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PREFACE

Spatial statistics is one of the most rapidly growing areas of statistics, rife
with fascinating research opportunities. Yet, many statisticians are unaware
of those opportunities, and most students in the United States are never ex-
posed to any course work in spatial statistics. This report aims at illustrating
the wide scope of spatial statistics to provide an introductory snapshot of
the field to researchers and graduate students in both statistics and related
areas. It is hoped that these readers will go on to explore the many research
opportunities in the subject, or bring appropriate problems to the attention
of practicing spatial statisticians.

This panel was specifically charged to prepare a cross-disciplinary report
on spatial statistics and image analysis that would (1) describe the contri-
butions of the mathematical sciences, (2) summarize the current state of
knowledge and open problems, and (3) identify likely future fruitful direc-
tions for research.
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1

Introduction

Spatial statistics is concerned with the study of spatially referenced data and
associated statistical models and processes. It is therefore relevant to most
areas of scientific and technological inguiry. In addition, there are many
problems that occur in subjects that are not overtly spatial, for example
in speech recognition or in the construction of expert systems, that can be
given useful spatial interpretations or can benefit in some other way from
research in spatial statistics. Indeed, the abundance of application areas has
meant that the task of the panel in preparing this report has been not only
stimulating but also difficult, in that a limited number of topics had to be
chosen for detailed discussion.

The title of the report clearly implies that the panel places considerable
emphasis on the relationship of spatial statistics to digital image analysis.
This emphasis reflects the recent surge of interest among mathematicians
and statisticians in this exciting area, which is destined to play an increas-
ingly important role, not only in science and technology but in everyday
life. For example, sequences of satellite images of regions of the Earth are
now collected routinely. Each individual image is concerned with only a
small part of the Earth's surface and itself is subdivided into a rectangular
array of picture elements or “pixels,” typically 1024 x 1024. For every pixel
several or many measurements are taken, each of which corresponds to a
reflectance value in a particular range of the visible or near-visible electro-
magnetic spectram. The eventual aim might be to convert this vast quantity
of two-dimensional, multivariate data into a simple crop inventory that can
be used, for instance, to estimate the total potential winter-wheat harvest of
a country. Satellite images are also used for other purposes, such as locating
and monitoring the condition of rocket silos in foreign territories; here, there
are analogies in computer vision, where object recognition is one of many



important tasks. Significantly, conceptually similar problems occur in (nu-
clear) magnetic resonance imaging (MRI) of the brain and of other human
organs, where it is required to produce tissue classifications (e.g., into white
matter, gray matter, spinal fluid, and tumor) from multispectral data.

Magnetic resonance imaging, mentioned above, represents just one of
several different imaging modalities in nuclear medicine. Other examples
include the CAT-scan, in which X-ray images taken from several different
positions are combined to reconstruct views of cross-sections of the anatomy
of a patient; positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT), which are used to measure perfusion
(blood flow) and metabolic activity in specific organs; and ultrasonic imag-
ing, for measuring reflective and refractive gradients, such as organ bound-
aries, within the body. Here, we briefly describe SPECT, a low-cost tech-
nigue within the reach of most medical facilities, as opposed to PET, which
requires an on-site cyclotron and is available only in roughly 100 hospitals
worldwide. Of course, there is a price to pay: SPECT currently produces
much cruder images. Howewver, this inadequacy stems in part from poor
use of underlying, well-understood physical principles and it is here that
mathematical and statistical modeling can play a fundamental role.

In SPECT, a patient iz injected with a radiopharmaceutical that has
been tagged with a radioactive isotope. The pharmaceutical is chosen for
its propensity to concentrate in the organ of interest in a way that is re-
lated to the particular phenomenon under study. The aim is to map the
concentration of the pharmaceutical throughout the target region, usually
on a slice-by-slice basis; time may also be a factor, as when different phases
of a heart cycle are being monitored. SPECT relies on the radioactive decay
of the isotope, which causes photons to be emitted according to a Poisson
process in space and time, with intensity at any particular location being
proportional to the concentration of the pharmaceutical there. A bank of
gamma cameras, usually in a 64 x 64 array, counts the photon emissions that
reach it and, by repeating the procedure for typically 64 positions around
the patient’s body, data that correspond to 64 different projections are col-
lected. Mathematical interest centers on how the 64 x 64 x 64 array of
counts can be used to reconstruct an accurate estimate of the true intensity
map, suitably discretized. Commercially available reconstruction methods
are based on “filtered back projection™ (FBF), a technique borrowed from
transmission (e.g., X-ray) tomography. However, FBP is not appropriate to
SPECT, because of the very low signal-to-noise ratio and the importance
of non-uniform attenuation and depth-dependent scatter and blur. These



forces combine to produce unsatisfactory reconstructions. At first sight, it
might appear sufficient to build a proper physical model, in which the data
are independent observations from Poisson random variables with means de-
termined by a particular transform of the true intensity map. Unfortunately,
the inverse problem of inferring (a discretized version of) the true intensities
is too ill-posed for this to provide a satisfactory solution. An additional
regularization assumption must be made, which prevents the local behav-
jior of the reconstruction from becoming too disjoint, yet does not impose
undue smoothness on the image. The Bayesian solution to this dilemma
is one of the topics tackled in chapter 2, but the basic idea is to specify
a stochastic model for the true image that is at once globally flexible, yet
locally constrained to produce severe discontinuities only when there is con-
vincing evidence of their existence in the data. Incidentally, a somewhat
similar problem occurs in the epidemiclogy of rare, noncommunicable dis-
eases, such as particular forms of cancer, when incidence rates are ohserved
over a specific period of time in a large number of contiguous administrative
regions and the objective is to estimate underlying differences in risk. In
each region, the number of cases can be viewed as an observation from a
Poisson distribution, with mean proportional both to the population and
to the risk there. When the means are small, the observed rates are very
noisy and provide a poor measure of risk, so that some form of smoothing is
required to produce a more readily interpretable map. Note that this prob-
lem is simpler than SPECT in that it involves direct rather than indirect
sensing and also the number of observations is much smaller. As a result, it
is possible to implement computationally intensive methods of spatial sta-
tistical analysis that are not yet feasible for genuine images. Such problems
are therefore not only valuable in their own right but provide useful insights
for the future.

However, attention should also be paid to the origins of spatial statistics,
as well as to its present and future. Perhaps the best known and most acces-
sible among early examples is that of Dr. John Snow, a medical practitioner,
who traced the precise source or cholera epidemic in central London in 1864
by plotting the locations of water pumps and of deaths from the disease on
the same map (see Tufte, 1983, p. 24). Such simple graphical techniques
are still very important, though it should be noted that they are often of
little value in modern epidemiology because of variations in background
population density. One could cite many other isolated examples, but it is
probably fair to say that spatial statistics did not emerge as an identifiable
discipline until 1960, with the publication by Bertil Matern of his doctoral



dissertation entitled Spatial Variation. Much of the material was well ahead
of its time, although, remarkably enough, some of it had been completed as
early as 1947. The treatise has recently been republished (Matern, 1986)
and still provides much useful guidance, regarding both statistical theory
and practice. However, it was not until the 19708 and 1980s that spatial
statistics began to receive widespread attention from other mathematicians
and statisticlans. Nonetheless, it may be sald to have “come of age,” as
it now provides a major focus of contemporary research. Applications are
many and varied and generate a steady stream of new problems.

Historically, observational programs that use the analysis methods of
spatial statistics (e.g., earth sciences, agriculture, and epidemiology) have
been limited by sparse sampling. As recently as 20 yvears ago, for example,
as few as 10 observations of sea surface temperature per day over a 200-
km?® area of the ocean was considered state of the art. From a statistical
point of view, the inadequacy of such sparse sampling in a domain of large
spatial and temporal variation (such as in the ocean) was clear. Modern
data acquisition methods (e.g., satellite observations from space) now have
greatly circumvented this sampling limitation. Data rates as high as 10°-107
bits per second are routinely achieved with this new technology. A similar
situation exists in nuclear medicine. The overall result of this improvement
in data acquisition is the development of data bases that provide a high
spatial resolution and a synoptic realization of a given process under study.
Such data bases are manageable, however, only because of contemporaneous
advances in digital computer processing and mass storage retrieval devices.

Computer resources are also required to execute the large number of
repetitive operations typically required in the application of a technique of
spatial statistics or digital image analysis to a field of science. Advances
in work station technology, data base management, data compression, and
data archiving, coupled with the expansion of computer network topologies,
now provide the necessary technical infrastructure for the development of
joint university curricula in spatial statistics and digital image analysis and
in its cross-disciplinary application of methods to a broad range of scientific,
engineering, and medical problems.

The vast amounts of data collected by satellites, radar, and sonar mea-
surements needs to be organized and reduced in complexity. While statistics
originally emphasized obtaining maximal information from minimal data,
the challenge from these new data sources is to summarize eloquently and
to increase understanding of enormous quantities of information. Pictures
need to be sharpened, new summary measures need to be developed, and



different forms of storing, organizing, and retrieving information need to
be implemented. The interface between statistics and computer science is
particularly important here: data structures, such as geographic informa-
tion systems (GIS), can help in both organization and display of spatially
expressed data, and graphical tools that visually link overlaid data compo-
nents are useful in detecting and exhibiting relationships. There are many
open research problems in the area of visual data-analytic techniques. For
example, how does one display the uncertainty connected with contour lines
on a statistical map, and what is an effective way of displaying more than
one spatially expressed variable?

The remainder of this volume consists of 10 scientific chapters. Chap-
ter 2 describes the Bayesian /spatial statistics framework in image analysis
and computer vision. Particular attention is paid to image reconstruction.
Chapter 3 addresses the application of non-Bayesian digital image analy-
sis methods to oceanography and atmospheric science. Examples of image
segmentation (i.e., cloud detection in complex natural scenes), near-surface
velocity computation from image sequences, and ice boundary detection in
satellite data are given. Chapter 4 applies methods of spatial statistics to
a broad range of environmental science issues: spatial variation in solar ra-
diation, environmental impact design, and modeling of precipitation using
space-time point processes. Chapter 5 provides a basis for geostatistical
analysis of earth science data. The variogram and kriging are then ex-
ploited to study the flow of groundwater from a proposed nuclear waste site
and the spatial distribution of acid rain over the sastern half of the United
States. The uses of spatial statistics to analyze data from agricultural field
experiments are explored in chapter 6. The objective of such analyses is
to compare the effectiveness of different treatments (e.g., fertilizers) on a
particular crop variety or to make comparisons between different varieties of
the same crop but with a valid assessment of error. Chapter 7 examines the
traditional use of point process methods in ecology and analyzes some of the
weaknesses in this applications area. Spatial statistics as a signal process-
ing tool for radar and sonar systems in the ocean is the topic of chapter 8,
while chapter 9 uses spatial statistics to examine chemical kinetics of active
chemical systems. Chapter 10 provides a statistical basis for the field of
stereclogy and discusses statistical modeling of stereclogical data. Finally,
chapter 11 discusses problems of speech recognition with the ultimate goal
of enabling machines to emulate human speech.

Although this report attempts a broad overview of main areas of spatial
statistics and digital image analysis, there are many areas that we have not



covered. For example, spatial aspects of epidemiology have been used exten-
sively in attempting to relate disease incidence to potential causes, but this
application is not addressed in this report. Likewise, in astronomy, Neyman
and Scott (1958) initiated the uses of the clustered point processes (¢f. Chap-
ter 7) to describe the distribution of galaxies and clusters of galaxies. Recent
work on processing images of galaxies (Molina and Ripley, 1989) provides
a substantial improvement over traditional (maximum entropy) methods in
the area. Methods of digital image analysis have recently found applica-
tion in population genetics to deal with complex pedigrees (Sheehan, 1989).
Sampling techniques for spatial data, emphasizing systematic designs, are
reviewed in Ripley (1981, Ch. 3).

At first glance, this diversity in the applications of spatial statistics and
digital image analysis may mask some of the underlying concepts common
to most of the applications. Historically, spatial statistics and digital im-
age analysis have tried to extract the most information from limited data
sets. Modern data acquisition systems (e.g., remote-sensing of the Earth
using satellites, nuclear medicine) now provide well-sampled spatial data.
Hence, a relatively new role for spatial statistics and digital image analysis
is to synthesize and reduce large volumes of data into manageable pieces
of information. “Modeling,” used in a most generic sense, is perhaps the
most fundamental concept unifying the diverse applications base of modern
gpatial statistics. Models attempt to provide a coherent framework for the
interpretation of complex data sets. Statistical models, which generally are
noncausal in nature, draw conclusions about data sets without necessarily
providing future predictive capability. Physical models, which generally in-
clude time dependence, attempt to provide a prognostic capability about
a physical process based on available data sets. It is likely that significant
advances in science and engineering will be made by judiciously combining
these two types of models. It is also important to note that some phenom-
ena (andfor data sets) may not be amenable to modeling. In this case,
gpatial statistics attempts to develop the best representation of the data set
from which the maximum statistically robust information can be extracted.
Some of the methods found in these applications are (1) exploitation of lo-
cal specification models (i.e., Markov random fields), (2) use of covariance
estimation, and (3) the revolutionary role of the Gibbs Sampler in Bayesian
statistics.

Recent advances in computer science and computer technology have con-
tributed significantly to the efficient and effective utilization of spatial statis-
tics by other fields (e.g., engineering sciences). Present computer architec-



tures, however, are still far from ideal for several other classes of important
problems in spatial statistics. For example, although massively parallel com-
puters are applicable to some problems in spatial statistics and digital image
analysis, current designs are not particularly appropriate to the important
tomographic reconstruction problem.

Modern advances in image display technology, visualization techniques
(e.g., dithering), and the theory and implementation of compact, efficient
data structures now allow scientists and engineers to store, retrieve, and
display efficiently the large amounts of spatial data now being routinely
recorded in such diverse fields as medicine, oceanography, and astronomy.
Advances in spatial statistics will also be closely linked to these advances in
computer science, especially within the subfield of data structures. Contin-
ved research in data structures should be directed toward determining the
most compact and efficient data structures for the storage and representa-
tion of information related to problems in two-dimensional signal analysis
and image analysis.

Spatial statistics and digital image analysis will play important future
roles in science and industry. For example, nondestructive evaluation (NDE)
methods will be used more extensively by industry and government to per-
form quality control and assurance on a spectrum of applications ranging
from manufacturing of circuit boards to metal fatigue tests on airplane fuse-
lages. Often such applications of NDE invelve ultrasound detection and
tomographic reconstruction, and for two-dimensional signal processing and
methods of digital image analysis. Methods of digital image analysis and
image reconstruction also will be used to analyze the large-volume spatial
data sets necessary to study a variety of issues (e.g., acid rain, ozone deple-
tion, and global warming) related to quantitatively understanding climate
and global change processes on planet Earth. Continued advances in data
acquisition and digital image analysis will have a significant impact on such
diverse fields a medicine and astronomy.

At present, the United States has limited indigenous expertise in spa-
tial statistics and its relation to modern methods of digital image analy-
sis. Few university programs exist that properly accommodate the inherent
cross-disciplinary nature of the field. The panel believes that careful con-
sideration should be given to the development of joint curricula in spatial
statistics and digital image analysis, which should accurately reflect their
diverse applications in the fields of science, engineering, and medicine.
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Image Analysis and
Computer Vision

Donald Geman, University of Massachusetts

and
Basilis Gidas, Brown University

2.1 Introduction to Image Analysis

The goal of computer vision is to build machines that reconstruct and in-
terpret a three-dimensional environment based on measurements of radiant
energy, thereby automating the corresponding processes performed by bio-
logical vision systems, and perhaps eventually extending some abilities of
these systems. This goal is far from being attained, and indeed most of
the fundamental problems remain largely unsolved. The field is generally
immature by comparison with standard scientific disciplines, the present
methodology being a hybrid of those from artificial intelligence, classical
signal processing, pattern theory, and various branches of mathematics, in-
cluding geometry and statistics. 5till, important advances have been made
that are beginning to substantially affect such areas as industrial automa-
tion, earth science, medical diagnosis, and digital astronomy.

Computer vision tasks are generally divided into “low-level” and “high-
level™ problems to differentiate between those that (apparently) are largely
data-driven (“early vision™) and those that {apparently) rely heavily on
stored knowledge and symbolic reasoning. More specifically, low-level vi-
sion includes such problems as coding and compressing data for storage and
transmission; synthesizing natural and man-made patterns; restoring images
degraded by blur, noise, digitization, and other sensor effects; reconstructing
images from sparse data or indirect measurements (e.g., computed tomog-
raphy); computing optical flow from motion sequences; and reconstructing

)
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three-dimensional surfaces from shading, motion, or multiple views (e.g.,
binocular stereo) or multiple wavelengths (e.g., multichannel satellite data).
In contrast, high-level vision tends to be driven by more specific goals and
generally involves object recognition and scene interpretation. These are
perceived as the most difficult of the “natural” processes to replicate; in
particular, one of the factors that inhibits the introduction of industrial and
exploratory robots is their inability to “see,” in particular, to infer enough
information about objects to navigate in complex, cluttered environments.
Indeed, invariant object recognition is one of the most challenging modern
scientific problems whose resolution may require new conceptual principles,
computational procedures, and computer architectures.

Biological vision systems, in particular the human eye and brain, analyze
scenes in an apparently effortless way. This ability appears miraculous (es-
pecially to workers in computer vision) and is attributed to several factors,
not the least of which is the large proportion of the human brain devoted
to vision. Still, we actually know very little about the principles of biclog-
ical vision despite the information gathered by physiological, psychophys-
ical, and neurophysiological studies. We do know that our visual system
is able to integrate cues from many sources (e.g., binocular stereo, motion,
and color) and that we exploit a priori expectations, specific scene knowl-
edge, and contextual clues to reduce ambiguities and “correctly” perceive
the physical world. It also appears that low-level analysis of retinal infor-
mation and high-level cognition are done interactively, sometimes referred
to as the integration of “bottom-up”™ and “top-down™ processing. Finally,
there is little doubt that our recognition and interpretation system is largely
scale invariant and at least partially rotation invariant.

Computer vision systems are usually quite inferior to biological ones.
This may be due in part to the lack of raw processing power or suitably par-
allel computation, but also, and perhaps more important, to the inability of
synthetic systems to integrate sources of information and place appropriate
global constraints. At the moment, antomated visual systems rarely make
“interpretation-guided” or “knowledge-driven” decisions, due probably to
a lack of sufficiently invariant representations and to feedback mechanisms
between these representations and the raw data. It appears inefficient, if not
fruitless, to attempt to represent a given object in all its possible presen-
tations. Instead, object representations and recognition algorithms should
possess certain invariances with respect to scale, location, and rotation.

Despite these shortcomings, important successes have been achieved in
actual applications. In some areas, the sheer amount of data leaves no choice
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except automated analysis. For instance, a single Landsat Multi-spectral
Scanner image may contain 30 Mbytes of data. In fact, some of the earliest
and most publicized successes of computer vision occurred during the 1960s
and 1970s when images received from orbiting satellites and space probes
were substantially improved with linear signal processing techniques such
as the Wiener filter. More recently, significant advances have been made
in the classification of satellite data for weather and crop yield prediction,
geologic mapping, and pollution assessment, to name but three other areas of
remote-sensing. Another domain in which automated systems are achieving
success is the enhancement and interpretation of medical images obtained by
computed tomography, nuclear magnetic resonance, and ultrasonics. Other
applications include those to optical astronomy, electron microscopy, silicon
wafer inspection, optical character recognition, robot navigation, and robot
manipulation of machine parts and toxic material.

By and large, the algorithms used in machine vision systems are specif-
ically dedicated to single applications and tend to be ad hoc and unstable.
From a practical viewpoint, problems arise when algorithms are so critically
“tuned” to the particulars of the environment that small perturbations in
the output of the sensors, or ordinary day-to-day variations, will signifi-
cantly reduce their level of performance. Obviously, there is a need for
algorithms that are more robust and that are based on solid theoretical
foundations. But these are ambitious goals; the problems are very difficult,
ranging, in mathematical terms, from ill-conditioned (unstable) to ill-posed
(underdetermined), the latter due to the loss of information in passing from
the continuous physical world to sampled and quantized two-dimensional
arrays. In order to reduce the ambiguity, it is necessary to reduce the set of
plausible interpretations by incorporating a priori knowledge and integrating
multiple cues. One then seeks a mathematical representation for structure
and regularity.

Standard regularization theory, as applied, for example, to inverse prob-
lems in particle scattering, is deterministic and lacks flexibility. One major
current trend is toward “stochastic regularization.” This is not surprising in
view of the fact that many natural regularities are in fact nondelerministic:
they describe correlations and likelihoods. Spatial statistics, in general, and
lattice-based random field models, in particular, provide a promising frame-
work for capturing these regularities and quantifying generic and a priori
knowledge. Such models, properly conceived, impose severe but natural
restrictions on the set of plausible interpretations. Thus spatial processes
and Bayesian inference have provided a coherent theoretical basis for cer-
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tain inverse problems in low-level vision. Moreover, this framework supports
robust and feasible computational methods (e.g., Monte Carlo algorithms),
measures of optimality and performance, and well-designed principles of in-
ference. This methodology is described in more detail in §2.4. Section 2.2
contains a brief review of digital images, and §2.3 describes four specific
image analysis tasks.

2.2 Digital Images

The data available to an automated vision system are one or more images
acquired by one or more sensors. The most familiar sensors are optical sys-
tems, with ordinary cameras and lenses, that respond to visible light. Other
sensors respond to electromagnetic radiation corresponding to other parts of
the spectrum (e.g., infrared, X-rays, and microwaves), or to other forms of
energy such as jonized high-energy particles (protons, electrons, alpha parti-
cles), ultrasound, and pressure (tactile sensors). Many applications employ
multiple sensors; for example, navigation robots may be equipped with video
camera(s), range, and tactile sensors, and the Landsat multispectral scan-
ners collect data in bands of both visible light and infrared radiation. Sensor
Jusion is a current trend in many technologies and inferential procedures.
Regardless of the form of energy acquired and the specific processes of
detecting, recording, and digitizing, the output of all sensors has a common
structure: it is a finite collection of measurements, y = {y; : ¢ € T}, indexed
by a finite set T. With few exceptions (e.g., photon emission tomography),
y is a two-dimensional array, i.e., T is a grid of points (pixels) in the two-
dimensional image plane. Each gy is integer-valued or, as in the case of
multispectra satellite and color images, a vector with integer-valued compo-
nents. Except in photon counting devices, the values of y may be regarded
as “quantizations” of a continuum signal ¢ = {g; : t € T'}, which, in turn,
is a discrete approximation or sampled version of a function g({u),u € R?,
defined on the two-dimensional image plane (or some domain Sy C R?).
In addition to the errors introduced by digilization (= sampling + quan-
tization ), ¢ involves various types of degradation (e.g., blur and noise; see
below). In the absence of these degradations and other artifacts, i.e., in an
“ideal” system, we would observe an ideal energy pattern f(u), u € R?,
The data y or {g: : t € T} may be thought of as a representation of the
physical scene being imaged. The task of computer vision is to estimate or
infer properties (“attributes™) of the scene on the basis of the data and a
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priori knowledge or expections about the physical world. Attributes of inter-
est may be the true pattern f{u) itself (as in image restoration); geometric
features (e.g., orientation, depth, curvature) of objects in the scene; or se-
mantical labels for scene entities, such as in object recognition or remote
sensing, in which regions are classified as “forest,” “cropland,” “water,” and
so on. The relation of specific attributes (e.g., shape) to the true pattern
f(u) is problem-specific, and some concrete cases will be treated in §§2.3,
24.

More specifically, the true pattern f{u) corresponds to the distribution
of energy flux (rodiance) emitted by objects, either because they are “il-
luminated”™ by an energy source, or because they are a primary source of
energy themselves; it is often referred to as “scene intensity” or “brightness.”
The measured values g correspond to the energy flux (or irmdiance) inter-
cepted, detected, and recorded by the sensor, and are usually referred to as
“image intensities” or again simply as “brightness.” Between emission and
detection, various types of distortion and artifacts occur. These are usu-
ally lumped into three major categories (before digitization): MWur, which
may be introduced by scattering within the medium (e.g., atmosphere, hua-
man body), de-focused camera lenses, or motion of the medium, objects,
or cameras; noise, introduced by the random nature of photon propagation
(“quantum noise™) or by the sensing and recording devices (e.g., film grain
noise or current fluctuations in electronic scanners); nonlinear transforma-
tions of the signal (referred to as “radiometric distortion™ ) introduced again
by the sensing and recording devices.

These degradations amount to a transformation from f{u) to g{u). The
most general transformation encountered is

g(u) = {[K(f)u)], Wu)}. (2.1)

Here, K accounts for blur and K(f)(u) = [ K{u,v, f(v))dv. In the linear
case, K(u,v,z) = K(u,v)z and K(u,v) is called the poinl spread function
(PSF); the function ¢ accounts for radiometric distortions, 7 is a collec-
tion of noise processes, and ¢ defines the noise mechanism (e.g., additive,
multiplicative). These parameters have been studied extensively for many
sensors (e.g., Vidicon and CCD cameras) and media (e.g., the atmosphere
and human tissues). We refer to [9] and references cited there for more
details.
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2.3 Some Problems in Image Analysis

In this section we describe four specific problems, which are representative
of those in low-level computer vision: (1) image restoration; (2) boundary
detection; (3) tomographic reconstruction; (4) three-dimensional shape re-
construction. These problems demonstrate the mathematical difficulties en-
countered in converting information which is implicit in the recorded digital
image to explicit properties and descriptions of the physical world. By and
large, these problems are naturally nonparametric, and, as inverse problems,
range from ill-conditioned to ill-posed. Consequently, as discussed in §2.1,
one secks a priori assumptions, or a prieri information about the physical
world (i.e., separate from the data and imaging equations), to constrain the
set of possible, or at least plausible, solutions. An approach to some of these
problems based on stochastic regularization is presented in §2.4. Other ap-
proaches are briefly indicated in §§2.3 and 2.4, and a few references are cited
for more details. However, these problems have been studied extensively in
the computer vision and engineering literature, and we refer the reader to
(9] (and other surveys) for more complete references to related approaches
based on stochastic regularization and Bayesian inference. Finally, the field
of mathematical morphology [26], which is not considered here, offers a quite
different methodology for some of these problems.

2.3.1 Image Restoration

The classical image restoration problem for intensity data is that of recov-
ering a true, two-dimensional distribution of radiant energy, f(u), u € R?,
from the actual recorded image values. In a “continuous-continuous™ set-
up, the problem is posed by equation (2.1). However, since the number
of recorded values is finite (in fact space-discretization is inherent in many
sensors), the continuous-discrete formulation is more realistic. Ignoring, for
the moment, quantization of the measurement values, we can assume the
actual recorded data constitute a two-dimensional array g = {g;: i1 € 5} of
positive real numbers on a regular grid § = {i = (i),42) : 1 < iy, i3 € N},
in fact an N x NV integer lattice. Then (2.1) is replaced by

gi = v{l(Kf)], %}, i€S. (2.2)

Assuming the degradation mechanism to be known (or previously estimated ),
the problem of recovering f(u) from {g;} is nonparametric and obviously
ill-posed in general. For computational purposes, the domain of f{u) is
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discretized into a larger integer lattice 5', concentric to 5, of dimension
N xN,N >N, and J(u) is replaced by f = {fi:i € §'}. Then K be-
comes a discrete representation of the point spread function, and for linear
space-invariant systems we have

(Kf), =) K(i-j)f;, i€8§.
JES

Assuming K has bounded support (a reasonable assumption in most cases),
then S’ should be taken large enough so that the summation over j € 5'
includes all terms for which K(i = 7) > 0. This is not exactly a convolution;
one can imagine [ convolved with K" on the infinite lattice, but only observed
on 5, and reconstructed on 5.

The problem of estimating {f;} from {g,} is still ill-posed. To see this,
consider the simple case of a linear model: g = K f + n, with only blur
and a single noise process. By relabeling the sites of 5§ and 5, we can
regard g, 7, and [ as vectors of dimension N2, N2, and N**, and K as an
N? % N'® matrix. For n =0 and N < N’, the problem is underdetermined
and K ! is not well-defined. But even if N = N’ and K were invertible (e.g.,
torcidal convolution), the matrix is usually nearly singular, so the existence
of measurement and quantization errors then renders the problem unstable
in the sense that the propagation of errors from the data to the solution
is not controlled. Put differently, given ¢ and K, two images with blurred
values very close to g can be very different.

Consequently, one seeks additional information to constrain or “regular-
ize™ the problem. Traditional approaches (see section 4.2 of [9] and the ref-
erences there) may be divided into linear methods, such as the traditional
Wiener filter and other constrained least-squares methods, and nonlinear
methods, such as the maximum entropy technique. Linear methods are typ-
ically ill-conditioned and the reconstructions are often compromised by large
oscillatory errors. Maximum entropy has been extensively examined and is
widely popular in certain areas, such as digital astronomy [16, 8, 19, 24).
The regularization underlying the standard constrained least-squares filter
is equivalent to a Gaussian (improper) prior distribution, whereas that of
maximum entropy is equivalent to a particular random field model whose
variables interact only through their sum (= total energy). None of these
methods addresses the crucial issue of discontinuities, which often convey
much of the information in the image, and which are difficult to recover with
standard methods. A general framework for nonlinear estimation based on
spatial stochastic processes is outlined in §2.4.
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2.3.2 Boundary Detection

The boundary detection problem is that of locating (discrete) contours in a
digital image that correspond to sudden changes of physical properties of the
underlying three-dimensional scene such as surface shape, depth (occluding
boundaries), surface composition (texture boundaries), and surface mate-
rial. A common complication is that sharp physical boundaries may appear
in an image as slow intensity transitions or may not appear at all doe to
noise and other degradation effects. In addition, extraneous “edges™ may ap-
pear from artifacts of the imaging system, such as sensor nonlinearities and
digitization, or from “nonphysical” boundaries, such as shadows. Boundary
elassification refers to detecting and labeling boundaries according to their
physical origins, but it is rarely attempted and appears essentially impossi-
ble, at least without additional information from multiple views or sensors,
temporal sequences, or specific scene knowledge.

Segmentation is a closely related problem; one seeks to partition an
image into disjoint regions (pixel classes) on the basis of local properties
such as color, depth, texture and surface orientation, or on the basis of
more global (or even semantical) criteria, for instance involving dichotomies
such as “object-background”™ or “benign-malignant.” Clearly, each partition
induces a unique boundary “map,” whereas only boundary maps that are
sufficiently organized yield useful segmentations.

These problems are studied extensively in computer vision, and there are
many concrete applications. For example, texture is a dominant feature in
remotely sensed images, and texture segmentation iz important in the anal-
ysis of satellite data for resource classification, crop assessment, and geologic
mapping. Other applications include automated navigation and industrial
quality control; for example, in silicon waler inspection, low magnification
views of memory arrays appear as highly structured textures. Nonetheless,
most work on boundary detection and segmentation has been of a general
nature, separated from specific problems, and regarded as a “preprocessing”
step toward further analyses such as extracting three-dimensional shape
attributes (see §2.3.4), object recognition, and full-scale scene interpreta-
tion. In the view of some researchers, including the authors, this modular
approach to image analysis is highly suspect, and generic segmentation is
overemphasized.

Algorithms abound for “edge detection,” which refers to the problem
of locating the individual changes in intensity independently of the overall
scene geometry. Most of these algorithms are heuristic, partly because it is
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difficult to state these problems in precise mathematical terms. Traditional
edge detectors [17, 20 are deterministic procedures based on (discrete) dif-
ferential operators. Boundaries are then regarded as well-organized subsets
of edges and the construction of boundary maps is usually considered as a
second phase in which the detected edges are “cleaned,” “smoothed.” and
otherwise massaged into structures we associate with real boundaries. A
variational method proposed in [22] for boundary detection has lead to in-
teresting mathematical problems, but its practical utility is uncertain. Sta-
tistical methods for segmentation in remote sensing are very prevalent [9,
25] and often successful. However, until recently most techniques employed
non-spatial methods, such as linear discriminant analysis. Statistical meth-
ods that are truly spatial are currently gaining popularity, and an example
involving texture segmentation is presented in §2.4.2.

2.3.3 Tomographic Reconstruction

Tomography is an imaging technology widely used in medical diagnosis (and
also in industrial inspection and other areas). The two basic types are
transmission and emission tomography. The most commeonly used form of
transmission tomography is the “CAT-scan,” whereby a radiation source
rotates about the patient’s body and bombards it with X-rays or other
atomic particles. Those particles that pass through the body are counted,
and an image (or series of images) is formed from the combined counts; fewer
counts correspond to regions of higher attenuation, which may, for example,
indicate the presence of tumors.

In emission tomography, a pharmaceutical product is combined with a
radicactive isotope and directed to a location in the patient’s body, usually
by injection or inhalation. The pharmaceutical is selected so that its con-
centration at the target location is proportional to some organic function of
interest, for example, metabaolic activity or local blood flow. The objective is
then to reconstruct the (internal) two-dimensional or three-dimensional iso-
tope concentration based on counting the number of released photons that
escape attenuation and are registered by arrays of detectors placed around
the body. For instance, in positron emission tomography (PET), the isotope
emits a positron, which, upon colliding with a nearby electron, produces two
photons propagating in opposite directions.

From here on the focus is on single photon emission computed lomoyg-
raphy (SPECT), in which the isotope releases a single photon each time a
radioactive decay occurs. Arrays of collimators are placed around the area
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of interest and capture photons that escape attenuation and whose trajecto-
ries carry them down the collimator. The problem is then to reconstruct the
isotope concentration from the photon counts and is similar to the inverse
problems mentioned in §2.3.1.

The dominant physical effect is photon attenuation, by which photons
are annihilated and their energy absorbed by body matter. Other significant
effects are photon scattering and background radiation, as well as those
effects induced by the sensors. Attenuation is accurately described by a
single function g whose values are known for bone, muscle, and so on, and
for various photon energies. The incorporation of scattering and other effects
is more subtle [13).

We formalize the SPECT reconstruction problem as follows [12, 27]. Let
z(u) be the isotope density defined on some domain 55, which is usually
taken as a two-dimensional region corresponding to a cross section of the
body. The detectors o;, j = 1,...,m, are arranged on a linear array at
equally spaced intervals, and the array is positioned at equally spaced angles
O, k=1,...,n, for the same time duration at each angle. Let T = {(o;,8;) :
i=1,....m;k=1,...,n}. The total number of observed photons is an
array y = {p; : t € T}. Assuming that the photons generated in regions
So are governed by a spatially nonhomogeneous Poisson process with mean
z{u) at the point u € Sy, the observation y is a realization from another
nonhomogeneous Poisson process, ¥ = {Y, : 1 € T}, with mean

EY = Az, (2.3)

where the linear operator A incorporates attenuation (via the atfenuvated
Radon transform) and other physical effects [13]. Hence, the conditional
probability distribution of ¥ given z is

P(Y =yiz) =[] {A:.]f" exp{~(Az).}. (24)

teT

For computational purposes, the region 5y is discretized into a grid 5 of
pixels. Then z = {z; : i € §} represents a piecewise constant approximation
of z(u), and the operator A becomes a matrix A = {a;;},t €T, 1€ 5.
The oldest, and still current, method used for reconstructing = from y is
back-projection, which essentially inverts (2.3), and is not very accurate. A
more recent method [27] is that of mazimum likelihood (ML), i.e., maximize
P{y|z) with respect to z, which is implemented with the expectation maxi-
mization (EM) algorithm. However, it has been widely realized that the ML
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estimator is too “rough.” Various procedures for smoothing this estimator
have been suggested (see the references in [9]), including penalized ML and
the method of sieves. Another alternative within the Bayesian framework is
described in §2.4.2.

2.3.4 Three-Dimensional Shape Reconstruction

The problem of estimating or reconstructing properties of three-dimensional
surfaces, such as orientation, height, Gaussian curvature, and Euler charac-
teristics, from digital images is also widely studied in computer vision. In a
common paradigm, especially in robot vision, these features are regarded as
indispensable steps toward object recognition and other goals; the extraction
of geometric features is followed by the imposition of relational structures
among the features (using “grammars,” symbolic graphs, and so on), and
in turn by matching these data structures against stored models of real ob-
jects and spatial relationships among them. Again, the paradigm consists
of distinct steps, and the extraction of geometric features is itselfl preceded
by “pre-processing,” which encompasses noise removal and other aspects of
restoration, edge and boundary detection, and perhaps segmentation.

The main sources of information ( “cues”™) for three-dimensional shape re-
construction are the intensity changes themselves (“shape-from-shading™),
pairs of images corresponding to multiple views (“stereopsis™) or wave-
lengths, motion sequences (“shape-from-motion” ), texture analysis (“shape-
from-texture™), and range data. Stereopsis is thought to be the most im-
portant process by which human beings obtain depth information, but has
played a lesser role in automated systems due to computational demands
and lack of accuracy. In contrast, shading has played a larger role in ma-
chine vision than in human vision, and range data is becoming an important
source of information for automated systems but is unavailable to humans.

The mathematical problems encountered in three-dimensional shape re-
construction are similar to those in §§2.3.1-2.3.3. We conclude §2.3 with
two examples in more detail.

Stereopsis

Stereo vision uses two cameras (corresponding to our two eyes) and a single
light source. The relative difference, or so-called disparity, in the positions of
an object in the two images is useful information for extracting surface orien-
tation and relative distances between objects. A physical point in the viewed
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scene has corresponding points in the two images and the correspondence
problem is to find these pairs. The disparity between these points, together
with simple geometric arguments, is then used [20] to estimate orientation or
relative depth. The standard implementation of stereopsis [20] consists of the
following steps: (1) detect significant intensity changes at various resolutions
in both images, specifically, for example, “zero-crossings™ of a Laplacian or
other discrete differential operator or “filter”; (2) match these zero-crossings
or properties thereof in the two images; (3) estimate from the disparity data
the desired property of associated and sparse three-dimensional points; and
(4) combine these data with regularization procedures to estimate entire
surfaces. In addition, there are various pre-processing steps.

Shape-from-Shading

It is easier to state the problem in the fully continuous setup. The aim is
to estimate a surface z = z(u), u = (u;,u3) € R?, from an observed image
irradiance function g{u) on the image plane u € B2, The radiance (see §2.2)
f(u) is related to the geometry of the sarface via the “irradiance equation”
[17]:

.ﬂ:“] = R[F{t}'r 'g!- F'r F{“}] ¥ {?'5}

where :'3[1:} is the surface unit normal at the physical point (u;,u;,z), 3
and V are the directions of the illumination source and the camera, respec-
tively, p(u) is a property of the surface material (called albedo), and R is
called the reflectance map. This function has been studied extensively [17]
for many materials and illumination conditions, and we assume it to be
known. In practice, mot only z(u) but also § and p(u) may be unknown
and require estimation. However, assuming that these are also known and
that we observe f(u) (or derive it from g as in §2.3.1), then equation (2.5)
is a first-order differential equation for z = z(u) over its domain Sy C R2.
The problem of estimating z is underdetermined unless one knows the nor-
mal vectors along occluding boundaries or along certain contours. Various
numerical schemes have been used for solving this boundary value problem
and for dealing with underlying instabilities. [These involve first detect-
ing occluding boundaries.) Other approaches [18, 23] employ deterministic
regularization, which leads to a second-order (elliptic) differential equation.
An important issue in the discrete implementation of these methods is the
incorporation of the integrability condition, ie., of the discrete version of
Tup oy = Fuga-
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Finally, there are many related problems, such as photostereo, in which
one has two images acquired by a single camera but with separate light
sources, and shape-from-motion, in which one is given a sequence of images
induced by relative motion between the scene and the camera.

2.4 Bayesian/Spatial Statistics Framework

2.4.1 General Framework

Real scenes exhibit a variety of regularities: nearby locations typically have
similar brightness; boundaries are usually smooth and persistent; textures,
although possibly random locally, have spatially homogeneous regions; enti-
ties such as roads, leaves, and arteries have characteristic structures; object
surfaces consist of locally smooth patches on which orientation and curvature
change smoothly, whereas abrupt changes appear along object boundaries.
The statistical variability of such regularities suggests a Bayesian formu-
lation in which a priori knowledge and expectations are represented by a
prior distribution. Spatial processes in general, and Markov random fields
(MRF) in particular, provide flexible candidate distributions and the result-
ing framework supports reasonable computational algorithms, measures of
performance, and inference procedures.

