cpu_read(context_tracking.state);

if	(prev_ctx	!=	CONTEXT_KERNEL)

				context_tracking_exit(prev_ctx);

return	prev_ctx;

If	previous	context	is	non		user	,	we	just	return	it.	The		pre_ctx		has		enum	ctx_state		type	which	defined	in	the
include/linux/context_tracking_state.h	and	looks	as:

enum	ctx_state	{

				CONTEXT_KERNEL	=	0,

				CONTEXT_USER,

				CONTEXT_GUEST,

}	state;

The	second	function	is		exception_exit		defined	in	the	same	include/linux/context_tracking.h	file	and	checks	that	context
tracking	is	enabled	and	call	the		contert_tracking_enter		function	if	the	previous	context	was		user	:

static	inline	void	exception_exit(enum	ctx_state	prev_ctx)

{

				if	(context_tracking_is_enabled())	{

								if	(prev_ctx	!=	CONTEXT_KERNEL)

												context_tracking_enter(prev_ctx);

				}

}

The		context_tracking_enter		function	informs	the	context	tracking	subsystem	that	a	processor	is	going	to	enter	to	the	user
mode	from	the	kernel	mode.	We	can	see	the	following	code	between	the		exception_enter		and		exception_exit	:

if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	signr)	!=

								NOTIFY_STOP)	{

				conditional_sti(regs);

				do_trap(trapnr,	signr,	str,	regs,	error_code,
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								fill_trap_info(regs,	signr,	trapnr,	&info));

}

First	of	all	it	calls	the		notify_die		function	which	defined	in	the	kernel/notifier.c.	To	get	notified	for	kernel	panic,	kernel	oops,
Non-Maskable	Interrupt	or	other	events	the	caller	needs	to	insert	itself	in	the		notify_die		chain	and	the		notify_die		function
does	it.	The	Linux	kernel	has	special	mechanism	that	allows	kernel	to	ask	when	something	happens	and	this	mechanism
called		notifiers		or		notifier	chains	.	This	mechanism	used	for	example	for	the		USB		hotplug	events	(look	on	the
drivers/usb/core/notify.c),	for	the	memory	hotplug	(look	on	the	include/linux/memory.h,	the		hotplug_memory_notifier		macro
and	etc...),	system	reboots	and	etc.	A	notifier	chain	is	thus	a	simple,	singly-linked	list.	When	a	Linux	kernel	subsystem
wants	to	be	notified	of	specific	events,	it	fills	out	a	special		notifier_block		structure	and	passes	it	to	the
	notifier_chain_register		function.	An	event	can	be	sent	with	the	call	of	the		notifier_call_chain		function.	First	of	all	the
	notify_die		function	fills		die_args		structure	with	the	trap	number,	trap	string,	registers	and	other	values:

struct	die_args	args	=	{

							.regs			=	regs,

							.str				=	str,

							.err				=	err,

							.trapnr	=	trap,

							.signr		=	sig,

}

and	returns	the	result	of	the		atomic_notifier_call_chain		function	with	the		die_chain	:

static	ATOMIC_NOTIFIER_HEAD(die_chain);

return	atomic_notifier_call_chain(&die_chain,	val,	&args);

which	just	expands	to	the		atomit_notifier_head		structure	that	contains	lock	and		notifier_block	:

struct	atomic_notifier_head	{

								spinlock_t	lock;

								struct	notifier_block	__rcu	*head;

};

The		atomic_notifier_call_chain		function	calls	each	function	in	a	notifier	chain	in	turn	and	returns	the	value	of	the	last
notifier	function	called.	If	the		notify_die		in	the		do_error_trap		does	not	return		NOTIFY_STOP		we	execute		conditional_sti	
function	from	the	arch/x86/kernel/traps.c	that	checks	the	value	of	the	interrupt	flag	and	enables	interrupt	depends	on	it:

static	inline	void	conditional_sti(struct	pt_regs	*regs)

{

								if	(regs->flags	&	X86_EFLAGS_IF)

																local_irq_enable();

}

more	about		local_irq_enable		macro	you	can	read	in	the	second	part	of	this	chapter.	The	next	and	last	call	in	the
	do_error_trap		is	the		do_trap		function.	First	of	all	the		do_trap		function	defined	the		tsk		variable	which	has		trak_struct	
type	and	represents	the	current	interrupted	process.	After	the	definition	of	the		tsk	,	we	can	see	the	call	of	the
	do_trap_no_signal		function:

struct	task_struct	*tsk	=	current;

if	(!do_trap_no_signal(tsk,	trapnr,	str,	regs,	error_code))

				return;

Linux	Inside

205Implementation	of	some	exception	handlers

https://github.com/torvalds/linux/tree/master/kernel/notifier.c
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://github.com/torvalds/linux/tree/master/drivers/usb/core/notify.c
https://en.wikipedia.org/wiki/Hot_swapping
https://github.com/torvalds/linux/tree/master/include/linux/memory.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_flag
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html


The		do_trap_no_signal		function	makes	two	checks:

Did	we	come	from	the	Virtual	8086	mode;
Did	we	come	from	the	kernelspace.

if	(v8086_mode(regs))	{

				...

}

if	(!user_mode(regs))	{

				...

}

return	-1;

We	will	not	consider	first	case	because	the	long	mode	does	not	support	the	Virtual	8086	mode.	In	the	second	case	we
invoke		fixup_exception		function	which	will	try	to	recover	a	fault	and		die		if	we	can't:

if	(!fixup_exception(regs))	{

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	trapnr;

				die(str,	regs,	error_code);

}

The		die		function	defined	in	the	arch/x86/kernel/dumpstack.c	source	code	file,	prints	useful	information	about	stack,
registers,	kernel	modules	and	caused	kernel	oops.	If	we	came	from	the	userspace	the		do_trap_no_signal		function	will
return		-1		and	the	execution	of	the		do_trap		function	will	continue.	If	we	passed	through	the		do_trap_no_signal		function	and
did	not	exit	from	the		do_trap		after	this,	it	means	that	previous	context	was	-		user	.	Most	exceptions	caused	by	the
processor	are	interpreted	by	Linux	as	error	conditions,	for	example	division	by	zero,	invalid	opcode	and	etc.	When	an
exception	occurs	the	Linux	kernel	sends	a	signal	to	the	interrupted	process	that	caused	the	exception	to	notify	it	of	an
incorrect	condition.	So,	in	the		do_trap		function	we	need	to	send	a	signal	with	the	given	number	(	SIGFPE		for	the	divide	error,
	SIGILL		for	the	overflow	exception	and	etc...).	First	of	all	we	save	error	code	and	vector	number	in	the	current	interrupts
process	with	the	filling		thread.error_code		and		thread_trap_nr	:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	trapnr;

After	this	we	make	a	check	do	we	need	to	print	information	about	unhandled	signals	for	the	interrupted	process.	We	check
that		show_unhandled_signals		variable	is	set,	that		unhandled_signal		function	from	the	kernel/signal.c	will	return	unhandled
signal(s)	and	printk	rate	limit:

#ifdef	CONFIG_X86_64

				if	(show_unhandled_signals	&&	unhandled_signal(tsk,	signr)	&&

								printk_ratelimit())	{

								pr_info("%s[%d]	trap	%s	ip:%lx	sp:%lx	error:%lx",

												tsk->comm,	tsk->pid,	str,

												regs->ip,	regs->sp,	error_code);

								print_vma_addr("	in	",	regs->ip);

								pr_cont("\n");

				}

#endif

And	send	a	given	signal	to	interrupted	process:

force_sig_info(signr,	info	?:	SEND_SIG_PRIV,	tsk);
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This	is	the	end	of	the		do_trap	.	We	just	saw	generic	implementation	for	eight	different	exceptions	which	are	defined	with	the
	DO_ERROR		macro.	Now	let's	look	on	another	exception	handlers.

The	next	exception	is		#DF		or		Double	fault	.	This	exception	occurrs	when	the	processor	detected	a	second	exception	while
calling	an	exception	handler	for	a	prior	exception.	We	set	the	trap	gate	for	this	exception	in	the	previous	part:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

Note	that	this	exception	runs	on	the		DOUBLEFAULT_STACK		Interrupt	Stack	Table	which	has	index	-		1	:

#define	DOUBLEFAULT_STACK	1

The		double_fault		is	handler	for	this	exception	and	defined	in	the	arch/x86/kernel/traps.c.	The		double_fault		handler	starts
from	the	definition	of	two	variables:	string	that	describes	excetpion	and	interrupted	process,	as	other	exception	handlers:

static	const	char	str[]	=	"double	fault";

struct	task_struct	*tsk	=	current;

The	handler	of	the	double	fault	exception	splitted	on	two	parts.	The	first	part	is	the	check	which	checks	that	a	fault	is	a		non-
IST		fault	on	the		espfix64		stack.	Actually	the		iret		instruction	restores	only	the	bottom		16		bits	when	returning	to	a		16		bit
segment.	The		espfix		feature	solves	this	problem.	So	if	the		non-IST		fault	on	the	espfix64	stack	we	modify	the	stack	to
make	it	look	like		General	Protection	Fault	:

struct	pt_regs	*normal_regs	=	task_pt_regs(current);

memmove(&normal_regs->ip,	(void	*)regs->sp,	5*8);

ormal_regs->orig_ax	=	0;

regs->ip	=	(unsigned	long)general_protection;

regs->sp	=	(unsigned	long)&normal_regs->orig_ax;

return;

In	the	second	case	we	do	almost	the	same	that	we	did	in	the	previous	excetpion	handlers.	The	first	is	the	call	of	the
	ist_enter		function	that	discards	previous	context,		user		in	our	case:

ist_enter(regs);

And	after	this	we	fill	the	interrupted	process	with	the	vector	number	of	the		Double	fault		excetpion	and	error	code	as	we	did
it	in	the	previous	handlers:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	X86_TRAP_DF;

Next	we	print	useful	information	about	the	double	fault	(PID	number,	registers	content):

#ifdef	CONFIG_DOUBLEFAULT

				df_debug(regs,	error_code);

#endif

Double	fault
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And	die:

				for	(;;)

								die(str,	regs,	error_code);

That's	all.

The	next	exception	is	the		#NM		or		Device	not	available	.	The		Device	not	available		exception	can	occur	depending	on
these	things:

The	processor	executed	an	x87	FPU	floating-point	instruction	while	the	EM	flag	in	control	register		cr0		was	set;
The	processor	executed	a		wait		or		fwait		instruction	while	the		MP		and		TS		flags	of	register		cr0		were	set;
The	processor	executed	an	x87	FPU,	MMX	or	SSE	instruction	while	the		TS		falg	in	control	register		cr0		was	set	and
the		EM		flag	is	clear.

The	handler	of	the		Device	not	available		exception	is	the		do_device_not_available		function	and	it	defined	in	the
arch/x86/kernel/traps.c	source	code	file	too.	It	starts	and	ends	from	the	getting	of	the	previous	context,	as	other	traps	which
we	saw	in	the	beginning	of	this	part:

enum	ctx_state	prev_state;

prev_state	=	exception_enter();

...

...

...

exception_exit(prev_state);

In	the	next	step	we	check	that		FPU		is	not	eager:

BUG_ON(use_eager_fpu());

When	we	switch	into	a	task	or	interrupt	we	may	avoid	loading	the		FPU		state.	If	a	task	will	use	it,	we	catch		Device	not
Available	exception		exception.	If	we	loading	the		FPU		state	during	task	switching,	the		FPU		is	eager.	In	the	next	step	we
check		cr0		control	register	on	the		EM		flag	which	can	show	us	is		x87		floating	point	unit	present	(flag	clear)	or	not	(flag	set):

#ifdef	CONFIG_MATH_EMULATION

				if	(read_cr0()	&	X86_CR0_EM)	{

								struct	math_emu_info	info	=	{	};

								conditional_sti(regs);

								info.regs	=	regs;

								math_emulate(&info);

								exception_exit(prev_state);

								return;

				}

#endif

If	the		x87		floating	point	unit	not	presented,	we	enable	interrupts	with	the		conditional_sti	,	fill	the		math_emu_info		(defined	in
the	arch/x86/include/asm/math_emu.h)	structure	with	the	registers	of	an	interrupt	task	and	call		math_emulate		function	from
the	arch/x86/math-emu/fpu_entry.c.	As	you	can	understand	from	function's	name,	it	emulates		X87	FPU		unit	(more	about	the
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	x87		we	will	know	in	the	special	chapter).	In	other	way,	if		X86_CR0_EM		flag	is	clear	which	means	that		x87	FPU		unit	is
presented,	we	call	the		fpu__restore		function	from	the	arch/x86/kernel/fpu/core.c	which	copies	the		FPU		registers	from	the
	fpustate		to	the	live	hardware	registers.	After	this		FPU		instructions	can	be	used:

fpu__restore(&current->thread.fpu);

The	next	exception	is	the		#GP		or		General	protection	fault	.	This	exception	occurs	when	the	processor	detected	one	of	a
class	of	protection	violations	called		general-protection	violations	.	It	can	be:

Exceeding	the	segment	limit	when	accessing	the		cs	,		ds	,		es	,		fs		or		gs		segments;
Loading	the		ss	,		ds	,		es	,		fs		or		gs		register	with	a	segment	selector	for	a	system	segment.;
Violating	any	of	the	privilege	rules;
and	other...

The	exception	handler	for	this	exception	is	the		do_general_protection		from	the	arch/x86/kernel/traps.c.	The
	do_general_protection		function	starts	and	ends	as	other	exception	handlers	from	the	getting	of	the	previous	context:

prev_state	=	exception_enter();

...

exception_exit(prev_state);

After	this	we	enable	interrupts	if	they	were	disabled	and	check	that	we	came	from	the	Virtual	8086	mode:

conditional_sti(regs);

if	(v8086_mode(regs))	{

				local_irq_enable();

				handle_vm86_fault((struct	kernel_vm86_regs	*)	regs,	error_code);

				goto	exit;

}

As	long	mode	does	not	support	this	mode,	we	will	not	consider	exception	handling	for	this	case.	In	the	next	step	check	that
previous	mode	was	kernel	mode	and	try	to	fix	the	trap.	If	we	can't	fix	the	current	general	protection	fault	exception	we	fill	the
interrupted	process	with	the	vector	number	and	error	code	of	the	exception	and	add	it	to	the		notify_die		chain:

if	(!user_mode(regs))	{

				if	(fixup_exception(regs))

								goto	exit;

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	X86_TRAP_GP;

				if	(notify_die(DIE_GPF,	"general	protection	fault",	regs,	error_code,

															X86_TRAP_GP,	SIGSEGV)	!=	NOTIFY_STOP)

								die("general	protection	fault",	regs,	error_code);

				goto	exit;

}

If	we	can	fix	exception	we	go	to	the		exit		label	which	exits	from	exception	state:

exit:

				exception_exit(prev_state);

General	protection	fault	exception	handler

Linux	Inside

209Implementation	of	some	exception	handlers

https://github.com/torvalds/linux/tree/master/arch/x86/kernel/fpu/core.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Virtual_8086_mode


If	we	came	from	user	mode	we	send		SIGSEGV		signal	to	the	interrupted	process	from	user	mode	as	we	did	it	in	the		do_trap	
function:

if	(show_unhandled_signals	&&	unhandled_signal(tsk,	SIGSEGV)	&&

								printk_ratelimit())	{

				pr_info("%s[%d]	general	protection	ip:%lx	sp:%lx	error:%lx",

								tsk->comm,	task_pid_nr(tsk),

								regs->ip,	regs->sp,	error_code);

				print_vma_addr("	in	",	regs->ip);

				pr_cont("\n");

}

force_sig_info(SIGSEGV,	SEND_SIG_PRIV,	tsk);

That's	all.

It	is	the	end	of	the	fifth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw	implementation	of	some	interrupt
handlers	in	this	part.	In	the	next	part	we	will	continue	to	dive	into	interrupt	and	exception	handlers	and	will	see	handler	for
the	Non-Maskable	Interrupts,	handling	of	the	math	coprocessor	and	SIMD	coprocessor	exceptions	and	many	many	more.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

Interrupt	descriptor	Table
iret	instruction
GCC	macro	Concatenation
kernel	panic
kernel	oops
Non-Maskable	Interrupt
hotplug
interrupt	flag
long	mode
signal
printk
coprocessor
SIMD
Interrupt	Stack	Table
PID
x87	FPU
control	register
MMX
Previous	part

Conclusion

Links
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It	is	sixth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we	saw
implementation	of	some	exception	handlers	for	the	General	Protection	Fault	exception,	divide	exception,	invalid	opcode
exceptions	and	etc.	As	I	wrote	in	the	previous	part	we	will	see	implementations	of	the	rest	exceptions	in	this	part.	We	will
see	implementation	of	the	following	handlers:

Non-Maskable	interrupt;
BOUND	Range	Exceeded	Exception;
Coprocessor	exception;
SIMD	coprocessor	exception.

in	this	part.	So,	let's	start.

A	Non-Maskable	interrupt	is	a	hardware	interrupt	that	cannot	be	ignore	by	standard	masking	techniques.	In	a	general	way,
a	non-maskable	interrupt	can	be	generated	in	either	of	two	ways:

External	hardware	asserts	the	non-maskable	interrupt	pin	on	the	CPU.
The	processor	receives	a	message	on	the	system	bus	or	the	APIC	serial	bus	with	a	delivery	mode		NMI	.

When	the	processor	receives	a		NMI		from	one	of	these	sources,	the	processor	handles	it	immediately	by	calling	the		NMI	
handler	pointed	to	by	interrupt	vector	which	has	number		2		(see	table	in	the	first	part).	We	already	filled	the	Interrupt
Descriptor	Table	with	the	vector	number,	address	of	the		nmi		interrupt	handler	and		NMI_STACK		Interrupt	Stack	Table	entry:

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

in	the		trap_init		function	which	defined	in	the	arch/x86/kernel/traps.c	source	code	file.	In	the	previous	parts	we	saw	that
entry	points	of	the	all	interrupt	handlers	are	defined	with	the:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

macro	from	the	arch/x86/entry/entry_64.S	assembly	source	code	file.	But	the	handler	of	the		Non-Maskable		interrupts	is	not
defined	with	this	macro.	It	has	own	entry	point:

ENTRY(nmi)

...

...

...

END(nmi)

Interrupts	and	Interrupt	Handling.	Part	6.

Non-maskable	interrupt	handler

Non-Maskable	interrupt	handling
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in	the	same	arch/x86/entry/entry_64.S	assembly	file.	Lets	dive	into	it	and	will	try	to	understand	how		Non-Maskable		interrupt
handler	works.	The		nmi		handlers	starts	from	the	call	of	the:

PARAVIRT_ADJUST_EXCEPTION_FRAME

macro	but	we	will	not	dive	into	details	about	it	in	this	part,	because	this	macro	related	to	the	Paravirtualization	stuff	which
we	will	see	in	another	chapter.	After	this	save	the	content	of	the		rdx		register	on	the	stack:

pushq				%rdx

And	allocated	check	that		cs		was	not	the	kernel	segment	when	an	non-maskable	interrupt	occurs:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

The		__KERNEL_CS		macro	defined	in	the	arch/x86/include/asm/segment.h	and	represented	second	descriptor	in	the	Global
Descriptor	Table:

#define	GDT_ENTRY_KERNEL_CS				2

#define	__KERNEL_CS				(GDT_ENTRY_KERNEL_CS*8)

more	about		GDT		you	can	read	in	the	second	part	of	the	Linux	kernel	booting	process	chapter.	If		cs		is	not	kernel	segment,
it	means	that	it	is	not	nested		NMI		and	we	jump	on	the		first_nmi		label.	Let's	consider	this	case.	First	of	all	we	put	address
of	the	current	stack	pointer	to	the		rdx		and	pushes		1		to	the	stack	in	the		first_nmi		label:

first_nmi:

				movq				(%rsp),	%rdx

				pushq				$1

Why	do	we	push		1		on	the	stack?	As	the	comment	says:		We	allow	breakpoints	in	NMIs	.	On	the	x86_64,	like	other
architectures,	the	CPU	will	not	execute	another		NMI		until	the	first		NMI		is	complete.	A		NMI		interrupt	finished	with	the	iret
instruction	like	other	interrupts	and	exceptions	do	it.	If	the		NMI		handler	triggers	either	a	page	fault	or	breakpoint	or	another
exception	which	are	use		iret		instruction	too.	If	this	happens	while	in		NMI		context,	the	CPU	will	leave		NMI		context	and	a
new		NMI		may	come	in.	The		iret		used	to	return	from	those	exceptions	will	re-enable		NMIs		and	we	will	get	nested	non-
maskable	interrupts.	The	problem	the		NMI		handler	will	not	return	to	the	state	that	it	was,	when	the	exception	triggered,	but
instead	it	will	return	to	a	state	that	will	allow	new		NMIs		to	preempt	the	running		NMI		handler.	If	another		NMI		comes	in	before
the	first	NMI	handler	is	complete,	the	new	NMI	will	write	all	over	the	preempted		NMIs		stack.	We	can	have	nested		NMIs	
where	the	next		NMI		is	using	the	top	of	the	stack	of	the	previous		NMI	.	It	means	that	we	cannot	execute	it	because	a	nested
non-maskable	interrupt	will	corrupt	stack	of	a	previous	non-maskable	interrupt.	That's	why	we	have	allocated	space	on	the
stack	for	temporary	variable.	We	will	check	this	variable	that	it	was	set	when	a	previous		NMI		is	executing	and	clear	if	it	is
not	nested		NMI	.	We	push		1		here	to	the	previously	allocated	space	on	the	stack	to	denote	that	a		non-maskable		interrupt
executed	currently.	Remember	that	when	and		NMI		or	another	exception	occurs	we	have	the	following	stack	frame:

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

+------------------------+
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and	also	an	error	code	if	an	exception	has	it.	So,	after	all	of	these	manipulations	our	stack	frame	will	look	like	this:

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

|									RDX												|

|										1													|

+------------------------+

In	the	next	step	we	allocate	yet	another		40		bytes	on	the	stack:

subq				$(5*8),	%rsp

and	pushes	the	copy	of	the	original	stack	frame	after	the	allocated	space:

.rept	5

pushq				11*8(%rsp)

.endr

with	the	.rept	assembly	directive.	We	need	in	the	copy	of	the	original	stack	frame.	Generally	we	need	in	two	copies	of	the
interrupt	stack.	First	is		copied		interrupts	stack:		saved		stack	frame	and		copied		stack	frame.	Now	we	pushes	original	stack
frame	to	the		saved		stack	frame	which	locates	after	the	just	allocated		40		bytes	(	copied		stack	frame).	This	stack	frame	is
used	to	fixup	the		copied		stack	frame	that	a	nested	NMI	may	change.	The	second	-		copied		stack	frame	modified	by	any
nested		NMIs		to	let	the	first		NMI		know	that	we	triggered	a	second		NMI		and	we	should	repeat	the	first		NMI		handler.	Ok,	we
have	made	first	copy	of	the	original	stack	frame,	now	time	to	make	second	copy:

addq				$(10*8),	%rsp

.rept	5

pushq				-6*8(%rsp)

.endr

subq				$(5*8),	%rsp

After	all	of	these	manipulations	our	stack	frame	will	be	like	this:

+-------------------------+

|	original	SS													|

|	original	Return	RSP					|

|	original	RFLAGS									|

|	original	CS													|

|	original	RIP												|

+-------------------------+

|	temp	storage	for	rdx				|

+-------------------------+

|	NMI	executing	variable		|

+-------------------------+

|	copied	SS															|

|	copied	Return	RSP							|

|	copied	RFLAGS											|

|	copied	CS															|

|	copied	RIP														|

+-------------------------+

|	Saved	SS																|

|	Saved	Return	RSP								|

|	Saved	RFLAGS												|

|	Saved	CS																|

|	Saved	RIP															|
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+-------------------------+

After	this	we	push	dummy	error	code	on	the	stack	as	we	did	it	already	in	the	previous	exception	handlers	and	allocate
space	for	the	general	purpose	registers	on	the	stack:

pushq				$-1

ALLOC_PT_GPREGS_ON_STACK

We	already	saw	implementation	of	the		ALLOC_PT_GREGS_ON_STACK		macro	in	the	third	part	of	the	interrupts	chapter.	This	macro
defined	in	the	arch/x86/entry/calling.h	and	yet	another	allocates		120		bytes	on	stack	for	the	general	purpose	registers,	from
the		rdi		to	the		r15	:

.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

addq				$-(15*8+\addskip),	%rsp

.endm

After	space	allocation	for	the	general	registers	we	can	see	call	of	the		paranoid_entry	:

call				paranoid_entry

We	can	remember	from	the	previous	parts	this	label.	It	pushes	general	purpose	registers	on	the	stack,	reads		MSR_GS_BASE	
Model	Specific	register	and	checks	its	value.	If	the	value	of	the		MSR_GS_BASE		is	negative,	we	came	from	the	kernel	mode
and	just	return	from	the		paranoid_entry	,	in	other	way	it	means	that	we	came	from	the	usermode	and	need	to	execute
	swapgs		instruction	which	will	change	user		gs		with	the	kernel		gs	:

ENTRY(paranoid_entry)

				cld

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				movl				$1,	%ebx

				movl				$MSR_GS_BASE,	%ecx

				rdmsr

				testl				%edx,	%edx

				js				1f

				SWAPGS

				xorl				%ebx,	%ebx

1:				ret

END(paranoid_entry)

Note	that	after	the		swapgs		instruction	we	zeroed	the		ebx		register.	Next	time	we	will	check	content	of	this	register	and	if	we
executed		swapgs		than		ebx		must	contain		0		and		1		in	other	way.	In	the	next	step	we	store	value	of	the		cr2		control	register
to	the		r12		register,	because	the		NMI		handler	can	cause		page	fault		and	corrupt	the	value	of	this	control	register:

movq				%cr2,	%r12

Now	time	to	call	actual		NMI		handler.	We	push	the	address	of	the		pt_regs		to	the		rdi	,	error	code	to	the		rsi		and	call	the
	do_nmi		handler:

movq				%rsp,	%rdi

movq				$-1,	%rsi

call				do_nmi
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We	will	back	to	the		do_nmi		little	later	in	this	part,	but	now	let's	look	what	occurs	after	the		do_nmi		will	finish	its	execution.
After	the		do_nmi		handler	will	be	finished	we	check	the		cr2		register,	because	we	can	got	page	fault	during		do_nmi	
performed	and	if	we	got	it	we	restore	original		cr2	,	in	other	way	we	jump	on	the	label		1	.	After	this	we	test	content	of	the
	ebx		register	(remember	it	must	contain		0		if	we	have	used		swapgs		instruction	and		1		if	we	didn't	use	it)	and	execute
	SWAPGS_UNSAFE_STACK		if	it	contains		1		or	jump	to	the		nmi_restore		label.	The		SWAPGS_UNSAFE_STACK		macro	just	expands	to	the
	swapgs		instruction.	In	the		nmi_restore		label	we	restore	general	purpose	registers,	clear	allocated	space	on	the	stack	for
this	registers	clear	our	temporary	variable	and	exit	from	the	interrupt	handler	with	the		INTERRUPT_RETURN		macro:

				movq				%cr2,	%rcx

				cmpq				%rcx,	%r12

				je				1f

				movq				%r12,	%cr2

1:

				testl				%ebx,	%ebx

				jnz				nmi_restore

nmi_swapgs:

				SWAPGS_UNSAFE_STACK

nmi_restore:

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				/*	Pop	the	extra	iret	frame	at	once	*/

				REMOVE_PT_GPREGS_FROM_STACK	6*8

				/*	Clear	the	NMI	executing	stack	variable	*/

				movq				$0,	5*8(%rsp)

				INTERRUPT_RETURN

where		INTERRUPT_RETURN		is	defined	in	the	arch/x86/include/irqflags.h	and	just	expands	to	the		iret		instruction.	That's	all.

Now	let's	consider	case	when	another		NMI		interrupt	occurred	when	previous		NMI		interrupt	didn't	finish	its	execution.	You
can	remember	from	the	beginning	of	this	part	that	we've	made	a	check	that	we	came	from	userspace	and	jump	on	the
	first_nmi		in	this	case:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

Note	that	in	this	case	it	is	first		NMI		every	time,	because	if	the	first		NMI		catched	page	fault,	breakpoint	or	another	exception
it	will	be	executed	in	the	kernel	mode.	If	we	didn't	come	from	userspace,	first	of	all	we	test	our	temporary	variable:

cmpl				$1,	-8(%rsp)

je				nested_nmi

and	if	it	is	set	to		1		we	jump	to	the		nested_nmi		label.	If	it	is	not		1	,	we	test	the		IST		stack.	In	the	case	of	nested		NMIs		we
check	that	we	are	above	the		repeat_nmi	.	In	this	case	we	ignore	it,	in	other	way	we	check	that	we	above	than
	end_repeat_nmi		and	jump	on	the		nested_nmi_out		label.

Now	let's	look	on	the		do_nmi		exception	handler.	This	function	defined	in	the	arch/x86/kernel/nmi.c	source	code	file	and
takes	two	parameters:

address	of	the		pt_regs	;
error	code.

as	all	exception	handlers.	The		do_nmi		starts	from	the	call	of	the		nmi_nesting_preprocess		function	and	ends	with	the	call	of
the		nmi_nesting_postprocess	.	The		nmi_nesting_preprocess		function	checks	that	we	likely	do	not	work	with	the	debug	stack
and	if	we	on	the	debug	stack	set	the		update_debug_stack		per-cpu	variable	to		1		and	call	the		debug_stack_set_zero		function
from	the	arch/x86/kernel/cpu/common.c.	This	function	increases	the		debug_stack_use_ctr		per-cpu	variable	and	loads	new
	Interrupt	Descriptor	Table	:
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static	inline	void	nmi_nesting_preprocess(struct	pt_regs	*regs)

{

								if	(unlikely(is_debug_stack(regs->sp)))	{

																debug_stack_set_zero();

																this_cpu_write(update_debug_stack,	1);

								}

}

The		nmi_nesting_postprocess		function	checks	the		update_debug_stack		per-cpu	variable	which	we	set	in	the
	nmi_nesting_preprocess		and	resets	debug	stack	or	in	another	words	it	loads	origin		Interrupt	Descriptor	Table	.	After	the
call	of	the		nmi_nesting_preprocess		function,	we	can	see	the	call	of	the		nmi_enter		in	the		do_nmi	.	The		nmi_enter		increases
	lockdep_recursion		field	of	the	interrupted	process,	update	preempt	counter	and	informs	the	RCU	subsystem	about		NMI	.
There	is	also		nmi_exit		function	that	does	the	same	stuff	as		nmi_enter	,	but	vice-versa.	After	the		nmi_enter		we	increase
	__nmi_count		in	the		irq_stat		structure	and	call	the		default_do_nmi		function.	First	of	all	in	the		default_do_nmi		we	check	the
address	of	the	previous	nmi	and	update	address	of	the	last	nmi	to	the	actual:

if	(regs->ip	==	__this_cpu_read(last_nmi_rip))

				b2b	=	true;

else

				__this_cpu_write(swallow_nmi,	false);

__this_cpu_write(last_nmi_rip,	regs->ip);

After	this	first	of	all	we	need	to	handle	CPU-specific		NMIs	:

handled	=	nmi_handle(NMI_LOCAL,	regs,	b2b);

__this_cpu_add(nmi_stats.normal,	handled);

And	than	non-specific		NMIs		depends	on	its	reason:

reason	=	x86_platform.get_nmi_reason();

if	(reason	&	NMI_REASON_MASK)	{

				if	(reason	&	NMI_REASON_SERR)

								pci_serr_error(reason,	regs);

				else	if	(reason	&	NMI_REASON_IOCHK)

								io_check_error(reason,	regs);

				__this_cpu_add(nmi_stats.external,	1);

				return;

}

That's	all.

The	next	exception	is	the		BOUND		range	exceeded	exception.	The		BOUND		instruction	determines	if	the	first	operand	(array
index)	is	within	the	bounds	of	an	array	specified	the	second	operand	(bounds	operand).	If	the	index	is	not	within	bounds,	a
	BOUND		range	exceeded	exception	or		#BR		is	occurred.	The	handler	of	the		#BR		exception	is	the		do_bounds		function	that
defined	in	the	arch/x86/kernel/traps.c.	The		do_bounds		handler	starts	with	the	call	of	the		exception_enter		function	and	ends
with	the	call	of	the		exception_exit	:

prev_state	=	exception_enter();

if	(notify_die(DIE_TRAP,	"bounds",	regs,	error_code,

															X86_TRAP_BR,	SIGSEGV)	==	NOTIFY_STOP)

Range	Exceeded	Exception
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				goto	exit;

...

...

