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Preface

I would...urge that people be introduced to [chaos] early in
their mathematical education. [Chaos] can be studied phe-
nomenologically by iterating it on a calculator, or even by
hand. Its study does not involve as much conceptual so-
phistication as does elementary calculus. Such study would
greatly enrich the student’s intuition. Not only in research,
but also in the everyday world of politics and economics, we
would all be better off if more people realised that simple
nonlinear systems do not necessarily possess simple dynam-
ical properties.

Robert May, 1976 (May, 1976)

Such was the conclusion to Robert May’s influential 1976 paper, “Sim-
ple mathematical models with very complicated dynamics,” (May, 1976)
published in Nature, perhaps the most prestigious scientific journal in the
world. May believes, as do I, that chaos is well suited for introductory
classes and that its inclusion in mathematics curricula has far-reaching
implications. Nevertheless, more than thirty years after May’s paper,
there are still only a handful of introductory textbooks on chaos, frac-
tals, and non-linear dynamics. And none of these textbooks are suited
for students who are not focusing their studies on mathematics or sci-
ence. This book aims to fill this void.

Understanding chaos requires much less advanced mathematics than
other current areas of physics research such as general relativity or par-
ticle physics. Observing chaos and fractals requires no specialized equip-
ment; chaos is seen in scores of everyday phenomena—a boiling pot of
water, a dripping faucet, shifting weather patterns. And fractals are
almost ubiquitous in the natural world. Thus, it is possible to teach the
central ideas and insights of chaos in a rigorous, genuine, and relevant
way to students with relatively little mathematics background.

I have found that chaos and fractals are wonderful topics for capturing
the imagination of a wide range of students while (re)introducing them
to some of the basic notions of algebra and functions. I am convinced
that it is possible to present the excitement and novelty of chaos and
fractals in an intellectually honest and rigorous way to those possessing
only a background in algebra. My experience has been that students
find it easy to make connections among chaos and fractals, everyday
experience, and other academic or creative interests.
There are three main audiences for this book. First, I believe that

it is well suited for use in a college math or physics course for students
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who are not math or science majors and who have not necessarily taken
calculus. Indeed, I have developed this book out of such a course that I
have offered at the College of the Atlantic. It could also serve as a text
for an interdisciplinary first-year seminar. Second, I believe that this
text is well suited for a mathematics course for high school students. For
students who are not interested in or are not quite ready for a calculus or
statistics class, a course in chaos and fractals could be a good alternative.
Third, I have aimed to make this book suitable for self-study. Anyone
with some modest experience with algebra should be able to use this
book to learn some of the technical details and foundations of chaos and
fractals.
In writing this book I have two central goals. First, I want the reader

to gain a solid understanding of the basic mathematical ideas behind
chaos and fractals. As part of this, I hope readers get to share some
of the amazement and wonder experienced by the scientists and math-
ematicians who first viewed chaos or realized the intricate depth and
beauty of fractals. Chaos and fractals provide important tools and con-
stitute a different way of looking at physical and mathematical phenom-
ena. By any measure, chaos and fractals are an important part of the
current scientific and mathematical landscape.
Chaos and fractals are also increasingly part of the popular landscape.

They have sparked popular imagination, and deservedly so. Ideas and
phenomena from chaos and fractals have appeared in works of fiction and
non-fiction. Many of these applications of and references to chaos and
fractals are careful and well justified. Others are based on fundamental
misunderstandings. And of course, not everybody agrees on which is
which, and there are many applications and invocations of chaos and
fractals which do not fit neatly into either extreme. In this book I try
largely to steer clear of such controversies. Rather, my aim is to help
readers obtain the technical background to confidently enter into these
discussions and decide for themselves.
The second main goal of this text is to provide a fun, engaging, and

relevant context in which readers may improve their foundational math-
ematics, problem-solving skills, and confidence doing quantitative and
analytical work. Reading and working through this book will be a good
review of some basic algebra, including linear functions, exponents, log-
arithms, functional notation, and complex numbers. Equally important,
throughout the book I emphasize a variety of different types of graphs
to visualize and gain insight into chaos and fractals. This book will thus
give readers considerable practice using many different sorts of graphs.

Advice and Notes for Students

This book uses no mathematics beyond basic algebra. A number of top-
ics, including exponents, linear functions, and logarithms, are reviewed
in appendices. If you had an algebra class at some point in your life and
did fairly well, you almost surely have the math background needed for



Preface ix

this book. You need not have enjoyed algebra. You need not have felt
perfectly happy about it. And it is okay if you have forgotten almost
all of it. It is helpful if you have seen functional notation—i.e., f(x)—
before, but this is not a requirement. As long as you have had algebra
at some point before and, at least at the time, felt like you generally
understood it, my experience teaching this material has shown that you
should be fine.

I have found that the most important prerequisite is a willingness to
engage the material, to work hard, and to try to put aside any anxieties
and preconceptions that you might have about mathematics. The study
of chaos is very different than most other math you have been exposed
to, and this book is probably unlike other textbooks you have used. As
much as possible, approach this book with a sense of anticipation and
adventure. With a little intellectual initiative I think you will find many
opportunities to make connections between the material in this book
and other interests of yours, even if you have had a difficult relationship
with math in the past and are only taking a course that uses this book
to meet a graduation requirement of some sort.

Here are some additional thoughts on the text:

(1) Students have reported that the book starts a little slow. It takes
around seven or eight chapters to get to the topic of chaos. I do
not think there is any way around this. In the past, students have
found that it is worth the wait.

(2) Much of what we will do with chaos later on is graphical in nature.
Given this, the early chapters emphasize graphical interpretations
and constructions. This may seem tedious. But experience has
shown that investing some time early in the course to learn various
graphical constructions pays off down the road.

(3) This book is not a systematic review of algebra or trigonome-
try; it is not explicitly designed to prepare you for further math
classes. Nevertheless, it will review many algebra topics, and work-
ing through the problems should strengthen your algebra skills. It
also provides students with practice analyzing graphs and visually
representing numerical relationships.

(4) To get as much as possible out of this text you will need to work
with some web-based computer programs. No computer experi-
ence is necessary, but you will need to have access to a computer
that has internet access and a web browser. You will also need a
calculator. You do not need a scientific calculator, but one with
logarithms would be helpful.

Exercises

There are exercises at the end of most chapters. Some of these are
exploratory in nature, and as such might be rather different from the
math or physics homework encountered in other classes. Rather than
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doing a quick calculation and getting a simple answer, these exercises
ask students to explore, make observations, and look for patterns. Such
exercises are best approached as if they were short laboratory exercises
in a science class.
There are a few exercises in the text that require a good bit of alge-

bra or are more conceptually advanced. These are marked with a �
symbol. Most of the exercises are designed to be straightforward, but
a few are open-ended and possibly even deliberately ambiguous, with
the intention of leading you to think critically about a particular situa-
tion or phenomenon. Particularly important exercises are marked with
a � . The text refers to these exercises in later chapters, so I strongly
suggest that you try them. In many cases they present an opportunity
for you to discover something interesting for yourself before I explain it
in subsequent chapters, giving away the punch-line and possibly a fun
surprise.

Advice and Notes for Instructors

Part I of this text introduces discrete dynamical systems, including
graphical iteration techniques and an initial exploration of the logis-
tic equation. In Part II I use one-dimensional maps to introduce and
explore the main notions of chaos—aperiodic behavior, sensitive depen-
dence on initial conditions, bifurcations, invariant densities and ergod-
icity, and the universality of the period-doubling route to chaos. In
many ways differential equations are more fundamental mathematical
objects; in most situations iterated maps are used as approximations to
the continuous flow generated by a differential equation. However, one-
dimensional maps have the benefit that they are much more accessible
to students without a calculus background. In Part III I introduce frac-
tals, including the self-similarity and box-counting dimensions as well as
discussions of random fractals and power laws. This part of the book
also gives an example of a simple process for which there is not a well-
defined average and contains a discussion of countable vs. uncountable
infinities. Part IV covers Julia sets and the Mandelbrot set, while Part
V covers a number of dynamical systems beyond the one-dimensional
maps covered previously. These include two-dimensional, discrete dy-
namical systems; cellular automata; and differential equations in one,
two, and three dimensions.
There are many possible paths through the book. I consider Chapters

0–11 and 15–18 to be core material, providing a solid introduction to the
central ideas of dynamical systems and fractals. I cover these chapters
almost every time I teach the class, and then choose from other chapters
depending on time and student interest. A course that focuses on fractals
could easily begin with Parts III and IV. A course that focuses on
dynamical systems can easily skip most of III and all of IV and cover
Part V more fully.
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Depending on the preparation of your students, you may be able to
go through the first several chapters fairly quickly. I would encourage
you, though, to not go too quickly. If students get lost in a course like
this, it can be difficult to get them back on track. While the first several
chapters might seem simple, they can be quite difficult for students who
have been away from algebra for several years. How to pace the first few
weeks of the course is tricky. Just about every time I have taught this
material my students and I have wished we had more time at the end of
the course to explore some additional interesting and fun material, but
at the same time many students report feeling that it would have been
difficult to have gone much faster during the initial stages of the course.

You will notice that the chapters are not of uniform length and that
a few are quite short. I have found that introducing some concepts on
their own in a concise fashion is quite helpful for students. For example,
time series plots are covered in their own four-page chapter rather than
being a section in a longer chapter on graphical iteration. I am convinced
that this makes these topics easier for students to learn, and that these
educational benefits justify the non-uniformity in chapter length.

Students are introduced to many different sorts of graphs in the course
of this text: plots of functions, time series plots, “cobweb” diagrams,
bifurcation diagrams, phase lines, histograms, Julia sets, and the Man-
delbrot set. Students very often have surprising difficulty interpreting
these different graphs and keeping them straight. Students will need to
be reminded repeatedly how to make and interpret these graphs. Be
sure to assign a good amount of graphical homework. Doing so will be
essential for students if they are to really understand the material.

I have tried to develop end-of-chapter exercises in which students are
led to discover some key ideas or interesting phenomena, which are often
discussed in more detail in the subsequent chapter. These exercises are
indicated by the symbol � . I strongly encourage you to assign them and
to not discuss them in class until students have explored them on their
own. They can also make good lab or group-work exercises. Sprinkled
throughout the text there are a handful of exercises that are algebra-
intensive or require a little bit more mathematical sophistication. These
exercises, indicated by the symbol � , might be good for more advanced
students or if you are teaching a course that emphasizes algebra skills.
Finally, in many of the later chapters there are only only a handful of
exercises. I found it difficult to come up with meaningful exercises on
some of the more advanced material. When I teach the the course this
usually is not a problem, as students are working on term projects at
this point, and so I need to assign them a little less homework than in
the first part of the course.

Although some students occasionally find it initially frustrating, I
would be sure to assign problems in which students use some of the sim-
ple web-based programs to make time series plots, bifurcation diagrams,
and the like. Most of the homework problems that use these programs
are quite simple, but I think it is very important for students to use
the programs themselves and explore. If at all possible, do not just use
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the programs as passive demonstrations in class. Students learn a topic
better if they have played a role in discovering an idea or phenomenon
for themselves.
I have prepared a longer guide for instructors, including suggestions

for classroom activities. I have also prepared a solutions manual for the
end-of-chapter exercises. Both are available upon request. The website
for the book, http://chaos.coa.edu contains further information and
resources for teaching using this text.

Books that Complement this Text

I was first introduced to the excitement and fun of the topics in this
book when I read James Gleick’s, Chaos: Making a New Science (Gleick,
1987) while a senior in college. More than twenty years later, this book
still reads well and is engaging and interesting. Gleick brings to life
both the science and the scientists who helped shape the modern fields
of chaos and fractals. When I teach the class from which this text
was developed, I have always had students read Gleick’s book. As a
result, this book can function as an accompaniment or complement to
Gleick’s. If you are teaching a class, or are setting off on your own to
learn about chaos and fractals, I would strongly suggest pairing my book
with Gleick’s.
There are two other books that I think are particularly well suited

for pairing with this text. Ian Stewart’s Does God Play Dice? (2002)
is at a similar level to Gleick’s book but is much less journalistic and
sensational. Stewart’s explanations are excellent, and he does an im-
pressive job of putting developments in chaos and fractals into context.
Also highly recommended is Stephen Kellert’s In the Wake of Chaos
(1993). This short book is a very clear and well argued analysis of the
epistemological and philosophical implications of chaos. A number of
suggestions for additional reading, including more advanced texts, are
given in Appendix C. Also, at the end of some chapters I have included
references to topics particular to that chapter.

How to Contact Me

I have set up a website for the book at http://chaos.coa.edu/ where
you will find my contact information and an updated list of errata. I
would be grateful to hear about your experiences using this book and to
receive suggestions for improvement.

David P. Feldman
Mount Desert, Maine, USA, August 2011



Acknowledgments

My knowledge of chaos and fractals has been shaped by many col-
laborators and colleagues over the years. First among these is Jim
Crutchfield—mentor, collaborator, and friend. I have benefited from
conversations about chaos and fractals with many friends and collab-
orators, including Bai-lin Hao, Cosma Shalizi, and Karl Young. Sev-
eral anonymous reviewers at Oxford University Press gave extremely
thoughtful and constructive comments on my initial book proposal.

I am grateful for the support and encouragement offered by friends
and colleagues at the College of the Atlantic. I am also grateful for the
hospitality extended to me by the Santa Fe Institute, and the friends
and colleagues I have met there over the years. I especially thank Cris
Moore, who provided advice and encouragement and introduced me to
my editor at Oxford University Press. I feel fortunate to be able to
spend time at two institutions, COA and SFI, that are so committed
to interdisciplinary work. The final edits of this book were completed
while I was a U.S. Fulbright Lecturer in Rwanda. I thank the Fulbright
Scholarship Board and U.S. Department of State for their support and
the Applied Physics Department at the Kigali Institute of Science and
Technology for their hospitality.

This book was produced exclusively with open-source, freely available
software: the book was typeset using LATEX; figures were produced with
xfig, inkscape, GIMP, and gnuplot; gnumeric was used for some data
analysis; and all programming was done in either python or C++ using the
g++ compiler. All applications were run on various personal computers
running Fedora Core or Ubuntu versions of the Linux operating system.
I thank the developers and maintainers of this code and all those who
contribute to open source projects. I am also grateful for resources
such as Google Scholar, Google Books, the citeulike.org bibliography
manager, and Wikipedia. They all have been incredibly valuable and
have saved me a great deal of time.

Early portions of this project were supported by the Maine Space
Grant Consortium. The College of the Atlantic faculty development
fund provided generous support at several stages in the book’s writing.
Portions of this book were written during visits to the Santa Fe Institute
and the Complexity Sciences Center in the Department of Physics at
the University of California Davis. I thank SFI and the CSC for their
hospitality.

I have drawn great inspiration from my students at College of the
Atlantic. Their energy and enthusiasm for chaos and fractals has been



xiv Acknowledgments

remarkable. I am grateful for their encouragement and thoughtful com-
ments on drafts of this book. Teaching assistants at COA have provided
input, feedback, encouragement, and advice. I especially thank Mikus
Abolins-Abols, Adrianna Beaudette, Iris Lowery, Dale Quinby, and Amy
Wesolowski. Mark Feldman, Todd Little-Siebold, and John Visvader
each read several chapters and provided valuable feedback. Adrianna
Beaudette read the full manuscript; her thoughtful critiques improved
the book considerably.
I thank Sönke Adlung at Oxford University Press for his cheerful pa-

tience and encouragement throughout all stages of the book’s prepara-
tions. Jessica White, April Warman, and Clare Charles at Oxford also
provided helpful guidance. Catherine Cragg at OUP and Vijayasankar
Natesan at SPi patiently and expertly answered a ridiculous number
of questions about LATEX and font sizes. I thank them both for their
assistance in preparing the final manuscript.
I am tremendously grateful to Nikki McClure for making available

the butterfly image that is on the cover of this book. Chaos and fractals
show us that simple processes can lead to surprise and beauty. Nikki
demonstrates this same principle in her artwork. Check out her work at
http://www.nikkimcclure.com/.
Additional inspiration and energy was provided by Armin van Buuren

and A State of Trance, Morning Glory Bakery, and Ohori’s coffee.
Finally, I thank my family, and especially Doreen Stabinsky, about

whom I should surely say something touching and sentimental, but I
don’t know what to say or where to begin. Any words I come up with
seem insufficient. So a simple and heartfelt “thank you” will have to
suffice.



Contents

I Introducing Discrete Dynamical Systems 1

0 Opening Remarks 3

0.1 Chaos 3
0.2 Fractals 4
0.3 The Character of Chaos and Fractals 5

1 Functions 9

1.1 Functions as Actions 9
1.2 Functions as a Formula 10
1.3 Functions are Deterministic 11
1.4 Functions as Graphs 11
1.5 Functions as Maps 13
Exercises 14

2 Iterating Functions 17

2.1 The Idea of Iteration 17
2.2 Some Vocabulary and Notation 18
2.3 Iterated Function Notation 19
2.4 Algebraic Expressions for Iterated Functions 20
2.5 Why Iteration? 21
Exercises 23

3 Qualitative Dynamics: The Fate of the Orbit 25

3.1 Dynamical Systems 25
3.2 Dynamics of the Squaring Function 26
3.3 The Phase Line 27
3.4 Fixed Points via Algebra 27
3.5 Fixed Points Graphically 29
3.6 Types of Fixed Points 30
Exercises 31

4 Time Series Plots 33

4.1 Examples of Time Series Plots 33
Exercises 35

5 Graphical Iteration 37

5.1 An Initial Example 37
5.2 The Method of Graphical Iteration 38
5.3 Further Examples 39
Exercises 42



xvi Contents

6 Iterating Linear Functions 45

6.1 A Series of Examples 45
6.2 Slopes of +1 or −1 48
Exercises 50

7 Population Models 53

7.1 Exponential Growth 53
7.2 Modifying the Exponential Growth Model 56
7.3 The Logistic Equation 59
7.4 A Note on the Importance of Stability 62
7.5 Other r Values 64
Exercises 65

8 Newton, Laplace, and Determinism 67

8.1 Newton and Universal Mechanics 67
8.2 The Enlightenment and Optimism 69
8.3 Causality and Laplace’s Demon 70
8.4 Science Today 71
8.5 A Look Ahead 72

II Chaos 75

9 Chaos and the Logistic Equation 77

9.1 Periodic Behavior 77
9.2 Aperiodic Behavior 82
9.3 Chaos Defined 85
9.4 Implications of Aperiodic Behavior 86
Exercises 87

10 The Butterfly Effect 89

10.1 Stable Periodic Behavior 89
10.2 Sensitive Dependence on Initial Conditions 90
10.3 SDIC Defined 93
10.4 Lyapunov Exponents 95
10.5 Stretching and Folding: Ingredients for Chaos 97
10.6 Chaotic Numerics: The Shadowing Lemma 99
Exercises 102

11 The Bifurcation Diagram 105

11.1 A Collection of Final-State Diagrams 105
11.2 Periodic Windows 110
11.3 Bifurcation Diagram Summary 111
Exercises 112

12 Universality 115

12.1 Bifurcation Diagrams for Other Functions 115
12.2 Universality of Period Doubling 118
12.3 Physical Consequences of Universality 121



Contents xvii

12.4 Renormalization and Universality 124
12.5 How are Higher-Dimensional Phenomena Universal? 128
Exercises 129

13 Statistical Stability of Chaos 131

13.1 Histograms of Periodic Orbits 131
13.2 Histograms of Chaotic Orbits 132
13.3 Ergodicity 135
13.4 Predictable Unpredictability 138
Exercises 139

14 Determinism, Randomness, and Nonlinearity 141

14.1 Symbolic Dynamics 141
14.2 Chaotic Systems as Sources of Randomness 143
14.3 Randomness? 144
14.4 Linearity, Nonlinearity, and Reductionism 148
14.5 Summary and a Look Ahead 152
Exercises 154

III Fractals 155

15 Introducing Fractals 157

15.1 Shapes 157
15.2 Self-Similarity 158
15.3 Typical Size? 160
15.4 Mathematical vs. Real Fractals 161
Exercises 162

16 Dimensions 163

16.1 How Many Little Things Fit inside a Big Thing? 163
16.2 The Dimension of the Snowflake 165
16.3 What does D ≈ 1.46497 Mean? 166
16.4 The Dimension of the Cantor Set 167
16.5 The Dimension of the Sierpiński Triangle 168
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Introducing Discrete
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Opening Remarks 0
0.1 Chaos 3

0.2 Fractals 4

0.3 The Character of Chaos and
Fractals 5

Further Reading 7

In 1975 the word chaos was first used in a technical sense to describe a
type of irregular behavior seen in mathematical systems (Li and Yorke,
1975). That same year, Benôıt Mandelbrot coined the term fractal
(Mandelbrot, 1975) to describe mathematical and natural objects that
are self-similar: made up of the same motif repeated across scales, large
and small. Since 1975 these two ideas—chaos and fractals—have become
an important part of the physical, natural, and social sciences. The
concepts, ideas, tools, and mindset associated with chaos and fractals
are unarguably an important part of modern science, and they have
been borrowed and appropriated by other academic disciplines. Chaos
and fractals are also fixtures within popular culture, receiving mention
in plays and film and in popular scientific writing.

Why are chaos and fractals now a standard part of scientific and non-
scientific vocabulary? And what are chaos and fractals, anyway? My
aim is to develop answers to these questions gradually throughout this
book. To really dig into chaos and fractals—to understand what they
are, what they are not, why they matter, and how fascinating and fun
they can be—requires building up some mathematical tools. Neverthe-
less, a few introductory remarks will help set the stage.1 Chaos and

1You can skip these remarks if you
want. If you are eager to get started,
go ahead and jump to Chapter 1.

fractals are two distinct ideas, although they are often taught together
and there are relationships between them. I will begin with a few com-
ments on chaos, and then move to fractals.

0.1 Chaos

Chaos is a phenomenon encountered in science and mathematics wherein
a deterministic (rule-based) system behaves unpredictably. That is, a
system which is governed by fixed, precise rules, nevertheless behaves in
a way which is, for all practical purposes, unpredictable in the long run.
The mathematical use of the word “chaos” does not align well with its
more common usage to indicate lawlessness or the complete absence of
order. On the contrary, mathematically chaotic systems are, in a sense,
perfectly ordered, despite their apparent randomness. This seems like
nonsense, but it is not. The first two parts of this book are largely
concerned with explaining this apparent paradox.

The phenomenon of chaos is usually considered to be part of the field
of study known as dynamical systems, an interdisciplinary area that
lies mainly at the intersection of physics and mathematics, but also
includes researchers from biology, economics, and elsewhere. Dynamical
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systems is the study of systems or processes that change over time. This
includes examining particular systems or areas of application, as well
as looking at systems more broadly and abstractly to develop generally
applicable tools for studying dynamical systems or to classify different
sorts of behavior.22The field of dynamical systems is

sometimes referred to simply as dynam-

ics. It is also called nonlinear dynam-

ics, to emphasize that chaos and related
phenomena arise only in nonlinear sys-
tems. I will use all terms interchange-
ably, although I will mainly use dynam-
ical systems.

Although the technical use of the term chaos originated in 1975, re-
search in dynamical systems dates back at least to Henri Poincaré and
the early 1900s. However, it was not until the 1960s and ’70s that re-
searchers and ideas from a variety of different fields coalesced. Since
at least the 1990s, chaos has been recognized as an area of study;
there are multiple books on the subject, conferences that bring together
researchers who study chaos, and scientists and mathematicians who
would say that chaos is their primary area of study.33Actually, most researchers would say

they study nonlinear dynamics or dy-
namical systems, which are generally
viewed as a more respectable and sci-
entific term than chaos. The term
“chaos” is somewhat informal and per-
haps is tainted by the fact that it has
been misused.

Chaos is just one phenomenon out of many that are encountered in the
study of dynamical systems. In addition to behaving chaotically, systems
may show fixed equilibria, simple periodic cycles, and more complicated
behaviors that defy easy categorization. The study of dynamical systems
holds many surprises and shows that the relationships between order and
disorder, simplicity and complexity, can be subtle, and counterintuitive.
My aim in this book is to introduce readers to these relationships.
The term “chaos” has somewhat of a dual life. It refers to a partic-

ular type of dynamical behavior, but it is also often used as a general
shorthand for the study of dynamical systems. This book is about chaos
in its more general sense. We will encounter not just chaotic behavior,
but a host of other dynamical behaviors, too.

0.2 Fractals

Shifting gears for a moment, a few words about fractals. Fractals are
objects which are self-similar. Small parts of a fractal look like larger
parts. For example, a tree is a fractal, since if you break off a branch
of the tree, it resembles the entire tree in miniature. In contrast, a
person is not a fractal; an arm does not look like a small copy of the
person. A person is not self-similar, but a tree is. Fractal objects are
characterized by their fractal dimension which, very roughly speaking, is
related to their degree of branching and the extent to which the features
at successive scales are related.
The study of fractals gives us a quantitative language to describe

the myriad of self-similar shapes found in the natural world, including:
mountain ranges; river basins; clouds and lightning; trees, ferns, and
other plants; and vascular systems in plants and animals. Fractals need
not be natural objects; they can be human-made and can also unfold
in time in addition to space. For example, the sizes of earthquakes,
the populations of cities, the frequency of words within a text, and the
distribution of the number of links into web pages all can be usefully
viewed as fractals. A few simple tools and ideas for analyzing fractals
prove to be surprisingly powerful and flexible.
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Fractals are different from chaos. Fractals are self-similar geometric
objects, while chaos is a type of deterministic yet unpredictable dynam-
ical behavior. Nevertheless, the two ideas or areas of study have several
interesting and important links. Fractal objects at first blush seem in-
tricate and complex. However, they are often the product of very simple
dynamical systems. So the two areas of study—chaos and fractals—are
naturally paired, even though they are distinct concepts. The first two
parts of this book are exclusively concerned with dynamical systems
and chaos. In the first several chapters of Part III I will introduce frac-
tals, and then throughout the rest of the book we will see a number of
different ways that chaos and fractals are interwoven.

0.3 The Character of Chaos and Fractals

Are chaos and fractals a big deal? Do they deserve all the hype? Are
they a revolution or a paradigm shift? My answers to these questions
are, in order: yes, to some extent, and not really. I think that most, but
not all, scientists and philosophers of science would answer similarly.
Part of the purpose of this book is to provide a clear introduction so
that you can form your own answers to these, and related questions.
Nevertheless, some introductory remarks are in order to help set the
stage for what is to follow.

Chaos is not a theory. The phrase chaos theory is used in popular
science books and media accounts. However, the phrase is rarely used
by scientists and mathematicians, either in papers or books or, in my
experience, when talking with each other. What do I mean when I say
that chaos theory is not a theory?

It is difficult to precisely define what is meant by a scientific theory,
but usually a theory is a concise and consistent body of knowledge that
allows one to understand a broad class of natural phenomena. For exam-
ple, in electrodynamics—the study of electricity and magnetism—just
five equations describe the behavior of any arrangement of stationary
and moving charges. One can use these equations to calculate the value
of electric and magnetic fields and determine the forces these fields exert
on other charges.4 4These five equations are the Lorentz

force law and the set of four equations
known collectively as Maxwell’s equa-
tions.

A scientific theory can provide a broad explanatory framework with-
out being associated with the equations and calculational methods that
are typical of physics. For example, the germ theory of disease, the
theory of evolution by natural selection, or the theory of plate tecton-
ics, each explain a large body of facts and provide an organizing struc-
ture for thinking about epidemiology, biodiversity, and earthquakes and
mountain ranges. Note that these theories explain without necessarily
predicting. The theory of plate tectonics has led to only little success in
predicting the timing of earthquakes, but it certainly helps us explain
what earthquakes are and why they occur where they do.

Chaos is not a theory like electrodynamics, quantum mechanics, the
germ theory, evolution, or plate tectonics. There is not a chaos equation,
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nor does chaos quite provide a recipe for calculating physical quantities
of interest in the way that quantummechanics does. There are no axioms
or postulates of chaos. Chaos does provide a framework or a mindset
or point of view, but it is not as directly explanatory as germ theory
or plate tectonics. Chaos is a behavior—a phenomenon—not a causal
mechanism.
The situation with fractals is similar. The study of fractals draws one’s

eye toward patterns and structures that repeat across different length
or time scales. There is also a set of analytical tools—mainly calculat-
ing various fractal dimensions—that can be used to quantify structural
properties of fractals. Fractal dimensions and related quantities have
become standard tools used across the sciences. As with chaos, there is
not a fractal theory. However, the study of fractals has helped to explain
why certain types of shapes and patterns occur so frequently.
I hope these remarks are not deflating or discouraging. I certainly do

not intend them to be. But I do want to lay my cards on the table so
you are not expecting this book to lay out a neat, comprehensive theory.
So what is chaos if not a theory? And how do fractals fit into all of this?
I will revisit these questions throughout the book, but for now, here is
an imperfect analogy to get things started.
In some ways the study of chaos and fractals is like the study of trees.

Trees are awesome. They are beautiful, found all over the world, have a
wide range of sizes and shapes, but also have some definite similarities.
There is no such thing as tree theory. But there are theories that apply
to trees: evolution, chemistry, and physics all have a lot to say about
trees. Likewise, there are certain techniques and methods that are useful
for studying trees: measuring their height, taking cores, pressing leaves,
using microscopes, and so on. So there is lots to learn about particular
trees, trees in general, and also lots to learn about the methods scientists
use to study trees. So it is with chaos and fractals.
Are chaos and fractals a revolution or a passing fad? A paradigm

shift or nothing but a lot of hot air and hype? While it is unarguable
that there has been quite a bit of undeserved hype and pseudoscientific
speculation, I certainly think chaos and fractals are very important.
The study of chaos shows that simple systems can exhibit complex and
unpredictable behavior. This realization both suggests limits on our
ability to predict certain phenomena and that complex behavior may
have a simple explanation. Fractals give scientists a simple and concise
way to qualitatively and quantitatively understand self-similar objects
or phenomena. More generally, the study of chaos and fractals hold
many fun surprises; it challenges one’s intuition about simplicity and
complexity, order and disorder.
So let us put aside philosophical concerns for the time being and begin.

In the next chapter I discuss a number of different ways of viewing and
thinking about functions. In the subsequent chapter we will look at
repeatedly applying a function. These iterated functions are a dynamical
system. By studying them, we will begin our journey into chaos.
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Further Reading

This short chapter attempts to give a very brief conceptual overview of
chaos and fractals and to put forth some initial claims about the char-
acter of these new scientific and mathematical areas. Other authors
have written similar introductions that you might want to consult as
well. I highly recommend the first chapter of Stephen Kellert’s Bor-
rowed Knowledge: Chaos Theory and the Challenge of Learning Across
Disciplines (2008). I also recommend: the prologue and first chapter
of Kellert’s earlier book, In the Wake of Chaos (1993); the very short
preface to Leonard Smith’s Chaos: A Very Short Introduction (2007);
the preface to Does God Play Dice? by Ian Stewart (2002); and also the
introductory chapter of Peter Smith’s Explaining Chaos (1998). The
latter book is more mathematically advanced than the others, but still
quite clear.
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Before we can get into chaos and fractals, I will need to lay a good bit
of groundwork, introducing some key terminology and ideas. This is the
first of several chapters that lay this foundation. The starting point is
to consider the mathematical idea of a function. Functions are the most
basic way of mathematically representing a relationship. They will be a
key to the first two parts of this book.

In everyday speech, we might say something like “how tired you are
is a function of how much you slept last night.” Or, “how hungry you
are depends on how many cookies you have eaten.” These statements
suggest that one quantity—tiredness or appetite—depends on another
quantity—hours sleeping or numbers of cookies consumed. In this sense,
the common usage of the word function aligns with the mathematical
use; mathematically a function represents a dependence. However, as is
often the case in science and mathematics, the technical meaning of a
word is narrower than the common meaning, as we will see below.

To further explore the idea of a function, we now consider several
different, complementary ways of looking at functions.

1.1 Functions as Actions

In mathematics, it is useful to think of a function as an action; a function
takes a number as input, does something to it, and outputs a new num-
ber. This is illustrated in Fig. 1.1. Here, the function is called f . The
function takes a number x as input. The function, indicated schemati-
cally by a box, then acts on the number x and produces another number
as output. This new number is called f(x).

x f(x)
f

Fig. 1.1 A schematic view of a function
f that takes a number x as input, does
something to the number, and outputs
a new number called f(x).

For concreteness, let us say the function is the action triple. That is,
the function takes a number and multiplies it by 3. So, for example, if
the input is 4, the output would be 12. If the input is 20, the output
would be 60. And if the input is 2.7, the output would be 8.1.

There are a number of ways that we can denote this symbolically. One
way is as follows:

4
f−→ 12 , (1.1)
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20
f−→ 60 , (1.2)

and

2.7
f−→ 8.1 . (1.3)

This notation helps make it clear that the function f takes a 4 and turns
it into a 12, takes 20 and turns it into 60, and so on. This is represented
pictorially or schematically by Fig. 1.2.

f
x 3x

Fig. 1.2 A schematic view of the triple
function. This function takes a number
as an input, and outputs that number
multiplied by 3.

This can also be indicated symbolically:

f(4) = 12 , (1.4)

f(20) = 60 , (1.5)

and

f(2.7) = 8.1 . (1.6)

Read aloud, Eq. (1.4) would read “f of 4 equals 12.” What this means
is that if the function f gets 4 as input, the output is 12.

1.2 Functions as a Formula

In the preceding example I specified the function f by saying in words
what it does. Namely, it triples the input number. We can also specify
the function using algebra:

f(x) = 3x . (1.7)

In this equation, x is a placeholder for the number that we input and the
right hand side, 3x, represents the value of the number that the function
outputs. In this case, the output is three times the input: take the input
x and multiply it by 3. So,

f(3) = 3× 3 = 9 , (1.8)

f(4.5) = 3× 4.5 = 13.5 , (1.9)

and so on.
By the way, there is nothing special about the letter “x” in Eq. (1.7).

I could just as well have written:

f(z) = 3z , (1.10)

or

f(q) = 3q . (1.11)

The letter “x” (or “z” or “q”) is just a placeholder. That is, “x” is just
a form of shorthand or a nickname for whatever number we use as input
for the function.
One final note about formulas: an equation such as Eq. (1.7) is not

something that one would solve. In fact, there is nothing to solve for.
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The purpose of Eq. (1.7) is to define the function f . It says, for all values
of x, what the value of the function is, f(x).

In subsequent chapters I will have more to say about algebraic ap-
proaches to functions. For now, the main point is that functions can be
described by a formula, as we did in Eq. (1.7).

1.3 Functions are Deterministic

We are now in a position to refine our definition of a function. A function
is a rule that assigns an output value f(x) to every input x. This is
consistent with the everyday use of the word function: the output f(x)
is a function of the input x. The output depends on the input, just as
your grade on a test might depend on how many hours you study.

However, there is a crucial difference between the common definition of
the word function and its mathematical definition. For a mathematical
function, the output is determined entirely by the input. This means
that if you give a function the same input, you will always get the same
output. In contrast, your grade on a test depends on more than just how
many hours you study: your grade also might depend on the questions
on the test, how tired you are when you take the test, how much beer
you had the night before the test, and so on.

Consider again the function f(x) = 3x, of Eq. (1.7). The output
depends on the input, and the same number input into the function
always yields the same output. For example, f(5) = 15. And, a few
moments later, f(5) is still 15. Doing the same thing gives the same
result. Such a function is said to be deterministic, because the output
is completely determined by the input.

If a function is not deterministic, we would say that it is stochastic.1 1The root of the word stochastic is sto-
chos, which means “guess” or “target”
in ancient Greek.

This means that the function involves some element of chance. For
example, perhaps h(x) = 2x with probability 1/2, and h(x) = x with
probability 1/2. So, if one used x = 5 as input, approximately half of
the time one would get 10 as output, and approximately half of the time
one would get 5. Clearly, the input does not completely determine the
output.

1.4 Functions as Graphs

Thus far we have described functions verbally as an action—e.g., triple
the input—and symbolically using algebra—f (x) = 3x. Another way to
describe or specify a function is via a graph. Figure 1.3 shows a graph of
the function f(x) = 3x. In this case, the function appears as a straight
line. (This is not the always the case, as we will see shortly.) The idea
here is that the input is plotted on the horizontal axis and the output
f(x) is plotted on the vertical axis. For example, if x = 4, f(x) = 12.
Accordingly, the point (4, 12) is on the function’s graph. And if x = 5,
f(x) = 15, so (5, 15) is on the graph.
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Fig. 1.3 A graph of the function
f(x) = 3x.
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As another example, a different function is shown in Fig. 1.4. In
this case we are given the graph of function, but we do not know the
formula for the function. Nevertheless, the function shown in Fig. 1.4
is a perfectly legitimate function. We can specify a function graphically
just as legitimately as we can specify it using algebra.

Fig. 1.4 A graphical representation of
a function. The algebraic formula for
this function is not given.
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We can use the graph to read off approximate values for the function
for given inputs. For example, we can see that f(5) ≈ 30 and f(30) ≈
370. The symbol “≈” is read “is approximately equal to.” You should
take a moment to look at the function in Fig 1.4 and verify for yourself
the approximate values of f(5) and f(30).
There are many different possible shapes that graphs of functions can

take. However, not every curve that you draw corresponds to a function.
An example of a plot that is not a function is shown in Fig. 1.5. The
reason that this is not a function is that there is not only one output
for every input. For example, consider f(−2). Looking at the graph, it
appears that there are three possible values for f(−2): 1.2, 1.6, and 2.3.
Thus, this is not deterministic, and hence this is not a function. For f
to be a function there has to be one and only one output for every input.
There is a geometric way to see that the curve in Fig. 1.5 is not a

function: if at any point on a curve a vertical line intersects the curve
more than once, then the curve does not describe a function. In the
example at hand, if we draw a vertical line at x = −2, then that line
will intersect the curve three times. In general, any time a vertical
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line intersects the curve more than once, this indicates that there is
more than one output for a single input. Hence, the curve cannot be a
function.

You might have encountered this idea before; it commonly goes by
the name of vertical line test. Knowing the name of the test is not
important; the key point is that, by definition, a function can only have
one output for every input.

 0
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Fig. 1.5 A plot that does not give
a function. The reason that this is
not a function is that there is not a
unique output value for every input
value. E.g., the graph indicates three
possible outputs for the input −2.

1.5 Functions as Maps

A function is also sometimes referred to as a map or a mapping. This
terminology is common in mathematics, but less so in physics or other
scientific fields. The idea of a mapping is useful if one wants to think
of a function as acting on an entire set of input values. This idea is
illustrated in Fig. 1.6. The function f maps input values in the set A to
output values in the set B. For example, 2 maps to 8. This is the same
as saying f(2) = 8.

5

2
8

3

1

A
B

f

3
Fig. 1.6 A diagram illustrating a map-
ping. The function f maps elements of
the set A on the left, to the set B.

The statement that the function f maps A to B is denoted symboli-
cally by

f : A �→ B . (1.12)

This equation would be read “f is a function that maps A to B.” I will
usually just refer to functions as functions, and not maps. Nevertheless,
this is good terminology to know, as it is quite common and you may
encounter it elsewhere.
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Exercises

(1.1) Let g be the doubling function.

(a) Calculate:

(i) g(3)

(ii) g(0)

(iii) g(17)

(iv) g(0.4)

(v) g(−3)
(b) Sketch the graph of g.

(c) Determine the formula for g.

(1.2) Let h be a function that takes a number, quadru-
ples it, and then subtracts 3.

(a) Calculate:

(i) h(5)

(ii) h(0)

(iii) h(0.5)

(iv) h(−1)
(b) Determine the formula for h.

(1.3) Let f be a function that takes a number, subtracts
three, and then quadruples it.

(a) Calculate:

(i) f(5)

(ii) f(0)

(iii) f(0.5)

(iv) f(−1)
(b) Determine a formula for f .

(c) Compare your answers to those for Exercise
1.2. Are your answers different? Why or why
not?

(1.4) Let g(x) = 3 + x2.

(a) Evaluate the following

(i) g(0)

(ii) g(1)

(iii) g(−1)
(iv) g(2)

(v) g(2 + 1)

(vi) g(g(1))

(b) Does g(2 + 1) = g(2) + g(1)? Should it?

(c) If g(x) = 7, what is x?

(d) If g(x) = 0, what is x?

(1.5) Let f(x) = 2x.

(a) Evaluate the following

(i) f(0)

(ii) f(1)

(iii) f(2)

(iv) f(2 + 1)

(v) f(f(0))

(vi) f(f(1))

(b) Does f(2 + 1) = f(2) + f(1)? Should it?
Compare with Exercise 1.4b. What is the
difference between the two situations?

(1.6) Consider the function shown in Fig 1.7. Calculate

(a) f(−5)
(b) f(0)

(c) f(5)

(d) f(10)

(1.7) Consider the function shown in Fig. 1.7.

(a) If f(x) = 7, what is x?

(b) If f(x) = 2, what is x?
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Fig. 1.7 The function for Exercises 1.6 and 1.7.

(1.8) Describe an everyday, “real life” example of a func-
tion. Explain how your example fits the criteria for
being a function.
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(1.9) Consider the function shown in Fig. 1.8. Calculate

(a) g(−30)
(b) g(−20)
(c) g(0)

(d) g(10)

(e) g(20)

(1.10) Consider the function shown in Fig. 1.8.

(a) If g(x) = −10, what is x?
(b) If g(x) = 15, what is x?

(c) If g(x) = 50, what is x?
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Fig. 1.8 The function for Exercises 1.9 and 1.10.

(1.11) � Figure 1.9 shows a possible relationship between
this year’s and next year’s population of rabbits on
a small coastal island. The reason that the rabbits
may be considered to behave this way is as follows.
Let us imagine that the rabbits do not have any
predators on this island, but that there is a limited
amount of food, since the island is small. Suppose

there are a lot of rabbits on the island one year,
say 100. Then there will not be enough food on
the island for all the rabbits, and some will starve.
So there will be fewer rabbits in the following year.
This is indicated on the graph in Fig. 1.9; if one
year there are 100 rabbits, the next year there will
be approximately 63 rabbits. On the other hand,
suppose there are few rabbits on the island, say 10.
Then there will be plenty of food to go around, the
well-fed rabbits will reproduce, and there will be
more rabbits next year—around 50.

(a) In 1999 there are 70 rabbits on the island.
How many rabbits are there in 2000?

(b) In 2003 there are 35 rabbits on the island.
How many rabbits are there in 2004?

(c) In 1985 three are 20 rabbits on the island.
How many rabbits are there in 1987. Explain
your reasoning.

(d) In 1992 there are 80 rabbits on the island.
How many rabbits were there in 1991?
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Rabbits on Island This Year
Fig. 1.9 The rabbit population on an island next year as a

function of the number of rabbits on the island this year. See

Exercise 1.11.
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When I was in high school there were neither cell phones nor pagers
nor even graphing calculators. This meant that in class if I was bored
I did not have any high-tech amusements. But I did, however, have a
basic calculator. One source of entertainment was to enter a number
on the calculator, and then hit a function key, like x2, over and over
and over again. Sometimes the number gets too big for the calculator.
Other times it eventually goes to zero. Sometimes it gets stuck at 1.
Admittedly, this is not the most scintillating of games. But it did help
pass the time in some dreary pre-calculus classes.

Despite its apparent simplicity, this process—applying a function over
and over—is at the core of the rest of this book. In this chapter I
introduce this process, known as iteration, along with some important
terminology..

2.1 The Idea of Iteration

Iteration entails doing the same thing again and again using the previous
step’s output as the next step’s input. In other words, we start with a
number and apply a function to it to get a new number. Then we take
that new number and apply the function to it to get yet another number.
Then we apply the function to this new number, and so on.

This process is illustrated schematically in Fig. 2.1. The output of
the function is used as input for the next step. This can also be thought
of as a feedback process, in which output is used as input. This is
what happens, for example, when a microphone and amplifier produces
feedback where the microphone picks up some sound, inputs it to the
amplifier which amplifies it. The microphone then picks up the amplified
sound and inputs it to the amplifier to produce a new sound. This new
sound is then picked up by the amplifier which amplifies it, and so on. I
suspect that many of you are familiar with the high-pitched squeal that
can result from this process.1

1You may wonder why audio feedback
is usually a single high-pitched tone
and not just a loud reproduction of
the tones in the original sound. What
happens is that there is a particular
frequency that is amplified the most
by the amplifier. What this frequency
is depends on the details of the mi-
crophone and amplifier, as well as the
acoustics of the room. When the pos-
itive feedback loop starts, this one fre-
quency dominates over all others, since
at each step of the process it is am-
plified the most. The result is a loud
squeal at that frequency.

If you did Exercise 1.11 in Chapter 1, you have already iterated a
function.2 To do part (c) of this exercise, you started with 30 and then

2If you have not done this exercise, I
suggest going back and doing it now be-
fore continuing.

applied the function twice to this number. The number 30 is the num-
ber of rabbits in 1985. The function tells you that in 1986 there were
approximately 65 rabbits. Then, you applied the function again, this
time using 65 as input. The result is approximately 90 rabbits. The key
feature here is that you start with a number and then apply a function
repeatedly to it.
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Fig. 2.1 A schematic view of an iter-
ated function. The function f takes a
number x as input, does something to
the number, and outputs a new number
called f(x). This process is then re-
peated, or iterated: the output f(x) is
used as input. Compare this to Fig 1.1
in Chapter 1.

f
x f(x)

In this case, the function was specified by a graph and not an equation.
But we can easily do the same iteration process symbolically using an
equation. Suppose our function is the tripling function, f(x) = 3x. Let
us use 2 as our input. We then apply the function and get f(2) = 3×2 =
6. We then take 6, our output, and use it as input for the function to
get f(6) = 3×6 = 18. We then repeat the process: f(18) = 3×18 = 54.
Here is another, perhaps clearer, way to see this process:

2
f−→ 6

f−→ 18
f−→ 54

f−→ 162 · · · (2.1)

If we started with a different number, we would get a different series of
outputs:

0.5
f−→ 1.5

f−→ 4.5
f−→ 13.5

f−→ 40.5 · · · (2.2)

2.2 Some Vocabulary and Notation

The next two sections are concerned with developing some notation and
vocabulary that will be useful for describing the results of iteration in
the subsequent chapters. We begin with another example: the squaring
function, g(x) = x2. If we start, say, with 3, we will get 9 and 81 and
6561 and so on.

3
g−→ 9

g−→ 81
g−→ 6561 · · · . (2.3)

The number we start with, 3 in this particular case, is known as the ini-
tial condition or the seed. Very often the initial condition is denoted
x0, which is read “x zero” or “x naught.” The next value is denoted x1,
and then x2, and so on. It is often convenient to show this in a table,
as is done in Table 2.1.

Table 2.1 The orbit of
g(x) = x2 for the seed
x0 = 3.

x0 3
x1 9
x2 81
x3 6561 Iterating a function produces a sequence of numbers. A sequence

is simply a list with an order to it. This sequence is often called an
itinerary. This is consistent with the everyday usage of the term; an
itinerary is a list, in order, of all the places visited along a journey. The
mathematical usage of itinerary is similar; the itinerary of 3 is a list of
the results, in order, that one gets from applying the function again and
again. Another word for itinerary is orbit. Orbit and itinerary, in their
mathematical usages, are synonymous. Throughout this book I will use
the terms orbit and itinerary interchangeably; you will encounter both
if you read other books or papers on chaos.
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Note that for a given seed, you will get different itineraries depending
on the function you iterate. To make this clear, one often refers to “the
orbit of x0 under f” to remind us that the orbit (or itinerary) depends
on f in addition to x0. For example, we would say that Eq. (2.3) gives
the orbit of 3 under x2.

2.3 Iterated Function Notation

We can also indicate the process of iteration by making use of functional
notation. The first step when iterating is to apply the function, let us
call it f , to the seed x0 to obtain x1:

x1 = f(x0) . (2.4)

The next step is to apply f to x1, yielding x2:

x2 = f(x1) . (2.5)

We can also combine these two equations, plugging in Eq. (2.4) to
Eq. (2.5), as follows:

x2 = f(x1) = f(f(x0)) . (2.6)

At first blush, f(f(x0)) might look funny. But this expression actu-
ally summarizes the idea of iteration in a nice, compact form. What
f(f(x)) means is: start with x, apply f to get f(x), then apply f again
to get f(f(x)). The end result, f(f(x)) is a number that equals x af-
ter f has been applied to it twice. Note that, as is always the case
with nested parentheses, one starts with the innermost expression and
evaluates outward. For example, if f is the squaring function, then
f(f(5)) = f(52) = f(25) = 252 = 625.

We can do a similar thing for x3, the third iterate:

x3 = f(f(f(x))) , (2.7)

and the fourth iterate,

x4 = f(f(f(f(x)))) , (2.8)

and so on. I like this notation, because it makes it quite clear that x4 is
obtained by starting with x0 and then applying f four times. However,
writing all those f ’s can be time-consuming, and if we get too many of
them it will start to look ridiculous. For example,

x11 = f(f(f(f(f(f(f(f(f(f(f(x))))))))))) . (2.9)

This equation is true, but it is not that useful.
So we need some better notation. The standard thing to do is to

indicate multiple applications of f as follows:

f(f(x)) = f (2)(x) , (2.10)

f(f(f(x))) = f (3)(x) , (2.11)
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and, in general, for n applications of f :

n times

f(f(f(· · · f(x)))) = f (n)(x) . (2.12)

This notation can be potentially misleading, because it looks like the n
in f (n) is an exponent. But this is not the case. The expression f (n)(x)
means f applied to x a total of n times. It does not mean f(x) times
itself n times.3 For example, for n = 2,3Another notation for this that you

might have seen is f(f(x)) = (f ◦f)(x).
The idea here is that f ◦ f is the func-
tion that consists of “two f’s”. This is
often said “f composed with f.” This
is common notation, and you may have
seen this before in a pre-calculus class.
However, I will not use this notation in
this book.

f (2) = f(f(x)) , (2.13)

but

f (2) �= f(x)× f(x) . (2.14)

The quantity on the right-hand side of the above equation would be
denoted

f(x)× f(x) = (f(x))2 . (2.15)

If you are unclear about this, be sure to try Exercise 2.5 at the end of
the chapter.

2.4 Algebraic Expressions for Iterated

Functions

Let us go back and think about the second iterate, x2:

x2 = f(f(x)) = f (2)(x) . (2.16)

This notation helps make it clear that we can view f (2) as a function in
its own right. After all, f (2) takes a number as input and returns some
number as output. And if f is deterministic—one always gets the same
output for the same input—then it follows that f (2) is also deterministic.
The same holds true for f (3), and f (4), and so on.
At this point it is perhaps reasonable to wonder: if I have a formula for

f(x), can I figure out a formula for f (2)(x)? The answer to this question
is yes. It is a little bit messy, but it can be done.4 As an example, let us4This example is mostly to illustrate

the general point that this sort of thing
is possible. If you do not follow all the
steps, do not worry. The details of the
algebra are not essential to what fol-
lows. On the other hand, this sort of
manipulation is excellent algebra prac-
tice for those who are so inclined.

consider g(x) = 2x2 − 3. We start with

g(2) = g(g(x)) . (2.17)

Let us plug in for the inner g(x)—remember that we always evaluate
compound expressions by starting on the inside and working our way
out:

g(2) = g(2x2 − 3) (2.18)

Now we apply g to 2x2 − 3:

g(2) = 2(2x2 − 3)2 − 3 . (2.19)
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Squaring the polynomial, we get

g(2) = 2(2x2 − 3)(2x2 − 3)− 3 = 2(4x4 − 12x2 + 9)− 3 . (2.20)

Simplifying, this becomes

g(2) = 8x4 − 24x2 + 18− 3 . (2.21)

Simplifying further, we get

g(2) = 8x4 − 24x2 + 15 . (2.22)

If you find yourself confused by the operations on exponents that just
occurred, you might want to look at Appendix A.1, which is a brief
review of the properties of exponents.

So, we have figured out an expression for g(2)(x) given g(x). What
about higher iterates, such as g(3)(x) or g(4)(x)? We could follow the
same procedure. It turns out, as the previous example suggests, that do-
ing so is difficult algebraically and often is not that useful. For example,
the eleventh iterate of g(x) = 2x2 − 3 is given by

g(11) = +2147483648 x32 − 51539607552 x30

+573378134016x28 − 3923452624896 x26

+18475540021248x24 − 63464986902528x22

+164457502212096 x20 − 327851849023488x18

+508055167303680 x16 − 613957375623168x14

+576610919055360 x12 − 416437490221056x10

+226741238065152 x8 − 89984826961920 x6

+24551831324160x4 − 4115586931200 x2

+319384296447 . (2.23)

Quite a mess.5 5I used a computer to figure this out; I
did not do it by hand.Clearly, Eq. (2.23) is, at best, unwieldy. It might be useful in a com-

puter’s brain, but there is not much that humans can do with this—
looking at it does not convey much specific meaning. In contrast, though,
the idea behind g(11) is very simple: give me a number x and apply g to
it eleven times.

What I am trying to suggest is that the equation for iterates, especially
higher-order ones such as Eq. (2.23), are not that useful or informative.
We will encounter this general phenomenon frequently throughout the
book: there exist many ideas that are precisely mathematically defined,
but which are best thought of in non-algebraic terms.

2.5 Why Iteration?

You may be wondering why we are worrying about iteration. Who
cares, anyway? This is certainly a fair question, and I have several
answers. The first answer might seem like a bit of a cop-out: why
not? Iterating functions is perhaps fun, or is an interesting game or a
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brain-teaser. Mathematics does not necessarily need to justify itself by
appealing to usefulness or the real world. Math can be about puzzles
or games or looking for amusing or surprising patterns. In this line of
thinking, asking “why iteration?” is akin to asking “why chess?” or
“why crossword puzzles?”
A second answer is that many systems in the real world can be thought

of as being governed by an equation that is applied over and over. One
example was the population of rabbits on an island, mentioned in Ex-
ercise 1.11 in Chapter 1, where the population of the rabbits next year
is a simple function of the rabbit population this year. Of course no
one really believes the world is this simple—even the world of rabbits
on an island. But perhaps this rabbit function is a reasonable enough
approximation that we can learn something from this approach.
But it is not just about rabbits. The laws of physics themselves can be

viewed as a sort of function. Objects change their state of motion due to
forces acting on them, and these forces are determined by (usually) well
understood rules. So an object is acted upon by a force, and it moves.
It is acted upon by the force again. (The force might be different now,
because the object has moved.) So the object moves. And the force
acts. And the object moves. And all the while it is the same rules, the
same functions, that are at play.66It is important to underscore that iter-

ation is not mere repetition, doing the
same thing again and again. Rather, it-
eration entails a closed loop—doing the
same thing again and again, but using
the output of the previous step as the
input for next step.

Thus, much of physics can be seen as a iterative process: an object
or a bunch of objects have some initial condition or seed. The laws
of Newtonian physics are applied over and over, and the objects end up
somewhere else. This might sound almost disheartening. Is this all there
is to the physical universe in which we make our home? Perhaps. But we
will see that even this arguably over-simplified view of the universe holds
some intriguing surprises. In Chapter 8 I will discuss the Newtonian
worldview in more detail and how the study of chaos—among several
other discoveries—altered our idea of predictability and the implications
of a mechanical universe.
Iterated functions are an example of what mathematicians call dy-

namical systems. A dynamical system is just a generic name for some
variable or set of variables that change over time. There are many dif-
ferent types of dynamical systems—the iterated functions introduced
above are just one type among many. Dynamical systems is now gen-
erally recognized as a branch of applied mathematics that studies prop-
erties of how systems change over time. Scientists and mathematicians
in this field are interested both in general questions about what sorts of
change are typical for different types of systems, as well as applications
to particular systems of physical or biological interest. In this book I
will largely take the former approach and focus on general properties of
dynamical systems. We will begin in the next chapter, where we will
consider different long-term behaviors for iterated functions.



Exercises 23

Exercises

(2.1) Let g be the doubling function. Determine the first
five numbers in the orbit for the following seeds:

(a) x0 = −2
(b) x0 = −0.5
(c) x0 = 0

(d) x0 = 0.5

(e) x0 = 2

(2.2) Let f(x) =
√
x. Determine the first five numbers

in the orbit for the following seeds:

(a) x0 = 0

(b) x0 = 1
2

(c) x0 = 1

(d) x0 = 2

(e) x0 = 4

(2.3) Consider the function f(x) =
√
x.

(a) Complete the following table for f .

x0 9
x1

x2

x3

x4

(b) Determine a formula for f (2)(x). (Hint: it

may help to write
√
x as x

1
2 . A review of

the properties of exponents can be found in
Appendix A.1. )

(c) Determine a formula for f(3)(x).

(d) Determine a formula for f (4)(x).

(e) Determine a formula for f (n)(x), the nth it-
erate of x.

(2.4) Consider the function f(x) = 1
2
x+ 4.

(a) Complete the following table for f .

x0 2
x1

x2

x3

x4

(2.5) Let f(x) = 3x− 1

(a) Calculate f (2)(1) and (f(1))2.

(b) Are the two quantities equal? Should they
be?

(2.6) Consider the function f(x) = (x+ 3)2.

(a) Complete the following table for f .

x0 2
x1

x2

x3

x4

(2.7) Let f(x) = x2. Determine an algebraic expression
for:

(a) f (2)(x)

(b) f (3)(x)

(c) f (n)(x)

(2.8) Let h(x) = 3x− 1. Determine the numerical value
of:

(a) h(2)(1)

(b) h(2)(3)

(c) h(4)( 2
3
)

(d) h(3)(2)

(2.9) Let g(x) = x2 + 1. Determine the numerical value
of:

(a) g(2)(1)

(b) g(2)(3)

(c) g(4)(0)

(d) g(3)(2)

(2.10) Let f(x) = x2− 1. Determine an algebraic expres-
sion for f (2)(x).

(2.11) Let f(x) = 3x− 1. Determine an algebraic expres-
sion for f (2)(x).

(2.12) Let us consider again the rabbit population func-
tion from the previous chapter. The function is
shown again in Fig. 2.2. Call the population func-
tion P . Determine the following:

(a) P (50)

(b) P (2)(75)

(c) P (3)(10)
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Fig. 2.2 The rabbit population on an island next year

as a function of the number of rabbits on the island

this year. See Exercise 2.12.

(2.13) Consider the function f shown in Fig. 2.3. Deter-
mine:

(a) f(−5)
(b) f (2)(−5)
(c) The first four iterates of 0.

(d) The first four iterates of −15.

 0

 3

 6

 9

 12

 15

 18

-20 -15 -10 -5  0  5  10  15  20

f(
x)

x

Fig. 2.3 The function for Exercise 2.13.

(2.14) Consider the function f(x) shown in Fig. 2.4. De-
termine:

(a) The first three iterates of 0.5.

(b) The first three iterates of 2.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

f(
x)

x

Fig. 2.4 The function for Exercise 2.14.

(2.15) � Let g be the squaring function: g(x) = x2.

(a) Calculate the first five iterates of 2.

(b) What do you think happens to g(n)(2) as n
gets large?

(c) Calculate the first five iterates of 1.

(d) What do you think happens to g(n)(1) as n
gets large?

(e) Calculate the first five iterates of 3
4
.

(f) What do you think happens to g(n)( 3
4
) as n

gets large?

(2.16) � Let h be the square root function: h(x) =
√
x.

(a) Calculate the first five iterates of 2.

(b) What do you think happens to h(n)(2) as n
gets large?

(c) Calculate the first five iterates of 1.

(d) What do you think happens to h(n)(1) as n
gets large?

(e) Calculate the first five iterates of 3
4
.

(f) What do you think happens to h(n)( 3
4
) as n

gets large?
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3.1 Dynamical Systems

The iterated functions of the previous chapter are an example of a dy-
namical system, a mathematical system that changes over time. There
are many other sorts of dynamical systems. Some vary continuously
in time, like the altitude of an airplane or the temperature of a cup
of coffee. The height and temperature are continually changing. Iter-
ated functions are discrete, in the sense that they change suddenly at
fixed intervals. There are also dynamical systems where the variable is
something more complicated than a single number that could represent
population, temperature, or altitude. The thing that changes could be
a set of numbers or an entire two-dimensional image.

For the first two parts of this book I will focus exclusively on iterated
functions. These dynamical systems are the simplest to analyze and
conceptualize, yet nevertheless show almost all of the fun and interesting
features that are found in more complicated dynamical systems. We will
encounter some of these other dynamical systems in Part V of the book.
For now, though, let us return to our exploration of iterated functions.

In the previous chapter our main concern was determining the orbit, or
itinerary, for a particular initial condition. For example, for the function
g(x) = 3x2 − 1 and the seed x0 = 1, we have

1 −→ 2 −→ 11 −→ 362 −→ 393131 −→ · · · . (3.1)

This process is straightforward enough, at least if you have a calculator
at hand.

In this chapter we will take a more global, qualitative view. Rather
than asking about the particulars of an orbit, we will ask about its
long-term behavior: do the numbers get bigger and bigger, or smaller
and smaller, or something else? Put another way, rather than just pay-
ing attention to one particular initial condition, we will look to make
statements about a whole bunch—perhaps even all—initial conditions
at once.
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3.2 Dynamics of the Squaring Function

We begin by considering an extended example: the squaring function
f(x) = x2. Let us choose a seed, say 2, and see what happens under
iteration:

2 −→ 4 −→ 16 −→ 256 −→ 65536 −→ · · · . (3.2)

We can see that the numbers are getting bigger. And as we keep squar-
ing, they will keep getting bigger.
The same thing will happen if we use 3 as our seed; square 3, and keep

on squaring, and pretty soon you will have a really big number. In fact,
this will be the case for any seed greater than 1. Any time we multiply
together two numbers, assuming that those numbers are positive and
larger than 1, the result is a larger number. So any seed larger than 1
will get bigger and bigger.
There are a number of equivalent ways of expressing the idea that

a seed gets bigger and bigger. Typically we say that 2 (or whatever
the seed is) tends toward infinity. This indicates that the iterates
grow without bound; there is no limit to how large the orbits become.
We might also say, somewhat more colloquially, that the iterates go

to infinity. One could also say in some contexts that the iterates di-

verge. All of these are equivalent; I will usually use the phrase “tends
to infinity” in this book.11Note that infinity is not a number; it

is a more abstract notion that captures
the idea of unlimited growth. As such,
it does not really make sense to write
x =∞. Instead, one might write “x→
∞ as n gets large” to indicate that the
values of xn keep on growing as n gets
bigger and bigger.

Thus far, we have established that for any seed larger than 1, the
orbit tends to infinity. What about other seeds? If we square a number
between 0 and 1, the number gets smaller. E.g.,(

1

2

)2

=

(
1

2

)(
1

2

)
=

1

4
. (3.3)

If we were to iterate x0 = 1
2 we would get:

1

2
−→ 1

4
−→ 1

16
−→ 1

256
−→ 1

65536
−→ · · · . (3.4)

Or, using decimals instead of fractions:

0.5 −→ 0.25 −→ 0.0625 −→ 0.00391 −→ 0.0000153 −→ · · · . (3.5)

So, numbers that start between 0 and 1 get smaller and smaller, closer
and closer to zero. We thus say that the orbit of 1

2
tends toward zero

or approaches zero.
What about the number zero itself? Zero squared is zero. So if we

iterate zero we do not go anywhere:

0 −→ 0 −→ 0 −→ · · · . (3.6)

We would thus say that 0 is a fixed point because it is unchanged by
the function. Symbolically, f(0) = 0. And what about initial condition
x0 = 1? This is also a fixed point, because 1 squared is 1: f(1) = 1.
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3.3 The Phase Line

We have now figured out what happens to all non-negative initial condi-
tions: if x0 is between 0 and 1, the orbit approaches zero; if x0 is larger
than 1, then the orbit tends toward infinity; and if the initial condition
is 0 or 1, then the orbit is fixed. We can summarize this state of affairs
quite succinctly using a graphical device known as the phase line.
The phase line for the squaring function is shown in Fig. 3.1; the phase

line contains information about what happens to all initial conditions.
We can see that seeds larger than 1 are pushed to the right, toward
infinity. And seeds between 0 and 1 are pushed toward zero. The two
fixed points, 0 and 1, are shown as small circles. For discrete-time
systems such as this, the phase line can be potentially misleading. The
value of the variable x does not slide or flow continuously along the line.
Rather it jumps. For example, when we square 2 using the squaring
rule it jumps immediately to 4. It does not slide along the line, passing
through intermediate values on the way to 4.

10

Fig. 3.1 The phase line for the function

f(x) = x2, for non-negative x. Zero
and 1 are fixed points. Seeds less than
1 approach 0. Seeds greater than 1 tend
toward infinity.

The phase line summarizes in graphical form the qualitative behavior
of the orbits for all initial conditions. By qualitative behavior, I mean
that we can tell if an orbit flies off to infinity, stays put, or gets pulled
toward zero. We cannot get detailed quantitative information from a
phase plot. For example, we cannot use Fig. 3.1 to figure out f (3)(2.2).
But this is not a serious drawback. Often this long-term behavior—the
orbit’s fate—is all that we are interested in. For example, we might
want to know if a population of rabbits on an island dies off, grows
without bound, or stays at some equilibrium value. This information
is usually more important than the particular sequence of population
values that forms the itinerary. This is especially the case if our model
is only approximate or if we cannot measure the value of x accurately.

3.4 Fixed Points via Algebra

We now focus on some methods for finding fixed points of a function. As
discussed above, a fixed point of a function f is an input x that yields
the same output. This sentence can be written as an equation. Let us
denote a fixed point by x∗. Then, the equation for a fixed point is:

f(x∗) = x∗ . (3.7)

We use the symbol x∗ to remind us that Eq. (3.7) is not true in general.
It is only true for some special values of x—namely, fixed points—and
we denote this special value by x∗.
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We can use Eq. (3.7) to solve for the fixed point(s) of a given function.
For example, suppose that f(x) = 7x+ 4. The fixed point equation for
this function is

7x∗ + 4 = x∗ . (3.8)

To find the fixed point, we need to solve for x∗. In other words, we need
to isolate x∗ on one side of the equation. The rules of the game are that
we can manipulate the equation in any way we want, as long as we do
the same thing to each side.22This is not quite true. We cannot

divide both sides by zero. But other
than that, any algebraic operation is
fair game.

Let us start by subtracting x∗ from each side:

7x∗ + 4− x∗ = x∗ − x∗ . (3.9)

Simplifying, this becomes:

6x∗ + 4 = 0 . (3.10)

Now, subtract 4 from each side:

6x∗ + 4− 4 = 0− 4 , (3.11)

to obtain

6x∗ = −4 . (3.12)

Dividing both sides by 6, we get

x∗ = −4

6
. (3.13)

We have thus found our fixed point: x∗ = − 4
6
, or, x∗ = − 2

3
.

We can easily check to see if we have done the algebra right by plugging
back into Eq. (3.8) and seeing if the equation is true.

7
−2
3

+ 4 = −2

3
? (3.14)

Let us multiply each term in this equation by 3.

−14 + 12 = −2 ? (3.15)

Since 12−14 is−2, we see that the equation is indeed true. This confirms
that x∗ = − 2

3 really is a fixed point of f .
In the above examples there were two equations involving the function

f that look similar but have different meanings:

f(x) = 7x+ 4 , (3.16)

and

f(x∗) = x∗ . (3.17)

Equation (3.16) defines the function. It says that “f is the function that
takes x, multiplies it by 7, and then adds 4.” This is true for any x.
Equation (3.17) says that x∗, when used as an input for f , yields x∗
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again. This equation is not true for all x; there are only special values
of x—the fixed point(s) x∗—for which Eq. (3.17) is true.

To summarize, the main point of the above example is that we can
use the fixed-point equation, Eq. (3.7), together with some algebra, to
determine the fixed point. This method will pretty much always work,
as long as the function is not too complex. The function could be such
that using algebra to find the fixed point is forbiddingly difficult, e.g.,
if f(x) = 4x4 − 17x3 + x2 − x + 32. There are some functions which
have a fixed point, but it is impossible to solve for the fixed point using
algebra; graphical or numerical techniques are needed instead.3 Also, 3I will not discuss this case in the text,

but you can explore this phenomenon in
Exercise 3.17 at the end of this chapter.

there is nothing that says that a function has to have a fixed point.
Similarly, there could be functions that have multiple fixed points.

3.5 Fixed Points Graphically

There is also a graphical way to find fixed points. Consider the function
f(x) shown in Fig. 3.2. Take a moment to find the fixed point of f(x)
using this plot. Remember that a fixed point is just a number x such
that f(x) is the same as x. I suggest that you do this now before reading
further.
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Fig. 3.2 A graphical representation of
a function, used to illustrate the process
of finding a fixed point.

You should have found that there is a fixed point around x = 3, since
it appears that f(3) ≈ 3. This is the only fixed point for this function.
For example, 2 is not a fixed point, because f(2) ≈ 2.6.

You probably found the fixed point on the graph by scanning up and
down the horizontal and vertical axes, looking for a point or points on
the curve that have the same x and y coordinates. This search process
can be made much easier by the following trick. In addition to the
function f(x), let us plot the y = x line on the same axes. This is shown
in Fig. 3.3. As you can see, the fixed point, x = 3, that we found by
squinting and searching, occurs exactly when the y = x line crosses the
f(x) curve.
To see why this is, let us think about what the line y = x means.

First, note that there are an infinite number of points that make up this
line. What do all these points have in common? They have the same x
and y value. If we think of y as the output of a function, then the y = x
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line is the graph of a function which has the property that its output is
always the same as the input. In other words, every point on the y = x
line is fixed. Thus, the y = x line draws out for us all possible fixed
points.
So, when the f(x) curve intercepts the y = x curve, we know right

away that that point is fixed—i.e., that the input and the output are the
same. We now have a graphical way to find fixed points of a function if

Fig. 3.3 The same function as in
Fig. 3.2, along with the y = x line. The
line y = x is the thin, straight line. The
fixed point of f(x) occurs when the f(x)
curve crosses the y = x line.
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we have access to the function’s graph. Namely, we draw the y = x line,
and then the fixed points occur where the function crosses y = x.

3.6 Types of Fixed Points

Let us return to the example that we used to start this chapter: the
squaring function f(x) = x2. Recall that there are two fixed points: 0
and 1. These two fixed points are different in character: numbers close
to 1 get pushed away from it, while numbers close to zero get pulled
closer to 0. This is illustrated in Fig. 3.1, which shows the phase line for
f(x) = x2.
This difference is a crucial one. The orbit of 1 is fixed, and so it will

remain at 1 as we iterate the function. However, suppose there is a
slight fluctuation—some small external influence that makes the value
of x deviate slightly from 1. Then, when the function is iterated, the
orbit will either go to zero or tend toward infinity, depending on whether
the fluctuation moves x below or above 1.
Thus, if we are at x = 1, then the situation is like a marble delicately

balanced on the top of an upturned bowl, as sketched in Fig. 3.4. The
marble is at rest—it is at a fixed point. But a small disturbance, such
as a little gust of wind or a slight vibration of the bowl, will lead to the
marble leaving its perch on the top of the bowl (its fixed point), and it
will move to the left or to the right, never to return.

Fig. 3.4 A schematic illustration of an
unstable fixed point. The marble is at
an equilibrium, or fixed, position. How-
ever, a small perturbation will cause
the marble to move away from the fixed
point. This type of a fixed point is also
known as a repellor.

So, fixed points like x = 1 in our example of the squaring function are
classified as unstable. What this means is that if x is somehow moved
away from the fixed point, even a very little bit, the orbit of this new x
will move away from the fixed point. Such a fixed point is also called a
repellor, because nearby orbits are repelled by it.
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On the other hand, the fixed point 0 is very different. Here, if we get
“bumped” off the fixed point, the subsequent orbit moves us back to the
original fixed point. Fixed points with this property are called attrac-

tors or stable. Returning to the marble for a moment, an attractive or
stable fixed point is illustrated in Fig. 3.5. Here, the marble is at the
bottom of a bowl. A small change in the marble’s position will result in
the marble getting pulled back to its original location.

Fig. 3.5 A schematic illustration of a
stable fixed point. The marble is at an
equilibrium, or fixed, position. A small
perturbation will cause the marble to
move back toward the fixed point. This
type of a fixed point is also known as an
attractor.

The distinction between stable and unstable fixed points is an impor-
tant one. In real systems (or computer simulations), one does not expect
to observe or encounter unstable fixed point, for the simple reason that
unstable fixed points do not stick around for long. A tiny bump or a
nudge, and the orbit will move away from the fixed point.

In everyday experience it is very rare that we encounter a marble
perched on an upturned bowl as in Fig. 3.4. It is much more common
to see a marble at the bottom of a bowl, as in Fig 3.5. Actually, one
probably rarely sees marbles in bowls at all, but one can think of the
marbles metaphorically.

Finally, there is another type of fixed point that I should mention. One
could have a fixed point for which it is the case that if one moves away
from the fixed point the resulting orbits neither move away from the
fixed point (as is the case for a repellor) nor back toward the fixed point
(as is the case for an attractor). Such a fixed point is called neutral.
An illustration of a neutral fixed point is shown in Fig. 3.6. We will not
encounter neutral fixed points very often, but it is useful terminology
to know. Note that a neutral fixed point is, in a sense, a type of fixed
point that is in between being stable and unstable.

Fig. 3.6 A schematic illustration of a
neutral fixed point. The marble is at
an equilibrium, or fixed, position. If
the marble is moved to the left or the
right it will neither move back toward
the fixed point nor away from the fixed
point.

To summarize, in this chapter I have introduced a number of key
terms and ideas: stable and unstable fixed points, and the notion that
some orbits tend toward infinity. I also introduced the phase line as a
convenient graphic that summarizes the global behavior of an iterated
function. For the most part, the ideas and terminology of this chapter are
pretty straightforward—the technical meaning of the terms is not very
different from their everyday meaning. Nevertheless, this vocabulary is
quite standard, and we will need it to describe the dynamical systems
to come.

Exercises

(3.1) Consider the square root function, f(x) =
√
x.

(a) Determine the phase line for f(x) for non-
negative x. Explain your reasoning carefully.

(b) Determine all fixed points, if any, of f(x).

(c) What is the stability of these fixed points?

(3.2) Consider the cubing function, h(x) = x3.

(a) Determine the phase line for h(x). Consider
both positive and negative x. Explain your
reasoning carefully.

(b) Determine all fixed points, if any, of h(x).

(c) What is the stability of these fixed points?

(3.3) Find the fixed point(s), if any, of f(x) = 2x− 5.
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(3.4) Find the fixed point(s), if any, of g(x) = 1
2
x+ 4.

(3.5) Find the fixed point(s), if any, of h(x) = x2 − 1.

(3.6) Find the fixed point(s), if any, of f(x) = x2 + 1.

(3.7) Find the fixed point(s), if any, of g(x) = x− 3.

(3.8) Find the fixed point(s), if any, of h(x) = x3.

(3.9) Consider the function g(x) = x+ 2.

(a) Determine the phase line for g(x). Explain
your reasoning carefully.

(b) Determine all fixed points, if any, of g(x).

(c) What is the stability of these fixed points?

(3.10) Consider the function f(x) = 1
2
x− 2.

(a) Show that x = −4 is a fixed point.

(b) Determine the first several iterates of x0 =
−3.9.

(c) Determine the first several iterates of x0 =
−4.1.

(d) What do your answers to the above two ques-
tions let you conclude about the stability of
the fixed point x = 4?

(3.11) Determine all fixed points for the function shown
in Fig. 3.7.

(3.12) Determine all fixed points for the function shown
in Fig. 3.8.

(3.13) (a) Describe a real-life example of a stable equi-
librium or fixed point.

(b) Describe a real-life example of an unstable
equilibrium or fixed point.

(3.14) Draw the graph of a function that has:

(a) no fixed points

(b) two fixed points

(c) thirteen fixed points

(3.15) Draw the graph of a function that has:

(a) one stable fixed point

(b) one unstable fixed point

(3.16) � Consider the following function: f(x) = x2 − 3.

(a) Determine the first several iterates of x0 = 1.

(b) How would you describe the long-term be-
havior of x0 = 1?
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Fig. 3.7 The function for Exercise 3.11. The line y = x

is the thin, straight line.
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Fig. 3.8 The function for Exercise 3.12. The line y = x

is the thin, straight line.

(3.17) � Consider the function h(x) = 2x. Find the fixed
points, if any, for h(x). Graphing the function may
help.
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In this short chapter I will introduce a way to visualize and think about
the orbits of a function. As usual, we begin with an example.

4.1 Examples of Time Series Plots

Consider the square root function, f(x) =
√
x. The orbit of 4 is:

4 −→ 2 −→ 1.4142 −→ 1.1892 −→ 1.0905 −→ · · · . (4.1)

The orbit is approaching 1, as you probably saw in Exercise 3.1 of Chap-
ter 3. Displaying a list of numbers as in Eq. (4.1) is fine, but often a
clearer way to see the behavior of the orbit is via a time series plot.
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Fig. 4.1 A time series plot of the
itinerary of 4 for the function f(x) =√
x. The itinerary approaches the fixed

point at x = 1. Numerical values for
the orbit are given in Eq. (4.1).

Such a plot for the orbit of Eq. (4.1) is shown in Fig. 4.1. On the
vertical axis, we plot the successive values in the orbit: 4.0, 2.0, 1.4142,
and so on. On the horizontal axis we plot time, where the time is taken
to be the number of the “stop” on the itinerary. For example, 1.4142 is
the second stop in the itinerary, so we plot 2 on the horizontal axis and
1.4142 on the vertical axis. Note that the first number in the itinerary
is x0, the starting point, so time is starting at zero and not at 1.
We can also plot several different orbits on the same axes. This is done

in Fig. 4.2, in which I have plotted the orbits for four different seeds:
4.0, 2.0, 0.5, and 0.0625. As we have seen, the square root function has
an attracting fixed point at 1. This can be visualized on a plot such as
that of Fig. 4.2. We can clearly see that the orbits of all these initial
conditions are pulled toward the fixed point. Note that the difference
between orbits shrinks as time moves forward; x values that were once
far apart get closer and closer together.
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Fig. 4.2 A time series plot of the
itineraries for four different seeds for
the square root function. The four
seeds are 4, 2, 0.5, and 0.0625. Note
that orbits are pulled toward the fixed
point, x = 1, and that orbits that are
initially far apart get closer together as
time progresses.
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Let us now consider another example, the function g(x) = − 1
2
x + 2.

The time series for the seed x0 = 4 is shown in Fig. 4.3. Looking at
the figure, we suspect that there is a fixed point near x = 1.3. One
can verify using algebra that there is indeed a fixed point at x = 4

3
; see

Exercise 4.1 of this chapter. The orbit is getting closer to x ≈ 1.3 as it
oscillates around it, so the fixed point is an attractor.

Fig. 4.3 The time series plot for the
seed x0 = 4 for the function g(x) =
− 1

2
x + 2. The itinerary oscillates as it

approaches the attractor at x = 4
3
.

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

x t

Time t

Finally, I should mention that one can go directly from a graph of a
function to a time series plot. The time series plot might be approximate,
but this is all we need to describe the qualitative dynamics of the system.
For example, consider the function whose graph is shown in Fig. 4.4. Let
us choose an initial condition of x0 = 1.4, near the fixed point that occurs
near x = 1.5. Reading successive values off the graph, we obtain

1.4 −→ 1.3 −→ 1.1 −→ 0.8 −→ 0.5 · · · . (4.2)

Plotting this itinerary as a time series plot, we obtain Fig. 4.5
Time series plots can reveal behavior that is richer than that seen in

the two examples considered above, as we will see frequently later in the
book. In the next chapter we shall see how to go more directly from the
graph of a function to a time series plot. In particular, we will learn a
nice graphical technique that allows us to skip the step of writing down
the numbers for the orbit, as we did in Eq. (4.2).
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Fig. 4.4 The graph of a function f(x).
The time series for this function for
x0 = 1.4 is shown in Fig.4.5.
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Fig. 4.5 The time series for x0 = 1.4
for the function f(x) given graphically
in Fig. 4.4.

Exercises

(4.1) Verify algebraically that g(x) = − 1
2
x + 2 has a

fixed point at x = 4
3
.

(4.2) Consider the squaring function, f(x) = x2.

(a) On the same axes, plot the first several ele-
ments of the time series plot for the seeds 0.8,
0.9, 1.1, and 1.2.

(b) What does this plot tell you about the sta-
bility of x = 1?

(4.3) Consider the cubing function, f(x) = x3.

(a) On the same axes, plot the first several ele-
ments of the time series plot for the seeds 0.8,
0.9, 1.1, and 1.2.

(b) What does this plot tell you about the sta-
bility of x = 1?

(4.4) Consider the linear function, g(x) = 2x− 1.

(a) On the same axes, plot the first several ele-
ments of the time series plot for the seeds 0.8,
0.9, 1.1, and 1.2.

(b) What does this plot tell you about the sta-
bility of x = 1?

(4.5) Consider the function, g(x) = −x+ 2.

(a) Sketch the first several elements of the time
series plot for x0 = 0.

(b) Sketch the first several elements of the time
series plot for x0 = 1.

(c) Sketch the first several elements of the time
series plot for x0 = −1.

(4.6) � Consider the function f(x) = x2 − 3.

(a) Sketch the first several elements of the time
series plot for x0 = 1.

(b) How would you describe this behavior?

(4.7) Consider the function f(x) = 1
2
x− 2.

(a) Show that x = −4 is a fixed point.

(b) Determine the first several iterates of x0 =
−3.9.
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(c) Determine the first several iterates of x0 =
−4.1.

(d) What do your answers to the above two ques-
tions let you conclude about the stability of
the fixed point x = −4?
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Fig. 4.6 The function for Exercise 4.8. The line y = x

is the thin, straight line.

(4.8) Consider the function shown in Fig. 4.6.

(a) Determine all fixed points for the function.

(b) Sketch the first several elements in the time
series plot for x0 = 2.8.

(c) Sketch the first several elements in the time
series plot for x0 = 3.2.

(d) What is the stability of the fixed point(s) you
found?
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Fig. 4.7 The time series for Exercise 4.9.

(4.9) A time series plot is shown in Fig. 4.7. What is
the orbit for the seed x0 = 2?
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In this chapter we continue the introduction to discrete dynamical sys-
tems by introducing another tool for visualizing and analyzing iterated
functions. The benefit of this new tool is that it will let us quickly
determine the stability of all of a function’s fixed points.

5.1 An Initial Example

We will start by considering the function shown in Fig. 5.1. Also plotted
in Fig. 5.1 is the line y = x. Recall that fixed points occur where the
y = x line intersects f(x). We thus see that the function in Fig. 5.1 has
fixed points at x = 0 and x = 3.
Suppose we are interested in the orbit of x0 = 1. We can figure this

out from the graph of f(x). The first thing we do is to read f(x0) off
of the graph. Doing so, we find that f(x0) = x1 ≈ 1.7. To get the next
iterate x2, we need to use 1.7 as our next input. So, we find 1.7 on the
x-axis, then follow our eyes up to the function, and see that f(1.7) ≈ 2.3.
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x Fig. 5.1 The graph of a function f(x).

Imagine doing this iteration directly on the graph. We start with x0

as input and move up to get f(1) ≈ 1.7. Trace this out with your finger
or a pen or pencil:1 start at 1 on the x-axis, and then move straight 1I suggest actually doing this as you

read along.up to the function. To iterate, we need to take the output, 1.7, and
use it as the input for the function. So we need to get to 1.7 on the
horizontal axis, as this is where inputs to the function are. Move your
finger straight to the right and then down to 1.7 on the x-axis. Note
that you make your downward turn exactly at the y = x line.
Now that you are at x = 1.7 on the x-axis, move straight up to the

function at around 2.3. We now need to use 2.3 as our input. So, as
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before, move straight to the right and then head straight down to 2.3 on
the x-axis. Note, again, that you made the downward turn exactly at
y = x. Now move straight up to the function to get f(2.3). We see that
we are now at approximately 2.6. Our approximate orbit thus far is

1 −→ 1.7 −→ 2.3 −→ 2.6 · · · . (5.1)

Fig. 5.2 The graph of a function f(x).
The dashed lines show the tracings one
would make to determine the first few
elements in the orbit of x0 = 1, as de-
scribed in the text.
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The tracings that you would make as you use the graph to determine
the first few iterates of x0 = 1 are shown in Fig. 5.2. Take a moment
and confirm again that these tracings—the dashed lines in Fig. 5.2—are
what you follow when iterating using 1 as a seed.

Fig. 5.3 The graph of a function f(x).
The arrows show the tracings one would
make to determine the first few ele-
ments in the orbit of x0 = 1. This fig-
ure is identical to Fig. 5.2, except that
the redundant portions of the dashed
lines have been removed and arrow-
heads have been added.
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Next, note that a portion of the dashed line is redundant. There is
really no need to drop back down to the x-axis every time. Instead, we
can go right from the y = x line to the function f(x). This is shown
in Fig. 5.3. We can clearly see the orbit being drawn toward x = 3.
Evidently 3 is an attracting fixed point.

5.2 The Method of Graphical Iteration

The above example suggests the following general method for determin-
ing the itinerary of a seed x0 for a function f(x).

(1) Start with the seed x0 on the x-axis.
(2) Move up to the function f(x).
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(3) Move horizontally (left or right) to the y = x line.
(4) Move vertically (up or down) to the function f(x).
(5) Repeat steps 3-4 again and again.

This process is a nice quick way to determine an itinerary. Often, by
choosing a few representative initial conditions, we can quickly determine
the qualitative behavior of the dynamics.

When using this method, it is easy to make a mistake and do it “back-
wards.” Remember that you first go to the function, and then the y = x
line. Doing this the other way around will “iterate” the seed backwards
in time instead of forward. After you have drawn the lines for the graph-
ical method, I suggest putting a few arrows on your diagram so that it
is easier to see in which direction the orbit is headed. I have done this
on Fig. 5.3, and it is easy to see that the orbit is being drawn toward
the fixed point at x = 3.
The graphical method described above is not new; it is the exact same

iteration process we have been doing all along. The graphical approach
is just a different representation of the iteration of the last few chapters.
I hope that introducing the process of graphical iteration in some detail
has helped make this clear. It can take a few moments of pondering to
see this connection. If you do not see it right away, try working through
the example again.

5.3 Further Examples

This section contains two more examples of graphical iteration. This
should give you some additional experience with this method. Along
the way I will point out a few of the method’s subtleties.
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Fig. 5.4 The graph of the linear func-

tion f(x) = − 3
4
x − 1. Before proceed-

ing, use this plot to graphically iterate
the seed x0 = 3. The line y = x is the
thin dashed line.

First, consider the function f(x) = − 3
4x− 1 shown in Fig. 5.4. Let us

try using the graphical technique to iterate the initial condition x0 = 3.
Before going on, I suggest using a pencil and trying this out for yourself
on Fig. 5.4.

The result of graphically iterating x0 = 3 is shown in Fig. 5.5. There is
a fixed point where the lines f(x) and y = x intersect. From the graph,
this appears to be at around x = −0.5. Using algebra (see Exercise 5.1),
one finds that the fixed point occurs at x∗ = − 4

7 ≈ −0.571. The orbit
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of 3 gets closer and closer to the fixed point, but moves from one side of
the fixed point to the other while doing so. In Fig. 5.5 the orbit appears
to spiral in to the fixed point.

Fig. 5.5 Graphically iterating the seed
x0 = 3 for the linear function f(x) =
− 3

4
x − 1. The line y = x is the thin

dashed line. There is an attracting
fixed point at x∗ = − 4

7
≈ −0.571. Note

that the itinerary oscillates around the
attracting fixed point as it moves to-
ward it. See also Fig. 5.6.
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Fig. 5.6 A time series plot for the ini-
tial condition x0 = 3 for the linear func-
tion f(x) = − 3

4
x − 1. Compare to

Fig. 5.5. The orbit approaches the fixed
point x∗ ≈ −0.571, oscillating around
it as it does so.
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This oscillatory behavior can also be seen by looking at the time series
plot. Such a plot is shown in Fig. 5.6, in which one can clearly see that
the orbit of x0 = 3 oscillates around the fixed point x∗ ≈ −0.57 while
approaching it. The fixed point x∗ = − 4

7
is attracting, or stable.

The results of graphically iterating a function are sometimes referred
to as cobweb diagrams. The reason for this is that sometimes they
look like cobwebs, as in Fig. 5.5. Although this terminology is moder-
ately widespread, I think it can be somewhat misleading, since not all
graphical iteration processes end up looking like cobwebs. Sometimes
one gets staircases, as was the case in Fig. 5.3. I will not use the term
cobweb diagram, but you might encounter it elsewhere.
As a final example, consider the function shown in Fig. 5.7. This

function has fixed points at x = 1 and x = 0. We will use the graphical
methods of this chapter to determine the stability of x = 1. To do so,
perform graphical iteration for two different seeds, one a little bit larger
than 1, and one a little bit smaller. Before going on, I suggest doing this
yourself on Fig. 5.7.
The result of doing this is shown in Fig. 5.8. We can see that orbits

are pushed away from the fixed point at x∗ = 1. Hence, this lets us
conclude that x = 1 is a repelling, or unstable, fixed point. We can also
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Fig. 5.7 The graph of a function f(x).
We will use graphical iteration to inves-
tigate the stability of the fixed point at
x = 1. Before proceeding, try graphi-
cally iterating two different seeds, one a
little bit larger than 1, and one a little
bit smaller. The line y = x is the thin
dashed line.
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Fig. 5.8 Using graphical iteration to
determine the stability of the fixed
point at x = 1. We can see that orbits
that start close to x = 1 are pushed
away from it. Hence, x = 1 is a re-
pelling, or unstable, fixed point. The
time series plots for the two orbits iter-
ated graphically are shown in Fig. 5.9.

see that x = 0 is an attracting fixed point, and that orbits that start
above x = 1 will tend toward infinity.
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Fig. 5.9 Time series plots for the
two orbits determined graphically in
Fig. 5.8. The fixed point at x = 1 is
unstable, or repelling.

A complementary view of this can be seen in Fig. 5.9, in which I have
plotted the time series for the two initial conditions used in Fig. 5.8.
Again, we can see that x = 1 is repelling, x = 0 is attracting, and that
orbits above x = 1 will tend toward infinity.
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Exercises

(5.1) Verify that the function f(x) = − 3
4
x−1 has a fixed

point at x∗ = − 4
7
.

(5.2) Figure 5.10 shows a plot of the function f(x) =
1.5x(1− x).

(a) Use the plot to determine approximate values
for all fixed points of f(x).

(b) Graphically iterate the seed x0 = 0.1.

(c) Graphically iterate the seed x0 = 0.8.

(d) What do you conclude about the stability of
the fixed point near x = 0.35?

(e) What is the stability of the fixed point at
x = 0?

(f) Use algebra to find the fixed points exactly.
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Fig. 5.10 A plot of f(x) = 1.5x(1 − x), the function

for Exercise 5.2.

(5.3) Consider the function shown in Fig. 5.11.

(a) Choose several initial conditions and graphi-
cally iterate.

(b) What do your results let you conclude about
the stability of the three fixed points?
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Fig. 5.11 The function for Exercise 5.3.

(5.4) Figure 5.12 shows a plot of the function f(x) =
3.2x(1− x).

(a) Use the plot to determine approximate values
for all fixed points of f(x).

(b) Graphically iterate the seed x0 = 0.1.

(c) Graphically iterate the seed x0 = 0.8.

(d) What does this let you conclude about the
stability of the fixed point near x = 0.7?

(e) Use algebra to find the fixed point(s) exactly.
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Fig. 5.12 A plot of f(x) = 3.2x(1 − x), the function

for Exercise 5.4.
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(5.5) Consider the function f(x) = x2 − 3, whose graph
is shown in Fig. 5.13.

(a) Use the graph to determine approximate val-
ues for all fixed points of f(x).

(b) Graphically iterate the seed x0 = 1.

(c) How would you describe this behavior?

(d) Is this behavior stable? To check, try graph-
ically iterating an initial condition near to,
but not exactly at, x0 = 1.

(5.6) Consider the function f(x) = − 3
2
x + 2, whose

graph is shown in Fig. 5.14

(a) Determine the stability of the fixed point by
graphically iterating an initial condition very
near to, but not exactly at, the fixed point.

(b) What does your graphical iteration let you
conclude about the fixed point’s stability?

(c) Determine the fixed point using algebra.
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Fig. 5.13 A plot of f(x) = x2 − 3, the function for

Exercise 5.5.
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Fig. 5.14 The function f(x) = − 3
2
x+ 2, for Exercise

5.6.

(5.7) Consider the function f(x) = x − 2, whose graph
is shown in Fig. 5.15

(a) Choose an arbitrary initial condition and it-
erate it graphically. What long-term behav-
ior do you observe?

(b) What does your graphical iteration let you
conclude about the existence of fixed points
and the long-term behavior of the itinerary?
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Fig. 5.15 The function f(x) = x− 2, for Exercise 5.7.
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In this chapter we will take a systematic look at the different sorts of be-
havior that arise when iterating linear functions—a particularly simple,
and important, family of functions. Our main tool in this investigation
will be the graphical iteration techniques covered in the last chapter. In
so doing we will gain some valuable insights that apply to more than
just linear functions.

Linear functions have the form:

f(x) = mx+ b . (6.1)

Their graph is a straight line. The slope is given bym and the y-intercept
is b. A brief review of linear functions and their graphs can be found in
Appendix A.3.

6.1 A Series of Examples

In this section we will consider a number of different linear functions.
Each such function has at most one fixed point, and we will use graphical
techniques to examine this fixed point’s stability. Our main goal will be
to determine what properties of a line lead to its fixed point being stable
or unstable.

