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Abstract 

Standard risk management focuses on short-run risks rather than longer periods. We introduce an improved risk measure 

which can be used to estimate both short-and long-term structure of value at risk and the corresponding expected 

shortfall. The short- and long-term coherent measure of risk is specified and computed for both S&P 500, HSI and 

SHSZ 300. We also test long-term skewness and kurtosis from empirical analysis for S&P 500, HSI and SHSZ 300. We 

also show that our improved risk measure gives a better estimate of the value at risk for short horizons and never 

decreases to negative values like VaR for long-run horizons. Both long-term skewness and kurtosis for HSI and SHSZ 

300 are analyzed empirically. 

Keywords: risk management, short-term risk, long-term risk, skewness, kurotosis, systemic risk 

1. Introducation 

Engle (2011) raises an important challenge question on the risk assessment to measure both short- and long-term risk. 

The short-term nature of VaR and ES (expected loss) is a very important feature. Positions held for more than one day 

will have additional risk due to the fact that risk itself can change with respect to the time horizon (see Engle (2009)). 

Most investors and financial firms hold much longer than one day and changes in risk will be a very important 

determinant of returns. The risk measure VaR with specified quantile can be negative for long horizons
1
, where 

,1t t T t TP S S VaR 
     

 
defines 

,TVaR
 with the pre-determined quantile α and the value St of the portfolio at t. 

Hence, the simple approximation of VaR by 0,TVaR T  can no longer be used in the long-term risk measurement, 

where 0

,TVaR
 is defined by 0

,ln(1 )t t T t t T TP s E s VaR  
       and st= lnSt. Indeed the Securities Exchange 

Commission (SEC) tied the capital requirements of financial service firms to the losses in 1980 that would incurred 

with 95% confidence over 30 days interval in different security classes as the first regulation on VaR. 

During the 2007-2008 financial crisis, many risk management systems fail to accurately assess the risks of financial 

positions and economic agents and financial firm managers fail to respond these risk appropriately. Acharya et al (2010) 

find these are two key features among other things. Engle (2011) points out that there two features are inextricably 

linked, and it is unlikely that we will be able to quantify the relative importance of miss-measurement of risk from the 

incentives to ignore risk. The most widely used risk measure with frequently criticized is the value at risk VaR of a firm 

or portfolio. This is the 1% quantile of the distribution of future values and is typically defined over the next trading day. 

The mis-use of the short-run VaR into assessing long-term risk during the financial crisis is arguably one of many 

causes for the 2007-2008 financial crisis. 

                                                        
1 VaR focuses clearly on downside risk and potential loses. The demise of Long Term Capital Management, the investment fund with top pedigree 

Wall street traders and Noble Prize winners was a trigger to accept VaR largely. 
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In this paper, we introduce an extension VaR  of the traditional value at risk VaR for any quantile α level. Our 

generalized value at risk is sufficiently close to the variation of VaR for short time horizons, and is always positive for 

long-term horizons. Engle (2011) uses 
0

, ,T TVaR VaR T     as an approximation. The value at risk VaR evaluated 

by 
0

,TVaR T   will be negative after some long-term horizon T0 (T > T0 for a solution T0 of the nonlinear equation 

0

0

0 ,TT VaR  ). We study this property for both S&P 500, HIS and SHSZ 300 to indicate that this is always the case. 

For these three indices, Engle's (2011) approximated VaR always decreases to negative value and our extension VaR  

always takes positive values and gradually increases to 1 (therefore loss everything for long-term horizons with this risk 

measure). In a certain sense, our extension VaR  of the value at risk VaR provides a risk measure for both short- and 

long-term risk and refines the value at risk 
0

,TVaR . Moreover, we show that 
0

,TVaR  can be thought of a linear 

approximation of 
0

,TVaR  in terms of T, and our extension ,TVaR  can be thought of a quadratic (nonlinear) 

approximation of ,TVaR  in terms of T. 

J. P. Morgan in RiskMetrics system documentation states that Value at Risk is an estimate, with a predefined confidence 

interval, of how much one can lose from holding a position over a set horizon. RiskMetrics makes the variances in and 

covariances across asset classes freely available to any investor who wants to access them and to compute the Value at 

Risk analytically for a portfolio. Potential horizons may be one day for typical trading activities or a month or longer for 

portfolio management. VaR is typically measured from volatility or correlation models that are adjusted frequently to 

reflect changes in risk, a generic measure of risk exposure. VaR is a statistic measure of risk and an unconditional 

measure of risk which is also difficult to estimate. Engle (2011) develops a test to understand the strength of the 

long-term negative skewness as a property of asymmetric volatility models. He shows that asymmetric models used in 

Engle (2011) are consistent with the long-term skewness in the data. In this paper, we do not test those asymmetric 

models. Instead, we evaluate empirically the extended value at risk VaR  to the Hong Kong Hang Seng Index and the 

Chinese Hushen 300 index (SHSZ 300) from 1990 to 2012 and 2002 to 2012 respectively. Our extended VaR shows the 

sufficiently close to VaR evaluated in Engle (2011) for very short horizon in terms of 
0

,TVaR , and provide a better risk 

measure in the short horizon from the definition. Furthermore, VaR  decreases first and tips up to stay in positive 

range and approach to the maximum probability one. 

