اصول كار مدارهاى نوسان ساز
 و شرايط زير وجود داشته باشد.

الف) تقويت كننده(مانند تقويت كنندمى اميتر مشتر ك) ب) فيدبك مثبت
 ورودى مــدار تقويت كننده داده مىشـــود و از خر خروجى آن آن
 دياگرام يكك نوسان ساز را نشان مى دهد.

شكل «-1-1 بلوك دياكرام يك اسيلاتور

معمولاً شـبكهى فيدبك سـيگنال خروجــى را تضعيف مى كند. براى ادامهى نوسان در يك نوسان ساز بايد دو شرط زير برقرار باشد.

الف)بـهـ ميزانى كه شـبكه فيدبك سـيـيكنال خروجى را
 سـيـنال را تقويت مى كند. اگر ميزان ضريب بهرمى شـــبكه
 نو سان ساز همواره بايد شرط زير برقرار باشد. B. $A_{V}=1$
 بايد اختلاف فاز بين ورودى تقويت كننده و خروج بير شي شبكهى فيدبك صفر باشد، شكل A-F .

قبـل از شــروع قسـمت اول فصل (^)بـه ســو الات ييش
ازمون ا-1 پاسخ دهيد.

قسمت اول - نوسانسازهاى سينوسى
^-1 تعريف نوسان ساز

يك نوسـان ساز يا اسيلاتور ، يك مدار مدار الكترونيكى نسبتاً

فرستنده و گيرنده راديويى را تشكيل مى دهند.

(انواع نوسانساز ازنظر شكلموجتوليدى

 نوســان ســازها مى توانند انواع شــــا آورند. در شكل r-1 چهار نمونه نو سان ساز به صورت بلو كـ دياگرام و با توجه به شـــكل موج خرو است. اين نوسان ساز ها مى توانند امواج زير را توليد كنند.

شكل

ورودى مى رســد ـ سيگنال بر گشتى دوباره تقويت مى شود و به ورودى برمى گردد. اين رفت و بر گثـــت سيگُنال تا پايدار شدن مدار ادامه مى يابد.
فيدبك مثبـت زمانى اتفاق مى افتد كـــه اختلاف فاز بين

ورودى و خروجى هم فاز باشند .

ساسينوسى LC F F

 مى شود بايد با ورودى هم فاز باشد براى ايجاد نوسان هاى سينوسى خالصـي
نوسان ساز LC ، استفاده مى كنيم، شكل ه-N.

در نوسـان سـاز LC در مسـير كلكتـور يا اميتـر ، يك

$$
\begin{aligned}
& \text { توجه داشـــته باشيد كه در } \\
& \text { مدار فيدبك معمــولاً از قطعات }
\end{aligned}
$$

شبكهى بر گشتى نسبت به ورودى

$$
\begin{aligned}
& \text { ضريـب تقويت آن كمتــر از ا } \\
& \text { مى شود. } \\
& \text { B }=\frac{V_{\text {of }}}{V_{\text {if }}}\langle 1
\end{aligned}
$$

مطالب ه-1 و 9-1 در اسـتاندارد الكترونيك كار صنعتى وجود ندارد و مربوط به ســاير استانداردها است. چنانچه در اســتاندارد مورد آموزش اين موضوع وردود ود دارد، آن را اجرا

زمان اجرا:

 خازن در داخل سيم ثيـج تخليه مى شود ومي وميد

 اگر كليد راطبق شــكل ^-^-ب تغييـر حالت دهيم و آن را

 اين نوسانها در شكل ^^-^- ج نشان داده شده است است .

ب) اتصال كليد به سيمييجه

ج) نوسانهـاى ميراشونده

به تر ت $C_{\text {eq }}$ و Leq كه در مدار هماهنگى قرار مى گيرند ، شكل A-V.

شكل N- م مقادير معادل سلف و خازن

عايق خازن (نشتى خازن) بـى نهايت باشد ، نو سان ان ها هاى توليد
 و بىنهايت نيسـتند ، نوسان هاى توليد شده پايدار نيستند
 ميرا مى شــود. فر كانس نوسان هاى توليد شـــــه از رابطه زير قابل محاسبه است.