For our first function, let us look at f(x) = 2x− 2. The graph of this
function is shown in Fig. 6.1, along with the y = x line. This function
has a fixed point at x = 2, since the function and the y = x line intersect
here. To investigate the stability of this function, we use the graphical
methods developed in the previous chapter. Specifically, we iterate two
seeds, one on each side of the fixed point. The results of doing this are
shown in Fig. 6.2, where we see that the fixed point, x = 2, is unstable;
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Fig. 6.1 The graph of the function
f(x) = 2x − 2. The thin dashed line
is y = x.
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orbits that start close to it are pushed away. So f(x) = 2x− 2 has one
unstable fixed point at x = 2.

Fig. 6.2 The graph of the function
f(x) = 2x − 2. The thin dashed line is
y = x. Graphical iteration shows that
the fixed point is unstable.
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Let us try another example: f(x) = 2x + 1. This function is plotted
in Fig. 6.3. Examining the figure, we see that there is a fixed point at
x = −1. Graphical iteration shows that this fixed point is unstable;
initial conditions close to the fixed point are pushed away. So, as with
our previous example, the function has one unstable fixed point.

Fig. 6.3 The graph of the linear func-
tion f(x) = 2x + 1. Graphical it-
eration shows that the fixed point at
x = −1 is unstable. Note the similarity
to Fig. 6.2.
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Fig. 6.4 The graph of the linear func-

tion f(x) = 1
2
x−1. Graphical iteration

shows that the fixed point at x = −2 is
stable.
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Let us do one more example. Consider the linear function f(x) =
1
2x − 1, shown in Fig. 6.4. For this function there is a fixed point at
x = −2. Graphical iteration lets us see that this fixed point is stable.
The seeds x0 = −3 and x0 = −1 are both pulled toward the fixed point.
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What is different about the three examples shown in Figs. 6.2–6.4?
What property of the line determines whether the fixed point is stable
or unstable? Note that the functions in Figs. 6.2 and 6.3 both have
unstable fixed points, and they have the same slope. The function in
Fig. 6.4 has a different slope, and its fixed point is stable.

The key feature turns out to be whether or not the slope is greater or
less than 1, because this determines how the linear function intersects
the y = x line—from below or from above. If the slope is greater than
1, then the situation will look like that in Fig. 6.2 or 6.3, and the fixed
point will be unstable, or repelling. On the other hand, if the slope is
less than 1, then the fixed point is stable, or attracting, and the situation
looks like that of Fig. 6.4. This is illustrated schematically in parts (1)
and (2) of Fig. 6.5.

m > 1

-1 < m < 0

(1)

(4)

(2)

(3)

m < -1

0 m < 1

Fig. 6.5 A schematic illustration of the
four main types of fixed points. Part
(1): repelling, or unstable, m > 1; Part
(2): attracting, or stable, 0 ≤ m < 1;
Part (3): attracting, or stable, with os-
cillations, −1 < m < 0; and Part (4):
repelling, or unstable, with oscillations
m < −1.

But what happens if the slope is negative? To investigate this, we
examine f(x) = − 1

2
x − 1, plotted in Fig. 6.6. Note that this is the

same function as that of Fig. 6.4, except that the slope is now negative.
Graphical iteration shows that orbits are pulled toward the fixed point
at x = − 2

3
and that the orbit oscillates from one side to the other of the

fixed point. This can also be seen in Fig. 6.7, in which I show the time
series plot for the orbit of x0 = −3 under f(x) = − 1

2
x− 1.

-4

-3

-2

-1

 0

 1

-4 -3 -2 -1  0  1

f(
x)

x

Fig. 6.6 The graph of the linear func-

tion f(x) = − 1
2
x − 1. Graphical it-

eration shows that the fixed point at
x = − 2

3
is stable, since nearby or-

bits are pulled toward the fixed point.
Note, however, that the orbit oscillates
from one side of the fixed point to the
other as it is getting pulled toward it.
The time series for the seed x0 = −3
iterated graphically here is shown in
Fig. 6.7.
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Fig. 6.7 The time series for the seed
x0 = −3 for the the linear function
f(x) = − 1

2
x−1, shown in Fig. 6.6. The

orbit is being pulled toward the attract-
ing fixed point at x = − 2

3
.
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In general, if the slope of our linear function is negative, the orbits
will oscillate around the fixed point. If the slope is between 0 and −1,
then the fixed point is an attractor, as we saw in Fig. 6.6. However, if
the slope is less than −1, then the fixed point is a repellor. An example
of this can be found in Exercise 6.1.
Thus far we have found four basic behaviors for the fixed point of a

linear function f(x) = mx + b. Each behavior corresponds to different
ranges of values for the slope m:

(1) m > 1: Unstable, or repelling, fixed point.

(2) 0 ≤ m < 1: Stable, or attracting, fixed point.

(3) −1 < m < 0: Stable, or attracting, fixed point. Orbit oscillates
about fixed point.

(4) m < −1: Unstable, or repelling, fixed point. Orbit oscillates about
fixed point.

These four different behaviors are illustrated in Fig. 6.5. Note that
“0 ≤ m < 1” is read, “m is less than one and greater than or equal to
0.” We have not explicitly considered the m = 0 case; you will do so in
Exercise 6.5.

6.2 Slopes of +1 or −1
We have not yet considered what happens for slopes of +1 or −1. We do
so in this section. We will start by considering f(x) = −x+ 3, graphed
in Fig. 6.8. This function has a slope of −1. Graphical iteration reveals
that every initial condition oscillates forever around the fixed point at
x = 3

2 . Orbits are neither drawn toward the fixed point, nor pushed
away. Fixed points that have this property are said to be neutral.
Such fixed points are neither attracting nor repelling.
A time series plot for the seed x0 = 3 is shown in Fig. 6.9. This graph

provides another way of seeing that the orbit oscillates and does not
approach the fixed point. The orbit shown in the figure is periodic,
since it repeats every two time steps. Specifically, we would say that the
itinerary of x0 = 3 is periodic with period 2.
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Fig. 6.8 The graph of the linear func-
tion f(x) = −x + 3. There is a fixed
point at x = 3

2
. Graphical iteration

shows that all initial conditions oscil-
late around the fixed point. However,
the orbit gets neither pulled toward the
fixed point nor pushed away. Such fixed
points are called neutral. The time se-
ries for the seed x0 = 3 is shown in
Fig. 6.9.
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Fig. 6.9 The time series for the seed
x0 = 3 for the the linear function
f(x) = −x+ 3, shown in Fig. 6.8.

Our last case to consider is that of lines with a slope of m = 1. There
are actually two sub-cases to consider. First, if the y-intercept is zero,
then the function is simply f(x) = x. For such a function all points
are fixed! The function f(x) = x simply takes whatever you give it as
input and returns the same thing as output: f(17) = 17, f(3) = 3,
f(0.613) = 0.613, and so on. Hence, any input is a fixed point. The
fixed points are all neutral, since orbits are not pushed away or pulled
toward any fixed points. In fact, for this function the orbits do not go
anywhere—all seeds remain fixed.

On the other hand, consider what happens if the y-intercept is not
zero. As an example, let us consider f(x) = x+7. This function has no
fixed points; there is no number that has the property that adding seven
to it returns the same number. Accordingly, the fixed point equation
for this function f(x) = x has no solutions. All initial conditions will
grow forever and will approach infinity. Exercises 6.6 and 6.7 give you
a chance to investigate this graphically.

To summarize our results for slopes m of 1 or −1:
(1) If m = −1 there is one neutral fixed point. All other points are

periodic with period 2.

(2) If m = 1,

(a) and the y-intercept b = 0, then all points are fixed.

(b) and the y-intercept b �= 0, then there are no fixed points.
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Exercises

(6.1) Consider the function f(x) = −2x+ 3.

(a) Sketch the function.

(b) Find the fixed point from the graph.

(c) Find the fixed point using algebra.

(d) Using graphical iteration, determine the sta-
bility of the fixed point.

(6.2) Consider the function f(x) = − 1
2
x+ 4.

(a) Sketch the function.

(b) Find the fixed point from the graph.

(c) Find the fixed point using algebra.

(d) Using graphical iteration, determine the sta-
bility of the fixed point.

(6.3) Consider the function f(x) = 3x− 3.

(a) Sketch the function.

(b) Find the fixed point from the graph.

(c) Find the fixed point using algebra.

(d) Using graphical iteration, determine the sta-
bility of the fixed point.

(6.4) Consider the function f(x) = 4x.

(a) Sketch the function.

(b) Find the fixed point from the graph.

(c) Find the fixed point using algebra.

(d) Using graphical iteration, determine the sta-
bility of the fixed point.

(6.5) Consider a function with a slope of zero.

(a) Does the function have a fixed point?

(b) If so, what is the fixed point’s stability?

Justfy your answers by showing the results of
graphically iterating such a function.
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Fig. 6.10 The function for Exercise 6.8.

(6.6) Consider a function with a slope of one and a non-
zero intercept such as f(x) = x+ 5.

(a) Sketch the function.

(b) Graphically iterate a convenient seed.

(c) Sketch the time series plot for this orbit.

(d) How would you describe the behavior of this
orbit?

(e) Sketch the phase line for this function.
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Fig. 6.11 The function for Exercise 6.9.
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(6.7) Consider a function with a slope of one and a non-
zero intercept such as f(x) = x− 4.

(a) Sketch the function.

(b) Graphically iterate a convenient seed.

(c) Sketch the time series plot for this orbit.

(d) How would you describe the behavior of this
orbit?

(e) Sketch the phase line for this function.

(6.8) Consider the function shown in Fig. 6.10.

(a) Determine the equation of the function.

(b) Find the fixed point graphically.

(c) Find the fixed point using algebra.

(d) Use graphical iteration to determine the sta-
bility of the fixed point.

(e) Sketch the phase line for this function.

(6.9) Consider the function shown in Fig. 6.11.

(a) Determine the equation of the function.

(b) Find the fixed point graphically.

(c) Find the fixed point using algebra.

(d) Use graphical iteration to determine the sta-
bility of the fixed point.

(e) Sketch the phase line for this function.

(6.10) � Consider the time series shown in Fig. 6.12. This
time series plot was arrived at by iterating a linear
function. Determine this function. The exact val-
ues for the first few iterates are: x0 = 2, x1 = 5,
x2 = 6.5, and x3 = 7.25.
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Fig. 6.12 The time series for Exercise 6.10.

(6.11) � Consider the time series shown in Fig. 6.13. This
time series plot was arrived at by iterating a lin-
ear function. Determine this function. The ex-
act values for the first few iterates are: x0 = −1,
x1 = 4.25, x2 = 2.9375, and x3 = 3.26562.
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Fig. 6.13 The time series for Exercise 6.11.



This page intentionally left blank 



Population Models 7
7.1 Exponential Growth 53

7.2 Modifying the Exponential
Growth Model 56

7.3 The Logistic Equation 59

7.4 A Note on the Importance of
Stability 62

7.5 Other r Values 64

Further Reading 64

Exercises 65

Thus far we have been concerned with generic functions—functions that
are just functions and are not intended to model any particular situation
in the real world. In this chapter we will shift momentarily toward a
more applied context and will consider two families of functions that
are commonly used to model the growth of populations. The latter of
two functions, the logistic equation, will be a central item of study in
subsequent sections of the book.

7.1 Exponential Growth

Let us imagine that a team of biologists visit an isolated, grassy, warm
island in the sea. The biologists have traveled with some of their pet
rabbits. One evening, the rabbits and biologists are romping around
their campsite, and some of the rabbits wander off and are lost. The next
morning, the biologists sail away, leaving some of their rabbit friends
behind. In this way a bunch of rabbits come to live on an island that
was once rabbit-free.

What will happen to the rabbit population over time? It is reasonable
to expect that the rabbit population will grow. Let us try to construct
a mathematical model to describe this situation. To simplify things,
we will imagine that time is discrete: we will keep track of the rabbit
population generation by generation, rather than instant to instant.

To start, let us assume that the population doubles every generation,
and that there are initially three rabbits on the island. Then, the sub-
sequent populations are:

3 −→ 6 −→ 12 −→ 24 −→ 48 −→ 96 −→ · · · . (7.1)

Clearly, the orbit will tend to infinity. The rabbit population will get
larger and larger and larger.

The function that we are iterating in this case is the doubling function:
f(x) = 2x. The function is plotted in Fig. 7.1. Also shown are the results
of graphically iterating the initial population x0 = 3. The itinerary for
this seed was given in Eq. (7.1). The corresponding time series is shown
in Fig. 7.2. As anticipated, we observe that the rabbit population is
growing very quickly.

Because the function f(x) = 2x is so simple, we can determine a
convenient expression for f (n)(x), the nth iterate of x. Usually such a
formula is not of much use, since we are typically interested in the long-
term behavior of an orbit, not the details of particular orbits. However,
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Fig. 7.1 The plot of the function
f(x) = 2x, describing how the popu-
lation of rabbits one year is related to
the population of rabbits the next year.
The input x is the population at one
generation and the output f(x) is the
population at the subsequent genera-
tion. Also shown is the effect of graph-
ically iterating the seed x0 = 3. The
orbit grows without bound; it tends to-
ward infinity.
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Fig. 7.2 The time series plot for the ini-
tial condition x0 = 3 for the doubling
function. We interpret this plot as a
graph of the rabbit population versus
time. The population grows exponen-
tially.
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in this particular instance there is a value to being able to write down
an algebraic expression for how the population is growing over time.
To figure out a formula for f (n)(x), let us start by looking at Table 7.1,

which contains the numerical values of the orbit. I have written numbers
in the right column so as to emphasize that each successive iterate gets
multiplied by two. (This is just a restatement of what it means to iterate
f(x) = 2x; start with a number, and continually multiply it by 2.) This
should make it clear that to get the nth iterate we just multiply our seed
by 2 a total of n times. This is equivalent to multiplying the seed by 2n.

Table 7.1 The orbit of
x0 = 3 for the doubling
function.

x0 3
x1 3× 2
x2 3× 2× 2
x3 3× 2× 2× 2

Thus,

f (n)(x0) = x02
n . (7.2)

In words, this says that if we start with a population of x0, after n
generations the population is x02

n. For example, we saw in Eq. (7.1)
that the fourth iterate of 3 was 48. Accordingly,

f (4)(3) = 3× 24 = 3× 16 = 48 . (7.3)

We can easily generalize this result. Suppose the growth rate is not
necessarily 2, but is instead given by the quantity r. I.e., we have

f(x) = rx , (7.4)

where x is the population at one generation and f(x) gives the popu-
lation at the subsequent generation. The nth iterate of this function is
given by

f (n)(x) = xrn . (7.5)
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This formula can be arrived at by a similar line of reasoning to that
which led to Eq. (7.2).

The quantity r in Eq. (7.4) is often referred to as a parameter.
This is to make clear that it plays a different role than the variable x,
which is the population. The population is changing dynamically as
the function is iterated, while the parameter r remains constant. One
could then start over, change r and ask what effect the change has on
the behavior of population. In general, parameters are variables that
one can change and experiment with, but that remain constant while a
dynamical variable changes.

In any event, Eq. (7.5) says that the population is growing exponen-
tially as it is iterated. The number n of the iterate is interpreted as
time. To make this clearer, we rewrite Eq. (7.5) in the following way:

P (t) = P0r
t , (7.6)

where P (t) is the population of rabbits at time t, and P0 is the initial
population. In words, Eq. (7.6) says that the population at time t is
equal to the initial population times rt. The function P (t) is known
as an exponential function because the variable t is expressed in the
exponent.

Note that Eq. (7.4), which gives the population next year as a func-
tion of this year’s population, is linear. This means that the growth is
constant in the sense that at every time step the population is multiplied
by r. In contrast, the function P (t), which is the function for the tth

iterate—i.e., the population after t years—is exponential. The function
P (t) is a formula for the time series plot for the function f .

Varying the Growth Rate

Before moving on to different models of population growth, let us con-
sider the behavior of our model as we change the value of the growth
rate r. Our basic model is

f(x) = rx , (7.7)

where x is the population at the current generation, and f(x) gives the
population at the next generation. The quantity r is a parameter: a
quantity that we can adjust, depending on the situation we are trying
to model. We can think of a parameter as a knob or dial that we can
turn to tune the model so it best fits the situation at hand.

As noted above, r is the growth rate of the population; r is the factor
by which the population grows every generation. This means that each
generation is obtained by multiplying the previous generation by r. This
leads to exponential growth, as was seen above:

f (t)(x0) = P (t) = x0r
t . (7.8)

The picture here is that the function P (t) gives the population at time
t, given that the initial population was x0. This has several distinct
behaviors depending on the value of r.
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First, as we have seen, if r is greater than one, the population will
grow exponentially. On the other hand, if r < 1, the population will
decrease. For example, suppose that r = 0.9. This means that the
population every generation is just 90% of the previous generation’s
population. Equivalently, we can view the population as decreasing by
10% every generation. For example, suppose that the initial population
is 100. The itinerary for this initial condition is:

100 −→ 90 −→ 81 −→ 72.9 −→ 65.61 −→ 59.05 −→ · · · , (7.9)

and the population tends toward zero.
Finally, if r = 1, then the population does not change from generation

to generation; every point is fixed. The function is given by

f(x) = x . (7.10)

All x are fixed for this function; the input always equals the output.
To summarize, we have considered a population that grows by a fixed

factor every generation. I.e., at each generation the population is mul-
tiplied by some number r to get the new population. This model has
three different behaviors depending on the value of the parameter r:11We will not consider negative r values,

as these do not make sense in the con-
text of our model. If we had a negative
r, it would lead to a negative popula-
tion, which is nonsense.

(1) r > 1: The population grows exponentially.

(2) r = 1: The population remains constant.

(3) 0 ≤ r < 1: The population decays exponentially.

The exponential growth model is important, since it is an excellent
approximation to many natural phenomena. In addition, exponential
growth forms the basis for a slightly more complicated growth model,
to be discussed below, that will serve as the key example for the next
several chapters.

7.2 Modifying the Exponential Growth

Model

The model of the previous section leads to unlimited exponential growth.
If r is greater than one there will be more and more and more and more
rabbits forever. Clearly, this is unrealistic; eventually the population will
level off as the rabbits start to run out of food or space. In this section
we will construct a new model that has the more realistic property that
the population does not grow forever. The result will be an equation
that will be our gateway into the study of chaotic systems.
The basic idea that we want to capture in an equation is as follows.

If there are few rabbits, there will be lots of food for them, and the next
year there will be more rabbits. However, if there are a lot of rabbits,
there will not be enough food to go around. The rabbits will be hungry
and weak, and as a result, in the following generation there will be fewer
rabbits. The population will shrink instead of grow. This decrease in
population when there are too many rabbits is what keeps the rabbit
population from growing without bound.



Modifying the Exponential Growth Model 57

How can we express this idea with an equation? Our starting point is
the model from the previous section:

f(P ) = rP . (7.11)

(I will use P to represent the value of the population here, because later
I will use the variable x to represent something else. So I need to save
x for later use.) I wish to modify this equation to limit the growth
somehow.2 Let us imagine a certain population A at which there are so 2The derivation and discussion that fol-

lows is standard. The version presented
here closely follows that of Blanchard,
Devaney, and Hall (2006, pp. 671–2).

many rabbits that they eat all their food, leading to all rabbits starving,
and hence zero rabbits at the next generation. I will refer to A as the
annihilation parameter. If the population P ever equals A, then the
population is doomed; all of the rabbits will die and P will equal zero
at the next generation.

The annihilation parameter is incorporated into the basic model of
Eq. (7.11) as follows:

f(P ) = rP

(
1− P

A

)
. (7.12)

Let us see what this equation tells us. Suppose that the population P
equals the annihilation value A. We would expect this to lead to a zero
population. Is this the case? Plugging P = A into Eq. (7.12), we obtain

f(A) = rA

(
1− A

A

)
. (7.13)

But A/A = 1, so this becomes

f(A) = rA(1 − 1) . (7.14)

And, since 1−1 = 0, we have

f(A) = 0 . (7.15)

Thus, if P = A, the population is indeed annihilated.
Suppose the population P is small and is not close to the annihilation

value A. In this case, the rabbits are not depleting their food source
much, and so we would expect them to still grow approximately expo-
nentially. Is this the case in our model? Let us look again at Eq. (7.12).
If P is much smaller than A, then P/A is close to zero, and(

1− P

A

)
≈ (1− 0) = 1 . (7.16)

Thus, Eq. (7.12) becomes

f(P ) ≈ rP . (7.17)

So, for small P , this model will give exponential growth, just like our
previous model did.

This model can also be understood graphically. A plot of Eq. (7.12) is
shown in Fig. 7.3. In the graph we can see that if the current population
P equals the annihilation parameter A, then the subsequent population
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Fig. 7.3 A graph of the function

f(P ) = rP (1− P
A
), given in Eq. (7.12).

Note that if P = A, then the popula-
tion at the next generation is zero. Current Population P

Population
Next

P=A

f(P)

will be zero. We can also see that if the current population is zero then
the next population will also be zero. If there are no rabbits, then in the
next generation there will still be no rabbits. In between the extremes
of P = 0 and P = A, we can see the scenario discussed above. Namely,
if there are many rabbits—i.e., P is close to A—at the next generation
there will be fewer rabbits. And if there are few rabbits—P is close to
0—then there will be more rabbits at the next generation.
As a final step in the development of this new model, I will manipulate

Eq. (7.12) to put it in a somewhat more convenient and standard form.
Repeating Eq. (7.12), we have:

f(P ) = rP

(
1− P

A

)
. (7.18)

We are interpreting f(P ) as the next population and P as the current
population. To denote this more explicitly, we can rewrite the above
equation as:

Pn+1 = rPn

(
1− Pn

A

)
, (7.19)

where Pn is the population at generation n, and Pn+1 is the population
at generation n+ 1.
Equation (7.19) depends on A, the maximum possible number of rab-

bits. In general, this could be quite a large number. Also, different
islands will have different values of A, depending on how big the island
is, how nutritious the grass is for the rabbits, and so on. Ultimately, we
are interested in the behavior of the rabbit population given that there
is some limit to their growth. We are not so interested in the exact value
of the doomsday number A, nor are we interested in the particulars of
the rabbits. The goal here is to come up with a generic model for popu-
lations that have some limit to their growth. We are after the simplest
such model so that we can explore its general properties.
With all this in mind, I will divide both sides of Eq. (7.19) by A, for

reasons that should hopefully become apparent soon:

Pn+1

A
=

rPn

A

(
1− Pn

A

)
. (7.20)

At first blush, Eq. (7.20) might look like a mess. But let us define a new
variable x:

x =
P

A
. (7.21)
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In words, x is the population expressed as a fraction of the annihilation
parameter. The variable x is thus always between 0 and 1. For example,
if A = 1000 and there are P = 600 rabbits, x would be 0.6. Using this
new variable x, Eq. (7.20) takes a much simpler form:

xn+1 = rxn(1− xn) . (7.22)

Or, returning to the functional notation that we started with:

f(x) = rx(1 − x) . (7.23)

In this equation x is the current population, expressed as a fraction of
the maximum possible population, and f(x) gives the population at the
next generation. The variable r is a parameter. As we did in the previous
section for the case of exponential growth, we can vary r depending on
the situation we are trying to model. We shall see that Eq. (7.23) has
rather different properties for different values of r.

7.3 The Logistic Equation

Equation (7.23) is known as the logistic equation. It was first introduced
in 1838 by Pierre François Verhulst.3 Over the next several chapters we

3The term “logistic” is something of
a mystery. According to Kingsland
(1995, p. 66), “Verhulst did not explain
his choice of the term ‘logistique’ for his
curve, but in nineteenth-century French
the word referred to the art of calcula-
tion, as opposed to ’theoretical arith-
metic’; it was allied to a type of log-
arithm used for astronomical calcula-
tions. From the context of Verhulst’s
1845 memoir, it is likely that he in-
tended to convey the idea of a calculat-
ing device, from which one could cal-
culate the saturation level of a popu-
lation... .” Regardless of its uncer-
tain origin, the use of the term “logis-
tic” to describe equations of the form
of Eq. (7.23) and growth curves of the
form Fig. 7.7 is ubiquitous.

will use the logistic equation as an exemplar of a chaotic system. In
this section we will begin exploring the surprisingly rich and diverse
behaviors exhibited by this simple equation.
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Fig. 7.4 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 0.8.
The fixed point at x = 0 is attracting.
All populations will eventually die off.
The time series plot for the initial con-
dition iterated graphically is shown in
Fig. 7.5.

Let us start by considering what happens when r is less than 1. Since
we are interpreting r as a growth rate, we would expect that the popu-
lation will decay, just as it did for linear growth, f(x) = rx, when r < 1.
Indeed this is the case. In Fig. 7.4 I have shown the logistic equation,
Eq. (7.23), for r = 0.8. Graphical iteration shows that initial conditions
are pulled toward the fixed point at x = 0. Thus, x = 0 is an attracting
fixed point. This means that the population will die off, as expected.

The time series for the orbit iterated graphically in Fig. 7.4 is shown
in Fig. 7.5. Again, we can see the orbit approaching zero; the population
is dying. Remember that we are measuring the population as a fraction
of the maximum possible population. Thus, a population of 0.8 means
80% of the maximum number of rabbits, not 0.8 rabbits.
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Fig. 7.5 The time series plot for the
initial condition x0 = 0.75 for the lo-
gistic equation f(x) = rx(1 − x) for
r = 0.8. This time series plot corre-
sponds to the orbit graphically iterated
in Fig. 7.4. We can clearly see that the
population dies off.
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Fig. 7.6 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 1.5.
Also shown are the graphical iterates
of the initial condition x0 = 0.1. The
corresponding time series plot is shown
in Fig. 7.7. Note that there is a fixed
point at x = 0, as there was in Fig. 7.4.
However, this fixed point is now re-
pelling. There is a stable fixed point
at x ≈ 0.33.
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Next, consider a growth parameter r that is greater than 1. For this
case presumably the population will not die off. Instead, we might expect
it to grow but then level off. In fact, this model was constructed with
exactly this sort of behavior in mind. Let us see if this is indeed what
occurs. In Fig. 7.6 I have plotted the logistic equation for r = 1.5. I
have also shown the effect of graphically iterating the initial population
x0 = 0.1. The corresponding time series is shown in Fig. 7.7.
As anticipated, we see that the population grows but then reaches

a plateau. For this particular r value the population reaches an equi-
librium at around x = 0.3. (You can verify for yourself using algebra
that the fixed point occurs at exactly x = 1

3
; see Exercise 7.6.) Thus, it

appears that our modification of the exponential growth model has been

Fig. 7.7 The time series for an orbit of
the logistic equation, f(x) = rx(1−x),
for r = 1.5. The corresponding graphi-
cal iteration is shown in Fig. 7.6. There
is a stable fixed point at x ≈ 0.33.
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a success; our new model does not lead to runaway growth, but rather
a population that grows and levels off.
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Fig. 7.8 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 1.5.
Also shown is the graphical iteration of
the initial condition x0 = 0.8. The cor-
responding time series plot is shown in
the Fig. 7.9. This figure is identical to
Fig. 7.6, except that here a different ini-
tial condition is used for the graphical
iteration.
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Fig. 7.9 The time series plot cor-
responding to the graphical orbit in
Fig. 7.8.

What happens, however, if our initial population is above the equi-
librium value? The population might decrease to the equilibrium value,
or possibly it could grow and then cause the population to die off. Fig-
ure 7.8 shows us that it is the former possibility that occurs and not
the latter. Figure 7.8 is identical to Fig. 7.6, except that I have used a
different initial condition: x0 = 0.8 instead of 0.1. We can see that the
population experiences a large decrease in the first generation and then
increases to the equilibrium value around x = 0.3.

Thus, for this parameter value we would expect to observe a stable
population at about a third of the maximum population. Perturbations
such as an unusually harsh stretch of weather or an unusually good crop
of rabbit food might move the population a little bit away from the
equilibrium. So we might observe fluctuations, but we would expect
them to be transient. If we observed a sudden change in the population,
we would take this as an indication that some external influence was
effecting the rabbits. Left to their own devices, the rabbits will quickly
reach a stable population size.

As a final example, let us investigate what happens when r = 3.2. The
growth parameter r is now much larger than in the previous example.
Will this lead to a different equilibrium value? Or will the population
grow so fast that it reaches the “annihilation value” causing it to go to
zero? Or is there some other possibility? Let us find out.
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Fig. 7.10 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 3.2.
Also shown are the graphical iterates
of the initial condition x0 = 0.1. The
corresponding time series plot is shown
in Fig. 7.11. The orbit does not reach
a single equilibrium value. Rather, it
oscillates between two values, x ≈ 0.8
and x ≈ 0.5. The behavior is periodic
with period 2. This period-2 behavior
is stable, or attracting.
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Fig. 7.11 The time series plot for the
graphical iteration shown in Fig. 7.10.
The function is the logistic equation,
f(x) = rx(1− x), for r = 3.2. The or-
bit does not reach a single equilibrium
value. Rather, it oscillates between two
values, x ≈ 0.8 and x ≈ 0.5. The be-
havior is periodic with period 2. This
period-2 behavior is stable, or attract-
ing.
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In Fig. 7.10 I have plotted the logistic equation for r = 3.2 and shown
the results of graphically iterating the initial condition x0 = 0.1. The
corresponding time series is shown in Fig. 7.11. In the time series we
see that the population settles into a cycle of period two; the population
oscillates between two values, one at x ≈ 0.8 and one at x ≈ 0.5. In one
generation there are a lot of rabbits—around 80% of the maximum. The
rabbits eat a lot of the food on the island, and so in the next generation
there is not quite enough food to go around. As a result, there are then
fewer rabbits—around 50% of the maximum. Subsequently, the grass
recovers, there is plenty of food for the rabbits to eat, and in the next
year there are again roughly 80% of the maximum number of rabbits.
And so on.

7.4 A Note on the Importance of Stability

The period-two cycle in Figs. 7.10 and 7.11 is stable. Nearby orbits are
pulled toward these periodic points. Note that this function also has
a fixed point around x = 0.7. However, this fixed point is not stable.
Rather than pulling nearby orbits toward it, the fixed point pushes them
away toward the periodic cycle. We thus would not expect to observe this
fixed point if we were studying a real system. Because it is unstable, a
tiny fluctuation or perturbation will move the orbit off of the fixed point
and it will get pulled in to the cycle of period 2.
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There is a bit of subtlety to this that is worth mentioning briefly. The
fixed point x around 0.7 is, of course, fixed. There is also an x-value—
let us call it x−1—that lands at the fixed point after just one iteration.4 4You can explore this more in Exercise

7.10 at the end of this chapter.Moreover, there are two points x−2 which go to x−1 after one iteration,
and thus hit the fixed point after two iterations. And there are four
points that go to x−2 after one iteration, and thus hit the fixed point
after three iterations.

Following this line of reasoning, one can see that there are, in fact, an
infinite number of initial conditions which will eventually land exactly
on the fixed point x. Given this, does it still make sense to speak of the
fixed point as unstable? Do all initial conditions eventually end up at
x?
Well, just as there are an infinite number of initial conditions that lead

to the fixed point, there are also an infinite number of initial conditions
that lead to the period-2 cycle. In fact, there are infinitely many more
initial conditions that lead to the period-2 cycle than the fixed point.
This can be true even though there are infinitely many points that lead
to the fixed point.

This seems counterintuitive, but I hope this can be made plausible
by the following example. Imagine there is a hail storm and hailstones
are falling on a pointed roof. A hailstone could fall on exactly on the
pointed edge and remain there. There are an infinite number of locations
along the roof point that the hailstones could land. However, it is vastly
more likely that the hailstone will fall on one of the sides of the roof and
then roll down the side. This is so much more likely that we never even
consider the possibility that a hailstone would get stuck on the pointed
roof, even though there are an infinite number of locations along the
roof point that this could occur.

Similarly, there is such a small probability—vanishingly small—that
an initial condition chosen at random just happens to land on the fixed
point after iterating for a while, that we do not really need to consider
this possibility. The hailstone example is not a perfect analogy for this
situation, but it is close enough that I think it gives a good sense of
what is going on. The more mathematical way of saying this is that the
points that land exactly on the fixed point are a set of measure zero.
This basically means that such points do exist, and there may even be
infinitely many of them, but that they nevertheless occur so infrequently
that the probability of observing them is zero. Another way of saying
this is that an initial condition almost surely will not land on a fixed
point. This seems like an imprecise or wishy-washy statement, but in
mathematics it has a precise meaning: it means that something will
occur with a probability of 1.

The main point of this discussion is to again highlight the importance
of stability. Stable, attracting orbits are usually all we are concerned
about when studying the long-term behavior of a dynamical system.
Stable behavior is what is seen in actual experiments, which always
involve a little bit of noise or random variation. And stable behavior is
almost always what one encounters when studying a dynamical system
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using a computer or calculator, as we have done in this chapter and will
do so frequently in the chapters ahead.

7.5 Other r Values

Thus far in our investigation of the logistic equation we have seen three
behaviors. In Fig. 7.4 with r = 0.8 there was an attracting fixed point
at zero; the population eventually dies off. In Fig. 7.6 with r = 1.5,
there was an attracting fixed point at x = 1

3
; the population approaches

1/3 and remains there. And in Fig. 7.10 with r = 3.2 we found a stable
cycle of period two; essentially all orbits are pulled into this cycle of
alternating “over supply” and “under supply” of rabbits.
These three behaviors are just the tip of the iceberg. We shall see

that the logistic equation exhibits many phenomena beyond simple fixed
points and cycles of period 2. You will investigate some of these behav-
iors in the exercises at the end of this chapter, and we will explore these
more fully in Part II of this book.
However, in order to carry out these investigations we will need some

tools more powerful than a hand calculator. We will need to make
use of a computer to iterate the logistic equation and make time series
plots for us. An interface to program that can do this may be found at
http://chaos.coa.edu. This program will let you choose an r value,
the initial population x0, and the number of iterates you would like
plotted. The program will then generate a time series plot. You can also
iterate the logistic equation, or any other function, using a spreadsheet
program.

Further Reading

A standard history of ecology, including a full discussion of the devel-
opment of the logistic model of growth can be found in Kingsland’s
Modeling Nature (1995).
The logistic equation as a model of population growth is a style of

model that aims for qualitative as opposed to quantitative insight. The
aim is to capture in broad strokes some of the essential features of a
population that has some limit to growth. The goal is not necessarily to
make quantitative predictions, nor even to be fully realistic or represen-
tative. The aim is to produce a style of understanding that is akin to
a sketch or caricature as opposed to a detailed photograph. For views
on different styles of modeling in the natural and social sciences, see
(Levins, 1966), (May, 2002), (May, 2004), (Levins, 2006), and (Epstein,
2008).
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Exercises

Exercises 7.1–7.5 concern exponential growth. This is an
extremely important phenomenon in science and mathe-
matics. However, it does not occur again in this text, so
these exercises are not necessary for subsequent chapters.

(7.1) Exponential growth occurs when the factor by
which a quantity increases is constant—i.e., it is
multiplied by the same quantity at each time step.
What if, instead, the same amount was added to
the quantity at each time step? Consider the case
in which a population of rabbits increases by 10
rabbits each generation.

(a) What is the function that corresponds to this
type of growth?

(b) What is the long-term behavior of the orbit?

(c) Let P0 be the initial number of rabbits. Find
a function P (t) that gives the number of rab-
bits as a function of time.

(7.2) Suppose a population of rabbits starts at 50 in 2010
and doubles every year. What is the rabbit popu-
lation in 2020? In what year would there be more
rabbits than there are people?

(7.3) Suppose that the amount of garbage in a dump
doubles every year. After a hundred years the
dump is full. The townsfolk notice the dump is
getting close to full when it is half-way to capac-
ity. In what year does this occur?

(7.4) Suppose you invest some money in a savings ac-
count that earns 4% interest every year.

(a) Write a function that gives the value of your
savings account next year as a function of the
amount in the account this year.

(b) If you invest $5000 in the account, how much
money do you have after one year?

(c) How much do you have after five years?

(d) How much do you have after fifty years?

(7.5) Suppose you want to have $100,000 for a down
payment on a house ten years from now. Today
you can deposit money into a savings account that
earns 5% interest every year. How much do you
need to deposit today so that you have $100,000
ten years from now? How much would you need to
deposit of the interest rate was 3%? How much if
it was 7%?

(7.6) Consider the logistic equation with r = 1.5, as
shown in Figs. 7.6 and 7.8.

(a) Algebraically find all fixed points for this
function.

(b) Estimate the slope of f(x) at x = 1
3
. To

do so, trace a straight line that intersects
the f(x) curve at x = 1

3
such that the

straight line is momentarily parallel (or tan-
gent) to f(x). Then determine the slope of
this straight line.

(c) What does the slope this line suggest about
the stability of the fixed point at x = 1

3
. Is

this consistent with what we see in Figs. 7.6
and 7.8?

(7.7) � Consider the logistic equation f(x) = rx(1− x)
with r = 2.5.

(a) Using a calculator, determine the first three
iterates of x0 = 0.8.

(b) Use the program at http://chaos.coa.edu/
to compute the first three iterates of x0 = 0.8.

(7.8) �� For these exercises use the program at http:

//chaos.coa.edu/. Consider the logistic equation,
f(x) = rx(1 − x). For each of the r values listed
below, do the following:

• Determine the long-term behavior of the sys-
tem. Does the population die off, reach a
fixed point, or reach a periodic point? If the
latter, what is the period?

• Try a few different initial conditions for each
parameter values. Remember that your ini-
tial conditions should always be between 0
and 1. You should find that the behavior
you observe is independent of the initial con-
dition(s) you choose. However, avoid ini-
tial conditions that are simple fractions, like
x0 = 0.5 or x0 = 0.25.

• For each r value, make a rough sketch of the
time series plot.

Here are the r values to try:

(a) r = 0.5.

(b) r = 1.5.

(c) r = 2.8.

(d) r = 3.3.
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(e) r = 3.5.

(f) r = 3.56.

(g) r = 3.835.

(h) r = 4.0.

(7.9) Consider the logistic equation, f(x) = rx(1− x).

(a) Determine an algebraic expression for the
non-zero fixed point. (Your answer will de-
pend on r.)

(b) For what r values is this fixed point positive?

(c) For what r values is this fixed point less than
1?

(7.10) � Consider the logistic equation with r = 3.2, as
shown in Fig. 7.10.

(a) Find the exact value for the fixed point x∗

near x = 0.7.

(b) There are two values which, when acted upon
by f(x), yield the fixed point. One, of course,
is the fixed point itself. But there is another
point, denoted x∗

−1 that lands on the fixed
point after just one iteration.

(i) Sketch the function and illustrate the
point x∗

−1 by graphically iterating and

finding an input value that lands on the
fixed point.

(ii) Use algebra to find x∗
−1 and check that

it is consistent with the point you found
graphically.

(7.11) � Consider the logistic equation f(x) = rx(1 − x)
with r = 3.2. We have seen that for this parame-
ter value the logistic equation has a cycle of period
two. We will use algebra to determine the x val-
ues that make up this cycle. To do so, note that
if a point x∗ is periodic with period two, then it
satisfies the following equation:

f (2)(x∗) = x∗ . (7.24)

In other words, if we start with x∗, apply f to it
twice, we return to x∗.

(a) Determine an algebraic expression for
f (2)(x). It might be easier to not plug in
for r until the very end.

(b) Solve the equation f (2)(x∗) = x∗ for x∗.
Which of your solutions have period two?

(c) How do the two periodic points you found
compare with those shown in Fig. 7.10?
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Thus far this book has mainly been concerned with introducing iterated
functions. Iterated functions are one of the simplest types of dynamical
systems, yet nevertheless show many of the interesting and surprising
features found in more complicated dynamical systems. In the next part
of the book we will continue our study of iterated functions and will en-
counter these more interesting dynamical features, including chaos and
sensitive dependence on initial conditions, known more colloquially as
the butterfly effect. We will be in a better position to understand the sig-
nificance of these phenomena if we pause for a moment and think about
the origins of some of the basic assumptions of science—assumptions
that I will suggest are still with us today.

My goal in this chapter is not to give a thorough historical account of
the development of science. Rather, I aim to highlight a few of the cen-
tral, but sometimes unspoken, ideas or assumptions that science makes
about the world. In subsequent chapters we will consider the extent to
which the study of chaos requires us to reconsider or refine these basic
scientific notions. To do so, it is helpful to have an understanding of the
character of Newtonian physics and classical mechanics. We thus start
by considering the work of Issac Newton.

8.1 Newton and Universal Mechanics

In 1687 Newton published Principia Mathematica. The results in this
book laid the groundwork for much of physics, if not science itself. There
are two general results in the Principia that are especially important for
the goals of this chapter.

First, Newton laid out a theory of motion—what causes objects to
move. This theory is expressed in what are now known as Newton’s
three laws of motion. Of particular interest to us is Newton’s second
law, which states that the motion of an object is determined by the
forces acting upon it:

�Fnet = m�a . (8.1)

The term on the left-hand side of this equation is the net force, the total
force acting on the object. The arrow on top of the F tells us that
force is a vector, a quantity that has a direction in addition to a size.
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It is not a surprise that direction enters into this equation; if I give you
a push, how you move as a result depends on the direction as well as
the strength of my push. On the right-hand side of Eq. (8.1), m is the
object’s mass. And �a is the object’s acceleration, the rate of change of
the object’s velocity. The acceleration is also a vector; as was the case
with force, direction matters for acceleration.
Newton’s second law, Eq. (8.1), tells us why objects move the way

they do—it is because of the forces that act on them. Motion is de-
terministic in the same sense that the iterated functions we have been
studying are deterministic. Newton’s second law is a differential equa-
tion, a relationship between a quantity and its rates of change. So it is
a somewhat different mathematical entity than iterated functions. But
the determinism is the same. Equation (8.1) lets us determine the future
position of an object given its current position and a specification of the
forces acting on it. Similarly, for our iterated functions we can specify
the future values of the function—its itinerary—given knowledge of its
current value and the details of the function that is acting on it.
The second, and in many ways most revolutionary, feature of New-

ton’s Principia is that it put forth the idea that the laws of physics are
universal. In other words, the same rules that can be used to deter-
mine the motion of objects in Cambridge, England, can also be used
in Oxford, Paris, or New York. Moreover, the same rules or laws also
apply to celestial bodies, such as the moon or the sun. Prior to this time
scientists1 believed that the motion of the moon and the planets would1More properly, natural philosophers.

The term scientist did not assume its
modern meaning and gain acceptance
until the early 1800s. For an interesting
history of the word “scientist”, see the
article by Sydney Ross (1962).

follow different laws than earthly objects. Specifically, Newton put forth
this universality when he formulated his law of gravity. Newton showed
that the effect of gravity on a falling apple on earth and the gravitational
pull of the earth on the moon, causing it to revolve around us, both can
be explained or described with the same rule or law. This is now known
as Newton’s universal law of gravitation.
The results in the Principia, Newton’s laws of motion and the law of

universal gravitation, launched the study of mechanics.2 These results,2It was not solely Newton who is re-
sponsible for mechanics. The story
is, of course, considerably more com-
plex. Copernicus, Galileo, Descartes,
Hooke, and Kepler all did crucial work
that Newton drew upon in the Prin-

cipia. Nevertheless, the publication of
the Principia is often taken to mark a
turning point in intellectual history and
the crowning achievement of the scien-
tific revolution.

together with the invention of calculus—a body of mathematical theory
and techniques for understanding quantities that change continuously,
such as the position of an object as it moves through space—are still
studied today in essentially unchanged form. The mechanics and calcu-
lus now learned by physics and engineering students has the same basic
structure as it did in the 1700s. This area of physics, known as classical
mechanics, has been tremendously successful.
Classical mechanics does not hold in all physical situations. For very

small objects, classical mechanics has been replaced by quantum me-
chanics. For very fast objects, those moving at a fraction of the speed
of light, classical mechanics has been replaced by the theory of special
relativity. And for very, very large objects, the size of a star or a galaxy,
Newton’s law of gravity must be modified by general relativity. Yet
for describing the motion of objects of everyday experience, Newtonian
mechanics endures.
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8.2 The Enlightenment and Optimism

In addition to launching the field of physics known as classical mechan-
ics, Newton’s Principia also in many ways was a crowning achievement
of the scientific revolution—the emergence of science and the scientific
method in the 1500s and 1600s. During this time the geocentric view3 3In a geocentric model of the universe

the earth is seen as being at the center
of the world, and all other celestial ob-
jects, such as the sun, moon, and other
planets, revolve around the earth. In
a heliocentric model, the sun is at the
center and the planets revolve around
the sun.

of the world was replaced with the heliocentric, and careful observation
and mathematical analysis became an important part of science. More
generally, the scientific method emerged and solidified, wherein knowl-
edge is objectively generated via repeated observation or experiment,
building on previous results, and expressed within a logical or mathe-
matical framework. Newton’s Principia tied together the previous work
of Copernicus, Kepler, Galileo, and others, into a unified and powerful
theory.

The scientific revolution was followed by the Enlightenment,4 an era 4Some historians argue that there is not
a clear boundary between these two pe-
riods, and that suggesting that there is
boundary oversimplifies a complex his-
tory. I am sympathetic toward this
view, but nevertheless I think it is a
useful way to refer to the period of in-
tellectual history that followed Newton.

spanning the 1700s, characterized by advances in science, a belief in
reason and logic over authority and doctrine, and expanding democracy
and individual rights. During this time, influenced by the ideas put
forth by Newton, a scientific view of the world solidified. The universe
according to Newton is one determined by laws or rules. Objects move
because of the forces that act on them, and we can use Newton’s second
law, Eq. (8.1), to deduce the future positions of objects. In a Newtonian
framework the universe is mechanistic, material, and mathematical.

The world is mechanistic because Newton’s laws explain motion; a
change in motion is caused by a force. In this point of view one pictures,
only somewhat metaphorically, objects as being controlled by gears or
levers; objects interact, collide, and exert forces on each other, but al-
ways obeying the same laws. There is no need for divine intervention,
nor is there any need for chance—just let the universe go, and it will
do its thing and evolve forward in time according to universal physical
laws.

The Newtonian universe is material in the sense that the world was
viewed as being made up of stuff—tangible, real objects. It was argued
that even forces like gravity that appear to act across empty stretches
of space are conveyed by tiny particles, or corpuscles. Moreover, since
the universe is material, its behavior can be predicted or understood.
Things are they way they are for a reason or a cause. The Newtonian
world is mathematical, in that it was viewed that the regularities or
laws that describe or govern the world are mathematical in nature. As
Galileo puts it, “Philosophy is written in this grand book of the uni-
verse, which stands continually open to our gaze. But the book cannot
be understood unless one first learns to comprehend the language and to
read the alphabet in which it is composed. It is written in the language
of mathematics... ” (quoted in Godfrey-Smith (2003, pp. 10–11)). This
view is certainly still dominant in the physical sciences, and is increas-
ingly influential in the biological sciences as well.

Not all situations will be amenable to laws as simple as Newton’s
law of gravity. And the laws may not be exact; even Newton’s law
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of gravity applied to objects on earth has tiny inaccuracies that are
corrected for by Einstein’s general theory of relativity. But the point is
that there are laws; there is a fundamental orderliness to things. The
prevailing view during the Enlightenment—and perhaps today as well—
is that it is the job of science to figure out these laws. Even if we do not
currently understand it, the world is understandable. Phenomena occur
for a reason, and there are laws of nature that have the potential to be
expressed in the language of mathematics. The Newtonian world held
the promise that things could be understood.

8.3 Causality and Laplace’s Demon

The Newtonian universe is one of cause and effect. Objects move for a
reason, according to universal laws. Such a world is said to be determin-
istic; the present state is determined by the past state. And if we know
the current position of an object, and if we know the laws of physics—the
forces that the object is subject to—then we can determine the future
position of the object. Physics is thus predictive; it allows one to make
definite statements about events that have not yet happened. This is
the promise of physics in the Enlightenment. If we measure accurately
enough, and understand the laws and forces of nature, then the future
becomes predictable.
However, extrapolating these ideas one quickly arrives at bit of a puz-

zle. If someone knew the initial position of all the objects in the universe
and the forces and rules that apply to these objects, then this person
could predict the entire future. This idea is succinctly put forth in a
famous passage from Pierre-Simon Laplace, a French mathematician in
the late 1700s and early 1800s. He writes:

We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at
a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is com-
posed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present
before its eyes. (Laplace, 2009).

Such an intellect is now often referred to as Laplace’s demon, although
Laplace himself did not use the term.
One of the issues raised by Laplace is that of free will. If the universe

really is deterministic, if the world is fundamentally material and the
objects of the world obey fixed, deterministic laws, then in a sense the
future has already been written—it is an inevitable consequence of the
way things are today. Nevertheless, we perceive that we as individuals
are capable of making real choices—should I take a break from writing
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this paragraph and eat a cookie, or should I continue on? But perhaps
this choice is an illusion. Depending on one’s disposition, such matters
can be fun to think about, or can be a journey down an abyss of doubt
and despair. However, questions of free will are not the main reason I
bring up Laplace’s idea of determinism.

Instead, what is interesting and important about the Laplace passage
above is that it spells out quite compactly one of the aspirations of sci-
ence: to become as close as possible to the intellect of Laplace’s demon.
Doing so requires three things. First, one needs exact measurements of
the current state of affairs. Second, one needs to know the laws or rules
that the world obeys. And third, one needs sufficient computational
power so as to be able to calculate the future behavior.

Of course, the above is not exactly possible. Certainly the first and
third items can never be fully achieved; there will always be some uncer-
tainty in our measurements, and even modern, fast computers are limited
in what they can calculate. Nevertheless, I think that many scientists—
and non-scientists, for that matter—believe in a modified version of the
vision of determinism articulated by Laplace. Namely, measurement,
knowledge of the laws of nature, and computation enable one to make
good predictions about the future. These predictions are not exact, but
they can be made better with more careful measurement, more thorough
explication of the laws of nature, and with more computational effort.

8.4 Science Today

The optimism of the Enlightenment can seem quaint and even naive.
Today we tend to have a more tempered view of the power of reason
and science to explain the world. Some scientific problems—finding a
cure for AIDS, predicting the path of a hurricane, or even forecasting
next week’s weather—still seem out of reach. And the great scientific
advances of the twentieth century did not prevent the carnage of that
century’s genocides and wars. Here in the twenty-first century, despite
overwhelming scientific evidence of human-caused climate change, there
is little action to prevent climate change from occurring.

Today attitudes toward science vary widely. For that matter, the na-
ture of science varies widely, too. Genetics, astronomy, particle physics,
geology, and ornithology are all generally viewed as science, but the
nature of the work done by scientists in these fields is very diverse.
Nevertheless, I believe that the basic scientific impulse described in the
previous section is still with most scientists and non-scientists. If we
just knew a little more, or could measure things more accurately and
had more data, or if our computers were more powerful, then our ability
to predict and understand and explain would be greater.

For example, weather forecasts of more than a few days are notori-
ously unreliable. At issue is not our understanding of physics, for there
is little doubt that we know the fundamental physical laws that describe
energy and air and moisture in the atmosphere. So presumably what is
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needed are better measurements of the current atmospheric conditions,
and faster computers. With these advances, the thinking goes, it should
be possible to get closer to Laplace’s demon and improve our weather
predictions. We shall see that the phenomenon of chaos does not un-
dermine this basic premise, but it does suggest severe limitations on our
practical ability to make accurate long-term weather predictions.
An additional aspect of our Newtonian legacy is a belief that basic

laws of nature are likely to be mathematical and simple. Newton’s laws
of motion, together with the universal law of gravitation, describe in
a concise and powerful way a breathtaking array of phenomena. The
laws of electricity and magnetism, developed in the 1800s, are similarly
concise. Just four equations—Maxwell’s equations—together with one
additional rule known as the Lorentz force law—accurately describe all
electromagnetic phenomena at scales larger than that of a few molecules.
Of course, just because the fundamental laws of nature are simple does

not mean that the world is simple or predictable. Indeed, complexity and
randomness appear to be all around us. We might ask, then, how this
complexity and randomness arise. One assumption is that complicated
behavior arises when a system is large or complicated. For example,
the turbulent flow of water results from the fact that there are a vast
number of molecules in water, each of which is more or less free to move
independently. In this view, complexity and randomness arise from the
fact that there are an enormous number of constituents in water. It is
a complicated system, and so one might expect complicated behavior.
Conversely, a simple system is likely to have simple behavior. Indeed,
we have seen this in previous chapters; simple iterated functions have
simple behavior. Almost all the orbits we have encountered have either
tended toward a fixed point, or flown off to infinity.

8.5 A Look Ahead

What does chaos have to say about the Newtonian world? How could
randomness arise in a deterministic universe? Does chaos oblige us to re-
vise our mechanistic and deterministic view? Is Newton wrong? Hardly.
We will explore these questions, and more, in the next part of the book
where we will encounter the phenomenon of chaos. We will see that sim-
ple, deterministic systems hold some interesting surprises. Simple de-
terministic dynamical systems can produce behavior that is apparently
random. Such dynamical systems can also produce remarkably complex
and interesting patterns. Simple iterated systems of the sort we have
been studying are not doomed to repetitiveness or bland predictability,
but rather can produce surprise and continual novelty.

Further Reading

This chapter contains just the barest sketch of the origins of science and
the scientific method. For further reading, I recommend the first chapter
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of Peter Godfrey-Smith’s book on the philosophy of science (Godfrey-
Smith, 2003). The essay on causal determinism (Hoefer, 2010) in the
Stanford Encyclopedia of Philosophy is an excellent introduction to the
implications of Newtonian determinism. For a discussion of determinism
and the origins of science in relation to chaos, I recommend the first two
chapters of Ian Stewart’s Does God Play Dice? (2002).
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In the previous chapter I introduced the logistic equation:

f(x) = rx(1 − x) , (9.1)

where x represents a population, expressed as a fraction of the maximum
possible population. Hence, x is always between 0 and 1. The variable
r is a parameter. Thus far we have analyzed orbits for a few different
values of r. In this chapter we will look at this issue more systematically
and in much more detail. What happens as we change r, and how can
we summarize and visualize these changes?

Have you done Exercise 7.8 in Chapter 7? If not, I strongly suggest
that you go back and give it a try. This exercise leads you to discover
some of what I will show you in this chapter, and it will be much more
fun if you get to experience this discovery for yourself.

9.1 Periodic Behavior

We begin by considering a handful of different r values. For each, I
will plot the function and show graphically the orbit of a typical initial
condition. I will also illustrate the long-term behavior of the orbit with
a type of diagram that is similar to a phase line.
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Fig. 9.1 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 0.5.
Also shown are the graphical iterates
of the initial condition x0 = 0.9. The
corresponding time series plot is shown
in Fig. 9.1, and the final-state diagram
is shown in Fig. 9.3.

I will start with r = 0.5. Figure 9.1 shows the orbit of x0 = 0.9 for
the logistic equation with r = 0.5. The population decreases quickly and
approaches zero. There is an attracting fixed point at x = 0. Hence, all
initial conditions will approach 0. If we wait a long time, eventually the
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Fig. 9.2 The time series plot for the
graphical iteration shown in Fig. 9.1.
The corresponding final-state diagram
is shown in Fig. 9.3.
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Fig. 9.3 The final-state diagram for the
logistic equation, f(x) = rx(1−x), for
r = 0.5. Compare with Figs. 9.1 and
9.2. 0 1

population will be at 0. Strictly speaking it will always be a little bit
above zero, but this difference will quickly become imperceptible.
This is illustrated in Fig. 9.3, which can be thought of as a final-state

diagram. I have drawn the possible values for x as a line segment; recall
that x is always between 0 and 1. I have then drawn a dot at x = 0
to indicate that this is the final state of the system. This is similar
to a phase line, however, on this sort of diagram we do not draw any
arrows. All we do is indicate the final state or states of the orbit. Such a
diagram is a succinct summary of the fate of the orbits for a particular r
value. These final-state diagrams will be the key to developing a diagram
that will let us see, all at once, all the different behaviors of the logistic
equation. This will be the topic of Chapter 11. For now, though, let us
continue with our exploration of the logistic equation, one r value at a
time.

Fig. 9.4 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 2.0.
Also shown are the graphical iterates
of the initial condition x0 = 0.05. The
corresponding time series plot is shown
in the Fig. 9.5, and the corresponding
final-state diagram is shown in Fig. 9.6.
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For our next r value, we try r = 2.0. The results are shown in
Figs. 9.4–9.6. We can see that the orbit grows fairly quickly and ap-
proaches a fixed point at x = 0.5. We indicate this with a single dot at
x = 0.5 on the final-state diagram of Fig. 9.6.
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Fig. 9.5 The time series plot for the
orbit shown in Fig. 9.4. The corre-
sponding final-state diagram is shown
in Fig. 9.6.
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Fig. 9.6 The final-state diagram for the
logistic equation, f(x) = rx(1−x), for
r = 2.0. Compare with Figs. 9.4 and
9.5.
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Fig. 9.7 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 3.2.
Also shown are the graphical iterates
of the initial condition x0 = 0.05. The
corresponding time series plot is shown
in Fig. 9.8, and the corresponding final-
state diagram is shown in Fig. 9.9. The
orbit approaches a cycle of period 2.
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Fig. 9.8 The time series plot for the
orbit shown in Fig. 9.7. The corre-
sponding final-state diagram is shown
in Fig. 9.9. The long-term behavior of
the orbit is periodic with a periodicity
of 2.
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Fig. 9.9 The final-state diagram for the
logistic equation, f(x) = rx(1−x), for
r = 3.2. The orbit is pulled toward a
period-2 cycle. Compare with Figs. 9.7
and 9.8.

Next, we try r = 3.2. The results are shown in Figs. 9.7–9.9. This
time, rather than approaching a single value—i.e., an attracting fixed
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Fig. 9.10 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r =
3.5. Also shown are the graphical it-
erates of the initial condition x0 =
0.05. The corresponding time series
plot is shown in Fig. 9.11, and the cor-
responding final-state diagram is shown
in Fig. 9.12.
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Fig. 9.11 The time series plot for
the orbit of Fig. 9.10. The corre-
sponding final-state diagram is shown
in Fig. 9.12. The orbit is drawn to a
cycle of period 4.
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Fig. 9.12 The final-state diagram for
the logistic equation, f(x) = rx(1 −
x), for r = 3.5. The orbit is pulled
toward a cycle of period 4. Compare
with Figs. 9.10 and 9.11. 0 1

point—the orbit approaches a cycle of period 2. This can most clearly
be seen in the time series plot, Fig. 9.8. This period-2 behavior should
not be much of a surprise, as we considered this case in the previous
chapter. On the graphical iteration in Fig. 9.7, the period-2 behavior
manifests itself as the square pattern in the dashed line of the graphical
orbit. The population oscillates between x ≈ 0.52 and x ≈ 0.8. This
is indicated on the final-state diagram of Fig. 9.9 as two dots, one at
x ≈ 0.52 and one at x ≈ 0.8.
Now for something new: let us try r = 3.5. The results of iterating

the logistic equation with this r value are shown in Fig. 9.10. Looking
carefully at the time series plot in Fig. 9.11 we can see that the behavior
is periodic, but this time the period is 4; it takes four iterations for the
population to cycle back. In the long run the orbit values are approxi-
mately 0.50, 0.87, 0.38, 0.83, repeating every four iterates. Accordingly,
the final-state diagram in Fig. 9.12 now has four dots, indicating that in
the long run the system will oscillate among four values.
Continuing our survey of the behavior of the logistic equation for

different r values, we next consider r = 3.56. The results for this r value
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Fig. 9.13 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r =
3.56. Also shown are the graphical
iterates of the initial condition x0 =
0.05. The corresponding time series
plot is shown in Fig. 9.14, and the cor-
responding final-state diagram is shown
in Fig. 9.15.
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Fig. 9.14 The time series graph cor-
responding to the orbit shown in
Fig. 9.13. The corresponding final-state
diagram is shown in Fig. 9.15. The
long-term behavior is periodic with a
period of 8.
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Fig. 9.15 The final-state diagram for
the logistic equation, f(x) = rx(1−x),
for r = 3.56. The long-term behavior of
the orbit is periodic with a period of 8.
Compare with Figs. 9.13 and 9.14.

are shown in Figs. 9.13–9.15. The long-term behavior of the orbit is now
periodic with period 8. It is a little bit hard to see the period-8 behavior.
It looks a lot like period 4. But if you look carefully at the time series
plot in Fig. 9.13, you will see that it actually takes 8 cycles for the orbit
to repeat itself. In Fig. 9.15, we represent this period-8 behavior with 8
dots.

For our final example of this section we consider r = 3.84. The results
for this parameter value are shown in Figs. 9.16—9.18. Here, the orbit
eventually becomes periodic with a period of 3. It takes a fairly long
time for the period-3 behavior to become evident. In the time series
plot, Fig. 9.17, the period-3 behavior is not seen until t = 22. From this
point on, however, the period-3 behavior is fairly clear. The orbit cycles
from 0.15 to 0.49 to 0.96, repeating every three time steps.

Summarizing, we have seen that the logistic equation is capable of a
number of different periodic behaviors. Depending on the r value, we
have found periodicities of 1, 2, 3, 4, and 8. (Note that period 1 is the
same as a fixed point.) This little equation, f(x) = rx(1 − x), can do
quite a bit. What else is the logistic equation capable of? How are the r
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Fig. 9.16 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for 3.84. Also
shown are the graphical iterates of the
initial condition x0 = 0.1. The corre-
sponding time series plot is shown in
Fig. 9.17, and the corresponding final-
state diagram is shown in Fig. 9.18.
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Fig. 9.17 The time series plot cor-
responding to the orbit shown in
Fig. 9.16, and the final-state diagram
is in Fig. 9.18. The long-term behavior
of the orbit is periodic with period 3.
The corresponding final-state diagram
is shown in Fig. 9.18.
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Fig. 9.18 The final-state diagram for
the logistic equation, f(x) = rx(1 −
x), for 3.84. The long-term behavior of
the orbit is periodic with a period of 3.
Compare with Figs. 9.16 and 9.17. 0 1

values related to the periodicities? Is there any order to the sequence in
which the periodicities occur? We will return to these questions in Chap-
ter 11, where we will address them using a clever graphical construction
that serves as a catalog of all the possible phenomena associated with
iterating the logistic equation. As part of this, we will make use of the
final-state diagrams introduced in this section.
For the rest of this chapter we will investigate a new, non-periodic sort

of behavior. To do so, we examine the orbits of the logistic equation for
r = 4.

9.2 Aperiodic Behavior

In Fig. 9.19 I have shown the effects of graphically iterating the logistic
equation with r = 4 for the initial condition x0 = 1. I have not put any
arrows on the graphical iterates, as there is not space on the diagram.
The main point to observe is that there does not seem to be a periodic
attractor—or if there is, it is taking the orbit a very long time to get
pulled into it. A more helpful view is the corresponding time series plot,
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Fig. 9.19 A graph of the logistic equa-
tion, f(x) = rx(1 − x), for r = 4.0.
Also shown are the graphical iterates
of the initial condition x0 = 0.1. The
corresponding time series plot is shown
in Fig. 9.20. The orbit does not appear
to be periodic.
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Fig. 9.20 The time series plot cor-
responding to the orbit shown in
Fig. 9.19. The orbit does not appear
to be periodic.

shown in Fig. 9.20, in which it appears as if the orbit is not periodic.
This is in contrast to the other r values we have looked at, where we were
able to discern the periodic behavior. What is going on in Fig. 9.20?

Perhaps the orbit really is periodic, but it takes a while for the periodic
behavior to set in. This does seem plausible. For example, in Fig. 9.17
we saw that the behavior was periodic, but it took around twenty iterates
for the orbit to reach the period-3 behavior. So to see if the orbit shown
in Fig. 9.20 for r = 4.0 might be periodic I have again iterated the seed
x0 = 0.1. However, this time I have calculated 10, 000 iterates. All of
these numbers will not conveniently fit on a graph, so in Fig. 9.21 I have
plotted only the last 51.
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Fig. 9.21 Time series plot for the lo-
gistic equation, f(x) = rx(1 − x), for
4.0, for the initial condition x0 = 0.1.
Only iterates 9, 950 to 10, 000 are plot-
ted. The orbit does not appear to be
periodic.
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Fig. 9.22 Time series plot for the logis-
tic equation, f(x) = rx(1− x), for 4.0,
for the initial condition x0 = 0.1. Only
iterates 10, 000 to 11, 000 are plotted.
The orbit does not appear to be peri-
odic.
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Figure 9.21 is somewhat surprising. The orbit still does not appear
periodic, even after 10, 000 iterates. Perhaps it is the case that it is
periodic, but that the period is very long. I have been plotting only fifty
points at a time. Maybe the period is longer than fifty, in which case we
would never be able to see the periodicity on such a short time series plot.
So in Fig. 9.22 I have plotted the time series from generation 10, 000 to
generation 11, 000—a total of 1001 generations. It is somewhat hard to
see, but the orbit in Fig. 9.22 still does not appear to be periodic; it
does not seem to repeat or possess any regular pattern.
In fact, it turns out that the orbit of x0 = 0.1 for r = 4 never re-

peats. We could keep iterating forever—literally—and we would never
encounter exactly the same number in the itinerary. Such behavior is
said to be aperiodic. But how can I possibly claim that this is the
case? How do I know that the orbit does not repeat after some su-
per large number of iterates? There are a number of ways to respond to
these legitimate questions and doubts. First, we could ask our computer
program to check if the itinerary ever repeats. For example, we could
iterate the equation for 1 million timesteps. After all these iterations,
the computer could record the current x value, x1,000,000. We could then
keep iterating, and at every step check and see if the current x value ever
returns to x1,000,000. If we did this experiment on a computer, we would
indeed find that the orbit never repeats.
But actually this is not quite true. Computers can only keep track of a

finite number of digits. So decimals that go on forever—and most num-
bers between zero and one are decimals that go on forever—are rounded
off or truncated in a computer’s memory. This means that for a com-
puter there are not an infinite number of numbers between zero and one.
So eventually the numbers have to repeat, because the computer will run
out of new numbers. Thus, the computer experiment I mentioned in the
previous paragraph will not actually work as I claimed.1 Moreover, even

1In fact, it turns out that in some cases
the computer “runs out of numbers”
faster than one would guess. What
happens is that due to the round-
off errors associated with the finite-
precision arithmetic that the computer
does, the orbit starts to repeat surpris-
ingly quickly in some cases. An inter-
esting discussion of this can be found
in Peitgen, Jürgens, and Saupe (1992,
pp. 533–5). if the computer could store an infinite number of numbers, it could not

keep iterating literally forever.



Chaos Defined 85

In general, computers cannot provide air-tight evidence or formal
proofs of statements involving infinities. But computers can provide
very strong evidence in such realms, as is the case here. For the partic-
ular case of the logistic equation with r = 4, there exist rigorous proofs
that the orbit really does never repeat. I am using the word “rigorous”
in the sense that mathematicians use it: a proof or demonstration is
rigorous if it relies on clear, standard mathematical logic, and does not
depend on circumstantial evidence such as that which might be provided
by a computer.

The proof of the aperiodicity of the logistic equation with r = 4 is
beyond the scope of this book; it involves some mathematical techniques
that are likely unfamiliar to most readers. Nevertheless, I hope you will
take my word for the fact that the aperiodicity of the logistic equation
at r = 4 has been rigorously established; this statement has been proved
without the use of computers.2 2Such a proof is a standard part of

most junior-level mathematics courses
on chaos and dynamical systems. See,
e.g., Chapter 15 of Hirsch, Smale, and
Devaney (2004).

Finally, there is the matter of representing this chaotic behavior in
a final-state diagram, as we have done for the periodic behaviors en-
countered previously. But this poses a bit of a conundrum; what do we
mean by “final states” for a system that repeats forever? In practical
terms, one way to think about this is as follows. Imagine construct-
ing the final-state diagram via the following procedure. Start with an
initial condition, and iterate the system for a long time—perhaps one
thousand time steps. Then iterate for, say, 200 more time steps. The
time series plot will bounce up and down, never settling into a periodic
process. So we just record on our final-state diagram these 200 points.
They will most likely entirely fill up the line segment from 0 to 1. This
is illustrated in Fig. 9.23.

0 1

Fig. 9.23 The final-state diagram for
the logistic equation, f(x) = rx(1−x),
for 4.0. The long-term behavior of the
orbit is aperiodic.

9.3 Chaos Defined

The orbits of the logistic equation with r = 4 are said to be chaotic. A
dynamical system is chaotic if it possesses all of the following properties:

(1) The dynamical rule is deterministic.

(2) The orbits are aperiodic.

(3) The orbits are bounded.

(4) The dynamical system has sensitive dependence on initial condi-
tions.

Let us consider each of these in turn. First, by dynamical rule I mean
the rule that determines the orbit of the dynamical system. In this case,
the rule is just the function that iterate. A deterministic function is
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one in which the input determines the output. That is, if you give the
function the same input numerous times, the function will always return
the same value. The logistic equation, as well as all the other functions
we have been working with, is deterministic, as discussed in Section 1.3.
Second, an orbit is aperiodic if it never repeats. The itinerary never

retraces its steps; we keep seeing new numbers. The was the case for the
logistic equation with r = 4. The orbit bounces around forever between
zero and 1, and yet it never repeats.
This leads us to the third condition: the orbits must be bounded.

This means that the iterates do not fly off to infinity; they stay between
an upper limit and a lower limit. For the r = 4 logistic equation, these
limits are 1 and 0. In contrast, consider for a moment the doubling
function, f(x) = 2x. Orbits for this equation are not bounded. For
example, the orbit of 2 is 2 −→ 4 −→ 8 −→ 16 −→ 32 · · · . This orbit
tends toward infinity. This orbit is aperiodic; it clearly will never repeat.
But this sort of non-repeating is not very interesting. If an orbit flies
off to infinity it is not at all surprising that it does not repeat. In any
event, for an orbit to be chaotic it must be bounded. This “fine print”
serves to exclude unbounded orbits like those of f(x) = 2x from being
considered chaotic.
The fourth, and final, criterion is that the dynamical system display

sensitive dependence on initial conditions (SDIC). This is a phe-
nomenon that we have not yet encountered and which will be the topic
of the next chapter. In brief, though, a system that has SDIC has the
property that a very small change in the initial condition will lead to a
very large change in the orbit in a relatively short time. sensitive depen-
dence on initial conditions is more colloquially known as the butterfly

effect.

9.4 Implications of Aperiodic Behavior

Let us pause for a moment and think about what aperiodicity might
mean. When we iterate a function we are doing the same thing over and
over again. So it is reasonable to expect that the results of repeating this
action—i.e., the orbit of the seed—will themselves repeat. However, for
the logistic equation this turns out to not be the case. We can keep doing
the same thing forever and never see the same thing twice. Speaking only
somewhat metaphorically, the repetitive sameness of iteration almost
paradoxically gives rise to continuous novelty and surprise.
Suppose that instead of iterating a function, you observed something

like Fig. 9.21 or 9.22 as the result of an experiment. Perhaps you ob-
tained these measurements by counting rabbits on an island or keeping
track of daily stock prices. If you saw such data you might presume
that the underlying process governing the phenomena was very compli-
cated. Or, you might assume that there was not any rule governing the
situation at all, positing instead that the rabbits or stock returns are a
random process—their future behavior is a matter of chance. The people
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or rabbits are behaving randomly, figuratively tossing coins to determine
their next steps, and so the next value in the time series is not deter-
mined by the previous value, but instead is determined, at least in part,
by chance. Or it could be that the system is being strongly affected
by outside noise, such as the weather or other unpredictable external
events.

But the study of chaos shows us that a non-repeating and apparently
random phenomenon need not be governed by complicated equations,
nor is it the case that the system is must be driven by external noise or
randomness. Rather, apparent randomness and unpredictability can be
generated by a simple, deterministic rule such as the logistic equation.

Note that the phenomenon of aperiodicity and the apparent random-
ness of the time series do not violate the basic idea of Newtonian deter-
minism, discussed in the previous chapter. The behavior of the orbit in
the logistic equation with r = 4.0 is most certainly governed by a deter-
ministic rule. What is a surprise, however, is that a simple deterministic
rule of this sort can produce such complicated behavior.

For a system to be chaotic in the mathematical sense, it must have
sensitive dependence on initial conditions (SDIC), the fourth criterion
in the list in the previous section. In the subsequent chapter we will
explore SDIC in detail. We will see some visual examples, and will also
define SDIC more carefully. Then, in Chapter 11 we will return to our
survey of the logistic equation.

Exercises

For Exercises 9.1–9.6 you will need to use a program that
can iterate the logistic equation for different values of r
and produce a time series plot. This will let you make
plots similar to those that are in this chapter. You can
find such a program at http://chaos.coa.edu/. Choose
the logistic orbits option. You could also use a spread-
sheet to perform these calculations.

(9.1) Use a calculator to calculate the first four iterates
for the seed x0 = 0.3 for the logistic equation with
r = 4.0. Use the logistic orbits program to do
the same thing and verify that they give the same
results.

(9.2) Use a calculator to calculate the first four iterates
for the seed x0 = 0.1 for the logistic equation with
r = 2.5. Use the logistic orbits program to do
the same thing and verify that they give the same
results.

(9.3) Use the logistic orbits program to experiment with
different r values. Find at least one additional r

value (besides r = 4) that has an aperiodic orbit.

(9.4) Use the logistic orbits program to determine the
range of r values for which the long-term behav-
ior of the orbits is periodic with period 2. (Recall
that we have seen that r = 3.2 is one parameter at
which we saw period-2 behavior.)

(9.5) Use the logistic orbits program to determine the
long-term behavior of the following r values. For
each r value determine as best you can if the or-
bits are periodic or aperiodic. If they are periodic,
state the period:

(a) r = 2.9

(b) r = 3.4

(c) r = 3.61

(d) r = 3.628

(e) r = 3.7

(f) r = 3.92
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(9.6) � Use the logistic orbits program to do the follow-
ing.

(a) For the logistic equation with r = 4.0, make
a plot of the first thirty iterates of x0 = 0.1.

(b) Now make a plot of the first thirty iterates of
x0 = 0.11.

(c) Do your two time series plot differ signifi-
cantly? If so, at what iterate does the dif-
ference become noticeable?

(d) Now make a plot of the first thirty iterates
of x0 = 0.1001 and compare to the time se-
ries plot for x0 = 0.1 Do your two time series
plot differ significantly? If so, at what iterate
does the difference become noticeable?

(9.7) The logistic equation is not used for r values above
4.0. If r is above 4.0 the model of population
growth no longer makes sense. To see why, we will
consider the logistic equation with r = 5.0. This
function is plotted in Fig. 9.24.

(a) Choose a few initial conditions and iterate
them graphically.

(b) What is the long-term fate of these orbits?

(c) What does this let you conclude about the
model for r = 5.0? Why does this model not
make sense if used to describe the growth of
a population?
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Fig. 9.24 A plot of f(x) = 5x(1− x), the function for

Exercise 9.7.

(9.8) Compute by hand the first several iterates of x0 =
0.50 for the logistic equation with r = 4.0. How
does the orbit you calculated compare with the or-
bit shown in Fig. 9.20? What is going on? Explain.

(9.9) Compute by hand the first several iterates of x0 =
0.25 for the logistic equation with r = 4.0. How
does the orbit you calculated compare with the or-
bit shown in Fig. 9.20? What is going on? Explain.
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In this chapter I discuss in more detail the phenomenon of sensitive
dependence on initial conditions (SDIC), the fourth criterion listed in
the definition of chaos in the previous chapter. The main idea of SDIC
is that small changes in the initial condition can make a large difference
in the orbit’s behavior. In this chapter we explore the idea of SDIC with
considerably more detail and precision.

10.1 Stable Periodic Behavior
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Fig. 10.1 The time series diagram for
the logistic equation, f(x) = rx(1−x),
for r = 3.2. The itineraries of the initial
conditions 0.15 and 0.5 are shown. The
difference between these two orbits is
plotted in Fig. 10.2.

I will begin with an example of a function that does not have SDIC.
Let us return to the logistic equation, f(x) = rx(1−x) with r = 3.2. We
have seen previously that the orbits are periodic for this r value. And I
have argued that this behavior is attracting; different orbits get pulled
closer to the period-2 orbit. This is illustrated in Fig. 10.1, which shows
the time series plots for two different initial conditions, 0.15 and 0.5.
I will denote these two initial conditions as x0 and y0, and subsequent
points in the time series as xt and yt. This is fairly standard notation,
but could be potentially confusing. The symbol y0 does not denote
a coordinate position on the x-y plane. Rather, it simply denotes a
different initial condition. In any event, in Fig. 10.1 we see that the two
different orbits are pulled together, and that both are approaching the
period-2 attractor.

Figure 10.2 provides a new way to see that orbits are getting pulled
toward the attractor. This figure plots the difference between the two
time series: xt − yt. When the two orbits are far apart, this quantity
is large. And when the orbits are close, xt − yt is close to zero. So, in
Fig 10.2 we see that xt − yt gets closer to zero as time goes on. The
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quantity xt − yt can be positive or negative, depending on which of the
two orbits is larger. However, the difference between the two orbits
approaches zero. This is an indication that the orbits are getting closer
together, as we saw in Fig. 10.1.

Fig. 10.2 The difference between the
two time series plotted in Fig. 10.1.
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10.2 Sensitive Dependence on Initial
Conditions

Let us repeat this experiment for r = 4, where we have seen that the
behavior of the orbits is aperiodic. If we start with two nearby initial
conditions, will their orbits get drawn closer together? In Fig. 10.3 I
have plotted the time series for the two initial conditions x0 = 0.4 and
y0 = 0.41. The orbit for the seed x0 = 0.4 is shown with square points
connected with a solid line. The orbit of y0 = 0.41 is shown as triangles
connected with a dashed line. In the figure we that the two orbits start
close together but depart noticeably by t = 5. This can also be seen

Fig. 10.3 The time series diagram for
the logistic equation, f(x) = rx(1−x),
for r = 4.0. The itineraries of the initial
conditions x0 = 0.4 and y0 = 0.41 are
shown. The difference between these
two orbits is plotted in Fig. 10.4.
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in Fig. 10.4, which plots the difference between the two orbits shown in
Fig. 10.3. The difference between the two plots is close to zero for the
first four or five time steps. But by time t = 7, the difference is larger
than 0.5.

So the behavior of the two orbits for r = 4.0 is the opposite of what
we saw for r = 3.2. For r = 3.2 (Figs. 10.1 and 10.2) orbits are pulled
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Fig. 10.4 The difference between the
two time series plotted in Fig. 10.3.

toward an attractor of period 2, whereas for r = 4.0 (Figs. 10.3 and
10.4) orbits are pushed apart, and the long-term behavior is aperiodic.

The fact that nearby initial conditions soon end up far apart has
some significant implications. Suppose that we are interested in actually
using the logistic equation to predict the value of a rabbit population
on an island in the years to come. You go to the island, count the
rabbits, and determine that the population is 0.41. However, the actual
rabbit population is 0.4.1 Perhaps you accidentally counted a few rabbits 1Remember that we measure the pop-

ulation as a fraction of the maximum
possible number of rabbits. So a pop-
ulation of 0.4 means that the popula-
tion is at 40% of its maximum, not that
there are 0.4 rabbits.

twice—rabbits do tend to hop about, and a lot of them look alike. In
any event, your measurement error is 2.5%; the value you measure differs
from the true value by 2.5%.

This error seems fairly small. However, Fig. 10.4 shows us this error
can make a big difference quite quickly. This figure shows a plot of
the difference between the actual population, given by the orbit of 0.4,
and our predictions using the logistic equation—i.e., the iterates of the
seed 0.41. Thus, Fig. 10.4 can be interpreted as a plot of our prediction
error: the difference between reality and our model. It would appear
that our ability to accurately predict the population is rather limited.
After just seven generations our prediction is off by around 0.5, 50% of
the maximum number of rabbits.

Being able to predict only seven generations into the future is perhaps
a little disappointing. This disappointment is all the more pronounced
when we note that in this admittedly artificial example, we assume that
we know exactly the dynamics of the situation. That is, in this scenario
our model of the population dynamics, f(x) = 4x(1− x), is exactly the
rule that governs the real population. In a more realistic setting, our rule
for the population dynamics likely would only be approximate. There
also may be external influences not accounted for in the model that will
introduce further errors. Here, however, we see prediction errors that
are due entirely to our initial measurement errors. It is striking that our
ability to predict into the future is so limited, without even taking into
account complications such as noise or external influences.

Given that measurement inaccuracy is the root of our trouble, we
could return to the island and count the rabbits again, this time taking
extra care to count every rabbit once and only once. Let us imagine that
we do an excellent job of counting, but that we are not quite perfect. We
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measure 0.400001 while the exact value is still 0.4. This is a tiny error—
just 0.00025%. We anticipate that this will improve our predictions.
But by how much?

Fig. 10.5 The time series diagram for
the logistic equation, f(x) = rx(1−x),
for r = 4.0. The itineraries of the initial
conditions x0 = 0.4 and y0 = 0.400001
are shown. The difference between
these two orbits is plotted in Fig. 10.6.
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In Fig. 10.5 I have plotted the time series for the initial conditions 0.4
and 0.400001. As in Fig. 10.3, the orbit of the seed x0 = 0.4 is shown
with square points connected with a solid line. The orbit of y0 = 0.41
is shown as triangles connected with a dashed line. The two orbits are
almost exactly on top of each other for around fifteen generations; the
squares hide the orbit plotted with triangles. However, after t = 18 the
two orbits depart, and the behaviors are quite different. This can be seen
more clearly in Fig. 10.6, which shows the difference between the orbits.
Recall that we can interpret this difference as our prediction error. Thus,
Fig. 10.6 tells us that our predictions will now be reasonably accurate
for around eighteen generations.

Fig. 10.6 The difference between the
two time series plotted in Fig. 10.5.
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At first, it might seem like this has been a success. By increasing
our measurement accuracy we extended our predictions from six years
to eighteen. We have improved our forecasting range by three times.
However, in order to do so we had to improve our measurement accuracy
by 10, 000 times. If we roughly equate measurement accuracy with how
hard we would need to work to make the measurement, then what this
tells us is that we have increased our work by 10, 000 times but only
increased our prediction range by three times. Viewed in this light,
this is rather disappointing. An analogy may drive this home: imagine
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working 10, 000 times harder at a job but only earning three times as
much money.

Moreover, it is almost impossible to measure anything to the accuracy
of 0.00025%, at least using readily available measuring tools. Even with
specialized equipment, it is difficult to perform measurements to this
degree of accuracy. Doing so would entail, for example, measuring the
height of a typical human to within around 0.00004 or 4× 10−5 meters.
This is roughly the size of a large bacterium. Even if we could somehow
perform such an accurate measurement, it does not even seem mean-
ingful to speak of height as being specified this exactly. We shrink and
expand a little over the course of a day, and a single strand of hair has
a thickness of around 0.0001 meters.
The basic lesson is that systems that have SDIC are impossible to

accurately predict for anything other than the short-term. Increasing
the accuracy with which we the measure the initial condition helps, but
eventually the small inevitable small inaccuracies in our initial measure-
ment will cause our prediction to be way off. Thus, systems that are
chaotic are, as a practical matter, unpredictable for anything beyond a
very short time horizon. Note that this unpredictability occurs despite
the fact that the equation governing the orbit is completely determin-
istic. For this reason, chaotic systems are a deterministic source of

randomness.2 2In light of SDIC, you may at this
point wonder what “randomness” re-
ally means. This is discussed in Chap-
ter 14.

The phenomenon of sensitive dependence on initial conditions is more
colloquially know as the butterfly effect. The idea is that the weather
is a chaotic system, and hence a small disturbance, such as the flapping
of a butterfly’s wings, could lead to large changes in the path of the
orbit. In the context of the weather, this changed orbit could make a
difference in the path of a tornado. For a fascinating, short history of
the origin of the term “butterfly effect”, see (Hilborn, 2004).

In everyday life we are perhaps used to the notion that there are some
circumstances in which small perturbations in a system can lead to large
changes in its behavior. But this is not necessarily sensitive dependence
on initial conditions in the sense it is used by mathematicians and physi-
cists studying chaos. For a system to have SDIC, essentially every initial
condition3 must have the property that a small perturbation leads to a 3 Why do I say “essentially every” ini-

tial condition instead of “every” initial
condition? The reason is that even in
a chaotic system with aperiodic orbits,
there are still periodic orbits. These or-
bits are unstable, and so we would not
typically observe them, as discussed in
Section 7.4. Because of the presence of
these unstable periodic orbits, it is not
the case that every pair of orbits will di-
verge. However, because these periodic
orbits are very rare, it is vanishingly
unlikely that we will observe them. A
more precise definition of SDIC that
avoids the difficulties associated with
unstable periodic points is given in the
next section.

large change in the long-term behavior. In a sense, it is as if every iterate
is like a marble perched unstably on the top of an upturned bowl. At
every step, a small change in the orbit will lead to large changes further
down the line.

10.3 SDIC Defined

In the previous section I discussed SDIC at some length and illustrated
this phenomenon with a variety of plots. However, this has largely been
a qualitative discussion. In this section my goal is to define the notion
of sensitive dependence on initial conditions more precisely and quanti-
tatively. I will begin by stating a standard mathematical definition for
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SDIC; subsequently I will interpret the statement in a more intuitive
way.
Let f be a function, and let x0 and y0 be two possible initial conditions

for f . Then f has sensitive dependence on initial conditions if there is
some number δ such that for any x0 there is a y0 that is not more that ε
away from x0, where the initial condition y0 has the property that there
is some integer n such that, after n iterates, the orbit of y0 is more than
δ away from the orbit of xo. That is, |xn − yn| > δ.
This is quite an abstract statement. It will become clearer with a

concrete example. The basic idea is this. Suppose you choose some
error threshold δ. For the sake of concreteness, let us use δ = 0.6.
Then you choose some initial condition, perhaps x0 = 0.4. Lastly, you
choose an initial error ε—let us imagine you choose ε = 0.05. Then,
you challenge me to do the following: find some point that is no further
than ε away from x0 such that its orbit eventually gets δ away from the
orbit of x0. In this example, my challenge would be to find an initial
condition y0 between 0.35 and 0.45 such that its orbit eventually gets
0.6 away from the orbit of x0 = 0.4.

Table 10.1 The orbit of two nearby
initial conditions, x0 = 0.400 and
y0 = 0.440, for the logistic equation
with r = 4.0. The orbits eventually
get further than δ = 0.6 apart.

n xn yn |yn − xn|
0 0.400 0.440 0.040
1 0.960 0.986 0.027
2 0.154 0.057 0.097
3 0.520 0.214 0.306
4 0.998 0.673 0.325
5 0.006 0.880 0.874

For a parameter value for the logistic equation, such as r = 4, it is not
difficult to find an initial condition y0 that meets the criteria. A little
bit of experimenting determines that y0 = 0.44 does the trick. This is
illustrated in Table 10.1, where I list the orbit for 0.4 and 0.44, and also
the distance between these two orbits. One sees that by the fifth iterate
the distance between them is larger than 0.6.
The definition for SDIC says that, if a function has SDIC then I will

always be able to meet a challenge of this sort. Whatever you choose
for x0, δ, and ε, I will be able to find an initial condition y0 that is not
farther than ε away from the initial condition x0, yet nevertheless ends
up more than δ away from the orbit of x0.

4 For a system to be chaotic,4There is an additional condition
placed on δ. The error threshold δ can
not be so large than in order for it to be
exceeded the orbit would have to leave
the region that bounds x. For the lo-
gistic equation, x is always between 0
and 1, so δ needs to be less than 1.

it has to mix up and scramble orbits so much that nearby any initial
condition there are other initial conditions that get far away from it.
Here is another way to see how a chaotic system pulls nearby orbits

apart. In Fig. 10.7 I have plotted 1000 different orbits for the logistic
equation with r = 4.0. All the initial conditions are initially in a very
small interval; they are between 0.395 and 0.405. Upon iterating, the
small interval grows. Due to sensitive dependence on initial conditions,
the orbits spread out. This continues, and quite soon the orbits, initially
confined to a small region 0.01 wide, now can be found all along the full
interval. On Fig. 10.7 I have also plotted the time series for the orbit
that started exactly at 0.40. One can see that the orbits get mixed up
very quickly. The nearby orbits do not stay nearby for long.
In contrast, let us look at what happens for a non-chaotic system. In

Fig. 10.8 I have again plotted 1000 orbits, this time for the parameter
value r = 3.2, for which the logistic equation has an attracting cycle of
period 2; all orbits oscillate between roughly 0.80 and 0.51. Initially, the
orbits are spread out along the entire interval. But fairly quickly they
get pulled toward the attractor, and by the fortieth iterate all orbits
are essentially on the period-2 cycle. This dynamical system does not
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Fig. 10.7 One thousand different or-
bits for the logistic equation with r =
4.0. The 1000 different initial condi-
tions are uniformly spaced from 0.395
to 0.405. I have also included the time
series plot for the orbit that starts ex-
actly at 0.400. The orbits are initially
bunched together but they very quickly
spread apart. By the eighth orbit, the
initial conditions, which were originally
confined to an interval just 0.01 wide,
have expanded to fill the entire interval.
(Based on Fig. 9 from Smith (2007).)

show sensitive dependence on initial conditions. Orbits are pulled closer
together, rather than further apart.
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Fig. 10.8 One thousand different or-
bits for the logistic equation with r =
3.2. The 1000 different initial condi-
tions are uniformly spaced from 0 to 1,
and subsequently are pulled toward the
period-2 attractor. By the fortieth it-
erate, all orbits are on one of the two
period-2 points. I have included the
time series plot of just one orbit for
t > 38 to illustrate the period-2 nature
of the long-term behavior. (Based on
Fig. 9 from Smith (2007).)

Sensitive dependence on initial conditions is usually not difficult to
observe with a computer; one just tries iterating nearby orbits and looks
to see if they get pushed apart or pulled together. Rigorously proving
that a dynamical system has SDIC, however, can be quite difficult. It
has been proven that the logistic equation with r = 4.0 has SDIC, but
this has not been proven for other chaotic r values. The proof of SDIC
for r = 4.0 is a fairly standard topic in more advanced dynamical systems
courses, but is beyond the scope of this text.

10.4 Lyapunov Exponents

If a dynamical system has SDIC, we know that two orbits will eventually
get far apart. However, we do not know how fast they diverge. How long
do we have to wait for the two orbits to get far apart? Five iterations?
Ten? One hundred? In the definition of SDIC, there is nothing specified
about how large n has to be before |xn−yn| is larger than our threshold
δ. A dynamical system either has SDIC or it does not; it is a binary
distinction. In this section I discuss a way of measuring how fast nearby
orbits are pulled apart. This will provide us with a measure of the degree
to which a system has sensitive dependence on initial conditions.5

5This section is more technical than
most others in this book. It can be
skipped if the reader so desires.
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Let x0 and y0 denote two initial conditions that start off close together.
So |x0 − y0| is small. We are interested in the absolute value,6 because6The absolute value of an expression x,

denoted |x|, means to make x positive
if it is negative. I.e., | − 6| = 6, while
|13| = 13.

we do not care whether x0 is larger than y0 or vice versa. All we are
interested in is how far apart they are. Let us call this initial separation
D0:

D0 = |x0 − y0| . (10.1)

The separation after t iterations we will call D(t):

D(t) = |xt − yt| . (10.2)

If a system has SDIC, we expect that D(t) will increase, since the orbits
get pushed apart, as in Fig. 10.7. But how fast are they pushed apart?
To answer this question we would like to know how |xt − yt| changes
with t, the number of iteratations.
It turns out that for many systems the behavior of |xn − yn| can be

well described by an exponential function of the following form:

D(t) ≈ D02
λt , (10.3)

for small t. Here D(t) is the difference between the two orbits, as defined
in Eq. (10.1), and λ is a quantity known as the Lyapunov exponent.77λ is the Greek letter “lambda”.

If λ is greater than zero, then the quantity 2λt gets larger as t gets larger,
and hence the two orbits are being pushed apart. However, if λ is less
than zero, then 2λt gets smaller as t gets larger. So if λ > 0, orbits
are pushed apart, and the function has sensitive dependence on initial
conditions. The larger the Lyapunov exponent λ, the faster the orbits
are pulled apart, and the greater the sensitivity on initial conditions.
Equation (10.3) holds only for small t. The reason for this is that the

distance between the two orbits cannot grow forever, since the orbits are
bounded. Also, note that the relationship in Eq. (10.3) is approximate.
On average, orbits get pushed apart according to Eq. (10.3), but for any
single orbit it is just an approximation.
As a concrete example, suppose λ = 1. Then Eq. (10.3) becomes

D(t) ≈ D02
t . (10.4)

In other words, the distance between the two orbits approximately dou-
bles every time step. We would then expect nearby orbits to be pushed
apart quite rapidly. In just eight time steps the initial distance between
the two orbits would increase by roughly a factor of 256, since 28 = 256.
This phenomenon is illustrated in Fig. 10.9. Here I have plotted the

distance between two different orbits for the logistic equation with r =
4.0. The initial conditions I used are x0 = 0.3 and y0 = 0.300001. So
the initial D is small: 0.000001. As expected, the distance D(t) grows.
The logistic equation with r = 4.0 has a Lyapunov exponent of λ = 1.
Thus, we expect D(t) to be well described by Eq. (10.4). This is plotted
as the dashed line in the figure. We see that this function is indeed a
reasonable approximation to D(t), as claimed.

To summarize, the Lyapunov exponent captures the average rate at
which the distances between two nearby orbits changes. If the Lyapunov
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Fig. 10.9 The absolute value of the
difference between two time series for
f(x) = rx(1 − x) with r = 4.0. The
dashed curve is D02λt with the Lya-
punov exponent λ = 1.

exponent λ is positive, on average the orbits are pushed apart, and the
system has SDIC. The larger λ is, the faster the orbits are pushed apart,
and the more unpredictable the orbits are. The Lyapunov exponent is
a standard and broadly applicable way of detecting and quantifying
sensitive dependence in initial conditions. Lyapunov exponents are used
for many different types of dynamical systems—not just the discrete
dynamical systems that have been the focus of the book so far.