Dubil (2009) shows that the focus on distribution simplifications, linear options approximations, variance modeling and 

heteroskedasticity does not help the VaR practitioner deal with the efficient loss value sampling faced by a bank with 

thousands of positions, hundreds of risk factors, various derivatives with nonlinear cross-termed factor exposure
2
. We 

use the normal distribution to estimate the extended VaR, and leave the further volatility roll-over (those five models 

studied in Engle (2011)) into the computation for a future study. From our empirical test on VaR , the extended VaR is 

more accurate in a short horizon, say 1-year. Hence, it would be possible to apply VaR  into Solvency II, QIS, Market 

Risk and Insurancerisks (see Egidio dos Rels et al (2009)). Jackson et al (1997) analyze the empirical performanceof 

different VaR models using data on the actual fixed income, foreign exchange andequity security holdings of a large 

bank.  

Artzner et al (1997, 1999) define a unified frame work for market risks as well as nonmarketrisks without assuming 

completeness of markets. These coherent measures of risk satisfythe basic four properties (translation invariance, 

subadditivity, positive homogeneity and monotonicity) and can be adapted as capital requirements to regulate the risk. 

Acerbi and Tasche (2002) show that the expected shortfall is a coherent risk measure which resolvesthe deficiencies of 

value-at-risk. With our extended short- and long-term value-at-risk, we introduce the short- and long-term coherent 

measure of risk corresponding to the extended value-at-risk. The tail conditional expectation at a level α quantile, and 

the extended α-tail mean as well as the extended expected shortfall are defined and computed in Section 3. The 

extended expected shortfall is a coherent risk measure in the sense of Artzner et al (1999) and Delbaen (2002).  

The paper is organized as follows. Section 2 introduces the extension of the value at risk defined by Engle (2011) and 

                                                        
2 One should focus on the size relative to the standard deviation, i.e., a large (positive or negative) return in a period of high volatility may lead in a 

low standardized return, while the same rest urn following a period of low volatility may yield an abnormally high standardized return. Hence, the 

emphasis on normalized standardized return exposed the VaR computation to the risk of more frequent large outliers than would be expected with a 

normal distribution. 
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studies its basic properties. Section 3 defines the extended tail conditional expectation, the extended α-tail mean and the 

extended expected shortfall. Section 4 compares both our extension risk measure and VaR for short- and long-term 

horizons for S&P 500, and the short- and long-term skewness and kurtosis of S&P 500 are also presented. Section 5 

illustrates the HSI and SHSZ 300 for both extended VaR and VaR as well as short- and long-term skewness and kurtosis. 

We conclude in Section 6.  

2. Short- and Long-term Structure of Risk 

The short- and long-term risks are measured from short horizons as one day or one week to long horizons as one year or 

many years. Usually the risk measure is considered as the losses that would result from underlying asset moves over 

various time horizons. The important challenge to risk assessment is to develop risk measures that can capture both 

short- and long-term risks, as Engle (2011) points out. This risk measure is the crucial instrument to optimal investment 

strategies under such a short- and long-term structure of risk. The serious challenge is not how to conceptually define 

such risks, but how to measure such risks.  

In this section, we introduce a risk measure that is well-defined for both short- and long- term structure such that the 

risk measure is reduced to the short-term risk measure when one restricts to a show period of time horizon. The term 

structure of the risk measure is a natural analogue of the term structure of interest rate and the term structure of 

volatility as Engle (2011) studies.  

Let St be the value of a portfolio at time t and st= lnSt be its log value. The loss is the difference (St+T-St) between the 

period T value and the current value of the portfolio. The term structure is with respect to the period T. Hence, the VaR 

at the level alpha and the time horizon T per dollar invested is given by 

,1t t T t TP S S VaR 
     

                                (1) 

The structure of risk requires the distribution of the underlying asset at time t+T with a current information Ft, the 

conditional probability with the loss is given by the predetermined quantile α. In another word, for a given time horizon 

T and the confidence level α, the value at risk is the loss in market value over the time horizon T exceeded with 

probability 1-α, Variations on VaR may represent forecasts of risk and returns.  