Thiz framework consists of six basic steps: attribute modeling (i.e.,
choice of the prior), degradation modeling, computation of the posterior
distribution, model identification, attribute estimation, and algorithmic im-
plementation. These are described below; examples are given in §2.4.2. A
more detailed exposition of the methodology and its applications is given in
(9] (to which we shall refer for original and other references). See also [5,
24] for recent reviews and additional applications, [3] for seminal work on
the role of MRF's in spatial statistics, and [15] for an early and influential
paper on Bayesian scene modeling and stochastic relaxation.

Attribute Modeling

Scene attributes may often be regarded as two-dimensional arrays. Exam-
ples are intensity values corresponding to the “true” distribution of radiant
energy; labels of textures, boundaries, or objects; and values of surface ori-
entation, depth, or curvature. In some problems, we are interested in more
than one array simultaneously. The collection of arrays of interest, denoted
by X, is modeled as a discrete-parameter stochastic process indexed by the
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vertices (“sites” ) of a graph €. The set § of vertices of § serves simply to
index the process, X = {X; :i € §}, whereas the edges or “bonds™ of § cap-
ture the interactions among the individual random variables. If A denotes
the set of vertices connected to site i € §, then N = {A] : 1 € 5} defines the
neighborhood system for ¥, and we identifly § with (5,N). The graph G is
usually sparse in the sense that the neighborhoods A; are small compared
to the graph size, and are usually “local™ as well in the sense that the neigh-
bors of i are spatially near i, which is rather natural for modeling spatial
coherence and spatial context, and it is very convenient in computations.

The probability law, x{z) = P{X =z), is the prior distribution, usually
chosen to be a Gibbs distribution (i.e., X is a MRF with respect to §)
meaning that

x(z) = %r" (=} (2.6)

Z being a normalizing constant called the partition function and U(z) an
energy function which is usually locally composed: U({z) = ¥ &z, z(N)),
143

z(N;) = {z; : j € Ni}. The choice of the neighborhoods and *interactions™
@, is problem-specific. As a simple example, amplified in later sections,
let X denote the true intensity values, § the regular pixel grid with a four
nearest neighbor system (ie., A = {j € §: |i—j| = 1}), and consider the
problem of modeling spatial cohesion. We then might choose

®i(zi,z(N)) = E @ |2i=x4]) .
JEN

where ¢(-) is increasing on [0, 20). In this way, the measure = favors config-
urations in which nearby pixels have similar gray levels.

Sometimes it is convenient (if not necessary) to allow “infinite ener-
gies” (zero probabilities) in the prior. For example, in boundary detection,
rather than stochastically inhibiting “blind™ boundary endings and redun-
dant boundary representations (see §2.4.2), it is more appropriate to simply
disallow, or forbid, such configurations. These “constraints™ are realized
with a nonnegative “penalty function™ V(z). Then the prior is defined on
the *allowed” set {z : V(z)=0]}, ie.,

I'{:] = é E{H}[I}E_U{'}. {2?}
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Degradation Model

By design, X = {X, : i € §} contains all the relevant information for in-
ference and decisionmaking. The goal is to estimate X based on the prior
distribution and the observed data y, which is assumed to be a realization
of an observation process ¥ = {Y; : { € T} indexed by a discrete set T that
might be different from 5. The observation y may be a collection of mul-
tiple arrays available from multiple sensors, views, wavelengths, etc. The
process Y is related to X by a conditional probability P(Y|X )—the degra-
dation model—which may or may not be degenerate. This model, or the
transformation from z to y, is problem-specific, and most often nonlinear.
In the restoration problem, the degradation model is induced by (2.2); in
boundary detection and segmentation, it is a projection; in tomography, it
is given by (2.4); in shape-from-shading, it is induced by (2.5) (and (2.2));
and in other problems, it may involve “missing” observations (e.g., due to
obscuration ).

Posterior Distribution

The prior x(z) and degradation model P(Y|X) determine the joint distri-
bution of (X,Y), and in particular the posterior distribution ={X|Y) of X
given Y. For a given observation ¥ = y,#(X|y) contains all the relevant
information about X, i.e., it reveals the likely and unlikely states of the
“true” but unobserved attributes X. For a wide class of degradation mod-
els, #{ X|y) is again a Gibbs distribution over a new graph G¥, which is
in general larger than G but still sparse. However, exceptions occur; for
example, in tomography (§2.4.2), G is highly nonlocal, and its complexity
depends on the matrix A of (2.3).

Given r{X) and P(Y|X), the posterior x(X = z|Y = y) is derived by
Bayes' rule, and has the form

E 1 4 - L _'l-'.'l['h]
(zly) 7o) © (2.8)

in case (2.6), and

r(z|y) = ﬁ §iv=gy(z) e~ 0l (2.9)

in case (2.7). Here, U/(z]y) is the energy associated with the posterior dis-
tribution; it is computed from ['{z) and the degradation model.



24

Model Identification

Both the prior (X)) and the degradation P{Y|X) may contain unknown
parameters which need to be estimated from the data. The estimation of
the parameters is often difficult and computationally expensive, and it is
regarded by some as a serious drawback of the Bayesian framework. Its
difficulty stems in part from the complexity of the likelihood fanction, i.e.,
the marginal distribution of ¥'. Other complicating factors include the high
dimensionality of the data and the strong dependence of the individual ran-
dom variables.

Several methods have been developed for estimating the parameters (see
references in [9]): for complete data (i.e., observable X'}, ML via a stochastic
gradient algorithm, maximum psendo-likelihood (MPL), variational meth-
ods [2], coding, and logistic-like methods; for incomplete data, ML via the
EM algorithm [12], and the method of moments [12, 13]. The problem of
parameter estimation has given rise to interesting mathematical questions,
and to an interplay between statistical inference and the phenomena of phase
transitions [7).

Attribute Estimation

The ultimate goal, of course, is to choose a particular estimate, £ = #(y),
of the attributes X given the data y. One choice is the MAP (maximum a
posteriori) estimator, which is the mode of x{z|y); it is the Bayes estimator
corresponding to the zero-one loss function. Another Bayes estimate is the
mean of x{z|y), which derives from squared-error loss. Estimates of X are
obtained by the basic algorithms described next. This estimation is distinct
from the parameter estimation problem, but, in some cases, the two have
been treated simultaneously [4).

Algorithms

The conditional distribation x(z|y)= #({z) is usuvally too complex to allow a
direct computation of # = #(y). Instead, Monte Carlo type algorithms (mo-
tivated by analogies with physical systems in statistical mechanics) are used
to generate sample realizations from #(z), approximate global expectations
with ergodic averages, and estimate modes by “annealing.”

For example, the MAFP estimate of (2.8) amounts to finding a minimal
energy state of ['(z]y) = U'(z). Physically, a low-energy state is achieved
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by heating and then slowly cooling a substance—a procedure called an-
nealing. This suggests searching for global minima of (z) by simulating
the dynamics of annealing using the Metropolis Algorithm (MA) (see refer-
ences in [1]) or variants such as the Gibbs Sampler (GS) [10] (also called
stochastic relaxation) and the Langevin equation. These algorithms gener-
ate a Markov chain X () with transition probabilities arranged so that the
equilibrium distribution is #{z). For example, in G5 one chooses a sequence
of sites i(1),i(2),... so that each site in § is visited infinitely often. If, say,
X(t) =z, then X;{t + 1) ==z; for all j# i(t), and Xi(t + 1) is a sample
from the conditional probability

& {Ii{|]= | XKj=z5, 5 # i{ﬂ] =% {xi:n= | Xj=z5 7€ .-"-",-EJ] . (2.10)

where {A }igs is the posterior neighborhood system. An important feature
of these algorithms is that there is no need to compute the partition function
Z (¥), which is intractable in general.

To simulate annealing, one introduces an artifical “temperature” (or con-
trol parameter) T(t) into the posterior distribution. Let

) 1 1
Trlz) = g up{-ﬁﬂ'[:}}. (2.11)

Now let T(t) | 0 as { — oo sufficiently slowly (e.g., T(t) > C(1 + logt)~",
¢ small) so that the nonstationary Markov chain X(t) converges weakly
to a distribution supported by the global minima of [/(z) [10, 1]. The an-
nealing algorithm (AA) has also been modified to deal with the constrained
optimization problem underlying (2.9); see [9].

These algorithms are computationally demanding, but parallelizable. In
practice, one compromises between the theoretical algorithms and practical-
ity via such methods as low-temperature sampling [11), iterated conditional
modes (ICM) [4), iterated conditional expectation (ICE} [13], and the renor-
malization group algorithm [14].

2.4.2 Examples

Image Restoration

The basic degradation model is given by (2.2). For simplicity we assume
the presence of only one noise process {n;}, and N = N'. Although not
necessary, we assume that the intensities are quantized. We will denote the
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pixel lattice by §F = {i = (iy,i3):1 € iy,i3 € N}, the grey-level intensity
process by X = {XF:i € §F}, and the observation process by ¥ = {Yi:i e
§F}. Then

Yi = o{él(KXF)), w), i € 5F. (2.12)
We assume that K, ¢, ¢, and the law of 5 are known.

The basic idea proposed in [10] is to use MRF models to account for
the spatial coherence among the intensity levels of nearby pixels, as well
as for the existence of discontinuities between intensity surfaces. To this
end, in addition to the intensity process XF, a second “edge™ process X is
introduced. The process XF accounts for discontinuities, and is indexed by
the dual lattice 5% of §F; §F consists of all nearest-neighbor pairs < i, >
from 5§, and an element (“site™) 1 € 5F corresponds to a putative edge
between the -:urrupundmg pixel sites. Thus, X¥ = (XF : 1 ¢ S'E} =
{Iﬂﬂ, 14,7 € 87}, XF € {0,1) where XF = 1 (resp. 0) indicates presence
(resp. absence) of an edge at t € §5. The process XF is neither part of the
data nor the target of estimation; rather, it is an auxiliary process designed
to bring exogenous information into the model, and it is coupled to X* in
such a manner that in the likely states of the joint probability distribution of
X = (XF,XE), the intensity function is locally smooth with possibly sharp
transitions, and the locations of the edges satisfy our a priori expectations
about the behavior of boundaries.

The process X = (X7, XE) is indexed by § = 57 U 5F, and is chosen
to be a MRF with energy function of the form

U(z) = U(zF,2F) = Uh(z",25) + Ua(=F), (2.13)

where [/; reflects our expectations about interactions between intensities and
edges {where edges “belong” ), while U/; reflects boundary organization. Both
terms are constructed from “local energies” corresponding to a neighborhood
system A" = {AG:a € §}. The simplest neighborhood system (“nearest
neighbors”) is shown in Figure 2.1, where dots denote pixels and crosses
edge sites.

The energy (=", 2F) is defined so that the low energy states will have
=, ;. = 1 (resp. 0) when |zf" - zF'| is large (resp. small). More specifically,

E'F!.EIF+=E,}=E1 E ﬁti "":_;r ]{1 {m,‘.\}r {2'1"]

iy
with 8, } 0, #{0)=-1, and ¢ even and nondecreasing on [0, c). Note that
when z£;;, =1, the bond (“interaction”) between pixels i and j is broken;
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also, the properties of ¢ ensure that when [ =2f, [i—j|=1, then 25> =0
is a lower energy state than zZ; ;. =1 and, in the absence of boundaries,
there is cooperation between nearby pixel intensities. Note also that when
#(zF - zI') = 0, we have no preference about the state of an edge at site

< i,j >. A specific ¢{-) that has been used in restoration problems [9] is

=1
ﬂ£]=1-2[1+(§)2] , £€|-K,K], (2.15)

where A is a scaling constant.

The energy Us(zF) reflects our prior expectations about boundaries:
most pixels are not at boundary regions; boundaries are usually persis-
tent (no isolated or abandoned segments); boundary intersections (junc-
tions), sharp turns, and “small structures,” are relatively unlikely. For spe-
cific choices of Uz(zF), we refer to [9] (and references cited there). Some
of the above generic properties of boundaries may also be captured with
penalty functions (see (2.7)). For problems, such as image restorations and
shape-from-shading, where the edge process X* is auxiliary, using “soft con-
straints” such as ['3(z®) is satisfactory, whereas for problems in which the
boundaries are of central interest (e.g., texture segmentation; see the next
subsection), penalty functions are often more appropriate.

The energy function (2.13) determines the prior x(r). Assuming that
the noise process {m) is independent of X = (XF,XF), the transforma-
tion (2.12) determines the degradation model P(¥|X) in a straightforward
manner. The posterior distribution *(X|Y) is then computed from the
joint distribution P(Y|X)x(X). For example, suppose that n; is Gaus-
sian with mean u and variance #?, and that b » ¢{a,b) is invertible, say,
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% = Fly, #{(KzF)]) for some F{u,v). Then assuming that Flu,v) is
strictly increasing and Fi(u,v) = *F‘[ﬂ.,t'} exists, the posterior energy (see
(2.8)) is given by [9]

EF[:“} = H[.tF..rE] + % E [j.t - F [:In 'ﬁ[-ﬁ':?}-l}r
iesF

- X logFi (ui, ol(Kz"))) . (2.16)

iesF
Boundary Detection

We summarize the procedure developed in [11] for detecting textural bound-
aries. The method also applies to the problem of locating boundaries rep-
resenting sudden changes in depth and surface orientation.

The procedure involves two processes: the intensity process X = (X[:
i € ST}, as in the first subsection of §2.4.2, and the boundary process
X® = {XP:1 € §P), which is indexed by a regular lattice S% with sites
interspersed among the pixels of 5%, Again, XF = {0,1} with X, = 1
(resp. 0) indicating presence (resp. absence) of a boundary at ¢ € §5. The
prior distribution for X = (X", X¥) is chosen to be of the form (2.7) with
U(z)=U(z", %), and V(z)=V(zP).

The intensity-boundary term U(z",2%) is chosen to promote placement
of boundaries between regions in the image that demonstrate distinct spatial
patterns. In [11] it was chosen to be of the form

U(zP,28) = Y &,,(zF)(1 - 2P2B), 1,se 58,  (2.7)
<ia
where < ¢, s > denotes nearest-neighbors in §%, The function &, , is critical:
it is a measure of disparity between the gray-level values in two blocks of
pixels adjacent to < f,5 >; IHF disparities ($ > 0) encourage the presence
of an active boundary (i.e., zF = 25 = 1), while small disparities ($ < 0)
discourage the presence of a boundary (i.e., 2825 = 0). Specific choices of
$:, in [11] are constructed in terms of the Kolmogorov-Smirnov distance
applied to either the raw data (“first-order™ statistics), or to transformed
data corresponding to higher-order statistics (e.g., window means, range,
variance, and “directional residuals™). As a function of 5, (2.17) is similar
to “spin glass™ models in statistical mechanics.
The penalty function V(z®) is chosen to inhibit unwanted configurations
such as blind endings of boundaries, redundant boundaries, sharp turns, and
other forbidden patterns (see [11] for details).
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Assuming that there are no degradations that preclude direct observation
of :rF, then the data y = zF. The degradation model F{fl,xﬂ] is singular
(the point mass at y = £"), and the posterior energy is U(z®|y = £F) =
U(y=2F,2®). The MAP estimate is equivalent to global optimization with
constraints.

Plates 2.1 and 2.2 (from [11]) show two experiments. Plate 2.1 is an
L-band synthetic aperture radar (SAR) image of ice floes in the ocean:
(a) original image, 512 % 512, (b) sixteen “snapshots™ from sixty sweeps of
stochastic relaxation with constraints. Plate 2.2 is a collage composed of nine
Brodatz textures: leather, grass, and pigskin (top row), raffica, wool, and
straw (middle row), and water, wood, and sand (bottom row). Two of the
textures, leather and water, are repeated in the two circles; (a) original 384 x
384, (b) detected boundaries obtained by deterministic (left) and stochastic

(right) algorithms.

Single Photon Emission Tomography

The digitized isotope intensity (see §2.3.3) is thought to be a realization of
a spatial process X = {X;:i € §}. The idea of [12, 13] is to use a Gibbs
prior to reflect the common observation that neighboring locations of the
isotope surface typically have similar concentration levels, whereas sharp
changes in concentration may occur, for instance, across an arterial wall or
across a boundary between two tissue types. In contrast to the procedure
in restoration, sharp changes are not represented explicitly by an edge or
boundary process; instead, the intensity model is designed to allow such
changes. Specifically (cf. [12]),

U(z)=8 3 #zi—z;)+ % Y #zi - zj), (2.18)
<ig> i)
where < 1,7 > denotes a nearest-neighbor bond, [i, j] represents a nearest-
neighbor-diagonal bond, and ¢ is given by (2.15).
The degradation model is given by (2.4), and the posterior energy is then

U(zly) = U(z) + 3_[(Az); — welog(Az):].
teT
Although U/(z) has a local structure, the graph for [/(z|y) is highly nonlocal
due to A.
The choice of the “smoothing™ parameter 3 is critical. For @ = 0, the
MAP estimator is just the ML estimator and, hence, typically too rough. For
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large 3, the MAP estimator is too faithful to the prior and, hence, typically
too smooth. The value of @ is estimated in [12, 13] via the EM algorithm
or the method of moments. The parameter A in ¢ is also important, but
its statistical estimation from the data appears to be difficult. Fortunately,
reconstructions are not sensitive to moderate changes in A, and empirical
values based on information about range intensities work well [12].

Plates 2.3, 2.4, and 2.5 show three experiments from [13] with real {hos-
pital) data, using the ICE algorithm. For comparison, the reconstruction
with the filtered back projection {FBP) method is also shown. In all three
cases the  is estimated by the ML method. Plate 2.3 shows a slice of a
human skull across the eyes: (a) FBP, (b) ICE with 3 = 2.7. Note that
in (b) one can distinguish details such as the nose bone, eyes, brain region;
also the skull border is sharp. Plate 2.4 displays a SPECT reconstruction
of a simulated phantom. The model used in this experiment was developed
by the Nuclear Medicine Department of the University of Massachusetts
Medical Center, in Worcester. This is a comprehensive model that captures
the effects of photon scattering, photon attenuation, camera geometry, and
quantum noise: (a) original phantom, (b) FBP reconstruction, (c) ICE re-
construction with § = 1. Plate 2.5 is a human liver/spleen scan: (a) FBP,
(b) ICE with # = 3. The value 3 = 3 is the ML estimation; (¢) and (d) are
ICE reconstructions with § = 0 and § = 20 respectively; they demonstrate
the significance of the parameter 4.

Shape-From-Shading

We focus on the estimation of surface orientation. For simplicity, we assume
that § and p are known, that the reflectance map is spatially homogeneous
and known, and that V is constant throughout the image (orthographic pro-
jections). However, the procedure presented below can be modified [28] to es-
timate also 5 and p. There are three basic processes: The true (undegraded)
intensity process X© = {XF:i € §), the shape process N = {N, : i € §)
where N, is the unit normal at the surface “point™ corresponding to pixel i,
and the observation process ¥ = {¥;:i € §}. Here, § is a discretization of
the domain of z{u) (see §2.3.4). The shape process N (the target of estima-
tion) is related to X* via the discrete version of (2.5), and X¥ is related to
Y via (2.12). X is an indeterminate process and will play no direct role
here.

In the absence of degradation we have }; = Hl[ﬂ.-]. which is a determin-
istic constraint on N. The shape-from-shading problems usually refer (see
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[1'?]] to this case (i.e., observable IP], and we refer to [1?,]3] for various
approaches to the problem including deterministic regularization techniques.

The procedure below was developed in [28] and applies to both unde-
graded and degraded data. The basic idea is to use Gibbs distributions to
articulate general properties of shapes: surfaces are locally smooth, orienta-
tion may exhibit jumps because of changes in depth or presence of surface
discontinuities. As in restoration, the process ¥ is coupled to an edge pro-
cess XE = {XF:t € §F}, where XF and 5% are as in the first subsection of
§2.4.2. The coupled process X = (N, X¥)is a MRF with an energy function
Uiz} = U;(N,25) + Uz(zF) (compare with (2.13)), where U3{zF) is chosen
as in the first subsection of §2.4.2, and

Uy(N,zF) = & 3 (1-25,,) 8N - Nj))

LA ]

+ 6 (1= A ) &(IN: - N, (2.19)
lis]

with #,8; > I.'I, < i,j >,[i,j] as in (2.18), and hIE 1= 1if any nf:ﬂ:m =
sfzl =1,282F =1, 2F2F = 1, are true, zero otherwise; here i, j, 1, h,

{3, {4 are as in Figure 2.2.
t x .3
ty X x i3

i. ® i3

FIGURE 2.2

The function ¢ was chosen [28] to be &{(|N; = N;|) = =1+ }|N; - N;|* =
~N; - .i':” Because of the constraint |N;| = 1, the prior resulting from
lhu::huu of ¢ is non-Gaussian even if #; =0 and 2F = 0. In fact, model
{2.19) has worked well in some cases [28] even without the edge process (i.e.,
rE=0).

In the absence of degradation, the distribution P(¥|X) is degemra.te
and amounts to the constraint Vi(N) = E I¥; = RIN)? = 0. In the

presence of degradation, P(Y|X) is :umpnted as in the first subsection of
§2.4.2. In both cases, there is an extra deterministic constraint V3(N) = 0
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corresponding to the integrability condition. In the former case, the shape-
from-shading problem reduces to minimizing H{H,:‘] under the constraint
Vi(N) + V3(N) = 0; in the latter case, to minimizing the posterior energy
U{N,zF) under the constraint Va(N) = 0.

The procedure does not require boundary conditions. However, in the
absence of degradation and a single image, the quality of reconstruction
is better 28] if one assumes correct boundary conditions along the image
border. In the presence of noise, the results are satisfactory if one uses two
images (photostereo) obtained with a single camera but two light sources of
different origin.

Plate 2.6 shows an experiment from [28] with an egg imaged under un-
controlled illumination. The surface of the egg was assumed to be matte,
and the algorithm estimated, in addition to N, the albedo p and an effective
light source direction §. The reconstruction used a combination of con-
strained annealing and ICM: (a) original image, 64 x 64, (b) reconstruction,
() reconstructed egg illuminated from z-direction, and (d) reconstructed
egg illuminated from y-direction.

Deformable Templates

In this subsection we briefly describe a powerful and elegant methodology
introduced by Ulf Grenander for pattern synthesis and analysis of biological
shapes. It provides a promising geometric /Bayesian paradigm for medical
and industrial applications.

The procedure [6] is based on global shape models designed to incorpo-
rate prior (biological) knowledge about the variability and global properties
of shapes, and quantitative information about the variability of the geomet-
ric object. The shape model has three basic components: (a) a “geometry™
consisting of a space ' of generators, a connector graph o, a “regular-
ity™ relation R, and a transformation group 5:G — G; (b) a template
(or templates) describing the overall architecture of the shape; and (c) a
group-valued stochastic (typically Markov) process, which articulates the
statistical variations of the shape. The choices of the template, transfor-
mation group, and stochastic process control the desired global and local
geometric properties of shapes. The choice of (a) is application-specific.

We refer to [6] for the general framework, experiments, and references.
Here we outline the method for the special case of two-dimensional (planar)
shapes (as in the HAND experiment [6]). Assuming that all the relevant
information is contained in the boundary, and approximating the boundary
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by a polygon with, say, n edges, the components of (a) are as follows: g, €
&, j =0,1,...,n~1 are polygonal edges; o is a cyclic graph consisting of the
n nodes; B may, for example, be the condition that the polygon is closed and
simply connected (other regularity conditions are often desirable); 5 may
be chosen to be the general linear group GL{2), or the Euclidean group (i.e.,
rotations ((2) and translations), or the group U/S(2) of uniform dilations
(scale), or US(2) x O(2).

The configuration space of interest is C{R) = {¢ = o(go,... . fn=1): §i €
G, i=0,...,n=1, csatisfies R}, i.e., the set of boundaries of closed, simply
connected polygons. The interior of a polygon defines a pure image [. A
template is a specific configuration /% = u{g&m. cen f_]l] € C(R) that rep-
resents the prototypical shape being considered; for example, in the HAND
experiment [6], ¢! is an “ideal” male hand computed by “averaging™ several
male hands. The purpose of the group-valued process is to define a prior
distribution on C( B). This is done as follows: let g be a fixed measure on 5,
and #{8p,...,8s—1); 8; € §, a probability density (w.r.t. g) on S™. In [6], x
was chosen to be of Gibbs type with nearest-neighbor interactions, i.e.,

n=1

T(80y. .0y 8n-1) = H Az, 8501,
i=0

with A € Ly(S§ x §,u x p), so that x{5") = 2 (the actual form of A is
dictated by applications; see [6] for examples). This probability distribution
is now restricted (conditioned) by using the template ¢!, and considering
only those s-sequences for which a(sogl, ..., #a-19'", ) € C(R). For special
cases, this conditioning is straightforward; in general, it involves subtle limit
arguments. This results in a probability measure P—the prior—on C(R).

In the above framework, shape synthesis amounts to simulation of P.
Samples from P reflect the variability of the shape under consideration. For
example, in the HAND experiment [6], the variability accounts for differ-
ences between hands of individuals, as well as for possible hand shapes (e.g.,
position of fingers) of a given individual.

For analysis tasks such as restoration, segmentation, detection of anatom-
ical pathologies, recognition, and so on, inferences are made on the basis of
the prior P and the data. Let us consider restoration, for example. The
procedure not only gives a restored image, but it also yields a “structured”
restoration, in the sense that it provides the configuration analysis of it.
This automatically makes possible, for instance, more challenging problems
such as finding statistically meaningful abnormalities. Suppose that we ob-
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serve a degraded version IO of a true pure image | which is our target of
estimation. The degradation mechanism J — I? defines the degradation
model P(IP|I), equivalently P(IP|¢), as in the first subsection of §2.4.2.
Then the posterior distribution P(e|IP) is computed as before, and con-
tains all the relevant information about the unknown image [ (equivalently
€). The computational burden of estimating [ is demanding, but feasible.
Asymptotic arguments and other specific properties have been exploited in
[6] to reduce the computations. One important aspect of the approach is
that it can often be combined with dynamic programming to speed up the
processing considerably.
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Oceanographic and
Atmospheric Applications of
Spatial Statistics and Digital

Image Analysis

James J. Sim&::n
Secripps Institution of anography

3.1 Introduction

Historically, remote sensing of the environment has helped process-oriented
studies examine individual aspects of the physics, chemistry, and biclogy of
the earth-ocean-atmosphere system. From such studies, several problems of
global significance have emerged that are cross-disciplinary in nature. Ex-
amples include acid rain, the increase in atmospheric carbon dioxide, antici-
pated depletion of the ozone layer, El Nifio-related modifications in weather
and ocean circulation with their resultant effects in agriculture and fisheries,
and tropical rain forest destruction by fires of human origin. It has been rec-
ognized that the key to progress on these and other cross-disciplinary issues
in earth science during the decade of the 1990s probably will be addressing
those questions that concern the integrated functioning of the earth as a
system (EQS, 1984). The hydrologic cycle, the biogeochemical cycle, and
climate processes are the fundamental processes that integrate the earth as
a system, and thus each of these cycles must be examined in detail and on
a global scale if meaningful progress is to be made on the problems cited
above.

Large-scale, synoptic observations of a wide variety of phenomena (e.g.,
sea surface temperature, sea level, wind stress, ozone concentration, radi-
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ation heat balance, sea ice, vegetation, and near-surface current velocity}
are required to study these cycles properly, and remote sensing provides the
only practical way to collect synoptically the necessary data on the global
scale. The magnitude of the data set, however, may preclude understanding
unless it can be distilled and synthesized into organized patterns that can
be related meaningfully to the underlying governing physics, chemistry, or
biology of these global cycles and processes. Spatial statistics and math-
ematical methods of digital image analysis provide mechanisms for such a
synthesis.

This chapter discusses a few areas of spatial statistics and data represen-
tation useful in digital image analysis that have immediate application in the
area of remote sensing of the earth. Some special considerations needed for
the correct analysis of remotely-sensed data are presented and a few critical
research areas are identified.

3.2 Selected Analysis Areas

In this section three mathematical methods useful in digital analysis of se-
quences of remotely sensed images are presented. These methods were cho-
sen because they have a broad range of applications in earth science. These
methods are non-Bayesian in nature; a presentation on Bayesian methods
used in image analysis is given in chapter 2 of this report.

Several abbreviations commonly used in remote sensing and the earth
sciences appear in this chapter. Each is defined at the place it first occurs in
the text. For easy reference, there is an appendix containing abbreviations
and their definitions at the end of this chapter.

3.2.1 Principal Component Analysis
General Concepts

Principal component analysis (PCA) is a multivariate statistical technique
that can be applied to all forms of multispectral or multi-temporal image
data and is most commonly applied in the general context of arbitrary mul-
tivariate data. Forms of PCA have been used to study pattern classification
(Geladi et al., 1989), sequential segmentation (Esbensen and Geladi, 1989),
spatial patterns of variability in sea surface temperature and phytoplankton
pigment observed in satellite data (Lagerloef, 1986), and in algorithms for
cloud removal from satellite data (e.g., Gallandet and Simpson, 1991a).
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The principal component transformation (PCT) is the basis for all these
analyses. The PCT is a linear transformation that isolates uncorrelated
linear combinations of a given set of variables in such a way that each element
in this combination represents a decreasing amount of variance in the original
variables (Ingerbritsen and Lyon, 1985). This linear transformation defines
a new set of coordinate axes for the data such that (1) the transformed
origin is at the mean of the data distribution (Lillesand and Kiefer, 1987),
(2) the transformed coordinate axes are mutually orthogonal (Jensen, 1986),
and (3) the transformed coordinate axes are in the directions of maximum
variance (Jensen, 1986). Below, two examples of PCA are developed, one
using multispectral image data and the other using multi-temporal image
data. An extensive treatment of the use of PCA techniques in atmospheric
sciences and oceanography is given by Preisendorfer (1988).

Multispectral Data Application

The ability to accurately and antomatically segment clouds in remotely
sensed imagery is critically important to a broad range of disciplines in earth
science. Clouds significantly affect the net heating of the atmosphere and the
underlying ocean-land surface by modifying solar and terrestrial radiation
{Ohring and Clapp, 1980). This net radiative heating governs the thermody-
namics and dynamics of the atmosphere, which in turn influence the forma-
tion and dissipation of clouds (e.g., Matveev, 1984). The potential feedback
effects associated with this clond-radiation interaction are among the great-
est sources of uncertainty in determining the relation between changes in
external conditions such as solar radiation and atmospheric carbon dioxide
concentration and changes in climate (e.g., Henderson-Sellers, 1082; Ra-
manathan, 1987). Clouds also affect our ability to remotely sense the prop-
erties of the atmosphere, ocean, and land; such observations are needed, for
example, in weather prediction (e.g., Pailleux, 1986), oceanography (e.g.,
Eckstein and Simpson, 1990a,b), and agriculture (e.g., rainfall, Browning,
1986). The PCT can be used with multispectral image data to robustly
segment clouds from natural images. An example of such an application is
given below.

The Principal Component Transformation Split-and-Merge Clus-
tering (PCTSMC) Algorithm. Here, the development of the PCTSMC
algorithm is presented in abbreviated form. Mathematical details of the al-
gorithm are given in Gallaudet and Simpson (1991a). An AVHRR infrared
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image, designated T, consisting of brightness temperatures calibrated to de-
grees Celsius in bands 3, 4, and 5 (hereinafter referred to as Ty, Ty, T) is
first differenced to construct a 2-banded differenced image D (i.e., T3 - T},
T3 = Ts). This differenced image now contains all the information of the
original infrared image needed for clond detection, but only in two linearly
independent bands. Next, this differenced image is transformed using the
PCT. The result is a 2-banded transformed differenced image in which all
interband correlation is destroyed (Mather, 1987), thus making it a logi-
cal preprocessor to the segmentation operation (step 3) of the PCTSMC
algorithm.

Step 3 of the PCTSMC algorithm performs image segmentation using a
split-and-merge clustering procedure (e.g., Pavlidis, 1977; Seddon and Hunt,
1985; Richards, 1986) on the PC transform of the differenced image. This
results in a segmented image in which the natural spectral classes in the
original image are separated into distinct groups (i.e., land versus ocean
versus cloud). The method of clustering that is emploved in the PCTSMC
algorithm combines both the partitional and hierarchical approaches. [t
consists of a partitional clustering algorithm augmented by a splitting-and-
merging step at each iteration. Combining a partitional with a hierarchical
method has several advantages over the use of either method alone: (1)
pure hierarchical methods are not appropriate for complex data (Muerle
and Allen, 1968; Fukada, 1980; Jain and Dubes, 1988); (2) pure hierar-
chical methods are more appropriate for data that is to be partitioned on
the basis of both local and global information, rather than global informa-
tion only (Jain and Dubes, 1988); (3) pure hierarchical methods impose a
taxonomic structure on the data ( Anderberg, 1973), which is not character-
istic of cloud-containing AVHRR imagery; (4) pure hierarchical methods are
order dependent—i.e., the resulting segmentation will vary depending upon
the order in which the regions are split and merged (Cheevasuvit ef al,
1986); this often results in less than optimal segmentations of the data;
(5) pure partitional algorithms often converge to local minima of the clus-
tering criterion function (Pairman and Kittler, 1986; Jain and Dubes, 1988);
(6) the combined approach is more efficient than pure merging or pure
splitting methods of region detection (Pavlidis, 1977; Richards, 1986); and
(7) the combined approach is less dependent on the initial segmentation,
and therefore is more capable of recovering all of the natural clusters in the
data (Seddon and Hunt, 1985; Jain and Dubes, 1988); this is because the
number of clusters in the initial segmentation need not be the same as those
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that actoally exist in the given data (Seddon and Hunt, 1985; Pairman and
Kittler, 1986).

In the final step of the PCTSMC clond screening procedure, the data
are retransformed back to the feature space, and each of the clusters is
labeled as either a cloud or non-cloud. In the first three steps discussed
above, the operations performed on the data were entirely unsupervised—
i.e., no a priori knowledge was required. Hence, they apply to an arbitrary
image segmentation. In this fourth step, expert knowledge is introduced to
perform a boolean classification. Rules appropriate for land versus cloud
versus ocean separation in AVHRR image data are given in Simpson and
Humphrey (1990) and Gallaudet and Simpson (1991a).

Plate 3.1a shows AVHRR Band 2 data; clonds appear as white or gray
tones. The coastline is white in this panel. Plate 3.1b shows AVHRR Band 4
infrared temperature; coldest temperature is white and warmest tempera-
ture is black. In this panel, the coastline is black. The segmented image
produced by the PCTSMC algorithm is shown in Plate 3.1c and the final
cloud-masked sea surface temperature is shown in Plate 3.1d. In this final
panel, the warmest ocean temperature is white, cooler ocean temperatures
appear as shades of gray, and clond contaminated pixels and land are shown
as black. Land was masked from the Plate 3.1 images using a recursive
polygon fill algorithm (Simpson, 1991) and is rendered either white or black
depending on the gray scale mapping used in the individual panel.

Multi-Temporal Data Application

A major objective of earth science studies is to identify spatial patterns of
variance in temporal sequences of images. Examples include the analysis of
variability in sea surface temperature structure in oceanic current systems
(e.g., Lagerloef, 1986) and in seasonal and interamnual variation in phyto-
plankton abundance (e.g., Strub et al., 1990). The form of PCA used in
such studies is generally referred to as empirical orthogonal function (EOF)
analysis: “empirical” because the functions arise from the data themselves
and “orthogonal® because they are uncorrelated. Note that closed-form
mathematical functions generally cannot be used as the basis functions rep-
resenting the complex images observed in nature.

Empirical orthogonal functions are useful in work with large data sets.
The method separates a data set D{z,t) into spatial components Fi{x) and
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NT
D(z,1) = 3 Flz)- A1), (3.1)

where NT is the number of EOFs computed. Note that z and ¢ repre-
sent generalized spatial and temporal coordinates, i.e., r represents the set
{#y,...,2nx} and f represents the set {t;,..., txr}. In matrix notation,
Dyz,1) is an NX x NT matrix, with NX representing the number of posi-
tions r and NT the number of time steps {. Each column of the F matrix is
an EOF. Each EOF has NX values, and there are NT' EOFs. Thus, F is an
NX x NT matrix. The time series matrix A has NT rows and NT columns.

Forms of Normalization. The computations may be implemented with
two different normalization schemes because the EOF representation decom-
poses the space-time series, using separation of variables, into a sum of prod-
ucts of temporal amplitudes, A;(t), modulating spatial patterns of variance,
Fi(z). Note that, in physics, separation of variables occurs widely because
of the form of the underlying differential equations. Here, the motivation is
to provide a compact statistical representation of the data in which spatial
patterns in variance can be distinguished from temporal patterns. Either
the A;(t) or the F(z) can retain the same physical units as the original data.
Historically, a normalization scheme (method 2) has been used in which the
temporal components of the decomposition retained the same units of the
data. More recent studies in oceanography and atmospheric science (e.g.,
Barnett and Patzert, 1980) prefer to use EOFs with the same units as the
original data for easier interpretation of the spatial patterns of variance re-
sulting from the EOF analysis (method 1). Both methods of normalization
are equivalent and both are given here for completeness. (The summation
notation is used for consistency with the vast majority of published studies. )
In the first method

NX
Fi(z) - Fi(z) = Y Fi(z)Fi(2a) = A, (3.2)
k=1

where F; and F; are columns of the F matrix and §; is the Kronecker
delta function. The coefficient A; is an eigenvalue of the covariance matrix

C= Dﬂ:, where DT is the transpose of D. The rows of the time series



matrix are orthonormal, i.e.,

At)-Aj(8) _ 1 SR L
M‘: ~HE4.UHJJH&}~%' (3.3)

where A; and A; are rows of A. The EOFs then give the variance in the
same units as the data.
The second normalization method forces the EOFs to be orthonormal,

.

Fi(z)-Fj(z) = §&;. (3.4)
Hence,

FT.F=1, (3.5)
where I is the identity matrix. The rows of the time series matrix are
orthogonal:

AL < . (36)

With this normalization, the EOFs no longer have the same units as the
data.

Theoretical Basis. The objective of EOF analysis is to represent a given
matrix of data D by the product F- A. In the discussion that follows, the
second method of normalization is used, and thus the matrix F satisfies
equation (3.5).

The equations governing EOF theory can be derived from the eigen-
equation of the covariance matrix,

C-F=F-A, (3.7}

where C is the NX x NX covariance matrix = Djiy:, A is the diagonal
matrix of eigenvalues, and F is the matrix of EOFs. Because C is a real
symmetric positive definite matrix, the elements of A are positive. By defi-
nition of the covariance matrix C, (3.7) can be rewritten as

{I.'I-DT

NT

The eigenvectors in the matrix F are now used to define the matrix A =
FT .D. This is the principal component transform. Thus, F-FT = I and
necessarily

}-r=r-n, (3.8)

D=F-A. (3.9)
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At this point the number of EOFs is equal to NT. The purpose of EOF
analysis, however, is to produce a representation of the data that is more
compact than the original data set. For this goal to be met, it is necessary
for most of the variance (65 to 30% ) in the original data set to be contained
in the first few EOFs. (By convention, the eigenvalues are ordered with the
largest being first.) If this is true, then F may be truncated to produce a
new matrix F having just NT columns, where NT' < NT. Then D) is the
approximation to D computed from the EOF decomposition:

D=D=F-A. (3.10)

The decomposition is the most efficient representation of D with regard to
a mean square error criterion (Davis, 1976).

Finally, it should be noted that if D contains a noninteger number of
cycles of a sinusoidally varving variance mode, then the variance represented
by the associated eigenvalue may not agree with the actual variance. For
example, the variance of a sine wave differs for one-half and one full cyele,
but the covariance matrix C = 95#1 is the same. Hence, the EOF will
return the variance for an entire cycle when the data represent one-half
cycle.