10.5 Stretching and Folding: Ingredients

for Chaos

A chaotic system has sensitive dependence on initial conditions and has
orbits that are bounded. Both of these properties arise from geometrical
features of the dynamical system. In order for the system to have SDIC,
the dynamical system must perform some sort of a stretch. This stretch
has the effect of pulling apart nearby initial conditions, leading to SDIC.
In order for the orbits to stay bounded, however, this stretching cannot
occur indefinitely. Thus the dynamical system also needs to perform a
fold that brings orbits back together so they do not grow without bound.

Repeat

Stretch

Fold
Fig. 10.10An illustration of stretching
and folding. The dough is repeatedly
stretched out and folded back upon it-
self. (Based on Fig. 12.1.2 from Stro-
gatz (2001).)

This stretching and folding can be visualized by picturing the process
of kneading dough, as illustrated in Fig. 10.10. One starts with a piece
of dough and then stretches it out, perhaps with a rolling pin. After
the dough is roughly twice the original length, it is folded back on itself,
and one starts the process again. The process is thus iterated: the same
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procedure is used again and again, and the output from one step is used
as the input for the next step.
Imagine two points in the dough that are initially close to each other:

perhaps two adjacent specks of cinnamon. During each stretch, the
distance between the points gets larger. During the fold, however, the
two points might get closer together. This will occur if the two points
are on opposite sides of the midpoint of the dough. So the stretching
continually pushes the points apart, and the folding brings them closer
if they are far apart and on opposite sides of the midpoint. In this way
stretching and folding produce chaotic trajectories; the orbit is bounded
and has sensitive dependence on initial conditions.

(a) (b) (c) (d) (e)

Fig. 10.11 The logistic equation viewed as stretching and folding. Part (a) shows the initial conditions as a horizontal line.
This is then stretched (b) and folded, yielding (c). To iterate the process, the output values on the vertical axis are used as
input values on the horizontal axis. This is illustrated in parts (d) and (e).

The logistic equation geometrically has the effect of stretching and
folding. This is illustrated in Fig. 10.11. The initial conditions—or the
dough—are shown in part (a) as the horizontal line. The initial condi-
tions are then stretched (b) and folded, to produce the familiar logistic
equation in part (c). This equation is then iterated. Geometrically, this
means that the output of the function—the values on the vertical axis—
are used as input values, on the horizontal axis, for the next step. This
process is illustrated in parts (d) and (e) of Fig. 10.11.
I introduced the logistic equation in Chapter 7 as a generic model

of limited population growth and argued that it captured some general
features of a population that initially grows exponentially, but which
has some feature which prevents the population from growing continu-
ally. The logistic equation performs stretching and folding, a property
common to all chaotic systems. And so the logistic equation is not just
a generic population equation, it is a generic equation for chaos.8 The8In fact, we will see in Chapter 12 that

some properties of logistic equation’s
transition to chaos are the same for al-
most all chaotic systems.

stretching and folding illustrated in Fig. 10.10 are the basic geometric
ingredients for chaos. All chaotic systems can be viewed as performing
these two basic operations.
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10.6 Chaotic Numerics: The Shadowing

Lemma

In this and the previous chapter we have primarily used computers to
iterate equations so that we may study their long-term dynamical be-
haviors. This is a fairly typical situation. Computational work of this
sort is very common in the study of dynamical systems. Computers are
generally viewed as being trustworthy, at least when it comes to simple
things like arithmetic. So reliance on computers for the sort of repetitive
arithmetic associated with iterating functions is not cause for concern.
Or is it? As we have seen in this chapter, a chaotic system has sensitive

dependence on initial conditions; a small change in the value of an orbit
can lead to very large changes down the road. A computer uses a finite
amount of memory when it stores a number. This is not an issue when
it is trying to store small integers, like 6 or 13 or 1969. Decimals are
another matter. It is not hard to store 0.45 or 6.789. But what if the
computer tries to record the result of dividing 1 by 11? This number is

1

11
= 0.09090909090909090909090909090 . . . . (10.5)

The decimal keeps repeating forever. The repeating block is usually
indicated as follows:

1

11
= 0.090 . (10.6)

But a computer cannot store all of these digits. So it will have to settle
for an approximate answer and will round off. In the computer’s memory
the result of 1 divided by 11 may look like:

1

11
= 0.09090909090909091 . (10.7)

Equations (10.5) and (10.7) seem essentially identical. If the numbers
in question referred to some physical quantity, they would be completely
indistinguishable. However, when iterating a system with sensitive de-
pendence on initial conditions, tiny differences in an initial condition get
magnified quickly. The numbers on the right-hand side of Eqs. (10.5)
and (10.7) would differ by around 0.1 after around 53 iterations if iter-
ated with the logistic equation with r = 4.
Suppose I am doing a numerical experiment in which I want to know

about the long-term behavior of the orbit of the initial condition 1
11 . My

computer might use the slightly inexact Eq. (10.7) for the value of this
number. For the first 50 iterates this inexactness is not a big deal. The
orbit the computer calculates is very very close to the true orbit—the
orbit that would result if the exact value for 1

11 was used.
But after 55 iterates or so, the orbit the computer is calculating is

no longer a good approximation to the true orbit of 1
11 . So what is the

computer calculating at this point? It would be reasonable to assume
that it is giving us rubbish: a completely fictional orbit. This is true, if
what we are interested in is predicting the exact orbit of of 1

11 . By the
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time we get to, say, the sixtieth iterate, the computer orbit has almost
no relation to the true orbit.
Suppose that I want to use results of computer experiments such as

this—using a computer to iterate a number of different initial conditions
for a function—to conclude that that function has sensitive dependence
on initial conditions. This would seem to be highly problematic. At
some point, perhaps quite quickly, the round-off errors made by the
computer lead to a “fictional” orbit, one unrelated to the chosen initial
condition. It seems that this might doom efforts to use computers to
explore chaotic systems.
Amazingly, however, all is not lost. It turns out that even though the

orbit loses relation to the chosen initial condition, the orbit nevertheless
is very close to the orbit for some other initial condition. That is, there
is some other true orbit that is very well approximated by the computer-
generated, fictional orbit. This phenomenon is known as shadowing.
Even though the computed orbit is not a good approximation of the
true orbit for the exact initial condition, nevertheless, the computed
orbit shadows—i.e., follows closely—some other exact orbit.

Fig. 10.12 Illustration of the effect
of round-off error on a computed or-
bit. The true, exact orbit is shown
as the squares connected with dashed
lines. The computed orbit is the cir-
cles connected with solid lines. Round-
off errors and SDIC lead to the com-
puted orbit diverging from the true or-
bit. (Based on Fig. 10.45 of Peitgen,
Jürgens, and Saupe (1992, p. 578).)

Computed Orbit

True Orbit

x
t

Time t

This state of affairs is illustrated in Figs. 10.12 and 10.13. In both
figures the orbit calculated by the computer is shown as circular points
connected by a solid line. In Fig. 10.12 the dashed line with squares is
the true, exact orbit; the solid line with circles is the orbit given to us
by the computer. Round-off errors and sensitive dependence on initial
conditions cause the computed orbit to depart from the exact orbit.
However, the computed orbit is a good approximation for some other

orbit, just not for the initial condition chosen. This is illustrated in
Fig. 10.13. There is some exact orbit that is very close to the computed
orbit. In the figure, the computed orbit is again shown as circles, while
the other, exact orbit is shown as triangles. So the conclusion is that
although round-off errors and SDIC lead the computed orbit to depart
from the original true orbit, the computed orbit nevertheless approxi-
mates some other true orbit. So the computed orbit is not bogus; it
still tells us something real about the dynamical system. This result is
known as the shadowing lemma9

9A lemma in mathematics is a result
that is used as an intermediate step to
prove or demonstrate some central or
important theorem.

This seems like magic, or wishful thinking, or both. It is beyond the
scope of this book to prove this result, but there are a few things I can
say to help make this seem plausible. First, an analogy. Suppose you
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are commissioned to draw a portrait of someone. Unfortunately you are
not very good at drawing, and so the portrait is inaccurate. Perhaps the
eyes are somewhat the wrong color, the nose is too small, ears too large,
and so on. The result is that your portrait does not resemble the true
image you were trying to capture. However, the shadowing lemma says
that the portrait you created is an accurate representation of someone
else, and hence does capture something true about humanity.

Computed Orbit

Other True Orbit

Time t

x
t

Fig. 10.13 Illustration of shadowing.
The computed orbit, shown as circles
connected by solid lines, is a close ap-
proximation to some other true orbit—
the true, exact orbit of some nearby ini-
tial condition. This other true orbit is
shown as triangles connected by dotted
lines. (Based on Fig. 10.45 of Peitgen,
Jürgens, and Saupe (1992, p. 578).)

In a chaotic dynamical system the orbits are bounded—in the case of
the logistic equation the iterates stay between 0 and 1. So the errors
that occur due to round-off cannot be too crazy. The computed orbit
still represents a possible orbit, just not the one that corresponds to the
exact initial condition you thought you were starting with. Orbits for
a chaotic system are aperiodic; they never repeat. Thus, if one watches
an aperiodic orbit unfold, eventually a portion of a chaotic itinerary will
appear that is very similar to the computed orbit. This is not a proof
of the shadowing lemma by any means, but I hope it helps to make it
seem a little more reasonable.

In summary, sensitive dependence on initial conditions means that
very small changes in an initial condition—even a small change resulting
from round-off error inside a computer—will grow and become large.
The result is that long-term prediction of a chaotic system is impossible.
Even if we could know the exact initial condition of a chaotic system,
a computer likely would not be able to accurately determine the orbit
because small round-off errors in the computer would be magnified by
SDIC. However, loosely speaking, the aperiodicity of the system ensures
that the computed orbit still corresponds to a true orbit of the system.
After all, in an aperiodic system almost any orbit is possible. We will
return to these ideas in Chapter 13, when we look in more detail at
regularities in chaotic behavior.



102 Exercises

Exercises

For Exercises 10.5–10.8 you will need a program that can
compute orbits of the logistic equation. You can use the
program at http://chaos.coa.edu/; you can also use a
spreadsheet to perform the calculation.

(10.1) In Table 10.2 are shown the first eight iterates for
two different initial conditions. The function is
the logistic equation with r = 3.8. Make a plot of
the difference between xt and yt, as was done in
Fig. 10.4.

Table 10.2 Orbits for two different initial conditions.

Data for Exercise 10.1.

t xt yt

0 0.60 0.61
1 0.91 0.90
2 0.30 0.33
3 0.81 0.84
4 0.59 0.51
5 0.92 0.95
6 0.29 0.18
7 0.79 0.56
8 0.63 0.93

(10.2) In Table 10.3 are shown the first ten iterates for
two different initial conditions. The function is
the logistic equation with r = 2.5. Make a plot of
the difference between xt and yt, as was done in
Fig. 10.4. How would you describe the fate of the
orbits? Do you think this function shows SDIC?

(10.3) In this exercise and the next we will examine the
function f(x) = 2x. Iterating this function yields
a dynamical system that is not chaotic, since the
orbits are not bounded. However, the system does
possess SDIC. In this exercise you will consider a
few particular cases and use the definition in the
second paragraph of Section 10.3.

(a) Let x0 = 2.0. Compute the first ten iterates
of x0.

(b) Let x0 = 2.0, ε = 1.0, and δ = 4.0. Find
an initial condition y0 that is within ε of x0

and which has the property that eventually
its orbit is a distance δ away from the orbit
of x0.

(c) Let x0 = 2.0, ε = 0.50, and δ = 2.0. Find
an initial condition y0 that is within ε of x0

and which has the property that eventually
its orbit is a distance δ away from the orbit
of x0.

(d) Let x0 = 2.0, ε = .1, and δ = 1.0. Find
an initial condition y0 that is within ε of x0

and which has the property that eventually
its orbit is a distance δ away from the orbit
of x0.

Table 10.3 Orbits for two different initial conditions.

Data for Exercise 10.2.

t xt yt

0 0.500 0.700
1 0.625 0.525
2 0.586 0.623
3 0.607 0.587
4 0.597 0.606
5 0.602 0.597
6 0.599 0.601
7 0.600 0.599

(10.4) � This is a continuation of Exercise 10.3. Again
consider the function f(x) = 2x.

(a) Suppose we have two different initial condi-
tions, x0 and y0. Show that after one iter-
ation, the difference between these two ini-
tial conditions has doubled. In other words,
show that:

x1 − y1 = 2(x0 − y0) . (10.8)

(b) Use this result to argue that the function has
SDIC.

(10.5) Consider the logistic equation with r = 4.0. Let
x0 = 0.2, ε = 0.1, and δ = 0.5.

(a) Find an initial condition y0 that is within ε
of x0 and which has the property that even-
tually its orbit is a distance δ away from the
orbit of x0.

(b) Repeat part (a), but let ε = 0.01.

(c) Repeat part (a), but let ε = 0.001.
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(10.6) Consider the logistic equation with r = 4.0. Let
x0 = 0.2, ε = 0.1, and δ = 0.2.

(a) Find an initial condition y0 that is within ε
of x0 and which has the property that even-
tually its orbit is a distance δ away from the
orbit of x0.

(b) Repeat part (a), but let δ = 0.4.

(c) Repeat part (a), but let δ = 0.6.

(10.7) Consider the logistic equation with r = 3.7. Let
x0 = 0.2, ε = 0.1, and δ = 0.5.

(a) Find an initial condition y0 that is within ε
of x0 and which has the property that even-
tually its orbit is a distance δ away from the
orbit of x0.

(b) Repeat part (a), but let ε = 0.01.

(c) Repeat part (a), but let ε = 0.001.

(10.8) Consider the logistic equation with r = 2.8. Let
x0 = 0.2, ε = 0.1, and δ = 0.5. Find an initial
condition y0 that is within ε of x0 and which has
the property that eventually its orbit is a distance
δ away from the orbit of x0.

(10.9) Suppose a dynamical system has a Lyapunov ex-
ponent of 1. Two initial conditions are 0.005
apart. Approximately how far apart would you
expect them to be after two iterations? How far

apart would you expect them to be after six iter-
ations?

(10.10) Suppose a dynamical system has a Lyapunov ex-
ponent of 0.7. Two initial conditions are 0.05
apart. Approximately how far apart would you
expect them to be after two iterations? How far
apart would you expect them to be after six iter-
ations?

(10.11) Suppose a dynamical system has a Lyapunov ex-
ponent of −0.5. Two initial conditions are 0.1
apart. Approximately how far apart would you
expect them to be after two iterations? How far
apart would you expect them to be after six iter-
ations?

(10.12) � Suppose you are trying to make predictions for
a population whose dynamics are described by a
function with a Lyapunov exponent of 1. You can
only measure the initial value of the population
with an accuracy of 0.001. I.e., if you measure
an initial population of 0.8, the true population
could be as large as 0.8001 or as small as 0.799.
Your predictions are only useful to you if the er-
ror is less than 0.1. For how many iterates will
your prediction be useful? How does you answer
change if the Lyapunov exponent is 0.5? How does
your answer change if the Lyapunov exponent is
−0.25?
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In this chapter we return to our study of the logistic equation,

f(x) = rx(1 − x) . (11.1)

In Chapter 9 we saw that the long-term behavior of iterates of this
equation varied considerably as we changed r. For different r values we
found stable fixed points, periodic behavior of periods 2, 3, 4, and 8,
and aperiodic behavior. What other behaviors do orbits of the logistic
equation exhibit? How do these behaviors change with r, and is there a
way to visualize this? These questions will be answered below.

11.1 A Collection of Final-State Diagrams

Our starting point is the final-state diagrams introduced in Chapter 9.
Recall that a final-state diagram is, for a given r, the final value(s) of a
typical orbit indicated with dots on a number line. For example, if the
orbit is periodic with period 2, the final-state diagram consists of two
dots, one for each x value in the periodic orbit.
The final-state diagrams of Chapter 9 are collected in Fig. 11.1. Note

that to each diagram I have added a label on the left indicating the r
value. Next, take Fig. 11.1 and turn it sideways. We rotate it 90 degrees
counter-clockwise and plot the r value on the horizontal axis. On the
vertical axis we plot the final states.

Fig. 11.1 Final-state diagrams for the
logistic equation, f(x) = rx(1− x), for
various r values.

This is illustrated in Fig. 11.2. Note that I have plotted the r values
to scale. That is, unlike in Fig. 11.1, I have put the proper distance
between the different final-state diagrams according to the r value. For
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example, there is very little distance between the r = 3.5 and r = 3.56
diagrams, and there is a lot of distance on the horizontal axis between
r = 0.5 and r = 2.0.

Fig. 11.2 Final-state diagrams for the
logistic equation, f(x) = rx(1−x), for
various r values. The r values are plot-
ted on the horizontal axis. This type of
plot is known as a bifurcation diagram.
Compare to Fig. 11.1.
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Figure 11.2 hints that there might be a pattern or relationship between
the final behaviors and the r value of the logistic equation. In order to
see if there is a pattern, we will need more data points—lots more. We
will also need to make the individual points smaller, so that they do not
overlap each other. I will use a computer to generate many different
final-state diagrams for different r values and then make a plot of these
final-state diagrams using small points. The result of doing this is shown
in Fig. 11.3. This is the same as the previous figure, Fig. 11.2, except
in this figure there are many more r values plotted. However, you can
see that the handful of r values plotted in Fig. 11.2 can all be found in
Fig. 11.3.
At r = 1 there is a sudden change in behavior—the rabbits now have

a stable, non-zero population, whereas for r < 1 the rabbit population
died out. This sudden change is an example of a bifurcation. A bi-
furcation is defined as an abrupt, qualitative change in behavior as a
system parameter is varied continuously. Another qualitative change in
behavior occurs at r = 3.0, where the stable population goes from pe-
riod 1 to period 2. The diagram in Fig. 11.3 is known as a bifurcation

diagram1 because it provides a clear way to see bifurcations. The bi-1Some authors use the term orbit dia-
gram or final-state diagram instead
of bifurcation diagram.

furcation diagram is a way of summarizing in one single picture all the
possible stable, long-term behaviors of the system.
Let us continue our examination of Fig. 11.3. We can see that if r

is between 3.0 and around 3.4, then the final state is period 2. This
is evidenced by the fact that there are two branches on the bifurcation
diagram for these values. Accordingly, we found that when r = 3.2 the
long-term behavior of the orbit is to get pulled to an attracting cycle
of period 2. And when r = 4.0 we see a solid vertical black line. This
corresponds to the aperiodic, chaotic behavior that we explored at some
length in Chapter 9.
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Fig. 11.3 The bifurcation diagram for
the logistic equation, f(x) = rx(1−x).
The r values are plotted on the horizon-
tal axis. Compare to Fig. 11.2.

The bifurcation diagram of Fig. 11.3 summarizes the behavior of the
orbits for all r values. We can read off the behavior almost as we can
read from a page in a dictionary. To determine the behavior of the
orbit for a given r value, first locate that r value on the horizontal axis.
Then, draw a vertical line straight up from that r value. If the line
you just drew goes through a solid black region of points, then this is
an indication that the function is aperiodic for that r value. If the line
crosses well-defined “pitchfork tines”, then the number of tines the line
crosses gives the periodicity of the orbit at that r value.
There appears to be some interesting structure between r = 3.0 and

r = 4.0 in Fig. 11.3, but it is difficult to see because this is a small region
of the plot. To get a better view of what is going on in this region,
in Fig. 11.4 I have plotted the bifurcation diagram for 3.0 < r < 4.0
and used a much higher resolution. One can see a remarkably intricate
pattern. Note that there appear to be many regions of chaos—these
appear as solid or nearly solid vertical regions in the bifurcation diagram.
Also, note that the the behavior of the orbits changes frequently as r
is increased. In particular, there are chaotic regions that suddenly give
way to ordered, period regions. This is another type of bifurcation.

Another striking feature of the bifurcation diagram is the repeated
“sideways pitchfork” motif. Each branching corresponds to a doubling
of the periodicity. For example, at around r = 3.45 there is a branching
(or bifurcation) from two to four. This indicates that the orbits change
from period 2 to period 4 at this r value. Period 4 then doubles to
period 8, and then to 16, and so on. Eventually, at around 3.57, the
orbits become chaotic; there are solid vertical lines. We will explore
this transition to chaos in more detail in the next chapter. But the
chaos does not continue uninterrupted as we increase r. Instead, there
are various periodic windows that emerge. For example, at around
3.83, a window of period 3 opens up. But every time a periodic window
emerges, those periods double, then double again, and then again, and
eventually the orbits become chaotic.
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Fig. 11.4 The bifurcation diagram for the logistic equation, f(x) = rx(1−x). This
is the same as Fig. 11.3, except the r range is only from 3.0 to 4.0 and the resolution
is higher.
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Fig. 11.5 The bifurcation diagram for the logistic equation, f(x) = rx(1 − x), for
r = 3.6 to 3.7.
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To get a better look at this successive period doubling, in Fig. 11.5
I have plotted another close-up of the bifurcation diagram. Again, one
sees a remarkably intricate structure. There is a periodic window around
r = 3.63; the period here is 6. This doubles to period 12, and then 24,
and eventually the orbits again are chaotic. There are other, narrower
periodic windows interspersed throughout the bifurcation diagram.

Fig. 11.6 The bifurcation diagram for
the logistic equation, f(x) = rx(1−x),
for r = 3.63 to 3.634. Note the small
scale on the vertical axis. This figure
looks like a replica of the portion of the
bifurcation diagram shown in Fig. 11.4.
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Finally, in Fig. 11.6 I have plotted the bifurcation diagram for r = 3.63
to 3.634. Note that the r range is very small. I have also shown only the
x values from 0.47 to 0.53. We see that the figure looks like a replica of
the portion of the bifurcation diagram shown in Fig. 11.4.

11.2 Periodic Windows

As noted above, throughout the bifurcation diagram periodic windows
appear. For example, in Fig. 11.5 there is a periodic window of period
6 around r = 3.64, and in Fig. 11.4 we can see a window of period
three near r = 3.83. There are many other periodic windows in the
bifurcation diagram. In fact, it can be shown that there is at least one
periodic window in any interval of r values that contains a chaotic r
value. In other words, there are periodic windows lurking in any chaotic
region of bifurcation diagram. There are an infinite number of such
periodic windows. Most of them are extremely narrow—too slender to
be seen on a bifurcation diagram.
Given that there are so many periodic windows, it is natural to ask if

there is any rhyme or reason to the order in which they appear. It turns
out that there is a remarkable pattern to the sequencing of the periodic
windows in the bifurcation diagram of the logistic equation. There is a
way of ordering the integers known as Sharkovsky2 ordering, which

2Oleksandr Sharkovsky is a Ukrainian
mathematician who has done impor-
tant work in dynamical systems. There
seems to be little agreement on how to
spell his name in English; I have seen
Charkovsky, Sharkovskii, Sharkovsky,
and Sarkovskii. However, on his per-
sonal webpage he spells it Sharkovsky.

is as follows:

3, 5, 7, 9, . . . (odd numbers)
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2×3, 2×5, 2×7, 2×9, . . . (2 times odd numbers)

4×3, 4×5, 4×7, 4×9, . . . (4 times odd numbers)

8×3, 8×5, 8×7, 8×9, . . . (8 times odd numbers)

...

. . . 24, 23, 22, 2, 1, . . . (decreasing powers of 2) . (11.2)

In Sharkovsky ordering, 3 is the first number, then 5, then 7. After
going through all the odd numbers, one then goes through all the odd
numbers multiplied by two: 6, 10, 14, and so on. Then the odd numbers
multiplied by 4, then 8, then 16. Finally, one counts down from the
powers of 2. The largest number in Sharkovsky ordering is 20 = 1.
As an example, the following numbers have been placed in Sharkovsky
ordering:

5, 37, 6, 10, 22, 40, 88, 48, 16, 4, 1 . (11.3)

What does Sharkovsky ordering have to do with the logistic equation?
The first appearances of periodic regions or windows in the bifurcation
diagram occur in reverse Sharkovsky order. The first period we see as
we increase r is 1. This doubles to 2, then 4, 8, 16, and so on. This is
exactly Sharkovsky ordering in reverse—i.e., the last line of Eq. (11.2)
read backwards.

The bifurcation diagram then shows a transition to chaos around 3.57,
followed by chaotic regions punctuated with periodic windows. The
order of the first occurrence of window of a certain period is given by the
reverse Sharkovsky ordering. For example, suppose as one moves from
left to right in the bifurcation diagram one encounters the first instance
of a period 14 window. As we left this window and moved further to
the right, we would encounter more periodic windows—periods we had
already encountered for smaller r values. Eventually we would find a
window with a period we had not yet seen. This period would be 10,
since this is the next number in reverse Sharkovsky ordering.

The last number in reverse Sharkovsky ordering is 3. Accordingly,
moving left to right, the period-3 window is the last new window to
appear. I.e., to the left of the period-3 window one could find other
periodic windows of all periods except for period 3.

11.3 Bifurcation Diagram Summary

The bifurcation diagram lets us see—all at once—all the different be-
haviors exhibited by a dynamical system as we vary a parameter. On
a bifurcation diagram one can see how these behaviors change as we
change the parameter. For the logistic equation we found that there is
a particular pattern to these changes. Namely, periods double succes-
sively and explode into chaos. Within chaos, periodic windows suddenly
emerge. These periods then double successively and again burst into
chaos.
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The bifurcation diagram for the logistic equation is an object of re-
markable complexity. One sees more and more structure as one zooms
in. This shows that the logistic equation is capable of a stunning di-
versity of behaviors. There are chaotic regions and periodic cycles of
all possible periodicities. The behavior changes suddenly as the r value
is changed. But there is order to how these changes occur—the period
doubling occurs at regular intervals, and thus we see the pitchfork motif
repeated again and again. It is remarkable that we can get all this from
the logistic equation:

f(x) = rx(1 − x) . (11.4)

Iterating this simple quadratic equation produced the data used to make
all the figures in this chapter.
In the next chapter we shall look at bifurcation diagrams for other

functions. Remarkably, we will find that there are some features of
the bifurcation diagram that are the same for broad classes of functions.
Even more remarkably, we shall see that these similarities lead to predic-
tions about the transition to chaos in real, physical systems—predictions
that have been experimentally verified.

Exercises

For many of these exercises you will need to use a pro-
gram to make bifurcation diagrams. You will also need
to plot the orbits for two different initial conditions to
check for sensitive dependence on initial conditions. You
can find such programs at http://chaos.coa.edu.

(11.1) By experimenting with the bifurcation diagram
program, find r values that yield orbits with the
following properties. Once you have found the r
value, check that it is behaving as you expect by
using the orbit program. There are many possi-
ble answers to these exercises. Briefly summarize
your findings.

(a) Period 4

(b) Period 6 (Hint: Look near period 3.)

(c) Chaotic behavior for some r not equal to 4.
(There are many possible r values to choose
from.)

(d) Period 5 (Hint: Look between 3.7 and 3.8.)

(e) Periodic behavior of some other period that
is not a multiple of 2. (Be sure to state what
the period is you have found.)

(11.2) For each r value, do the following.

• Determine the long-term behavior of the or-
bits. Are the orbits periodic (what period?)
or chaotic?

• Does the equation show sensitive depen-
dence on initial conditions? Sketch or print
out any graphs you use to draw your conclu-
sions.

(a) 3.7

(b) 3.835

(c) 3.5699456718695445 (do not round off).

(11.3) � In this exercise you will investigate in more de-
tail the period-doubling route to chaos. This is a
preview of what we will do in the next chapter.

(a) The bifurcation diagram for the logistic
equation, shown in Fig. 11.3, shows us that
the behavior of the orbits shifts from period
1 to period 2 at r = 3.0. Let us call this r
value r1, since it is the value at which the
first bifurcation occurs. By zooming in on a
bifurcation diagram, locate the r values at
which subsequent bifurcations occur. Try to
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determine these r values to at least a hand-
ful of decimal places. If you encounter any
difficulties obtaining this accuracy, describe
them in your write-up.

(i) Find the r value at which the orbits
shift from period 2 to period 4. Call
this value r2.

(ii) Find the r value at which the orbits
shift from period 4 to period 8. Call
this value r3.

(iii) Find the r value at which the orbits
shift from period 8 to period 16. Call
this value r4.

(b) We are now interested in the ratios between
the r values you found above. Define the

ratio δ1 as follows:

δ1 =
r2 − r1
r3 − r2

. (11.5)

Determine the value of δ1 using the r values
you found above.

(c) Now determine the value of δ2, where

δ2 =
r1 − r2
r4 − r3

. (11.6)

These ratios, δ1, δ2, and so on, will play an
important role in the next chapter.

(11.4) Place the following numbers in Sharkovsky order:

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

(b) 10, 20, 30, 40, 50

(c) 2, 4, 6, 8, 10, 12

(d) 125, 126, 127, 128, 129
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In the last three chapters we have seen chaotic behavior: aperiodic,
bounded orbits that have sensitive dependence on initial conditions and
are generated by a deterministic equation. We have focused exclusively
on the logistic equation thus far. It is natural to ask, however, if chaotic
behavior can be seen in other functions. Is there something special
about the logistic equation, or is chaos a common dynamical behavior?
To address this question I will begin by investigating the orbits of a
few different functions, and we will see additional examples of chaotic
behavior. Looking at these other functions’ bifurcation diagrams we will
notice some surprising similarities to the logistic equation’s bifurcation
diagram we investigated at length in the previous chapter. This will then
lead to the remarkable phenomenon of universality: there are properties
of a type of transition from order to chaos that are the same across large
classes of mathematical and—remarkably—physical systems.

12.1 Bifurcation Diagrams for Other

Functions

Let us start by considering iterates of the following function:

f(x) = rx2(1− x) . (12.1)

This looks like the logistic equation, but there is a difference. Note that
the function has an x2 after the r and not an x, as the logistic equation
does. If I expand Eq. (12.1), it becomes:

f(x) = rx3 − rx2 . (12.2)

We thus see that it is a cubic equation, whereas the logistic equation
is a quadratic equation. I will thus refer to Eq. (12.1) as the cubic
equation.1 A plot of this equation is shown in Fig. 12.1 for r = 5.5. 1This name is perhaps a little mislead-

ing, since there are many different cu-
bic functions, among which Eq. (12.2)
is just one possibility. However, it is
the only cubic function in this section,
so I can refer to it as the cubic equation
without ambiguity.

Note that it is similar to the logistic equation, but the cubic equation is
a little lopsided. Its maximum occurs at x = 2/3, while the maximum
for the logistic equation occurs at x = 1/2. Varying r has the effect
of increasing or decreasing the height of the function, while its overall
shape remains the same.

Let us try iterating the cubic equation. Figure 12.2 shows the time
series plot for the initial condition x0 = 0.4 for the cubic equation with
r = 6.0. The plot appears aperiodic. The iterates stay between approx-
imately 0.5 and 0.9, but within those bounds they appear to bounce
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Fig. 12.1 A plot of the cubic function,

f(x) = rx2(1 − x), with r = 5.5.
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around like we have seen for many parameter values for the logistic
equation in the previous chapters. We could try two initial conditions
that begin close to each other and plot them both to test for sensitive
dependence on initial conditions (SDIC). I have not shown this plot, but
the result is not surprising—the orbits do indeed show SDIC. We have
thus found chaotic behavior in the cubic equation with r = 6.0.

Fig. 12.2 The time series for the cubic

function, f(x) = rx2(1 − x), with r =
6.0. The initial condition is x0 = 0.4.
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We could try other r values for the cubic equation, testing each one
for chaos. But we now have at our disposal a way to visualize the range
of behavior of a function all at once: the bifurcation diagram, which was
the topic of the previous chapter. Recall that the bifurcation diagram
plots on the horizontal axis the parameter value, while on the vertical
axis are plotted the final states of the function when iterated.
The bifurcation diagram for the cubic equation, Eq. (12.1), is shown

in Fig. 12.3. This result certainly looks familiar—it is strikingly similar
to the bifurcation diagram for the logistic equation (see, e.g., Fig. 11.2
in Chapter 11). In fact, you may at first think there has been some error
and that I have accidentally used a logistic equation bifurcation diagram
instead of the cubic equation bifurcation diagram. There has been no
mistake. The two bifurcation diagrams really are that similar.
The bifurcation diagrams are not identical, however, as you will no-

tice if you look closely at the two plots. For the cubic equation, the
bifurcation from period 1 to period 2 occurs at around r = 4.75. For the
logistic equation, this transition occurs at r = 3.0. And for the logistic
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Fig. 12.3 The bifurcation diagram for

the cubic function, f(x) = rx2(1 − x).

equation maximal chaos occurs at r = 4.0, where the orbits range from
0 to 1. For the cubic equation, maximal chaos occurs at r = 6.75, and
the orbits range from 0.2 to 1.0.2 Nevertheless, the similarities between 2For r greater than 6.75 iterates of the

cubic equation are no longer bounded;
they tend toward positive or negative
infinity, in the same way that orbits of
the logistic equation are unbounded if
r exceeds 4.0.

the two bifurcation diagrams are striking. Both have the same general
shape, and both show period-doubling bifurcations, as evidenced by the
pitchfork shapes that successively split as one moves from left to right
on the diagram.

Perhaps this is all a coincidence. After all, the cubic equation is just
the logistic equation with one extra x. Let us try another function and
see what its bifurcation diagram looks like. We will consider the sine
function:

f(x) = r sin(
πx

2
) . (12.3)

This function is plotted in Fig. 12.4. Note that input values for this
function range from 0 to 2. For this example you do not need to be
familiar with sine functions; it suffices to know that the sine function of
Eq. (12.3) looks like Fig. 12.4 when plotted.3

3You might be wondering about the π
in the equation. In Eq. (12.3) I am mea-
suring the input x in radians. In radi-
ans, the function sin(x) does a complete
up-and-down cycle as x goes from 0 to
2π. I want just the first cycle of the sine
function, and I want the cycle to start
at 0 and end at 2. Multiplying the ar-
gument of the sine function by π

2
does

the trick.
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Fig. 12.4 A plot of the sine function,
f(x) = r sin(πx

2
), with r = 1.5.

Let us look at the bifurcation diagram for the sine function, Eq. (12.3).
Such a plot is shown in Fig. 12.5. Again, we see a striking similarity to
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the bifurcation diagram for the logistic equation. There are successive
period doublings as r is increased. For larger r values there are regions
of chaos intermingled with other periodic regions. One can see a period-
3 window around 1.85. The sine equation’s bifurcation diagram is not
identical to the bifurcation diagram for the logistic equation, but the
similarities are readily apparent.

Fig. 12.5 The bifurcation diagram for
the sine function, f(x) = r sin(πx
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I began this chapter by asking whether or not chaotic behavior can
be found in other iterated functions. The bifurcation diagrams for the
cubic and sine functions, Figs. 12.3 and 12.5 show that the answer to this
question is “yes”. Both show multiple regions of chaos. That these three
functions—the sine, cubic, and logistic equations—behave similarly is
perhaps is not that surprising, since the functions themselves are similar;
all three equations have a single peak. What is a bit of a surprise,
however, is the similarity between the three bifurcation diagrams. In
the next section we will focus on a structural feature common to these
bifurcation diagrams: the period-doubling route to chaos.

12.2 Universality of Period Doubling

As we have seen, as r is increased for the logistic equation, orbits go
from period 1 to 2, then 2 to 4, 4 to 8, and so on. This can be seen in
the repeated branchings in the bifurcation diagram. The same motif is
apparent in the bifurcation diagrams for the cubic and sine functions.
Eventually, as r gets larger, the period doublings give way to chaos. This
is referred to as the period-doubling route to chaos. Let us look at
this process more closely. Figure 12.6 shows a region of the bifurcation
diagram for the logistic equation. Of interest are the durations of each
of the periodic regimes. Geometrically, this corresponds to the lengths
of each of the pitchforks on the bifurcation diagram.

Table 12.1 The parameter values
at which the first several bifurca-
tions occur in the period-doubling
route to chaos in the logistic equa-
tion.

Bifurcation r value
1→ 2 r1 = 3.0000
2→ 4 r2 = 3.4500
4→ 8 r3 = 3.5440
8→ 16 r4 = 3.5644

We begin by noting the r values at which the bifurcations occur. The
first period-doubling bifurcation occurs at r = 3. Here we can see the



Universality of Period Doubling 119

period shifts from 1 to 2. We will call the r value at which this occurs r1.
The next bifurcation, from period 2 to 4 occurs r2 ≈ 3.45. These values,
along with the r values for the next two bifurcations, are shown in Table
12.1. Except for r1, it is impossible to determine accurate values for
the bifurcation points just by looking at Fig. 12.6; to get these values I
generated additional data and zoomed in on the plot.

I will use Δ to refer to the length of a periodic region.4 The first region, 4Δ is the capital Greek letter “delta”.

which is of period 2, I will call Δ1. The value of Δ1 can be determined
as follows:

Δ1 = r2 − r1 ≈ 3.45− 3.00 = 0.45 . (12.4)

The quantity Δ1 is illustrated in Fig. 12.6; it is the length of the first
pitchfork.
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Δ1 ≈ 0.45 Δ2 ≈ 0.094

Δ3 ≈ 0.0204
Fig. 12.6 The bifurcation diagram for
the logistic equation. Also shown are
the quantities Δ1, Δ2, and Δ3, used in
the calculation of Feigenbaum’s univer-
sal number δ.

Let us now consider Δ2, the length of the period-4 region. Consulting
Table 12.1, we find

Δ2 = r3 − r2 ≈ 3.544− 3.45 = 0.094 . (12.5)

Similarly, the next Δ is:

Δ3 = r4 − r3 ≈ 3.5644− 3.544 = 0.0204 . (12.6)

We can keep zooming in on the bifurcation diagram, and we will keep
seeing more and more period-doubling bifurcations. The regions of the
higher periods—period 16, 32, 64, and so on—are smaller and smaller.
We can see this in Fig. 12.6. The width of the periodic regions gets
smaller as the period increases.

We can capture this by looking at the ratio of successive Δn’s. I will
call this ratio δn.

5 The quantity δn is defined as follows:

5δ is the lowercase Greek letter,
“delta”.

δn =
Δn

Δn+1
. (12.7)
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In words, δn is the length of the nth periodic region divided by the length
of the next periodic region. Thus, for n = 1, we have

δ1 =
Δ1

Δ2
≈ 0.45

0.094
≈ 4.787 . (12.8)

So the length of the first pitchfork is 4.787 times the length of the second
pitchfork. Similarly, δ2 is given by

δ2 =
Δ2

Δ3
≈ 0.094

0.0204
≈ 4.608 . (12.9)

We can keep zooming in on the bifurcation diagram and figure out
more and more Δ’s, and thus more and more δ’s. If we do so, we find
that the δ’s—the length of a pitchfork divided by the length of the next
smallest pitchfork, approaches a fixed value. It turns out that:

δn → 4.66920160... as n gets large . (12.10)

This number is now known as Feigenbaum’s constant, after the math-
ematical physicist Mitchell Feigenbaum, who discovered the number in
the late 1970s.6 What this means is that as we zoom into the bifurca-6For a detailed account of this discov-

ery, see Chapter 10 of Stewart (2002).
See also the list of suggested further
reading at the end of this chapter.

tion diagram in the period-doubling region, every successive pitchfork is
approximately 1

4.67
times smaller than the one that preceded it. .

The ratio δ = 4.669... turns out to be not just a property of the logistic
equation. If one were to carry out a similar analysis for the cubic or the
sine equation, one would find the same number. The details of the three
bifurcation diagrams are not the same, but what is the same is the ratio
of successive pitchfork lengths as the periods get higher and higher. In
fact δ is the same for almost any function that has a period-doubling
route to chaos. Recall that all three functions, the logistic, cubic, and
sine, have a single maximum. Any function of this sort, so long as the
maximum is second-order, will have a δ given by Eq. (12.10). A second-
order maximum means that the maximum must appear locally like a
small upside down parabola—i.e., it looks like a rescaled and inverted
version of f(x) = x2. A plot of an upside-down parabola is shown in
Fig. 12.7.
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Fig. 12.7 An upside-down parabola,
f(x) = 1 − x2. Any function with a
single parabola-like maximum that un-
dergoes a period-doubling transition to
chaos will have the universal value for
δ.

Almost any function that has a maximum will look parabola-like if
one looks closely enough. And so almost any function whose bifurcation
diagram shows a period-doubling route to chaos will have the same δ.
Thus, there is not only something qualitatively similar about the three
bifurcation diagrams shown in this chapter, there is something quantita-
tively similar: namely, the ratio δ. There are mathematical constraints
on how a function can undergo period doubling on its way to chaos. As
one approaches the transition, the only possible ratio for the lengths of
successive periodic regimes is Feigenbaum’s δ.

Quantities like δ that are the same across a range of different func-
tions are said in physics parlance to be universal. Strictly speaking, the
result that δ is approximately 4.669... is true only as n gets large, corre-
sponding to very high periods in the period-doubling sequence. However,
in practice usually δn is close to 4.669 even for small n. For example, for
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the logistic equation, we found above in Eq. (12.9) that δ2 ≈ 4.608, a lit-
tle more than 1% below the large-n value. Thus, Feigenbaum’s constant
is a very good description of period doubling even for small periods.

12.3 Physical Consequences of
Universality

Perhaps this is all just a mathematical curiosity. It does seem a little
odd, though, that this number δ ≈ 4.669 appears in the bifurcation di-
agram of the logistic, cubic, and sine functions, and almost all other
functions as well. However, we are just playing around with mathe-
matical functions that have little to do with the real world; even the
logistic equation, which models limited population growth, is at best a
crude approximation to a real phenomenon. It turns out, though, that
the number 4.669201... is universal enough that it appears in physical
systems as well, not just mathematical explorations on a computer or
calculator.

One such physical phenomenon is a dripping faucet. The drops’ timing
changes as one increases the flow rate, the amount of water that flows
out of the faucet every minute. In some instances the dripping faucet
will undergo a period-doubling transition to chaos. The basic scenario
is as follows. For a low flow rate, the drops may be periodic with period
1. The drops would sound something like this:

· · · � ......� ......� ......� ......� ......� ......� ; · · · (12.11)

That is, there is the same amount of time between each drip. The idea in
Eq. (12.11) is that “�” represents a drip splashing, and “......” represents
the time interval between drips.

Next, increase the flow rate slightly. In this example the flow rate
plays the role of the parameter r; it is the thing that we vary as we
conduct our experiment. At some higher flow rate the drops will shift
to a different pattern: they will be periodic with period 2:

· · · � ..� ......� ..� ......� ..� ......� ..� ......� · · · (12.12)

Now the time between the drops alternates between a short interval and
a long interval. Increasing the flow rate a little bit further will result in
a shift to period-4 behavior. The drop pattern might now sound like

· · · � ..� ......� ......� ......� ..� ......� ......� ......� · · · (12.13)

The repeating pattern is three long intervals between drops, followed by
a short interval. The sequence has period 4, since it repeats every four
drops.

One can record the flow values at which these transitions occur, just
as we noted the r values at which the bifurcations occur in the logistic
equation. We then calculate δ1, the ratio of Δ1 to Δ2, as we did for
the logistic equation in Eq. (12.8) in the previous section. Amazingly, if
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we carried out this calculation, we would find that δ1 would be close to
the Feigenbaum number, 4.669. Somehow a number that was obtained
by iterating simple single-variable functions captures some feature of a
complex, multi-dimensional physical phenomenon.
I should pause and note that it is very difficult to conduct an actual

experiment of the sort that I just described. There are at least two
reasons for this. First, the period-doubling transitions occur over a very
small range of flow rates. It is very difficult to control the flow rate
precisely enough to move through the periodic behaviors in a controlled
way. Second, the actual drip dynamics are very sensitive to mechanical
vibrations; people walking in a nearby room can be enough to disturb
the experiment, again making it difficult to distinguish one period from
another. Because of these difficulties I am not aware of anyone who has
actually carried out a calculation of δ for a dripping faucet. However,
the dripping faucet has been much studied, and period doubling has
been consistently observed.
There are quite a few other physical systems that undergo period

doubling and for which experimenters have been able to calculate δ. I
will briefly describe one of these experiments. Consider a fluid such as
water in a very small box. The bottom and the top of the box are at
different temperatures. When the temperature difference is small, the
fluid remains motionless, and heat is conducted from the warm bottom
of the box to the cooler top.

Fig. 12.8 An illustration of convection
rolls in a box of fluid. The bottom
of the box is at a higher temperature
than the top. Hot fluid rises, is cooled
at the top, and then falls back to the
bottom. The fluid moves in two well-
defined cylinders, or rolls. Hot

Cold

As the temperature is increased, the fluid begins to move. The warm
fluid on the bottom rises, since it is less dense than the cool fluid on the
top. Once at the cooler top of the box, the fluid cools off and falls. This
type of heat transport, where a hot fluid moves, is known as convection.
If the size of the box is right, the rising and falling fluids will form
structures known as convection rolls. These are illustrated in Fig. 12.8.
The fluid moves in such a way as to create two rotating cylinders inside
the box. The warm fluid moves up in the middle of the box and down
on the sides. Although fluid is moving in the cylinder, the cylinder itself
is a stable structure, much as rapids in a river can give rise to stationary
structures even though the water is continuously flowing.
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Experiment Number of Period Estimated δ
Doublings Observed

Convection Rolls (water) 4 4.3± 0.8

Convection Rolls (helium) 4 3.5± 1.5

Convection Rolls (mercury) 4 4.4± 0.1

Electronic Circuit (diode) 4 4.5± 0.6

Electronic Circuit (diode) 5 4.3± 0.1

Electronic Circuit (transistor) 4 4.7± 0.3

Table 12.2 Estimates for δ obtained from experiments on different physical systems.
Based on Table 9.1 on p. 29 of Cvitanović (1989).

However, as the temperature is increased further, the convection roll
develops a little wiggle. The wiggle appears as a small bend or kink in the
cylinder, and the wiggle moves up and down the cylinder. At their onset,
these oscillating wiggles have a certain periodicity. As the temperature
difference between the top and the bottom of the box is increased, this
period doubles. And as the temperature difference increases further,
the period doubles again, and so on. One can record the temperature
differences at which these period doublings occur and form estimates for
the first few δn’s.
Physicists have carried out this experiment for different fluids. The

experiment is tricky; it is much more difficult than I made it seem in the
preceding several paragraphs.7 The results of some of these experiments 7See the Further Reading section at the

end of this chapter for references that
discuss some of the experimental de-
tails.

are summarized in Table 12.2. Also in this table are results other exper-
iments examining period doubling in certain types of electric circuits.
In brief, these are circuits that contain some sort of feedback element,
resulting in oscillatory behavior. As the driving voltage of these circuits
is increased, one sees period doubling.

The results in Table 12.2 show very good agreement with the universal
value, δ ≈ 4.699. Not all uncertainty ranges include the exact value for
δ, but we would not expect them to, since the exact value only holds as
the periodicity gets large. Physicists have conducted other experiments
looking for period doubling in addition to the few that I have listed here.
None of the results contradict the idea of a universal value for δ.

Universality is a stunning result. To see why, it may be useful to step
back for a moment and summarize. I introduced the logistic equation
several chapters ago as a very simple model of population growth. We
found that it displayed a range of different dynamical behaviors. Exam-
ining the bifurcation diagram, we noted that it makes transitions from
periodic behavior to chaos via a series of period-doubling bifurcations.
We then looked at a few other functions and found that they also show
period doubling. It turns out that the δ ratio—how much larger a peri-
odic region is compared to the next periodic region—was the same for
all of these functions. The value of this ratio is 4.669.
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We can then go out in the world—not mathematics on a computer
but real physical objects—perform experiments, and observe period dou-
bling. And these period-doubling transitions have δ’s that are consistent
with 4.669. We started with a simple quadratic function, and this has
led to quantitative predictions about the behavior of dripping faucets,
convection rolls in fluids, and oscillating electronic circuits. Amazingly,
the logistic equation—a simple, one-dimensional function, contains infor-
mation about disparate multi-dimensional physical systems like electric
circuits and fluid flow.
The phenomenon of universality seems almost magical. How is univer-

sality possible? There are two distinct questions that need addressing.
First, how is it that all parabola-like one-dimensional functions that un-
dergo the period-doubling route to chaos have the same numerical value
for δ? Second, what do phenomena like dripping faucets, convecting flu-
ids, and oscillating circuits have to do with an iterated one-dimensional
function?

12.4 Renormalization and Universality

Let us start with the first question: how can the number 4.669 arise from
so many different equations? There is a beautiful mathematical theory
that explains why this is so, but it is difficult to explain it without some
fairly involved and advanced math. However, I will try to qualitatively
sketch some of the key elements of this theory. To do so, will follow a
line of reasoning similar to that put forth by Ian Stewart on pp. 189–193
of his book Does God Play Dice? (2002).
The key idea is to look at how certain features of the system—in this

case the logistic equation or whatever function we are iterating—change
when the scale is changed. If we have a geometric picture and zoom
in, how does the picture change? The central insight is that in some
unusual circumstances the shape does not change when magnified.
Here is a simple example that illustrates this point. Consider a curve,

such as that shown in Fig. 12.9. Now imagine magnifying a small portion
of the curve. The magnified version will look straighter. If you magnify
the magnified version, it will look straighter still. Keep zooming in, and
eventually it looks like a straight line. No matter how curvey the original

Fig. 12.9 A curve. If you zoom in on
any point on the curve, eventually it
will look like a straight line.

curve is, it will still look like a straight line if it is magnified enough.
There is one exception to this, however. If the curve is not merely curvy
but is pointy—if it has a sharp edge—then it will not look like a straight
line no matter how many times it is magnified. This is illustrated in
Fig. 12.10.
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The technical term for this magnification process is renormalization.
Normalization in this context refers to the process of setting a length
scale—choosing which units to use to measure length or determining the
scale on a graph. Renormalizing then implies a changing of the length
scale. Collectively, the set of all possible magnifications is referred to as
the renormalization group. One also speaks of renormalization group
theory.

Fig. 12.10 A pointy “curve”. The
sharp point cannot be made into a
straight line, regardless of how many
times it is magnified.

Using this terminology, almost any curve will look like a straight line
under successive renormalization. The details of the curve do not matter.
Only pointy curves like Fig. 12.10 fail to eventually look like a straight
line. And a straight line is a special curve; it is the only curve that looks
the same under renormalization. If you zoom in on a straight line it still
looks like a straight line; its shape is unchanged.

Let us now return to iterated functions and period doubling. Imag-
ine doing the same zooming-in trick on the bifurcation diagram near
the transition to chaos. Initially we see pitchforks with pitchforks and,
when we zoom in, we will again see pitchforks with pitchforks. The
image will be unchanged, just as the straight line is unchanged under
renormalization.

The bifurcation diagram is not just an arbitrary picture. It arises from
an iterated function. We can use the fact that the bifurcation diagram is
the same under renormalization to infer properties of the function that
creates the bifurcation diagram. When at the transition point to chaos,
the iterates are essentially infinitely periodic. The period gets longer
and longer and longer before the transition to chaos occurs. We will
consider the basic mechanism of period doubling, and then argue that
this mechanism has to be the same for all period doublings, since the
bifurcation diagram is unchanged by renormalization.
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Fig. 12.11 The logistic equation f1(x)
for r = 2.0, the super-attractive param-
eter value for period 1.

Let us think about the transition from period 1 to period 2. In
Fig. 12.11 I have plotted the logistic equation for r = 2.0. There is
an attracting fixed point at x = 0.5. The parameter r = 2.0 has a
special property. For this r value the period-1 behavior is the most at-
tracting; nearby orbits are pulled toward the fixed point at the fastest
rate compared to other r values for which orbits have period 1. The
attracting point in this case is said to be super attractive. The pa-
rameter value for the super-attractive period-1 fixed point occurs in the
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middle of the period-1 region in the bifurcation diagram. I will denote
the logistic equation for this special value of r for which the period-1
attractor is super attractive f1(x). I.e., f1(x) = 2x(1− x).

Fig. 12.12 The second iterate of the
super-attracting period-2 logistic equa-

tion f
(2)
2 (x). The super-attractive pa-

rameter value is for r ≈ 3.236. There
are unstable period-1 points at x = 0
and x ≈ 0.69, indicated with circles.
The two period-2 points are indicated
with squares.
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The parameter for which the period-2 attractor is super attractive
turns out to be r ≈ 3.236. I will call the logistic equation for this special
parameter value f2(x). I am focusing on the super-attractive values
because loosely speaking they can be thought of as the most periodic
value for a given period. I am interested in comparing period 1 to period
2, and so if I choose the super-attractive values for each period, then we
can argue that it is a fair comparison.
In any event, in Fig. 12.12 I have plotted the second iterate of f2(x).

In other words, I have plotted f2(f2(x)), denoted by f
(2)
2 (x). Note that

we can see four fixed points for f
(2)
2 (x). Two of the fixed points are

actually period 1. These appear as fixed points of f
(2)
2 (x) because if a

point is period 1 it is also period 2.8 These two period-1 points are 08If something repeats every time, then
it also repeats every other time. and 0.69.

Recall that the point of this exercise is to think about renormalization—
how zooming in on the function might change its shape. However, be-
cause the bifurcation diagram does not change when one zooms in, we
anticipate that the logistic equation will also have this property. We can
see this if we look at the small dashed box in the center of Fig. 12.12.
Notice that the f

(2)
2 (x) curve inside the dashed box resembles an upside

down version of f1(x) from Fig. 12.11. If we took the curve inside the
box, turned it upside down, and stretched it out to full size, it will very
closely resemble f1(x).

The result of doing this is shown in Fig. 12.13. The original period-1
curve from Fig. 12.11 is the solid curve. The dashed curve that is very
close to the solid curve is the stretched and flipped portion of the dashed
curve inside the box of Fig. 12.12. This plot shows that rescaling f

(2)
2

yields a curve that is almost the same as f1(x). This rescaling is an
example of a renormalization; we have zoomed in on one function (and
turned it upside down) and arrived at essentially the same function.
We can view this rescaling as a type of operation that takes one func-
tion and returns a new function. This is similar to a function, which
takes a number as input and returns a number as output. But here, an
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Fig. 12.13 The super-attractive
period-1 logistic equation f1(x), the
super-attractive period-2 logistic

equation, and Φ[f
(2)
2 (x)], the super-

attractive period-2 function after it
has been rescaled.

entire function is the input and an entire function is the output. Let
us denote this function-changing operation by Φ.9 So, for the situation 9Φ is the capital Greek letter “Phi.”

under discussion, we can write

f1(x) ≈ Φ[f
(2)
2 (x)] . (12.14)

Again, in words, this equation just says that f1(x), the period-1 function

is approximately equal to the period-2 function f
(2)
x after it is rescaled

(“Phi-ed”).
We can make the same comparison between the period-2 and the

period-4 function, the period-4 and the period-8 function, and so on. In
so doing, we are rescaling multiple times. Each rescaling is governed by
an equation similar to Eq. (12.14), and changes the function from the
logistic equation of one period to the logistic equation of another period.

Now comes the key step in the argument: this process of successive
rescaling is the same as iterating Eq. (12.14). We start with a function
and rescale repeatedly. We have seen that sometimes when iterating
functions, there is an attracting fixed point. All initial conditions end
up at that fixed point.

The same story holds for the rescaling Φ transformation, except in-
stead of initial conditions being pulled toward a fixed number, now we
have initial conditions being pulled to a fixed function. Almost any
initial condition will end up at the same fixed function. The initial
condition for Φ is also a function; different functions, when renormal-
ized repeatedly, end up at the same function. This attracting function
is universal—there is just one such function, just as for many iterated
functions there is only one fixed point. Feigenbaum’s constant δ can be
derived from this universal function.

Moreover, we will arrive at this universal function no matter what
equation we start with; the logistic equation, the cubic equation, or
the sine equation. Indeed, any equation that is parabola-like will get
pulled toward the universal function upon rescaling. This explains the
mystery of how all these different functions can have the same value for
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δ. The mathematics of determining the universal function is not easy,
but conceptually it is no more or less deep than the idea of a function
having an attracting fixed point.
To summarize, let us go back to the example that I started with. If

one zooms in on, i.e., renormalizes, a curve, eventually it looks like a
line, provided that the curve does not have any sharp edges. The line
is an attractor; many different curves end up as a line after multiple
renormalizations. Similarly, if one renormalizes a function using Φ, one
arrives at a universal function, provided that the initial function has a
single maximum and that this maximum is parabola like. The universal
function is an attractor; many different functions end up as the universal
function after multiple rescalings with Φ. From this universal function
one can calculate a number of quantities, including δ.

The mathematics of carrying all this out is not easy; it is well beyond
the level of this book. Nevertheless, I hope that this discussion sheds
some light on universality: how it is that the number 4.669 appears in
almost all bifurcation diagrams that exhibit a period-doubling route to
chaos.

12.5 How are Higher-Dimensional
Phenomena Universal?

In the previous section I attempted to convey how renormalization ex-
plains the phenomenon of universality. However, this explanation is lim-
ited to one-dimensional functions. That is, renormalization explains why
almost all one-dimensional functions that undergo a period-doubling
transition to chaos have a universal value for δ. But how is it that the
same number δ appears in the analysis of fluid convection rolls and drip-
ping faucets? How can generic, single-variable functions like the logistic
equation say anything about multi-dimensional, physical phenomena?
We will be in a better position to answer these questions in Sec. 31.7,

after we have considered systems that are modeled by three-dimensional
sets of equations. For now, though, a few general comments. I argued
in Sec. 10.5 that the key geometric ingredients for chaotic behavior are
stretching and folding. The stretching is what produces the sensitive de-
pendence on initial conditions (SDIC), as neighboring orbits are pushed
away from each other. The folding is necessary to keep orbits bounded.
One-dimensional functions like the logistic equation implement stretch-
ing and folding when iterated, as shown in Fig. 10.11.
Higher-dimensional systems, like a dripping faucet or convection rolls,

also must stretch and fold as they evolve in time for the same reasons:
the stretching leads to SDIC and folding keeps orbits bounded. The
stretching and folding occurs in three dimensions, and so the details
of the stretching and folding can be more complicated than the simple
transformations shown in Fig. 10.10—the dough undergoes a potentially
complex kneading process in three dimensions. However, one can take an
imaginary slice through this three-dimensional process and the result is a
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one-dimensional process of the sort analyzed by renormalization. Thus,
in a sense one-dimensional systems are embedded in three-dimensional
systems. As a result, the universal properties of the period-doubling
route to chaos in one-dimensional systems extend to multi-dimensional
systems as well.

Further Reading

There are surprisingly few non-technical discussions of the phenomenon
of universality. The clearest such account that I have found is Chap-
ter 10 of Stewart (2002). The chapter titled “Universality” in Gleick
(1987) is an engaging and exciting account of Mitchell Feigenbaum’s
discovery of universality. For a discussion of universality in the context
of physics, see pp.61–66 of Watts (2004). More technical discussions of
universality can be found in Chapter 6 of Smith (1998) and chapter 11 of
Peitgen, Jürgens, and Saupe (1992). The edited volume by Cvitanović
(1989) collects many of the important early papers on universality in
dynamical systems, including the results of experiments measuring δ
in physical systems. Rob Shaw’s 1984 book The Dripping Faucet as a
Model Chaotic System (1984), although currently out of print, was a
highly influential monograph on the application of ideas and techniques
from chaotic dynamics to physical systems.

Exercises

(12.1) What is the long-term behavior of iterates of the
cubic equation for r = 5, 0, r = 5.5, and r = 6.0?
Refer to Fig. 12.3, the bifurcation diagram for the
cubic equation.

(12.2) Find all fixed points for the cubic equation for
r = 5.0. To do so, use the fixed point equation,
f(x) = x.

(12.3) Find all fixed points for the cubic equation for
r = 2.0. To do so, use the fixed point equation,
f(x) = x.

(12.4) Calculate by hand the first three iterates of x0 =
0.4 for the cubic equation with r = 6.0. Do your
numbers appear consistent with those plotted in
Fig. 12.2?

(12.5) Use Fig. 12.3 to make rough estimates Δ1 and Δ2

for the cubic equation.

(12.6) For what r value would you estimate that the lo-
gistic equation shows a bifurcation from period 16
to period 32? At what r value would you expect to

see the bifurcation from period 32 to 64? Briefly
explain.

(12.7) For this exercise you will need a program that can
make high-resolution bifurcation diagrams for the
logistic equation, such as those at http://chaos.
coa.edu/. Zoom in on the period three window,
near r = 3.83. You should see a sequence of
period-doubling bifurcations, from period 3 to 6
to 12, and so on. Determine the r values at which
these bifurcations occur. Then uses these r values
to estimate Δ1, Δ2, and Δ3, and δ1 and δ2.

(12.8) A function exhibits the period-doubling route to
chaos. Suppose the bifurcation from period 1 to
period 2 occurs at r = 4.2, and the bifurcation
from period 2 to period 4 occurs at r = 4.8. At
what r value would you expect to see a bifurcation
from period 4 to period 8? Explain.

(12.9) � Suppose you are conducing an experiment with
an oscillating electric circuit. You want to esti-
mate as many δn’s as you can. You vary the volt-



130 Exercises

age and observe period doublings, as expected.
The first period-doubling bifurcation occurs at 3.0
Volts, and the next at 4.5 Volts. The accuracy
on your experimental equipment is such that you

cannot control the voltage more accurately than
0.0001 Volts. How many period-doubling bifurca-
tions do you expect to be able to observe? Ex-
plain.
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In Chapter 10 we saw that sensitive dependence on initial conditions
places severe limits on our ability to perform long-term prediction of
chaotic systems. Two initial conditions that start close to each other
very quickly get pushed apart. In this chapter we revisit this general
phenomenon and will encounter some other ways to visualize and char-
acterize the behavior of chaotic orbits. In so doing, we will see that
although the path of a particular orbit is unpredictable, chaotic systems
nevertheless possess statistical regularities.

13.1 Histograms of Periodic Orbits

To examine statistical properties of orbits we will use histograms. A
review of histograms can be found in Appendix B. If you have not
encountered histograms before you might want to read at least the first
part of the appendix before continuing in this chapter. Recall that we
have seen in previous chapters that the orbits of the logistic equation
f(x) = rx(1 − x) can be periodic or chaotic, depending on the value of
the parameter r. Our goal in the following is to find a way to characterize
chaotic orbits beyond simply stating that they do not repeat and thus
are aperiodic. For example, does an aperiodic orbit spend more time in
some regions than others?

Before considering chaotic orbits it will be helpful to look at a non-
chaotic example. When r = 3.4, the logistic equation has an attracting
cycle of period 2. This can be seen in Fig. 13.1, which is a time series
plot for the initial condition x0 = 0.3. We see that quite rapidly the
orbit settles in to its period-2 behavior, oscillating between 0.45 and
0.84.

Figure 13.2 contains a new type of plot: a histogram. This lets us see
the relative frequency of different x-values along the itinerary. The figure
shows that the orbit spends an equal amount of time at two values and
no time anywhere else.1 To make this plot, I took a time series of length

1Working out the units and scale for
the vertical axis of a histogram such
as this is somewhat involved; see Ap-
pendix B for a discussion. When in-
terpreting the histograms in this chap-
ter, what is important is the relative
heights, not the absolute height of the
histogram.

1000, discarded the first forty iterates, and then made the histogram.
(A time series is just a list of numbers, so to make the histogram I just
followed the procedures described in Appendix B.) I used a bin size of
0.01. The histogram shows that all of the numbers in the time series fall
in just two bins. This is exactly what we would expect for a period-2
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Fig. 13.1 A time series plot of an orbit
for the logistic equation with r = 3.4.
The long-term behavior is periodic with
period 2.
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Fig. 13.2 The histogram for the orbit
shown in Fig. 13.1. The long-term be-
havior is periodic with period 2.
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time series. For such a sequence a histogram is not really necessary.
The distribution of values along the itinerary is quite simple. Once the
transient behavior dies away, the system oscillates between roughly 0.44
and 0.84.

13.2 Histograms of Chaotic Orbits

Histograms do not provide new insight into periodic orbits, but they
are a powerful tool for examining chaotic orbits. Consider yet again
the logistic equation with r = 4.0. At this parameter value orbits are
chaotic; they have sensitive dependence on initial conditions and they
are aperiodic. This aperiodicity can be seen in Fig. 13.3, which is a
time series plot for the r = 4 logistic equation for the initial condition
x0 = 0.3. As expected, the orbit bounces around and does not appear to
repeat. However, looking closely at the figure we can see that the orbit
spends a lot of time on the “edges”—near 0 or 1—and not as much time
in the middle of the interval. A histogram of the orbit shows us that
this is indeed the case.
In Fig. 13.4 I have plotted the histogram for the orbit shown in

Fig. 13.3. To make this histogram I needed many more than the 100
iterates shown in the time series plot. In order to get a good picture of
the distribution of the iterates I used a time series with 100, 000 values
and a bin size of 0.01. This histogram tells us that, as anticipated, the
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Fig. 13.3 A time series plot of an orbit
for the logistic equation with r = 4.0.
The orbit is aperiodic. The initial con-
dition is x0 = 0.3.
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Fig. 13.4 The histogram for the orbit
shown in Fig. 13.3.

orbit spends a lot of its time at large values near x = 1.0 and small
values near zero, and it spends much less time at intermediate values.
This is a feature of the orbit that is perhaps not immediately apparent
when looking at the time series plot. Another noteworthy feature of this
histogram is that it appears to contain no gaps. This means that not
only is the orbit aperiodic, but that it roams all over the region between
0 and 1.

We know that the orbits of the logistic equation for r = 4.0 possess
sensitive dependence on initial conditions. So if I use a different seed,
I will get a different orbit. This can be seen in Fig. 13.5, which shows
the time series for r = 4.0 with an initial condition of x0 = 0.31. The
orbit starts similarly to that of Fig. 13.3, but after only ten iterates or
so the two time series are quite different. While the particular orbits
in Figs. 13.3 and 13.5 are different, they do appear to be similar. Both
spend more time near 0 and 1, and both show the frequent arcing up-
ward curves followed by jagged oscillations. Let us take a look at the
histogram for the second time series, shown in Fig. 13.6. Remarkably, it
looks very similar to the previous histogram in Fig. 13.4. In fact, the two
histograms look almost identical. There are, however, slight differences
between Figs. 13.4 and 13.6. If I were to plot even more iterates in each
of the histograms, the two plots would become more and more similar.2

2The histogram of the orbit for the lo-
gistic map at r = 4.0 appears smooth.
You may wonder if it is possible to
find a function that approximates this
smooth curve. The answer is “yes”.
One can prove that the curve for the
histogram is given by

ρ(x) =
1

π
√

x(1− x)
. (13.1)

This quantity is known as the invariant
distribution. The symbol ρ is the Greek
letter “rho”, and is a standard symbol
for invariant distributions. We will not
use the formula for ρ(x). I mention it
both as an interesting piece of mathe-
matical trivia and as a reminder that
there is elegant, rigorous mathematics
behind many of the results in dynami-
cal systems. An outline of a derivation
of Eq. (13.1) can be found in Peitgen,
Jürgens, and Saupe, (1992, pp. 527–9).

This result is perhaps somewhat surprising. Orbits for the logistic
equation with r = 4.0 are chaotic, and hence unpredictable due to the
butterfly effect. However, they seem to be unpredictable in the same
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Fig. 13.5 A time series plot of an orbit
for the logistic equation with r = 4.0
and x0 = 0.31. The orbit follows a dif-
ferent trajectory than the time series of
Fig. 13.3.
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Fig. 13.6 The histogram for the orbit
shown in Fig. 13.5. Note the similarity
to Fig. 13.3.
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way—different chaotic orbits yield the same histogram. So while the
orbits are different, on average they behave the same. In the next sec-
tion I will further unpack these ideas and introduce some additional
terminology.

Fig. 13.7 The histogram for an orbit
for the logistic equation with r = 3.625.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.2  0.4  0.6  0.8  1

x

Before doing so, let us look at a histogram for another chaotic orbit.
Figure 13.7 shows the histogram for an orbit of the logistic equation for
r = 3.625, another parameter value for which the orbits are chaotic. The
histogram looks quite different from Fig. 13.4, which was obtained from
the logistic equation with r = 4.0. The orbits do not take all possible
values but instead are restricted to two bands: one from roughly 0.3 to
0.65, and the other from 0.75 to 0.9. This is consistent with what we
can see on a bifurcation diagram for the logistic equation. Looking back
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at the bifurcation diagram of Fig. 11.5, one can see that the final states
of the orbit for r = 3.625 are indeed restricted to two bands.

The histogram gives us direct information that is only seen indirectly
in the bifurcation diagram. A vertical slice of a bifurcation diagram
gives us a final-state diagram like those shown in Fig. 11.1. The final-
state diagram shows what values occur in the long-run for the orbit. A
histogram is a final-state diagram with an added vertical dimension that
indicates not only what values occur in the time series, but also their
relative frequency. In Fig. 13.7 we see that the orbit spends most of
its time at the edges of the bands, and there is also a location in the
middle of each band that the orbit visits much more frequently than
elsewhere. These spikes on the histogram can be seen as darker regions
on the bifurcation diagram. Looking again at the bifurcation diagram
in Fig. 11.6, one sees dark curves weaving up and down. These curves
are regions where there are more points on the bifurcation diagram.

13.3 Ergodicity

Let us consider again the histogram in Fig. 13.4. As noted above, the
histogram appears to have no gaps; the orbit visits all regions in the
interval between 0 and 1. In Fig. 13.8 I have zoomed in on the histogram
so that only the interval from x = 0.2 to 0.3 is visible. Again, no gaps
are seen in the histogram, indicating that the orbit is visiting all regions
in the interval. We can keep zooming in on smaller and smaller portions
of the histogram, and we still would not see any gaps.
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Fig. 13.8 A zoomed-in view of the his-
togram of Fig. 13.4.

The technical term for this type of orbit is ergodic.3 An orbit is

3The roots of word ergodic are ergon

and odos, the Greek words for work and
path, respectively (Walters, 2000). The
term was coined by the physicist Lud-
wig Boltzmann around 1900 as he was
working to derive the average macro-
scopic properties of matter from their
microscopic properties. This field of
physics is now known as statistical me-
chanics. Specifically, Boltzmann used
the term to describe a relation between
time and spatial averages of physical
properties.

ergodic if it gets arbitrarily close to any point on the interval in which
the orbit roams. (In this case the interval is 0 to 1.) In other words, you
can choose any point on the interval and eventually the orbit of Fig. 13.3
will come very close to it. The orbit cannot exactly hit every point on
the interval—there are far too many points on the interval for the orbit
to reach, even if we give it an infinite amount of iterations to do so.

Moreover, the interval also contains an infinite number of unstable
periodic points or points that lead to an unstable periodic point. This
was discussed in Section 7.4, where I argued that even though there are
an infinite number of points leading to an unstable fixed point, there
are nevertheless infinitely many more points on the interval that do not
lead to the fixed point. As a result, there is zero probability that an
initial condition, if chosen at random, will lead to an unstable fixed or
periodic point. One says that almost all initial conditions of the logistic
equation with r = 4.0 are aperiodic. The word “almost” is used here in
a technical way to indicate that while there are alternatives, they occur
so infrequently as to have zero probability. I will use the words “almost
all” frequently in the rest of this chapter. The phrase sounds imprecise,
but it actually has a rigorous and precise mathematical meaning.4

4These ideas will surface again in
Chapter 21 where we will see that there
are different types of infinities. The
orbit has a countably infinite number
of iterates but the interval has an un-
countably infinite number of points.

In any event, for the chaotic logistic equation—or any chaotic system
for that matter—there are an infinite number of unstable period points
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that the aperiodic orbits must maneuver round. The aperiodic orbit can
never exactly land on these points, since then the orbit would become
periodic and would no longer be aperiodic.
On the one hand, ergodicity illustrates just how chaotic the orbit

is—during its journey it wanders arbitrarily close to anywhere on the
interval. On the other hand, the fact that the orbit wanders and explores
every tiny region of the interval leads to a type of predictability. I have
argued that both the orbits for x0 = 0.3 and x0 = 0.31 will give rise
to the same histogram. This means that the two orbits visit the same
regions of the interval equally often. In fact, almost all5 initial conditions

5Some initial conditions lie on unstable
fixed or periodic points. These are thus
not aperiodic and cannot give rise to
a histogram such as that of Fig. 13.4.
But if one chooses an initial condition
at random, with probability 1 the orbit
will be aperiodic and a histogram like
Fig. 13.4 will result.

will result in an orbit that has the same histogram. This means that the
statistics of each orbit is the same. The specific trajectories that two
orbits take will be very different, but each will spend the same fraction
of time in each region of the interval. The histograms of Figs. 13.4 or
13.6 are thus predictable and regular features of the logistic equation’s
chaotic dynamics.
How can this be? How is it that orbits with sensitive dependence on

initial conditions lead to the same histogram? Proving this fact is very
difficult, but I can say a few things to suggest why this is true. Suppose
that we know we have an ergodic orbit—an aperiodic orbit that deftly
avoids unstable periodic points while getting arbitrarily close to them. In
so doing it builds up the distribution shown in the histogram of Fig. 13.4.
Now suppose we have another aperiodic orbit. It, too, will wander all
over the interval avoiding unstable periodic points. As it does so, it must
come very close to a point that the other orbit has visited. After all, the
other orbit is ergodic and so gets arbitrarily close to any point on the
interval.
So this second aperiodic orbit must end up tracking or shadowing the

ergodic orbit for much of the time. The two orbits are aperiodic, but
they are also deterministic. So if they get close to each other they have
to stay close to each other for at least a little while. Once the second
orbit wanders from the first, it will again be near some other point on
the first orbit, since the orbit is ergodic. And so it shadows it again
for a few iterations. The result is that both aperiodic orbits end up, on
average, visiting the same regions of the interval, leading to the same
histogram.
There is another way we can think of arriving at the histogram asso-

ciated with the ergodic orbit. Instead of iterating one initial condition
for a very long time, we iterate a vast number of initial conditions all
at once. This is illustrated in Fig. 13.9. I began with one million initial
conditions chosen at random between 0 and 1. A histogram of these
initial conditions is shown in the upper left of the figure. Since the
initial conditions were chosen at random, the initial histogram is essen-
tially uniform from 0 to 1. I then iterated all of these initial conditions
twice and plotted another histogram, labeled t = 2 in the upper right
of Fig. 13.9. The next two plots in the figure show a histogram of the
million points after five and then fifty iterations. One can see that the
histogram changes quite little after just a few iterations.
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Fig. 13.9 The evolution of one million
initial conditions for the logistic equa-
tion with r = 4.0. The initial condi-
tions are spread uniformly from 0 to 1.
After just a few iterates, they are pulled
to the invariant density.

Figure 13.9 gives us a somewhat different way of thinking about it-
erating the logistic equation. Rather than iterating a single point, we
iterate a million points at once. We can view the function as acting
on the histogram itself, instead of individual orbits. At each step the
logistic equation operates on the entire histogram and gives us a new
histogram. The histogram on the lower right of Fig. 13.9 is an attracting
fixed point of the logistic equation. Any reasonable6 initial distribution

6An example of an unreasonable distri-
bution is one where all one million ini-
tial conditions lie on an unstable fixed
point. Such distributions are vanish-
ingly unlikely.

will get pulled to the distribution shown in Fig. 13.4. This distribution
is known as the invariant distribution, as it is left unchanged by the
action of the logistic equation.7 7The invariant distribution is also com-

monly referred to as the invariant
density.

This invariant distribution is stable: almost all initial histograms are
pulled toward it, and the time series for almost all initial conditions
will, when plotted as a histogram, yield the invariant distribution. The
histogram is a statistical structure, in the sense that it captures average
properties of the orbit. Thus, one can say that the phenomenon of
chaos is statistically stable, provided that there is an ergodic orbit.
Note, however, that the histogram cannot be used to reconstruct an
exact orbit, just as a statistical profile of a population cannot be used
to faithfully reconstruct a particular individual from the population.

It turns out that for the logistic equation and many other chaotic
dynamical systems there can be only one attracting fixed histogram
or invariant distribution. (This is why the orbit of almost any initial
condition will lead to the same histogram.) This is a difficult statement
to prove, but the argument is similar to the reasoning given above that
two ergodic orbits have to have the same histogram. Basically, the idea
is that there is only room on the interval for one invariant distribution.8 8This argument is based on James

Sethna (2006, pp. 66-7).The logistic equation mixes up orbits, and so any invariant distribution
(i.e., histogram) must span the entire interval. In a sense, the mixing up
of orbits ensures that all histograms are also mixed together, so there
can be only one invariant distribution.
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The theory behind ergodicity is somewhat difficult, but I hope that
the figures in this section have provided some empirical evidence that
almost all orbits of the logistic equation for r = 4.0 have the same
histogram. In the next section I will explore some of the consequences
and implications of this remarkable fact.

13.4 Predictable Unpredictability

The key point of Chapter 10 was that sensitive dependence on initial
conditions places severe practical limits on our ability to make a long-
term prediction for a chaotic orbit. However, the fact that the logistic
equation with r = 4.0 is ergodic makes a different sort of prediction
easy. Suppose we want to know what percent of the time, on average,
the orbit spends between 0.1 and 0.2. We can answer this question via
the invariant histogram. The answer turns out to be 9.03% regardless
of the initial condition. The butterfly effect does not interfere with this
sort of prediction. Similarly, we can deduce that the orbit spends, on av-
erage, 43.6% of the time between 0.6 and 1.0 and exactly half of its time
between 0 and 0.5. So in this sense the chaotic logistic equation is emi-
nently predictable. The chaotic logistic equation is statically predictable
even though its orbits are unpredictable.
There is nothing contradictory about the co-existence of statistical

predictability and the unpredictability of the butterfly effect. The earth’s
climate provides an excellent example of this phenomenon. Weather is
notoriously unpredictable. Forecasts much beyond a few days are usually
quite unreliable. Where I live in the Northeastern United States, it is
difficult to predict with any accuracy whether or not it will rain a week
from now. However, average, longer-term weather features—i.e. the
climate—are quite stable and predictable. It is essentially impossible to
predict the amount of rain that will fall 13 days from now, but one can
make reasonable predictions about the monthly rainfall. For example,
in the last hundred years or so the average rain in August is 2.68 inches.
The wettest August saw 8.68 inches of rain and the driest 0.54 inches.9

9The data is for Acadia National
Park and was obtained from the
US Historical Climatology Network,
http://cdiac.ornl.gov/epubs/ndp/

ushcn/access.html.

Over periods of a century or so the climate—features like average rainfall
or average high temperature—are quite stable, even though the weather
is generally chaotic and unpredictable.
To summarize, chaotic dynamical systems are unpredictable in the

long run because of the butterfly effect. But they are often unpre-
dictable in predictable ways. For the logistic equation with r = 4.0
this predictable unpredictability is captured by the invariant histogram,
which describes the statistics of the orbits of almost all initial conditions.



Exercises 139

Exercises

(13.1) An orbit of a dynamical system is attracted to
a periodic cycle of period 4. The periodic orbit
is: . . . 0.3, 0.5, 0.7, 0.9, 0.3, 0.5, 0.7, 0.9 . . .. Sketch
a histogram for this orbit.
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Fig. 13.10 A possible histogram for a period-4 orbit.

(13.2) An orbit of a dynamical systems is attracted to
a periodic cycle of period 4. The periodic orbit
is: . . . 0.3, 0.9, 0.5, 0.7, 0.3, 0.9, 0.5, 0.7 . . .. Sketch
a histogram for this orbit. Compare this his-
togram with the one you drew for Exercise 13.1.

(13.3) Suppose the orbit of a deterministic dynamical
system (not necessarily the logistic equation) is
periodic with period 4. Could it have a histogram
like that of Fig. 13.10? Why or why not?

(13.4) Figure 13.11 shows histograms of the orbits of the
logistic equation with four different parameter val-
ues, r = 3.58, 3.67, 3.70, and 3.90. By looking
at the bifurcation diagram (Fig. 11.4), determine
which histogram goes with which parameter value.
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Fig. 13.11 Four different histograms for chaotic orbits of the logistic equation. Each histogram was generated with a different
r value.
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This chapter, the last before we turn our attention to fractals, contains
some additional thoughts on ways to characterize chaotic behavior and
think about randomness and determinism. The first few sections intro-
duce a technique known as symbolic dynamics which will allow us to
compare the chaotic logistic equation to tossing a coin. Section 14.4
contains some general comments and observations about the distinction
between linear and nonlinear functions.

14.1 Symbolic Dynamics

We have seen that the logistic equation with r = 4.0 is chaotic; orbits
are aperiodic and have sensitive dependence on initial conditions.1 As

1In this Chapter I focus exclusively on
the logistic equation with r = 4.0. So I
will sometimes refer to it as simply the
logistic equation, instead of the cum-
bersome logistic equation with r = 4.0.

a result, long-term prediction is impossible and orbits seemingly move
about at random. Is the orbit really random? It cannot be—the orbits
are generated by a deterministic function, so there is no element of
chance involved. However, there is another sense in which the orbits
can be said to be random. In order to explore this idea, I first need to
introduce another tool used in the study of dynamical systems, called
symbolic dynamics.
The orbits of the logistic equation are a sequence of numbers between

0 and 1. For example, the itinerary for the seed x0 = 0.613 for the
logistic equation with r = 4.0 begins

0.613, 0.949, 0.194, 0.625, 0.937, 0.235, 0.719, 0.809 . . . . (14.1)

There are an infinite number of numbers between 0 and 1, and so there
are an infinite number of possible values for iterates.

The idea behind symbolic dynamics is to encode the sequence of num-
bers in an itinerary into something simpler to analyze but which pre-
serves the key features of the dynamical system. For the logistic equa-
tion, the standard encoding is to use the symbol L for any value less
than 0.5 and R for any value equal to or larger than 0.5.2 Thus, the 2The symbols L and R are arbitrary.

We could just as well use A and B, or
0 and 1, or � and �.

itinerary in Eq. (14.1), in symbolic form, is

RRLRRLRR. . . . (14.2)

We can then study the dynamics of symbol sequences instead of the
dynamics of the original itinerary.
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It seems like we are discarding a lot of information when we perform
this encoding. After all, the original iterates can take on an infinite
number of values, while there are only two symbols, R and L. How-
ever, one can show that the two systems—the original iterated logistic
equation and the dynamics on the symbol sequences—are in a sense the
same. The two systems will have the same number of periodic cycles,
and these cycles will have the same stability. If one system is chaotic,
the other is too. The technical term for this type of similarity between
two dynamical systems is topological conjugacy.33Two spaces are topologically conju-

gate if there is a function mapping one
space to the other that is continuous
and invertible. Here, the two spaces
are the set of all real numbers between
0 and 1 and the set of all sequences of
L’s and R’s. Since the transformation
between the two spaces is continuous—
the space does not need to be cut
or split apart in any way when being
transformed—periodic points are pre-
served.

The fact that the symbolic representation of Eq. (14.2) and the original
itinerary of Eq. (14.1) are equivalent is not obvious. A full proof of this
fact is beyond the scope of this book, but I can say a few things to
justify it. Let us suppose that we are analyzing symbol sequences—L’s
and R’s—produced by the logistic equation. Perhaps we have seen the
sequence LL. We cannot go from this sequence back to the original
iterates x0x1, since each L could be any number between 0 and 0.5.
However, we can say something about this sequence—namely, that the
initial condition must have been between 0 and 0.15.

Fig. 14.1 Any initial condition be-
tween 0 and 0.15 will end up between 0
and 0.5 when iterated.
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To see this, first note that since the first symbol we saw was L, we
know that x0 must have been between 0 and 0.5. Since the second
symbol we see is also L, we know that x1 must also be between 0 and
0.5. Figure 14.1 helps us see that initial conditions between 0 and 0.15
will be between 0 and 0.5 after one iteration. Thus, the sequence LL
must have arisen from an initial condition between 0 and 0.15. A similar
argument shows that symbols LR have an initial condition between 0.15
and 0.5, RR an initial condition between 0.5 and 0.85, and RL an initial
condition between 0.85 and 1.0.
Note that each of the four pairs of two symbols (LL, LR, RL, RR)

correspond to a non-overlapping region of possible initial conditions.
This is illustrated in Fig. 14.2. Note also that the symbolic labeling

Fig. 14.2 The second generation of the
partition that generates symbolic dy-
namics for the logistic equation.

includes all possible initial conditions. This symbolic labeling is thus



Chaotic Systems as Sources of Randomness 143

said to partition the initial conditions. We could next consider all
possible blocks of three symbols: LLL, LLR, LRL, and so on. A similar
analysis to that of the preceding paragraph would lead to a refinement
of the partition of Fig. 14.2. There would be eight different regions, each
labeled with a different sequence of L’s and R’s.

One could continue this process further still by considering sets of
four symbols, then five, and so on. At each step the interval for each
particular sequence gets smaller and smaller. The result is that as the
number of symbols in the sequence of L’s and R’s grows, the interval
of possible initial conditions that leads to that symbol sequence gets
smaller. Thus longer and longer sequences of L’s and R’s correspond
to knowing the initial condition more and more accurately; in the limit
of an infinite symbol sequence we know the initial condition exactly. A
partition that has this property is known as a generating partition.
All the information about an orbit is contained in its initial condition,
since the dynamical system is deterministic. Thus, all the information
about an orbit is also contained in the symbol sequence. As a result, the
symbol sequences contain the same information as the orbits themselves.

The above exposition is an informal argument and not an exact proof.4 4The argument can be made precise.
A good, elementary discussion is that
in Chapter 3 of Ott, Sauer, and Yorke
(1994). See also section 10.7 of Peitgen,
Jürgens, and Saupe (1992).

The main point is that converting orbits of the logistic equation to sym-
bolic sequences results in a dynamical system that contains the same
information—has the same periodic and aperiodic orbits—as the orig-
inal logistic equation. In the next section we will use these symbol
sequences to see that the logistic equation can generate randomness.

14.2 Chaotic Systems as Sources of
Randomness

What do symbol sequences for the logistic equation with r = 4.0 look
like? Here is a typical sequence:

LRRLRRRLLRLRRLLLLLLRRRRLLRLLRRL . . . . (14.3)

To make this symbolic orbit I used the initial condition 0.20, calcu-
lated the itinerary, and then converted to symbols. There is no obvious
pattern. It looks like the L’s and R’s are equally likely. To test this
proposition I need to examine a much larger orbit. I conducted an ex-
periment with a symbolic orbit of one million symbols and found that
the fraction of L’s was 0.5002 and the fraction of R’s was 0.4998. It does
indeed seem that the two symbols occur equally often.

What about pairs of symbols? Do these occur equally often, as well?
I can test this by doing a similar experiment. I again generated an orbit
from the logistic equation with a million symbols and determined the
frequency of the four possible adjacent pairs of symbols. The results are
shown in Table 14.1. It appears that all four outcomes are equally likely.

Table 14.1 The fre-
quency of occurrence of
all four possible pairs of
symbols in an orbit of the
logistic equation. There
were one million symbols
in the orbit.

LL 0.2501
LR 0.2502
RL 0.2502
RR 0.2496

The four frequencies are not exactly equal, but they are very close, and
would get closer if I used more a longer orbit. (The four frequencies do
not add up to 1 because the numbers are rounded off.)
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The next logical step is to inquire about the frequency of sequences
consisting of three symbols. Doing this experiment I find again that all
eight possibilities occur with almost exactly the same frequency. I could
then examine the frequencies of four symbols, then five, and so on. In
each case I would find that all symbol sequences occur equally often.
This is not just a numerical result. It can be proven rigorously—using

deductive mathematical logic without relying on computer experiments—
that all sequences of L’s and R’s are equally likely in the symbolic dy-
namics of the logistic equation with r = 4.0. This means that the
symbolic dynamics of the logistic equation is as random as a coin toss.
A long sequence of tosses from a fair coin—one which is equally likely to
come up heads or tails—also has the property that all possible sequences
are equally likely.
Here is another way to think about what this result means. Suppose

that I gave you two long symbol sequences. One was a symbolic orbit
generated by the logistic equation with r = 4.0. The other sequence
was generated by tossing a coin; if it comes up heads I record L, and
if the coin is tails I record R. There is no way to tell which sequence
was which. In both sequences all possible occurrences of L’s and R’s are
equally likely .
A coin toss is perhaps the paradigmatic random process. The coin is

tossed and it is a matter of chance if one gets heads or tails. Yet we
have just seen that the symbolic dynamics for the logistic equation are
as random as a sequence generated by a tossed coin. But the logistic
equation was generated by a deterministic process—there is no element
of chance involved. How can this be?

14.3 Randomness?

To begin to make sense of this we need to think more carefully about
randomness. What, exactly, do we mean when we say that something is
random? To answer this question it will be helpful to distinguish between
two different ideas: the nature of the process that generates a result and
the nature of the result itself. Let us begin by considering this first idea:
the qualities of the process that generates an orbit. The dynamical
systems we have examined so far have all been iterated functions, and
all the functions we have studied are deterministic. This means that
the output of the function is determined uniquely by the input and
nothing else. Giving a deterministic function the same input many times
will always result in the same output. Alternatively, one could have a
function that incorporates an element of chance, so that the output is
not always the same for the same input. In everyday usage we might call
such a function random. However, the technical term for such a function
is stochastic.5 One speaks of a stochastic function or a stochastic process;5The origin of this word is stochos,

meaning aim, guess, or target, in an-
cient Greek.

these are functions which are non-deterministic. The term “stochastic”
is reserved for this sort of indeterminacy, while “random” is used to
describe a patternless outcome.
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What about the outcome of a dynamical system? What does it mean
to say that an outcome, in this case an itinerary, is random? One way to
think about this is that a random outcome is one that has no patterns
or regularities. This seems like a subjective statement—perhaps there
are regularities present that you can detect but I cannot. However, this
notion of randomness can be made objective. Describing how this is
done is the topic of the next several paragraphs.

Let us begin with an example of a non-random sequence. Consider a
long sequence of L’s and R’s repeating in a regular pattern such as

. . . LRLRLRLRLRLRLRLR. . . . (14.4)

Such a sequence is clearly not random. As a result, this sequence can
be compactly described. The simple phrase “alternate L and R forever”
specifies the entirety of the infinite sequence. We can come up with
a compact description of this sequence because it has a regularity or
pattern.

This then suggests that we define a random sequence as one which
is incompressible. A sequence is random if there does not exist a short
algorithm6 that generates the sequence. If there is a short algorithm, 6“Algorithm” is a technical term for a

finite and well-defined set of instruc-
tions for carrying out a task. You can
think of an algorithm as a computer
program, or a recipe, or as some other
set of instructions.

then the sequence is compressible. Since the algorithm is shorter than
the sequence itself, we have compressed it—found a representation for
it that is smaller than the original. For the sequence of Eq. (14.4) the
algorithm is simply: print LR and repeat. This algorithm is certainly
much shorter than the sequence itself.

In contrast, consider the following sequence which I generated by toss-
ing a coin:7 7Actually, the sequence was generated

for me by www.random.org, a website
that uses atmospheric noise to generate
random numbers.

HTHHTHTTTHTHHHHHTHHTHTTTTTHH . (14.5)

This sequence is presumably random. I do not see any obvious patterns
to exploit, and so the shortest algorithm that reproduces Eq. (14.5) is:
print HTHHTHTTTHTHHHHHTHHTHTTTTTHH. The algo-
rithm contains a complete copy of the sequence. Thus, the algorithm
is not shorter than the sequence, and so we say that the sequence is
random.

As a final example, consider the following sequence:

1100100100001111110110101010001000100001011010001 . . . .(14.6)

This looks random, but it is not. The sequence is actually the beginning
of the number π written in binary, or base-2.8 As a result, there is 8Binary is discussed in Section 21.5.

indeed a relatively short algorithm for reproducing Eq. (14.6): we need
to calculate the digits of π and then convert to base-2. The details of
how to do this might be complicated, and it might take a long time
to carry out, but that does not matter for this discussion. What does
matter is that this algorithm is clearly a lot shorter than a very long
sequence of the binary digits of π, and hence we would conclude that
Eq. (14.6) is not random.
There are some details we need to address in order to make the idea

of randomness as incompressibility sufficiently precise. What sort of
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device is going to execute the algorithm that reproduces the sequence?
Different devices may behave very differently, and the same algorithm
could have different lengths when programmed on different machines.
The solution to this puzzle lies in an abstraction known as a Universal
Turing Machine (UTM). A UTM is a theoretical computing device that
is capable of emulating all other computing devices. So the UTM is taken
as the standard machine or computer that will execute our algorithms
to reproduce a sequence.
There is another question about incompressibility that is more diffi-

cult: How can we tell if there is a short algorithm for a sequence? It
was not at all obvious that Eq. (14.6) was actually the binary digits of
π. And presumably there are lots of lots of other non-obvious patterns.
Perhaps all sequences have some almost-impossible-to-determine algo-
rithm that generates them, and so there is no such thing as randomness
at all. What we need, then, is an algorithm for finding algorithms for
compressing sequences. However, it can be proved that such an algo-
rithm cannot exist. At this point it may seem that this business of using
incompressibility as a measure of randomness collapses like a house of
cards. This certainly does limit the use of this idea. But all is not lost;
we can argue that there are not enough algorithms to explain all possi-
ble sequences, and so most sequences must be random. This argument
proceeds as follows.
There are an infinite number of possible algorithms. There are also

an infinite number of possible symbol sequences. However, there are
many more sequences than algorithms. In fact, there are infinitely more
sequences than there are algorithms that could generate them.9 Thus, if9The number of algorithms is count-

ably infinite while the number of se-
quences is uncountably infinite. These
two different types of infinity are dis-
cussed in Chapter 21.

one chooses an arbitrary infinite symbol sequence it almost surely will be
incompressible, and hence random. It thus follows that if one chooses
an arbitrary initial condition for the logistic equation and uses it to
generate a symbol sequence, it will almost surely be random. Thus, the
logistic equation produces a random sequence according to our definition
of randomness as incompressibility.
But wait a minute. This still seems odd, since the orbits of the logistic

equation are deterministic. Thus, is it not the case that iterating the
logistic equation is an algorithm to generate the orbit? If so, then the
sequences generated by the logistic equation are not random after all.
Iterating the logistic equation is indeed such an algorithm, though there
is an important catch. Suppose we wanted to use the logistic equation to
generate an infinite symbol sequence. This could be done—the logistic
equation with r = 4.0 is capable of producing any sequence. However,
to generate this sequence exactly requires exactly specifying the initial
condition, which is a number between 0 and 1. Almost all numbers
between 0 and 1 are irrational, meaning that their decimal expansion
goes on forever; it neither repeats nor terminates.
Thus, our algorithm for generating the sequence needs an exact initial

condition, which is itself an infinite sequence of digits. So now the issue
becomes whether or not we can find a short algorithm for the initial
condition. It turns out that the vast majority of initial conditions are



Randomness? 147

incompressible. The argument is again based on frequency: there are
an infinite number of algorithms but infinitely more numbers between
0 and 1. The upshot is that we cannot use the logistic equation as a
short algorithm for generating symbol sequences because such an al-
gorithm requires the exact initial condition, which is itself infinite and
incompressible.