...

exception_exit(prev_state);

return;

After	we	have	got	the	state	of	the	previous	context,	we	add	the	exception	to	the		notify_die		chain	and	if	it	will	return
	NOTIFY_STOP		we	return	from	the	exception.	More	about	notify	chains	and	the		context	tracking		functions	you	can	read	in
the	previous	part.	In	the	next	step	we	enable	interrupts	if	they	were	disabled	with	the		contidional_sti		function	that	checks
	IF		flag	and	call	the		local_irq_enable		depends	on	its	value:

conditional_sti(regs);

if	(!user_mode(regs))

				die("bounds",	regs,	error_code);

and	check	that	if	we	didn't	came	from	user	mode	we	send		SIGSEGV		signal	with	the		die		function.	After	this	we	check	is	MPX
enabled	or	not,	and	if	this	feature	is	disabled	we	jump	on	the		exit_trap		label:

if	(!cpu_feature_enabled(X86_FEATURE_MPX))	{

				goto	exit_trap;

}

where	we	execute	`do_trap`	function	(more	about	it	you	can	find	in	the	previous	part):

```C

exit_trap:

				do_trap(X86_TRAP_BR,	SIGSEGV,	"bounds",	regs,	error_code,	NULL);

				exception_exit(prev_state);

If		MPX		feature	is	enabled	we	check	the		BNDSTATUS		with	the		get_xsave_field_ptr		function	and	if	it	is	zero,	it	means	that	the
	MPX		was	not	responsible	for	this	exception:

bndcsr	=	get_xsave_field_ptr(XSTATE_BNDCSR);

if	(!bndcsr)

								goto	exit_trap;

After	all	of	this,	there	is	still	only	one	way	when		MPX		is	responsible	for	this	exception.	We	will	not	dive	into	the	details	about
Intel	Memory	Protection	Extensions	in	this	part,	but	will	see	it	in	another	chapter.

The	next	two	exceptions	are	x87	FPU	Floating-Point	Error	exception	or		#MF		and	SIMD	Floating-Point	Exception	or		#XF	.
The	first	exception	occurs	when	the		x87	FPU		has	detected	floating	point	error.	For	example	divide	by	zero,	numeric
overflow	and	etc.	The	second	exception	occurs	when	the	processor	has	detected	SSE/SSE2/SSE3		SIMD		floating-point
exception.	It	can	be	the	same	as	for	the		x87	FPU	.	The	handlers	for	these	exceptions	are		do_coprocessor_error		and
	do_simd_coprocessor_error		are	defined	in	the	arch/x86/kernel/traps.c	and	very	similar	on	each	other.	They	both	make	a	call
of	the		math_error		function	from	the	same	source	code	file	but	pass	different	vector	number.	The		do_coprocessor_error	
passes		X86_TRAP_MF		vector	number	to	the		math_error	:

dotraplinkage	void	do_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

Coprocessor	exception	and	SIMD	exception
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				math_error(regs,	error_code,	X86_TRAP_MF);

				exception_exit(prev_state);

}

and		do_simd_coprocessor_error		passes		X86_TRAP_XF		to	the		math_error		function:

dotraplinkage	void

do_simd_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

				math_error(regs,	error_code,	X86_TRAP_XF);

				exception_exit(prev_state);

}

First	of	all	the		math_error		function	defines	current	interrupted	task,	address	of	its	fpu,	string	which	describes	an	exception,
add	it	to	the		notify_die		chain	and	return	from	the	exception	handler	if	it	will	return		NOTIFY_STOP	:

				struct	task_struct	*task	=	current;

				struct	fpu	*fpu	=	&task->thread.fpu;

				siginfo_t	info;

				char	*str	=	(trapnr	==	X86_TRAP_MF)	?	"fpu	exception"	:

																								"simd	exception";

				if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	SIGFPE)	==	NOTIFY_STOP)

								return;

After	this	we	check	that	we	are	from	the	kernel	mode	and	if	yes	we	will	try	to	fix	an	excetpion	with	the		fixup_exception	
function.	If	we	cannot	we	fill	the	task	with	the	exception's	error	code	and	vector	number	and	die:

if	(!user_mode(regs))	{

				if	(!fixup_exception(regs))	{

								task->thread.error_code	=	error_code;

								task->thread.trap_nr	=	trapnr;

								die(str,	regs,	error_code);

				}

				return;

}

If	we	came	from	the	user	mode,	we	save	the		fpu		state,	fill	the	task	structure	with	the	vector	number	of	an	exception	and
	siginfo_t		with	the	number	of	signal,		errno	,	the	address	where	exception	occurred	and	signal	code:

fpu__save(fpu);

task->thread.trap_nr				=	trapnr;

task->thread.error_code	=	error_code;

info.si_signo								=	SIGFPE;

info.si_errno								=	0;

info.si_addr								=	(void	__user	*)uprobe_get_trap_addr(regs);

info.si_code	=	fpu__exception_code(fpu,	trapnr);

After	this	we	check	the	signal	code	and	if	it	is	non-zero	we	return:

if	(!info.si_code)

				return;
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Or	send	the		SIGFPE		signal	in	the	end:

force_sig_info(SIGFPE,	&info,	task);

That's	all.

It	is	the	end	of	the	sixth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw	implementation	of	some	exception
handlers	in	this	part,	like		non-maskable		interrupt,	SIMD	and	x87	FPU	floating	point	exception.	Finally	we	have	finsihed	with
the		trap_init		function	in	this	part	and	will	go	ahead	in	the	next	part.	The	next	our	point	is	the	external	interrupts	and	the
	early_irq_init		function	from	the	init/main.c.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.
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This	is	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we	have
finished	with	the	exceptions	which	are	generated	by	the	processor.	In	this	part	we	will	continue	to	dive	to	the	interrupt
handling	and	will	start	with	the	external	handware	interrupt	handling.	As	you	can	remember,	in	the	previous	part	we	have
finsihed	with	the		trap_init		function	from	the	arch/x86/kernel/trap.c	and	the	next	step	is	the	call	of	the		early_irq_init	
function	from	the	init/main.c.

Interrupts	are	signal	that	are	sent	across	IRQ	or		Interrupt	Request	Line		by	a	hardware	or	software.	External	hardware
interrupts	allow	devices	like	keyboard,	mouse	and	etc,	to	indicate	that	it	needs	attention	of	the	processor.	Once	the
processor	receives	the		Interrupt	Request	,	it	will	temporary	stop	execution	of	the	running	program	and	invoke	special
routine	which	depends	on	an	interrupt.	We	already	know	that	this	routine	is	called	interrupt	handler	(or	how	we	will	call	it
	ISR		or		Interrupt	Service	Routine		from	this	part).	The		ISR		or		Interrupt	Handler	Routine		can	be	found	in	Interrupt	Vector
table	that	is	located	at	fixed	address	in	the	memory.	After	the	interrupt	is	handled	processor	resumes	the	interrupted
process.	At	the	boot/initialization	time,	the	Linux	kernel	identifies	all	devices	in	the	machine,	and	appropriate	interrupt
handlers	are	loaded	into	the	interrupt	table.	As	we	saw	in	the	previous	parts,	most	exceptions	are	handled	simply	by	the
sending	a	Unix	signal	to	the	interrupted	process.	That's	why	kernel	is	can	handle	an	exception	quickly.	Unfortunatelly	we
can	not	use	this	approach	for	the	external	handware	interrupts,	because	often	they	arrive	after	(and	sometimes	long	after)
the	process	to	which	they	are	related	has	been	suspended.	So	it	would	make	no	sense	to	send	a	Unix	signal	to	the	current
process.	External	interrupt	handling	depends	on	the	type	of	an	interrupt:

	I/O		interrupts;
Timer	interrupts;
Interprocessor	interrupts.

I	will	try	to	describe	all	types	of	interrupts	in	this	book.

Generally,	a	handler	of	an		I/O		interrupt	must	be	flexible	enough	to	service	several	devices	at	the	same	time.	For	exmaple
in	the	PCI	bus	architecture	several	devices	may	share	the	same		IRQ		line.	In	the	simplest	way	the	Linux	kernel	must	do
following	thing	when	an		I/O		interrupt	occured:

Save	the	value	of	an		IRQ		and	the	register's	contents	on	the	kernel	stack;
Send	an	acknowledgment	to	the	hardware	controller	which	is	servicing	the		IRQ		line;
Execute	the	interrupt	service	routine	(next	we	will	call	it		ISR	)	which	is	associated	with	the	device;
Restore	registers	and	return	from	an	interrupt;

Ok,	we	know	a	little	theory	and	now	let's	start	with	the		early_irq_init		function.	The	implementation	of	the		early_irq_init	
function	is	in	the	kernel/irq/irqdesc.c.	This	function	make	early	initialziation	of	the		irq_desc		structure.	The		irq_desc	
structure	is	the	foundation	of	interrupt	management	code	in	the	Linux	kernel.	An	array	of	this	structure,	which	has	the	same
name	-		irq_desc	,	keeps	track	of	every	interrupt	request	source	in	the	Linux	kernel.	This	structure	defined	in	the
include/linux/irqdesc.h	and	as	you	can	note	it	depends	on	the		CONFIG_SPARSE_IRQ		kernel	configuration	option.	This	kernel
configuration	option	enables	support	for	sparse	irqs.	The		irq_desc		structure	contains	many	different	fiels:

	irq_common_data		-	per	irq	and	chip	data	passed	down	to	chip	functions;
	status_use_accessors		-	contains	status	of	the	interrupt	source	which	is	can	be	combination	of	of	the	values	from	the
	enum		from	the	include/linux/irq.h	and	different	macros	which	are	defined	in	the	same	source	code	file;
	kstat_irqs		-	irq	stats	per-cpu;
	handle_irq		-	highlevel	irq-events	handler;
	action		-	identifies	the	interrupt	service	routines	to	be	invoked	when	the	IRQ	occurs;

Interrupts	and	Interrupt	Handling.	Part	7.
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	irq_count		-	counter	of	interrupt	occurrences	on	the	IRQ	line;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at	least	once;
	last_unhandled		-	aging	timer	for	unhandled	count;
	irqs_unhandled		-	count	of	the	unhandled	interrupts;
	lock		-	a	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor;
	pending_mask		-	pending	rebalanced	interrupts;
	owner		-	an	owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from	modules.	This	field	is	need	to
proved	refcount	on	the	module	which	provides	the	interrupts;
and	etc.

Of	course	it	is	not	all	fields	of	the		irq_desc		structure,	because	it	is	too	long	to	describe	each	field	of	this	structure,	but	we
will	see	it	all	soon.	Now	let's	start	to	dive	into	the	implementation	of	the		early_irq_init		function.

Now,	let's	look	on	the	implementation	of	the		early_irq_init		function.	Note	that	implementation	of	the		early_irq_init	
function	depends	on	the		CONFIG_SPARSE_IRQ		kernel	configuration	option.	Now	we	consider	implementation	of	the
	early_irq_init		function	when	the		CONFIG_SPARSE_IRQ		kernel	configuration	option	is	not	set.	This	function	starts	from	the
declaration	of	the	following	variables:		irq		descriptors	counter,	loop	counter,	memory	node	and	the		irq_desc		descriptor:

int	__init	early_irq_init(void)

{

								int	count,	i,	node	=	first_online_node;

								struct	irq_desc	*desc;

								...

								...

								...

}

The		node		is	an	online	NUMA	node	which	depends	on	the		MAX_NUMNODES		value	which	depends	on	the		CONFIG_NODES_SHIFT	
kernel	configuration	parameter:

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

...

...

...

#ifdef	CONFIG_NODES_SHIFT

				#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

				#define	NODES_SHIFT					0

#endif

As	I	already	wrote,	implementation	of	the		first_online_node		macro	depends	on	the		MAX_NUMNODES		value:

#if	MAX_NUMNODES	>	1

		#define	first_online_node							first_node(node_states[N_ONLINE])

#else

		#define	first_online_node							0

The		node_states		is	the	enum	which	defined	in	the	include/linux/nodemask.h	and	represent	the	set	of	the	states	of	a	node.
In	our	case	we	are	searching	an	online	node	and	it	will	be		0		if		MAX_NUMNODES		is	one	or	zero.	If	the		MAX_NUMNODES		is	greater
than	one,	the		node_states[N_ONLINE]		will	return		1		and	the		first_node		macro	will	be	expands	to	the	call	of	the
	__first_node		function	which	will	return		minimal		or	the	first	online	node:

Early	external	interrupts	initialization
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#define	first_node(src)	__first_node(&(src))

static	inline	int	__first_node(const	nodemask_t	*srcp)

{

								return	min_t(int,	MAX_NUMNODES,	find_first_bit(srcp->bits,	MAX_NUMNODES));

}

More	about	this	will	be	in	the	another	chapter	about	the		NUMA	.	The	next	step	after	the	declaration	of	these	local	variables	is
the	call	of	the:

init_irq_default_affinity();

function.	The		init_irq_default_affinity		function	defined	in	the	same	source	code	file	and	depends	on	the		CONFIG_SMP	
kernel	configuration	option	allocates	a	given	cpumask	structure	(in	our	case	it	is	the		irq_default_affinity	):

#if	defined(CONFIG_SMP)

cpumask_var_t	irq_default_affinity;

static	void	__init	init_irq_default_affinity(void)

{

								alloc_cpumask_var(&irq_default_affinity,	GFP_NOWAIT);

								cpumask_setall(irq_default_affinity);

}

#else

static	void	__init	init_irq_default_affinity(void)

{

}

#endif

We	know	that	when	a	hardware,	such	as	disk	controller	or	keyboard,	needs	attention	from	the	processor,	it	throws	an
interrupt.	The	interrupt	tells	to	the	processor	that	something	has	happened	and	that	the	processor	should	interrupt	current
process	and	handle	an	incoming	event.	In	order	to	prevent	mutliple	devices	from	sending	the	same	interrupts,	the	IRQ
system	was	established	where	each	device	in	a	computer	system	is	assigned	its	own	special	IRQ	so	that	its	interrupts	are
unique.	Linux	kernel	can	assign	certain		IRQs		to	specific	processors.	This	is	known	as		SMP	IRQ	affinity	,	and	it	allows	you
control	how	your	system	will	respond	to	various	hardware	events	(that's	why	it	has	certain	implementation	only	if	the
	CONFIG_SMP		kernel	configuration	option	is	set).	After	we	allocated		irq_default_affinity		cpumask,	we	can	see		printk	
output:

printk(KERN_INFO	"NR_IRQS:%d\n",	NR_IRQS);

which	prints		NR_IRQS	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

The		NR_IRQS		is	the	maximum	number	of	the		irq		descriptors	or	in	another	words	maximum	number	of	interrupts.	Its	value
depends	on	the	state	of	the		COFNIG_X86_IO_APIC		kernel	configuration	option.	If	the		CONFIG_X86_IO_APIC		is	not	set	and	the
Linux	kernel	uses	an	old	PIC	chip,	the		NR_IRQS		is:

#define	NR_IRQS_LEGACY																				16

#ifdef	CONFIG_X86_IO_APIC

...

...
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...

#else

#	define	NR_IRQS																								NR_IRQS_LEGACY

#endif

In	other	way,	when	the		CONFIG_X86_IO_APIC		kernel	configuration	option	is	set,	the		NR_IRQS		depends	on	the	amount	of	the
processors	and	amount	of	the	interrupt	vectors:

#define	CPU_VECTOR_LIMIT															(64	*	NR_CPUS)

#define	NR_VECTORS																					256

#define	IO_APIC_VECTOR_LIMIT											(	32	*	MAX_IO_APICS	)

#define	MAX_IO_APICS																			128

#	define	NR_IRQS																																							\

								(CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	?					\

																(NR_VECTORS	+	CPU_VECTOR_LIMIT)		:					\

																(NR_VECTORS	+	IO_APIC_VECTOR_LIMIT))

...

...

...

We	remember	from	the	previous	parts,	that	the	amount	of	processors	we	can	set	during	Linux	kernel	configuration	process
with	the		CONFIG_NR_CPUS		configuration	option:

In	the	first	case	(	CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		4352	,	in	the	second	case	(	CPU_VECTOR_LIMIT
<	IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		768	.	In	my	case	the		NR_CPUS		is		8		as	you	can	see	in	the	my	configuration,	the
	CPU_VECTOR_LIMIT		is		512		and	the		IO_APIC_VECTOR_LIMIT		is		4096	.	So		NR_IRQS		for	my	configuration	is		4352	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

In	the	next	step	we	assign	array	of	the	IRQ	descriptors	to	the		irq_desc		variable	which	we	defined	in	the	start	of	the
	early_irq_init		function	and	cacluate	count	of	the		irq_desc		array	with	the		ARRAY_SIZE		macro:
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desc	=	irq_desc;

count	=	ARRAY_SIZE(irq_desc);

The		irq_desc		array	defined	in	the	same	source	code	file	and	looks	like:

struct	irq_desc	irq_desc[NR_IRQS]	__cacheline_aligned_in_smp	=	{

								[0	...	NR_IRQS-1]	=	{

																.handle_irq					=	handle_bad_irq,

																.depth										=	1,

																.lock											=	__RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),

								}

};

The		irq_desc		is	array	of	the		irq		descriptors.	It	has	three	already	initialized	fields:

	handle_irq		-	as	I	already	wrote	above,	this	field	is	the	highlevel	irq-event	handler.	In	our	case	it	initialized	with	the
	handle_bad_irq		function	that	defined	in	the	kernel/irq/handle.c	source	code	file	and	handles	spurious	and	unhandled
irqs;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at	least	once;
	lock		-	A	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor.

As	we	calculated	count	of	the	interrupts	and	initialized	our		irq_desc		array,	we	start	to	fill	descriptors	in	the	loop:

for	(i	=	0;	i	<	count;	i++)	{

				desc[i].kstat_irqs	=	alloc_percpu(unsigned	int);

				alloc_masks(&desc[i],	GFP_KERNEL,	node);

				raw_spin_lock_init(&desc[i].lock);

				lockdep_set_class(&desc[i].lock,	&irq_desc_lock_class);

				desc_set_defaults(i,	&desc[i],	node,	NULL);

}

We	are	going	through	the	all	interrupt	descriptors	and	do	the	following	things:

First	of	all	we	allocate	percpu	variable	for	the		irq		kernel	statistic	with	the		alloc_percpu		macro.	This	macro	allocates	one
instance	of	an	object	of	the	given	type	for	every	processor	on	the	system.	You	can	access	kernel	statistic	from	the
userspace	via		/proc/stat	:

~$	cat	/proc/stat

cpu		207907	68	53904	5427850	14394	0	394	0	0	0

cpu0	25881	11	6684	679131	1351	0	18	0	0	0

cpu1	24791	16	5894	679994	2285	0	24	0	0	0

cpu2	26321	4	7154	678924	664	0	71	0	0	0

cpu3	26648	8	6931	678891	414	0	244	0	0	0

...

...

...

Where	the	sixth	column	is	the	servicing	interrupts.	After	this	we	allocate	cpumask	for	the	given	irq	descriptor	affinity	and
initialize	the	spinlock	for	the	given	interrupt	descriptor.	After	this	before	the	critical	section,	the	lock	will	be	aqcuired	with	a
call	of	the		raw_spin_lock		and	unlocked	with	the	call	of	the		raw_spin_unlock	.	In	the	next	step	we	call	the		lockdep_set_class	
macro	which	set	the	Lock	validator		irq_desc_lock_class		class	for	the	lock	of	the	given	interrupt	descriptor.	More	about
	lockdep	,		spinlock		and	other	synchronization	primitives	will	be	described	in	the	separate	chapter.

In	the	end	of	the	loop	we	call	the		desc_set_defaults		function	from	the	kernel/irq/irqdesc.c.	This	function	takes	four
parameters:

number	of	a	irq;
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interrupt	descriptor;
online		NUMA		node;
owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from	modules.	This	field	is	need	to	proved	refcount
on	the	module	which	provides	the	interrupts;

and	fills	the	rest	of	the		irq_desc		fields.	The		desc_set_defaults		function	fills	interrupt	number,		irq		chip,	platform-specific
per-chip	private	data	for	the	chip	methods,	per-IRQ	data	for	the		irq_chip		methods	and	MSI	descriptor	for	the	per		irq		and
	irq		chip	data:

desc->irq_data.irq	=	irq;

desc->irq_data.chip	=	&no_irq_chip;

desc->irq_data.chip_data	=	NULL;

desc->irq_data.handler_data	=	NULL;

desc->irq_data.msi_desc	=	NULL;

...

...

...

The		irq_data.chip		structure	provides	general		API		like	the		irq_set_chip	,		irq_set_irq_type		and	etc,	for	the	irq	controller
drivers.	You	can	find	it	in	the	kernel/irq/chip.c	source	code	file.

After	this	we	set	the	status	of	the	accessor	for	the	given	descriptor	and	set	disabled	state	of	the	interrupts:

...

...

...

irq_settings_clr_and_set(desc,	~0,	_IRQ_DEFAULT_INIT_FLAGS);

irqd_set(&desc->irq_data,	IRQD_IRQ_DISABLED);

...

...

...

In	the	next	step	we	set	the	high	level	interrupt	handlers	to	the		handle_bad_irq		which	handles	spurious	and	unhandled	irqs
(as	the	hardware	stuff	is	not	initialized	yet,	we	set	this	handler),	set		irq_desc.desc		to		1		which	means	that	an		IRQ		is
disabled,	reset	count	of	the	unhandled	interrupts	and	interrupts	in	general:

...

...

...

desc->handle_irq	=	handle_bad_irq;

desc->depth	=	1;

desc->irq_count	=	0;

desc->irqs_unhandled	=	0;

desc->name	=	NULL;

desc->owner	=	owner;

...

...

...

After	this	we	go	through	the	all	possible	processor	with	the	for_each_possible_cpu	helper	and	set	the		kstat_irqs		to	zero
for	the	given	interrupt	descriptor:

				for_each_possible_cpu(cpu)

								*per_cpu_ptr(desc->kstat_irqs,	cpu)	=	0;

and	call	the		desc_smp_init		function	from	the	kernel/irq/irqdesc.c	that	initializes		NUMA		node	of	the	given	interrupt	descriptor,
sets	default		SMP		affinity	and	clears	the		pending_mask		of	the	given	interrupt	descriptor	depends	on	the	value	of	the
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	CONFIG_GENERIC_PENDING_IRQ		kernel	configuration	option:

static	void	desc_smp_init(struct	irq_desc	*desc,	int	node)

{

								desc->irq_data.node	=	node;

								cpumask_copy(desc->irq_data.affinity,	irq_default_affinity);

#ifdef	CONFIG_GENERIC_PENDING_IRQ

								cpumask_clear(desc->pending_mask);

#endif

}

In	the	end	of	the		early_irq_init		function	we	return	the	return	value	of	the		arch_early_irq_init		function:

return	arch_early_irq_init();

This	function	defined	in	the	kernel/apic/vector.c	and	contains	only	one	call	of	the		arch_early_ioapic_init		function	from	the
kernel/apic/io_apic.c.	As	we	can	understand	from	the		arch_early_ioapic_init		function's	name,	this	function	makes	early
initialization	of	the	I/O	APIC.	First	of	all	it	make	a	check	of	the	number	of	the	legacy	interrupts	wit	the	call	of	the
	nr_legacy_irqs		function.	If	we	have	no	lagacy	interrupts	with	the	Intel	8259	programmable	interrupt	controller	we	set
	io_apic_irqs		to	the		0xffffffffffffffff	:

if	(!nr_legacy_irqs())

				io_apic_irqs	=	~0UL;

After	this	we	are	going	through	the	all		I/O	APICs		and	allocate	space	for	the	registers	with	the	call	of	the
	alloc_ioapic_saved_registers	:

for_each_ioapic(i)

				alloc_ioapic_saved_registers(i);

And	in	the	end	of	the		arch_early_ioapic_init		function	we	are	going	through	the	all	legacy	irqs	(from		IRQ0		to		IRQ15	)	in	the
loop	and	allocate	space	for	the		irq_cfg		which	represents	configuration	of	an	irq	on	the	given		NUMA		node:

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)	{

				cfg	=	alloc_irq_and_cfg_at(i,	node);

				cfg->vector	=	IRQ0_VECTOR	+	i;

				cpumask_setall(cfg->domain);

}

That's	all.

We	already	saw	in	the	beginning	of	this	part	that	implementation	of	the		early_irq_init		function	depends	on	the
	CONFIG_SPARSE_IRQ		kernel	configuration	option.	Previously	we	saw	implementation	of	the		early_irq_init		function	when	the
	CONFIG_SPARSE_IRQ		configuration	option	is	not	set,	not	let's	look	on	the	its	implementation	when	this	option	is	set.
Implementation	of	this	function	very	similar,	but	little	differ.	We	can	see	the	same	definition	of	variables	and	call	of	the
	init_irq_default_affinity		in	the	beginning	of	the		early_irq_init		function:

#ifdef	CONFIG_SPARSE_IRQ

int	__init	early_irq_init(void)

Sparse	IRQs
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{

				int	i,	initcnt,	node	=	first_online_node;

				struct	irq_desc	*desc;

				init_irq_default_affinity();

				...

				...

				...

}

#else

...

...

...

But	after	this	we	can	see	the	following	call:

initcnt	=	arch_probe_nr_irqs();

The		arch_probe_nr_irqs		function	defined	in	the	arch/x86/kernel/apic/vector.c	and	calculates	count	of	the	pre-allocated	irqs
and	update		nr_irqs		with	its	number.	But	stop.	Why	there	are	pre-allocated	irqs?	There	is	alternative	form	of	interrupts
called	-	Message	Signaled	Interrupts	available	in	the	PCI.	Instead	of	assigning	a	fixed	number	of	the	interrupt	request,	the
device	is	allowed	to	record	a	message	at	a	particular	address	of	RAM,	in	fact,	the	display	on	the	Local	APIC.		MSI		permits	a
device	to	allocate		1	,		2	,		4	,		8	,		16		or		32		interrupts	and		MSI-X		permits	a	device	to	allocate	up	to		2048		interrupts.	Now	we
know	that	irqs	can	be	pre-allocated.	More	about		MSI		will	be	in	a	next	part,	but	now	let's	look	on	the		arch_probe_nr_irqs	
function.	We	can	see	the	check	which	assign	amount	of	the	interrupt	vectors	for	the	each	processor	in	the	system	to	the
	nr_irqs		if	it	is	greater	and	calculate	the		nr		which	represents	number	of		MSI		interrupts:

int	nr_irqs	=	NR_IRQS;

if	(nr_irqs	>	(NR_VECTORS	*	nr_cpu_ids))

				nr_irqs	=	NR_VECTORS	*	nr_cpu_ids;

nr	=	(gsi_top	+	nr_legacy_irqs())	+	8	*	nr_cpu_ids;

Take	a	look	on	the		gsi_top		variable.	Each		APIC		is	identified	with	its	own		ID		and	with	the	offset	where	its		IRQ		starts.	It	is
called		GSI		base	or		Global	System	Interrupt		base.	So	the		gsi_top		represnters	it.	We	get	the		Global	System	Interrupt	
base	from	the	MultiProcessor	Configuration	Table	table	(you	can	remember	that	we	have	parsed	this	table	in	the	sixth	part
of	the	Linux	Kernel	initialization	process	chapter).

After	this	we	update	the		nr		depends	on	the	value	of	the		gsi_top	:

#if	defined(CONFIG_PCI_MSI)	||	defined(CONFIG_HT_IRQ)

								if	(gsi_top	<=	NR_IRQS_LEGACY)

																nr	+=		8	*	nr_cpu_ids;

								else

																nr	+=	gsi_top	*	16;

#endif

Update	the		nr_irqs		if	it	less	than		nr		and	return	the	number	of	the	legacy	irqs:

if	(nr	<	nr_irqs)

				nr_irqs	=	nr;

return	nr_legacy_irqs();

}

The	next	after	the		arch_probe_nr_irqs		is	printing	information	about	number	of		IRQs	:
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printk(KERN_INFO	"NR_IRQS:%d	nr_irqs:%d	%d\n",	NR_IRQS,	nr_irqs,	initcnt);

We	can	find	it	in	the	dmesg	output:

$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352	nr_irqs:488	16

After	this	we	do	some	checks	that		nr_irqs		and		initcnt		values	is	not	greater	than	maximum	allowable	number	of		irqs	:

if	(WARN_ON(nr_irqs	>	IRQ_BITMAP_BITS))

				nr_irqs	=	IRQ_BITMAP_BITS;

if	(WARN_ON(initcnt	>	IRQ_BITMAP_BITS))

				initcnt	=	IRQ_BITMAP_BITS;

where		IRQ_BITMAP_BITS		is	equal	to	the		NR_IRQS		if	the		CONFIG_SPARSE_IRQ		is	not	set	and		NR_IRQS	+	8196		in	other	way.	In	the
next	step	we	are	going	over	all	interrupt	descript	which	need	to	be	allocated	in	the	loop	and	allocate	space	for	the
descriptor	and	insert	to	the		irq_desc_tree		radix	tree:

for	(i	=	0;	i	<	initcnt;	i++)	{

				desc	=	alloc_desc(i,	node,	NULL);

				set_bit(i,	allocated_irqs);

				irq_insert_desc(i,	desc);

}

In	the	end	of	the		early_irq_init		function	we	return	the	value	of	the	call	of	the		arch_early_irq_init		function	as	we	did	it
already	in	the	previous	variant	when	the		CONFIG_SPARSE_IRQ		option	was	not	set:

return	arch_early_irq_init();

That's	all.

It	is	the	end	of	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	started	to	dive	into	external
hardware	interrupts	in	this	part.	We	saw	early	initialization	of	the		irq_desc		structure	which	represents	description	of	an
external	interrupt	and	contains	information	about	it	like	list	of	irq	actions,	information	about	interrupt	handler,	interrupts's
owner,	count	of	the	unhandled	interrupt	and	etc.	In	the	next	part	we	will	continue	to	research	external	interrupts.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

IRQ
numa
Enum	type

Conclusion

Links
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cpumask
percpu
spinlock
critical	section
Lock	validator
MSI
I/O	APIC
Local	APIC
Intel	8259
PIC
MultiProcessor	Configuration	Table
radix	tree
dmesg
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This	is	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we
started	to	dive	into	the	external	hardware	interrupts.	We	looked	on	the	implementation	of	the		early_irq_init		function	from
the	kernel/irq/irqdesc.c	source	code	file	and	saw	the	initialization	of	the		irq_desc		structure	in	this	function.	Remind	that
	irq_desc		structure	(defined	in	the	include/linux/irqdesc.h	is	the	foundation	of	interrupt	management	code	in	the	Linux
kernel	and	represents	an	interrupt	descriptor.	In	this	part	we	will	continue	to	dive	into	the	initialization	stuff	which	is	related
to	the	external	hardware	interrupts.

Right	after	the	call	of	the		early_irq_init		function	in	the	init/main.c	we	can	see	the	call	of	the		init_IRQ		function.	This
function	is	architecture-specfic	and	defined	in	the	arch/x86/kernel/irqinit.c.	The		init_IRQ		function	makes	initialization	of	the
	vector_irq		percpu	variable	that	defined	in	the	same	arch/x86/kernel/irqinit.c	source	code	file:

...

DEFINE_PER_CPU(vector_irq_t,	vector_irq)	=	{

									[0	...	NR_VECTORS	-	1]	=	-1,

};

...

and	represents		percpu		array	of	the	interrupt	vector	numbers.	The		vector_irq_t		defined	in	the
arch/x86/include/asm/hw_irq.h	and	expands	to	the:

typedef	int	vector_irq_t[NR_VECTORS];

where		NR_VECTORS		is	count	of	the	vector	number	and	as	you	can	remember	from	the	first	part	of	this	chapter	it	is		256		for
the	x86_64:

#define	NR_VECTORS																							256

So,	in	the	start	of	the		init_IRQ		function	we	fill	the		vecto_irq		percpu	array	with	the	vector	number	of	the		legacy		interrupts:

void	__init	init_IRQ(void)

{

				int	i;

				for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

								per_cpu(vector_irq,	0)[IRQ0_VECTOR	+	i]	=	i;

...

...

...

}

This		vector_irq		will	be	used	during	the	first	steps	of	an	external	hardware	interrupt	handling	in	the		do_IRQ		function	from
the	arch/x86/kernel/irq.c:

__visible	unsigned	int	__irq_entry	do_IRQ(struct	pt_regs	*regs)

{

				...

				...

Interrupts	and	Interrupt	Handling.	Part	8.
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				...

				irq	=	__this_cpu_read(vector_irq[vector]);

				if	(!handle_irq(irq,	regs))	{

								...

								...

								...

				}

				exiting_irq();

				...

				...

				return	1;

}

Why	is		legacy		here?	Actuall	all	interrupts	handled	by	the	modern	IO-APIC	controller.	But	these	interrupts	(from		0x30		to
	0x3f	)	by	legacy	interrupt-controllers	like	Programmable	Interrupt	Controller.	If	these	interrupts	are	handled	by	the		I/O
APIC		then	this	vector	space	will	be	freed	and	re-used.	Let's	look	on	this	code	closer.	First	of	all	the		nr_legacy_irqs		defined
in	the	arch/x86/include/asm/i8259.h	and	just	returns	the		nr_legacy_irqs		field	from	the		legacy_pic		strucutre:

static	inline	int	nr_legacy_irqs(void)

{

								return	legacy_pic->nr_legacy_irqs;

}

This	structure	defined	in	the	same	header	file	and	represents	non-modern	programmable	interrupts	controller:

struct	legacy_pic	{

								int	nr_legacy_irqs;

								struct	irq_chip	*chip;

								void	(*mask)(unsigned	int	irq);

								void	(*unmask)(unsigned	int	irq);

								void	(*mask_all)(void);

								void	(*restore_mask)(void);

								void	(*init)(int	auto_eoi);

								int	(*irq_pending)(unsigned	int	irq);

								void	(*make_irq)(unsigned	int	irq);

};

Actuall	default	maximum	number	of	the	legacy	interrupts	represtented	by	the		NR_IRQ_LEGACY		macro	from	the
arch/x86/include/asm/irq_vectors.h:

#define	NR_IRQS_LEGACY																				16

In	the	loop	we	are	accessing	the		vecto_irq		per-cpu	array	with	the		per_cpu		macro	by	the		IRQ0_VECTOR	+	i		index	and	write
the	legacy	vector	number	there.	The		IRQ0_VECTOR		macro	defined	in	the	arch/x86/include/asm/irq_vectors.h	header	file	and
expands	to	the		0x30	:

#define	FIRST_EXTERNAL_VECTOR											0x20

#define	IRQ0_VECTOR																					((FIRST_EXTERNAL_VECTOR	+	16)	&	~15)

Why	is		0x30		here?	You	can	remember	from	the	first	part	of	this	chapter	that	first	32	vector	numbers	from		0		to		31		are
reserved	by	the	processor	and	used	for	the	processing	of	architecture-defined	exceptions	and	interrupts.	Vector	numbers
from		0x30		to		0x3f		are	reserved	for	the	ISA.	So,	it	means	that	we	fill	the		vector_irq		from	the		IRQ0_VECTOR		which	is	equal
to	the		32		to	the		IRQ0_VECTOR	+	16		(before	the		0x30	).
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In	the	end	of	the		init_IRQ		functio	we	can	see	the	call	of	the	following	function:

x86_init.irqs.intr_init();

from	the	arch/x86/kernel/x86_init.c	source	code	file.	If	you	have	read	chapter	about	the	Linux	kernel	initialization	process,
you	can	remember	the		x86_init		structure.	This	structure	contains	a	couple	of	files	which	are	points	to	the	function	related
to	the	platform	setup	(	x86_64		in	our	case),	for	example		resources		-	related	with	the	memory	resources,		mpparse		-	related
with	the	parsing	of	the	MultiProcessor	Configuration	Table	table	and	etc.).	As	we	can	see	the		x86_init		also	contains	the
	irqs		field	which	contains	three	following	fields:

struct	x86_init_ops	x86_init	__initdata	

{

				...

				...

				...

				.irqs	=	{

																.pre_vector_init								=	init_ISA_irqs,

																.intr_init														=	native_init_IRQ,

																.trap_init														=	x86_init_noop,

				},

				...

				...

				...

}

Now,	we	are	interesting	in	the		native_init_IRQ	.	As	we	can	note,	the	name	of	the		native_init_IRQ		function	contains	the
	native_		prefix	which	means	that	this	function	is	architecture-specific.	It	defined	in	the	arch/x86/kernel/irqinit.c	and	executes
general	initialization	of	the	Local	APIC	and	initialization	of	the	ISA	irqs.	Let's	look	on	the	implementation	of	the
	native_init_IRQ		function	and	will	try	to	understand	what	occurs	there.	The		native_init_IRQ		function	starts	from	the
execution	of	the	following	function:

x86_init.irqs.pre_vector_init();

As	we	can	see	above,	the		pre_vector_init		points	to	the		init_ISA_irqs		function	that	defined	in	the	same	source	code	file
and	as	we	can	understand	from	the	function's	name,	it	makes	initialization	of	the		ISA		related	interrupts.	The		init_ISA_irqs	
function	starts	from	the	definition	of	the		chip		variable	which	has	a		irq_chip		type:

void	__init	init_ISA_irqs(void)

{

				struct	irq_chip	*chip	=	legacy_pic->chip;

				...

				...

				...

The		irq_chip		structure	defined	in	the	include/linux/irq.h	header	file	and	represents	hardware	interrupt	chip	descriptor.	It
contains:

	name		-	name	of	a	device.	Used	in	the		/proc/interrupts	:

$	cat	/proc/interrupts

											CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7							

		0:									16										0										0										0										0										0										0										0			IO-APIC			2-edge						timer

		1:										2										0										0										0										0										0										0										0			IO-APIC			1-edge						i8042

		8:										1										0										0										0										0										0										0										0			IO-APIC			8-edge						rtc0
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look	on	the	last	columnt;

	(*irq_mask)(struct	irq_data	*data)		-	mask	an	interrupt	source;