A Computational Method. The empirical orthogonal functions can be
computed from a singular value decomposition (SVD) of the data D. When
NX > NT, then (Press el al., 1986)

D=U-W.VT, (3.11)

where U is an NX x NX orthogonal matrix with only NT linearly indepen-
dent columns, W is an NX x AT matrix with an AT x NT diagonal upper
portion having positive or zero elements, and V is an NT x NT orthogonal
matrix. Note that the diagonal elements in the NT x NT upper portion of
W contain the singular values of D. Call this portion of W the matrix W".
The U and V matrices are orthogonal in the sense that their columns are
orthonormal, that is,

UT U =1
vi.v = L (3.12)
Using this decomposition, the covariance eigen-equation can be written as

C.U= {DI;TDT} U= %{uw'vT}.{meuT} U, (3.13)
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which simplifies to
- 1 2
C-U==U-W, (3.14)
This is equivalent to the eigen-equation (3.7) with F = the highest order
columns of U and A = W?/NT, using the second method of normalization.
Hence, the diagonal elements W; of W' relate to the eigenvalues A; of the
covariance matrix C via the equation

TF
,“% = A (3.15)

Thus, the SVD returns the EOFs as the highest order columns of U, and
A=wW.vT,

Generalizations to Two Dimensions. The EOF decomposition is not
confined to space-time series where space is one-dimensional. If the posi-
tions are actually (z, y) coordinates, such as latitudes and longitudes or lines
and samples from images, then if each time step covers the same locations,
D{z,y,1) can be reduced to D{z',1). The sequence of positions z' is con-
structed by setting x} = (ry,;), 25 = (z2.11), - o Ty = (zax. ), ...,
Tux.wy = (£nx,yny ). If one considers r and y to be rows and columns of an
individual time step matrix, then z' is equivalent to concatenating the rows
of D together. Whether one concatenates the rows or the columns is imma-
terial. (Note, EOF analysis with two-dimensional images is actually three
dimensional: =, y, and . To render the problem tractable, the spatial di-
mensions must be concatenated so that one can work with a two-dimensional
space-time matrix.) Then the individual EOFs F; are also vectors in " and,
in order to map the patterns of variation associated with the EOFs, this
vector must now be parsed back into its rows and columns.

Example. The purpose of this example is to show that EOF analysis can
be useful for determining the dominant patterns of spatial variance in a
sequence of images. (The normalization scheme used in this example is that
of method 1.) For this purpose, a sequence of eight images was constructed
by superimposing an image of an inclined plane with that of a disk that
is out of phase with the inclined plane. Note also that the range of data
in the image of the inclined plane is about twice that of the image of the
circle. One-half cycle of the image sequence so constructed is shown in
Plate 3.2a. The EOF decomposition of this sequence (Plate 3.2b) identifies
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two dominant patterns of spatial variance in the test sequence. EOF #1 is an
inclined plane that accounts for 67.7% of the total variance in the sequence.
EOF #2 is a circle that accounts for 32.2% of the total variance. The
corresponding time series for EOF #1 and EOF #2 (Plate 3.2b) correctly
establish the phase relationship between the two patterns.

Additional Considerations. In remote-sensing applications, multiple ob-
servations are generally spread over different times. Moreover, data are gen-
erally not evenly distributed either in time (e.g., due to variations in orbit)
or in space (e.g., cloud cover may obscure some pixels in the scene). These
circumstances can bias the results of an EOF analysis because the EOF
analysis is predicated on evenly distributed data in both space and time.
If the NT images in the data set D (equation (3.1)) are not equispaced in
time, the resultant EOF decomposition may be biased toward specific time
periods. A practical way to minimize such temporal bias is to construct
a weighting scheme for the images in the data set. Generally, temporal
weights are constructed in such a way as to preserve the total mean and to-
tal variance of the data while simultaneously minimizing the temporal bias
{e.g., Kelly, 1985). Spatial data (i.e., one or more of the NX pixels in a
given image) are often replaced by compositing data from other images that
surround the given image in time. Care must be taken to ensure that the
composite time scale is very much less than the time step between images in
the sequence undergoing EOF analysis. Other interpolation schemes (e.g.,
kriging) can also be used to minimize spatial and temporal bias in EOF
analyses resulting from imperfectly sampled data.

There are three ways to compute EOFs: (1) large covariance matrix
approach, (2) small covariance matrix approach, and (3) singular value de-
composition. The first two methods involve a direct solution of the eigen-
value equation of the covariance matrix of the data set D). There are two
ways to do this because the data in the image sequence can be stored in
the two-dimensional data array in two different ways. If the data are stored
such that there are NX rows and AT columns, the covariance matrix will
be NX x NX. If, however, the data are stored such that there are NT rows
and NX columns, then the covariance matrix will be NT x NT. For most
remote sensing applications, the number of spatial points NX in a given
image in the sequence is usually very much greater than the number of im-
ages, NT, in the sequence. Thus the method of data storage giving rise
to an NX x NX covariance matrix is often called the large covariance ma-
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trix approach and generally cannot be used in remote sensing applications.
Likewise, the method of storage resulting in an NT x NT covariance matrix
is generally called the small covariance matrix approach. It has been used
often in oceanographic and atmospheric applications (e.g., Preisendorfer,
1988). Solution of the eigenvalue equation of the covariance matrix by sin-
gular value decomposition was discussed earlier in this chapter. A detailed
discussion of the various methods of solution of the eigenvalue equation of
the covariance matrix, in the context of EOF analysis, is given by Gallaudet
and Simpson (1991b).

3.2.2 Velocity Estimates from Image Sequences
General Comments

All methods of motion estimation based on image sequence analysis depend
in some way on the detection of image brightness gradients. These gradients
are defined as normal in direction to contours of constant brightness (or sea
surface temperature [SST] for the case of the Advanced Very High Resolution
Radiometer [AVHRR] flying on the NOAA series of operational satellites).
The total velocity v at any point on a contour can be written as

v=ri+ri, (3.16)

where v and r are the magnitudes of the normal and tangential velocity
components, respectively, and fi and t are the unit vectors in the directions
normal and tangential to the contour, respectively. The total velocity vector
can also be decomposed into ordinary Cartesian coordinates

v=ui+r), (3.17)

where & and v are the magnitudes of the r and y velocity components,
respectively, and & and 3 are the unit vectors in the r and y directions,
respectively. Below, objective methods for computing the total, normal,
and tangential components of near-surface oceanic flow from sequences of
AVHRR data are presented. The formulation follows closely that of Wahl
and Simpson (1990a,b). Note that atmospheric motions can be computed
using these same methods from sequences of either AVHRR or Geostationary
Operational Environmental Satellite (GOES) data.
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Total Flow Field From Pattern Matching

Consider a pair of real, discrete, two-dimensional random functions, s{m, n)
and p{m,n). The expectation value of these random functions can be ap-
proximated as the normalized sum over the tile occupied by the random
function in the image. Thus,

1 1 NL NS
E[(#(m,n)] = A X W5 E E:[m,n]., (3.18)

mm]laml

where NL and NS are the number of lines and the number of samples in
the tile. Assuming stationarity of their first two cross moments, the auto-
covariance and cross-covariance of the two functions are given by

Cas(ma.ng) = E[(s(m,n) — n)(s(m + mo, n + no) ~ m)] (3.19)

Cup(ma,mg) = E[(s(m,n) — n)(p(m + mo,n + mo) — m )], (3.20)
respectively, where E[] is the expected value, (mg,ng) is the spatial lag
between the functions, and 7, and 7, are given by the function means

n = E[s(m,n)] (3.21)
m = E[p(m,n)]. (3.22)

It can be seen that the function variances o and o? are the zero lag auto-
covariances. The correlation coefficient is defined as

_ Caplmg,ng)
rap(ma, ng) = —';# e (3.23)
such that
rap(mo,ma)] < 1 (3.24)
I'n{ﬂ,ﬂ'_l = 1. {3?&}

If the second signal is an exact spatially lagged version of the first signal,
s{m,n) = p{m + mg,n + ng), (3.26)

then equations (3.20) and (3.25) require that the correlation coefficient
achieve an absolute maximum value at this lag, or ryp(mg,ng) = 1. For
any physical signals, the maximum correlation will be a value less than 1
since the second signal is not necessarily an exact lagged version of the first.
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A detailed discussion of the two-dimensional cross-correlation function is
given by Dudgeon and Mersereau (1984).

Now consider two consecutive satellite SST images mapped to the same
spatial grid. These images can be thought of as two-dimensional discrete
functions. Given an image subsection s(m,n) from the second image, the
problem is to determine if it contains a region similar to a smaller subsection
pli, j) from the first image. Let p(i,j) be called the pattern tile, and let
s({m,n) be called the search tile. The pattern tile is a section of the first
image that occupies the same spatial coordinates as the center region of the
search tile in the second image. Then, the correlation matrix between the
pattern and search tiles is given by

El' Ej[":i + er + I} - mE&II}] Hirj] - ﬂ_-]

TN

{55 551666 + ky3 + ) = b, OP £ 55p0,5) - P}

(3.27)
where n,(k,!) is the average value of s(m,n) in the subregion coincident with
pli,j), and the summations are over the coordinates common to both s and
p- The value of n, is computed once outside the summations and is given
by (3.22), where the pattern tile p{m, n) replaces the search tile s(m,n) in
(3.18). The ranges of k and [ correspond to the regions of correlation in
which p(i, j) is completely contained in s{m, n).

The pattern matching method determines the spatial lag between the
pattern tile from the first image and the search tile in the second image
by finding the location of their maximum correlation. With this spatial lag
and the time between the images, the average velocity of the features in the
pattern tile can be computed. The most basic assumption of the method is
that the spatial displacement of thermal gradient features can be tracked as
if the shape were time invariant. This assumption would be rigorously true
if the correlation (3.27) were equal to 1 for each pattern-search tile pair.
Unfortunately, this condition is never met. Hence, it becomes necessary to
determine an acceptable minimum correlation or correlation threshold (see
Wahl and Simpson, 1990a). Velocities obtained from the pattern matching
technique and proper choice of correlation threshold show good correspon-
dence with observations.

The pattern matching method may also be implemented in the wave
number domain. This implementation uses the discrete Fourier transform

(DFT) property

s(m,n)+ p{m,n) HE’{E...‘.‘,}IP[*,J:'}. (3.28)

raplk, 1) =
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where « represents the correlation operation, 5'(kz. ky) is the conjugate of
the DFT of s(m,n), and P(k;,k;) is the DFT of p{m,n). This is the case
because the correlation in the space-time domain and the spectrum in the
frequency-wavenumber domain are Fourier transform pairs {Dudgeon and
Mersereau, 1984 ). Thus, the correlation between two discrete signals can be
computed by taking the product of the DFT of a zero-padded pattern tile
with the conjugate of the DFT of the search tile and taking the inverse DFT
of this product. It may seem that computing the DFT of the discrete func-
tions via the fast Fourier transform (FFT) is a more efficient approach. In
most applications, however, the pattern tile usually occupies a much smaller
area than the search tile. If the number of non-zero terms in the pattern
tile is less than 132, it is more efficient to implement (3.27) than to use the
FFT algorithm to compute the correlation function (Campbell, 1969). {For
odd size tiles the Winograd implementation of the FFT is recommended.)

The method used here is similar to other template matching schemes,
such as area correlation and matched filtering (Jain, 1989). Matched filtering
involves the construction of a linear filter that maximizes the output signal-
to-noise ratio. Using the matched filtering technique, the area surrounding
the pattern is assumed to be colored noise. If the power spectral density of
the noise is known, the signal-to-noise ratio can be maximized by passing
the signals through a high-pass filter before performing the area correlation.

Minimum distortion methods have been used to do interframe registra-
tion in video camera systems (Jain and Jain, 1981). Simpson and Bloom
(1990) have applied this method to the computation of near-surface velocity
from sequences of images and have shown that the distortion is simply re-
lated to the correlation. In effect, maximizing the correlation is equivalent
to minimizing the distortion assuming that the variance and standard devi-
ations of the different search tiles remain the same. Both methods yield the
same velocity fields (Simpson and Bloom, 1990) for a given image sequence.
However, the minimum distortion method executes faster because it does
not require a standard deviation computation.

The basic assumption of these methods is shape invariance of the pat.
tern under translation. Rotational motion of the pattern, however, also can
occur. Pattern matching techniques that detect rotational motion and/for
combined translational-rotational motion of the pattern have been devel-
oped (e.g., Jain, 1989). These methods are computationally very expensive
but will perform well in the presence of carvature in the motion field of the
pattern. Only translational techniques were used herein because they are
sufficient to determine the general flow pattern in the image sequence under
consideration.



The Normal Component of Flow

Marr and Ullman (MU) Method. Early visual primitives can provide
clues to establish the motion of elements in a visual field (Marr and Ullman,
1981). The simplest such primitives are the image raw intensity values, but
these provide no information about the shapes of objects. The next higher-
order primitives are the zero crossing segments produced by the convolution
of an image with the Laplacian of Gaussian (LOG) operator, VG (Marr
and Hildreth, 1980). The LOG operator is defined by

vig = I:[ !ﬂ] [MI_ (3.29)

where r and y are the number of rows and columns from the function center,
o is the Gaussian width parameter, and k is a normalization constant. The
parameter ¢ determines the spatial scales of intensity changes detectable by
the V3 operator. The V2G operator is the optimal smoothing bandpass
filter in the sense that it minimizes the product of bandwidth and spatial
localization (e.g., Marr and Hildreth, 1980). If I is the demeaned image
function, then locations of zero crossings of the convolution of the V3G
operator with [ will correspond to locations of intensity changes (i.e., gradi-
ents). Let this convolution be denoted V3G o I = I', where I' is the output
of the convolution. Note the units of [ and I are the same (°C for AVHRR
data). Note also that the LOG operator (a commonly used edge detector)
produces a set of zero crossings in the image. The locations of the zero
crossings (i.e., the edges) are then determined by a zero crossing operator
that detects the positions of the adges by finding the locations of changes in
sign in the LOG-convolved image.

The idea of directionally sensitive units, which can establish the direc-
tion of movement of an edge detected by the VG operator, was introduced
by Marr and Ullman (1981, hereafter referred to as MU) to determine the
motion of visual elements. Given an approximation to the time derivative
of I' and the spatial rate of change of I', the direction of motion of a zero
crossing in either the line or sample direction can be determined. The lo-
cations of zero crossings in the first convolved image of the sequence are
determined by a zero crossing operator. Then, at each zero crossing pixel,
the normal component of flow can be estimated using the equation

_f;
vr’

v= (3.30)
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where the subscript represents differentiation with respect to time, and the
unit normal vector f is in the direction of the gradient vr. Equation (3.30)
is the conservation of heat equation (& = 0) for the convolved image I'.
If the magnitude of the gradient is negative and I} is positive, then motion
of the edge is in the positive z direction. If I{ is negative, motion is in the
negative z direction. The opposite is true if the magnitude of the gradient
is positive. Thus, the negative sign in (3.30) gives the correct direction of
the normal component of flow. It can be seen that a directionally sensitive
unit is represented by a transition in the sign of If combined with the sign
of the gradient.

Spatial-Scale Considerations. Methods used to compute the normal
component of flow employ small neighborhoods, typically 4 x 4 pixels or
smaller in size. The total velocity is computed over a much larger neighbor-
hood. Typically, pattern tile sizes vary between 16 x 16 and 32 x 32 pixels.
Thus, estimates of the total velocity via pattern recognition represent the
mean motion of the centroid of the pattern as measured by the displacement
of the two-dimensional cross-correlation maximum of the pattern. The nor-
mal velocities, however, provide local estimates of the displacement of small
spatial-scale gradient, typically computed over 4 x 4 tiles. This basic differ-
ence in spatial scales further constrains the computation of the tangential
flow.

Other Representations

Optical Flow (OF) Method. Optical flow (hereafter referred to as OF)
is an estimate of the motion of solid bodies based on a first-order variation
of brightness patterns in an image (e.g., Horn and Schunck, 1981). This
method of computing the velocity field from a sequence of images is based
on the solution of two constraint equations. The first constraint equation
relates the velocity in an image to the image brightness (or temperature)
pattern and is called the “motion constraint equation™:

oT -
E=ﬂ+?'?flﬂ- (3.31)
where & is the material derivative operator, T; is the partial derivative of
brightness (or S5T) with respect to time, and v is the total velocity vector.
This equation can only estimate the normal component of velocity because
the tangential component solution is an annihilator (i.e., r(f - VT)).
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The form and physical interpretation of the second constraint used in
OF methods is one that has been widely debated. In general, it seems that
the second constraint imposed is not based on any physical characteristics
of the flow field, but, rather, it is a mathematical constraint imposed to pro-
duce a unique solution. Horn and Schunck (1981) used a constraint based
on the smooth variation of the flow field to derive an iterative scheme for
computing what they referred to as the “total flow.” Various other schemes
have been introduced to estimate the total flow (see Aggarwal and Nand-
hakumar (1988) for a review of OF methods). It is noted (e.g., Horn and
Schunck, 1981; Hildreth, 1983; Verri and Poggio, 1989) that the estimate of
the total flow field may be very far from the actual velocity field, depending
on various factors influencing the time series of images.

Given the material derivative constraint (3.31), one assumes that the
flow is continuous and varies smoothly over small spatial scales. One way
to define the measure of smoothness is to examine the squares of the mag-
nitudes of the spatial rate of change of the OF velocity. This can be written
as a departure from smoothness error

El=ul+ul+el+0d, (3.32)

where (u,v) is the local total velocity vector, and the subscripts represent
differentiation with respect to the spatial coordinates (z,y). There will also
be errors in the estimation of the partial derivatives of brightness because
noise is amplified by differentiation. Thus the equality of (3.31) will not be
exact. Define this error term as

.Eﬁ. - n + “T! + ET, ' [3-33]

where subscripts indicate differentiation with respect to either a spatial (z, y)
or temporal (1) coordinate. The objective function to be minimized can be
written as the integral

J =jf{.-:f+u133u=dy, (3.34)

where Ej is the error in computing the material derivative, E, is the measure
of smoothness, and o is a weighting parameter. The calculus of variations
can be used to minimize this integral. Then the variation equations can be
rewritten as spatial iterative equations

u_l1|--!l = @




1 _ oo L(TEY+ T, 4+ 1)
o= @ +TI4+T7

where the superscript k is an iteration index. The first step is to com-
pute the brightness derivatives at all points in the image using centered
finite differences. Then, starting with an initial estimate of zero velocity,
the method spatially iterates on the velocity values until velocity residual
between estimates is small. The resulting velocity field is then used as the
new initial velocity estimate for the next time step if more than one time
step is available. It is interesting to mote that updated velocity values in
the iteration equations (3.35) do not rely solely on the previous values at a
given point, but rather on the local averages of velocity. Note that the local
averages of velocities typically are computed over small spatial domains and
are computationally efficient. The parameter o® is seen to be important in
regions of small gradient. If the gradients are small relative to a® then o
will dominate any perturbations in the estimation of the derivatives at this

point.

(3.35)

Minimum Norm (MN) Solution for Normal Flow. Equation (3.31)
gives one equation for the two unknowns (u,v) of the total velocity. This
underconstrained system has fewer equations than unknowns and thus has
an infinite number of solutions. One way to solve such underconstrained
systems is to find the solution with the minimum vector length, or norm
{Luenberger, 1969). Equation (3.31) was solved for the normal component
of velocity using the singular value decomposition to obtain the solution of
minimum norm (hereafter referred to as MN) at every point in the given
image subsection (Wahl and Simpson, 1990b). It can again be seen that the
solution yields only the normal component of flow becanse the tangential
component is an annihilator of (3.31). The MN solution of normal velocity
was done on a point-by-point basis on raw temperature data using a centered
finite difference for the derivatives of temperature.

Equivalence of Minimum Norm (MN) and Optical Flow (OF) for
a® = 0. Both the MN and OF estimates of the normal component of flow
are based on the same motion constraint equation (i.e., equation (3.31)). The
first error equation used in the OF method (equation {3.32)) is a measure
of the smoothness of the flow field. The second error equation (3.33) is the
error in the estimation of the motion constraint equation. The objective
function minimized in the OF method is the integral of the sum of these
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errors (equation (3.34)) where the parameter o weights the smoothness
error. If & is set to zero then the OF method essentially minimizes the
error in the estimation of the motion constraint (3.31). When o = 0 the
solution for (3.34) using the OF method converges to the sclution of (3.31)
using the MN method.

The Tangential Component of Velocity

General Considerations. In the previous section, only the component of
flow normal to isobrightness contours was discussed because the tangential
component of flow cannot be calculated directly. The difficulty arises from
what is known as the aperture problem and manifests itself in different ways
for each motion estimation algorithm. In the MU case, the problem occurs
when the motion of an oriented edge is detected by a direction-sensitive
unit that is small compared to the moving edge. Then the only information
that can be extracted is the component of motion perpendicular to the lo-
cal orientation of the edge. Hence the component of motion oriented along
the edge is invisible. In both the OF and MN methods for estimating the
normal component of velocity, the aperture problem manifests itself as the
annihilation of the tangential component in the basic constraint equation
(3.31). An alternative interpretation of the aperture problem occurs if a
point of brightness along an isobrightness contour moves along that contour
from time f; to time f;; this motion cannot be detected. These considera-
tions show that a direct method for computing the tangential component of
flow is not possible. Vector decomposition of the known total velocity field,
given a known normal component of flow, however, can yield an estimate of
the tangential component of flow. These considerations are consistent with
a proof given by Verri and Poggio (1989).

An Indirect Solution. Given the total flow field computed on a rect-
angular grid from the pattern matching method mentioned previously, one
can take the normal component of flow and perform a vector subtraction to
obtain the tangential component. This decomposition was performed using
the three normal component representations discussed above. The MU nor-
mal component of velocity was chosen for this purpose because Wahl and
Simpson (1990b) have shown that it produces better estimates of the normal
component of velocities than either the OF or MN method.

The MU method velocities are computed only at the points of zero cross-
ings of edges. These vectors must be spatially aligned on the same grid as
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that of the total velocity prior to the decomposition. To estimate the normal
components of velocity at the locations of the total flow, the MU normal
components were subsectioned into the same size tiles as the total flow, The
normal velocities which fell within the region of the pattern tile area of the
first image were then averaged to produce an overall average normal veloc-
ity for a given tile. This procedure is consistent with the assumption that
the total velocity vector produced by the pattern matching technique repre-
sents the average velocity of the feature in a pattern tile. The mean normal
component of flow was then decomposed into its Cartesian components and
these components were used in the final vector decomposition to compute
the tangential component of flow.

Example

A sequence of cloud-free AVHRR images for a region off the central Cali-
fornia coast was co-registered to a latitude-longitude grid and calibrated to
S8T (Plate 3.3). The image is stored as a matrix where, by tradition in
image analysis, the row index is referred to as a line and the column index
is referred to as a sample. Co-registration is the process of mapping images
observed in the line and sample domain to the same latitude and longitude
domain using an appropriate map projection (e.g., Brush, 1985; Jezching
and Jain, 1989). Calibration is the process of converting the raw measured
brightness counts in one or more of the images to a geophysical variable (e.g.,
Kaufman, 1988). This sequence is characterized by a cold-water filament ex-
tending southward from the top of the sampled region. Thermal structure
edge maps for time step 2 of the image sequence were computed using the
LOG operator with a value of & = 5 (Plate 3.4a). Motion inferred from
these edge maps agrees well with estimates of the total flow field computed
using the pattern matching method (Plate 3.4b).

These edge maps were then used to compute the normal component of
velocity of the thermal structure over time using (3.30) at the zero-crossing
points. A centered finite difference scheme was used to compute the spatial
gradient of I', and a single time-centered difference was used to approxi-
mate the temporal derivative of I'. It is important to emphasize that the
MU method (i.e., equation (3.30)) only yields an estimate of the normal
component of velocity near a well-defined edge (Plate 3.4a). The normal
component of flow so obtained (Plate 3.4c) accurately represents motion in-
ferred from the edge maps. Note especially the north-south oriented feature
in the center right region (see region marked 3 in Plate 3.4c). The tangen-
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tial component of flow (Plate 3.4d) again shows good correspondence with
motion inferred from the edge maps.

Ideally the estimated normal and tangential components of flow should
be orthogonal. The need for spatial averaging of the normal components,
however, may introduce directional errors in the approximation of the tan-
gential component. Wahl and Simpson (1990b) have shown that typically
the angles between the normal and tangential components of flow are be-
tween T5® and B0°. Thus, this method generally will not produce an ex-
act tangential solution. It does, however, produce an approximate tangen-
tial solution, which can be useful in many oceanographic applications (e.g.,
computation of the offshore transport of nutrients associated with coastal
upwelling). It should be reemphasized that there is no direct method for
computing the tangential component of motion from sequences of image
data.

3.2.3 Ice Floe Identification and Principal Curves
Overview of Banfield and Raftery Algorithm

Knowledge of the spatial distribution, size, and shape of ice floes is critical
to understanding physical processes in polar regions and the potential role
of these processes in studies of global warming. Moreover, in high-latitude
zones, shipping, naval operations, fishing, and the successful deployment
of offshore structures are all strongly influenced by the distribution of the
polar ice pack. Banfield and Raftery (1989) have developed an antomated
procedure for identifying ice floes in Landsat data. Automated procedures
are needed for several operational reasons: (1) to handle the huge volume of
data; (2) to eliminate intercalibration problems associated with subjective
analyses; and (3) to improve on the poor performance records of human
analysts working under the adverse weather conditions often associated with
polar operations. The Banfield and Raftery method uses principal curves
(Hastie and Stuetzle, 1989), an erosion propagation algorithm, and a method
for clustering about principal curves to automatically identify the floes. Only
the major elements of the method are reviewed here: the interested reader
is referred to Banfield and Raftery (1989) for details of the procedure.
Hastie and Stuetzle (1989) developed the concept of a principal curve.
A principal curve can be thought of as a smooth one-dimensional curve that
passes through the middle of an m-dimensional data set. It is nonparametric,
and its shape is suggested by the data; it thus provides a nonlinear summary
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of the data (Banfield and Raftery, 1989). A one-dimensional curve in m-
space is an m-vector consisting of m functions of a single variable A, called
coordinate functions. The variable A parameterizes the curve and provides
an ordering along it; A often is the arc length along the curve. Let x € R™
be a continuous random vector. Then f{A) is a principal curve if

ElxIf~'(x) = Al = f(}),

(x) = max {"L : fx = F(AN] = inf flx - ﬂ[.u}ﬂ} 1

Given the distribution of %, Hastie and Stuetzle (1989) proposed the follow-
ing algorithm for finding f:

f41(2) = E[x|f ' (x) = A],

where f; is the *® jterate. If the distribution of y is unknown, then an esti-
mate of f can be obtained from the data set {x;} by estimating E[x|f"(x)
= A]. Hastie and Stuetzle (1989) obtain this estimate by scatterplot smooth-
ing.
Banfield and Raftery (1989) noted that scatterplot smoothers generally
produce curves that are biased toward the center of curvature. They modi-
fied the Hastie and Stuetzle (1989) principal curve estimation algorithm to
reduce bias and variance by using projections of the data rather than the
data itsell to model the principal curves when the distribution is unknown.

Next, Banfield and Raftery (1989) used am erosion-propagation (EP)
algorithm to select potential edge pixels and to provide an initial grouping
of the edge pixels into floe outlines. The EP algorithm operates on a binary
image. Hence, the Landsat data must be binarized by thresholding prior to
EP analysis. Banfield and Raftery (1989) justified this procedure by noting
that the marginal distribution of pixel intensities in the high-resolution polar
Landsat data is highly bimodal. They further noted that the final result
is relatively insensitive to the precise value of the threshold chosen. The
erosion part of the EP algorithm identifies potential edge elements by using
standard concepts from mathematical morphology (Serra, 1982), while the
propagation part keeps track of the floe to which an edge pixel belongs
by locally propagating the information about the edge elements into the
interior of the floe as it is eroded. The algorithm is applied iteratively to
the binarized image.
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Banfield and Raftery (1989) noted that the EP algorithm tends to sub-
divide floes. Therefore, they developed a method, based on clustering about
the closed principal curves, for determining which of the floes identified by
the EP algorithm should be merged. This final component of the over-
all procedure to identify ice floes in polar Landsat data is hierarchical and
agglomerative.

Example

Shown in Plate 3.5a is a polar Landsat image. This image is 200 x 200 pixels,
where each pixel is an 80-m square. The entire image represents a 15x 15 km
area. Ice floes appear as the gray features against the darker background. Ice
floe outlines for this image, obtained using the Banfield and Raftery (1989)
algorithm, are shown in Plate 3.5b. The algorithm accurately identifies the
distribution, size, and shape of the floes on space scales of 200-300 m and

larger.

3.3 Storage and Image Representation

A typical AVHRR image consists of five channels of matrix data. The matrix
size typically is in the range of 4,000 lines by 2,000 samples. Generally, the
10-bit sample is stored as a 16-bit integer with the upper 6 bits of each
sample filled with zeros. All of these factors work out to about 80 to 100
megabytes (Mb) of archived data for a typical single scene. Use of satellite
data sets in the analysis of problems related to global-scale climate processes
may require the analysis of literally thousands of such images. Thus, there
is a need to have efficient storage and economical data structures for proper
and efficient representation of the image data.

3.3.1 Storage Considerations

The primary archive of satellite data is generally the raw digitized teleme-
try stream directly received from the satellite. For multispectral images, the
data are usually band interleaved rather than band sequential, usually con-
tain embedded calibration information, and often include other data neaded
for proper Earth location of the scene. This data structure is inherently one-
dimensional and has little resemblance to the two-dimensional image data
structures normally associated with satellite images. (Note, however, that
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the more familiar two-dimensional satellite images are subsequently con-
structed from this telemetry stream using some set of mathematical trans-
formations.) These data generally are called “level 1™ data and are mandated
for primary archives because higher-level data (e.g., the two-dimensional im-
ages) often are produced by irreversible transformations. Moreover, level 1
data usually consist of 10-bit (e.g., AVHRR, CZCS) or less (e.g., DMSP)
data strings packed into zero-filled 16-bit integer format for convenience.

Data compression techniques and optical disc storage technology clearly
are required if the data storage issue is to be adequately addressed. (Data
compression is the process of reducing the number of bits required to store
a given amount of information without loss of information.) For example,
tests with a recent compression algorithm using Lempel-Ziv-Welch (LZW)
coding (Welch, 1984) conservatively show that the average 80-Mb scene can
be compressed to 32 Mb. This represents a 60% reduction in size from the
original data set. Some scenes may be compressed by as much as 75% with
LZW coding.

The LZW compression algorithm has two main competitors currently
in common use: Huffman coding and run length coding (RLC). The Huff-
man coding algorithm is not well suited to satellite data: preliminary tests
indicate that only a 14-20% reduction in size is achievable (Jain, 1989). Fur-
thermore, it is much slower than the LZW algorithm. The RLC algorithm
was originally designed to vectorize bit maps. It is designed to work on
strings of bits which are all 1s or Os (Jain, 1989). This makes it impractical
for satellite data, which tends to vary too much (i.e., the strings of uniform
1s or 0s are too short). While the upper 6 bits of each 16-bit sample can be
coded efficiently with the RLC algorithm, the remaining 10 bits pose a se-
rious problem for RLC methods. Preliminary tests show that the estimated
size reduction obtained from RLC algorithms will be in the 10-25% range.
The speed of the RLC is comparable to that of LZW. These considerations
show that the LZW compression algorithm is best suited to the proposed
task.

Preliminary tests also indicate that decompressing a typical satellite pass
so that it can be used for analysis can take as much as 20 minutes per pass.
This time factor depends on the speed of the disc and processing unit. No
compression algorithm can get around this problem; increased access time
is the trade-off for decreased space usage.

Data compression techniques are also needed for the two-dimensional
higher level satellite images. Unfortunately, most two-dimensional algo-
rithms either achieve speed by creating distortion in the data or achieve lack
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of distortion by requiring excessively long execution times. Considerable re-
search is needed to develop efficient two-dimensional compression /decompres-
sion algorithms which do not distort the data.

3.3.2 Image Representation

The data structure selected to represent the spatial data in an image will
have a critical effect on the implementation and final performance of the
analysis algorithm. The quadtree and octree are hierarchical data struc-
tures often used to represent spatial data. The term quadiree is used to
describe a class of hierarchical data structures whose common property is
that they are based on the principle of recursive decomposition of space
(Samet, 1989). They can be differentiated on the following bases: (1) the
principle used to determine the decomposition process, (2) the resolution
{variable or constant), and (3) the type of data they are used to represent.
The prime motivation for the development of the quadtree is the need to
reduce the amount of space necessary to store data through the use of ag-
gregation of homogeneous blocks (Samet, 1989). An important by-product
of this aggregation is the reduction in execution time of an analysis process.
Quadtrees have proved to be useful data structures for dithering algorithms,
computing geometric properties of images, implementation of linear image
transformations, development of hierarchical hidden-surface algorithms, and
ray tracing. The quadtree is only one of several digital data structures useful
in spatial statistics and digital image analysis.

The constraints on and the need for the large-scale use of remotely sensed
images in studies of global change is clear. Research is required in areas of
both data storage and image representation if optimal use of remotely sensed
data by the earth sciences community is to be achieved.

3.4 Special Considerations

Remote sensing of the environment with earth-observing satellites poses
some additional considerations beyond those normally encountered in labora-
tory-based applications of digital image analysis. In the laboratory, both il-
lumination and viewing geometry can be controlled. Moreover, the imaging
detector is close to the object being detected, and any interfering influence
between imaging detector and object can be minimized. Finally, one gener-
ally has a good notion of what constitutes the detected object. In contrast,
earth observing satellites typically fly 800-900 km above the surface of the
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earth. Viewing geometry and illumination are not controlled and can vary
greatly from orbit to orbit. The 800-900 km layer of atmosphere between
target and detector acts as a filter that varies spatially and temporally, often
partially corrupting image quality. There is the need to accurately project
the image taken 900 km above the Earth onto a flat map projection suit-
able to the particular application under study. Thus atmospheric correction
algorithms (e.g., Curran and Dungan, 1989; Kaufman, 1988; Gratzki and
Gerstl, 198%; Simpson and Humphrey, 1990), sensor calibration algorithms
(e.g., Gordon ef al., 1983; Eckstein and Simpson, 1990a), and earth location
algorithms (eg., Brush, 1985; Goshtasby ef al, 1986; Jezching and Jain,
1989) are all pre-processing steps essential prior to meaningful mathemati-
cal analysis.

3.5 Summary

Remote sensing provides the only practical way to obtain the large-scale
synoptic data sets necessary to address major problems of global signifi-
cance in earth science that are fundamentally cross-disciplinary in nature.
The magnitude of the data set, however, may preclude meaningful under-
standing unless it can be distilled and synthesized into organized patterns
of variance that can be meaningfully related to the underlying governing
physics, chemistry, and biclogy of global-scale cycles and processes. Spa-
tial statistics and mathematical methods of digital image analysis provide
mechanisms for such a synthesis. The examples cited herein included prin-
cipal component analyses, which are useful for image segmentation and for
determining spatial patterns of variance in large data sets; edge detection;
pattern matching; optical low methods, which are useful for determining
fields of motion from sequences of image data; and principal curves, which
are useful for determining the spatial distribution, size, and shape of ice floes
observed from spacecraft data. Atmospheric correction algorithms, sensor
calibration algorithms, and earth location algorithms generally are required
as pre-processes Lo digital image analysis of remotely-sensed images. Each
of these pre-processing areas contains challenging mathematical problems
which will have to be solved before earth sciences can benefit from the full
potential of remote-sensing technology.
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Appendix to Chapter 3

Listed below are definitions and explanations for abbreviations commonly
used in remote sensing.

AVHRR—The Advanced Very High Resolution Radiometer on the Na-
tional Oceanic and Atmospheric Administration’s polar-orbiting weather
satellite. It measures clond cover and infrared sea surface temperature.

DFT—Discrete Fourier transform.
EOF—Empirical orthogonal function.

EOS—Earth Observing System. A proposed National Aeronautics and
Space Administration program for earth observing systems to be launched
between 1997 and 2007.

FFT—Fast Fourier transform.

GOES—Geostationary Operational Environmental Satellite. An opera-
tional weather satellite used to measure cloud cover. Estimates of
solar radiation often are computed from GOES data.

LOG—Laplacian of the Gaussian operator.

LZW—Lempel-Ziv-Welch coding used in data compression algorithms.
MN—Minimum norm solution.

MU—The Marr-Ullman solution for the normal component of velocity.
OF —Optical flow method of computation.

RLC—Run length coding used in data compression algorithms.
S85T—5ea surface temperature.
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Spatial Statistics in
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4.1 Introduction

During the last 15 years much attention has been focused on environmen-
tal problems, such as tree and lake death from acidic precipitation, global
warming due to increased carbon dioxide concentration, and a possible re-
duction of the ozone layer in the stratosphere. For example, the problem
of long-term trends in atmospheric deposition was the subject of a recent
report of the National Research Council (1986). Many statistical problems
are emerging from research in the environmental sciences. This chapter ad-
dresses the estimation of spatial covariance, with an application to a solar
radiation network. Also discussed briefly are some aspects of monitoring
network design and the usefulness of point process models in developing
global climate models.

4.2 Estimating Spatial Covariance

The fundamental problem of environmetrics is that the observable processes
of interest are highly variable. Noise typically overwhelms the signal. For
example, when studying wet deposition of sulfate or nitrate at a location, the
variability of rainfall constitutes a large fraction of the observed variability
(Pollack et al, 1989). Statistically precise methods for signal extraction are
vital for policymakers.

Tl
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In order to assess the severity of an environmental insult, the researcher
typically has access to monitoring data from a relatively sparse network
of stations, while assessment of the mean level {averaged both temporally
and spatially) is needed over unobserved locations. Thus it is necessary to
use spatial interpolation methods. The most common such method, namely
kriging, is discussed in Chapter 5 of this report. A Bayesian nonparametric
method for interpolation, called regularization, has been developed by Zidek
and coworkers (Weerahandi and Zidek, 1988; Ma ef al., 1986) with environ-
mental applications in mind. Common to these methods is the necessity to
determine the spatial covariance.

The development of nonparametric procedures for interpolating observed
spatial covariances of a random function sampled at a finite number of loca-
tions has lagged well behind the development of interpolation methods for
the expected value of the underlying function. The kriging and regulariza-
tion methods mentioned above depend explicitly on the spatial covariance or
variogram functions. Most approaches to modeling spatial covariance strue-
ture have been parametric and have assumed isotropy and/or stationarity.
The best-known models are parametric forms for the variogram originating
in Matheron's theory of regionalized variables. The common assumption of
a spatially stationary variogram in kriging analyses was called the “intrin-
sic dispersion law"™ by Matheron. Switzer and Loader (1989) propose a less
parametrically oriented method to fit empirical dispersion or covariances,
Since the empirical site-pair covariances may themselves be subject to sam-
pling variability, some degree of parametric modeling is required, which at
the same time respects the apparent heterogeneity in the covariance field.
Basically, a parametric covariance model is forced on the available empirical
covariances, and modified covariance estimates are obtained by shrinking
toward the parametric covariances.

A nonparametric approach to global estimation of the spatial covariance
structure of a random function Z(z,t) observed repeatedly at a finite num-
ber of sampling stations z;, i = 1,2,..., N, in the plane has been developed
by Sampson and Guttorp (1990). The true covariance structure is assumed
to be neither isotropic nor stationary, but rather a smooth function of the
geographic coordinates of station pairs (z;,z;). Using a variant of multidi-
mensional scaling (MDS), a two-dimensional representation for the sampling
stations is computed for which the spatial dispersions Var(Y(z;) - ¥(z;))
are approximated by a monotone function of interpoint distances. That is,
in terms of this second two-dimensional representation, the spatial covari-



FIGURE 4.1: The 12-station solar radiation monitoring network in Lower
Mainland, British Columbia, Canada. Reprinted, by permission, from Hay
(1984). Copyright © 1984 by Pergamon Press.

ance structure as represented by the spatial dispersions is stationary and
isotropic. (These variances are usually fitted by parametric models for the
variogram.) Thinplate splines are applied to compute a smooth mapping
of the geographic representation of the sampling stations onto the MDS
representation. Bi-orthogonal grids, introduced by Bookstein (1978) in the
field of morphometrics, can be used to depict the mapping. This mapping
yields a nonparametric method for estimating Var(Y(z.) — ¥(£)) for any
two unsampled locations z, and z, in the geographic plane, and a graphi-
cal representation of the global spatial covariance structure. The resulting
nonparametric models for spatial covariance are constrained to be positive-
definite—or, in the terminology of geostatistics, the variogram models are
conditionally non-negative-definite. This is obtained by fitting a mixture of
covariance functions of Gaussian type in the MDS step of the algorithm.
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FIGURE 4.2: Daily solar radiation totals for Vancouver International Air-
port (site 4): (a) raw; (b) transformed.