So, symbolic orbits generated by the logistic equation really are ran-
dom, in the algorithmic sense described above.10 Thus, we have a deter- 10You may object on some level to the

notion of algorithmic randomness. If
so, there are statistical definitions of
randomness based on entropy that are
essentially equivalent and lead to the
same conclusion.

ministic dynamical system producing random results. One might expect
that random results would require a random generation process, but the
study of chaotic dynamical systems shows us that this is not the case.
This is one of the key conceptual advances associated with the study of
chaos. Before 1970 or so, most scientists would assume that a series of
apparently random observations must have arisen by chance, via some
sort of stochastic process. Chaos now tells us that this is not a valid
assumption to make.

I have two additional remarks on deterministic randomness to con-
clude this section. First, being able to generate random numbers in a
quick and efficient way is surprisingly useful. For example, in computer
games we might want something to move randomly across the screen.
In strategic interactions, randomness is important because you do not
want your adversary to be able to predict your actions. Randomness
is essential for cryptography, and it also plays a role in many other
mathematical and computational applications. Often a problem is too
difficult to solve directly, even with a computer. Instead, one needs to
perform a type of random sampling and then average the results. This
general process is known as a Monte Carlo algorithm. So randomness
has many practical and important uses. Chaotic systems similar to the
logistic equation are now used to generate random numbers for Monte
Carlo algorithms and other applications. In this setting these numbers
are often called pseudo random to indicate that their source is from a
deterministic function and is not generated by a stochastic process.

This leads to my second set of remarks. Given that deterministic
systems can produce random behavior, one may wonder if anything is
truly random, in the sense of being generated by a random or stochastic
process. Is there any chance in the universe? Or is chance just our
name for what happens when we cannot predict the outcome of some
event due to the butterfly effect? I have repeatedly referenced a coin
toss as a truly random event. But the laws of physics that determine
the trajectory of the coin are deterministic. So while we describe this as
a random process—one usually says that whether the coin is heads or
tails is a matter of chance—it cannot be truly stochastic, can it?

One way out of this bind is via quantum mechanics. Unlike the classi-
cal mechanics of Newton, discussed in Chapter 8, quantum mechanics is
not deterministic.11 Two quantum systems prepared in exactly the same

11Almost all physicists agree that non-
determinism is intrinsic to quantum
mechanics and is not a result of our ig-
norance or because quantum mechan-
ics is an incomplete theory. Remark-
ably, one can design experimental tests
that prove there can be no hidden vari-
ables that render quantum mechanics
a deterministic theory. For accessible
introductions to these ideas, see Mer-
min (1992) or Styer (2000). There is
an alternative formulation of quantum
mechanics, usually called Bohmian me-
chanics, which is deterministic. How-
ever, in Bohmian mechanics it is possi-
ble for signals to travel faster than the
speed of light, and hence it is not con-
sistent with Einstein’s theory of special
relativity. As a result, the vast ma-
jority of physicists prefer the standard
formulation of quantum mechanics, but
there are some who are so bothered by
non-determinism that they opt for the
Bohmian approach.

way can behave differently. Randomness at the quantum level—atoms
or small molecules—can be amplified by sensitive dependence on initial
conditions, leading to everyday phenomena that truly are chance events.
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However, there is not agreement whether or not this explains most (or
even any) of the randomness we perceive in the world. Understand-
ing different sorts of randomness remains a topic of current scholarship.
Work in this area intersects fundamental physics, mathematics, com-
puter science, and philosophy. See the Further Reading section at the
end of this chapter for additional references you can turn to if you wish
to dig deeper into these issues.

14.4 Linearity, Nonlinearity, and
Reductionism

We now shift gears and turn our attention from randomness to nonlin-
earity. In mathematics there is a fundamental dichotomy between linear
and nonlinear systems. Chaos is only possible in nonlinear systems, and
so the field of study known as chaos or dynamical systems is also referred
to as nonlinear dynamics. Thus, some remarks on linear and nonlinear
equations seem in order, especially since the mathematical meanings of
these terms are somewhat subtle and counterintuitive. Moreover, these
terms are frequently used in non-mathematical contexts as well. In this
section I try to unpack some of the different uses of these words.
One often hears the phrase “linear thinking” or reference to a linear

approach to a problem. I think in this instance “linear” is being used in
a mostly literal sense: linear thinkers like to think sequentially, moving
in a clear order from one step to the next. A linear style of thinking
might shy away from exploring multiple trains of thought or multiple
paths to a problem’s solution. Depending on the context, being called a
“linear thinker” could be a compliment, or not.
But there is a somewhat more metaphorical and less literal sense in

which “linear” and “nonlinear” are used to describe ways of thinking
and approaches to problems. In this usage, a linear approach is often
associated with reductionism, while nonlinear approaches are associated
with less reductive or holistic views. I do not think there is a standard
definition of reductionism, but it is generally understood to be the be-
lief that the way to understand a complex object or phenomenon is by
understanding the properties of its parts. In this line of thinking, the
way to learn about the physical properties of a solid is to understand
the properties of the atoms in the solid. Or the way to understand the
behavior of a group of people is to learn as much as possible about the
psychology of the individuals in the group.
Reductionism is sometimes described in overly simple terms: that the

only way to understand an object is to take it apart and see what it is
made of, denying the importance of the interactions between an object’s
constituent parts and failing to recognize that an object’s properties
may depend on its context. It is easy to make a reductive approach
seem almost buffoonish, and in many circles being called “reductionist”
is not meant as a compliment.
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Reductionism in its extreme is surely a bad idea, but the same can be
said about almost any “ism” in science, as a commitment to one explana-
tory framework precludes other types of understanding and inevitably
narrows one’s point of view. While reductionism should be approached
with caution, I nevertheless think there is much good that can be said
about reductive approaches. The reductive approach that has character-
ized much of modern physical science has been unarguably successful.
By the standard criteria of science—the ability to predict the results
of repeatable experiments—reductive approaches have been a stunning
success. By learning about atoms and molecules and DNA and cells, we
have learned a great deal about how some aspects of the world work.
So, at least in this sense, reductive approaches work extremely well.

But more generally, I think that all knowledge is reductive. In order
to try to understand our world, it is inevitable that we need to choose
some portion of the world to focus on that is smaller than the world
itself. I do not know any way around this. We cannot study the whole;
all we can meaningfully analyze are parts. So I would argue that all
knowledge is reductive in at least some sense. To me, the question is not
whether or not to be reductive, but what sort of reduction to do and
how to do it. There are different levels at which one can understand a
phenomenon, and I think a pluralistic approach is best.

Different people will attack problems in different ways, and different
problems call out for different approaches. There is, however, some risk
in reductive approaches that I think we should be wary of. By necessity
we have to study parts and not wholes. But it is dangerous to then imply
that the part is the whole. For example, there is nothing wrong with
studying an organism’s genes; but I do think there is something wrong
with then implying that an organism is its genes or that all traits or
behaviors are purely genetic. There is also a tendency in many circles to
privilege reductive knowledge. Studying genes and elementary particle
physics is often viewed as more prestigious than studying ecology or the
physics of macrophenomena, like weather or the properties of materials.

In any event, let us now turn our attention more directly to linear and
nonlinear functions and how these might be related to reductionism. I
will do so via an example. Suppose you are going shopping at the local
grocery store. Your only task is to get ice cream for a gathering that
will happen later that evening. Let us imagine that ice cream costs $3
a pint. You put a bunch of pints of ice cream in your shopping cart and
head to the checkout line. How much will the ice cream cost? Three
dollars times the number of pints you have.

This relationship is graphed in Fig. 14.3. Not surprisingly, the function
is linear. This expresses the fact that no matter how many pints of ice
cream you buy, the cost per pint is the same. So, imagine that we
want to “understand” your cart of groceries. In this particular context,
“understand” means “figure out the cost of”. We can understand the
cart very easily. In fact, we can understand the cart by considering each
pint of ice cream one at a time. We figure out the total cost by figuring
out the cost of each pint, and then adding them up to get the total cost.
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Fig. 14.3 The price of ice cream as a
function of the number of pints you buy.
In this case the price is a linear function
of the amount of ice cream purchased.
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A consequence of this is as follows. Suppose you have ten pints in
your cart, and you are at the store with three friends. Each of you
could check out in a different check-out line. One of you could take two
pints, the other three, the other five. You would end up paying just as
much if you checked out all at once. No matter how you divided up the
pints, your final price would be the same. The whole price of the cart
of groceries is simply the sum of its parts.

Fig. 14.4 The price of ice cream as
a function of the number of pints you
buy. In this case the price is a nonlin-
ear function of the amount of ice cream
purchased.
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Now, suppose that the total price is given by the nonlinear function in
Fig. 14.4 as opposed to the linear function of Fig. 14.3. This corresponds
to a situation in which there was a volume discount. In this scenario,
two pints will cost around $7, while ten pints of ice cream will only cost
around $21. So if you get ten pints, you are paying $21/10 =$2.10 for
each pint. But if you get two pints, you pay $3.50 per pint.
Imagine again that our task is to understand your grocery cart. Simply

grabbing the pints one by one, determining their prices, and then adding
up all the prices to get the total price of the goods in your cart will not
work. If you and your friends were to check out separately, you would
not get the same price as if you checked out all at once.
One way to describe this state of affairs is to say that there is an

interaction between the pints of ice cream. The pints do not interact
literally, in that they are not bouncing off each other. But the presence
of one pint has the effect of changing the price of other pints. This is
what leads to the lower price when you get a lot of ice cream. Ignoring
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this interaction and trying to understand the system merely as the sum
of its parts will lead to the wrong conclusion about the price of the cart
full of ice cream. It is in this sense that there is a connection between
nonlinear functions and interactions. A nonlinear relationship means
that one cannot break up the system into its components; there are
interactions between components that mean that whatever feature of
the system the function captures cannot be re-expressed as the sum of
its parts.

Here is another way to say this. Let (x, f(x)) correspond to x-y pairs
for a function. For the linear ice cream example of Fig. 14.3, two such
pairs are (3, 9) and (5, 15). For a linear function we can add these two
pairs together to get a new pair that is also on the line:

(3, 9) + (5, 15) = (8, 24) . (14.7)

The point (8, 24) is on the line graphed in Fig. 14.3. However, this does
not work for nonlinear functions. If you add two points that are on the
graph in Fig. 14.4, the resultant point is not on the graph. (You might
wish to check this for yourself using the figure.) This is another way of
seeing that the whole cannot be decomposed as the sum of its parts.

Generalizing this example leads to a more general definition of linear-
ity. A function is linear if it has the property that if A is a solution and
B is also a solution, then A + B is also a solution. This means that
if you have two different solutions and add them together, you have a
third solution. And to this third solution one could add, say, the first
solution, getting a fourth solution, and so on. In addition, for a function
to be linear it must be the case that if A is a solution then cA is as well,
where c is any number.12 Combining these two conditions, we say that 12For example, the point (3, 9) is a so-

lution to the ice cream pricing equation,
graphed in Fig. 14.3. Then 2 times this
solution is also a solution; the point
(6, 18) is also on the line in Fig. 14.3.
The same will hold true for any value
of c, even if c is not an integer.

a function is linear if

A and B solutions⇒ A+ cB is a solution, for all c , (14.8)

where ⇒ should be read “implies that”.
It is Eq. (14.8) that defines linearity. This definition applies to all

functions, not just the one-dimensional functions that we have studied
so far. Confusingly, not all functions that are lines fit the definition of a
linear function. If the function has a y-intercept that is not zero, it will
not satisfy the criteria of Eq. (14.8). You will encounter an example of
this in the exercises for this chapter.

Equation 14.8 tells us that linear systems are made up of regular
“building blocks”—entities that make up the whole, and whose prop-
erties are unaffected by the presence of other building blocks. In the
ice cream example, the building block is a single pint of ice cream, and
the property is the price per pint. For our nonlinear example, Fig. 14.4,
the properties of the pints, their price, changes as more pints are added.
This means the nonlinear system is not decomposable in the same way
that the linear system is. Thus, modeling a system with a nonlinear
function is generally a less reductive approach. In contrast, if one mod-
els a system with a linear function, one is implicitly assuming a sort of
decomposability.
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This decomposability lends a certain simplicity to a linear system.
There exist a host of solution methods for such equations that involve
solving the equation for several simple building blocks, and then build-
ing up full solutions as a combination of these building blocks. These
methods are not always easy, but it is still usually much, much easier to
solve a linear system than a nonlinear one. There are general methods
for solving classes of linear equations, but few general techniques work
for nonlinear equations. But it is not just the solution methods for linear
systems that are simple; the dynamics themselves are simpler as well.
In fact, in order for a system to be chaotic it must be nonlinear.1313An exception to this occurs in infi-

nite dimensional systems, which are far
beyond the scope of this book.

As with several other claims I have made in this chapter I cannot prove
this assertion, but I can argue why this is so. For the one-dimensional
iterated functions we have focused on so far, one can see geometrically
that a nonlinear function is needed for chaos. A linear function can
have at most one fixed point, and depending on its stability, either all
initial conditions will get pulled toward it or pushed away from it. So
there is no possibility for a chaotic orbit. What about other types of
dynamical systems, such as those in two and three dimensions, which
will be the focus of Part V of this book? Here the situation is not as
straightforward. There are a number of mathematical subtleties and
different cases to consider. However, the basic intuition is that if a
system is linear its solutions are made up of building blocks that do
not interact. This decomposability or modularity limits the complexity
of the solutions such that it is impossible to have orbits that are both
aperiodic and have sensitive dependence on initial conditions.

14.5 Summary and a Look Ahead

In this part of the book we have encountered chaos: a dynamical sys-
tem is chaotic if it is deterministic, has bounded, aperiodic orbits, and
sensitive dependence on initial conditions (SDIC). For such a system,
long-term prediction is not possible. A small inaccuracy in the mea-
surement of the system’s initial condition is quickly magnified under
iteration, and so only short-term prediction is feasible. The orbits of a
chaotic dynamical system appear random, even though they are gener-
ated by a deterministic rule.
Yet systems that are chaotic in the mathematical sense are not struc-

tureless. By examining the bifurcation diagram, we have seen regulari-
ties in how the logistic equation shuttles back and forth between periodic
and chaotic orbits. There is a pattern to the way that the equation’s
behavior changes as the parameter r is increased. Remarkably, some
features of this pattern are universal. Several properties of the period-
doubling transition to chaos are the same for different equations and
even different physical systems. Not only is there “order in chaos”, but
some features of that order are the same for different chaotic systems.
Chaotic systems also possess statistical regularities. Two orbits with

slightly different initial conditions will follow very different trajectories.
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However, histograms constructed from these two trajectories will be very
similar, and thus their average properties will also be very similar. A
chaotic dynamical system thus combines elements of order and disorder,
predictability and unpredictability.

In Chapter 8 I discussed the Newtonian worldview and the hope of
Laplacian determinism. Chaos does not supplant Newton’s laws, but it
does oblige us to rethink at least two of the assumptions that are of-
ten a part of the Newtonian view. First, sensitive dependence on initial
conditions (SDIC) complicates the Laplacian notion that increasingly
accurate measurements will lead to increasingly accurate predictions. It
is still strictly true that better measurements lead to better predictions,
but a system with SDIC will never be predictable in the long run. Sec-
ond, chaos shows us that it is not always the case that a simple equation
will have simple dynamical behavior. In particular, a deterministic sys-
tem can be unpredictable and appear random. Randomness and order
are not mutually exclusive.

In the next part of the book I will introduce fractals. At first, we
will leave dynamical systems to the side as we learn what fractals are
and how to characterize them using dimensions. After several chapters,
however, we will see that fractals and dynamical systems are linked.
Intricate fractals often arise from simple, iterated processes.

Further Reading

As one might imagine, there is a vast literature on different notions of
randomness, the extent to which randomness is compatible with deter-
minism, computability and uncomputablilty, and a host of related issues.
Chance and Chaos by David Ruelle (1993) is an accessible and engaging
introduction to these issues. Ruelle writes lucidly about some potentially
vexing philosophical and mathematical ideas. For a focused discussion
of the philosophical implications of the butterfly effect and what chaos
has to say about different sorts of determinism, I recommend Chapters 2
and 3 of Kellert (1993). A very clear, not-too-technical discussion of dif-
ferent types of infinities, Universal Turing Machines, computability, and
randomness can be found in Chapters 2 and 3 of Gary Flake’s book The
Computational Beauty of Nature (1999). Chapter 14 of Flake’s book re-
lates these ideas to chaotic dynamical systems in a clear and compelling
way. I also recommend the essay on causal determinism in the Stan-
ford Encyclopedia of Philosophy (Hoefer, 2010); it covers much more
territory than just the relationships between determinism and chaotic
dynamics. Joe Ford’s article “How Random is a Coin Toss?” (1983) is
a succinct, although in places fairly technical, overview of randomness
in physics. Brian Hayes’ article “Randomness as a Resource” (2001) is
an entertaining and fascinating overview of the uses of randomness in
algorithms and the challenges associated with generating good random
numbers.
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Exercises

(14.1) Convert the following itinerary into its symbolic
representation: 0.33, 0.8844, 0.408947, 0.966837,
0.128253, 0.447215, 0.988855, 0.0440827,
0.168558, 0.560584, 0.985318, 0.0578647.

(14.2) � In this exercise you will derive the fact that
any initial condition between 0 and approximately
0.15 will stay between 0 and 0.5 when iterated
by the logistic equation with r = 4.0: f(x) =
4x(1−x). This was shown graphically in Fig. 14.1.
Show this using algebra by finding the x value(s)
such that f(x) = 0.5. To do so you will need to
use the quadratic formula; see Appendix A.2.

(14.3) Starting with Fig. 14.2, sketch the partition for
three symbol sequences. The lengths of the inter-
vals do not need to be exact.

(14.4) Suppose a fair coin is tossed many times. You
are interested in the frequency with which you see
particular sequences of six tosses. What fraction
of the time would you expect to see each of the
following?

(a) HTTHHT

(b) HHHHHH

(c) HHTTHH

(d) HTHTHT

(14.5) Suppose you observe a very long symbol sequence
produced by the logistic equation with r = 4.0.
You are interested in the frequency with which
you see particular sequences of six symbols. What
fraction of the time would you expect to see each
of the following?

(a) LRRLLR

(b) LLLLLL

(c) LLRRLL

(d) LRLRLR

(14.6) Produce a real-life example of a linear function.
Why is it linear?

(14.7) Produce a real-life example of a nonlinear func-
tion. What is it about the situation that makes
in nonlinear?

(14.8) Consider the nonlinear ice cream pricing, shown
in Fig. 14.4.

(a) How much do four pints of ice cream cost?
What is the cost per pint in this case?

(b) How much do eight pints of ice cream cost?
What is the cost per pint in this case?

(14.9) Suppose the ice cream situation is the same as it
was in Fig. 14.3, but now there is a $1 fee that you
have to pay when you check out at the cashier.
The fee is $1 regardless of how much ice cream
you buy.

(a) Graph the price of ice cream as a function
of the number of pints.

(b) Is the function you just plotted linear in the
sense of this chapter?

(14.10) Is the function f(x) = x2 linear? To check, de-
termine two (x, y) pairs that satisfy the function.
Then add these points together and see if this new
point satisfied the function.

(14.11) A one-dimensional linear function g(x) has a solu-
tion (2, 4). Find two other solutions to this func-
tion. Sketch g(x).
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We will now put aside chaos and dynamical systems and focus instead
on a different topic: fractals. This will not be a complete departure from
what has come before; we will see that iteration plays a key role in the
generation of fractals. Gradually over the next several chapters we will
see that fractals and the sorts dynamical systems we have studied in the
first two parts of this book are closely related.

15.1 Shapes

Fig. 15.1 Three shapes from ordinary
geometry: a circle, a line segment, and
a rectangle.

Figure 15.1 shows three familiar shapes from geometry: a circle, a line
segment, and a rectangle. These geometric forms are abstractions of
shapes that we encounter in the physical world: a round coffee mug,
a clothesline, and a tabletop. But the world we live in is much richer
than this. There are many shapes—the branches of a tree, the bumps
of a mountain range, the meander of a river—that do not resemble the
shapes of Fig 15.1. Consider the images shown in Fig. 15.2. These
objects from the natural and physical world are very different from the
simple circles and lines of ordinary geometry. Sure, we could describe a
winding river or branching trees as a collection of line segments arranged
in a particular way. But it seems that this would be missing the essence
of the shape that we are trying to describe.

The desire to better describe forms such as trees and winding rivers
leads us to a different sort of shape. We construct an initial example by
an iterative process, shown in Fig. 15.3. At n = 0 we start with a small
square. We can think of this as a seed, playing the role that the initial
condition x0 does for an iterated function. To get to the shape at step
n = 1, we make four copies of the shape at n = 0, and place one copy at
each of the corners. We then repeat, or iterate, this process. To get to
step n+ 1 we take the shape at n, make four copies of it, and place one
copy at each of the corners. The result, as one applies this rule over and
over and over, is an intricate (and very large) structure that resembles
a snowflake. This snowflake shape is known as a fractal. I will describe
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Fig. 15.2 Four naturally occurring objects that are well viewed as fractals. Clockwise from top left: tree silhouette (Bruce
Thompson, licensed under Creative Commons CC BY-NC-SA 2.0); romanesco broccoli (Licensed under Creative Commons
CC0, photo courtesy PDPhoto.org); Baltoro glacier and the Karakoram mountains (Guilhem Vellut, licensed under Creative
Commons Attribution-Share Alike 2.0 Generic license); and the Ganges river delta (NASA Earth Observatory).

fractals more fully below, but for now the main thing to note is how
different it is than a simple square or circle.
For our next example of a fractal, consider Fig. 15.4. Again, this

fractal is constructed via iteration. We start at step n = 0 with a line
segment. We then remove the middle third of that line segment to obtain
the shape labeled n = 1. Repeating this step, we get the shape at n = 2.
That is, we remove the middle third of each line segment at n = 1. We
keep on doing this, removing at every step the middle third of every line
segment. If we carry this process on forever, the result is an infinite
number of very, very, very tiny line segments.1 The collection of these1Strictly speaking, in the limit that n

goes to infinity, the tiny line segments
approach points.

minuscule line segments is known as the Cantor set.

15.2 Self-Similarity

The Cantor set and the snowflake fractal are both self-similar. What
this means is that a small portion of them looks like the whole. For



Self-Similarity 159

n=0 n=1

n=3n=2

Fig. 15.3 The first several stages in the
construction of a “snowflake” fractal.
One starts at n = 0 with a seed shape,
in this case a small square. One builds
the next shape by placing a copy of the
previous shape on each of the four cor-
ners of the current shape.

n=0

n=3

n=1

n=2

Fig. 15.4 The first several stages in the
construction of the middle-thirds Can-
tor set. One starts with a line segment.
At every successive step, one removes
the middle third of every line segment
in the previous step.

example, imagine breaking off an arm of the snowflake. What you have
looks like a miniature copy of the entire snowflake. You could magnify
the small portion and you will get a shape that looks like the whole
snowflake. You could break a smaller arm off of the arm you already
broke off, and again you would have something that is a miniature copy
of the whole snowflake. The same property is true of the Cantor set,
although this might be a little bit harder to see. If you take a small
portion of the set you will have something that is a miniature copy of
the entire set.

The natural fractals shown in Fig. 15.2 are also self-similar. Here
the self-similarity is not exact; small portions of each picture are not
identical to the large picture, but rather bear a close resemblance. For
example, a branch of a tree looks similar, but not identical, to the full
tree.

This property is called self-similarity; an object is self-similar if it
contains replicas of itself of many different sizes. Fractals are self-similar
geometric objects. As a counter-example, consider a person. People are
not fractals. If you break off a person’s arm, what you have in your
hands will look like an arm, and not a small copy of the person. So a
person is not self-similar, and hence is not a fractal.

Note that there are some non-fractals that are nevertheless self-similar.
An example is a line segment. If you break off a portion of a line segment,
you have another line segment, which looks just like the original line
segment. However, this is not considered a fractal, for reasons that will
be discussed in Chapter 16. For now, we can think of fractals as being
geometric shapes that are self-similar, but in a “non-trivial” or “non-
boring” way. Line segments are self-similar in a boring fashion, and
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hence are not considered fractals.
Here is another way to think about self-similarity. Suppose one day

you woke up and you had significantly changed size. Perhaps you wake
up Monday morning and you are only six inches tall. How could you
tell? A clear indication would be that you were suddenly smaller than
your pillow, your alarm clock would appear gigantic, it might not be safe
to jump out of bed, and your cat might eat you. In brief, it would be
immediately and stunningly obvious to you that you were very small.
However, suppose you lived in a fractal world—perhaps in an arm of

the fractal snowflake of Fig. 15.3. Remember that this fractal gets very,
very large as n, the number of times we apply the snowflake-building
rule, gets large. If you lived on this snowflake, you would not be able
to tell that that you had been shrunk. There are no clues as to scale or
size. The entire universe consists of snowflakes within snowflakes within
snowflakes. So there is no way to tell how big you are. The only thing
you can measure yourself with is a snowflake, and there are snowflakes
of all different sizes, so you can never really tell how big you are.

15.3 Typical Size?

As discussed in the preceding paragraphs, for a fractal there is not a typ-
ical size. For the fractal snowflake, the snowflake motif is repeated again
and again and again at different sizes. So it does not really make sense
to talk about an average snowflake size. The Cantor set of Fig. 15.4,
after we have iterated the construction process many times, consists of
points that are clustered together. But these clusters are clustered into
clusters, which in turn are clustered into bigger clusters, and so on.
For ordinary, non-fractal objects we are used to describing them by

stating their size: a circle with a radius of two inches, a chair that is 3.5
feet tall, a track on a CD that lasts five minutes. For more complicated
situations, we often resort to averages or statements about the size of a
typical instance of some entity. For example, we might say that a typical
person is 5.5 feet tall, an average cat weighs 9 pounds, and most pints
of ice cream cost around $2.50.
But this type of description does not work for fractals; stating the

average size of a cluster in the Cantor set or the size of a typical snowflake
motif in the snowflake fractal does not really capture the essence of the
shape. In fact, we shall see in Chapter 19 that there are some fractals
for which the concept of an average size is not well defined. But this
begs the question: how can we describe fractals if not with averages?
The answer to this question will come in the next chapter, where we
will see that the geometric notion of dimension can be extended so as
to capture some of the structural features of fractals.
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15.4 Mathematical vs. Real Fractals

Finally, a few words about mathematical versus real fractals. The fractal
snowflake and the Cantor set are abstractions. Strictly speaking they
are defined by the result of an infinite iteration process. As such, they
have structure on all scales. For example, you could keep zooming in on
such a mathematical fractal and you would see the same shape repeated
endlessly.

The same is not true for real fractals. Consider, for example, a fern.
We can zoom in on the fern, and we will see smaller copies of the fern.
But eventually this stops, and the fern no longer looks like little ferns.
Instead we start to see individual cells. Or, consider the winding path
of a river. We could imagine starting with an aerial view taken by
a satellite, and then start zooming in. For quite some time we could
see a self-similar shape; meanders on top of meanders, wiggles on top
of wiggles. But eventually we will zoom in to the river itself, and we
would just see water. Similarly, if we started with the satellite image
and zoomed out, eventually the river would disappear from view. So
real fractals have some cut-off sizes above and below which an otherwise
self-similar object fails to appear self-similar. In contrast, mathematical
fractals have no such cut-off; in principle we could keep zooming in
forever, and see ever-smaller copies of our original shape.

This does not mean, however, that mathematical fractals are useless
for describing the real world. It is important to remember that a fractal,
like any geometric object, is just an abstraction or an idealization. For
example, consider a perfect, mathematical circle. Such a thing is just
an idea, albeit a very useful one. In Fig. 15.1 I have shown a drawing of
a circle, made with the graphics program xfig. It is a nice circle, but
it is not perfect. Look closely enough—you might need a magnifying
glass—and you will see imperfections. And in nature, in the physical
world in which we live, there certainly are no perfect circles, just shapes
that approximate circles to varying degrees. Nevertheless, it would be
hard to argue against the geometric idea, or ideal, of a circle. It certainly
is a useful approximation or abstraction of things we encounter in the
physical world.

So it is with fractals. In the real world there are no perfect fractals.
But many have found that fractals are a tremendously useful and evoca-
tive way of capturing the qualities of shapes and processes that are, to
varying degrees, self-similar.
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Exercises

(15.1) Produce a real-life example of an object or phe-
nomena that is a fractal. Explain why your ex-
ample fits the criteria for being a fractal.

(15.2) The first two steps (n = 0 and n = 1) in the
construction of a fractal known as the Sierpiński
triangle are shown in Fig. 15.5. Sketch the shape
for n = 2 and n = 3.

n=1n=0

Fig. 15.5 The first two steps in the construction of

the Sierpiński triangle.

(15.3) The first several rows of Pascal’s triangle are
shown in Fig. 15.6. Pascal’s triangle is con-
structed as follows. The top and edges of the
triangle are filled with 1’s. Other entries in the
triangle are obtained by adding the two entries
directly above it. For example, the hexagons with
the number 4 in them in Fig. 15.6 both have a 1
and a 3 above them.

(a) Continue the triangle so that it extends
for fifteen to twenty rows. Use hexago-
nal graph paper, which you can download
at http://incompetech.com/graphpaper/

hexagonal/.

(b) Now shade in all the cells that have an odd
number in them.

(c) Does the resultant shape look familiar?

Fig. 15.6 The beginning of Pascal’s triangle. The

value in each hexagon is equal to the sum of the two

hexagons above.
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In the previous chapter I introduced fractals: self-similar geometric ob-
jects. And I discussed how to generate fractals via a geometric iterative
process. In this chapter we continue our exploration of fractals by learn-
ing how to characterize them by means of the dimension. By defining
dimension in terms of the scaling properties of a shape, we will come up
with a quantitative way of describing fractals. We begin with a simple
geometric exercise that will lead us to the definition of the self-similarity
dimension.

16.1 How Many Little Things Fit inside a

Big Thing?

Suppose you have a line segment and then magnify it by a factor of 3.
The line segment is now three times as long as before. Hence, three of
the small line segments fit inside the new, larger line segment. This is
illustrated in Fig. 16.1. Now, try the same thing with a square. We
start with a small square, and then magnify it by a factor of 3. This
means that it is now three times as long and three times as tall as it
was before. As you can see in Fig. 16.1, 9 copies of the small square fit
inside the bigger square. Finally, let us imagine the same experiment
with a cube. We start with a small cube and magnify it by a factor of
3. The cube is now three times as wide, three times as tall, and three
times as deep. In this bigger cube, one can fit 27 of the smaller cubes,
illustrated in Fig. 16.1.

The results of these experiments are summarized in Table 16.1. In all
instances, the magnification factor is 3; it is as if we have put the shape
in a photocopier machine and expanded by a factor of 3 in all directions.

Number of small copies that
Shape Magnification Factor fit within big copy

Line 3 3

Square 3 9

Cube 3 27

Table 16.1 Effects of magnification on different shapes.
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Fig. 16.1 Illustrating the number of
small copies of an object that fit inside
a big copy.

All lengths in the shape are three times as long as they were previously.
E.g., the bigger square in Fig. 16.1 is three times taller and three times
wider than the little square.
The question before us, then, is: what property of a shape determines

how many small copies of it fit in a bigger copy? The answer to this
question is the object’s dimension. The line, square, and cube all
have different dimensions: the line is one-dimensional, the square is two-
dimensional, and the cube is three-dimensional. Looking at the table,
we see that we can relate the magnification factor, the number of small
copies, and the dimension as follows:

number of small copies = (magnification factor)D , (16.1)

where D is the dimension.
We may view Eq. (16.1) as defining the dimension D. This might

seem like a strange definition, but I hope to have convinced you that
it reproduces what we already know about dimension. For example, we
expect that a square is two-dimensional. Plugging in D = 2 and using
the values for the square from Table 16.1, we get

9 = 32 , (16.2)

which certainly is true. This definition of dimension is known as the
self-similarity dimension, because it tells us how many small self-
similar pieces of an object fit inside a large piece. There are other other
definitions of dimension, but for almost all situations they turn out to
be equal. I will usually refer to the dimension D defined in Eq. (16.1)
as the dimension, unless the context calls for greater specificity. Let us
now apply this definition to one of the fractals from Chapter 15.
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16.2 The Dimension of the Snowflake

The steps in the construction of the snowflake fractal are illustrated in
Fig. 16.2. Our goal is to use Eq. (16.1) to determine the dimension of
the snowflake. We begin by focusing on what happens from step n = 0
to n = 1. The basic shape here is the little square. We can see that
there are 5 little squares in the larger shape corresponding to n = 1 in
the figure. The magnification factor is 3; the new shape is three times
as tall and three times as wide as the previous shape.

We can now plug into Eq. (16.1) to obtain

5 = 3D . (16.3)

All that remains is to solve this equation for D. We might have been
anticipating that the dimension D would equal 2. However, plugging
D = 2 into Eq. (16.3) does not work; the right-hand side will be 32 = 9,
which does not equal 5. We might then try a dimension of 1, but this
will not work either. A D of one makes the right-hand side of Eq. (16.3)
equal to 31 = 3, which is smaller than 5.

n=0 n=1

n=3n=2

Fig. 16.2 The steps in the construction
of the snowflake fractal.

The conclusion, then, is that the dimension must be between 1 and
2! Evidently, the dimension is not an integer. How can this be? Let us
put this question on hold for just a moment, and get back to the task of
solving Eq. (16.3). We first look for a solution by guessing and checking.
Since we know that D is between 1 and 2, let us try 1.5. Doing so, we
get

31.5 ≈ 5.196 . (16.4)

(I obtained this number using a calculator.) So 1.5 is too large; we want
the right-hand side to be as close to 5 as possible. So let us try D = 1.4:

31.4 ≈ 4.656 . (16.5)

Evidently 1.4 is too low. How about D = 1.45?

31.45 ≈ 4.918 . (16.6)

A little too low. Let us try D = 1.46:

31.46 ≈ 4.973 . (16.7)
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We could keep going, trying to make the right-hand side closer and closer
to 5. But let us stop here—we are pretty close, and this guessing and
checking game can get tedious fairly quickly.
In any event, we have found that the dimension D of the fractal

snowflake is:

D ≈ 1.46 . (16.8)

We will consider the meaning of this shortly. But before doing so, let
us discuss another way to solve Eq. (16.2). Our task is to solve the
following equation for D:

3D = 5 . (16.9)

In the preceding paragraphs we found D by guessing and checking. As
you might have suspected, there is a quicker way. The key is to use
logarithms. A review of logarithms and their basic properties can be
found in Appendix A.4.
As a first step, we take the logarithm of both sides of Eq. (16.9):

log(3D) = log(5) . (16.10)

Using the logarithm property that

log(An) = n log(A) , (16.11)

we have

D log(3) = log(5) . (16.12)

Dividing both sides of this equation by log(3), we obtain

D =
log(5)

log(3)
. (16.13)

Evaluating this last expression using a calculator, we find that:

D ≈ 1.46497 . (16.14)

Note that this agrees well with the value of 1.46 that we found by guess-
ing and checking. If you do not like logarithms and prefer to solve
equations like Eq. (16.9) by guessing and checking, that is OK. Both
methods will get you the same answer.1

1Logarithms are incredibly useful. If
you had a bad experience with loga-
rithms in the past, as seems to be the
case for many students, I encourage you
to try again to form a good relationship
with them.

16.3 What does D ≈ 1.46497 Mean?

So what does a non-integer dimension mean, anyway? There are several
ways to think about this. First, a dimension between 1 and 2 means that
the shape has some qualities of two-dimensional objects and some of one-
dimensional objects. The snowflake is two-dimensional in the sense that
it resides in two-dimensional space. It rests on the surface of a piece of
paper, which is two-dimensional. However, as the process of building
the snowflake proceeds, the shape becomes more and more “edgy”, in
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the sense that its perimeter grows and grows. The shape starts to look
like a very long line that is bent and folded to make a snowflake. Thus,
the snowflake combines elements of one and two dimensions, befitting
an object with a dimension of 1.465.
Another way of giving meaning to a dimension like 1.46497 is as fol-

lows. The essential feature of a fractal is that it is self-similar; it is made
up of small parts that each resemble the whole, and those small parts
are made up of smaller parts that resemble the whole, and so on. So,
as suggested in Section 15.3, for a fractal it is not always meaningful to
speak of the average or typical size of a component of a fractal. Rather,
we want to capture something about what stays the same as we examine
the fractal at different length scales.

For the snowflake, what we have seen is that if we increase the length
by 3, we get 5 new parts. It is this relationship between 3 and 5 that is
constant across scales. This relationship is expressed in the equation

3D = 5 . (16.15)

Knowing the value of D tells us that if we increase the magnification by
3, we will see 5 times as many pieces. Or, equivalently, every element
is made up of 5 smaller elements, each of which looks like the element
itself, but scaled down by a factor of 3.

Here is another way to see that the dimension captures something that
is constant across scales. In Fig. 16.2, suppose we compare the n = 0
and n = 2 steps. The shape at n = 2 has 25 pieces in it. And each small
piece needs to be magnified by 9 to be as wide as the full n = 2 shape.
So, using these values in Eq. (16.1), we get

9D = 25 . (16.16)

This equation has the same solution as Eq. (16.3). You can easily check
this by plugging in D = 1.46497. The point is that D relates the number
of small copies of an object to the change in scale, or magnification factor.
This relationship is the same for any scale-change we consider. It is in
this sense that D captures what stays the same across different scales.

16.4 The Dimension of the Cantor Set

For our next example we return to the Cantor set. The steps in the
construction of the Cantor set are shown in Fig. 16.3. The magnifica-
tion factor is 3, as it was for the snowflake; each line segment must be

n=0

n=3

n=1

n=2
Fig. 16.3 The steps in the construction
of the Cantor set.
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stretched to 3 times its length to be as long as the line segments at
the previous step. And the number of small copies is 2. At each step
there are two small Cantor sets which can be scaled up to reproduce the
original. Thus, the dimension equation for the Cantor set is:

3D = 2 . (16.17)

To solve for D we take the logarithm of both sides:

log(3D) = log(2) . (16.18)

Simplifying and solving for D, we obtain:

D log(3) = log(2) , (16.19)

D =
log(2)

log(3)
≈ 0.6309 . (16.20)

The dimension between 1 and 0 indicates that the Cantor set is in
some regards line-like (one-dimensional) and in some regards point-like
(zero-dimensional). The Cantor set is constructed from one-dimensional
lines, but after so many line segments have been removed, what we are
left with is a collection of points. Or, one can think of the Cantor set
as being made up of so many points that, even though the points are
disconnected, the Cantor set is in some ways line-like. In either case, we
see that the Cantor set is between zero and one dimensions.

16.5 The Dimension of the Sierpiński

Triangle

As a final example, let us determine the self-similarity dimension of the
Sierpiński triangle, a fractal whose construction is illustrated in Fig. 16.4.
Looking at the n = 1 stage, we can see that there are 3 small copies of
the triangle inside the full shape. How big is each small copy compared
to the large one? The magnification factor for this fractal is 2. The

Fig. 16.4 The steps in the construction
of the Sierpiński triangle.

n=0 n=1

n=2 n=3
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easiest way to see this is to look at one of the sides of one of the small
triangles. We can see that this side of the small triangle is exactly half
the length of the side of the full triangle. So we would need to magnify
it by a factor of 2 for it to be as large as the big triangle. Thus, our
dimension equation is:

2D = 3 . (16.21)

Solving for D, we obtain

D =
log(3)

log(2)
≈ 1.585 . (16.22)

16.6 Fractals, Defined Again

We are now in a position to give a somewhat more precise definition of
a fractal. First, we need to introduce a different sort of dimension: the
topological dimension. The topological dimension of an object is our
intuitive notion of dimension. The topological dimension of a point is
0, of a line is 1, of a plane is 2, and of a cube is 3. Consider the Cantor
set. It is made up of points, and thus its topological dimension is zero.
It starts off as line segments, but in the limit that an infinite number
of line segments are removed, all that are left are points. What about
the topological dimension of the Sierpiński triangle? In the limit that
we remove more and more triangles, we are left with a structure that is
made up of tiny little line segments.2 Thus, the topological dimension 2It might appear that the Sierpiński tri-

angle also turns into a dust of points,
much like the Cantor set. However,
in the Sierpiński triangle, line segments
remain. This can be seen most clearly
by looking at the boundaries of the tri-
angle; clearly these are line segments
and not points.

of the Sierpiński triangle is 1.
We can now state one definition of a fractal: A fractal is a geometri-

cal object whose self-similarity dimension is greater than its topological
dimension. The Cantor set has a self-similarity dimension of 0.6309 and
a topological dimension of 0. And the Sierpiński triangle has a self-
similarity dimension of 1.585 and a topological dimension of 1. So, as
expected, both the Cantor set and the Sierpiński triangle are fractals by
this definition.

This definition for a fractal is fairly standard. However, there is not
universal agreement on the definition. Many simply define fractals to
be any shape or object that displays self-similarity. Kenneth Falconer,
the author of one of the more widely used and influential textbooks on
fractals, argues that the “definition of a ‘fractal’ should be regarded in
the same way as a biologist regards the definition of ‘life’ ” (Falconer,
2003, p. xxv). Rather than a rigid definition, Falconer puts forth a
number of qualities which most fractals have.

(1) They exhibit self-similarity across a range of scales. This self-
similarity can be exact or approximate.

(2) They are not well described by usual geometric forms like circles,
cones, and lines.

(3) The self-similarity dimension, or some similar dimension, is larger
than the topological dimension.
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Finally, I should mention that there are a number of variants on the
self-similarity dimension. These variants, such as the capacity dimen-
sion, Hausdorff dimension, and the box-counting dimension, are defined
differently, but capture the same idea. All measure how the bulk or
volume of the shape scales. One of these variants, the box-counting
dimension, is the subject of Chapter 18.

Exercises

(16.1) Consider the fractal snowflake of Fig. 16.2. De-
termine the magnification factor and the number
of small pieces in the big shape when going from
n = 0 to n = 3. Use these numbers and Eq. (16.1)
to determine the dimension.

(16.2) Explain why it makes sense for the Sierpiński tri-
angle to have a dimension between 1 and 2. In
what ways is it one-dimensional and in what ways
is it two-dimensional?

(16.3) Consider a Cantor set constructed by removing
the middle fifth of each line segment at each step.

(a) Sketch the first several steps in the construc-
tion of this Cantor set.

(b) Determine the dimension of the middle-fifths
Cantor set.

(16.4) Determine the dimension of the Koch curve,
shown in Fig. 16.5.

Fig. 16.5 The steps in the construction of the Koch

curve.

Fig. 16.6 The Sierpiński carpet.

(16.5) Determine the dimension of the Sierpiński carpet,
shown in Fig. 16.6.

(16.6) Determine the dimension of the Menger sponge,
shown in Fig. 16.7.

(16.7) Consider a four-dimensional “cube”. (Such an ob-
ject is sometimes called a hypercube.) If the hy-
percube were stretched by a factor of three, how
many small hypercubes would fit inside the large
one?

(16.8) � Suppose one makes a fractal by following the
same type of removal process that led to the
Menger sponge, Fig. 16.7. However, instead of
starting with a cube, start with a four-dimensional
hypercube. What is the dimension of the resultant
fractal?

(16.9) Determine the dimension of the Sierpiński pyra-
mid, shown in Fig. 16.8.
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Fig. 16.7 The Menger sponge. (Image source: Amir R. Baserinia, http://en.wikipedia.org/wiki/File:Menger.png, licensed
under the Creative Commons Attribution-Share Alike 3.0 Unported license.)

Fig. 16.8 The Sierpiński pyra-
mid. (Image source: Solkoll,
http://commons.wikimedia.org/

wiki/Image:Sierpinski_pyramid.jpg,
released into the public domain by its
author.)
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So far we have seen fractals generated by a deterministic procedure:
an exact rule is followed at each step of an iterative process. In this
chapter we shall see that there are other ways to make fractal shapes.
We will consider fractal-generating mechanisms that involve randomness
or irregularity. We begin by exploring what happens when we add a little
bit of randomness or noise to an otherwise deterministic process.

17.1 The Random Koch Curve

Our starting point is the Koch curve, a classic fractal.1 The Koch curve,

1The Koch curve is sometimes referred
to as the von Koch curve. This is im-
portant to know if you are looking for
Koch curves in a book’s index.

which was the subject of Exercise 1.3, is generated as follows. The seed
is a simple line segment. In the first step of iteration, the segment is
divided into four smaller segments and arranged as shown in Fig. 17.1.
Another way to think of this is that the initial line segment gets bent
and stretched upward so it has a triangle in the middle.

n=0

n=1

n=2

n=3
Fig. 17.1 The first several steps in the
generation of the Koch curve.

This process is then iterated. In the next step, moving from n = 1 to
n = 2 in Fig. 17.1, again each line segment is replaced by four smaller
line segments. This procedure is repeated again as one goes from n = 2
to n = 3 in the figure. The end result is shown in Fig. 17.2. In principle,
the iteration should be carried out to an infinite number of generations.
In the figure I have shown the result after only six iterations; additional
generations yield features that are too small to see.



174 Random Fractals

Fig. 17.2 The Koch curve after n = 6
steps.

The Koch curve is exactly self-similar. It is made up of small parts
that are exact small replicas of the full shape. If one took, say, the
left third of the picture and zoomed in by a factor of 3, the resultant
image would be identical to the full Koch curve. The Koch curve can be
thought of as being similar to a coastline; like a real coastline, the Koch
curve has inlets which have inlets on them which have inlets on them,
and so on.
However, Fig. 17.2 clearly is too symmetric to bear more than a pass-

ing resemblance to a real coastline. The Koch curve is far too regular.
The inlets in real coastlines are similar to each other but are not identi-
cal. However, we can modify the generation process shown in Fig. 17.1
to produce a shape that is much more realistic. To do so, all we need
to do is add a bit of randomness to the iteration. Namely, each time we
replace a line segment with a bent segment, half of the time we bend
the line up, and half of the time we bend it down. This is illustrated in
Fig. 17.3. Repeated application of this iteration rule produces a shape

Fig. 17.3 Illustration of the basic step
in the generation of a random Koch
curve. At each step every line segment
is replaced with a bent line segment.
Half of the time the line is bent up; the
other half it is bent down. Based on
Fig. 9.1 of Peitgen, Jürgens, and Saupe
(1992).

known as a random Koch curve. Note that this generation rule is not de-
terministic. There is randomness in the rule: it does not yield the same
result every time it is applied. Thus, the random Koch curve is not
unique; the generation process can produce many different outcomes.
Figure 17.4 shows first several iterations using the random generation

rule illustrated in Fig. 17.3. When doing the iteration I randomly chose
each direction for the bend in each line segment. For example, for the
n = 2 step I chose, reading left to right, bends that go up, up, down,
and then up.2 The sixth step of this generation process is the top shape2Actually I did not choose these direc-

tions; I wrote a program that generated
these figures and the program randomly
selects for me.

in Fig. 17.5. Note the similarity between this curve and the n = 3 step
shown in Fig. 17.4. In Fig. 17.5 I have also shown two other random
Koch curves. The three curves in this figure were all generated with the
same random rule shown in Fig. 17.3. The curves are different because
different random choices for the up or down bends were made.
Unlike the fractals in the previous chapter, the random Koch curves

of Fig. 17.5 are not exactly self-similar. A small copy of the curve, when
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n=0

n=1

n=2

n=3

Fig. 17.4 One possible sequence of
shapes obtained when generating a ran-
dom Koch curve. The end result of
this sequence is the random Koch curve
shown at the top of Fig. 17.5.

magnified, closely resembles the full curve, but it is not an exact replica.
This property of inexact self-similarity is sometimes called statistical

Fig. 17.5 Three different random Koch
curves.

self-similarity. The idea is that such a fractal is made not of exact
copies of itself, but of smaller parts that have the same statistical prop-
erties as the whole.

While the three curves of Fig. 17.5 are different, they do share some
qualities. Speaking loosely, they seem to have the same bumpiness or
crinkliness. One way of capturing this geometric similarity is via the
dimension. The self-similarity dimension of Chapter 16 cannot be used
here, since the random Koch fractal is not exactly self-similar. However,
there is another related definition of the dimension that can be applied to
random fractals such as this.3 The result is that the random Koch curve

3In particular, one can determine the
exact value of the Hausdorff dimension
for the random Koch curve. Doing so
is beyond the scope of this book; it re-
quires some fairly advanced probability
theory (Falconer, 2003, Chapter 15).
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is log(4)/ log(3) ≈ 1.262.4 In Chapter 18 I will introduce another type4This happens to be the same dimen-
sion as that of the non-random Koch
curve of Fig. 17.2. However, it is not
usually the case that a random fractal
has the same dimension as its determin-
istic counterpart.

of dimension that will let us characterize the fractal nature of irregular
but statistically self-similar shapes such as the random Koch curves of
Fig. 17.5.
Recall that our motivation for investigating the random Koch curve

was to find a fractal that does a better job of approximating the shape
of a coastline than the Koch curve of Fig. 17.2. Looking at the random
Koch curves shown in Fig. 17.5, I would say that we have met this goal.
These shapes again do not look exactly like a coastline (see Fig. 17.6) but
they certainly are more coastline-like than the exact Koch curve. The
random Koch curves resemble other things in addition to a coastline:
a crack in the pavement, a rock outcropping, or a torn piece of paper.
Adding a little bit of randomness to a regular fractal produces shapes
that are strongly reminiscent of many objects that are found in the
physical and natural world.

Fig. 17.6 The coastline north of
Ragged Point, California, USA. (Photo
courtesy of Prof. K.H. Solomon.)

The random Koch curves of Fig. 17.5 are, in a sense, complicated
shapes. They bend and twist in irregular ways. At first blush these
shapes might seem very difficult to describe, as doing so would require
specifying all the details of the curve as it zigs and zags. However,
we have seen that this apparently complicated shape is generated by a
simple rule. The rule does involve randomness—it is not a deterministic
process—but it is simple nonetheless. This illustrates a general result:
fractals are surprisingly simple to generate. Even random fractals, which
can bear a striking resemblance to physical and natural objects, can be
generated by very simple processes.
It is not hard to imagine variations on the rule we used to generate the

random Koch curve. For example, the probabilities of the up and down
bends need not be equal as they were in Fig. 17.3. E.g., we could chose
the upward bend to occur 75% of the time instead of 50%. We could
also make the bend appear at different locations on each line segment;
it does not have to always occur in the middle. Or we could add some
randomness to the bend itself and make some of the bends larger than
others. There are many options to explore. We can also add randomness
to other classic fractals, such as the Sierpiński triangle and carpet, the
snowflake fractal, and the Menger sponge. The possibilities are vast,
and the results are often surprisingly beautiful and interesting shapes.

17.2 Irregular FractalsFig. 17.7 The basic step in the con-
struction of an irregular Sierpiński tri-
angle. To make this figure and all
the other irregular fractals in this sec-
tion I used the Fractal Curve Demo
program by Christian Desrosiers, avail-
able free at http://profs.etsmtl.ca/

cdesrosiers/software.html.

Another variation on the regular fractals of the previous two chapters is
to use an asymmetric or irregular generation rule. Such a fractal is not
random, since it is produced with a deterministic rule. Nevertheless, the
resultant shape has a somewhat random or disordered feel to it. Here is
one example. Figure 17.7 illustrates the basic step in the generation of
an irregular Sierpiński triangle. At each step every triangle has a tilted
triangle removed from its center. (Compare this with the generation of
the regular Sierpiński triangle shown in Fig. 16.4.) When this process is
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Fig. 17.8 An irregular Sierpiński tri-
angle.

iterated, the shape of Fig. 17.8 results. I do not know if this shape par-
ticularly resembles anything found in nature, but I think it is interesting
nevertheless.

One can also generate an irregular version of the Sierpiński carpet.
The basic step is shown in Fig. 17.9. Rather than removing a small
square from the center of each square, in this version of the Sierpiński
carpet one removes a rectangle that is slightly off center. The result of
iterating this process is shown in Fig. 17.10. The image has an appealing
art-deco feel to it.

Fig. 17.9 The basic step in the con-
struction of an irregular Sierpiński car-
pet.

Fig. 17.10 An irregular Sierpiński car-
pet.

There are many, many different ways one can alter basic fractals to
produce interesting and aesthetically appealing shapes. One can also
develop different fractal-generating rules with the goal of producing im-
ages that are as close as possible to some real phenomena, such as a
coastline, a snowflake, lightning, or a tree. The random Koch curve and
the irregular Sierpiński triangle and carpets are just the tip of the fractal
iceberg. See the section on further reading at the end of this chapter if
you would like to explore more.

Finally, note that the two fractals shown above, the irregular Sierpiński
triangle and carpet, are not random. While their asymmetry gives them
a random appearance, they are generated by a deterministic rule.5 Nev-

5In this sense these fractals do not
properly belong in a chapter titled Ran-
dom Fractals, but they seem to fit here
better than elsewhere.
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ertheless, some authors refer to shapes like Figs. 17.8 or 17.10 as random
fractals, and not irregular.

17.3 Fractal Landscapes

The ideas of the previous two sections—random and irregular fractals—
can be extended and refined to produce images that bear a stunning
resemblance to real landscapes. Such images are sometimes called fractal
forgeries. You have almost surely seen these before, as fractal techniques
are routinely used to generate artificial landscapes and scenery used in
movies and video games.

Fig. 17.11 A fractal landscape gen-
erated by the program Fracplanet by
Tim Day. Reproduced with per-
mission from http://www.bottlenose.

demon.co.uk/share/fracplanet/.

An example of a fractal landscape is shown in Fig. 17.11. This image
was generated by the computer program Fracplanet, written by Tim
Day. A procedure similar to that of the random Koch curve, but in two
dimensions instead of one, was used to make the mountain ranges. There
is a separate algorithm to make clouds. The mountains are shaded to
look three-dimensional and rivers are added as well. Fractal landscape-
generating programs have become very complicated and sophisticated,
and they produce breathtaking results. Often the landscapes include
trees and other vegetation and look as real as any natural landscape.
The success of these algorithms shows us yet again how simple iterated
procedures can produce complicated and intricate results. In the Further
Reading section at the end of this chapter I have included links to a few
programs that you can download and use to generate your own fractal
landscapes.

17.4 The Chaos Game

We now leave landscapes behind and explore another way that a random
procedure can generate a fractal. To do so we will iterate a rule and
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examine the long-term behavior of the orbit. I illustrate this rule with
an example. Consider the triangle shown in Fig. 17.12. Choose a point
somewhere in the middle of the triangle. I chose the point labeled 0 in
the figure. We now decide at random to move toward corner A, B, or
C. To do so, I will imagine that we roll a three-sided die.6 Suppose I 6Such a die does not exist, however, so

in practice one would roll an ordinary
six-sided die and move toward A if one
got a 1 or a 2, toward B for 3 and 4,
and toward C otherwise.

roll such a die and that the outcome is A. I then move from my starting
point directly toward corner A, but I would go only halfway. This point
is labeled 1 on Fig. 17.12. Continuing with this example, suppose I then

Fig. 17.12 Steps in the chaos game.

roll a C. The point then moves halfway toward corner C, resulting in the
point labeled 2. If I then roll a C again, I again move halfway to corner
C, resulting in point 3. If I next roll B, I would move halfway to corner
B, yielding point 4.

The overall procedure is straightforward. Start somewhere inside the
triangle. Randomly choose to move halfway toward corner A, B, or C.
Repeat. This procedure was introduced by Michael Barnsley, who called
this process the chaos game. This is a dynamical system, very much
like the iterated functions that we have studied at length in previous
chapters. However, unlike those iterated functions, the chaos game dy-
namical system is not deterministic. Rather, it is a stochastic dynamical
system; an element of chance is incorporated in each step. Applying the
rule different times to the same point will not always yield the same
result, since the result depends on which corner one moves to.

What do you think is the long-term fate of the orbit in the chaos game?
Will the orbit get stuck in the middle, caught between the pull of the
three corners? Will it move around completely at random, journeying all
over the triangle? Is there an attractor of any sort? Let us investigate
and find out. The leftmost image in Fig. 17.13 shows a plot of 100
iterates from the chaos game. I have not included the first ten iterates

Fig. 17.13 Results of playing the chaos
game. Left to right, the figures show
100, 1000, and 100, 000 points. In each
plot I have not shown the first ten iter-
ates.
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since we are interested in the long-term behavior of the orbit. The
middle image of Fig. 17.13 shows 1000 iterates and the right image has
100,000 iterates. Out of nowhere a Sierpiński triangle has appeared. As
the figure suggests, the points bounce around randomly depending on
which corners are selected when the die is tossed. The orbit does not
trace out the Sierpiński triangle in any direct way. Rather, it emerges
and slowly comes into focus as more and more points are plotted.
How can this be? How does this random process lead to a regular

fractal? Let us dissect the chaos game one move at a time. Recall that
we start by choosing an initial condition anywhere inside the triangle.
Suppose that in the first move we roll a C. After this move, the point
must be in the dark shaded triangle in the lower left of Fig. 17.14.7 To

7Strictly speaking, the point could be
in the triangle or on its boundary. To
simplify the subsequent discussion I
will simply talk about points being in
certain triangles, when more properly
I should say that the points are in the
triangle or on the triangle’s boundary.

convince yourself that this is true, you might want to try choosing a few
initial points in the big triangle, move halfway to point C, and you will
see that the point is always in the shaded triangle, as I have claimed.
Similarly, if your initial roll was B, the point must be in the shaded
triangle on the lower left. And if the initial roll was A, then the point
is in the light triangle on the top.

Fig. 17.14 Analyzing the chaos game.
After one iteration where one rolls a
C, the orbit will be in the dark shaded
triangle, regardless of the initial condi-
tion.

Let us think about the next iteration. Again, assume that the first roll
was a C, so that we know we are in the dark triangle in the lower right
of Fig. 17.14. If our next roll is an A, where does the point end up? It
must be somewhere in the small dark triangle labeled CA in Fig. 17.15.
To see this it may help to choose a few points in triangle C, move each
point halfway to point A, and you will see that all of the points end up
in triangle CA.
We can also think about what happens if all the points in triangle C

simultaneously move half of the way to corner A. This is illustrated in
Fig. 17.16. The lower left corner of triangle C moves halfway to corner
A and ends up as the lower left corner of triangle CA. The top corner
or triangle C moves halfway to point A and becomes the top corner
of triangle CA, and so on. Again, the conclusion is that any point in
triangle C will move to triangle CA if one rolls an A.
Returning to Fig. 17.15, we can analyze other moves in addition to

CA. For example, if the first two chaos game moves were A and then A,
the second iterate must be in the small light triangle labeled AA. And
if the first two moves were B and then C, the second orbit will be in the
gray triangle labeled BC. Note that after one iteration the orbit cannot
be in the middle triangle, no matter what initial condition we choose.
(The middle triangle is the unlabeled, white triangle in the center of
Fig. 17.14.) And after two iterations there can be no points in the large
white triangle nor in any of the small white triangles in Fig. 17.15. Each
iteration of the chaos game excludes the orbits from the middle of the
triangles that were present at the previous step. Thus, in the long run,
the orbits are restricted to lie on the Sierpiński triangle. This explains
the results of the chaos game: successive iterates eventually “fill up” the
Sierpiński triangle, as seen in Fig. 17.13.

Fig. 17.15 Analyzing the chaos game.
If the first roll is C and the second is A,
the orbit will end up in the dark trian-
gle labeled CA.
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17.5 The Role of Randomness

Fig. 17.16 The triangle C is trans-
formed to the smaller triangle CA if the
chaos game move is toward corner A.

Let us step back for a moment and think about what the chaos game tells
us. The chaos game—the procedure shown in Fig. 17.12—is a random
dynamical system. There is an element of chance in every iteration,
since we need to roll a die in order to figure out where the point goes.
Remarkably, the resultant shape does not appear random at all; it is a
very precise and symmetric Sierpiński triangle. The image looks just like
the Sierpiński triangle generated by the deterministic geometric method
of successively removing triangles, as in Fig. 16.4. The chaos game shows
that a random dynamical system can give a deterministic result.

This is another example of the surprises to be found in simple dynam-
ical systems. We have seen that the logistic equation, when iterated, can
yield results that appear random and are unpredictable due to sensitive
dependence on initial conditions. The observed phenomenon—apparent
randomness—is a result of determinism. The chaos game turns this
around. Here, the observed phenomenon—an exact fractal—is the re-
sult of a random dynamical system.

The sequence of moves in the chaos game needs to be random in order
for the Sierpiński triangle to emerge. For example, suppose that we chose
the moves in the chaos game sequentially instead of randomly. E.g., an
A move is always followed by a B move, then a C move, and then an
A move again, so that the sequence of moves is . . . ABCABC . . .. The
result of playing this modified chaos game is shown in Fig. 17.17. The
Sierpiński triangle has disappeared; the long-term behavior is simply a
period-3 cycle. This demonstrates that randomness is an essential part
of the chaos game; randomness is necessary to produce the Sierpiński
triangle. Even though in Fig. 17.17 all the moves (A, B, and C) appear
equally often, they are not in random order. The randomness is needed
for the orbit to wander all over the triangle, avoiding the forbidden
regions while visiting different locations of the Sierpiński triangle. The
order in which the orbit visits the Sierpiński triangle is random, but the
fact that it eventually produces the Sierpiński triangle is not a matter
of chance.

Fig. 17.17 The long-term behavior of
orbits under a variant of the chaos game
when the moves are chosen sequentially,
. . .ABCABC. . .. The orbit is pulled to
a period-3 attractor instead of the tri-
angle.

17.6 The Collage Theorem

The chaos game may seem like a special trick that can produce Sierpiński
triangle but little else. However, the procedure of using randomness to
make fractals turns out to be quite general. For example, if one plays
the chaos game with four points arranged in a square, not surprisingly
one obtains the Sierpiński carpet, shown in Fig. 16.6. Slightly more
complicated versions of the chaos game can yield many other fractal
shapes. In fact, it turns out that almost any shape—fractal or non-
fractal—can be generated by a version of the chaos game. A generalized
version of the chaos game turns out to be remarkably powerful and
flexible.
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This generalized chaos game is constructed as follows. Thus far each
move in the game takes a single point and moves it to another location.
Which location it gets moved to is determined by a random rule. We
could also imagine a chaos game that uses slightly more complicated
rules. It is easiest to think of these rules in terms of their effects on
shapes rather than single points. To that end, consider operations that
not only move a shape but also transform it—stretch, shrink, shear,
and/or rotate it. The technical term for these sorts of transformation
is affine. An affine transformation is any geometric transformation
that keeps parallel lines parallel. For example, an affine transformation
might take a square, rotate it, shrink it by 20%, and then move it up
and to the right, as shown in Fig. 17.18. This action changes the shape,
but it does not change the fact that the opposite sides of the shape are
parallel, just as they were before the transformation.

Fig. 17.18 An example of an affine
transformation. The square is shrunk,
rotated, and moved up and to the right.

In the original chaos game of the previous section, at each step the par-
ticular move is chosen at random. In the generalized chaos game, each
move is a different affine transformation. For example, there may be four
different affine transformations in a particular chaos game. One starts
with a random initial point. Then roll a four-sided die to determine
which affine transformation is chosen and carry out the transformation.
Iterate, rolling the four-sided die again at each step.
Using affine transformations in the chaos game yields impressive re-

sults. For just one example, consider the fern shown in Fig. 17.19. This
image was made via a chaos game with just four affine transformations.
Small variations on these four transformations yields a menagerie of dif-
ferent fern shapes. Other sets of affine transformations yield a variety
of other fractals.
In the mid-1980s Michael Barnsley proved a remarkable result. Given

essentially any shape, one can make a chaos game that will generate
it. This result is now known as the collage theorem, since in finding
the particular affine transformations needed to reproduce an image, one
forms a collage in which the full shape is covered with several smaller
shapes. These smaller shapes then define the affine transformations
that will generate the full shape. The collage theorem is quite general;
it applies to essentially all shapes, not just fractals. There is much more
to explore about chaos game variants and the collage theorem. See the
Further Reading section at the end of this chapter.
I conclude this section by discussing two important implications of the

collage theorem. First, the collage theorem has potential applications
to image compression. Suppose one has a complex and detailed image
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Fig. 17.19 A fractal fern produced by
a chaos game with four affine trans-
formations. (Image source: DSP-user,
http://en.wikipedia.org/wiki/File:

Barnsley_fern_plotted_with_VisSim.

PNG. licensed under Creative Commons
Attribution-Share Alike 3.0 Unported
license.)

stored as a large file. To save space (or time if one needs to send the
image from one computer to another), one could determine what chaos
game will generate the image. One can then discard the large image
and store only the rules for the chaos game. If one needs to generate the
image, all that needs to be done is to play the chaos game and display
the result. Thus, the specification of the chaos game is a representation
of the image that is much smaller than the original file.

The second implication of the collage theorem and the chaos game is
somewhat more abstract and concerns the relationship between random-
ness and order. When we encounter an intricate and precise shape such
as the Sierpiński triangle or the fern of Fig. 17.19, I think it is natural
to assume that an exact and precise procedure must have been used to
generate them. But the chaos game shows us that exact and precise
fractal shapes can be generated by a random process. Yet again, we see
that iteration—in this case of a random dynamical system—can produce
surprising results. A complex and predictable image results from a sim-
ple and random process. We tend to think of randomness and order as
being opposites, but the chaos game unites these two phenomena.

Further Reading

Chapter 9 of Peitgen, Jürgens, and Saupe (1992) is a good overview
of the different ways that randomness can be used to make random or
irregular fractals. Chapter 15 of Stewart (2002) is a clear, non-technical
overview of fractals and discusses random and irregular fractals.
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There are a number of programs that you can use to experiment with
different fractals and make fractal forgeries. The program TerragenTM

is capable of producing incredibly detailed and realistic landscapes. It is
free for non-commercial use and can be downloaded at http://www.

planetside.co.uk/. The program Fracplanet, which can be down-
loaded at http://www.bottlenose.demon.co.uk/share/fracplanet/
index.htm, makes fractal landscapes and entire fractal planets. Addi-
tional software can be found via an internet search.
For more about the chaos game and producing fractals through affine

transformations, see Chapters 5 and 6 of Peitgen, Jürgens, and Saupe
(1992) or Chapter 7 of Flake (1999). Both of these references use more
mathematics than does this book, but nevertheless should be fairly ac-
cessible. A thorough, but quite technical reference on the chaos game
and fractals produced by iterated functions is Barnsley’s Fractals Every-
where, (2000). A less technical discussion of fractals and chaos games
can be found in Chapters 1 and 2 of Peak and Frame (1994). Lessons
1–7 of the workbook by Choate, Devaney, and Foster (2000b) are an
excellent general, elementary introduction to fractals and chaos games,
and contain worksheets and suggestions for teaching and classroom ac-
tivities.

Exercises

(17.1) Suppose that a random Koch curve is generated
according to the rule shown in Fig. 17.3.

(a) What is the probability that after n =
2 iterations a random Koch curve looks
like the non-random Koch curve, shown in
Fig. 17.1.?

(b) What is the probability that after n =
3 iterations a random Koch curve looks
like the non-random Koch curve, shown in
Fig. 17.1.?

(c) As the number of generations in the con-
struction of a random Koch curve gets larger
and larger, what is the probability that the
Random Curve looks like the exact curve?

(17.2) By hand, construct a random Koch curve up to
the n = 3 generation. Toss a coin to determine if
each bend is up or down. Repeat this construc-
tion, re-tossing the coin to generate a different
random Koch curve. Compare the two shapes.

(17.3) In Section 17.4 the initial condition for the chaos
game was always inside the triangle. What would

happen if the initial condition was outside the tri-
angle?

(17.4) Consider a modified chaos game in which the
moves are chosen randomly, but only B or C moves
are chosen. What is the long-term behavior of the
orbit?

(17.5) Consider a modified chaos game in which the
moves are not chosen randomly. Instead, B and C
moves are alternated. I.e., the sequence of moves
is . . .BCBCBC. . .. What is the long-term behav-
ior of the orbit?

(17.6) Suppose one plays the chaos game and chooses an
initial condition exactly in the center of the trian-
gle.

(a) What sequence of moves would result in the
orbit being inside triangle x in Fig. 17.20?

(b) What sequence of moves would get the orbit
into triangle y?

(c) What sequence of moves get the orbit into
triangle z?
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(17.7) Suppose now that the starting point for the chaos
game is point A. That is, you start exactly on the
top corner of the triangle.

(a) What sequence of moves will result in the or-
bit landing inside (and not on the boundary)
of the triangle marked r?

(b) What sequence of moves results in the orbit
being inside triangle s?

(c) What sequence of moves results in the orbit
being inside triangle t?

(17.8) Suppose now that the starting point for the chaos
game is point B. That is, you start exactly on the
lower left corner of the triangle.

(a) What sequence of moves will result in the or-
bit landing inside (and not on the boundary)
of the triangle marked r?

(b) What sequence of moves results in the orbit
being inside triangle s?

(c) What sequence of moves results in the orbit
being inside triangle t?

Fig. 17.20 The illustration for Exercises 17.6–17.8.

(17.9) � Consider a two-dimensional version of the chaos
game that is set up as follows. Draw two points
some distance apart and label them A and B.
Choose an initial condition somewhere on the line
that connects A and B. Flip a coin to determine
the move. If the coin comes up heads, move two-
thirds of the way to point A. If it is tails, move
two-thirds of the way to point B. Iterate. What
is the long-term fate of the orbit? If one were
to plot 1000 iterates of this game after discarding
the first several moves, what image would appear?
Explain.
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In the previous chapter we saw several examples of fractals that are not
exactly self-similar. For example, small parts of the random Koch curve
resemble the larger curve, but they are not exact replicas. They are
statistically self-similar, or approximately self-similar, but not identical.
This is the case for almost all naturally occurring fractals. If one zooms
in on a jagged coastline or a winding river, one sees structures that are
similar to, but not exact copies of, the larger shape.

In Chapter 16 we analyzed fractals by determining their dimension D.
To do so, we used the following relationship:

number of small copies = (magnification factor)D , (18.1)

where D is the dimension. This equation let us calculate the dimension
of a handful of fractal objects, including the Cantor set, the Sierpiński
triangle and carpet, and the Koch curve. The definition for D given
by Eq. (18.1) relies on there being small pieces of the object that look
exactly like small copies of the whole. For this reason, this type of
dimension is often known as the self-similarity dimension.

But what about objects that are not exactly self-similar? In this
chapter I introduce another way of defining the dimension that will allow
us to extend our notion of dimension to objects that are not exactly
self-similar. The main idea is that instead of looking at how many
small copies of an object are contained in a large copy, we consider
instead how the volume or size of the overall shape changes as we change
measurement scales. The method we develop will be somewhat tedious,
but the type of dimension that results will be more flexible than the
self-similarity dimension.

18.1 Covering a Box with Little Boxes

In Chapter 16 we began thinking about dimension by considering how
many small boxes fit inside a large box. In this chapter we explore
this idea from a different angle: we start with a box and cover it with
smaller and smaller boxes. As a starting point, consider a square that
has a length and height of 1. We can think of this as a portion of a floor
that we want to cover with tiles. Suppose our tiles are in the shape of a
square and have a side of length 1/2. We would need to buy four such



188 The Box-Counting Dimension

square tiles in order to completely cover the original 1× 1 floor. This is
illustrated in part (b) of Fig. 18.1.

Fig. 18.1 Covering a square with suc-
cessively smaller boxes. Figure (a)
shows the original square. Figures (b)–
(d) show the square covered by succes-
sively smaller boxes. The length of the
side of the original square is 1. The
boxes used to cover the square have
sides of length (1/2), (1/4), and (1/8),
respectively, in Figs. (b)–(d).

(a) (b)

(d)(c)

What if we wanted to use smaller tiles to cover the floor? Clearly we
would need more tiles. Suppose that each tile is now a square whose
side has length 1/4. In this case we need 16 tiles to cover the original
square, as can be seen in part (c) of Fig. 18.1. And if we make the tiles
smaller still, we would need even more tiles. We will need 64 if the tiles
are squares with a side of 1/8, as shown in part (d) of the figure.
You have likely noticed the pattern. If the size of the tiles is halved—

i.e., the side of the square tile is half what it was before—the number of
tiles needed to cover the shape is squared. When we change from tiles
of side 1/2 to side 1/4, the number of tiles needed increases from 4 to
16. Thus, the number of tiles is squared, since 42 = 16. The reason that
the tiles are squared, as opposed to being raised to some other power, is
that the floor is two-dimensional.
In order to formalize this idea and arrive at an alternative definition

of dimension, I need to introduce some notation. Let s denote the length
of the side of one of the tiles we used to cover the original square shape.
We will denote by N(s) the number of tiles of size s needed to cover the
shape.1 The values of s and N(s) for the example of shown in Fig. 18.1

1Typically one refers to the tiles as
boxes, and hence the dimension defined
via this procedure is known as the box-
counting dimension.

are contained in Table 18.1. As we have seen, as s gets smaller, N(s) gets
larger. The relationship between s and N(s) can be used to determine
the dimension. Specifically N(s) and s are related via:

N(s) = k

(
1

s

)D

. (18.2)

In the above equation k is some constant—it is a number that does not
depend on the box size s. The exponent D in Eq. (18.2) is known as the
box-counting dimension.

Table 18.1 Data used to deter-
mine the box-counting dimension of a
square. The box-counting process is
illustrated in Fig. 18.1. The side of
the boxes used to cover the circle is s,
and N(s) is the number of such boxes
needed.

s N(s)

1 1

1
2

4

1
4

16

1
8

64 To illustrate the use of Eq. (18.2), consider Fig. 18.1(c). Here s = 1/4
and N(x) = 16. Plugging these numbers into Eq. (18.2) gives:

16 = k

(
1
1
4

)D

. (18.3)



Covering a Circle with Little Boxes 189

Simplifying the compound fraction, we get

16 = k (4)D . (18.4)

One solution to this equation isD = 2 and k = 1. This makes sense, as it
tells us that a square is two-dimensional, as we would expect. However,
there are also other solutions to this equation. For example, it could be
that D = 1 and k = 4; these values also make make Eq. (18.4) true.
However, these values are not consistent with the rest of the data in
Table 18.1. The challenge here is that we have two quantities we need
to solve for—k and D—and we have a table full of data. We want to
take this entire table of data into account when we are figuring out the
best values for k and D.
I will discuss a general method for doing just this in Section 18.3.

For now, the key observation is that N(s), the number of boxes of side
s needed to cover an object, will increase as s decreases. The rate at
which N(s) increases is determined by the dimension D, as shown in
Eq. (18.2). From a procedural standpoint this definition of dimension
is fairly simple: just take the shape and start covering it with boxes.
Below, we will see that we can extend this procedure to calculate the
dimension of shapes that are much more complex than the simple square
considered here.

18.2 Covering a Circle with Little Boxes

Let us repeat the experiment of the previous section for a circle. This
is illustrated in Fig. 18.2. In part (a) the circle is covered with boxes
of side s = 0.5, in part (b) the circle is covered with boxes of s = 0.25,
and so on. Note that what we are interested in is the number of boxes
needed to completely cover the circle. Typically, the boxes on the edge
of the shape will extend over the shape itself.

(a)

(d)(c)

(b)

Fig. 18.2 Covering a circle with suc-
cessively smaller boxes.

The values of s and N(s) determined using Fig. 18.2 are shown in
Table 18.2. Our next task is to use Eq. (18.2) to determine the dimension
D. Since a circle is two-dimensional, we anticipate a dimension of 2.
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Let us begin with the first row in the table, corresponding to s = 0.5.
Plugging into Eq. (18.2), we get:

4 = k

(
1
1
2

)D

. (18.5)

Simplifying the fraction, this becomes:

4 = k2D . (18.6)

As was the case with the square in the previous section, we see that this
equation has a solution if D = 2 and k = 1. I am cheating a little, since
I know that I want D = 2. But this perhaps seems reasonable for this
case.

Table 18.2 Data used to determine
the box-counting dimension of a circle.
The box-counting process is illustrated
in Fig. 18.2. The side of the boxes used
to cover the circle is s, and N(s) is the
number of such boxes needed.

s N(s)

1
2

4

1
4

14

1
8

45

1
16

162

Now let us consider the second row of the table, corresponding to
s = 0.25. Plugging these numbers into Eq. (18.2) yields:

14 = k4D . (18.7)

If I take D = 2, then k cannot equal one any more. To see this, plug
D = 2 into the above equation:

14 = k16 , (18.8)

which gives k = 7/8, not 1. But k is a constant—it should be the same
for all s. Clearly this is not the case here. How can we fix this? We
could change the dimension D. But then we would have that a circle is
not two-dimensional, which certainly isn’t what we want. What to do?
Equation (18.2) holds in the limit that the boxes get really, really

small. The reason for this is that it is only as the boxes get very small
that we get an accurate count of the area of the shape whose dimension
we are trying to determine. With smaller boxes there is less to “hang
over” the edge of the shape. For example, there is less surplus or over-
hang in Fig. 18.2(d) than in Fig. 18.2(a). So in order to estimate the
dimension D using Eq. (18.2), we need to calculate D by investigating
what happens as s gets smaller and smaller.
There is an additional potential complication. For a given box size,

there is more than one way to completely cover the shape. How many
boxes we need might depend on where we start covering. For example,
we could lay down our first box in the center of the shape, or we could
place the first box so that it is aligned with the top left of the shape.
Both techniques will cover the shape, but they might lead to slightly dif-
ferent numbers of boxes. However, as the boxes get smaller and smaller,
the details of the covering method matter less and less. Thus, using
Eq. (18.2) to determine the dimension D is more accurate as the box
size gets smaller and smaller.

18.3 Estimating the Box-Counting
Dimension

In the previous sections we have seen that it is not always straightforward
to estimate k and D from a table of data. It would be nice to have a
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way to find the values of k and D that fit the data as well as possible.
In this section I will describe a procedure to accomplish this goal. We
start with Eq. (18.2):

N(s) = k

(
1

s

)D

. (18.9)

Taking the logarithm of both sides of this equation will put it in a more
useful form:

logN(s) = log

[
k

(
1

s

)D
]

. (18.10)

Simplifying using the properties of logarithms yields:

logN(s) = log k +D log

(
1

s

)
. (18.11)

(A brief overview of logarithms and their properties can be found in
Appendix A.4.)

It might not look like it, but this equation is actually quite useful;
this says that the logarithm of 1

s
and the logarithm of N(s) are linearly

related. To help see this, if we let log 1
s
= x and logN(s) = y, then we

can write

y = k +Dx . (18.12)

This is just the equation of a line. The y-intercept is k, and the slope
is D. Equation (18.12) thus says that the problem of determining the
dimensionD can be recast as determining the slope of a line. Comparing
Eqs. (18.11) and (18.12), we see thatD is the slope of the line that results
when logN(s) is plotted versus log 1

s
.

We already have a table of values of N(s) and s for the circle example.
First, let us re-write this table in terms of 1

s
instead of s. The results

of doing so are shown in Table 18.3. Next, take the logarithm of both
columns of data to obtain the results shown in Table 18.4. To make this
table I used base-10 logarithms. If you use another base, that is fine,
but it is important to use the same base throughout a calculation.

Table 18.3 Data used to determine
the box-counting dimension. This is
the same data as is in Table 18.2.

1
s

N(s)

2 4
4 14
8 45

16 162

Table 18.4 Data used to determine
the box-counting dimension. This ta-
ble was obtained by taking the loga-
rithm of the data in Table 18.3.

log 1
s

logN(s)

0.301 0.602
0.602 1.146
0.903 1.653
1.204 2.210

Our next step is to plot the data in Table 18.4 and determine the slope
of the subsequent line. The data from this table are shown in Fig. 18.3.
Note that the points appear to fall along a straight line. The slope of
this line is the box-counting dimension D.

To estimate the slope, one draws a line through the data points. The
line should be chosen so as to be a best fit; it should come as close as
possible to as many of the data points as possible. This notion of a best
fit can be made precise; it is a standard result in introductory statistics.
Most spreadsheet programs can quickly and unambiguously determine
the equation of the line that is the best fit to the data. However, for
the exercises at the end of this chapter, it is fine to just simply draw the
best line by eye and then estimate the slope of that line.

I used a program to analyze the data shown in Fig. 18.3. The best
fit line is drawn in Fig. 18.4. This line has a slope of 1.77 and an
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Fig. 18.3 A plot of logN(s) versus

log 1
s
. The data is from Table 18.4.
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Fig. 18.4 A plot of logN(s) versus

log 1
s
. The data is from Table 18.4. The

line drawn through the points was cho-
sen to be a best fit to the data. The
equation of the line is y = 1.77x+ 0.7.
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intercept of 0.07. The slope corresponds to the dimension. This means
that we have estimated a dimension of 1.77. To be honest, this is rather
disappointing. We have just gone through a lot of work to figure out
that the dimension of a circle is 1.77. Clearly this is wrong. A circle
has a dimension of 2. What has happened? Recall that this definition
for the box-counting dimension D holds only when the size s of the box
gets very small. Presumably, if we extended this calculation with a few
smaller values of s we would get a more accurate value of D.

This somewhat disappointing result serves as a note of caution. The
definition of the box-counting dimension and the procedure for calculat-
ing it are conceptually relatively straightforward. However, it is often
difficult to get accurate results using this method. Part of the problem
is that one needs very small boxes to get good results, but small boxes
are difficult to count, and hence are error-prone and/or time-consuming
on a computer because there are so many of them. Moreover, using
smaller boxes requires a very high-resolution image. Since all images or
data sets have finite resolution, eventually it will simply not be possible
to use boxes smaller than a certain size.
There are techniques for more accurately determining the box-counting

dimension and related quantities than that which I have presented in this
chapter. However, these methods are not always easy to apply, and in
some cases are the topic of current research. So, any time you encounter
an experimental result for the box-counting dimension, you should be
at least slightly skeptical. The dimension can be accurately estimated,
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but it is difficult to do so and requires usually requires a large quantity
of data. So take such results with a grain of salt. Nevertheless, it is
often possible to get a reasonable estimate of the dimension using the
box-counting procedure described above.2

2For a discussion of several basic exper-
iments concerning fractal dimensions,
at a level similar to this book, see Lewis
(2002).

18.4 Summary

The box-counting dimension is commonly used to characterize the sta-
tistical self-similarity of a wide range of phenomena. It is a powerful and
flexible idea that allows us to quantify the properties of objects that are
statistically self-similar.

To recapitulate, here are the steps needed to estimate the box-counting
dimension D of an object or image.

(1) Count the number of boxes needed to cover the object.

(2) Repeat several times, for successively smaller box sizes s. You
should now have a table with a bunch of N values and 1

s
values.

(3) Take the logarithm of the numbers in your table.

(4) Plot this logarithmic data with log(1/s) on the horizontal axis.

(5) If the data is approximately linear, determine the slope of the line.

(6) The dimension of the fractal is the slope of the line.

(7) If the data are not approximately linear, you may not have let your
box size get small enough, or you may have a complex geometric
object that cannot be described with a single dimension.

(8) Any number you get from such a procedure is likely to be inaccu-
rate, so take this number with a grain of salt.

Exercises

For some of these exercises you will need to count boxes.
A convenient way to do this is to use graph paper. A
good source of graph paper is http://incompetech.

com/graphpaper/. Here you can print out graph pa-
per with squares of a range of different sizes. Ideally,
print the graph paper out on a transparency or a thin
sheet of paper and lay it directly on top of the shape.

(18.1) Suppose that we wanted to cover the square shown
in Fig. 18.1 with square tiles of side s = 1/16. How
many tiles are needed? How many tiles would be
needed if the tiles’ side is 1/32?

(18.2) The Sierpiński triangle has a dimension of ap-
proximately 1.585. Suppose that someone covers

a Sierpiński triangle with boxes of a certain size
and finds that 187 such boxes are needed. Ap-
proximately how many boxes would be needed to
cover this Sierpiński triangle if the boxes’ side is
half of what it was before?

(18.3) The Sierpiński carpet has a dimension of ap-
proximately 1.893. Suppose someone covers a
Sierpiński carpet with boxes of a certain size and
finds that 211 such boxes are needed. Approxi-
mately how many boxes would you need to cover
this Sierpiński carpet if the boxes are now half as
large as before?
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(18.4) The white cauliflower has a dimension of approxi-
mately 2.8 (Kim, 2005). Suppose a certain head of
cauliflower is 6 inches tall and weights 2 pounds.
How much would a 12-inch tall head of cauliflower
weigh?

(18.5) Estimate the box-counting dimension of a “hollow
circle”. That is, just the circumference of the cir-
cle, not the middle. Is the answer close to what
you would expect?

(18.6) Estimate the box-counting dimension of a Koch
curve, as shown in Fig. 16.5.

(18.7) Estimate the box-counting dimension of the Can-
tor set. To do so it may be easier to use a series of
boxes each of which is a third (rather than half)
the size of the previous box.

(18.8) Estimate the box-counting dimension of the shore-
line of the coast of Maine.
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It is often not useful to describe fractals in terms of an average size.
The reason for this is that fractals are self-similar. Fractals consist of the
same basic shape repeated at all length scales, large and small. So stating
an average size does not capture what is interesting or noteworthy about
the shape.

Moreover, there are some phenomena for which, strictly speaking,
an average size simply does not exist. The goal of this chapter is to
present a situation in which this is the case: when stating an average
property not only is not useful, it is mathematically ill-defined. I think
this example will give us additional insight into fractals, and will also
let us see that fractals are not just geometric objects—fractals can also
be used to describe processes that unfold in time.

Before considering the main example of this chapter, we will need to
consider a simpler example. If this next section seems too basic, please
have patience; I think it is necessary for the more interesting and subtle
example that follows.

19.1 Tossing a Coin

For our initial example, imagine we are playing a simple game. Someone
tosses a coin. We will assume that this is a fair coin; the probability
of heads is 1/2 and the probability of tails is 1/2. If the coin comes up
heads, you win one dollar. If the coin comes up tails, you do not win
anything. If you play this game over and over, what would your average
winnings be?

Since the probability of heads is one half, we expect that half the
time you will win a dollar, and half the time you will win nothing. So
on average, you will win $0.50, or 50 cents. We can write this as an
equation:

Average winnings = (Probability of heads× $1.00)

+ (Probability of tails × $0.00) . (19.1)

Since the probability of getting heads is (1/2), as is the probability of
getting tails, the above equation yields

Average winnings =

(
1

2
× $1.00

)
+

(
1

2
× $0.00

)
(19.2)

= $0.50 . (19.3)
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Game Outcome Total Winnings Average Winnings

1 T 0 0
1 = 0.000

2 H 1 1
2 = 0.500

3 T 1 1
3
≈ 0.333

4 H 2 1
2 = 0.500

5 T 2 2
5
= 0.400

6 H 3 3
6 = 0.500

7 H 4 4
7 ≈ 0.570

8 H 5 5
8
= 0.625

9 T 5 5
9
≈ 0.560

10 T 5 5
10 = 0.500

Table 19.1 Sample outcomes for the simple coin-tossing game.

This analysis is probably overkill for this example. But it will be useful
to refer to Eq. (19.1) later on when we consider a more complicated
example. To simplify notation, in what follows I will omit the dollar
sign $ when reporting the winnings from games like this. So, I will write
the average winnings for the fair coin-toss game as 0.5, not $0.50.

This average value of 0.5 is what one would expect if one played this
game many, many times. If we just play the game ten times, or even
a hundred times, it would be very unlikely that our average winning
would be exactly one half. The reason for this is that even though the
probability of tossing heads is one half, if we toss a coin a number of
times we would not expect to observe exactly half of the outcomes to be
heads. However, as we play the game more and more times, we expect
the average to get closer and closer to 0.5.
We illustrate this by analyzing a particular sequence of games. After

each game we calculate the average winnings by taking the total winnings
and dividing by the total number of games played. Let us suppose that
the first toss is tails. Then at this point your total winnings are zero.
And this is also your average winning, since you have played once and
won nothing. This is shown in Table 19.1.
Suppose that the next toss yields heads. At this point your total

winnings are one dollar. You have played the game two times, so the
average is 1 divided by 2, or 0.5. Suppose the next toss is also tails.
Then your total winnings are still one dollar, but since you have played
the game three times your average winnings are 1/3. We could continue
playing the game and calculating the average at each step, as shown in
the table on the previous page. This type of average is often called the
running average, since we are actively determining the average while
the game is “running”. The average jumps around with each successive
outcome. But the jumps get smaller the more data points we have—i.e.,
the more times we play the game.
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Fig. 19.1 Average winnings for a coin-
toss game. Note that the average win-
ning line become less jumpy as the
number of coin tosses increases.

This can be seen in a graph of the average winnings plotted as a
function of the number of times the game is played. Such a plot is shown
in Fig. 19.1. To make this plot I simulated the game 100 times on my
computer. Initially the average jumps abruptly. But as we have more
and more data points—we play the game more and more—the individual
jumps get smaller and smaller. The curve in Fig. 19.1 is getting less and
less bumpy. We also see that the average is approaching the anticipated
value of 0.5. However, note that even after 100 tosses the average is still
a little bit away from 0.5.
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Fig. 19.2 Average winnings for a coin-
toss game.

This is not cause for alarm. As noted above, we do not expect the
average value to be exactly reached, especially if we have a relatively
small number of data points. However, as the number of data points
gets larger, we anticipate that the average will jump around less and
less as it gets closer to 0.5. This can be seen in Fig. 19.2, in which I
have again plotted the average winnings as a function of the number of
tosses, but this time I show the results for a total of 10, 000 tosses. The
average winnings clearly is approaching the predicted value of one half.

Finally, in Fig. 19.3 I have again plotted the average winnings as a
function of the number of games played. The range on the horizontal
axis extends to one million games played. Note that this graph has
a smaller scale on the vertical axis than the previous two. Again we
can see that the average approaches 0.5 and that despite an occasional
wiggle, the average is getting closer and closer to 0.5 as the number of
games played increases.
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Fig. 19.3 Average winnings for a coin-
toss game. Note the small scale on the
vertical axis. The last number on the
horizontal axis is written in scientific
notation: “1e+06” means 1 × 106. So
1e+06 = 1, 000, 000, or one million.
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The main point of this example is to illustrate what it means for
something to possess an average. An average is a statistical statement
about some aspect of what happens when a situation is repeated again
and again. The actual average we calculate will fluctuate as we get more
and more data. But the key point is that these fluctuations will, in the
long run, get smaller as we get more and more data.
For example, suppose that we were interested in the average height of

the students at a university. We could calculate this by measuring the
heights of individual students and then averaging. This average would
change a little bit as we measure the height of each additional student
and add her or him to our data set. But we would expect the average
to change less and less as the number of students we have measured
grows larger and larger. Indeed, we would be shocked if this was not the
case. There might be an unusually large jump in the average at some
point—perhaps we meet three unusually tall students and measure their
heights one after the other. But we know that it is meaningful to talk of
an average height, and it is a pretty straightforward exercise to go out
and measure it.

19.2 St. Petersburg Game

We now consider a different example. As with our first example, we will
imagine a game in which coins are tossed and money is won. But this
time the rules are different. Now, if you toss the coin and get heads,
you win $2. However, if you get tails, you now get to toss again. If your
second toss is heads, then you win $4. If your second toss is tails, you get
to toss yet again. If this third toss comes up heads, you get $8, and if it is
tails, you get to toss again, and so on. This entire sequence is considered
one round of the game. Unlike the first game, you are now guaranteed to
win some money every time you play. This game was introduced by the
Swiss mathematician Daniel Bernoulli in the mid-1700s. It sometimes is
referred to as the St. Petersburg paradox or the St. Petersburg lottery.1

1This is called the St. Petersburg game
because Bernoulli published a paper
about this process in the Papers of the

Imperial Academy of Sciences in Pe-

tersburg. For further discussion of the
St. Petersburg game, see Martin (2008)
and references therein. The Wikipedia
page on the St. Petersburg paradox is
also quite clear and informative.

Here is another way to specify the rules. For each round of the game,
toss a coin until it comes up heads. Let n be the number of tosses you
make until a heads appears. So if your sequence was TTH, n is three.
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Game Outcome Payoff Total Winnings Average Winning

1 TH 4 4 4
1 = 4

2 TH 4 8 8
2 = 4

3 TH 4 12 12
3
= 4

4 H 2 2 14
4 = 3.5

5 H 2 2 16
5
= 3.2

6 TTTTH 32 48 48
6 = 8

7 TTTH 16 64 64
7 ≈ 9.14

8 H 2 66 66
8
= 8.25

9 TTT 8 74 74
9
≈ 8.22

10 TH 4 78 78
10 = 7.8

Table 19.2 Sample outcome for the St. Petersburg game.

Then, the amount of money you get is 2n. So the payoff for TTH is
23 = 8 dollars.

Clearly this game is going to have a higher average payoff than the
previous one, since in every round you win at least $2. But how much
higher? Suppose you had an opportunity to play this game but had to
pay some money up front in order to do so. How much would you pay?
Would it be a good deal to pay $5.00 for a chance to play this game? To
address these questions we will start, as we did before, by considering
a possible sequence of outcomes. Suppose in the first round you toss a
tails and then a heads. Your payoff then is $4. And this is also, at this
point, your average payoff; you have played once and won $4. This is
illustrated in the first row of Table 19.2.