	(*irq_ack)(struct	irq_data	*data)		-	start	of	a	new	interrupt;
	(*irq_startup)(struct	irq_data	*data)		-	start	up	the	interrupt;
	(*irq_shutdown)(struct	irq_data	*data)		-	shutdown	the	interrupt
and	etc.

fields.	Note	that	the		irq_data		structure	represents	set	of	the	per	irq	chip	data	passed	down	to	chip	functions.	It	contains
	mask		-	precomputed	bitmask	for	accessing	the	chip	registers,		irq		-	interrupt	number,		hwirq		-	hardware	interrupt	number,
local	to	the	interrupt	domain	chip	low	level	interrupt	hardware	access	and	etc.

After	this	depends	on	the		CONFIG_X86_64		and		CONFIG_X86_LOCAL_APIC		kernel	configuration	option	call	the		init_bsp_APIC	
function	from	the	arch/x86/kernel/apic/apic.c:

#if	defined(CONFIG_X86_64)	||	defined(CONFIG_X86_LOCAL_APIC)

				init_bsp_APIC();

#endif

This	function	makes	initialization	of	the	APIC	of		bootstrap	processor		(or	processor	which	starts	first).	It	starts	from	the
check	that	we	found	SMP	config	(read	more	about	it	in	the	sixth	part	of	the	Linux	kernel	initialization	process	chapter)	and
the	processor	has		APIC	:

if	(smp_found_config	||	!cpu_has_apic)

				return;

In	other	way	we	return	from	this	function.	In	the	next	step	we	call	the		clear_local_APIC		function	from	the	same	source	code
file	that	shutdowns	the	local		APIC		(more	about	it	will	be	in	the	chapter	about	the		Advanced	Programmable	Interrupt
Controller	)	and	enable		APIC		of	the	first	processor	by	the	setting		unsigned	int	value		to	the		APIC_SPIV_APIC_ENABLED	:

value	=	apic_read(APIC_SPIV);

value	&=	~APIC_VECTOR_MASK;

value	|=	APIC_SPIV_APIC_ENABLED;

and	writing	it	with	the	help	of	the		apic_write		function:

apic_write(APIC_SPIV,	value);

After	we	have	enabled		APIC		for	the	bootstrap	processor,	we	return	to	the		init_ISA_irqs		function	and	in	the	next	step	we
initalize	legacy		Programmable	Interrupt	Controller		and	set	the	legacy	chip	and	handler	for	the	each	legacy	irq:

legacy_pic->init(0);

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

				irq_set_chip_and_handler(i,	chip,	handle_level_irq);

Where	can	we	find		init		function?	The		legacy_pic		defined	in	the	arch/x86/kernel/i8259.c	and	it	is:

struct	legacy_pic	*legacy_pic	=	&default_legacy_pic;
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Where	the		default_legacy_pic		is:

struct	legacy_pic	default_legacy_pic	=	{

				...

				...

				...

				.init	=	init_8259A,

				...

				...

				...

}

The		init_8259A		function	defined	in	the	same	source	code	file	and	executes	initialization	of	the	Intel	8259		̀ Programmable

Interrupt	Controller		(more	about	it	will	be	in	the	separate	chapter	abot		Programmable	Interrupt	Controllers		and		APIC	).

Now	we	can	return	to	the		native_init_IRQ		function,	after	the		init_ISA_irqs		function	finished	its	work.	The	next	step	is	the
call	of	the		apic_intr_init		function	that	allocates	special	interrupt	gates	which	are	used	by	the	SMP	architecture	for	the
Inter-processor	interrupt.	The		alloc_intr_gate		macro	from	the	arch/x86/include/asm/desc.h	used	for	the	interrupt
descriptor	allocation	allocation:

#define	alloc_intr_gate(n,	addr)																								\

do	{																																																				\

								alloc_system_vector(n);																									\

								set_intr_gate(n,	addr);																									\

}	while	(0)

As	we	can	see,	first	of	all	it	expands	to	the	call	of	the		alloc_system_vector		function	that	checks	the	given	vector	number	in
the		user_vectors		bitmap	(read	previous	part	about	it)	and	if	it	is	not	set	in	the		user_vectors		bitmap	we	set	it.	After	this	we
test	that	the		first_system_vector		is	greater	than	given	interrupt	vector	number	and	if	it	is	greater	we	assign	it:

if	(!test_bit(vector,	used_vectors))	{

				set_bit(vector,	used_vectors);

				if	(first_system_vector	>	vector)

								first_system_vector	=	vector;

}	else	{

				BUG();

}

We	already	saw	the		set_bit		macro,	now	let's	look	on	the		test_bit		and	the		first_system_vector	.	The	first		test_bit	
macro	defined	in	the	arch/x86/include/asm/bitops.h	and	looks	like	this:

#define	test_bit(nr,	addr)																						\

								(__builtin_constant_p((nr))													\

									?	constant_test_bit((nr),	(addr))						\

									:	variable_test_bit((nr),	(addr)))

We	can	see	the	ternary	operator	here	make	a	test	with	the	gcc	built-in	function		__builtin_constant_p		tests	that	given	vector
number	(	nr	)	is	known	at	compile	time.	If	you're	feeling	misunderstanding	of	the		__builtin_constant_p	,	we	can	make
simple	test:

#include	<stdio.h>

#define	PREDEFINED_VAL	1

int	main()	{

				int	i	=	5;

				printf("__builtin_constant_p(i)	is	%d\n",	__builtin_constant_p(i));
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				printf("__builtin_constant_p(PREDEFINED_VAL)	is	%d\n",	__builtin_constant_p(PREDEFINED_VAL));

				printf("__builtin_constant_p(100)	is	%d\n",	__builtin_constant_p(100));

				return	0;

}

and	look	on	the	result:

$	gcc	test.c	-o	test

$	./test

__builtin_constant_p(i)	is	0

__builtin_constant_p(PREDEFINED_VAL)	is	1

__builtin_constant_p(100)	is	1

Now	I	think	it	must	be	clear	for	you.	Let's	get	back	to	the		test_bit		macro.	If	the		__builtin_constant_p		will	return	non-zero,
we	call		constant_test_bit		function:

static	inline	int	constant_test_bit(int	nr,	const	void	*addr)

{

				const	u32	*p	=	(const	u32	*)addr;

				return	((1UL	<<	(nr	&	31))	&	(p[nr	>>	5]))	!=	0;

}

and	the		variable_test_bit		in	other	way:

static	inline	int	variable_test_bit(int	nr,	const	void	*addr)

{

								u8	v;

								const	u32	*p	=	(const	u32	*)addr;

								asm("btl	%2,%1;	setc	%0"	:	"=qm"	(v)	:	"m"	(*p),	"Ir"	(nr));

								return	v;

}

What's	the	difference	between	two	these	functions	and	why	do	we	need	in	two	different	functions	for	the	same	purpose?	As
you	already	can	guess	main	purpose	is	optimization.	If	we	will	write	simple	example	with	these	functions:

#define	CONST	25

int	main()	{

				int	nr	=	24;

				variable_test_bit(nr,	(int*)0x10000000);

				constant_test_bit(CONST,	(int*)0x10000000)

				return	0;

}

and	will	look	on	the	assembly	output	of	our	example	we	will	see	followig	assembly	code:

pushq				%rbp

movq				%rsp,	%rbp

movl				$268435456,	%esi

movl				$25,	%edi

call				constant_test_bit

for	the		constant_test_bit	,	and:
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pushq				%rbp

movq				%rsp,	%rbp

subq				$16,	%rsp

movl				$24,	-4(%rbp)

movl				-4(%rbp),	%eax

movl				$268435456,	%esi

movl				%eax,	%edi

call				variable_test_bit

for	the		variable_test_bit	.	These	two	code	listings	starts	with	the	same	part,	first	of	all	we	save	base	of	the	current	stack
frame	in	the		%rbp		register.	But	after	this	code	for	both	examples	is	different.	In	the	first	example	we	put		$268435456		(here
the		$268435456		is	our	second	parameter	-		0x10000000	)	to	the		esi		and		$25		(our	first	parameter)	to	the		edi		register	and
call		constant_test_bit	.	We	put	functuin	parameters	to	the		esi		and		edi		registers	because	as	we	are	learning	Linux	kernel
for	the		x86_64		architecture	we	use		System	V	AMD64	ABI		calling	convention.	All	is	pretty	simple.	When	we	are	using
predifined	constant,	the	compiler	can	just	substitute	its	value.	Now	let's	look	on	the	second	part.	As	you	can	see	here,	the
compiler	can	not	substitute	value	from	the		nr		variable.	In	this	case	compiler	must	calcuate	its	offset	on	the	programm's
stack	frame.	We	substract		16		from	the		rsp		register	to	allocate	stack	for	the	local	variables	data	and	put	the		$24		(value	of
the		nr		variable)	to	the		rbp		with	offset		-4	.	Our	stack	frame	will	be	like	this:

									<-	stack	grows	

														%[rbp]

																	|

+----------+	+---------+	+---------+	+--------+

|										|	|									|	|	return		|	|								|

|				nr				|-|									|-|									|-|		argc		|

|										|	|									|	|	address	|	|								|

+----------+	+---------+	+---------+	+--------+

																	|

														%[rsp]

After	this	we	put	this	value	to	the		eax	,	so		eax		register	now	contains	value	of	the		nr	.	In	the	end	we	do	the	same	that	in	the
first	example,	we	put	the		$268435456		(the	first	parameter	of	the		variable_test_bit		function)	and	the	value	of	the		eax	
(value	of		nr	)	to	the		edi		register	(the	second	parameter	of	the		variable_test_bit	function	).

The	next	step	after	the		apic_intr_init		function	will	finish	its	work	is	the	setting	interrup	gates	from	the
	FIRST_EXTERNAL_VECTOR		or		0x20		to	the		0x256	:

i	=	FIRST_EXTERNAL_VECTOR;

#ifndef	CONFIG_X86_LOCAL_APIC

#define	first_system_vector	NR_VECTORS

#endif

for_each_clear_bit_from(i,	used_vectors,	first_system_vector)	{

				set_intr_gate(i,	irq_entries_start	+	8	*	(i	-	FIRST_EXTERNAL_VECTOR));

}

But	as	we	are	using	the		for_each_clear_bit_from		helper,	we	set	only	non-initialized	interrupt	gates.	After	this	we	use	the
same		for_each_clear_bit_from		helper	to	fill	the	non-filled	interrupt	gates	in	the	interrupt	table	with	the		spurious_interrupt	:

#ifdef	CONFIG_X86_LOCAL_APIC

for_each_clear_bit_from(i,	used_vectors,	NR_VECTORS)

				set_intr_gate(i,	spurious_interrupt);

#endif

Where	the		spurious_interrupt		function	represent	interrupt	handler	fro	the		spurious		interrupt.	Here	the		used_vectors		is	the
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	unsigned	long		that	contains	already	initialized	interrupt	gates.	We	already	filled	first		32		interrupt	vectors	in	the		trap_init	
function	from	the	arch/x86/kernel/setup.c	source	code	file:

for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)

				set_bit(i,	used_vectors);

You	can	remember	how	we	did	it	in	the	sixth	part	of	this	chapter.

In	the	end	of	the		native_init_IRQ		function	we	can	see	the	following	check:

if	(!acpi_ioapic	&&	!of_ioapic	&&	nr_legacy_irqs())

				setup_irq(2,	&irq2);

First	of	all	let's	deal	with	the	condition.	The		acpi_ioapic		variable	represents	existence	of	I/O	APIC.	It	defined	in	the
arch/x86/kernel/acpi/boot.c.	This	variable	set	in	the		acpi_set_irq_model_ioapic		function	that	called	during	the	processing
	Multiple	APIC	Description	Table	.	This	occurs	during	initialization	of	the	architecture-specific	stuff	in	the
arch/x86/kernel/setup.c	(more	about	it	we	will	know	in	the	other	chapter	about	APIC).	Note	that	the	value	of	the
	acpi_ioapic		variable	depends	on	the		CONFIG_ACPI		and		CONFIG_X86_LOCAL_APIC		Linux	kernel	configuration	options.	If	these
options	did	not	set,	this	variable	will	be	just	zero:

#define	acpi_ioapic	0

The	second	condition	-		!of_ioapic	&&	nr_legacy_irqs()		checks	that	we	do	not	use	Open	Firmware		I/O	APIC		and	legacy
interrupt	controller.	We	already	know	about	the		nr_legacy_irqs	.	The	second	is		of_ioapic		variable	defined	in	the
arch/x86/kernel/devicetree.c	and	initialized	in	the		dtb_ioapic_setup		function	that	build	information	about		APICs		in	the
devicetree.	Note	that		of_ioapic		variable	depends	on	the		CONFIG_OF		Linux	kernel	configuration	opiotn.	If	this	option	is	not
set,	the	value	of	the		of_ioapic		will	be	zero	too:

#ifdef	CONFIG_OF

extern	int	of_ioapic;

...

...

...

#else

#define	of_ioapic	0

...

...

...

#endif

If	the	condition	will	return	non-zero	vaule	we	call	the:

setup_irq(2,	&irq2);

function.	First	of	all	about	the		irq2	.	The		irq2		is	the		irqaction		structure	that	defined	in	the	arch/x86/kernel/irqinit.c	source
code	file	and	represents		IRQ	2		line	that	is	used	to	query	devices	connected	cascade:

static	struct	irqaction	irq2	=	{

				.handler	=	no_action,

				.name	=	"cascade",

				.flags	=	IRQF_NO_THREAD,

};
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Some	time	ago	interrupt	controller	consisted	of	two	chips	and	one	was	connected	to	second.	The	second	chip	that	was
connected	to	the	first	chip	via	this		IRQ	2		line.	This	chip	serviced	lines	from		8		to		15		and	after	after	this	lines	of	the	first
chip.	So,	for	example	Intel	8259A	has	following	lines:

	IRQ	0		-	system	time;
	IRQ	1		-	keyboard;
	IRQ	2		-	used	for	devices	which	are	cascade	connected;
	IRQ	8		-	RTC;
	IRQ	9		-	reserved;
	IRQ	10		-	reserved;
	IRQ	11		-	reserved;
	IRQ	12		-		ps/2		mouse;
	IRQ	13		-	coprocessor;
	IRQ	14		-	hard	drive	controller;
	IRQ	1		-	reserved;
	IRQ	3		-		COM2		and		COM4	;
	IRQ	4		-		COM1		and		COM3	;
	IRQ	5		-		LPT2	;
	IRQ	6		-	drive	controller;
	IRQ	7		-		LPT1	.

The		setup_irq		function	defined	in	the	kernel/irq/manage.c	and	takes	two	parameters:

vector	number	of	an	interrupt;
	irqaction		structure	related	with	an	interrupt.

This	function	initializes	interrupt	descriptor	from	the	given	vector	number	at	the	beginning:

struct	irq_desc	*desc	=	irq_to_desc(irq);

And	call	the		__setup_irq		function	that	setups	given	interrupt:

chip_bus_lock(desc);

retval	=	__setup_irq(irq,	desc,	act);

chip_bus_sync_unlock(desc);

return	retval;

Note	that	the	interrupt	descriptor	is	locked	during		__setup_irq		function	will	work.	The		__setup_irq		function	makes	many
different	things:	It	creates	a	handler	thread	when	a	thread	function	is	supplied	and	the	interrupt	does	not	nest	into	another
interrupt	thread,	sets	the	flags	of	the	chip,	fills	the		irqaction		structure	and	many	many	more.

All	of	the	above	it	creates		/prov/vector_number		directory	and	fills	it,	but	if	you	are	using	modern	computer	all	values	will	be
zero	there:

$	cat	/proc/irq/2/node

0

$cat	/proc/irq/2/affinity_hint	

00

cat	/proc/irq/2/spurious	

count	0

unhandled	0

last_unhandled	0	ms
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because	probably		APIC		handles	interrupts	on	the	our	machine.

That's	all.

It	is	the	end	of	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	continued	to	dive	into	external
hardware	interrupts	in	this	part.	In	the	previous	part	we	started	to	do	it	and	saw	early	initialization	of	the		IRQs	.	In	this	part
we	already	saw	non-early	interrupts	initialization	in	the		init_IRQ		function.	We	saw	initialization	of	the		vector_irq		per-cpu
array	which	is	store	vector	numbers	of	the	interrupts	and	will	be	used	during	interrupt	handling	and	initialization	of	other
stuff	which	is	related	to	the	external	hardware	interrupts.

In	the	next	part	we	will	continue	to	learn	interrupts	handling	related	stuff	and	will	see	initialization	of	the		softirqs	.

If	you	will	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	will	find	any
mistakes	please	send	me	PR	to	linux-internals.

IRQ
percpu
x86_64
Intel	8259
Programmable	Interrupt	Controller
ISA
MultiProcessor	Configuration	Table
Local	APIC
I/O	APIC
SMP
Inter-processor	interrupt
ternary	operator
gcc
calling	convention
PDF.	System	V	Application	Binary	Interface	AMD64
Call	stack
Open	Firmware
devicetree
RTC
Previous	part

Conclusion

Links
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It	is	the	ninth	part	of	the	linux-insides	book	and	in	the	previous	Previous	part	we	saw	implementation	of	the		init_IRQ		from
that	defined	in	the	arch/x86/kernel/irqinit.c	source	code	file.	So,	we	will	continue	to	dive	into	the	initialization	stuff	which	is
related	to	the	external	hardware	interrupts	in	this	part.

After	the		init_IRQ		function	we	can	see	the	call	of	the		softirq_init		function	in	the	init/main.c.	This	function	defined	in	the
kernel/softirq.c	source	code	file	and	as	we	can	understand	from	its	name,	this	function	makes	initialization	of	the		softirq	
or	in	other	words	initialization	of	the		deferred	interrupts	.	What	is	it	deferreed	intrrupt?	We	already	saw	a	little	bit	about	it	in
the	ninth	part	of	the	chapter	that	describes	initialization	process	of	the	Linux	kernel.	There	are	three	types	of		deffered
interrupts		in	the	Linux	kernel:

	softirqs	;
	tasklets	;
	workqueues	;

And	we	will	see	description	of	all	of	these	types	in	this	part.	As	I	said,	we	saw	only	a	little	bit	about	this	theme,	so,	now	is
time	to	dive	deep	into	details	about	this	theme.

Interrupts	may	have	different	important	characteristics	and	there	are	two	among	them:

Handler	of	an	interrupt	must	execute	quickly;
Sometime	an	interrupt	handler	must	do	a	large	amount	of	work.

As	you	can	understand,	it	is	almost	impossible	to	make	so	that	both	characteristics	were	valid.	Because	of	these,
previously	the	handling	of	interrupts	was	splitted	into	two	parts:

Top	half;
Bottom	half;

Once	the	Linux	kernel	was	one	of	the	ways	the	organization	postprocessing,	and	which	was	called:		the	bottom	half		of	the
processor,	but	now	it	is	already	not	actual.	Now	this	term	has	remained	as	a	common	noun	referring	to	all	the	different	ways
of	organizing	deffered	processing	of	an	interrupt.	With	the	advent	of	parallelisms	in	the	Linux	kernel,	all	new	schemes	of
implementation	of	the	bottom	half	handlers	are	built	on	the	performance	of	the	processor	specific	kernel	thread	that	called
	ksoftirqd		(will	be	discussed	below).	The		softirq		mechanism	represents	handling	of	interrupts	that	are		almost		as
important	as	the	handling	of	the	hardware	interrupts.	The	deferred	processing	of	an	interrupt	suggests	that	some	of	the
actions	for	an	interrupt	may	be	postponed	to	a	later	execution	when	the	system	will	be	less	loaded.	As	you	can	suggests,
an	interrupt	handler	can	do	large	amount	of	work	that	is	impermissible	as	it	executes	in	the	context	where	interrupts	are
disabled.	That's	why	processing	of	an	interrupt	can	be	splitted	on	two	different	parts.	In	the	first	part,	the	main	handler	of	an
interrupt	does	only	minimal	and	the	most	important	job.	After	this	it	schedules	the	second	part	and	finishes	its	work.	When
the	system	is	less	busy	and	context	of	the	processor	allows	to	handle	interrupts,	the	second	part	starts	its	work	and	finishes
to	process	remaing	part	of	a	deferred	interrupt.	That	is	main	explanation	of	the	deferred	interrupt	handling.

As	I	already	wrote	above,	handling	of	deferred	interrupts	(or		softirq		in	other	words)	and	accordingly		tasklets		is
performed	by	a	set	of	the	special	kernel	threads	(one	thread	per	processor).	Each	processor	has	its	own	thread	that	is

Interrupts	and	Interrupt	Handling.	Part	9.

Introduction	to	deferred	interrupts	(Softirq,	Tasklets	and
Workqueues)

Deferred	interrupts
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called		ksoftirqd/n		where	the		n		is	the	number	of	the	processor.	We	can	see	it	in	the	output	of	the		systemd-cgls		util:

$	systemd-cgls	-k	|	grep	ksoft

├─			3	[ksoftirqd/0]

├─		13	[ksoftirqd/1]

├─		18	[ksoftirqd/2]

├─		23	[ksoftirqd/3]

├─		28	[ksoftirqd/4]

├─		33	[ksoftirqd/5]

├─		38	[ksoftirqd/6]

├─		43	[ksoftirqd/7]

The		spawn_ksoftirqd		function	starts	this	these	threads.	As	we	can	see	this	function	called	as	early	initcall:

early_initcall(spawn_ksoftirqd);

Deferred	interrupts	are	determined	statically	at	compile-time	of	the	Linux	kernel	and	the		open_softirq		function	takes	care	of
	softirq		initialization.	The		open_softirq		function	defined	in	the	kernel/softirq.c:

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

				softirq_vec[nr].action	=	action;

}

and	as	we	can	see	this	function	uses	two	parameters:

the	index	of	the		softirq_vec		array;
a	pointer	to	the	softirq	function	to	be	executed;

First	of	all	let's	look	on	the		softirq_vec		array:

static	struct	softirq_action	softirq_vec[NR_SOFTIRQS]	__cacheline_aligned_in_smp;

it	defined	in	the	same	source	code	file.	As	we	can	see,	the		softirq_vec		array	may	contain		NR_SOFTIRQS		or		10		types	of
	softirqs		that	has	type		softirq_action	.	First	of	all	about	its	elements.	In	the	current	version	of	the	Linux	kernel	there	are
ten	softirq	vectors	defined;	two	for	tasklet	processing,	two	for	networking,	two	for	the	block	layer,	two	for	timers,	and	one
each	for	the	scheduler	and	read-copy-update	processing.	All	of	these	kinds	are	represented	by	the	following	enum:

enum

{

								HI_SOFTIRQ=0,

								TIMER_SOFTIRQ,

								NET_TX_SOFTIRQ,

								NET_RX_SOFTIRQ,

								BLOCK_SOFTIRQ,

								BLOCK_IOPOLL_SOFTIRQ,

								TASKLET_SOFTIRQ,

								SCHED_SOFTIRQ,

								HRTIMER_SOFTIRQ,

								RCU_SOFTIRQ,

								NR_SOFTIRQS

};

All	names	of	these	kinds	of	softirqs	are	represented	by	the	following	array:
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const	char	*	const	softirq_to_name[NR_SOFTIRQS]	=	{

								"HI",	"TIMER",	"NET_TX",	"NET_RX",	"BLOCK",	"BLOCK_IOPOLL",

								"TASKLET",	"SCHED",	"HRTIMER",	"RCU"

};

Or	we	can	see	it	in	the	output	of	the		/proc/softirqs	:

~$	cat	/proc/softirqs	

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7							

										HI:										5										0										0										0										0										0										0										0

							TIMER:					332519					310498					289555					272913					282535					279467					282895					270979

						NET_TX:							2320										0										0										2										1										1										0										0

						NET_RX:					270221								225								338								281								311								262								430								265

							BLOCK:					134282									32									40									10									12										7										8										8

BLOCK_IOPOLL:										0										0										0										0										0										0										0										0

					TASKLET:					196835										2										3										0										0										0										0										0

							SCHED:					161852					146745					129539					126064					127998					128014					120243					117391

					HRTIMER:										0										0										0										0										0										0										0										0

									RCU:					337707					289397					251874					239796					254377					254898					267497					256624

As	we	can	see	the		softirq_vec		array	has		softirq_action		types.	This	is	the	main	data	structure	related	to	the		softirq	
mechanism,	so	all		softirqs		represented	by	the		softirq_action		structure.	The		softirq_action		structure	consists	a	single
field	only:	an	action	pointer	to	the	softirq	function:

struct	softirq_action

{

									void				(*action)(struct	softirq_action	*);

};

So,	after	this	we	can	understand	that	the		open_softirq		function	fills	the		softirq_vec		array	with	the	given		softirq_action	.
The	registered	deferred	interrupt	(with	the	call	of	the		open_softirq		function)	for	it	to	be	queued	for	execution,	it	should	be
activated	by	the	call	of	the		raise_softirq		function.	This	function	takes	only	one	parameter	--	a	softirq	index		nr	.	Let's	look
on	its	implementation:

void	raise_softirq(unsigned	int	nr)

{

								unsigned	long	flags;

								local_irq_save(flags);

								raise_softirq_irqoff(nr);

								local_irq_restore(flags);

}

Here	we	can	see	the	call	of	the		raise_softirq_irqoff		function	between	the		local_irq_save		and	the		local_irq_restore	
macros.	The		local_irq_save		defined	in	the	include/linux/irqflags.h	header	file	and	saves	the	state	of	the	IF	flag	of	the	eflags
register	and	disables	interrupts	on	the	local	processor.	The		local_irq_restore		macro	defined	in	the	same	header	file	and
does	the	opposite	thing:	restores	the		interrupt	flag		and	enables	interrupts.	We	disable	interrupts	here	because	a
	softirq		interrupt	runs	in	the	interrupt	context	and	that	one	softirq	(and	no	others)	will	be	run.

The		raise_softirq_irqoff		function	marks	the	softirq	as	deffered	by	setting	the	bit	corresponding	to	the	given	index		nr		in
the		softirq		bit	mask	(	__softirq_pending	)	of	the	local	processor.	It	does	it	with	the	help	of	the:

__raise_softirq_irqoff(nr);

macro.	After	this,	it	checks	the	result	of	the		in_interrupt		that	returns		irq_count		value.	We	already	saw	the		irq_count		in
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the	first	part	of	this	chapter	and	it	is	used	to	check	if	a	CPU	is	already	on	an	interrupt	stack	or	not.	We	just	exit	from	the
	raise_softirq_irqoff	,	restore		IF		flang	and	enable	interrupts	on	the	local	processor,	if	we	are	in	the	interrupt	context,
otherwise	we	call	the		wakeup_softirqd	:

if	(!in_interrupt())

				wakeup_softirqd();

Where	the		wakeup_softirqd		function	activates	the		ksoftirqd		kernel	thread	of	the	local	processor:

static	void	wakeup_softirqd(void)

{

				struct	task_struct	*tsk	=	__this_cpu_read(ksoftirqd);

				if	(tsk	&&	tsk->state	!=	TASK_RUNNING)

								wake_up_process(tsk);

}

Each		ksoftirqd		kernel	thread	runs	the		run_ksoftirqd		function	that	checks	existence	of	deferred	interrupts	and	calls	the
	__do_softirq		function	depends	on	result.	This	function	reads	the		__softirq_pending		softirq	bit	mask	of	the	local	processor
and	executes	the	deferrable	functions	corresponding	to	every	bit	set.	During	execution	of	a	deferred	function,	new	pending
	softirqs		might	occur.	The	main	problem	here	that	execution	of	the	userspace	code	can	be	delayed	for	a	long	time	while
the		__do_softirq		function	will	handle	deferred	interrupts.	For	this	purpose,	it	has	the	limit	of	the	time	when	it	must	be
finsihed:

unsigned	long	end	=	jiffies	+	MAX_SOFTIRQ_TIME;

...

...

...

restart:

while	((softirq_bit	=	ffs(pending)))	{

				...

				h->action(h);

				...

}

...

...

...

pending	=	local_softirq_pending();

if	(pending)	{

				if	(time_before(jiffies,	end)	&&	!need_resched()	&&

								--max_restart)

												goto	restart;

}

...

Checks	of	the	existence	of	the	deferred	interrupts	performed	periodically	and	there	are	some	points	where	this	check
occurs.	The	main	point	where	this	situation	occurs	is	the	call	of	the		do_IRQ		function	that	defined	in	the	arch/x86/kernel/irq.c
and	provides	main	possibilities	for	actual	interrupt	processing	in	the	Linux	kernel.	When	this	function	will	finish	to	handle	an
interrupt,	it	calls	the		exiting_irq		function	from	the	arch/x86/include/asm/apic.h	that	expands	to	the	call	of	the		irq_exit	
function.	The		irq_exit		checks	deferred	interrupts,	current	context	and	calls	the		invoke_softirq		function:

if	(!in_interrupt()	&&	local_softirq_pending())

				invoke_softirq();

that	executes	the		__do_softirq		too.	So	what	do	we	have	in	summary.	Each		softirq		goes	through	the	following	stages:
Registration	of	a		softirq		with	the		open_softirq		function.	Activation	of	a		softirq		by	marking	it	as	deferred	with	the
	raise_softirq		function.	After	this,	all	marked		softirqs		will	be	runned	in	the	next	time	the	Linux	kernel	schedules	a	round
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of	executions	of	deferrable	functions.	And	execution	of	the	deferred	functions	that	have	the	same	type.

As	I	already	wrote,	the		softirqs		are	statically	allocated	and	it	is	a	problem	for	a	kernel	module	that	can	be	loaded.	The
second	concept	that	built	on	top	of		softirq		--	the		tasklets		solves	this	problem.

If	you	read	the	source	code	of	the	Linux	kernel	that	is	related	to	the		softirq	,	you	notice	that	it	is	used	very	rarely.	The
preferable	way	to	implement	deferrable	functions	are		tasklets	.	As	I	already	wrote	above	the		tasklets		are	built	on	top	of
the		softirq		concept	and	generally	on	top	of	two		softirqs	:

	TASKLET_SOFTIRQ	;
	HI_SOFTIRQ	.

In	short	words,		tasklets		are		softirqs		that	can	be	allocated	and	initialized	at	runtime	and	unlike		softirqs	,	tasklets	that
have	the	same	type	cannot	be	run	on	multiple	processors	at	a	time.	Ok,	now	we	know	a	little	bit	about	the		softirqs	,	of
course	previous	text	does	not	cover	all	aspects	about	this,	but	now	we	can	directly	look	on	the	code	and	to	know	more
about	the		softirqs		step	by	step	on	practice	and	to	know	about		tasklets	.	Let's	return	back	to	the	implementation	of	the
	softirq_init		function	that	we	talked	about	in	the	beginning	of	this	part.	This	function	is	defined	in	the	kernel/softirq.c
source	code	file,	let's	look	on	its	implementation:

void	__init	softirq_init(void)

{

								int	cpu;

								for_each_possible_cpu(cpu)	{

																per_cpu(tasklet_vec,	cpu).tail	=

																								&per_cpu(tasklet_vec,	cpu).head;

																per_cpu(tasklet_hi_vec,	cpu).tail	=

																								&per_cpu(tasklet_hi_vec,	cpu).head;

								}

								open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

								open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

}

We	can	see	definition	of	the	integer		cpu		variable	at	the	beginning	of	the		softirq_init		function.	Next	we	will	use	it	as
parameter	for	the		for_each_possible_cpu		macro	that	goes	through	the	all	possible	processors	in	the	system.	If	the		possible
processor		is	the	new	terminology	for	you,	you	can	read	more	about	it	the	CPU	masks	chapter.	In	short	words,		possible
cpus		is	the	set	of	processors	that	can	be	plugged	in	anytime	during	the	life	of	that	system	boot.	All		possible	processors	
stored	in	the		cpu_possible_bits		bitmap,	you	can	find	its	definition	in	the	kernel/cpu.c:

static	DECLARE_BITMAP(cpu_possible_bits,	CONFIG_NR_CPUS)	__read_mostly;

...

...

...

const	struct	cpumask	*const	cpu_possible_mask	=	to_cpumask(cpu_possible_bits);

Ok,	we	defined	the	integer		cpu		variable	and	go	through	the	all	possible	processors	with	the		for_each_possible_cpu		macro
and	makes	initialization	of	the	two	following	per-cpu	variables:

	tasklet_vec	;
	tasklet_hi_vec	;

These	two		per-cpu		variables	defined	in	the	same	source	code	file	as	the		softirq_init		function	and	represent	two
	tasklet_head		structures:

Tasklets
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static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_vec);

static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_hi_vec);

Where		tasklet_head		structure	represents	a	list	of		Tasklets		and	contains	two	fields,	head	and	tail:

struct	tasklet_head	{

								struct	tasklet_struct	*head;

								struct	tasklet_struct	**tail;

};

The		tasklet_struct		structure	is	defined	in	the	include/linux/interrupt.h	and	represents	the		Tasklet	.	Previously	we	did	not
see	this	word	in	this	book.	Let's	try	to	understand	what	the		tasklet		is.	Actually,	the	tasklet	is	one	of	mechanisms	to	handle
deferred	interrupt.	Let's	look	on	the	implementation	of	the		tasklet_struct		structure:

struct	tasklet_struct

{

								struct	tasklet_struct	*next;

								unsigned	long	state;

								atomic_t	count;

								void	(*func)(unsigned	long);

								unsigned	long	data;

};

As	we	can	see	this	structure	contains	five	fields,	they	are:

Next	tasklet	in	the	scheduling	queue;
State	of	the	tasklet;
Represent	current	state	of	the	tasklet,	active	or	not;
Main	callback	of	the	tasklet;
Parameter	of	the	callback.

In	our	case,	we	set	only	for	initialize	only	two	arrays	of	tasklets	in	the		softirq_init		function:	the		tasklet_vec		and	the
	tasklet_hi_vec	.	Tasklets	and	high-priority	tasklets	are	stored	in	the		tasklet_vec		and		tasklet_hi_vec		arrays,	respectively.
So,	we	have	initialized	these	arrays	and	now	we	can	see	two	calls	of	the		open_softirq		function	that	is	defined	in	the
kernel/softirq.c	source	code	file:

open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

at	the	end	of	the		softirq_init		function.	The	main	purpose	of	the		open_softirq		function	is	the	initalization	of		softirq	.	Let's
look	on	the	implementation	of	the		open_softirq		function.

,	in	our	case	they	are:		tasklet_action		and	the		tasklet_hi_action		or	the		softirq		function	associated	with	the		HI_SOFTIRQ	
softirq	is	named		tasklet_hi_action		and		softirq		function	associated	with	the		TASKLET_SOFTIRQ		is	named		tasklet_action	.
The	Linux	kernel	provides	API	for	the	manipulating	of		tasklets	.	First	of	all	it	is	the		tasklet_init		function	that	takes
	tasklet_struct	,	function	and	parameter	for	it	and	initializes	the	given		tasklet_struct		with	the	given	data:

void	tasklet_init(struct	tasklet_struct	*t,

																		void	(*func)(unsigned	long),	unsigned	long	data)

{

				t->next	=	NULL;

				t->state	=	0;

				atomic_set(&t->count,	0);

				t->func	=	func;

				t->data	=	data;
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}

There	are	additional	methods	to	initialize	a	tasklet	statically	with	the	two	following	macros:

DECLARE_TASKLET(name,	func,	data);

DECLARE_TASKLET_DISABLED(name,	func,	data);

The	Linux	kernel	provides	three	following	functions	to	mark	a	tasklet	as	ready	to	run:

void	tasklet_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule_first(struct	tasklet_struct	*t);

The	first	function	schedules	a	tasklet	with	the	normal	priority,	the	second	with	the	high	priority	and	the	third	out	of	turn.
Implementation	of	the	all	of	these	three	functions	is	similar,	so	we	will	consider	only	the	first	--		tasklet_schedule	.	Let's	look
on	its	implementation:

static	inline	void	tasklet_schedule(struct	tasklet_struct	*t)

{

				if	(!test_and_set_bit(TASKLET_STATE_SCHED,	&t->state))

								__tasklet_schedule(t);

}

void	__tasklet_schedule(struct	tasklet_struct	*t)

{

								unsigned	long	flags;

								local_irq_save(flags);

								t->next	=	NULL;

								*__this_cpu_read(tasklet_vec.tail)	=	t;

								__this_cpu_write(tasklet_vec.tail,	&(t->next));

								raise_softirq_irqoff(TASKLET_SOFTIRQ);

								local_irq_restore(flags);

}

As	we	can	see	it	checks	and	sets	the	state	of	the	given	tasklet	to	the		TASKLET_STATE_SCHED		and	executes	the
	__tasklet_schedule		with	the	given	tasklet.	The		__tasklet_schedule		looks	very	similar	to	the		raise_softirq		function	that	we
saw	above.	It	saves	the		interrupt	flag		and	disables	interrupts	at	the	beginning.	After	this,	it	updates		tasklet_vec		with	the
new	tasklet	and	calls	the		raise_softirq_irqoff		function	that	we	saw	above.	When	the	Linux	kernel	scheduler	will	decide	to
run	deferred	functions,	the		tasklet_action		function	will	be	called	for	deferred	functions	which	are	associated	with	the
	TASKLET_SOFTIRQ		and		tasklet_hi_action		for	deferred	functions	which	are	associated	with	the		HI_SOFTIRQ	.	These	functions
are	very	similar	and	there	is	only	one	difference	between	them	--		tasklet_action		uses		tasklet_vec		and		tasklet_hi_action	
uses		tasklet_hi_vec	.

Let's	look	on	the	implementation	of	the		tasklet_action		function:

static	void	tasklet_action(struct	softirq_action	*a)

{

				local_irq_disable();

				list	=	__this_cpu_read(tasklet_vec.head);

				__this_cpu_write(tasklet_vec.head,	NULL);

				__this_cpu_write(tasklet_vec.tail,	this_cpu_ptr(&tasklet_vec.head));

				local_irq_enable();

				while	(list)	{

								if	(tasklet_trylock(t))	{

												t->func(t->data);

												tasklet_unlock(t);

								}