4.2.1 Example: Spatial Variation in Solar Radiation

We present here a preliminary analysis of data collected from a solar radi-
ation monitoring network in southwestern British Columbia, Canada (Hay,
1984), with a view toward determining the feasibility of solar power genera-
tion in British Columbia. This example manifests a somewhat extreme but
easily understood form of nonstationarity in the spatial covariance structure
of the solar radiation field. Figure 4.1, taken from Hay (1983), displays the
locations of the 12 monitoring stations.

The data consist of daily solar radiation totals (MJ m?day~?) for the
years 1980-83. Figure 4.2 plots the data for the monitoring station at Van-
couver International Airport. Note the relatively sharp upper bound on the
maximum solar radiation as a function of season. Sivkov (1971, Chap. 7)
explains how and why the maximum solar radiation (observed on cloudless
days) varies approximately as a sine function with minimum at the vernal
equinox. A reasonable stochastic model for observations at one location is
thus

Zio= 0, (n + Bin [%{: - m;n]) (14 s,
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where observations are taken daily (t = 1,2,...,365), #;; is a random vari-
able taking values on the interval (0, 1] to express atmospheric attenuation
effects, and ¢;; represents a mean zero measurement error effect. Cloudi-
ness is the principal factor determining #;. As the first step in our analysis,
we estimate the parameters a and 3, which define the maximum expected
solar radiation as a function of day of year. We then scale all the data as
a percentage of the estimated seasonally adjusted maximum possible solar
radiation. Thuz we attempt to focus on analyzing the spatial structure of
#;. These data have a concentration of values near the maximum of 100%,
and so we compute covariances among monitoring stations using a logit
transformation of the percentage-of-maximum data. These transformations
removed the major aspect of seasonality associated with the orientation of
the earth with respect to the sun. However, the spatial covariance structure
retains seasonal structure because of variation in the atmospheric processes.
We therefore analyze the spatial structure of the data separately by season.
Here we present only the results for the combined spring and sammer guar-
ters (vernal equinox, March 22, through autumnal equinox, September 22).

Interstation correlations are very high for these data, and the dispersions
are closely related to geographic distances among the stations. Figure 4.3
shows the distribution of monitoring stations in the D-plane as determined
by MDS applied to the matrix of dispersions. The most obvious deviation
between the two planar representations is in the relative location of station
1, Grouse Mountain. The Grouse Mountain station is at an elevation of 1128
meters while all other stations lie below 130 meters. This orographic feature
explains the relatively high dispersions (low covariances) between station 1
and all the others as reflected in the scaling in Figure 4.3.

4.3 Network Design

The purpose of a monitoring network is to detect potential changes in key
environmental parameters. The designer of a long-term monitoring network
cannot fully foresee all of the benefits that may be derived from the network
by its future users. Environmental engineers, resource developers, biologists,
human health agents, and so on, will need the data for a variety of purposes,
some of which will not even have been identified. In addition to the hypoth-
esis testing mentioned above, there is a need for inference about changes in
areal averages, and about the areal maximum of such changes. The network
may be regarded simply as an information gathering device.
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FIGURE 4.3: Transformation of the G-plane configuration of solar radiation
monitoring stations (left) into the D-plane configuration (right).

There are objectives where the choice of design may not be critical.
Switzer (1979) argues that for estimating areal averages, the search for a
design that minimizes mean squared estimation error is unnecessary, since
the criterion is relatively insensitive to design changes among sensible de-
signs. The optimal design is very model-dependent, and the mathematics
are invariably difficalt. He argues that designs intended for this purpose
might better be chosen on a priori grounds, aveiding clustering and with
regard to topography and subregions of greater variability. Unfortunately,
the situation is not always so simple. In impact detection, for example, the
choice of the design is critical.

Kriging has its attendant theory of design, based on minimizing mean
squared estimation error (Cressie ef al., 1990). For impact design, this
criterion may not be the most natural. Rather, one wants to maximize the
power of the test.

In general, the appropriate design criterion is as uncertain as the objec-
tive itsell (see Rodriguez-Iturbe, 1974, for a discussion). Caselton and Zidek
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(1984) argue that a reasonable design criterion will be based on an index
of the information transmitted. A particular set of monitoring stations is
good if it provides a lot of information (in the sense of Shannon) about
unmonitored sites (see §4.3.2).

4.3.1 Impact Design

Suppose we need to assess the effect of a potential impact taking place at a
known time. Typical examples are changes in environmental requirements,
closure or startup of potential pollution sources, and environmental disas-
ters. The null hypothesis is that of constant mean before and after the
change. Suppose that it is feasible to make observations at any point on
the grid of potential monitoring sites before and after the known time of
potential change. According to an emerging body of evidence, it is very
difficult to detect even fairly large changes in ambient levels with high prob-
ability. For example, Hirsch and Gilroy (1885) use a certain nonparametric
testing procedure, a sulfate deposition model fitted to data from New York
state, and simulated sulfate deposition experiments with step changes of
various magnitudes, including 20%. They show that with one monitoring
station, 90% power requires 15 years of post-change records with 5 vears of
pre-change records. Using B stations, one still needs 2 vears of post-change
records, and adding more stations does not vield appreciable reductions.
Much of the difficulty is the result of the large component of meteorological
variability in deposition. In the work of Vong ef al. (1988), a design based
on meteorological criteria was used to reduce this variability, which yielded
unambiguous evidence of the local deposition effect of a copper smelter.

Regard a design D as a set of labels designating the sampling sites. The
region of interest is overlain with an imaginary grid of potential sites from
which D is to be chosen. An impact is regarded as a random field Z, covering
the whole region. At site 1, Z; is the size of the change owing to development
and other uncontrolled factors. Only Z; with i in D will in fact be measured
(with error) once D is specified.

Suppose that K replicate measurements of Z; are taken at each site in D.
Their variability is assumed constant over i, and indicates the precision of the
process of measurement. Changes will be measured against this variance. A
strategy (suggested, e.g., by Green, 1979) can be used to reduce the impact
of temporal effects. Sites outside areas of likely impact are admitted as
possible quasi-controls. These do increase the power of tests, even though
they, strictly speaking, are not controls. The null hypothesis (again following
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(Green, 1979) is that of no time-space interaction. Assuming the standard
two-way fixed effects ANOVA model, the F-statistic has power depending
on the noncentrality parameter which can be estimated by

2 (Z; - Zp)?

C=KL T
where Zp is the average of the observations. In some special cases it is
possible to maximize E(6%). Suppose that the area of potential impact
can be divided into a collection of homogeneous zones (this has to be done
using expert knowledge). Then the problem of maximizing the expected
non-centrality parameter is reduced to that of finding the optimal sampling
fractions, which is a quadratic integer programming problem (Schumacher
and Zidek, 1989). Simulated annealing is being explored as an alternative
approach to the optimization (Sacks and Schiller, 1988).

4.3.2 Information Transmission Network Design

The future benefits that may be derived from a network cannot all be speci-
fied in advance. Even when a network is designed with a particular objective
in mind, it is quite common that the answer to very different questions must
be elicited from the data once the network is operational. Caselton and
Zidek (1984) suggest circumventing these difficulties by an approach that
may be suboptimal in specific cases but has overall merits for these types of
networks.

We let Z denote a random field of measurable quantities indexed by
potential site labels i. We decompose Z into the gauged sites G = (Z;, i € D)
and the ungauged sites /. The choice of D will be made to maximize the
amount of information in G about ['. Here the information measure is
taken to be I{U, &) =E{log( f(U|G)/ f{U))), Shannon's index of information
transmission, where f(I/|7) is the conditional density of [/ given G, and
(L) the a priori density of [J.

A simple special case is when the random field is multivariate normal,
when I{U,G) = -ilnglf — R|, where [ is the identity matrix, and R the
diagonal matrix whose elements are the squared canonical correlation co-
efficients between [/ and 7. These can be obtained from estimates of the
spatial correlations, for example, using the method of Sampson and Guttorp
mentioned in the previous section.

For particular patterns of the covariance matrix of Z, derived from mod-
els of acidic deposition (such as that used by Vong et al, 1988), it is possi-
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FIGURE 4.4: The MAP3S monitoring network.

ble to develop workable approximations to the canonical correlations and to
solve the design problem in terms of signal-to-noise ratios at gaaged and un-
gauged sites, respectively. The analysis suggests the importance of replicate
measurements at gauged sites (Guttorp et al, 1987, section 3.3).

Example: Finding the Least Informative Station in a Network

The Multistate Atmospheric Power Product Pollution Study/Precipitation
Chemistry Network (MAP35/PCN) of nine monitoring stations (Figure 4.4)
in the northeastern United States was initiated in 1976 with the objective of
creating a long-term, high-quality data base for the development of regional
transport and deposition models. There is substantial seasonal variability in
the data, and we concentrate here on log deposition of H*, using four-week
totals for January through April. Guttorp ef ol. (1991) has further details.
In order to decide which station carries the least information in the network,
we need to compute the information in the network leaving out each station
in turn. Thus the station left out is considered ungauged, and all the other



TABLE 4.1: Multiple Correlation Coefficients

Station(U) I(U,G) standard error
Lewes, Del. 26 08
Mlinois, 0. 66 A0
Ithaca, N.Y. A9 09
Whiteface, N.Y. A0 .09
Brookhaven, N.Y. A2 .09
Oxford, Ohio 58 A0
Penn State, Pa 5T A0
Virginia, Va. A1 08
Oak E.idgu, Tenn. 29 08

stations are gauged. For each station left out, we compute I(U,G) from
the other stations in the network. The analysis of canonical correlations
(which for one ungauged site simplifies to the multiple correlation coefficient)
indicates that the three stations in Olinois, Ohio, and Pennsylvania each
have significantly higher multiple correlations with the remainder of the
network than have any other stations. The results are listed in Table 4.1,
where it is seen that Illincis, [ll., is the least informative station in the
network, in the sense of being best predicted by the other stations. In
other words, the gauged stations have the highest information about the
(presumed ) unganged station at [linois.

It is worth noting that the stations at Oxford, Ohio, and Penn State,
Pennsylvania, are not significantly different from the Illinois station. On
the other hand, the geographically extreme stations in Delaware, Virginia,
and Tennessee are all poorly predicted, and are therefore highly informative
stations.

4.4 Modeling Precipitation Using Space-Time
Point Processes

An environmental problem of enormous potential impact is the global warm-
ing due to increased CO; concentration in the atmosphere. Much effort has
been extended to develop realistic models of global climate in order to be
able to assess the potential impact of changes in atmoepheric gasses on dif-
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ferent aspects of weather patterns. In order to do this, hydrologists have
found it useful to employ stochastic models of precipitation, which is an im-
portant factor in climate change, and also itsel{ affected by climate change.
Such models have also found important applications in assessing the risk of
flash floods and in design of dams.

A realistic stochastic model of rainfall must take into acconnt the physi-
cal structure and organization of storms, such as the description of cyclonic
storms in Hobbs and Locatelli (1978). In essence, the storm system contains
mesoscale rainbands, which contain smaller mesoscale regions, or precipita-
tion cores, which are characterized by higher rainfall rates. These cores
originate in generating cells aloft (in warm frontal bands) or within layers of
potentially unstable air (in cold frontal bands). This description was used
by Waymire et al. (1984) and by Kavvas and Herd (1985) to construct ap-
propriate stochastic models, following the work of Le Cam (1961). In what
follows, we essentially follow the Waymire ef al. description.

The essence of the Waymire ef al. (1984) model is the following stochastic
representation of the rainfall intensity £ at time ¢ and location z:

o= [ f{m] go(t = 75 2 - y) X(dr,dy),

where g, is a dispersion function, representing the rainfall intensity from a
given cell born at (r,y) depending on the random variable n, and X{dr,dy)
counts the rain cells alive in an infinitesimal neighborhood of (7,¥). Thus X
is a point process that has the structure of a cluster process (see Daley and
Vere-Jones, 1988, and the discussion in chapter 7 of this report). From this
representation, it is easy to write down formulae for the mean and covariance
of the random field £. In order to get useful results, one needs to make a
few more assumptions. If it is reasonable to assume that the dispersion of
a rain cell is independent of the occurrence of rain cells, then the expected
value can be written

EE(t2) = [ [ Blon(t - riz - s (ry)drdy,

where p?" is the k'® order product moment density for the point process X,
measuring the joint probability density of & events. It may be reasonable to
assume that spatial and temporal features are separable, in the sense that

p'(r.y) = o ()l ()
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galu;¥) = ng(u)ga(v).
With these assumptions, it is easy to see that

E£(t,2) = E(n)lgr + p{")1) 92 » pt")(2),

where [f; » f3] is the convolution of f; with f;.
Similar computations yield that

Bt m)6(t2,22) = E40) | [ [ ovts = mdon(tz = ra)p{ v, ) dy i

X Ufnill - ¥1)oa(z2 - y2)pi (31, 72) dyy dn]

+B(0) [ [t -ty dr] [ [etar-viostar-yi ) ]
= J] + Jﬂ] .

If, in addition, p{ (11, 21;72,22) = (1, 21)p¥ (73, 22), the covariance sim-
plifies to Js.

Most processes of interest can be written as a function of the intensity
process £. For example, the dry area in a region A during the time interval
(t1,13) can be expressed as

JC'L 1((t,2) < €)dz dt,

where 1(B) is the indicator function of the set B, and ¢ is the limit of
detectability. Of course, the process £ itself cannot be observed; we only
observe time integrals of £ at given points.

The detailed structure of the parameter functions discussed here is cur-
rently the emphasis of intense research in the hydrological community. A
discussion of some of these features is given in Guttorp (1988). Recent ad-
vances in satellite and radar imagery enables the identification of some of
the major features of the model, and thus can both suggest functional forms
for some of the parameter functions and permit testing the goodness of fit
of the model. The problem of parameter identification from time-averaged
quantities is discussed in Guttorp (1986) for the nonspatial case when only
presence or absence of precipitation at a single station in each time interval is
recorded, and in Guttorp and Thompson (1990) for the case when counts of
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the number of events in each time interval are recorded. Generally, because
of the intractable nature of the likelihood function, estimation is usually
based on the method of moments. Further discussion of problems involved
in spatial and temporal averaging of precipitation data and the attendant
problems of parameter estimation can be found, e.g., in Rodriguez-Iturbe
et al. (1974), Valdes et al. (1985), Rodriguez-Tturbe and Eagleson (1987),
Sivapalan and Wood (1987), and Phelan (1991).
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Geostatistical Analysis of
Spatial Data

Noel Cressie
[owa State University

5.1 Introduction

All data have (more or less) precise spatial and temporal labels associated
with them. That is, a measurement is obtained from a particular location
at a particular time, although that information may be lost by omission or
made less precise by aggregation. For most of this chapter, it is assumed
that only the data’s spatial labels are important—hence the term spatial
dala.

As a discipline, spatial statistics has components of all the classical areas
of statistics, such as design, statistical methods (including data analysis and
diagnostics), stochastic modeling, and statistical inference. Importantly, the
spatial labels form an integral part of a spatial statistical analysis. Geostatis-
tics is the area of spatial statistics that is concerned mostly with prediction
of unknown values at given locations (or of aggregations over given regions).
Typically, the prediction is based on univariate and bivariate distributions
of the spatial values, and these distributions (or appropriate moments of
them) are estimated from an initial analysis of the data.

The prefix “geo”™ in geostatistics originally implied statistics pertaining
to the earth (Matheron, 1963; see also Hart, 1954, who used the term differ-
ently from Matheron, in a geographical context). However, more recently,
geostatistics has been used to solve problems in agricultural engineering,
atmospheric sclence, ecology, forestry, hydrology, meteorology, remote sens-
ing, etc. Although it is Matheron's development of the area within mining
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that is best known, a Soviet meteorologist, L. 5. Gandin, independently de-
veloped a framework for inference that is virtually identical (Gandin, 1963);
he chose the term “objective analysis” instead of “geostatistics.”

Section 5.2 presents the basic ideas behind a geostatistical analysis, in-
cluding a brief discussion of splines and conditional simulation. The first
part of §5.3 gives several applications of geostatistics, and the second part
discusses recent advances and future directions.

5.2 Theory and Methods of Geostatistics

Geostatistics is mostly concerned with spatial prediction, but there are other
important areas, such as model selection, effect of aggregation, and spatial
sampling design, that offer fruitful open problems; see §5.3.2. The emphasis
in this section will be on a spatial-prediction method known as kriging.
Matheron (1963) coined the term in honor of D. G. Krige, a South African
mining engineer (see Cressie, 1990, for an account of the origins of kriging).

5.2.1 The Variogram

First, a measure of the (second-order) spatial dependence exhibited by the
spatial data is needed. A model-based parameter (which is a function)
known as the variogram is defined here; its estimate provides such a measure.
Statisticians are used to dealing with the autocovariance function. It is
demonstrated here that the class of processes with a variogram contains the
class of processes with an autocovariance function, and that kriging can be
carried out on & wider class of processes than the one traditionally used in
statistics,

Let {Z(s) : s € D € R%} be a real-valued stochastic process defined on
a domain D of the d-dimensional space RY, and suppose that differences of
variables lagged h-apart vary in a way that depends only on h. Specifically,
suppose

var(Z(s + h) - Z(s)) = 27(h) foralls,s+he D; (5.1)

typically the spatial index s is two- or three-dimensional (i.e., d = 2 or
3). The quantity 29(-), which is a function only of the difference between
the spatial locations s and s + h, has been called the variogram by Math-
eron (1963), although earlier appearances in the scientific literature can
be found. It has been called a structure function by Yaglom (1957) in



probability and by Gandin (1963) in meteorology, and a mean-squared dif-
Jerence by Jowett (1952) in time series. Kolmogorov (1941) introduced
it in physics to study the local structure of turbulence in a fluid. Nev-
ertheless, it has been Matheron's mining terminology that has persisted.
The vari must satisfly the conditional negative semi-definiteness con-
dition, 3., E;_,, a;a;2y(s; = 8;) < 0, for any finite number of spatial lo-
cations {s; : i = 1,...,k}, and real numbers {a; : i = 1,...,k)} satisfying
5k a; = 0. When 29(h) can be written as 29°(||h]|), for h € R?, the
variogram is said to be isolropic.

Variogram models that depend only on a few parametars @ can be used
as summaries of the spatial dependence and as an important component of
optimal linear prediction (kriging). Three basic isotropic models, given here
in terms of the semivariogram (half the variogram), are:

Linear model (valid in RY, d > 1)

] h=0
v(hi6) = {:nHuIIhII h#0

where & = (co,be), co 2 0, by = 0;

Spherical model (valid in RY, R?, and R?)

1] h=0
7(h;8) = { co + ¢,[3(|[bll/a,) - }(/ll/a,)*] 0 <|h| < a,
€ + € Ikl| = a,

where & = (¢p,¢,,8,), 02 0,6, 20,40, > 0;

Ezrponential model (valid in R, d > 1)

. . 0 h=0
(h:6) = {nu+c.[l-axp{-llhllfd¢]] h#0

where 8 = (eo,¢0,0.), €0 2 0, ¢ 2 0,8, 2 0.

Another semivariogram model is the rational quadratic model (valid in
RY, d2> 1)

h=0

1]
(ki 0) = {m+,—lﬂ-ﬁ5—f — h#0

where & = (¢p,¢r,8.), 02 0,¢, 20,8, 20.



A semivariogram model that exhibits negative correlations caused by
periodicity of the process is the wave (or hole-effect) model (valid in R,
R?, and RY):

0
1(h; ) = {.,,,H_I:._-muu h#0

where 8 = (g, €u,0u), 0 2 0,64 20,0, 2 0.

A further condition that a variogram model must satisfy is (Matheron,
1971)
2y(h)/|[h|f* = 0 as [|h|| - co.

In fact, the power semivariogram model,

0 h=0
h:6) = {m+%ww h#0
where @ = (co,bp,A), c0 20,8, 20,0 A <2,

is a valid semivariogram model in R?, d > 1.

When the process £ is anisotropic (i.e., dependence between Z(s) and
Z(s + h) is a function of both the magnitude and the direction of h), the
variogram is no longer purely a function of distance between two spatial
locations. Anisotropies are caused by the underlying physical process evolv-
ing differentially in space. Sometimes the anisotropy can be corrected by a
linear transformation of the lag vector h. That is,

27(h) = 24°(l|4h])), h € R,

where A is a d x d matrix and 297 is a function of only one variable.
Replacing (5.1) with the stronger assumption

cov(Z(s + h),Z(s)) = C(h) foralls, s+he D (5.2)
and specifying the mean function to be constant, i.e.,
E(Z(s))=p forallse D, (5.3)

defines the class of second-order (or wide-sense) stationary processes in [J,
with covariance function C(-). Time series analysts often assume (5.2) and
work with the quantity p-) = C(-)/C(0). Conditions (5.1) and (5.3) define
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the class of intrinsically stationary processes, which is now shown to contain
the class of second-order stationary processes.
Assuming only (5.2),

1(h) = C(0) - C(h), (5.4)

that is, the semivariogram is related very simply to the covariance function.
An example of a process for which 29(-) exists but C(-) does not is a one-
dimensional standard Wiener process {W(t) : t > 0}. Here, 29(h) = |h|
(—oe < h < =), but cov(W(t), W(u)) = min(i, u), which is not a function
of |t=1u|. Thus, the class of intrinsically stationary processes sirictly contains
the class of second-order stationary processes,

Now consider estimation of the variogram from data { Z(s;) : i=1,...,n}.
Suppose these are observations on an intrinsically stationary process (i.e., a
process that satisfies (5.1) and (5.3)), taken at the n spatial locations {s; :
i =1,...,n}. Because of (5.3), var(Z(s + h)- Z(s)) = E(Z(s + h)- Z(s))*.
Hence, the method-of moments estimator of the variogram 2vy(h) is

2i(h) = ) [Z(s:) - Z(s;)P/IN(h)l, heR?, (5.5)
N(h)

where the average in (5.5) is taken over N(h) = {(s;,8;):s; = s; = h}, and
|N{h)| is the number of distinct elements in N{h). For irregularly spaced
data, N(h) is usually modified to {(s;,s;) : 8; — 8; € T(h)}, where T(h) iz a
tolerance region of R? surrounding h. Other estimators, more robust than
(5.5), are given in Cressie and Hawkins (1980) and Cressie (1991, sec. 2.4).
Parametric models, 249(-;8), can be fit to the estimator (5.5) by various
means; as a compromise between efficiency and simplicity, Cressie (1985)
advocates minimizing a weighted sum of squares

= [ 29(h(k))
> { z5thcerdy -

with respect to variogram model parameters #. The sequence h{l),..., h{K)
denotes the “lags™ at which an estimator (5.5) was obtained, and which sat-
isfy range and replication conditions such as those given by Journel and
Huijbregts (1978, p. 194, eq. [[1.42). Zimmerman and Zimmerman (1991)
summarize and compare several methods of variogram-parameter estima-
tion based on simulated Gaussian data. They find that the weighted-least.
squares approach usually performs well, and never does poorly, against
such competitors as maximum likelihood estimation (both ordinary and re-
stricted ) and minimum norm quadratic unbiased estimation.

2
1} IN(h(k))]
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5.2.2 Kriging

For the purposes of this section, assume that the variogram is known; in
practice, variogram parameters are estimated from the spatial data. Suppose
it is desired to predict Z(so) at some unsampled spatial location sg using a
linear function of the data Z = (Z(sy),..., Z(s.))"

L
Z(s0) = }_NZ(si). (5.6)
im]l
It is sensible to look for coefficients {; : i = 1,...,n} for which (5.6) is
uniformly unbiased and which minimize the mean-squared prediction error
E(Z(sg) = Z(sg)?. More generally, one could try to minimize E(L|Z(sq), p(Z)])
with respect to predictor p(Z), where L is a loss function. For example, the
loss function proposed by Zellner (1986),

L[Z(s0), p(Z)] = b {expla(Z(s0) — p(Z))] - a(Z(s0) = p(Z)) - 1}, b > 0,

allows overprediction to incur a different loss than underprediction. Mini-
mizing mean-squared prediction error results from using

L[Z(80), p(2)] = ¥ Z(s0) - p(Z)], b >0,

which is the squared-error loss function. In all that is to follow, squared-error
loss is used.

The uniform unbiasedness condition imposed on (5.6) is simply E(Z(so)) =
p = E(Z(sg)), for all p € R, which is equivalent to

5 A=1. (5.7)

Now, assuming (5.7), the mean-squared prediction error can be written in
two ways. If the process is second-order stationary,

i i L ]
E(Z(s0) = 3 MiZ(8:))® = C(0) - 23 \C(s; — 85) + 33 MAC(si— ),
=1 iml =l jml
’ (5.5)
or, if the process is intrinsically stationary (a weaker assumption),

E(Z2(s0) = 3_NZ(s:)) =23 Avl(si—s0) - 33 Midja(si —s;). (5.9)

iml =1 =1 y=i
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Using differential calculus and the method of Lagrange multipliers, optimal
coefficients A = (A,...,A.) can be found that minimize (5.9) subject to

(5.7); they are
_ -1 (1-1T"'yn
A=T [-H- TT-11 , (5.10)
and the minimized value of (5.9) (kriging variance) is

- 1 - 1T 14)
oi(s0) = +T "y - ﬁ
In (5.10) and (5.11), ¥ = [v(s; — 80),...,7(8a = %)), 1 =(1,...,1),and T
is the n x n symmetric matrix with (i, j)** element v(s; - ;).

The kriging predictor given by (5.6) and (5.10) is appropriate if the
process £ contains no measurement error. If measurement error is present,
then a “noiseless version™ of £ should be predicted; Cressie (1988) has details
on when and how this should be implemented.

Thus far, kriging has been derived under the assumption of a constant
mean. More realistically, assume

Z(s)=p(s)+8(s), s D, (5.12)

where E(Z(s)) = u(s) for s € D and #(-) is a zero-mean, intrinsically station-
ary stochastic process with var(é(s + h) — #(s)) = var(Z(s + h) - Z(s)) =
29(h), h € RY. In (5.12) the “large-scale variation” u(-) and the “small-
scale variation™ §(-) are modeled as deterministic and stochastic processes,
respectively, but with no unique way of identifying either of them. What
is one person's mean structure could be another person's correlation struc-
ture. Often this problem is resolved in a substantive application by relying
on scientific or habitual reasons for determining the mean structure.

Suppose u(s) = x(s)'8, a linear combination of variables that could in-
clude trend-surface terms or other explanatory variables thought to influence
the behavior of the large-scale variation. Thus,

(5.11)

Z(s)= i:j[llﬂj +4(s), s€D, (5.13)
jmb

where 3 = (B,...,08;) are unknown parameters and &(-) satisfies (5.1)
and (5.3) with zero mean. Although the model has changed, the problem
of predicting Z(sg) using an unbiased linear predictor (5.6) remains. The
uniform unbjasedness condition is now equivalent to the condition

NX =x, (5.14)
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where xg = (zo(s0), ..., 2p(s0)) and X is an n x (p+ 1) matrix whose (i, j)**
element is £;_y(8;). Then, provided (5.7) is implied by (5.14), minimizing
the mean-squared prediction error subject to (5.14) yields the universal krig-
ing predictor
Zy(so) = Ay Z, (5.15)
where
Ay =Ty + X(XTX) (%0 - X'T')]; (5.16)

the (universal) kriging variance is
oi(sa) = YT 'y = (XT 'y —x) (XT ' X)) HXT 'y - xp).  (517)
Another way to write the equations (5.14) and (5.15) is
Z(s) = V)7 + vixo, (5.18)
where v; (an n x 1 vector) and vz (a (p+ 1) x 1 vector) solve

I'vi+Xvy; = Z
X'v = 0. (5.19)

Equations (5.18) and (5.19) are known as the dual-kriging equations, since
the predictor is now expressed as a linear combination of the elements of
(7", xg). From (5.19), it is clear that spline smoothing is equivalent in form
to universal kriging (see Watson, 1984, where the relationship between the
two prediction techniques is reviewed). Kriging has the advantage that in
practice the data are first used to estimate the variogram, so adapting to the
quality and quantity of spatial dependence in the data. Furthermore, kriging
produces a mean-squared prediction error, given by (5.17), that quantifies
the degree of uncertainty in the predictor. Cressie (1989b) presents these
two faces of spatial prediction along with 12 others, including disjunctive
kriging and inverse-distance-squared weighting.

5.2.3 Conditional Simulation of Spatial Data

Simulation of spatial data {Z(s;):i = 1,...,N} with given means {u(s;) :
i=1,...,N} and covariances {C(8;,8;) : 1 € i < j € N} can be carried out
in a number of ways, depending on the size of V and the sparseness of Zy,
the N x N symmetric matrix whose (i, j)'® element is C(s;,5;). One way
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is to use the Cholesky decomposition Zy = Ly L}, where Ly is a lower-
triangular N x ¥ matrix (e.g., Golub and Van Loan, 1983, pp. 86-90). Then
Zn =(2(3),...,Z(sn)) can be simulated by

Iy = py + Lyew, (5.20)

where py = (u(sy),...,u(sx)), and ey is an N x 1 vector of simulated
independent and identically distributed random wvariables, each with zero
mean and unit variance. Other methods, including polynomial approxima-
tions, Fourier transforms, and turning bands, are presented and compared
in Cressie (1991, sec. 3.6).

Now consider the simulation of values of {Z(s) : s € D} conditional on
observed values Z,. Call this conditionally simulated process {W(s) : s €
D}, and suppose {V(s) : 8 € D} is an unconditionally simulated process
with the same first and second moments as {Z(s) : s € D}. For example,
{5.20) might be used to simulate Vy = (V(sy),...,Visn )Y, where N > n.

Consider conditional simulation at an arbitrary location s, in D. Now
write

T 1 = [ - Cn
" ch ClSni1,8u41)

and notice that the two terms of the decomposition
Z(8n41) = € E7"Zn + [Z(8041) — €, E7" 20 (5.21)

are uncorrelated. Hence, the conditional simulation
W(sas1) = LI 2 + [V(sus1) — €. Z7'Val, sann €D,  (5.22)

has the same first two moments, unconditionally, as the process {Z(s):s €
D} and W(s;) = Z(s;),i = 1,...,n. That is, unconditional simulation of
sample paths of V yields, through (5.22), conditionally simulated sample
paths of W.

It is apparent from (5.20) and (5.21) that when the ¢'s are Gaussian,
50 too is the process {W(s) : s € D}. However, this may not reflect the
reality of the conditional process when the original process {Z(s) : s € D}
is “far from"™ Gaussian, even though the first two moments match and the
two processes agree at the data locations. There is clearly a danger in using
conditional simulation uncritically.



5.3 Applications and Research Frontiers

A geostatistical analysis of spatial data has a “nonparametric™ flavor to it,
in that inferences are based on properties of univariate and bivariate dis-
tributions of Z(s) and Z{u), which are estimated from the data. In other
words, assumptions are few, although often it helps to transform the data
so that they are Gaussian-like. In comtrast, Markov-random field models,
or simultaneous spatial autoregressive models, have a very rigid structure
that is not so well adapted to problems of spatial prediction (kriging). Sec-
tion 5.3.1 shows how geostatistics has considerable flexibility in applications
across diverse scientific disciplines.

5.3.1 Applications

The strength of geostatistics over more classical statistical approaches is
that it recognizes spatial variability at both the “large scale™ and the “small
scale,” or in statistical parlance, it models both spatial trend and spatial
correlation. Trend-surface methods include only large-scale variation by
assuming independent errors. Watson (1972) elogquently compares the two
approaches and points out that most geological problems have a small-scale
variation, typically exhibiting strong positive correlation between data at
nearby spatial locations. The books by David (1977), Journel and Huijbregts
{1978), and Clark (1979) are all aimed at applications of geostatistics in the
mining industry.

The geostatistical method has also found favor among soil scientists who
seek to map soil properties of a field from a small number of soil samples
at known locations throughout the field; soil pH in water, soil electrical
conductivity, exchangeable potassium in the soil, and soil-water infiltration
are some of the variables that could be sampled and mapped.

Water erosion is of great concern to agriculturalists, since rich topsoil
can be carried away in runoff water. The greater the soil-water infiltration,
the less the runoff, resulting in less soil erosion and less stream pollution by
pesticides and fertilizers. Also, greater infiltration implies better soil strue-
ture, which is more conducive to crop growth. Cressie and Horton (1987)
describe how double-ring infiltrometers were placed at regular locations in a
field that had received four tillage treatments, moldboard, paraplow, chisel,
and no-till. From these data, the spatial relationships were characterized;
Gotway and Cressie (1990) used the resulting stochastic models to estimate
efficiently the tillage effects and to build a spatial analysis of variance table,
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from which tillage differences can be tested.

Kriging can be applied in geophysical problems that require accurate
mapping of the ocean floor. Data are slopes or depths and a variety of as-
sumptions are made about the large-scale and small-scale variations defined
by (5.12) (e.g., Shaw and Smith, 1987; Smith and Jordan, 1988; Gilbert,
1989; Malinverno, 1989). This area of investigation would benefit from geo-
statistical analyses that use the data initially to fit an appropriate variogram
model and then draw kriging maps based on the fitted variogram.

Applications of geostatistics abound in other areas, such as rainfall pre-
cipitation (e.g., Ord and Rees, 1979), atmospheric science (e.g., Thiebaux
and Pedder, 1987), acid deposition (e.g., Bilonick, 1985), and groundwater
flow (e.g., Clark et al., 1980). Examples from groundwater flow and acid
deposition will now be used to illustrate the geostatistical method described
in §5.2.

Flow of Groundwater from a Proposed Nuclear Waste Site

In 1986 three high-level nuclear waste sites were proposed in the United
States (in Nevada, Texas, and Washington), thus prompting study of the
soil and water-bearing properties of their surrounding regions. The chosen
site will probably contain more than 68,000 high-level waste canisters placed
about 30 feet apart in holes or trenches surrounded by salt, at a depth of
2,000 feet. However, leaks could occur, or the radicactive heat could cause
the tiny quantities of water in the salt to migrate toward the heat until
eventually each canister would be surrounded by about 6 gallons of water.
The chemical reaction of salt and water would create hydrochloric acid that
could slowly corrode the canisters. Eventually, the nuclear wastes could
reach the aquifer and sometime later contaminate the drinking water.

Therefore, the types of questions one might ask are: If a nuclear waste
site were to be designated for, say, Deaf Smith County, Texas, what are the
risk parameters for radionuclides contaminating the groundwater? Where
would they flow? How long would they take to get there? Here the direction-
of-flow question will be addressed; kriging will be used to draw a spatial map
of potentiometric heads throughout the area of interest.

Potentiometric heads in the West Texas/New Mexico region are shown
in Figure 5.1, and are given by Harper and Furr (1986). They were measured
by drilling a narrow pipe into the aquifer and letting the water find its own
level in the pipe. Measurements are given in feet above sea level.

An anisotropic variogram model was fit to the data; in each of two
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FIGURE 5.1: Locations and levels of piezometric-head data in West
Texas/New Mexico. Amarillo is located close to the “152T" well in Pot-
ter Country. Reprinted, by permission, from Cressie (198%). Copyright
(c) 1989 by American Statistical Association.

orthogonal directions, values of @ = (#;,8;,85) in

L
ey - {2042 A4

were estimated. Restrictions on the parameters, in order that 24(.:8) be a
valid variogram, are #, 20, #; > 0,and 0 £ 83 < 2.

From the fitted variogram, kriging predictors {Z(sq) : sa € D} given
by (5.6) and (5.10) and kriging standard errors {o(8) : 8g € D} given by
(5.11) were obtained; see Cressie (1989a). Figure 5.2 shows the predicted
surface, from which it can be concluded that contaminated groundwater
from Deal Smith County, Texas, would flow directly “downhill® toward
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FIGURE 5.2: Three dimensional view of kriging surface {Z(so) : s € D},
from the northeast corner of D. Reprinted, by permission, from Cressie
(1980a). Copyright © 1989 by American Statistical Association.
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Amarillo, Texas. However, Amarillans need not be concerned; a decision
was made in 1987 by the U. 5. Congress to locate the nation’s high-level
nuclear waste dump site in Nevada, probably at Yucca Mountain.

Acid Deposition and Network Design

It is generally accepted that an important factor in the relatively recent
increase of acid deposition is the emission of industrial by-products into
the atmosphere; the comsequences for aquatic and terrestrial ecosystems
are potentially disastrous. Most fish populations in freshwater lakes are
very sensitive to changes in pH (EIFAC, 1969). More fundamentally, such
changes could also adversely affect most other aquatic organisms and plants,
resulting in a disruption of the food chain. Acid deposition has also been
closely comnnected with forest decline (Pitelka and Raynal, 1989) in both
Europe and the United States.

In the United States, acid deposition results mainly from the atmospheric
alteration of sulfur and nitrogen air pollutants produced by industrial pro-
cesses, combustion, and transportation sources. Total acid deposition in-
cludes acid compounds in both wet and dry form. Dry deposition iz the
removal of gaseous pollutants, aerosols, and large particles from the air by
direct contact with the earth (NAPAP, 1988). Since dry deposition is dif-
ficult to menitor, and attempts at any such monitoring are relatively new,
we focus on wet deposition here.

Wet deposition, or acid precipitation as it is commonly called, is defined
as the hydrogen ion concentration in all forms of water that condenses from
the atmosphere and falls to the ground. Measurement of the total annual
amount of hydrogen ion is the end result of a very complicated process begin-
ning with the release of pollutants into the atmosphere. They might remain
there for up to several days and, depending on a variety of meteorclogical
conditions (e.g., cold fronts or wind currents), they may be transported large
distances. While in the atmosphere, the pollutants are chemically altered,
then redeposited on the ground via rain, snow, or fog.

A model for the spatial distribution of total yearly hydrogen ion (H*),
measured on the Utility Acid Precipitation Study Program (UAPSP) net-
work in 1982 and 1983, was developed by Cressie et al. (1990). We present
their results for the 1982 data, including implications of the fitted model for
network design.

Figure 5.3 is a map of the eastern half of the United States, showing the
19 UAPSP monitoring sites. Their latitudes, longitudes, and annual acid
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FIGURE 5.3: Monitoring sites of the UAPSP network for the years 1982 and

1983. The square denotes an optimally located additional site. Reprinted,
by permission, from Cressie ef al. (1990). Copyright (© 1990 by Elsevier
Science Publishers, Physical Sciences and Engineering Division.
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FIGURE 5.4: Median-polish surface obtained from the 1982 data. Units
on the vertical axes are in ymoles H* fcm?. Reprinted, by permission, from
Cressie et al. (1990). Copyright © 1990 by Elsevier Science Publishers,
Physical Sciences and Engineering Division.
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depositions (in pmole Ht fem?) for 1982 (and 1983) are presented in Cressie
et al. (1990). By grouping nearby sites, a 4 % 3 table of acid-depaosition data
was constructed. The table was then median-polished (e.g., Emerson and
Hoaglin, 1983), from which a crude picture of the large-scale variation was
obtained; see Figure 5.4.

In the east-west direction there appears to be a positive linear trend,
reflecting higher acid-deposition levels in the east. However, in the north-
south direction, the trend is quadratic, with higher levels in the central
region and lower levels in the extreme north and extreme south.

The surface in Figure 5.4 was subtracted from the original data to ob-
tain residuals, {8(s;) : i = 1,...,19}. Using great-arc distances to de-
fine distances between sites, an isotropic (robust) variogram estimator was
computed, to which a spherical variogram model was fit by weighted least
squares (§5.2.1). The fitted parameters were & = 0.608(umoles H* fem?)?,
&, = 2.041(pmoles H* fcm?®)?, and a4, = 361.210miles. Figure 5.5 gives a
graphical representation of the results.