Let 
0

,TVaR  be the α quantile of losses assuming expected continuously compounded returns are zero. So the expected 

losses from holding the asset can be estimated as 

0

,ln(1 )t t T t t T TP s E s VaR  
     

 

Subtracting the term st and moving the conditional expectation Etst+T, we have 

0

,ln(1 )t t T t t t T t TP s s E s s VaR  
       

 

Note that 
,1t t T t TP S S VaR 

     
 from (1). Hence, 

0

, ,ln(1 ) ln(1 )T t t T t TVaR E s s VaR                              (2) 

For any fixed period T, Etst+T=st if and only if st+T is martingale if and only if 
0

, ,T TVaR VaR  . For any 

non-martingale st+T , we have the relation between the two measures of VaR approximately given by 

0

, ,T TVaR VaR T                                      (3) 

Where μ is the expected return (see also Engle (2011) for this)
3
. The bigger the estimate of the expected return μ, the 

less risky the underlying asset appears confounding the separate estimation of risk and return. Since the expected 

returns are positive, the long horizon return is proportional to T. But the volatility is proportional to the square root of T, 

and the estimation of 
0

,TVaR  is proportional to the square root of T. Hence, by (3), ,TVaR  becomes negative for 

relatively large T or the risk measure for the long-term T becomes meaningless.  

The Derivatives Policy Group proposes a standard quantile α=0.01 and time horizon two weeks for over-the- counter 

derivatives broker-dealer reports to the Securities and Exchange Commission. This value at risk measures the 99% 

confidence level of the probability distribution of changes in market value in the statistic sense. BIS (Bank for 

International Settleements) sets α=0.01 and time horizon T to 10 days for measuring the adequacy of bank capital, and J. 

P. Morgan discloses the daily VaR at the confidence level 95%. VaR measures only the aspect of market risk, and would 

                                                        
3 Here one uses ln(1-x)~ -x for sufficiently small x and Etst+T-st~μT for non-convexity effects. So (3) follows from a simple algebra with these 

approximations. 
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be relevant with some measure of cash ow at risk to better access capital adequacy
4
. 

The risk measure given by ,TVaR  is criticized (i) by theoretical point of view that it fails natural axioms of 

diversification, and (ii) by ignoring the size of the risk in the alpha tail. Value at Risk ,TVaR  is usually computed 

over a day, a week or a few weeks by its approximation 
0

,TVaR T  . In real world, the approximated value 
0

,TVaR T   of ,TVaR  cannot be adapted for long-term horizons. Instead of the previous approximation in (3), 

we define another extension ,TVaR  of the risk measure ,TVaR  to capture the long term risk measure in the sense 

that ,TVaR  always measures the loss of the underlying asset
5
.  

,ln(1 )Tt t T t t TP s E s T VaR  
     
  

                         (4) 

Hence, the relation between the two measures of ,TVaR  and 
0

,TVaR  is given by 

, ,ln(1 ) ln(1 )T TVaR VaR T                                   (5) 

Therefore we obtain the extension of the risk measure 

0
, , (1 )T T
T TVaR e VaR e 

 

                                  (6) 

The expression (6) shows that the risk measure is no longer negative for any large T, and for any T>0, 

, ,0, lim 1T T
T

VaR VaR 


   

0 0
, , ,(1 )T T
T T TVaR e VaR e VaR

T T

 
     

   
 

 

The expression (6) is a nonlinear extension of the usual ,TVaR  since the linear expression of ln(1-x)≌-x 6
 and 

replacing (5) by its linearization one gets (3). 

The rate of the change with respect to the term structure T is given by the sum of the positive rate of change term 
0

,(1 )T

Te VaR

    and the discounted version of the rate of change for the logarithmic mean zero risk measure from 

(6). It is interesting to see that the nonlinear extension ,TVaR  eventually increases to its maximum value 1 at the 

infinity term structure. 

From the term structure point of view and (2), we have 

,,(1 ) (1 ) t t T tE s s T
TTVaR VaR e




  
                                 (7) 

By (7), we have ,, TTVaR VaR   if and only if Etst+T=st-μT; ,, TTVaR VaR   if and only if Etst+T-st+μT<0; and 

,, TTVaR VaR   if and only if Etst+T-st+μT>0. This ,TVaR  relaxes the martingale condition Etst+T=st to have a 

better approximation of ,TVaR  than 
0

,TVaR . We obtain 

, ,(1 )t t T t t t T tE s s T E s s T
T TVaR e VaR e

 
 

      
    

where 
0

, ,T TVaR VaR   is a better approximation of ,TVaR  for large T. 