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								...

								...

								...

				}

}

In	the	beginning	of	the		tasketl_action		function,	we	disable	interrupts	for	the	local	processor	with	the	help	of	the
	local_irq_disable		macro	(you	can	read	about	this	macro	in	the	second	part	of	this	chapter).	In	the	next	step,	we	take	a
head	of	the	list	that	contains	tasklets	with	normal	priority	and	set	this	per-cpu	list	to		NULL		because	all	tasklets	must	be
executed	in	a	generaly	way.	After	this	we	enable	interrupts	for	the	local	processor	and	go	through	the	list	of	taklets	in	the
loop.	In	every	iteration	of	the	loop	we	call	the		tasklet_trylock		function	for	the	given	tasklet	that	updates	state	of	the	given
tasklet	on		TASKLET_STATE_RUN	:

static	inline	int	tasklet_trylock(struct	tasklet_struct	*t)

{

				return	!test_and_set_bit(TASKLET_STATE_RUN,	&(t)->state);

}

If	this	operation	was	successful	we	execute	tasklet's	action	(it	was	set	in	the		tasklet_init	)	and	call	the		tasklet_unlock	
function	that	clears	tasklet's		TASKLET_STATE_RUN		state.

In	general,	that's	all	about		tasklets		concept.	Of	course	this	does	not	cover	full		tasklets	,	but	I	think	that	it	is	a	good	point
from	where	you	can	continue	to	learn	this	concept.

The		tasklets		are	widely	used	concept	in	the	Linux	kernel,	but	as	I	wrote	in	the	beginning	of	this	part	there	is	third
mechanism	for	deferred	functions	--		workqueue	.	In	the	next	paragraph	we	will	see	what	it	is.

The		workqueue		is	another	concept	for	handling	deferred	functions.	It	is	similar	to		tasklets		with	some	differences.
Workqueue	functions	run	in	the	context	of	a	kernel	process,	but		tasklet		functions	run	in	the	software	interrupt	context.
This	means	that		workqueue		functions	must	not	be	atomic	as		tasklet		functions.	Tasklets	always	run	on	the	processor	from
which	they	were	originally	submitted.	Workqueues	work	in	the	same	way,	but	only	by	default.	The		workqueue		concept
represented	by	the:

struct	worker_pool	{

				spinlock_t														lock;

				int																					cpu;

				int																					node;

				int																					id;

				unsigned	int												flags;

				struct	list_head								worklist;

				int																					nr_workers;

...

...

...

structure	that	is	defined	in	the	kernel/workqueue.c	source	code	file	in	the	Linux	kernel.	I	will	not	write	the	source	code	of
this	structure	here,	because	it	has	quite	a	lot	of	fields,	but	we	will	consider	some	of	those	fields.

In	its	most	basic	form,	the	work	queue	subsystem	is	an	interface	for	creating	kernel	threads	to	handle	work	that	is	queued
from	elsewhere.	All	of	these	kernel	threads	are	called	--		worker	threads	.	The	work	queue	are	maintained	by	the
	work_struct		that	defined	in	the	include/linux/workqueue.h.	Let's	look	on	this	structure:

Workqueues
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struct	work_struct	{

				atomic_long_t	data;

				struct	list_head	entry;

				work_func_t	func;

#ifdef	CONFIG_LOCKDEP

				struct	lockdep_map	lockdep_map;

#endif

};

Here	are	two	things	that	we	are	interested:		func		--	the	function	that	will	be	scheduled	by	the		workqueue		and	the		data		-
parameter	of	this	function.	The	Linux	kernel	provides	special	per-cpu	threads	that	are	called		kworker	:

systemd-cgls	-k	|	grep	kworker

├─				5	[kworker/0:0H]

├─			15	[kworker/1:0H]

├─			20	[kworker/2:0H]

├─			25	[kworker/3:0H]

├─			30	[kworker/4:0H]

...

...

...

This	process	can	be	used	to	schedule	the	deferred	functions	of	the	workqueues	(as		ksoftirqd		for		softirqs	).	Besides	this
we	can	create	new	separate	worker	thread	for	a		workqueue	.	The	Linux	kernel	provides	following	macros	for	the	creation	of
workqueue:

#define	DECLARE_WORK(n,	f)	\

				struct	work_struct	n	=	__WORK_INITIALIZER(n,	f)

for	static	creation.	It	takes	two	parameters:	name	of	the	workqueue	and	the	workqueue	function.	For	creation	of	workqueue
in	runtime,	we	can	use	the:

#define	INIT_WORK(_work,	_func)							\

				__INIT_WORK((_work),	(_func),	0)

#define	__INIT_WORK(_work,	_func,	_onstack)																					\

				do	{																																																								\

												__init_work((_work),	_onstack);																					\

												(_work)->data	=	(atomic_long_t)	WORK_DATA_INIT();			\

												INIT_LIST_HEAD(&(_work)->entry);																				\

													(_work)->func	=	(_func);																											\

				}	while	(0)

macro	that	takes		work_struct		structure	that	has	to	be	created	and	the	function	to	be	scheduled	in	this	workqueue.	After	a
	work		was	created	with	the	one	of	these	macros,	we	need	to	put	it	to	the		workqueue	.	We	can	do	it	with	the	help	of	the
	queue_work		or	the		queue_delayed_work		functions:

static	inline	bool	queue_work(struct	workqueue_struct	*wq,

																														struct	work_struct	*work)

{

				return	queue_work_on(WORK_CPU_UNBOUND,	wq,	work);

}

The		queue_work		function	just	calls	the		queue_work_on		function	that	queue	work	on	specific	processor.	Note	that	in	our	case
we	pass	the		WORK_STRUCT_PENDING_BIT		to	the		queue_work_on		function.	It	is	a	part	of	the		enum		that	is	defined	in	the
include/linux/workqueue.h	and	represents	workqueue	which	are	not	bound	to	any	specific	processor.	The		queue_work_on	
function	tests	and	set	the		WORK_STRUCT_PENDING_BIT		bit	of	the	given		work		and	executes	the		__queue_work		function	with	the
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	workqueue		for	the	given	processor	and	given		work	:

__queue_work(cpu,	wq,	work);

The		__queue_work		function	gets	the		work	pool	.	Yes,	the		work	pool		not		workqueue	.	Actually,	all		works		are	not	placed	in	the
	workqueue	,	but	to	the		work	pool		that	is	represented	by	the		worker_pool		structure	in	the	Linux	kernel.	As	you	can	see
above,	the		workqueue_struct		structure	has	the		pwqs		field	which	is	list	of		worker_pools	.	When	we	create	a		workqueue	,	it
stands	out	for	each	processor	the		pool_workqueue	.	Each		pool_workqueue		associated	with		worker_pool	,	which	is	allocated
on	the	same	processor	and	corresponds	to	the	type	of	priority	queue.	Through	them		workqueue		interacts	with		worker_pool	.
So	in	the		__queue_work		function	we	set	the	cpu	to	the	current	processor	with	the		raw_smp_processor_id		(you	can	find
information	about	this	marco	in	the	fouth	part	of	the	Linux	kernel	initialization	process	chapter),	getting	the		pool_workqueue	
for	the	given		workqueue_struct		and	insert	the	given		work		to	the	given		workqueue	:

static	void	__queue_work(int	cpu,	struct	workqueue_struct	*wq,

																									struct	work_struct	*work)

{

...

...

...

if	(req_cpu	==	WORK_CPU_UNBOUND)

				cpu	=	raw_smp_processor_id();

if	(!(wq->flags	&	WQ_UNBOUND))

				pwq	=	per_cpu_ptr(wq->cpu_pwqs,	cpu);

else

				pwq	=	unbound_pwq_by_node(wq,	cpu_to_node(cpu));

...

...

...

insert_work(pwq,	work,	worklist,	work_flags);

As	we	can	create		works		and		workqueue	,	we	need	to	know	when	they	are	executed.	As	I	already	wrote,	all		works		are
executed	by	the	kernel	thread.	When	this	kernel	thread	is	scheduled,	it	starts	to	execute		works		from	the	given		workqueue	.
Each	worker	thread	executes	a	loop	inside	the		worker_thread		function.	This	thread	makes	many	different	things	and	part	of
these	things	are	similar	to	what	we	saw	before	in	this	part.	As	it	starts	executing,	it	removes	all		work_struct		or		works		from
its		workqueue	.

That's	all.

It	is	the	end	of	the	ninth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	continued	to	dive	into	external
hardware	interrupts	in	this	part.	In	the	previous	part	we	saw	initialization	of	the		IRQs		and	main		irq_desc		structure.	In	this
part	we	saw	three	concepts:	the		softirq	,		tasklet		and		workqueue		that	are	used	for	the	deferred	functions.

The	next	part	will	be	last	part	of	the		Interrupts	and	Interrupt	Handling		chapter	and	we	will	look	on	the	real	hardware	driver
and	will	try	to	learn	how	it	works	with	the	interrupts	subsystem.

If	you	have	any	questions	or	suggestions,	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any
mistakes	please	send	me	PR	to	linux-internals.

Conclusion

Links
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This	chapter	describes	memory	management	in	the	linux	kernel.	You	will	see	here	a	couple	of	posts	which	describe
different	parts	of	the	linux	memory	management	framework:

Memblock	-	describes	early		memblock		allocator.
Fix-Mapped	Addresses	and	ioremap	-	describes		fix-mapped		addresses	and	early		ioremap	.

Linux	kernel	memory	management
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Memory	management	is	one	of	the	most	complex	(and	I	think	that	it	is	the	most	complex)	parts	of	the	operating	system
kernel.	In	the	last	preparations	before	the	kernel	entry	point	part	we	stopped	right	before	call	of	the		start_kernel		function.
This	function	initializes	all	the	kernel	features	(including	architecture-dependent	features)	before	the	kernel	runs	the	first
	init		process.	You	may	remember	as	we	built	early	page	tables,	identity	page	tables	and	fixmap	page	tables	in	the	boot
time.	No	compilcated	memory	management	is	working	yet.	When	the		start_kernel		function	is	called	we	will	see	the
transition	to	more	complex	data	structures	and	techniques	for	memory	management.	For	a	good	understanding	of	the
initialization	process	in	the	linux	kernel	we	need	to	have	a	clear	understanding	of	these	techniques.	This	chapter	will
provide	an	overview	of	the	different	parts	of	the	linux	kernel	memory	management	framework	and	its	API,	starting	from	the
	memblock	.

Memblock	is	one	of	the	methods	of	managing	memory	regions	during	the	early	bootstrap	period	while	the	usual	kernel
memory	allocators	are	not	up	and	running	yet.	Previously	it	was	called		Logical	Memory	Block	,	but	with	the	patch	by	Yinghai
Lu,	it	was	renamed	to	the		memblock	.	As	Linux	kernel	for		x86_64		architecture	uses	this	method.	We	already	met		memblock		in
the	Last	preparations	before	the	kernel	entry	point	part.	And	now	time	to	get	acquainted	with	it	closer.	We	will	see	how	it	is
implemented.

We	will	start	to	learn		memblock		from	the	data	structures.	Definitions	of	the	all	data	structures	can	be	found	in	the
include/linux/memblock.h	header	file.

The	first	structure	has	the	same	name	as	this	part	and	it	is:

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;			-->	array	of	memblock_region

									struct	memblock_type	reserved;	-->	array	of	memblock_region

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

This	structure	contains	five	fields.	First	is		bottom_up		which	allows	allocating	memory	in	bottom-up	mode	when	it	is		true	.
Next	field	is		current_limit	.	This	field	describes	the	limit	size	of	the	memory	block.	The	next	three	fields	describe	the	type
of	the	memory	block.	It	can	be:	reserved,	memory	and	physical	memory	if	the		CONFIG_HAVE_MEMBLOCK_PHYS_MAP		configuration
option	is	enabled.	Now	we	see	yet	another	data	structure	-		memblock_type	.	Let's	look	at	its	definition:

struct	memblock_type	{

				unsigned	long	cnt;

				unsigned	long	max;

				phys_addr_t	total_size;

				struct	memblock_region	*regions;

};

This	structure	provides	information	about	memory	type.	It	contains	fields	which	describe	the	number	of	memory	regions
which	are	inside	the	current	memory	block,	the	size	of	all	memory	regions,	the	size	of	the	allocated	array	of	the	memory
regions	and	pointer	to	the	array	of	the		memblock_region		structures.		memblock_region		is	a	structure	which	describes	a

Linux	kernel	memory	management	Part	1.
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memory	region.	Its	definition	is:

struct	memblock_region	{

								phys_addr_t	base;

								phys_addr_t	size;

								unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

								int	nid;

#endif

};

	memblock_region		provides	base	address	and	size	of	the	memory	region,	flags	which	can	be:

#define	MEMBLOCK_ALLOC_ANYWHERE				(~(phys_addr_t)0)

#define	MEMBLOCK_ALLOC_ACCESSIBLE				0

#define	MEMBLOCK_HOTPLUG				0x1

Also		memblock_region		provides	integer	field	-	numa	node	selector,	if	the		CONFIG_HAVE_MEMBLOCK_NODE_MAP		configuration	option
is	enabled.

Schematically	we	can	imagine	it	as:

+---------------------------+			+---------------------------+

|									memblock										|			|																											|

|		_______________________		|			|																											|

|	|								memory									|	|			|							Array	of	the								|

|	|						memblock_type				|-|-->|						membock_region							|

|	|_______________________|	|			|																											|

|																											|			+---------------------------+

|		_______________________		|			+---------------------------+

|	|							reserved								|	|			|																											|

|	|						memblock_type				|-|-->|							Array	of	the								|

|	|_______________________|	|			|						memblock_region						|

|																											|			|																											|

+---------------------------+			+---------------------------+

These	three	structures:		memblock	,		memblock_type		and		memblock_region		are	main	in	the		Memblock	.	Now	we	know	about	it
and	can	look	at	Memblock	initialization	process.

As	all	API	of	the		memblock		described	in	the	include/linux/memblock.h	header	file,	all	implementation	of	these	function	is	in
the	mm/memblock.c	source	code	file.	Let's	look	at	the	top	of	the	source	code	file	and	we	will	see	the	initialization	of	the
	memblock		structure:

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt												=	1,

				.memory.max												=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up												=	false,

Memblock	initialization
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				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

Here	we	can	see	initialization	of	the		memblock		structure	which	has	the	same	name	as	structure	-		memblock	.	First	of	all	note
on		__initdata_memblock	.	Defenition	of	this	macro	looks	like:

#ifdef	CONFIG_ARCH_DISCARD_MEMBLOCK

				#define	__init_memblock	__meminit

				#define	__initdata_memblock	__meminitdata

#else

				#define	__init_memblock

				#define	__initdata_memblock

#endif

You	can	note	that	it	depends	on		CONFIG_ARCH_DISCARD_MEMBLOCK	.	If	this	configuration	option	is	enabled,	memblock	code	will
be	put	to	the		.init		section	and	it	will	be	released	after	the	kernel	is	booted	up.

Next	we	can	see	initialization	of	the		memblock_type	memory	,		memblock_type	reserved		and		memblock_type	physmem		fields	of	the
	memblock		structure.	Here	we	are	interested	only	in	the		memblock_type.regions		initialization	process.	Note	that	every
	memblock_type		field	initialized	by	the	arrays	of	the		memblock_region	:

static	struct	memblock_region	memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS]	__initdata_memblock;

static	struct	memblock_region	memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS]	__initdata_memblock;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

static	struct	memblock_region	memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]	__initdata_memblock;

#endif

Every	array	contains	128	memory	regions.	We	can	see	it	in	the		INIT_MEMBLOCK_REGIONS		macro	definition:

#define	INIT_MEMBLOCK_REGIONS			128

Note	that	all	arrays	are	also	defined	with	the		__initdata_memblock		macro	which	we	already	saw	in	the		memblock		strucutre
initialization	(read	above	if	you've	forgot).

The	last	two	fields	describe	that		bottom_up		allocation	is	disabled	and	the	limit	of	the	current	Memblock	is:

#define	MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)

which	is		0xffffffffffffffff	.

On	this	step	initialization	of	the		memblock		structure	finished	and	we	can	look	on	the	Memblock	API.

Ok	we	have	finished	with	initilization	of	the		memblock		structure	and	now	we	can	look	on	the	Memblock	API	and	its
implementation.	As	I	said	above,	all	implementation	of	the		memblock		presented	in	the	mm/memblock.c.	To	understand	how
	memblock		works	and	is	implemented,	let's	look	at	its	usage	first	of	all.	There	are	a	couple	of	places	in	the	linux	kernel	where
memblock	is	used.	For	example	let's	take		memblock_x86_fill		function	from	the	arch/x86/kernel/e820.c.	This	function	goes
through	the	memory	map	provided	by	the	e820	and	adds	memory	regions	reserved	by	the	kernel	to	the		memblock		with	the
	memblock_add		function.	As	we	met		memblock_add		function	first,	let's	start	from	it.

This	function	takes	physical	base	address	and	size	of	the	memory	region	and	adds	it	to	the		memblock	.		memblock_add	

Memblock	API
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function	does	not	do	anything	special	in	its	body,	but	just	calls:

memblock_add_range(&memblock.memory,	base,	size,	MAX_NUMNODES,	0);

function.	We	pass	memory	block	type	-		memory	,	physical	base	address	and	size	of	the	memory	region,	maximum	number
of	nodes	which	are	zero	if		CONFIG_NODES_SHIFT		is	not	set	in	the	configuration	file	or		CONFIG_NODES_SHIFT		if	it	is	set,	and	flags.
The		memblock_add_range		function	adds	new	memory	region	to	the	memory	block.	It	starts	by	checking	the	size	of	the	given
region	and	if	it	is	zero	it	just	returns.	After	this,		memblock_add_range		checks	for	existence	of	the	memory	regions	in	the
	memblock		structure	with	the	given		memblock_type	.	If	there	are	no	memory	regions,	we	just	fill	new		memory_region		with	the
given	values	and	return	(we	already	saw	the	implementation	of	this	in	the	First	touch	of	the	linux	kernel	memory	manager
framework).	If		memblock_type		is	not	empty,	we	start	to	add	new	memory	region	to	the		memblock		with	the	given
	memblock_type	.

First	of	all	we	get	the	end	of	the	memory	region	with	the:

phys_addr_t	end	=	base	+	memblock_cap_size(base,	&size);

	memblock_cap_size		adjusts		size		that		base	+	size		will	not	overflow.	Its	implementation	is	pretty	easy:

static	inline	phys_addr_t	memblock_cap_size(phys_addr_t	base,	phys_addr_t	*size)

{

				return	*size	=	min(*size,	(phys_addr_t)ULLONG_MAX	-	base);

}

	memblock_cap_size		returns	new	size	which	is	the	smallest	value	between	the	given	size	and		ULLONG_MAX	-	base	.

After	that	we	have	the	end	address	of	the	new	memory	region,		memblock_add_range		checks	overlap	and	merge	conditions
with	already	added	memory	regions.	Insertion	of	the	new	memory	region	to	the		memblcok		consists	of	two	steps:

Adding	of	non-overlapping	parts	of	the	new	memory	area	as	separate	regions;
Merging	of	all	neighbouring	regions.

We	are	going	through	all	the	already	stored	memory	regions	and	checking	for	overlap	with	the	new	region:

				for	(i	=	0;	i	<	type->cnt;	i++)	{

								struct	memblock_region	*rgn	=	&type->regions[i];

								phys_addr_t	rbase	=	rgn->base;

								phys_addr_t	rend	=	rbase	+	rgn->size;

								if	(rbase	>=	end)

												break;

								if	(rend	<=	base)

												continue;

								...

								...

								...

				}

If	the	new	memory	region	does	not	overlap	regions	which	are	already	stored	in	the		memblock	,	insert	this	region	into	the
memblock	with	and	this	is	first	step,	we	check	that	new	region	can	fit	into	the	memory	block	and	call		memblock_double_array	
in	other	way:

while	(type->cnt	+	nr_new	>	type->max)

				if	(memblock_double_array(type,	obase,	size)	<	0)
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								return	-ENOMEM;

				insert	=	true;

				goto	repeat;

	memblock_double_array		doubles	the	size	of	the	given	regions	array.	Then	we	set		insert		to		true		and	go	to	the		repeat	
label.	In	the	second	step,	starting	from	the		repeat		label	we	go	through	the	same	loop	and	insert	the	current	memory	region
into	the	memory	block	with	the		memblock_insert_region		function:

				if	(base	<	end)	{

								nr_new++;

								if	(insert)

												memblock_insert_region(type,	i,	base,	end	-	base,

																											nid,	flags);

				}

As	we	set		insert		to		true		in	the	first	step,	now		memblock_insert_region		will	be	called.		memblock_insert_region		has	almost
the	same	implementation	that	we	saw	when	we	insert	new	region	to	the	empty		memblock_type		(see	above).	This	function
gets	the	last	memory	region:

struct	memblock_region	*rgn	=	&type->regions[idx];

and	copies	memory	area	with		memmove	:

memmove(rgn	+	1,	rgn,	(type->cnt	-	idx)	*	sizeof(*rgn));

After	this	fills		memblock_region		fields	of	the	new	memory	region	base,	size	and	etc...	and	increase	size	of	the
	memblock_type	.	In	the	end	of	the	execution,		memblock_add_range		calls		memblock_merge_regions		which	merges	neighboring
compatible	regions	in	the	second	step.

In	the	second	case	the	new	memory	region	can	overlap	already	stored	regions.	For	example	we	already	have		region1		in
the		memblock	:

0																				0x1000

+-----------------------+

|																							|

|																							|

|								region1								|

|																							|

|																							|

+-----------------------+

And	now	we	want	to	add		region2		to	the		memblock		with	the	following	base	address	and	size:

0x100																	0x2000

+-----------------------+

|																							|

|																							|

|								region2								|

|																							|

|																							|

+-----------------------+

In	this	case	set	the	base	address	of	the	new	memory	region	as	the	end	address	of	the	overlapped	region	with:
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base	=	min(rend,	end);

So	it	will	be		0x1000		in	our	case.	And	insert	it	as	we	did	it	already	in	the	second	step	with:

if	(base	<	end)	{

				nr_new++;

				if	(insert)

								memblock_insert_region(type,	i,	base,	end	-	base,	nid,	flags);

}

In	this	case	we	insert		overlapping	portion		(we	insert	only	the	higher	portion,	because	the	lower	portion	is	already	in	the
overlapped	memory	region),	then	the	remaining	portion	and	merge	these	portions	with		memblock_merge_regions	.	As	I	said
above		memblock_merge_regions		function	merges	neighboring	compatible	regions.	It	goes	through	the	all	memory	regions
from	the	given		memblock_type	,	takes	two	neighboring	memory	regions	-		type->regions[i]		and		type->regions[i	+	1]		and
checks	that	these	regions	have	the	same	flags,	belong	to	the	same	node	and	that	end	address	of	the	first	regions	is	not
equal	to	the	base	address	of	the	second	region:

while	(i	<	type->cnt	-	1)	{

				struct	memblock_region	*this	=	&type->regions[i];

				struct	memblock_region	*next	=	&type->regions[i	+	1];

				if	(this->base	+	this->size	!=	next->base	||

								memblock_get_region_node(this)	!=

								memblock_get_region_node(next)	||

								this->flags	!=	next->flags)	{

								BUG_ON(this->base	+	this->size	>	next->base);

								i++;

								continue;

				}

If	none	of	these	conditions	are	not	true,	we	update	the	size	of	the	first	region	with	the	size	of	the	next	region:

this->size	+=	next->size;

As	we	update	the	size	of	the	first	memory	region	with	the	size	of	the	next	memory	region,	we	copy	every	(in	the	loop)
memory	region	which	is	after	the	current	(	this	)	memory	region	to	the	one	index	ago	with	the		memmove		function:

memmove(next,	next	+	1,	(type->cnt	-	(i	+	2))	*	sizeof(*next));

And	decrease	the	count	of	the	memory	regions	which	are	belongs	to	the		memblock_type	:

type->cnt--;

After	this	we	will	get	two	memory	regions	merged	into	one:

0																																													0x2000

+------------------------------------------------+

|																																																|

|																																																|

|																			region1																						|

|																																																|

|																																																|

+------------------------------------------------+
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That's	all.	This	is	the	whole	principle	of	the	work	of	the		memblock_add_range		function.

There	is	also		memblock_reserve		function	which	does	the	same	as		memblock_add	,	but	only	with	one	difference.	It	stores
	memblock_type.reserved		in	the	memblock	instead	of		memblock_type.memory	.

Of	course	this	is	not	the	full	API.	Memblock	provides	an	API	for	not	only	adding		memory		and		reserved		memory	regions,	but
also:

memblock_remove	-	removes	memory	region	from	memblock;
memblock_find_in_range	-	finds	free	area	in	given	range;
memblock_free	-	releases	memory	region	in	memblock;
for_each_mem_range	-	iterates	through	memblock	areas.

and	many	more....

Memblock	also	provides	an	API	for	getting	information	about	allocated	memory	regions	in	the		memblcok	.	It	is	split	in	two
parts:

get_allocated_memblock_memory_regions_info	-	getting	info	about	memory	regions;
get_allocated_memblock_reserved_regions_info	-	getting	info	about	reserved	regions.

Implementation	of	these	functions	is	easy.	Let's	look	at		get_allocated_memblock_reserved_regions_info		for	example:

phys_addr_t	__init_memblock	get_allocated_memblock_reserved_regions_info(

																				phys_addr_t	*addr)

{

				if	(memblock.reserved.regions	==	memblock_reserved_init_regions)

								return	0;

				*addr	=	__pa(memblock.reserved.regions);

				return	PAGE_ALIGN(sizeof(struct	memblock_region)	*

														memblock.reserved.max);

}

First	of	all	this	function	checks	that		memblock		contains	reserved	memory	regions.	If		memblock		does	not	contain	reserved
memory	regions	we	just	return	zero.	Otherwise	we	write	the	physical	address	of	the	reserved	memory	regions	array	to	the
given	address	and	return	aligned	size	of	the	allocated	array.	Note	that	there	is		PAGE_ALIGN		macro	used	for	align.	Actually	it
depends	on	size	of	page:

#define	PAGE_ALIGN(addr)	ALIGN(addr,	PAGE_SIZE)

Implementation	of	the		get_allocated_memblock_memory_regions_info		function	is	the	same.	It	has	only	one	difference,
	memblock_type.memory		used	instead	of		memblock_type.reserved	.

There	are	many	calls	to		memblock_dbg		in	the	memblock	implementation.	If	you	pass	the		memblock=debug		option	to	the	kernel
command	line,	this	function	will	be	called.	Actually		memblock_dbg		is	just	a	macro	which	expands	to		printk	:

#define	memblock_dbg(fmt,	...)	\

Getting	info	about	memory	regions

Memblock	debugging
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									if	(memblock_debug)	printk(KERN_INFO	pr_fmt(fmt),	##__VA_ARGS__)

For	example	you	can	see	a	call	of	this	macro	in	the		memblock_reserve		function:

memblock_dbg("memblock_reserve:	[%#016llx-%#016llx]	flags	%#02lx	%pF\n",

													(unsigned	long	long)base,

													(unsigned	long	long)base	+	size	-	1,

													flags,	(void	*)_RET_IP_);

And	you	will	see	something	like	this:

Memblock	has	also	support	in	debugfs.	If	you	run	kernel	not	in		X86		architecture	you	can	access:

/sys/kernel/debug/memblock/memory
/sys/kernel/debug/memblock/reserved
/sys/kernel/debug/memblock/physmem

for	getting	dump	of	the		memblock		contents.

This	is	the	end	of	the	first	part	about	linux	kernel	memory	management.	If	you	have	questions	or	suggestions,	ping	me	on
twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	a	PR	to	linux-internals.

e820
numa
debugfs
First	touch	of	the	linux	kernel	memory	manager	framework

Conclusion

Links
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	Fix-Mapped		addresses	are	a	set	of	special	compile-time	addresses	whose	corresponding	physical	address	do	not	have	to
be	a	linear	address	minus		__START_KERNEL_map	.	Each	fix-mapped	address	maps	one	page	frame	and	the	kernel	uses	them
as	pointers	that	never	change	their	address.	That	is	the	main	point	of	these	addresses.	As	the	comment	says:		to	have	a
constant	address	at	compile	time,	but	to	set	the	physical	address	only	in	the	boot	process	.	You	can	remember	that	in	the
earliest	part,	we	already	set	the		level2_fixmap_pgt	:

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

As	you	can	see		level2_fixmap_pgt		is	right	after	the		level2_kernel_pgt		which	is	kernel	code+data+bss.	Every	fix-mapped
address	is	represented	by	an	integer	index	which	is	defined	in	the		fixed_addresses		enum	from	the
arch/x86/include/asm/fixmap.h.	For	example	it	contains	entries	for		VSYSCALL_PAGE		-	if	emulation	of	legacy	vsyscall	page	is
enabled,		FIX_APIC_BASE		for	local	apic	and	etc...	In	a	virtual	memory	fix-mapped	area	is	placed	in	the	modules	area:

							+-----------+-----------------+---------------+------------------+

							|											|																	|															|																		|

							|kernel	text|						kernel					|															|				vsyscalls					|

							|	mapping			|							text						|				Modules				|				fix-mapped				|

							|from	phys	0|							data						|															|				addresses					|

							|											|																	|															|																		|

							+-----------+-----------------+---------------+------------------+

__START_KERNEL_map			__START_KERNEL				MODULES_VADDR												0xffffffffffffffff

Base	virtual	address	and	size	of	the		fix-mapped		area	are	presented	by	the	two	following	macro:

#define	FIXADDR_SIZE				(__end_of_permanent_fixed_addresses	<<	PAGE_SHIFT)

#define	FIXADDR_START								(FIXADDR_TOP	-	FIXADDR_SIZE)

Here		__end_of_permanent_fixed_addresses		is	an	element	of	the		fixed_addresses		enum	and	as	I	wrote	above:	Every	fix-
mapped	address	is	represented	by	an	integer	index	which	is	defined	in	the		fixed_addresses	.		PAGE_SHIFT		determines	size	of
a	page.	For	example	size	of	the	one	page	we	can	get	with	the		1	<<	PAGE_SHIFT	.	In	our	case	we	need	to	get	the	size	of	the
fix-mapped	area,	but	not	only	of	one	page,	that's	why	we	are	using		__end_of_permanent_fixed_addresses		for	getting	the	size
of	the	fix-mapped	area.	In	my	case	it's	a	little	more	than		536		killobytes.	In	your	case	it	might	be	a	different	number,
because	the	size	depends	on	amount	of	the	fix-mapped	addresses	which	are	depends	on	your	kernel's	configuration.

The	second		FIXADDR_START		macro	just	extracts	from	the	last	address	of	the	fix-mapped	area	its	size	for	getting	base	virtual
address	of	the	fix-mapped	area.		FIXADDR_TOP		is	rounded	up	address	from	the	base	address	of	the	vsyscall	space:

#define	FIXADDR_TOP					(round_up(VSYSCALL_ADDR	+	PAGE_SIZE,	1<<PMD_SHIFT)	-	PAGE_SIZE)

The		fixed_addresses		enums	are	used	as	an	index	to	get	the	virtual	address	using	the		fix_to_virt		function.

Linux	kernel	memory	management	Part	2.

Fix-Mapped	Addresses	and	ioremap
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Implementation	of	this	function	is	easy:

static	__always_inline	unsigned	long	fix_to_virt(const	unsigned	int	idx)

{

								BUILD_BUG_ON(idx	>=	__end_of_fixed_addresses);

								return	__fix_to_virt(idx);

}

first	of	all	it	checks	that	the	index	given	for	the		fixed_addresses		enum	is	not	greater	or	equal	than		__end_of_fixed_addresses	
with	the		BUILD_BUG_ON		macro	and	then	returns	the	result	of	the		__fix_to_virt		macro:

#define	__fix_to_virt(x)								(FIXADDR_TOP	-	((x)	<<	PAGE_SHIFT))

Here	we	shift	left	the	given		fix-mapped		address	index	on	the		PAGE_SHIFT		which	determines	size	of	a	page	as	I	wrote	above
and	subtract	it	from	the		FIXADDR_TOP		which	is	the	highest	address	of	the		fix-mapped		area.	There	is	an	inverse	function	for
getting		fix-mapped		address	from	a	virtual	address:

static	inline	unsigned	long	virt_to_fix(const	unsigned	long	vaddr)

{

								BUG_ON(vaddr	>=	FIXADDR_TOP	||	vaddr	<	FIXADDR_START);

								return	__virt_to_fix(vaddr);

}

	virt_to_fix		takes	virtual	address,	checks	that	this	address	is	between		FIXADDR_START		and		FIXADDR_TOP		and	calls
	__virt_to_fix		macro	which	implemented	as:

#define	__virt_to_fix(x)								((FIXADDR_TOP	-	((x)&PAGE_MASK))	>>	PAGE_SHIFT)

A	PFN	is	simply	an	index	within	physical	memory	that	is	counted	in	page-sized	units.	PFN	for	a	physical	address	could	be
trivially	defined	as	(page_phys_addr	>>	PAGE_SHIFT);

	__virt_to_fix		clears	the	first	12	bits	in	the	given	address,	subtracts	it	from	the	last	address	the	of		fix-mapped		area
(	FIXADDR_TOP	)	and	shifts	right	result	on		PAGE_SHIFT		which	is		12	.	Let	me	explain	how	it	works.	As	I	already	wrote	we	will
clear	the	first	12	bits	in	the	given	address	with		x	&	PAGE_MASK	.	As	we	subtract	this	from	the		FIXADDR_TOP	,	we	will	get	the	last
12	bits	of	the		FIXADDR_TOP		which	are	present.	We	know	that	the	first	12	bits	of	the	virtual	address	represent	the	offset	in	the
page	frame.	With	the	shiting	it	on		PAGE_SHIFT		we	will	get		Page	frame	number		which	is	just	all	bits	in	a	virtual	address	besides
the	first	12	offset	bits.		Fix-mapped		addresses	are	used	in	different	places	in	the	linux	kernel.		IDT		descriptor	stored	there,
Intel	Trusted	Execution	Technology	UUID	stored	in	the		fix-mapped		area	started	from		FIX_TBOOT_BASE		index,	Xen	bootmap
and	many	more...	We	already	saw	a	little	about		fix-mapped		addresses	in	the	fifth	part	about	linux	kernel	initialization.	We
used		fix-mapped		area	in	the	early		ioremap		initialization.	Let's	look	on	it	and	try	to	understand	what	is	it		ioremap	,	how	it	is
implemented	in	the	kernel	and	how	it	is	releated	to	the		fix-mapped		addresses.

Linux	kernel	provides	many	different	primitives	to	manage	memory.	For	this	moment	we	will	touch		I/O	memory	.	Every
device	is	controlled	by	reading/writing	from/to	its	registers.	For	example	a	driver	can	turn	off/on	a	device	by	writing	to	its
registers	or	get	the	state	of	a	device	by	reading	from	its	registers.	Besides	registers,	many	devices	have	buffers	where	a
driver	can	write	something	or	read	from	there.	As	we	know	for	this	moment	there	are	two	ways	to	access	device's	registers
and	data	buffers:

through	the	I/O	ports;

ioremap
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mapping	of	the	all	registers	to	the	memory	address	space;

In	the	first	case	every	control	register	of	a	device	has	a	number	of	input	and	output	port.	And	driver	of	a	device	can	read
from	a	port	and	write	to	it	with	two		in		and		out		instructions	which	we	already	saw.	If	you	want	to	know	about	currently
registered	port	regions,	you	can	know	they	by	accessing	of		/proc/ioports	:

$	cat	/proc/ioports

0000-0cf7	:	PCI	Bus	0000:00

		0000-001f	:	dma1

		0020-0021	:	pic1

		0040-0043	:	timer0

		0050-0053	:	timer1

		0060-0060	:	keyboard