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{r \pi \sqrt{\mathrm{LC}}}
$$

 بلو كك دياگرام يك نوسان ساز رسم شده است.

شكل 9-1 بلوك دياگرام نوسان ساز
 وسايل مورد نياز را آماده كنيد. | مدار شكل •1-1 را روى برد برد ببنديد.

شكل ه ه-1 مدار آزمايش

شكل | | -N نوسانهاى ميرا شونده

نكته م8م:

براى مشاهده موج بايددستگاه هارا با دقت كامل تنظيم كنيد.

A A A A A شكل موج در نقطه

■ فانكشن زنر اتور را روشن كنيد و روى سيگنال مربعى
با فر كانس خروجى rkHz تنظيم كنيد. ■ دامنـه خروجى فانكشــن زُنر اتـور را روى بيش ترين

مقدار بگذاريد.
 نقطـهى A و پــروب كانال دو اسيلوســكوپ (CHr) را به نقطه B متصل كنيد. ■ كليد AC-GND-DC اسيلوسكوپ را در وضعيت

> AC بگذاريد.

دقيق بكشيد.

توجه

در لبهى بالا رونده موج مربعى
 خازن در سلف تخليه مى شود وسلف
 انرزى ســلف در خازن تخليه مى شود و ور آن را دوباره شــارز مَى كند. اين فر آ يند
 ادامــه مى يابد . به دليـــل وجود مقاومت ســيم پيتج، نوســانـانها ميرا مى شوند. اين

 به درستى روى صفحه ظاهر نشده است ، فر كانس موج مربعى راكمى تغيير دهيد. به طور كلى شــكـل موج توليد شده با بايد مشابه شكل 1 (1-^باشد
(AC-GND-DC در اسيلو ســكوپ را روى بگذاريد و اثر آن را روى شــكل موج مشــاهده كنيد و DC درباره آن توضيح دهيد.

خازن جداكنيد. آيا باز هم نوســانهاى ميراشـونده ظاهر مى شود؟ توضيح دهيد.

人-タ-Y

 بنويسيد.

 نوسانهاى ميرا شونده ظاهر مى شود ؟ توضيح دهيد.

فر كانس نوسـان هاى ميرا شــونده را اندازه بغيريد و

سوال r- فر كانس اندازه گيرى شده چند برابر فر كانس

 وبار ديگـر روى • • ا كيلو هرتز قرار دهيـــدو اثر آن آن را روى سـيگنال نقاط A و B مشاهده كنيد و درباره ى نتايج به دست آمده توضيح دهيد.

منظور از

裉 ، $\mathrm{L}_{\text {eq }}$ وولتارٌ سينوسى القا شده در آن را در يافت مى كنند ـ هـ هم حنين
 خروجى را دريافت كرد.

 از طريق سيم پيجِ (Leq) می شوند.

شكل 19-1
Bluninlo 1 Or آقاى رالف وينتون ليون هارتلى Ralf Vinton Lyon Hartley

 در دانشگاه آكسفورد گذر کاند و پس از از باز گشت بـ به آمريكا

 كه باعث تغييرات اساســى در سيستم هاى راى راديو تار تلفن شد
 درسال . 19 در گَشت.
(Hartley) نوسان ساز هار تلى N-V

 (Hartley Oscillator)

در شكل 1ه-1ه، نمونهى ديگرى از اسيلاتور هار تلى نشان داده شده است. اين تقويت كننده از نوع بيس مشتر كـ است.

در نوسان ساز هار تلى فر كانس نوسان هاى تقويت شده از

$$
f_{r}=\frac{1}{r \pi \sqrt{L_{\text {eq }},} \cdot}
$$

r-^ آزمايش شماره

الف-نقشهى فنى مدار

شكل N- IV مدار آزمايش

وصل كنيد.

اسيلو سكو پ را روشن كنيد و تنظيم هاى لازم را روى
آن انجام دهيد.
 كنيد.