                                                        
4 The true Value at Risk is much bigger tan the computed VaR if there are political risk, liquidity risk and regulatory risks associated to the underlying 

asset that are not built into the VaR. 
5 Here one uses ln(1-x)~ -x for sufficiently small x and Etst+T-st~μT for non-convexity effects. So (3) follows from a simple algebra with these 

approximations. 

The definition of ,TVaR  in (4) has an important sign issue we would like to point out here. For a small T in the linear approximation, we have 

0 0

, , ,T T TVaR VaR T VaR     . If one directly replaces st by Etst+T-μT to define the new Value at Risk 

'

,( ) ln(1 )t t T t t T TP s E s T VaR  
      

, then the relation between '

,TVaR
 and 0

,TVaR
 is given by  

' 0

, ,(1 ) (1 ) 1T

T TVaR VaR e

      

by a straightforward calculation. Therefore this definition '

,TVaR
 of the Value at Risk leads to ' 0

, ,T TVaR VaR   for all T>0 and further far away 

from 
,TVaR

. The adjustment of the new measurement given in (4) serves to resolve this issue and to resolve the negative problem for a long time 

horizon as well. 

6 It is clear that –ln(1-x)=x+x2/2+ x3/3+…+ xn/n+… holds for |x|<1 and the linearization of ln(1-x) at x=0 is simply -x. 
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To summarize the relations among three different VaR’s, we make the following characteristics. 

(1) 
0

, ,(1 )t t T t t t T tE s s E s s

T TVaR e VaR e 
    

    and Etst+T-st=O(T). 

0

, ,1 (1 ) t t T tE s s

T TVaR VaR e 
 

   , where 
0

, ,T TVaR VaR   if and only if Etst+T=st for any T. 

(2) , ,(1 ) 0t t T t t t T tE s s T E s s T
T TVaR e VaR e

 
 

      
     and  

, ,1 (1 ) t t T tE s s T
T TVaR VaR e


 

  
   , where , ,T TVaR VaR   if and only if Etst+T=st-μT. 

In general, these three VaR’s are indeed different. The earlier 
0

,TVaR  can be thought of a linear approximation of 

,TVaR  in terms of T, and our extension ,TVaR  can be thought of a better approximation of ,TVaR  above 
0

,TVaR  for all T. But most calculations of 
0

,TVaR  take further simplification from ln(1-x)=-x to 
0

, , ( )T T t t T tVaR VaR E s s     . Regardless of simplification, our extension , 0TVaR   gives better 

understanding of the true VaR for any T than 
0

,TVaR  does. 

Now we use the nonlinear extension ,TVaR  of the risk measure to include the size of the risk and define the expected 

loss should ,TVaR  be exceeded. Therefore 

, ,[ 1| 1 ]T Tt t T t t T tES E S S S S VaR                              (8) 

For the mean logarithmic return zero, we have the expected loss is given by 

0 0

, ,[ 1| 1 ]T t t T t t T t TES E S S S S VaR        . 

By using extreme value theory, the Pareto distribution is given by 

F(x)=1-(x/x0)
-λ, 0<x0≤x, 

where the only parameter λ is required to estimate the probability. The tails of the distribution get narrower as the 

parameter increases. The Pareto density function is given by F’(x)=f(x)=λ(x/x0)
-λ-1

 for 0<x0<x. By setting 
0

0 ,Tx VaR  

and xt=1-st+T/st, one has 

0 0

, 0 ,[ | ] ( 1)T t t t TES E x x x VaR         , 

for λ>1. The common approach to the parameter λ is to use the Hill estimator. McNeil, mbrechts, and Frey (2005) 

define a threshold x0 so that all data exceeding this x0 follows the Pareto distribution. This will be used to form a 

maximum likelyhood estimator of the unknown tail parameter. Hence, the Hill estimator is 

0

,

1 ˆ, 1 ln( )t T t
t t

t Exceed t ExceedT

S S
z z

VaR



 


                           (9) 

Resnick and Starica (1995) and references therein show that Hill's estimators in (9) is consistent for the tail index of the 

marginal distribution in a time series context provided the marginal distribution is independent of the time. 

Assume that the long term tail beyond ,TVaR  follows the Pareto distribution, and with the Hill's estimator ̂ , the 

lower tail by focusing on losses 1-St+T/St, 

, ,
ˆ ˆ( 1)T TES VaR                                     (10) 

3. Coherent Risk Measurement from VaR  

Artzner et al (1997, 1999) introduce a constructive evaluation for the capital requirement with four basic desired 

properties, since the managing risk by VaR may fail to stimulate diversification and VaR does not satisfy the 

sub-additive property (see Embrechts (2000) for review on this criticism). Acerbi et al (2002) define the expected 

shortfall which is both coherent and easy to compute and estimate. The expected shortfall as a coherence risk measure is 

easier to compute than the tail conditional expectation and the worst conditional expectation defined by Artzner et al 

(1999).  