Optimal spatial prediction (ordinary kriging) can be implemented on
the residual process #(-) through equations (5.6), (5.10), and (5.11). A
predicted surface of acid-deposition levels can then be obtained by adding
back this kriging surface (of the residual process) to the median-polish sur-
face shown in Figure 5.4. This is called median-polish kriging by Cressie
(1986). The mean-squared errors of prediction (median-polish-kriging vari-
ances) {of(so) : 89 € eastern United States} are given by (5.11) and will
now be used to choose the optimal location of a new site.

Let §={s;,...,8,) denote the existing network and let 5p={8.41,...,
Snim ) denote m > 2 potential new sites from which one will be chosen.
Define 5;, = SU {8}, i=n+1,...,n + m to be augmented networks.
Then 5, ; is preferred if it predicts best the remaining m — 1 sites in 5p (on
the average).

Specifically, let o7(so; 54.) denote the kriging variance for predicting the
acid-deposition level at sy using the augmented network 54, where i =
n+1l,...,n+m. For illustration, define the objective function

nm
Visi)= 3 of(siiSei)/(m=1), j=n+l,...,n4m. (523
l:;-;]
Then the site in Sp that achieves min{V(s;):j=n+1,...,n+ m} will be
declared the optimal site to add. (Other criteria are considered in Cressie
et al, 1990.)
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FIGURE 5.5: Empirical variograms (robust) for median-polished residuals.
The superimposed dashed line indicates the weighted-least-squares fit. Units
on the vertical axes are in (umoles H* fem?)?; units on the horizontal axes
are in miles. Reprinted, by permission, from Cressie et al. (1990). Copyright
€ 1990 by Elsevier Science Publishers, Physical Sciences and Engineering
Division.

Eleven potential sites (Minneapolis, Minnesota; Des Moines, lowa; Jef-
ferson City, Missouri; Madison, Wisconsin; Springfield, Illincis; Altoona,
Pennsylvania; Charlottesville, Virginia; Charleston, West Virginia; Balti-
more, Maryland; Trenton, New Jersey; and Knoxville, Tennessee ) were cho-
sén to improve geographic coverage of the existing network (of 19 sites).
From among these eleven sites, Baltimore (marked with a square on Fig-
ure 5.3) was chosen as the optimal site to add. Its associated average kriging
variance, given by (5.23), was 2.56 (umoles H* fcm?)?, compared to Min-
neapolis’s 2.59 (the second smallest value); Charlottesville had the largest
value of 2.77.

5.3.2 Research Frontiers

Change of Support

The change-of-support problem remains a major challenge to geostatisti-
cians. Although data come as Z = (Z(s;),...,Z(ss)), inference may be
required for Z(B) = g Jp Z(u)du. Kriging adapts very easily to ac-
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commodate the change from point support sy to block support B. For
example, in (5.10) and (5.11), 7 is modified to ¥(B) = [gy f51(s1 -
ujdua, ..., Th_&, ¥(8n — u)dul’, and in (5.11) ¢f(F) has the extra term
]ifrfsfn 7i{u - v)dudv. But in mining applications and emission com-
pliance, for example, the quantity of greatest interest is the conditional
distribution Pr(Z(F) > z|Z). Both disjunctive kriging (Matheron, 1976)
and indicator kriging (Journel, 1983) attempt to answer this question based
on bivariate distributional properties of the (possibly transformed) process.
The problem is important enough to pursue beyond these initial approaches.

Multivariate Spatial Data

Prediction of a value Z(sy) based on data Z and observations on other
processes is known as cokriging. The appropriate generalization of the vari-
ogram (5.1) is the cross variogram

var(¥Y(u) - Z(v}) = 2yyz(u,v), (5.24)

where Y(u) and Z(v) are normalized to have the same units. Cokriging
equations for predicting Z(sg) from Z and Y can be obtained in terms of
YZZ, 1Y, and vy z (Clark ef al., 1989). However, there is a dearth of models
for (5.24); the basic requirement for a valid model is that its parameters can
be estimated from the partial realization (Z',Y"') of the bivariate process.

Variogram Model Fitting and its Effect on Inferences

The variogram (5.1) has the property of conditional negative-definiteness.
Based on a nonparametric estimator 25(-), say, current practice is to fit a
parametric model 29(- ; @), which is guaranteed to be conditionally negative-
definite. [s there a way to find a nonparametric fit to 2%(:) from the set of all
conditionally negative-definite functions? If it can be found, its description is
not likely to be very parsimonious. Variogram-model choice should probably
balance the closeness of its fit to the data, with its predictive power. For
temporal data, Rissanen (1984, 1987) takes such an approach; however, his
being able to sequence the observations is important, since the accumulated
prediction errors form an integral part of his method. Development of a
spatial version is an area worth investigating. Now, having chosen a model
29(-; ), what effect does the estimation of @ have on inferences for £(sg)?
Zimmerman and Cressie (1991) have some initial results, but considerable
further research is needed to resolve this important problem.
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Spatial Statistics in the

Analysis of Agricultural
Field Experiments

Julian Besag
University of Washington'

6.1 Introduction

The main purpose of agricultural field experiments is to compare the effec-
tiveness of different treatments (e.g., fertilizers) on a particular crop variety
or to make comparisons between different varieties of the same crop. Ac-
curacy is paramount, but valid assessment of error is also important. A
typical experimental layout consists of a linear or two-dimensional array
of contiguous rectangular strips of land, called plots, each of which is de-
voted to a single treatment or variety. Plots are usually long and narrow
(e.g., 20m x 2m), partly as a trade-off between ease of management and
compactness of the experiment.

In a linear layout, the longer sides are chosen to abut one another, so as
to minimize the impact of fertility gradients across plots (see Figure 6.1).
The most common measurement is that of plot yield at harvest, which in an
ideal world would provide a direct assessment of the corresponding treatment
or variety effect., However, vield is influenced by external factors such as
weather and plot fertility. It can often be assumed that weather has a
uniform effect, in which case comparisons remain valid under more general
conditions; otherwise, several experiments may be required. On the other
hand, variation in fertility over the experimental region is usually substantial
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and if ignored can lead to quite erroneous comparisons. Proper design and
analysis of field experiments aims to minimize such problems. By the term
design, here we mean, somewhat narrowly, the rule by which treatments are
allocated to plots (henceforth we include the possibility that treatments are
in fact different varieties).

Clearly, the task of controlling for variation in fertility is inherently spa-
tial and is the focus of this chapter. In §6.2, we discuss general background,
largely from a historical perspective, and in §6.3, we consider some recent
progress and possible future directions at a more technical level. First, how-
aver, it should be noted that there are other types of field experiments that
are not strictly covered by the above description. For example, interest
may center on a measurement other than vield, such as resistance to dis-
ease or quality of product. Also there are experiments that are multisite or
multistage or that involve mixtures, spacings, intercropping, competition,
interference, and so on. Thus some experiments involve spatial considera-
tions rather different from those on which we concentrate in this chapter; for
example, in assessing resistance of different treatments to a particular pest,
the main problem may concern patchiness of infestation over the experi-
mental region. Nevertheless, we hope that in focusing on a single important
topic, the richness of the subject as a whole will not be lost.

6.2 General Background

Methods of controlling for variation in fertility across the experimental re-
gion have a long history. Perhaps the first was the use of check plots (e.g.,
Wiancko, 1914); that is, plots interspersed regularly at frequent intervals
throughout the experiment and containing a standard treatment. The yields
from these plots can be used to calculate a local fertility index for each ex-
perimental plot and to adjust its yield accordingly; the assumption is that
variations in adjacent plots are relatively small. Check plots are still em-
ployed in early generation selection trials where it is required to choose say
10% from many hundreds of varieties for further assessment. This selec-
tion is done at a stage where only a single plot is available to each vari-
ety because of restrictions of management, space, and the quantity of seed
available. Besag and Kempton (1986) give an example involving 1560 differ-
ent lines of winter wheat. However, for general use, check plots are rather
crude, demand additional space, labor, and expense, and are somewhat self-
defeating in that experimental plots become even more widely dispersed
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over the field. Furthermore, there is no obvious means of judging the relia-
bility of estimates. This is also true of systematic designs, such as the Knut
Vik square, in which several plots, regularly dispersed over the experimental
region, are devoted to each treatment. In this case, control for fertility is
implicit rather than explicit; each treatment set of plots should be subject
to approximately the same variation. Systematic designs also have a long
history (e.g., Beaven, 1909) and still find favor in some Nordic countries.
Two other possibilities are (1) the use of soil analysis in each plot to con-
struct a fertility index, although this appears to have little if any support
in practice, and (2) the incorporation of data from previous experiments,
although this may be awkward operationally and requires the generally du-
bious assumption that fertility gradients remain approximately static from
Vear to year.

The method of control that has now become standard in most coun-
tries was first proposed by R. A. Fisher in the 1920s. Fisher's triumph was
to construct an entirely self-contained inferential framework that is valid
whatever the pattern of fertility might be, subject only to an assumption
of treatment additivity; that is, it is assumed that the relative effect of any
particular treatment would be the same on any plot. The methodology relies
on three key ingredients: replication, blocking, and rendomization. Replica-
tion means that each treatment appears several times, usually with equal
frequency, in the experiment; this generally improves accuracy and provides
a basis for its assessment. Blocking implies that there are restrictions on the
allocation of treatments to plots, which are imposed to counteract suspected
fertility gradients. The intention is that fertility should be approximately
constant within blocks, so that corresponding differences in plot yields are
meaningful; this further improves the accuracy of treatment comparisons.
Finally, randomization requires that treatments are allocated to plots en-
tirely at random within the constraints of the blocking structure; it is this
step that ensures the unbiasedness of treatment comparisons (contrasts) and
the validity of the associated standard errors within the inferential frame-
work.

Since this framework is not at all obvious, we provide some brief discus-
sion in the particular context of the simplest common example, namely, the
randomized complete blocks design, for which blocks and replicates coincide.
Each plot yield is assumed to be the sum of three components, a fixed block
effect, a treatment effect, and a plot effect. The natural means of introduc-
ing randomness into the model is to suppose that the plot effects represent a
realization of a spatial stochastic process. The question, which is addressed
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in §6.3, is, what process? Fisher brilliantly circumvented this problem by as-
suming plot effects to be fixed and by introducing randomness solely through
the act of allocating treatments to plots. In other words, it is the very act
of randomization that alone induces a probability distribution in the vields,
and hence a basis for inference. For details see Kempthorne (1952, Ch. 8)
but it turns out that the calculation of treatment estimates and associated
standard errors coincides exactly with an ordinary least-squares analysis of
the corresponding linear model assuming a fixed layout and uncorrelated
random plot effects. For this reason, it is sometimes assumed that the latter
formulation underpins the Fisherian analysis, whereas the two models are
quite distinct, with the first addressing a fixed field with a randomly chosen
layout and the second a random field with a fixed layout. Of course, in the
second, an assumption of uncorrelated or equi-correlated plot effects within
blocks is untenable if fertility gradients exist, as is generally the case unless
the number of treatments (i.e., blocksize) is very small. Finally, note that
the “usual™ construction of confidence intervals based on the t-distribution
can be shown to be approximately valid under randomization.

Thus, the main problem in adopting a randomized complete blocks de-
sign is not in the validity of the analysis (although one might challenge the
relevance of the conceptual framework) but in its lack of sensitivity. A graph
of estimated plot effects against their locations in the experiment will almost
inevitably display substantial spatial structure; to ignore this is extremely
wasteful. The classical remedy has been to develop much more sophisticated
designs that employ a local blocking structure within which it can be more
reasonably assumed that fertility is eflectively constant. The most efficient
designs, such as completely balanced lattice squares, are rarely practicable
because of restrictions on the number of treatments and replicates. This
difficulty has been met by the introduction of compromise designs, based on
partially balanced incomplete blocks, and these are now used quite widely,
especially in variety trials (Patterson and Hunter, 1983). However, a new
problem arises with sophisticated designs, for there no longer exists a proper
justification for the use of Gaussian-theory confidence intervals, unless ad-
ditional or different assumptions are made in the statistical formulation.
Furthermore, despite the obvious merits of sophisticated designs, a large
proportion of experiments in the world employs nothing more complicated
than randomized complete blocks, whether for reasons of tradition or ease
of management. Thus it is important that methods of analysis be avail-
able that adopt explicit spatial models for fertility, if only as a means of
salvaging badly designed experiments (Bartlett, 1978, 1988). Of course, it
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would be unrealistic to expect a spatial model to provide more than a crude
representation of a true fertility process, but this is probably unimportant,
since (1) it is the replicated treatment effects rather than the individual
plot fertilities that are of primary concern and (2) the purpose of the model
is essentially one of interpolation rather than extrapolation. There is an
interesting contrast here with the usual requiremnents in time series analysis.

In fact, the idea of extracting information from neighboring experimental
plots as a means of controlling for variation is not at all new and was first
proposed in the 1920s by J. 5. Papadakis, a distingnished Greek agronomist.
Unfortunately, his entirely empirical approach received very little attention
by others; for some historical reflections, see Bartlett (1988). Nevertheless,
Papadakis himself continued to use and develop his method over several
decades (see Papadakis, 1984), and it is instructive to consider one particular
version below.

Thus, let y denote the vector of observed yields, with plots indexed in
some convenient manner, and suppose

y=Tr+z+1=z, (6.1)

where v denotes treatment effects, T is the corresponding full-rank treatment
design matrix, r represents the (fixed) fertility effects measured about zero,
and z is residual error. If r* denotes a current assessment of r and is
presumed to be correct, the corresponding ordinary least-squares estimate
of v is

™) = (TTT) ' T (y - 7). (6.2)

This provides a reassessment y — T'r* of = but leads to circularity in the
absence of some form of constraints on the parameter space. Papadakis
resolved this difficulty by using as the new estimate of

()= H(y-Tr"), (6.3)

where i is a matrix that reflects anticipated similarity in fertility between
neighboring plots. For example, in a two-dimensional layout, the fertility
in any particular plot might be estimated by the average of the residuals in
the four adjacent plots, with an appropriate modification at the boundary
of the experiment. Papadakis initiated (6.2) with z* = 0 and then iterated
between (6.2) and (6.3), either for a prescribed number of cycles or until
convergence. Here we concentrate exclusively on the latter option, referred
to as the iferafed Papadakis procedure. It follows that the final estimate r*
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satisfies
= (17T 'y - H{y - Tr*)],
so that
TI( - BT = TT(I - H)y. (6.4)

Thus an alternative viewpoint is that r* is the generalized least-squares
estimate of r when r is negligible and z is interpreted as a realization from
a spatial stochastic process with (possibly generalized) inverse covariance
matrix proportional to [ — H, assuming this is symmetric positive (semi-)
definite.

The implication is that Papadakis® empirical procedure may have a sepa-
rate interpretation as a formal model-based approach to fertility adjustment.
We investigate this and consider generalizations in §6.3. Of course, at this
stage, there is no guarantee that " has any particular merit, or that the
I — H induced by typical Papadakis adjustment holds appeal as inverse co-
variance matrices in a random field formulation. Finally, note that, where
in our discussion J — H is singular, estimates of treatment contrasts rather
than r* itself will be uniquely determined.

6.3 Some Recent Progress and Future Directions

6.3.1 Aims

It has already been noted that, in most field experiments, plots are long and
narrow. It follows that, even when the layout itself is two-dimensional, in-
ternal control for fertility variation is usually profitable only in the direction
of the shorter plot axis. Thus, in §6.3.2, we concentrate on one-dimensional
adjustment. In particular, we first discuss the role of simple stochastic mod-
els in experiments that only invelve a single linear array (column) of plots;
the results extend immediately to trials that in effect employ several sepa-
rate columns. Then, in §6.3.3, we tackle the less common but nevertheless
important situation in which genuine two-dimensional adjustment is nec-
essary; this is a topic that requires considerable further research. Finally,
in §6.3.4, we briefly discuss some other approaches and some outstanding
problems.

In §§6.3.2 and 6.3.3, we assume a formulation that is in accordance with
equation (6.1), where now y, z, and z are interpreted as realizations of
spatial stochastic processes ¥, X, and Z; thus,

Y=Tr+X+2, (6.5)
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where ¥ is the vector of random plot yields, r represents fixed treatment
effects, and T is the design matrix for the experiment. We further suppose
that the components of Z are uncorrelated, with zero means and common
variance ', and that Z and X are uncorrelated; Z takes account of residual
errors and is often negligible in practice when compared with the variation
in the fertility process X.

6.3.2 One-Dimensional Adjustment

I[n discussing specification of the fertility process X for layouts that consist
of a single column of n plots, it proves convenient initially to consider an
ostensibly infinite column, with plots labelled i = 0,%1,..., according to
their positions with respect to a reference plot 0. Let X, denote the random
fertility in plot 1, measured about zero. The simplest specification of the
X's that departs from independence is the classical first-order stationary
autoregression in which the lag k antocorrelation is pp = A* k= 0,£1,...,
where |A| < 1. The corresponding autocorrelation generating function is

= 1= A
C(u) = Eﬁmu‘ ek v T e L (6.6)

In the present context, the above unilateral model is more naturally formu-
lated as a bilateral autoregression, with

E(Xi|all z;,7 #1i) = Blzi-1+ zin),
var (Xi| all z;, i #4) = «x, (6.7)

where § = Af(1 + A?) and || < §. The equivalence is confirmed by noting
that (6.7) implies that the corresponding autocorrelations py satisfy

P = .ﬂtﬁl—l +F|r+'l}s k=], $2,..., {ﬁg}

and hence that py = A*l. The duality between the unilateral and bilateral
formulations does not generally extend to higher dimensions and rests on the
factorization h{u)h{u=!) of the denominator in (6.6), where A{u) = 1 — Au;
see §6.3.4 for some further comments.

Of course, in reality, neither X nor Z is obsarved but only ¥ over a
finite column of plots, i = 1,2,...,n, say. If @ = w/2x and § were known,
then estimation of r could proceed by generalized least squares. Otherwise,
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several methods of estimating w, x, and § are available. For example, one
might assume additionally that X and Z are Gaussian and apply standard
maximum-likelihood estimation (¢f. Tiao and Ali, 1971, in a different con-
text) or the residual maximum likelihood (REML) variation (Patterson and
Thompson, 1971). What is important here is that in practice it is common
that the estimate of a is zero or close to zero and that of 3 is very close to
its maximum possible value, i It is therefore instructive to consider both
a=0and 81 }in more detail. In each case, we again begin with an infinite
line of plots.

First suppose that a = 0 with J known and let H denote the doubly-
infinite matrix with (i, j) element

B i=ixl
H"‘-{D otherwise

Then it is easily checked that the inverse covariance matrix (i.e., precision
matrix) for ¥ is proportional to J — H. It follows that the generalized
least squares estimate r* of r agrees with the iterated Papadakis estimate
in (6.4) for which fertility in plot i is estimated at each stage by 3 x {sum
of the residuals in the two adjacent plots}. This provides a useful connec-
tion between the present model-based approach and that espoused empir-
ically by Papadakis. Furthermore, the duality between bilateral modeling
and Papadakis’ method is perfectly general, provided H in (6.3) is sym-
metric positive (semi-) definite, and extends not only to more complicated
one-dimensional adjustment but also to higher dimensions (¢f §6.3.3). Of
course, for real experiments with finite numbers of plots, it holds only as an
approximation because of edge effects.

Second, suppose that 3 1 * for fixed o. Though the distribution of X
itsell degenerates, the differences X; — X; remain well behaved with zero
means and with variances

2101 — ARl
ﬂr{-’l’i--’*’i]=h“+i.}_{,lu— ) — 2efi - i

as 31 J} Equivalently, first differences X; — X;.; are, in the limit, un-
correlated and have equal variance 2x, so that X can be thought of as a
random walk. It is also of interest that, in the limit § = 1, the conditional
expectation formulation (6.7) remains valid, even though the marginal mean
of X; is undefined and the marginal variance is infinite. This is the most
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basic example of an intrinsic autoregression (Kinsch, 1987) and provides a
stochastic version of simple linear interpolation; see also §6.3.3. The degen-
eracy is unimportant in practice because it is only comparisons of treatment
effects that are being assessed. This becomes apparent algebraically if we
return to the actual experiment. Thus, let I, = ¥, = ¥y, i=1,...,0 =1,
or, in vector notation, ' = AY, where A is the m — 1 by n matrix taking
first differences of the ¥;"s. It is convenient at this point to single out the
overall level 7 of the experiment. Suppose T is a p-vector; then perhaps after
reparameterization, we can write

Tr=91+ D§, (6.9)

where 1 is an n-vector of 1's, § is a p—1 vector of (relative) treatment effects,
and D is an n by p — 1 design matrix of rank p— 1. Since any treatment
contrast ¢ = a’ r, where aT1 = 0, can be written in terms of &, it is sufficient
to concentrate on the estimation of §. The mean and variance-covariance
structures of I’ are given by

E(U)=F§, D(U)=2xQ, (6.10)

where F = AD,Q = I + aAAT, and I is now the (n—1) x (n—1) identity.

Note the absence of end-plot problems and the retention of information on

treatment contrasts in the reduction of the data to n — 1 first differences.
Finally, let &2 denote the generalized least-squares estimate of §, so that

& =(FTQ'F)'FTQ "u, (6.11)

where u is the observed value of [7.

Two special cases of (6.11) merit attention. At one extreme, & is the
ordinary least-squares estimate of § based on u; at the other, & is the ordi-
nary least-squares estimate of § based on y (¢f Besag and Kempton, 1986).
Thus, for any intermediate value of o, §; provides a compromise between
the ordinary least-squares estimates of § based on u and on y, respectively;
this resembles the combination of intra- and interblock information in the
classical analysis of incomplete block designs but here using the notion of a
moving block of size two.

The above discussion indicates that there is little point in retaining a
flexible value of § and that § = i should be adopted from the outset. In
practice, it is still often found that the estimate of o is essentially zero,
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TABLE 6.1: Layout and Yields (t/ha) for 62 Varieties of Winter Wheat

REaplicate 1 Raplizate I Raplicace J
Variety Y¥ield Vaeisty Yisld Vaziszy Yiald
1. 1.32 W 1.82 2 1.2%
50 6.4 1 s 14 6.70
1 T.ad I 1 1.87
1 B.%4 a0 5 1.8
2 1.2 i 5.5B 11
4 7.50 1 6.0l 2 6T
2 6.2 1 1.3 €0 B.44
14 a6 i 1.0 5 1.6l
6 0 7.12 F I Y i 6.53
12 . TR s 7.23
1§ T.15 B 632 1 6.76
N 4 1.43 £ E.19
4 T.48 = 1.3 7 1.86
w702 €1 B.36 18 1.82
a0 616 % .04 o 6.6%
2 1.8 7.3 M 8.3
5 7.8 8% b.16 T
13 8.8 2 686 M 1.6
TEEEN T T 829
1 7.38 1 6.5 3 M
-ERE W T 1 .56 15 4.8
87 8.04 LI T €2 831
17 810 N N T 46 B.4%
TN 6.5 11 8.30
§1 B.4l 4 5.0 a2 1,43
13 B.3% 1T B.60 T 9.5
TR T 4 1.2% 18 6.87
5 7.0 §1  8.35 0 8.6%
2% 8.3l EC 17 1.6%
23 §.87 16 T.70 g T.84
21 1.83 T .46 W 194
FEE W'T | T.28 € 1.7
% 1.07 T T 19 1.8
52 9.00 1 Tk 5 182
a4 B.20 W 1.6 MW 658
4 1.8 [T I T 1,81
€0 B.49 3 1.3 w  1.n
a8 6.88 12 52 41 1.9
12 8.17 W 108 1 5.60
€2 7.9% TR S T 2 §.12
14 1.48 2 T4 1§ 1.5%
a0 1.17 TR R T 13 §.52
17 1.0 11 h.08 1€ B.58
€ T TR L 7 1.8
LT T a1 §.0% 8.3
a6 B.5% W 1.3 17 189
n 1.5 12 .00 59 5.18
3w 1.7 52 5. 13 .04
15 4.82 55 §.60 T LM
5 §.40 EEI 0 8.8
3L $.02 a1 820 1 .
47 T, 57 14 T.%0 . 1] T.18
23 $.12 23 926 4 820
T B8 s 180 12 .20
1 881 15 €.20 TN T
i §.5% a1 898 TN T
5 5,14 83 896 P 678
1 1.7 FER O ¢ 1 7.7
a3 8.4 TR T THEE N
27 1.98 M 9.18 12 8.4
51 1.66 € .40 43 7.9%
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especially if due allowance for outliers and jomps in fertility is made (cf
§6.3.4); this leads to a very simple estimation procedure. Although design is
not a consideration here, it is worth noting that if plots 1 and n contain the
same treatment, &7 is a linear combination of the n — 2 second differences
#i-1 — 2yi + yi41 and is therefore invariant to linear trends in fertility and
approximately so to locally linear trends (which are of greater concern).
Incidentally, it also turns out that & is featured in several other proposals
for fertility adjustment and provides an agreeable unity between ostensibly
different approaches; again see §6.3.4.

The general analysis with § = i extends immediately to several (effec-
tively ) independent columns of plots. The single parameter v is replaced
by a vector of separate column effects and, subject to the usual necessity
of such terms, there is again no loss of information on treatment contrasts
by the reduction of the data to first differences within columns. For further
details, including determination of standard errors, the analysis of a facto-
rial experiment on triticale, and an assessment of accuracy and precision,
see Besag and Kempton (1986).

Here we illustrate first-differences analysis on an official United Kingdom
trial for winter wheat, carried out by the East of Scotland College of Agri-
culture and involving final assessment of 62 different varieties. The layout of
the experiment, in three physically separated complete replicates, and the
corresponding yields (t/ha) are listed in Table 6.1. The yields are graphed
against plot position in Figure 6.1 (top); there is clear evidence of mod-
est fertility gradients within replicates. First-differences analysis (i.e., with
4 = }) produces the estimate a = 1.76 and the decomposition of yields into
relative variety effects, fertility effects, and residuals shown in the bottom
three panels of Figure 6.1. The standard errors of pairwise differences be-
tween varieties range from .202 to .238 with a mean of .223, compared with
the value .418 for a complete block analysis. Thus, there is substantial im-
provement in precision and presumably in accuracy of variety estimates; for
objective methods of assessment, see the penultimate paragraph of §6.3.4.
Moreover, fertility gradients are often more pronounced than in this partic-
ular experiment (see, for example, the associated trials analyzed by Green el
al., 1985), particularly in countries that do not have the temperate climate
of the United Kingdom.

In fact, because of the importance of the above trial, the within-replicate
layout conformed to a generalized lattice design. This confers no particular
benefit to the first-differences analysis, except perhaps to reduce the range
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FIGURE 6.1: Raw yields and subsequent first-differences decomposition for
62 varieties of winter wheat.

of the standard errors, but enables classical incomplete-blocks analysis to be
carried out. The corresponding standard error of a varietal difference, kindly
supplied by Professor H. D. Patterson, is .235. The fairly close agreement
with spatial statistical analysis seems typical but of course the latter does
not require a sophisticated design and applies equally to the simple layouts
encountered more commonly in practice.

6.3.3 Two-Dimensional Formulation

In this section, we seek to generalize the previous one-dimensional formula-
tion. Thus, we again adopt equation (6.5) but now identify plots by integer
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pairs of Cartesian coordinates i = (iy,43). Practical aspects are not devel-
oped to the same extent in two dimensions, the main problem being that
edge effects are much more important than in one dimension (Guyon, 1982;
Dahlhaus and Kiinsch, 1987) and must not be ignored, although their effects
are sometimes overemphasized.

The generalization of equation (6.7) to a two-dimensional model is given
by

E(Xilall 2,5 #9) = Bilzi—14 + Tiers) + BalZi -1 + Tii41),
var(X;lall z;,j #1) = =, (6.12)

where |8y| + |83] < }; we assume neither §; nor 3; is zero. It follows that
the autocorrelations py satisfy

Pk = Bilpr -1 + Pt ) + B2(Phy ka1 + Py by 1) (6.13)

for k # (0,0) and that the corresponding generating function is

Cwy= 3 3 mufed [1-Fifwm+u;')=Balup+u3")] ", (6.14)

by = ky= -

which cannot be reproduced by any finite unilateral autoregression. For-
mulae exist for the low-order autocorrelations but generally the py's are
best calculated by recursive algorithms (these can be quite delicate) or ap-
proximated using Bessel functions; for details, see Besag (1981). Equation
(6.12) can be easily extended to include more distant plot fertilities, with
appropriate modification to (6.13) and (6.14); see Rosanov (1967) or Besag
(1974), though (6.12) itself dates back to Lévy {1948). If Z is negligible
(i.e., @ = 0), the equivalent jterated Papadakis adjustment (6.3) for any
particular bilateral autoregression can be written down immediately.
Given a partial realization of X in (6.12) over a finite region, the parame-
ters 3y, B3, and % can be estimated by matching the theoretical variance and
first-order autocovariances with the edge-corrected (i.e., unbiased) empirical
values (Besag, 1974; Guyon, 1982). This generalizes to arbitrary bilateral
autoregressions and, if X is Gaussian, is equivalent to asymptotic maximum-
likelihood estimation. However, here we are concerned with observation on
Y in (6.5) rather than on X. The incorporation of treatment effects r is
straightforward but that of random error £ is more problematical, primarily
because of edge effects. When £ is ignored, it is generally found that the
estimate of 3, + 3y is very close to J} One means of including Z is to make
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toroidal assumptions, identifying opposite edges of the field (Besag, 1977).
Although this device is of minimal direct practical relevance, one might rea-
sonably expect that it should depress the estimates of ; and 3;, and yet
the above behavior seems to be reproduced. Thus, we might well abandon
the stationarity assumption and rather adopt (6.12) with 8, + f; = 1; that
is, on the infinite lattice, an intrinsic bilateral autoregression of class zero
(Kiinsch, 1987). Such a formulation is of course entirely consistent with
the one-dimensional development in §6.3.2; again, we may expect that £
will often be negligible, which if assumed from the start would lead to en-
tirely straightforward estimation, although we do not wish to exclude the
possibility of a non-zero a.

Certainly the problems of estimation are not insuperable but they require
further research, especially as regards standard errors for treatment con-
trasts; these must retain approximate validity somewhat outside the narrow
confines of the model itself. We briefly consider the assessment of different
methods in §6.3.4, but here we conclude with some remarks concerning the
structure of intrinsic autoregressions. Thus, suppose 3; = § and 3; = i -
in (6.12). In the absence of stationarity, we need a new measure of covari-
ation and the obvious choice is the semi-variogram (of chapter 5), defined

i 1
= E‘I'I.I'[Ii - Xisk)., L kE z?,

It follows that vy = 0 and, from (6.12),

1
vp = —Keg + BV -1y + Vi1 + {E = BNy ja=1 + Vi 1)

where ¢ =1 if k=(0,0) and is otherwise zero. It can be shown (Kiinsch,1987)
that the asymptotic growth of the semi-variogram is logarithmic. Although
explicit results are not generally available, it may be noted that, when 3 = },
o =g = K,

(cf. Besag, 1981), and the semi-variogram can be easily evaluated for all
lags. On the other hand, # = 1 of course reverts to the model of §6.3.2
for independent columns of plots. At first sight, it might appear that the
value of 4 should simply be determined by plot shape, assuming isotropy
of the underlying fertility process, but in practice, fertility patterns are also
induced by the management of the experiment.
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6.3.4 Other Approaches and Further Research

Several other methods of analysis for agricultural field experiments, adopting
explicit spatial assumptions, have been proposed in the literature; see, for
example, Wilkinson at al. (1983), Green et al. (1983), Williams (1986),
Gleason and Cullis (1987), and Martin (1989). Here we briefly consider two,
the first based on a time-series formulation, the second on a data-analytic
approach.

We have already noted, in §6.3.1, the equivalence between first-order
unilateral and bilateral autoregressions in one dimension. This extends to
models of arbitrary order. Thus, for trials that only require one-dimensional
adjustment, Martin (1989) proposes that classical time-series methodology
should be used to select and fit an appropriate model in advance. He then
extends this approach to two-dimensional adjustment by considering only
the class of processes that, after row or column differencing, are separable;
that is, are stationary and have interplot autocorrelations p; satisfying

Py by = Pley 0 POy - (6.15)

Separability leads to a considerable simplification in the computation of
parameter estimates, though the advantage is diminished with the inclusion
of superimposed random error; see Martin (1989) for details. At first sight,
the Manhattan metric of (6.15) is unappealing but could be appropriate
when fertility patterns are largely the product of cultivation practice and
may in any case provide an adequate approximation. Model selection based
on very limited data is perhaps the major handicap of the approach, though
this aspect could be abandoned. As with other methods, there is a need for
further research, including practical investigation.

For a data-analytic viewpoint, we consider the approach proposed by
Green et al. (1985); this also supplies further insight into Papadakis' and
most other methods. Equation (6.1) again provides the starting point. How-
ever, equations (6.2) and (6.3) are generalized to

™) = T(y-27) (6.16)
#(r*) = S(y-Tr"),

where § and T may be linear or nonlinear operators; 5 is a smoother of fer-
tility and other extraneous variation, whilst T allows (e.g., robust [resistant )
alternatives to be substituted for the ordinary least-squares estimate (6.2).
Here we concentrate on adjustment along a single column of n plots, in
which case the basic choices of § and T are made as follows. First it is as-
sumed that fertility variation is approximately locally linear, so that second
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differences Az are small, where Ay is the n = 2 by n matrix taking second
differences. Then z and r are estimated by least-squares smoothing; that is,
r® and r* minimize

oxTATAgr 4+ 572,
with the effect that smoothness of the fitted fertility pattern is offset against
the residual variation, according to the value of the “tuning constant” a.
Hence z* and r* satisfy (6.16) with 7 as in (6.2) and

S =(I+aAla;)™. (6.17)

As might be anticipated, (6.16) determines estimates of treatment contrasts
rather than 7* itself; see below. Green ef al. (1985) suggest several data-
analytic prescriptions for the choice of a, including cross validation, and
illustrate their methodology on data from three different trials. The anal-
yses also include approximate standard errors for treatment contrasts and
graphs of estimated treatment, fertility, and residual effects across each of
the experimental areas. As with other methods of fertility adjustment that
involve a tuning parameter, the exact value of a does not seem to be critical.

It is of interest that an alternative derivation of (6.17) is available through
the random field formulation (6.5), with the assumption that second differ-
ences in X are uncorrelated and have equal variance 2x. The generalized
least-squares estimate of § in (6.9), based on second differences of the y;'s,
is then given by (6.11) but with A replaced by A3 in the definitions of F, @,
and I/. The equivalence follows since (6.17) implies that

AT -8*al =a@, (6.18)

where A* denotes any generalized inverse of A. Note that, since (6.18)
also holds if A is replaced by A throughout, the above argument can be
inverted to provide a least-squares smoothing interpretation of the first-
differences analysis in §6.3.2. In fact, the generalized equations (6.16) are
of very wide applicability. For example, they inclode, on the one hand, the
estimates obtained from a classical analysis of an incomplete block design
and, on the other, those obtained from the “NN™ methodology of Wilkinson
el al. (1983); for a comprehensive discussion, see Green (1983). Incidentally,
NN analysis over a finite region provides an example where a random field
formulation is not strictly available: S, though linear, is not completely
symmetric because of border plots. However, there are close asymptotic
links between NN analysis and that based on first differences.

A very important aspect of any model-based statistical procedure is its
robustness to departures from the underlying assumptions. Our initial opti-
mism concerning the adequacy of a fairly crude fertility model is supported
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in practice by the general similarity between treatment estimates obtained
from different spatial formulations and by close agreement with classical
results when sophisticated design and analysis, such as balanced lattice
squares, has been used. Furthermore, there is frequent disparity between
spatial and conventional estimates when a poor design, such as randomized
complete blocks, has been employed, so that fertility adjustment seems to
be worthwhile. We briefly discuss quantitative assessment below but it may
also be desirable to modify a model-based procedure to accommodate gross
anomalies, particularly those caused by measurement errors or by abrupt
jumps in fertility, which may be the product of a change in underlying geo-
logical structure, for example. Papadakis (1984) reviews his previous work
on this topic and Besag and Sehealt (1989) summarize a closely related ap-
proach geared to first-differences analysis. In the context of (6.16), the two
types of anomaly might be catered for by nonlinear resistant versions of T
and & respectively.

How can quantitative assessments be made? Perhaps the only rigor-
pus method is to use data from uniformity trials in which all plots receive
common treatment. If a mock design is superimposed on such a trial, any
particular procedure can be used to estimate the relative “treatment™ ef-
fects and, since these are known to be zero, an assessment of accuracy can
be made. Furthermore, the results are relevant to a real experiment under
the usual assumption of treatment additivity, provided the method of analy-
sis also acts additively. Predicted standard errors can also be compared with
actual variability of estimates. Unfortunately, in a random field framework,
each trial provides but a single assessment and many sets of uniformity data
are required for a proper evaluation. Moreover, uniformity trials are rarely
carried out these days, though, for an early catalog, see Cochran (1937).
An alternative is to carry out an assessment within a randomization frame-
work (e.g., Besag and Kempton, 1986, Appendix 2), although of course, this
addresses a population for which the procedure was not designed.

Finally, what of Bayesian formulations? They are indeed comspicuous
by their virtual absence from the literature. The main difficulty is that of
representing in probabilistic terms one's prior beliefs about fertility varia-
tion. Thus, considerations are likely to be very similar to those arising in a
random field formulation (6.5) but inferential aspects may be more akin to
recent developments in Bayesian image analysis.
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7
Spatial Statistics in Ecology

Peter Gutt
University of Washington

7.1 Introduction

Ecological theory is essentially spatial in character. Many methods for an-
alyzing spatial data have been developed in an ecological context (Hertz,
1909; Greig-Smith, 1952; and Kershaw, 1957, are some important early ref-
erences). Methods from spatial statistics have recently seen an increasing
use in this field. Perhaps the most important data for quantitatively ori-
ented plant ecologists are complete maps of the vegetation in an area at
different times. While the construction of such maps used to be an incred-
ibly time-consuming fieldwork task, modern digitization techniques enable
an increased use of aerial photographs and satellite images. Here, as in
many other fields, there has recently been a substantial increase in both
the gquantity and volume of data potentially available to the ecological mod-
eler. Some overviews of the use of spatial methods in ecological analysis are
Ripley (1987) and Legendre and Fortin (1989).

Typically, a large number of factors interact in ecological processes, and
the precise nature of these interactions is the subject of study. For example,
in the study of forest growth, a limiting factor is availability of light {Ford
and Diggle, 1981). The death of a large tree yields sudden possibilities for
growth of plants that would otherwise remain very small, and can completely
change the competitive advantages between species. The introduction of &
new species may eliminate many previously successful competitors (Ford,
1975, Linhart, 1976). In order to evaluate forest resource management plans,
it may prove important to develop adequate stochastic models for species
growth and competition. The interactions take place at different scales: the
extent of a tree crown limits the availability of light, decreasing the potential
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for other growth beneath the crown, whereas the availability of nutrients in
the local region can increase growth potential on a somewhat larger scale.

In this chapter, we concentrate on one approach to stochastic modeling
of ecological communities, namely, spatial point processes. Models for an-
imal communities often need to include movement explicitly. The theory
of branching diffusions (Dawson and [vanoff, 1978, Kulperger, 1979) can
sometimes be applied to such situations. There is a plethora of predator-
prev models in the applied probability literature, although so far most of
them are not specifically spatial in nature. There is a need for more work
on spatially nonhomogeneous competition models.

Section 7.2 introduces the general concepts of point processes, discusses
nonparametric estimation of second order parameters, and presents some
particular models that have found use in the literature. Section 7.3 con-
tains an outline of a point process approach to modeling single species for-
est growth. It must be emphasized here that the efforts to date of using
stochastic models (in particular point process models) and their attendant
statistical analysis to aid ecological understanding has had only very limited
success. This is due partly to oversimplifications (such as using only homo-
geneous models or studying only one species rather than the interactions of
several), partly to lack of high-quality data, and partly to the difficulty in
interpreting interactions at vastly different scales. More work is also needed
on how to combine inference from the individual pieces that together make
up a model of a complex system.