تعداه/ مقدار	فام ومشخصصات	رديف
يك	اسيلو سكو	1
يك دستگاه	منبع تغذيه A ا و V.r.-	r
به اندازه كافى	سيم رابط	Γ
يك قطعه	برد مــدار چاپیى آماده مربو ط به اين آزمايش (برد دوم با سلف r r • • است.	F
يك سرى	ابزار عمومى كار گاه الكتر يك	0

$$
\begin{aligned}
& \text { توجه } \\
& \text { چنانچحـهـ ترانـس با سروسـطـ، } \\
& \text { وجود نــــارد مى توانيلددوســلف } \\
& \text { راسرى نموده و از سر مشتر كك به } \\
& \text { عنوان سروسط استفاده كنيد. }
\end{aligned}
$$

К

و بــه صورت آماده در اختيار شــما قرار مى گیرد را بررســى كنيد
 كنيد.

زمان اجرا: بّ ساعت آموزشى
: هدف آزمايش A-人-1
بستن مدار نوسانساز هارتلى و بر رسى شـكل موجخروجى T

人-^-r تجهيزات، ابزار،قطعاتو مواد موردنياز:

ــ شكل مو جنقطه را در نمو دارشكل ^1-^ رسم كنيد.

وامد دامنهى شــكل موج ولتاز در نقطه B را اندازه بغيريد ويادداشت كنيد．

$$
\begin{equation*}
\mathrm{V}_{\text {Bpeak }}=. \tag{v}
\end{equation*}
$$

اختا اختلاف فاز بين شكل موج هاى نقاط A و B را اندازه بغيريد و يادداشت كنيد ．

$$
\varphi_{A, B}=
$$

درجه

■ بـا توجه به مقادير به دسـت آمـــهـ در مراحل فوق به
سؤ الات زير پاسخ دهيد .

سوال

ســـوال ع－آيا فر كانس اندازه گيرى شـــده با فر كانس
محاسبهشده از رابطهى ع

A شكل \－1＾شكل موج ولتار夫 در نقطه

 $\mathrm{T}=$ ． \qquad （ms）
فر كانس شكل موج نقطه A را محاسبه كنيد．

$$
f_{r}=\frac{1}{T}=\frac{1}{T(m s)}=
$$

در حالــى كه پـروب كانال（CH）بـه نقطه A وصل است، كليد Source اسيلوسكوپ را روى（CH قرار دهيد
و پروب كانال CHY را به نقطهB وصل كنيد.

شكل 19-1 رسم كنيد.

				\pm					
				青					
				青					
				泰					
				－					
				－					
				丰	表				

شكل 19－1 شكل موج ولتازء در نقاط BوA

سوال 0 －آيــا اختلاف فاز بين شكل موج هاى ورودى
 درجه نيست، دليل آن را توضيح دهيد ．

^-9 نوسان ساز كول پيتس

(Colpitts Oscillator)

مدار فيدبك و توليد نوســان در نو ســان ساز كول بيتس،

 سلف وجود دارد.

$$
\begin{aligned}
& \mathrm{T}= \\
& \mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{\square}=\ldots \mathrm{Hz}
\end{aligned}
$$

 يك نمونه نو سان ساز كول بيتس با تقويت كننده اميتر مشتر كـ

الف) مدار هماهنگى نوسان ساز كوليتس

ب) يك نمونه مدار نوسان ساز كول بيتس شكل ه

سوال 7 - با توجه به قراردادن سلف MH . . بابه جاى
 دهيد.

^- 1 - \uparrow
نتايــج حاصـل از ايـن آزمايش رابه طور خلاصه شــرح دهيد.

الف-نقشه فنى مدار اسيلاتور كول پيتس

ب- - مدار عملى
شكل شا

وصل كنيد.
اس اسيلو سكوپ را روشن كنيد و تنظيم هاى لازم راروى
آن انجام دهيد.