For our extended VaR , we define the corresponding tail conditional expectance, α-tail mean and the expected 

shortfall to formulate both coherent and easy risk measure. For the fixed quantile α, we define the tail conditional 

expectation at a level α is the measure of risk given by  

,, ,[ | ]T Tt t T t TTCE E X X VaR


                                 (11) 

where Xt,T=St+T/St-1 in our case. Delbaen (2002) shows that TCE
α
 in general is not subadditive in Theorem 6.10. Hence, 
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the worst conditional expectation is defined in Artzner et al (1999) Definition 5.2. The worst conditional expectation is 

sub-additive, but the smallest coherent risk measure dominating VaRα,T. It is extremely difficult to compute. We follow 

Acerbi et al (2002) to extend the corresponding tail mean and expected shortfall for the ,TVaR . The extended α-tail 

mean ,TVaR  is defined by  

, , , ,, , , ,

1
( ) ( [ | ] ( [ ] ))T T T Tt T t t T t T t t TTM X E X X VaR VaR P X VaR    


             (12) 

The extended expected shortfall is defined by 

,, , ,( ) ( )TT t T t TES X TM X                              (13) 

Acerbi et al (2002) show that ESα is continuous with respect to α, and is sub-additive. By the same proof, we have the 

following proposition.  

Proposition 3.1. For a fixed quantile α∈(0,1) and a fixed long term T, consider a set Vt,T of real-valued random 

variables on a probability space ( , , )T t tP Α  for the present time t such that Et[max{-Xt,T,0}]<1 for all 

, ,t T t TX V . Then , ,:T t TV R  with ,, , ,( ) ( )TT t T t TX ES X   for , ,t T t TX V  is a coherent risk measure 

in the sense of Definition 2.4 of Artzner et al (1999) and Definition 2.1 in Delbaen (2002): i.e., the risk measure ,T  

satisfies the monotonicity, sub-additivity, positive homogeneity and translation invariance
7
.  

For the quantile α=0.01, we can evaluate the extended tail condition expectation TTCE


 at the level 0.01, the extended 

α-tail mean ,TTM   and the extended expected shortfall , ,( )T t TES X  for S&P 500 from Jan. 2, 1990 to Dec. 31, 

2012. We also compute the corresponding extended risk measures for both the Hong Kong Hang Seng index (HSI) and 

the Chinese Hushen 300 index (SHSZ 300) in the following Table 1-Table 6. 

4. Estimating VaR  for both Short- and Long-Terms 

In this section we compare both VaR  and VaR for S&P 500 for both short- and longterms. Using the empirical data, 

we test the behavior of VaR . We analyze the short- and long-term skewness and kurtosis for S&P 500. 

4.1 Comparing VaR with VaR for S&P 500 

 
Figure 1. short-term VaR of S&P 500 

In order to compare the risk measure VaR  with the risk measure VaR used in Engle (2011), we use data on S&P 500 

from Jan. 2, 1990 to Dec. 31, 2012. The step we choose is a week 5/251 as 0.02. By using IBM SPSS Statistics, we test 

that the sequence {st+0.02-Etst+0.02} follows the normal distribution with mean and standard deviation. Hence, VaR
0
 and μ 

can be determined correspondingly with the quantile α=0.01. 

Figure 1 shows the graph of both VaR  (denoted by VaR(UL)) and VaR (denoted by VaR(L)) curves for one year T=1 

                                                        
7 The proof of this proposition follows exactly the same proof of Proposition 3.1 of Acerbi and Tasche (2002) in the Appendix A. 
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case). Both two curves decrease until T=0.57, where VaR(UL) and VaR are almost identical near the period [0,0.3] (up 

to 15 weeks, VaR  can be estimated as VaR). But the variation starts to change during the period [0.57, 0.67] where 

VaR(L) evaluated by Engle (2011) decreases faster than our risk measure VaR , and at T=0.9 VaR(UL) starts to 

increase slowly. 

 
Figure 2. mid-term VaR of S&P 500 

 
Figure 3. long-term VaR of S&P 500 

Figure 2 shows the risk measurements over the 5 years period T=5 with a step 0.1 which is about one month with the 

quantile α=0.01. The decreasing behavior of the curve VaR(L) continues and reaches to negative values after T=3.1. 