7.2 Point Processes

A point process is a process of locations of events, taking place in some space
&. Each event may have associated with it a mark, taking place in some
mark space ¥. For example, an event may be a tree, and the mark may be
the species of the tree, its crown length, crown angle, height, and diameter.
An excellent description of point process theory is Daley and Vere-Jones
(1988, especially ch. 7). The random variable N(A) counts the number of
events in the set A C A'. A marked point process is a point process on
X x ¥ with the additional property that the marginal process of locations
N{AxY), AC X is itselfl a point process.

A case of particalar interest is a multivariate point process, where ¥ =
{1,...,m} for some finite integer m. Harkness and Isham (1983) study a
bivariate point process (i.e., m = 2) of ant nests for the species Cataglyphis
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bicolor and Messor wasmanni. Their main interest is in assessing whether
the locations of Cataglyphis nests are dependent upon those of the Messor
ants. This is suggested on bioclogical grounds, since Cataglyphis ants eat
dead insects, mainly Messor ants, whereas the latter collect seeds for food.
An example of a trivariate point process is the data collected by Gerrard
(1969) and analyzed by Besag (1977), Diggle (1983, sec. 7.1), and others,
which contains locations of hickory, oak, and maple trees in Lansing Woods,
Michigan. Of interest here is the interactions between the species. We return
to these examples below.

An important class of point processes consists of those whose distribution
is invariant under translations; these are called stationary or homogeneous.
Those in the subclass of isotropic processes have distributions that addi-
tionally are invariant under rotation. The assumptions of homogeneity and
isotropy are perhaps made more often than the various applications warrant.

Time series analysis has benefitted much from studying second order
properties. These can be estimated nonparametrically, and for a Gaussian
series completely determine the probabilistic structure of the series. But
even in non-Gaussian cases, second-order parameter functions such as the
spectrum or the correlogram convey interesting information. In the case
of point processes, second-order parameters are perhaps less informative
(Baddeley and Silverman, 1984), but are still an important aspect of the
analysis of a point pattern. Diggle (1983, ch. 5; see also Ripley, 1988, ch. 3)
presents second-order parameter estimation, and Brillinger (1978) discusses
the relation between time series and point process analysis,

In what follows, we concentrate on the spatial case where X' = R?. The
second-order product density of a point process is defined by

L E N(dz) N(dy)
Aglz, )= lim .
(2.) fslldsi—=0 || |dy]
For a stationary process, A; depends only on the vector r — y, and if the

process is also isotropic, it further depends only on the length 1 = |z - y|.
A common variant of A; for stationary isotropic processes is (Ripley, 1976)

K(t) = f L 2252 dz de,

A

where A is the rate of the process. The parameter function K(1) measures
the expected relative rate of events within distance t of an arbitrary event.
For example, in a Poisson process (§7.2.1 below) we have

K(t) = =e®,



132

and for a Poisson cluster process of Neyman-Scott type (§7.2.2)
K(t)==* + ES(S - 1) Ha(t)/(p.E*S),

where 5§ is the number of points in a cluster, H; is the cdf of the vector
difference between two points in the same cluster, and p, is the rate of the
cluster process.

Bartlett (1964) stressed the inferential importance of the distribution of
nearest-neighbor distances (which is equivalent to the K-function introduced
above). Ripley (1976) proposed to estimate K'(¢) from points z,,...,2, in
aset A by Al ( \

- A Lug; < ¢

i) = — —_—

k(t)="5 E et
where u;; = |z; — z;| and w;; is the proportion of the area of the sphere of
radius u;; about z; inside A. This nonparametric estimator can be used to
fit a parametric model by minimizing the distance between the estimate and
the parametric form of the function. When comparing to a Poisson process,
it is a common practice to use a square root transformation to stabilize the
variance of the plotted function. Harkness and Isham (1983) found that
this plot for Messor nests (Figare 7.1) lay below the envelope for simulated
values from a Poisson process for distances below 50 feet, indicating an inhi-
bition between nests, presumably due to the foraging practices of these ants
{similar findings for other ant species are reported by Lerings and Franks,
lﬂﬂ!]. On the other hand, the Caluglypﬁ is nests were consistent with spatial
randomness.

Further analysis indicated a tendency for Cataglyphis nests to be located
at or near the mean foraging path for a Messor nest (Figure 7.2). Harrison
and Gentry (1981) discussed biological and statistical aspects of foraging
paths for a single species. The study area consisted of about half scrub and
half field, and the Cataglyphis nests were located mostly in the field region.
Stationarity over the entire study region did not seem to be a reasonable
assumption for these nests, and Harkness and Isham separated out the field
region in their study.

In the case of anisotropic stationary point processes one can estimate
Az directly using the obvious empirical counterpart; essentially a histogram
estimator (cf. Brillinger, 1978; Ohser and Stoyan, 1981). Standard error
for the estimators can often be developed under the Poisson hypothesis
(Baddeley, 1980), whereas for more complicated processes, one may have
to use Monte Carlo methods to assess the variability (see the examples in
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FIGURE 7.1: {K{!]f:}i for the Messor nests, calculated at 5-ft inter-
vals, together with the envelope of 19 curves from simulated Poisson data.
Reprinted, by permission, from Harkness and Isham (1983). Copyright
© 1983 by the Royal Statistical Society.

Besag and Diggle, 1977). Bootstrap and other resampling methods have
been proposed in the ecological literature by Solow (1989).

For multivariate processes a cross intensity can be defined. The corre-
sponding K-function is

Kij(t) = It{}l.,-.lj]_l fi.‘j[u]uﬂu .

where A; is the rate of points of type 1, and A;; is the cross-intensity function
defined by

. EN,(dz) N [d']l}
Xicllz = = b 4 .
=)= = 1d=] Idyi

Corresponding quantities can be defined for more general marked point pro-
cesses, and their estimation is discussed by Hanisch and Stovan (1979).



FIGURE 7.2: Mean foraging path for seven Messor nests. The solid dots
correspond to Cataglyphis nests, and the open dots denote Messor nests.
The field is between 330 and 340 ft wide. Reprinted, by permission, from
Harkness and Isham (1983). Copyright (£) 1983 by the Royal Statistical
Society.

7.2.1 The Poisson Process

The simplest model for point processes is the completely random, or Poisson
process. To define it, assume that there is a finite measure A, such that for
all finite families of disjoint intervals A,,..., A; we have

k R
P(N(A)=nyi=1,...,k) = ]] 'Mi"!} exp({—A(A)).

=]

In particular, the counts in disjoint sets are independent, and hence one can-
not improve the prediction of the number of points in a set from information
about numbers of points in, say, surrounding sets. This is what constitutes
the complete randomness of the Poisson process.

There are many equivalent ways of describing the distribution of point
processes. For example, one may be able to specify the zero probability
function

{(A)=P(N(A)=0),

or the probability generating functional (pgfl)

G(w) =& (exp | [ toghz) N(a)] ) ,

defined for all real measurable functions b with 0 € h < 1 such that 1 - h
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vanishes outside a bounded set. The pgfl of a Poisson process is

G(h) = exp (- jxu - h(z)) h[d:}) .

The Poisson process is often taken as a null hypothesis, to be rejected in
favor of some more structured ecologically relevant process. This was com-
mon practice in the nineteenth century (Darwin, 1881, Hensen, 1884) and
is still a very common hypothesis in ecological models. Besag and Dig-
gle (1977) discuss how to assess such a pattern (as well as more complex
ones) using Monte Carlo testing, which enables a researcher to test specific
hypotheses by simulating the assumed process, and then to check whether
the observed statistic of interest is extreme among the simulations. Among
other examples, the authors applied thiz to the locations of 65 Japanese
black pine saplings (Numata, 1961; ¢f. Bartlett, 1964). More specifically,
they used Monte Carlo testing on a y»-statistic comparing observed in-
tertree distances to what would be expected under spatial randomness. The
observed y®-statistic, which would have been deemed significant were the
intertree distances independent, was in fact found consistent with a Pois-
son process. Much confusion has arisen in the ecological literature (and
elsewhere) from a failure to appreciate the statistical dependence present in
inter-event distances of a Poisson process.

A more detailed analysis of spatial patterns of ponderosa pines was per-
formed by Getis and Franklin (1987) who found that, while the overall pat-
tern of locations was consistent with spatial randomness, nearest neighbor
distances for individual trees showed evidence of clustering on relatively
large scales (about 20 m), and inhibition (presumably due to competition)
on smaller scales (about 6 m). Here the mapping was done from aerial
photographs, and the smallest resolvable distance was 2.4 m.

7.2.2 Cluster Processes

The concepts of clustering and regularity are important ecological concepts,
describing deviations from the completely random process. On an intuitive
level, clustering describes the phenomenon of an ecological niche, or local
regions with higher than average density, separated by regions of low density,
while regularity indicates a tendency towards spacing between individuals.

A cluster point process is a two-tiered process, defined in a conditional
fashion. Given a point process N, of cluster centers, one associates with
each of its events a secondary point process N,(-|z), centered at an event
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at r. The cluster process is the superposition of these secondary processes,
Formally,

N(A)= LJ"’.HH-"":{#}-

Usually the secondary processes are assumed independent, in which case the
pgfl takes the simple form

G(h) = GAG.(h]-)),

where (5. is the pgfl of the process of cluster centers and &, (-|z) is the pgfl
of a secondary process centered at r. A necessary and sufficient condition
for the existence of a cluster process is that

L (1= G(Al2)) Ne(dz) < 2o as. [NJ].

A special case which has found many applications is the Poisson cluster
process, where N, is a Poisson process. The pgfl for a Poisson cluster process
is

G(w) = exp ( [ (Gulhiz) ~ 1) A@z))

It is easily shown that the Poisson cluster process is overdispersed with
respect to a Poisson process with the same mean measure, ie., that the
cluster process shows greater variability in the number of events in a set.
This overdispersion has often been taken as a definition of clustering in
both ecological and engineering literature. However, it is easy to construct
clustering processes (where N, is non-Poisson) which are underdispersed
relative to a Poisson process. For example, the findings (described above)
of Getis and Franklin (1987), as well as the similar earlier results of Besag
(1977}, may be described by a cluster process (on larger scales) driven by
a primary process that is more regular (on small scales) than a Poisson
process.

The most common Poisson cluster process is the Neyman-Scott process,
in which a random number of points are laid out in an i.i.d. fashion around
the cluster center. This model was introduced by Neyman (1939) to describe
the dispersion of larvae in a field. It has since found important applications
in astronomy to describe the distribution of clusters of galaxies [Neyman
and Scott, 1959; Peebles, 1980), and in hydrology, where it has been used to
describe precipitation (Kavvas and Delleur, 1981, Rodriguez-Iturbe et al.,
1984; ¢f. ch. 4).
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7.2.3 The Cox Process

The doubly stochastic Poisson process (often called a Cox process) arises
when the mean measure A of a Poisson process is taken as a realization
of a nonnegative stochastic process. A detailed discussion can be found in
Grandell (1976) and Karr (1986). The pgfl of a Cox process is

G(h) = La(l = k),

where L, is the Laplace fanctional of the stochastic process (random mea-
sure) A. It follows that Var N(A) = EN(A) + Var(A{A)), so that a Cox
process is also overdispersed relative to a Poisson process.

As an example, consider the shot noise process, used by Vere-Jones and
Davies (1966) to model earthquake sequences (including aftershocks). It is
a Cox process with A given by

MA]:E_}",-LH flu)du,

where r; are the locations of events in a temporal Poisson process of con-
stant rate v, which triggers stresses of random amplitude ¥}, assumed i.1.4.
These can give rise to major earthquakes. The intensity then decays accord-
ing to some nonnegative integrable function f on [0,00), possibly yielding
aftershocks. Consequently,

G(h) = exp (L_‘fh (1 -k{i]}ﬂt—:]dt—l]nﬁ) :

where ¢(1) = E exp{-tY). Comparing this to the Poisson cluster process
pefl given above, we see that it is of the same form. Hence, the shot noise
process (so named since the moments agree with the moments derived by
Campbell, 1909, for shot noise in vacuum tubes) is a Poisson cluster process
(in fact, a Neyman-Scott process), and the two different mechanisms for
constructing the process are indistinguishable from data. However, from an
ecological point of view the two mechanisms are very different, and need to
be distinguished from each other. In order to do so, more complex descrip-
tions (perhaps involving more factors or species) are required.

Although the Cox process is overdispersed (clustered) relative to a Pois-
son process, a multivariate version can be constructed to model extreme
inhibition between patterns. Let N = (N;, N;) be a bivariate point process
driven by a bivariate nonnegative stationary stochastic process A(z), such
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that given A, the two components Ny and /Ny are independent Poisson pro-
cesses, but Ay(z)+ Az(z) = v, where v is a positive constant. Then (Diggle,
1983, sec. 6.6.2)

Malu) = —eqlu) 4+ M Az,

where c33(u) is the covariance density for Asz(z). Consequently,
2
Kyat) - wt* = =(2009)7" Y (Kj5(1) - xe).
1

A plot of a nonparametric estimate of the left-hand side of this equation
against a similar estimate of the right-hand side may indicate the adequacy
of this model.

Diggle (1983, sec. 7.7) applied this model to the Lansing Woods data.
As demonstrated by Besag (1977), there is a strong negative dependence be-
tween maples and hickories. The diagnostic plot mentioned above indicates
that the fit of the competing Cox maodel is reasonable. However, the su-
perposition of maples and hickories, which under this model should exhibit
spatial randomness, does not follow a Poisson process. When adding the
oaks, the Poisson fit for the superposition is adequate {although there still
is some indication of clustering in the superposition process, possibly due to
the other kinds of trees that are left out of the analysis). The oaks exhibit
much less overdispersion than the other two species. A nonparametric esti-
mate of (local) intensity confirms that a compensatory mechanism may be
operating, but does on the other hand cast some doubt over the stationarity
assumption. On the whole, this analysis, while providing a nice description
of the observed spatial pattern, fails to produce an ecological explanation of
it.

7.2.4 Markovian Point Processes

Markovian models, which are defined through a local dependence structure,
have found much use in biology. In the spatial context, Markovian point
processes were introduced by Stranss (1975) and by Ripley and Kelly (1977).
A point process on a finite region A is Markov of range § if the conditional
density of a point at r, given all the points in A\ {r}, only depends on
the points in the sphere of radius § around z (excluding r itself). Call two
points neighbors if their distance is less than #, and define a cligue as a
set of mutual neighbors. It is convenient to describe the distribution of a
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point process in terms of its likelihood ratio (Radon-Nikodym derivative)
with respect to a unit rate Poisson process. In general this can be written

Hzyyeoo 2a) o []gilz) []silzins) - raalzrye..iza).
i i>i

Ripley and Kelly proved that if a process is Markovian, it must have all of
the g-functions identically 1, except when the arguments constitute a clique.
This generalizes to other neighborhood systems, not necessarily distance-
based.

The simplest nontrivial conditionally specified point process (also called
a Gibbs point process) is one in which only pairwise interactions are allowed.
Then

Hzyyeoo 2n) x exp (E ﬁ{:.,-_}+Eqb;[.t,-,.tj]) ;
=l i<y

The fanctions ¢y are called point pair potentials. This name comes from
statistical mechanics, where models of this sort are used to describe the
potential energy of a set of particles. The process is Markovian of range &
if ¥ui{z,y) = 0 whenever |z — y| > §. I the point process is stationary, ¥
depends only on the distance between its arguments, and ¥, is a constant.
Writing ¢2(z,y) = V(|z = y|), we can specify the type of interaction by
specifying V. These models are most commonly used to model repulsive
interactions, leading to what is often called a regular point pattern (Strauss,
1975, Ogata and Tanemura, 1984). Examples include V(r) = 0, the Poisson
process; V(r) = — log(1 —exp(—(r/e)?), a soft core repulsive model; V(r) =
(o/r)*, an intermediate case; and V(r) = 0o if r < o, and 0 otherwise, a
hard core rejection model (where no points are closer than ).

Bartlett {1975, sec. 3.2.2) applied a simple inhibitory model to the spatial
distribution of gulls’ nests. The idea was to regard the distribution of nests
as following a Poisson process, but to allow for the association with each
point of a random cutoff, within which radius no other nests can be found.
This combined the hard-core rejection model above with features of the Cox
process of §7.2.3.

It is difficult to estimate the parameters of Markovian point process
models, mainly because the normalizing constant in the likelihood is very
hard to evaluate. The two most common approaches are to use approxima-
tions developed in statistical physics for the normalizing constant {Ogata
and Tanemura, 1984, discuss some of these approximations; see also Ripley,
1988, ch. 4, and recent work using stochastic approximation techniques by
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Moyeed and Baddeley, 1989), or to use Besag's method of pseudolikelihood
(Besag 1975, 1977; some recent theoretical results are in Jensen and Maller,
1989, and Sirkkad, 1989).

7.3 A Spatio-Temporal Point Process Model for
Tree Growth

Most situations where spatial point process models can be useful include a
temporal aspect. In this section, we discuss a possible approach to modeling
tree growth in a pristine forest, with a view toward use for regenerative
policies in national parks following major natural disasters. The intent of
this section is to indicate how a physically based model may be used to
suggest facets of a stochastic model of forest growth. This is different from
the statistical (or descriptive) models that have been the main emphasis in
the past for such efforts.

In order to construct such a model, it seems reasonable to separate out
the occurrence of new growth, the process of growth itself, and the process
of tree death, as suggested by Rathbun and Cressie (1989). We will call the
three components the birth, growth, and death processes. For simplicity, we
will only consider a single species and will use a discrete time scale of, say,
a year, We separate trees into adult individuals that are well established
and juveniles that are struggling to succeed. Foresters tend to make this
classification based on simple measurements such as base diameter. It is
assumed that the forest under study is mapped completely (with regard to
the species of interest) at regular intervals. Sterner et al. (1986) developed
models similar to those discussed below for the interaction of four tropical
tree species.

The birth process, at any given time ¢, will be constructed conditional
upon the location of mature adults. Potential sites for new juveniles are
obtained from a cluster process of Neyman-Scott type with cluster centers
given by the mature adult locations. This represents the spread of seeds from
the adult trees. The germination of seeds, or more precisely, germination
and subsequent establishment of a juvenile plant, is modeled by thinning
the potential sites, i.e., by deletion of each cluster point independently, with
probability depending on the configuration of adults arcund the seedling. If
the nearest adult is far away, so the seedling is in a relatively open area, it
would have a comparatively high probability of germination, whereas if the
seedling is located next to an adult, this probability would be low.
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The growth process takes into account the amount of sunlight available to
a tree by using data on crown angle and height. This process determines the
development of marks from year to year, rather than the points themselves.

The death process needs to have several factors. The process of lo-
cations is thinned using a probability proportional to size (and thereby,
approximately, to age). In addition, competition between juveniles affects
their survival probabilities. The effect of large windstorms can be thought
of as a constant force (this would usually have a preferred direction) whose
mortality effect on a given tree depends on its size and on the configuration
and sizes of its neighbors. Large isolated trees have the highest mortality
from windstorms, whereas sheltered trees in the middle of a tight cluster
have the smallest. Major disasters, such as fires, can be modeled using de-
pendent thinning, where nearby trees have a very high probability of death,
conditional upon a given tree to have succumbed to fire. Each year the prob-
ability of a major disaster is very small. It can be estimated from tree-ring
data. The probability of death from storms is comparatively higher, and
may vary from year to year, based on meteorological factors.

The combination of these forces yields an anisotropic process, for which
one can determine, at least qualitatively, the behavior of second-order inten-
sities. Since many of the subprocesses are observable, it is possible to assess
these aspects of the model using data. The combination of the subprocesses
into a complex mechanism and the detailed fitting and inference yields many
challenging theoretical problems. The main use for this type of model is to
assess effects of changes in the driving forces of the ecological process, and
evaluate various possible reseeding policies. It is straightforward to include
modest amounts of harvesting in the model, which can then be used to assess
various recruitment policies. For assessment purposes, computer simulation
is likely to be necessary.

7.4 Conclusion and Further Directions

The use of point process models in ecology to date has perhaps not reaped
the expected benefits. While the models sometimes have managed to de-
scribe a complex data set in a relatively compact form, there have been very
few instances where data-analytic findings have found proper explanation in
ecological /biclogical terms. With the increased quality of aerial maps, the
requisite data for certain types of vegetation ecology studies will be made
more readily available, and the quality of the analysis should improve.
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The interaction between statisticians and subject area scientists is al-
ways the key to relating data-analytic findings to scientific explanations.
Increased awareness in the ecological community of the methods made avail-
able by improved methods of spatial statistical analysis will undoubtedly
benefit both statisticians and ecologists. There is a substantial need for
more theoretical research into statistical inference based on interacting com-
ponents of complex systems, and into the comparison of model data (be it
the result of simulation, mathematical, or stochastic anaylsis) to “ground
truth®™ measurements.
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Spatial Signal-Processing in
Radars and Sonars

T. T. Kadota
ATLT Bell Laboratories

8.1 Introduction

Radars and sonars are used for detecting and tracking targets. The surveil-
lance radars and sonars typically employ arrays of sensors (or radiators)
placed on the ground or in the ocean. A planar array is used for sonar to
detect seismic explosions and for radar to track distant flying objects, and
a linear array is used for sonar to detect distant underwater objects. The
data thus obtained are in the form of a set of time-series that are related
by the spatial configuration of the array. The task of the radar and sonar
systems is to process these data to detect the signal transmitted from a
target and estimate the signal parameters related to the target location and
velocity. Typically, the data contain noise and interfering signals besides the
target signal, and the “signal-processing” (processing of these data) requires
suppression of the noise and interference and enhancement of the signal.

The literature on spatial signal-processing is enormous: the JEEE Trans-
actions on Acoustic, Speech and Signal Processing, the IEEE Transactions
on Aerospace Electronics, and the Journal of the American Statistical As-
sociafion, just to name a few. Covering the entire area and providing an
adequate survey is beyvond the scope of this report. Instead, by using a sim-
ple example, we give a list of how statistical decision and estimation theory
is used on this form of multidimensional data to derive a signal-processing
algorithm and indicate how to extend the basic approach to more complex
problems in reality.
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8.2 Detection and Estimation Problem

The example we have chosen is the signal- processing of underwater acoustic
data for detecting a narrow-band signal transmitted from a distant source
and determining the direction of its arrival. The signal detection problem is
traditionally cast as a problem of testing a null hypothesis Hy (signal absent)
against an alternative hypothesis H, (signal present) as follows (Helstrom,
1986):

zj(t) dt + dwy(t), (Ho)
d'rj[:l]= Jj=1..,;0<t<T,

s;(t) dt + z;(t)dt + dwj(1), (Hy)

(8.1)

where T is an observation time interval, dr;(t) is the (incremental) acoustic
data recorded at the §*® sensor at time ¢, s;(t) is the acoustic signal received
at the j*P sensor at time ¢, dw;(t) is the (incremental) background noise
at the j'® sensor at time t (assumed to be white Gaussian, independent
from sensor to sensor), and z;(t) is the interference (or additional noise) at
the j*P sensor at time t. We assume that the background noise w and the
interference z are mutually independent.

Adopting the Neyman-Pearson formulation, we obtain the likelihood ra-
tio between the two hypotheses Hy and Hy (i.e., the Radon-Nikodym deriva-
tive between the two probability measures induced by the random fields of
(8.1)). It can be expressed as

dPy . E; expl(s +z,r) = }l|s 4 2|°]

aFo") = TE, exl(zmr) ~ dirlF] &2
where

ro= {drj(t),0<t<T, j=1,....7},

{s;{),0<t<T,j=1,.... 7},
{z(t),0<t<T, j=1,...,J},

and E, denotes the expectation with respect to the probability distribution
of the z process and the inner product and the norm are defined by

I LA o
@n=% [ smdn@, M=% [ dwa.

J=1 y=1
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FIGURE 8.1: Linear array of uniformly spaced sensors.

8.3 Using Linear Arrays of Uniformly Spaced

Sensors

The most widely studied case is the one with a linear array of equally spaced
sensors (see Figure 8.1) and a narrow-band planewave signal with a known
carrier frequency, which may be represented by

3j(t) = Re s (t) exp[—iw(t — 7;)] = Rea;(¥)s.(t) exp(—iwt),  (8.3)

where Re denotes the real part of what follows, {s,(t),0 < t < T} is the
complex signal envelope function, and

W o=
Tj=-

the carrier {angular) frequency such that T » 2r,

(§— 1) cosep/e

the time delay of the signal planewave arrival at the j** sensor
relative to the first,

the distance between two adjacent sensors,
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¢ = the velocity of sound propagation,
¥ = the assumed direction of the signal planewave arrival, and

a;(¥) =axp[i{j—l]¥dl:u15]* i=1...J. (8.4)

Then, in the absence of the interference z, the logarithm of the likelihood
ratio becomes

g 25, ) = (4:7) = 3ol = Re 3_a5(v) [ sdrn - ls?, 835)
where df; is the envelope function of the narrow-band representation of the
data, namely,

drj{t) = RedF;(f) exp(—iwt).

Suppose a planewave arrives in the direction of ¥. Then the signal part of
the data-dependent term, the first term of (8.5), is proportional to

1 = exp|iJwd(cos vy — cos ) e
1 — expliwd{cos ¥y — cos ) fe] '

where a(v) = (ay(¥),...,a7(¥)) is the direction (or steering) column vector
in the y-direction and | denotes the complex conjugate transpose. Equation
(8.6) is in the form of 2 “main beam™ centered at + and “side lobes™ on each
side of the main beam as ¢y varies from —x/2 to /2. Hence, the process-
ing (of the data r) described by (8.6) is called “beam forming™ (Steinberg,
1976). On the other hand, if the actual direction of the planewave arrival vy
is fixed and the assumed direction ¥ is varied, (8.6) attains the maximum
at ¥ = ¢yp, namely, when the beam is steered at the signal source. Thus,
detection of the planewave signal and estimation of its direction of arrival
are done by varying « (steering the beam) from —=x /2 to x/2 to find the
maximum of (8.6) and comparing it to a preassigned threshold determined
by the false-alarm probability (according to the Neyman-Pearson criterion)
(Helstrom, 1986). Instead of steering a single main beam, one can place
many beams to fill the angular sector (- /2, 7/2) by providing many direc-
tion vectors a(¥y, ), m = 1,..., M. Then by comparing the magnitude of
(8.6) for each v, instead of varying o, we effectively accomplish the same
task of detection and estimation.

In the presence of the interference z, some modification to the beam-
forming is necessary. For any interference to be effective against the signal,
it must have energy at or near the carrier frequency (otherwise, it can be

Rea(¥) a(¢y) = Re

(8.6)
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simply filtered out). For the sake of simplicity, suppose we have one sinu-
soidal interference arriving in the ¢’ direction with a Gaussian distributed
amplitude, namely,

2;(t) = Revexp{—iwft = (j = 1)dcos ¥'/c]} = Re uf; exp(—iwt), (8.7)

where the second equality defines £; and u is a complex Gaussian variable
with mean 0 and variance 5. This represents a planewave arriving through
a multipath mediom causing the Rayleigh fading. By carrying out the expec-
tation with respect to z in (8.2) (i.e., with respect to u), the data-dependent
term of the log likelihood ratio becomes

Re(s, 7 - Eof2lF)) = Re (.._ [uw-ﬂ -2 ﬂ,uw}*uwmﬁ'}*l )

Re((J + R)'3, 7), (8.8)

where
§i(t) = aj(w)se(t),

and Eg{%|f} is the conditional expectation of ¥ given f under H,, and
R = ﬂ’n(w’}n{t’}i. The first member of (8.8) has an obvious interpre-
tation: the optimum processing is to make the least-mean-square-error es-
timate of the interference and subtract the estimate from the data before
the beamforming. The second member, on the other hand, shows how the
conventional beamformer is to be modified due to the presence of the inter-
ference. By recalling that a(+') is the steering vector in the direction of the
interference, the modified beamformer has a considerably reduced output
in the direction of the interference, thus acquiring the term, null-steering
{Steinberg, 1976; Gabriel, 1976; Friedlander and Porat, 1989).

In practice, the interfering source is not known a priori and its covari-
ance matrix K must be estimated. The estimation may be done beforehand
or simultanecusly with the detection operation, assuming that the direction
of the signal arrival is known (which is the case with the fixed multibeam
scheme). This simultaneous method is referred to as the adaptive beam-
forming and is implemented by attaching a variable gain {or weight) and a
variable time-delay (which are adjusted as data are obtained) to the out-
put of each sensor. Of course, such an adjustment must be done rapidly
so that accurate signal detection and direction-of-arrival estimation can be
accomplished. The iterative methods of adjusting and their convergence
characteristics have been extensively studied. Monzingo and Miller {1980)
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is one of the comprehensive textbooks on the subject. A benchmark paper
series edited by Haykin (1980) has many important papers, including those
of Gabriel, Applebaum, Widrow, Griffiths, and Owsley.

8.4 Using General Arrays of Sensors

The results presented above can be generalized as follows (Kadota and Ro-
main, 1977): first, instead of a linear array of equally spaced sensors, we
can consider a general three-dimensional array (or configuration) with the
coordinates (£;,7;,(;), j = 1,...,J. Then the planewave arriving in the
(@, v)-direction, where # and ¢ are the elevation and the azimuthal angles,
incurs at the j*P sensor the phase shift expressed by

nj{u,#,¢}=axp[i5[£;mim¢+ n; cos & sin ¥ + C_.-:inﬂ}] . (8.9)

Next, instead of a single planewave, we consider a signal consisting of A
planewaves, each having a different frequency wy, k= 1,..., K, and each
arriving in M different directions (#m,%m), m = 1,..., M. For convenience,
we assume that w7 is an integral multiple of 2r for every k. Also, rather
than a “slowly varying” envelope function s,(1), we consider a complex Gaus-
sian variable (independent of time) as the amplitude of each planewave,
Thus, the signal at the j'h gensor is now given by

K M
55(0)= 3 3 Retigma;(wp, b, Y )exp(=iwit),  (8.10)
k=1 m=1
where {tgm }; ikm = Gkm + iligm, are complex, zero-mean, Gaussian variables
with
Eiigmiipim = Eligmiipim' = prbrmm’y BE=1,... . K;mm'=1,... M.

We allow some p's to be zero since not all frequency components have all M
arrival directions. The interference is now generalized to

-2’:&)

(1) = Red — — E.11
() = LRty oo (~i77 (8.11)

where {8}, B¢ = ®j¢ + 19, are complex, zero-mean, Gaussian variables.
That is, for each j, v;(t) is a discretized version of the spectral representation
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of a general stationary noise. Then the data-dependent part of the log-
likelihood ratio takes the following quadratic form in the data:

(z,(I+ V) 'S(T+V + 5)'5), (8.12)
where

Jl-'={il.---.f.:.---+5'|;x.u.r+1.----flu.in---pf.l'vn-i'll.‘-l}..l'-n-:-----i!f-.i"l-

_ ok T . ok T

Tt )Sbj = (f) ‘L CO% Lyl drj[t]‘ Elpa)dej = (f) -II;I- Bin wigd dr_{[!},
5 8

with the ((k=1)J + j, (F'=1)J + j')'® elements of § and § given respectively

by the real and the imaginary parts of

AF
T hbtemme (kO i )85 (e, Ot V), G157 = 1, T R H =1L K

m.m'=]

and
Voo v o _
V=10 7| (V)p=t)a4saw-1)a+50 = E ipbpebur = E jubjrebin
£=u:;T‘ k=1,....K.
2x

The J sensors constitute spatial samplers of the available (acoustic) data and
their configuration specifies the pattern of spatial sampling. This sampling
pattern is incorporated into the covariance matrices 5§ and V to influence
the detection statistic (8.12) which specifies the data-processing algorithm.
Although the linear array (with or without the equal spacing) is the most
common configuration, due primarily to the ease of implementation, the
sampling pattern can be considered as a factor with respect to which the
detection and estimation performance can be optimized. In fact, we show
next an interesting example of this application.

So far, we have assumed that the semsor positions are rigidly fixed and
their coordinates are known a priori. Although this is the case with the
phased-array radars and seismographic sensors, for underwater-acoustic sen-
sors the exact positions in the ocean are difficult to determine and calibra-
tion of the array becomes necessary. One way to deal with this problem
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is to model the deviation (or fluctuation) of the sensor position (from the
presumed value) as an additional noise and incorporate into the optimum
processor (for detection and estimation) the sensitivity of the performance
to this noise. For example, the array gain (the output signal-to-noise ratio of
an array processor for a given direction of signal arrival) may be maximized
under the constraint that the array-gain sensitivity to the sensor- position
noise be kept below a given level (Cox et al, 1987). An alternative is to
devise the sensor configuration so as to make these test statistics immune to
the sensor-position fluctuation. The ESPRIT (Estimation of Signal Param-
eters by Rotational Invariance Techniques) method (Roy and Kailath, 1989)
forms pairs of sensors to create an array of doublets such that it consists
of two identical subarrays where one is a translate of the other. Suppose
the signal consists of M planewaves with complex, zero-mean, Gaussian am-
plitudes, having the same frequency w arriving from M directions (0, %m ),
m=1,..., M. We further assume for simplicity that the interference is ab-
sent. Suppose we have already detected the signal and our goal is to estimate
the M arrival directions ¥,,, m = 1,..., M, which are specified relative to
the axis of the doublet (the displacement vector). Denote the data from the
two subarrays of sensors by two (J/2)-vectors r and y, assuming J to be
even,

b
= (o), 5= () [ e, (8.13)

¥ = di)s 5= (;)ifw{mmﬁ,m, i=1,....d/2.
Then

Ree =FEzz® = AUA"+ 1

Rey =Ezy* = AUSA",
where A, U/, and % are J x M, M x M, and M x M matrices respectively
and specified by

(A)jm = a;(w,0,8m ), (U )mms = 20mme o (& )mms =exp (i% sin {“) b’ +

j=11""r"f: ﬂ'l-=|.......,M1,

where A is the distance between the two paired sensors. Assuming U to be
nonsingular, we observe that the determinant of

Res = I —qRyy = AU(T = 784" (8.14)
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vanishes if and only if
¥ =w{—i%ﬂnh]. m=1,...,.M.

This fact can be used to estimate ¢, m = 1,..., M, as follows: regard R,
and R, as measured covariance matrices. For example, we might subdivide
the observation interval T into N equal subintervals ((n - 1)T /N, nT/N),
n=1,...,N, where N = T /(2r), replace the integration limits in (8.13)
by (n = 1)T/N and nT/N,n=1,...,N, and denote the integrals by z;(n)
and gi(n), j=1,...,Jin=1,...,N. Then, put

1 & 1
R..= EE={I‘}:‘{H]‘ ﬂ“= FZI[n]y'{ﬁ},
n=]

mml

Now substitute these empirical matrices into the left-hand side of (8.14) and
find M minima of the absolute value of the determinant as ¥ moves on the
unit circle centered at the origin of the complex plane. Substitute the M
v-values corresponding to these minima and solve for ¢, m=1,... M.

Observe that the knowledge of the sensor positions incorporated into
A and of the signal powers ppm: is not required. Thus, this method of
estimating the signal arrival directions is free of the costly array calibration.
The price to be paid for this is that the two subarrays must be identical,
with one being a translate of the other.

8.5 Future Research Considerations

The assumption that both the signal and the interference plus noise be
Gaussian fields is primarily for mathematical convenience since the problem
then is completely treatable by linear operators in Hilbert spaces, and Gaus-
sian fields are the simplest class of the second-order random fields. How-
ever, there are evidences, especially in the case of the ocean acoustics, that
the probability distributions of the interference fields considerably deviate
from the Gaussian distribution (Middleton, 1987). Some simple analytical
examples, such as the “contaminated Gaussian” distribution (Martin and
Schwartz, 1971), have been proposed for the one-dimensional i.i.d. time se-
ries. Although the non-Gaussian interference makes the analytical solution
to the optimum processing problem infeasible, some suboptimum processing
methods are explored in special cases (Monzingo and Miller, 1980). Since it
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is unrealistic to completely specify the probability distribution of the inter-
ference, a robust method, such as the min-max solution {Huber, 1981), has
been sought. The results so far are restricted to the one-dimensional time
series having independent identical distributions (Kassam and Poor, 1985),
and generalization to the higher dimensional case with dependent distribu-
tions should be sought. Another area of investigation is the case where the
interference is a nonstationary and inhomogeneous random field, such as a
transient disturbance. In this case, one might use a semideterministic eri-
terion rather than the totally probabilistic Neyman-Pearson criterion, and
estimate (maximum likelihood) the interference z in (8.2) rather than av-
erage with respect to its probability distribution. One practical problem in
dealing with multidimensional data is computational complexity. Even if
there is an explicit algorithm for the optimum signal-processing, the com-
plexity may be too prohibitive to justify its use. Thus, a trade-off between
the detection-estimation performance and the computational complexity, or
the cost of processing the data, must be considered. Study of this trade-off
is another area of useful research in the future.
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Stochastic Modeling in
Physical Chemistry

Peter Clifford and N. J. B. Green
Oxford University

9.1 Introduction

How can corrosion be controlled in the cooling system of a nuclear reactor?
What is the most efficient design for a solar cell? How do you build an arti-
ficial enzyme? These are just some of the important practical questions that
lie behind the prolific research activity taking place in physical chemistry
departments around the world.

As a branch of science, physical chemistry is defined not so much by the
circumscription of its subject matter as by its method of approach, appli-
cable to a wide diversity of problems arising from physics and chemistry on
the one hand to biology and materials science on the other. From a statis-
tician's perspective, a familiar thread within the densely woven fabric of
physical theory, mathematical development, and experimental technique is
the constant concern with finding simple and expedient models, frequently
of a stochastic nature (van Kampen, 1981; Wax, 1954). Thus, although
physical theory may in principle provide a complete microscopic description
of the problem at hand, in practice the intractability of the mathematical
development prevents useful predictions from being made. A classic illus-
tration from physics is that of modeling the motion of a dust particle on the
surface of a raindrop. The dust particle moves as a result of collisions with
the water molecules. A typical raindrop will contain 10 molecules whose
deterministic equations of motion can be formulated as a Hamiltonian sys-
tem. The solution of the equations is clearly impracticable. The motion of

159



160

the dust particle is therefore unresolved. However, a stochastic approxima-
tion can be derived, namely, Einstein's theory of Brownian motion, which
provides good agreement with experimental observation. It should be noted
that although the model fits the data on an observational scale, the trajec-
tories of theoretical Brownian motion contradict physical laws, since infinite
acceleration is required.

When chemistry is introduced, things become more complicated. Con-
sider, for example, the effect of a pulse of radiation on the water droplet.
Radiation creates chemically reactive species distributed throughout the
droplet. Chemical reactions occur when reactive species approach each other
as a result of molecular motion. As in the case of Brownian motion it is natu-
ral to look for a stochastic approximation to the reaction process, but here we
must track the motion of a large number of atomically small reactive species.
One approach is to use the heuristics of statistical mechanics, pioneered by
Gibbs, to provide joint distributions for molecular positions and velocities,
The progress of chemical events following radiation can then be treated as a
stochastic process, but on an enormous state space. The stochastic behavior
can be viewed as a manifestation of the chaotic character of the solutions
of the nonlinear equations of motion. The skill of the physical chemist is
to derive and validate parsimonious approximations of the reaction process
while attempting to fit experimental data. There are therefore close analo-
gies between the activities of physical chemists and the role of statisticians
in applied science, in that the physical chemist must construct models that
on the one hand are reasonably faithful to the laws of physics (the client)
and on the other are amenable to mathematical manipulation and eventual
experimental verification.

9.2 Diffusion Controlled Reaction

A dassical theoretical problem in the analysis of the reaction rates in so-
lutions is the modeling of diffusion controlled reactions. In these reactions,
molecules of non-zero size diffuse and react instantaneously if they encounter
one another. In a typical experiment, very reactive particles are produced
randomly in space and essentially instantaneously by, for example, using a
pulse of light. These particles diffuse and react with other species already
in solution. The number or concentration of the reactive particles is ob-
served in real time, by, for example, optical absorption methods. Computer
simulations of liquids can provide insight into the reaction process, but the
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results are necessarily subject to statistical error. A great deal of theoretical
work has been devoted to deriving and validating good analytical approxi-
mations; see for example Balding and Green (1989) in the one-dimensional
case. The original theory, owing to Smoluchowski (1917) fixed the coordi-
nate system on a single particle and made the implicit approximation that
all other particles diffuse independently in this frame of reference (Noyes,
1961). We will refer to this as the independent pairs (IP) approximation.
While this is probably a good approximation for a central, slowly moving
maolecule surrounded by faster moving molecules (e.g., colloid coagulation ),
it is certainly not true for the converse problem (fast central molecule in a
sea of static traps). In three dimensions the Smoluchowski theory gives the
same result for both cases, namely, the survival probability of the central
particle is
(1) = 20)exp [ [ k() dt'e,]

where ¢, is the density of traps,

k(t) = 4=aD

a
1+ 'l'_m] . (9.1)
a is the encounter radius, and D is the diffusion coefficient of the mobile
molecule{s).