اٍ پروب متصل به كانال (CH اسيلوســكوپ را به نقطه A
|l شــكل موج نتطه A را با مقياس مناســب در شــكل

فر كانس نو سان هاى نوســان ساز كول بيتس از رابطه زير
$\mathrm{f}_{\mathrm{r}}=\frac{1}{r \pi \sqrt{\text { L.C } \mathrm{C}_{\text {eq }}}}$

C خازن معادل C C مى آيد : $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{r}} \Rightarrow C_{e q}=\frac{C_{1} C_{r}}{C_{1}+C_{r}}$

زمان اجرا: ب ساعت آموزشى

1-1-1-1 هدف آزمايش :

خروجى آن

تعداه/ مقد/ر	نام ومشخصات	رديف
يك دستغاه	اسيلوسكو	1
يك دستگاه	منبع تغذيه A ا و V-r.-	r
به اندازه كافى	سيم رابط	r
يك قطعه	برد مـــدار چاپیى آماده مربوط به (بر ددومباخازن ك	F
يك سرى	ابزار عمومى كار كاه الكاهر الكترونيك	D

■ وسايل مورد نياز را آماده كنيد .
 چإيى ساخته شده، ،مو رد برر رسى قرار دهيد و ورودى و خروجى

$$
\begin{equation*}
V_{\text {Bpaak }}=. \tag{V}
\end{equation*}
$$

اختلاف فاز بين شـكل موج سـيگنال نقطه A وشكل موج سيگنال نقطه B را اندازه بغيريد و يادداشت كنيد.

$$
\varphi_{\mathrm{B}, \mathrm{~A}}=.
$$

درجه

با توجه به مقادير به دست آمهه در مراحل فوق به سوالات پاسخ دهيد.
 بهرهى ولتازٌ تقويت كننده را به دست آوريد ؟

ســـوال A - آيــا فر كانس انــدازه گيرى شـــده بامقدار فر است

$$
\left(\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}_{1} \mathrm{C}_{r}}{\mathrm{C}_{1}+\mathrm{C}_{\mathrm{r}}}=\frac{0 / \mid \times \circ / 1}{0 / 1+0 / 1}=0 / 0 \Delta \mu \mathrm{~F}\right)
$$

سوال 9 - آيـا اختلاف فاز بين ورودى و خروجى دقيقاً -1 ادرجه است ؟ چرا ؟ توضيح دهيد .

A شكل A-Y A شكل موج ولتارٌ در نقطه
 شكل Y شار ا اندازه بگيريد و يادداشت كنيد . $\mathrm{V}_{\text {Apeak }}=\ldots(\mathrm{V})$ $\mathrm{T}=$.

فر كانس شكل موج نقطه A را محاسبه كنيد

$$
\mathrm{f}=\frac{\mathrm{l}}{\mathrm{~T}}=\frac{1}{\square}=.
$$

 ورودى نوسان ساز است. شكل موج نقاط A و B را در شكل سץ-^با دو رنگك مختلف ترسيم كنيد.

(11

 قرار گيرد، نوسان ســاز آرمسترانگك را تشكيل میدهد، شُكل

.

شكل Yヶ-1 نوسان ساز آرمسترانگى

فر كانس نوسان هاى نوسان ساز آرمستر انگك از رابطه زير
به دست مى آيد.

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{r \pi \sqrt{\mathrm{LC}}}
$$

اين آزمايش در اسـتاندارد الكترونيك كارصنعتى وجود ندارد و مربوط به ساير استانداردها استا است. چنان چچه در استار استاندارد مورد آموزش اين موضوع وجود دارد ارد آن را الجرا كند. زمان اجرا: ب ساعت آموزشى

F آزمايش شماره A-IT

زمان اجرا: Y ساعت آموزشى

人-Ir-1 هدف آزمايش : بســتن مدار نوســان ســاز
آرمسترانگك و بر رسى شكل موج خروجى آن.

توجه

اين مرحله را درصورت داشتن وقت كافى انجام دهيد.
-/ / MFF در مدار آزمايش شماره موجـود در مدار تانــك خازن هـاى \&V \& /

دهيد. ■ در ايــن حالت زمان تناوب را انـــازه بغيريد و مقدار فر كانس را محاسبه كنيد. $\mathrm{T}=\ldots \ldots \ldots . . . \mathrm{S}$

سوال * (- يـس از تغيير خازن به مقدار FV
تغييرى در عملكرد مدار ايجاد شده است ؟

(
نتايج حاصل از اين آزمايش رابه طور تيتروار بنويسيد.