This is typically predicted by Engle (2011) that VaR(L) does not matter for short horizon whether expected returns are 

considered or not but for longer horizons VaR(L) becomes negative. For S&P 500, the risk measure goes to negative 

after 13 months. On the other hand, our risk measure VaR  (denoted by VaR(UL)) decreases gradually first and tips up 

at T=0.9. During the period of 5 years, the curve VaR(L) stays in positive range and gives a meaningful extension of the 

long-term risk measure. This is further verified for taking an even longer period T=10 as in Figure 3.  

4.2. Long-term skewness and kurtosis for S&P 500 

Engle (2004) in his Noble lecture argues that asymmetric volatility models generate multi-period returns with negative 

skewness even if the innovations are symmetric. Engle (2004) further states that the kurtosis of the nineties is 

substantial at 6.8, while for the full sample it is a dramatic 41. This is strong evidence that extremes are more substantial 

than would be expected from a normal random variable
8
. The negative returns predict higher volatilities than positive 

returns, the high volatility after negative returns means that the possible market declines are more extreme than the 

possible market increases (see Berd, Engle and Voronov (2007) and Engle (2011)).  

The skewness is defined in terms of long horizon continuously compounded as 

                                                        
8 That the kurtosis measures the magnitude of the extremes is the most interesting feature. If returns are normally distributed, then 

the kurtosis should be three. 
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3

3
2 2

( )
( ) , ( ) ( )

[ ( ) ]

t t T t
t t t t T t

t t T t

E s s
sk T T E s s

E s s











 
  

 
                   (14) 

With log return, skt(T) measures focuses on asymmetric of the distribution and provides a systematic deviation from 

symmetry and negative skewness means that large declines are more likely than similar size increases. If one holds long 

positions, then negative skewness is a source of concern for VaR, as the large negative returns are more likely than large 

positive returns in the sense of skewness.  

 
Figure 4. short-term skewness of S&P 500 

 
Figure 5. mid-term skewness of S&P 500 

Figure 4 for the one year horizon shows that the skewness for T = 0.04, 0.06; …, 1 are all negative and continuously 

decreasing until T=0.6 about 30 weeks. The skewness starts to increase after T=0.6. For the first 1 to 100 days, our 

Figure 4 is same as Figure 6 of Engle (2011). But we look for even longer horizon so that the skewness measures are 

negative, and are not increasingly negative for longer horizon. This improves the Engle (2011)'s findings
9
. Engle (2011) 

already realizes this fact that the data appears to be more negatively skewed for short horizons and less negatively 

skewed for long horizons than the models, and develops an econometric test to determine whether the long-term 

skewness implied by a set of parameter estimates is significantly different from that in the data in section 4. The Monte 

Carlo critical values are computed, and the models cannot be reject for misspecification of long-term skewness. All 

those different models (GARCH, TARCH, EGARCH, APARCH, NGARCH, ASQGARCH) appear to generate 

long-term skewness that is consistent with the S&P data. As we extend the longer horizon from one year to five year, 

Figure 5 shows the skewness continuously increases after T=0.6 and changes from negative to positive around T=3.55. 

When one looks for even longer horizon T=10 years, the skewness curve in Figure 6 shows that the skewness starts 

negative and increasingly negative until T=3.55, then increases from negative to positive until T=6.6, and finally 

decreases after T=6.6. This reects the high volatility of the possible market declines and increases during this 10 years.  

                                                        
9 Engle (2011) on page 447 states that all the skewness measures are negative and are increasingly negative for longer horizons. For 

the same S&P 500, we find that the skewness are not increasingly negative for longer horizon in Figure 4. The U-shape indicates the 

turning point for the possible market increasing. 
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Figure 6. long-term skewness of S&P 500 

The kurtosis is de_ned by the following, 
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The kurtosis measures the tail-fatness. Duffie and Pan (1997) show that the S&P 500 daily returns for 1986 to 1996 

have an extremely high sample kurtosis of 111, in large measure due to the exceptional returns associated with the 

market crash of October 1987. At the quantile 0.01, the S&P 500 historical returns for 1986 to 1996 is about 2.49 

standard deviations from the mean. Fat-tails measured as the kurtosis, the behavior and estimates of volatilities are key 

issues to understand the price risk. The kurtosis estimates are highly sensitive to extremely large return. 

 
Figure 7. short-term kurtosis of S&P 500 
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Figure 8. mid-term kurtosis of S&P 500 

 
Figure 9. long-term kurtosis of S&P 500 

Figure 7 shows that for one year horizon the kurtosis with 0.02 steps is zigzagged and gradually decreased in this period. 