Suppose that in the next round you also toss tails and then heads.
You will again get $4, and the average winnings remains 4. If in the
third round you tossed tails and then heads yet again, you would win
another $4. Your total winnings are now $12, but the average is the
same; 12/3 = 4. This is shown in rows two and three in the Table
19.2. In this table I have listed the results from ten rounds of this game.
Note that you get quite lucky in the sixth game, where you toss four
tails before getting a heads. Thus, your payoff for this game is 25 = 32.
Accordingly, the average winning jumps sharply up at game number six.

What is the average winnings for the St. Petersburg game? What will
happen if we play the game many, many times? Take a moment and
make a conjecture. Looking at Table 19.2, it is not immediately clear
what the average will be. So, as before, we turn to a plot of the average
winnings as a function of the number of games played. Such a plot
is shown in Fig. 19.4. This graph is somewhat perplexing. It appears
as if the average winnings were may have been approaching 5. But
then, around the 80th game, the average shoots way up. Apparently the
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player was very lucky here and tossed many tails before getting heads,
thus winning a very large payoff. After this large payoff the average
winnings again trend downward. So what is the average value? Perhaps
the average winnings might be heading toward 9 or 10. What happens
as we play the game more and more times?

Fig. 19.4 Running average of the win-
nings for the St. Petersburg game.
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Fig. 19.5 Running average of the win-
nings for the St. Petersburg game.
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Figure 19.5 shows the average winnings for up to 1000 games. Until
around 500 rounds of the game it seems that the average might finally
be leveling off near 10. The average is jumping around, but perhaps
the fluctuations are getting smaller. But then at around the 500th game
there is a huge upward spike. The player must have again been very
lucky and received a huge payoff. But we still do not have a good sense
of what the average winnings is. Evidently what is happening is that
every now and again the player is extremely lucky. He or she gets a huge
payoff, and this leads to a sudden spike in the average winnings. It is
as if we were trying to figure out the average height of students on a
college campus, and once in a rare while we come across a student who
is 100 or 1000 feet tall.
So we need more data; we need to play the game many times to get a

good estimate for the average winnings. If we play long enough that we
observe a relatively large number of the extremely lucky outcomes, we
will be able to account for them properly in our average. So, let us see
what happens.
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Fig. 19.6 Running average of the win-
nings for the St. Petersburg game.

In Fig. 19.6 I have again plotted average winnings as a function of
the number of games played, this time up to 100, 000 games. This plot
is again somewhat surprising. We do not see the average leveling off.
It continues to jump around. There are occasional large upward spikes
associated with an enormous stroke of luck. The upward spikes are
usually followed by long downward trends. But these downward trends
are not perfectly smooth; they are interrupted by smaller upward spikes
seemingly at random. In this sense, the graph of the average winnings as
a function of the number of games played is fractal-like. The curve has
upward jumps of many different sizes: a few huge ones, lots of medium-
sized ones, many small ones, and so on.
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Fig. 19.7 Running average of the win-
nings for the St. Petersburg game. The
numbers on the horizontal axis are writ-
ten in scientific notation: “2.5e+06”
means 2.5 × 106, or 2.5 million.
“5e+06” is 5 million, and so on.

So what is the average? What happens if we play the game even more
times? In Fig. 19.7 I have shown the results of playing the St. Petersburg
game 10 million times. Amazingly, the average still has not settled
down. Even after 7.5 million games, the average is still showing jumps.
In sharp contrast, Fig. 19.3, a similar plot for the simpler coin-tossing
game, shows that the average changes less and less as the number of
tosses gets larger and larger. Moreover, in the St. Petersburg game not
only does the average continue to fluctuate even after a great many
tosses, it also seems to trend steadily upward. To see this, note that the
vertical scales on the graphs shown in Figs. 19.4–19.7 are not the same.
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19.3 Average Winnings for the

St. Petersburg Game

Based on these computer experiments we suspect that something weird
is going on. The average continues to grow and fluctuate no matter how
many times we play the game. Let us see if we can gain additional insight
by analyzing this situation theoretically—without using a computer to
simulate the game.
Our goal is to come up with an equation similar to Eq. (19.1) that will

give us a formula for the average winnings in the St. Petersburg game.
To do so, we need to consider the probability of each outcome multiplied
by the winnings for that that outcome. Doing so, I obtain:

Average winnings = (Probability of H× $2)

+ (Probability of TH× $4)

+ (Probability of TTH× $8)

+ (Probability of TTTH× $16)

+ . . . . (19.4)

Note the “. . .” at the end of the equation. This indicates that the equa-
tion keeps on going. There are an infinite number of terms in the equa-
tion, one for each possible number of tails that could be tossed before the
player finally gets a heads. It may seem odd to have an infinite number
of terms like this. However, the probabilities of these longer and longer
sequences of tails are getting smaller and smaller, so the terms farther
and farther out in the equation matter less and less.2

2This business of an infinite number of
terms that matter less and less can be
made mathematically precise. This is
usually one of the main topics of the
second term of a calculus sequence. We
will not need any calculus to proceed
here. However, it is worth nothing
that handling equations with an infi-
nite number of terms can be potentially
subtle, and hence should be approached
with some caution.

In order to further analyze Eq. (19.4), we will need to figure out values
for various probabilities. The probability of tossing a heads is 1/2. But
what about the probability of tossing a tails and then a heads? The
probability of getting heads on the first toss is 1/2. And the probability
of getting tails on the second toss is also 1/2. To get the probability of
getting tails and then heads we multiply these two probabilities together:

Probability of TH =

(
1

2

)(
1

2

)
=

1

4
. (19.5)

Similarly, the probability of getting tails, then tails, then heads, is:

Probability of TTH =

(
1

2

)(
1

2

)(
1

2

)
=

1

8
. (19.6)

And so on. Using these results in Eq. (19.4) we obtain:

Average winnings =

(
1

2
× $2

)

+

(
1

4
× $4

)

+

(
1

8
× $8

)
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+

(
1

16
× $16

)
+ . . . . (19.7)

Note that each term in the parenthesis in the above equation equals 1.
What this means is that

Average winnings = 1 + 1 + 1 + 1 + . . . . (19.8)

But what does this mean? On the right-hand side of the above equation
we have an infinite number of 1’s added together. Clearly this number
keeps growing and growing; the right-hand side of Eq. (19.8) is infinite.

We have thus answered the question about the average winnings in
the St. Petersburg game: the average winnings are infinite. Equiva-
lently, one would say that the average does not exist. The averages, as
plotted in Figs. 19.4–19.7 do not approach some finite value, no mat-
ter how many times we play the game. As a final illustration of this,
the average winnings are shown plotted up to 300 million rounds of the
game in Fig. 19.8.3 Even after playing the St. Petersburg game 300 mil-

3Remarkably, this took only a little un-
der 1 minute to simulate on my laptop
computer.

lion times—approximately once for each person who lives in the United
States—the average winnings are still fluctuating.
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Fig. 19.8 Average winnings for the
St. Petersburg game. Note that despite
the very large scale on the horizontal
axis, the average winnings still do not
appear to be approaching a constant
value. The numbers on the horizontal
axis are written in scientific notation:
“5e+07” means 5 × 107, or 50 million.
“1e+08” is 100 million, and so on.

19.4 Implications

Let us step back for a moment and consider what this all means. The
idea of an average size or an average weight or an average time is so basic
that it is easy to take for granted. We expect, quite reasonably, that
questions like “what is the average height of giraffes?”, “how much does
a typical bottle of craft beer cost?”, or “how long do Armin van Buuren’s
DJ sets usually last?” are well posed and have a definite answer. We
might need to measure quite a few giraffes, investigate more than a few
bottles of beer, or listen to Armin van Buuren frequently. But the answer
is out there; we just need to make some measurements and figure it out.
Most crucially, if we want a more accurate average, all we have to do
is make more measurements, and the average value will get closer and
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closer to the true average. This was the case in the first coin-tossing
game we considered.
But for the St. Petersburg game, our intuition about averages leads

us astray. Mathematically the average does not exist. In the limit that
we play the game infinitely many times the average winnings will be
infinite. We have seen the fact that an average does not exist illustrated
graphically in Figs. 19.4–19.8.
However, in any experiment you will always have a finite amount of

data. It is, of course, impossible to measure something infinitely many
times. Suppose, for instance, that you played the game 100 times and
recorded the payoff each time. You could then calculate the average of
these 100 games, and this would be well defined mathematically. After
all, a collection of 100 measurements most certainly does have an av-
erage. But this average is not that meaningful. It tells us something
about the particular 100 measurements we made, but it is not a state-
ment about the game in general.
For example, suppose we measure the height of 100 giraffes and then

calculate the average height. We might publish this result in the Journal
of Ungulate Statistics. In so doing, we would most likely not be making a
claim about the 100 giraffes we measured. Rather, we would be making a
statement about giraffes in general. For phenomenon like giraffe heights,
this would almost surely be a safe generalization. However, we cannot do
the same thing for the St. Petersburg game. If we observed 100 games,
the average winnings would be easy to calculate. This would tell us
something about the particular 100 games we happened to observe, but
not so much about the St. Petersburg game in general.
Most phenomena are like the giraffes: there is a well-defined average

that is not difficult to calculate. However, there are many phenomena
that are like the St. Petersburg game: the average does not exist or is,
at best, very misleading. Examples of phenomena that are generally
believed to be like the St. Petersburg game include the frequency and
severity of earthquakes, the popularity of websites, the sizes of corpo-
rations, the populations of cities, and the frequency of word usage. We
will pursue these ideas further in the next chapter.

Exercises

(19.1) Suppose you toss a fair coin five times. The coin
comes up heads with probability 0.5 and tails with
probability 0.5. What is the probability of each
of the following outcomes?

(a) HTHTH

(b) HTTTH

(c) HHHTT

(d) HHHHH

(19.2) Suppose you toss a fair coin five times.

(a) What is the probability that you get only
one head out of the five tosses?

(b) What is the probability that you get only
two heads out of the five tosses?
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(19.3) Consider the simple coin-tossing game described
in Sec. 19.1. Suppose that the coin is biased so
that heads occurs with probability 0.75 instead of
a probability of 0.5. What is the average winnings
in this game?

(19.4) Ezra plays the simple coin-tossing game ten times.
His outcomes are, in order: H, T, T, T, H, T, H,
T, T, H. Construct a table of Ezra’s average win-
nings after each game, as I did in Table 19.1.

(19.5) Lily plays the St. Petersburg game ten times. Her
outcomes are, in order: TH, H, H, TTTH, H,
TTTH, TH, H, TH, TH. Construct a table of

Lily’s average winnings after each game, as I did
in Table 19.2.

(19.6) � Consider a St. Petersburg game that is identi-
cal to the one described in the text, with one key
difference. The coin is not fair; tails occurs with
a probability of 0.75. Does the average winnings
exist for this game? Why or why not?

(19.7) � Consider a St. Petersburg game that is identi-
cal to the one described in the text, with one key
difference. The coin is not fair; tails occurs with
a probability of 0.25. Does the average winnings
exist for this game? Why or why not?
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In the last chapter we saw an example of a simple process, the St. Peters-
burg game, that does not possess an average. I concluded by suggesting
that this state of affairs is not unusual for fractals; there are many phe-
nomena for which the notion of an average or typical size is undefined
or misleading. For example, the Sierpiński triangle (shown in Fig. 20.1)
is made up of triangles of many sizes. There is one big triangle, three
smaller ones, nine smaller still, 27 even smaller, and so on. It is thus not
useful to describe a Sierpiński triangle by calculating an average triangle
size.

Instead of thinking about the average size contained in a fractal, it
is often more informative to look at the distribution of sizes. In this
chapter we will look at distributions that are fractal in the sense that
they are scale-free; they describe a phenomenon which does not have a
characteristic size. Such distributions, often referred to as power laws,
are the subject of this chapter.

In what follows I assume that you are familiar with using histograms to
describe the frequency of different outcomes in a set of measurements and
that you have had some experience thinking about distribution functions
for continuous variables. An overview of these topics can be found in
Appendix B.

Fig. 20.1The Sierpiński triangle. Note
that the triangle is made up of triangles
of many different sizes.

20.1 The Central Limit Theorem and
Normal Distributions

We begin by considering the normal, or Gaussian, distribution. This will
provide a useful contrast to power-law, or fractal distributions. More-
over, normal distributions are important because the fact of their ubiq-
uity has strongly shaped scientists’ intuitions about statistics.

Suppose that one is interested in the distribution of the masses of
cats. In this fictional example imagine I weigh 10, 000 cats and form
a histogram with the resultant data. The result might look something
like Fig. 20.2. The histogram can be well approximated by the following
function:

p(x) =
1

σ
√
2π

e
−(x−a)2

2σ2 , (20.1)

where a = 5.0 and σ = 0.5. We will not explicitly use this formula, but
it plays such an important role in statistics and almost all branches of
science that I think it is worth writing down.
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The distribution of Eq. (20.1) is known as the Gaussian or normal

distribution. It is also very commonly referred to as a bell curve,
because it has a bell-like shape. I will use these three terms—the
normal distribution, the Gaussian distribution, and the bell curve—
synonymously. The quantity a in Eq. (20.1) is the average value for
x. The quantity σ2 is known as the variance and σ is known as the
standard deviation. Both are related to the spread of the x values
around the average. The larger the standard deviation (or variance),
the more spread out the x values are. It turns out that around 68% of
the quantity described by the normal distribution will be within one σ
of the mean. For the cat example, this means that we expect 68% of the
cats to have a mass between 4.5 and 5.5 kg.

Fig. 20.2 A histogram of the masses
of 10, 000 cats. (This is the same plot
shown on the bottom of Fig. B.6 in Ap-
pendix B.)
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Gaussian distributions are remarkably common; they describe a vast
number of different phenomena. Why is this? There is a remarkable
theoretical explanation for the ubiquity of Gaussian distributions. The
key result is as follows. Suppose we have a variable x that has some
unknown distribution. Let us measure x several different times and
add up the measurements. The resultant sum will approach a Gaussian
distribution as we make more and more measurements. Amazingly, this
is true regardless of the distribution of x.
Let us illustrate this with an example. Suppose a strange type of

winter squash comes in three sizes. The smallest size weighs 1 pound,
the middle size weighs 3 pounds, and the large size weighs 4 pounds.
Suppose further that the large size occurs half the time and the other
two sizes occur one quarter of the time. This situation is illustrated
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Fig. 20.3 The distribution for the win-
ter squash example. There are three
possible squash weights: 1, 3, and 4
pounds. The heavy squash are twice as
common as the light or medium squash.

in Fig. 20.3. The idea here is that when we select a squash we do not
know in advance how much it will weigh. With probability 1

2
we get a

4-pound squash, with probability 1
4 we get a 3-pound squash, and with

probability 1
4
we get a 1-pound squash.

Note that the average squash weight is 3. To see this, observe that we
would expect to have twice as many big squash as we will get medium
and small squash. I.e., we expect to have squash with weights of 1, 3, 4,
and 4. The average of this is 3, since

average =
1 + 3 + 4 + 4

4
=

12

4
= 3 . (20.2)

Now let us imagine that we get five squash. How much would this
bag of squash weigh? On average, we expect it to weigh 15 pounds,
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since the average squash weighs 3 pounds. But sometimes we will get
a heavier bag, and sometimes a lighter bag. How will the weights be
distributed? The answer is shown in Fig. 20.4, where I have plotted a
normalized histogram of the weights of bags of five squash. To make
this plot I wrote a short computer program that simulated grabbing
five squash 100, 000 times and plotted the histogram. It is possible, but
tedious, to determine the histogram exactly in the limit that we sample
an infinite number of bags of squash. It is much simpler to do it with
a computer program. The histogram does not look much like a normal
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Fig. 20.4 A normalized histogram for
the total weight of five squash, where
the weight of each squash is distributed
according to Fig. 20.3.

distribution—it does not have the characteristic bell shape. But note
that it also clearly does not resemble the original distribution, shown in
Fig. 20.3.

Let us repeat this experiment, but this time we will imagine filling
our bag with twenty squash. If we do this many, many times, what
will happen? The average weight should now be 3 × 20 = 60 pounds.
But how will the bag weights be distributed? The answer is shown in
Fig. 20.5. Note that now the histogram is certainly starting to look like
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Fig. 20.5 A normalized histogram
for the total weight of twenty squash,
where the weight of each squash is dis-
tributed according to Fig. 20.3.

a Gaussian. It is getting smoother and appears symmetric about the
average weight of 60.

Let us try this experiment once more. We now choose 100 squash
at a time.1 The average weight of our collection of 100 squash is now 1The squash now do not fit in a bag.

We will need a wheelbarrow or perhaps
a car.

300. The distribution of the squash weights is shown in Fig. 20.6. We
see that the distribution closely resembles a Gaussian. Also in Fig. 20.6
I have plotted the Gaussian distribution, Eq. (20.1) with a = 300 and
σ = 12.2. The histogram and the Gaussian curve do not exactly match,
but the agreement is very good. I made this histogram by simulating
100, 000 collections of 100 squash each, and then plotting the normalized
histogram for them all. If I simulated more collections, the histogram
and the curve would get closer and closer.
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Fig. 20.6 A normalized histogram for
the total weight of 100 squash, where
the weight of each squash is distributed
according to Fig. 20.3. The dashed
line is a Gaussian distribution function,
Eq. (20.1) with a = 300 and σ = 12.2.
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To summarize, we started with a distribution of individual squash
weights, Fig. 20.3, that is most definitely not Gaussian. Not only is
it not a bell curve, it is not even a curve. The squash take on only
three different values. I then imagined forming collections of successively
larger number of squash: five, twenty, and then a hundred squash. For
each I formed many such collections, measured the weights, and plotted a
histogram. The result is that the distribution of weights of these squash
collections gets closer and closer to a Gaussian curve.
The general version of this result is known as the central limit the-

orem:

Let x be a random variable. Then the distribution of a sum of
the random variables x approaches a Gaussian distribution,
as the number of variables in the sum becomes large.

In practice, typically the number of variables does not have to be very
large before the distribution is well approximated by a Gaussian. For
example, in Fig. 20.5 the distribution was reasonably well approximated
by a Gaussian, even though there were only twenty variables (squash)
in the sum. It is remarkable that this result holds no matter what the
original distribution of x is. The sum of a large number of any random
variables will have a Gaussian distribution.
Moreover, the variables do not even have to have the same distribu-

tion. For example, we could imagine making a bag of ten vegetables
by selecting one each of ten different types of vegetable: a squash, a
potato, a rutabaga, and so on. Each of these vegetables would likely
have a different distribution for its weight. Nevertheless, the sum of the
weights of these ten different vegetables will nevertheless have a Gaus-
sian distribution.2 This is quite a strong result—it suggests that there

2This statement is only true if the
random variables (each of the differ-
ent type of vegetable) do not have
weird distributions with infinite vari-
ance. But in practice, these limitations
are not usually a concern. The details
are rather technical; see a text on prob-
ability for details.

is something truly universal about Gaussian distributions.3

3It is important to note that the cen-
tral limit theorem does not imply that
everything is distributed according to
a Gaussian. The central limit theorem
only applies to a sum of random vari-
ables. It does not apply, e.g., to a prod-
uct of random variables.

The central limit theorem explains why Gaussian distributions are so
common. Consider a quantity such as human height. In Fig. 20.7 I have
plotted a histogram for a data set consisting of height measurements of
25, 000 people.4 The data is very well approximated by a Gaussian. On
the figure I have plotted a Gaussian distribution with a = 67.99 and
σ = 1.90.

4The data that I used to make Fig. 20.7 were taken from the Statistics Online Com-
putational Resource at the University of California Los Angeles. See http://wiki.

stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights for de-
tails and for access to the full data set.
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Fig. 20.7 A normalized histogram for
the heights of 25, 000 people. The solid
line is a Gaussian distribution function,
Eq. (20.1) with a = 67.99 and σ = 1.90.

What determines how tall an adult is? Nobody knows for sure, but
it is certainly a combination of many factors: parental height, nutrition,
overall physical and mental health, exposure to pollutants or toxins, and
so on. If we assume that these effects are additive, then the central limit
theorem assures us that height will be distributed according to a Gaus-
sian. By additive, I mean that the effects add together to produce total
height. I.e., the height contribution due to nutrition can be thought of
as being added to the height contribution due to parental height. In
general, when we have a quantity that is influenced by a number of dif-
ferent factors, it is very often reasonable to assume that they contribute
in an additive way. Hence the near-ubiquity of normal distributions.

Even if a given phenomenon is not exactly described by a Gaussian,
it is very often nevertheless Gaussian-like, in the sense that the distri-
bution has a well-defined average and a relatively small variation about
that average. For example, the average height of adult women in the
U.S. is very close to 64 inches. There is relatively little variation about
this mean. Ninety percent of all women are between 59 and 68 inches
(McDowell et al., 2008). So 90% of all women are within 5 inches of the
average. Five is 7.8% of 64. So 90% of all U.S. women are within 7.8%
of the average height. This is a fairly small range.

Another way of looking at the variation is to ask about the largest and
smallest value in a set of measurements. The shortest human woman is
about 23 inches and the tallest is around 97 (Glenday, 2010). Thus, the
tallest woman is around 4.2 times taller than the shortest. This seems
like quite a large range—imagining the tallest and shortest women in
the world standing next to each other is an interesting image. However,
compared to some other quantities this range is actually quite small. In
the next section we will encounter a distribution whose largest member
is over 14, 000 times larger than the smallest.

20.2 Power Laws: An Initial Example

We now examine an example that is quite different from human heights
or the weights of vegetables. Consider the frequency of words in the
English language. Imagine a long text, such as the novel Moby Dick or a
textbook on chaos and fractals. Choose a word from that text. How of-
ten does it appear? In this book the word “squash” appears 37 times, the
word “hippopotamus” appears only once,5 the word “rutabaga” appears 5This is its only appearance.
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twice, and the words “rabbit” or “rabbits” appear 232 times. Imagine
doing this for all the words in a book. We could then determine the
average number of times a word appears, and also the distribution of
word frequencies.
Let us illustrate this process use two sentences written by Henri Poincaré,

a mathematician who did groundbreaking work in the late 1800s and
1900s work on a number of questions in mathematics and physics, in-
cluding dynamical systems. He writes:

The scientist does not study nature because it is useful; he
studies it because he delights in it, and he delights in it
because it is beautiful. If nature were not beautiful, it would
not be worth knowing, and if nature were not worth knowing,
life would not be worth living. (Poincaré, 2001, p. 186)

There is one word (it) that appears six times in this passage and one
word (not) that appears five times. There are four words that appear
three times each (because, he, nature, worth). Ten words appear twice
(and, be, beautiful, delights, if, in, is, knowing, were, would), and there
are eight words that appear only once (does, life, living, scientist, study,
studies, the, useful.) This information is collected in Table 20.1. We
then use these data to form the histogram, shown in Fig. 20.8. I suggest

Table 20.1 A listing of
word frequencies for the
Poincaré quote.

6
5
3
3
3
3
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1

taking a moment to make sure you see how to go from the Poincaré quote
to the frequency data in Table 20.1 and subsequently to the histogram
of Fig. 20.8.
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Fig. 20.8 A histogram for the data
shown in Table 20.1.

What would happen if we tried a similar experiment but with a much
larger text? What is the frequency of the average word? If I choose
a word at random from a list of all the words in the text, how many
times does that word appear overall? And what does the distribution of
frequencies look like? Is it a Gaussian? Let us try it and see.
In a recent paper, Mark Newman (2005) measured the word frequen-

cies for Moby Dick, the novel by Herman Melville. Using the same pro-
cedure that I did for the Poincaré passage, he determined the frequency
of all words in the novel. The result is a list of numbers similar to Table
20.1, but much, much longer.6 There are 18, 855 different words in the
novel. The total number of words is 209, 994. The most common words
are, in order, “the”, “of”, “and”, “a”, and “to.” These words appear,
respectively 14, 086, 6414, 6260, 4573, and 4484 times. One can think of
these words as being the “biggest” in the sense that that they occur the
most frequently. The “smallest” words are those that occur only once.
The average word frequency is around 11.1.
What about the frequency distribution? A histogram for the table of

word frequencies is shown in Fig. 20.9. A few things are immediately
apparent. First, there is no bump or central peak as there is for the
other distributions we have looked at so far. By far the largest value

6This long table is available at http://www.santafe.edu/~aaronc/powerlaws/

data/words.txt. It is part of a collection at http://www.santafe.edu/~aaronc/

powerlaws/data.htm, where one can find quite a few other data sets which are dis-
tributed (or suspected of being distributed) according to a power law.
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is for a frequency of 1. There are 9, 161 words that occur only once in
all of Moby Dick. This is 48.59% of the total words. The plot shown
in Fig 20.9 is not the full histogram. I have plotted only the 100 most
common frequencies.
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Fig. 20.9 A histogram for the fre-
quency of occurrence of words in Moby

Dick.

What to make of Fig. 20.9? Well, it clearly is not a Gaussian. Instead,
it turns out that this distribution is well described by the following
function:

p(x) = Ax−1.95 (20.3)

where A ≈ 0.59 (Clauset, Shalizi, and Newman 2009). The variable x is
the word frequency. A plot of this distribution is shown superimposed
on the data in Fig. 20.10. One can see that Eq. (20.3) agrees fairly well
with the histogram generated from the data.
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Fig. 20.10 A histogram for the fre-
quency of occurrence of words in Moby

Dick. The dashed line is the power law,
Eq. (20.3).

20.3 Power Laws and the Long Tail

Equation 20.3 is an example of what is known as a power law. The
general form is:

p(x) = Ax−α . (20.4)

This is called a power law because the distribution of the variable x is
given by x raised to some power. The quantity A is determined by the
exponent α. We know the total area under the curve has to be one, so
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this determines A.7 In other words, once we have figured out α, we can7We know this because the area under
the curve corresponds to the probabil-
ity, and the total probability must add
up to 1.

figure out A as well.
There are two important and noteworthy features of a power-law dis-

tribution. First, it decays rather slowly. This means that the frequency
of observing a large x value, while small, is not tiny. In contrast, an ex-
ponential distribution decays much faster. An exponential distribution
has the form

p(x) = Ae−ax . (20.5)

Note that in the exponential distribution the variable x is in the ex-
ponent. Exponential distributions are quite common—they frequently
describe the waiting time between random events: the time between
phone calls, or the time between accidents at a job site.8 Exponential

8If the variable x is discrete—i.e. it
takes on only integer values—this dis-
tribution is often called the geometric
distribution. In what follows I will re-
fer to both types of distribution as ex-
ponential. This is slightly sloppy ter-
minology, and the mathematics of con-
tinuous and discrete distributions must
be handled differently, but conceptually
they function very similarly.

distributions arise when there is a fixed probability at every time in-
terval that an event occurs, and so longer and longer waiting times are
increasingly uncommon. Exponential and Gaussian distributions both
have the property that it is extremely unlikely to observe events that
are very different from the average.9

9For example, suppose you work at
a call center where the average time
between phone calls is 5 minutes. If
the time between phone calls were de-
scribed by an exponential distribution,
then only 0.67% of the time will the
waiting time between calls exceed 25
minutes.

Fig. 20.11 A power-law and an expo-
nential distribution.
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An exponential and a power-law distribution are plotted in Fig. 20.11.
The power-law exponent α is 2 and a in the exponential distribution is
1. One sees that the exponential decays faster than the power law. This
faster decay is much more apparent, however, for larger x. To illustrate
this, in Fig. 20.12 I have again plotted the two distributions, but this
time x ranges from 50 to 100. Observe that the exponential distribution

Fig. 20.12 A power-law and an expo-
nential distribution.
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is indistinguishable from zero, while the power-law distribution is small,
but much larger than the exponential. One can see this numerically, as
well. The probability of x = 50 for the power law is 0.0004. For the
exponential distribution the probability10 of x = 50 is around 2×10−22. 10This assumes that the variable x is

discrete and not continuous. If x is
continuous the same general scenario
holds, but one has to interpret p(x) dif-
ferently.

This has important implications. If x is distributed exponentially, the
probability of x = 50 is for all practical purposes zero. We would expect
to never observe x = 50. On the other hand, if x is distributed according
to a power law, then there is a 4 in 10, 000 chance that x = 50. This
is small, but certainly not microscopic. If there were some catastrophic
event that has a 4 in 10, 000 chance of occurring in the next decade,
you might want to buy an insurance policy to protect you if such an
event occurs. However, there is no need to worry about an event that
happens with a probability of 2× 10−22, or 0.0000000000000000000002.
This is why people buy fire insurance for their homes, but not insurance
for getting hit by a meteorite.

Because power-law distributions decay slowly—and hence a plot of a
power-law extends far to the right on a graph—they are said to have a
long tail. Long-tailed distributions are generally taken to be those that
decay more slowly than an exponential distribution.11 For a situation 11There is not presently a standard

technical criteria for long-tailed distri-
butions. Such distributions are also
known as fat-tailed distributions.

described by a power law there is a relatively large probability of an
extreme event—a large x value. In contrast, short-tailed distributions
like the exponential predict vanishingly small probabilities for extreme
events. The Gaussian distribution is, like the exponential, short-tailed.
Much of our intuition—and much of the apparatus of statistics—is based
on Gaussians. These work extremely well for many phenomena, but can
be badly misleading when applied to long-tailed distributions.

20.4 Power Laws and Fractals

A second noteworthy feature of power-law distributions is that, like frac-
tals, they are self-similar. Another way to say this is that they are scale-
free. They do not possess a meaningful average or typical size or scale.
For fractals like the Sierpiński triangle, we observed self-similarity by
zooming in on the shape and noticing that doing so left the shape un-
changed. We can do a similar thing with a power-law distribution. In
Fig. 20.13 I have plotted the same power-law distribution, p(x) = Cx−2,
from x = 50 to 100, and then from x = 100 to 200. The two plots look
the same. The distribution is thus a fractal—it appears the same at
different scales.

This scale-invariance does not occur for other distributions. To show
this I have done the same thing with the exponential distribution p(x) =
Ae−x. In Fig. 20.14 I have plotted the exponential distribution for two
different x ranges. Looking at the two plots we can clearly see that the
distributions are not the same. Thus, exponential distributions are not
scale-invariant in the way that power-law distributions are.

It turns out that power-law distributions are exactly those that are
scale-free. Power laws are thus the signature of fractals, and vice-versa.
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Fig. 20.13 A power-law distribution
plotted on two different scales. The two
plots look the same, illustrating that
power-law distributions are scale-free.
The numbers of the vertical axis are
written in scientific notation. “2e-05”
means 2 × 10−5 = 0.00002. “3e-05”
means 3× 10−5 = 0.00003, and so on.
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I have not mathematically proven this result, but Figs. 20.13 and 20.14
illustrate a particular instance of this phenomenon.12 Power-law distri-12The general proof is rather techni-

cal and requires a knowledge of calcu-
lus. See Newman (2005, p. 11) or Frank
(2009, p. 1566) for clear discussions of
the relationship between scale-free dis-
tributions and power laws.

butions are sometimes called scaling distributions. The reason is that
they describe phenomena that scale—appear the same as one looks at
the distribution at different ranges.
Here is another way to think about why power-law distributions are

fractal. Suppose there is a tree with branches of many different lengths.13

13I will assume that the branch lengths
are always integers: 1, 2, 3, etc. The ar-
gument in the next several paragraphs
works if the branches are non-integer
values, but the mathematics becomes
more subtle.

Let us suppose the distribution of branches is described by a power law
with an exponent of 2. Specifically,

Probability a branch has length x = Ax−2 , (20.6)

where A ≈ 0.6079. (One can calculate the value for A by requiring that
the probability adds up to 1.) This distribution is plotted in Fig. 20.13.
The distribution tells us that if we were to choose a branch at random,
the probability that it has length 5 is 0.024, and the probability that it
has length 10 is 0.006. I determined these numbers by plugging x = 5
and then x = 10 into Eq. (20.6). So branches of length 5 are four times
more likely than branches of length 10. Equivalently, there are four times
as many length-5 branches than length-10 branches. The distribution of
Eq. (20.6) also tells us that the probability of a branch of length 20 is
0.00152, while the probability of a branch of length 40 is 0.00038. Thus,
branches of length 20 are four times more common as branches of length
40. In both cases, there are four times as many branches that are half
as large. This is true in general. For any size branch there will be four
times as many branches that are half as long.
Now, imagine that some magic spell has been placed on you. You

end up in the tree whose branch sizes are described by Eq. (20.6). You
suspect that this magic spell has changed your size as well. You have
no way of knowing for sure, however, since the tree contains no scale –
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Fig. 20.14An exponential distribution
plotted on two different scales. Unlike
Fig. 20.13, the two plots do not look the
same. Thus, the exponential distribu-
tion is not scale-free.

no clues about size.14 You might observe a number of branches that are 14The tree is very large and dense. You
cannot see out, nor can you tell how
large the tree itself is. All you can see
is lots and lots of branches, of many
different sizes.

about the same size as you. And you would observe that there are four
times as many branches that are half your size. But this observation
tells you nothing about your size. No matter what size you are, there
are always four times as many branches that are half as large as you. It
is in this sense that a power-law distribution is scale-free.

We have seen power-law relationships before. In Chapter 18 the equa-
tion used to determine the box-counting dimension D has the form of a
power law. Equation (18.2) related D to the number of boxes N(s) of
size s needed to cover an object:

N(s) = k

(
1

s

)D

. (20.7)

This equation also indicates a scaling relationship; it says that no matter
what the size of the box, if we make the box half as small, we will need
2D more boxes to cover the shape. This relationship is independent of
scale; it holds regardless of the initial box size s.15 15This is a true mathematical state-

ment about Eq. (20.7). In practice,
however, this equation only applies if
the box size is sufficiently smaller than
the object.

In Chapter 18 we saw that if we took the logarithm of both sides of
Eq. (20.7) and made a plot, the result was a straight line. The same
is the case for a power-law distribution. To see this, start with the
power-law equation

p(x) = Ax−α , (20.8)

and take the logarithm of both sides. After doing so, and after simpli-
fying the algebraic expressions, one obtains:

log(p(x)) = log(A) − α log(x) . (20.9)

Thus, if one plots log(x) on the horizontal axis and log(p(x)) on the
vertical axis the result will be a straight line. This is illustrated in
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Fig. 20.15 where I have plotted the histogram for the word frequencies
from Moby Dick on a log-log scale. Note that the histogram now appears
approximately linear. Log-log plots such as Fig. 20.15 are a standard way
that power-law distributions are presented in the scientific literature.

Fig. 20.15 A histogram for the fre-
quency of occurrence of words in Moby

Dick plotted on a log-log scale. Note
that the histogram appears to be well
approximated by a straight line. The
same data was plotted on an ordinary
scale in Fig. 20.9.
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20.5 Where do Power Laws Come From?

A great many phenomena are believed to be distributed according to a
power law or something close to a power law, including: the frequency
of words in texts, the size of power blackouts, the populations of cities,
books sales, the number of times scientific papers are cited, the size of
forest fires, the size of earthquakes, the number of phone calls per fixed
amount of time, the size of people’s email address books, the number of
links to a website, and the number of species per genus (Clauset, Shalizi,
and Newman, 2009). What does all this mean?
As we have seen throughout the last several chapters, fractals are

“easy” to make, in the sense that they can be generated with simple
iterated rules. We have also seen in Chapter 19 that fractals can be
produced by simple stochastic processes. There are many different ways
that fractals can be generated, so I think we should not be surprised
when we encounter them. And since power laws are just another mani-
festation of fractals, the same is true for them. There are many simple
ways to generate power laws.
Somewhat surprisingly, this lesson is lost on some scientists, who posit

that the existence of power laws indicates some overarching organizing
principle. It seems to me that this is badly off the mark, since it is well
known that there are many simple mechanisms that produce power laws.
There is no reason to assume that all power laws are generated by the
same mechanism, nor is there any reason to assume that power laws are
evidence for a high degree of organization, complexity, or optimization.
Power laws, and fractals, are interesting and noteworthy, but they should
not be surprising. There is ample evidence that power laws and fractals
are all around us.
Finally, a few important words of caution. Testing that a given data

set really is power-law distributed is somewhat tricky. The natural thing
to do is to take the histogram, plot it on a log-log scale, and see if it looks
linear. If it does, it is often assumed that the data is a power law. One
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then estimates the slope using standard statistical techniques. The slope
is the exponent α. Unfortunately, this method can be very misleading.
It is a poor way to estimate α, and can lead one to incorrectly infer the
presence of a power law that is not real.16 Nevertheless, this method has 16A data set may be well-approximated

by a power law, and yet another func-
tion might be an even better fit to the
data. Ideally, one should test several
alternative functions before asserting
that data are power-law distributed.

been used by many scientists. As a result, some recent claims for the ex-
istence of power laws are almost surely wrong. See Clauset, Shalizi, and
Newman (2009) for further discussion, including a detailed derivation
of a more reliable method for estimating α and determining whether or
not a power law is a good fit to a set of empirical observations.

What often is of interest is not whether or not a given data set is
exactly a power law, but whether or not it has a long or heavy tail—i.e.,
if the probability of rare events decays significantly more slowly than
an exponential distribution. Generically, long-tail distributions may not
be fractal in the sense that they are scale-independent. But they still
indicate a very different kind of statistics than Gaussian or exponential,
and demand a different sort of intuition about the prevalence of rare
events.

Further Reading

The definitive treatment of how to test for power laws in empirical data
is Clauset, Shalizi, and Newman (2009). An excellent review of different
empirical power laws along with a discussion of power-law properties is
Newman (2005). Chapter 17 of Mitchell (2009) has a good, largely non-
technical discussion of power laws. Several papers critique the recent
hype around power laws. Mitzenmacher’s “A brief history of generative
models for power law and lognormal distributions” (2004) and Keller’s
“Revisiting ‘scale-free’ networks” (2005), are both lucid and accessible. I
particularly recommend the recent essay by Stumpf and Porter, “Critical
truths about power laws” (2012). Frank (2009) is a clear and well written
review of power laws and other distributions that occur commonly in
biology.

Exercises

(20.1) Construct a word-frequency histogram similar to
that of Fig. 20.8 using the first two sentences of
this chapter.

(20.2) Below is a portion of the lyrics from This Light Be-
tween Us, by Armin van Buuren featuring Chris-
tian Burns (2010):

So we should dance like this forever

We’re safer on the ground

When a million lights surround you

And you’re moving to the sound

Don’t waste another moment

It’s waiting for you now

To dive in this new beginning

Let the colors show you how

Construct a word-frequency histogram similar to
that of Fig. 20.8 using these lyrics.
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(20.3) Fill in the algebraic steps between Eq. (20.8) and
Eq. (20.9).

(20.4) Consider the probability distribution for the tree
branches given in Eq. (20.6).

(a) What is the probability of observing a tree
branch of size 6?

(b) What is the probability of observing a tree
branch of size 12?

(c) How much more common are size 6 branches
than size 12 branches?

(20.5) In this exercise we will see that an exponential dis-
tribution is not scale-free in the way that a power
law is. Suppose the number of days between acci-
dents at a sawmill is well described by the follow-
ing distribution p(t) = 1

10
e−

1
10

t.

(a) What is the probability that there are 3 days
between accidents? What is the probabil-
ity that there are 6 days between accidents?
How many more times likely is it that there
are 3 days between accidents than 6 days?

(b) What is the probability that there are 10
days between accidents? What is the prob-
ability that there are 20 days between ac-
cidents? How many more times likely is it
that there are 3 days between accidents than
20 days?

(c) Use your answers to the above two questions
to conclude that the exponential distribution
is not scale-free.
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Fractals such as the Cantor set and the Koch curve were originally in-
troduced not as geometrical objects, as we have viewed them thus far,
but as a way to explore apparent paradoxes and difficulties in the areas
of mathematics now known as set theory and analysis. A study of the
Cantor set reveals some surprising and fun properties of infinite sets.
This is the focus of this chapter. This chapter has a somewhat different
character than most other parts of this book. It does not require any
advanced background, but it is concerned with abstract mathematics
and not dynamical systems. None of the subsequent chapters depend
on this one; it is a bit of a tangent. But I have included it in this book
because using the Cantor set to think about different sorts of infinities
is fascinating and a lot of fun.

21.1 What is the Size of the Cantor Set?

The central question of this chapter is: How big is the Cantor set? Recall
that the Cantor set is formed as follows: start with a line segment, re-
move the middle third of the line segment to produce two line segments,
then remove the middle third of those two segments yielding four line
segments, and so on. This process is illustrated in Fig. 21.1. The Can-
tor set is the collection of points that is left after this process has been
repeated an infinite number of times.

n=3

n=1

n=2

n=0

Fig. 21.1 The first several stages in the
construction of the middle-thirds Can-
tor set.

At each step the number of line segments doubles while the length of
each line segment decreases by a factor of three. This is shown in Table
21.1. At the nth step there are 2n line segments, each of which has a
length of 1

3n . To get the total length at each step in the construction of
the set, one just multiplies the number of line segments by the length of
each line segment. Thus, at step n the total length is ( 23)

n.
As n goes to infinity the number of line segments also goes to infinity;

2n gets larger and larger as n gets larger. However, the length of each
segment goes to zero; ( 13)

n gets smaller and smaller as n gets larger.
What about the total length? We have an infinite collection of tiny line
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Step # of Line Segments Length of Each Segment Total Length

0 1 1 1

1 2 1
3

2
3

2 4
(
1
3

)× (
1
3

)
= 1

9
4
9

3 8
(
1
3

)× (
1
3

)× (
1
3

)
= 1

27
8
27

n 2n 1
3n

2n

3n =
(
2
3

)n

Table 21.1 The number of line segments, their length, and the total length, as the
Cantor set is constructed.

segments. The length of the line segments goes to zero while the number
of the segments goes to infinity. What is “∞× 0”? In this case, it turns
out that the answer is zero. The total length is given by ( 2

3
)n. As n gets

large, the total length gets smaller and smaller. We thus conclude that
the length of the Cantor set—which is the collection of points left in the
n→∞ limit in the construction illustrated in Fig. 21.1—is zero.
How many points are in the Cantor set? Thus far we have answered

this question by simply saying that the number of points in the set
is infinite. But there are also an infinite number of points in the line
segment that we started out with. And in the process of forming the
Cantor set we have removed a great many points. So even though there
are an infinite number of points in the Cantor set, it seems that there
might be a “smaller infinity” than there is in the initial line segment. But
does this even make sense? Can we meaningfully talk about infinities
of different sizes? It turns out that we can. In the following several
sections we will explore this notion. We will then return to the Cantor
set, and will be in for some surprises.

21.2 Cardinality, Counting, and the Size

of Sets

Before we consider infinities, we will start by thinking about finite sets.
A set is simply a collection of objects. The objects in a set are sometimes
called elements. One way to specify a set is to simply list its elements.
For example, the set W of days of the week is:

W = {Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday} . (21.1)

It is conventional, as I have done above, to use a calligraphic letter to
denote a set. There is no order to a set. That is, it does not matter in
what order I list the elements. Thus, I could have written:

W = {Wednesday, Sunday, Saturday, Monday, Friday,

Thursday, Tuesday} . (21.2)
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Each element in a set appears only once. When working with sets we
are just interested in a collection of things; we do not care about the
frequency of occurrence of the things in the set.

What is the size of the set W? Clearly, the answer is seven. But let
us pause for a second and think about what this means. How do we
know there are seven elements in W? Well, we just count the elements.
But what does it meant to count? This seems like a silly question,
but thinking carefully about counting will be the key to understanding
different types of infinity.

Let us take the counting numbers—1, 2, 3, and so on—as given. We
will not try to derive these numbers; we will just accept that they exist.
Our aim here is to establish that the set W has seven elements. To do
this, let us consider the set S, which we will define to consist of the first
seven counting numbers:

S = {1, 2, 3, 4, 5, 6, 7} . (21.3)

There are clearly seven elements in this set. (Remember, we are taking
the counting numbers as a given.)

Here comes the key step. When we say that the set W has seven
elements, what we really mean is that for every element in W there is
one and only one element in S. We can illustrate this one-to-one relation
as follows:

Sunday ←→ 1 (21.4)

Monday ←→ 2 (21.5)

Tuesday ←→ 3 (21.6)

Wednesday ←→ 4 (21.7)

Thursday ←→ 5 (21.8)

Friday ←→ 6 (21.9)

Saturday ←→ 7 (21.10)

This establishes that the two sets W and S have the same number of
elements.

In set theory the size of a set is referred to as the set’s cardinality.
Two sets have the same cardinality if there is a one-to-one relationship
between elements in the sets. In other words, to establish that two sets
have the same size, or cardinality, we need to find a rule that assigns one
element of one set to exactly one element of the other set. Equations
(21.4)–(21.10) are an example of such a one-to-one relationship.

To summarize, the main idea is that we measure a set’s size, or car-
dinality, by comparing it with another set. Two sets have the same
cardinality if there is a one-to-one relationship between members of the
sets. A set consisting of the first n counting numbers has cardinality n.
This gives us a starting point. We then compare other sets to sets of
counting numbers to determine their cardinality. I imagine that at this
point the definition of cardinality seems pedantic and perhaps unnec-
essary. However, we shall see that this definition is quite useful when
considering infinite sets.
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21.3 Countable Infinities

For our first infinite set, let us consider the set of all counting numbers.
We will call this set N :

N = {1, 2, 3, 4, 5, . . .} . (21.11)

This set is infinite; the counting numbers just keep on going and going
and going. We will take the existence of this set as a given. We will not
muse on exactly what the existence of this set means philosophically,
but will accept that it exists. We shall refer to the cardinality of this
set as countably infinite. Equivalently, one sometimes just calls such
a set countable.
To show that a set is countable, all one needs to do is to come up

with a way to count it. In other words, one needs to show that there is
a one-to-one relation between elements in N and the set one is trying
to count. As an example consider E , the set of even numbers:

E = {2, 4, 6, 8, . . .} . (21.12)

What is the cardinality of this set? Somewhat surprisingly, its cardinal-
ity is the same as that of N . To establish this we need to find a rule
that associates every element of N with one and only one element of E .
Such a rule is easy to find:

1 ←→ 2 (21.13)

2 ←→ 4 (21.14)

3 ←→ 6 (21.15)

4 ←→ 8 (21.16)

and so on. Since we have found a one-to-one relationship between ele-
ments of N and E , the two sets are the same size; they have the same
cardinality.
This seems counter-intuitive, as there are clearly elements of S that

are not in E . The numbers 3, 5, 7, and so on, are in the set of counting
numbers yet are not in the set of even numbers. Given that the set
of counting numbers contains objects that are not in the set of even
numbers, how can it possibly be that the two sets are the same size?
At the root of these questions is the counter-intuitive nature of in-

finities. The cardinality of infinite sets is not like ordinary addition or
subtraction. When we have a set with an infinite number of elements,
we can remove a lot of those elements and still have an infinite number
left. In fact, in the case we just considered we removed half of the ele-
ments of the set N—i.e., we removed all odd numbers—and we ended
up with the set E which has the same cardinality as N . In effect, we
have that∞− 1

2∞ =∞. Strictly speaking, however, this is not a legiti-
mate mathematical statement, since ∞ is not a number in the way that
4 or 100, 000 is. We cannot do arithmetic with ∞. We can, however,
compare the cardinality of sets, as we have done above.
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21.4 Rational and Irrational Numbers

As our next example of an infinite set, consider the set of all numbers
between 0 and 1. By all numbers I mean exactly that—all real numbers.
This set is known as the unit interval. I will denote this set by L:

L = [0, 1] . (21.17)

In other words, L consists of all the points in a line segment of length
one. This includes both rational and irrational numbers. Rational

numbers are those that can be expressed as a fraction, or ratio, of two
counting numbers. For example, 1

3 ,
5
8 , and

44
43 are all rational numbers.

Rational numbers can be expressed as decimals that either repeat or
terminate. For example,

1

3
= 0.333333 . . . = 0.3̄ , (21.18)

5

8
= 0.625 , (21.19)

44

43
= 0.977272727 . . . = 0.97727 . (21.20)

The bar above a number or numbers indicates that those numbers repeat
indefinitely.

On the other hand, irrational numbers are those numbers that
cannot be expressed as a fraction or a ratio of two counting numbers.
Irrational numbers have decimal expansions that go on forever; they
never repeat. For example the square root of 2 is an irrational number:

√
2 ≈ 1.414213562 . . . . (21.21)

I have used “≈” instead of “=”, because the decimal version of
√
2 goes

on forever; it neither terminates nor repeats. Thus, 1.414213562 is just
an approximation of

√
2.

There are clearly a lot of numbers between 0 and 1. But how many?
What is the cardinality of L? Is it countable, like the set of counting
numbers N ? Or is it a different type of infinity? In order to answer
this question we need to think about different bases in which we can
represent numbers.

21.5 Binary

Let us start by thinking about base-10, the base system with which
we are most familiar. As a concrete example, consider the number 457.
What does this mean? It does not mean 4+5+7. Rather, different digits
have a different meanings. The “4” indicates 400, the “5” indicates 50,
and the “7” simply indicates 7. This is written as:

457 = (4× 100) + (5× 10) + (7× 1) . (21.22)

Another way of saying this is that the “4” is in the hundreds’ place, the
“5” is in the tens’ place, and “7” is in the ones’ place.
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The number expressed in Eq. (21.22) is represented in base-10. To
see why this is called base-10, we rewrite Eq. (21.22) as follows:

457 = (4× 102) + (5 × 101) + (7× 10) . (21.23)

This makes it clear that the number 10 is used as the base for the
exponents that give meaning to the different digits in the number 457.
The number 10 is a particularly convenient number to use as a base.

However, it is not the only choice. An alternative is the number 2. We
can re-express the number 457 using base-2 as follows. It turns out that

457 = (1× 28) + (1× 27) + (1× 26) + (0 × 25) + (0× 24)

+ (1× 23) + (0× 22) + (0 × 21) + (1× 20) . (21.24)

You might wish to pause for a moment, grab a calculator or a pencil and
some scrap paper, and convince yourself that the above equation really
is true. To perform this verification is not difficult; all it takes is raising
2 to various powers and then doing some arithmetic.
The 0’s and 1’s in Eq. (21.24) constitute the base-2, or binary, rep-

resentation of 457. That is:

457 = 111001001 , (21.25)

where the left-hand side of the equation is understood to be in base-10,
and the right-hand side in base-2.1 The number 111001001 is shorthand1Another way to write this is 45710 =

1110010012 . for the right-hand side of Eq. (21.24):

111001001 = (1× 28) + (1× 27) + (1× 26)

+(0× 25) + (0× 24) + (1× 23)

+(0× 22) + (0× 21) + (1 × 20) . (21.26)

In binary, the first digit is the ones’ place (since 20 = 1), the second
digit the twos’ place (since 21 = 2), the third digit is the fours’ place
(since 22 = 4), the fourth digit is the eights’ place (since 23 = 8), and
so on.
I figured out Eq. (21.24) via trial and error, experimenting until I

found the right mix of 0’s and 1’s to make the equation true. There is a
more systematic method for converting from base-10 to base-2, but this
is not needed for what follows. The main point is that any integer can
be expressed in base-10 or base-2, or any other base, for that matter.
Moreover, this representation is unique. For any integer there is only
one way to represent it in base-10, and there is also only one way to
represent it in base-2.
Recall that the reason we are considering binary is that we want to

understand the set L = [0, 1]. Before we return to our investigation of
the cardinality of L, we need to figure out how to represent numbers
between 0 and 1 in base-2. We start by thinking about decimals in
familiar base-10. What does the number 0.593 mean? In this case the
“5” is in the tenths’ place, the “9” is in hundredths’ place, and the “3”
is in the thousandths’ place. In other words,

0.593 = (5× 1

10
) + (9× 1

100
) + (3× 1

1000
) . (21.27)
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Using exponents, we can write this as:

0.593 = (5× 1−1) + (9 × 10−2) + (3 × 10−3) . (21.28)

If the negative exponents look strange, recall that 10−a = 1
10a . For a

discussion of why negative exponents have this property, see Appendix
A.1.

What about binary? The idea is the same as decimals, except that we
use 2 as the base of our exponent instead of 10. For example, consider
the binary number 0.1101. This means:

0.1101 = (1× 2−1) + (1× 2−2) + (0 × 2−3) + (1× 2−4) . (21.29)

The first “1” is in the halves’ place (since 2−1 = 1
2 ), the second “1” is

in the quarters’ place (since 2−2 = 1
4
), and so on. If one evaluates the

right-hand side of Eq. (21.29), one finds that

0.1101 = 0.8125 , (21.30)

where the left-hand side is understood to be in binary and the right-hand
side in base-10. You might wish to take a moment and grab a calculator
and confirm Eq. (21.29) for yourself.

Given a binary representation of a number between 0 and 1, one can
convert to a base-10 representation, as we did in Eq. (21.30). One can
also go the other way—from decimal to binary—although I will not go
into the details here. The main point is that there is a well-defined
rule that one can use to go back and forth between base-10 and binary
numbers between 0 and 1.

21.6 The Cardinality of the Unit Interval

We are now in a position to return to the question of the size of the
unit interval L = [0, 1]. As noted previously, there are very, very many
numbers between 0 and 1; the numbers are both rational and irrational.
Some of the decimals repeat or terminate, but many do not.

It will be somewhat easier to picture L using binary. Converting the
numbers in the set L from base-10 to base-2 will not change the size of
the set, since every base-10 number has a unique binary representation,
and vice-versa.2 Similarly, if I took all of the students in a class of mine

2Actually, this is not quite true. There
are some subtleties associated with the
representation of numbers between 0
and 1. The decimal expansion in base-
10 is not unique. For example, 0.4 and
0.39̄ represent the same number. The
bar over the 9 indicates that the 9’s re-
peat forever. With an infinite number
of 9’s after the 0.3, the number 0.39̄
becomes identical to 0.4. In order to
have a unique representation for each
number between 0 and 1, we need to
agree that when there is ambiguity—
when there are two possible decimals
for the same number—we will choose
the decimal that does not have an infi-
nite number of 9’s at the end. Similar
ambiguities arise in the binary repre-
sentation of numbers between 0 and 1.
So the representation of numbers be-
tween 0 and 1 is not unique in either
base-10 or base-2. However, this non-
uniqueness can be accounted for in such
a way that it does not affect my asser-
tion that there is a one-to-one relation-
ship between base-10 and base-2 num-
bers between 0 and 1.

and replaced all vowels in their names with the letter “q”, this would
not change the number of students in my class.

Expressed in binary, then, the set of all the numbers between 0 and
1 is exactly the set of all possible infinite sequences of 0’s and 1’s. In
this representation, those decimals that terminate just have an infinite
number of 0’s stuck on the end. For example, consider 0.75. The binary
representation of this number is 0.11, since

0.75 = (1× 2−1) + (1× 2−2) . (21.31)

To picture this as an infinite sequence of 0’s and 1’s we just write 0.75 =
0.110000000 . . .. So now the question is: What is the cardinality of the
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set of all possible infinite sequences of 0’s and 1’s? Is this set countable?
To show that it is countable, all one has to do is come up with a scheme
for counting, or listing, all elements of the set.
Let us imagine that someone claims to have such a list: a very long list

of all possible numbers between 0 and 1. Such a list would, of course, be
infinite. But is such a list possible? To investigate this question, let us
imagine what this list might look like. Let x1 denote the first number in
the list, x2 the second number, and so on. The list might look something
like this:

x1 = 0. 1 1 1 0 0 1 1 1 . . .

x2 = 0. 1 0 1 0 0 1 0 0 . . .

x3 = 0. 0 1 1 1 1 1 1 1 . . .

x4 = 0. 0 1 1 0 0 1 1 1 . . .

x5 = 0. 1 1 1 0 0 1 0 1 . . .

x6 = 0. 0 1 0 1 0 1 1 0 . . .

x7 = 0. 1 1 1 0 0 0 1 1 . . .

x8 = 0. 1 0 0 0 1 1 0 1 . . .
...

...
...
...
...
...
...
...

. . . (21.32)

Each number continues forever as an infinite sequence of 0’s and 1’s.
And there are an infinite number of such numbers in the list. Whoever
gave you this list claims that it is exhaustive—it contains all numbers
between 0 and 1. We do not care about the order of the numbers; all
we are interested in is the assertion that the list is complete.
How can you verify this claim? It certainly is not practical to check

the entire list. And besides, what would you check it against—a list of
all the numbers? If you had such a list, you would not be interested in
the list shown in Eq. (21.32) in the first place.
It turns out that there is a clever way to show that such a listing

of the numbers between 0 and 1 cannot possibly be complete. The first
step is to consider the diagonal elements in the list of Eq. (21.32). These
diagonal elements are shown in bold below:

x1 = 0.1 1 1 0 0 1 1 1 . . .

x2 = 0. 1 0 1 0 0 1 0 0 . . .

x3 = 0. 0 1 1 1 1 1 1 1 . . .

x4 = 0. 0 1 1 0 0 1 1 1 . . .

x5 = 0. 1 1 1 0 0 1 0 1 . . .

x6 = 0. 0 1 0 1 0 1 1 0 . . .

x7 = 0. 1 1 1 0 0 0 1 1 . . .

x8 = 0. 1 0 0 0 1 1 0 1 . . .
...

...
...
...
...
...
...
...

. . . (21.33)

We now form a number y by reading off the diagonal (bold in the above
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equation), and then choosing the opposite of each digit. Thus,

y = 0. 0 1 0 1 1 0 0 0 . . . . (21.34)

For example, the first digit along the bold diagonal of Eq. (21.33) is 1.
Thus, the first digit of y is 0.
Is y a member of the list of numbers, Eq. (21.33)? Remember that the

list is infinite, so this is not a trivial question. However, I claim that it
is impossible for y to be in the list. Does y equal x1? It cannot, because
y and x1 disagree in the first digit. Does y = x2? Nope, because y and
x2 disagree in the second digit. In general, y and xn can never be the
same, no matter what n is. The reason for this is that we have explicitly
constructed y to disagree in at least one digit with every xn in our list.

Thus, there is no way that the list can be complete! Given any list we
can always construct a number y that is not in the list. The inescapable
conclusion is that such a list cannot exist: it is impossible to list—and
hence to count—the numbers between 0 and 1. Thus, the set L = [0, 1] is
referred to as uncountable.3 Uncountable infinities are a fundamentally 3The argument just used to show that

the unit interval is uncountable is an
example of a diagonalization argument.
Such an argument was first published
by Georg Cantor in 1891.

different sort of infinity than countable infinities. The cardinality of the
set N of counting numbers is sometimes denoted ℵ0. This symbol is
read “aleph naught”. Aleph is the first letter of the Hebrew alphabet.
The cardinality of the unit interval L = [0, 1] is sometimes denoted ℵ1.
To summarize, we have thus established that there are two different

types of infinity: ℵ0 or a countable infinity, which is the infinity associ-
ated with the integers; and ℵ1 or an uncountable infinity, which is the
infinity associated with the unit interval [0, 1].4 More generally, any in-

4The story does not stop here; there
are even higher orders of infinity, de-
noted ℵ2, ℵ3, and so on. These in-
finities are associated with increasingly
abstract and difficult-to-picture mathe-
matical objects.

terval of real numbers, or, for that matter, the entire real number line,
has an uncountable infinity of points. The cardinality ℵ1 is thus also
sometimes referred to as the cardinality of the continuum.

21.7 The Cardinality of the Cantor Set

In Section 21.1, the first section of this chapter, we saw that the length of
the Cantor set was zero. But, viewed as a set, what is its size? In other
words, what is its cardinality? Is it uncountable, like the unit interval
L? In constructing the Cantor set we started with L but then took away
very many points—infinitely many, in fact. Did we take away so many
points that its cardinality is no longer ℵ1? To answer this question, we
need to think geometrically about numbers between 0 and 1.

Let us start by thinking about familiar base-10 decimals and the num-
ber line. Two views of the number line are shown in Fig. 21.2. Numbers
between 0 and 1 are represented in base-10 decimals. Each base-10 digit
has the effect of dividing the number line into tenths, as illustrated in
the figure. As one keeps zooming in on the number line, one would see
this pattern repeating—each digit farther to the right of the decimal
point partitions the line into finer and finer intervals. And each new
interval is always one tenth of the size of the previous one.

A number such as 0.384 as specifies a location on the unit interval.
Each digit determines the position of the point ten times more precisely
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Fig. 21.2 The unit interval [0, 1] and a
magnification of the unit interval from
0.3 to 0.5. Note that each base-10 digit
divides the segment into tenths.

0.1 0.4 0.5 0.6 0.9 1.00.2 0.3 0.7 0.80.0

0.4
0.480.470.460.450.43 0.440.420.41

0.5
0.390.380.370.350.340.33

0.3
0.31 0.32 0.36 0.49

than the previous digits. The first digit tells us that the point is between
0.3 and 0.4, limiting the possible position of the point to one tenth of the
unit interval. When the next digit is specified—in this case an 8—we
now know that the point is between 0.38 and 0.39. Subsequent digits
continue to specify the point’s position more precisely. We can think
of decimals as a type of address where each digit gives more detailed
information. It is as if the first digit specifies the country, the next
digit the state or province, the next digit the city, the next digit the
neighborhood, and so on.
Next, we need to consider base-3 numbers.5 This probably seems like5Base-3 is also known as ternary, just

as base-2 is known as binary. a perverse thing to do, but it is necessary for our goal of figuring out the
cardinality of the Cantor set. Just as base-10 numbers divide the unit
interval into tenths, base-3 numbers divide the unit interval in thirds.
This is illustrated in Fig. 21.3. For example, the first digit after the
decimal point divides the unit interval into thirds. All base-3 numbers
that start with 0.1 lie in the first third of the unit interval, all those that
start with 0.1 lie in the second third, and all those that start with 0.2 lie
in the third and final third. Take a moment to compare Figs. 21.2 and
21.3, and try to convince yourself that the two figures are essentially the
same; we have chosen different conventions (or bases) for our digits, but
the digits function in the same way.

Fig. 21.3 The unit interval, with sub-
divisions in base-3, or ternary.

0.0 1.00.20.1 0.120.01 0.02 0.11 0.21 0.22

Let us now return to the Cantor set’s construction, shown in Fig. 21.1.
The first step in the construction of the Cantor set is to remove the
middle third of the line segment. Looking at Fig. 21.3, we see that the
middle third consists exactly of those points whose first ternary digit
is 1. That is, the points 0.1001022020, 0.11, 0.102, and infinitely many
others are all removed. What is remaining are the left and right thirds
of the unit interval. The left third is made up of all those numbers whose
first base-3 digit is zero. E.g., 0.012, 0.0220, 0.01212, and infinitely many
other numbers. And the right third similarly consists of those numbers
whose first base-3 digit is 2.
In the second step of the construction, we remove the middle thirds

of the two remaining line segments. Looking again at Fig. 21.3, we see
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that the deleted segments correspond to those numbers whose second
digit contains a 1. For example, when removing the middle third of
the right line segment, we remove the numbers 0.211, 0.2102, 0.2102222,
and infinitely many others. We remove all those numbers that start with
0.21.

The next step in the construction of the Cantor set entails removing
all those numbers from the unit interval whose third base-3 digit is 1.
And in general, the nth step of the process removes the numbers whose
nth digit is 1.
We can now give an alternative, but equivalent, description of the

construction of the Cantor set. We start with all the numbers between
zero and one. Express these numbers in base-3. This set consists of all
possible infinite sequences of 0’s, 1’s, and 2’s. In the first step in the
construction of the set we remove all those numbers that have a 1 in the
first digit. In the second step in the construction we remove all numbers
that have a 1 in the second digit. And so on. This numerical process is
equivalent to the geometric construction illustrated in Fig. 21.1.

The net result is that the Cantor set consists of all numbers between 0
and 1 whose representation in base-3 contains no 1’s. Thus, the Cantor
set consists of all infinite sequences of 0’s and 2’s. Recall that our goal
in this section is to determine the cardinality, or size, of the Cantor set.
There is one more step we need to perform before we can answer this
question. Let us take the numbers in the Cantor set and erase every
2 and replace it by a 1. The result is a new set—one with the same
cardinality as the previous set. This new set with 0’s and 1’s has the
same number of elements as the Cantor set with 0’s and 2’s. Thus, the
cardinality of the Cantor set is the same as the cardinality of this new
set: the set of all infinite sequences consisting of 0’s and 1’s.

But wait a minute! We decided in Section 21.6 that the set of all
infinite sequences of 0’s and 1’s was the same size as the set of all the
numbers on the unit interval. We have thus arrived at the answer to the
question posed at the beginning of this chapter: the cardinality of the
Cantor set is the same as the cardinality of the unit interval itself. The
unit interval is uncountably infinite. Thus the Cantor set is uncountable,
as well.

This is an intriguing and perhaps perplexing result. We argued in the
first section that the length of the Cantor set is zero. And hence the
total lengths of the line segments that we removed when forming the
Cantor set is one—equal to the length of the unit interval itself. But we
have found that the Cantor set, despite having length zero, not only has
the an infinite size, but it has the cardinality of the unit interval. The
Cantor set is uncountable.

To recapitulate, we started with an infinite set, the unit interval [0, 1].
We subtracted from this set an infinite number of points, leaving us
with a set—the Cantor set—that has length zero. Nevertheless, the
cardinality of Cantor set is the same as the cardinality of the unit interval
from which the Cantor set was derived.
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21.8 Summary and a Look Ahead

In this part of the book I have introduced fractals: self-similar geomet-
ric or physical objects. A fractal’s self-similarity can be exact or only
approximate. We quantify this self-similarity via the self-similarity or
box-counting dimension. Fractals consist of many copies of a shape or
pattern, repeated at many different scales. As such, for many fractals
it is not meaningful to speak of their average properties; in some cases,
as was the case in the St. Petersburg game in Chapter 19, an average
may not even exist. Finally, in this chapter we saw that fractals are
not only useful objects for describing and understanding physical and
natural phenomena. They are also useful constructions for probing our
understanding of infinity. In the next part of the book we will consider
Julia sets and the Mandelbrot set. We shall see that these are frac-
tals of amazing complexity and beauty. Nevertheless, Julia sets and the
Mandelbrot set are generated by very simple dynamical systems.

Further Reading

There is much more to be said about infinities in mathematics and else-
where. Here are a few references I particularly recommend. Chapter 2
of Gary William Flake’s The Computational Beauty of Nature (1999) is
a clear and compelling discussion of number systems and infinities at
roughly the level of this text. Mathematics: A Very Short Introduction,
by Timothy Gowers (2002), contains an general discussion of the role of
infinity in mathematics. Gowers does an impressive job of introducing
non-mathematician readers to the abstract style of thought that is the
essence of mathematics. John D. Barrow’s, Pi in the Sky: Counting,
Thinking, and Being (1992) is also a good introduction to number sys-
tems and mathematical thought. Chapter 2.1 of Peiten, Jürgens, and
Saupe (1992) is a clear and thorough explication of the Cantor set.

Exercises

(21.1) Consider the set of all perfect squares:
{1, 4, 9, 16, 25, . . .}. What is the cardinality of
this set?

(21.2) What is the cardinality of the following infinite
set: { 1

2
, 1
3
, 1
4
, . . .}?

(21.3) What is the cardinality of the following infinite
set: {613, 614, 615, 616, 617, . . .}?

(21.4) What is the cardinality of the following infinite
set: {31, 32, 33, 34, 35, . . .}?

(21.5) What is the cardinality of all numbers contained
in the interval between 0 and 1

2
?

(21.6) What is the cardinality of all numbers contained
in the interval between 0 and 1√

2
?

(21.7) In Eq. (21.24) I claimed that

457 = (1× 28) + (1× 27) + (1× 26)

+ (0× 25) + (0× 24) + (1× 23)

+ (0× 22) + (0× 21) + (1× 20) .

Verify that this is the case. To do so, carry out the
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arithmetic on the right-hand side of the equations
and show that this yields 457.

(21.8) Convert the following numbers from base-10 to
binary:

(a) 8

(b) 9

(c) 48

(d) 100

(21.9) Convert the following numbers from binary to
base-10:

(a) 100

(b) 111

(c) 1001

(d) 10101

(21.10) Convert the following numbers from binary to
base-10:

(a) 0.1

(b) 0.01

(c) 0.001

(d) 0.101

(21.11) Convert the following numbers from ternary
(base-3) to base-10:

(a) 2

(b) 120

(c) 0.21

(d) 0.212

(21.12) Convert the following numbers from base-7 to
base-10:

(a) 0

(b) 1

(c) 24

(d) 613

(21.13) Convert the following numbers from base-7 to
base-10:

(a) 0.4

(b) 0.04

(c) 0.22
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In this part of the book we will encounter Julia sets and the Mandelbrot
set—fractals of remarkable beauty and complexity. You are probably
familiar with them; these are the psychedelic fractal images that have
found their way onto posters, calendars, web pages, book covers, and
so on. If you have not seen these images before, skip ahead and check
out the Julia sets in Fig. 24.8. Chapter 25 is also festooned with images
of the Mandelbrot set. You could also search the web and easily find
a menagerie of colorful pictures of Julia sets and the Mandelbrot set.
We shall see that these images arise quite naturally from simple iterated
functions. Moreover, we will see some intriguing relationships between
the geometry of the images and the dynamical systems that give rise to
them.

In this brief chapter I introduce Julia sets via a few examples. In
the subsequent chapter we will take a detour and cover complex num-
bers. We will then use complex numbers in Chapter 24 to generate a
remarkable diversity of Julia sets. Attempting to classify this geometric
diversity will lead us to the Mandelbrot set, which has been called the
most beautiful object in all of mathematics.

22.1 The Squaring Function

We start with a familiar example, the squaring function, f(x) = x2. As
we have seen previously, any number larger than one or smaller than
negative one will tend toward infinity. For example, the orbit of x0 = 2
is:

2 −→ 4 −→ 16 −→ 256 −→ · · · . (22.1)

And the orbit of x0 = −3 is:

−3 −→ 9 −→ 81 −→ 6561 −→ · · · . (22.2)

Any initial condition that is negative will become positive after one
iteration, and will then remain positive for all future iterations.

So all initial conditions larger than 1 or smaller than −1 go to infinity.
Conversely, initial conditions that are equal to or greater than −1, but
not larger than 1, do not fly off to infinity. Another way to write this
is that all initial conditions x0 such that −1 ≤ x0 ≤ 1 do not go to
infinity. We can also write this interval as [−1, 1]. The square brackets
mean that the interval contains its endpoints. For example, if we have
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an interval I = [a, b], then a and b are taken to be part of the interval
I. However, if I = (a, b), then a and b are not part of I.

In any event, for the squaring function if the initial condition x0 is in
the set S = [−1, 1], then it does not fly off to infinity when iterated. This
set has a special name: the filled Julia set. The filled Julia set for a
function f is the set of initial conditions which, when iterated with f , do
not go to infinity. The initial conditions might get pulled to a fixed point
or bounce around periodically or even chaotically; it does not matter.
As long as the initial condition does not tend toward infinity, it is part
of the filled Julia set.

Fig. 22.1 The filled Julia Set for the

function f(x) = x2. The Julia set is
the line segment [−1, 1]. 1−1

The filled Julia set for the squaring function f(x) = x2 is shown in
Fig. 22.1. In this case, the filled Julia set is a simple geometrical object:
a line segment. The Julia set, as opposed to the filled Julia set, is the
boundary of the filled Julia set. In other words, the Julia set consists
of the two points +1 and −1. In general, the Julia set is the boundary
between two regions: initial conditions that fly off to infinity and those
that do not. In this chapter and beyond we will be interested in filled
Julia sets; all the points that do not go to infinity when iterated. Since
“filled Julia set” is a somewhat cumbersome phrase, I will call them
simply “Julia sets”.1

1Julia sets are named for the French
mathematician Gaston Maurice Julia.
Julia introduced the idea behind the
sets that now bear his name in an influ-
ential paper published in 1918. Pierre
Fatou, another French mathematician,
did similar work around the same time.

22.2 Other Examples

Before concluding this short chapter, let us do three examples. First,
consider the function g(x) = 1

2x − 2. This linear function has a fixed
point at x = −4. And since the slope of this function is less than 1
and greater than −1, we know that the fixed point is attracting. All
initial conditions are eventually pulled toward the fixed point, and thus
no initial conditions tend toward infinity. Thus, the Julia set for this
function is the entire number line; there are no initial conditions that
tend toward infinity.
Our second example is the logistic equation with r = 3.2. We know

from Section 9.1 that this function has an attracting cycle of period 2.
All initial conditions between 0 and 1 are pulled to this cycle, so all of
these points are in the Julia set. An initial condition of 0 will remain
fixed at 0, so this point is also in the Julia set. If an initial condition is
greater than 1 or less than 0 it will quickly tend toward negative infinity.22To convince yourself of this, go back

and do Exercise 9.7. Thus, the Julia set for the logistic equation with r = 3.2 consists of the
interval [0, 1].
The third example is the function f(x) = (2x)2. This function is

plotted in Fig. 22.2 along with the y = x line. We can see that there
are two fixed points: one at x = 0 and another between 0.2 and 0.3.
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Let us use algebra to find the exact value of the latter fixed point. The
fixed-point equation is

f(x) = x . (22.3)

Using f(x) = (2x)2, we have:

(2x)2 = x . (22.4)

But (2x)2 = 4x2, so this becomes

4x2 = x . (22.5)

To solve for x we divide both sides of the equation by x to obtain:

4x = 1 . (22.6)

So, the fixed point is at x = 1
4
.
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f(
x)

x
Fig. 22.2 The function f(x) = (2x)2

and the y = x line.

The fixed point at x = 0.25 is repelling. To see this, you can graph-
ically iterate initial conditions on either side of x = 0.25. Or, one can
note that the slope of the function at x = 0.25 is larger than 1. Since
x = 0.25 is repelling, any initial condition larger than 0.25 will be pushed
away and will tend toward infinity. The same conclusion holds for an ini-
tial condition that is smaller than x = −0.25. Such an initial condition
will, after one iteration, be larger than 0.25. To see this, try graphically
iterating an initial condition less than −0.25 on Fig. 22.2.
Thus, any initial condition that is equal to or greater than −0.25 but

not larger than 0.25 does not tend toward infinity under iteration, and
thus is in the filled Julia set. Hence, the Julia set for this function is the
interval [−0.25, 0.25].

22.3 Summary

I hope to have convinced you that the idea of a Julia set for a function
is fairly straightforward: it is simply the collection of points that remain
bounded—i.e., do not tend toward infinity—when iterated by that func-
tion. Determining the entire Julia set for a function may be a difficult
task. However, it is not difficult to to test whether or not a particular
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point is in a Julia set: just iterate it and see if tends toward infinity. If
it does, then it is not in the Julia set. In Chapter 24 we will see Julia
sets that are complicated and interesting shapes. We will not be able
to easily deduce the shape of these sets; instead we will build them one
point at a time, checking each point to see whether or not it is in the
set.

Exercises

(22.1) Consider the function f(x) = (x− 1)2. Calculate
by hand or with a calculator the first few iterates
of the following initial conditions and determine
whether or not they are in the Julia set:

(a) 0

(b) 0.5

(c) 2

(d) 3

(22.2) Consider the function f(x) = x2 − 1. Calculate
by hand or with a calculator the first few iterates
of the following initial conditions and determine
whether or not they are in the Julia set:

(a) −2
(b) 0

(c) 0.5

(d) 2

(22.3) Consider the logistic equation with r = 4.0:
f(x) = 4x(1 − x). For this parameter value we
know that orbits are chaotic. What is the Julia
set for this function?

(22.4) In Section 22.2 I stated that the Julia set for the
function f(x) = 3.2x(1−x) was [0, 1]. Verify that
the endpoint of the interval, x = 1, is in the Julia
set.

(22.5) Consider the function f(x) = 5x(1−x). Calculate
by hand or with a calculator the first few iterates

of the following initial conditions and determine
whether or not they are in the Julia set:

(a) 0.8

(b) 0.5

(c) 0.2

(d) 0.1

(22.6) Determine the Julia set for the function f(x) =√
x.

(22.7) Determine the Julia set for the function f(x) =
x3.

(22.8) Determine the Julia set for the function f(x) =
2x2.

(22.9) Determine the Julia set for the function f(x) =
(3x)2.

(22.10) Determine the Julia set for the function f(x) =
(x+ 1)2.

(22.11) Determine the Julia set for the function f(x) =
2x− 3.

(22.12) Determine the Julia set for the function f(x) =
− 1

2
x− 3.

(22.13) What are the possible shapes for the Julia sets of
linear functions f(x) = mx+ b? Is there a linear
function that has a Julia set that is a line segment,
such as [3, 5]? Why or why not? Is there a linear
function whose Julia set is empty?
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The fractal Julia sets of the next chapter and the Mandelbrot set of
Chapter 25 arise from iterating functions using complex numbers instead
of real numbers. Thus, in this chapter I introduce complex numbers,
known also as imaginary numbers. If you have encountered complex
numbers before and feel reasonably comfortable with them, you might
want to skip ahead to the next chapter.

23.1 The Square Root of −1
What is the square root of −1? Is there any x such that

x2 = −1 ? (23.1)

The answer to this question cannot be x = 1, since 12 = 1. And the
answer also is not −1, since (−1)2 = (−1)(−1) = 1. So we are stuck.
The way to get out of this bind is to simply define a new number. We
call this new number i, and it is defined by the fact that i squared is
negative one:

i2 = −1 . (23.2)

Equivalently, this says that i is the square root of −1:
i =

√−1 . (23.3)

The number i is often referred to as an imaginary number. However,
the term complex number is more commonly used, at least in math-
ematics circles, for numbers of this sort. In contrast, real numbers are
those numbers that are not complex. Thus far we have been working ex-
clusively with real numbers. The number line, stretching from negative
infinity to positive infinity, contains all the real numbers.

I think that the word “imaginary” carries some metaphysical or philo-
sophical baggage that is not helpful. All numbers—complex and real—
are imaginary. They are constructs and idealizations of ideas in people’s
heads. Numbers are not tangible things in the physical world like a tree
or a rock or a table. In the world there might be seven rocks or seven
trees or seven tables. But this is different from the pure number 7. You
can find seven things, but this is not the same as finding 7. So I would
say that, in some sense, the number 7 is “imaginary”, in much the same
way that the number i is imaginary.
But you might be wondering if there are any physical manifestations of

i. We could find seven rabbits. Could we ever find i rabbits? The answer
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to this question is “no”, at least as far as the rabbits are concerned.
However, there are physical phenomena that are commonly described
by complex numbers. One example is alternating current (AC) circuits.
Determining the behavior of AC circuits with resistors, capacitors, and
inductors is much more convenient if one uses complex instead of real
numbers. And the theory of quantum mechanics also makes extensive
use of complex numbers.
In any event, I will typically use z to refer to a complex number.

This is standard, but not universal. Many authors use x or some other
letter. A generic complex number is a combination of real numbers and
imaginary numbers of the following form:

z = a+ bi , (23.4)

where a and b are real numbers. For example, we might have:

z = 3 + 4i . (23.5)

The numbers a and b in Eq. (23.4) are referred to as, respectively, the
real part and the imaginary part of z. The real part of z is sometimes
denoted �(z), and the imaginary part is denoted 
(z). I will not use
this notation in this book, but it is possible that you will encounter them
elsewhere. Note that the imaginary part of z is not imaginary. I.e., the
imaginary part of z = 3+ 4i is 4. We would not say that the imaginary
part is 4i.

23.2 The Algebra of Complex Numbers

We now consider performing basic mathematical operations with com-
plex numbers: addition, subtraction, and multiplication. The key is to
treat i as if it were a separate algebraic variable, like x, and make use
of the fact that i2 = −1.

Addition and Subtraction

To add two complex numbers, one adds their real and imaginary parts
separately. For example, let

z1 = a+ bi , (23.6)

and

z2 = c+ di . (23.7)

Then

z1 + z2 = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i . (23.8)

So the real part of z1 + z2 is just the sum of the real parts of z1 and
z2, and similarly, the imaginary part of z1 + z2 is just the sum of the
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imaginary parts. For example, let z1 = 4− 3i and z2 = 3 + 2i. Then

z1 + z2 = (4− 3i) + (3 + 2i) (23.9)

= (4 + 3) + (−3 + 2)i (23.10)

= 7− i (23.11)

Multiplication

To multiply two complex numbers, multiply the two numbers together
as you would binomials,1 and then simplify using the fact that i2 = −1. 1You might have learned this process as

FOILing. “FOIL” is a mnemonic de-
vice for accounting for the four terms
that arise when multiplying binomials:
Firsts, Outers, Inners, Lasts.

Suppose we want to multiply z1 and z2, given above in Eqs. (23.6) and
(23.7):

z1z2 = (a+ bi)(c+ di) (23.12)

= ac+ adi + bci+ bdi2 (23.13)

= ac+ (ad+ bc)i+ bdi2 (23.14)

= ac+ (ad+ bc)i− bd (23.15)

= (ac− bd) + (ad+ bc)i . (23.16)

Note that to get from Eq. (23.14) to Eq. (23.15) I have used the fact
that i2 = −1.
Let us consider a numerical example. Suppose we want to multiply

together the numbers z1 = 4 + 3i and z2 = 2− 3i:

z1z2 = = (4 + 3i)× (2− 3i) (23.17)

= 8 + 4(−3)i+ (3)(2)i+ (3)(−3)i2 (23.18)

= 8− 12i+ 6i− 92i2 (23.19)

= 8− 6i− 9(−1) (23.20)

= 17− 6i . (23.21)

23.3 The Geometry of Complex Numbers

The real number line is a useful way of representing and visualizing the
set of real numbers. We made use of this when drawing phase portraits in
previous chapters. There is a similar way of representing and visualizing
complex numbers: the complex plane. The complex plane is a natural
generalization of the real number line. We plot the real part of a complex
number on the horizontal axis and the imaginary part on the vertical
axis.

This is illustrated in Fig. 23.1. There are four numbers plotted in this
figure; each is shown with a different shape. The circle is 2+2i, the trian-
gle is 1

2 − 3
2 i, the square is −i, and the diamond is −2.5. Take a moment

to examine Fig. 23.1 to ensure that you see the connection between the
real and imaginary parts of a complex number and its representation on
the complex plane.
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-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Fig. 23.1 The complex plane. Four
numbers are plotted: 2 + 2i (circle);
1
2
− 3

2
i (triangle): −2.5 (diamond); and

−i (square).

There is another way of indicating the location of complex numbers
on a plane. Rather than specifying a number’s real and imaginary parts,
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a and b, we specify how far the point is from the origin, and the angle
between the horizontal axis and a line drawn from the origin to the
point z. This is illustrated in Fig. 23.2. In the figure the complex number
z = a+bi is plotted as a small circle. The distance from the origin to the
point is denoted r. The angle θ is the angle between the horizontal axis
and the line from the origin to the point. We can specify the complex
number by giving the real and imaginary parts, a and b, or by giving its r
and θ values. The a, b form is known asCartesian coordinates; the r, θ
form is known as polar coordinates. Both forms are equivalent; they
are simply different representations of the same number. Which form
we use will depend on the situation; in some cases Cartesian coordinates
are easiest, while in other cases polar coordinates are more convenient.

r

θ

a

b

z = a+bi

Fig. 23.2 Illustrating polar notation
for points z = a + bi on the complex
plane.

Given the Cartesian coordinates for a complex number, one can de-
termine the number’s polar coordinates. For example, suppose we know
a and b in Fig. 23.2 and we want to figure out r. Notice that a, b, and r
form a right triangle, with r the hypotenuse. Thus, by the Pythagorean
theorem:

r2 = a2 + b2 . (23.22)

Solving for r, we get:

r =
√

a2 + b2 . (23.23)

For example, consider the point shown as a circle on Fig. 23.1. This
point is 2 + 2i, so a and b are both 2. Thus, the r for this point is

r =
√

22 + 22 =
√
8 ≈ 2.83 . (23.24)

Geometrically, this means that the point indicated by the circle is ap-
proximately 2.83 units away from the origin. To determine θ given the
Cartesian coordinates a and b requires trigonometry. The formula is:

θ = tan−1(
b

a
) . (23.25)

It is also possible to convert in the other direction—to go from polar
coordinates (r,θ) to Cartesian coordinates (a,b). The formulas are:

a = r cos θ , (23.26)

b = r sin θ . (23.27)

We will not use these last three equations in this book, but I include
them here for the sake of completeness.2

2Equations (23.23) and (23.25)–(23.27)
can be thought of as a “bilingual dic-
tionary”. With them one can translate
a point from polar coordinates (r,θ)
to Cartesian coordinates (a,b), or vice-
versa.

23.4 The Geometry of Multiplication

Multiplication and addition of complex numbers and the representation
of complex numbers on the complex plane are sufficient background for
understanding how to generate Julia sets and the Mandelbrot set. The
next section aims to provide some additional geometric intuition to help
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you think about complex numbers. You can skip this section and go to
Chapter 24 if you want.

Polar coordinates are particularly helpful when multiplying two com-
plex numbers. We shall see that multiplication has a simple geometric
interpretation in polar coordinates. To do so, we consider two examples.
Our goal will be to use these examples to determine a rule that will let
us perform multiplication using polar coordinates instead of Cartesian.

First, let

z1 = 3 , and z2 = 2i . (23.28)

These two numbers are shown on the complex plane in Fig. 23.3. Note
that for z1, r = 3 and θ = 0, while for z2, r = 2 and θ = 90 degrees. Let
us multiply these two numbers together and call this new number z3:

z3 = z1z2 = 3× 2i = 6i . (23.29)

The number z3 is also shown in Fig. 23.3. In polar coordinates, z3 is
given by r = 6 and θ = 90. Note that the r for z3 is just the r for z1
times the r for z2. And the θ for z3 is the same as the θ for z2.

 0

 2

 4

 6

 0  2  4  6

z1

z2

z3

z1

z2

z3

Fig. 23.3 Illustrating multiplication;
z1 = 3, z2 = 2i, and z3 = z1z2 = 6i.
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-4 -2  0  2  4

w1

w2

w3

Fig. 23.4 Illustrating multiplication;
w1 = 2+2i, w2 = −1+i, and w3 = −4.

For our next example, consider the following two numbers

w1 = 2 + 2i , and w2 = −1 + i . (23.30)

(I am using w for complex numbers here to distinguish them from the
z’s of the previous example.) These numbers are shown in Fig. 23.4.
Note that for w1, r1 =

√
8 ≈ 2.83 and θ1 = 45 degrees. To determine r,

I used Eq. (23.23). And for w2, r2 =
√
2 ≈ 1.41 and θ2 = 135 degrees.

Let us multiply these two numbers together and see what happens:

w3 = w1w2 = (2 + 2i)(−1 + i)

= −2 + 2i− 2i+ 2i2 = −2− 2 = −4 . (23.31)

In polar coordinates, w3 has r3 = 4 and θ3 = 180.3 As was the case in 3Note that the radius r is, by definition,
always positive. It may be tempting to
say that the radius for w3 is −4, but
this would be incorrect.

the previous example, multiplication has the effect of multiplying the
two r’s:

r3 = r1r2 =
√
8
√
2 =

√
16 = 4 . (23.32)

And the θ’s get added:

θ3 = θ1 + θ2 = 45 + 135 = 180 . (23.33)

This is a general result. To multiply two complex numbers, multiply
their r’s and add their θ’s. This gives us a way to multiply complex
numbers that is often faster than using Cartesian coordinates. More im-
portant, it gives us a geometric insight into the effects of multiplication.

Finally, note that the above result for multiplying in polar coordinates
leads to a simple view of squaring complex numbers. Squaring just
means multiplying a number by itself:

z2 = zz . (23.34)
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Thus, to square a complex number, all one has to do is square the r
value and double the θ value. For example, suppose z = 1+ i, so r =

√
2

and θ = 45. Then, z2 has an r of (
√
2)2 = 2 and a θ of 90. A θ of 90

indicates that the point is located “straight up”. That is, the point is
on the vertical (imaginary) axis. So it must be that z2 = 2i.
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 0

 1

 2

-2 -1  0  1  2

z

z2

w

w2

Fig. 23.5 Illustrating squaring com-
plex numbers; z = 1 + i, z2 = 2i,
w = 1

2
+ 1

2
i, w = −0.5.

We can verify this result by using Cartesian coordinates:

z2 = (1 + i)2 (23.35)

= (1 + i)(1 + i) (23.36)

= 1 + i+ i+ i2 (23.37)

= 1 + 2i− 1 (23.38)

= 2i , (23.39)

which is the same as our result obtained via polar coordinates. Squaring
z is illustrated in Fig. 23.5, where I have plotted z and z2 on the complex
plane. Note that we can see that the r for z2 is equal to the square of
the r of z, and that the θ for z2 is twice that of z.

Also on Fig. 23.5 I have shown w = −1
2 + 1

2 i and w2. The θ for w is
135, while r is given by:

r =

√(
1

2

)2

+

(
1

2

)2

(23.40)

=

√
1

4
+

1

4
(23.41)

=

√
2

4
(23.42)

=
1√
2

(23.43)

≈ 0.707 . (23.44)

Thus, w2 has an r given by the square of this amount. Namely, r =
1√
2
2 = 1

2
. Note that the r of w2 is less than the r of w. The θ for w2 is

twice that of w: namely, θ = 270. So, w2 has an r of 1
2
and a θ of 270.

This is shown in Fig. 23.5.

Exercises

For Exercises 23.1–23.4 let z1 = 3, z2 = 2 − i, z3 = 4i,
and z4 = −2 + 3i.

(23.1) Calculate the following quantities:

(a) z1 + z2

(b) z1 + z3

(c) z1 + z4

(23.2) Calculate the following quantities and plot the two
numbers and their product on the complex plane.

(a) z1z2

(b) z4z2

(c) z2z4
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(23.3) Calculate the following quantities:

(a) 5z4

(b) z4 + 5

(c) (z3 − 1)(z1 + 2i)

(d) (z3 + z4)z2

(23.4) Calculate the following quantities:

(a) z24

(b) z33

(c) z21

(d) z22

(23.5) Consider the function f(z) = z2. Calculate the
first three iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2

(23.6) Four complex numbers are shown on the complex
plane in Fig. 23.6. Determine the coordinates for
each point, using Cartesian coordinates.

(23.7) Four complex numbers are shown on the complex
plane in Fig. 23.6. Determine the coordinates for
each point, using polar coordinates.
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Fig. 23.6 Four complex numbers plotted on the com-

plex plane. See Exercise 23.6 and 23.7.

(23.8) � Consider the squaring function f(z) = z2. For
each of the initial conditions listed below, do the
following.

• Convert to polar representation.

• Calculate the first several iterates using the
geometric method of Section 23.4.

• State what you think the long-term behavior
of the orbit is.

(a) z0 = i

(b) z0 = 1− i

(c) z0 = 2 + i

(d) z0 = 2

(e) z0 = −1
(f) z0 = −1 + 2i

(23.9) Figure 23.7 shows four different complex num-
bers. Use each as a seed for the squaring function
f(z) = z2. On the complex plane, sketch the first
three iterates for each seed. Perform the itera-
tion using the geometric view of squaring complex
numbers.

(23.10) Based on the results of the previous two exercises,
what do you think the Julia set is for the function
f(z) = z2, where z is a complex number? That is,
what initial conditions z0 have the property that,
when iterated by f , they do not fly off to infinity?
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Fig. 23.7 Four different initial conditions plotted on

the complex plane. See Exercise 23.9.

(23.11) � Consider the function f(z) = z2 − 1. Calculate
the first three iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2

(23.12) Consider the function f(z) = z2+i. Calculate the
first three iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2
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In Chapter 22 the concept of a Julia set was introduced: the Julia set
for a function is simply the collection of all initial conditions that do
not tend toward to infinity when iterated with that function. And in
the previous chapter I introduced complex numbers. In this chapter we
will look at the Julia sets that arise from iterating functions of complex
numbers. We begin with a relatively simple example.

24.1 The Complex Squaring Function

As in many of the preceding chapters, we begin by considering the squar-
ing function f(z) = z2. This time, however, there is a twist: the num-
bers that we square can be complex. Recall that we saw in the pre-
vious chapter that squaring is particularly simple if we use the polar
representation for the complex number. Namely, to square a complex
number, square its r and double its θ. For example, consider the seed
z0 = (r0 = 2, θ0 = 45). The orbit of this point under the squaring
function is:

(r = 2, θ = 15) −→ (r = 4, θ = 30) −→ (r = 16, θ = 60)

−→ (r = 256, θ = 120) −→ · · · . (24.1)

What is the long-term fate of the orbit?
Now that we are iterating complex numbers, we need to pause for

a moment and consider what it means for a complex number to go to
infinity. For real numbers, an orbit can tend toward positive infinity or
negative infinity. But for complex numbers, which we visualize on the
complex plane, there are many different directions in which a number
could go to infinity. We shall say that an orbit tends towards infinity
if its r value gets larger and larger. Geometrically, this means that the
orbit is getting farther and farther away from the origin. The itinerary
may spiral around while it gets farther away from the origin. Or it may
get farther away from the origin along a straight line. In either case, we
say that the orbit tends to infinity.

Returning to our example, the orbit of z0 in Eq. (24.1) tends toward
infinity, since its r value is getting larger and larger. In fact, any initial
condition that has an r greater than 1 will fly off to infinity. The reason
for this is that squaring complex number has the effect of squaring that
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number’s r. And if we square a number larger than 1, the result is a
larger number. Conversely, initial conditions that have an r equal to
or less than 1 will not fly off to infinity. Hence, the Julia set for the
complex squaring function consists of all points that have an r less than
or equal to 1. This is illustrated in Fig. 24.1. The set of all points with
an r less than or equal to 1 corresponds to a circle of radius 1. Thus,
the Julia set for the squaring function is a circle of radius 1.1

1Strictly speaking the Julia set is the
boundary of the circular region in
Fig. 24.1, and the entire region is the
filled Julia set. As in Chapter 22 I will,
in a mild abuse of terminology, refer to
filled Julia sets as simply the Julia set.

Fig. 24.1 The Julia set for the function

f(z) = z2. The radius of the circle is 1.