 ｜تصال دهيد． آ اسيلوسكوپ راروشن كنيد و تنظيم هاى لازم را روى آن انجام دهيد． أـا خروجىمـــدار رابه كانال（CH）اسيلوسـكوپ وصل شــكل موج مشاهده شــده روى اسيلوسـكوپ را در نمودار شكل צז－＾ה ترسيم كنيد．

				\pm	\pm				
				\ddagger					
				F					
				＝		，			
				夝					
				F	青				
				带	青				

شكل צ؟－1 شكل موج خروجى نوسان ساز آرمسترانگَ
 تغيير دهيد تا نوسان ساز به نوسان در آيد． ■ مقادير زمان تناوب（T）ودامنه ولتاز بغيريد و يادداشت كنيد ．
$\mathrm{T}=\ldots(\mathrm{mA})$
$\mathrm{V}_{\text {peak }}=\ldots \ldots \ldots \ldots \ldots . .(\mathrm{V})$

$\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{\mathrm{~T}(\mathrm{~ms})}=\frac{1 \cdots 0}{\square}=$
Hz

ســــوال｜｜｜－براى تغيير فر كانس مدار نوسان ساز شكل

آهـاده در اختيار شــما قرار دارد را مور د بر رســـى قر ار ار دهيد،
 برد مدار چايٍى را مشاهده مى كنيد．

الف）نقشه فنى مدار نوسان ساز آرمسترانگى

ب－مدار عملى و برد مدار چاپیى نوسان ساز آرمسترانگَ شكل به－1 مدار آزمايش

تغييرات درجهى حرارت و وشخصات سات ساير عناصر مدار تغار تغير نكند از نو سان ساز كريستالى استفاده مى كنيم .كريستال يكـ ماده معدنى است كه خواصى به شرح زير دارد.

وجود مى آيد.

هـ ا-1 شرح دهيد.

(\wedge نتايج آزمايش
نتايج حاصـل از اين آزمايش رابه طــور خلاصه توضيح دهيد.

در آيد.

شكل ^-YV شكل ظاهرى چند نمونه كريستال

علامـت قــراردادى يـكك قطعـه كريسـتال در
 يك كريسـتال مى تواند مدار الكتريكى معادلى مطابق شكل

زمان اجرا: باساعت آموزشى

تكداه/ مقدار		رديف
يك دستغاه	\|اسيلوسكپ دو كاناله	1
يك دستغاه	دسـتگاه كتــرل از از راه دور تلويزيون(هرنوع تلويزيون)	r
يك سرى	ابزارعمومى كار كاه الكترونيك	$\stackrel{r}{ }$
به اندازه كافى	سيم رابط	${ }^{4}$

توجه

كريسـتال در مدار نوسـان ســاز

 مى موود. اين آزمايش براى آشنايى با با
 از كريسـتال در مــدار نوســان سـاز انتخاب شده است.

دراين مدار نوســان هــاى ايجاد
: مراحل اجراى آزمايش A-IF-r ■ وسايل مورد نياز را آماده كنيد.

در شكل بو-1 يك نوسان ساز كريستالى نشان داده شده

بعضى از فيلترهاى IF در رايوهاى جديد به كار مار مى برند.

براى تعيين مشـخصات كريسـتال لازم اســت به بر گهى
اطلاعات (Data sheet) كريستال مراجعه كنيد.
از مزاياى كريسستال مى توان پايدارى فر كانس و ضريب
كيفيت بالاى آن رانام برد .

RFC ولتازهــاى DC ، AC به كار گرفته میشـــود و تحت عنوان "جو كك فر كانس راديويى" است.

■ تلويزيون ديگرى كه در دسترس داريد را دا در اختيار بغيريد
 دور راكه در اختيار داريد، به صورت بلو كى رسم كنيد.

در شـكل . فر سـتنده كتتر ل از راه دور تلويزيون رنغیى گرونديك نشا نشـان داده شده است.

$$
\begin{aligned}
& \text { الف) نماى ظاهرى فرستنده كنترل از راه دور }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}= \\
& \text { پايهى خروجى آى سـى كنترل از راه دور را شناسايى } \\
& \text { و يادداشت كنيد. } \\
& \text { = شمارْى پايهى خروجى آى سى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { |ستفاده شده است. } \\
& \text { شمارهى فنى آى سى را يادداشت كنيد. } \\
& \text {. }
\end{aligned}
$$

اسيلوسكوپ را مطابق شكل اب-^^به بيس ترانزيستور T9•V

ســـوال
ارتباطى با فر كانس كار كريستال دارد ؟ توضيح دهيد؟

(\wedge نتايج آزمايش

نتايج حاصل از آزمايش را در چند ســطر به طور خلاصه بنويسيد.