For the latter case, where the Smoluchowski theory might be expected to
break down because the intermolecular distances are highly correlated, the
survival probability is related to the volume of the Wiener sausage, swept
out by the diffusing molecule in the course of its trajectory. This is because
the molecule will survive to time { if and only if there is no trap in the
volume swept out, V,(t), and if the traps are distributed according to a
Poisson point process with intensity c;, the survival probability of a given
trajectory is exp[-Va(t) ¢,].

The observed survival probability will be the expectation of this random
variable

1 = Elexp|-Va(t)e,]].

Donsker and Varadhan (1975) have obtained precise asymptotic results for
expectations of this kind. They show

Jim [(DO(442 /44 10.0] = sy,

where d is the dimension and x4 is a positive constant. This is very dif-
ferent from the simple exponential decay at long times predicted by the
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FIGURE 9.1: Survival probability {1 for a particle diffusing in a sea of static
traps. Comparison of Monte Carlo simulation (o o o), Donsker-Varadhan
asymptotics (— — - — =), and the IP approximation (—).

Smoluchowski theory. Since there is no obvious analytic way to assess the
time scale on which the asymptotic behavior will be found, we have de-
veloped a simulation technique for this purpose. Early simulation results
indicate much better agreement with the Smoluchowski theory than with
the Donsker-Varadhan result. The reasons for this observation are not clear
at present. See Figure 9.1.

9.2.1 Radiation Spurs

Diffusion controlled reactions are the fastest reactions that occur in solution.
Experimental observations of the rate of reaction contain information about
the initial spatial distribution of the reactive species. A substantial amount
of research has been devoted to the analysis of radiation tracks. If radiation
interacts weakly with the liquid (e.g., fast 3-particles), the track consists of
small isolated spurs, which are clusters of highly reactive particles; the spurs
subsequently relax by diffusion and within each spur the particles react with
each other on encounter.

The problems of describing reactions in clusters can be illustrated by
reference to a number of model systems with simplified chemistry.
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The Two-Species Spur

The simplest system contains two types of particles, A and B, which react on
encounter to form products AA, AF, or BB. The particles are identical in
all but name and have identical spatial distributions. The classical method of
dealing with such a system is to make a continaum approximation. The two
gpatially dependent concentrations (which are identical) obey macroscopic
continuum equations of the form

%c,‘ = DAVICs - K2,C% - KpCACs

a
Eﬂn = DpV3Cg - k§5Ch — K45CACh,

where the first terms on the right-hand sides represent diffusive spreading of
the concentration profiles, and the remaining terms represent local depletion
by reaction; the rate coefficients k are given by Smoluchowski’s theory (cf.
equation (9.1)). Although these equations are perfectly satisfactory when
applied to macroscopic problems, they are not appropriate when dealing
with the small number of particles in a spur of finite extent. There are two
reasons for this: (1) the small number of particles in the spur ought to be
treated as a discrete variable, and (2) the Smoluchowski rate constant is
appropriate for a particle initially surrounded by a homogeneous Poisson
field of reactants as opposed to the highly clustered distribution in a spur.
The necessity for a correct stochastic theory is easily demonstrated in this
simple system. If there are initially N4 particles of type A and Ny particles
of type B, then simple probabilistic arguments permit us to show that the

TABLE 9.1: Typical Product Yield Ratios
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expected product vields, for all times, are in the ratio
1 1
Nya:Nyg: Npp = ENJ[H‘.-I]: NuyNg: EHB{NB—IJ.

Typical ratios are given in Table 9.1. The continuum approximation always
predicts a ratio of 1:2:1 since it corresponds to the case of infinitely many
particles. The independent pairs approximation can be used to provide a
stochastic theory of spur kinetics. If the state of the spur at time ¢ is labelled
with M, N where M is the number of A particles and N is the number of B
particles, then Pyn(t), the probability of being in state M, NV, satisfies the
following forward equations:

ZPun(t) = S((M +2(M + 1)Passn - MOM = DPuxPaa(t)

+ %[[H +2)(N + 1)Pynsz = N(N = 1)Pyx]Aps(t)
+  [(M+1)(N +1)Pysine = MNPuxlias(t),

where the A's are the reaction rates for isolated pairs of particles whose initial
spatial separation is equivalent to that in a cluster. These equations can
be solved analytically in special cases, for example, when the particles are
identical. In general, though, they must be solved numerically. Comparisons
between this approximation, the continuum approximation, and the full
Monte Carlo simulation of sample trajectories are given in Figure 9.2, taken
from Clifford et al, (1987a). It is evident that the stochastic independent
pair (IP) model is in very good agreement with the simulations.

The lonic System

The two species system can be generalized by including long-range forces
between the particles, such as the Coulombic force between ions. Such
forces act attractively between A and B particles, but like particles repel
each other. The form of the A's is modified becanse the survival probability
of a pair depends on the force between the particles. The A’s must now
be calcolated approximately if the forces are weak (Clifford et al, 1987b)
or numerically if they are strong (Green ef al, 1989). The introduction of
forces would be expected to make the I[P approximation worse, because of
complicated interactions in the many-body system. Comparisons of the [P
approximation and the results of full simulations of sample trajectories are
shown in Figure 9.3. It is seen that even when the forces are so strong that
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FIGURE 9.2: Kinetics of two species spur. Initial configuration spherical
Gaussian. Monte Carlo simulation (o o o); IF approximation (—); contin-
uum approximation (- — - — — ). Reprinted, by permission, from Clifford et
al. (1987a). Copyright (€ 1987 by the Royal Statistical Society.

the AA and BB encounters are effectively impossible, the IP approximation
is still remarkably accurate.

The Scavenging System
The simplest such system is

A+ A — AA
A+ S5 = AS, (9.2)

where the species A is clustered in a spur, whereas the species § exists
in large numbers uniformly distributed over an extended volume. There
is competition between intraspur recombination, the AA interaction, and
scavenging, the AS interaction. The relative abundance of the ultimate
yields of A4 and AS provides information about the scavenging process. In
the IP model the forward equation becomes

L]

2P =2V 42)(N+1)Prsz= N (V-1 P K CS(N+1) Pra= NP,
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FIGURE 9.3: (a) Ionic reactions in high permittivity solvents. Average
number of reactions in a spur containing two ion-pairs: A%, B~. Monte
Carlo simulation (o o o), simulation using the IP approximation (—), and
continuum theory (- - -). Reprinted, by permission, from Clifford et al
(1987b). Copyright © 1957 by the American Chemical Society. (b) lonic
reactions in low permittivity solvents. Average number of surviving pairs in
a spur containing two jon-pairs: A% B~. Left panel: homogeneous disper-
sion; right panel: heterogeneous dispersion. Monte Carlo simulation (o o o)
and simulation using the IP approximation (—). Reprinted, by permission,
from Green et al. (1989). Copyright © 1989 by the American Chemical
Society.
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where k(1) is given by the Smoluchowski theory (cf. equation (9.1)) and
N is the number of A particles remaining. The continuum approximation
gives the equation

a

A= DV*Cx = Ka(1)C} ~ kis(t)CACs .

Typical results are shown in Figure 9.4. Again, the continuum model fails
to reproduce the results of a full Monte Carlo simulation, and the IP ap-
proximation is superior.

9.3 Computer Simulation of Liquids

Although a full description of a liquid system must be quantum mechanical,
almost all liquids (except those containing very small molecules such as he-
lium) can be described adequately using a completely classical deterministic
model (McQuarrie, 1976). If we tag and follow one molecule in a computer
gimulation of such a deterministic system, its motion appears random. If
several molecules are followed, their spatial configuration evolves as a spa-
tial point process, marked by the individual velocities. What we would like
to do is to find stochastic rules that indicate where the molecules will be,
and how fast they will be traveling, as time goes on. For example, in ra-
diation chemistry, where the effect of radiation is to create reactive species
distributed throughout the liguid, we are interested in the time taken for
such species to encounter and react with each other.

9.3.1 Some History

In physics and chemistry, classical liquids are gimulated by one of two tech-
nigues. The first relies on the laws of mechanics to provide the equations of
motion of a finite system of interacting molecules (Goldstein, 1980). This is
known as the molecular dynamics approach. The second technique makes
use of statistical arguments that were originally given by Gibbs. This is
generally called the Monte Carlo approach. A rigorous and detailed account
of the statistical treatment of mechanics can be found in Ruelle (1969).
The book Computer Simulation of Liquids by Allen and Tildesley (1987)
contains a comprehensive history of simulation methodology from the first
computer experiments through to the latest ideas. Numerical simulation
is the technique most widely used in recent years to study the properties
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FIGURE 9.4: Average number of reactions in a spur containing four radicals
A, A, A, A with scavenging by 5 molecules. Initial distribution spherical
Gaussian. IP approximation (—); continuum theory (- - -). Reprinted, by
permission, from Clifford et ol (1987a). Copyright © 1987 by the Royal
Statistical Society.

of liquids. It is now an extremely large research area in both physics and
chemistry, with many hundreds of research groups involved.

The classical mechanics of a system of N structureless molecules is speci-
fied by a Hamiltonian M, which is the sum of the kinetic and potential energy
of the system: H(r,p) = K{p) + V(r). Hamilton's equations of motion are
(Goldstein, 1980):

p = -V.¥
f = pymi, (9.3)

where p and r are the vectors of momenta and positions of the molecules,
The kinetic energy is given by

N
K(p) =3 _pl/2m:, (9.4)

il

where m; is the mass of molecule ¢ and p; is the magnitude of its momentum.
The potential energy V(r) depends on the positions and orientations of the
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particles. It is usuvally sufficient to assume that V only depends on the
interactions of particles in pairs, and to use a spherical average of the pair
potential, although the pair potential may have to be modified to correct
for higher order effects. In the absence of an external field, the potential

energy then becomes
V=33 wmir;),
i i
where r;; is the distance between particles i and j.

The computer simulation of liquids and gases was initiated by Metropolis
et al. (1953), who used Monte Carlo methods to simulate the Gibbs equi-
librium distribution of molecular configurations. Their aim was to derive
values for stationary (i.e., equilibrium) physical properties such as expected
energy and expected pressure. Early work was concerned with the case of a
hard sphere potential, iy(r) = o0 for r < o and 4(r) = 0 otherwise.

In order to obtain dynamic properties, Alder and Wainwright (1959)
developed a method by which the simultaneous equations of motion for
many molecules are solved numerically. They illustrated their method by
simulations using both hard sphere and square well potentials. Their paper
is the first example of molecular dynamics simulation. Simulations using a
realistic potential were made by Rahman (1964).

In particular, Rahman estimated the pair-correlation function

_ Von(r,Ar)
g(r) = ﬁ drrifr’

where n(r, Ar) is the time averaged number of molecules at a distance be-
tween r and r 4+ Ar from a given molecule, and N/V is the average density
of molecules. He showed that the system has spatial structure that decays
slowly over time.

(9.5)

9.3.2 Sampling From Configuration Space

Let us consider a system of N' molecules in three-dimensional space, sub ject
to a potential as previously described. We can think of the simultaneous
positions and momenta, or equivalently positions and velocities, as coordi-
nates in 6N -dimensional space, A'. We denote a point in this space by z.
We call A’ the state space and refer to z as a state; in the physics literature,
A is called the phase space. Let F be a function of z. We refer 1o F(z)
as an instantaneous evaluation of the property F. For example, K(p) in
equation (9.4) is an instantaneous evaluation of kinetic energy.



170

A large system can be thought of as the union of many smaller systems.
At any instant of time, each small system will have a particular state. A
macroscopic property of the large system is an average of the property eval-
uated over the subsystems. There are two basic ways in which the state
space can be explored. The first is to build a dynamic description of malec-
ular motion that will move through the state space according to acceptable
physical principles. This is the approach of molecular dynamics. As noted
earlier (§9.3.1), the equations of motion are those considered by Hamilton in
classical mechanics. The required average is then taken over a succession of
times for a single small system; arguing that if the time period is sufficiently
large a representative sample of configurations will be obtained.

The second method of sampling states relies on the validity of Gibbs's
probabilistic analvsis of large mechanical systems. The method involves
Monte Carlo simulations. The state of each small system is treated as a
random variable drawn from the Gibbs distribution, which is constructed
to have maximum entropy subject to certain constraints, giving an explicit
form for the density of the distribution. The task of sampling the state
space for this method is reduced to that of choosing a random sample,
T1,%3,..+,%n, from a specified density p(x) : r € A'. In typical applications
the form of the density lends itsell to sampling by the Metropolis method.
The required estimate of the macroscopic property is then given by F =
(F(z1)+ -+ F(zn))/n. Since this can be interpreted as an average taken
over a number of subsystems, it is usually referred to as a space-average.

Both Monte Carlo and molecular dynamics simulations can be used to
sample from the equilibrinm distribution of 2 many-particle system. In prin-
ciple it is therefore possible to test empirically whether Gibbs's theory agrees
with the results of molecular dynamics simulation. In practice, simulations
must be run for a large number of time steps until equilibrium is attained.
The development of tests for spatial point patterns is an active research area
in statistics (Diggle, 1983; Ripley, 1987; Besag and Clifford, 1989). One of
our aims is to link methods wsed by probabilists and statisticians in the
study of spatial processes with methods used by physicists and chemists in
their study of liguids.

9.3.3 A Typical Computer Experiment

Lynden-Bell ef al. (1986) investigated the behavior of carbon tetrafluoride
CF4 near its triple point by carrying out a Molecular Dynamics simulation
of 256 molecules in a cubic box with periodic boundary conditions, using a
variant of the Lennard-Jones potential. They were interested in the struc-
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ture of the velocity autocorrelation function, i.e., the empirical correlation
between the velocity of a molecule in a particular direction and its velocity
in the same direction at some time in the future. For typical liquids, the
velocity autocorrelation is strongly positive at short lags, since molecules
tend to continue with the same velocity, negative at moderate lags, since
molecules eventually bounce off their neighbors, and then slowly approach
zero as the lag tends to infinity.

In order to explain certain anomalies in the behavior of the velocity an-
tocorrelation function, Lynden-Bell et al. conjectured the existence of “local
cages” of molecular configurations. A molecule is said to be in a local cage
if its motion is restricted by the proximity of neighboring molecules. They
first estimated the density of cos ¢{r), where #{7) is the angle between the
velocity of 2 molecule at time ¢, and the velocity of the same molecule at the
later time t 4+ r. They observe that at moderate values of r the estimated
density is approximately uniform. Plotting the height of the estimated den-
sity as a function of time r, they notice that the shape of the curve closely
follows that of the velocity autocorrelation function. Stratifying the molecu-
lar trajectories by initial kinetic energy, Lynden-Bell et al. then repeat their
analysis, but for initially fast and slow molecules separately. The results
are different for the two groups. The structure is the same, but the mag-
nitude of the effect is much higher for fast molecules. They suggest that
high-energy molecules rattle back and forth in cages, while slower molecules
diffuse. Lynden-Bell ef al. finish by locking at the velocity autocorrelation
function for the two stratified groups of molecules. They show that the ve-
locity autocorrelation function of slower molecules has, surprisingly, a more
proncunced negative portion than that of the faster molecules.

In the simplest statistical mechanical model of a liquid, molecules have
independent velocities chosen from the Maxwell-Boltzmann distribution, i.e.,
multivariate normal. In Atkinson et al (1990), it is shown that, with the
possible exception of the last result, all the results of Lynden-Bell et al. are
consistent with a simple description in which each molecule moves along
a randcm trajectory in such a way that the velocity components in three
fixed orthogonal directions are independent Gaussian processes. It is not
necessary to propose the existence of local cages.

To see this, notice that cos{@) is essentially a correlation coefficient for
three pairs of velocity components. With the Gaussian assumptions above,
the density of R = cos(¢) is then given by

falro) = 20 - Py (£22) 2L, (06)
=0
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FIGURE 9.5: Histogram of cos(¢) after various time lags: (a) simulated
(Lynden-Bell et al, 1986) and (b) calculated from equation (9.6). The
curves are displaced, as in Lynden-Bell et al; in each case the horizontal
dashed line represents a uniform density. Reprinted, by permission, from
Lynden-Bell et al. (1986). Copyright (€ 1986 by Tavlor and Francis, Ltd.

where p = p{r) is the theoretical counterpart of the empirical velocity auto-
correlation. In the discussion of their results, Lynden-Bell ef al. obzerve that
at moderate lags the distribution of R is nearly uniform. Il R has a uniform
distribution, then the molecule is equally likely to be moving in any direction
at this time lag, regardless of its initial velocity. The authors also observe
that, at longer time lags, the distribution of R becomes skewed, indicating
that the particle’s velocity is opposite to the original direction. Lynden-Bell
et al. consider these results to be paradoxical, however, this is precisely what
is predicted by the form of the theoretical density. More importantly, the
theoretical predictions give good qualitative fits to the computer-simulated
results. See Figure 9.5.

To throw further light on the causes of the nearly uniform distribution
of R at the time lag for which the velocity autocorrelation function is zero,
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FIGURE 9.6: Time-dependence of the probability density of cos($) at
¢ = 0°, 90°, and 180°, conditioned on initial kinetic energy. (a) Molecu-
lar dynamics simulation (Lynden-Bell #t al., 1986) and (b) calculated from
equation (9.7). The continuous lines refer to the 7.2% of particles with the
highest kinetic energy, and the dashed lines to the 12% with the lowest en-
ergy. Reprinted, by permission, from Lynden-Bell ef al. (1986). Copyright
(€ 1986 by Taylor and Francis, Ltd.

Lynden-Bell et al stratified the trajectories of molecules by their kinetic
energy at time zero. Their idea, as noted earlier, was that the observed
effect was due to a balance between high-energy molecules rattling back and
forth in local cages, while low-energy molecules were diffusing through the
whole space.

Taking v to be the velocity of a molecule at time ¢ = 0, and writing
|¥| = &, the conditional density of R given a obtained under the Gaussian
assumptions is

fr(rla,p)= v—:,l.;e_":":"m_""z r (a;ﬂ) % (?——T‘?np; ) . (9.7)
ami " =

As is shown in Figure 9.6, the fit with the data of Lynden-Bell et ol. is again
excellent.

The final observations of Lynden-Bell et al are difficult to reproduce.
We have tried unsuccessfully to confirm these results using a molecular dy-
namics program. The program was run many times using different numbers
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of molecules (32, 108, 256) and a variety of different computers (Vax main-
frame, MassComp workstation, Sun workstation). Comparisons of double
and single precision calculations were made, and the effect of optimizing
compilers was also examined. Different computers, different precision, and
the use of an optimizing compiler all substantially changed the configura-
tions and velocities of the molecules. At lags for which the velocity auto-
correlation is positive, there was however, a consistent effect with the slow
molecules having a slightly greater positive autocorrelation at a fixed time
lag than the fast molecules. This is not consistent with the simple hypothesis
of Gaussian velocity components.

9.4 Discussion and Future Directions

The main areas of investigation in physical chemistry can be classified as
follows:

1. physical properties of matter in equilibrium,
dynamical and transport properties of matter,
properties of atoms and molecules,

statistical mechanics linking the above,

energetics and dynamics of chemical reactions, and

& P & @ P

complex systems.

9.4.1 Physical Properties of Matter in Equilibrium

The properties of bulk matter are reasonably well understood on a quali-
tative level, and if the substance is made up of simple molecules or atoms,
such as the liguid inert gases, numerical simulations of small systems, based
on the known intermolecular forces and involving of the order of a thou-
sand molecules, are quite successful in reproducing the observed proper-
ties. Molecular dynamics simulations become more complicated when the
molecules are neither spherical nor rigid. A great deal of work is still in
progress in this area. A typical simulation is a realization of a chaotic spa-
tial temporal process, involving the position and velocity of several hundred
molecules for perhaps 10,000 time steps. There are a number of outstanding
statistical problems in the design and analysis of these computer experi-
ments. In particular, it is of interest to determine when a simulation has
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reached equilibrium. This problem is complicated, in small systems, by the
effects of phase transition.

An additional complication, which is receiving attention, is the inclusion
of quantum mechanical effects in liguids such as helium. The properties of
polymers and bioclogical compounds are also the subject of research activity.
Attention has turned in recent years to the study of interfaces between
different phases of matter. Monte Carlo and molecular dynamics simulations
have concentrated on bubbles and droplets, and a number of experimental
techniques have been devised for studying the gas-solid, gas-liquid, and solid-
liquid imterfaces. This work has relevance to the understanding of catalytic
and electrochemical processes.

Recent advances in experimental metallurgy have enabled detailed anal-
yses of the atomic structure of metallic alloys to be carried out. Data are
becoming available that record the position, subject to quantifiable error,
of up to 60% of the atoms in small three-dimensional regions of a given
sample. The analysis of this enormous data base, in particular the task of
reconstructing the atomic lattice from partial observations, is a challenging
statistical problem, which can be approached by combining simulated an-
nealing as an optimization technique and realistic annealing as a description
of the aging process in the atomic lattice.

9.4.2 Dynamical and Transport Properties of Matter

The transport properties of matter, such as viscosity, thermal conductivity,
and diffusion, involve transfer of energy or momentum from one molecule to
another during a collision. The theoretical relationship between the trans-
port properties of gases and the intermolecular forces has been known for a
long time. Recently, physical chemists have attempted to tackle the inverse
problem of estimating the intermolecular forces from detailed experimental
observations of the viscosity-temperature curve. There is increasing interest
in this type of statistical exercise, in particular there are unresolved ques-
tions of identifiability.

In solids and liquids, it has become clear that there is a wealth of in-
formation about the dynamics of the molecules from light-scattering and
nentron-scattering experiments, but the information is in a form that is dif-
ficult to extract and interpret. One promising line in this respect is the
use of computer simulations as idealized experiments, both to develop tools
for the analysis of data and to construct Monte Carlo estimates of dynam-
ical quantities. Applications to more complex systems include the study
of the motion of polymers in solution, with particular reference to enzyme
activity.
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9.4.3 Properties of Atoms and Molecules

A great deal of physical chemistry is involved with investigating the prop-
erties of isolated atoms and small molecules. Spectroscopy of these species,
using radiation ranging from radio frequency through infrared and the visi-
ble spectrum to X-rays, provides basic information about the energies of the
accessible quantum states and the symmetries of the corresponding wave-
functions, molecular size and geometry, nuclear spin, dipole moments, mag-
netic moments, polarizabilities, and so on. Spectroscopy can therefore be
used to test the predictions of the great variety of quantum mechanical
approximations employed to calculate molecular properties.

9.4.4 Statistical Mechanics

The fundamental molecular properties and their interactions as measured
by spectroscopists are the data required by statistical mechanics for the de-
scription of bulk matter. Statistical mechanics is the central unifying theory
of physical chemistry as it relates the properties of isolated molecules with
the bulk. The reconciliation of the statistical mechanical approach with
modern theories of chaos in dynamical systems is a problem of outstand-
ing interest to mathematicians. Large deviation theory was used in early
attempts to provide a probabilistic interpretation. Recent work on infinite
particle systems, has given insight into the phenomenon of phase transition
in the classical Gibbs distributions of statistical mechanics. Some of the
important applications have been covered in previous sections.

9.4.5 Dynamics of Chemical Reactions

Chemical reactions occur when molecules are transformed by the rearrange-
ment of electrons and nuclei. Physical chemistry concerns itself not only
with the energetics of chemical reaction, but also with their rates and with
the distribution of energy in the products. Gas phase chemical reactions
generally occur as a result of simple collisions between isolated molecules.
The classical theory of these processes has recently been revolutionized by
experiments in which molecules are produced in collimated mono-energetic
beams, which allow many of the parameters of the colliding particles (e.g.,
speed, quantum state, and orientation) to be fixed, and the energy and an-
gular distributions of the products to be analyzed, thus giving very detailed
information about the collision dynamics and the flow of energy between
and within molecules.
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Classical descriptions of these dynamics have been proposed, which show
regions of regular behavior and regions of chaos. It is still not clear how
such phenomena will transfer to quantum mechanical descriptions. Reac-
tions in solution are not understood in such a detailed way, although there
are quantum mechanical theories of electron transfer reactions and the like.
An additional problem of reactions in liquids is that particles diffuse slowly
through the liguid and can only react on encounter. There are therefore two
limiting cases of reaction: diffusion control, where the rate depends only on
the transport through the solution and the rate of encounter; and activation
control, where reactive encounters are rare, so that many encounters will
take place before reaction can occur. Theories of the former type of reac-
tion have been developed for a long time, but are only now being tested,
by numerical solution of the associated stochastic differential equations. For
activation-controlled reactions more detailed modeling of the encounter com-
plex is required.

0.4.8 Complex Systems

As well as the fundamental research described above, physical chemistry is
involved with description of more complex systems, particularly the evolu-
tion of these systems. Frequently, the problems of interest have important
spatial aspects that have to be taken into account.

Atmospheric Chemistry—Depletion of Ozone Layer

A realistic model must incorporate chemistry and transport in the atmo-
sphere. It also requires an understanding of interfaces such as those be-
tween the air and cloud droplets and ice crystals, which act as sinks for
active chemicals.

Combustion

Since the 1950s there has been a series of revolutionary changes in explo-
sives technology, which has resulted in safer but slower-reacting explosive
products. In order to maintain product performance, much attention must
now be given to understanding the detonation process. The initiation and
establishment of the critical conditions for detonation have been subject to
little detailed realistic investigation; although of course there are obvious
analogies with the stochastic theories of spatial epidemics. The necessary
cooperative interaction between small numbers of initiating sites suggests
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that a treatment based on macroscopic deterministic approximations may
be inappropriate: the number of reacting species being just too small for
the averaging implicit in standard treatments. Here again, there is the pos-
sibility of nonlinear kinetics producing oscillations and chaotic behavior.

Radiation Chemistry

When a liquid is exposed to ionizing radiation, reactive species are generated
in an initially localized spatial distribution. For low linear energy transfer
(LET) radiation, isolated clusters, called spurs, are formed. A significant
proportion of the chemical reaction following radiation occurs on a short
time scale, when the localized distribution has not yet relaxed by diffusion.
The chemical process can be treated successively using stochastic methods.
Currently, there is interest in extending these results to the products of
higher LET radiation, which are formed along linear tracks.

Surface Kinetics and Electrochemistry

The theory of surface kinetics seeks to explain effects such as etching, disso-
lution of crystals and the formation of corrosion pits. Stochastic models of
growth and dissolution have been studied. An interesting class of problems
concerns the description of flocculation processes, in which the growth of an
aggregrate is limited by diffusion from the surrounding medium.

Electrochemistry is concerned with the understanding of chemical effects
produced at electrodes. Recent debates about the feasibility of cold fusion,
hinged on the estimation of the probability of favorable molecular encounters
at an electrode. Electrochemistry is clearly a branch of physical chemistry
in which probabilistic calculations play an important role.
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Stereology

Adrian Baddeley
Centre for Mathematics and Computer Science

10.1 Introduction

Stereclogy is a spatial version of sampling theory. It was initially devel-
oped in biclogy and materials science as a quick way of analyzing three-
dimensional solid materials (such as rock, living tissue, and metals) from
information visible on a two-dimensional plane section through the material.
It now embraces all geometrical sampling operations, such as clipping a two-
dimensional image inside a window, taking one-dimensional linear probes, or
sampling a spatial pattern at the points of a rectangular grid. Applications
include anatomy, cell biology and pathology; materials science, mineralogy
and metallurgy; botany, ecology and forestry; geology and petrology; and
image processing and computer graphics.

It is not the aim of stereclogy to reconstruct an entire three-dimensional
object. Typically, only a few sections or samples are taken, and their spa-
tial position is not recorded. Further it is usually impossible to model the
three-dimensional structure explicitly. Instead, stereclogy uses simple non-
parametric techniques to estimate “geometrical parameters™ such as volume
and surface area. Simplicity is the key word; the estimation relies only
on fundamental geometric facts and classical sampling theory. As a result,
stereclogical methods are almost “assumption free,” and are applicable in
many different sciences.

Applications and general concepts are described in §10.1. Section 10.2 is
a more detailed statistical treatment. Section 10.3 describes newer discov-
eries and research problems.
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10.2 Concepts and Applications

10.2.1 Information from Lower-Dimensional Samples

In 1847 the French mineralogist Delesse published a revolutionary method
for measuring the mineral content in a sample of rock [22]. Instead of crush-
ing the rock to separate the different minerals, one simply cuts a plane
section through it. Delesse had realized that the proportion by volume of
a particular mineral can be estimated from its proporfion by area visible in
the section.

Model the rock as a set X C R? containing a subset ¥ C X, the mineral
phase of interest. The objective is to estimate the volume fraction

_ ¥iy)

where V{-) denotes volume. Let T denote a plane in three dimensions, so
that X N T is the plane section of the rock, and Y N T is that part of the
section occupied by the mineral phase. Delesse’s method estimates Vy from

the area fraction
_A(YNT)

AT AXNT)’
where A(:) denotes area in the two-dimensional section.

This is like a survey sampling problem: X represents the “population™
and X N T the “sample™ from which we want to estimate a population
parameter Vy. Astoundingly, A4 is an unbiased estimator,

A

Vv = EAy (10.1)

(under the right sampling conditions), without any essumptions about the
shape of X and ¥. This follows from the basic geometrical fact that the
volaume of a three-dimensional object is the integral of the areas of its two-
dimensional plane slices. Here E denotes expectation with respect to a
suitable random sampling design (not the most obvious one); we give details
in §10.2.

Delesse’s method was later simplified [T4] by placing a grid of parallel
lines over the plane section, with the aid of a transparent sheet. Then area
fractions A4 can be estimated from length fractions Ly, i.e., the relative
lengths of the mineral phases on the line grid. This was simplified even
further by Glagoleff [23] who showed that if we superimpose a rectangular
grid of points over the section plane, the area fraction A4 can be estimated
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from the proportion Pp of grid points that “hit™ (lie over) the mineral phase.
In both cases the estimators are unbiased.

Demonstrate this with a “party trick.” Take a sheet of graph paper
ruled with (say) thin lines every 1 mm and thick lines every 5 mm. Cut out
an arbitrary shape. Ask someone to determine the area of the cutout by
counting all the 1 mm squares. Meanwhile estimate the area stereologically
by counting the 5 mm crossing points that are visible on the paper, and
multiplying by 25. The result will be unbiased, typically accurate to about
5%, and is 25 times as fast to compute.

Similar tricks exist for estimating other geometrical gquantities. The
length of a plane curve can be estimated from the number of crossing points
between the curve and a grid of parallel lines. The surface area of a curved
surface in three-dimensional space can be estimated from the length of its
trace on a plane section [82]. The length of a curve in space can be es-
timated from the number of points where the curve hits a section plane.
Certain quantities related to curvature can also be estimated [9,21].

TABLE 10.1: Standard Notation for Geometrical Quantities

§pu_e dimension n set X Letter Meaning

3 solid domain v volume
curved surface 5 (surface) area
Space curve L curve length
finite set of objects N number of objects
curved surface M.K inteEu.'l of mean curvature

2 plane domain A area
curve L.B curve length
finite set of points LP number of points
finite set of objects N,Q number of objects
curve C total curvature

These methods are summarized in Table 10.2 with notation listed in
Table 10.1. Each quantity in Table 10.2 is an unbiased estimator of the
quantity to its left (following the arrow). The table is valid only under very
strict assumptions of “uniform sampling” (see §10.2) but with very minimal
geometrical assumptions, because it relies only on fundamental relationships
between volume, area, and length.
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TABLE 10.2: Classical Stereclogical Formulas

Dimension of Space
3 2 1 1]
W - A4 +~ L ~— Pp
Sy - !-B,q, - 2
Ly = 204

Plate 10.1 (preceding page 71) shows an optical microscope image field
from a plane section of the lung of a gazelle {magnification x1500). A
stereclogical test grid has been superimposed on the image, consisting of 40
test points (circled) and line segments totalling 42 cm in length. Since 7 out
of 40 test points hit the tissue (rather than the empty airway), we estimate
the volume fraction of tissue as V3 = A4 = 7/40 = 17.5%. There are 16
positions where a line segment crosses the tissue-airway boundary, so the
surface area of lung/air interface per unit volume of lung is estimated at
Sy = 2 = 2 % 16/(42/1500) = 1143 em™Y. Thus, a cubic centimeter of
gazelle lung contains about 1100 ecm? of lung/air interface.

10.2.2 Stereology is Classical Sampling Theory

Results like {10.1) were known as early as 1733 with the celebrated needle
problern of Buffon [8] and its successors in integral geometry and geomel-
rical probability [84,3048,75,76,80]. However, the first rigorous statistical
foundation was laid out only in 1976 by Miles and Davy [20,61,62].

Unbiased estimation, rather than maximum likelihood or minimum mean
squared error estimation, is emphasized for several reasons. The distribution
of any statistic is difficult to compute because of geometrical complications,
and to do so requires severe assumptions about shape (e.g., assuming that
X and Y are spheres). One of the beauties of the estimators above is that
they are known to be unbiased without geometrical assumptions: they are
effectively nonparametric moment estimators.

A simple test grid requires only a few decisions {“hit™ or “not hit™) on
any image. This is convenient in some applications where it is laborious
or difficult to recognize boundaries or identify the objects of interest. Yet
it appears to throw away most of the information in the image. This is
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in fact desirable, for stereological experiments usually generate hundreds of
images: it is not efficient (statistically or economically) to analyze a single
image in great detail. There is usually encugh replication (sections from
different parts of the sampling material, windows from different parts of a
section) to dramatically reduce the overall sampling variance. In biological
applications, the variance contributions associated with variation between
animals, and between parts of the same animal, are usually far greater than
the variance due to stereclogical sampling [17,24].

One of the main stereclogical discoveries of the 1980s was the pervasive
importance of systematic sampling. Recall that for a finite population of n
individuals, ordered arbitrarily and numbered 1,...,n, a systematic sample
with inverse sampling fraction k is generated by choosing a random number
m uniformly distributed in {1,...,k} and taking the individuals numbered
m, m+ k, m+ 2k, .... The sample has random size, but can be said to
consist of a fired fraction of the population. The population total of some
variable r; associated with each individual,

&= z:,:
can be estimated unbiasedly by taking k times the sample total,
Z=k3 zmijks
i

see [11]. The approach is similar for a “continuous population”™: to estimate
an integral I = [ f{z)dz, the numerical integral

F=AY fiU+ja) (10.2)
j
is an unbiased estimator of J when U/ is uniformly distributed over [0, A).

Stereological estimates based on grids of points, lines, and the like, are
essentially systematic sampling estimates. A point grid is a two-dimensional
systematic sample of the continuous two-dimensional plane.

Estimators based on systematic samples are indeed quite efficient. The
estimator of the area of a plane set using a point grid is known to have
asymptotic variance ~ La® as a — 0, where a is the distance between grid
points and L is the perimeter length of the set. This is of order n=*/? rather
than n~!, where n is the expected number of points counted. Negative
correlation in systematic samples tends to make them more efficient than
independent random samples (depending on the structure of the sampling
population ).
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10.2.3 The Particle Problem

Now the bad news. Suppose that our sampling material contains identifiable
individual objects—call them “particles”—such as biological cells, crystal
grains in a mineral, or holes in a porous rock. We want to regard these
particles as individuals forming a population, and make sampling inferences
about them: number of particles, average volume, and so0 on. Usunally we
cannot sample from this population directly; we have to take plane sections.

It is impossible to estimate ¥y, the number of points or objects per
unit volume, from plane sections in the sense of Table 10.2. One indica-
tion of this is the mismatch of dimensions or units. For example, Sy =
S(mineral)/V(rock) is in units length? /length® = length™"; s0 are the other
terms in the same row. Now Ny is in units length™, and so we would
naively expect not to be able to estimate it from lower-dimensional sections.

Notice that V', 5, and L are “aggregate” quantities, defined as integrals
over the object of interest, whereas N is an “individual™ gquantity with no
such interpretation in general. Miles [60] gives an elegant sketch proof jus-
tifying the estimation of aggregate quantities as a straightforward exchange
of integration and expectation.

The fundamental problem is that a plane section through a particle pop-
ulation is a biased sample of the population. To see this, visualize the entire
sampling material sliced thinly end-to-end by a series of parallel planes.
Randomly choose one of the slices with equal probability. The chance that
a given particle is represented on this slice depends on the number of slices
through that particle, i.e., is proportional to the projected height of the
particle in the direction normal to the section planes. Hence the sampling
design has a bias in favor of larger particles.

There are essentially three responses to this problem. We can attempt
to numerically “correct” our data for the effect of the sampling bias; we
can choose to measure different variables that are more “natural”™ in this
sampling design; or we can change the sampling design so that it becomes
unbiased.

In the correction approach to estimating Ny, the two-dimensional quan-
tity, we would naively think of using is @ 4, the number of observed particle
profiles per unit area of section. This is indeed related to Ny through the
DeHoff-Rhines eguation

Qa=H Nv

(e.g., [88, p. 142]), where H is the mean projected height or mean caliper
diameter (i.e., the average over all particles X; of the mean projected height
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H(X;) defined in (10.12) below). Estimation of particle number is thus
confounded by particle shape and size (or involves a nuisance parameter
associated with shape and size). Even in the happy case where all particles
have the same known shape, the distribution of sizes is usually unknown,
and it is hard to estimate f from plane sections.

In the second approach, we measure sample quantities only when they
are three-dimensionally meaningful. For example, if the objective is to study
the proportion of “type X" cells in a given tissue, it is not useful to count cells
appearing on the section plane, since there is no direct relation between cell
sections and cells. Instead, one should measure the area fraction A4 of type
X cells on section, because this can be translated directly into an estimate
of the volume fraction Vi of type X cells.

10.2.4 Unbiased Counting and Sampling

A better solution to the problems of sampling bias mentioned above is to
avoid them altogether by devising another, unbiased, sampling method.

One example is disector sampling [79,28,27). A disector is a pair of
parallel plane sections a fixed distance apart; often these are two consecutive
slices through the material. We count a particle only if it appears on one
section and not on the other. This gives each particle an equal probability
of being sampled. The only assumptions needed are (1) that no particle
is small enough to fall between two section planes at this distance and (2)
that the experimenter can establish the identity of each particle, i.e., can
tell whenever the same particle has been sectioned on two different planes.

Sampling bias is present even in two dimensions. Figure 10.1a shows a
sketch of a microscope field-of-view with cell profiles visible. The object is
to determine N4, the number of profiles per unit area. A frame F of known
area has been superimposed on the image. Naively one would just count all
the objects that lie in or on the frame F and divide by the area A(F). The
features so counted are shaded in Figure 10.1a.

This counting rule, dubbed plus-sampling by Miles [59], clearly produces
a biased sample of profiles. If we imagine the field-of-view to be placed at
random on the microscope slide, the larger profiles have a greater probability
of being sampled. Hence the plus-sampled estimate of N4 is biased: the
expected number of profiles counted is greater than N4 x A(F).

An alternative is minus-sampling: count only those profiles that are
completely inside the frame F ([59], illustrated in Figure 10.1b). As the
name suggests, this counting rule is negatively biased. Smaller profiles have a
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FIGURE 10.1: Two biased counting rules for planar profiles: (a) plus-
sampling, (b) minus-sampling.

greater probability of being sampled and counted. Profiles that are actually
larger than F will never be counted.

A better suggestion is to count only fractionally the profiles that hit the
boundary of the frame. Count profile X; with weight A(X; N F)/A(X;), i.e.,
the weight is the fraction of area of that profile that is within the window.
Using a mean-content formula for windows (§10.3.3), we can verify that the
integral of this weight over all translations of F is A{F), so that

;1 A(X;N F)
H".{{F}g AlX;)

is an unbiased estimator of V4.