24.2 Another Example: f(z) = z2 − 1

Having successfully determined the Julia set for the squaring rule, let
us try a new function: f(z) = z2 − 1. What might you guess the Julia
set looks like for this function? This is similar to the squaring rule, for
which the Julia set was a circle of radius 1. What effect does the −1 in
f(z) = z2 − 1 have on the Julia set? Does it shift the circle to the left
or the right? Or does it do something more interesting?
To determine the Julia set for this function there is no quick calcu-

lation we can do. Instead, we need to choose some initial conditions,
iterate, and see what happens. If the orbit flies off to infinity, the initial
condition is not in the Julia set. And if it does not fly off to infinity,
then it is in the Julia set.22Iterates of this function were explored

in Exercise 23.11. We start with z0 = 0. Applying the function several times, we find:

0 −→ −1 −→ 0 −→ −1 −→ · · · . (24.2)

So the orbit of z0 = 0 is periodic with period 2. And since the orbit does
not tend toward infinity, the point z0 = 0 is in the Julia set. We also
know that z0 = −1 is in the Julia set, since its orbit is also periodic.

Let us try some other initial conditions. How about z0 = i? The orbit
is:

i −→ −2 −→ 3 −→ 8 −→ 63 −→ · · · . (24.3)

So z0 = i flies off to infinity; it is not in the Julia set. This is perhaps
somewhat surprising, as z0 = i was in the Julia set for the squaring
function. Let us now try z0 = 1 + i. This orbit is a little bit harder to
calculate. It turns out that the orbit is:

1 + i −→ 2i −→ −5 −→ 24 −→ · · · . (24.4)
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Thus, z0 = 1+ i is not in the Julia set, because its orbit tends to infinity.
Finally, let us try the initial condition 0.8 + 0.2i.

0.8 + 0.2i −→ 0.6− 0.68i −→ 0.102− 1.816i

−→ −3.28− 0.628i −→ 10.42 + 3.13i · · · . (24.5)

Although it took a few iterations be be certain, this orbit is indeed
tending toward infinity. Thus, the initial condition z0 = 0.8+0.2i is not
in the Julia set.

We could continue, choosing different initial conditions and then see-
ing if the orbit flies off to infinity. Every initial condition that does not
fly off to infinity is in the Julia set. After checking a lot of different initial
conditions, I can then make a rough plot of the Julia set by coloring in
each initial condition that I have found that does not fly off to infinity.
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Fig. 24.2 The Julia set for the function

f(z) = z2 − 1.

The result of doing this is shown in Fig. 24.2. To make this plot I
wrote a computer program to try around 10, 000 initial conditions. I then
plotted only those points that are in the Julia set. For my experiment
I found that around 880 of the 10, 000 initial conditions I tried turned
out to be in the Julia set.
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Fig. 24.3 The Julia set for the function

f(z) = z2 − 1.

Because the points in Fig. 24.2 are small it is hard to get a feel for
the shape of the Julia set. So in Fig. 24.3 I have plotted the same data,
but this time I have shown the points as large squares—large enough so
that no white space shows between them. This helps us see the shape of
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the Julia set. It appears to be a fairly complex geometric object. It is
certainly different from the circular Julia set for the squaring function,
shown in Fig. 24.1.

Fig. 24.4 The Julia set for the function

f(z) = z2 − 1. This is a higher resolu-
tion version of Fig. 24.3. A close-up of
the boxed region is shown in Fig. 24.5.
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To get a better view of the Julia set for f(z) = z2 − 1 we need to
test many more initial conditions. This will give us greater resolution in
our image. In Fig. 24.4 I have shown the results of testing almost half
a million different initial conditions. In this figure we see a fractal-like
structure. The Julia set consists of a main oval, off of which hang other
smaller ovals, off of which hang smaller ovals still, and so on. In Fig. 24.5
I have plotted a close-up of the Julia set shown in Fig. 24.4. We continue
to see bulbs on top of bulbs on top of bulbs.

Fig. 24.5 A portion of the Julia set for

the function f(z) = z2 − 1. This is a
close-up of boxed region of the Julia set
shown in Fig. 24.4.
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To summarize, we have plotted fairly detailed images of the Julia set
for the function f(z) = z2 − 1. I did so via a “brute force” method; I
simply had a computer program test a vast number of initial conditions
to see which do not tend toward infinity. The resultant shape, shown in
Fig. 24.4 is a fractal.

24.3 Julia Sets for f(z) = z2 + c

The Julia set of f(z) = z2 − 1 yielded a surprising and, I hope, a some-
what pleasing result. This leads us to wonder about the Julia sets for
other functions. It turns out that we can easily generate a fascinating
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menagerie of different Julia sets. To do so, we will consider functions of
the form:

f(z) = z2 + c . (24.6)

We have already explored this function for two different values of c. If
c = 0 we have the familiar squaring function whose Julia set is shown in
Fig. 24.1. And if c = −1 we have the function we just considered, whose
Julia set was illustrated in Fig. 24.4.

Fig. 24.6 The Julia set for the function

f(z) = z2 − 0.84i.

What about other values of c? Every c value we choose gives us a
slightly different Julia set. In the exercises for this chapter you will
investigate the Julia sets that result for different values of c. Here, we
consider one additional example. Suppose that c = 0+ 0.84i. The Julia
set for this function, namely f(z) = z2 + 0.84i, is shown in Fig. 24.6.
Note that this Julia set is not connected; it is not one continuous object.
This appearance of non-connection is real; it is not simply that I have
not tried enough initial conditions. A gallery of Julia sets for other
values of c is shown in Fig. 24.8 at the end of this chapter.

24.4 Computing and Coloring Julia Sets

I conclude this chapter with some remarks about using computers to
generate images of Julia sets. Often, images of Julia sets are plotted
using a visually appealing set of colors. You may have encountered such
images before, and you will see colored Julia sets when you use online
programs to do the exercises at the end of the chapter. Here is one way
to generate a colored Julia set. In colored images the Julia set itself is
indicated by just one color, usually black. Points that are not in the
Julia set are those which fly off to infinity when the function is iterated.
However, different initial conditions fly off to infinity at different rates.
It is this difference that is behind the colors on the images.

Even on a computer, we cannot iterate a point so many times that
it literally flies off to infinity. Instead, we use some finite threshold.
For example, we might take any point with r = 10 to essentially be at
infinity.3 Once an orbit has an r of 10, we would consider it to be at

3In practice, we can set our thresh-
old values much lower. The reason
for this is the following result. Let
f(z) = z2 + c. Let R be the larger
of 2 or the r for c. Then any z
with an r greater than R will grow
without bound when iterated by f(z).
This can be proved analytically—i.e.,
by hand, without relying on computer
experiments. See, for example, Peitgen,
Jürgens, and Saupe (1992, p. 794).

infinity, and we would thus classify that initial condition as not being in
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the Julia set. However, as noted above, some initial conditions will reach
this threshold value quickly, and others will take a long time. This is the
basis for our color scheme. If an initial condition reaches the threshold
in two or fewer iterations, we might color it blue. If it takes between
three and ten iterations for the threshold to be reached we might color
that point red. If it takes between eleven and twenty iterations, color it
green, and so on. There are many different variations one can make on
this basic idea.4 The result is a rich array of different colored images. It4A clear and accessible introduction to

a number of different coloring schemes
for Julia and Mandelbrot sets is Rood
(2004).

is important to emphasize, however, that the Julia set itself is still just
the collection of points, usually colored in black, that do not fly off to
infinity.

Fig. 24.7 A “colored” Julia set for c = −1.0. This image was made using the a program by David E. Joyce available at
http://aleph0.clarku.edu/~djoyce/julia/juliagen.html. The same Julia set is shown in Fig. 24.4.

A “colored” Julia set image is shown in Fig. 24.7. Obviously, it is not
really in color, since the picture is black and white. This is the same
Julia set shown in Fig. 24.4. Note that the black central regions—the
Julia set itself—are the same in both images. The “colored” Julia set
differs in that points outside of the Julia set are different colors.
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Exercises

For Exercises 24.4–24.6 you will need to use a program
that will generate and display Julia sets. Links to such
programs can be found on the webpage for the book
http://chaos.coa.edu. You can also find many pro-
grams to generate Julia sets via a web search.

(24.1) Verify that the orbits of z0 = 0.8 + 0.2i are what
I claimed they are in Eq. (24.5).

(24.2) Consider the function f(z) = z2 − i. Calculate
by hand the first few iterates for the following ini-
tial conditions. Which initial conditions are in the
Julia set?

(a) z0 = i

(b) z0 = 2

(c) z0 = 0

(d) z0 = 1

(24.3) Consider the function f(z) = z2 + c. Calculate
by hand or using a calculator the first few iterates
for the initial condition z0 = 0 for the following c
values. For which c values is z0 in the Julia set?

(a) c = −1
(b) c = −0.5 + 0.5i

(c) c = −1 + i

(24.4) Eight different Julia sets are shown in Fig. 24.8
on the following page. These Julia sets were made
with the following c values:

(a) c = 0.0 − 0.72i

(b) c = −0.1− 0.88i

(c) c = −0.6 + 0.2i

(d) c = −0.6 + 0.45i

(e) c = −1.35 + 0.02i

(f) c = 0.37 + 0.37i

(g) c = 0.2 + 0.57i

(h) c = −0.25− 0.7i

Determine which c value corresponds to which Ju-
lia set.

(24.5) Using a Julia set program, find a c value that
yields a Julia set that you find particularly in-
teresting. Choose a name for your Julia set, and
briefly explain why you chose this name.

(24.6) � Use a program to plot Julia sets for the follow-
ing c values:

(a) −0.60 + 0.20i

(b) 0.00 + 0.72i

(c) 0.37 + 0.37i

(d) 0.20 + 0.57i

(e) −0.10 + 0.88i

(f) −1.35 + 0.02i

(g) −0.60 + 0.45i

Which Julia sets are connected—i.e., a single con-
tiguous shape? Which are not connected, consist-
ing of two or more separate parts?
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Fig. 24.8 Eight different Julia sets for f(z) = z2 + c.
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25.1 Cataloging Julia Sets

In the previous chapter we considered Julia sets for the function

f(z) = z2 + c , (25.1)

where the variable z is a complex number and c is a parameter. Different
values of c yield different Julia sets. Experimenting with different c
values results in an impressive diversity of Julia sets. This is illustrated
in Fig. 24.8, which shows eight different Julia sets.

A natural question at this point is whether or not we can classify
or categorize Julia sets. At first blush this seems difficult, given the
multiplicity of forms that the Julia sets can take. However, one sim-
ple dichotomy between different Julia sets is that some are connected,
forming one contiguous shape, while others are disconnected. This basic
observation will lead us to an amazingly complex and intricate mathe-
matical structure.

We proceed with our categorization of Julia sets as follows. First, we
choose a c value. As an example, let us choose c = −0.6 + 0.2i. The
Julia set for this c is shown in Fig. 25.1. We see that this Julia set is

Fig. 25.1 The Julia set for c = −0.6 +
0.2i.

connected. It is a single, contiguous shape.
Next let us try another c value: c = 0.0− 0.72i. This Julia set, shown

Fig. 25.2 The Julia set for c = 0.0 −
0.72i.

in Fig. 25.2, is disconnected. It is not one, single, connected shape. Such
Julia sets are sometimes referred to as “dusts”. If the resolution of a
plot of such a Julia set is increased, one would observe the Julia set has
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a structure like a Cantor set, in that it consists of an infinite but totally
disconnected set of points. What appears to be a connected region is
actually disconnected upon closer examination. In any event, the Julia
set for c = 0.0− 0.72i is most definitely not a single connected shape.

Let us try one more c value. Figure 25.3 shows the Julia set for
c = 0.37 + 0.37i. We see that this Julia set is also connected. We can

Fig. 25.3 The Julia set for c = 0.37 −
0.37i.

continue this investigation by trying more c values. Each time we do
so, we plot the Julia set and then note whether or not it is connected.
In Table 25.1 I have kept track of the results of these experiments. The
first three c values listed are the three whose Julia sets I plotted above.
The other several are those cvalues you experimented with in Exercise
24.4 in the previous chapter. You can check my conclusions by plugging
these c values into a program that generates Julia sets.Table 25.1 Classifying Julia sets.

Which are connected and which are not?

c Value Connected?

−0.60 + 0.20i yes
0.00 + 0.72i no
0.37 + 0.37i yes
0.20 + 0.57i no
−0.10 + 0.88i yes
−1.35 + 0.02i yes
−0.60 + 0.45i no

25.2 The Mandelbrot Set Defined

A table listing the connectedness for different c values will only get us
so far. Is there any pattern or relationship between a parameter value
and the appearance of its associated Julia set? To begin to answer
this question, let us plot all the c values in Table 25.1 that give rise to
connected Julia sets with one type of symbol. Those c values that yield
a disconnected Julia set I will plot with a different symbol.

Fig. 25.4 A plot of the data from Ta-
ble 25.1. Parameter values c are plotted
on the complex plane; the real part of c
is plotted on the x-axis and the imagi-
nary part on the y-axis. Parameter val-
ues which give rise to a connected Julia
set are shown as filled squares. Unfilled
squares are parameter values for which
the Julia set is unconnected.
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Such a plot is shown in Fig. 25.4. The four c values from Table 25.1
that yield connected Julia sets are plotted as solid squares. The three
c values that yield disconnected Julia sets are shown as hollow squares.
The dark points, those with connected Julia sets, are said to belong to
the Mandelbrot set. In other words,
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The Mandelbrot set consists of the set of all parameter values
c for which the Julia set of f(z) = z2 + c is connected.

What does the Mandelbrot set look like? It is difficult to see a pattern
in Fig. 25.4, since there are so few points. We would like to sample
hundreds of different c values, plot them all, and see what we get. Before
doing so, it will be helpful to formulate an alternate, but equivalent,
specification of the Mandelbrot set.

25.3 The Mandelbrot Set and the Critical
Orbit

The connectedness, or not, of the Julia set is the dichotomy that is
used to define the Mandelbrot set. Determining the connectedness is
potentially a lengthy process, as it requires making a reasonably detailed
picture of the Julia set. Recall that to determine the Julia set, we need
to test a large number of initial conditions to see which stay bounded
and which tend toward infinity. Even when we have a computer do this
work for us, it can still take a some time. Moreover, some Julia sets
are just barely connected, so one needs to make a fairly high-resolution
image of the Julia set in order to be certain about its connectivity.

Table 25.2 The orbit of f(z) = z2+
c, for c = −0.6 + 0.2i for the initial
condition z0 = 0.

Time zt

0 0.0 + 0.0i
1 -0.6 + 0.2i
2 -0.28 -0.04i
3 -0.5232 + 0.2224i
4 -0.375724 + -0.0327194
.
..

.

..
50 -0.42774 + 0.107785i
51 -0.428656 +0.107792i
52 -0.427873 + 0.107588i
53 -0.428500 0.107932i

It turns out that there is a much quicker method to figure out the
connectivity of the Julia set. This method requires us to examine the
fate of just one initial condition. As an example, let us suppose we want
to figure out whether or not the Julia set for c = −0.6+0.2i is connected.
This is the c for the Julia set shown in Fig. 25.1. The method works as
follows. We begin with the initial condition z0 = 0. We then iterate, as
usual, using the function f(z) = z2 + c. The results of this iteration are
shown in Table 25.2. We can see that the orbit does not tend toward
infinity. In fact, it turns out that the orbit is pulled toward a fixed point
at z ≈ −0.428 + 0.108i. Since z0 = 0 does not tend toward infinity, it
is in the Julia set. Accordingly, in Fig. 25.1 we observe that z0 = 0 is
indeed inside the Julia set.

Let us try another c value: c = 0−0.72i. This c value gave us the Julia
set shown in Fig. 25.2. The iterates for the initial condition z0 = 0.0 are
shown in Table 25.3. For this c value the orbit of z0 = 0 tends toward
infinity. Accordingly, the point z = 0 is not in the Julia set, as can be
seen in Fig. 25.2.

Table 25.3 The orbit of f(z) = z2+c,
for c = 0.0 − 0.72i for the initial con-
dition z0 = 0. The orbit tends toward
infinity.

Time zt

0 0.0
1 0 + 0.72i
2 −0.5184 + 0.72i
3 −0.249661 +−0.026496i
4 0.0616288 + 0.73323i
...

...
16 9.79783 − 3.10886i
17 86.3324 − 60.2002i
18 3829.22 − 10393.7i

It turns out that the fate of the orbit of z0 = 0 tells us a great deal.
For this reason, the orbit of this point is often called the critical orbit.
In particular, the following turns out to be true:

If, for a given c, the critical orbit (the orbit of z0 = 0) for
the function f(z) = z2 + c does not tend to infinity then the
Julia set is connected. If the orbit does tend to infinity, then
the Julia set is disconnected.

This was the case for the two examples considered in this section. For
c = −0.6+0.2i the critical orbit was bounded and the Julia set, Fig. 25.1,
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was connected. And for c = 0 − 0.72i the critical orbit tends toward
infinity and the Julia set is disconnected. One can show that this must
always be the case. However, doing so is somewhat beyond the scope of
this book.1 You can use a Julia set program to test this out for other c1See, e.g., Peitgen, Jürgens, and Saupe

(1992, Chapter 13). values. Look at many Julia sets, and you will notice that Julia sets that
are connected always include the origin, the point z = 0 + 0i. Thus,
the orbit of the origin must be bounded. Similarly, you will notice that
disconnected Julia sets never contain the point z = 0 + 0i.
Let us now return to thinking about the Mandelbrot set. I initially

defined the Mandelbrot set as the collection of c values for which the
Julia sets are connected. We now know that a Julia set is connected if
and only if the critical orbit is bounded. Thus, we can quickly check
to see if c is in the Mandelbrot set by calculating the critical orbit and
seeing if the orbit tends to infinity or not. If it does does, then that c
value is not in the Mandelbrot set. In other words:

If the orbit of z0 = 0 for f(z) = z2 + c is bounded, then c is
in the Mandelbrot set. If the orbit is not bounded, then c is
not in the Mandelbrot set.

This gives us an efficient way to determine the Mandelbrot set. For a
range of c values compute the fate of the critical orbit. If the orbit stays
finite, then that c value is in the Mandelbrot set. We can do this for
many different c values, record those c values that are in the Mandelbrot
set, and then plot them.
The results of doing this are shown in Fig. 25.5. I tested around a

quarter million c values by determining the fate of the critical orbit.
Doing so took around four seconds on my desktop computer. I then
plotted those c values to produce Fig. 25.5. The result is a surpris-
ing shape that has become one of the icons of chaos and fractals. It
possesses an incredible intricacy and encodes a remarkable amount of
geometrical information. In the next section we begin an exploration of
this incredible mathematical structure.

25.4 Exploring the Mandelbrot Set

A first blush, the Mandelbrot set appears fractal-like, in the sense that
it has repeating patterns at different scales. For example, in Fig. 25.5
we can see the repeating motif of bulbs with spokes emanating off of
them. Let us zoom in and see what we see. Figures 25.6–25.9 show
successive magnifications of a portion of the Mandelbrot set. Zooming
in shows structure on finer and finer scales. Eventually, in Fig. 25.9 we
see what looks like a small copy of the original Mandelbrot set. This
is usually referred to as a baby Mandelbrot set. There are many such
baby Mandelbrot sets hanging off the full Mandelbrot set. And there
are baby baby Mandelbrot sets hanging off the baby sets, and so on.
The Mandelbrot set is indeed a fractal. In fact, the boundary of the

set is so complex and intricate that it has a dimension of two.2 Note,
2This was proved relatively recently, by
Mitsuhiro Shishikura (1998).
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Fig. 25.5 A high-resolution plot of the
Mandelbrot set. Over a quarter million
c-values were sampled. The initial con-
dition z0 = 0 was iterated for each the
c value. If the orbit remains bounded,
then that c-value is in the Mandelbrot
set. The zero axes are shown as dotted
lines. The horizontal range on the plot
is from −2 to 0.5. The boxed region is
plotted in more detail in Fig. 25.6.

however, that unlike most of the fractals we have studied thus far, the
smaller structures are not exact copies of the larger structures. As we
zoom in, what we see looks familiar, but not identical to what we have
seen before. Baby Mandelbrot sets are not exact replicas of the full
Mandelbrot set. In contract, when we zoom in on Julia sets we see
exactly the same shapes on different scales. An example of this can be
found in Figs. 24.4 and 24.5. Zooming in on this Julia set we see the
exact same fractal “cactus” structure repeating over and over.

The Mandelbrot set is an amazing mathematical object. It shows
intricate order and structure, and zooming in continually reveals slightly
new shapes and forms. Some have referred to it in almost hyperbolic
terms:

The Mandelbrot Set is the most complex object in math-
ematics, its admirers like to say. An eternity would not
be enough time to see it all, its disks studded with prickly
thorns, its spirals and filaments curling outward and around,
bearing bulbous molecules that hang, infinitely variegated,
like grapes on God’s personal vine. ...[T]he Mandelbrot set
seems more fractal than fractals, so rich is its complication
across scales. (Gleick, 1987, p. 221)

This is perhaps over the top. But not by much. There is an amazing
diversity of shapes and patterns in the Mandelbrot set. I encourage you
to spend a while exploring it using one of the many programs on the
web that will make Mandelbrot images for you.

As with the Julia set, it is possible to color the Mandelbrot set. There
are a handful of ways of doing so, but usually it is done as follows. In
colored Mandelbrot sets, it is typically the points not in the set that are
colored. Recall that a point c is not in the Mandelbrot set if the orbit
of z0 = 0 tends toward infinity for the function f(z) = z2 + c. Points
that fly off to infinity are assigned different colors depending on how fast
they do so. In practical terms, this is measured by how many iterations
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Fig. 25.6 A plot of a portion the Man-
delbrot set. Over a quarter million c-
values were sampled. The region plot-
ted is the boxed region from Fig. 25.5.
The rectangular region in this figure is
plotted in Fig. 25.7.

Fig. 25.7 A plot of a portion the
Mandelbrot set. Over a quarter mil-
lion c-values were sampled. The region
plotted here is the boxed region from
Fig. 25.6. The rectangular region in
this figure is plotted in Fig. 25.8.

it takes for the orbit to move to some predetermined distance from the
origin. Usually this distance is taken to be 2.
For example, we might program the computer to assign the color pink

to points that are a distance of 2 from the origin within five iterations.
Blue points could be those that take up to twenty iterations to get 2 away
from the origin. Points that take up to fifty iterations to get 2 away from
the origin might be green, and so on. Which colors—and how many—
one chooses is an art. Different choices yield different results. There are
also a number of techniques for smoothing out the colors so the image
appears as a continuous gradient of color and not as solid stripes.3

3A good, elementary introduction to
Mandelbrot set graphics is (2004).
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Fig. 25.8 A plot of a portion the
Mandelbrot set. Over a quarter mil-
lion c-values were sampled. The region
plotted here is the boxed region from
Fig. 25.7. The rectangular region in the
middle of this plot is shown in Fig. 25.9.

Fig. 25.9 A plot of a portion the Man-
delbrot set showing a baby Mandelbrot
set. Almost a half million c-values were
sampled. The region plotted here is the
boxed region from Fig. 25.8. If the full
Mandelbrot set of Fig. 25.5 was plotted
at this scale, it would be as wide as a
football field.

25.5 The Mandelbrot Set is a Julia Set
Encyclopedia

Having enjoyed a journey through parts of Mandelbrot set, we now again
consider the relationship between the Mandelbrot set and Julia sets. The
Mandelbrot set is the set of c values for which the orbit of the critical
point is bounded when iterated by f(z) = z2 + c. Thus, each point
on the Mandelbrot set is a particular c value, that we can then use to
make a Julia set. We know that all the Julia sets so obtained will be
connected. In fact, this is how we originally were led to the Mandelbrot
set. Our initial definition of the Mandelbrot set was those c values for
which f(z) = z2 + c had a connected Julia set. Thus, the Mandelbrot
set is a listing of all the c values that have a connected Julia sets.

This is not surprising, since the Mandelbrot set was constructed to
have exactly this property. What is surprising, however, is that there
are deeper relationships between the Mandelbrot set and the Julia sets.
The Mandelbrot set catalogs Julia sets in an unanticipated way. I will
illustrate this with several examples. In Fig. 25.10 I have again plotted
the full Mandelbrot set. I will choose regions of the Mandelbrot set and
plot a Julia set for a c value chosen from that region.
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Fig. 25.10 Another plot of the full
Mandelbrot set.

Fig. 25.11 The portion of the Mandel-
brot set that is shown in the solid box
labeled “Zoom 1” in Fig. 25.10.

Consider first the region contained within the solid box labeled “Zoom
1” near the top of the Mandelbrot set in Fig. 25.10. A magnified view of
this region is shown in Fig. 25.11. I then chose a c value from the middle
of the bulb shown in this figure and made a Julia set. This Julia set is
shown in Fig. 25.12. Note that the Julia set has five “arms”. That is,
the main pattern is five blobby arms joined together. This pattern then
repeats at different scales. There are arms of many different sizes, and
when they meet up, there are always five arms at the junction point.
Now look at the Mandelbrot set in Fig. 25.11. One can see that the
spokes or antennae that decorate the bulb also have five arms that meet
at a central point. This is most evident in the long, dendritic arms on
the top left of Fig. 25.11. When counting these arms, do not forget to
include the arm that is attached to the bulb itself.
To recap, we have chosen a Julia set by picking a c value from the Man-

delbrot set. And we have seen that the resultant Julia set, Fig. 25.12,
resembles the region of the Mandelbrot set from which its c value was
chosen. Both the Julia set and the Mandelbrot set are five-armed. The
story does not end here. There is another feature of five-ness associated
with this Julia set.

Table 25.4 The orbit of f(z) =
z2 + c, for c = −0.505 + 0.574i
for the initial condition z0 = 0.
The orbit approaches a cycle of
period 5.

Time zt

0 0.0 + 0.0i
1 −0.505 + 0.574i
2 −0.579− 0.00574i
3 −0.169 + 0.581
4 −0.814 + 0.377i
5 0.014− 0.040i
..
.

..

.
50 0.015− 0.035i
51 −0.506 + 0.573i
52 −0.172− 0.006i
53 −0.172 + 0.581i
54 −0.813− 0.035i
55 0.015− 0.035i

The c value for the Julia set of Fig. 25.12 is c = −0.505 + 0.574i.
What happens if we plot the critical orbit for this c value? That is,
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Fig. 25.12 The Julia set for a c value
chosen from the center of the Mandel-
brot bulb shown in Fig. 25.11. The ex-
act c value is −0.505 + 0.574i.

what happens if we use the seed z0 = 0 and iterate it with f(z) =
z2 − 0.505 + 574i? The result of doing this is shown in Table 25.4. We
see that the orbit eventually becomes periodic with period 5. The Julia
set for this c has five arms, the Mandelbrot set for c values near this
value is a bulb from which five spokes emanate, and the critical orbit is
periodic with period 5. The region of the Mandelbrot set contained in
Fig. 25.11 is thus strongly associated with the number five.

Let us repeat this analysis for another region of the Mandelbrot set.
In Fig. 25.13 I have plotted the small square region labeled “Zoom 2” in
Fig. 25.10. We can see spiraling curls hanging off the bulb. In Fig. 25.14
I have plotted a Julia set for a c value of −0.689 − 0.348i, which is
inside the bulb in Fig. 25.13. Again, we see that the Julia set bears
a resemblance to the Mandelbrot set near where we found its c value.
Although it is a little hard to see on the figure, both the Julia set and
the decorations on the Mandelbrot set are nine-armed. And if one were
to iterate f(z) = z2 + c using the seed z0 = 0, one would find that the
orbit is attracted to a cycle of period 9.4 4I will not list the itinerary, as it would

take up too much space. But if you are
skeptical you can try it out for yourself
and you will see that the the critical
orbit really does have a period of 9.

Fig. 25.13 The portion of the Man-
delbrot set that is shown the solid box
labeled “Zoom 2” in Fig. 25.10. Note
the baby Mandelbrot set in the lower
left corner.

Let us try this one more time. In Fig. 25.15 I have plotted a magnified
view of the bulb on top the Mandelbrot set. The region I have plotted
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Fig. 25.14 The Julia set for a c value
chosen from the center of the Mandel-
brot bulb shown in Fig. 25.13. The ex-
act c value is −0.689 +−0.348i.

is labeled “Zoom 3” in Fig. 25.10. Note that the spokes or antenna that
branch off of this portion of the Mandelbrot set are all three-pronged.
When the spokes join, it is always three spokes joining at the junction
point. Note also that embedded in the antennae are baby Mandelbrot
sets. In Fig. 25.16 I have plotted the Julia set for a c value chosen
from the baby Mandelbrot set in the upper left of Fig. 25.15. The c
value is −0.157+ 1.031i. Again, we see that the Julia set resembles the
Mandelbrot set.

Fig. 25.15 The portion of the Man-
delbrot set that is shown the solid box
labeled “Zoom 3” in Fig. 25.10. Note
the baby Mandelbrot set in the upper
left.

Fig. 25.16 The Julia set for a c value
chosen from the center of the baby
Mandelbrot set in the upper left of
Fig. 25.15. The c value is −0.157 +
1.031i.

If we iterate the seed z0 = 0 with the usual quadratic function f(z) =
z2+c for this c value, we find that the orbit approaches a point of period
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3. This can be seen in Table 25.5, where I have plotted the orbit for the
critical seed z0 = 0.

Table 25.5 The orbit of f(z) = z2+
c, for c = −0.505 + 0.574i for the
initial condition z0 = 0. The orbit
approaches a cycle of period 3.

Time zt

0 0.0 + 0.0i
1 −0.157 + 1.033i
2 −1.195 + 0.707i
3 0.772− 0.660i
...

...
50 −1.195 + 0.707i
51 0.772 +−0.659i
52 −0.1571.031i
53 −1.195 + 0.707i

To summarize, then, we have seen that the Mandelbrot set does a lot
more than just tell us whether or not a Julia set is connected. For every
point in the Mandelbrot set there is a corresponding Julia set. We can
look at the location in the Mandelbrot set that the Julia set came from
and see that the Julia set resembles the structures found nearby in the
Mandelbrot set. Moreover, the number of branches on the Mandelbrot
antennae or the number of arms on the Julia set tell us the periodicity
of the critical orbit. I.e., if the Julia set has five arms that branch from
a junction point, as in Fig. 25.12, then the orbit of the seed z0 = 0
approaches a cycle of period 5.

In a sense, then, the Mandelbrot set acts like a dictionary or an ency-
clopedia for the Julia sets. We can tell a lot about the structure of the
Julia set by just knowing where on the Mandelbrot set it comes from.
And this information can be read off the Mandelbrot set quite directly,
by looking at the structure of the antennae or spokes that hang off the
bulbs.

Fig. 25.17 The structure of the Man-
delbrot set. The numbers indicate the
period associated with each bulb. For
example, the bulb on the top, labeled
“3” is a period-3 bulb. Any Julia set
with a c value chosen from this bulb
will have a structure where three arms
meet at a junction point, and the crit-
ical orbit will be drawn to a cycle of
period 3.

Every bulb on the Mandelbrot set is associated with a particular pe-
riod. This is shown in Fig. 25.17, where I have labeled several bulbs
with their associated period. For example, the bulb on top labeled “3”
is a period-3 bulb. Any Julia set drawn from this bulb will have a three-
armed structure of some sort, and the critical orbit will be approach a
cycle of period 3. To determine the period of a bulb, all one has to do is
zoom in on the bulb and look at the structure of the spokes that emanate
from the bulb. The spokes will branch, and the number of branches at
a junction point is the period of the bulb.
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25.6 Conclusion

The Mandelbrot set is a remarkable mathematical object. It combines
regularity and novelty. There are structures that repeat on finer and
finer scales, but the repetition is not exact. The baby Mandelbrot sets
resemble the full set, but they are not perfect replicas. Spokes and
antennae spiral off of the bulbs on the Mandelbrot set, but the numbers
of spokes and the direction of their spirals vary from bulb to bulb. These
variations are correlated with the structure of the Julia sets. Zooming
in on the Mandelbrot set produces beautiful, other-worldly images.
Amazingly, all of this structure—the Julia sets and the Mandelbrot

set—result from an extremely simple function:

f(z) = z2 + c . (25.2)

This quadratic equation, when iterated, gives rise to amazing complexity.
We thus see yet again that simple, iterated systems can give rise to
complex and complicated shapes and forms.

Further Reading

What I have covered in this chapter is just the beginning. There are
many more fascinating, fun, and surprising properties of the Mandel-
brot set. Many of the references listed in Appendix C have good discus-
sions of the Mandelbrot set, as it is a central object of study in chaos
and fractals. Of these, the discussion in Peitgen, Jürgens, and Saupe
(1992) is particularly clear and thorough. The workbook by Devaney
(2000) is a good, elementary introduction and contains numerous work-
sheets and suggestions for explorations and classroom activities. The
accompanying video (Devaney, 1996) is also excellent. The nicely illus-
trated edited volume, The Colours of Infinity (Lesmoir-Gordon, 2004),
has clear and accessible discussions of Julia sets and the Mandelbrot
set, as well as fractals in general. This book is accompanied by an
informative and entertaining documentary about fractals, narrated by
Arthur C. Clarke. This documentary is also available on YouTube. The
textbook by Falconer (2003) is a standard technical reference on frac-
tal geometry and has good coverage of Mandelbrot and Julia sets. It
is written at a level appropriate for junior mathematics majors. There
are many websites that contain applets which allow you to explore and
experiment with the Mandelbrot set. One of my favorites is http:

//homepages.inf.ed.ac.uk/wadler/mandelbrot-maps/mmaps.html.
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Exercises

For Exercise 25.4 you will need to use a program that
can make images of Julia sets and the Mandelbrot set.
You can find links to such programs on the website for
the book http://chaos.coa.edu or via a web search.

(25.1) Consider the function f(z) = z2 + c with c =
−0.6 + 0.2i.

(a) Show that z = −0.428227 + 0.107732i is a
fixed point for this function.

(b) Verify that the first three orbits of z0 are
what I claimed they are in Table 25.2

(25.2) Verify that the first three iterates of z0 = 0 + 0i
for f(z) = z2 + c, where c = 0.0− 0.72i, are what
I claimed they are in Table 25.3.

(25.3) By hand or using a calculator, compute the first
several iterates of f(z) = z2 + c for each of the
following c values. Which c values are in the Man-
delbrot set?

(a) c = 0

(b) c = −1
(c) c = −1.5 + 0.5i

(d) c = −0.5 + 0.5i

(25.4) Use the Mandelbrot set as an encyclopedia to find
Julia sets with the following properties. For each,
print out or sketch a picture of the Julia set, note
the c value for the Julia set, and indicate where
in the Mandelbrot set you found the c value:

(a) The Julia set is a single connected blob.

(b) The Julia set has three arms, i.e., three
structures which join at a junction point.

(c) The Julia set has eight arms.

(d) The Julia set has eleven arms.
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The dynamical systems we have studied in this book have almost all
been iterated functions of one continuous variable. In other words, we
have iterated a function whose value can be any among a continuous
range of numbers. The main example of such a dynamical system is the
iterated logistic equation, studied in considerable detail in Part II. This
part of the book looks at other types of dynamical systems, including
iteration in more than one dimension and iteration of a function that
varies continually as opposed to changing at discrete time intervals. In
so doing, we will see new examples in which simple iterated equations
give rise to chaotic and surprisingly complex behavior. This chapter
is about two-dimensional discrete dynamical systems. However, before
making the jump to two dimensions, it will help to quickly review one-
dimensional dynamical systems.

26.1 Review of One-Dimensional Discrete
Dynamics

Our canonical example of a one-dimensional, discrete dynamical system
is the logistic equation,

f(x) = rx(1 − x) , (26.1)

where x can take any value between 0 and 1. The variable r is a pa-
rameter; we vary r and see what dynamical behaviors result. Iterating
this equation gives us a sequence of numbers. For example, we might
consider the logistic equation with r = 3.2, choose the initial condition
x0 = 0.7, and obtain the itinerary shown in Table 26.1. Note that

Table 26.1 The orbit of the ini-
tial condition x0 = 0.7 when it-
erated by f(x) = 3.2x(1 − x).

Time xt

0 0.7
1 0.672
2 0.705331
3 0.665085
4 0.71279
5 0.655105

while xn can take any value between 0 and 1, the time index is always
an integer. That is, we can speak of the value of x at time t = 1 or t = 2
or t = 613. However, we cannot speak of the value of x at time t = 1.5
or t = 6.13.
Recall that we can graph the orbit in a time series plot. Such a plot

for the iterates of Table 26.1 is shown in Fig. 26.1. We see that the
long-term behavior of the orbit is periodic with a period of 2; the orbit
oscillates between 0.513 and 0.799. As the last part of our review, recall
that we can represent this long-term behavior with a final-state diagram
in which the long-term behavior—in this case period 2—is shown on a
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Fig. 26.1 A time series plot of the
itinerary of 0.7 for the logistic equation
with r = 3.2. The itinerary approaches
the fixed point at x = 1. Numerical val-
ues for the first few iterates are given in
Table 26.1.
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number line. We say that this equation has an attractor of period 2,
since nearby orbits are pulled toward the period-2 points at 0.513 and
0.799.

Fig. 26.2 The final-state diagram for
the orbit graphed in Fig. 26.1. The be-
havior is periodic with period 2. 0 1

26.2 Two-Dimensional Discrete Dynamical

Systems

We now turn our attention to two-dimensional discrete dynamics. In
one-dimensional dynamics there was a single number x that varied over
time. The dynamics are given by a function, such as that of Eq. (26.1).
The function takes the current value of x as an input and returns the
next value of x.
In two-dimensional discrete dynamics the scenario is the same, except

that there are two numbers, x and y, that vary over time. There is a
function that takes two numbers as input, and returns two numbers as
output. Note that this is not the same as two separate functions. The
process should be seen as one multi-input and multi-output function.
The output for y depends not just on the input of y but also the input
of x.

Fig. 26.3 A schematic representation
of a function f that takes two numbers
as input and returns two numbers as
output.

As a simple example, consider the following function:

xn+1 = 1 + xn + yn , (26.2)

yn+1 = 2 +
1

2
xn − 1

2
yn . (26.3)
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We can iterate this function just as we would a one-dimensional function.
Since this is a two-dimensional function we need two initial conditions,
x0 and y0. Suppose we choose x0 = 1 and y0 = 2. To determine x1 we
use Eq. (26.2):

x1 = 1 + x0 + y0 = 1 + 1 + 2 = 4 . (26.4)

Similarly, we determine y1 by using Eq. (26.3):

y1 = 2 +
1

2
xn − 1

2
yn = 2 +

1

2
1− 1

2
2 = 2 +

1

2
− 1 =

3

2
. (26.5)

We continue iterating as usual, using the output from one step as the
input for the next step. The results of doing so are shown in Table 26.2.
You might wish to check these numbers for yourself.

Table 26.2 The orbit of the ini-
tial condition x0 = 1, y0 = 2
when iterated using Eqs. (26.2)
and (26.3).

Time xt yt

0 1 2
1 4 1.5
2 6.5 3.25
2 10.75 3.625

As in previous chapters, we will be concerned with the long-term
behavior of orbits. Are there fixed points? Do initial conditions tend
toward infinity? Are the orbits chaotic? Is there sensitive dependence
on initial conditions? We will explore these questions using a dynamical
system known as the Hénon map, introduced below.

26.3 The Hénon Map

The logistic equation was our standard example of a one-dimensional
discrete dynamical system. We used it in previous chapters to explore
chaos, the butterfly effect, and the universality of the period-doubling
route to chaos. In a similar way, we will use the Hénon equation to ex-
plore and understand the basic phenomena exhibited by two-dimensional
discrete dynamical systems. In Section 1.5 I mentioned that functions
are also often referred to as maps. The logistic equation is often referred
to as the logistic map, especially by mathematicians. I have been using
the term equation throughout the book, since I think it is more familiar.
However, the Hénon equations, given below, are almost always referred
to as a map, and so I will use this terminology in this chapter.

The Hénon map is defined by the following:

xn+1 = yn + 1− ax2n ,

yn+1 = bxn , (26.6)

where a and b are parameters. As we did for the logistic equation, we
will explore what happens for different values of the parameters a and
b.

You might be wondering where the Hénon map comes from. Who
thought it up? You will not be shocked to learn that the answer to
this question is Hénon—Michel Hénon, a French astronomer and math-
ematician. What led Hénon to this equation? The answer is somewhat
complicated, and I think that explaining it in detail would be too much
of a distraction. In brief, Hénon and other mathematicians and sci-
entists in the mid-1970s were looking for simple examples of systems
that display chaotic behavior. They began with equations that were
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relatively realistic models of the physical systems they were studying.
However, these models proved to be somewhat unwieldy to work with,
so they simplified their equations until they arrived at the form shown
in Eq. (26.6).1

1Specifically, the Hénon map is con-
structed to be an approximation to the
Lorenz equations, the topic of Chapter
31.

We begin by considering the dynamics for the parameter values a =
0.155 and b = 0.6. In this case, Eq. (26.6) becomes:

xn+1 = yn + 1− 0.155x2
n ,

yn+1 = 0.6xn . (26.7)

Let us choose the initial condition x0 = 1, y0 = 2 and see what happens.
Plugging into Eq. (26.7) and iterating, one obtains the itinerary shown
in Table 26.3. To examine the long-term behavior, we need a lot more

Table 26.3 The orbit of the seed
x0 = 1, y0 = 2 for the Hénon map
with a = 0.155 and b = 0.6.

Time xt yt

0 1 2
1 2.8450 0.6
2 0.345426 1.707
3 2.68851 0.207256
4 0.08690 1.6131
5 2.61193 0.0521436

points, so we turn to a computer to do the iteration for us and then
make a plot. The result of doing so is shown in Fig. 26.4. Looking at
these plots we see that the orbit is pulled to a cycle of period 2. The
x part of the orbit oscillates between 2.49 and 0.83, while the y part of
the orbit oscillates between 1.50 and 0.05. We can represent the x and
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Fig. 26.4 A time series plot of the x- and y-itineraries for the Hénon map with a = 0.155 and b = 0.6. The initial conditions
are x0 = 1, y0 = 2. The orbit is pulled toward a cycle of period 2. Numerical values for the first few iterates are given in Table
26.3.

y parts of the orbit together by plotting them on an x-y plane, as shown
in Fig. 26.5. In this plot the x and y values are plotted together as a
single point on the x-y plane. The time value is not plotted explicitly,
but is indicated by the labels. The initial condition, labeled “0” on the
figure, is x = 1, y = 2. The first iterate, x = 2.8450, y = 0.6 is labeled
“1”, and so on. Table 26.3, the time series of Fig. 26.4, and the plot in
Fig. 26.5 all show the same information, but in different ways.
We can also plot just the final states of the orbit, much as we did for

the one-dimensional system in Fig. 26.2. Here, however, the states are
two-dimensional—each point on the itinerary is a pair of numbers, an x
value and a y value. Thus, our final-state diagram is two-dimensional.
The final-state diagram for the Hénon map considered in this section
is shown in Fig. 26.6 The final-state diagram has two points, since the
long-term behavior of the orbit is periodic with period 2.
In Fig. 26.5 I have drawn arrows connecting successive points on the

itinerary. These arrows are designed to make evident the order in which
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Fig. 26.5 A plot of the itinerary of the
initial condition x0 = 1, y0 = 2 un-
der the Hénon map with a = 0.115 and
b = 0.6. The initial condition is labeled
“0” on the figure. The first iterate is la-
beled “1”, the second iterate is labeled
“2”, and so on. Numerical values for
the first few iterates are given in Ta-
ble 26.3. The orbit bounces around and
gets pulled to the period-2 attractor.

the points occur. They do not, however, indicate the actual path taken
from point to point. In fact, the idea of the path between points is
meaningless, because the variable only has values at discrete times. E.g.,
the orbit is somewhere at t = 2 and then somewhere else at t = 3. At
t = 2.5 it is not halfway between—it really is not anywhere. The orbit
is only defined at discrete time steps. Nevertheless, I think that arrows
like those on Fig. 26.5 are useful, and I will use them again in subsequent
figures. Just please do not take them too literally.
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Fig. 26.6 The final-state diagram for
the Hénon map with a = 0.155 and
b = 0.6. The behavior is periodic with
period 2.

26.4 Chaotic Behavior and the Hénon
Map

We have now seen how to represent and think about periodic behavior
for a two-dimensional iterated function. There is not much difference
between one-dimensional and two-dimensional periodic behavior for dis-
crete systems. In contrast, we will see that the chaotic behavior of the
Hénon map holds some fun surprises.
We begin by returning for a moment to our standard example of a one-

dimensional iterated function: the logistic equation, f(x) = rx(1 − x).
This equation is chaotic when the parameter r = 4.0. A typical time
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Fig. 26.7 A plot of the itinerary of ini-
tial condition x0 = 0.1 under the logis-
tic equation, f(x) = 4x(1 − x). The
orbit is aperiodic.

series for the chaotic logistic equation is shown in Fig. 26.7. Note that
the orbit appears to be aperiodic—it does not repeat. If we looked
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at the itinerary of two nearby initial conditions, we would find that
the difference between them grows rapidly as the function is iterated.
I.e., the orbits display sensitive dependence on initial conditions, or the
butterfly effect. The final state for this this system is shown in Fig. 26.8.

Fig. 26.8 A plot of the itinerary of the
initial condition x0 = 0.1. The orbit is
aperiodic. 0 1

Since the orbit is aperiodic, it never settles down; it keeps bouncing
around between 0 and 1. So the final states fill up the entire interval
between 0 and 1.
Let us now return to the Hénon map. The rest of this chapter will

focus on the behavior of the Hénon map for the parameter values a = 1.4
and b = 0.3. In Fig. 26.9 I have plotted the x and y time series for the
initial condition x0 = 0.6, y0 = 0.6. Only the first thirty iterates are
shown, but both orbits seem to be wandering around and not approach-
ing a periodic attractor. To confirm this, let us look at similar plots,
but for a longer time range.
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Fig. 26.9 Time series plots of the x- and y-itineraries for the initial condition x0 = 1, y0 = 2 under the Hénon map with
a = 1.4 and b = 0.3. The orbit is aperiodic.

The results of doing so are shown in Fig. 26.10. Here I have plotted
the first 150 iterates. Again, one sees that the two time series jump
around and do not appear to be approaching a fixed point or a periodic
attractor. If one plots more and more orbits, this remains unchanged.
The orbits are aperiodic.
The chaotic orbits for the Hénon map look qualitatively similar to the

chaotic orbit for the logistic map, as shown in Fig. 26.7. The time series
is a jagged line that skips around and never repeats. However, what
would happen if we plotted the x and y time series together as we did in
Fig. 26.5? Take a moment and try to picture what this would look like
for the chaotic times series of Fig. 26.10. One might expect that the plot
on the x-y plane would look like a dense blob. As more and more iterates
are plotted, the dots may scatter across the plot, eventually turning the
picture into a dark cloud, much as the final states for the chaotic logistic
equation fill up the interval.
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Fig. 26.10 Time series plots of the x- and y-itineraries for the initial condition x0 = 1, y0 = 2 for the Hénon map with a = 1.4
and b = 0.3. The orbit is aperiodic.

26.5 A Chaotic Attractor

However, if one plots x and y together for the Hénon map when a = 1.4
and b = 0.3, one finds a surprise. Such a plot is shown in Fig. 26.11.
At first blush it does not look anything at all like what we saw when we
plotted the x and y parts of the orbit separately in Fig. 26.10. This figure
shows that even though the x and y time series are chaotic, there is a
relationship that becomes apparent when x and y are plotted together.
Remarkably, when the two aperiodic time series shown in Fig. 26.10 are
plotted together, the result is the orderly shape seen in Fig. 26.11.

-0.4

-0.2

 0

 0.2

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

y

x

Fig. 26.11 The itinerary of the initial
condition (x0, y0) = (0.6, 0.6) for the
Hénon map with a = 1.4 and b = 0.3.
The plot shows 100, 000 iterates. A
close-up of the boxed region is shown
in Fig. 26.12.

Looking at Fig. 26.11 more closely, one sees that the structure is quite
intricate. A magnified portion of this plot is shown in Fig. 26.12. Addi-
tional structure is apparent. Lines in Fig. 26.11 are, upon closer view,
actually pairs of lines. Zooming in further, as in Fig. 26.13 we see even
finer structure. Finally, in Fig. 26.14 we zoom in once more. Again, one
sees finer and finer structure. By the time we get to the last zoom-in,
Fig. 26.14, the plot appears to be grainy. The reason for this is that we
have run out of points. The original plot, Fig. 26.11, contains 1 million
points. This is certainly a lot. However, once we have zoomed in three
times, the area plotted is small enough that it does not contain many
points and so appears grainy. Had I plotted 1 billion points originally
instead of 1 million, the lines in Fig. 26.14 would appear solid.
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Fig. 26.12 A magnification of the
boxed region in Fig. 26.11. Note that
single lines on Fig. 26.11 resolve into
pairs of lines when magnified. A close-
up of the boxed region in this figure is
shown in Fig. 26.13.
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Fig. 26.13 A magnification of the
boxed region in Fig. 26.12. Note that
additional structure is present. The
boxed region of this plot is shown in
Fig. 26.14.
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As you have probably noticed by now, this shape is a fractal. Its di-
mension is estimated to be 1.261 ± 0.003 (Russell, Hanson, and Ott,
1980). As expected, the dimension is between 1 and 2. It is two-
dimensional, because it lives in the plane, but it is one-dimensional in
the sense that the shape appears to consist solely of lines folded over on
themselves many times.
What do these plots tell us about the dynamics of the Hénon map?

And where did the chaos go? These plots arose from plotting simulta-
neously the x and y time series for a chaotic dynamical system. But the
resultant plot, Fig. 26.11, does not appear to be chaotic. What is going
on? The chaos is still there—it is just not readily apparent on the plot.
To see the chaos, we need to follow the trajectory of a point over time,

Fig. 26.14 A magnification of the
boxed region in Fig. 26.12. Note that
additional structure is present. If the
full Hénon attractor was plotted at this
scale it would be around 18 feet wide.
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much as we did in Fig. 26.5 for the period-2 behavior. This will give us
a more dynamical view. We will do so shortly. First, we consider the
stability of the orbits.

The shape shown in Fig. 26.11 is an attractor, just like the set of two
points on Fig. 26.6 is an attractor. In Fig. 26.6, nearby points are pulled
to the period-2 attractor. Similarly, in the chaotic Hénon map, nearby
points are pulled toward the fractal boomerang-like shape in Fig. 26.11.

This can be seen in Fig. 26.15 in which I have shown the first sev-
eral iterates of three different initial conditions. These initial conditions
are (−1.0, 0.0), (1.0,−0.4), and (1.2, 0.5) and are labeled “A”, “B”, and
“C”, respectively.2 Also shown are around 100, 000 iterates of the ini- 2In this notation, (−1.0, 0.0) means

x = −1.0 and y = 0.0.tial condition (0.6, 0.6). These 100, 000 points form the boomerang-like
shape seen in Fig. 26.11. Figure 26.15 shows that initial conditions are
pulled to the boomerang. Each of the initial conditions lands on or very
close to the boomerang after just two or three iterations.
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Fig. 26.15 A plot of the first sev-
eral iterates of three different initial
conditions: (−1.0, 0.0), (1.0,−0.4), and
(1.2, 0.5). These initial conditions
are labeled “A”, “B”, and “C”, re-
spectively. Also shown are around
100, 000 iterates for the initial condition
(0.6, 0.6). Notice that the three dif-
ferent initial conditions are all quickly
pulled into the attractor.

Thus, the boomerang shape is an attractor, referred to as the Hénon

attractor. The Hénon attractor is the fractal shape to which almost
all initial conditions are pulled when iterated using the Hénon map,
Eq. (26.6), with a = 1.4 and b = 0.3. This phenomenon of a chaotic
attractor is new. We have seen chaos before, and we have seen attractors.
But previously it was periodic behavior that was attracting, not chaotic
behavior.

Figure 26.15 shows us that orbits get pulled toward the attractor.
What happens once they reach the attractor? How is it that a chaotic
orbit traces out such a regular path? To investigate these questions,
in Fig. 26.16 I have plotted a few iterates, but this time starting with
the fiftieth iterate so that the orbit is already on the attractor. We can
see in the figure that even though it is on the attractor, the orbit is
still bouncing around. Notice, though, that the attractor is continuous,
but motion on the attractor is not. That is, the attractor is a series of
connected curves folded over themselves again and again, but the motion
on the attractor is jumpy and discrete.
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Fig. 26.16 The fiftieth through fifty-
fourth iterates for the initial condition
(0.6, 0.6). The fiftieth iterate is indi-
cated by the solid square. Once the or-
bit is on the attractor it continues to
jump around. The motion on the at-
tractor is aperiodic, and the orbit does
not trace out the lines on the attractor
in order. The fiftieth iterate is shown
as a square.
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Recall that a dynamical system is defined to be chaotic if it is a de-
terministic function whose orbits are bounded, aperiodic, and possess
sensitive dependence on initial conditions (SDIC). Does the Hénon map
have SDIC? The answer to this question is “yes”. To demonstrate this,
in Fig. 26.17 I have plotted two different orbits. One of the orbits starts
with (−0.514651, 0.297419), which is the fiftieth orbit of the initial con-
dition (0.6, 0.6). I chose this as my initial condition because I know that
for these x and y values the orbit is already very close to the attractor.
The x and y orbits for this initial condition are plotted in Fig. 26.17 us-
ing square points connected with a dashed line. Figure 26.17 also shows
the orbit for a slightly different initial condition. I just rounded a little
and used (−0.515, 0.297). The orbit for this initial condition is plotted
using circles connected with a solid line.
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Fig. 26.17 The first thirty x and y iterates for two sets of almost identical initial conditions. The orbit for the initial condition
(−0.514651,−.297419) is shown as squares connected with a dashed line. The initial condition (−0.515, 0.297) is plotted with
circles connected with a solid line. The two orbits begin very close to each other, but they pull apart around the fifteenth
iterate.

In both time series the two orbits begin very close to each other. For
the first ten iterates the orbits are so close that they appear identical
on the plot. But around the tenth iterate the two orbits become distin-
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Fig. 26.18 The tenth, twentieth,

and 32nd iterates for the two initial
conditions (−0.514651,−.297419) and
(−0.515, 0.297). The iterates for the
two initial conditions are plotted as
squares and circles, respectively. Note
that the distance between the two or-
bits increases, but nevertheless the or-
bits remain on the attractor.

guishable, and by the fifteenth orbit the two orbits have pulled apart.
These plots show sensitive dependence on initial conditions. Two ini-
tial conditions that differ by a very small amount—around one part in
one thousand—eventually get pulled apart under iteration by the Hénon
map. Yet, despite the fact that the difference between the two orbits
grows, both orbits stay on the attractor. This is hard to see on the time
series plots of Figs. 26.17 and 26.17. However, if we look at the attractor
in the x-y plane in Fig. 26.18 we can see that the two points get pushed
apart from each other although they both remain on the attractor.

26.6 Strange Attractors Defined

There are three interesting and noteworthy properties of the Hénon at-
tractor. First, it is an attractor. Almost all initial conditions get pulled
toward it. Two initial conditions that start away from the attractor
will both move closer to it. Second, the behavior on the attractor itself
is chaotic. The orbits are aperiodic and show sensitive dependence on
initial conditions. Third, the attractor is a fractal. By zooming in suc-
cessively we have seen that the boomerang shape is actually a self-similar
structure of folds.

Objects such as the Hénon attractor are known as strange attrac-

tors. There does not appear to be a completely standard definition for
this term. But strange attractors are generally taken to be attractors
that are fractal in structure and on which the dynamics are chaotic.
Strange attractors are an interesting mix of order and disorder. The dy-
namics of a system with a strange attractor is fully chaotic. It possesses
the butterfly effect, and so long-term prediction is impossible. However,
there is considerable order to strange attractors, too. The existence of
the attractor, to which almost all initial conditions are drawn, means
that the system is constrained despite being chaotic. In the long term
the orbit never repeats, but it also never strays from the attractor. The
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structure of the attractor often displays an intricately ordered fractal
shape. And the fact that a strange attractor attracts means that this
shape is robust or stable; almost all initial conditions will, in the long
run, result in the same attractor.
The exact origin of the term “strange attractor” is somewhat hazy. It

is agreed that the term first appeared in a 1971 paper by David Ruelle
and Floris Takens (Ruelle and Takens, 1971). However, it is not clear
which of the two originally coined the phrase. Ruelle, writing in 1980
states that “I asked Floris Takens if he had created this remarkably suc-
cessful expression [strange attractor]. Here is his answer: ‘Did you ever
ask God whether he created this damned universe? ... I don’t remem-
ber anything...I often create without remembering it...’ The creation of
strange attractors thus seems to be surrounded by clouds and thunder.”
(Ruelle, 1980). In 1993 Ruelle writes that “the term [strange attractor]
was new, and nobody now remembers if Floris Takens invented it, or I,
or someone else” (Ruelle, 1993).
Regardless of exactly who coined the term, it is worth reflecting on

the use of the word strange. One reason mathematical objects like the
Hénon attractor might be called strange is that their shapes are un-
usual. The image in Fig. 26.11 perhaps simply looks odd. But I think
the term strange was invoked also to indicate surprise that chaotic be-
havior could be associated with a stable structure such as an attractor.
As noted throughout this book, one of the fundamental new realizations
emerging from the study of dynamical systems is that order and disorder
are frequently mixed together. They are not mutually exclusive oppo-
sites. Strange attractors are almost the apotheosis of this idea—they
are intricately ordered structures arising from a deterministic system,
on which a dynamical system behaves chaotically.
Strange attractors such as the Hénon attractor studied in this chap-

ter occur quite commonly in two-dimensional discrete dynamical sys-
tems. For example, the paper by Sprott (1993) shows dozens of dif-
ferent strange attractors arising from simple two-dimensional iterated
quadratic functions.
We will encounter strange attractors again in Chapter 31. In the next

chapter we will study a different type of dynamical system, known as
cellular automata. We will see that these systems produce periodic and
chaotic behavior and also some complex phenomena that are not easy
to classify.
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Exercises

(26.1) Verify that the numerical values contained in Ta-
ble 26.2 are correct.

(26.2) Consider the two-dimensional discrete dynamical
system given by:

xn+1 = y2
n + 1− x2

n , (26.8)

yn+1 =
1

2
xn +

1

2
yn . (26.9)

(a) Determine the first four iterates of x0 =
0, y0 = 0.

(b) Determine the first four iterates of x0 =
1, y0 = −1.

(26.3) Consider the following two-dimensional dynami-
cal system:

xn+1 = yn , (26.10)

yn+1 = −xn . (26.11)

(a) Determine the orbit of x0 = 1, y0 = 1.

(b) Determine the orbit of x0 = 1, y0 = 0.

(c) Determine the orbit of x0 = 2, y0 = 2.

(d) Does this dynamical system have any fixed
points? If so, what are they? Are these fixed
point(s) attracting, repelling, or neutral?

(26.4) Consider the following two-dimensional dynami-
cal system:

xn+1 =
1

2
yn , (26.12)

yn+1 =
−1
2

xn . (26.13)

(a) Determine the fate of the orbit of x0 =
4, y0 = 4.

(b) Determine the fate of the orbit of x0 =
4, y0 = 0.

(c) Determine the orbit of x0 = −4, y0 = 6.

(d) Does this dynamical system have any fixed
points? If so, what are they? Are these fixed
point(s) attracting, repelling, or neutral?

(26.5) Consider the Hénon map with a = 0.155 and
b = 0.6, as in Eq. (26.7). Compute the first five
iterates of the seed x0 = 1, y0 = 1. Plot the or-
bit on the x-y plane, as was done in Fig. 26.5.
What do you think is the long-term behavior of
this orbit?
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In the previous chapter we considered two-dimensional, discrete dynam-
ical systems. These dynamical systems have two continuous variables,
x and y, that get updated at discrete time intervals via a deterministic
function. The variables x and y are continuous in the sense that they
can assume any value, not just integers. In this chapter we will look
at another type of dynamical system—one which has a large number of
discrete variables arranged in an array or grid. These variables are then
updated at discrete time steps via a local, deterministic rule. Such a
system is known as a cellular automaton (CA). We begin with a simple
example from this class of models.

27.1 One-Dimensional Cellular Automata:
An Initial Example

For our initial example, we will consider a cellular automaton in which
the variables can take on only two different values, visualized as white or
black boxes. CAs whose variables assume only two values are known as
binary CAs. The variables are aligned in a sequence of length N . The
state of the CA is given by specifying all the values of all the variables.
For example, Fig. 27.1 shows a sample state for a binary CA with twenty
variables. These individual variables are often called cells.

Fig. 27.1 A sample state for a bi-
nary, one-dimensional CA with N =
20. There are twenty variables, or cells.
Each cell can take on one of two values,
white or black.

Having defined the variables for cellular automata, we now consider
how these variables change. The dynamics for a CA are specified by a
local update rule. Such a rule is shown in Fig. 27.2. The idea is that
the subsequent value of a variable is determined by its current value and
the value of the neighboring sites one to the left and one to the right.

The rule is applied as follows. Let us use the state shown in Fig. 27.1
as the initial condition and then apply the rule shown in Fig. 27.2. The
first step in this situation is shown in Fig. 27.3. The initial condition
is labeled t = 0. The next step, t = 1, is drawn directly below the
initial condition. (In the figure, the next step has not been filled in yet.)
It is the rule that tells us how to fill in the next step. For example,
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Fig. 27.2 A rule for a cellular automa-
ton. There are eight possible three-site
neighborhoods, indicated by the eight
blocks of three variables in the figure.
Below each block is the output associ-
ated with that neighborhood.

suppose we want to figure out the value of the site marked A at t = 1.
At t = 0 site A was black, while its left and right neighbors were white.
This corresponds to the ��� neighborhood that is third from the left
in Fig. 27.2. Looking at that figure, we see that the next value of site A
should be black.

Fig. 27.3 The first step in applying the
rule shown in Fig. 27.2 to the initial
condition of Fig. 27.1.

t=0

t=1 A B C

What about site B? Its neighborhood is ���. Looking up the output
for this neighborhood in Fig. 27.2, we see that output value is white. Site
C has a neighborhood of ���, which, according to the rule, gives an
output of zero. We can repeat this procedure for all the sites, and in this
way fill out all the variables for the CA for t = 1. The result of doing
so is shown in Fig. 27.4. I suggest taking a moment to make sure you
understand how the values of the variables were determined for t = 1.

Fig. 27.4 The result of applying the
rule, Fig. 27.2, to the initial condition.

t=0

t=1

There is one subtlety associated with determining the value of the cells
at t = 1. What happens to the cells on the edges? They do not have the
full complement of neighbors, since they are on the boundary. What is
usually done is to use periodic boundary conditions. This means that the
row of cells is viewed as wrapping around itself, so that the neighbor of
the right-most cell is the left-most cell. This is illustrated in Fig. 27.5.
For example, the left-most cell has a neighborhood of ��� and thus
becomes � at t = 1. And the right-most cell has a neighborhood of
���, and so it also maps to � at t = 1.

Fig. 27.5 A schematic illustration of
periodic boundary conditions.

Once we have the full configuration at t = 1, we iterate the process.
We apply the same rule to the configuration at t = 1 to get a new con-
figuration. We then apply the rule again and get another configuration,
and so on. The result of this process is shown in Fig. 27.6. One can see
that the CA quickly reaches a fixed point. After t = 1 the configuration
no longer changes.
Let me summarize this example and, at the risk of being pedantic,

clarify some terminology. Cellular automata are a type of dynamical
system in which a grid of discrete variables which are updated at dis-
crete time intervals according to a local, deterministic rule. Automata is
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t=0
t=1
t=2
t=3
t=4
t=5
t=6
t=7

Fig. 27.6 The result of iteratively ap-
plying the rule, Fig. 27.2, to the initial
condition. The CA quickly reaches a
fixed point. After t = 1 the configura-
tions do not change.

the plural form of automaton. So the phrase “cellular automata” refers
to the collection of such models, just as “iterated functions” refers collec-
tively to the set of functions.1 A particular iterated function is specified 1The acronym CA is usually taken to

be singular: CA = cellular automaton.
The acronym is pluralized by adding an
s: CAs = cellular automata.

by stating what that function is—e.g., f(x) = x2. Similarly, a particu-
lar CA is specified by stating what the rule is, such as the rule given in
Fig. 27.2.

In order to iterate a function, one needs an initial condition. The
initial condition plus the function determines the orbit. Similarly, to
determine the dynamics of the CA, one needs an initial condition. For
CAs, the initial condition is the value of an entire row of cells, as in
Fig. 27.1. The CA rule and the initial condition determine the orbit of
the dynamical system. In this case, the orbit is a sequence of rows of
discrete variables. This is almost always drawn with time moving down
the page, as in Fig. 27.6. When iterating functions, one often arbitrarily
chooses a few numbers, iterates, and sees what happens. For CAs one
can follow a similar approach by choosing a long initial condition that
is random. I.e., choose a long sequence of black and white squares by
tossing a coin repeatedly to determine the color of each square. Then
iterate, and see what happens.

The result of doing this is shown in Fig. 27.7. The initial condition
is a randomly generated sequence of 200 black and white boxes. The
rule in Fig. 27.2 is then applied to this sequence 200 times. The result
is plotted in a manner similar to that of Fig. 27.6. Figure 27.7 is just
like a time series plot for an iterated function, except that time goes
down the page instead of a cross, and instead of plotting a single value
one displays an entire row of cells. It is somewhat difficult to resolve
individual cells in this figure, but the overall behavior is clear: the system
reaches a fixed point after one iteration. The fixed point manifests itself
as vertical stripes on Fig. 27.7. An unchanging configuration is simply
copied verbatim down the page, yielding vertical stripes.

Figures like Fig. 27.7 are known as space-time diagrams for CAs. The
term space-time diagram was originally used in Einstein’s special theory
of relativity, where diagrams are needed to visualize the trajectory of a
particle as it moves through both space and time. Much of the early
work on CAs was done by physicists who were familiar with space-time
diagrams from relativity, so presumably the term occurred to them when
they were looking for a name for figures such as Fig. 27.7. In any event,
the term “space-time” diagram is now the standard term for such figures.

Before considering other CAs, a few remarks on the terms “cellular”
and “automaton”. Why was this mathematical model given this name?
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Fig. 27.7 The result of iteratively ap-
plying the rule, Fig. 27.2, to a ran-
domly generated initial condition. The
CA quickly reaches a fixed point. After
t = 1 the configurations do not change.

The cellular part is perhaps straightforward—the variables are spread
out across space, but consist of discrete boxes or cells. “Automaton” is
a general term for a self-governing or independent machine or comput-
ing device. An automaton is autonomous in that it just does its thing
without needing commands or coordination from a central controller.
Thus, CAs can be viewed as a model of distributed computation. Each
cell is updated depending only on the values of the cells in its local
neighborhood. There is no other communication between the cells other
than this. We shall see that despite this locality, CAs are capable of
producing large-scale patterns and structures.

27.2 Surveying One-Dimensional Cellular

Automata

Having analyzed one CA, Fig. 27.2, let us see what sort of behavior we
find for other rules. As usual, we will be mainly interested in global
behavior. Are there any fixed points? Any attractors? And is there
chaos? We shall see that there is a range of different CA behaviors and
that these are more difficult to categorize than the dynamical behaviors
we have encountered in our study of iterated functions.
For the first example in this section we consider the rule shown at

the top of Fig. 27.8. There is a standard numbering scheme for CAs,
and this rule happens to be known as rule 32. The details of the num-
bering convention are not important, but if you are curious I explain it
in Section 27.5, below. The space-time diagram for rule 32 is shown in
Fig. 27.8. One can see that quite quickly the pattern “dies off”. After
three time steps all cells are white. Note that this outcome is not im-
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mediately obvious. Looking at the rule, Fig. 27.8, we see that there is
one output that is non-white, as was the case for the rule for our ini-
tial example, Fig. 27.2. Nevertheless, the dynamics of rule 32 are such
that the configuration very rapidly converts to all white. This happens
regardless of the initial condition used.

Fig. 27.8 Space-time diagram for cellu-
lar automata rule 32. A random initial
condition of 100 sites was used. After
three time-steps all cells are white.

For our next example, consider the rule shown at the top of Fig. 27.9.
In the figure I also show the result of iterating a random initial condition.
The CA configuration quickly settles into a pattern, but unlike Fig. 27.8
the pattern is not static. The configuration at a given time is the same
as the previous time, except all cells are shifted to the left by one unit.
Note that in Fig. 27.9 it is easy to see the effect of the periodic boundary
conditions—the stripes reappear on the right of the space-time diagram
immediately after disappearing from the left.

Fig. 27.9 Space-time diagram for cellu-
lar automata rule 46. The rule is shown
at the top of the figure. A random ini-
tial condition of 200 sites was iterated
for 200 time steps.

The space-time behavior of Fig. 27.9 is stable, in the sense that differ-
ent randomly generated initial conditions produce statistically similar
results. The space-time diagram always shows tilted stripes, although
the exact distribution of those stripes depends on the particular initial
condition. This space-time behavior is simple and periodic. The stripes
repeatedly wrap around the lattice. The exact periodicity depends on
the size of the system. But the main point is that this sort of behavior
is generally analogous to the stable, periodic behavior that we have seen
for iterated functions.
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Fig. 27.10 Space-time diagram for cel-
lular automata rule 150. The rule is
shown at the top of the figure. A ran-
dom initial condition of 200 sites was
iterated for 200 time steps.

For our next example, consider the rule shown on the top of Fig. 27.10.
Applying this rule to a random initial condition yields the space-time
diagram shown in Fig. 27.10. It is immediately apparent that this be-
havior is very different from the previous two space-time diagrams we
have looked at. How can we describe or characterize this behavior? The
CA most certainly does not appear to be heading toward any sort of
fixed point. Nor do the configurations appear to be periodic. It thus
seems reasonable to call this CA chaotic. But what does it mean for a
system such as a CA to be chaotic? It turns out that a rigorous defini-
tion for the chaotic behavior of a CA is a subtle matter. I will return to
this issue briefly in section 27.3. For now, however, let us take Fig. 27.10
as being intuitively chaotic and continue with our survey of CAs.
The last example of this section is the rule shown in Fig. 27.11. The

space-time diagram for this CA, seeded with a randomly generated initial
condition, is shown in Fig. 27.11. How can we describe this behavior?
It is certainly not periodic, so it is not like the space-time behavior seen
in Fig. 27.9. It appears to be aperiodic, but not in the same way as the
previous example, Fig. 27.10, which looks like a uniform assortment of
black and white triangles. If one squints a little, Fig. 27.10 resembles
foam or perhaps something that would be produced by a printer gone
haywire.
In contrast, in Fig. 27.11 there is clearly some structure amid the

chaos; there are periodic regions, mostly chaotic regions, and a compli-
cated structure of boundaries and edges between these different regions.
It appears that the CA does not settle in to either a chaotic state or a
periodic state. Further evidence for this can be seen in Fig. 27.12, the
space-time diagram for the same rule, but for a system with 500 sites
iterated for 500 time steps. One can see that the complicated structures
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Fig. 27.11 Space-time diagram for cel-
lular automata rule 110. The rule is
shown at the top of the figure. A
random initial condition of 200 sites
was iterated for 200 time steps. A
larger space-time diagram is shown in
Fig. 27.12.

persist. This CA, known as rule 110, has been much studied. There
have been hundreds of scientific papers written about various proper-
ties of this rule. The space-time pattern shown in Fig. 27.11 is often
described as being complex, in contrast to being chaotic. The pattern
clearly has elements of chaos in it, in that it is aperiodic and in a sense
unpredictable. However, it is also patterned or structured in a way that
suggests something beyond simple chaos.

27.3 Classifying and Characterizing CA
Behavior

What types of dynamical behaviors are CAs capable of? A review of the
examples we have looked at thus far suggests a possible categorization
of CAs into four classes.

(1) The first class consists of those CAs whose space-time diagrams
quickly turn all white or all black. Rule 32, Fig. 27.8, is an example
of this sort of behavior. For this class of CAs the randomness of
the initial condition is quickly forgotten and the configuration ends
up at a very simple fixed point.

(2) The second class consists of CAs whose configurations freeze into
some sort of regular, periodic pattern. The space-time diagram
for rule 46, Fig. 27.9, is an example of behavior in this class. Note
that while the pattern is quite regular, some vestiges of the ran-
dom initial condition remain, as reflected in the distribution of the
stripes. If a different random initial condition is used the resultant
space-time diagram will exhibit similar but not identical stripes.
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Fig. 27.12 The space-time diagram for cellular automaton rule 110. A complex
pattern can be seen. The figure is 500 × 500 sites.

The exact number and location of the stripes depends on the initial
condition.

(3) The third class consists of rules like that shown in Fig. 27.10. These
rules can be said to be chaotic. They do not repeat and their long-
term behavior is homogeneous. For example, in Fig. 27.10 there are
many different black and white triangles, but there are no bound-
aries dividing distinct regions. The space-time diagram looks like
one large sea of boiling triangles. These CAs can be thought of re-
membering their random initial condition. The process of iteration
does not induce much, if any, order in the configuration.

(4) The fourth class consists of rules which are aperiodic but are more
structured or organized than the chaotic rules. An example of such
a CA is Fig. 27.11. These rules are often said to be complex and
not necessarily chaotic.
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This classification scheme, introduced by Stephen Wolfram in a highly
influential 1984 paper (Wolfram, 1984), captures some qualitative, gen-
eral distinctions among different types of CA behavior. However, in the
subsequent decades it has generally be recognized that this classification
is rather coarse, and that much more can be said, both quantitatively
and qualitatively, about the behavior seen in CA’s space-time diagrams.
The Wolfram classification scheme is subjective, in the sense that it re-
lies mainly on visual inspection of space-time diagrams. In particular,
it is not clear how to objectively distinguish between class 3 and class 4
behavior.

A full discussion of characterizing, quantifying, and categorizing CA
behavior beyond the scope of this text. Indeed, some aspects of this are
topics of current research. Nevertheless, here are a few general comments
on these issues that will not take us too far afield and which perhaps
will shed light on some of the themes of the text.

First, let us think about chaos. In Section 9.3 I defined a dynamical
system as being chaotic if it possesses all of the following properties:

(1) The dynamical rule is deterministic.
(2) The orbits are aperiodic.
(3) The orbits are bounded.
(4) The dynamical system has sensitive dependence on initial condi-

tions.

This definition was developed in the context of iterated functions. How
might it apply to CAs? Cellular automata are certainly deterministic.
The rule that is used to iterate the configurations are a determinis-
tic function of the cell’s local neighborhood. The orbits of a CA are
bounded; since there are only two possible values for each site there is
no infinity for them to move toward. The notion of aperiodicity applies
to CAs as expected; we say an orbit is aperiodic if the configuration
does not repeat.2 But what about SDIC? How might this phenomenon 2Strictly speaking it is impossible for a

CA to be truly aperiodic. Since there
are a finite number of possible config-
urations the CA will eventually return
to a configuration it has been in previ-
ously. To get around this, one studies
larger and larger systems as a way to
approximate a system with an infinite
number of sites.

manifest itself in CAs? Recall that an iterated function had SDIC if two
initial conditions that started off very close got far apart. We can do
the same thing with CAs. Choose two different initial conditions that
vary only by a single cell, and iterate them forward. Compare the two
space-time diagrams. If they are significantly different, then we would
say that the rule is chaotic. There are some subtleties associated with
actually carrying out this procedure, but hopefully the general idea is
clear.

But what about behavior like that seen in Fig. 27.12? There is more
than just chaos going on here. Chaos and order seem to be combined
in an interesting way. Such behavior is often called complex. But how
could complexity be defined? It seems an inherently subjective quality:
different observers likely will not agree on which patterns are the most
complex or interesting or structured. And for that matter, what is a
pattern? How can we be certain we are seeing a pattern? And how can
we discover or come to know patterns that we have not seen before?
These are rich and vexing questions that are topics of current research.3 3An accessible and engaging discussion

of these questions is the essay “Is Any-
thing Ever New? Considering Emer-
gence”, by James Crutchfield (1994).
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Let it suffice to say that CAs produce space-time diagrams that appear
structured in a way that combines elements of both chaos and regularity.
Many refer to this sort of behavior as complex.

Regardless of how one defines complexity, I hope it is clear that CAs
provide another example of a simple, deterministic dynamical system
that produces apparently random behavior. Chaos for CAs looks a little
different than it did for the iterated functions we studied earlier in the
book. But the basic message is the same. In addition, CAs show us
yet again that simple, deterministic systems can exhibit behavior that
is intricate or complicated or complex. Finally, note that it is difficult
to predict the behavior of a CA simply by looking at the rule. If you are
handed a CA rule, it is usually not obvious what the resultant space-
time diagram will look like. Will it be chaotic? Will all the cells turn
white? The best way to figure this out is to start iterating and see what
happens. This is similar to the situation with the logistic equation. It
is not obvious at first blush that f(x) = rx(1 − x) is chaotic if r = 3.7
but is periodic if r = 3.835. But it is not too difficult to figure this
out if one iterates a few initial conditions several hundred times on a
computer. This is a common feature of dynamical systems. Their long-
term dynamical behavior is difficult to deduce from the equation or rule,
and so often the best strategy is to start iterating with a computer and
see what happens.

27.4 Behavior of CAs Using a Single-Cell
Seed

Thus far we have considered what happens when we use a random se-
quence as the initial condition for a CA. It is also interesting and fun to
look at the effects of applying a CA rule to a configuration that begins
with a single black cell. Not surprisingly, we will tend to see simpler
and more ordered patterns in the space-time diagram, reflecting the fact
that the initial condition is just about as simple as can be.
Let us first investigate rule 46, shown in Fig. 27.9. We have already

seen that a random initial configuration yields a space-time diagram
that is a series of stripes. Not surprisingly, starting with a single black
cell yields a single diagonal stripe. This can be seen in Fig. 27.13. The
initial condition of a single black cell leads to a stripe that moves right
to left. When the stripe reaches the end of the grid on the left, it wraps
around to the right due to the periodic boundary conditions.
Let us try a few other rules with a single-cell seed and see what hap-

pens. First, consider rule 50, shown in Fig. 27.14. Applying this rule
to a single black cell yields the pattern shown in Fig. 27.14. The result
is a checkerboard pattern that expands to both the right and the left.
Looking at the rule it is not too hard to see where this pattern comes
from. If you do not see this, you might want to take a moment and
sketch out the first few iterations of the CA rule, starting with a con-
figuration consisting of a single black square. One way to think of rule
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Fig. 27.13 CA rule 46 and the result
of iteratively applying that rule to an
initial condition consisting of a single
black site. The stripe moves to the left,
reaches the boundary of the CA, and
then wraps around to the right due to
the periodic boundary conditions. This
CA was applied to a random initial con-
dition in Fig. 27.9.

Fig. 27.14 CA rule 50 and the result
of iteratively applying that rule to an
initial condition consisting of a single
black site.

50, then, is that it is a concise set of instructions for drawing a checker-
board triangle, starting at the point of the triangle and moving down the
page. Drawing such a triangle is not a difficult task—one certainly does
not need a CA to do it for you. But it is nevertheless perhaps of some
interest that Rule 50 has formalized this checkerboard-triangle-making
process.

As our final example for this section will consider rule 22, shown in
Fig. 27.15. If we use this rule to iterate a configuration that initially
has only one black cell, what do you think will happen? The result of
doing this is shown in Fig. 27.15. Like magic, a Sierpiński triangle has
appeared. This result is, I think, rather surprising. I certainly do not
look at rule 22 and immediately suspect a Sierpiński triangle. This way
of making a Sierpiński triangle suggests some interesting things about
both CAs and the Sierpiński triangle. This is yet another example of a
simple dynamical system producing a complicated or surprising result.
The CA makes the Sierpiński triangle via a rather different procedure
than the one we first used to construct the triangle. Originally, we
started with a full triangle and successively removed inner triangles from
each triangle. This procedure is illustrated in Fig. 16.4.
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Fig. 27.15 CA rule 22 and the result
of iteratively applying this rule to an
initial condition consisting of a single
black site.

The CA, however, produces the Sierpiński triangle top to bottom,
one line at a time. At first blush, this seems like a complicated feat.
Imagine that you were tasked with producing a Sierpiński triangle on a
piece of graph paper and you could only write one horizontal line at a
time. This would not be too difficult, but you would likely find yourself
scanning up and down and to the left and the right to make sure that
the triangles were the correct size. However, the CA does not have the
benefit of hindsight. All the CA can do is look at the current row and use
this information, and this information only, to determine the next line.
Moreover, CAs are local. The next value of a cell is determined solely
by that cell’s current value and the value of its two nearest neighbors.
Nevertheless, CAs are capable of producing “global” patterns—patterns
such as the Sierpiński triangle, where there are correlations or structure
at all scales.
This method of producing a Sierpiński triangle also gives us another

way of thinking about fractals. Most of the classic fractals in Chapter
16 were produced by an iterative process that begins with a complete
shape and then alters it by removing or bending portions of that shape.
Then in Chapter 17 we saw that the chaos game—a random dynami-
cal system—generates the Sierpiński triangle, and I suggested that this
was a general result. The collage theorem (see Section 17.6) says that
almost any fractal can be generated by a random process of some sort.
Our study of CAs indicates that there is a very different sort of simple
procedure—one which involves generating the pattern line-by-line and
not working with a full shape—that can make fractals. Throughout this
text we have seen several quite different mechanisms that are capable of
producing fractals. This might explain fractals’ ubiquity: although they
may appear complicated, they are a generic form in the sense that they
result from many different types of simple processes.

27.5 CA Naming Conventions

You may have been wondering where I was getting the rule numbers for
the CAs in the previous sections. Why is the rule depicted in Fig. 27.11
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known as rule 110? The answer is fairly simple, but I have delayed
discussing it until now, since it has nothing to do with the main thrust
of this chapter, which is looking at CAs as an example of a dynamical
system. But the naming scheme is an interesting application of binary
arithmetic, so I think it is worth going over. If you want, you can skip
this section; what I am about discuss has absolutely no bearing on what
follows in subsequent chapters.

The standard naming scheme for CAs works as follows. Specifying
a particular CA rule requires specifying the output values for the eight
possible neighborhoods. These outputs have been depicted as white or
black, but we can just as well use the numbers 0 and 1, respectively.
Since the eight neighborhoods are listed in standard order, there is not
necessarily a need to show the neighborhoods when specifying the rule.
For example, we could write rule 110, shown on the top of Fig. 27.11, as

�������� . (27.1)

Or, using 0 and 1 instead of � and �, rule 110 is:

0 1 1 1 0 1 1 0 . (27.2)

The last step is to convert the string of 0’s and 1’s into a number. To do
this, one views the sequence of Eq. 27.2 as a binary number and converts
it to base-10.

The binary, or base-2, number system was introduced in Section 21.5.
In binary, digits correspond to 1, 2, 4, 8, and so on. In the more familiar
base-10 system, digits correspond to 1, 10, 100, etc. For example, the
number 613 in base-10 is:

613 = (6× 102) + (1 × 101) + (3× 100) = 600 + 10 + 3 . (27.3)

Similarly, the binary number 101 is:

101 = (1× 22) + (0× 21) + (3× 20) = 4 + 0 + 1 = 5 . (27.4)

In other words, 101 in binary is equal to 5 in base-10.
We are now in a position to convert the rule, Eq. (27.2), into a base-10

number. The idea is to read the 0’s and 1’s in Eq. (27.2) left to right,
interpret them as binary digits, and then convert to base-10.

0 1 1 1 0 1 1 0 = (0× 20) + (1× 21) + (1× 22)

+ (1× 23) + (0× 24) + (1× 25)

+ (1× 26) + (0× 27) (27.5)

= 2 + 4 + 8 + 32 + 64 (27.6)

= 110 . (27.7)

Thus, the rule of Fig. 27.11 or Eq. (27.1) is known as rule 110.
Let us do one more example. The rule in Fig. 27.10 is:

�������� . (27.8)
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Converting, this yields

0 1 1 0 1 0 0 1 = (0× 20) + (1× 21) + (1× 22)

+ (0× 23) + (1× 24) + (0× 25)

+ (0× 26) + (1× 27) (27.9)

= 2 + 4 + 16 + 128 (27.10)

= 150 . (27.11)

So this rule is known as rule 150.
There is nothing meaningful about the number of the rule. Rule 150

just means that it is the 150th rule in this naming scheme. It does
not mean that the rule has anything to do with “150-ness.” Similarly,
I do not expect the sixth student on my class list to have six toes or
be born on June 6. As noted above, this naming scheme is entirely
standard. Books, articles, and websites often refer to CAs by number
without explicitly listing the outputs of the rule.

27.6 Other Types of CAs

There are many different sorts of CAs. The type we have been consid-
ering in this chapter are known as elementary cellular automata,
usually abbreviated as ECAs. ECAs have the following properties: they
have only two states, black or white; the configurations are one dimen-
sional; and the neighborhood used when determining the next value of
a cell is three cells wide. There are thus eight different neighborhoods.
As we have seen, specifying a rule requires specifying the output for
each of these eight particular neighborhoods, equivalent to specifying a
sequence of eight 0’s and 1’s, as in Eq. (27.1). There are 28 = 256 such
sequences.4 This is a relatively small number. Although we will not do

4To see this, note the flowing. There
are two ways to have one symbol (0 or
1), four ways to have two symbols (00,
01, 10, 11), eight ways to have three
symbols, and so on. In general, there
are 2n possible sequences of zeros and
ones of length n. it here, it is possible to use a computer to investigate all 256 ECAs and

compare and contrast their properties.
ECAs are not the end of the CA story. It is possible to have CAs

with larger neighborhoods. The neighborhood size is specified by stating
how far to the left and right the neighborhood extends. This quantity
is known as the CA’s radius, commonly denoted by r. For ECAs the
radius is 1, since the neighborhood for a cell consists of the cell itself and
the sites one to the left and one to the right for a total neighborhood
size of three sites. A radius-2 neighborhood is illustrated in Fig. 27.16.
The neighborhood for an r = 2 CA has five sites, so there are thus

r = 2 r = 2

Fig. 27.16An illustration of the neigh-
borhood for a radius-2 CA.

25 = 32 different particular neighborhoods. So to specify a rule, we
need to specify the outputs for all thirty-two of these possibilities, just
as we had to specify the output for all eight possibilities for the ECAs.
For example, one possible r = 2 rule is:

01101110010001001100101110011100 . (27.12)

This is, of course, just one among a vast many of possible r = 2 rules.
How many such rules are there? The answer is 232. This is a very large
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number:

232 = 4294967296 ≈ 4.3× 109. (27.13)

There are thus almost 4.3 billion different CAs with radius 2. If you
took 1 second to study each such CA it would take over 136 years to get
through them all. Thus, it is not feasible to exhaustively study radius-2
CAs. Instead, one can only study a subset of them. Radius-2 CAs are a
relatively simple type of mathematical model, yet it would take several
lifetimes to explore them all.

There are additional variations possible on the types of CAs we have
been discussing. So far we have considered CAs where each cell can
take on one of two states: black and white, or, equivalently, 0 and 1.
Instead, one could allow the states to have more than two different
values. The number of states is usually denoted by K. For example, if
K = 4, one could think of the states as having four different colors or
numerical values. For larger K, the number of different CAs becomes
astronomically large. For example, consider a r = 2, K = 3 CA. There
are five cells in the neighborhood, as indicated in Fig. 27.16. Now,
however, each of these cells can take on three different values. So the
number of distinct neighborhoods is 35 = 243. So, specifying a rule
requires specifying the outputs for these 243 different neighborhoods.
And each output can take on three different values. Thus, instead of a
sequence of thirty-two 0’s and 1’s, as was the case for the k = 2 radius-2
CA in Eq. (27.12), a rule consists of a sequence of 243 0’s, 1’s, and 2’s.
There is a mind-bogglingly large number of such sequences:

3243 ≈ 8.7× 10115 . (27.14)

It is hard to know how to even begin to think about this number. There
have been around 1017 seconds since the big bang. So 10115 is unthink-
ably large. In general, for radius-r, K-state CAs the number of possible
CAs is:

Number of rules = KK2r+1

. (27.15)

This number grows extremely quickly as r and K are increased.
Finally, another variation on the CAs we have considered in this chap-

ter is to increase their dimension. The CAs we have looked at have
been one-dimensional, in the sense that their configurations are a one-
dimensional sequence of cells. The resultant space-time diagram is two-
dimensional; the horizontal direction corresponds to space while the ver-
tical direction shows the time evolution of the CA. However, there are
also two-dimensional CAs. Here, a configuration is a two-dimensional
grid or lattice of cells. The CA rule determines the next value of a cell
based on the value of cells in the neighborhood. The result is a sequence
of two-dimensional grids of cells. For the most part, one-dimensional
CAs are used as quite abstract models, in the sense that they are not
taken to correspond, even loosely, to phenomena or processes in the
physical or biological realm. Two-dimensional CAs, however, are often
used to model particular phenomena in biology and physics.
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Further Reading

This chapter is just the tip of the iceberg. A great deal has been writ-
ten about the mathematical properties of cellular automata and their
applications in physics, biology, and other areas of science. Daniel Ka-
plan and Leon Glass’s Understanding Nonlinear Dynamics (1995) and
Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe’s Chaos and
Fractals (1992) each have chapters on CAs. Although the level of math-
ematics in these books is more advanced than in this one, they neverthe-
less should be accessible to most readers. Melanie Mitchell’s Complexity:
A Guided Tour (2009), has an excellent, mostly non-technical discussion
of CAs. I also recommend the chapter on CAs in Nino Boccara’s Mod-
eling Complex Systems (2004).

Stephan Wolfram’s New Kind of Science (2002) is largely focused on
CAs. This book garnered considerable attention and some accolades
from the popular press. However, in the science and mathematics com-
munities, reviews have been mixed, at best. I recommend not relying on
this book as your main reference for CAs, as I think it does not provide
a balanced overview of current research in CAs and related fields.

Exercises

(27.1) Consider rule 250, shown in Fig. 27.17. Starting
with a single black cell, iterate using rule 250 for
twenty or so time-steps.

Fig. 27.17 CA rule 250.

(27.2) Consider rule 250, shown in Fig. 27.17. Start-
ing with a random initial configuration of sixteen
cells, iterate using rule 250 for ten time-steps.

(27.3) Consider rule 182, shown in Fig. 27.18. Starting
with a single black cell, iterate using rule 192 for
twenty or so time-steps.

(27.4) Find an initial configuration of six sites that does
not lead to an all-white state when iterated with
rule 32, Fig. 27.8

(27.5) Is it possible to find a seven-site configuration that
does not turn all white when iterated by rule 32,
Fig. 27.8? Why or why not?

Fig. 27.18 CA rule 182.

(27.6) Consider rule 182, shown in Fig. 27.18. Start-
ing with a random initial configuration of sixteen
cells, iterate using rule 182 for ten time-steps.

(27.7) Write down the rule (I.e., the series of outputs as
in Fig. 27.2) for:

(a) Rule 0

(b) Rule 3

(c) Rule 133

(d) Rule 200

(27.8) How many CAs are there if the number of states
K = 3 and the radius r = 3?

(27.9) How many CAs are there if the number of states
K = 2 and the radius r = 4?
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Thus far in this book we have looked exclusively at systems which change
discretely, in jumps from one time interval to the next. In this chap-
ter I introduce dynamical systems that change continuously, where the
variable of interest—perhaps the temperature of a cup of coffee or the
position of a ball that is thrown through the air—has a value at every
instant. Dynamical systems that describe this sort of change are known
as differential equations. After introducing differential equations in this
chapter, in the subsequent three chapters we will explore their dynamical
properties in one, two, and three dimensions.

28.1 Continuous Change

Before beginning our foray into continuous systems, it will be helpful
to quickly review discrete dynamical systems. Consider yet again the
logistic equation,

f(x) = rx(1 − x) . (28.1)

Introduced in Chapter 7, the logistic equation is a very simple model of
the dynamics of a population that has some limit to its growth. Iterating
the logistic equation yields an orbit, or itinerary, which is a listing of the
successive values of the function. For example, choosing r = 3.9 and a
seed of x0 = 0.8, one obtains the itinerary shown in Table 28.1. Recall
that the population value x in the logistic equation is expressed as a
fraction of the maximum possible population. So a population of 0.8
indicates that the population is 80% of its maximum value. The first

Table 28.1 The orbit of the ini-
tial condition x0 = 0.8 when it-
erated by f(x) = 3.9x(1− x).

x0 0.8
x1 0.624
x2 0.915
x3 0.303
x4 0.824
x5 0.566
x6 0.958

fifteen iterates are shown in the time series plot of Fig. 28.1. We are by
now quite familiar with such plots. Recall, however, that the iterates
only have a value at discrete time steps. That is, iterating the equation
gives the population at the first generation, the second generation, the
third generation, and so on. It does not give the population at every
instant of time. Thus, in Fig. 28.1, the values on the graph only make
sense at integer values of t. That is, the population is 0.915 at t = 2 and
0.303 at t = 3. There is a dotted line connecting these two points on
the figure. But this line is just a visual aid, designed to help make the
plot easier to read. The straight line does not mean that the population
passes through all intermediate values between 0.915 and 0.303.
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Fig. 28.1 A time series plot of the or-
bit of 0.8 for the logistic equation with
r = 3.9. The value of the function
is only defined at discrete time steps:
t = 0, 1, 2, . . ..
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In contrast, consider a warm cup of coffee that slowly cools, eventu-
ally reaching room temperature. Here there is no natural notion of a
generation or a time step. The temperature of the coffee is changing con-
tinuously. If, for example, the coffee started at 80 degrees Celsius and a
little while later was at 40 degrees Celsius, it must have been the case
that the coffee was, for at least an instant, at any and all temperatures
between 80 and 40 degrees. The coffee cannot skip any temperatures as
it cools.
This is illustrated in Fig. 28.2, which is what a plot of temperature

T versus time t might look like for a cooling cup of coffee. Note that
the plot is a smooth, continuous curve. There are no gaps or missing
values as the coffee cools. The temperature is a function of time. This

Fig. 28.2 A plot of the temperature of
a cup of coffee as it cools. The tem-
perature changes continuously. At ev-
ery instant of time it has a well-defined
temperature, and the temperature can-
not skip any values as it cools.
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function is written T (t). Capital T is the temperature, and lowercase t
is the time. The idea is that T (t) is a function which takes as an input
the time t and outputs the temperature T of the coffee at that time.