ض-1ه ضريب كيفيت مدار نوسان ساز

شكل rr-ی رزونانس موازی
ضريب كيفيت مدار (Q) از رابطه زير محاسبه مىشود.

$$
\mathrm{Q}=\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{X}_{\mathrm{L}}}
$$

 ضريب كيفيت مدار از كريستال كوار تز استفاده مى شود.

 است ؟

cal	الف) صفر
9. (2	1人. (

q- به طور خلاصه طرز كار نوسان ساز هارتلى را توضيح
N-MF

نو سان مى كند) .

شكل ش- M

lf l
پاسخ دهيد.

- ا- تفاوت نوسـان ســاز هارتلى را بآرمسـترانگك شرح

دهيد.

11- در نوســان ســاز كول بيتـس بايد اختــلاف فاز بين
 مدار نوسان كند؟
9. (ب

الف) صفر
11. (ج

19－مدار نو سان ساز هارتلى شكل A－rV را كامل كنيد．

شكل

شكل＾＾＾－＾مدار يكى نوسان ساز كريستالى

الف ）نام مدار را بنويسيد．

ب ）قطعات مدار تعيين كنده فر كانس را مشخص كنيد

ج ）نوع آرايش ترانزيستور را بنويسيد．

د ）براى محاســبهى فر كانس نوسان هاى خروجى نو نو سان ساز از جه رابطهاى استفاده مى شود؟

10－مدار نوســان ســاز كول پيتس شـكل

 مى گی

شكل (أ- انواع كويلاز بين دو طبقه تقويت كننده

قبـل از شــروع قـــمت دوم فصل (^)بـه ســو الات پيش ازمون؟-1 پاسخ دهيد.

قسمت دوم: نوسانسازهاى غير سينوسى 18-18 اصول كار مولتى ويبراتورها

 كلى نشــان داده شده اسـتـ. همان طور كه مشاهده مى شود
 رابط (Coupling) كه مى تواند خازنى ، ســلفى يا مستقيم (DC) باشد تشكيل شده است.

در صور تى كه از خارج يا داخل مدار سيگنالى را به عنوان

 مى شود. اين عمل آن قدر ادامه مى يابد تا دو تقويت كننده را به شر ايط مرزى يعنى قطع و اشباع برد و و از افز ايش بيشتر دامن امنه جلو گيرى كند، شكل .A-H. .

نمى افتد اما حون در عمل به علت تولر انس هاى مو جود چجنين شـرايطى امكان پذير نيسـت، عملاً جريان هان تاى ترانز يستو رها يكسـان نخواهد بود. اين موضوع ممكن است بـر باعث افـي افز ايش
 (عكــس اين حالت نيز امكان پذير اســت).فــرض كنيد اين اين
 باعـث افزا ايش كاهـش

 T, ور (حلتاز روى كلكتور T, حدود
 می ناميم . حال اگر پايه Reset به ولتاز
 دو حالت بايدار است، شكل

شكل KT- 1 عملكرد مولتى ويبراتور بى استابل

كو پلاز ها به سه دستـه تقسيـم مى شـونل :
Direct couple DC الف) در كوپــــار
 قرارندارد
ب) در كوپیلاز خازنى بيـــن دو طبقه يكـ خازن قرار میگيرديرد.
ج) در كو يلاز ترانسفور ماتوري
يك ترانسفور ماتور قرار مى گيرد .
به طور كلى مولتى ويبراتور ها به سه دست دسته
به شرح زير تقسيم مى شوند:
بى اســـتابل (Bistable) ، مونواســــتابل
(Monostable) ، (آاستابل (Astable) .