		0064-0064	:	keyboard

		0070-0077	:	rtc0

		0080-008f	:	dma	page	reg

		00a0-00a1	:	pic2

		00c0-00df	:	dma2

		00f0-00ff	:	fpu

				00f0-00f0	:	PNP0C04:00

		03c0-03df	:	vesafb

		03f8-03ff	:	serial

		04d0-04d1	:	pnp	00:06

		0800-087f	:	pnp	00:01

		0a00-0a0f	:	pnp	00:04

		0a20-0a2f	:	pnp	00:04

		0a30-0a3f	:	pnp	00:04

0cf8-0cff	:	PCI	conf1

0d00-ffff	:	PCI	Bus	0000:00

...

...

...

	/proc/ioporst		provides	information	about	what	driver	used	address	of	a		I/O		ports	region.	All	of	these	memory	regions,	for
example		0000-0cf7	,	were	claimed	with	the		request_region		function	from	the	include/linux/ioport.h.	Actually		request_region	
is	a	macro	which	defied	as:

#define	request_region(start,n,name)			__request_region(&ioport_resource,	(start),	(n),	(name),	0)

As	we	can	see	it	takes	three	parameters:

	start		-	begin	of	region;
	n		-	length	of	region;
	name		-	name	of	requester.

	request_region		allocates		I/O		port	region.	Very	often		check_region		function	called	before	the		request_region		to	check	that
the	given	address	range	is	available	and		release_region		to	release	memory	region.		request_region		returns	pointer	to	the
	resource		structure.		resource		structure	presents	abstraction	for	a	tree-like	subset	of	system	resources.	We	already	saw
	resource		structure	in	the	firth	part	about	kernel	initialization	process	and	it	looks	as:

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

and	contains	start	and	end	addresses	of	the	resource,	name	and	etc...	Every		resource		structure	contains	pointers	to	the
	parent	,		slibling		and		child		resources.	As	it	has	parent	and	childs,	it	means	that	every	subset	of	resuorces	has	root
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	resource		structure.	For	example,	for		I/O		ports	it	is		ioport_resource		structure:

struct	resource	ioport_resource	=	{

									.name			=	"PCI	IO",

									.start		=	0,

									.end				=	IO_SPACE_LIMIT,

								.flags		=	IORESOURCE_IO,

};

EXPORT_SYMBOL(ioport_resource);

Or	for		iomem	,	it	is		iomem_resource		structure:

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

As	I	wrote	about		request_regions		is	used	for	registering	of	I/O	port	region	and	this	macro	used	in	many	places	in	the
kernel.	For	example	let's	look	at	drivers/char/rtc.c.	This	source	code	file	provides	Real	Time	Clock	interface	in	the	linux
kernel.	As	every	kernel	module,		rtc		module	contains		module_init		definition:

module_init(rtc_init);

where		rtc_init		is		rtc		initialization	function.	This	function	defined	in	the	same		rtc.c		source	code	file.	In	the		rtc_init	
function	we	can	see	a	couple	calls	of	the		rtc_request_region		functions,	which	wrap		request_region		for	example:

r	=	rtc_request_region(RTC_IO_EXTENT);

where		rtc_request_region		calls:

r	=	request_region(RTC_PORT(0),	size,	"rtc");

Here		RTC_IO_EXTENT		is	a	size	of	memory	region	and	it	is		0x8	,		"rtc"		is	a	name	of	region	and		RTC_PORT		is:

#define	RTC_PORT(x)					(0x70	+	(x))

So	with	the		request_region(RTC_PORT(0),	size,	"rtc")		we	register	memory	region,	started	at		0x70		and	with	size		0x8	.	Let's
look	on	the		/proc/ioports	:

~$	sudo	cat	/proc/ioports	|	grep	rtc

0070-0077	:	rtc0

So,	we	got	it!	Ok,	it	was	ports.	The	second	way	is	use	of		I/O		memory.	As	I	wrote	above	this	way	is	mapping	of	control
registers	and	memory	of	a	device	to	the	memory	address	space.		I/O		memory	is	a	set	of	contiguous	addresses	which	are
provided	by	a	device	to	CPU	through	a	bus.	All	memory-mapped	I/O	addresses	are	not	used	by	the	kernel	directly.	There	is
a	special		ioremap		function	which	allows	us	to	covert	the	physical	address	on	a	bus	to	the	kernel	virtual	address	or	in
another	words		ioremap		maps	I/O	physical	memory	region	to	access	it	from	the	kernel.	The		ioremap		function	takes	two
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parameters:

start	of	the	memory	region;
size	of	the	memory	region;

I/O	memory	mapping	API	provides	function	for	the	checking,	requesting	and	release	of	a	memory	region	as	this	does	I/O
ports	API.	There	are	three	functions	for	it:

	request_mem_region	

	release_mem_region	

	check_mem_region	

~$	sudo	cat	/proc/iomem

...

...

...

be826000-be82cfff	:	ACPI	Non-volatile	Storage

be82d000-bf744fff	:	System	RAM

bf745000-bfff4fff	:	reserved

bfff5000-dc041fff	:	System	RAM

dc042000-dc0d2fff	:	reserved

dc0d3000-dc138fff	:	System	RAM

dc139000-dc27dfff	:	ACPI	Non-volatile	Storage

dc27e000-deffefff	:	reserved

defff000-deffffff	:	System	RAM

df000000-dfffffff	:	RAM	buffer

e0000000-feafffff	:	PCI	Bus	0000:00

		e0000000-efffffff	:	PCI	Bus	0000:01

				e0000000-efffffff	:	0000:01:00.0

		f7c00000-f7cfffff	:	PCI	Bus	0000:06

				f7c00000-f7c0ffff	:	0000:06:00.0

				f7c10000-f7c101ff	:	0000:06:00.0

						f7c10000-f7c101ff	:	ahci

		f7d00000-f7dfffff	:	PCI	Bus	0000:03

				f7d00000-f7d3ffff	:	0000:03:00.0

						f7d00000-f7d3ffff	:	alx

...

...

...

Part	of	these	addresses	is	from	the	call	of	the		e820_reserve_resources		function.	We	can	find	call	of	this	function	in	the
arch/x86/kernel/setup.c	and	the	function	itself	defined	in	the	arch/x86/kernel/e820.c.		e820_reserve_resources		goes	through
the	e820	map	and	inserts	memory	regions	to	the	root		iomem		resource	structure.	All		e820		memory	regions	which	are	will	be
inserted	to	the		iomem		resource	will	have	following	types:

static	inline	const	char	*e820_type_to_string(int	e820_type)

{

				switch	(e820_type)	{

				case	E820_RESERVED_KERN:

				case	E820_RAM:				return	"System	RAM";

				case	E820_ACPI:				return	"ACPI	Tables";

				case	E820_NVS:				return	"ACPI	Non-volatile	Storage";

				case	E820_UNUSABLE:				return	"Unusable	memory";

				default:				return	"reserved";

				}

}

and	we	can	see	it	in	the		/proc/iomem		(read	above).

Now	let's	try	to	understand	how		ioremap		works.	We	already	know	a	little	about		ioremap	,	we	saw	it	in	the	fifth	part	about
linux	kernel	initialization.	If	you	have	read	this	part,	you	can	remember	the	call	of	the		early_ioremap_init		function	from	the
arch/x86/mm/ioremap.c.	Initialization	of	the		ioremap		is	split	inn	two	parts:	there	is	the	early	part	which	we	can	use	before
the	normal		ioremap		is	available	and	the	normal		ioremap		which	is	available	after		vmalloc		initialization	and	call	of	the
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	paging_init	.	We	do	not	know	anything	about		vmalloc		for	now,	so	let's	consider	early	initialization	of	the		ioremap	.	First	of
all		early_ioremap_init		checks	that		fixmap		is	aligned	on	page	middle	directory	boundary:

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

more	about		BUILD_BUG_ON		you	can	read	in	the	first	part	about	Linux	Kernel	initialization.	So		BUILD_BUG_ON		macro	raises
compilation	error	if	the	given	expression	is	true.	In	the	next	step	after	this	check,	we	can	see	call	of	the
	early_ioremap_setup		function	from	the	mm/early_ioremap.c.	This	function	presents	generic	initialization	of	the		ioremap	.
	early_ioremap_setup		function	fills	the		slot_virt		array	with	the	virtual	addresses	of	the	early	fixmaps.	All	early	fixmaps	are
after		__end_of_permanent_fixed_addresses		in	memory.	They	are	stats	from	the		FIX_BITMAP_BEGIN		(top)	and	ends	with
	FIX_BITMAP_END		(down).	Actually	there	are		512		temporary	boot-time	mappings,	used	by	early		ioremap	:

#define	NR_FIX_BTMAPS								64

#define	FIX_BTMAPS_SLOTS				8

#define	TOTAL_FIX_BTMAPS				(NR_FIX_BTMAPS	*	FIX_BTMAPS_SLOTS)

and		early_ioremap_setup	:

void	__init	early_ioremap_setup(void)

{

								int	i;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																if	(WARN_ON(prev_map[i]))

																								break;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

}

the		slot_virt		and	other	arrays	are	defined	in	the	same	source	code	file:

static	void	__iomem	*prev_map[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	prev_size[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	slot_virt[FIX_BTMAPS_SLOTS]	__initdata;

	slot_virt		contains	virtual	addresses	of	the		fix-mapped		areas,		prev_map		array	contains	addresses	of	the	early	ioremap
areas.	Note	that	I	wrote	above:		Actually	there	are	512	temporary	boot-time	mappings,	used	by	early	ioremap		and	you	can
see	that	all	arrays	defined	with	the		__initdata		attribute	which	means	that	this	memory	will	be	released	after	kernel
initialization	process.	After		early_ioremap_setup		finished	to	work,	we're	getting	page	middle	directory	where	early	ioremap
beginning	with	the		early_ioremap_pmd		function	which	just	gets	the	base	address	of	the	page	global	directory	and	calculates
the	page	middle	directory	for	the	given	address:

static	inline	pmd_t	*	__init	early_ioremap_pmd(unsigned	long	addr)

{

				pgd_t	*base	=	__va(read_cr3());

				pgd_t	*pgd	=	&base[pgd_index(addr)];

				pud_t	*pud	=	pud_offset(pgd,	addr);

				pmd_t	*pmd	=	pmd_offset(pud,	addr);

				return	pmd;

}

After	this	we	fills		bm_pte		(early	ioremap	page	table	entries)	with	zeros	and	call	the		pmd_populate_kernel		function:
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pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

	pmd_populate_kernel		takes	three	parameters:

	init_mm		-	memory	descriptor	of	the		init		process	(you	can	read	about	it	in	the	previous	part);
	pmd		-	page	middle	directory	of	the	beginning	of	the		ioremap		fixmaps;
	bm_pte		-	early		ioremap		page	table	entries	array	which	defined	as:

static	pte_t	bm_pte[PAGE_SIZE/sizeof(pte_t)]	__page_aligned_bss;

The		pmd_popularte_kernel		function	defined	in	the	arch/x86/include/asm/pgalloc.h	and	populates	given	page	middle
directory	(	pmd	)	with	the	given	page	table	entries	(	bm_pte	):

static	inline	void	pmd_populate_kernel(struct	mm_struct	*mm,

																																							pmd_t	*pmd,	pte_t	*pte)

{

								paravirt_alloc_pte(mm,	__pa(pte)	>>	PAGE_SHIFT);

								set_pmd(pmd,	__pmd(__pa(pte)	|	_PAGE_TABLE));

}

where		set_pmd		is:

#define	set_pmd(pmdp,	pmd)														native_set_pmd(pmdp,	pmd)

and		native_set_pmd		is:

static	inline	void	native_set_pmd(pmd_t	*pmdp,	pmd_t	pmd)

{

								*pmdp	=	pmd;

}

That's	all.	Early		ioremap		is	ready	to	use.	There	are	a	couple	of	checks	in	the		early_ioremap_init		function,	but	they	are	not
so	important,	anyway	initialization	of	the		ioremap		is	finished.

As	early		ioremap		is	setup,	we	can	use	it.	It	provides	two	functions:

early_ioremap
early_iounmap

for	mapping/unmapping	of	IO	physical	address	to	virtual	address.	Both	functions	depends	on		CONFIG_MMU		configuration
option.	Memory	management	unit	is	a	special	block	of	memory	management.	Main	purpose	of	this	block	is	translation
physical	addresses	to	the	virtual.	Techinically	memory	management	unit	knows	about	high-level	page	table	address	(	pgd	)
from	the		cr3		control	register.	If		CONFIG_MMU		options	is	set	to		n	,		early_ioremap		just	returns	the	given	physical	address	and
	early_iounmap		does	not	nothing.	In	other	way,	if		CONFIG_MMU		option	is	set	to		y	,		early_ioremap		calls		__early_ioremap		which
takes	three	parameters:

	phys_addr		-	base	physicall	address	of	the		I/O		memory	region	to	map	on	virtual	addresses;

Use	of	early	ioremap
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	size		-	size	of	the		I/O		memroy	region;
	prot		-	page	table	entry	bits.

First	of	all	in	the		__early_ioremap	,	we	goes	through	the	all	early	ioremap	fixmap	slots	and	check	first	free	are	in	the
	prev_map		array	and	remember	it's	number	in	the		slot		variable	and	set	up	size	as	we	found	it:

slot	=	-1;

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)	{

				if	(!prev_map[i])	{

								slot	=	i;

								break;

				}

}

...

...

...

prev_size[slot]	=	size;

last_addr	=	phys_addr	+	size	-	1;

In	the	next	spte	we	can	see	the	following	code:

offset	=	phys_addr	&	~PAGE_MASK;

phys_addr	&=	PAGE_MASK;

size	=	PAGE_ALIGN(last_addr	+	1)	-	phys_addr;

Here	we	are	using		PAGE_MASK		for	clearing	all	bits	in	the		phys_addr		besides	first	12	bits.		PAGE_MASK		macro	defined	as:

#define	PAGE_MASK							(~(PAGE_SIZE-1))

We	know	that	size	of	a	page	is	4096	bytes	or		1000000000000		in	binary.		PAGE_SIZE	-	1		will	be		111111111111	,	but	with		~	,	we
will	get		000000000000	,	but	as	we	use		~PAGE_MASK		we	will	get		111111111111		again.	On	the	second	line	we	do	the	same	but
clear	first	12	bits	and	getting	page-aligned	size	of	the	area	on	the	third	line.	We	getting	aligned	area	and	now	we	need	to
get	the	number	of	pages	which	are	occupied	by	the	new		ioremap		are	and	calculate	the	fix-mapped	index	from
	fixed_addresses		in	the	next	steps:

nrpages	=	size	>>	PAGE_SHIFT;

idx	=	FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*slot;

Now	we	can	fill		fix-mapped		area	with	the	given	physical	addresses.	Every	iteration	in	the	loop,	we	call		__early_set_fixmap	
function	from	the	arch/x86/mm/ioremap.c,	increase	given	physical	address	on	page	size	which	is		4096		bytes	and	update
	addresses		index	and	number	of	pages:

while	(nrpages	>	0)	{

				__early_set_fixmap(idx,	phys_addr,	prot);

				phys_addr	+=	PAGE_SIZE;

				--idx;

				--nrpages;

}

The		__early_set_fixmap		function	gets	the	page	table	entry	(stored	in	the		bm_pte	,	see	above)	for	the	given	physical	address
with:

pte	=	early_ioremap_pte(addr);
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In	the	next	step	of	the		early_ioremap_pte		we	check	the	given	page	flags	with	the		pgprot_val		macro	and	calls		set_pte		or
	pte_clear		depends	on	it:

if	(pgprot_val(flags))

								set_pte(pte,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

				else

								pte_clear(&init_mm,	addr,	pte);

As	you	can	see	above,	we	passed		FIXMAP_PAGE_IO		as	flags	to	the		__early_ioremap	.		FIXMPA_PAGE_IO		expands	to	the:

(__PAGE_KERNEL_EXEC	|	_PAGE_NX)

flags,	so	we	call		set_pte		function	for	setting	page	table	entry	which	works	in	the	same	manner	as		set_pmd		but	for	PTEs
(read	above	about	it).	As	we	set	all		PTEs		in	the	loop,	we	can	see	the	call	of	the		__flush_tlb_one		function:

__flush_tlb_one(addr);

This	function	defined	in	the	arch/x86/include/asm/tlbflush.h	and	calls		__flush_tlb_single		or		__flush_tlb		depends	on	value
of	the		cpu_has_invlpg	:

static	inline	void	__flush_tlb_one(unsigned	long	addr)

{

								if	(cpu_has_invlpg)

																__flush_tlb_single(addr);

								else

																__flush_tlb();

}

	__flush_tlb_one		function	invalidates	given	address	in	the	TLB.	As	you	just	saw	we	updated	paging	structure,	but		TLB		not
informed	of	changes,	that's	why	we	need	to	do	it	manually.	There	are	two	ways	how	to	do	it.	First	is	update		cr3		control
register	and		__flush_tlb		function	does	this:

native_write_cr3(native_read_cr3());

The	second	method	is	to	use		invlpg		instruction	invalidates		TLB		entry.	Let's	look	on		__flush_tlb_one		implementation.	As
you	can	see	first	of	all	it	checks		cpu_has_invlpg		which	defined	as:

#if	defined(CONFIG_X86_INVLPG)	||	defined(CONFIG_X86_64)

#	define	cpu_has_invlpg									1

#else

#	define	cpu_has_invlpg									(boot_cpu_data.x86	>	3)

#endif

If	a	CPU	support		invlpg		instruction,	we	call	the		__flush_tlb_single		macro	which	expands	to	the	call	of	the
	__native_flush_tlb_single	:

static	inline	void	__native_flush_tlb_single(unsigned	long	addr)

{

								asm	volatile("invlpg	(%0)"	::"r"	(addr)	:	"memory");

}

Linux	Inside

268Fixmaps	and	ioremap

https://github.com/torvalds/linux/blob/master
http://en.wikipedia.org/wiki/Translation_lookaside_buffer


or	call		__flush_tlb		which	just	updates		cr3		register	as	we	saw	it	above.	After	this	step	execution	of	the		__early_set_fixmap	
function	is	finsihed	and	we	can	back	to	the		__early_ioremap		implementation.	As	we	set	fixmap	area	for	the	given	address,
need	to	save	the	base	virtual	address	of	the	I/O	Re-mapped	area	in	the		prev_map		with	the		slot		index:

prev_map[slot]	=	(void	__iomem	*)(offset	+	slot_virt[slot]);

and	return	it.

The	second	function	is	-		early_iounmap		-	unmaps	an		I/O		memory	region.	This	function	takes	two	parameters:	base
address	and	size	of	a		I/O		region	and	generally	looks	very	similar	on		early_ioremap	.	It	also	goes	through	fixmap	slots	and
looks	for	slot	with	the	given	address.	After	this	it	gets	the	index	of	the	fixmap	slot	and	calls		__late_clear_fixmap		or
	__early_set_fixmap		depends	on		after_paging_init		value.	It	calls		__early_set_fixmap		with	on	difference	then	it	does
	early_ioremap	:	it	passes		zero		as	physicall	address.	And	in	the	end	it	sets	address	of	the	I/O	memory	region	to		NULL	:

prev_map[slot]	=	NULL;

That's	all	about		fixmaps		and		ioremap	.	Of	course	this	part	does	not	cover	full	features	of	the		ioremap	,	it	was	only	early
ioremap,	but	there	is	also	normal	ioremap.	But	we	need	to	know	more	things	than	now	before	it.

So,	this	is	the	end!

This	is	the	end	of	the	second	part	about	linux	kernel	memory	management.	If	you	have	questions	or	suggestions,	ping	me
on	twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	a	PR	to	linux-internals.

apic
vsyscall
Intel	Trusted	Execution	Technology
Xen
Real	Time	Clock
e820
Memory	management	unit
TLB
Paging
Linux	kernel	memory	management	Part	1.
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This	chapter	describes	various	concepts	which	are	used	in	the	Linux	kernel.

Per-CPU	variables
CPU	masks

Linux	kernel	concepts
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Per-CPU	variables	are	one	of	the	kernel	features.	You	can	understand	what	this	feature	means	by	reading	its	name.	We
can	create	a	variable	and	each	processor	core	will	have	its	own	copy	of	this	variable.	We	take	a	closer	look	on	this	feature
and	try	to	understand	how	it	is	implemented	and	how	it	works	in	this	part.

The	kernel	provides	API	for	creating	per-cpu	variables	-		DEFINE_PER_CPU		macro:

#define	DEFINE_PER_CPU(type,	name)	\

								DEFINE_PER_CPU_SECTION(type,	name,	"")

This	macro	defined	in	the	include/linux/percpu-defs.h	as	many	other	macros	for	work	with	per-cpu	variables.	Now	we	will
see	how	this	feature	is	implemented.

Take	a	look	at	the		DECLARE_PER_CPU		definition.	We	see	that	it	takes	2	parameters:		type		and		name	,	so	we	can	use	it	to
create	per-cpu	variable,	for	example	like	this:

DEFINE_PER_CPU(int,	per_cpu_n)

We	pass	the	type	and	the	name	of	our	variable.		DEFI_PER_CPU		calls		DEFINE_PER_CPU_SECTION		macro	and	passes	the	same
two	paramaters	and	empty	string	to	it.	Let's	look	at	the	definition	of	the		DEFINE_PER_CPU_SECTION	:

#define	DEFINE_PER_CPU_SECTION(type,	name,	sec)				\

									__PCPU_ATTRS(sec)	PER_CPU_DEF_ATTRIBUTES		\

									__typeof__(type)	name

#define	__PCPU_ATTRS(sec)																																																\

									__percpu	__attribute__((section(PER_CPU_BASE_SECTION	sec)))					\

									PER_CPU_ATTRIBUTES

where	section	is:

#define	PER_CPU_BASE_SECTION	".data..percpu"

After	all	macros	are	expanded	we	will	get	global	per-cpu	variable:

__attribute__((section(".data..percpu")))	int	per_cpu_n

It	means	that	we	will	have		per_cpu_n		variable	in	the		.data..percpu		section.	We	can	find	this	section	in	the		vmlinux	:

.data..percpu	00013a58		0000000000000000		0000000001a5c000		00e00000		2**12

														CONTENTS,	ALLOC,	LOAD,	DATA

Ok,	now	we	know	that	when	we	use		DEFINE_PER_CPU		macro,	per-cpu	variable	in	the		.data..percpu		section	will	be	created.
When	the	kernel	initilizes	it	calls		setup_per_cpu_areas		function	which	loads		.data..percpu		section	multiply	times,	one
section	per	CPU.

Per-CPU	variables
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Let's	look	on	the	per-CPU	areas	initialization	process.	It	start	in	the	init/main.c	from	the	call	of	the		setup_per_cpu_areas	
function	which	defined	in	the	arch/x86/kernel/setup_percpu.c.

pr_info("NR_CPUS:%d	nr_cpumask_bits:%d	nr_cpu_ids:%d	nr_node_ids:%d\n",

								NR_CPUS,	nr_cpumask_bits,	nr_cpu_ids,	nr_node_ids);

The		setup_per_cpu_areas		starts	from	the	output	information	about	the	Maximum	number	of	CPUs	set	during	kernel
configuration	with		CONFIG_NR_CPUS		configuration	option,	actual	number	of	CPUs,		nr_cpumask_bits		is	the	same	that		NR_CPUS	
bit	for	the	new		cpumask		operators	and	number	of		NUMA		nodes.

We	can	see	this	output	in	the	dmesg:

$	dmesg	|	grep	percpu

[				0.000000]	setup_percpu:	NR_CPUS:8	nr_cpumask_bits:8	nr_cpu_ids:8	nr_node_ids:1

In	the	next	step	we	check		percpu		first	chunk	allocator.	All	percpu	areas	are	allocated	in	chunks.	First	chunk	is	used	for	the
static	percpu	variables.	Linux	kernel	has		percpu_alloc		command	line	parameters	which	provides	type	of	the	first	chunk
allocator.	We	can	read	about	it	in	the	kernel	documentation:

percpu_alloc=				Select	which	percpu	first	chunk	allocator	to	use.

								Currently	supported	values	are	"embed"	and	"page".

								Archs	may	support	subset	or	none	of	the				selections.

								See	comments	in	mm/percpu.c	for	details	on	each

								allocator.		This	parameter	is	primarily				for	debugging

								and	performance	comparison.

The	mm/percpu.c	contains	handler	of	this	command	line	option:

early_param("percpu_alloc",	percpu_alloc_setup);

Where		percpu_alloc_setup		function	sets	the		pcpu_chosen_fc		variable	depends	on	the		percpu_alloc		parameter	value.	By
default	first	chunk	allocator	is		auto	:

enum	pcpu_fc	pcpu_chosen_fc	__initdata	=	PCPU_FC_AUTO;

If		percpu_alooc		parameter	not	given	to	the	kernel	command	line,	the		embed		allocator	will	be	used	wich	as	you	can
understand	embed	the	first	percpu	chunk	into	bootmem	with	the	memblock.	The	last	allocator	is	first	chunk		page		allocator
which	maps	first	chunk	with		PAGE_SIZE		pages.

As	I	wrote	about	first	of	all	we	make	a	check	of	the	first	chunk	allocator	type	in	the		setup_per_cpu_areas	.	First	of	all	we
check	that	first	chunk	allocator	is	not	page:

if	(pcpu_chosen_fc	!=	PCPU_FC_PAGE)	{

				...

				...

				...

}

If	it	is	not		PCPU_FC_PAGE	,	we	will	use		embed		allocator	and	allocate	space	for	the	first	chunk	with	the		pcpu_embed_first_chunk	
function:
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rc	=	pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,

																								dyn_size,	atom_size,

																								pcpu_cpu_distance,

																								pcpu_fc_alloc,	pcpu_fc_free);

As	I	wrote	above,	the		pcpu_embed_first_chunk		function	embeds	the	first	percpu	chunk	into	bootmem.	As	you	can	see	we
pass	a	couple	of	parameters	to	the		pcup_embed_first_chunk	,	they	are

	PERCPU_FIRST_CHUNK_RESERVE		-	the	size	of	the	reserved	space	for	the	static		percpu		variables;
	dyn_size		-	minimum	free	size	for	dynamic	allocation	in	byte;
	atom_size		-	all	allocations	are	whole	multiples	of	this	and	aligned	to	this	parameter;
	pcpu_cpu_distance		-	callback	to	determine	distance	between	cpus;
	pcpu_fc_alloc		-	function	to	allocate		percpu		page;
	pcpu_fc_free		-	function	to	release		percpu		page.

All	of	this	parameters	we	calculat	before	the	call	of	the		pcpu_embed_first_chunk	:

const	size_t	dyn_size	=	PERCPU_MODULE_RESERVE	+	PERCPU_DYNAMIC_RESERVE	-	PERCPU_FIRST_CHUNK_RESERVE;

size_t	atom_size;

#ifdef	CONFIG_X86_64

								atom_size	=	PMD_SIZE;

#else

								atom_size	=	PAGE_SIZE;

#endif

If	first	chunk	allocator	is		PCPU_FC_PAGE	,	we	will	use	the		pcpu_page_first_chunk		instead	of	the		pcpu_embed_first_chunk	.	After
that		percpu		areas	up,	we	setup		percpu		offset	and	its	segment	for	the	every	CPU	with	the		setup_percpu_segment		function
(only	for		x86		systems)	and	move	some	early	data	from	the	arrays	to	the		percpu		variables	(	x86_cpu_to_apicid	,
	irq_stack_ptr		and	etc...).	After	the	kernel	finished	the	initialization	process,	we	have	loaded	N		.data..percpu		sections,
where	N	is	the	number	of	CPU,	and	section	used	by	bootstrap	processor	will	contain	uninitialized	variable	created	with
	DEFINE_PER_CPU		macro.

The	kernel	provides	API	for	per-cpu	variables	manipulating:

get_cpu_var(var)
put_cpu_var(var)

Let's	look	at		get_cpu_var		implementation:

#define	get_cpu_var(var)					\

(*({																									\

									preempt_disable();		\

									this_cpu_ptr(&var);	\

}))

Linux	kernel	is	preemptible	and	accessing	a	per-cpu	variable	requires	to	know	which	processor	kernel	running	on.	So,
current	code	must	not	be	preempted	and	moved	to	the	another	CPU	while	accessing	a	per-cpu	variable.	That's	why	first	of
all	we	can	see	call	of	the		preempt_disable		function.	After	this	we	can	see	call	of	the		this_cpu_ptr		macro,	which	looks	as:

#define	this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)

and
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#define	raw_cpu_ptr(ptr)								per_cpu_ptr(ptr,	0)

where		per_cpu_ptr		returns	a	pointer	to	the	per-cpu	variable	for	the	given	cpu	(second	parameter).	After	that	we	got	per-cpu
variables	and	made	any	manipulations	on	it,	we	must	call		put_cpu_var		macro	which	enables	preemption	with	call	of
	preempt_enable		function.	So	the	typical	usage	of	a	per-cpu	variable	is	following:

get_cpu_var(var);

...

//Do	something	with	the	'var'

...

put_cpu_var(var);

Let's	look	at		per_cpu_ptr		macro:

#define	per_cpu_ptr(ptr,	cpu)																													\

({																																																								\

								__verify_pcpu_ptr(ptr);																											\

									SHIFT_PERCPU_PTR((ptr),	per_cpu_offset((cpu)));		\

})

As	I	wrote	above,	this	macro	returns	per-cpu	variable	for	the	given	cpu.	First	of	all	it	calls		__verify_pcpu_ptr	:

#define	__verify_pcpu_ptr(ptr)

do	{

				const	void	__percpu	*__vpp_verify	=	(typeof((ptr)	+	0))NULL;

				(void)__vpp_verify;	

}	while	(0)

which	makes	given		ptr		type	of		const	void	__percpu	*	,

After	this	we	can	see	the	call	of	the		SHIFT_PERCPU_PTR		macro	with	two	parameters.	At	first	parameter	we	pass	our	ptr	and
sencond	we	pass	cpu	number	to	the		per_cpu_offset		macro	which:

#define	per_cpu_offset(x)	(__per_cpu_offset[x])

expands	to	getting		x		element	from	the		__per_cpu_offset		array:

extern	unsigned	long	__per_cpu_offset[NR_CPUS];

where		NR_CPUS		is	the	number	of	CPUs.		__per_cpu_offset		array	filled	with	the	distances	between	cpu-variables	copies.	For
example	all	per-cpu	data	is		X		bytes	size,	so	if	we	access		__per_cpu_offset[Y]	,	so		X*Y		will	be	accessed.	Let's	look	at	the
	SHIFT_PERCPU_PTR		implementation:

#define	SHIFT_PERCPU_PTR(__p,	__offset)																																	\

									RELOC_HIDE((typeof(*(__p))	__kernel	__force	*)(__p),	(__offset))

	RELOC_HIDE		just	returns	offset		(typeof(ptr))	(__ptr	+	(off))		and	it	will	be	pointer	of	the	variable.

That's	all!	Of	course	it	is	not	the	full	API,	but	the	general	part.	It	can	be	hard	for	the	start,	but	to	understand	per-cpu
variables	feature	need	to	understand	mainly	include/linux/percpu-defs.h	magic.
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Let's	again	look	at	the	algorithm	of	getting	pointer	on	per-cpu	variable:

The	kernel	creates	multiply		.data..percpu		sections	(ones	perc-pu)	during	initialization	process;
All	variables	created	with	the		DEFINE_PER_CPU		macro	will	be	reloacated	to	the	first	section	or	for	CPU0;
	__per_cpu_offset		array	filled	with	the	distance	(	BOOT_PERCPU_OFFSET	)	between		.data..percpu		sections;
When		per_cpu_ptr		called	for	example	for	getting	pointer	on	the	certain	per-cpu	variable	for	the	third	CPU,
	__per_cpu_offset		array	will	be	accessed,	where	every	index	points	to	the	certain	CPU.

That's	all.
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	Cpumasks		is	a	special	way	provided	by	the	Linux	kernel	to	store	information	about	CPUs	in	the	system.	The	relevant	source
code	and	header	files	which	are	contains	API	for		Cpumasks		manipulating:

include/linux/cpumask.h
lib/cpumask.c
kernel/cpu.c

As	comment	says	from	the	include/linux/cpumask.h:	Cpumasks	provide	a	bitmap	suitable	for	representing	the	set	of	CPU's
in	a	system,	one	bit	position	per	CPU	number.	We	already	saw	a	bit	about	cpumask	in	the		boot_cpu_init		function	from	the
Kernel	entry	point	part.	This	function	makes	first	boot	cpu	online,	active	and	etc...:

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

	set_cpu_possible		is	a	set	of	cpu	ID's	which	can	be	plugged	in	anytime	during	the	life	of	that	system	boot.		cpu_present	
represents	which	CPUs	are	currently	plugged	in.		cpu_online		represents	subset	of	the		cpu_present		and	indicates	CPUs
which	are	available	for	scheduling.	These	masks	depends	on		CONFIG_HOTPLUG_CPU		configuration	option	and	if	this	option	is
disabled		possible	==	present		and		active	==	online	.	Implementation	of	the	all	of	these	functions	are	very	similar.	Every
function	checks	the	second	parameter.	If	it	is		true	,	calls		cpumask_set_cpu		or		cpumask_clear_cpu		otherwise.

There	are	two	ways	for	a		cpumask		creation.	First	is	to	use		cpumask_t	.	It	defined	as:

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

It	wraps		cpumask		structure	which	contains	one	bitmak		bits		field.		DECLARE_BITMAP		macro	gets	two	parameters:

bitmap	name;
number	of	bits.

and	creates	an	array	of		unsigned	long		with	the	give	name.	It's	implementation	is	pretty	easy:

#define	DECLARE_BITMAP(name,bits)	\

								unsigned	long	name[BITS_TO_LONGS(bits)]

where		BITS_TO_LONG	:

#define	BITS_TO_LONGS(nr)							DIV_ROUND_UP(nr,	BITS_PER_BYTE	*	sizeof(long))

#define	DIV_ROUND_UP(n,d)	(((n)	+	(d)	-	1)	/	(d))

As	we	learning		x86_64		architecture,		unsigned	long		is	8-bytes	size	and	our	array	will	contain	only	one	element:

(((8)	+	(8)	-	1)	/	(8))	=	1

CPU	masks
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	NR_CPUS		macro	presents	the	number	of	the	CPUs	in	the	system	and	depends	on	the		CONFIG_NR_CPUS		macro	which	defined
in	the	include/linux/threads.h	and	looks	like	this:

#ifndef	CONFIG_NR_CPUS

								#define	CONFIG_NR_CPUS		1

#endif

#define	NR_CPUS									CONFIG_NR_CPUS

The	second	way	to	define	cpumask	is	to	use		DECLARE_BITMAP		macro	directly	and		to_cpumask		macro	which	convertes	given
bitmap	to	the		struct	cpumask	*	:

#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\

																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

We	can	see	ternary	operator	operator	here	which	is		true		every	time.		__check_is_bitmap		inline	function	defined	as:

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

And	returns		1		every	time.	We	need	in	it	here	only	for	one	purpose:	In	compile	time	it	checks	that	given		bitmap		is	a	bitmap,
or	with	another	words	it	checks	that	given		bitmap		has	type	-		unsigned	long	*	.	So	we	just	pass		cpu_possible_bits		to	the
	to_cpumask		macro	for	converting	array	of		unsigned	long		to	the		struct	cpumask	*	.

As	we	can	define	cpumask	with	one	of	the	method,	Linux	kernel	provides	API	for	manipulating	a	cpumask.	Let's	consider
one	of	the	function	which	presented	above.	For	example		set_cpu_online	.	This	function	takes	two	parameters:

Number	of	CPU;
CPU	status;

Implementation	of	this	function	looks	as:

void	set_cpu_online(unsigned	int	cpu,	bool	online)

{

				if	(online)	{

								cpumask_set_cpu(cpu,	to_cpumask(cpu_online_bits));

								cpumask_set_cpu(cpu,	to_cpumask(cpu_active_bits));

				}	else	{

								cpumask_clear_cpu(cpu,	to_cpumask(cpu_online_bits));

				}

}

First	of	all	it	checks	the	second		state		parameter	and	calls		cpumask_set_cpu		or		cpumask_clear_cpu		depends	on	it.	Here	we
can	see	casting	to	the		struct	cpumask	*		of	the	second	parameter	in	the		cpumask_set_cpu	.	In	our	case	it	is		cpu_online_bits	
which	is	bitmap	and	defined	as:

static	DECLARE_BITMAP(cpu_online_bits,	CONFIG_NR_CPUS)	__read_mostly;

cpumask	API
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	cpumask_set_cpu		function	makes	only	one	call	of	the		set_bit		function	inside:

static	inline	void	cpumask_set_cpu(unsigned	int	cpu,	struct	cpumask	*dstp)

{

								set_bit(cpumask_check(cpu),	cpumask_bits(dstp));

}

	set_bit		function	takes	two	parameter	too,	and	sets	a	given	bit	(first	parameter)	in	the	memory	(second	parameter	or
	cpu_online_bits		bitmap).	We	can	see	here	that	before		set_bit		will	be	called,	its	two	parameter	will	be	passed	to	the

cpumask_check;
cpumask_bits.

Let's	consider	these	two	macro.	First	if		cpumask_check		does	nothing	in	our	case	and	just	returns	given	parameter.	The
second		cpumask_bits		just	returns		bits		field	from	the	given		struct	cpumask	*		structure:

#define	cpumask_bits(maskp)	((maskp)->bits)

Now	let's	look	on	the		set_bit		implementation:

	static	__always_inline	void

	set_bit(long	nr,	volatile	unsigned	long	*addr)

	{

									if	(IS_IMMEDIATE(nr))	{

																asm	volatile(LOCK_PREFIX	"orb	%1,%0"

																								:	CONST_MASK_ADDR(nr,	addr)

																								:	"iq"	((u8)CONST_MASK(nr))

																								:	"memory");

								}	else	{

																asm	volatile(LOCK_PREFIX	"bts	%1,%0"

																								:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

								}

	}

This	function	looks	scarry,	but	it	is	not	so	hard	as	it	seems.	First	of	all	it	passes		nr		or	number	of	the	bit	to	the		IS_IMMEDIATE	
macro	which	just	makes	call	of	the	GCC	internal		__builtin_constant_p		function:

#define	IS_IMMEDIATE(nr)				(__builtin_constant_p(nr))

	__builtin_constant_p		checks	that	given	parameter	is	known	constant	at	compile-time.	As	our		cpu		is	not	compile-time
constant,		else		clause	will	be	executed:

asm	volatile(LOCK_PREFIX	"bts	%1,%0"	:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

Let's	try	to	understand	how	it	works	step	by	step:

	LOCK_PREFIX		is	a	x86		lock		instruction.	This	instruction	tells	to	the	cpu	to	occupy	the	system	bus	while	instruction	will	be
executed.	This	allows	to	synchronize	memory	access,	preventing	simultaneous	access	of	multiple	processors	(or	devices	-
DMA	controller	for	example)	to	one	memory	cell.

	BITOP_ADDR		casts	given	parameter	to	the		(*(volatile	long	*)		and	adds		+m		constraints.		+		means	that	this	operand	is	bot
read	and	written	by	the	instruction.		m		shows	that	this	is	memory	operand.		BITOP_ADDR		is	defined	as:

Linux	Inside

278Cpumasks



#define	BITOP_ADDR(x)	"+m"	(*(volatile	long	*)	(x))

Next	is	the		memory		clobber.	It	tells	the	compiler	that	the	assembly	code	performs	memory	reads	or	writes	to	items	other