28.2 Instantaneous Rates of Change

How might we model this situation? A continuously changing tempera-
ture is a quite different sort of thing than a population that changes in
discrete time-steps. To describe this situation mathematically we need
to think carefully about rates of change. A rate tells us how fast some-
thing is changing. For example, if a tree is 10 meters tall today and is
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40 meters two years from now, the average growth rate over those two
years is 15 meters/year. We write this as:

Average growth rate =
40 meters− 10 meters

2 years

= 15 meters/year . (28.2)

In general,

Average growth rate =
Δh

Δt
, (28.3)

where h represents the height of the tree and Δ stands for “change in”.
Read aloud, the above equation is: The average growth rate equals the
change in height h divided by the change in time t. I.e., the change in
height divided by the time interval during which that change occurs.

The above equation gives the average growth during a time interval
Δt. However, the growth rate need not be constant over this time inter-
val. For example, the tree could grow very fast the first year and slower
the second year. Suppose we want to know the instantaneous growth
rate—how fast the tree is growing at a particular moment in time. This
immediately poses a quandary. Equation (28.2) makes it clear that the
growth rate is a statement about the difference in heights at two differ-
ent times. But an instantaneous growth rate should be well defined at a
particular instant, without needing to make reference to some secondary
instant. We cannot use the same two instants in Eq. (28.3), because do-
ing so would yield a Δt of zero, and dividing by zero is undefined. On
the other hand, the essence of a growth rate—or any other rate for that
matter—is that some change is taking place. Hence, it appears that the
notion of a rate requires two separate instants. Is it possible to speak of
an instantaneous rate at all?

It turns out that the answer to this last question is “yes”: one can
indeed give meaning to an instantaneous rate of change. Suppose we
want to know the growth rate at the exact instant where t = 1.0. The
trick is to use Eq. (28.3) to find the growth rate using the heights at two
instants, perhaps t = 1.0 and 1.1. Then find the growth rate using two
instants that are closer together: t = 1.0 and t = 1.01. We make the
two instants closer and closer together, and in this way we can sneak up
on an instantaneous growth rate.

This might seem a little bit like magic, or perhaps like cheating. We
are essentially dividing by zero without actually dividing by zero. It may
seem like lots could go wrong in this process, but it turns out that this
can be done in a consistent and well-defined way. The branch of math-
ematics that makes all this possible is calculus—specifically differential
calculus, which is the central topic of the first part of most multi-term
calculus sequences. A full discussion of calculus is well beyond the scope
of this text.1 However, we will be able to introduce and understand a

1Chapter 11.2 of Flake (1999) is an
accessible, short overview of calculus.
By far the best book-length primer on
calculus that I know of is Calculus

Made Easy (1998). Written by Silvanus
Thompson, this book was first pub-
lished in 1910. (Its full title is Calcu-

lus Made Easy: Being a Very-Simplest

Introduction to those Beautiful Meth-

ods of Reckoning which are Generally

Called by the Terrifying Names of the

Differential Calculus and the Integral

Calculus.) In 1998 a version was pub-
lished that includes some additional in-
troductory material by Martin Gard-
ner. But Thompson’s prose, now a cen-
tury old, remains a remarkably read-
able and engaging introduction to cal-
culus.

new class of dynamical systems without having to dig deeply into the
mechanics of calculus.

In any event, the central thing to take from this discussion is that in
order to describe and understand quantities that change continuously
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we will need to make use of the instantaneous rate of change. Although
the mathematical procedure for defining this quantity may be subtle, I
hope that its interpretation is fairly intuitive. Before proceeding, how-
ever, there is some technical terminology and notation for instantaneous
growth rates that will be essential to what follows.
To introduce this notation, let us continue with the example of the

growing tree. Let h(t) represent the height of the tree at a time t. Then
the instantaneous growth rate is denoted

instantaneous growth rate of h(t) =
dh

dt
. (28.4)

This equation is almost identical to Eq. (28.3). The only difference is
that there are lowercase d’s instead of capital deltas (Δ). The little d’s
are an indication that we are interested in tiny little changes in h and
t. (Strictly speaking, the little changes are infinitesimal.) That said, it
is best to think of dh

dt
not as a fraction but as a single symbol which

stands for the instantaneous rate of change of the function h(t). The
instantaneous rate of change dh

dt
is known as the derivative of h(t). The

first term of a calculus sequence is concerned primarily with derivatives:
their definition, techniques for calculating them, and their applications.
Finally, it is useful to know that there are alternative notations for

the derivative. The derivative is also indicated with a symbol that looks
like an apostrophe:

h′(t) =
dh

dt
= instantaneous growth rate of h(t) . (28.5)

The symbol on the left-hand side of the above equation would be read
“h prime of t”. I will not use this notation, but it is quite common, and
so it is good to know about it, as you might encounter it elsewhere. In
physics and engineering, rates of change are sometimes denoted with a
dot:

ḣ(t) =
dh

dt
= instantaneous growth rate of h(t) . (28.6)

28.3 Approximately Solving a Differential

Equation

We now use the derivative, i.e. the instantaneous rate of change, to
model a quantity that changes continuously. To do so, we return to
the example of a cooling cup of coffee. Let T (t) represent the coffee’s
temperature, in degrees Celsius. We will assume that room temperature
is 20 degrees C. The rate at which the coffee cools is proportional to
how much warmer it is than room temperature. That is, if the coffee
is 40 warmer than room temperature it will cool twice as fast as if it
is 20 degrees warmer than room temperature. This seems reasonable; a
hot beverage cools quite quickly at first, but then cools less quickly the
closer it gets to room temperature. This result—that the rate of cooling
is proportional to the temperature difference—is known as Newton’s law
of cooling.2

2The same Issac Newton from Chapter
8 who came up with the laws of motion
and the universal law of gravitation.
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This law can be written in terms of an equation involving the tem-
perature and its derivative. If the coffee is cooling in a 20-degree room,
this equation is:

dT

dt
= −0.2(T (t)− 20) . (28.7)

This an example of a differential equation, an equation that relates
a function to its derivative. In this case, the function is T (t). The
solution to a differential equation is a function—here the temperature
T as a function of time.
Let us analyze this equation piece by piece. The left-hand side of

the equation, dT/dt is the rate at which the coffee cools. The term on
the right-hand side, (T (t) − 20), is the difference between the current
temperature of the coffee T (t) and room temperature, 20. The minus
sign in the equation makes the rate of change negative; since the coffee
is cooling, its temperature is decreasing. The number 0.2 is a factor
that depends on the manner in which the coffee exchanges heat with the
surroundings. The better the insulation, the more slowly the coffee will
lose heat, and the smaller this number will be.3

3In this case I just made up this num-
ber to give a reasonable cooling rate.
In a particular application one would
need to infer this quantity by measuring
the cooling rate. Also, for some simple
physical situations these numbers have
been tabulated, and so one might be
able to use such a table to estimate the
number. A clear introduction to math-
ematical models of heating and cooling
can be found in Chapter 9 of Barnes
and Fulford (2002).

What can we do with Eq. (28.7)? How can we use it to figure out
the temperature of the coffee as a function of time so as to make a plot
of T (t) as in Fig. 28.2? In order to start, we need to know the initial
temperature of the coffee. For this example, let us assume that the coffee
is initially at 80 degrees. Thus, T (0) = 80. Now what? Well, Eq. (28.7)
tells us the instantaneous rate of temperature change at t = 0. We plug
in T (0) = 80 on the right-hand side and obtain

(Rate of temp change at t = 0) = −12 C

min
. (28.8)

Given this information, can we figure out T (1), the temperature 1 minute
later?

This may seem to be a straightforward task, since we know the current
temperature and how fast the temperature is changing. But the catch is
that −12 degrees C/min is the instantaneous rate of change. It is how
fast the temperature is changing at exactly t = 0. Even a few seconds
later this rate will be less. How can we cope with a rate of change that
is always changing?

One coping mechanism is to momentarily ignore this changing rate of
change and pretend that cup of coffee is cooling at −12 degrees C/min
for the entire first minute. Given this, it then follows that at t = 1
the temperature of the coffee is 80 − 12 = 68 degrees. Thus, T (1) is
approximately equal to 68 degrees. Next we seek the temperature at

Table 28.2 The temperature of a
cup of coffee, approximated using
Eq. (28.7) and a time interval of 1
minute.

Time t Cooling Temp. T (t)
Rate

0 −12.00 80.00
1 −9.60 68.00
2 −7.68 58.40
3 −6.11 50.72
4 −4.91 44.58
5 −3.93 39.66t = 2. We could just pretend that the temperature is still decreasing

at 12 C/min. But we can do better, by going back to Eq. (28.7) and
determining the cooling rate at t = 1. To do so, we plug in T (1) = 68
and obtain:

(Rate of temp change at t = 1) = −9.6 C

min
. (28.9)
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As expected, the coffee is cooling less quickly now. We now use this
new rate to estimate the temperature at t = 2. As before, this is only
an approximation. The coffee is not cooling at 9.6 C/min for the entire
minute, as its rate of cooling is continually decreasing. However, we can
pretend that this rate is constant and estimate that the temperature of
the coffee after two minutes is 68 − 9.6 = 58.4 C. We continue in this
fashion, approximating the temperature of the coffee minute by minute.
The result of doing this is shown in Table 28.2. You might want to take
a moment and verify the temperature values for t = 3, 4 and 5.

Fig. 28.3 A plot of the temperature
T (t) of a cup of coffee as it cools. The
solid curve is the exact result, obtained
using calculus. The squares are the ap-
proximate results obtained using Eu-
ler’s method. The first several approx-
imate values are listed in Table 28.2.
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In Fig. 28.3 I have plotted the approximate results for the temper-
ature of the coffee T (t) listed in Table 28.2. (I continued determining
approximate value out to t = 15 for the plot, but I did not include them
in the table.) Also in the figure I have plotted as a solid curve the exact
result for the temperature of the coffee as a function of time. I will say
a little bit at the end of this chapter about how one can obtain an exact
result such as this.
Figure 28.3 shows that our approximate result is pretty good—perhaps

better than could be expected given the pretending. The rate of cool-
ing is always decreasing, but we pretended that this rate was constant
over each 1-second time interval. The result is that we overestimate
how much the coffee cools off in each time interval. Accordingly, the
approximate solution, the squares connected by dashed lines, is below
the exact solution.
Can we improve our approximation? Yes. To do so, we will consider

smaller time intervals. Let us use a time interval of 0.5 seconds. We will
pretend that the rate of cooling is constant over this interval instead
of pretending it is constant for a full second. This is clearly a better
approximation, as the cooling rate changes less in half a second than
it does in a full second. Thus, our approximation will be better. The
price we have to pay, however, is that it takes more work to get the
approximate answer.
Let us give it a try. Initially the temperature of the coffee is 80 degrees.

We plug this in to Eq. (28.7) to determine the cooling rate. We have
done this already in Eq. (28.8), where we found that the rate is −12
degrees C/min. The cooling rate is constantly changing, but we pretend
that it is constant for 0.5 min, during which the change in the coffee
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temperature is

−12 C

min
× 0.5min = −6 min . (28.10)

Thus, after 0.5 minutes, the temperature of the coffee is 74 degrees.
Next, we recalculate the cooling rate using Eq. (28.7) with t = 0.5

and T (0.5) = 74. Doing so, we get

(Rate of temp change at t = 0.5) = −10.8 C

min
. (28.11)

We pretend that the cooling rate is constant during the next 0.5 minutes.
This gives a change in temperature of −5.4, so the temperature of the
coffee is now 74− 5.4 = 68.6. And in general,

New temperature = old temp +

(
dT (t)

dt
× (0.5)

)
. (28.12)

Continuing, we find the temperature values shown in Table 28.3.

Table 28.3 The temperature of a
cup of coffee, approximated using
Eq. (28.7) and a time interval of 0.5
minutes.

Time t Cooling Temp. T (t)
Rate

0.0 −12.00 80.00
0.5 −10.80 74.00
1.0 −9.72 68.60
1.5 −8.75 63.74
2.0 −7.87 59.37
2.5 −7.09 55.43
3.0 −6.34 51.89

In Fig. 28.4 I have plotted the exact result for T (t), the approximation
for T (t) using a time step of 1 minute, and the approximation using a
time step of 0.5 minutes. As anticipated, the smaller time step leads to
a more accurate result. We can get better approximations to the exact
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Exact
Δt = 1.0
Δt = 0.5 Fig. 28.4 A plot of the temperature

T (t) of a cup of coffee as it cools. The
solid curve is the exact result, obtained
using calculus. The squares are the ap-
proximate results obtained using Eu-
ler’s method with a time step of one
minute and the triangles are the results
obtained using Euler’s method with a
time step of 0.5 minutes. A smaller
time step leads to a more accurate ap-
proximation.

function by choosing smaller and smaller values for our time step. The
approximation gets better, because the fiction that the rate is constant
over the time interval becomes less and less of a lie as the time step is
smaller. The smaller the time step, the less time the rate has to change,
and so treating the rate as approximately constant is more justified. For
example, it is definitely not true that you have grown at a constant rate
your entire life, or even over one year. However, your growth rate is
reasonably constant if measured over a month, and is essentially indis-
tinguishable from constant if measured over a week or a day.

How small a time step is needed so that the approximation is reason-
able? The answer depends on how fast the rate of growth is changing:
one wants a time step to be small enough so that we can treat the
growth as essentially constant over the time interval. In practice, one
might choose smaller and smaller values for Δt until the solution does
not change significantly. The main point is that by choosing smaller and
smaller time steps, one can get a solution that is a better and better ap-
proximation to the exact solution.
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28.4 Euler’s Method

The method just described is known as Euler’s method.4 Having seen4Euler’s method is named after Leon-
ard Euler, a prolific Swiss mathemati-
cian and physicist in the 1700s. His last
name is pronounced “oiler”, not “you-
ler”.

an example in which we used Euler’s method to approximate the solu-
tion to a differential equation, I will now describe Euler’s method more
generally. We will consider differential equations of the following form:

df

dt
= F (f(t)) . (28.13)

The picture here is that f(t) is an unknown function—perhaps the tem-
perature of a cooling cup of coffee. And F (f(t)) is some expression
involving the unknown function f(t). For example,

df

dt
= f(t)− 613 + (f(t))2 , (28.14)

has the form of Eq. (28.13). When faced with a differential equation,
the task is to find f(t). That is, it is the entire function f(t) that is
unknown.
In order to solve for f(t), one needs the initial condition—the value of

f(t) when t = 0. The differential equation then lets us figure out the rate
of change of f(t) by plugging in to the right-hand side of Eq. (28.13). So
we determine how the function is changing and then use this to figure
out the value of the function. But we need an initial value to start this
process. This is similar to how we need an initial condition or seed when
iterating a function.
In order to employ Euler’s method to find f(t), we also need to choose

the step size Δt. Once we have an initial condition f(0) and the step size,
we can begin using Euler’s method. Here is an outline of the procedure:

(1) Choose an initial condition f(0) and a step size Δt. Set t = 0.

(2) Evaluate the rate of change of the function by plugging in to the
right-hand side of the differential equation, Eq. (28.13). Call this

rate of change f(t)
dt

.

(3) Use this rate of change to figure out the next value for the function:55Compare this with Eq. (28.12), which
we repeated used to approximate the
temperature of the cooling cup of cof-
fee. f(t+Δt) = f(t) +

(
df(t)

dt
×Δt

)
. (28.15)

(4) Increase t by Δt.

(5) Go to step 2.

Euler’s method for approximating solutions to differential equations is, I
think, quite logical. It follows from the idea that a differential equation
is a relationship between a function and its rate of change, and thus we
can utilize this relationship step by step to infer the value of a function.
Loosely speaking, a differential equation such as Eq. (28.7) or (28.13)

is a set of directions. The equation is giving you directions to some-
where, but it does so indirectly, by telling you the rate of change of the
function at every instant in time. Euler’s method turns this indirect
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information—the rate of change—into a sequence of approximate values
of the function.

To summarize, we began with a new mathematical entity—a differ-
ential equation describing an unknown, continuous function f(t). A
differential equation is a formula for f(t)’s rate of change. We then need
to determine the function f(t). We used Euler’s method to convert the
differential equation into a discrete, iterated function. The result is a
time series of numerical values at discrete time intervals. An example is
Table 28.3 or Fig. 28.4. However, the results from Euler’s method must
be interpreted differently from the time series we have studied in previ-
ous chapters. Time series from Euler’s method are an approximation to
a continuously varying function. For example, in Table 28.3 we see that
the temperature is 80 at t = 0 and 74 at t = 0.5. This means that in
between these two times the temperature must have passed through all
values between 80 and 74. The temperature does not instantaneously
jump from 80 to 74 but does so continuously, sliding through all inter-
mediate temperature values.

28.5 Other Solution Methods

In Figs. 28.3 and 28.4 I plotted the exact solution in addition to the
approximate solutions using Euler’s method. Where does this exact
solution come from? The short answer is that one needs the branch of
mathematics known as calculus to solve differential equations exactly.
Indeed, calculus was invented in part for just this purpose. Calculus is
an incredibly powerful mathematical framework that relates functions
to their rates of change. Calculus is one of the pillars of mathematics
and it has widespread application in almost any scientific field.

Unfortunately, explaining where the exact solution to Eq. (28.7) comes
from is beyond the scope of this book. I just do not see any way to
explain it without calculus. However, knowing calculus is most definitely
not needed in order to understand what a differential equation is and
what its solution means. What is needed is an understanding of what
differential equations are and how to interpret their solutions. I think
that knowing how Euler’s method works is helpful for understanding
what solutions to differential equations mean, but to understand the
dynamical systems in the next several chapters it is not necessary to
become an expert at using Euler’s method.

Finally, I should mention that Euler’s method is not a particularly
efficient technique for coming up with an approximate solution to a dif-
ferential equation. Its main benefit is that it is simple to implement and
fairly clear conceptually. There are a number of other approximation
schemes that are more efficient, in the sense that they take less comput-
ing power to get a solution to a specified accuracy. The most common
of these are a family of techniques known as Runge–Kutta methods. It
turns out that most differential equations cannot be solved exactly even
with calculus, so approximate methods are often a necessity, even for
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those who do know calculus. These approximate methods are almost
always carried out with a computer.

Exercises

(28.1) Verify the entries in Table 28.2 for t = 3, 4, and 5.

(28.2) Verify the entries in Table 28.3 for t = 1.5, 2.0, 2.5,
and 3.0.

(28.3) Consider the following differential equation:

df

dt
= 3 . (28.16)

Let the initial condition be f(0) = 2.

(a) Use Euler’s method with Δt = 2.0 to deter-
mine an approximate solution to the differ-
ential equation.

(b) Use Euler’s method with Δt = 1.0 to deter-
mine an approximate solution to the differ-
ential equation.

(c) Does your solution depend on Δt? Why or
why not?

(d) Determine a formula for the solution f(t) to
this differential equation.

(28.4) Repeat Exercise 28.3, but use the differential
equation:

df

dt
= 0 . (28.17)

(28.5) Repeat Exercise 28.3, but use the differential
equation:

df

dt
= −2 . (28.18)

(28.6) Consider the following differential equation:

df

dt
= 2f(t) . (28.19)

Let the initial condition be f(0) = 2.

(a) Use Euler’s method with Δt = 2.0 to deter-
mine an approximate solution to the differ-
ential equation.

(b) Use Euler’s method with Δt = 1.0 to deter-
mine an approximate solution to the differ-
ential equation.

(c) What is the long-term behavior of solutions
to this differential equation? Explain.

(d) What is the solution to the differential equa-
tion if f(0) = 0?

(28.7) Consider the following differential equation:

df

dt
= 2f(x)(1− f(x)) . (28.20)

This can be thought of as the differential equation
version the logistic equation. The population in
instance varies continuously instead of in discrete
steps. For each of the following initial conditions
f(0) and time steps Δt, use Euler’s method to
determine an approximate solution to the differ-
ential equation.

(a) f(0) = 0.5 and Δt = 1.0

(b) f(0) = 0.5 and Δt = 0.5

(c) f(0) = 2.0 and Δt = 1.0

(d) f(0) = 2.0 and Δt = 0.0

How would you describe the global behavior of
this equation. Are there any attractors? (This
exercise can be somewhat tedious to do by hand.
You might want to use a spreadsheet to automate
the calculations.)

(28.8) Repeat Exercise 28.7, but use the differential
equation

df

dt
= 4f(x)(1− f(x)) . (28.21)

Is the behavior qualitatively different from that
which you found in Exercise 28.7? The logistic
equation with r = 4 is chaotic. Do you see chaotic
behavior here? Why or why not?
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In the previous chapter I introduced differential equations. These dy-
namical systems are used to model phenomena that change continuously.
In this short chapter we will take a look at some one-dimensional dif-
ferential equations. In so doing we will gain a sense of the types of
dynamical behavior that are (and are not) possible for these types of
dynamical systems. In the subsequent two chapters we will investigate
two-dimensional and then three-dimensional differential equations.

29.1 The Continuous Logistic Equation

Throughout this book I have repeatedly used the logistic equation as
one of the central examples of a chaotic system:

f(x) = rx(1 − x) . (29.1)

Iterating this equation gives us times series that show a range of behav-
iors depending on the value of the parameter r. We now analyze the
logistic differential equation:

dP

dt
= rP (t)

(
1− P (t)

K

)
, (29.2)

where P (t) is the population, r is a parameter related to the growth rate
of the population, and K is, for reasons which we shall see below, known
as the carrying capacity. What are the solutions to this differential equa-
tion and how do they depend on the parameter r? Equations. (29.1) and
(29.2) look similar and they have similar origins; both were constructed
to be simple models of a population that has some limit to its growth.
Does the differential equation Eq. (29.2) exhibit chaos like the discrete
logistic function?

We begin our analysis by noting that Eq. (29.2) is of the following
form:

dP

dt
= F (P ) . (29.3)

In other words, dP/dt, the rate of change of the population, depends
entirely on P , the current value of the population. We can make this
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concrete by choosing values for the parameters. I will choose r = 4 and
K = 100. Thus, Eq. (29.2) has the form:

dP

dt
= 4P

(
1− P

100

)
. (29.4)

Again, note that this equation says that if we know P at an instant we
can determine dP/dt at that instant.

Fig. 29.1 A plot of F (P ), the right-
hand side of Eq. (29.4). This shows
how the growth rate dP

dt
of the popula-

tion depends on P (t), the value of the
population.
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The key to determining the behavior of P (t) is to plot the right-hand
side of Eq. (29.4). This is done in Fig. 29.1. We can learn a great deal
about P (t) by looking at this plot. First, notice that the growth rate
dP/dt is positive if P is greater than zero and less than 100. This means
that the population grows for any P value in the range 0 to 100. The
growth rate dP/dt has a maximum when P = 50, so the population
increases the most rapidly at P = 50. As P approaches 100 the growth
rate decreases and eventually reaches zero. Thus the population will
level off at 100.
When P is greater than 100, dP/dt is less than zero, and so the

population is decreasing. A population that starts off larger than 100
will decrease, at first rapidly, and then less rapidly, until it levels off at
100. This analysis suggests that 100 is an attractor.
The above analysis gives us a qualitative, global picture of the dif-

ferential equation. We expect an attracting fixed point at P = 100.
Population values above 100 decrease, while population values below
100 increase. We can now use Euler’s method to solve for P (t). The
P (t) curves for four different initial conditions are shown in Fig. 29.2.
As anticipated, all curves approach the fixed point at P = 100. The
population increases for P < 100 and decreases for P > 100. Note that
the lower-most curve, with P (0) = 10, increases the most rapidly when
P = 50, as expected.
The dynamics of this differential equation are summarized with a

phase line, shown in Fig. 29.3. This is similar to the phase lines that
were introduced in Chapter 3. However in this case, since P (t) is a con-
tinuous function and not a discrete time series, P (t) does not move in
jumps. Rather, it can only slide up and down the phase line; it cannot
skip any values.
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Fig. 29.2 A plot of P (t), the pop-
ulation as a function of time, deter-
mined using Eq. (29.2) with r = 4 and
K = 100. Shown are the solutions
P (t) for four different initial conditions,
P (0) = 150, 120, 60, and 10. Note that
all curves approach the attracting fixed
point at P = 100.

1000
Fig. 29.3 The phase line for the differ-
ential equation of Eq. (29.1). There is
an attracting fixed point at P = 100.

It is possible to use algebra to solve for the fixed point at P = 100.
A fixed point occurs when P (t) does not change. This will be the case
when

dP

dt
= 0 . (29.5)

Thus, we need to find the value(s) of P that make the above equation
true. In contrast, for discrete iterated systems like the logistic equation,
the equation for finding fixed points was

f(x) = x , (29.6)

first introduced in Section 3.4. The two fixed-point equations, Eq. (29.5)
and Eq. (29.6), are different because they apply to different types of
dynamical systems. Equation (29.5), the fixed-point equation for a dif-
ferential equation, says that we need to find the P value such that the
rate of change of P is zero. Equation (29.6), the fixed-point equation
for discrete iterated systems, says that we need to find the x value such
that x is unchanged after f acts on it.

In any event, let us use Eq. (29.5) to find the fixed points of Eq. (29.4).
We need to solve the following equation for P :

4P

(
1− P

100

)
= 0 . (29.7)

We can see that P = 0 is one solution. The other solution occurs when
the term in parentheses is zero:(

1− P

100

)
= 0 . (29.8)

A few steps of algebra shows that P = 100 is a solution to the above
equation. Thus, P = 100 is a fixed point.
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29.2 Another Example

Let us do one more example. Consider the following differential equa-
tion:

dX

dt
=

1

5
X(3−X)(8−X) . (29.9)

Note that in this example the unknown function is X(t) instead of P (t)
as it was in the previous section. The right-hand side of this equation is
a function of X . That is,

dX

dt
= F (X) , (29.10)

where

F (X) =
1

5
X(3−X)(8−X) . (29.11)

As in the previous section, we can gain a qualitative, global understand-
ing of the solutions to this equation by plotting F (X).

Fig. 29.4 A plot of F (X), Eq. (29.11).
The differential equation has three
fixed points. There are unstable fixed
points at X = 0 and X = 8, and a sta-
ble fixed point at X = 3.
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Such a plot is shown in Fig. 29.4. We see that F (X) is positive if X
is between 0 and 3, negative if X is greater than 3 but less than 8, and
positive if X is greater than 8. Since X increases if F (X) is positive and
decreases if F (X) is negative, we can immediately draw the phase line
for the solutions to Eq. (29.9), shown in Fig. 29.5.

Fig. 29.5 The phase line for the differ-
ential equation of Eq. (29.9).

30 8

One can now use either the phase line or the plot in Fig. 29.4 to sketch
approximate solutions to the differential equation. We know that any X
that starts between 0 and 3 will grow and approach the attracting fixed
point at X = 3. And any X that starts between 3 and 8 will decrease
and approach 3. Finally, any X that starts above 8 will grow without
bound and will tend toward infinity. This is illustrated in Fig. 29.6.
If we needed greater accuracy or if we wanted to check our work, we
could use Euler’s method to obtain an approximate solution to the dif-
ferential equation. However, if all we are interested in is classifying
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the equation’s global behavior—determining the fixed points and their
stability—Euler’s method is not necessary, at least for simple differential
equations of the sort we have studied in this chapter and the previous
one.
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Fig. 29.6 Solutions to the differential
equation, Eq. (29.9). Shown are solu-
tions X(t) for six different initial condi-
tions: 8.05, 7.95, 6, 4, 2, 0.05. The phase
line is shown in Fig. 29.5. There is an
attracting fixed point at X = 3 and
repelling fixed points at X = 0 and
X = 8.

29.3 Overview of One-Dimensional
Differential Equations

In this chapter we have looked at differential equations of the form:

dX

dt
= F (X) . (29.12)

What type of dynamical behaviors are such systems capable of? One-
dimensional iterated functions are capable of periodic behavior and chaos.
Can one-dimensional differential equations do the same? The answer
to this question is “no”. A differential equation that has the form of
Eq. (29.12) is deterministic and the solutions are continuous. As a re-
sult, solutions to Eq. (29.12) can never change direction, and so chaos
and periodic solutions are not possible. To see why, it is easiest to
consider a counter-example.

In Fig. 29.7 I have plotted a candidate solution X(t) to differential
equation Eq (29.12). However, such a solution is not possible. The
reason is that the X(t) curve visits the same X value multiple times.
For example, X(t) in the figure is equal to 40 at three different times,
t ≈ 0.2, 0.35, and 0.6. Each time X(t) reaches 40 it has a different
growth rate; its slope is different. But according to Eq. (29.12), this
is impossible; the growth rate of X(t) is determined solely by the the
current value of X . An X of 40 corresponds to one and only one growth
rate. So a curve such as that shown in Fig. 29.2 cannot be a solution to
differential equations of the form Eq. (29.12).

The consequence of this is that the solution to a differential equation
of the form of Eq. (29.12) can only increase or only decrease. It cannot
do some of each.1 So, there are a limited number of options for a solution

1It is possible, however, for a solution
to be constant. This occurs if the initial
condition is a fixed point.

to such a differential equation. It could tend toward positive or nega-
tive infinity. The only other possibility is that the solution approaches a
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Fig. 29.7 A plot of a potential solu-
tion X(t) to the differential equation
Eq. (29.2). This function cannot be
a solution, however, since it both in-
creases and decreases.
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fixed point, as is the case in Fig. 29.2. The orbit cannot turn around, for
the reason given in the previous paragraph. And the orbit cannot cross
the fixed point, since that point is fixed. If the solution hits the fixed
point, it must remain there. So solutions to one-dimensional differential
equations of the form of Eq. (29.12) cannot be periodic or chaotic.
Before concluding, I should mention that not all one-dimensional equa-
tions are of the form given in Eq. (29.12). For example, in the differential
equation:

dX

dt
= 10X(t) + sin(2t) , (29.13)

the growth rate dX
dt

is no longer a function only of X , since there is
explicit t dependence as well. Thus, this equation is not of the form of
Eq. (29.12). This means that solutions that both increase and decrease,
such as that depicted in Fig. 29.7, are no longer forbidden. Hence, cy-
cles and chaos are now a possibility. Equations of the form Eq. (29.12)
are called autonomous, since the growth rate is independent (i.e., au-
tonomous) of time .
To summarize, differential equations of the form Eq. (29.12) are rather

limited in their dynamical behavior. A solution to such a differential
equation can either increase, decrease, or remain constant. No other be-
havior is possible. In the next chapter we will examine two-dimensional
differential equations, and we will see that they have a larger repertoire.

Exercises

(29.1) Consider a differential equation of the form

dX

dt
= G(X) . (29.14)

(a) Sketch a possible G(X) such that the dif-
ferential equation has two attracting fixed
points and one repelling fixed point.

(b) Sketch a possible G(X) such that all solu-
tions to the differential equation tend toward
negative infinity.

(c) Sketch a possible G(X) such that the dif-
ferential equation has three attracting fixed
points and no repelling fixed points.
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(29.2) � Consider the following differential equation:

dX

dt
= 2X . (29.15)

Without using Euler’s method, find and classify
all fixed points.

(29.3) Consider the following differential equation:

dX

dt
= 3 + 2X . (29.16)

Without using Euler’s method, find and classify
all fixed points.

(29.4) Consider the differential equation:

dY

dt
= G(Y ) , (29.17)

where the function G(Y ) is shown in Fig. 29.8.
Assume Y > 0 and that enough of G(Y ) is shown
to determine the global behavior of the differential
equation.

(a) How many fixed points does this differential
equation have? Are they attracting or re-
pelling?

(b) Sketch approximate solutions Y (t) to the
differential equation for the following initial
conditions: Y (0) = 0, 2, 4, and 6.
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Fig. 29.8 The function G(Y ) for Exercise 29.4.

(29.5) Consider the differential equation:

dX

dt
= F (X) , (29.18)

where the function F (X) is shown in Fig. 29.9.
Assume that enough of F (X) is shown to deter-
mine the global behavior of the differential equa-
tion. How would you describe the global behavior

of the solutions? Are there any fixed points? Are
they attracting or repelling?

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20

F
(X

)

X

Fig. 29.9 The function F (X) for Exercise 29.5.

(29.6) Consider the differential equation:

dX

dt
= F (X) , (29.19)

where the function F (X) is shown in Fig. 29.10.
Assume that enough of F (X) is shown to deter-
mine the global behavior of the differential equa-
tion. How would you describe the global behavior
of the solutions? Are there any fixed points? Are
they attracting or repelling?
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Fig. 29.10 The function F (X) for Exercise 29.6.
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In the previous chapter we examined differential equations of the form
dX
dt

= f(X) and saw that solutions X(t) were limited in behavior. A
particular solution can increase, decrease, or remain constant. But com-
binations of these behaviors are not possible, and hence cycles and chaos
do not occur. In this chapter we will examine two-dimensional differ-
ential equations and will find that they are capable of a richer set of
behaviors.

The initial example I will introduce is a model of two interacting
populations, known as the Lotka–Volterra (LV) model or the Lotka–
Volterra equations. Like the logistic equation, the LV model is very well
known and thoroughly studied. It is a standard example of interacting
populations in mathematical ecology and is also discussed in almost
every textbook on differential equations.1

1The model was introduced indepen-
dently by Alfred Lotka and Vito
Volterra in the mid-1920s.

30.1 Introducing the Lotka–Volterra

Model

Let us imagine that we have two populations of different creatures, per-
haps rabbits and foxes. We will use R(t) and F (t) to denote the number
of rabbits and foxes as a function of time t. First, let us think about
the growth rate of the rabbits. The LV model assumes that the rabbit
population grows in proportion to the rabbit population. This seems
reasonable; the more rabbits there are, the more baby rabbits will get
made, and thus the faster the population will grow. This statement is
written as:

dR

dt
= aR . (30.1)

This says that the growth rate (i.e. the derivative of R(t)) is larger the
larger the value of R(t).2 The symbol a in this equation is a parameter 2This differential equation was ana-

lyzed in Exercise 29.2.that sets the growth rate. The larger the value of a, the faster the
rabbits will grow.3 This differential equation yields unbounded growth. 3There will be quite a few variables and

parameters in this section. I will use
lowercase letters to refer to parameters
and capital letters to refer to variables
that change in time, such as R(t), the
number of rabbits.

There are more rabbits that make more rabbits that make more rabbits,
without end. We need a term in the model to limit the growth of rabbits.

In the LV model, the factor that keeps the rabbits from taking over
the world is the presence of the foxes. The picture here is that foxes
eat rabbits. How many rabbits do the foxes eat? This depends both on



322 Two-Dimensional Differential Equations

the number of rabbits and the number of foxes. The more foxes there
are, the more rabbits will get eaten. This seems straightforward enough.
However, it is also the case that more rabbits will get eaten if there are
more rabbits. The reason for this is that if there are more rabbits it will
be easier for the foxes to find them and eat them.
Taking into account the foxes eating the rabbits, we modify Eq. (30.1)

to obtain:

dR

dt
= aR− bRF . (30.2)

The last term on the right-hand side is the one that incorporates foxes
eating rabbits.4 This term is large when R and F are large. The nega-4You may wonder why R and F are

multiplied together instead of added.
One possible response is that the
growth rate should be proportional to
both R and F . That is, doubling the
rabbit population should double the ef-
fect of the foxes. Similarly, doubling
the number of foxes should double the
effect of the foxes. A term of the form
bFR behaves in this way, while a term
like b(R + F ) does not.

tive sign in front of this terms indicates that the effect of the rabbit-fox
interaction is to decrease the rabbit population. Here F is the fox pop-
ulation and b is a parameter that measures how effective the foxes are
at hunting rabbits. The larger b is, the more deadly are the presence of
foxes, from the rabbits’ point of view.
Equation (30.2) describes the behavior of the rabbit population in the

LV model. What about the foxes? There are two factors that influence
the fox population. One is that they benefit from the presence of rabbits.
This can be written:

dF

dt
= cRF . (30.3)

The quantity c is a parameter that captures how nutritious or beneficial
rabbits are to foxes. The larger c is, the greater the growth rate of
the foxes. The effect of this term is large if there are a large number
of rabbits and foxes. If there are many foxes, there will be more baby
foxes, and the growth rate of the population will be large. And if there
are many rabbits, it will be easier for the foxes to find them, eat them,
and gain the nutritional benefits of eating rabbits. This term is positive,
because the rabbit-fox interaction is beneficial from the foxes’ point of
view.
How might the foxes die? If there are no rabbits, the foxes would

starve to death since they would have nothing to eat. Is this the case
according to Eq. (30.3)? Not quite. If there are no rabbits, R = 0 and
the equation becomes:

dF

dt
= 0 . (30.4)

This says that the fox population does not grow, but it also does not
shrink; the growth is constant. So in the model as it now stands, if
all the rabbits suddenly died, the fox population would remain constant
forever. This clearly is not realistic; the model needs to provide for some
way for the foxes to die.
The simplest way to do this is to add a death term. Doing so, the

equation for the fox growth rate is now:

dF

dt
= cRF − dF . (30.5)
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The second term on the right-hand side is the death term. It says that
the rate at which foxes die is proportional to the number of foxes. This
makes sense; the more foxes there are, the more foxes there are who will
die. The parameter d is a measure of the death rate.5 The larger d is, 5The parameter d should not be con-

fused with the d in dF/dt. The quan-
tity dF/dt is interpreted not letter-by-
letter, but as a single quantity that rep-
resents the instantaneous growth rate
of the foxes.

the larger the death rate of the foxes.
Taken together, Eqs. (30.2) and (30.5) constitute the Lotka–Volterra

model:

dR

dt
= aR− bRF ,

dF

dt
= cRF − dF . (30.6)

This system is two-dimensional in the sense that there are two unknown
functions: the rabbit population R and the fox population F . The LV
model is an example of a coupled system of differential equations. The
term coupled indicates that the growth rate of the rabbit population
depends on both the rabbit population and the fox population, and the
growth rate of the foxes depends on both the number of foxes and the
number of rabbits. Thus, the two populations are coupled; they are not
independent.

In the next section I will show how to adapt Euler’s method to solve
coupled equations such as Eq. (30.6). Before doing so, a few quick
comments about the LV model. It goes without saying that the LV model
is an extremely simple model of two interacting populations. There
are many ways to make the model more realistic. However, that is
not really the point. The LV model is designed to be a very simple
model of interacting populations. It is not intended to be precise, but
rather to give some general intuition about what might happen when two
populations interact. There are many modifications one can make to the
basic LV model which might make it more realistic and interesting.6 6Chapter 5 of Barnes and Fulford

(2002) is a clear and accessible intro-
duction to the LV model and variants
thereof.

However, for our purposes, the main thing we are interested in is
examining the global behavior of coupled two-dimensional systems such
as the LV equations. So we are using the LV equations as a generic
example of a coupled system of two differential equations; our main
concern is not its use as a model in ecology. Since we are interested in the
math of the situation and not actual rabbit and fox populations, I will
not worry about the units on R and F . We will end up with fractional
populations and populations less than 1, but we can assume that, as
was the case with our study of the logistic equation, the populations are
expressed as fractions of some maximum value.

30.2 Euler’s Method in Two Dimensions

How can we solve a coupled system such as Eq. (30.6)? Given the differ-
ential equation and starting values for the rabbit and fox populations,
can we figure out the rabbit and fox populations at later times? It is not
difficult to adapt Euler’s method to get an approximate solution. For
some sets of equations it is possible to use calculus to get exact solutions,
but this is unusual. Most differential equations in two dimensions are
solved using Euler’s method or a related technique.
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To illustrate Euler’s method we need to select numerical values for the
four parameters. Somewhat arbitrarily, I will choose a = 1.0, b = 0.5,
c = 0.2, and d = 0.6. For these parameter values, the LV equations now
read:

dR

dt
= R − 1

2
RF ,

dF

dt
= 0.2RF − 0.6F . (30.7)

I also need to choose starting values for the rabbit and fox populations.
Again arbitrarily, I will chooseR(0) = 8 and F (0) = 4. I will assume that
the time t is measured in years. Finally, I will need to choose a step size
Δt. We will then pretend that the rate of change is constant over time
intervals of this length. I will start by choosing Δt = 0.1. Euler’s method
now proceeds almost exactly as it does for one-dimensional differential
equations.
We begin with R(0) = 8 and F (0) = 4. What is the value of the pop-

ulations at the next time step, 0.1 years later? The differential equation
Eq. (30.7) tells us the rate of change of populations provided that we
know the current population values. We can plug the initial valuesR = 8
and F = 4 into the right-hand side of Eq. (30.7) to obtain:

dR

dt
= 8− 1

2
(8)(4) = −8 , (30.8)

and

dF

dt
= 0.2(8)(4)− 0.6(4) = 4 . (30.9)

The growth rates are not constant—the rates continually change as the
population changes. The rates above are the exact rates only at t = 0.
However, let us pretend that they are constant over the entire time
interval of 0.1. We can then determine an approximate value for the
rabbit and fox population at t = 0.1. Doing so, we obtain:

R(0.1) = R(0) + growth rate×Δt (30.10)

= 8 + (−8)(0.1) (30.11)

= 7.2 . (30.12)

Note that this step is the same as Eq. (28.15) for the one-dimensional
Euler’s method. One does the same thing for the fox population:

F (0.1) = F (0) + growth rate×Δt (30.13)

= 4 + (4)(0.1) (30.14)

= 4.4 . (30.15)

So after 0.1 years the rabbit population is 7.2 and the fox population is
4.4.
We repeat this procedure for the next time step. The rates of change

are:

dR

dt
= 7.2− 1

2
(7.2)(4.4) = −8.64 , (30.16)



Analyzing the Lotka–Volterra Model 325

and

dF

dt
= 0.2(7.2)(4.4)− 0.6(4.4) = 3.696 . (30.17)

Pretending these rates are constant from time t = 0.1 to t = 0.2, we
obtain:

R(0.2) = R(0.1) + growth rate×Δt (30.18)

= 7.2 + (−8.64)(0.1) (30.19)

= 6.336 . (30.20)

And, for the foxes:

F (0.2) = F (0.1) + growth rate×Δt (30.21)

= 4.4 + (3.696)(0.1) (30.22)

= 4.7696 . (30.23)

We continue in this manner and obtain a series of values for the rabbit
and fox populations. The results for the first several values are shown
in Table 30.1.

Table 30.1 The first several rab-
bit and fox population values ob-
tained by using Euler’s method to
solve Eq. (30.7) with Δt = 0.1.

t R(t) F (t)

0.0 8.0 4.0
0.1 7.2 4.4
0.2 6.336 4.7696
0.3 5.45859 5.08783
0.4 4.61583 5.33801

In summary, Euler’s method works for two-dimensional equations al-
most exactly as it does for one-dimensional equations. The basic idea
is identical. The differential equation tells us how the rates of change
depend on the current populations, we pretend these rates of change are
constant, and we then use these fictionally constant rates of change to
determine the populations one time step later. Although this method
yields approximate solutions, we can get as close as we like to the ex-
act solution by choosing a sufficiently small time step Δt. The only
limit is the computing power of the computer we use to perform Euler’s
method.7

7In practice, other techniques that are
more efficient than Euler’s method are
often used. See Section 28.5.

30.3 Analyzing the Lotka–Volterra Model

In Fig. 30.1 I have plotted the rabbit and fox populations as a function
of time for the initial populations R(0) = 8 and F (0) = 4. The solutions
were generated via Euler’s method with Δt = 0.001. In the figure we
see that the populations cycle regularly. Note that the peak in the
rabbit population occurs first and then is followed by a peak in the fox
population. Then the rabbit population decreases and subsequently the
fox population decreases as well. Then, after a little while where there
are relatively few rabbits and foxes, the rabbit population peaks and the
cycle begins anew.

In order to see the relationship between the rabbits and the foxes more
clearly, one can plot the fox population and the rabbit population on the
same axes, ignoring time. Such a plot is shown in Fig. 30.2. Here, the
rabbit population is on the x axis and the fox population is on the y
axis. This plot shows how the two populations cycle together. However,
since this plot does not contain time, we cannot tell from looking at it
how long it takes the population to complete one cycle.
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Fig. 30.1 A plot of the rabbit population R(t) and the fox population F (t) obtained by using Euler’s method to solve Eq. (30.7).
Both populations move in regular cycles.

Fig. 30.2 A plot of the rabbit and fox
populations R(t), F (t) obtained by us-
ing Euler’s method to solve Eq. (30.7),
plotted on the phase plane.
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One can tell a story to explain the cyclic behavior of the populations.
We start in the lower left-hand corner of Fig. 30.2. Here there are few
rabbits and few foxes. The rabbit population grows quickly, because
there are not a lot of foxes around to eat them. The fox population
does not grow much, because they do not have many rabbits to eat.
Increasing the rabbit population corresponds to moving right on the
plot. This brings us to the lower right part of the cycle. There are now
many rabbits and the fox population begins to grow. An increasing fox
population corresponds to upward motion on the plot. At aroundR = 10
the rabbit population reaches a maximum. The rabbit population starts
to decrease, but the fox population continues to increase until around
F = 5.5. This is the peak on the top of the cycle. At this point the
fox population begins to decrease, because there are less and less rabbits
for them to eat. On the left-hand side of the cycle the foxes decrease in
number until we reach the lower left-hand corner of the cycle and the
pattern begins again.

30.4 Phase Space and Phase Portraits

We summarized the solutions to one-dimensional differential equations
with a phase line, such as Fig. 29.3. The phase line shows how solutions
move and whether or not there are any fixed points. We cannot tell
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how fast a solution moves, since there is no time information on the
phase line. For a two-dimensional differential equation such as the LV
system there are two functions, and thus the solutions are visualized on
a plane instead of a line. Thus, for two-dimensional systems one has a
phase plane instead of a phase line. The solutions shown in Fig. 30.1
are plotted in the phase plane in Fig. 30.2. This is another way to see
that the the two populations cycle together. I have added arrows to
Fig. 30.2 to indicate the direction the populations move on the phase
plane. I suggest taking a moment to convince yourself that the two
curves plotted in Fig. 30.1 yield the shape shown in Fig. 30.2.

A more general notion than the phase plane is phase space, which
is a geometric representation of the state variables of a system. In the
LV example, the two state variables are the number of rabbits R and
the number of foxes F . Knowing these two quantities at one point in
time uniquely determines the values of R and F for all times in the
future. This is what is meant by “state variable”. The state (here R
and F ) determines the future. Depending on the system, there can be
any number of state variables. Thus, the phase space could consist of a
line, a plane, three-dimensional space, or a higher-dimensional space.

Moreover, the space does not need to be flat in the way that a line
or a plane is. For example, suppose the system is the minute hand on
a clock. The state variable here could be an angle between 0 and 360
degrees. Or a state variable could be the hours of the day instead, in
which case the state variable is a number that starts at 0, increases, but
resets to 0 the instant it reaches 24. In either case, the state space is a
circle and not a line.

One can draw a particular solution to a differential equation as a curve
through phase space, as was done in Fig. 30.2. However, often one is
interested in a global view of the solutions to the differential equation.
That is, we would like to understand the behavior of all the solutions—
i.e., for all possible initial conditions—not just one. A diagram giving
this information is called a phase portrait. To make a phase portrait
for the LV model, we must determine solutions to Eq. (30.7) for sev-
eral different sets of initial conditions. This will let us see if the cyclic
behavior shown in Fig. 30.2 is stable, and whether or not there is any
other stable behavior. In Fig. 30.3 I have plotted solutions to the LV
equations for two different sets of initial conditions: R(0) = 3, F (0) = 3,
and R(0) = 5, F (0) = 4. As was the case in Fig. 30.1 we see that the
behavior of the populations are cyclic. Note, however, that different ini-
tial conditions give rise to different cycles. The period of the cycles are
the same—i.e., it takes the same amount of time for the rabbit popula-
tion to complete one cycle. However, the values of the populations are
different. For different initial conditions, the maximum and minimum
populations are different. In contrast, for the discrete logistic equation,
periodic behavior was typically attracting; different initial conditions led
eventually to the same periodic cycle.

We can get a better sense of the overall, global behavior of the LV
system, Eq. (30.7), by plotting the solutions for all three initial con-
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Fig. 30.3 A plot of the rabbit population R(t) and the fox population F (t) obtained using Euler’s method to solve Eq. (30.7).
The populations for two different initial conditions are shown. Both trajectories move in cycles; neither cycle is attracting.

ditions on the phase plane. The result is shown in Fig. 30.4. This
figure is the same as Fig. 30.2 except that I have plotted the trajecto-
ries for the two additional initial conditions, R(0) = 3, F (0) = 3, and
R(0) = 5, F (0) = 4. Figure 30.4 is the phase portrait for the LV equa-
tions. Looking at the phase portrait, the global structure of the LV
model becomes clearer. We can infer that there is a cycle associated
for every set of initial conditions. These cycles are neither attracting
nor repelling. If the population is on one cycle and, say, the number of
rabbits decreases slightly, the result is a new cycle, one that is slightly
wider or narrower than the original cycle. The rabbit population is not
pulled back to the original cycle, nor is it pushed away.8 The phase por-

8Behavior such as this which is neither
attracting nor repelling is called neu-
tral.

Fig. 30.4 The phase portrait for the
Lotka–Volterra system of differential
equations, Eq. (30.7). The trajectories
for three different initial conditions is
shown. Arrows indicate the direction
of the trajectory.
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trait thus consists of a nested set of ovals, like the layers in an onion.
At the center of all the ovals is a fixed point, where the rabbit and fox
populations do not change. It is not too difficult to determine the value
of the fixed point. Exercise 30.7 leads you through this calculation.
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30.5 Another Example: An Attracting

Fixed Point

The LV system’s global behavior consists of oscillations of neutral sta-
bility. Let us look at some other coupled two-dimensional differential
equations and see what other dynamical behaviors we find. Consider
the following set of differential equations:

dX

dt
= Y ,

dY

dt
= −0.5X − 0.4Y . (30.24)

Such an equation might arise in physics or engineering if one was study-
ing the motion of an object that oscillates but is also subject to friction.
As was the case for the Lotka–Volterra equations, it is a straightforward,
if tedious, exercise to use Euler’s method to find solutions X(t) and Y (t)
to the differential equation. We just choose initial conditions and then
the differential equation determines the rate of change of those initial
conditions. Iterating forward, as per Euler’s method, gives us a solution.
I chose the initial conditions X(0) = 5 and Y (0) = 6 and a step size of
Δt = 0.0001, and used a computer to determine approximate solutions
to the differential equation.
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Fig. 30.5 Solutions X(t) and Y (t) to Eq. (30.24) obtained via Euler’s method. The initial conditions are X(0) = 5 and
Y (0) = 6, and Δt = 0.0001.

The results are shown in Fig. 30.5, where we see that both the X(t)
and Y (t) solutions oscillate. However, unlike the LV system, the am-
plitudes of the oscillations decay over time, and both X(t) and Y (t)
approach zero. The point X = 0, Y = 0 is an attracting fixed point.
This can be seen more clearly in Fig. 30.6, which is the phase por-
trait for Eq. (30.24). Here I have plotted three different solutions to
Eq. (30.24) corresponding to three different sets of initial conditions.
The solid trajectory on the phase portrait, Fig. 30.6, is X(t) and Y (t)
plotted in Fig. 30.5. The other two trajectories are for the initial con-
ditions X(0) = −10, Y (0) = 4, and X(0) = −7, Y (0) = −3. We see
that different solutions all spiral toward the origin, confirming that the
origin is an attracting fixed point.



330 Two-Dimensional Differential Equations

Fig. 30.6 The phase portrait for
Eq. (30.24). Three solutions, obtained
via Euler’s method, are shown. All
solutions spiral toward the attracting
fixed point at the origin: X = 0, Y = 0.
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30.6 One More Example: Limit Cycles

As a final example for this chapter we consider the van der Pol equation.
This differential equation was introduced by Balthasar van der Pol in
the mid-1920s while studying oscillations in electrical circuits.9 It has9This equation played an important

role in the early development of chaos
and dynamical systems. See Section 1.5
of Aubin and Dahan Dalmedico (2002)
and references therein.

subsequently found use in the physical and biological sciences. Van
der Pol’s equation is, like the other equations in this chapter, a two-
dimensional differential equation:

dX

dt
= Y ,

dY

dt
= −X + (1−X2)Y . (30.25)

I chose two sets of initial conditions X(0) = 0.1, Y (0) = 0.1, and X(0) =
3, Y (0) = 3 and used Euler’s method with Δt = 0.0001 to generate
solutions. The result is shown in Fig. 30.7. As was the case with the
Lotka–Volterra equations, the trajectories are cyclic. However, unlike
the solutions to Lotka–Volterra equations, it appears that the van der
Pol solutions end up behaving the same. The solutions are out of phase,
but otherwise they appear identical in the long term.
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Fig. 30.7 Two solutions to Eq. (30.25) obtained via Euler’s method. The initial conditions are X(0) = 0.1, Y (0) = 0.1, (dashed
line) and X(0) = 3, Y (0) = 3 (solid line). The time step Δt is 0.0001.

This can be seen much more clearly by looking at the trajectories
in the phase plane, shown in Fig. 30.8. The dashed trajectory from
Fig. 30.7 starts at the point 0.1, 0.1, indicated with a square. The trajec-
tory spirals clockwise towards a cycle that appears sort of like a rounded
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Fig. 30.8 The two solutions X(t), Y (t)
to Eq. (30.25) shown in Fig. 30.7 plot-
ted on the phase plane. Two other
initial conditions are plotted as well.
All trajectories get pulled in to a cycle.
The cycle is thus an attractor.

parallelogram. The solid trajectory from Fig. 30.7 starts at 3, 3, shown
as a circle. This orbit is pulled almost straight down, and then left
into the cycle. Two additional orbits are shown; these begin at the two
points indicated with diamonds. The reason the cycle in the figure ap-
pears dark is that it is traced over multiple times as the trajectories
cycle around it. As Fig. 30.8 suggests, the cycle is an attractor. The
trajectories for all initial conditions eventually follow this periodic at-
tractor. I have plotted this attractor without the transient behavior in
Fig. 30.9. A closed attractor in a two-dimensional phase plane is often
called a limit cycle.
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Fig. 30.9 The Van der Pol attractor.

30.7 Overview of Two-Dimensional
Differential Equations

We have seen two types of stable, attracting behavior: a fixed point, as
in Fig. 30.6; and a limit cycle, as in Fig. 30.8. It turns out that these
two phenomena are the only possible types of stable, global behavior
exhibited by the two-dimensional differential equations of the sort we
have been considering.

To see why this is so, let us think about what determinism implies
for trajectories on the phase plane. The differential equations we are
considering are of the form:

dX

dt
= f(X,Y )

dY

dt
= g(X,Y ) . (30.26)

This means that dX/dt, the instantaneous growth rate of X , is a de-
terministic function of the current values of X and Y . The same is
true for dY/dt, the instantaneous growth rate of Y . In other words,
X and Y determine the growth rate. As a result, the current point in
the phase plane determines the trajectory. At one level, this is nothing
new. When considering discrete dynamical systems such as the iterated
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logistic equation, the initial condition completely determines the orbit.
The same is the case here—the initial condition uniquely determines
the trajectory. However, because here the trajectory must trace out a
continuous line through phase space, there is an additional geometric
consequence of determinism: trajectories in phase space cannot cross.

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5

Y
(t

)

X(t)

Fig. 30.10 An impossible situation for
phase plane trajectories for solutions
to a deterministic differential equation
such as Eq. (30.26). Determinism
means that two solutions to the same
differential equation can never cross.

Consider what would happen if two trajectories in phase space did
somehow cross each other, as illustrated in Fig. 30.10. The trouble
occurs where the two trajectories cross. According to Eq. (30.26), the
rates of changes ofX and Y are uniquely determined for each pointX,Y .
However, we can see that two trajectories emerge from the crossing,
indicating that the rate of change is not unique. Hence, it cannot be the
case that two trajectories ever cross.10 By a similar argument, a given

10You might want to scan back through
this chapter at phase space trajectories
and confirm that while trajectories may
get close together, they never cross.

trajectory can never cross itself.
The fact that phase space trajectories cannot cross limits the pos-

sible long-term behaviors for two-dimensional differential equations.11

11This result is known as the Poincaré–
Bendixson theorem. It was originally
proved by Henri Poincaré in 1892. In
1901 a slightly stronger version of the
theorem was proved by Ivar Bendixson.

Trajectories can get pulled into a fixed point or a cycle, but more com-
plicated behavior is not possible. In particular, there is no possibility
for bounded and aperiodic behavior. If the trajectory is bounded—i.e.,
it does not fly off to infinity—it must either cycle or get pulled into a
point. The restriction that the trajectory cannot cross itself means that
during its journey it quickly “runs out of room”. Imagine drawing a
continuous, curved line on a piece paper with the restriction that you
can never have the line cross itself. Eventually you will block off enough
regions of the paper that you will have nowhere else to go and you will
stop. Thus, you will have reached a fixed point. The only way to avoid
this fate is to move in a cycle, as in Fig. 30.8.
Since aperiodic, bounded behavior cannot occur for two-dimensional,

continuous, deterministic dynamical systems, it immediately follows that
such systems cannot exhibit chaos. We shall see in the next chapter that
in order for a continuous dynamical system to be chaotic its phase space
must have a least three dimensions. Further, we shall see that many
such chaotic systems have a beautiful, fractal structure.

Exercises

(30.1) Verify that the values in Table 30.1 are correct.

(30.2) Consider the functions X(t) and Y (t) shown in
Figs. 30.11 and 30.12. Sketch this trajectory in
the X,Y phase plane.

(30.3) Consider a phase plane for the Lotka–Volterra sys-
tem such as that shown in Fig. 30.4. Imagine in-
stead of rabbits, we have aphids, which are con-
sidered an agricultural pest. And instead of foxes,
we have wasps, which eat aphids.

(a) Suppose that in an effort to get rid of aphids,
a farmer applies a pesticide that kills both
aphids and wasps. How might this be repre-
sented on the phase plane? That is, in what
direction on the phase plane does one move
if the aphids and wasps both decrease?

(b) Suppose that the effect of the pesticide is to
kill almost all the aphids and almost all the
wasps. Argue that, based on the LV model,
the result will be a larger aphid population
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than there was before the pesticide was ap-
plied. (This is sometimes used as an argu-
ment against broad-spectrum pesticides.)
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Fig. 30.11 The function X(t) for problem 30.2.
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Fig. 30.12 The function Y (t) for problem 30.2.

(30.4) Consider the trajectory in the X,Y phase plane
shown in Fig. 30.4.

(a) Sketch possible functions X(t) and Y (t) that
could give rise to this trajectory.

(b) Sketch possible functions X(t) and Y (t) if
the arrows in Fig. 30.4 were reversed.

(30.5) Consider a deterministic, two-dimensional differ-
ential equation whose phase space is not a plane,
but a torus. A torus is a donut shape. What sorts

of long-term solutions are possible for such a sys-
tem? Is it possible to have an aperiodic orbit?

(30.6) Consider a deterministic, two-dimensional differ-
ential equation whose phase space is a sphere.
What sorts of long-term solutions are possible for
such a system?
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Fig. 30.13 The trajectory in the phase plane for prob-

lem 30.4. The arrows indicate the direction of motion.

(30.7) In this exercise you will investigate further the so-
lutions to the LV system:

dR

dt
= R − 1

2
RF ,

dF

dt
= 0.2RF − 0.6F . (30.27)

These equations can be rewritten by factoring an
R out of the first equation and an F out of the
second:

dR

dt
= R(1− 1

2
F ) ,

dF

dt
= F (0.2R − 0.6) . (30.28)

(a) Find the fixed points of the LV system.
These are the R, F values for which both dR

dt

and dF
dt

equal zero. Set the right-hand side
of both equations equal to zero, and solve
for R and F . You should find two solutions.
Discuss briefly the interpretation of each.

(b) For what values of R and F is the rabbit
population increasing? (I.e., for what R and
F values is dR

dt
> 0?) For what values is

it decreasing? Indicate these regions on the
R-F phase plane.
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(c) For what values of R and F is the fox pop-
ulation increasing? For what values is it de-
creasing? Indicate these regions on the R-F
phase plane.

(d) You should now have four regions on the
phase plane, each of which has a different

behavior. I.e., in one region both the rabbits
and foxes increase, in another region the rab-
bits decrease while the foxes increase, and so
on. Label these regions and compare to the
phase portrait in Fig. 30.4.
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In the previous chapter we explored two-dimensional differential equa-
tions and saw that aperiodic behavior was not possible. Trajectories in
phase space cannot cross, and this restriction limits the behaviors that
can occur on a two-dimensional surface. In three dimensions the situ-
ation is very different, as we will see in this chapter. We begin with
an example which played a central role in the development of nonlinear
dynamics as an area of study.

31.1 The Lorenz Equations

In the early 1960s, Edward Lorenz, a meteorologist at the Massachusetts
Institute of Technology, was developing mathematical models of the
weather and climate. Lorenz began with the Navier–Stokes equations,
the fundamental equations describing how fluids behave. Initially, his
models had many different variables: temperature, wind speed, humid-
ity, wind direction, cloudiness, etc. These models proved difficult to
understand, and so he sought to simplify the model so it would be more
tractable, while still preserving some of the key features of weather dy-
namics. Eventually he was led to a system of three differential equations
that now bear his name.

The Lorenz equations are:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz . (31.1)

There are three variables, x, y, and z which describe the way hot air
might move upward via convection, then cool, and then fall downward.
In what follows, we will not worry about the physics these equations
were originally designed to capture, and instead will focus on the math-
ematical properties of the equations. As usual, we will investigate the
long-term behavior of trajectories and the stability of any fixed points
or cycles. In Eq. (31.1) σ, ρ and β are parameters.1 These are, re-

1This notation for the parameters is
not entirely standard. Sometimes other
letters are used, sometimes Greek,
sometimes not. I will use Greek letters
because it helps to distinguish parame-
ters from the variables x, y, and z.
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spectively, “sigma”, “rho”, and “beta”, the eighteenth, seventeenth, and
second lowercase letters of the Greek alphabet. We will see that by vary-
ing these parameters, solutions to the logistic equation display a range
of different behaviors, including chaos.
As in the previous chapter where we studied two-dimensional differ-

ential equations, we will find solutions to the Lorenz equations via an
approximate numerical method similar to Euler’s method. I will not go
into the details here, as it is conceptually the same as for two-dimensional
differential equations but is even more tedious. So, let our exploration
of the Lorenz equations begin.

31.2 A Fixed Point

Let us first try the following parameter values: σ = 10.0, ρ = 8.0, and
β = 2.667. To find the solution to this differential equation—i.e., x,
y, and z as a function of t—I used Euler’s method with a time step
of Δt = 0.02 and an initial condition of x(0) = 1.0, y(0) = 0.0, and
z(0) = 0.0. The x(t), y(t), and z(t) trajectories are shown in Fig. 31.1.
We see that the solutions are pulled toward a fixed point at around
x = 4.25, y = 4.25 and z = 7.0.

Fig. 31.1 The x(t), y(t), and z(t) tra-
jectories for the Lorenz equations with
σ = 10.0, ρ = 8.0, and β = 2.667.
The initial condition is x(0) = 1.0,
y(0) = 0.0, and z(0) = 0.0.
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As with the two-dimensional differential equations of the previous
chapter, it is helpful to plot this trajectory in phase space. Here, how-
ever, phase space is three-dimensional, since there are three functions:
x(t), y(t), and z(t). This poses a challenge, since visualizing a three-
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dimensional object on a two-dimensional sheet of paper inevitably leads
to some information loss. Nevertheless, there are a number of different
strategies one can employ to get a useful view of a three-dimensional
object.

One way of viewing the trajectory in three-dimensional phase space
is to show all three variables but to draw them in perspective so that
it appears three-dimensional despite being on a two-dimensional page.
Most plotting and graphics programs do this automatically. Such a plot
is shown in Fig. 31.2. One can clearly see the trajectory spiraling in
toward the fixed point.
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Fig. 31.2 The trajectory in phase
space for the x(t), y(t) and z(t) tra-
jectories shown in Fig. 31.1. The ini-
tial condition is indicated by the “X”
on the figure. The trajectory spirals in
toward the attracting fixed point near
x = 4.25, y = 4.25 and z = 7.0.

It is also possible to visualize a three-dimensional image by using a
type of plot called a dual-image stereogram. We visually perceive the
three-dimensionalness of the world because our two eyes see two slightly
different images, owing to our two eyeballs’ different positions in our
head. So each eye sees something slightly different. You can easily
verify this. Look at an object with just your left eye. Then, without
moving your head, look at the object with just your right eye. Switch
back and forth between the left- and right-eye views and you can see
that the image you see shifts each time you change eyes. So the brain

z(t)

x(t)
y(t)

z(t) z(t)

x(t)
y(t)

z(t)

Fig. 31.3 A stereogram of the phase
space trajectory shown in Fig. 31.2. To
view the image, look straight at the fig-
ure from a distance of around 1.5 feet.
Relax and defocus your eyes until the
images merge.
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receives two slightly different images, one from each eye. The neural
circuitry of our brains then processes these images so that we perceive a
single image that appears three-dimensional and allows us to experience
depth.22Seeing out of both eyes is essential to

good depth perception. Try closing one
eye and then have a friend gently toss
and object at you. You will find that it
is surprisingly difficult to catch.

Figure 31.3 shows a dual-image stereogram of the phase space tra-
jectory shown in Fig. 31.2. The stereogram works as follows. The two
images in the stereogram look identical, but they are actually slightly dif-
ferent. The images show the object (in this case the spiraling trajectory)
from two slightly different angles. These different angles correspond to
the different views you would get from your left and right eyes. If you
stare at the stereogram and relax and defocus your eyes, you should
soon see a single image come into focus in between the two other fig-
ures. This single image will appear three-dimensional. Learning to view
stereograms can take a little practice. The trick is to relax your eyes by
imagining that you are focusing on an object far away. The two separate
images will start to move closer together. Relax your eyes until the axes
on the two plots line up. I find that it is helpful to be looking straight at
the stereogram, not at an angle. It is also important to hold the image
flat. I suggest holding the book flat on the table and looking straight
down on the image from a distance of around 1.5 feet.
Returning to the Lorenz equations, we have seen that for σ = 10.0,

ρ = 8.0, and β = 2.667, the solutions tend toward a fixed point at
around x = 4.25, y = 4.25 and z = 7.0. One can show that other
initial conditions are also pulled toward the fixed point, so it is indeed
an attractor. This type of behavior is not at all new—we have seen
many examples of attracting fixed points before. The only new twist is
that now the trajectories are in three dimensions instead of one or two.

31.3 Periodic Behavior

Let us now consider the Lorenz equations for a different set of parameter
values. As before, we will let σ = 10.0 and β = 2.6667. Now, however,
we set ρ = 160. Choosing x(0) = 50, y(0) = 50, and z(0) = 50, I used
Euler’s method to find the solution for this initial condition. The results
are shown in Fig. 31.4.
One sees that the x, y, and z trajectories all become periodic. By

the time t = 6, the trajectories repeat. In some sense, this is similar to
the trajectories for the van der Pol system, where we also saw periodic
behavior. However, here the oscillations are more complicated—there
are several peaks and valleys before the pattern repeats.
In order to see the relationship between the three variables we plot

the trajectory in phase space. A stereogram of the trajectory is shown
in Fig. 31.5. This figure only shows the long-term behavior of the orbit;
it is a plot of the trajectory from t = 50 to t = 55, at which point the
transient behavior has died away and one gets a clear view of the periodic
attractor. Note that the trajectory does not cross itself. It appears to,
but this is only because the three-dimensional trajectory is plotted on
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Fig. 31.4 The x(t), y(t), and z(t) tra-
jectories for the Lorenz equations with
σ = 10.0, ρ = 160, and β = 2.667. The
initial condition is x(0) = 50, y(0) =
50, and z(0) = 50.

a two-dimensional piece of paper. If you look at the stereogram and
see the three-dimensional image, you should be able to observe that the
trajectory loops through space without crossing itself.

Behavior like the closed, looped trajectory can not occur in a two-
dimensional system. The phase space for a two-dimensional system is
a plane, and so the only way to have a closed trajectory is if it is some
sort of an oval, as we saw for the van der Pol equation—see Fig. 30.8.
Recall that the determinism of the rule that generates the trajectory
means that it is not possible for the curve to intersect itself. In three
dimensions, however, there is room for a closed trajectory to curve above
or below itself, and so complicated, twisted, or knotted structures are
possible.

31.4 Chaos and the Lorenz Equations

We now consider one last set of parameters for the Lorenz equations:
σ = 10, β = 2.667, and ρ = 28. These are the parameter values that
Lorenz considered in his original work in the early 1960s. Trajectories
for the initial condition of x(0) = 50, y(0) = 50, and z(0) = 50 are
shown in Fig. 31.6. We are interested in the long-term behavior of the
trajectories, so I have begun these plots at t = 10, not t = 0. One can
immediately see that the trajectories are not periodic. This is especially
clear for the x and y trajectories which wiggle up and down irregularly.
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Fig. 31.5 A stereogram view of the tra-
jectories of Fig. 31.4 plotted in phase
space. The transient behavior is not
shown. Only the trajectory from t = 50
to t = 55 is plotted. To view the image,
look straight at the figure from a dis-
tance of around 1.5 feet. Relax and de-
focus your eyes until the images merge.
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Note that the x and y trajectories are similar, but not identical. It
appears, then, that the trajectory does not repeat, but also that the x,
y, and z parts of the trajectory are closely related.

Fig. 31.6 The x(t), y(t), and z(t) tra-
jectories for the Lorenz equations with
σ = 10.0, ρ = 28, and β = 2.667. The
initial condition is x(0) = 50, y(0) =
50, and z(0) = 50. Note that the hori-
zontal scale begins at t = 10.
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To see this relationship, a stereogram of the trajectory in phase space
is shown in Fig. 31.7. Looking at this picture, note that the trajectory
never intersects itself. Rather, the two lobes are woven together in an
intricate and complex way. It turns out that the trajectory does not
repeat—it continues winding around the two lobes and weaving from side
to side without ever crossing its path. Thus, the trajectory is aperiodic,
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one of the defining features of a chaotic system. A larger view of non-
repeating path of the trajectory is shown in Fig. 31.9. Here once can
perhaps see more clearly the way in which the trajectory moves from
the left to the right lobe. The left node in this figure corresponds to
negative values of x and y while the right node corresponds to positive
values. The trajectory moves irregularly from the left to the right node.
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x(t)

y(t)

z(t) z(t)

x(t)

y(t)

z(t)

Fig. 31.7 A stereogram view of the trajectories of Fig. 31.6 plotted in phase space. The transient behavior is not shown. Only
the trajectory from t = 10 to t = 45 is plotted. To view the image, look straight at the figure from a distance of around 1.5
feet. Relax and defocus your eyes until the images merge.

This can be seen in the x(t) and y(t) plots in Fig. 31.6, where one
sees the x and y trajectories shifting together from positive to negative.
Each peak or valley corresponds to one orbit around the right or left
node, respectively. For example, starting at t = 10 in these figures,
the phase-space trajectory visits the left (L) and right (R) lobes in the
following sequence: RLRRRRLLLRLLRRRLRLLLRLLRRR.

The trajectory for the Lorenz equation is aperiodic; it does not repeat.
This is one of the four properties that a dynamical system must have
in order to be considered chaotic. The other three are bounded orbits,
determinism, and sensitive dependence on initial conditions. The orbit
is indeed bounded, since the trajectory in Fig. 31.9 does not tend toward
infinity. And the Lorenz equations, Eq. (31.1), are clearly deterministic.
What about sensitive dependence on initial conditions? Does the Lorenz
equation show the butterfly effect?

We test for evidence of the butterfly effect by plotting the trajectories
for two different initial conditions that are very similar. The results of
doing this are shown in Fig. 31.8. In these plots the trajectory plotted
with a the solid line has an initial condition of x(0) = 30, y(0) = 30,
and z(0) = 30. The dashed curve’s initial condition is x(0) = 30.01,
y(0) = 30, and z(0) = 30. Note that the two initial conditions differ
by only a tiny bit in the x part, while their y and z parts are identical.
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Fig. 31.8 Pairs of x(t), y(t), and z(t)
trajectories for the Lorenz equations
with σ = 10.0, ρ = 28, and β = 2.667.
The initial condition for the solid curve
is x(0) = 30, y(0) = 30, and z(0) = 30.
The dashed curve’s initial condition is
x(0) = 30.01, y(0) = 30, and z(0) = 30.
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We can see that the two trajectories diverge significantly despite having
very similar initial conditions. The two trajectories are very different by
t = 9.
The trajectories of the Lorenz equation have sensitive dependence on

initial conditions and are aperiodic. Thus, the Lorenz equation for the
parameter values σ = 10.0, ρ = 28, and β = 2.667 is chaotic: it is
a deterministic dynamical system whose orbits are bounded, aperiodic,
and which has sensitive dependence on initial conditions. This is our
first example of a chaotic differential equation. As we have seen in the
previous two chapters, continuous systems cannot be chaotic in one or
two dimensions, since determinism prevents trajectories from crossing,
and hence bounded, aperiodic behavior is not possible. However, chaos
is indeed possible for three-dimensional continuous systems.

31.5 The Lorenz Attractor

The dynamics of the Lorenz equation for the parameter values σ = 10.0,
ρ = 28, and β = 2.667 is chaotic.3 Moreover, the shape traced out by

3In the rest of this section I will fo-
cus exclusively on the Lorenz equations
with these parameters. So I will sim-
ply refer to it as the Lorenz equations
from now on. It should be understood,
though, that this refers to the Lorenz
equation with these particular parame-
ter values.

the trajectories in phase space shown in Fig. 31.7 and Fig. 31.9 is an
attractor. This means that orbits will get pulled toward the shape, just
as an attracting fixed point might pull in nearby orbits. However, in
this case the attractor is much more complex than a fixed point—the
motion on the attractor is chaotic.
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Fig. 31.9 A large view of the Lorenz attractor, one of the icons of chaos.

Figure 31.10 demonstrates the attracting nature of the shape illus-
trated in Fig. 31.9. In this figure I have plotted snapshots of the evo-
lution of 8000 different trajectories. The first frame of the figure in the
upper left shows 8000 initial conditions, chosen to be uniformly spaced
within a cube. I then have plotted the position of these 8000 points
at t = 0.1, 0.2, 1.0, 2.0, and 10.0. One sees that the cloud of points
contracts and gets pulled fairly quickly toward the lobed structure seen
in the previous figures.

The shape of Fig. 31.9 is now commonly known as the Lorenz at-

tractor. The Lorenz attractor is another example of a strange attrac-

tor. We encountered a strange attractor previously in Chapter 26 when
examining the Hénon equation. As was the case for the Hénon attrac-
tor, the Lorenz attractor has three noteworthy features. First, it is an
attractor; multiple initial conditions end up pulled into it. Second, the
dynamics on the attractor itself are chaotic; orbits show sensitive depen-
dence on initial conditions and are aperiodic. Third, the attractor is a
fractal. The Lorenz attractor is almost two-dimensional, but not quite:
the Lorenz attractor’s dimension is estimated to be 2.05 (Grassberger
and Procaccia, 1983). As noted in Section 26.6 there is not a standard
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technical definition of the term “strange attractor”. Nevertheless, the
above three features are generally taken to be the key characteristics of
a strange attractor.
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Fig. 31.10 At t=0, there are 8000 points distributed uniformly in a cube. These are taken as initial conditions and then the
trajectories are calculated using the Lorenz equations. These 8000 points are shown at a series of subsequent times. One can
see that the points get pulled toward the Lorenz attractor.

Strange attractors are mixtures of order and disorder. They are or-
dered in that almost all initial conditions get pulled into the attractor,
and thus almost all initial conditions will trace out the same lobed shape
in phase space. In this sense, the attractor is stable. A small change
in the initial condition or a small perturbation while the trajectory is
unfolding will not alter the overall shape of the attractor. Yet the be-
havior of individual trajectories on the attractor are unstable; they are
sensitively dependent on their initial conditions. Thus, two orbits that
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begin close to each other on the attractor will soon diverge, as illustrated
in Fig. 31.8. As a result, it is impossible to make accurate, long-term
predictions for systems like the Lorenz equations. However, there is a
certain structure or order to the unpredictability; one can be certain
that the orbit will remain on the attractor, even though one is very un-
certain what exact path the orbit will follow as it weaves its way across
the attractor.

One cannot help but notice a resemblance between the Lorenz at-
tractor and a butterfly’s wings. It is occasionally thought that this
resemblance is the reason why the phenomenon of sensitive dependence
is known as the butterfly effect. This is not the case. In Lorenz’s orig-
inal work he did not produce a three-dimensional plot of the attractor
that appeared butterfly-like. In fact, Lorenz originally used a seagull
and not a butterfly as an example of the sort of small perturbation that
could lead to large changes in the weather system. In 1972, Lorenz was
scheduled to give a talk at a meeting of the American Association for the
Advancement of Science (AAAS). A meeting organizer changed the title
of Lorenz’s talk while Lorenz was overseas and unreachable. The title
of Lorenz’s talk, unbeknown to him, was “Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?” For a fascinating discussion
of the origin of the butterfly metaphor, see the short essay by Robert
Hilborn, “Sea gulls, butterflies, and grasshoppers: A brief history of the
butterfly effect in nonlinear dynamics”. (Hilborn, 2004)

Lorenz’s work did not initially gain a wide audience, as he published
mainly in atmospheric science journals. However, in the 1970s more
physicists and mathematicians learned of his work, and the modern
study of dynamical systems was well underway.4 Since then, there have

4Lorenz’s results were by no means
the only work that led to the work in
dynamical systems in the 1970s and
’80s and beyond, but it surely was a
crucial piece of research and is gener-
ally credited as the source of one of
the many streams of research that co-
alesced into the modern study of chaos
and dynamical systems (Aubin and Da-
han Dalmedico, 2002).

been many other strange attractors discovered in a wide range of sys-
tems. In many ways they can be viewed as a generic property of differ-
ential equations in three or more dimensions. There is nothing unique
or unusual about strange attractors; they are a common phenomenon.

31.6 The Rössler Attractor

Before concluding, let us consider one more example: the Rössler equa-
tions, introduced in 1976 by Otto Rössler (1976) as a simplified version
of the Lorenz equations. This dynamical system exhibits a strange at-
tractor that is somewhat easier to visualize and analyze than the Lorenz
attractor. Rössler’s equations are:

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c) . (31.2)

We will study the behavior of these equations for a = 0.1, b = 0.1, and
c = 14. Solving these equations using Euler’s method with Δt = 0.0001
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and initial conditions of x(0) = 10, y(0) = 10, and z(0) = 10, I obtain
the trajectories shown in Fig. 31.11. The x and y trajectories appear
somewhat similar to those of the Lorenz equation—a not-quite-regular
oscillation. But the z trajectory is rather different. What do these
trajectories look like plotted in phase space?

Fig. 31.11 Plots of x(t), y(t), and z(t)
trajectories for the Rössler equations.
The initial condition is x(0) = 10,
y(0) = 10, and z(0) = 10. These tra-
jectories are plotted in phase space in
Fig. 31.12.
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The three trajectories plotted in Fig. 31.11 are shown in phase space
in Fig. 31.12. This shape, known as the Rössler attractor, is a strange
attractor. Trajectories on the attractor are chaotic, while orbits off the
attractor are quickly pulled to it, as was the case for the Lorenz attractor.
In Fig. 31.13 I have plotted a stereogram of the Rössler attractor to
better illustrate its three-dimensional structure.
The motion on the Rössler attractor is as follows. Orbits move in a

counter-clockwise circle in the x-y plane. Orbits toward the outside of
the circle are stretched upward at the back of the figure. These orbits
then rejoin the main circle, merging into the inner portion of the circle.
The result is that the orbits fold over on themselves. We can thus think
of the Rössler attractor as a system that stretches and folds repeatedly.
This behavior is sketched in Fig. 31.14.
We can use Fig. 31.14 to help us think about what happens to a set

of initial conditions under the Rössler equations. Picture these initial
conditions as a blob of dough on the attractor. The dough rotates around
the attractor, and in each cycle the dough is stretched and folded back
on itself. After several iterations, the dough will be stretched into many
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z(t)

x(t)

y(t)

z(t)

Fig. 31.12 The Rössler attractor.

thin sheets; it will resemble a flaky pastry.
These sheets of dough do not exactly merge. It is impossible for them

to do so, since in a deterministic dynamical system trajectories cannot
cross or merge. Instead, there remains a small space between the sheets
as they are continually folded over on themselves. Remarkably, this
spacing has the structure of a Cantor set. In other words, if one were
to look at the outer edge of the lower band on the Rössler attractor, the
spacing of the sheets would follow a Cantor set. This is illustrated in
Fig. 31.15.

Fig. 31.15 A view of the edge of the
Rössler attractor. The sheets are ar-
ranged in a Cantor set.

31.7 Chaotic Flows and One-Dimensional

Functions

Looking at Fig. 31.13 or 31.14, it is clear that the Rössler attractor
stretches and folds trajectories in phase space. In Section 10.5 I stated
that stretching and folding were the essential geometric ingredients for
chaos. Stretching is responsible for the butterfly effect; when a stretch
occurs, nearby trajectories are pushed farther apart. Folding of some
sort is necessary to keep orbits bounded. If there was not any folding,
orbits would tend toward infinity. It is thus not surprising that we
observe stretching and folding in a three-dimensional chaotic system
such as the Rössler equations in addition to the one-dimensional logistic
equation.

In Chapter 12 we saw that certain features of the period doubling
route to chaos in the logistic equation were universal—the same for all
systems that undergo period doubling. In Section 12.4 I sketched an
argument designed to explain why almost all one-dimensional systems
have the same basic behavior when undergoing period doubling. The
question remained, however, how it is that multi-dimensional systems,
such as dripping faucets and convection rolls in fluids, have the same
universal properties as one-dimensional equations. The answer I gave in
Section 12.5 is that low-dimensional systems like the logistic equation
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z(t) z(t)
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Fig. 31.13 A stereogram of the Rössler attractor. To view the image, look straight at the figure from a distance of around
1.5feet. Relax and defocus your eyes until the images merge.

Fig. 31.14 A sketch of the flow of
trajectories along the Rössler attrac-
tor. Adapted from a figure made by
Christophe Letellier (2006). Used by
permission.

capture the stretching-and-folding of higher dimensional systems. The
Rössler attractor provides a vivid illustration of this. Figure 31.14 clearly
exhibits a stretch-and-fold process.
It is possible to approximate higher-dimensional systems with lower-

dimensional ones. The two-dimensional Hénon equations of Chapter 26
were introduced to approximate a cross section of the three-dimensional
Lorenz equations. It is also possible to derive one-dimensional equations
to capture one part of the three-dimensional motion of a system such as
the Lorenz or Rössler equations. There are several ways to derive lower-
dimensional systems from higher-dimensional ones. When one does so
by making a two-dimensional slice through a high dimensional space, the
resultant lower-dimensional equations are known as a first recurrence

map or a Poincaré map. The slice that is made through the higher-
dimensional object is known as a Poincaré section.
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Further Reading

This chapter offers only a glimpse into the universe of strange attractors
and multi-dimensional dynamical systems. The chapter titled “Strange
Attractors” in Gleick (1987) and Chapter 6 of Stewart (2002) are good,
non-technical discussions of strange attractors. For a more technical
overview of strange attractors, I recommend Chapter 12 of Peitgen,
Jürgens, and Saupe (1992). Chapter 9 of Strogatz (2001) contains a
clear and thorough explication of the mathematics and physics of the
Lorenz equations.

An important topic that I have not covered in this book is that of
attractor reconstruction. The basic idea is that given a one-dimensional
series of data—perhaps a measurement of temperature or the population
of a certain species—one can reconstruct a higher-dimensional attractor.
For example, even if one has access only to the x(t) trajectory for the
Lorenz equations, one can nevertheless reconstruct an attractor. This
attractor will be similar to the full Lorenz attractor, and in many cases
will have the same dimension. Attractor reconstruction is also referred
to as the theory of embedding. Most references on this topic are fairly
advanced. A clear, fairly accessible overview is Chapter 5 of Ott, Sauer,
and Yorke (1994); see also Sauer (2006) and Section 12.4 of Strogatz
(2001).

Exercises

(31.1) For the Lorenz equations with σ = 10.0, ρ = 8.0,
and β = 2.667, verify that there is a fixed point
at x ≈ 4.321, y ≈ 4.3208, and x = 7. I.e., plug all
these values into the right-hand side of Eq. (31.1)
and show that all the derivatives are zero.

(31.2) Consider the the Lorenz equations with σ = 10.0,

ρ = 28.0, and β = 2.667. These parameter val-
ues yield the famous Lorenz attractor, Fig. 31.9.
At the center of each lobe there is an unstable
fixed point. Verify that the coordinates of these
fixed points are x = 6

√
2, y = 6

√
2, z = 27, and

x = −6√2, y = −6√2, z = 27.
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Having completed our overview of chaos and fractals, I conclude by sum-
marizing, synthesizing, and taking stock. I begin by quickly reviewing
the main topics covered in the text. In the subsequent few sections I
highlight some of the key themes and lessons of chaos and fractals and
offer some thoughts on how to characterize their impact.

32.1 Summary

The central items of study in this book have been dynamical systems—
mathematical systems that change over time. The first two parts of
the book focused on iterated one-dimensional functions, primarily the
logistic equation. We encountered chaotic behavior: bounded orbits gen-
erated by a deterministic equation that are aperiodic and have sensitive
dependence on initial conditions. For chaotic systems long-term predic-
tion is not possible. Such systems behave as if they are random, despite
the fact that they are deterministic. Iterated functions are capable of
a wide range of behavior. One particularly useful way to visualize this
is via a bifurcation diagram. We also saw that quantitative features of
the period-doubling route to chaos were the same for almost all systems,
including higher-dimensional physical systems. Lastly, we observed that
chaotic behavior can be statistically stable. Sensitive dependence on
initial conditions makes detailed prediction impossible, but a histogram
formed from a chaotic orbit takes on a predictable shape, enabling one
to make accurate predictions about the long-run average behavior of a
chaotic orbit.

In Part III we turned our attention to fractals, self-similar geometric
objects. We saw that fractals can be generated by regular, deterministic
procedures, as well as via random processes. Fractals can be character-
ized by their self-similarity or box-counting dimensions. Such dimen-
sions are usually more meaningful descriptors of an object or process
than specifying an average or typical size. In fact, we saw an example of
a simple process for which an average does not exist. We also looked at
power-law distributions—the type of distribution that describes a scale-
free or fractal phenomenon.

Julia sets and the Mandelbrot set were the topics of Part IV. Here
we saw again that simple iterated systems produce images and forms of
remarkable intricacy and beauty. In Part V we examined a number of
other dynamical systems, including two-dimensional iterated functions,
cellular automata, and one-, two-, and three-dimensional systems of dif-
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ferential equations. We encountered strange attractors: complex, stable
attractors in phase space on which the dynamics are chaotic.

32.2 Order and Disorder

One of the central lessons of the study of chaos and fractals is that
a phenomenon can be generated by a process that seems opposed to
or contrary to the behavior it produces. For example, throughout the
book we have seen that deterministic dynamical systems can generate
unpredictable and seemingly random outcomes. The logistic equation,
the Hénon map, the Lorenz equations, and many others, all exhibit
chaotic behavior. Ironically, it is the determinism of the equations that
is responsible for sensitive dependence on initial conditions. The system
is so deterministic that small imprecisions in our knowledge of the initial
condition are quickly amplified, foiling attempts at prediction.
We have also seen many examples of simple rules that give rise to

complex behavior. The bifurcation diagram for the logistic equation,
Julia sets and the Mandelbrot set, cellular automata rule 110, and the
Lorenz and Rössler attractors are all rich and complex images that are
produced with very simple iterated rules or equations. It can be diffi-
cult to believe that the Mandelbrot set is based solely on iterating the
equation f(z) = z2 + c. There is an intrinsic creativity associated with
iteration.
We have also encountered many ways to make intricate and elaborate

fractals. Fractals such as the Sierpiński triangle, the Koch curve, and the
Cantor set can be generated by the repeated application of simple deter-
ministic procedures. However, it is also the case that a random process
can produce a fractal that is as intricate and precise as one made by a
deterministic rule. An example of this was given in Section 17.4, where
we saw that the chaos game—where moves on a triangle are chosen via
a random process—generates a crisp and predictable Sierpiński triangle.
Taken together, the examples described above illustrate that order and

disorder are not complete opposites but are interrelated. Deterministic
systems can produce behavior that is indistinguishable from randomness,
and random systems can produce precise, symmetric structures that
appear carefully and deliberately constructed. In each case one could
say that a phenomenon is caused or explained by its opposite. However,
I prefer to view these examples as telling us that randomness and order
are best not thought of as opposites—they are not mutually exclusive
qualities and they need not be viewed as being in opposition to one
another. At the risk of oversimplifying, randomness can be caused by
order, and vice-versa.
In addition, randomness and order mix and mingle together in all

sorts of interesting and complex ways. A trajectory of the logistic equa-
tion for r = 4.0 is chaotic. Two orbits that start off close to each
other will soon be very different, but histograms built from each of their
itineraries will, in the long run, be essentially identical. The motion
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of orbits on a strange attractor for the Lorenz or Hénon equations is
chaotic. But the attractor is stable; almost all orbits are quickly pulled
into the attractor. Both of these examples—the strange attractor and
the logistic equation—combine local unpredictability or instability with
global predictability and regularity. And then there are structures like
the space-time diagram of cellular automata rule 110 in Fig. 27.12. It
is hard to know how to characterize this pattern, but it surely combines
elements of randomness and order. The picture that emerges, then, is
that randomness and order are subtle and interrelated.

32.3 Prediction and Understanding

One of the conclusions that results from the study of chaos is that there
are limits on our knowledge. Long-term prediction is impossible for
a chaotic dynamical system. It is important to underscore that not
everything is chaotic; there are many predictable, stable systems both in
mathematics and, more importantly, in the physical world. Nevertheless,
chaos is not an unusual state of affairs. And so the study of chaos
suggests that there are bounds and limits to what we will be able to
predict. We can make very accurate tide tables years into the future,
but we will never be able to make accurate, detailed weather predictions
beyond a few weeks. So chaos spells the end of the Laplacian dream of
prediction.

Yet there is much more to the study of chaos than this negative re-
sult. For while chaos closes the door on the idea that everything can
be predicted, it opens several paths for other types of understanding.
Even though a dynamical system may have sensitive dependence on ini-
tial conditions, it is certainly not order-less. Although unpredictable
in detail, the orbit may unfold along a strange attractor, a stable and
predictable structure. Also, even systems with sensitive dependence on
initial conditions can be accurately predicted in the short term.

The study of dynamical systems shows us that complicated behavior
can have simple origins, and thus it is possible in some cases to explain
and understand complex phenomena with simple equations. Perhaps
the most striking example of this is the property of universality. We
have seen that some features of the period-doubling route to chaos are
universal—quantitatively the same for almost all functions and physical
phenomena. There are thus commonalities across seemingly different
systems, and these common features can be understood.

32.4 A Theory of Forms

Let us turn our attention for the moment to fractals. By almost any
measure, the idea of fractals—self-similar objects—are a standard part
of science and popular culture. Fractal structures can be quantified by
their dimension. There are several different definitions of dimension that
are applied to fractals, but all capture a constant scaling relationship: a
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relation that stays the same as the scale of analysis changes. Scientists
routinely calculate or measure dimensions, much as they would measure
height or weight or color. While fractals are a new idea and fractional
dimensions may initially stretch the imagination, in some regards I think
fractals have become just another standard tool in the scientists’ tool-
box. A researcher might measure the weights of cats and then try to
determine how diet is related to weight. Or a researcher might measure
the dimension of a mountain ridge and then try to determine how this
dimension is related to the age of the mountain.
More broadly, fractals give one a language and conceptual framework

for understanding and describing a class of shapes that are not well de-
scribed by the regular forms—circles, lines, cubes—of Euclidean geom-
etry. An appreciation of fractals leads us to look for similarities across
scales. Looking out my office window I see very few straight lines or
regular circles. But in the trees and sky and landscape I can see many
fractal forms. It would seem that fractals are not exceptional objects,
but are quite ordinary.
One can then ask where fractals come from. How can such seemingly

complicated shapes be made? We have seen many dynamical systems,
both deterministic and random, that produce fractals. Viewing fractals
dynamically—thinking of, say, a tree not as a static object but as some-
thing that grows over time—one sees that fractals are actually quite
easy to make. Complex fractals can be made via very simple rules. This
suggests to me that fractals are a sort of generic shape. It is almost as
if they occur by default.
It is striking that one sees very similar forms arising in very different

systems. For example, the branching structures of trees, blood vessels,
and river basins, look very similar. What to make of this? One approach
would be to seek to understand the shape of a river by analyzing the
forces on the material on the riverbank and the speed and shape of
the water flow. One might seek to understand the shape of a tree by
considering the chemical and biological details of tree growth, or by
considering the biological function of tree branches and analyzing this
in light of evolution via natural selection. These approaches surely have
merit, but there is also much to be gained by considering the branching
structures themselves.
That is, rather than studying trees or rivers or blood vessels, we can

study branches. What are the different processes that lead to fractal
branching structures? To what extent are branching structures typi-
cal? The study of fractals and dynamical systems suggests that we can
gain insight by studying features of the fractal forms themselves, inde-
pendent of their material origins in trees, blood vessels, or rivers. This
approach complements and enriches a more traditional view in which one
understands structures and forms via an understanding the structure’s
constituents and their interactions. This geometric and less reductive
approach suggested by the study of fractals is very much in keeping
with the geometric view underpinning many approaches to dynamical
systems.
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32.5 Revolution or Reconfiguration?