18-18-1 مولتى ويبراتور بی استابل

 در آن حالــت ثابت باقى مى ماند تا تحريك خار خارجى بعدى بـه
 بى استابل با استفاده از ترانزيسـتور هاى BJT نشان داده شده
(1)

Reset
شكل A-YY يك نمونه مدار مولتى ويبراتور بى استابل
فرض كنيد در لحظه شروع، هر دو ترانزيستور از هر هر جهت
مشـابه و داراى شرايط يكسان باشند در اين حالت هيج اتفاقى

مولتى ويبر اتور مونو استابل در حالت نا بايدار
شكل \&ه-1 حالت پایدار و نايايدار مولتى ويبراتور مونواستابل ץاين نوع مولتى ويبراتور داراى حالت بايدار نيسـتـت ودار وائماً ازحالتى به حالت ديگر تغيير وضعيت مى دهد د ـ بـ به همين دليل

 ابتدا فرض مى كنيم هر دو ترانزيستور به طور يكسان ري در در در ناحيه

 به علت تولر انس هاى مدار ، يكى از ترانزيســي
 مثال اگر ولتاز V افزايش جريان كلكتور TT بيش تر از , خو اهو اهد بود.

شكل 44-14 يك نمونه مدار مونواستابل

 اسـت به اشـباع مى رود و ولتاز
 مى ماند و ترانزيستور T ا را در حالت قطع نگه مى دارد و و ولتاز خروجى آن را به

 كم مى شــود زيرا خازن ، تغييـرات ور ولتاز را ا از يك

بنابر ايـن كاهش ولتاز

زمان اجرا: 9 ساعت آموزشى
: هدف آزمايش :
بسـتن مدارهاى مولتى ويبراتور T ا اسـتابل ، مونواستابل و بى استابل و ترسيم شكل موج ^تجهيزات، ابزار،قطعاتو مواد موردنياز:

تعداه/ مقدار	نام ومشخصات	رديف
يك دستغاه	اسيلوسكو	1
يك دستگاه	منبع تغذيه A ا و V-r.	r
يك قطه	برد برد يا برد آزمايشگاهى	$\stackrel{r}{ }$
به اند هازه كافى	سيم رابط	F
از هر كدام دوعدد		-
از هوعدد كدام		4
از هر كدام دوعدد		V
اعدد	ديود LED دو رنگك	\wedge
يك سرى	ابزار عمومى كار گاه الكترونيك	9

: مراحل اجرای آزمايش A-IV-r

■ آايل مورد نياز را آماده كنيد.

بينديد.

 ايــن حالت V VCl $=\cdot /$ VV

 /هDV

(1 الف - ب -

در مولتى ويبراتور آاستابل
$\mathrm{T}=$
｜مقدار فر كانس اسيلاتور（ مولتى ويبراتور ）را محاسبه كنيد．

$$
\begin{align*}
& \mathrm{T}= \\
& \mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{\square}=.
\end{align*}
$$

 ميكرو فاراد تغيير دهيد ．
شكل موج ها را مشاهده و در شكل •ه－1 رسم كنيد．

شكل Bo－N شكل موج نقاط Bg با خازن هاى

$$
\mathrm{Cl}=\mathrm{Cr}=0 / 0 \mathrm{rr}
$$

زمان تناوب را در اين حالت اندازه بگيريد و يادداشت

$$
\mathrm{T}=
$$

■ فر كانس مولتى ويبراتور را محاسبه كنيد．

$$
\begin{aligned}
& \mathrm{T}= \\
& \mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{\square}=\ldots \mathrm{Hz}
\end{aligned}
$$

سوال ع1－چرا با تغيير ظرفيت خازن ، فر كانس نوسان

ب－مدار عملى
شكل 4＾－1 مدار آزمايش

■ منبع تغذيه راروى •اولت تنظيم كنيد و آن رابه مدار ｜تصال دهيد．

نقــاط B， $\mathrm{CHr}, \mathrm{CH}$ ，بــه كانــال هــاى اسيلوسكوپ وصل كنيد．
شــكل موج هاى مشــاهده شـــده را در روى نمودار
شكل \＆q－1 رسم كنيد．

				主				
				青				
				青				
				\qquad	"1"1	\|"11		
				青				
				表				
				青				

شكل 9 － 1 شكل موج نقاط A و B روى صفحه اسيلوسكوب
زمان تناوب شــكل موج خروجى مولتـى ويبراتور را اندازه بغيريد و آن را يادداشت كنيد．

ب ：بررسى مدار مولتى ويبراتور مونواستابل
وسايل مور مود نياز را آماده كنيد ．

شكل
 مدار وصل كنيد．

$\mathrm{V}_{\mathrm{CE}_{\mathrm{TR}_{1}}}=$
را اندازه بیيريد وياداشت كنيد．
$\mathrm{V}_{\mathrm{CE}_{\mathrm{T}_{\mathrm{R}}}}=\ldots \ldots \ldots \ldots$.