than	those	listed	in	the	input	and	output	operands	(for	example,	accessing	the	memory	pointed	to	by	one	of	the	input
parameters).

	Ir		-	immideate	register	operand.

	bts		instruction	sets	given	bit	in	a	bit	string	and	stores	the	value	of	a	given	bit	in	the		CF		flag.	So	we	passed	cpu	number
which	is	zero	in	our	case	and	after		set_bit		will	be	executed,	it	sets	zero	bit	in	the		cpu_online_bits		cpumask.	It	would
mean	that	the	first	cpu	is	online	at	this	moment.

Besides	the		set_cpu_*		API,	cpumask	ofcourse	provides	another	API	for	cpumasks	manipulation.	Let's	consider	it	in	shoft.

cpumask	provides	the	set	of	macro	for	getting	amount	of	the	CPUs	with	different	state.	For	example:

#define	num_online_cpus()				cpumask_weight(cpu_online_mask)

This	macro	returns	amount	of	the		online		CPUs.	It	calls		cpumask_weight		function	with	the		cpu_online_mask		bitmap	(read
about	about	it).		cpumask_wieght		function	makes	an	one	call	of	the		bitmap_wiegt		function	with	two	parameters:

cpumask	bitmap;
	nr_cpumask_bits		-	which	is		NR_CPUS		in	our	case.

static	inline	unsigned	int	cpumask_weight(const	struct	cpumask	*srcp)

{

				return	bitmap_weight(cpumask_bits(srcp),	nr_cpumask_bits);

}

and	calculates	amount	of	the	bits	in	the	given	bitmap.	Besides	the		num_online_cpus	,	cpumask	provides	macros	for	the	all
CPU	states:

num_possible_cpus;
num_active_cpus;
cpu_online;
cpu_possible.

and	many	more.

Besides	that	Linux	kernel	provides	following	API	for	the	manipulating	of		cpumask	:

	for_each_cpu		-	iterates	over	every	cpu	in	a	mask;
	for_each_cpu_not		-	iterates	over	every	cpu	in	a	complemented	mask;
	cpumask_clear_cpu		-	clears	a	cpu	in	a	cpumask;
	cpumask_test_cpu		-	tests	a	cpu	in	a	mask;
	cpumask_setall		-	set	all	cpus	in	a	mask;
	cpumask_size		-	returns	size	to	allocate	for	a	'struct	cpumask'	in	bytes;

and	many	many	more...

Additional	cpumask	API

Linux	Inside

279Cpumasks



cpumask	documentation

Links
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Linux	kernel	provides	implementations	of	a	different	data	structures	like	linked	list,	B+	tree,	prinority	heap	and	many	many
more.

This	part	considers	these	data	structures	and	algorithms.

Doubly	linked	list
Radix	tree

Data	Structures	in	the	Linux	Kernel
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Linux	kernel	provides	its	own	doubly	linked	list	implementation	which	you	can	find	in	the	include/linux/list.h.	We	will	start
	Data	Structures	in	the	Linux	kernel		from	the	doubly	linked	list	data	structure.	Why?	Because	it	is	very	popular	in	the
kernel,	just	try	to	search

First	of	all	let's	look	on	the	main	structure:

struct	list_head	{

				struct	list_head	*next,	*prev;

};

You	can	note	that	it	is	different	from	many	lists	implementations	which	you	could	see.	For	example	this	doubly	linked	list
structure	from	the	glib:

struct	GList	{

		gpointer	data;

		GList	*next;

		GList	*prev;

};

Usually	a	linked	list	structure	contains	a	pointer	to	the	item.	Linux	kernel	implementation	of	the	list	does	not.	So	the	main
question	is	-		where	does	the	list	store	the	data?	.	The	actual	implementation	of	lists	in	the	kernel	is	-		Intrusive	list	.	An
intrusive	linked	list	does	not	contain	data	in	its	nodes	-	A	node	just	contains	pointers	to	the	next	and	previous	node	and	list
nodes	part	of	the	data	that	are	added	to	the	list.	This	makes	the	data	structure	generic,	so	it	does	not	care	about	entry	data
type	anymore.

For	example:

struct	nmi_desc	{

				spinlock_t	lock;

				struct	list_head	head;

};

Let's	look	at	some	examples,	how		list_head		is	used	in	the	kernel.	As	I	already	wrote	about,	there	are	many,	really	many
different	places	where	lists	are	used	in	the	kernel.	Let's	look	for	example	in	miscellaneous	character	drivers.	Misc	character
drivers	API	from	the	drivers/char/misc.c	for	writing	small	drivers	for	handling	simple	hardware	or	virtual	devices.	This	drivers
share	major	number:

#define	MISC_MAJOR														10

but	has	own	minor	number.	For	example	you	can	see	it	with:

ls	-l	/dev	|		grep	10

crw-------			1	root	root					10,	235	Mar	21	12:01	autofs

drwxr-xr-x		10	root	root									200	Mar	21	12:01	cpu

crw-------			1	root	root					10,		62	Mar	21	12:01	cpu_dma_latency

crw-------			1	root	root					10,	203	Mar	21	12:01	cuse

Data	Structures	in	the	Linux	Kernel

Doubly	linked	list

Linux	Inside

282Doubly	linked	list

https://github.com/torvalds/linux/blob/master/include/linux/list.h
http://lxr.free-electrons.com/ident?i=list_head
http://www.gnu.org/software/libc/
https://github.com/torvalds/linux/blob/master/drivers/char/misc.c


drwxr-xr-x			2	root	root									100	Mar	21	12:01	dri

crw-rw-rw-			1	root	root					10,	229	Mar	21	12:01	fuse

crw-------			1	root	root					10,	228	Mar	21	12:01	hpet

crw-------			1	root	root					10,	183	Mar	21	12:01	hwrng

crw-rw----+		1	root	kvm						10,	232	Mar	21	12:01	kvm

crw-rw----			1	root	disk					10,	237	Mar	21	12:01	loop-control

crw-------			1	root	root					10,	227	Mar	21	12:01	mcelog

crw-------			1	root	root					10,		59	Mar	21	12:01	memory_bandwidth

crw-------			1	root	root					10,		61	Mar	21	12:01	network_latency

crw-------			1	root	root					10,		60	Mar	21	12:01	network_throughput

crw-r-----			1	root	kmem					10,	144	Mar	21	12:01	nvram

brw-rw----			1	root	disk						1,		10	Mar	21	12:01	ram10

crw--w----			1	root	tty							4,		10	Mar	21	12:01	tty10

crw-rw----			1	root	dialout			4,		74	Mar	21	12:01	ttyS10

crw-------			1	root	root					10,		63	Mar	21	12:01	vga_arbiter

crw-------			1	root	root					10,	137	Mar	21	12:01	vhci

Now	let's	look	how	lists	are	used	in	the	misc	device	drivers.	First	of	all	let's	look	on		miscdevice		structure:

struct	miscdevice

{

						int	minor;

						const	char	*name;

						const	struct	file_operations	*fops;

						struct	list_head	list;

						struct	device	*parent;

						struct	device	*this_device;

						const	char	*nodename;

						mode_t	mode;

};

We	can	see	the	fourth	field	in	the		miscdevice		structure	-		list		which	is	list	of	registered	devices.	In	the	beginning	of	the
source	code	file	we	can	see	definition	of	the:

static	LIST_HEAD(misc_list);

which	expands	to	definition	of	the	variables	with		list_head		type:

#define	LIST_HEAD(name)	\

				struct	list_head	name	=	LIST_HEAD_INIT(name)

and	initializes	it	with	the		LIST_HEAD_INIT		macro	which	set	previous	and	next	entries:

#define	LIST_HEAD_INIT(name)	{	&(name),	&(name)	}

Now	let's	look	on	the		misc_register		function	which	registers	a	miscellaneous	device.	At	the	start	it	initializes		miscdevice-
>list		with	the		INIT_LIST_HEAD		function:

INIT_LIST_HEAD(&misc->list);

which	does	the	same	that		LIST_HEAD_INIT		macro:

static	inline	void	INIT_LIST_HEAD(struct	list_head	*list)

{

				list->next	=	list;

				list->prev	=	list;
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}

In	the	next	step	after	device	created	with	the		device_create		function	we	add	it	to	the	miscellaneous	devices	list	with:

list_add(&misc->list,	&misc_list);

Kernel		list.h		provides	this	API	for	the	addition	of	new	entry	to	the	list.	Let's	look	on	it's	implementation:

static	inline	void	list_add(struct	list_head	*new,	struct	list_head	*head)

{

				__list_add(new,	head,	head->next);

}

It	just	calls	internal	function		__list_add		with	the	3	given	parameters:

new	-	new	entry;
head	-	list	head	after	which	will	be	inserted	new	item;
head->next	-	next	item	after	list	head.

Implementation	of	the		__list_add		is	pretty	simple:

static	inline	void	__list_add(struct	list_head	*new,

																		struct	list_head	*prev,

																		struct	list_head	*next)

{

				next->prev	=	new;

				new->next	=	next;

				new->prev	=	prev;

				prev->next	=	new;

}

Here	we	set	new	item	between		prev		and		next	.	So		misc		list	which	we	defined	at	the	start	with	the		LIST_HEAD_INIT		macro
will	contain	previous	and	next	pointers	to	the		miscdevice->list	.

There	is	still	only	one	question	how	to	get	list's	entry.	There	is	special	special	macro	for	this	point:

#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

which	gets	three	parameters:

ptr	-	the	structure	list_head	pointer;
type	-	structure	type;
member	-	the	name	of	the	list_head	within	the	struct;

For	example:

const	struct	miscdevice	*p	=	list_entry(v,	struct	miscdevice,	list)

After	this	we	can	access	to	the	any		miscdevice		field	with		p->minor		or		p->name		and	etc...	Let's	look	on	the		list_entry	
implementation:
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#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

As	we	can	see	it	just	calls		container_of		macro	with	the	same	arguments.	For	the	first	look		container_of		looks	strange:

#define	container_of(ptr,	type,	member)	({																						\

				const	typeof(	((type	*)0)->member	)	*__mptr	=	(ptr);				\

				(type	*)(	(char	*)__mptr	-	offsetof(type,member)	);})

First	of	all	you	can	note	that	it	consists	from	two	expressions	in	curly	brackets.	Compiler	will	evaluate	the	whole	block	in	the
curly	braces	and	use	the	value	of	the	last	expression.

For	example:

#include	<stdio.h>

int	main()	{

				int	i	=	0;

				printf("i	=	%d\n",	({++i;	++i;}));

				return	0;

}

will	print		2	.

The	next	point	is		typeof	,	it's	simple.	As	you	can	understand	from	its	name,	it	just	returns	the	type	of	the	given	variable.
When	I	first	saw	the	implementation	of	the		container_of		macro,	the	strangest	thing	for	me	was	the	zero	in	the		((type	*)0)	
expression.	Actually	this	pointer	magic	calculates	the	offset	of	the	given	field	from	the	address	of	the	structure,	but	as	we
have		0		here,	it	will	be	just	a	zero	offset	alongwith	the	field	width.	Let's	look	at	a	simple	example:

#include	<stdio.h>

struct	s	{

								int	field1;

								char	field2;

								char	field3;

};

int	main()	{

				printf("%p\n",	&((struct	s*)0)->field3);

				return	0;

}

will	print		0x5	.

The	next	offsetof	macro	calculates	offset	from	the	beginning	of	the	structure	to	the	given	structure's	field.	Its	implementation
is	very	similar	to	the	previous	code:

#define	offsetof(TYPE,	MEMBER)	((size_t)	&((TYPE	*)0)->MEMBER)

Let's	summarize	all	about		container_of		macro.		container_of		macro	returns	address	of	the	structure	by	the	given	address
of	the	structure's	field	with		list_head		type,	the	name	of	the	structure	field	with		list_head		type	and	type	of	the	container
structure.	At	the	first	line	this	macro	declares	the		__mptr		pointer	which	points	to	the	field	of	the	structure	that		ptr		points	to
and	assigns	it	to	the		ptr	.	Now		ptr		and		__mptr		point	to	the	same	address.	Technically	we	don't	need	this	line	but	its
useful	for	type	checking.	First	line	ensures	that	that	given	structure	(	type		parameter)	has	a	member	called		member	.	In	the
second	line	it	calculates	offset	of	the	field	from	the	structure	with	the		offsetof		macro	and	subtracts	it	from	the	structure
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address.	That's	all.

Of	course		list_add		and		list_entry		is	not	only	functions	which	provides		<linux/list.h>	.	Implementation	of	the	doubly
linked	list	provides	the	following	API:

list_add
list_add_tail
list_del
list_replace
list_move
list_is_last
list_empty
list_cut_position
list_splice

and	many	more.
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As	you	already	know	linux	kernel	provides	many	different	libraries	and	functions	which	implement	different	data	structures
and	algorithm.	In	this	part	we	will	consider	one	of	these	data	structures	-	Radix	tree.	There	are	two	files	which	are	related	to
	radix	tree		implementation	and	API	in	the	linux	kernel:

include/linux/radix-tree.h
lib/radix-tree.c

Lets	talk	about	what	is		radix	tree	.	Radix	tree	is	a		compressed	trie		where	trie	is	a	data	structure	which	implements
interface	of	an	associative	array	and	allows	to	store	values	as		key-value	.	The	keys	are	usually	strings,	but	any	other	data
type	can	be	used	as	well.	Trie	is	different	from	any		n-tree		in	its	nodes.	Nodes	of	a	trie	do	not	store	keys,	instead,	a	node	of
a	trie	stores	single	character	labels.	The	key	which	is	related	to	a	given	node	is	derived	by	traversing	from	the	root	of	the
tree	to	this	node.	For	example:

               +-----------+
               |           |
               |    "	"    |
															|											|

        +------+-----------+------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    g      |            |     c     |
			|											|												|											|

   +-----------+            +-----------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    o      |            |     a     |
			|											|												|											|

   +-----------+            +-----------+
                                  |
                                  |
                            +-----v-----+
                            |           |
                            |     t     |
																												|											|

                            +-----------+

So	in	this	example,	we	can	see	the		trie		with	keys,		go		and		cat	.	The	compressed	trie	or		radix	tree		differs	from		trie	,
such	that	all	intermediates	nodes	which	have	only	one	child	are	removed.

Radix	tree	in	linux	kernel	is	the	datastructure	which	maps	values	to	the	integer	key.	It	is	represented	by	the	following
structures	from	the	file	include/linux/radix-tree.h:

struct	radix_tree_root	{

									unsigned	int												height;

									gfp_t																			gfp_mask;

									struct	radix_tree_node		__rcu	*rnode;

};

This	structure	presents	the	root	of	a	radix	tree	and	contains	three	fields:

Data	Structures	in	the	Linux	Kernel
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	height		-	height	of	the	tree;
	gfp_mask		-	tells	how	memory	allocations	are	to	be	performed;
	rnode		-	pointer	to	the	child	node.

The	first	structure	we	will	discuss	is		gfp_mask	:

Low-level	kernel	memory	allocation	functions	take	a	set	of	flags	as	-		gfp_mask	,	which	describes	how	that	allocation	is	to	be
performed.	These		GFP_		flags	which	control	the	allocation	process	can	have	following	values,	(	GF_NOIO		flag)	be	sleep	and
wait	for	memory,	(	__GFP_HIGHMEM		flag)	is	high	memory	can	be	used,	(	GFP_ATOMIC		flag)	is	allocation	process	high-priority	and
can't	sleep	etc.

The	next	structure	is		rnode	:

struct	radix_tree_node	{

								unsigned	int				path;

								unsigned	int				count;

								union	{

																struct	{

																								struct	radix_tree_node	*parent;

																								void	*private_data;

																};

																struct	rcu_head	rcu_head;

								};

								/*	For	tree	user	*/

								struct	list_head	private_list;

								void	__rcu						*slots[RADIX_TREE_MAP_SIZE];

								unsigned	long			tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];

};

This	structure	contains	information	about	the	offset	in	a	parent	and	height	from	the	bottom,	count	of	the	child	nodes	and
fields	for	accessing	and	freeing	a	node.	The	fields	are	described	below:

	path		-	offset	in	parent	&	height	from	the	bottom;
	count		-	count	of	the	child	nodes;
	parent		-	pointer	to	the	parent	node;
	private_data		-	used	by	the	user	of	a	tree;
	rcu_head		-	used	for	freeing	a	node;
	private_list		-	used	by	the	user	of	a	tree;

The	two	last	fields	of	the		radix_tree_node		-		tags		and		slots		are	important	and	interesting.	Every	node	can	contains	a	set
of	slots	which	are	store	pointers	to	the	data.	Empty	slots	in	the	linux	kernel	radix	tree	implementation	store		NULL	.	Radix
tree	in	the	linux	kernel	also	supports	tags	which	are	associated	with	the		tags		fields	in	the		radix_tree_node		structure.	Tags
allow	to	set	individual	bits	on	records	which	are	stored	in	the	radix	tree.

Now	we	know	about	radix	tree	structure,	time	to	look	on	its	API.

We	start	from	the	datastructure	intialization.	There	are	two	ways	to	initialize	new	radix	tree.	The	first	is	to	use		RADIX_TREE	
macro:

RADIX_TREE(name,	gfp_mask);

`

As	you	can	see	we	pass	the		name		parameter,	so	with	the		RADIX_TREE		macro	we	can	define	and	initialize	radix	tree	with	the
given	name.	Implementation	of	the		RADIX_TREE		is	easy:

Linux	kernel	radix	tree	API
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#define	RADIX_TREE(name,	mask)	\

									struct	radix_tree_root	name	=	RADIX_TREE_INIT(mask)

#define	RADIX_TREE_INIT(mask)			{	\

								.height	=	0,														\

								.gfp_mask	=	(mask),							\

								.rnode	=	NULL,												\

}

At	the	beginning	of	the		RADIX_TREE		macro	we	define	instance	of	the		radix_tree_root		structure	with	the	given	name	and	call
	RADIX_TREE_INIT		macro	with	the	given	mask.	The		RADIX_TREE_INIT		macro	just	initializes		radix_tree_root		structure	with	the
default	values	and	the	given	mask.

The	second	way	is	to	define		radix_tree_root		structure	by	hand	and	pass	it	with	mask	to	the		INIT_RADIX_TREE		macro:

struct	radix_tree_root	my_radix_tree;

INIT_RADIX_TREE(my_tree,	gfp_mask_for_my_radix_tree);

where:

#define	INIT_RADIX_TREE(root,	mask)		\

do	{																																	\

								(root)->height	=	0;										\

								(root)->gfp_mask	=	(mask);			\

								(root)->rnode	=	NULL;								\

}	while	(0)

makes	the	same	initialziation	with	default	values	as	it	does		RADIX_TREE_INIT		macro.

The	next	are	two	functions	for	the	inserting	and	deleting	records	to/from	a	radix	tree:

	radix_tree_insert	;
	radix_tree_delete	.

The	first		radix_tree_insert		function	takes	three	parameters:

root	of	a	radix	tree;
index	key;
data	to	insert;

The		radix_tree_delete		function	takes	the	same	set	of	parameters	as	the		radix_tree_insert	,	but	without	data.

The	search	in	a	radix	tree	implemented	in	two	ways:

	radix_tree_lookup	;
	radix_tree_gang_lookup	;
	radix_tree_lookup_slot	.

The	first		radix_tree_lookup		function	takes	two	parameters:

root	of	a	radix	tree;
index	key;

This	function	tries	to	find	the	given	key	in	the	tree	and	returns	associated	record	with	this	key.	The	second
	radix_tree_gang_lookup		function	have	the	following	signature
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unsigned	int	radix_tree_gang_lookup(struct	radix_tree_root	*root,

																																				void	**results,

																																				unsigned	long	first_index,

																																				unsigned	int	max_items);

and	returns	number	of	records,	sorted	by	the	keys,	starting	from	the	first	index.	Number	of	the	returned	records	will	be	not
greater	than		max_items		value.

And	the	last		radix_tree_lookup_slot		function	will	return	the	slot	which	will	contain	the	data.

Radix	tree
Trie

Links
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This	chapter	describes	various	theoretical	concepts	and	concepts	which	are	not	directly	related	to	practice	but	useful	to
know.

Paging
Elf64	format

Theory
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In	the	fifth	part	of	the	series		Linux	kernel	booting	process		we	finished	to	learn	what	and	how	kernel	does	on	the	earliest
stage.	In	the	next	step	kernel	will	initialize	different	things	like		initrd		mounting,	lockdep	initialization,	and	many	many
different	things,	before	we	can	see	how	the	kernel	will	run	the	first	init	process.

Yeah,	there	will	be	many	different	things,	but	many	many	and	once	again	many	work	with	memory.

In	my	view,	memory	management	is	one	of	the	most	complex	part	of	the	linux	kernel	and	in	system	programming	generally.
So	before	we	will	proceed	with	the	kernel	initialization	stuff,	we	will	get	acquainted	with	the	paging.

	Paging		is	a	process	of	translation	a	linear	memory	address	to	a	physical	address.	If	you	have	read	previous	parts,	you	can
remember	that	we	saw	segmentation	in	the	real	mode	when	physical	address	calculated	by	shifting	a	segment	register	on
four	and	adding	offset.	Or	also	we	saw	segmentation	in	the	protected	mode,	where	we	used	the	tables	of	descriptors	and
base	addresses	from	descriptors	with	offsets	to	calculate	physical	addresses.	Now	we	are	in	64-bit	mode	and	that	we	will
see	paging.

As	Intel	manual	says:

Paging	provides	a	mechanism	for	implementing	a	conventional	demand-paged,	virtual-memory	system	where
sections	of	a	program’s	execution	environment	are	mapped	into	physical	memory	as	needed.

So...	I	will	try	to	explain	how	paging	works	in	theory	in	this	post.	Of	course	it	will	be	closely	related	with	the	linux	kernel	for
	x86_64	,	but	we	will	not	go	into	deep	details	(at	least	in	this	post).

There	are	three	paging	modes:

32-bit	paging;
PAE	paging;
IA-32e	paging.

We	will	see	explanation	only	last	mode	here.	To	enable		IA-32e	paging		paging	mode	need	to	do	following	things:

set		CR0.PG		bit;
set		CR4.PAE		bit;
set		IA32_EFER.LME		bit.

We	already	saw	setting	of	this	bits	in	the	arch/x86/boot/compressed/head_64.S:

movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

movl				%eax,	%cr0

and

movl				$MSR_EFER,	%ecx

rdmsr

Paging

Introduction

Enabling	paging
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btsl				$_EFER_LME,	%eax

wrmsr

Paging	divides	the	linear	address	space	into	fixed-size	pages.	Pages	can	be	mapped	into	the	physical	address	space	or
even	external	storage.	This	fixed	size	is		4096		bytes	for	the		x86_64		linux	kernel.	For	a	linear	address	translation	to	a
physical	address	used	special	structures.	Every	structure	is		4096		bytes	size	and	contains		512		entries	(this	only	for		PAE	
and		IA32_EFER.LME		modes).	Paging	structures	are	hierarchical	and	linux	kernel	uses	4	level	paging	for		x86_64	.	CPU	uses	a
part	of	the	linear	address	to	identify	entry	of	the	another	paging	structure	which	is	at	the	lower	level	or	physical	memory
region	(	page	frame	)	or	physical	address	in	this	region	(	page	offset	).	The	address	of	the	top	level	paging	structure	located
in	the		cr3		register.	We	already	saw	this	in	the	arch/x86/boot/compressed/head_64.S:

leal				pgtable(%ebx),	%eax

movl				%eax,	%cr3

We	built	page	table	structures	and	put	the	address	of	the	top-level	structure	to	the		cr3		register.	Here		cr3		is	used	to	store
the	address	of	the	top-level		PML4		structure	or		Page	Global	Directory		as	it	calls	in	linux	kernel.		cr3		is	64-bit	register	and
has	the	following	structure:

63																		52	51																																																								32

	--------------------------------------------------------------------------------

|																					|																																																										|

|				Reserved	MBZ					|												Address	of	the	top	level	structure												|

|																					|																																																										|

	--------------------------------------------------------------------------------

31																																		12	11												5					4					3	2													0

	--------------------------------------------------------------------------------

|																																					|															|		P		|		P		|														|

|		Address	of	the	top	level	structure	|			Reserved				|		C		|		W		|				Reserved		|

|																																					|															|		D		|		T		|														|

	--------------------------------------------------------------------------------

These	fields	have	the	following	meanings:

Bits	2:0	-	ignored;
Bits	51:12	-	stores	the	address	of	the	top	level	paging	structure;
Bit	3	and	4	-	PWT	or	Page-Level	Writethrough	and	PCD	or	Page-level	cache	disable	indicate.	These	bits	control	the
way	the	page	or	Page	Table	is	handled	by	the	hardware	cache;
Reserved	-	reserved	must	be	0;
Bits	63:52	-	reserved	must	be	0.

The	linear	address	translation	address	is	following:

Given	linear	address	arrives	to	the	MMU	instead	of	memory	bus.
64-bit	linear	address	splits	on	some	parts.	Only	low	48	bits	are	significant,	it	means	that		2^48		or	256	TBytes	of	linear-
address	space	may	be	accessed	at	any	given	time.
	cr3		register	stores	the	address	of	the	4	top-level	paging	structure.
	47:39		bits	of	the	given	linear	address	stores	an	index	into	the	paging	structure	level-4,		38:30		bits	stores	index	into	the
paging	structure	level-3,		29:21		bits	stores	an	index	into	the	paging	structure	level-2,		20:12		bits	stores	an	index	into
the	paging	structure	level-1	and		11:0		bits	provide	the	byte	offset	into	the	physical	page.

schematically,	we	can	imagine	it	like	this:

Paging	structures
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Every	access	to	a	linear	address	is	either	a	supervisor-mode	access	or	a	user-mode	access.	This	access	determined	by
the		CPL		(current	privilege	level).	If		CPL	<	3		it	is	a	supervisor	mode	access	level	and	user	mode	access	level	in	other	ways.
For	example	top	level	page	table	entry	contains	access	bits	and	has	the	following	structure:

63		62																		52	51																																																				32

	--------------------------------------------------------------------------------

|	N	|																					|																																																					|

|			|					Available							|					Address	of	the	paging	structure	on	lower	level		|

|	X	|																					|																																																					|

	--------------------------------------------------------------------------------

31																																														12	11		9	8	7	6	5			4			3	2	1					0

	--------------------------------------------------------------------------------

|																																																|					|	M	|I|	|	P	|	P	|U|W|				|

|	Address	of	the	paging	structure	on	lower	level	|	AVL	|	B	|G|A|	C	|	W	|	|	|		P	|

|																																																|					|	Z	|N|	|	D	|	T	|S|R|				|

	--------------------------------------------------------------------------------

Where:

63	bit	-	N/X	bit	(No	Execute	Bit)	-	presents	ability	to	execute	the	code	from	physical	pages	mapped	by	the	table	entry;
62:52	bits	-	ignored	by	CPU,	used	by	system	software;
51:12	bits	-	stores	physical	address	of	the	lower	level	paging	structure;
12:9	bits	-	ignored	by	CPU;
MBZ	-	must	be	zero	bits;
Ignored	bits;
A	-	accessed	bit	indicates	was	physical	page	or	page	structure	accessed;
PWT	and	PCD	used	for	cache;
U/S	-	user/supervisor	bit	controls	user	access	to	the	all	physical	pages	mapped	by	this	table	entry;
R/W	-	read/write	bit	controls	read/write	access	to	the	all	physical	pages	mapped	by	this	table	entry;
P	-	present	bit.	Current	bit	indicates	was	page	table	or	physical	page	loaded	into	primary	memory	or	not.

Ok,	now	we	know	about	paging	structures	and	it's	entries.	Let's	see	some	details	about	4-level	paging	in	linux	kernel.
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As	i	wrote	about	linux	kernel	for		x86_64		uses	4-level	page	tables.	Their	names	are:

Page	Global	Directory
Page	Upper	Directory
Page	Middle	Directory
Page	Table	Entry

After	that	you	compiled	and	installed	linux	kernel,	you	can	note		System.map		file	which	stores	address	of	the	functions	that
are	used	by	the	kernel.	Note	that	addresses	are	virtual.	For	example:

$	grep	"start_kernel"	System.map

ffffffff81efe497	T	x86_64_start_kernel

ffffffff81efeaa2	T	start_kernel

We	can	see		0xffffffff81efe497		here.	I'm	not	sure	that	you	have	so	big	RAM.	But	anyway		start_kernel		and
	x86_64_start_kernel		will	be	executed.	The	address	space	in		x86_64		is		2^64		size,	but	it's	too	large,	that's	why	used	smaller
address	space,	only	48-bits	wide.	So	we	have	situation	when	physical	address	limited	with	48	bits,	but	addressing	still
performed	with	64	bit	pointers.	How	to	solve	this	problem?	Ok,	look	on	the	diagram:

0xffffffffffffffff		+-----------+

																				|											|

																				|											|	Kernelspace

																				|											|

	0xffff800000000000	+-----------+

																				|											|

																				|											|

																				|			hole				|

																				|											|

																				|											|

0x00007fffffffffff		+-----------+

																				|											|

																				|											|		Userspace

																				|											|

0x0000000000000000  +-----------+

This	solution	is		sign	extension	.	Here	we	can	see	that	low	48	bits	of	a	virtual	address	can	be	used	for	addressing.	Bits
	63:48		can	be	or	0	or	1.	Note	that	all	virtual	address	space	is	spliten	on	2	parts:

Kernel	space
Userspace

Userspace	occupies	the	lower	part	of	the	virtual	address	space,	from		0x000000000000000		to		0x00007fffffffffff		and	kernel
space	occupies	the	highest	part	from	the		0xffff8000000000		to		0xffffffffffffffff	.	Note	that	bits		63:48		is	0	for	userspace
and	1	for	kernel	space.	All	addresses	which	are	in	kernel	space	and	in	userspace	or	in	another	words	which	higher		63:48	
bits	zero	or	one	calls		canonical		addresses.	There	is		non-canonical		area	between	these	memory	regions.	Together	this	two
memory	regions	(kernel	space	and	user	space)	are	exactly		2^48		bits.	We	can	find	virtual	memory	map	with	4	level	page
tables	in	the	Documentation/x86/x86_64/mm.txt:

0000000000000000	-	00007fffffffffff	(=47	bits)	user	space,	different	per	mm

hole	caused	by	[48:63]	sign	extension

ffff800000000000	-	ffff87ffffffffff	(=43	bits)	guard	hole,	reserved	for	hypervisor

ffff880000000000	-	ffffc7ffffffffff	(=64	TB)	direct	mapping	of	all	phys.	memory

ffffc80000000000	-	ffffc8ffffffffff	(=40	bits)	hole

ffffc90000000000	-	ffffe8ffffffffff	(=45	bits)	vmalloc/ioremap	space

ffffe90000000000	-	ffffe9ffffffffff	(=40	bits)	hole

ffffea0000000000	-	ffffeaffffffffff	(=40	bits)	virtual	memory	map	(1TB)

Paging	structures	in	linux	kernel
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...	unused	hole	...

ffffec0000000000	-	fffffc0000000000	(=44	bits)	kasan	shadow	memory	(16TB)

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

ffffffffa0000000	-	ffffffffff5fffff	(=1525	MB)	module	mapping	space

ffffffffff600000	-	ffffffffffdfffff	(=8	MB)	vsyscalls

ffffffffffe00000	-	ffffffffffffffff	(=2	MB)	unused	hole

We	can	see	here	memory	map	for	user	space,	kernel	space	and	non-canonical	area	between.	User	space	memory	map	is
simple.	Let's	take	a	closer	look	on	the	kernel	space.	We	can	see	that	it	starts	from	the	guard	hole	which	reserved	for
hypervisor.	We	can	find	definition	of	this	guard	hole	in	the	arch/x86/include/asm/page_64_types.h:

#define	__PAGE_OFFSET	_AC(0xffff880000000000,	UL)

Previously	this	guard	hole	and		__PAGE_OFFSET		was	from		0xffff800000000000		to		0xffff80ffffffffff		for	preventing	of	access
to	non-canonical	area,	but	later	was	added	3	bits	for	hypervisor.

Next	is	the	lowest	usable	address	in	kernel	space	-		ffff880000000000	.	This	virtual	memory	region	is	for	direct	mapping	of
the	all	physical	memory.	After	the	memory	space	which	mapped	all	physical	address	-	guard	hole,	it	needs	to	be	between
direct	mapping	of	the	all	physical	memory	and	vmalloc	area.	After	the	virtual	memory	map	for	the	first	terabyte	and	unused
hole	after	it,	we	can	see		kasan		shadow	memory.	It	was	added	by	the	commit	and	provides	kernel	address	sanitizer.	After
next	unused	hole	we	can	se		esp		fixup	stacks	(we	will	talk	about	it	in	the	other	parts)	and	the	start	of	the	kernel	text
mapping	from	the	physical	address	-		0	.	We	can	find	definition	of	this	address	in	the	same	file	as	the		__PAGE_OFFSET	:

#define	__START_KERNEL_map						_AC(0xffffffff80000000,	UL)

Usually	kernel's		.text		start	here	with	the		CONFIG_PHYSICAL_START		offset.	We	saw	it	in	the	post	about	ELF64:

readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

Here	i	checked		vmlinux		with	the		CONFIG_PHYSICAL_START		is		0x1000000	.	So	we	have	the	start	point	of	the	kernel		.text		-
	0xffffffff80000000		and	offset	-		0x1000000	,	the	resulted	virtual	address	will	be		0xffffffff80000000	+	1000000	=
0xffffffff81000000	.

After	the	kernel		.text		region,	we	can	see	virtual	memory	region	for	kernel	modules,		vsyscalls		and	2	megabytes	unused
hole.

We	know	how	looks	kernel's	virtual	memory	map	and	now	we	can	see	how	a	virtual	address	translates	into	physical.	Let's
take	for	example	following	address:

0xffffffff81000000

In	binary	it	will	be:

1111111111111111	111111111	111111110	000001000	000000000	000000000000

						63:48								47:39					38:30					29:21					20:12						11:0
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The	given	virtual	address	split	on	some	parts	as	i	wrote	above:

	63:48		-	bits	not	used;
	47:39		-	bits	of	the	given	linear	address	stores	an	index	into	the	paging	structure	level-4;
	38:30		-	bits	stores	index	into	the	paging	structure	level-3;
	29:21		-	bits	stores	an	index	into	the	paging	structure	level-2;
	20:12		-	bits	stores	an	index	into	the	paging	structure	level-1;
	11:0		-	bits	provide	the	byte	offset	into	the	physical	page.

That	is	all.	Now	you	know	a	little	about		paging		theory	and	we	can	go	ahead	in	the	kernel	source	code	and	see	first
initialization	steps.

It's	the	end	of	this	short	part	about	paging	theory.	Of	course	this	post	doesn't	cover	all	details	about	paging,	but	soon	we	will
see	it	on	practice	how	linux	kernel	builds	paging	structures	and	work	with	it.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any
mistakes	please	send	me	PR	to	linux-internals.

Paging	on	Wikipedia
Intel	64	and	IA-32	architectures	software	developer's	manual	volume	3A
MMU
ELF64
Documentation/x86/x86_64/mm.txt
Last	part	-	Kernel	booting	process

Conclusion

Links
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ELF	(Executable	and	Linkable	Format)	is	a	standard	file	format	for	executable	files	and	shared	libraries.	Linux,	as	well	as,
many	UNIX-like	operating	systems	uses	this	format.	Let's	look	on	structure	of	the	ELF-64	Object	File	Format	and	some
defintions	in	the	linux	kernel	source	code	related	with	it.

An	ELF	object	file	consists	of	the	following	parts:

ELF	header	-	describes	the	main	characteristics	of	the	object	file:	type,	CPU	architecture,	the	virtual	address	of	the
entry	point,	the	size	and	offset	the	remaining	parts,	etc...;
Program	header	table	-	listing	the	available	segments	and	their	attributes.	Program	header	table	need	loaders	for
placing	sections	of	the	file	as	virtual	memory	segments;
Section	header	table	-	contains	description	of	the	sections.

Now	let's	look	closer	on	these	components.

ELF	header