Figure 8 for five year horizon indicates the decreasing behavior continues to reach to zero around T=2.15 and tends to 

negative value (below the standard kurtosis 3). See also Figure 9 for the longer time kurtosis. 

5. Long-term structure of VaR , skewness and kurtosis for HSI index 

In this section, we adopt the method developed in previous section to empirically test the Hong Kong Hang Seng index 

(HSI) and the chinese Hushen 300 index (SHSZ 300) on the VaR , skewness and kurtosis. 

5.1 Long term VaR  for HSI 

We use the HSI data from Jan. 2, 1990 to Dec. 31, 2012 to analyze the time horizon from one year, five year and ten 

years separately. For the reason that the average trading days of HSI is 249 every year, the short-term step we choose is 

a week 5/249 as 0.02, the mid-term step we choose is a month 25/249 as 0.1, the long-term step we choose is two 

months 50/249 as 0.2. 

 
Figure 10. short-term VaR of HSI 
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Figure 11. mid-term VaR of HSI 

 
Figure 12. long-term VaR of HSI 

Figure 10 shows that for one year horizon the VaR(UL) and VaR(L) are almost identical near the very short term horizon 

and then VaR(L) evaluated by Engle (2011) decreases faster than our risk measure VaR , and at T=0.9 VaR(UL) starts 

to increase slowly. 

Figure 11 shows the same property that VaR(L) starts to reach zero around T=2.7 for HSI as Figure 2 for S&P 500. The 

curve VaR(L) continuously decreases. The curve VaR  decreases slower than the curve VaR(L) and starts to increase at 

T=1.2 for HSI to illustrate the similar U-shape for the Hong Kong Hang Seng index (HSI).  

5.2. Long-term skewness and kurtosis for HSI 

Figure 13 shows that the short term skewness is also negative between -0.5 and -0.75. Unlike the increasing negative 

skewness of S&P 500 for the one year horizon which is more negative than HSI. The systematic deviation from 

symmetry of HSI is smaller than the one of S&P 500, and HSI negative skewness means that large declines are more 

likely than similar size increases. But compared with S&P 500, HSI decline is smaller size-wise. 

 
Figure 13. short-term skewness of HSI 
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Figure 14. mid-term skewness of HSI 

 
Figure 15. long-term skewness of HSI 

Figure 14 for the five year horizon shows that the skewness starts to be positive after T=2.85. See also Figure 15 for the 

ten year horizon case. 

 
Figure 16. short-term kurtosis of HSI 

 
Figure 17. mid-term kurtosis of HSI 
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Figure 18. long-term kurtosis of HSI 

Figure 16 shows that for one year horizon the kurtosis decreases for HSI and close to the kurtosis of a normally 

distributed shock. By this measure, HSI returns are not particularly fat-tailed at the level 0.01. The quantile α=0.01 for 

HSI historical returns for one year horizon approximately has 3.5 kurtosis. 

For the five year horizon the kurtosis of HSI is near the kurtosis of a normally distributed shock. The Hong Kong HSI 

shows that return shocks have no fatter-than-normal tails, measured by kurtosis at the confidence level α=0.01. 

Similarly the ten year horizon kurtosis is presented in Figure 18. 

5.3. Long term VaR  for SHSZ 300 

We use the SHSZ 300 data from Jan. 4, 2002 to Dec. 31, 2012 to analyze the time horizon from one year, five year and 

ten years separately. For the reason that the average trading days of HSI is 242 every year, the short-term step we 

choose is a week 5/242 as 0.02, the mid-term step we choose is a month 25/242 as 0.1, the long-term step we choose is 

two months 50/242 as 0.2.  

 
Figure 19. short-term VaR of SHSZ 300 

 
Figure 20. mid-term VaR of SHSZ 300 
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Figure 21. long-term VaR of SHSZ 300 

Figure 19 compares both curves of VaR  and VaR for one year horizon. The curve VaR(L) decreases and VaR(UL) 

increases for SHSZ 300. For the five year horizon, we see the VaR continues to decrease to negative value after T=2.65, 

where the curve VaR(UL) stays in the positive range and starts to approach to 1. 

5.4. Long-term skewness and kurtosis for SHSZ 300 

 
Figure 22. short-term skewness of SHSZ 300 

 
Figure 23. mid-term skewness of SHSZ 300 

 
Figure 24. long-term skewness of SHSZ 300 
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Figure 22 shows that the short team skewness is positive between 0 and 0.6. While the skewness of S&P and HSI is 

negative and decreasing gradually, the skewness of SHSZ 300 is always increasing and approximately positive. 