Is chaos a scientific revolution on par with the development of quantum
mechanics, relativity, and calculus? What impact has chaos had, and
what impact will it have in the future? I think it is difficult to argue that
chaos as an area of study is not here to stay. There are books and courses
on the subject. Many researchers consider chaos to be their primary
field of research; many more use ideas and analytical tools from chaos
and apply them to their areas of study. There are scholarly journals
and conferences devoted to chaos and its applications. So I think the
question is not whether or not chaos is a big deal, but what kind of big
deal it is.

I think the name “chaos” sets unreasonable expectations. Stephen
Kellert lays this out in the prologue to his book In the Wake of Chaos:

Chaos theory is not as interesting as it sounds. How could
it be? After all, the name “chaos theory” makes it seem as
if science has discovered some new and definitive knowledge
about utterly random and incomprehensible phenomena.

Actually, what seems to be going on is a kind of magic trick
like the one Ludwig Wittgenstein described as putting some-
thing in a drawer and closing it, then turning around and
opening the drawer, and removing the object with an ex-
pression of surprise. By calling certain physical [and math-
ematical] systems “chaotic”, scientists lead us to think that
they are totally unintelligible—just a muddle of things hap-
pening with no connections or structures. So when they find
interesting mathematical patterns in these unpredictable sys-
tems, they can exclaim that they have discovered the secrets
of “order within chaos”, even though only by christening
these systems chaotic in the first place can they make such
an impressive result possible. (Kellert, 1993, p. ix).

It is certainly not the case that interest in or excitement surrounding
chaos is purely a linguistic trick. Nevertheless, the phrase “chaos theory”
can lead to impossibly high expectations for the field of study.

That said, is chaos a scientific revolution? Chaos does not oblige
us to revise or discard Newton’s laws. In this sense it is a scientific
advance very different from special relativity or quantum mechanics,
both of which tell us that Newton’s laws and other equations of classical
physics are an inaccurate description of the behavior of objects at speeds
approaching that of light or of objects that are smaller than typical
molecules. Quantum mechanics and relativity are thus often referred
to as scientific revolutions: advances that occur relatively suddenly and
which require the rejection of past knowledge or theories. In my view,
chaos is not a revolution of this sort.

Rather, chaos is a conceptual realignment and a cultural shift. It is not
a sudden event; the history of chaos follows a long arc, starting with the
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work of Henri Poincaré at the turn of the nineteenth century. Historians
David Aubin and Amy Dahan Dalmedico (2002) argue compellingly for
a longue durée approach to the history of chaos, tracing several strands
of its development over the better part of a century. Aubin and Dahan
Dalmedico “take the emergence of ‘chaos’ as a science of nonlinear phe-
nomena not as the mere development and wide application of a certain
mathematical theory but as a vast process of sociodisciplinary conver-
gence and conceptual reconfiguration” (emphasis in original) (Aubin and
Dahan Dalmedico, 2002, p. 3).
Chaos challenges some of the assumptions of classical physics: namely

that a simple system should exhibit simple behavior, and that compli-
cated behavior must have a complex origin. This notion is not a part of
classical physics in the sense that there is an equation that embodies this
assumption. But I think it was a central, if unspoken, premise of much of
science before the blossoming of chaos and dynamical systems research in
the 1970s and ’80s. The study of chaos and fractals shows us that these
assumptions are not true, compelling one toward a more nuanced and
complicated view of the relationship between simplicity and complexity.
This is the sort of conceptual reconfiguration to which Aubin and Dahan-
Dalmedico refer. “[C]haos has definitely blurred a number of old episte-
mological boundaries and conceptual oppositions hitherto seemingly ir-
reducible such as order/disorder, random/nonrandom, simple/complex,
local/global, stable/unstable ... ” (Aubin and Dahan Dalmedico, 2002,
p. 53).
There is another type of conceptual reconfiguration or shift associated

with chaos. The study of chaos suggests a type of understanding that
does not place “knowing the equations” as the central goal. In much of
traditional physics, understanding a phenomenon is almost synonymous
with being able to write down equations for it. Once one has the equa-
tions figured out, the problem is solved. The equation, both literally
and metaphorically, encodes the solution. But we have seen many times
that even if we know the equation that governs a dynamical system it is
still not easy to deduce the dynamical behavior. For example, consider
the two equations

f(x) = 3.62x(1− x) , (32.1)

and

f(x) = 3.7x(1− x) . (32.2)

The first equation is periodic; the second is chaotic. The only way I know
how to determine this is to iterate both equations using a calculator or
computer. Knowing the equation is, of course, necessary in this context,
but it is not enough. One needs to do something more to determine the
long-term dynamical behavior.
Similarly, in an experimental context where one has access to data—

the orbit or trajectories of one or more dynamical variables—one may
wish not to focus on deducing the equations that govern these variables.
After all, even if one could figure out the equations, it may not shed light
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on the dynamical behavior. Instead, one makes a plot of the variables
in phase space and looks for a strange attractor. This strange attractor,
a geometric object, may be much more informative than the equations
themselves. In this sense, the style of understanding associated with
chaos is often geometric. One is interested in how an attractor folds and
stretches in phase space, or the rate at which nearby orbits are pulled
apart, instead of an exact, numerical prediction of an orbit.

Chaos also is a confluence of a complex of methods, techniques, and
ideas—what Aubin and Dahan-Dalmedico refer to as a “sociodisci-
plinary convergence” (2002, p. 3). The study of chaos and dynamical
systems arose out of similar concerns in different disciplines, including
meteorology, population biology, physics, and mathematics. The for-
mation of chaos as a field or area of study required researchers from
these different disciplines to adopt a common language and perspective.
There is now a shared understanding across traditional disciplines of
terms like strange attractor, fractal, and chaos. There is also a more
or less common set of techniques and agreed-upon quantities that are
interesting to calculate, including fractal dimensions and Lyapunov ex-
ponents. More fundamentally, though, I think there is some shared sense
of what is scientifically interesting and what constitutes research that is
worth pursuing. It is almost an aesthetic choice. Researchers in many
fields have opted to grapple with the strange and fun mixtures of pre-
dictability and unpredictability, simplicity and complexity, that are at
the heart of chaos.

Further Reading

Much has been written that aims to assess, analyze, and characterize
the meanings and impact of chaos and fractals. Not surprisingly, not
everyone agrees. These are young and still developing fields; the history
of chaos and fractals is still being written. There are some analyses and
assessments of chaos and fractals that I particularly recommend. The
article by David Aubin and Amy Dahan Dalmecido (2002) is an impres-
sively thorough examination of several strands of research that congealed
to form the field of chaos. I also recommend Dahan Dalmedico (2004).
Stephen Kellert’s In the Wake of Chaos (1993) is a lucid and balanced
overview of what chaos is, what it is not, and why it matters. His later
book, Borrowed Knowledge (2008), takes a critical and thoughtful look
at how and why chaos theory has been put to use in other academic
fields. The last chapter of Does God Play Dice? by Ian StweartStewart
(2002) is an enthusiastic but balanced overview and assessment of the
impacts of chaos and fractals.
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A.1 Exponents

In this appendix I briefly review some of the properties of exponents.
Our starting point—and really the only thing you have to memorize—is
the definition of an exponent: an exponent indicates successive multi-
plication. That is, xn means x multiplied by itself n times:

xn ≡ n times
xx · · ·x . (A.1)

So,

x3 = xxx , (A.2)

and

x6 = xxxxxx , (A.3)

and so on.

Rules for Multiplication, Division, and
Exponentiation

What does xaxb equal? Let us apply the definition, Eq. (A.1), and see.
We start with an example.

x3x5 = (xxx)(xxxxx) = xxxxxxxx = x8 . (A.4)

In words, x multiplied by itself three times, times x multiplied by itself
five times, is the same as xmultiplied by itself eight times. So, in general,

xaxb = xa+b . (A.5)

What about xa
b

? We will follow the same approach: let us apply the
definition Eq. (A.1) and see what we get. Again, we try an example.

x35 = (xxx)5 = (xxx)(xxx)(xxx)(xxx)(xxx) = x15 . (A.6)

In general, then,

xa
b

= xab . (A.7)
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Next, we consider xa

xb , again applying the definition of Eq. (A.1) and
considering a particular case:

x5

x3
=

xxxxx

xxx
= xx = x2 . (A.8)

Note that there are five x’s on the top and three on the bottom. The
three on the bottom cancel three on the top, leaving 5−3 = 2 on the
top. In general, then, it follows that:

xa

xb
= xa−b . (A.9)

Zero as an Exponent

We can use Eq. (A.9) to figure out the meaning of a zero exponent.
Consider the following expression:

x3

x3
= ??? . (A.10)

One way to evaluate this is as follows:

x3

x3
=

xxx

xxx
= 1 . (A.11)

But we could also evaluate this using the exponent rule, Eq. (A.9):

x3

x3
= x3−3 = x0 . (A.12)

We are now in a bit of a quandary: what does x0 mean? Well, in
Eq. (A.11) we see that

x3

x3
= 1 . (A.13)

And in Eq. (A.12) we see that

x3

x3
= x0 . (A.14)

For these two equations to be consistent, it must follow that

x0 = 1 . (A.15)

Equation (A.15) is somewhat counter-intuitive. Appealing to the def-
inition of exponentiation, Eq. (A.1), one could argue that x0 equals 0.
The reasoning behind this is that any number multiplied by itself zero
times yields zero. This does make sense. But, as one thinks about it,
it is not at all clear what it means to multiply something by itself zero
times. The fact that x0 = 1 is really just a convention. But hopefully
the preceding argument motivates why mathematicians have chosen to
set x0 = 1: doing so makes Eq. (A.9) consistent for all possible values
of a and b.
There is, however, one important exception, namely,

0a = 0 for all a . (A.16)
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This seems reasonable; zero multiplied by itself any number of times is
still zero.

We can also use the rule of Eq. (A.9) to figure out what x1 means. To

do so, we will consider x3

x2 :

x3

x2
=

xxx

xx
= x . (A.17)

And we know from Eq. (A.9) that

x3

x2
= x3−2 = x1 . (A.18)

So, for the above two equations to be consistent, it must be that

x1 = 1 . (A.19)

Square Roots and Such

We now turn our attention to square roots. The square root of a number
x is defined as follows: the square root of x is another number which,
when multiplied by itself, returns x.1 This is perhaps either to think 1For example, 6 is the square root of

36, since 62 = 36.about symbolically with an equation:

x =
√
x×√x . (A.20)

I tend to think of this equation as defining what the symbol
√
x, the

square root of x, means.
We now seek a way to write

√
x as x to some power. That is, we are

looking for n in the following equation:
√
x = xn . (A.21)

Let us start this quest by rewriting Eq. (A.20):

x1 =
√
x×√x . (A.22)

We now plug in Eq. (A.21), to obtain

x1 = xn × xn = x2n , (A.23)

where in the last step I have used Eq. (A.5). We now solve for n in
Eq. (A.23). Since x1 = x2n, it must be the case that

1 = 2n , (A.24)

so n = 1
2
. We have thus solved for n in Eq. (A.21), succeeding in our

goal of expressing the square root as an exponent:
√
n = x

1
2 . (A.25)

The same thing holds for other roots. The cube root of a number
x is defined as a number which, when multiplied by itself three times,
returns x:

x = 3
√
x× 3

√
x× 3

√
x . (A.26)
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By a similar argument, one can show that

3
√
x = x

1
3 . (A.27)

And, in general,

a
√
x = x

1
a , (A.28)

where a
√
x is the ath root of x; a

√
x multiplied by itself a times returns

x: (
a
√
x
)a

= x . (A.29)

Summary

For convenience, I collect the main results of this section:

xaxb = xa+b . (A.30)

xab

= xab . (A.31)

xa

xb
= xa−b . (A.32)

x−a =
1

xa
. (A.33)

x
1
a = a

√
x . (A.34)

x0 = 1 for x �= 0 . (A.35)

0a = 0 for all a . (A.36)

These are formulas that you will probably want to remember. However,
this does not mean that you should memorize them. The only thing to
memorize is the definition of an exponent, Eq. (A.1). All of these other
properties follow directly from this basic definition. You will not want
to necessarily have to rederive these results every time you need them.
But if you practice using the formulas, and you understand where they
come from and why they are the way they are, I think they will settle
into your consciousness without much explicit effort spent memorizing.

A.2 The Quadratic Formula

Suppose that we need to solve an equation of the form

Ax2 +Bx+ C = 0 , (A.37)

for x, where A, B, and C are constants. The quadratic formula gives us
the solution to such an equation. The solution(s) are:

x =
−B ±√B2 − 4AC

2A
. (A.38)
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Usually there are two solutions to a quadratic equation. In the formula
these are given by the two possibilities for the ±. However, if the term
inside the square root, B2 − 4AC, is zero, then there will be only one
solution.

Also, it could be that the roots are not real numbers, but instead are
complex, or “imaginary”. This occurs if the term inside the square root
is negative.

Some Examples

Suppose we need to solve the following equation for x:

3x2 − 10x+ 8 = 0 . (A.39)

In this case, A = 3, B = −10, and C = 8. Plugging into the quadratic
formula, Eq. (A.38), we obtain:

x =
10±√

102 − 4(3)(8)

2(3)
. (A.40)

Simplifying some, we get:

x =
10±√100− 96

6
, (A.41)

x =
10±√4

6
, (A.42)

x =
10± 2

6
. (A.43)

There are two solutions. For the “−” in the quadratic formula, we have:

x =
10− 2

6
=

8

6
=

4

3
≈ 1.33 . (A.44)

And for the “+”:

x =
10 + 2

6
=

12

6
= 2 . (A.45)

We can easily verify that 2 and 4
3

are solutions to Eq. (A.39) by
plugging these x values in and seeing if they make the equation true.
For example, plugging x = 2 into Eq. (A.39), we obtain

3(2)2 − 10(2) + 8 = 0 ? (A.46)

Simplifying,

3(4)− 20 + 8 = 12− 20 + 8 = 0 , (A.47)

thus confirming that x = 2 is indeed a solution of the original equation.
Here is another example. Suppose that we wish to solve the following

equation for x:

x2 + 5 = −4x . (A.48)
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Our first step is to manipulate this equation so that it is of the same
form as Eq. (A.37). Doing so, we obtain:

x2 + 4x+ 5 = 0 . (A.49)

So A = 1, B = 4, and C = 5. Plugging into Eq. (A.38), we obtain

x =
−4±√

42 − 4(1)(5)

2(1)
. (A.50)

Simplifying, we get

x =
−4±√−4

2
. (A.51)

At this point it appears that we are in a quandary, as we have to take
the square root of a negative number. There is no real square root of a
negative number. Thus there are no real solutions to Eq. (A.49).
There are, however, complex solutions. The square root of negative

four is:√−4 = 2i , (A.52)

where i is defined as the square root of negative one:22Complex numbers are discussed more
fully in Chapter 23.

i ≡ √−1 . (A.53)

Using Eq. (A.52) in Eq. (A.51), we obtain

x =
−4± 2i

2
= −2± i . (A.54)

There are thus two solutions to Eq. (A.49),

x = −2− i , (A.55)

and

x = −2 + i . (A.56)

A.3 Linear Functions

A linear function is a function of the form

f(x) = mx+ b . (A.57)

The number b in the above equation is the y-intercept—the value of
the function when x is 0. The number b is thus the point at which the
function intersects the y-axis. This is illustrated in Fig. A.1.
The quantity m is the slope; it measures how steep the line is. The

slope is given by the “rise over run”. To determine the slope m one
chooses any two points on the line. The “rise” is the difference in “al-
titude” (i.e., the y value) between the two points, and the “run” is the
difference in the x values. That is,

m =
y2 − y1
x2 − x1

, (A.58)

where x1, y1 are the coordinates on one point on the line, and x2, y2 are
the coordinates of any other point. It does not matter which points you
chose; you will get the same slope no matter what.
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x

b

y

rise
run

Fig. A.1 A linear function. The quan-
tity b is the y-intercept. The slope, de-
noted m, is the “rise” divided by the
“run”.

Some Examples

Let us illustrate some properties of linear functions with some examples.
To begin, consider Fig. A.2. The y-intercept can be read directly off the
graph; we see that the function has a value of 3 when x = 0. Thus,
b = 3. The slope can also be determined from the graph. To do so,
choose any two points on the graph. For example, we could use (2, 7)
and (3, 9). The rise between these two points is 9 − 7 = 2, while the
run is 3 − 2 = 1. Thus the slope, which is the rise divided by the run,
is 2/1 or simply 2. A slope of 2 means that the line rises two units for
every unit that we move to the right. Thus, the equation for the line of
Fig. A.2 is

f(x) = 2x+ 3 . (A.59)
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-1  0  1  2  3  4  5

f(
x)

x

Fig. A.2 A linear function. The y-
intercept is 3. The slope m is 2; moving
to the right by one unit corresponds to
moving two units up.

For our next example, consider the linear function shown in Fig. A.3.
Again reading off the graph, we see that the y-intercept b is 6. The slope
is − 1

2 . To see this, note that the line decreases by 1 unit for every 2
units one moves to the right. Thus, the rise is −1 and the run is 2. So
the equation for this line is

f(x) = −1

2
x+ 6 . (A.60)
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Fig. A.3 A linear function. The y-

intercept is 6. The slope m is − 1
2
.
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A.4 Logarithms

Logarithms Defined

Suppose we have an equation of the form

10x = 25 , (A.61)

and we need to solve for x. At first blush, there may not appear to be
any way to isolate x. So let us guess different x values instead of trying
to deduce the answer using algebra. If x = 1, we have 101 = 10 on the
left-hand side of Eq. (A.61), and if x = 2, then we have 102 = 100 on
the left-hand side. So the x value must be between 1 and 2.

We can also see this graphically. In Fig. A.4 I have plotted a graph
of the function 10x. We are looking for the x such that 10x = 25. From
looking at the figure it appears that this occurs somewhere between
x = 1.3 and 1.5. As expected based on our argument in the above
paragraph, the x value we seek is indeed between 1 and 2.

Fig. A.4 The function 10x. We are
looking for the x value that makes
10x = 25. It appears that this occurs
somewhere between 1.3 and 1.5.
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In Fig. A.5 I have again plotted the function 10x, but this time the x
axis ranges from 1.3 to 1.5. Reading off the graph, it appears that when
x = 1.4, 10x is very close to 25. Let us try this out. Using my calculator,
I find that 101.4 ≈ 25.12. So x = 1.4 is a little bit too large. So let us
try x = 1.39. Doing so, I get 101.39 ≈ 24.55. So this x value is too small.
I could keep experimenting with different x values. Eventually I would
find that 101.398 ≈ 25.003.
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 18

 20

 22

 24

 26

 28

 30

 32

 1.3  1.35  1.4  1.45  1.5

10
x

x

Fig. A.5 The function 10x. We are
looking for the x value that makes
10x = 25. It appears that this occurs
close to x = 1.4.

So by using a few graphs and some repeated guessing and checking,
we have found that 1.398 is that number, which, when 10 is raised to it,
gives us 25. In other words,

101.398 ≈ 25 . (A.62)

We have thus solved Eq. (A.61) for x. Doing so was fairly straightfor-
ward, but certainly a little cumbersome. It would be nice if there was a
simpler method. In particular, it might be nice if there was a name for
the number 1.398 that appears in Eq. (A.62), as it appears that it could
be moderately handy.

More generally, we might be interested in a number x that makes the
following equation true:

10x = y . (A.63)

(In the above example, y = 25 and x ≈ 1.398.) Clearly, the number
x must be related to y somehow. This relationship is known as the
logarithm. Specifically, if Eq. (A.63) is true, then we say that x is the
logarithm of y, and we denote this as x = log(y). Using this, we can
write Eq. (A.63) as

10log(y) = y . (A.64)

I tend to think of this equation as being the relationship that defines
the logarithm. When I am trying to remember or prove a relationship
about logarithms, this is where I usually start.

Equation (A.64) shows us that the logarithm is the inverse of the
exponential function. That is, the log “undoes” exponentiation.3 I.e.,

3By exponentiation, I mean the act of
taking a number and using it as an ex-
ponent. For example, exponentiating
the number 7 gives 107.

log(10y) = y . (A.65)

Properties of Logarithms

The defining equation for logarithms, Eq. (A.64), lets us quickly derive
some properties of logarithms. For example, suppose that we are inter-
ested in the log of AB, the product of two numbers. Then Eq. (A.64)
tells us that

10log(AB) = AB . (A.66)
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However, we also know that

A = 10log(A) , (A.67)

and

B = 10log(B) . (A.68)

Using Eqs. (A.67) and (A.68) on the right-hand side of Eq. (A.66), we
get

10log(AB) = 10log(A)10log(B) . (A.69)

Using the fact that xaxb = xa+b, we rewrite the right-hand side of the
above equation to obtain

10log(AB) = 10log(A)+log(B) . (A.70)

Hence, we have that

log(AB) = log(A) + log(B) . (A.71)

This equation tells us how to take the logarithm of a product of two
numbers.
What if we want to take the log of a number that is itself raised to a

power. For example,

log(A3) = ??? (A.72)

To approach this we only need remember that an exponent means succes-
sive multiplication and then make use of the property we just obtained
in Eq. (A.71). Doing so, we find

log(A3) = log(AAA) (A.73)

= log(A) + log(A) + log(A) (A.74)

= 3 log(A) . (A.75)

Note that I used Eq. (A.71) to go from Eq. (A.73) to (A.74). The general
result is:

log(An) = n log(A) . (A.76)

This property is particularly useful because it lets us easily solve equa-
tions for variables that are “upstairs” in the exponent. An example of
this is given below.
We can combine the properties for logarithms of products and expo-

nents in Eqs. (A.71) and (A.76) to obtain an expression for the logarithm
of a quotient:

log

(
A

B

)
= log(AB−1) (A.77)

= log(A) + log(B−1) (A.78)

= log(A)− log(B) . (A.79)

Finally, note that there is not an expression for log(A+B). In particular,

log(A+B) �= log(A) + log(B) . (A.80)
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Summary of Properties

For reference, here are a few of the key properties of logarithms:

log(AB) = log(A) + log(B) . (A.81)

log(An) = n log(A) . (A.82)

log(
A

B
) = log(A)− log(B) . (A.83)

Some Examples

Suppose we wish to solve the following equation for x:

5 = 3x . (A.84)

To do so, first take the logarithm of each side:

log(5) = log(3x) . (A.85)

Using Eq. (A.82) on the right-hand side, we get

log(5) = x log(3) . (A.86)

We now solve for x by dividing both sides by log(3):

x =
log(5)

log(3)
. (A.87)

The above expression is an exact answer. We can approximate it by
using a calculator. Doing so, we obtain

x ≈ 1.46497 . (A.88)

You might wish to take a moment and verify that you get this number
using your calculator; it is easy to accidentally enter things incorrectly.
In particular, please note that

log(5)

log(3)
�= log

(
5

3

)
. (A.89)

As a second example, suppose we wish to solve the following equation
for x:

53x = 100 . (A.90)

First, we take the log of each side:

log(53x) = log(100) . (A.91)

Using the fact that log(An) = n log(A), we get

3x log(5) = log(100) . (A.92)

Solving for x, we obtain

3x =
log(100)

log(5)
, (A.93)

x =
log(100)

3 log(5)
. (A.94)

Evaluating the right-hand side using a calculator, we obtain

x ≈ 0.9538 . (A.95)
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Exercises

(A.1) Simplify:

(a)
√
28

(b) xab

x−b

(c) xaya

x2ay−b

(d) zbz−b

(e) 3
√

y15

(f) xax
1
a

(A.2) Evaluate the following using a calculator:

(a) 7
2
3

(b) 4
√
20

(c) (−14)4
(d) 4−14

(e) 34

56

(f) 2
1
2

4
1
3

(g) 34
5

(A.3) Evaluate the following without using a calculator:

(a) 23

(b) 9
1
2

(c) 04

(d) 16
1
4

(e) 71

(f) 179

178

(g) 4−2

(h) 00

(A.4) Solve for x:

(a) x2 − 36 = 0

(b) 2x2 + 1− 10x = 0

(c) 3x2 + 2x = 10

(A.5) Let f(x) = 3x(1 − x). Find the fixed point(s) of
f .

(A.6) Let f(x) = 3x2 − 2. Find the fixed point(s) of f .

(A.7) Let g(x) = x2 + c.

(a) For what value(s) of c does g have two real
fixed points?

(b) For what value(s) of c does g have one real
fixed point?

(c) For what value(s) of c does g have no real
fixed points?

(A.8) Draw the graph of the following functions:

(a) f(x) = 3x+ 1

(b) f(x) = −3x+ 1

(c) f(x) = 1
2
x− 1

(d) f(x) = 2
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Fig. A.6 The function for Exercise A.9.
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Fig. A.7 The function for Exercise A.10.
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(A.9) Determine the formula for the linear function plot-
ted in Fig. A.6.

(A.10) Determine the formula for the linear function plot-
ted in Fig. A.7.

(A.11) To get firewood delivered to your house costs $150
a cord, plus an additional $50 for a delivery fee.
The delivery fee is $50 no matter how many cords
you order. Write down a formula for f(c), the cost
of c cords of wood.

(A.12) For all of these exercises, solve for x. Express your
answer both as an exact value, such as log(2), and
as an approximate number, such as 0.301.

(a) 72 = 10x

(b) 3 = 6x

(c) 3x = 6

(d) 25x = 1000

(e) 73x = 24x

(f) 44 = 7× 10x

(A.13) Explain why log(1) = 0.

(A.14) Explain why log(x) approaches −∞ as x ap-
proaches 0.

(A.15) Explain why log(x) is not defined for negative val-
ues of x.

(A.16) You deposit $100 in an account that earns 5% in-
terest yearly. The amount of money M(t) in your
account is thus given by the function:

B(t) = 10(1.05)t . (A.96)

(a) How much money do you have after two
years?

(b) How long would you have to wait for your
money to double?

(c) If you wanted your money to double in ten
years, what interest rate would you need to
earn?
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B.1 Representing Data with Histograms

This appendix is a brief introduction to histograms and distribution
functions, which are used extensively in Chapters 13 and 20. Histograms
are type of graph used to summarize the frequencies of outcomes in a
data set. They are very widely used; they are by no means particular
to the study of chaos or fractals. I suspect that most readers will have
seen histograms before in a previous math or science class, or perhaps
when reading the newspaper or a magazine.

As usual, we start with an example. Let us suppose we are studying
the heights of a certain variety of tomato plants. Suppose my garden
has ten such plants, and they have the following heights, measured in
meters:

1.21, 1.13, 1.18, 0.92, 0.96, 1.14, 1.21, 1.38, 0.84, 1.04 . (B.1)

How can we summarize this data? One thing we could do would be to
calculate the average height. The average turns out to be 1.065. But this
single number is a rather coarse summary of my garden full of tomato
plants.

If we want to give more information about the heights of the tomato
plants, one option is to simply list the heights of all of the plants, as was
done in Eq. (B.1). For a small set of data such as this, listing them all
is a viable option. However this is not feasible for large data sets, where
such a listing might take many pages. In such an instance we seek a way
of summarizing the data that is more compact than a long, exhaustive
listing, but which is more informative about the different data values
than stating the average value.

A histogram is a type of graph that meets these criteria. The idea is to
report not every single data point, but rather the number of data points
that fall inside a particular range. A histogram for the tomato heights
listed in Eq. (B.1) is shown in Fig. B.1. Each box in the histogram
corresponds to one of the data points. For example, Fig. B.1 tells us
that there is one tomato plant whose height is between 0.8 and 0.9
meters, there are two tomato plants between 0.9 and 1.0 meters, and so
on. If you have not seen histograms before, take a moment to make sure
you see how to go from Eq. (B.1) to Fig. B.1.

Usually the individual boxes on a histogram are not shown, as in
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Fig. B.1 A histogram for the heights
of the tomato plants. Each box corre-
sponds to one of the data points listed
in Eq. (B.1).

1.10.8 1.0 1.2 1.3 1.4
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3
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0.9

Frequency

Fig. B.2. When reading this histogram, one determines the number
of data points in a given range not by counting boxes but instead by
reading the corresponding value off the vertical axis. For example, we
see that there are three plants between 1.1 and 1.2 meters, while there
are two plants between 1.2 and 1.3 meters.

Fig. B.2 A histogram for the heights
of the tomato plants. This is the same
as the previous figure, except that the
individual boxes for each data point
are not shown. Instead, the number of
boxes can be read off the vertical axis.
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B.2 Choosing Bin Sizes

I hope that the above example has convinced you that making a his-
togram is not a difficult a task. However, there are two subtleties as-
sociated with making and interpreting histograms. The first, discussed
this section, is the selection of a bin size for the histogram. The second
concerns how to normalize and interpret histograms in terms of proba-
bilities; this is the topic of the next two sections.
When forming a histogram we must choose a range over which we

group the data values. For example, in the previous section I used a
range of 0.1 meters. That is, in forming the histogram of Fig. B.1, I
collected the data values into groups with a range of 0.1. We interpret
the histogram as telling us, for example, that there are three plants
whose height is between 1.1 and 1.2, while there is just one plant whose
height is between 1.0 and 1.1. The histogram does not tell us the exact
values of the data, just how many fall in each range.
The intervals that are used to group the data are usually referred to

as bins. The width of each bin is called the bin size. In Fig. B.1, the
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bin size is 0.1. But there is nothing special about the bin size of 0.1. We
could just as well choose a bin size of 0.05. Doing so yields the histogram
of Fig. B.3. Note that Figs. B.1 and B.3 look quite different. Which is
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Fig. B.3 A histogram for the heights of
the tomato plants. This is identical to
Fig. B.2, except that a bin size of 0.05
has been used.

correct? They both are. Which is more useful? It depends on what
features of the data we are trying to illustrate with the histogram. In
general, there is no single correct bin size. However, choosing a “wrong”
bin size can make the histogram misleading.

This is illustrated in rather dramatic fashion in Fig. B.4. The four
histograms in this figure look different, but I made them using the same
data. For all figures the same 200 data points were used. In the first
figure the bin size is fairly large, 0.05. In the second plot, I made it
smaller, 0.01. In the first plot it looks like the data are distributed fairly
evenly from about 0.42 to 0.63. However, in the second plot, with a
smaller bin size, we see that this is not the case. The histogram has two
quite distinct peaks, one near 0.5 and the other near 0.6.

This illustrates again that histograms can look quite different depend-
ing on the bin size one chooses. In this instance, the second plot in
Fig. B.4 is clearly better, as it shows the concentration of data around
0.5 and 0.6, while this cannot be seen in the top plot. However, this
begs the question: what is the optimal size for histogram bins? It might
seem that we should choose bins as small as possible so as to see all of
the structure that is present in the data. However, this is not a good
idea. The problem is that if the bin size is too small, then there will
be, on average, very few data that fall in each bin. In the extreme case,
there may be only one or two data points for each bin.

An example of this is shown in the third histogram from the top in
Fig. B.4 where I have used a bin size of 0.001. This plot is, at best,
somewhat confusing. One can see that there are two peaks in the data,
but it is much less clear than in the previous figure. Finally, the bottom
plot in Fig. B.4 was made with a bin size of 0.0001. Now the bin size
is so small that no more than two data points are in any one bin. The
result is that the two peaks, evident in the previous two histograms, are
essentially gone.

This illustrates that there is a tradeoff. One wants to use as small a
bin size as possible to learn as much as one can about the details of the
way the data are distributed. But the data impose limits to how small



380 Histograms and Distributions

Fig. B.4 Four different histograms
formed with identical data but using
different bin sizes. In the top his-
togram, the bin width is 0.05, in the
next histogram the bin width is 0.01,
in the next histogram the bin width is
0.001, and in the bottom histogram the
bin width was 0.0001.
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the bins can be. If the bins are too small, there may not be enough data
points to fill most of the bins more than once or twice. The result, then,
will be a histogram that looks like the bottom plot in Fig. B.4.
This fundamental tradeoff is common in data analysis and statistics.

Any data set is finite, and this thus imposes limits on what one can
infer about the data. The goal is to infer as much as one can, but
not so much that one is essentially drawing inferences from one or two
observations. Much of advanced statistics is concerned with the optimal
way to make this tradeoff. As a practical matter, the best thing to do
when making a histogram is to is experiment with different bin sizes
and look at the resultant histograms. The fact that histograms can look
quite different for different bin sizes is something to bear in mind when
making histograms of your own1 or when looking at histograms that are1Most spreadsheet programs such will

quickly make histograms for you. reported in research papers or in newspapers or magazines.
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B.3 Normalizing Histograms

A histogram lets us see not just the average value of the data, but how
the data are distributed. That is, with a histogram we can observe
how the data values are spread out or divided among different ranges
of values. It is often the case that this distribution is the feature of the
data that we are interested in. The total number of data points that fall
in any one bin will depend on the number of data points in our sample.
In contrast, the distribution, since it is expressed in terms of fractions,
does not depend on the total number of data points.

Consider again the histogram of Fig. B.3. Here we can see that two
tomato plants are between 1.20 and 1.25. Since there are ten total plants,
would say that the fraction of the plants that are between 1.20 and 1.25
is 0.2. The reason for this is that there are ten total data points, and so
the fraction between 1.20 and 1.25 is 2

10 = 0.2.
It would be nice to have a histogram from which we can determine

frequencies directly, without having to do the division required in the
above paragraph. For this simple example the division was straightfor-
ward, but in general, for a large data set, it may be a little messy. More
importantly, if we can read frequencies directly off of histograms, we can
more readily compare two different data sets that might be of different
sizes.

One can modify the histogram to express frequencies in terms of frac-
tions. This process is a little bit subtle. Let us look again at Fig. B.3.
On this histogram each box represents one data point. Note that there
are ten boxes, and there are ten data points listed in Eq. (B.1). But now
we want each box to represent a fractional part of the entire data set. In
this case, since there are ten data points, each box should represent 1

10 ,
or 0.1. It is customary to have the area of the box equal this fraction.
We achieve this by an appropriate rescaling the vertical axis.
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Fig. B.5 The normalized histogram for
the heights of the tomato plants. This
is identical to Fig. B.3, except that the
scale has been normalized. The height
of each box is now 2. The total area
under the histogram is 1.

In this case, we want each rectangular box to have an area of 0.1.
The base of the rectangle is 0.05. What must its height be? Well, the
formula for the area of a rectangle is,

Area = Base ×Height . (B.2)
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Solving for height, we get:

Height =
Area

Base
. (B.3)

Plugging in, we find:

Height =
0.1

0.05
= 2 . (B.4)

Thus, each box should now have a height of 2 and not 1.
Such a histogram is shown in Fig. B.5. We can use this plot to de-

termine the fraction of our data in a given range. For example, suppose
we want to know the fraction of our data between 1.10 and 1.15. To
determine this, we look at the area under the graph between 1.10 and
1.15. This area is a rectangle with a base of 0.05 and a height of 4. Since
0.05× 2 = 0.4, we conclude that the fraction of the data between these
two values is 0.2.
The process used to make the histogram of Fig. B.5 is known as nor-

malization. What we have have done is ensured that each box has an
area equal to the fraction of the data it represents; if there are N data
points, each box must have an area of 1

N
. As a result, since there are

N total data points, the total area of all the boxes is 1. Geometrically,
this means that the total area under the histogram equals 1.
It is crucial to remember that in normalized histograms is the area that

we interpret as fractions, not the value on the vertical axis. For example,
in the previous example had we used the value on the vertical axis, we
would have concluded that the fraction of tomato plants between 1.10
and 1.15 is 4, which clearly is nonsense, since the fraction must between
0 and 1.
The process used above to normalize the histogram is generalized as

follows. Let us assume that we have N data points and that we have
chosen a bin size of Δx. Each box should have an area of 1

N
. We

determine the height for the boxes by plugging in to Eq. (B.3). Doing
so, we obtain:

Height =
Area

Base
=

1
N

Δx
. (B.5)

Simplifying, this may be written as

Height =
1

NΔx
. (B.6)

Note that this equation says that the height of each box will get smaller
as the total number of data points N gets larger. In addition, as we
make our bin size Δx smaller, the height of the box needs to get larger
to ensure that each box has the proper area.
A final technical issue concerns the units on the vertical axis of a

normalized histogram such as Fig. B.5. The key thing to remember
with a normalized histogram is that areas of rectangles are interpreted
as frequencies or probabilities. In other words

Frequency = Height × Base . (B.7)
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The units on the base of the rectangle are meters for the example of
the heights of tomato plants. Thus, the units for the height of the
rectangle must be frequency/meters. This way, multiplying the base by
the height yields a frequency, as it should. So the units on the vertical
axis of Fig. B.5 are frequency/meter. However, I have not included units
on the figure. While I tend to believe that axes should always have their
units labeled, it is not unusual to leave off vertical units for a normalized
histogram, since what is meaningful on such a histogram is the area—
interpreted as a frequency or probability—and not the vertical scale. By
indicating that the histogram is normalized, one knows that the total
area under the curve must equal 1. This is all that is needed to interpret
the histogram quantitatively.

B.4 Approximating Histograms with
Functions

There is one more aspect of histograms that bears discussion. Fre-
quently, one approximates the staircase-like curve of a histogram with
a continuous function. For the examples we have considered thus far,
this might not appear to make much sense, as the histograms seem in-
escapably bumpy. Hence, it appears unwise to approximate them with
something that is smooth. However, in many cases such an approxima-
tion does make sense. Here is one example.

Let us imagine that you are interested in the size of cats, and thus de-
termine the masses of a great many cats. Their average mass turns out
to be close to five kilograms. But you are interested in more than just the
average; you want to know how little the little ones are, how big the big
ones are, and so on. So you plot your data in a histogram. The (imag-
inary) results of doing this are shown in Fig. B.6. The top histogram
shows 100 measurements, the middle plot 1, 000 measurements, and the
bottom plot 10, 000 measurements. All histograms are normalized, and
for all I used a bin size of 0.05.

In Fig. B.6 one can see that the histogram is getting less jagged and
bumpy as the number of data points increases. It is natural to ask,
then, whether or not we can approximate this histogram by a smooth
function. In this instance, it turns out that we can. The tops of the
histogram are very well approximated by the following function:

p(x) =
1

σ
√
2π

e
−(x−a)2

2σ2 , (B.8)

where a = 5.0 and σ = 0.5. As I include more and more data points,
and as the bin size gets smaller and smaller, the histogram looks more
and more like a smooth curve and less like a staircase. And the curve
that the histogram resembles is p(x).
Where does Eq. (B.8) come from? It turns out that this is an equation

that describes a vast number of distributions. You have probably seen
it before: it is known as a normal or Gaussian distribution. Is is
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Fig. B.6 Three different normalized
histograms for increasing amount of
data. The number of data points is 100,
1, 000, and 10, 000, top to bottom. For
each histogram a bin size of 0.05 was
used. The dashed line is the distribu-
tion function p(x), Eq. (B.8).
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also often referred to as a bell curve. In Eq. (B.8) the quantity a is
the average value of x, and σ is a measure of how spread out the data
points are. A larger σ means there is more variation around the mean;
geometrically this has the effect of widening the bell curve.
The normal distribution is discussed in more detail in Section 20.1.

For now, let it suffice to mention that this distribution function can
be shown to apply to essentially any situation in which the variable in
question—in this case x, the mass of the cats—depends in an additive
way on many other variables. In this example, these other variables
might be things like how much food the cats ate when they were kittens,
the quality of their food, how much other cats beat them up, how often
they got sick, the size of their parents, and so on. By additive, I mean
that these effects can be added together (as opposed to multiplied) to
yield a prediction of the cat’s mass. But the main goal of this section is
to learn how to interpret p(x).

So, what does Eq. (B.8) mean? The quantity p(x) is known as the
probability density. It is also referred to as a probability distribu-

tion or a distribution function. Equation (B.8) is plotted in Fig. B.7.
The procedure for forming p(x) is, I hope, clear: one builds histograms
with smaller and smaller bin sizes and with more and more data points.
Usually the histogram gets smoother and smoother and resembles a con-
tinuous curve. The resultant curve is p(x).2 However, interpreting p(x)

2Determining an algebraic expression
for such a curve as in Eq. (B.8) is, how-
ever, another matter. In some cases,
as with the cats in this example, there
may be a good theory that tell us what
sort of function to use. In other cases
there may be multiple possible func-
tions that fit that data fairly well, in
which case one would need to use some
techniques from statistics in order to
decide which function to chose. For
now, we will assume we have a correct
(or good enough) p(x). The focus of
this section is how to interpret a prob-
ability distribution once one has been
found.

requires some care.
When interpreting a probability density the key thing to keep in mind

is its genesis as a histogram. We use a normalized histogram to inquire
about the fraction of the data which fall in a range of values. And
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Fig. B.7 The probability density for a
variable distributed according to p(x),
Eq. (B.8), a normal distribution with
an a of 5.0 and a σ of 0.5.

we determine this fraction by calculating the area under the histogram.
Probability density functions are interpreted in exactly the same way.

For example, suppose we are interested in the fraction of cats between
5.0 and 5.2 kilograms. This quantity is given by the area underneath the
p(x) curve between 5.0 and 5.2. We can figure this out by approximating
this area by the dashed rectangle shown in Fig. B.8. The base of this
rectangle is 0.2. The height of the rectangle is 0.8. Multiplying these two
numbers together yields 0.16. Thus, we can infer that approximately
16% of the data fall in this range. This is an approximate statement
because the area under the p(x) curve is only approximately equal to
the rectangle. The actual area will be slightly less.
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Fig. B.8 The probability density for a
variable distributed according to p(x),
Eq. (B.8), a normal distribution with
an a of 5.0 and a σ of 0.5. The fraction
of data between 5.0 and 5.2 is approxi-
mately given by the area of the dashed
rectangle.

It is tempting to interpret Fig. B.7 as telling us that, for example,
the probability that a cat has a mass of 5.0 kilograms is 0.8, or that
the fraction of cats with mass 4.5 kilograms is around 0.4. But this
is not correct. One cannot read the vertical axis in this way; it is the
area under the curve that is the probability. In fact, strictly speaking
it makes no sense to say that the probability that a cat is exactly 5.0
kilograms is 0.8. There are an infinite number of different masses that a
cat can be. So the probability that it is any one, exact, particular value
is zero.

The units on the probability density function for this example are
probability per kg. To see this, recall that the area of the rectangle in
Fig. B.8 is interpreted as a probability. The base of this rectangle has
units of kilograms, since x is a mass. The height, then, must have units
of probability/kg, so that the height times the base yields an area that
has units of probability. The units on p(x) help to justify us calling it
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a probability density. A mass density has units of mass per volume,
perhaps kg/m3. In order to get a mass from a mass density, one has to
multiply the mass by a volume. Similarly, to get a probability from a
probability density p(x), one needs to multiply p(x) by whatever units
are on x.

Exercises

(B.1) Form a histogram and a normalized histogram for
the following data set:

1.81, 2.55, 2.32, 2.48, 2.41,

1.80, 1.92, 2.03, 1.99, 2.26,

2.38, 1.92, 2.29, 2.18, 1.88,

2.14, 2.18, 1.78, 2.19, 2.37 .

(B.2) Form a histogram and a normalized histogram for
the following data set:

4, 3, 3, 3, 2, 2, 4, 17, 4,

5, 2, 2, 3, 6, 3, 5, 7, 11,

5, 8, 6, 4, 5, 7, 3, 2, 2 .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  2  4  6  8  10  12  14

Survival Time, in Months

Fig. B.9 A normalized histogram for survival times,

in months, after diagnosis of a disease.

(B.3) Use Fig. B.8 to estimate the probability that a cat
is between 4 and 5 kilograms.

(B.4) A study is done with 100 patients to see how long
they live after being diagnosed with a fatal dis-
ease. A normalized histogram for survival times
is shown in Fig. B.9.

(a) What fraction of the patients live between 5
and 6 months after diagnosis?

(b) What fraction of the patients live between 6
and 8 months?

(c) What fraction of the patients live more than
9 months?

(d) What fraction of the patients live between 0
and 14 months?

(e) What fraction of the patients live between 5
and 5.5 months?
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Fig. B.10 The distribution of distances between road-

kill.

(B.5) It has been determined that on a road in a na-
tional park, the distance between roadkill is ap-
proximately distributed by the function shown in
Fig. B.10.

(a) What is the approximate probability that
two roadkills are found between 1 and 1.5
miles apart?

(b) What is the approximate probability that
two roadkills are found between 1 and 2.0
miles apart?

(c) What is the approximate probability that
two roadkills are found at least 3 miles
apart?

(d) What is the approximate probability that
two roadkills are found exactly 2.1 miles
apart?

(B.6) What are the units for the probability density
function shown in Fig. B.10?
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(B.7) What are the units for the probability density
function shown in Fig. B.11?

(B.8) Suppose a certain type of snake ranges in length
from 1 meter to 3 meters. All lengths in between
these extremes are equally likely. Sketch a proba-
bility distribution function that describes the dis-
tribution of snake lengths.

(B.9) The distribution of trees in a certain forest is given
by the distribution function shown in Fig. B.11.
Why is it it not true to say that most trees are
around 1 meter tall?
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Fig. B.11 The distribution of the heights of trees.



This page intentionally left blank 



Suggestions for Further
Reading C
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C.2 Peer-Reviewed Papers 393

C.3 Suggestions for Further
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The topics covered in this book are just the beginning. The fields of
chaos and fractals have many more delights and surprises than I have
been able to cover here. There are also many additional applications
and extensions of chaos and fractals. In this appendix I aim to provide
some suggestions for those who wish to explore further.

A vast amount has been written about chaos and fractals and re-
lated areas. And there there is much interesting research being done on
chaos and fractals and their application to fields ranging from physics
and physiology to literature and political science. I think most would
agree that the bulk of this work ranges from rigorous and solid, to use-
fully speculative and provocative. However, not all would agree as to
where in this spectrum a particular piece of work belongs. Also, I think
there are some writings about chaos and fractals that are too sensational
and/or are based on fundamental misunderstandings of what chaos and
fractals actually are. So you should be aware that, in my view, a small
but not negligible fraction of what has been written about chaos and
fractals stretches metaphors, stretches the truth, or is just plain wrong.
I hope this book has prepared you to approach chaos and fractals with
an informed, critical, but open-minded perspective.

Many of the references and resources that I have listed below are at a
more advanced level than this book. Do not let that prevent you from
investigating them. Yes, some portions may be difficult to follow. But
you can definitely get a lot out of them regardless. Learning how to read
technical material and skim or skip parts that do not make sense is an
important and useful skill.

C.1 (Mostly) Books

Below are a number of additional references, mostly books. I have not
tried to make an exhaustive list. Rather, I have chosen books which I
think are particularly strong or that have been particularly influential.
Please take this list as a starting point, not the final word.

Gleick’s Chaos: Making a New Science

One book is so important that it gets a section of its own. James Gle-
ick’s Chaos: Making a New Science (Gleick, 1987) is an accessible, non-
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technical survey of chaos and fractals. Gleick, a science writer, does an
extraordinary job of capturing the fun and excitement of the early years
of research and discovery in chaos and fractals. The book not only was
a popular success, but it arguably also helped to synthesize the emerg-
ing area of chaos and dynamical systems (Lewenstein, 2007) and draw
young researchers to the field.
When I teach chaos and fractals, I have always had students read

Gleick’s book, and almost all find it readable, interesting, and thought-
provoking. In many ways, this textbook was designed to be an intro-
ductory technical companion to Gleick’s book.
Gleick’s book received decidedly mixed reviews from mathematicians.

A series of reviews, responses, and counter-responses in the Mathemat-
ical Intelligencer in 1989 make fascinating reading and provide insight
into divisions within the mathematics community as well as distinctions
between mathematics and other areas of science. John Franks published
a largely negative review (1989c) of Chaos: Making a New Science that
was accompanied by a response from James Gleick (1989a) and a re-
sponse by Franks to Gleick’s response (1989b). An essay by Morris
Hirsch (1989) critical of some aspects of Gleick’s book appeared sub-
sequent issue of the Mathematical Intelligencer, again accompanied by
a response from Gleick (1989b). This issue also contained an essay by
Benoit Mandelbrot (1989a) in which he took issue with some of the com-
ments about fractals that Franks made in his review of Chaos: Making
a New Science. The opinion section of this issue concluded with Franks
(1989a) responding to Hirsch, Gleick, and Mandelbrot. In the same is-
sue, letters to the editor by Keith Devlin (1989) and Ronald Douglas
(1989) were supportive of Gleick and took exception to Franks’ review.
The reception of Gleick’s book in the physics community was much more
positive (Shlesinger, 1988; Glazier and Gunaratne, 1988).
In a related vein, the pointed commentary on fractals by Steven

Krantz (1989), while only tangentially about Gleick’s book, is a similar
illustration of the hostility and backlash to some of the hype around frac-
tals. Mandelbrot responded to Krantz’s essay in a predictably prickly
fashion (Mandelbrot, 1989b).

Popular Books

• Philip Ball, Nature’s Patterns: A Tapestry in Three Parts consists
of three short books: Shapes (2011c), Flows (2011b), and Branches
(2011a). These are fascinating and well written explorations of
some of the common forms and structures in the natural and built
worlds.

• Nigel Lesmoir-Gordon, Introducing Fractal Geometry (2006) and
Ziauddin Sardar Introducing Chaos (2005). These are illustrated
cartoon-style books. Both are accessible, fun, and technically
sound.

• Nigel Lesmoir-Gordon, The Colours of Infinity: The Beauty, The
Power and the Sense of Fractals (2004). A nicely illustrated vol-



(Mostly) Books 391

ume with contributions about different aspects of fractals. There
is an accompanying documentary with the same title, narrated by
Arthur C. Clarke. Both the video and the book are informative,
engaging, and entertaining.

• Melanie Mitchell, Complexity: A Guided Tour (2009). Focuses on
complexity and complex systems. Contains excellent discussions
of chaos and power laws.

• Ian Stewart, Does God Play Dice: The New Mathematics of Chaos
(2002). Excellent, highly readable non-technical explanations of
the key ideas of chaos. Does a very good job of putting ideas from
chaos into a broader scientific context.

• Mitchell Waldrop, Complexity: the Emerging Science at the Edge
of Order and Chaos (1992). More about complexity and not so
much about chaos and fractals. Relevant in so far as complexity is,
arguably, an intellectual descendant of chaos and fractals. Similar
in style to Gleick’s chaos book.

Books at Roughly the Same Level as This Text

• A Tool Kit of Dynamics Activities consists of four workbooks: (De-
vaney, 2000), (Devaney and Choate, 2000), (Choate, Devaney, and
Foster, 2000a), (Choate, Devaney, and Foster, 2000b). Each work-
book contains lesson plans and worksheets on chaos and fractals
designed for use in high school math and science classes. A very
useful set of resources.

• Nina Hall, Exploring Chaos: A Guide to the New Science of Dis-
order (1994). A collection of short non-technical essays giving
overviews of different areas of application of chaos and fractals.

• Richard Kautz, Chaos: The Science of Predictable Random Motion
(2010). A clear and well written introduction to chaos. Somewhat
more advanced than this text.

• Benoit Mandelbrot and Michael Frame, Fractals, Graphics, and
Mathematics Education (2002). A collection of short articles con-
taining many interesting ideas and useful resources for teaching
fractals to high-school and college students.

• David Peak and Michael Frame, Chaos Under Control: The Art
and Science of Complexity (1994). Somewhere between a popular
science book and an elementary textbook.

More Advanced Texts

• Ralph Abraham and Christopher Shaw, Dynamics: The Geome-
try of Behavior (Studies in Nonlinearity) (1992). Excellent illus-
trations are used to explain the geometry of chaos and strange
attractors.

• Michael Barnsley, Fractals Everywhere (2000). The standard ref-
erence on iterated function systems.
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• J. M. Cushing, et al, Chaos in Ecology: Experimental Nonlinear
Dynamics (2002). An overview of applications of nonlinear dy-
namics in ecology.

• Gary William Flake, Computational Beauty of Nature. (1999).
Flake does a great job of giving an overview of chaos, fractals,
and many topics and themes from complex systems. Highly rec-
ommended. Not too much more advanced than this text. Very
clear.

• Daniel Kaplan and Leon Glass, Understanding Nonlinear Dynam-
ics. (1995). A very clear, interdisciplinary textbook on chaos and
fractals. More of an emphasis on biology than other texts. For
science majors. Assumes a knowledge of calculus.

• Heinz-Otto Peitgen, Hartmut Jürgens, and Deitmar Saupe, Chaos
and Fractals: New Frontiers of Science (1992). Do not be intimi-
dated by the size of this book. It is immense. But it is very clear,
and there is no need to read it from cover to cover. Strikes an ex-
cellent balance between intuition and rigor. Highly recommended.
One of my favorite books on chaos and fractals.

• Robert Devaney, An Introduction to Chaotic Dynamical Systems
(1989). A standard text on dynamical systems for junior/senior
level math majors.

• Kenneth Falconer, Fractal Geometry: Mathematical Foundations
and Applications (2003). The standard advanced undergraduate
text on fractals. Written for math majors.

• Larry Liebovitch, Fractals and Chaos Simplified for the Life Sci-
ences (1998). This is more of an outline and a collection of over-
head slides than a textbook. Nevertheless, a useful reference.

• Steven Strogatz, Nonlinear Dynamics And Chaos: With Appli-
cations To Physics, Biology, Chemistry, And Engineering (2001).
This is a standard text for applied math and physics classes on
chaos and nonlinear dynamics.

• Edward Ott, Chaos in Dynamical Systems (2002). A well-written
textbook with a physics emphasis. Uses more advanced and formal
mathematics than Strogatz.

History and Philosophy of Science

• David Aubin and Amy Delmedico, “Writing the History of Dynam-
ical Systems and Chaos: Longue Durée and Revolution, Disciplines
and Cultures” (2002). A long, thoroughly researched article dis-
cussing the history of the study of chaotic dynamics. One of the
best and most nuanced histories of chaos I have read.

• Stephen Kellert, In the Wake of Chaos (1993). A very clear and
well written exploration of the epistemological and philosophical
implications of chaos.



Peer-Reviewed Papers 393

• Stephen Kellert, Borrowed Knowledge: Chaos Theory and the Chal-
lenge of Learning Across Disciplines (2008). A critical look at
different attempts to use ideas from chaos in other fields.

• Peter Smith, Explaining Chaos (1998). A book about the implica-
tions of chaos for both the philosophy and practice of science. At
times assumes a knowledge of calculus and differential equations.

Films

• The Colours of Infinity (1995). A film about fractals, focusing
on the Mandelbrot set. Narrated by Arthur C. Clarke, directed
by Nigel Lesmoir-Gordon, and co-written by Clarke and Lesmoir-
Gordon. Engaging and informative.

• The Secret Life of Chaos (2010). Narrated by Jim Al-Khalili and
directed by Nic Stacey. A fascinating and well-produced overview
of chaos. Includes interviews with many scientists.

Online Resources

• Stanford Encyclopedia of Philosophy. http://plato.stanford.

edu. A great place for essays and reviews on, among other things,
the philosophy of science.

• Wolfram Mathworld. http://mathworld.wolfram.com. “A free
resource from Wolfram Research...created, developed, and nur-
tured by Eric Weisstein with contributions from the world’s math-
ematical community.” An excellent, highly technical resource.

• WolframAlpha. www.wolframalpha.com. A “computational en-
gine.” A remarkably useful website. “WolframAlpha introduces
a fundamentally new way to get knowledge and answers–not by
searching the web, but by doing dynamic computations based on
a vast collection of built-in data, algorithms, and methods.”

C.2 Peer-Reviewed Papers

Another place to learn more about chaos and fractals is the scientific
literature—peer-reviewed articles that are published in scientific jour-
nals. This section contains some general remarks on journal articles and
then some suggestions on how to search for and obtain articles.

Articles in scientific journals are peer-reviewed. The process usually
works as follows. An author or a group of authors submits a paper
for publication, and an editor of the journal sends the article out for
peer review. This means that the article is evaluated by peers—other
scientists working in the same area as the topic of the paper. Often
referees are chosen based on who is cited in the paper. In some cases the
authors’ names are removed from the paper before it goes out for review.
This seems to be more common in the biological and social sciences.
In physics, this is rarely done. Usually there are two to four referees
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for a paper. Each writes a short report on the paper recommending
publication, rejection, or most commonly the referees make suggestions
and then ask to see the paper again. Ultimately, it is the editor of
the journal who takes the referee recommendations into account and
makes the final publication decision. Referees are anonymous; authors
do not know who reviews their papers. Acceptance rates for journals
vary widely, but most are in the range from 10% to 50%.
Peer review does not guarantee that a paper is correct. Poor papers

get published, and good papers get rejected. But the peer review process
does provide some sort of a filter, albeit an imperfect one. It helps avoid
egregiously wrong papers, those which are so poorly written as to be
unreadable, and those that put forth results that are not novel.
Peer-reviewed publications are a big deal to scientists. A scientist’s

publication record is a key part of most hiring and promotion decisions.
A strong publication record is essential for being competitive for grants,
which is how much of science—including scientists’ salaries—is funded.
Perhaps even more important than the number of publications is a sci-
entist’s citation count: the number of times each of her or his papers has
been cited by other peer-reviewed papers. The logic is that those papers
that are cited are seen as more valuable or important. They certainly
are having a larger impact on the field than those papers which are never
cited at all.11There is no guarantee that an often-

cited paper is making a positive con-
tribution. It could be a paper with a
bad mistake which subsequent authors
corrected, and in so doing, provided a
citation to the original, wrong paper.

I mention all this because I think knowing about peer review is help-
ful when reading the peer-reviewed literature. Peer-reviewed scientific
articles are a very different genre of writing than textbooks or even
newspaper articles about science. They have a different audience—first
the peer reviewers, and then other scientists—with the ultimate goal of
getting cited.

Early Papers in Chaos and Fractals

Robert Hilborn and Nick Tufillano have assembled a “resource letter” in
the American Journal of Physics (1997) in which they have listed most
of the influential early papers on chaos and fractals. They have also
compiled many other resources for teaching and learning about these
topics. (Their paper was published in 1997, so it does not include any
reference more recent than this.)

Google Scholar and Other Databases

You will need a way to search the scientific and scholarly literature. The
best free way to do this is via Google Scholar: http://scholar.google.
com/. This is a version of Google’s search engine that is limited to
scholarly and academic works. For searching the scientific literature, use
Google Scholar and not regular Google. There are also other databases
that you can search, but these are not free. Consult your college or
university library for details.
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A particularly good way to find papers is to search citations. Suppose
you find a paper from 2002 about fractal patterns on turtles that you
think is really interesting. You might wonder if anyone has done any
follow-up work. You can find this out by seeing if anyone has cited the
2002 turtle article. On Google Scholar, the list of references citing a
paper can be found on the lower left of its listing.

How to Access Journal Articles

Unfortunately, many paper published in journals are not freely available.
Here are some steps you can follow that should help you find many of
the journal articles you are looking for.

(1) Google Scholar may point you to a free version of the pdf. Or,
your library may have access to it. Google Scholar can be set up
to include links directly to your library’s online resources. To do
so, select “scholar preferences” from the top menu, and then edit
the section titled Library Links.

(2) Go back to regular Google (or some other search engine) and do
a search for the exact title of the article. I.e., if the title of the
article is “Chaotic Dynamics of Cats”, enter that exactly into the
search box, including the quotations.

(3) Find the personal web pages of the paper’s author(s). Many sci-
entists have links to copies of their papers on their website.

(4) Send an email to the author(s) of the paper asking for a copy,
explaining very briefly why you are interested in their work. It is
very flattering to get such an email, and you will quite often get a
reply within a day or two.

(5) If none of these techniques work, it may be possible to get a copy of
the paper from your library via Inter Library Loan. For students
at a university library this service is often free, but if you are not
an enrolled student this service may not be available or it may not
be free.

(6) Travel to a library that has a subscription to the journal you are
seeking. Even if you do not have a library card, you should be
able to enter the library and make photocopies. You may also be
able to gain library privileges to a university or other large library,
even if you are not enrolled.

C.3 Suggestions for Further Reading

In the spirit of fractals, I cannot resist having a small section on further
reading in a chapter about further reading. Hull, Pettifer, and Kell’s
review article, “Defrosting the Digital Library: Bibliographic Tools for
the Next Generation Web,” (2008) contains an excellent overview of the
current state of digital libraries and also a number of applications for
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managing and sharing bibliographic materials online. Miller, Chabot,
and Messina’s, “A student’s guide to searching the literature using on-
line databases”, (2009), is, as the title suggests, an overview of how to
efficiently and effectively carry out searches of the scientific literature
online.
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Rössler, Otto E. (1976). An equation for continuous chaos. Physics
Letters A, 57(5), 397–398.

Ruelle, David (1980). Strange attractors. The Mathematical Intelli-
gencer , 2(3), 126–137.

Ruelle, David (1993). Chance and Chaos. Princeton University Press.

Ruelle, David and Takens, Floris (1971). On the nature of turbulence.
Communications in Mathematical Physics , 20(3), 167–192.

Russell, David A., Hanson, James D., and Ott, Edward (1980). Dimen-
sion of strange attractors. Physical Review Letters , 45(14), 1175–1178.

Sardar, Ziauddin (2005). Introducing Chaos (new edn). Totem Books.

Sauer, Timothy D. (2006). Attractor reconstruction. Scholarpe-
dia, 1(10), 1727+.

Sethna, James P. (2006). Statistical Mechanics: Entropy, Order Pa-
rameters and Complexity. Oxford University Press.

Shaw, Robert (1984). The Dripping Faucet as a Model Chaotic System.
Aerial Press.



402 References

Shishikura, Mitsuhiro (1998). The Hausdorff dimension of the bound-
ary of the Mandelbrot set and Julia sets. The Annals of Mathemat-
ics , 147(2), 225–267.

Shlesinger, Michael F. (1988). Book review: Chaos: Making a new
Science. Journal of Statistical Physics , 50(5), 1285–1286.

Smith, Leonard (2007). Chaos: A Very Short Introduction. Oxford
University Press.

Smith, Peter (1998). Explaining Chaos. Cambridge University Press.

Sprott, Julien C. (1993). Automatic generation of strange attractors.
Computers & Graphics, 17(3), 325–332.

Stacey, Nic (2010). The Secret Life of Chaos. British Broadcasting
Corporation (BBC).

Stewart, Ian (2002). Does God Play Dice? The New Mathematics of
Chaos (2nd edn). Wiley-Blackwell.

Strogatz, Steven (2001). Nonlinear Dynamics and Chaos: With Ap-
plications to Physics, Biology, Chemistry and Engineering. Perseus
Books.

Stumpf, Michael P. H. and Porter, Mason A. (2012). Critical truths
about power laws. Science, 335(6069), 665–666.

Styer, Daniel (2000). The Strange World of Quantum Mechanics. Cam-
bridge University Press.

Thompson, Silvanus P. and Gardner, Martin (1998). Calculus Made
Easy (revised, updated, expanded edn). St. Martin’s Press.

van Buuren, Armin (2010). This Light Between Us (featuring Christian
Burns). In Mirage. Ultra Records.

Waldrop, M. M. (1992). Complexity: The Emerging Science at the
Edge of Order and Chaos. Simon and Schuster.

Walters, Peter (2000). An Introduction to Ergodic Theory (Graduate
Texts in Mathematics). Springer.

Watts, Duncan J. (2004). Six Degrees: The Science of a Connected
Age. W. W. Norton & Company.

Wolfram, Stephen (1984). Universality and complexity in cellular au-
tomata. Physica D: Nonlinear Phenomena, 10, 1–35.

Wolfram, Stephen (2002). A New Kind of Science (1st edn). Wolfram
Media.



Index

affine transformation, 182
ℵ0 (cardinality of counting numbers),

229
ℵ1 (cardinality of unit interval), 229
algorithm, 145n
algorithmic randomness, 145–148, 153
almost always, see almost surely
almost surely, 63, 135
annihilation parameter, 57
aperiodic orbits, 84, 86–87
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radius, 300
rule 4, 287–289
rule 22, 297–298
rule 32, 290–291
rule 46, 291, 296, 297
rule 50, 296–297
rule 110, 292–293, 294, 299, 354, 355
rule 150, 291, 300
sensitive dependence on initial

conditions, 295
Sierpiński triangle, 297–298
single-cell seed, 296–298
space-time diagrams, 289
two-dimensional, 301

central limit theorem, 207–211
chance, see randomness
chaos, 3–4, 5–6, 85–86, 354

as conceptual realignment, 357–359
as cultural shift, 357–359
challenge to classical physics, 358
compared to coin toss, 144
field of study, 4, 359
history of, 4, 357–359
impact of, viii, 5–6, 357–359
in cellular automata, 292, 294, 295
in Lorenz equations, 339–345
origin of word, 3
relationship to fractals, 4
statistical stability of, 137
stretching and folding, 97–98
theory, 5, 357
uses and connotations of word, 3–4,

357
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chaos game, 178–181, 298, 354
role of randomness, 181

Chaos: Making a New Science, xii,
389–390

reactions to, 390
chaotic attractor, 279–283, see also

strange attractor
Charkovsky, see Sharkovsky
citations (to scientific literature), 394
city sizes, 204, 218
classical mechanics, 68, 147–148
climate versus weather, 138
coastline, 174, 194
cobweb diagram, 40, see also graphical

iteration
coin toss, 144
coin-toss game, 195–198
collage theorem, 181–183, 298
complex numbers, 241–246, 367, 368

addition and subtraction, 242–243
Cartesian coordinates, 243–244
geometry of, 243–246
multiplication, 243, 244–245
polar coordinates, 243–244
reality of, 241
squaring, 245–246, 247, 249–250
uses of, 242

complex plane, 243–244
complexity and simplicity, relationships

between, see simplicity and
complexity, relationships
between

composite function, 20n
compound interest, 375
computation, limits to, 84–85, 99
continuous dynamical system

contrasted with discrete, 303, 311, 314
possible behaviors in one dimension,

317–318
possible behaviors in two dimensions,

331–332
continuum, cardinality of, 229
convection rolls, 122–123
cookie, 9, 71
cooling cup of coffee, 304, 306–309
countable infinity, 146, 224
counting numbers, 223
critical orbit, 259
Crutchfield, James, 295n
cubic function, 115–117

bifurcation diagram, 117

Dahan Dalmedico, Amy, 358, 359
Day, Tim, 178
Δ (change in), 305
Δ (width of periodic regions), 119–120
δ (in SDIC definition), 94
δ (Feigenbaum’s constant), 120, 127
derivative, 306
Desrosiers, Christian, 176n

determinism, 68, 70–71, 72, 87, 153
deterministic function, 11, 12, 85, 144
deterministic sources of randomness, 93,

143–144, 147, 181, 354, see
also chaos

Devlin, Keith, 390
diagonalization argument, 228–229
differential equation, 307

autonomous, 318
fixed point, 315
logistic, 312, 313–315
Lorenz equations, 335–336
Lotka–Volterra model, 323
one-dimensional, 313–318
phase line, 314
Rössler equations, 345
solved using Euler’s method, 307–311
three-dimensional, 335–348
two-dimensional, 321–332
van der Pol equation, 330

dimension, 6, 163–170, 355–356
topological, 169
box-counting, 187–193
Cantor set, 167–168, 169
Cantor set (middle fifths), 170
capacity, 170
Hausdorff, 170
Hénon attractor, 280
hypercube, 170
Koch curve, 170
Lorenz attractor, 343
Mandelbrot set, 260
meaning of, 166–167
Menger hypercube, 170
Menger sponge, 170
self-similarity, 163–164, 187
Sierpiński carpet, 170
Sierpiński pyramid, 170
Sierpiński triangle, 168–169
snowflake fractal, 165–166

disorder and order, relationships
between, see order and
disorder, relationships
between

distribution, 384–386
exponential, 213, 214
Gaussian, 207–211, 383–384
long-tailed, 215, 219
normal, see distribution, Gaussian
scaling, 216
short-tailed, 215

distribution function, 384–386
dividing by zero (but not really), 305
doubling function, 53–54

sensitive dependence on initial
conditions, 102

Douglas, Ronald, 390
dripping faucet, 121–122, 129
dual-image stereogram, see stereogram
dust, see Julia set, disconnected

dynamical systems, 3–4, 22, 25, see also

chaos, field of study
dynamics, 4n, see also dynamical

systems

earthquake severity, 204, 218
ECA, see cellular automata, elementary
elementary cellular automata, see

cellular automata, elementary
embedding, 349
Enlightenment, 69–70
ε (in SDIC definition), 94
ergodic orbit, 135, 137
ergodicity, 135–138
Euler’s method, 307–311

choosing Δt, 309
in three dimensions, 336
in two dimensions, 323–325
interpretation of solutions, 311

Euler, Leonard, 310n
exponential distribution, 213

deviations from average, 213–215
lack of scale invariance, 215, 220

exponential function, 55, 96
exponential growth, 53–56, 65
exponents, 363–366

definition of, 363
square roots, 365–366
summary of properties, 366
zero, 364

Falconer, Kenneth, 169
fat tails, see long-tailed distributions
Fatou, Pierre, 238n
feedback, 17, see also iteration
Feigenbaum’s constant, 120, 127
Feigenbaum, Mitchell, 120
fern fractal, 182
filled Julia set, see Julia set, filled
final-state diagram, 78, 105–106

two-dimensional, 276–277
first recurrence map, 348
fixed point

for cellular automata, 293
for differential equation, 315
for iterated function, 26, 27, 315
from a graph, 29–30
neutral, 31, 48
stability determined via slope, 47
stability of, 30–31
unstable, 30

fixed-point equation, 27–29, 315
foxes, 321–323
Fracplanet, 178, 184
fractal forgery, see fractal landscapes
fractal landscapes, 178
fractals, 4–5, 6, 157–161, 169–170, 298,

354, 355–356, 395
history of, 359
as generic shapes, 356
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Cantor set, 158, 159
Cantor set (middle fifths), 170
complement to Euclidean geometry,

157, 356
fern, 182
generated by random process,

179–181, 354
Hénon attractor, 280
impact of, viii, 5–6, 355–356
irregular, 176–178
Koch curve, 170
lack of typical size, 160, 167, 195, 216
Menger sponge, 170, 171
naturally occurring, 158, 174
origin of word, 3
produced by cellular automata, 298
random, 174–176
real versus natural, 161
relationship to chaos, 4
relationship to power laws, 215–217
Sierpiński carpet, 170
Sierpiński pyramid, 170, 171
Sierpiński triangle, 162
snowflake, 159, 165–166

Franks, John, 390
free will, 70
frequency histogram, 212–213
function, 9–13

as a map, 13
composite, 20n
cubic, 115–117
defined by formula, 10–11
defined by graph, 11
deterministic, 11, 12, 144
doubling, 53–54
exponential, 55, 96
iterated, 17–22
sine, 117–118
squaring, 26, 237–238
stochastic, 11, 144
two-dimensional, 274–275
viewed as an action, 9–10

Galileo, Galilei, 69
Gaussian distribution, 207–211, 383–384

deviations from average, 213–215
general relativity, 68, 147n
generating partition, 143
geometric distribution, 214n
geometric understanding, 356, 359
Gleick, James, xii, 261, 389–390
Google Scholar, xiii, 394–395
graphical iteration, 37–41

Hausdorff dimension, 170
heavy tails, see long-tailed distributions
Hénon attractor, 279–283

attracting behavior, 281
sensitive dependence on initial

conditions, 281–283

Hénon equations, see Hénon map
Hénon map, 275–283, 354

chaotic behavior, 277–283
periodic behavior, 276–277
relation to Lorenz equations, 276, 348
sensitive dependence on initial

conditions, 281–283
Hénon, Michel, 275
Hilborn, Robert, 345
Hirsch, Morris, 390
histogram, 377–386

approximated with function, 383–386
bin size, 378–380
for chaotic orbits, 132–135
for periodic orbits, 131–132, 139
normalizing, 381–383
units on vertical axis, 382–383
vertical scale, 131n
word frequencies, 212–213

holism, 148
hypercube, 170

i (square root of −1), see complex
numbers

ice cream, 149–151
image compression, 182
imaginary numbers, see complex

numbers
incompressibility, 145
infinity

countable, 146, 224
uncountable, 146, 229

initial condition, 18
instantaneous rates of change, 304–306,

see also derivative
invariant density, 137n
invariant distribution, 133n, 137–138
irrational numbers, 225
irregular fractals, 176–178

Sierpiński carpet, 177
Sierpiński triangle, 176–177

iterated functions, 17–22
connection to Newton’s laws, 22, 68
notation, 18
why?, 21–22

iteration, see also iterated functions
graphical, 37–41

itinerary, 18

Joyce, David E., 254
Julia sets, 238, 354

cataloging, 257–259
colored, 253–254
computer graphics, 253–254
connected, 257–258
critical orbit periodicity, 263–267
disconnected, 253, 257–258
filled, 238, 250
for complex squaring function,

249–250

for f(z) = z2 − 1, 250–252
for f(z) = z2 + c, 252–253, 256
for linear functions, 240
for logistic equation, 238, 240
for quadratic family, 252–253, 256
for real functions, 237–240
for squaring function, 237–238

Julia, Gaston Maurice, 238n

Kellert, Stephen, xii, 357, 359
Koch curve, 170, 173–174, 354

box-counting dimension, 194
random, 174–176
self-similarity dimension, 170

Krantz, Steven, 390

L (unit interval), 225
cardinality of, 227–229

λ (Lyapunov exponent), 96
Laplace’s demon, 70
Laplace, Pierre-Simon, 70
Laplacian determinism, 70–71, 153, 355
lemma, 100n
Letellier, Christophe, 348
limit cycle, 331
linear functions (general definition),

151–152
building block solutions, 151–152

linear functions (straight lines), 368–369
basic properties, 368–369
iteration of, 45–49
Julia sets, 240
slope of ±1, 48
stability of fixed point, 47

linear thinking, 148
linearity, see linear functions (general

definition)
local rules producing global patterns,

298
log-log plot, 218–219
logarithms, 166, 191, 217, 370–373

definition of, 370–371
properties of, 371–373

logistic differential equation, 312,
313–315

logistic equation, 59–62, 77–87, 303, 354
aperiodic behavior, 82–85
bifurcation diagram, 106–110
compared to coin toss, 143
derivation of, 56–59
fixed points, 59–61
histogram of orbits, 131–135
Julia set of, 238, 240
origin of term, 59n
periodic behavior, 61–62, 77–82, 89–90
sensitive dependence on initial

conditions, 102–103
stretching and folding, 98

logistic map, see logistic equation
long-tailed distributions, 215, 219
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Lorenz attractor, 342–345, 354
dimension of, 343

Lorenz equations, 335–336, 354
attracting fixed point, 336–338
chaotic behavior, 339–345
fixed points, 349
historical significance of, 345n
periodic behavior, 338–339
relation to Hénon map, 276, 348
sensitive dependence on initial

conditions, 341–342
Lorenz, Edward, 335, 345
Lotka, Alfred, 321
Lotka–Volterra model

behavior of, 325–328
derivation of, 321–323
fixed points, 333
phase portrait, 327–328
realism of, 323
solutions via Euler’s method, 323–326

LV model, see Lotka–Volterra model
Lyapunov exponent, 95–97, 359

Mandelbrot set, 258–268, 354
as encyclopedia of Julia sets, 263–267
baby, 260, 261, 265, 266
colored, 261–262
computer graphics, 261–262
connectedness of Julia sets, 258–259
critical orbit, 259–260
dimension of, 260
relation to critical orbit periodicity,

263–267
relation to Julia set structure, 263–267

Mandelbrot, Benôıt, 3, 390
map, 13, see also function
mathematical modeling, styles of, 64
mathematical rigor, see rigorous results
mathematics, role in science, 69, 72
May, Robert, vii
McClure, Nikki, xiv
measurements, limits to precision, 93
mechanics, classical, see classical

mechanics
mechanics, quantum, see quantum

mechanics
Menger hypercube, 170
Menger sponge, 170, 171

self-similarity dimension, 170
Moby Dick, 211, 212, 218
models of population growth, 53–64
Monte Carlo algorithm, 147

natural fractals, 158
versus mathematical fractals, 161

neutral fixed point, 31, 48
Newman, Mark, 212
Newton’s law of cooling, 306
Newton’s laws, 22, 67–68, 87, 153, 357

universality of, 68

Newton, Issac, 67, 306
Newtonian universe, 22, 69, 72, 153
Newtonian worldview, see Newtonian

universe
non-integer dimension, 166–167
nonlinear dynamics, 4n, see also

dynamical systems
nonlinearity, see also linear functions

(general definition)
relation to chaos, 152

normal distribution, 207–211, 383, see
also Gaussian distribution

normalizing histograms, 381–383
numbers

complex, 241–246
counting, 223
imaginary, see numbers, complex
irrational, 225
rational, 225

one-dimensional differential equations,
313–318, see also differential
equation

impossibility of chaos, 317–318
possible behaviors, 317–318
qualitative analysis, 316–317

one-dimensional functions, relation to
higher-dimensional systems,
128–129, 347–348

orbit, 18
orbit diagram, 106n, see also bifurcation

diagram
order and disorder, relationships

between, 4, 72, 86–87, 138,
147, 152, 153, 183, 283–284,
295–296, 344–345, 354–355,
358

order in chaos, 152, 357

paradigm shift, 5
parameter, 55
partition, 142
parts vs. whole, see whole, relation to

parts
Pascal’s triangle, 162
peer-review process, 393–394
peer-reviewed papers, 393–395

citation count, 394
searching for and obtaining, 394–395

period doubling, 110, 112–113, 118–121
convection rolls, 122–123
dripping faucet, 121–122
electronic circuits, 123
renormalization, 125–128
route to chaos, 118, 355

periodic boundary conditions, 288
periodic orbits

histograms of, 131–132, 139
in cellular automata, 291, 293–294
on bifurcation diagram, 107

super stable, 125–126
unstable, 93n, 135–136

periodic window, 107, 110–111
phase line, 27, 314
phase plane, 327
phase portrait, 326–328

for attracting fixed point, 329
Lotka–Volterra model, 327–328
van der Pol equation, 330–331

phase space, 326–328
circular, 327
planar, 327
sphere, 333
three-dimensional, 336–338
torus, 333

Φ (renormalization operator), 127
Poincaré map, 348
Poincaré section, 348
Poincaré, Henri, 4, 212, 332, 358
Poincaré–Bendixson theorem, 332
population models, 53–64
power laws, 211–219

cautionary notes, 218–219
deviations from average, 213–215
examples of, 218
log-log plots, 217–218
long tails, 215
origins of, 218
relation to box-counting dimension,

217
relation to fractals, 215–218
scaling, 215–218

predictable unpredictability, 138, 345,
355

prediction
limits to, 91–93, 138, 355
role in science, 5, 70–71, 72, 355
statistical, 137–138

prediction errors, growth rate of, 95–97
Principia Mathematica, 67, 68, 69, see

also Newton’s Laws
probability density, 384–386
probability distribution, 384–386
pseudo random numbers, 147

quadratic formula, 366–368
quantum mechanics, 5–6, 68, 147, 357

Bohmian mechanics, 147n
randomness in, 147–148

rabbits, 15, 17, 22, 53, 65, 91, 321–323
radius of cellular automata, 300
random dynamical system, see

stochastic dynamical system
random Koch curve, 174–176

dimension, 176
randomness, 144–148, 153

algorithmic, 145–148
and quantum mechanics, 147–148
statistical approach to, 147n
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rational numbers, 225
reductionism, 148–149
reductive approach to science, 148–149,

151, 356
relativity, general, see general relativity
relativity, special, see special relativity
renormalization, 124–128
renormalization group, 125
repellor, 30, see also unstable fixed point
revolution, scientific, 5, 6, 357–359
ρ (invariant distribution), 133n
rigorous results, 85, 95, 133, 144, 332
roadkill, 386
Rössler attractor, 345–347, 354

Cantor set structure, 347
stretching and folding, 346–347

Rössler equations, 345
Rössler, Otto, 345
roundoff error, 99
route to chaos, see period doubling
Ruelle, David, 284
rule (for cellular automaton), see

cellular automata, rule
Runge–Kutta methods, 311
running average, 196

St. Petersburg game, 198–203
average winnings, 202–203

scale-free, 160, 215–218
scaling, 167, 215–218, 355–356
scaling distributions, 216, see also power

laws
science, 71–72

and reductionism, 148–149, 151
optimism in, 70, 71
role of mathematics, 69, 72

scientific literature, 393–395
citation count, 394
searching for and obtaining, 394–395

scientific notation, 198
scientific revolution, 5, 6, 357–359
Scientific Revolution (historical period),

69–70
scientific theory, see theory, scientific
SDIC, see sensitive dependence on

initial conditions
seagull effect, 345
searching for and obtaining scientific

papers, 394–395
seed, 18, see also initial condition
self-similarity, 158–160

approximate, see self-similarity,
statistical

bifurcation diagram, 110
limits to, 161
statistical, 159, 175, 187

self-similarity dimension, 163–164, 187
Cantor set, 167–168
Cantor set (middle fifths), 170
hypercube, 170

Koch curve, 170
meaning of, 166–167
Menger hypercube, 170
Menger sponge, 170
Sierpiński carpet, 170
Sierpiński pyramid, 170
Sierpiński triangle, 168–169
snowflake fractal, 165–166

sensitive dependence on initial
conditions, 85, 86, 90–95, 136,
138, 282, 355

definition of, 93–95
doubling function, 102
Hénon map, 281–283
in cellular automata, 295
logistic equation, 102–103
Lorenz equations, 341–342
relation to stretching and folding,

97–98
set, 222

cardinality, 222–223
size of, see set, cardinality

set of measure zero, 63
shadowing lemma, 99–101
Sharkovsky ordering, 110–111
Sharkovsky, Oleksandr, 110n

 (challenging exercise), x, xi
Shishikura, Mitsuhiro, 260n
short-tailed distributions, 215
Sierpiński carpet

box-counting dimension, 193
irregular, 177
self-similarity dimension, 170

Sierpiński pyramid, 171
self-similarity dimension, 170

Sierpiński triangle, 162, 207, 354
box-counting dimension, 193
generated by cellular automata,

297–298
generated by chaos game, 180
irregular, 176–177
self-similarity dimension, 168–169
topological dimension, 169

simple rules generating complex results,
111–112, 176, 178, 268, 297,
354–355, 356

simplicity and complexity, relationships
between, vii, xiv, 4, 5, 6, 72,
111–112, 153, 176, 178, 268,
295–296, 297, 354–355, 358

sine equation, 117–118
bifurcation diagram, 118

slope, 368, see also linear functions
(straight lines)

relation to stability, 47
snowflake fractal, 157, 159, 160

dimension of, 165–166
space-time diagrams, 289
special relativity, 68, 147n, 289, 357
squaring function, 26

Julia set of, 237–238
stability, 30–31

importance of, 31, 62–64
stable fixed point, 31
standard deviation, 208
� (important exercise), x, xi
state variables, 327
statistical self-similarity, 175, 187
statistical stability, 137
stereogram, 337–338
Stewart, Ian, xii, 124
stochastic dynamical system, 179
stochastic function, 11, 144
strange attractor, 283–284, 343–345,

355, 359
Hénon attractor, 279–283
Lorenz attractor, 342–345, 354
mix or order and disorder, 284
origin of term, 284
Rössler attractor, 346–347, 354
stability of, 284

stretching and folding, 97–98, 128,
346–347

super attractive periodic points, 125–126
symbolic dynamics, 141–143

Takens, Floris, 284
tend toward infinity, 26
ternary, 230
TerragenTM, 184
theory, scientific, 5, 6, 358
This Light Between Us, 219
Thopmson, Silvanus, 305n
three-dimensional differential equations,

335–348
chaos, 342
compared to two-dimensional

differential equations, 339
possible behaviors, 342
visualizing solutions, 336–338

time series plot, 33–34
exponential growth, 53

topological conjugacy, 142
topological dimension, 169

Cantor set, 169
Sierpiński triangle, 169

two-dimensional differential equations,
321–332

compared to three-dimensional
differential equations, 339

impossibility of chaos, 332
possible behaviors, 331–332

two-dimensional discrete dynamical
systems, 273–283

uncountable infinity, 146, 229
unit interval, 225

cardinality of, 227–229
universal, 120, see also universality
universal function, 127, 128
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universal Turing machine, 146
universality, 115–129, 355

and renormalization, 124–128
implications of, 123–124
in physical systems, 123–124

universality of Newton’s laws, 68
unstable fixed point, 30
unstable periodic orbits, 93n, 135–136

van Buuren, Armin, xiv, 203, 219

van der Pol equation, 330–331
van der Pol, Balthasar, 330
variance, 208
vector, 67–68
Verhulst, Pierre, 59
vertical line test, 12–13
Volterra, Vito, 321
von Koch curve, see Koch curve

weather

forecasting, 71–72, 138, 355
versus climate, 138

website popularity, 204, 218
whole, relation to parts, 149–152
Wolfram classification scheme, see

cellular automata,
classification of behavior

Wolfram, Stephen, 295, 302

y-intercept, 368


	Cover
	Contents
	I: Introducing Discrete Dynamical Systems
	0 Opening Remarks
	0.1 Chaos
	0.2 Fractals
	0.3 The Character of Chaos and Fractals

	1 Functions
	1.1 Functions as Actions
	1.2 Functions as a Formula
	1.3 Functions are Deterministic
	1.4 Functions as Graphs
	1.5 Functions as Maps
	Exercises

	2 Iterating Functions
	2.1 The Idea of Iteration
	2.2 Some Vocabulary and Notation
	2.3 Iterated Function Notation
	2.4 Algebraic Expressions for Iterated Functions
	2.5 Why Iteration?
	Exercises

	3 Qualitative Dynamics: The Fate of the Orbit
	3.1 Dynamical Systems
	3.2 Dynamics of the Squaring Function
	3.3 The Phase Line
	3.4 Fixed Points via Algebra
	3.5 Fixed Points Graphically
	3.6 Types of Fixed Points
	Exercises

	4 Time Series Plots
	4.1 Examples of Time Series Plots
	Exercises

	5 Graphical Iteration
	5.1 An Initial Example
	5.2 The Method of Graphical Iteration
	5.3 Further Examples
	Exercises

	6 Iterating Linear Functions
	6.1 A Series of Examples
	6.2 Slopes of +1 or -1
	Exercises

	7 Population Models
	7.1 Exponential Growth
	7.2 Modifying the Exponential Growth Model
	7.3 The Logistic Equation
	7.4 A Note on the Importance of Stability
	7.5 Other r Values
	Exercises

	8 Newton, Laplace, and Determinism
	8.1 Newton and Universal Mechanics
	8.2 The Enlightenment and Optimism
	8.3 Causality and Laplace’s Demon
	8.4 Science Today
	8.5 A Look Ahead


	II: Chaos
	9 Chaos and the Logistic Equation
	9.1 Periodic Behavior
	9.2 Aperiodic Behavior
	9.3 Chaos Defined
	9.4 Implications of Aperiodic Behavior
	Exercises

	10 The Butterfly Effect
	10.1 Stable Periodic Behavior
	10.2 Sensitive Dependence on Initial Conditions
	10.3 SDIC Defined
	10.4 Lyapunov Exponents
	10.5 Stretching and Folding: Ingredients for Chaos
	10.6 Chaotic Numerics: The Shadowing Lemma
	Exercises

	11 The Bifurcation Diagram
	11.1 A Collection of Final-State Diagrams
	11.2 Periodic Windows
	11.3 Bifurcation Diagram Summary
	Exercises

	12 Universality
	12.1 Bifurcation Diagrams for Other Functions
	12.2 Universality of Period Doubling
	12.3 Physical Consequences of Universality
	12.4 Renormalization and Universality
	12.5 How are Higher-Dimensional Phenomena Universal?
	Exercises

	13 Statistical Stability of Chaos
	13.1 Histograms of Periodic Orbits
	13.2 Histograms of Chaotic Orbits
	13.3 Ergodicity
	13.4 Predictable Unpredictability
	Exercises

	14 Determinism, Randomness, and Nonlinearity
	14.1 Symbolic Dynamics
	14.2 Chaotic Systems as Sources of Randomness
	14.3 Randomness?
	14.4 Linearity, Nonlinearity, and Reductionism
	14.5 Summary and a Look Ahead
	Exercises


	III: Fractals
	15 Introducing Fractals
	15.1 Shapes
	15.2 Self-Similarity
	15.3 Typical Size?
	15.4 Mathematical vs. Real Fractals
	Exercises

	16 Dimensions
	16.1 How Many Little Things Fit inside a Big Thing?
	16.2 The Dimension of the Snowflake
	16.3 What does D ≈ 1.46497 Mean?
	16.4 The Dimension of the Cantor Set
	16.5 The Dimension of the Sierpi&#324;ski Triangle
	16.6 Fractals, Defined Again
	Exercises

	17 Random Fractals
	17.1 The Random Koch Curve
	17.2 Irregular Fractals
	17.3 Fractal Landscapes
	17.4 The Chaos Game
	17.5 The Role of Randomness
	17.6 The Collage Theorem
	Exercises

	18 The Box-Counting Dimension
	18.1 Covering a Box with Little Boxes
	18.2 Covering a Circle with Little Boxes
	18.3 Estimating the Box-Counting Dimension
	18.4 Summary
	Exercises

	19 When do Averages Exist?
	19.1 Tossing a Coin
	19.2 St. Petersburg Game
	19.3 Average Winnings for the St. Petersburg Game
	19.4 Implications
	Exercises

	20 Power Laws and Long Tails
	20.1 The Central Limit Theorem and Normal Distributions
	20.2 Power Laws: An Initial Example
	20.3 Power Laws and the Long Tail
	20.4 Power Laws and Fractals
	20.5 Where do Power Laws Come From?
	Exercises

	21 Infinities, Big and Small
	21.1 What is the Size of the Cantor Set?
	21.2 Cardinality, Counting, and the Size of Sets
	21.3 Countable Infinities
	21.4 Rational and Irrational Numbers
	21.5 Binary
	21.6 The Cardinality of the Unit Interval
	21.7 The Cardinality of the Cantor Set
	21.8 Summary and a Look Ahead
	Exercises


	IV: Julia Sets and the Mandelbrot Set
	22 Introducing Julia Sets
	22.1 The Squaring Function
	22.2 Other Examples
	22.3 Summary
	Exercises

	23 Complex Numbers
	23.1 The Square Root of -1
	23.2 The Algebra of Complex Numbers
	23.3 The Geometry of Complex Numbers
	23.4 The Geometry of Multiplication
	Exercises

	24 Julia Sets for the Quadratic Family
	24.1 The Complex Squaring Function
	24.2 Another Example: f(z) = z[Sup(2)] - 1
	24.3 Julia Sets for f(z) = z[Sup(2)] + c
	24.4 Computing and Coloring Julia Sets
	Exercises

	25 The Mandelbrot Set
	25.1 Cataloging Julia Sets
	25.2 The Mandelbrot Set Defined
	25.3 The Mandelbrot Set and the Critical Orbit
	25.4 Exploring the Mandelbrot Set
	25.5 The Mandelbrot Set is a Julia Set Encyclopedia
	25.6 Conclusion
	Exercises


	V: Higher-Dimensional Systems
	26 Two-Dimensional Discrete Dynamical Systems
	26.1 Review of One-Dimensional Discrete Dynamics
	26.2 Two-Dimensional Discrete Dynamical Systems
	26.3 The Hénon Map
	26.4 Chaotic Behavior and the Hénon Map
	26.5 A Chaotic Attractor
	26.6 Strange Attractors Defined
	Exercises

	27 Cellular Automata
	27.1 One-Dimensional Cellular Automata: An Initial Example
	27.2 Surveying One-Dimensional Cellular Automata
	27.3 Classifying and Characterizing CA Behavior
	27.4 Behavior of CAs Using a Single-Cell Seed
	27.5 CA Naming Conventions
	27.6 Other Types of CAs
	Exercises

	28 Introduction to Differential Equations
	28.1 Continuous Change
	28.2 Instantaneous Rates of Change
	28.3 Approximately Solving a Differential Equation
	28.4 Euler’s Method
	28.5 Other Solution Methods
	Exercises

	29 One-Dimensional Differential Equations
	29.1 The Continuous Logistic Equation
	29.2 Another Example
	29.3 Overview of One-Dimensional Differential Equations
	Exercises

	30 Two-Dimensional Differential Equations
	30.1 Introducing the Lotka–Volterra Model
	30.2 Euler’s Method in Two Dimensions
	30.3 Analyzing the Lotka–Volterra Model
	30.4 Phase Space and Phase Portraits
	30.5 Another Example: An Attracting Fixed Point
	30.6 One More Example: Limit Cycles
	30.7 Overview of Two-Dimensional Differential Equations
	Exercises

	31 Chaotic Differential Equations and Strange Attractors
	31.1 The Lorenz Equations
	31.2 A Fixed Point
	31.3 Periodic Behavior
	31.4 Chaos and the Lorenz Equations
	31.5 The Lorenz Attractor
	31.6 The Rössler Attractor
	31.7 Chaotic Flows and One-Dimensional Functions
	Exercises


	VI: Conclusion
	32 Conclusion
	32.1 Summary
	32.2 Order and Disorder
	32.3 Prediction and Understanding
	32.4 A Theory of Forms
	32.5 Revolution or Reconfiguration?


	VII: Appendices
	A: Review of Selected Topics from Algebra
	A.1 Exponents
	A.2 The Quadratic Formula
	A.3 Linear Functions
	A.4 Logarithms
	Exercises

	B: Histograms and Distributions
	B.1 Representing Data with Histograms
	B.2 Choosing Bin Sizes
	B.3 Normalizing Histograms
	B.4 Approximating Histograms with Functions
	Exercises

	C: Suggestions for Further Reading
	C.1 (Mostly) Books
	C.2 Peer-Reviewed Papers
	C.3 Suggestions for Further Reading
	References


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