It's	located	in	the	beginning	of	the	object	file.	It's	main	point	is	to	locate	all	other	parts	of	the	object	file.	File	header	contains
following	fields:

ELF	identification	-	array	of	bytes	which	helps	to	identify	the	file	as	an	ELF	object	file	and	also	provides	information
about	general	object	file	characteristic;
Object	file	type	-	identifies	the	object	file	type.	This	field	can	describe	that	ELF	file	is	a	relocatable	object	file,
executable	file,	etc...;
Target	architecture;
Version	of	the	object	file	format;
Virtual	address	of	the	program	entry	point;
File	offset	of	the	program	header	table;
File	offset	of	the	section	header	table;
Size	of	an	ELF	header;
Size	of	a	program	header	table	entry;
and	other	fields...

You	can	find		elf64_hdr		structure	which	presents	ELF64	header	in	the	linux	kernel	source	code:

typedef	struct	elf64_hdr	{

				unsigned	char				e_ident[EI_NIDENT];

				Elf64_Half	e_type;

				Elf64_Half	e_machine;

				Elf64_Word	e_version;

				Elf64_Addr	e_entry;

				Elf64_Off	e_phoff;

				Elf64_Off	e_shoff;

				Elf64_Word	e_flags;

				Elf64_Half	e_ehsize;

				Elf64_Half	e_phentsize;

				Elf64_Half	e_phnum;

				Elf64_Half	e_shentsize;

				Elf64_Half	e_shnum;

				Elf64_Half	e_shstrndx;

}	Elf64_Ehdr;

This	structure	defined	in	the	elf.h

Sections

Executable	and	Linkable	Format
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All	data	is	stored	in	sections	in	an	Elf	object	file.	Sections	identified	by	index	in	the	section	header	table.	Section	header
contains	following	fields:

Section	name;
Section	type;
Section	attributes;
Virtual	address	in	memory;
Offset	in	file;
Size	of	section;
Link	to	other	section;
Miscellaneous	information;
Address	alignment	boundary;
Size	of	entries,	if	section	has	table;

And	presented	with	the	following		elf64_shdr		structure	in	the	linux	kernel:

typedef	struct	elf64_shdr	{

				Elf64_Word	sh_name;

				Elf64_Word	sh_type;

				Elf64_Xword	sh_flags;

				Elf64_Addr	sh_addr;

				Elf64_Off	sh_offset;

				Elf64_Xword	sh_size;

				Elf64_Word	sh_link;

				Elf64_Word	sh_info;

				Elf64_Xword	sh_addralign;

				Elf64_Xword	sh_entsize;

}	Elf64_Shdr;

Program	header	table

All	sections	are	grouped	into	segments	in	an	executable	or	shared	object	file.	Program	header	is	an	array	of	structures
which	describe	every	segment.	It	looks	like:

typedef	struct	elf64_phdr	{

				Elf64_Word	p_type;

				Elf64_Word	p_flags;

				Elf64_Off	p_offset;

				Elf64_Addr	p_vaddr;

				Elf64_Addr	p_paddr;

				Elf64_Xword	p_filesz;

				Elf64_Xword	p_memsz;

				Elf64_Xword	p_align;

}	Elf64_Phdr;

in	the	linux	kernel	source	code.

	elf64_phdr		defined	in	the	same	elf.h.

And	ELF	object	file	also	contains	other	fields/structures	which	you	can	find	in	the	Documentation.	Now	let's	look	on	the
	vmlinux	.

	vmlinux		is	relocatable	ELF	object	file	too.	So	we	can	look	at	it	with	the		readelf		util.	First	of	all	let's	look	on	a	header:

$	readelf	-h		vmlinux

vmlinux

Linux	Inside

299Elf64

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h
http://www.uclibc.org/docs/elf-64-gen.pdf


ELF	Header:

		Magic:			7f	45	4c	46	02	01	01	00	00	00	00	00	00	00	00	00	

		Class:																													ELF64

		Data:																														2's	complement,	little	endian

		Version:																											1	(current)

		OS/ABI:																												UNIX	-	System	V

		ABI	Version:																							0

		Type:																														EXEC	(Executable	file)

		Machine:																											Advanced	Micro	Devices	X86-64

		Version:																											0x1

		Entry	point	address:															0x1000000

		Start	of	program	headers:										64	(bytes	into	file)

		Start	of	section	headers:										381608416	(bytes	into	file)

		Flags:																													0x0

		Size	of	this	header:															64	(bytes)

		Size	of	program	headers:											56	(bytes)

		Number	of	program	headers:									5

		Size	of	section	headers:											64	(bytes)

		Number	of	section	headers:									73

		Section	header	string	table	index:	70

Here	we	can	see	that		vmlinux		is	64-bit	executable	file.

We	can	read	from	the	Documentation/x86/x86_64/mm.txt:

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

So	we	can	find	it	in	the		vmlinux		with:

readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

Note	that	here	is	address	of	the		startup_64		routine	is	not		ffffffff80000000	,	but		ffffffff81000000		and	now	i'll	explain	why.

We	can	see	following	definition	in	the	arch/x86/kernel/vmlinux.lds.S:

				.	=	__START_KERNEL;

				...

				...

				..

				/*	Text	and	read-only	data	*/

				.text	:		AT(ADDR(.text)	-	LOAD_OFFSET)	{

								_text	=	.;

								...

								...

								...

				}

Where		__START_KERNEL		is:

#define	__START_KERNEL								(__START_KERNEL_map	+	__PHYSICAL_START)

	__START_KERNEL_map		is	the	value	from	documentation	-		ffffffff80000000		and		__PHYSICAL_START		is		0x1000000	.	That's	why
address	of	the		startup_64		is		ffffffff81000000	.

And	the	last	we	can	get	program	headers	from		vmlinux		with	the	following	command:
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readelf	-l	vmlinux

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x1000000

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000200000	0xffffffff81000000	0x0000000001000000

																	0x0000000000cfd000	0x0000000000cfd000		R	E				200000

		LOAD											0x0000000001000000	0xffffffff81e00000	0x0000000001e00000

																	0x0000000000100000	0x0000000000100000		RW					200000

		LOAD											0x0000000001200000	0x0000000000000000	0x0000000001f00000

																	0x0000000000014d98	0x0000000000014d98		RW					200000

		LOAD											0x0000000001315000	0xffffffff81f15000	0x0000000001f15000

																	0x000000000011d000	0x0000000000279000		RWE				200000

		NOTE											0x0000000000b17284	0xffffffff81917284	0x0000000001917284

																	0x0000000000000024	0x0000000000000024									4

	Section	to	Segment	mapping:

		Segment	Sections...

			00					.text	.notes	__ex_table	.rodata	__bug_table	.pci_fixup	.builtin_fw

										.tracedata	__ksymtab	__ksymtab_gpl	__kcrctab	__kcrctab_gpl

										__ksymtab_strings	__param	__modver	

			01					.data	.vvar	

			02					.data..percpu	

			03					.init.text	.init.data	.x86_cpu_dev.init	.altinstructions

										.altinstr_replacement	.iommu_table	.apicdrivers	.exit.text

										.smp_locks	.data_nosave	.bss	.brk

Here	we	can	see	five	segments	with	sections	list.	All	of	these	sections	you	can	find	in	the	generated	linker	script	at	-
	arch/x86/kernel/vmlinux.lds	.

That's	all.	Of	course	it's	not	a	full	description	of	ELF(Executable	and	Linkable	Format),	but	if	you	are	interested	in	it,	you	can
find	documentation	-	here
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Thich	chapter	contains	parts	that	are	not	directly	related	to	the	Linux	kernel	code	and	implementation	of	different
subsystems.

Misc
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I	won't	tell	you	how	to	build	and	install	a	custom	Linux	kernel	on	your	machine.	If	you	need	help	with	this,	you	can	find	many
resources	that	will	help	you	do	it.	Instead,	we	will	learn	what	occurs	when	you	type		make		in	the	directory	of	the	Linux	kernel
source	code.

When	I	started	to	study	the	source	code	of	the	Linux	kernel,	the	makefile	was	the	first	file	that	I	opened.	And	it	was	scary	:).
The	makefile	contained		1591		lines	of	code	when	I	wrote	this	and	this	was	the	4.2.0-rc3	release.

This	makefile	is	the	the	top	makefile	in	the	Linux	kernel	source	code	and	kernel	build	starts	here.	Yes,	it	is	big,	but
moreover,	if	you've	read	the	source	code	of	the	Linux	kernel	you	can	noted	that	all	directories	with	a	source	code	has	an
own	makefile.	Of	course	it	is	not	real	to	describe	how	each	source	files	compiled	and	linked.	So,	we	will	see	compilation
only	for	the	standard	case.	You	will	not	find	here	building	of	the	kernel's	documentation,	cleaning	of	the	kernel	source	code,
tags	generation,	cross-compilation	related	stuff	and	etc.	We	will	start	from	the		make		execution	with	the	standard	kernel
configuration	file	and	will	finish	with	the	building	of	the	bzImage.

It	would	be	good	if	you're	already	familiar	with	the	make	util,	but	I	will	anyway	try	to	describe	all	code	that	will	be	in	this	part.

So	let's	start.

There	are	many	things	to	prepare	before	the	kernel	compilation	will	be	started.	The	main	point	here	is	to	find	and	configure
The	type	of	compilation,	to	parse	command	line	arguments	that	are	passed	to	the		make		util	and	etc.	So	let's	dive	into	the
top		Makefile		of	the	Linux	kernel.

The	Linux	kernel	top		Makefile		is	responsible	for	building	two	major	products:	vmlinux	(the	resident	kernel	image)	and	the
modules	(any	module	files).	The	Makefile	of	the	Linux	kernel	starts	from	the	definition	of	the	following	variables:

VERSION	=	4

PATCHLEVEL	=	2

SUBLEVEL	=	0

EXTRAVERSION	=	-rc3

NAME	=	Hurr	durr	I'ma	sheep

These	variables	determine	the	current	version	of	the	Linux	kernel	and	are	used	in	the	different	places,	for	example	in	the
forming	of	the		KERNELVERSION		variable:

KERNELVERSION	=	$(VERSION)$(if	$(PATCHLEVEL),.$(PATCHLEVEL)$(if	$(SUBLEVEL),.$(SUBLEVEL)))$(EXTRAVERSION)

After	this	we	can	see	a	couple	of	the		ifeq		condition	that	check	some	of	the	parameters	passed	to		make	.	The	Linux	kernel
	makefiles		provides	a	special		make	help		target	that	prints	all	available	targets	and	some	of	the	command	line	arguments
that	can	be	passed	to		make	.	For	example:		make	V=1		-	provides	verbose	builds.	The	first		ifeq		condition	checks	if	the		V=n	
option	is	passed	to	make:

ifeq	("$(origin	V)",	"command	line")

		KBUILD_VERBOSE	=	$(V)

Process	of	the	Linux	kernel	building

Introduction

Preparation	before	the	kernel	compilation
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endif

ifndef	KBUILD_VERBOSE

		KBUILD_VERBOSE	=	0

endif

ifeq	($(KBUILD_VERBOSE),1)

		quiet	=

		Q	=

else

		quiet=quiet_

		Q	=	@

endif

export	quiet	Q	KBUILD_VERBOSE

If	this	option	is	passed	to		make		we	set	the		KBUILD_VERBOSE		variable	to	the	value	of	the		V		option.	Otherwise	we	set	the
	KBUILD_VERBOSE		variable	to	zero.	After	this	we	check	value	of	the		KBUILD_VERBOSE		variable	and	set	values	of	the		quiet		and
	Q		variables	depends	on	the		KBUILD_VERBOSE		value.	The		@		symbols	suppress	the	output	of	the	command	and	if	it	will	be	set
before	a	command	we	will	see	something	like	this:		CC	scripts/mod/empty.o		instead	of	the		Compiling	....
scripts/mod/empty.o	.	In	the	end	we	just	export	all	of	these	variables.	The	next		ifeq		statement	checks	that		O=/dir		option
was	passed	to	the		make	.	This	option	allows	to	locate	all	output	files	in	the	given		dir	:

ifeq	($(KBUILD_SRC),)

ifeq	("$(origin	O)",	"command	line")

		KBUILD_OUTPUT	:=	$(O)

endif

ifneq	($(KBUILD_OUTPUT),)

saved-output	:=	$(KBUILD_OUTPUT)

KBUILD_OUTPUT	:=	$(shell	mkdir	-p	$(KBUILD_OUTPUT)	&&	cd	$(KBUILD_OUTPUT)	\

																																&&	/bin/pwd)

$(if	$(KBUILD_OUTPUT),,	\

					$(error	failed	to	create	output	directory	"$(saved-output)"))

sub-make:	FORCE

				$(Q)$(MAKE)	-C	$(KBUILD_OUTPUT)	KBUILD_SRC=$(CURDIR)	\

				-f	$(CURDIR)/Makefile	$(filter-out	_all	sub-make,$(MAKECMDGOALS))

skip-makefile	:=	1

endif	#	ifneq	($(KBUILD_OUTPUT),)

endif	#	ifeq	($(KBUILD_SRC),)

We	check	the		KBUILD_SRC		that	represent	top	directory	of	the	source	code	of	the	linux	kernel	and	if	it	is	empty	(it	is	empty
every	time	while	makefile	executes	first	time)	and	the	set	the		KBUILD_OUTPUT		variable	to	the	value	that	passed	with	the		O	
option	(if	this	option	was	passed).	In	the	next	step	we	check	this		KBUILD_OUTPUT		variable	and	if	we	set	it,	we	do	following
things:

Store	value	of	the		KBUILD_OUTPUT		in	the	temp		saved-output		variable;
Try	to	create	given	output	directory;
Check	that	directory	created,	in	other	way	print	error;
If	custom	output	directory	created	successfully,	execute		make		again	with	the	new	directory	(see		-C		option).

The	next		ifeq		statements	checks	that		C		or		M		options	was	passed	to	the	make:

ifeq	("$(origin	C)",	"command	line")

		KBUILD_CHECKSRC	=	$(C)

endif

ifndef	KBUILD_CHECKSRC

		KBUILD_CHECKSRC	=	0

endif

ifeq	("$(origin	M)",	"command	line")

		KBUILD_EXTMOD	:=	$(M)
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endif

The	first		C		option	tells	to	the		makefile		that	need	to	check	all		c		source	code	with	a	tool	provided	by	the		$CHECK	
environment	variable,	by	default	it	is	sparse.	The	second		M		option	provides	build	for	the	external	modules	(will	not	see	this
case	in	this	part).	As	we	set	this	variables	we	make	a	check	of	the		KBUILD_SRC		variable	and	if	it	is	not	set	we	set		srctree	
variable	to		.	:

ifeq	($(KBUILD_SRC),)

								srctree	:=	.

endif

objtree				:=	.

src								:=	$(srctree)

obj								:=	$(objtree)

export	srctree	objtree	VPATH

That	tells	to		Makefile		that	source	tree	of	the	Linux	kernel	will	be	in	the	current	directory	where		make		command	was
executed.	After	this	we	set		objtree		and	other	variables	to	this	directory	and	export	these	variables.	The	next	step	is	the
getting	value	for	the		SUBARCH		variable	that	will	represent	what	the	underlying	architecture	is:

SUBARCH	:=	$(shell	uname	-m	|	sed	-e	s/i.86/x86/	-e	s/x86_64/x86/	\

																		-e	s/sun4u/sparc64/	\

																		-e	s/arm.*/arm/	-e	s/sa110/arm/	\

																		-e	s/s390x/s390/	-e	s/parisc64/parisc/	\

																		-e	s/ppc.*/powerpc/	-e	s/mips.*/mips/	\

																		-e	s/sh[234].*/sh/	-e	s/aarch64.*/arm64/	)

As	you	can	see	it	executes	uname	utils	that	prints	information	about	machine,	operating	system	and	architecture.	As	it	will
get	output	of	the		uname		util,	it	will	parse	it	and	assign	to	the		SUBARCH		variable.	As	we	got		SUBARCH	,	we	set	the		SRCARCH	
variable	that	provides	directory	of	the	certain	architecture	and		hfr-arch		that	provides	directory	for	the	header	files:

ifeq	($(ARCH),i386)

								SRCARCH	:=	x86

endif

ifeq	($(ARCH),x86_64)

								SRCARCH	:=	x86

endif

hdr-arch		:=	$(SRCARCH)

Note	that		ARCH		is	the	alias	for	the		SUBARCH	.	In	the	next	step	we	set	the		KCONFIG_CONFIG		variable	that	represents	path	to	the
kernel	configuration	file	and	if	it	was	not	set	before,	it	will	be		.config		by	default:

KCONFIG_CONFIG				?=	.config

export	KCONFIG_CONFIG

and	the	shell	that	will	be	used	during	kernel	compilation:

CONFIG_SHELL	:=	$(shell	if	[	-x	"$$BASH"	];	then	echo	$$BASH;	\

						else	if	[	-x	/bin/bash	];	then	echo	/bin/bash;	\

						else	echo	sh;	fi	;	fi)

The	next	set	of	variables	related	to	the	compiler	that	will	be	used	during	Linux	kernel	compilation.	We	set	the	host	compilers
for	the		c		and		c++		and	flags	for	it:
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HOSTCC							=	gcc

HOSTCXX						=	g++

HOSTCFLAGS			=	-Wall	-Wmissing-prototypes	-Wstrict-prototypes	-O2	-fomit-frame-pointer	-std=gnu89

HOSTCXXFLAGS	=	-O2

Next	we	will	meet	the		CC		variable	that	represent	compiler	too,	so	why	do	we	need	in	the		HOST*		variables?	The		CC		is	the
target	compiler	that	will	be	used	during	kernel	compilation,	but		HOSTCC		will	be	used	during	compilation	of	the	set	of	the
	host		programs	(we	will	see	it	soon).	After	this	we	can	see	definition	of	the		KBUILD_MODULES		and		KBUILD_BUILTIN		variables
that	are	used	for	the	determination	of	the	what	to	compile	(kernel,	modules	or	both):

KBUILD_MODULES	:=

KBUILD_BUILTIN	:=	1

ifeq	($(MAKECMDGOALS),modules)

		KBUILD_BUILTIN	:=	$(if	$(CONFIG_MODVERSIONS),1)

endif

Here	we	can	see	definition	of	these	variables	and	the	value	of	the		KBUILD_BUILTIN		will	depens	on	the		CONFIG_MODVERSIONS	
kernel	configuration	parameter	if	we	pass	only		modules		to	the		make	.	The	next	step	is	including	of	the:

include	scripts/Kbuild.include

	kbuild		file.	The	Kbuild	or		Kernel	Build	System		is	the	special	infrastructure	to	manage	building	of	the	kernel	and	its
modules.	The		kbuild		files	has	the	same	syntax	that	makefiles.	The	scripts/Kbuild.include	file	provides	some	generic
definitions	for	the		kbuild		system.	As	we	included	this		kbuild		files	we	can	see	definition	of	the	variables	that	are	related	to
the	different	tools	that	will	be	used	during	kernel	and	modules	compilation	(like	linker,	compilers,	utils	from	the	binutils	and
etc...):

AS								=	$(CROSS_COMPILE)as

LD								=	$(CROSS_COMPILE)ld

CC								=	$(CROSS_COMPILE)gcc

CPP								=	$(CC)	-E

AR								=	$(CROSS_COMPILE)ar

NM								=	$(CROSS_COMPILE)nm

STRIP								=	$(CROSS_COMPILE)strip

OBJCOPY								=	$(CROSS_COMPILE)objcopy

OBJDUMP								=	$(CROSS_COMPILE)objdump

AWK								=	awk

...

...

...

After	definition	of	these	variables	we	define	two	variables:		USERINCLUDE		and		LINUXINCLUDE	.	They	will	contain	paths	of	the
directories	with	headers	(public	for	users	in	the	first	case	and	for	kernel	in	the	second	case):

USERINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include/uapi	\

								-Iarch/$(hdr-arch)/include/generated/uapi	\

								-I$(srctree)/include/uapi	\

								-Iinclude/generated/uapi	\

								-include	$(srctree)/include/linux/kconfig.h

LINUXINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include	\

								...

And	the	standard	flags	for	the	C	compiler:
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KBUILD_CFLAGS			:=	-Wall	-Wundef	-Wstrict-prototypes	-Wno-trigraphs	\

											-fno-strict-aliasing	-fno-common	\

											-Werror-implicit-function-declaration	\

											-Wno-format-security	\

											-std=gnu89

It	is	the	not	last	compiler	flags,	they	can	be	updated	by	the	other	makefiles	(for	example	kbuilds	from		arch/	).	After	all	of
these,	all	variables	will	be	exported	to	be	available	in	the	other	makefiles.	The	following	two	the		RCS_FIND_IGNORE		and	the
	RCS_TAR_IGNORE		variables	will	contain	files	that	will	be	ignored	in	the	version	control	system:

export	RCS_FIND_IGNORE	:=	\(	-name	SCCS	-o	-name	BitKeeper	-o	-name	.svn	-o				\

														-name	CVS	-o	-name	.pc	-o	-name	.hg	-o	-name	.git	\)	\

														-prune	-o

export	RCS_TAR_IGNORE	:=	--exclude	SCCS	--exclude	BitKeeper	--exclude	.svn	\

													--exclude	CVS	--exclude	.pc	--exclude	.hg	--exclude	.git

That's	all.	We	have	finished	with	the	all	preparations,	next	point	is	the	building	of		vmlinux	.

As	we	have	finished	all	preparations,	next	step	in	the	root	makefile	is	related	to	the	kernel	build.	Before	this	moment	we	will
not	see	in	the	our	terminal	after	the	execution	of	the		make		command.	But	now	first	steps	of	the	compilation	are	started.	In
this	moment	we	need	to	go	on	the	598	line	of	the	Linux	kernel	top	makefile	and	we	will	see		vmlinux		target	there:

all:	vmlinux

				include	arch/$(SRCARCH)/Makefile

Don't	worry	that	we	have	missed	many	lines	in	Makefile	that	are	placed	after		export	RCS_FIND_IGNORE.....		and	before		all:
vmlinux.....	.	This	part	of	the	makefile	is	responsible	for	the		make	*.config		targets	and	as	I	wrote	in	the	beginning	of	this
part	we	will	see	only	building	of	the	kernel	in	a	general	way.

The		all:		target	is	the	default	when	no	target	is	given	on	the	command	line.	You	can	see	here	that	we	include	architecture
specific	makefile	there	(in	our	case	it	will	be	arch/x86/Makefile).	From	this	moment	we	will	continue	from	this	makefile.	As
we	can	see		all		target	depends	on	the		vmlinux		target	that	defined	a	little	lower	in	the	top	makefile:

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

The		vmlinux		is	the	Linux	kernel	in	a	statically	linked	executable	file	format.	The	scripts/link-vmlinux.sh	script	links	and
combines	different	compiled	subsystems	into	vmlinux.	The	second	target	is	the		vmlinux-deps		that	defined	as:

vmlinux-deps	:=	$(KBUILD_LDS)	$(KBUILD_VMLINUX_INIT)	$(KBUILD_VMLINUX_MAIN)

and	consists	from	the	set	of	the		built-in.o		from	the	each	top	directory	of	the	Linux	kernel.	Later,	when	we	will	go	through
all	directories	in	the	Linux	kernel,	the		Kbuild		will	compile	all	the		$(obj-y)		files.	It	then	calls		$(LD)	-r		to	merge	these	files
into	one		built-in.o		file.	For	this	moment	we	have	no		vmlinux-deps	,	so	the		vmlinux		target	will	not	be	executed	now.	For
me		vmlinux-deps		contains	following	files:

arch/x86/kernel/vmlinux.lds	arch/x86/kernel/head_64.o

arch/x86/kernel/head64.o				arch/x86/kernel/head.o

init/built-in.o													usr/built-in.o

Directly	to	the	kernel	build
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arch/x86/built-in.o									kernel/built-in.o

mm/built-in.o															fs/built-in.o

ipc/built-in.o														security/built-in.o

crypto/built-in.o											block/built-in.o

lib/lib.a																			arch/x86/lib/lib.a

lib/built-in.o														arch/x86/lib/built-in.o

drivers/built-in.o										sound/built-in.o

firmware/built-in.o									arch/x86/pci/built-in.o

arch/x86/power/built-in.o			arch/x86/video/built-in.o

net/built-in.o

The	next	target	that	can	be	executed	is	following:

$(sort	$(vmlinux-deps)):	$(vmlinux-dirs)	;

$(vmlinux-dirs):	prepare	scripts

				$(Q)$(MAKE)	$(build)=$@

As	we	can	see	the		vmlinux-dirs		depends	on	the	two	targets:		prepare		and		scripts	.	The	first		prepare		defined	in	the	top
	Makefile		of	the	Linux	kernel	and	executes	three	stages	of	preparations:

prepare:	prepare0

prepare0:	archprepare	FORCE

				$(Q)$(MAKE)	$(build)=.

archprepare:	archheaders	archscripts	prepare1	scripts_basic

prepare1:	prepare2	$(version_h)	include/generated/utsrelease.h	\

																			include/config/auto.conf

				$(cmd_crmodverdir)

prepare2:	prepare3	outputmakefile	asm-generic

The	first		prepare0		expands	to	the		archprepare		that	expands	to	the		archheaders		and		archscripts		that	defined	in	the
	x86_64		specific	Makefile.	Let's	look	on	it.	The		x86_64		specific	makefile	starts	from	the	definition	of	the	variables	that	are
related	to	the	architecture-specific	configs	(defconfig	and	etc.).	After	this	it	defines	flags	for	the	compiling	of	the	16-bit	code,
calculating	of	the		BITS		variable	that	can	be		32		for		i386		or		64		for	the		x86_64		flags	for	the	assembly	source	code,	flags	for
the	linker	and	many	many	more	(all	definitions	you	can	find	in	the	arch/x86/Makefile).	The	first	target	is		archheaders		in	the
makefile	generates	syscall	table:

archheaders:

				$(Q)$(MAKE)	$(build)=arch/x86/entry/syscalls	all

And	the	second	target	is		archscripts		in	this	makefile	is:

archscripts:	scripts_basic

				$(Q)$(MAKE)	$(build)=arch/x86/tools	relocs

We	can	see	that	it	depends	on	the		scripts_basic		target	from	the	top	Makefile.	At	the	first	we	can	see	the		scripts_basic	
target	that	executes	make	for	the	scripts/basic	makefile:

scripts_basic:

				$(Q)$(MAKE)	$(build)=scripts/basic

The		scripts/basic/Makefile		contains	targets	for	compilation	of	the	two	host	programs:		fixdep		and		bin2	:

hostprogs-y				:=	fixdep
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hostprogs-$(CONFIG_BUILD_BIN2C)					+=	bin2c

always								:=	$(hostprogs-y)

$(addprefix	$(obj)/,$(filter-out	fixdep,$(always))):	$(obj)/fixdep

First	program	is		fixdep		-	optimizes	list	of	dependencies	generated	by	the	gcc	that	tells	make	when	to	remake	a	source
code	file.	The	second	program	is		bin2c		depends	on	the	value	of	the		CONFIG_BUILD_BIN2C		kernel	configuration	option	and
very	little	C	program	that	allows	to	convert	a	binary	on	stdin	to	a	C	include	on	stdout.	You	can	note	here	strange	notation:
	hostprogs-y		and	etc.	This	notation	is	used	in	the	all		kbuild		files	and	more	about	it	you	can	read	in	the	documentation.	In
our	case	the		hostprogs-y		tells	to	the		kbuild		that	there	is	one	host	program	named		fixdep		that	will	be	built	from	the	will	be
built	from		fixdep.c		that	located	in	the	same	directory	that		Makefile	.	The	first	output	after	we	will	execute		make		command
in	our	terminal	will	be	result	of	this		kbuild		file:

$	make

		HOSTCC		scripts/basic/fixdep

As		script_basic		target	was	executed,	the		archscripts		target	will	execute		make		for	the	arch/x86/tools	makefile	with	the
	relocs		target:

$(Q)$(MAKE)	$(build)=arch/x86/tools	relocs

The		relocs_32.c		and	the		relocs_64.c		will	be	compiled	that	will	contain	relocation	information	and	we	will	see	it	in	the		make	
output:

		HOSTCC		arch/x86/tools/relocs_32.o

		HOSTCC		arch/x86/tools/relocs_64.o

		HOSTCC		arch/x86/tools/relocs_common.o

		HOSTLD		arch/x86/tools/relocs

There	is	checking	of	the		version.h		after	compiling	of	the		relocs.c	:

$(version_h):	$(srctree)/Makefile	FORCE

				$(call	filechk,version.h)

				$(Q)rm	-f	$(old_version_h)

We	can	see	it	in	the	output:

CHK					include/config/kernel.release

and	the	building	of	the		generic		assembly	headers	with	the		asm-generic		target	from	the		arch/x86/include/generated/asm	
that	generated	in	the	top	Makefile	of	the	Linux	kernel.	After	the		asm-generic		target	the		archprepare		will	be	done,	so	the
	prepare0		target	will	be	executed.	As	I	wrote	above:

prepare0:	archprepare	FORCE

				$(Q)$(MAKE)	$(build)=.

Note	on	the		build	.	It	defined	in	the	scripts/Kbuild.include	and	looks	like	this:

build	:=	-f	$(srctree)/scripts/Makefile.build	obj

Linux	Inside

309How	kernel	compiled

https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt
https://github.com/torvalds/linux/blob/master/arch/x86/tools/Makefile
https://en.wikipedia.org/wiki/Relocation_%28computing%29
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include


Or	in	our	case	it	is	current	source	directory	-		.	:

$(Q)$(MAKE)	-f	$(srctree)/scripts/Makefile.build	obj=.

The	scripts/Makefile.build	tries	to	find	the		Kbuild		file	by	the	given	directory	via	the		obj		parameter,	include	this		Kbuild	
files:

include	$(kbuild-file)

and	build	targets	from	it.	In	our	case		.		contains	the	Kbuild	file	that	generates	the		kernel/bounds.s		and	the
	arch/x86/kernel/asm-offsets.s	.	After	this	the		prepare		target	finished	to	work.	The		vmlinux-dirs		also	depends	on	the
second	target	-		scripts		that	compiles	following	programs:		file2alias	,		mk_elfconfig	,		modpost		and	etc...	After	scripts/host-
programs	compilation	our		vmlinux-dirs		target	can	be	executed.	First	of	all	let's	try	to	understand	what	does		vmlinux-dirs	
contain.	For	my	case	it	contains	paths	of	the	following	kernel	directories:

init	usr	arch/x86	kernel	mm	fs	ipc	security	crypto	block

drivers	sound	firmware	arch/x86/pci	arch/x86/power

arch/x86/video	net	lib	arch/x86/lib

We	can	find	definition	of	the		vmlinux-dirs		in	the	top	Makefile	of	the	Linux	kernel:

vmlinux-dirs				:=	$(patsubst	%/,%,$(filter	%/,	$(init-y)	$(init-m)	\

													$(core-y)	$(core-m)	$(drivers-y)	$(drivers-m)	\

													$(net-y)	$(net-m)	$(libs-y)	$(libs-m)))

init-y								:=	init/

drivers-y				:=	drivers/	sound/	firmware/

net-y								:=	net/

libs-y								:=	lib/

...

...

...

Here	we	remove	the		/		symbol	from	the	each	directory	with	the	help	of	the		patsubst		and		filter		functions	and	put	it	to	the
	vmlinux-dirs	.	So	we	have	list	of	directories	in	the		vmlinux-dirs		and	the	following	code:

$(vmlinux-dirs):	prepare	scripts

				$(Q)$(MAKE)	$(build)=$@

The		$@		represents		vmlinux-dirs		here	that	means	that	it	will	go	recursively	over	all	directories	from	the		vmlinux-dirs		and
its	internal	directories	(depens	on	configuration)	and	will	execute		make		in	there.	We	can	see	it	in	the	output:

		CC						init/main.o

		CHK					include/generated/compile.h

		CC						init/version.o

		CC						init/do_mounts.o

		...

		CC						arch/x86/crypto/glue_helper.o

		AS						arch/x86/crypto/aes-x86_64-asm_64.o

		CC						arch/x86/crypto/aes_glue.o

		...

		AS						arch/x86/entry/entry_64.o

		AS						arch/x86/entry/thunk_64.o

		CC						arch/x86/entry/syscall_64.o

Linux	Inside

310How	kernel	compiled

https://github.com/torvalds/linux/blob/master/scripts/Makefile.build
https://github.com/torvalds/linux/blob/master/Kbuild
https://github.com/torvalds/linux/blob/master/Makefile


Source	code	in	each	directory	will	be	compiled	and	linked	to	the		built-in.o	:

$	find	.	-name	built-in.o

./arch/x86/crypto/built-in.o

./arch/x86/crypto/sha-mb/built-in.o

./arch/x86/net/built-in.o

./init/built-in.o

./usr/built-in.o

...

...

Ok,	all	buint-in.o(s)	built,	now	we	can	back	to	the		vmlinux		target.	As	you	remember,	the		vmlinux		target	is	in	the	top
Makefile	of	the	Linux	kernel.	Before	the	linking	of	the		vmlinux		it	builds	samples,	Documentation	and	etc.,	but	I	will	not
describe	it	in	this	part	as	I	wrote	in	the	beginning	of	this	part.

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

				...

				...

				+$(call	if_changed,link-vmlinux)

As	you	can	see	main	purpose	of	it	is	a	call	of	the	scripts/link-vmlinux.sh	script	is	linking	of	the	all		built-in.o	(s)	to	the	one
statically	linked	executable	and	creation	of	the	System.map.	In	the	end	we	will	see	following	output:

		LINK				vmlinux

		LD						vmlinux.o

		MODPOST	vmlinux.o

		GEN					.version

		CHK					include/generated/compile.h

		UPD					include/generated/compile.h

		CC						init/version.o

		LD						init/built-in.o

		KSYM				.tmp_kallsyms1.o

		KSYM				.tmp_kallsyms2.o

		LD						vmlinux

		SORTEX		vmlinux

		SYSMAP		System.map

and		vmlinux		and		System.map		in	the	root	of	the	Linux	kernel	source	tree:

$	ls	vmlinux	System.map	

System.map		vmlinux

That's	all,		vmlinux		is	ready.	The	next	step	is	creation	of	the	bzImage.

The		bzImage		is	the	compressed	Linux	kernel	image.	We	can	get	it	with	the	execution	of	the		make	bzImage		after	the		vmlinux	
built.	In	other	way	we	can	just	execute		make		without	arguments	and	will	get		bzImage		anyway	because	it	is	default	image:

all:	bzImage

in	the	arch/x86/kernel/Makefile.	Let's	look	on	this	target,	it	will	help	us	to	understand	how	this	image	builds.	As	I	already
said	the		bzImage		target	defined	in	the	arch/x86/kernel/Makefile	and	looks	like	this:

Building	bzImage
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bzImage:	vmlinux

				$(Q)$(MAKE)	$(build)=$(boot)	$(KBUILD_IMAGE)

				$(Q)mkdir	-p	$(objtree)/arch/$(UTS_MACHINE)/boot

				$(Q)ln	-fsn	../../x86/boot/bzImage	$(objtree)/arch/$(UTS_MACHINE)/boot/$@

We	can	see	here,	that	first	of	all	called		make		for	the	boot	directory,	in	our	case	it	is:

boot	:=	arch/x86/boot

The	main	goal	now	to	build	source	code	in	the		arch/x86/boot		and		arch/x86/boot/compressed		directories,	build		setup.bin	
and		vmlinux.bin	,	and	build	the		bzImage		from	they	in	the	end.	First	target	in	the	arch/x86/boot/Makefile	is	the
	$(obj)/setup.elf	:

$(obj)/setup.elf:	$(src)/setup.ld	$(SETUP_OBJS)	FORCE

				$(call	if_changed,ld)

We	already	have	the		setup.ld		linker	script	in	the		arch/x86/boot		directory	and	the		SETUP_OBJS		expands	to	the	all	source
files	from	the		boot		directory.	We	can	see	first	output:

		AS						arch/x86/boot/bioscall.o

		CC						arch/x86/boot/cmdline.o

		AS						arch/x86/boot/copy.o

		HOSTCC		arch/x86/boot/mkcpustr

		CPUSTR		arch/x86/boot/cpustr.h

		CC						arch/x86/boot/cpu.o

		CC						arch/x86/boot/cpuflags.o

		CC						arch/x86/boot/cpucheck.o

		CC						arch/x86/boot/early_serial_console.o

		CC						arch/x86/boot/edd.o

The	next	source	code	file	is	the	arch/x86/boot/header.S,	but	we	can't	build	it	now	because	this	target	depends	on	the
following	two	header	files:

$(obj)/header.o:	$(obj)/voffset.h	$(obj)/zoffset.h

The	first	is		voffset.h		generated	by	the		sed		script	that	gets	two	addresses	from	the		vmlinux		with	the		nm		util:

#define	VO__end	0xffffffff82ab0000

#define	VO__text	0xffffffff81000000

They	are	start	and	end	of	the	kernel.	The	second	is		zoffset.h		depens	on	the		vmlinux		target	from	the
arch/x86/boot/compressed/Makefile:

$(obj)/zoffset.h:	$(obj)/compressed/vmlinux	FORCE

				$(call	if_changed,zoffset)

The		$(obj)/compressed/vmlinux		target	depends	on	the		vmlinux-objs-y		that	compiles	source	code	files	from	the
arch/x86/boot/compressed	directory	and	generates		vmlinux.bin	,		vmlinux.bin.bz2	,	and	compiles	programm	-		mkpiggy	.	We
can	see	this	in	the	output:
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		LDS					arch/x86/boot/compressed/vmlinux.lds

		AS						arch/x86/boot/compressed/head_64.o

		CC						arch/x86/boot/compressed/misc.o

		CC						arch/x86/boot/compressed/string.o

		CC						arch/x86/boot/compressed/cmdline.o

		OBJCOPY	arch/x86/boot/compressed/vmlinux.bin

		BZIP2			arch/x86/boot/compressed/vmlinux.bin.bz2

		HOSTCC		arch/x86/boot/compressed/mkpiggy

Where	the		vmlinux.bin		is	the		vmlinux		with	striped	debuging	information	and	comments	and	the		vmlinux.bin.bz2	
compressed		vmlinux.bin.all		+		u32		size	of		vmlinux.bin.all	.	The		vmlinux.bin.all		is		vmlinux.bin	+	vmlinux.relocs	,	where
	vmlinux.relocs		is	the		vmlinux		that	was	handled	by	the		relocs		program	(see	above).	As	we	got	these	files,	the		piggy.S	
assembly	files	will	be	generated	with	the		mkpiggy		program	and	compiled:

		MKPIGGY	arch/x86/boot/compressed/piggy.S

		AS						arch/x86/boot/compressed/piggy.o

This	assembly	files	will	contain	computed	offset	from	a	compressed	kernel.	After	this	we	can	see	that		zoffset		generated:

		ZOFFSET	arch/x86/boot/zoffset.h

As	the		zoffset.h		and	the		voffset.h		are	generated,	compilation	of	the	source	code	files	from	the	arch/x86/boot	can	be
continued:

		AS						arch/x86/boot/header.o

		CC						arch/x86/boot/main.o

		CC						arch/x86/boot/mca.o

		CC						arch/x86/boot/memory.o

		CC						arch/x86/boot/pm.o

		AS						arch/x86/boot/pmjump.o

		CC						arch/x86/boot/printf.o

		CC						arch/x86/boot/regs.o

		CC						arch/x86/boot/string.o

		CC						arch/x86/boot/tty.o

		CC						arch/x86/boot/video.o

		CC						arch/x86/boot/video-mode.o

		CC						arch/x86/boot/video-vga.o

		CC						arch/x86/boot/video-vesa.o

		CC						arch/x86/boot/video-bios.o

As	all	source	code	files	will	be	compiled,	they	will	be	linked	to	the		setup.elf	:

		LD						arch/x86/boot/setup.elf

or:

ld	-m	elf_x86_64			-T	arch/x86/boot/setup.ld	arch/x86/boot/a20.o	arch/x86/boot/bioscall.o	arch/x86/boot/cmdline.o	arch/x86/boot/copy.o	arch/x86/boot/cpu.o	arch/x86/boot/cpuflags.o	arch/x86/boot/cpucheck.o	arch/x86/boot/early_serial_console.o	arch/x86/boot/edd.o	arch/x86/boot/header.o	arch/x86/boot/main.o	arch/x86/boot/mca.o	arch/x86/boot/memory.o	arch/x86/boot/pm.o	arch/x86/boot/pmjump.o	arch/x86/boot/printf.o	arch/x86/boot/regs.o	arch/x86/boot/string.o	arch/x86/boot/tty.o	arch/x86/boot/video.o	arch/x86/boot/video-mode.o	arch/x86/boot/version.o	arch/x86/boot/video-vga.o	arch/x86/boot/video-vesa.o	arch/x86/boot/video-bios.o	-o	arch/x86/boot/setup.elf