با با مقايسـه مقادير ولتاز كلكتور ترانزيستور رهاى TTr
， $\mathrm{T}_{\mathrm{R},}=$
T وضعيت $_{\text {Rr }}=$

براى اين منظور كافى اسـت بيـس را الز طريق يك مك مقاومت وK ． $\mathrm{K} \Omega$
وسسس قطع كند.

ترانزيسـتور رTR وصل كنيد و شكل موج كلكتور ترانزيستور
Tr ر ر مشاهده كنيد.

تغير مى كند ؟ توضيح دهيد．
 ديگر ر／
 كاناله درنمودار شكل اه－A رسم كنيد

				立				
				青				
				青				
1111	1111	111	$\mid 1111$		111	1111	1111	1111
				丰				
				主				
				拜				

سوال 10－جـرا شـكل موجها قرينه نيسـتند ؟توضيح دهيل．

سوال 17 - كدام ترانزيسـتور قطـع و كدام ترانزيستور اشباع است ؟ توضيح دهيد.

■ بيس ترانزيسـتورى كه در ناحيـهى قطع قرار دارد را تحريك كنيد. براى اين منظور كافى است بيس را از طريق يك مقاومت

 دوباره اندازه بگيريد.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}_{\mathrm{T},}}=\ldots \quad \text { ولت } \\
& \mathrm{V}_{\mathrm{CE}_{\mathrm{TR}_{r}}}=\ldots \ldots \ldots . . \quad \text { ولت }
\end{aligned}
$$

سوال IV آ آيا ترانزيسـتورى كه قبلاً قطع بود به حالت اشباع رفته اسـت ؟ ؟ آيا ترانزيستورى كه اشي اشـبـاع بوده است به به حالت قطع رفته است؟

ولتـازُ تحريك بيس ترانزيسـتورى كه در حالت قطع قرار داشت را برداريد (قطع كنيد). قار $\mathrm{V}_{\mathrm{CE}_{\mathrm{TR}}}=\ldots \ldots \quad$ ولـ
$\mathrm{V}_{\mathrm{CE}_{\text {TR }}}=\ldots \ldots \quad$ ولت

مناسب درشكل س اهr-1 رسم كنيد.

شكل rar ج: بررسى مدار مولتى ويبراتورى بیى استاستابل ■ وسايل مورد نياز را آماده كنيد. ■ مدار شــكل بنديد.

شكل N-AF مولتى ويبراتور بى استابل
|منع تغذيه را روى • اولت تنظيم كنيدو آن را به مدار |تصال دهيد.
ورلتاز

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}_{\mathrm{TR}_{1}}}=. \\
& \mathrm{V}_{\mathrm{CE}_{\mathrm{TR}_{\mathrm{r}}}}=.
\end{aligned}
$$

كنيد.
^-IV-ヶ نتايــج حاصل از آزمايش هاى الف، با ب، ج و د د رابه طور
خلاصه شرح دهيد .

سوال 1A- آيا وضعيت اشباع و قطع ترانز يستو رها عوض
شده است ؟ توضيح دهيد.

در صورت داشــتن وقت كافى آزمايش زير را

ببنديد.

شكل شا
منع تغذيه را به مدار اتصال دهيد ومدار را راه اندازى

■ به نحوه چششمك زدن LED توجه كنيد.
| براى تغيير فر كانس مدار، مقدار چهه قطعاتى بايد تغيير كند؟ نام ببريد.
=.
سوال 19 - اگـــر فر كانس افزايش يابد تر كيب دو رنگك
به چهه رنگى رؤيت خواهد شد؟ LED