Figure 23 for the five year horizon shows that the skewness of SHSZ 300 starts to decrease after T=2 , and while T=3.5, 

the skewness becomes negative. Figure 24 for the ten year horizon is zigzagged and gradually increased after T=5.  

 
Figure 25. short-term kurtosis of SHSZ 300 

 
Figure 26. mid-term kurtosis of SHSZ 300 

 
Figure 27. long-term kurtosis of SHSZ 300 

Figure 25 shows that for one year horizon the kurtosis changes between 0.5 and 1. In the same way, there exists no 

fatter-than-normal tails in the SHSZ 300 return shocks, measured by kurtosis at the confidence level α=0.01.  

Figure 26 for five year horizon shows that the kurtosis is near to the kurtosis of a normally distributed shock before 

T=2.5. But while T=3~4, the SHSZ 300 return shocks have a little fat tail. Figure 27 for ten year horizon shows that the 

SHSZ 300 return shocks are approximately near to the kurtosis of a normally distributed shock after T=4.  

6. Discussion 

In this paper, we introduce an extension VaR  of the traditional VaR for any quantile level. Our generalized value at 

risk is a refinement of VaR defined in Engle (2011) for short time horizons, and always makes sense (positive) for 

long-term horizons. The value at risk VaR defined in Engle (2011) will be negative for some long-term horizons. Our 

extension VaR  provides an possible answer to the challenge question raised by Engle (2011).  
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For both S &P 500, HSI and SHSZ 300, Engle's (2011) VaR always decreases to negative value and our extension VaR  

always takes positive values and gradually increases to the maximum value 1. In a certain sense, our extension VaR  of 

the value at risk VaR defined in Engle (2011) provides a risk measure for both short-and long-term risk. From our 

empirical test on VaR , the extended VaR VaR  is more accurate in a short horizon, say 1-year. Hence, it would be 

possible to apply VaR  into Solvency II, QIS, Market Risk and Insurance risks.  

With our extended short-and long-term value-at-risk VaR , we introduce the short-and long-term coherent measure of 

risk (extended expected shortfall) corresponding to the extended value-at-risk. The tail conditional expectation at a level 

α quantile, and the extended α-tail mean as well as the extended expected shortfall are defined and computed (see 

Proposition 3.1). 

Acknowledgements  

This research is supported by the National Natural Science Foundation of China (NO. 71171031, 71471027). 

References 

Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall, Journal of Banking and Finance 26, 

1487-1503.  

Archaya, V., Cooley, T., Richardson, M., & Walter, I. (2010). Regulating Wall Street: The Dodd-Frank Act and the New 

Architechture of Global Finance, New York; Wiley Publishing.  

Artzner, P., Delbaen, F., Eber, J. -M., & Heath, D. (1997). Thinking coherently, Risk, 10, 68-71.  

Artzner, P., Delbaen, F., Eber, J. -M., & Heath, D. (1999). Coherent Measures of Risk, Mathematical Finance, 9, 

203-228.  

Berd, A., Engle, R., & Voronov, A. (2007). The underlying dynamics of credit correlations, Journal of Credit Risk 3, 

27-62.  

Delbaen, F. (2002). Coherent risk measure on general probability spaces, Advances in Finance and Stochastics, 1-37. 

Dubil, R., (2009). A Practitioner's critique of Value-at-Risk Models, The VaR Modeling Handbook edited by Gregoriou, 

G. N., McGraw-Hill Companies, Chapter, 7, 147-181. 

Due, D., & Pan, J. (1997). An overview of Value at Risk, Journal of Derivatives, 4, 7-49. 

Edgidio dos Reles, A. D., Gaspar, R. M., & Vicente, A. T., (2009). Solvency II: An important case in applied VaR, The 

VaR Modeling Handbook edited by Gregoriou, G. N., McGraw-Hill Companies, Chapter, 12, 267-294. 

Embrechts, P. (2000). Extreme value theory: Potential and limitations as an integranted risk management tool, Working 

paper, ETH Zurich. 

Engle, R. (2004). Risk and Volatility: Econometric models and Financial Practice. Noble Lecture. American Economic 

Review, 94, 405-420. 

Engle, R. (2009). The risk that risk will change, Journal of Investment Management, 7, 24-28. 

Engle, R. (2011). Long-term skewness and systemic risk, Journal of Financial Econometrics, 9, 437-468. 

Jackson, P., Maude, D. J., & Perraudin, W. (1997). Bank capital and Value at Risk, Journal of Derivatives. 

Marshall, C., & Sigel, M. (1997). Value at Risk: Implemening a risk measurement standard, Journal of Derivatives. 

 

 

 

 

 

 

 

 

This work is licensed under a Creative Commons Attribution 3.0 License. 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