The	last	two	things	is	the	creation	of	the		setup.bin		that	will	contain	compiled	code	from	the		arch/x86/boot/*		directory:

objcopy		-O	binary	arch/x86/boot/setup.elf	arch/x86/boot/setup.bin
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and	the	creation	of	the		vmlinux.bin		from	the		vmlinux	:

objcopy		-O	binary	-R	.note	-R	.comment	-S	arch/x86/boot/compressed/vmlinux	arch/x86/boot/vmlinux.bin

In	the	end	we	compile	host	program:	arch/x86/boot/tools/build.c	that	will	create	our		bzImage		from	the		setup.bin		and	the
	vmlinux.bin	:

arch/x86/boot/tools/build	arch/x86/boot/setup.bin	arch/x86/boot/vmlinux.bin	arch/x86/boot/zoffset.h	arch/x86/boot/bzImage

Actually	the		bzImage		is	the	concatenated		setup.bin		and	the		vmlinux.bin	.	In	the	end	we	will	see	the	output	which	familiar
to	all	who	once	build	the	Linux	kernel	from	source:

Setup	is	16268	bytes	(padded	to	16384	bytes).

System	is	4704	kB

CRC	94a88f9a

Kernel:	arch/x86/boot/bzImage	is	ready		(#5)

That's	all.

It	is	the	end	of	this	part	and	here	we	saw	all	steps	from	the	execution	of	the		make		command	to	the	generation	of	the
	bzImage	.	I	know,	the	Linux	kernel	makefiles	and	process	of	the	Linux	kernel	building	may	seem	confusing	at	first	glance,
but	it	is	not	so	hard.	Hope	this	part	will	help	you	to	understand	process	of	the	Linux	kernel	building.

GNU	make	util
Linux	kernel	top	Makefile
cross-compilation
Ctags
sparse
bzImage
uname
shell
Kbuild
binutils
gcc
Documentation
System.map
Relocation

Conclusion

Links
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During	the	writing	of	the	linux-insides	book	I	have	received	many	emails	with	questions	related	to	the	linker	script	and
linker-related	subjects.	So	I've	decided	to	write	this	to	cover	some	aspects	of	the	linker	and	the	linking	of	object	files.

If	we	open	page	the		Linker		page	on	wikipidia,	we	can	see	the	following	definition:

In	computer	science,	a	linker	or	link	editor	is	a	computer	program	that	takes	one	or	more	object	files	generated	by	a
compiler	and	combines	them	into	a	single	executable	file,	library	file,	or	another	object	file.

If	you've	written	at	least	one	program	on	C	in	your	life,	you	will	have	seen	files	with	the		*.o		extension.	These	files	are
object	files.	Object	files	are	blocks	of	machine	code	and	data	with	placeholder	addresses	that	reference	data	and	functions
in	other	object	files	or	libraries,	as	well	as	a	list	of	its	own	functions	and	data.	The	main	purpose	of	the	linker	is
collect/handle	the	code	and	data	of	each	object	file,	turning	it	into	the	the	final	executable	file	or	library.	In	this	post	we	will
try	to	go	through	all	aspects	of	this	process.	Let's	start.

Let's	create	simple	project	with	the	following	structure:

*-linkers

*--main.c

*--lib.c

*--lib.h

And	write	there	our	example	factorial	program.	Our		main.c		source	code	file	contains:

#include	<stdio.h>

#include	"lib.h"

int	main(int	argc,	char	**argv)	{

				printf("factorial	of	5	is:	%d\n",	factorial(5));

				return	0;

}

The		lib.c		file	contains:

int	factorial(int	base)	{

				int	res	=	1,	i	=	1;

				if	(base	==	0)	{

								return	1;

				}

				while	(i	<=	base)	{

								res	*=	i;

								i++;

				}

				return	res;

}

And	the		lib.h		file	contains:
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#ifndef	LIB_H

#define	LIB_H

int	factorial(int	base);

#endif

Now	let's	compile	only	the		main.c		source	code	file	with:

$	gcc	-c	main.c

If	we	look	inside	the	outputted	object	file	with	the		nm		util,	we	will	see	the	following	output:

$	nm	-A	main.o

main.o:																	U	factorial

main.o:0000000000000000	T	main

main.o:																	U	printf

The		nm		util	allows	us	to	see	the	list	of	symbols	from	the	given	object	file.	It	consists	of	three	columns:	the	first	is	the	name
of	the	given	object	file	and	the	address	of	any	resolved	symbols.	The	second	column	contains	a	character	that	represents
the	status	of	the	given	symbol.	In	this	case	the		U		means		undefined		and	the		T		denotes	that	the	symbols	are	placed	in	the
	.text		section	of	the	object.	The		nm		utility	shows	us	here	that	we	have	three	symbols	in	the		main.c		source	code	file:

	factorial		-	the	factorial	function	defined	in	the		lib.c		source	code	file.	It	is	marked	as		undefined		here	because	we
compiled	only	the		main.c		source	code	file,	and	it	does	not	know	anything	about	code	from	the		lib.c		file	for	now;
	main		-	the	main	function;
	printf		-	the	function	from	the	glibc	library.		main.c		does	not	know	anything	about	it	for	now	either.

What	can	we	understand	from	the	output	of		nm		so	far?	The		main.o		object	file	contains	the	local	symbol		main		at	address
	0000000000000000		(it	will	be	filled	with	correct	address	after	is	is	linked),	and	two	unresolved	symbols.	We	can	see	all	of	this
information	in	the	disassembly	output	of	the		main.o		object	file:

$	objdump	-S	main.o

main.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<main>:

			0:				55																							push			%rbp

			1:				48	89	e5																	mov				%rsp,%rbp

			4:				48	83	ec	10														sub				$0x10,%rsp

			8:				89	7d	fc																	mov				%edi,-0x4(%rbp)

			b:				48	89	75	f0														mov				%rsi,-0x10(%rbp)

			f:				bf	05	00	00	00											mov				$0x5,%edi

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		19:				89	c6																				mov				%eax,%esi

		1b:				bf	00	00	00	00											mov				$0x0,%edi

		20:				b8	00	00	00	00											mov				$0x0,%eax

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

		2a:				b8	00	00	00	00											mov				$0x0,%eax

		2f:				c9																							leaveq	

		30:				c3																							retq

Here	we	are	interested	only	in	the	two		callq		operations.	The	two		callq		operations	contain		linker	stubs	,	or	the	function
name	and	offset	from	it	to	the	next	instruction.	These	stubs	will	be	updated	to	the	real	addresses	of	the	functions.	We	can
see	these	functions'	names	with	in	the	following		objdump		output:

$	objdump	-S	-r	main.o
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...

		14:				e8	00	00	00	00											callq		19	<main+0x19>

												15:	R_X86_64_PC32				factorial-0x4

		19:				89	c6																				mov				%eax,%esi

...

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

												26:	R_X86_64_PC32				printf-0x4

		2a:				b8	00	00	00	00											mov				$0x0,%eax

...

The		-r		or		--reloc		flags	of	the		objdump		util	print	the		relocation		entries	of	the	file.	Now	let's	look	in	more	detail	at	the
relocation	process.

Relocation	is	the	process	of	connecting	symbolic	references	with	symbolic	definitions.	Let's	look	at	the	previous	snippet
from	the		objdump		output:

		14:				e8	00	00	00	00											callq		19	<main+0x19>

												15:	R_X86_64_PC32				factorial-0x4

		19:				89	c6																				mov				%eax,%esi

Note		e8	00	00	00	00		on	the	first	line.	The		e8		is	the	opcode	of	the		call		instruction	with	a	relative	offset.	So	the		e8	00	00
00	00		contains	a	one-byte	operation	code	followed	by	a	four-byte	address.	Note	that	the		00	00	00	00		is	4-bytes,	but	why
only	4-bytes	if	an	address	can	be	8-bytes	in	the		x86_64	?	Actually	we	compiled	the		main.c		source	code	file	with	the		-
mcmodel=small	.	From	the		gcc		man:

-mcmodel=small

				Generate	code	for	the	small	code	model:	the	program	and	its	symbols	must	be	linked	in	the	lower	2	GB	of	the	address	space.	Pointers	are	64	bits.	Programs	can	be	statically	or	dynamically	linked.	This	is	the	default	code	model.

Of	course	we	didn't	pass	this	option	to	the		gcc		when	we	compiled	the		main.c	,	but	it	is	default.	We	know	that	our	program
will	be	linked	in	the	lower	2	GB	of	the	address	space	from	the	quote	from	the		gcc		manual.	With	this	code	model,	4-bytes	is
enough	to	represent	the	address.	So	we	have	opcode	of	the		call		instruction	and	unknown	address.	When	we	compile
	main.c		with	all	dependencies	to	the	executable	file	and	will	look	on	the	call	of	the	factorial	we	will	see:

$	gcc	main.c	lib.c	-o	factorial	|	objdump	-S	factorial	|	grep	factorial

factorial:					file	format	elf64-x86-64

...

...

0000000000400506	<main>:

				40051a:				e8	18	00	00	00											callq		400537	<factorial>

...

...

0000000000400537	<factorial>:

				400550:				75	07																				jne				400559	<factorial+0x22>

				400557:				eb	1b																				jmp				400574	<factorial+0x3d>

				400559:				eb	0e																				jmp				400569	<factorial+0x32>

				40056f:				7e	ea																				jle				40055b	<factorial+0x24>

...

...

As	we	can	see	in	the	previous	output,	the	address	of	the		main		function	is		0x0000000000400506	.	Why	it	does	not	starts	from
the		0x0	?	You	may	already	know	that	standard	C	programs	are	linked	with	the		glibc		C	standard	library	unless		-nostdlib	
is	passed	to		gcc	.	The	compiled	code	for	a	program	includes	constructors	functions	to	initialize	data	in	the	program	when
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the	program	is	started.	These	functions	need	to	be	called	before	the	program	is	started	or	in	another	words	before	the
	main		function	is	called.	To	make	the	initialization	and	termination	functions	work,	the	compiler	must	output	something	in	the
assembler	code	to	cause	those	functions	to	be	called	at	the	appropriate	time.	Execution	of	this	program	will	starts	from	the

code	that	is	placed	in	the	special	section	which	is	called		.init	.	We	can	see	it	in	the	beginning	of	the	objdump	output:

objdump	-S	factorial	|	less

factorial:					file	format	elf64-x86-64

Disassembly	of	section	.init:

00000000004003a8	<_init>:

		4003a8:							48	83	ec	08													sub				$0x8,%rsp

		4003ac:							48	8b	05	a5	05	20	00				mov				0x2005a5(%rip),%rax								#	600958	<_DYNAMIC+0x1d0>

Note	that	it	starts	at	the		0x00000000004003a8		address	relative	to	the		glibc		code.	We	can	check	it	also	in	the	resulted	ELF:

$	readelf	-d	factorial	|	grep	\(INIT\)

	0x000000000000000c	(INIT)															0x4003a8

So,	the	address	of	the		main		function	is	the		0000000000400506		and	it	is	offset	from	the		.init		section.	As	we	can	see	from
the	output,	the	address	of	the		factorial		function	is		0x0000000000400537		and	binary	code	for	the	call	of	the		factorial	
function	now	is		e8	18	00	00	00	.	We	already	know	that		e8		is	opcode	for	the		call		instruction,	the	next		18	00	00	00		(note
that	address	represented	as	little	endian	for	the		x86_64	,	in	other	words	it	is		00	00	00	18	)	is	the	offset	from	the		callq		to	the
	factorial		function:

>>>	hex(0x40051a	+	0x18	+	0x5)	==	hex(0x400537)

True

So	we	add		0x18		and		0x5		to	the	address	of	the		call		instruction.	The	offset	is	measured	from	the	address	of	the	following
instruction.	Our	call	instruction	is	5-bytes	size	-		e8	18	00	00	00		and	the		0x18		is	the	offset	from	the	next	after	call	instruction
to	the		factorial		function.	A	compiler	generally	creates	each	object	file	with	the	program	addresses	starting	at	zero.	But	if	a
program	is	created	from	multiple	object	files,	all	of	them	will	be	overlapped.	Just	now	we	saw	a	process	which	is	called
	relocation	.	This	process	assigns	load	addresses	to	the	various	parts	of	the	program,	adjusting	the	code	and	data	in	the
program	to	reflect	the	assigned	addresses.

Ok,	now	we	know	a	little	about	linkers	and	relocation.	Time	to	link	our	object	files	and	to	know	more	about	linkers.

As	you	can	understand	from	the	title,	I	will	use	GNU	linker	or	just		ld		in	this	post.	Of	course	we	can	use		gcc		to	link	our
	factorial		project:

$	gcc	main.c	lib.o	-o	factorial

and	after	it	we	will	get	executable	file	-		factorial		as	a	result:

./factorial	

factorial	of	5	is:	120

But		gcc		does	not	link	object	files.	Instead	it	uses		collect2		which	is	just	wrapper	for	the		GNU	ld		linker:

GNU	linker
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~$	/usr/lib/gcc/x86_64-linux-gnu/4.9/collect2	--version

collect2	version	4.9.3

/usr/bin/ld	--version

GNU	ld	(GNU	Binutils	for	Debian)	2.25

...

...

...

Ok,	we	can	use	gcc	and	it	will	produce	executable	file	of	our	program	for	us.	But	let's	look	how	to	use		GNU	ld		linker	for	the
same	purpose.	First	of	all	let's	try	to	link	these	object	files	with	the	following	example:

ld	main.o	lib.o	-o	factorial

Try	to	do	it	and	you	will	get	following	error:

$	ld	main.o	lib.o	-o	factorial

ld:	warning:	cannot	find	entry	symbol	_start;	defaulting	to	00000000004000b0

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

Here	we	can	see	two	problems:

Linker	can't	find		_start		symbol;
Linker	does	not	know	anything	about		printf		function.

First	of	all	let's	try	to	understand	what	is	this		_start		entry	symbol	that	appears	to	be	required	for	our	program	to	run?	When
I	started	to	learn	programming	I	learned	that	the		main		function	is	the	entry	point	of	the	program.	I	think	you	learned	this	too
:)	But	it	actually	isn't	the	entry	point,	it's		_start		instead.	The		_start		symbol	is	defined	in	the		crt1.o		object	file.	We	can
find	it	with	the	following	command:

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<_start>:

			0:				31	ed																				xor				%ebp,%ebp

			2:				49	89	d1																	mov				%rdx,%r9

			...

			...

			...

We	pass	this	object	file	to	the		ld		command	as	its	first	argument	(see	above).	Now	let's	try	to	link	it	and	will	look	on	result:

ld	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

main.o	lib.o	-o	factorial

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:	In	function	`_start':

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:115:	undefined	reference	to	`__libc_csu_fini'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:116:	undefined	reference	to	`__libc_csu_init'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:122:	undefined	reference	to	`__libc_start_main'

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

Unfortunately	we	will	see	even	more	errors.	We	can	see	here	old	error	about	undefined		printf		and	yet	another	three
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undefined	references:

	__libc_csu_fini	

	__libc_csu_init	

	__libc_start_main	

The		_start		symbol	is	defined	in	the	sysdeps/x86_64/start.S	assembly	file	in	the		glibc		source	code.	We	can	find	following
assembly	code	lines	there:

mov	$__libc_csu_fini,	%R8_LP

mov	$__libc_csu_init,	%RCX_LP

...

call	__libc_start_main

Here	we	pass	address	of	the	entry	point	to	the		.init		and		.fini		section	that	contain	code	that	starts	to	execute	when	the
program	is	ran	and	the	code	that	executes	when	program	terminates.	And	in	the	end	we	see	the	call	of	the		main		function
from	our	program.	These	three	symbols	are	defined	in	the	csu/elf-init.c	source	code	file.	The	following	two	object	files:

	crtn.o	;
	crtn.i	.

define	the	function	prologs/epilogs	for	the	.init	and	.fini	sections	(with	the		_init		and		_fini		symbols	respectively).

The		crtn.o		object	file	contains	these		.init		and		.fini		sections:

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o

0000000000000000	<.init>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq			

Disassembly	of	section	.fini:

0000000000000000	<.fini>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq

And	the		crti.o		object	file	contains	the		_init		and		_fini		symbols.	Let's	try	to	link	again	with	these	two	object	files:

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-o	factorial

And	anyway	we	will	get	the	same	errors.	Now	we	need	to	pass		-lc		option	to	the		ld	.	This	option	will	search	for	the
standard	library	in	the	paths	present	in	the		$LD_LIBRARY_PATH		enviroment	variable.	Let's	try	to	link	again	wit	the		-lc		option:

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	-lc	\

-o	factorial

Finally	we	get	an	executable	file,	but	if	we	try	to	run	it,	we	will	get	strange	results:
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$	./factorial	

bash:	./factorial:	No	such	file	or	directory

What's	the	problem	here?	Let's	look	on	the	executable	file	with	the	readelf	util:

$	readelf	-l	factorial	

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x4003c0

There	are	7	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		PHDR											0x0000000000000040	0x0000000000400040	0x0000000000400040

																	0x0000000000000188	0x0000000000000188		R	E				8

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

		LOAD											0x0000000000000000	0x0000000000400000	0x0000000000400000

																	0x0000000000000610	0x0000000000000610		R	E				200000

		LOAD											0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x00000000000001cc	0x00000000000001cc		RW					200000

		DYNAMIC								0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x0000000000000190	0x0000000000000190		RW					8

		NOTE											0x00000000000001e4	0x00000000004001e4	0x00000000004001e4

																	0x0000000000000020	0x0000000000000020		R						4

		GNU_STACK						0x0000000000000000	0x0000000000000000	0x0000000000000000

																	0x0000000000000000	0x0000000000000000		RW					10

	Section	to	Segment	mapping:

		Segment	Sections...

			00					

			01					.interp	

			02					.interp	.note.ABI-tag	.hash	.dynsym	.dynstr	.gnu.version	.gnu.version_r	.rela.dyn	.rela.plt	.init	.plt	.text	.fini	.rodata	.eh_frame	

			03					.dynamic	.got	.got.plt	.data	

			04					.dynamic	

			05					.note.ABI-tag	

			06

Note	on	the	strange	line:

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

The		.interp		section	in	the		elf		file	holds	the	path	name	of	a	program	interpreter	or	in	another	words	the		.interp		section
simply	contains	an		ascii		string	that	is	the	name	of	the	dynamic	linker.	The	dynamic	linker	is	the	part	of	Linux	that	loads
and	links	shared	libraries	needed	by	an	executable	when	it	is	executed,	by	copying	the	content	of	libraries	from	disk	to
RAM.	As	we	can	see	in	the	output	of	the		readelf		command	it	is	placed	in	the		/lib64/ld-linux-x86-64.so.2		file	for	the
	x86_64		architecture.	Now	let's	add	the		-dynamic-linker		option	with	the	path	of		ld-linux-x86-64.so.2		to	the		ld		call	and	will
see	the	following	results:

$	gcc	-c	main.c	lib.c

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-dynamic-linker	/lib64/ld-linux-x86-64.so.2	\

-lc	-o	factorial
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Now	we	can	run	it	as	normal	executable	file:

$	./factorial

factorial	of	5	is:	120

It	works!	With	the	first	line	we	compile	the		main.c		and	the		lib.c		source	code	files	to	object	files.	We	will	get	the		main.o	
and	the		lib.o		after	execution	of	the		gcc	:

$	file	lib.o	main.o

lib.o:		ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

main.o:	ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

and	after	this	we	link	object	files	of	our	program	with	the	needed	system	object	files	and	libraries.	We	just	saw	a	simple
example	of	how	to	compile	and	link	a	C	program	with	the		gcc		compiler	and		GNU	ld		linker.	In	this	example	we	have	used	a
couple	command	line	options	of	the		GNU	linker	,	but	it	supports	much	more	command	line	options	than		-o	,		-dynamic-
linker	,	etc...	Moreover		GNU	ld		has	its	own	language	that	allows	to	control	the	linking	process.	In	the	next	two	paragraphs
we	will	look	into	it.

As	I	already	wrote	and	as	you	can	see	in	the	manual	of	the		GNU	linker	,	it	has	big	set	of	the	command	line	options.	We've
seen	a	couple	of	options	in	this	post:		-o	<output>		-	that	tells		ld		to	produce	an	output	file	called		output		as	the	result	of
linking,		-l<name>		that	adds	the	archive	or	object	file	specified	by	the	name,		-dynamic-linker		that	specifies	the	name	of	the
dynamic	linker.	Of	course		ld		supports	much	more	command	line	options,	let's	look	at	some	of	them.

The	first	useful	command	line	option	is		@file	.	In	this	case	the		file		specifies	filename	where	command	line	options	will	be
read.	For	example	we	can	create	file	with	the	name		linker.ld	,	put	there	our	command	line	arguments	from	the	previous
example	and	execute	it	with:

$	ld	@linker.ld

The	next	command	line	option	is		-b		or		--format	.	This	command	line	option	specifies	format	of	the	input	object	files		ELF	,
	DJGPP/COFF		and	etc.	There	is	a	command	line	option	for	the	same	purpose	but	for	the	output	file:		--oformat=output-format	.

The	next	command	line	option	is		--defsym	.	Full	format	of	this	command	line	option	is	the		--defsym=symbol=expression	.	It
allows	to	create	global	symbol	in	the	output	file	containing	the	absolute	address	given	by	expression.	We	can	find	following
case	where	this	command	line	option	can	be	useful:	in	the	Linux	kernel	source	code	and	more	precisely	in	the	Makefile	that
is	related	to	the	kernel	decompression	for	the	ARM	architecture	-	arch/arm/boot/compressed/Makefile,	we	can	find	following
definition:

LDFLAGS_vmlinux	=	--defsym	_kernel_bss_size=$(KBSS_SZ)

As	we	already	know,	it	defines	the		_kernel_bss_size		symbol	with	the	size	of	the		.bss		section	in	the	output	file.	This	symbol
will	be	used	in	the	first	assembly	file	that	will	be	executed	during	kernel	decompressing:

ldr	r5,	=_kernel_bss_size

Useful	command	line	options	of	the	GNU	linker
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The	next	command	line	options	is	the		-shared		that	allows	us	to	create	shared	library.	The		-M		or		-map	<filename>	
command	line	option	prints	the	linking	map	with	the	information	about	symbols.	In	our	case:

$	ld	-M	@linker.ld

...

...

...

.text											0x00000000004003c0						0x112

	*(.text.unlikely	.text.*_unlikely	.text.unlikely.*)

	*(.text.exit	.text.exit.*)

	*(.text.startup	.text.startup.*)

	*(.text.hot	.text.hot.*)

	*(.text	.stub	.text.*	.gnu.linkonce.t.*)

	.text										0x00000000004003c0							0x2a	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o

...

...

...

	.text										0x00000000004003ea							0x31	main.o

																0x00000000004003ea																main

	.text										0x000000000040041b							0x3f	lib.o

																0x000000000040041b																factorial

Of	course	the		GNU	linker		support	standard	command	line	options:		--help		and		--version		that	print	common	help	of	the
usage	of	the		ld		and	its	version.	That's	all	about	command	line	options	of	the		GNU	linker	.	Of	course	it	is	not	the	full	set	of
command	line	options	supported	by	the		ld		util.	You	can	find	the	complete	documentation	of	the		ld		util	in	the	manual.

As	I	wrote	previously,		ld		has	support	for	its	own	language.	It	accepts	Linker	Command	Language	files	written	in	a
superset	of	AT&T's	Link	Editor	Command	Language	syntax,	to	provide	explicit	and	total	control	over	the	linking	process.
Let's	look	on	its	details.

With	the	linker	language	we	can	control:

input	files;
output	files;
file	formats
addresses	of	sections;
etc...

Commands	written	in	the	linker	control	language	are	usually	placed	in	a	file	called	linker	script.	We	can	pass	it	to		ld		with
the		-T		command	line	option.	The	main	command	in	a	linker	script	is	the		SECTIONS		command.	Each	linker	script	must
contain	this	command	and	it	determines	the		map		of	the	output	file.	The	special	variable		.		contains	current	position	of	the
output.	Let's	write	simple	assembly	program	andi	we	will	look	at	how	we	can	use	a	linker	script	to	control	linking	of	this
program.	We	will	take	a	hello	world	program	for	this	example:

section	.data

				msg				db	"hello,	world!",`\n`

section	.text

				global				_start

_start:

				mov				rax,	1

				mov				rdi,	1

				mov				rsi,	msg

				mov				rdx,	14

				syscall

				mov				rax,	60

				mov				rdi,	0

				syscall

Control	Language	linker
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We	can	compile	and	link	it	with	the	following	commands:

$	nasm	-f	elf64	-o	hello.o	hello.asm

$	ld	-o	hello	hello.o

Our	program	consists	from	two	sections:		.text		contains	code	of	the	program	and		.data		contains	initialized	variables.
Let's	write	simple	linker	script	and	try	to	link	our		hello.asm		assembly	file	with	it.	Our	script	is:

/*

	*	Linker	script	for	the	factorial

	*/

OUTPUT(hello)	

OUTPUT_FORMAT("elf64-x86-64")

INPUT(hello.o)

SECTIONS

{

				.	=	0x200000;

				.text	:	{

										*(.text)

				}

				.	=	0x400000;

				.data	:	{

										*(.data)

				}

}

On	the	first	three	lines	you	can	see	a	comment	written	in		C		style.	After	it	the		OUTPUT		and	the		OUTPUT_FORMAT		commands
specifiy	the	name	of	our	executable	file	and	its	format.	The	next	command,		INPUT	,	specfies	the	input	file	to	the		ld		linker.
Then,	we	can	see	the	main		SECTIONS		command,	which,	as	I	already	wrote,	must	be	present	in	every	linker	script.	The
	SECTIONS		command	represents	the	set	and	order	of	the	sections	which	will	be	in	the	output	file.	At	the	beginning	of	the
	SECTIONS		command	we	can	see	following	line		.	=	0x200000	.	I	already	wrote	above	that		.		command	points	to	the	current
position	of	the	output.	This	line	says	that	the	code	should	be	loaded	at	address		0x200000		and	the	line		.	=	0x400000		says
that	data	section	should	be	loaded	at	address		0x400000	.	The	second	line	after	the		.	=	0x200000		defines		.text		as	an
output	section.	We	can	see		*(.text)		expression	inside	it.	The		*		symbol	is	wildcard	that	matches	any	file	name.	In	other
words,	the		*(.text)		expression	says	all		.text		input	sections	in	all	input	files.	We	can	rewrite	it	as		hello.o(.text)		for	our
example.	After	the	following	location	counter		.	=	0x400000	,	we	can	see	definition	of	the	data	section.

We	can	compile	and	link	it	with	the:

$	nasm		-f	elf64	-o	hello.o	hello.S	&&	ld	-T	linker.script	&&	./hello

hello,	world!

If	we	will	look	insidei	it	with	the		objdump		util,	we	can	see	that		.text		section	starts	from	the	address		0x200000		and	the
	.data		sections	starts	from	the	address		0x400000	:

$	objdump	-D	hello

Disassembly	of	section	.text:

0000000000200000	<_start>:

		200000:				b8	01	00	00	00											mov				$0x1,%eax

		...

Disassembly	of	section	.data:

0000000000400000	<msg>:

		400000:				68	65	6c	6c	6f											pushq		$0x6f6c6c65

		...
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Apart	from	the	commands	we	have	already	seen,	there	are	a	few	others.	The	first	is	the		ASSERT(exp,	message)		that	ensures
that	given	expression	is	not	zero.	If	it	is	zero,	then	exit	the	linker	with	an	error	code	and	print	the	given	error	message.	If
you've	read	about	Linux	kernel	booting	process	in	the	linux-insides	book,	you	may	know	that	the	setup	header	of	the	Linux
kernel	has	offset		0x1f1	.	In	the	linker	script	of	the	Linux	kernel	we	can	find	a	check	for	this:

.	=	ASSERT(hdr	==	0x1f1,	"The	setup	header	has	the	wrong	offset!");

The		INCLUDE	filename		command	allows	to	include	external	linker	script	symbols	in	the	current	one.	In	a	linker	script	we	can
assign	a	value	to	a	symbol.		ld		supports	a	couple	of	assignment	operators:

symbol	=	expression	;
symbol	+=	expression	;
symbol	-=	expression	;
symbol	*=	expression	;
symbol	/=	expression	;
symbol	<<=	expression	;
symbol	>>=	expression	;
symbol	&=	expression	;
symbol	|=	expression	;

As	you	can	note	all	operators	are	C	assignment	operators.	For	example	we	can	use	it	in	our	linker	script	as:

START_ADDRESS	=	0x200000;

DATA_OFFSET			=	0x200000;

SECTIONS

{

				.	=	START_ADDRESS;

				.text	:	{

										*(.text)

				}

				.	=	START_ADDRESS	+	DATA_OFFSET;

				.data	:	{

										*(.data)

				}

}

As	you	already	may	noted	the	syntax	for	expressions	in	the	linker	script	language	is	identical	to	that	of	C	expressions.
Besides	this	the	control	language	of	the	linking	supports	following	builtin	functions:

	ABSOLUTE		-	returns	absolute	value	of	the	given	expression;
	ADDR		-	takes	the	section	and	returns	its	address;
	ALIGN		-	returns	the	value	of	the	location	counter	(	.		operator)	that	aligned	by	the	boundary	of	the	next	expression	after
the	given	expression;
	DEFINED		-	returns		1		if	the	given	symbol	placed	in	the	global	symbol	table	and		0		in	other	way;
	MAX		and		MIN		-	return	maximum	and	minimum	of	the	two	given	expressions;
	NEXT		-	returns	the	next	unallocated	address	that	is	a	multiple	of	the	give	expression;
	SIZEOF		-	returns	the	size	in	bytes	of	the	given	named	section.

That's	all.

Conclusion
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This	is	the	end	of	the	post	about	linkers.	We	learned	many	things	about	linkers	in	this	post,	such	as	what	is	a	linker	and	why
it	is	needed,	how	to	use	it,	etc..

If	you	have	any	questions	or	suggestions,	write	me	an	email	or	ping	me	on	twitter.

Please	note	that	English	is	not	my	first	language,	and	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes
please	let	me	know	via	email	or	send	a	PR.

Book	about	Linux	kernel	internals
linker
object	files
glibc
opcode
ELF
GNU	linker
My	posts	about	assembly	programming	for	x86_64
readelf

Links

Linux	Inside

326Linkers

https://twitter.com/0xAX
http://0xax.gitbooks.io/linux-insides/content/
https://en.wikipedia.org/wiki/Linker_%28computing%29
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker
http://0xax.github.io/categories/assembly/
https://sourceware.org/binutils/docs/binutils/readelf.html


Linux/x86	boot	protocol
Linux	kernel	parameters

64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

8250	UART	Programming
Serial	ports	on	OSDEV

Video	Graphics	Array	(VGA)

IO	port	programming

GCC	type	attributes
Assembler	Directives

task_struct	definition

PowerPC	and	Linux	Kernel	Inside

Useful	links

Linux	boot

Protected	mode

Serial	programming

VGA

IO

GCC	and	GAS

Important	data	structures

Other	architectures

Linux	Inside

327Useful	links

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikibooks.org/wiki/Serial_Programming/8250_UART_Programming#UART_Registers
http://wiki.osdev.org/Serial_Ports
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://www.tldp.org/HOWTO/text/IO-Port-Programming
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_toc.html#TOC65
http://lxr.free-electrons.com/source/include/linux/sched.h#L1274
http://www.systemcomputing.org/ppc/


Akash	Shende
Jakub	Kramarz
ckrooss
ecksun
Maciek	Makowski
Thomas	Marcelis
Chris	Costes
nathansoz
RubanDeventhiran
fuzhli
andars
Alexandru	Pana
Bogdan	Rădulescu
zil
codelitt
gulyasm
alx741
Haddayn
Daniel	Campoverde	Carrión
Guillaume	Gomez
Leandro	Moreira
Jonatan	Pålsson
George	Horrell
Ciro	Santilli
Kevin	Soules
Fabio	Pozzi
Kevin	Swinton
Leandro	Moreira
LYF610400210
Cam	Cope
Miquel	Sabaté	Solà
Michael	Aquilina
Gabriel	Sullice
Michael	Drüing
Alexander	Polakov
Anton	Davydov
Arpan	Kapoor
Brandon	Fosdick
Ashleigh	Newman-Jones
Terrell	Russell
Mario
Ewoud	Kohl	van	Wijngaarden
Jochen	Maes
Brother-Lal
Brian	McKenna
Josh	Triplett
James	Flowers
Alexander	Harding
Dzmitry	Plashchynski

Thank	you	to	all	contributors:

Linux	Inside

328Contributors

https://github.com/akash0x53
https://github.com/jkramarz
https://github.com/ckrooss
https://github.com/ecksun
https://github.com/mmakowski
https://github.com/ThomasMarcelis
https://github.com/ccostes
https://github.com/nathansoz
https://github.com/RubanDeventhiran
https://github.com/fuzhli
https://github.com/andars
https://github.com/alexpana
https://github.com/bogdanr
https://github.com/zil
https://github.com/codelitt
https://github.com/gulyasm
https://github.com/alx741
https://github.com/Haddayn
https://github.com/alx741
https://github.com/GuillaumeGomez
https://github.com/leandromoreira
https://github.com/jonte
https://github.com/georgehorrell
https://github.com/cirosantilli
https://github.com/eax64
https://github.com/fabiopozzi
https://github.com/kevinjswinton
https://github.com/leandromoreira
https://github.com/LYF610400210
https://github.com/ccope
https://github.com/mssola
https://github.com/MichaelAquilina
https://github.com/gabesullice
https://github.com/darkstar
https://github.com/polachok
https://github.com/davydovanton
https://github.com/arpankapoor
https://github.com/bfoz
https://github.com/anewmanjones
https://github.com/trel
https://github.com/bedna-KU
https://github.com/ekohl
https://github.com/sejo
https://github.com/Brother-Lal
https://github.com/puffnfresh
https://github.com/joshtriplett
https://github.com/comjf
https://github.com/aeharding
https://github.com/plashchynski


Simarpreet	Singh
umatomba
Vaibhav	Tulsyan
Brandon	Wamboldt
Maxime	Leboeuf
Maximilien	Richer
marmeladema
Anisse	Astier
TheCodeArtist
Ehsun	N
Adam	Shannon
Donny	Nadolny
Ehsun	N
Waqar	Ahmed
Ian	Miell

Linux	Inside

329Contributors

https://github.com/simar7
https://github.com/umatomba
https://github.com/xennygrimmato
https://github.com/brandonwamboldt
https://github.com/leboeuf
https://github.com/halfa
https://github.com/marmeladema
https://github.com/anisse
https://github.com/TheCodeArtist
https://github.com/imehsunn
https://github.com/adamdecaf
https://github.com/dnadolny
https://github.com/imehsunn
https://github.com/Waqar144
https://github.com/ianmiell

	Introduction
	Booting
	From bootloader to kernel
	First steps in the kernel setup code
	Video mode initialization and transition to protected mode
	Transition to 64-bit mode
	Kernel decompression

	Initialization
	First steps in the kernel
	Early interrupts handler
	Last preparations before the kernel entry point
	Kernel entry point
	Continue architecture-specific boot-time initializations
	Architecture-specific initializations, again...
	End of the architecture-specific initializations, almost...
	Scheduler initialization
	RCU initialization
	End of initialization

	Interrupts
	Introduction
	Start to dive into interrupts
	Interrupt handlers
	Initialization of non-early interrupt gates
	Implementation of some exception handlers
	Handling Non-Maskable interrupts
	Dive into external hardware interrupts
	Initialization of external hardware interrupts structures
	Softirq, Tasklets and Workqueues

	Memory management
	Memblock
	Fixmaps and ioremap

	Concepts
	Per-CPU variables
	Cpumasks

	Data Structures in the Linux Kernel
	Doubly linked list
	Radix tree

	Theory
	Paging
	Elf64

	Misc
	How kernel compiled
	Linkers

	Useful links
	Contributors