An alternative which does not require area calculations is the associated
point method [59]. Suppose that for any profile X', a unique point v X) is
specified; for example, the centroid of X or the bottom left corner. It is not
necessary that o(X) be inside X'; we assume only that v{X) is equivariant
under translations, v(X + 1) = v(X) + ¢ for all vector translations ¢ (if X
is shifted then the associated point shifts by the same amount). Then an
unbiased estimate of N4 is to count the number of profiles whose associated
points fall inside F, and divide by A(F). See Figure 10.2a.
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FIGURE 10.2: Two unbiased counting rules for planar profiles: (a) associ-
ated point rule, (b) tiling rule.

An even easier alternative suggested by Gundersen [25] employs the spe-
cial frame illustrated in Figure 10.2b. The solid line, around two sides of
the frame and extending to infinity in two directions, is a *forbidden line™;
any profile that touches it is not counted. Otherwise any particle that inter-
sects the sampling frame, wholly or partially, possibly crossing the dotted
boundary, is counted. The rationale for this rule is, briefly, that if the in-
finite two-dimensional plane were tiled with copies of this sampling frame
(like stacked chairs), then any profile would be counted by exactly one of
the frames.

Plate 10.2 (preceding page 71) shows the unbiased estimation of Ny for
nuclei in human renal glomerulus using a combination of Gundersen's tiling
rule and the disector. Two optical section planes (i.e., different positions of
the microscope focal plane) with a separation of 4 um are shown. To the
left is the top (look-up) plane; to the right is the bottom (measuring) plane
on which is superimposed a randomly translated tessellation of rectangular
counting frames. Nuclei seen clearly on the look-up plane are not counted; on
the measuring plane, three new nuclei have come into focus in the counting
rectangle just below the center. The counting rectangles have real area
527um?, and so our estimate of Ny is Q7 = 3/(4 x 527) = 0.001423um™?,
or roughly 1.4 x 10® nuclei per cubic millimeter of glomerulus.
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10.2.5 Spatial Interpretation and Inverse Problems

Its founders envisaged stereclogy as the spatial interpretation of sections,
meaning not only quantitative estimation but also more gualitative reason-
ing about three-dimensional geometry, including shape and topology. But
spatial reasoning is confused by sampling effects. A single three-dimensional
object may appear on section as several unconnected objects. A section of a
three-dimensional object has smaller diameter than the object itsell; while
the distance between two objects, or two surfaces (e.g., the thickness of a
biological membrane) appears greater on section than in three dimensions.
A given three-dimensional object may look very different on different section
planes; different three-dimensional objects may fortuitously have identical
plane sections.

As we have seen, plane sections and rectangular sampling windows gen-
erate biased samples of a particle population, since larger particles have a
greater probability of being “caught.” Other more subtle biases are caused
by selecting a particular orientation for the section plane (for example, al-
ways slicing muscle tissue transverse to the muscle fibres) or selecting sec-
tions where a particular feature is visible.

“Real” and “ideal” geometry also differ. Since physical slices of biological
tissue have nonzero thickness, the microscope image is actually a projection
through a translucent slab of material onto the viewing plane. This is the
Holmes effect: images of sectioned objects are larger than they would be for
an ideally thin plane section, and some objects may be obscured by others.

The traditional response was “correction” based on an ideal model, for
example, assuming the particles are perfect spheres. Wicksell [94,95) showed
that, for a population of spheres, both Ny and the size distribution of the
gpheres can be determined from sections: if F is the distribution function of
sphere radii and & the distribution of circle radii observed on section, then
(under suitable sampling conditions [39,70,80]) G has probability density

o
g(e) =2 f (2 = 83V dF(r).
]
This is an integral equation of Abel type. It is invertible:
o
1-F(r) = %‘*J( (2 = r2)"Mg(1) de

g0 that F can be uniquely recovered from (7. Implicitly this includes the
estimation of mean sphere radius p so that Ny can also be determined.
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Similar equations have been encountered in the estimation of the thickness
distribution of a biclogical membrane [42] and the orientation distribution
of a curved surface [16].

This is a typical inverse problem, in which an unknown distribution or
function is related to an observable function by an integral equation or other
operator. The difficulty here is that the inversion of the equation is numer-
ically unstable. For example, the circle distribution & must always have
a density. Thus, if we apply a naive inversion procedure to the empirical
distribution of circle radii obtained from observations of n circles, the in-
verted F is not a distribution function [86]. Again, substituting r = 0 in the
inversion formula shows that u is proportional to the harmonic mean of (7;
the estimate of p will have poor sampling properties.

Part of the trouble is that we are attempting to estimate a whale func-
tion F nonparametrically without constraints. An alternative is to model F
parametrically and estimate the parameters from observations of G. Nichol-
son [65,66,67) and Watson [85] also showed that some linear functionals of
F, such as its moments, can be estimated reliably from samples of G.

More sophisticated approaches to inverse problems are mentioned in
chapter 2 of this report. In the Wicksell context, statisticians have recently
proposed kernel smoothing methods [81,14,32,37 83] and iterative methods
such as the EM algorithm combined with smoothing [78].

Apart from the considerable numerical hitches, some practical objections
to the Wicksell approach are that the geometrical model is unrealistic and
untestable (cells are not perfect spheres); extra factors such as the Holmes
effect will distort the kernel f(s|r); the amount of data collected in stere-
ological experiments will rarely be sufficient to form a stable estimate of
F.

By the 1970s there had been many dubious or even erronecus attempts
to avoid section effects, and theoretical stereclogists evolved the narrower
“party line”™ that it is only possible to reliably estimate certain aggregate
three-dimensional quantities such as volume and surface area. More recently,
additions to the list of fundamental formulas (Table 10.2) have made it
possible to estimate parameters such as the mean squared particle volume,
without any assumptions about particle shape. The list of parameters that
can be reliably estimated—without shape assumptions—now includes some
quantities related to corvature, orientation, and “shape.”
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10.2.6 Stochastic Models

Stereclogical inference and spatial interpretation are difficult because we
simultaneously have not enough data (important three-dimensional infor-
mation is lacking) and too much data (the two-dimensional images are not
analyzed closely). Stochastic models can bridge this gap.

Explicit Models

At one extreme, we could build a probability model for the entire spatial
structure X using random set models from stochastic geometry [34,.48,53,
77,80]. An explicit, parametric model would contain information about the
sizes, positions, shapes, relative arrangement, and topological relationships
of components in X, which could be estimated by comparatively familiar
statistical methods. Explicit models in stochastic geometry are mostly ana-
logues of point processes, the Poisson, Cox, cluster, and Markovian cate-
gories described in chapter 7. Some statistical theory is available for them
(2,33,69,71,77], and they have proved to be excellent descriptions of some
simple structures such as rock fractures and crystalline materials [77); but
realistic models for the highly organized structures of biology and ecology
still elude us.

Stationary Models

“Nonparametric spatial modeling™ is a less demanding approach where the
random spatial process X is not explicitly described, but is assumed to be
stationary (certain distributions or moments are invariant under translations
and for rotations). Then we can nonparametrically estimate the moments
or distributions associated with the process [80, chap. 4]. All the standard
stereological results can be rederived in this context (see [57,58,64]) since in
fact it is a reformulation of the same sampling problem. The reformulation
emphasizes how little need be assumed about the spatial structure X, and
suggests new estimators. For example, the locational interaction (such as
clumping or dispersion ) between parts of a spatial structure can be described
by the second-order moment characteristics of the process, which can be
estimated nonparametrically from sample data. The K function for point
processes [70], described in chapter 7, is one instance.
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Semiparametric Models

Commonly, only a part of a spatial structure X is of interest. If only that
part is modeled, we have a semiparametric statistical model. For example,
the thickness of a curved tube could be modelled by a parametric family
of distributions for the radius, without specifying shape or location except
to assume that the process is stationary [4]. The distribution of directions
in a structure (e.g., surface normal vectors, curve tangent vectors) could be
modeled by a parametric family of distributions on the unit sphere [16]. In a
material consisting of several phases or compartments, one can test whether
the arrangement of phases is “random™ or whether some phases tend to be
associated, by applying standard discrete data models [50].

Data Maodels

At the other extreme would be a statistical model for the stereclogical data
obtained from a series of samples T;. For example, Cruz [13] proposed a
proportional linear regression model for, say, A(Y N T;) against A(X N T;).
This model has been criticized [43], and justifications must remain largely
empirical, because it is difficult to derive any distributional theory from
probabilistic models of the structure or the sampling design.

10.3 Statistical Theory

Stereclogical methods can be applied with minimal knowledge of the three-
dimensional structure under study. However, the sampling rules must be
strictly followed; the experimental protocol must generate a random plane
ot probe with the correct distribution required by stereclogical theory. In
this section, we describe that theory, and show how simple design mistakes
can lead to catastrophic errors.

10.3.1 What To Estimate

It was believed for many years that the normal haman brain, alone among
all organs, loses cells without replacing them. This was established repeat-
edly from estimates of Ny (cell number per unit volume) at different ages.
However, the quantity of real interest is the total cell number N, not Nyp.
In 1985, Haug [35,36] pointed out that, since younger tissues shrink more
during fixation (chemical treatment prior to embedding and sectioning), the
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total brain volume after fixation was effectively an increasing function of
age, and this could account for the decrease in Ny estimates. The situation
is still unresolved becanse of other uncontrolled variables; but it may be that
the wrong scientific question was pursued for 20 years.

This emphasizes the distinction between a total quantity

8 = A(Y)

and a relative quantity
8y = B0V)
Vix)’

where X is the containing set and ¥ is the “feature” of interest (Y C X).

Estimation of absolute and relative quantities is also different. We can
convert estimates of 3 to Sy and vice versa, given an estimate of V{X'); but
statistical properties of the estimators are not preserved. For example, the
expectation of a ratio of random variables is not generally equal to the ratio
of their expectations. Sampling designs and estimators that are unbiased or
optimal for estimating Sy may not be appropriate for 3 and vice versa.

10.3.2 Inference

Statistical inference is called design-based if it relies on the randomness in
the sampling design. Expectations are averages over all possible outcomes of
the sampling. In design-based stereclogy it is assumed that the geometrical
object X Is fixed and the sampling probe T is random. Meanwhile, inference
is called model-based if it imagines the sampling population was generated
by a stochastic model. Expectations are averages over all hypothetical real-
izations of this model. In model-based stereclogy, it is assumed that X is (a
bounded sample from) a realization of a random process, and the sampling
probe T is arbitrary, say fixed.

This is mainly an issue of correctly specifying the population to which we
wish to extrapolate statistical inferences. The design-based approach corre-
sponds to finite population inference for survey samples [11] or randomized
design inference, while the model approach corresponds to superpopulation
inference. Miles [60] distinguishes three kinds of inference in stereclogy:

Restricted case: The specimen X is a nonrandom, bounded set that
is the sole object of interest. For instance, a whole organ from an
experimental animal could be available for study. Typically we want
to estimate the total volume, surface area, etc., of the organ.
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Extended case: The specimen X available for examination is but a por-
tion sampled from a much larger object W. For instance, a rock sample
is typically taken from a large outcrop of rock, and we wish to make
inferences about the latter. Either total gold volume or relative gold
volume fraction might be of interest.

Random case: A stochastic process really exists that generates the in-
ternal structure of the sample. That is, the specimen X is a fixed
set, but the feature ¥ inside X is generated as ¥ = X N £ where
Z is & “random set™ or “spatial stochastic process.” For instance, a
metallurgist will regard a small piece of steel cut from a bar, formed
at a known temperature, and so on, as a sample from the infinite hy-
pothetical reservoir of steel that could be formed under those same
conditions. Quantities like total volume are meaningless here; we are
mainly interested in fractions per unit volume of steel.

In the restricted case, we are totally dependent on the randomness of
the sampling probe T to guarantee validity of the method; but apart from
this we do not need to make any unverifiable assumptions.

In the extended case, it must typically be assumed that X was sampled
“randomly” from W. For some purposes, it is not valid to sample a rock
outcrop by breaking off a piece with a hammer, since the breakage surfaces
will usually depend on the internal rock structure.

In the random case, ¥ must be independent of X; that is, the internal
structure must not depend on the external boundaries of the specimen. This
would be inappropriate for objects such as biclogical organs, which have
many levels of internal organization.

10.3.32 Geometrical Identities

Unbiased estimation of properties of a set X from observations of the in-
tersection X NT is possible thanks to the mean-content formulas or section
formulas of integral geometry [76,89], which have the general form

j a(X NT),du(T) = eB(X), (10.3)
paositions of T
where a, § are geometrical quantities such as those listed in Table 10.1, and

= €44 15 a constant. Here u is a so-called “invariant measure™ on the space
of all possible probes T; basically, this is an appropriate generalization of
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Lebesgue measure, and so the integral represents “uniform integration™ over
positions of T.

A simple example is the statement that the volume of a three-dimensional
object is the integral of the areas of its plane slices:

f_m A(X N Ty)dh = V(X), (10.4)

where T}, is the plane {(z,y,z): £ = h}. This is known as Cavalieri’s prin-
ciple. In simple terms, the volume of an arbitrarily shaped potato can be
determined by slicing the potato into infinitely thin parallel slices and sum-
ming the areas of the slices. The slicing direction is fixed and arbitrary; we
could also average over all orientations, giving

f A(X N T, ) dhdo = 2xV(X]), (10.5)

where T, denotes the plane with direction given by its unit normal vector
w and displacement h from the origin. This averaged version is no longer
practicable for potatoes, since after slicing end-to-end in direction wy, we
have to reassemble the object and slice it end-to-end from another angle w,
and so on.

The basic mean content formulas in three dimensions are summarized in
Table 10.3. In general, the formulas involving plane sections or line probes
require us to average over all orientations. For example, the surface area
S(Y) of a curved surface ¥ C R? can be determined from the lengths of
plane sections,

f LY N T, ) dhdw = "2—:5{}*], (10.6)

but in this case there is no analogue of (10.6) for planes with fixed orienta-
tion. The surface area of a potato cannot be determined from the boundary
lengths of parallel slices, unless we are permitted to reassemble and reslice
the object many times. A better alternative for surface area is to use the
mean content result in which T is a one-dimensional line. Thus we would
repeatedly impale the potato on an array of linear spikes, changing the
potato’s orientation each time, and count the total number of points where
the spikes penetrated the surface.
Other sampling probes can also be used. Instead of infinite two-dimension-

al planes, we can take bounded sampling windows within a plane; the results
here are similar except that the right-hand sides also involve the area of the
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TABLE 10.3: Typical Mean Content Results (3 dimensions)

Object X Probe T | Resulting X NT | Desired 3 | Required a
Solid domain | plane plane domain(s) v A
line(s) linear domain(s) v L
a point(s) | point(s) ':’ !‘
Surface plane plane curve(s) 5 L
line point(s) S I
| Space curve | plane point(s) L Q
Surface plane | plane curve(s) M C

sampling window. Instead of a single plane T} in (10.4) we may take a stack
of equally-spaced parallel planes

Gl- = {‘ wa rTi-htTﬁ-lpTl1 TA+J+Tﬁ+:.1 .aa]-;

summing the contributions A(X N Thes,) in (10.4) gives
fn' A(X NGy)dh = V(X). (10.7)

Note that the range of integration is now the bounded interval [0, s) because
the stack of planes is uniquely specified by its “starting position™ h € [0, 5).
To take stock of these results we note that

1. They do not depend on the “shape™ or position of the objects X, and
are true under very minimal regularity conditions;

2. They are valid only when integration is performed “uniformly™ over all
positions of T (in most cases this requires averaging over orientations);
and

3. They are statements about integrals or mean values only.

For some time, stereclogists thought that opportunities for finding new mean
value formulas were severely restricted by (c). This turned out to be pes-
simistic, becanse many properties of a geometrical object can be expressed
as integrals. For example, some powers of volume V{X )™ can be stereclog-
ically determined. Again, the orientation distribution of a curved surface Y
in R? is the probability distribution of the unit normal vector at a uniformly
distributed random point on ¥. This is a distribution @ on the unit sphere
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52 defined by Q(U) = A(Yy)fA(Y) for U C 52, where Yy is the subset of
Y consisting of all points y € ¥, where the unit normal w{y) lies in I'. The
observed orientation distribution of a two-dimensional plane section ¥ NT
is related to @ by an integral equation reminiscent of Wicksell's equation
for particle size [16].

10.3.4 Design-Based Estimation

The design-based approach is analogous to sampling design for finite pop-
alations [11] but has interesting geometrical complications. The set X is
fixed (Miles's restricted or extended models); the probe T is generated by
a random sampling design. For example, T' could be a single random plane
(the analogue of simple random sampling) or a stack of parallel planes (the
analogue of systematic sampling). The choice whether to estimate total or
relative quantities (V{X) or Vy) affects the choice of sampling design.

Thus we need to convert mean content formulas (10.3) into results of the
form

Ea(YNT) = erd(Y), (108)
po¥nl) _ A) (109)

o(XNT) -~ FX)

EalYNT) _  A(Y)
Ea(XnT) ~ “F(X)’ (10.10)
where ¥ C X are fixed sets, T is a random probe, and E denotes expectation
with respect to the distribution of T. In (10.8) cr is a constant associated
with this distribution; in the other versions ¢ = c,5/¢y s I8 & “geometrical
constant.” Usually @’ = A and ' = V so that in (10.9 and 10.10) we are
estimating Sy from ay,.

The stereclogical equivalent of a uniform random sample is a so-called
isotropic uniformly random (IUR) probe. Suppose we wish to generate a
random probe T intersecting a set X © R". The probe is said to be [UR if
it has constant probability density with respect to the invariant measure p
that features in (10.3):

dP(T) du(T) UTNX £
= 0 fTnX=20.

(10.11)
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Here, H(X) is the appropriate normalizing constant,

H(X) =Lﬂﬂ¢, (10.12)

i.e., the total p-measure of all positions of T that intersect X.

For example, if the “probe™ T is just a single point, the invariant measure
p is Lebesgue (volume) measure, so that H(X) = V(X), and an IUR point
probe hitting X is just a random point uniformly distributed in X.

As a less trivial example, a straight line T in two dimensions is uniquely
specified by its direction # and its distance from the origin:

T{0,p)={(z,y) : zcos @ + ysin # = p},

where # € [0,x), p € R. The invariant measure for lines turns out to be
[48,76]

dy = dpdé,
i.e., Lebesgue measure on the (#,p) coordinate space. Thus, an IUR line

probe T hitting X is a line with random coordinates # and p, such that the
pair (#, p) is uniformly distributed over the permissible range

{(8,p): T(8,p)N X #0}.

In the special case where X is a disc of radius r centered at the origin,
an IUR line through X is generated by making # and p independent and
uniformly distributed over [0,x) and [—r,r], respectively; hence the term
IUR. However, note that for a general set X the coordinates of an IUR
line are not independent and their marginal distributions are not uniform.
A practical method of generating IUR lines through an arbitrary set X is
to enclose X by a larger disc ) 3 X, generate a sequence of [UR lines
intersecting [, and take the first line that happens to intersect X. This is
just an application of the rejection method of Monte Carlo simulation.

The probability that an IUR line through X will hit ¥’ C X is H(Y)/H(X)
with H as defined in (10.12). In other words, the probability that an IUR
line intersects a particular target is related to the mean projected height of
the target. This does not depend on the position of ¥ within X; so in a
sense the IUR line is a uniform sample through X.

Returning to the estimation problem, clearly we can derive (10.8) from
(10.3) by taking T to be an IUR probe hitting X, so that

Ea(¥Y NT)

fmh_ , oY NT)dP(T)



alY NT)du(T)

%/
H '[ X)
= o)
so we have an unbiased estimator of (Y ), provided we can determine the
normalizing constant H(.X).

However, a similar argument will not work for formulas (10.9) such as
Delesse's principle. The problem is that the expectation of a ratio of random
variables in general does not equal the ratio of their expectations. Histor-
ically there were many incorrect derivations of Delesse’s principle; but the
result is just not true for [UR planes. Miles and Davy [20,61] showed that a
solution is to take T with the weighted distribution with probability density
proportional te a'(X N T),

a(XNT)
dP(T) = G(X) du(T),

where o’ must be nonnegative (e.g., A or L but not C). The normalizing

constant is
G(X) = f.f{x NT)d(T) = corpr '(X).

Then, using Ew to denote averages with respect to this weighted distribu-
tion, we have

a(YnT) _ [a(¥nT)

EwoXnt) = jw{xnﬂmﬂ
a(Y NT) o’(X NT)
Zxn1) 6w

G(X)™ [a(¥ nT)du(T)

cag B(Y)
eargr B(X)

This holds provided o'(X N T) > 0 whenever a(} NT) # 0. Note that
the proportionality constant ¢ is now a geometrical constant not dependent
on T. Another, closely related, solution is to estimate the numerator and
denominator of (10.10) separately on a large number of replicated samples:
in other words, when replication is present, take the ratio of means, not the
mean of the ratios.
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The problem encountered here was that plane sections and other stere-
ological analogues of simple random sampling actually do not yield fixed
gample size. The sample mean is biased when the sample size is random.
We must instead use samples with probability proportional to size, or take
replicated estimates and numerically weight them in proportion to size.

Most stereological sampling designs do not have fixed sample size. Dif-
ferent plane sections of a bounded three-dimensional object have different
size and shape. Thus, simple random sampling does not generalize easily
to most stereclogical situations. There are some exceptions: a sampling
window is a fixed-size sample, if the object of interest always fills the entire
window.

Of course, systematic sampling does generalize well to stereclogy, as
we have seen. Stereclogical estimates based on grids of points, lines, and
the like, are essentially systematic sampling estimates. Cavalieri's principle
for a stack of planes (10.7) is just an application of (10.2) to the function
flh) = A(X NnT,) appearing in the original Cavalieri formula (10.4).

The parameter space describing all positions of a grid or systematic
sample is totally bounded, and the invariant measure u can be integrated
over the entire space. In (10.7) the position of a plane grid was specified by
a value h € [0,5). Thus an IUR grid is defined to have uniform probability
density with respect to y over the entire space,

dP(T) = 7 du(T), (10.13)
where the normalizing constant is now the total y measure of all positions

of T,

H= f du(T).
Typically, H depends only on the grid spacing. Thus, estimation of a popu-
lation total according to (10.8) is relatively easy when T is a systematic grid.
An unbiased estimate of the volume of a potato can be obtained by cutting

it into thick slices by parallel planes at constant separation d, summing the
areas of the slices, and multiplying by d.

10.3.5 Model-Based Estimation
In model-based stereclogy we convert (10.3) into

aYnT) _ _ B(Y)
EE*{II"I T} = Cafa' Elﬂg{x] ' [10111}
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where Y is a random set ¥ = ZN.X inside a fixed three-dimensional domain
X. The probe T is now arbitrary (say, fixed). This time E is present on
both sides and denotes expectation with respect to the random structure ¥,
Note the denominators are constant.

The nonparametric modeling approach described in §10.1.5 is simply
to assume that the random process Z is statistically stationary and derive
(10.14) by studying moments associated with Z. For example, here is a
sketch proof of the model-based Delesse formula,

AYNT) _ o V(Y)

EXnT) - Bvix)

(10.15)

Suppose the random process Z is such that for any z € R? the indicator

variable
[ ifzez
”‘]'{u if mot

is a well-defined random variable. Let
plz)=ElNX)=P{ze Z}.

Then
Eﬁ?‘}:EL I[:]d::ftEI[:}d.r:Lp{rJJ:

by exchanging integration and expectation. Assume Z is first-order station-
ary in the sense that p{x) = p does not depend on £. Then this integral
is

EV(Y)=pV(X).
By a similar argument
EAYNT)=pA(X NT),

s0 that both sides of (10.15) are equal to p, and the result is proved.

This example needed only a simple exchange of integration and expec-
tation. For the other stereclogical formulas, we need the integral geometric
results (10.3), and first-order stationarity assumes (roughly) that certain
first moments associated with £ are invariant under translation and for ro-
tation. The formal apparatus is the moment theory of stationary random
measures [57,58,80].

Other, higher-order expectations can be calculated similarly. For exam-
ple, the variance of A4 can be expressed in terms of the second-order charac-
teristics of the process. We now need to assume Z is second-order stationary,
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which in this case means that EI(z)/(y)=Pr{z € Zand y e Z} = r(z,y)
depends only on y—=z. The resulting formula gives the variance as an integral
in terms of r: this is equivalent to the basic variance result of geostatistics
(see chapter 5).

Characteristics of “infinite order™ can be considered exactly as in the
design-based case, for example, the orientation distribution of a curved sur-
face.

10.4 Recent Research and New Directions

10.4.1 Variance of Systematic Sampling

Systematic sampling usually leads to more efficient estimation than simple
random sampling with comparable sample size. However, there are fewer
general results about the variance under systematic sampling because this
depends on the “structure” of the population [11]. At worst, there could
be a periodicity in the population that matches the periodicity of the sys-
tematic sample, and the variance would be elevated. The classic example
is an army population where every tenth serial number is allocated to a
sergeant. In stereology, such cases do arise when a biological structure such
as a corrugated sheet is sampled by a test grid with the same spacing.

The estimator of the area of a plane set based on a point grid has re-
cently been studied extensively [15,29.45,51,54] using earlier results about
the systematic sampling estimator (10.2) of an integral [52]. The variance
of (10.2) Is

var(h) =AY oi8) - [ g,
i -
where g is the coveriogram of f,

glz) = Fw)f(z +y)dy,

=

see [52] and chapter 5. For a wide class of applications,
: 1
var([) ~ -Ey’{ﬂ}lﬂ.’

as A — 0. The point-counting estimator of area of a plane set has been
found [46,47,15,29] to have variance

var{ A) = 0.0724 La®
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as ¢ — 0, where L is the perimeter length of the set, this being a good
approximation for a wide variety of shapes.

10.4.2 Fractionator Sampling

A simple yet extremely powerful application of systematic sampling is the
Sfractionator technique [26). Suppose we wish to estimate the total volume or
number of cells in a large animal. Effectively, we are in the “extended case®™
where it is not feasible to study more than a tiny sample from the object.
Worse, it would seem that we have to generate a uniformly distributed
random sample of this complex object in order to get valid estimates.

On the other hand, it is easy to generate a systematic sample of an
animal. We start by dismembering the animal—in any fashion we choose—
and arranging the pieces in arbitrary order (e.g., in ascending order of size; or
at whim). Then we take a systematic sample of this finite population (inverse
sampling fraction k) and throw away the remaining material. The retained
sample is then cut into smaller pieces and again arranged in arbitrary order;
a systematic subsample of this material (inverse fraction ky) is taken. The
process is repeated until we have a subsample that is small enough to analyze
microscopically. Then we apply a design-based method to estimate the
total amount of material in this ultimate subsample. Finally the total for
the entire animal is estimated by the subsample total estimate times the
product of the successive inverse sampling fractions &y --- k.. Clearly this
estimator is unbiased. Sampling fractions as low as 10~% are routinely used
in brain tissue, meaning that only = 100 cells are actually counted.

At the lowest level of the experiment we still have the problem of esti-
mating the total number (say) of cells in the sample. But here we can often
employ a modification of the disector method. If the last stage of subsam-
pling is carried out by slicing the material into sections and systematically
subsampling the sections, then we just apply the disector counting rule to
each section, and sum the disector counts. This does not require knowledge
of section thickness. Indeed the section planes can be separated by different
distances, and even be nonparallel [26,28 27].

Little is known theoretically about the variance of fractionation sam-
pling, although the estimator clearly has a martingale structure. Current
practice is to form a jackknife estimate of variance, by initially dividing the
specimen into two comparable halves, forming a fractionator estimate from
each half, and estimating variance from the absolute difference of the two
estimates.
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FIGURE 10.3: A point-sampled intercept through a plane section of a par-
ticle.

10.4.3 New Estimation Formulas

Perhaps the most exciting area of stereclogy is the discovery of new mean
content results {10.3). Some of the new quantities § are associated with
“shape,” “size,” orientation, curvature, or spatial arrangement. Other re-
sults apply in sampling situations where it was previously thought impossible
to estimate anything.

Let = be a point inside a three-dimensional set X, which we assume
convex (for convenience only). Let {(z,w) be the infinite ray (half-line)
through r in direction w, where w is a unit vector. Then the mean cubed
length of the intersection between this line and X is proportional to the
valume of X:

#[F L(X N {(z,0))° do = %F{x}; (10.16)

this is an application of elementary calculus. Note that z is a fixed, arbitrary
point. A similar but more complicated formula holds if X is not convex
and /or z is outside X.

This can be used [40] to estimate the mean squared volume of particles
in a three-dimensional population. First take an area-weighted plane section
of the sample material; superimpose a point grid on the section, and at every
grid point which hits a particle profile, place a line in a random direction
through the grid point and measure the cubed intercept (i.e., length of the
intersection between the line and the particle profile). See Figure 10.3. Un-
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der this sampling regime, the particles have been selected with probabilities
proportional to their individual volumes,

VI(X:)
i VIX;)
The cubed intercept lengths estimate the individual volumes; so the mean

cubed intercept length is an estimate of the volume-weighted mean particle
volume,

pi = P{X,; selected} =

_ , _Livixy
W gp.'i-"l[l}] ATLAR
i.e., this is the ratio of mean square volome to mean volume. The mean
volume can be estimated separately from estimates of total volume and
total number; thus we have reliable (approximately unbiased) estimates of
the first two moments of particle volome. Methods exist for some higher
moments. In some applications, particularly in pathology, the mean square
volume (or variance of volume, etc.) has proved very useful in detecting
differences between particle populations.

Another application of (10.16) is useful in studying materials that do
not consist of separate particles. Let ¥ be any set in three dimensions. For
example, ¥ might be the union of all the cells in a tissue, or the empty space
in a porous material. At any point z, define the star sef 5(z,Y ) to be the
set of all points y such that the line segment from z to y lies wholly inside
Y. See Figure 104. If z ¢ Y, then 5(z,Y) is empty; otherwise, 5(z,Y) is
a “star-shaped” set, and if ¥ is convex, then §{z,¥) = V. Consider the
mean star volume, i.e., the mean of V(5(z,Y )) over all points z. This can
be estimated on plane sections by the mean cubed length of an intercept
through a point in the section. The star volume gives us an interesting
measure of the average “local size™ of holes in a porous material.

Variations on the star volume, involving other moments of intercept
length, have recently been considered as indicators of “shape™ [29].

Covariance, and other second-order parameters, can be estimated with-
out bias. This is easiest to describe when X is a stationary random set in
R*. The (noncentered) spatial covariance of X at lag h € R? is

C(h)=E1x(0)1x(h),

where 1y is the indicator function of the set X. In other words, this is
the expected volume fraction of points z in space where both z and z + A
simultanecusly lie inside X. If we are willing to assume that X is isotropic,
then C(h) depends only on the length |h| and not on direction, and we
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FIGURE 10.4: The star volume.

can estimate C(A) as a function of |&| from the sample covariance of plane
sections of X. This has been applied to extract detailed information about
a material [33,77). Second-order statistics have also been used to define
indices of mineral liberation [19,18].

Non-uniform sampling designs are a very important development. As re-
marked in §10.3.3, the general formulas for estimating quantities other than
volume require random section planes with (roughly speaking) uniform dis-
tribution over all possible orientations and all possible positions. However,
many experimenters cannot adhere to this requirement. For example, about
a third of all stereclogical applications require that the section plane be cut
in a particular direction, either for physical reasons, or because the structure
of interest can only be identified when cut this way.

A common case is *vertical” sectioning, where the section plane must be
aligned with a specified axis, in other words, normal to some well-defined
plane we can call the “horizontal.” Thus, there is only one degree of rota-
tional freedom for plane orientation and one degree of translational freedom.
An unbiased estimate of surface area from vertical sections has recently been
found [5] that uses a test grid consisting of cycloid arcs.

Sampling designs that are non-uniform in position and orientation have
recently been studied [41,90,91,92,93]. Mattfeldt and Mall [56,55] proposed
samples involving three mutually orthogonal section planes.
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10.4.4 Research Frontiers

Here we speculate about future advances (other than those already in progress
and covered above).

Three Dimensions

New imaging modalities (such as confocal optical microscopy, infrared Fourier
transform imaging) have been developed that can “see™ directly into three
dimensional structures such as biological soft tissue and solid bone. Three-
dimensional images can also be reconstructed computationally from serial
optical sections or tomographic data. Rather than making stereclogy redun-
dant, this technology has released a flood of interesting new problems. Stere-
ological sampling techniques are needed, e.g., for counting three-dimensional
particles [38], and the methods of two-dimensional spatial statistics (see
chapters 4 and 7) need to be adapted and refined for three dimensions [6,49).

Structured Models

One reason for the overwhelmingly “nonparametric” character of stereclogy
is that explicit stochastic process models have not succeeded in reproducing
the very high degree of organization seen in real (especially biological ) mi-
croscopic structures. This may change in the next five years. Much recent
activity in stochastic geometry [80] is focusing on models where the real-
izations have a prescribed, ordered appearance such as random tessellations
[63), random dense packings, and random fibre processes.

Markov Models

Particularly promising is the development of several kinds of Markov models
for spatial processes [1,7,10,73,71,72]. These are one step more complex than
completely random Poisson processes, in that a stochastic interaction is al-
lowed between “neighbouring™ elements of the process, for example, pairwise
interactions between the points in a point process. Markov point processes
and random sets can easily be simulated using Monte Carlo methods, and
they are convenient for likelihood-based inference [68].

Bootstrap Methods

Bootstrap resampling methods were introduced to stereclogy by Hall [31,33]
in connection with the point-counting estimator of area fraction A4. The
basic idea was to break the sampling region into strips or pieces that are
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sufficiently separated for any dependence to be ignored, and to resample
these pieces as if they were iid. observations. It seems likely that such
methods will prove a useful alternative to parametric modeling, as a way
of getting information about variances and confidence levels. The difficulty
is in finding acceptable ways of bootstrapping a spatial process with all its
inherent spatial dependence.
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Markov Models for
Speech Recognition

Alan F. Lippman
University of Washington

11.1 Introduction

The goal of speech recognition research is to enable machines to reduce
human speech to a list of printed words. By imposing restrictions such as
a limited vocabulary and grammar, automated speech recognition systems
have been produced during the last 15 years that, within those constraints,
approach human performance. Sustained research efforts have resulted in
systems that place substantially fewer restraints on the speaker. Earlier
recognition systems typically required that the words spoken belong to a
fixed small vocabulary, that the speaker pause between each word, and that
the speaker participate in a training period during which the system would
automatically adjust to that particular speaker (and no other).

Each of the constraints above was used to reduce the complexity inherent
in natural speech. This chapter presents an introduction to concepts under-
lying much of the work in speech recognition and, in the process, explains
how the constraints above simplify the problem. The chapter then presents
a detailed description of a simple probabilistic speech recognition system,
modeled after the SPHINX system [14], that implements hidden Markov
models (HMMs).

Hidden Markov models are the basis for many recently developed speech
recognition systems and are related to Markov Random Fields (MRFs),
which have been successfully applied to some image-processing tasks (see
chapter 3). Both approaches rely on similar probabilistic frameworks to de-
scribe and exploit the relationship between the items of interest (e.g.. the

217



218

microphone recording and its transcript, the degraded and “true” images).
Both approaches share some fundamental tools: maximum likelihood esti-
mation to estimate parameters, maximum a posferiori (MAP) estimation to
perform recognition /restoration, and the use of Markovian models to make
these estimation problems tractable. However, recorded speech, unlike im-
ages, is not a spatial process, it is a function of pressure (or through a
microphone, voltage) versus time. This chapter provides a quite different
view of some of the methods of chapter 3.

11.2 Basic Speech Concepts

Some of the basic units of speech are the sentence, the word, and the
phoneme. There are approximately 40 phonemes, each corresponding to
a distinctive sound. The symbol list that dictionaries provide after each
word (as a pronunciation guide), is a list of phonemes. Phonemes, words,
and sentences are all fundamental to the way we produce speech; people
think in terms of sentences and words, while phonemic descriptions are nec-
essary for people to pronounce words correctly. Modern speech recognition
systems function in a similar way: a hierarchical approach is used where
sentences are modeled as series of words; words are modeled in terms of
phonemes; and phonemes are modeled as series of features of the signal. By
nesting these three layers of models, printed sentences (our desired goal) are
related to the speech signal.

Neither words nor phonemes are easily identified in the speech signal.
Even finding the boundaries between two words can be a difficult task, since
in the speech signal, phonemes as well as words may merge together and no
simple signal processing can separate them. A spoken phrase like “this is,”
can easily be interpreted as “the sis” [or even by some graduate students
as “thesis”). Most people have had the experience of listening to a foreign
language and hearing only a steady stream of sounds, illustrating that one
must understand speech to find word boundaries. (This type of difficulty is
familiar to those who work in image segmentation; it is often impossible to
find the boundaries between objects without some knowledge about what
the objects are.)

Isolated-word recognition systems require that the boundaries between
words be obvious. This is typically accomplished by requiring a speaker to
pause between words. These silent pauses can be easily identified in the
signal. Individually spoken words also tend to be enunciated more clearly,
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aiding recognition. The main drawback of such systems is that the speaker
is constrained to speak in a slow, unnatural manner. Confinuous-speech
recognition systems lack this constraint.

The construction of even an isolated-word speech recognizer is difficult.
The speech signal associated with a word or a phoneme is extremely vari-
able, and can vary greatly depending on both the speaker’s identity and the
manner in which the word was spoken. Variability is caused by anatomical
differences between speakers, such as sex or vocal tract length, as well as
by differences in style, health (presence or absence of a cold), speaking rate,
stress, or accent. A quickly spoken word will frequently be slurred or have
parts “missing.” Accents can result in the wholesale shifting of vowels [9)].
In addition, some words have many allowed (as opposed to recommended)
pronunciations. This is especially true for common words, like “the,” that
are typically articulated poorly (“the” is often pronounced as “dee,” “dah,”
“dih,” “thah,” or “thih™). Speaker-dependent systems simplify the recogni-
tion problem by adapting themselves to one particular speaker, removing
some of the canses of variability.

The speech signal associated with a phoneme also varies depending on
the context in which it is pronounced. This effect is called co-articulation.
As people speak, the tongue, lips, and other articulators must move from
a position necessary to pronounce the current phoneme to a position that
will result in the next phoneme being produced. The articulators tend to
move only far enough for speech to be intelligible, so current positioning
is affected by the previous positioning. The placing of the articulators can
also be influenced by the position that should be occupied next, a form of
“thinking ahead" that people perform automatically.

For small-voecabulary recognition systems, the concept of phonemes typ-
ically is not used. Many examples of each word are used to discover a direct
relationship between the word and the speech signal. In this way the effect of
co-articulation is modeled implicitly. Since the required number of examples
will grow linearly as a function of vocabulary size, this type of approach is
almost impossible for vocabularies containing more than a thousand words.
Phonemes, or some similar concept, are often emploved by large-vocabulary
systems.

Perhaps the most challenging problem in speech recognition research is
that of modeling sentences. Unless words are enunciated very clearly, con-
fusions between phonetically similar words are inescapable. While a person
would pick the sentence that makes the most sense, an antomated system
must rely on a sentence model. Different types of models have been used,
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ranging from classification trees [1] to N-step Markov chains [2] (the proba-
bility of the current word conditioned on all past words being only dependent
on the previous N words). If the speaker obeys a highly constrained gram-
mar specified by the system (e.g., the word “come™ can only be followed
with “here,” “over,” or “back”), it becomes much easier to antomatically
recognize sentences. A measure of the constraining power of a grammar
is the perplexity (for a definition see [2]). Automated systems that allow
large vocabularies and employ a grammar whose perplexity is close to the

perplexity of spoken English, can be said fairly to handle natural tasks.

11.3 Some Recent Systems

All speech recognition systems require restricted input to achieve good accu-
racy (around one word in twenty wrong). Table 11.1 provides a short guide
to some recent systems and the constraints under which they operate.

Almost universal is the requirement that the speech be recorded in a
low-noise environment; a device that operates in a cocktail lounge or on a
construction site may not be seen for decades. Other standard requirements
are described by the terms continuous speech, speaker independent, large vo-
cabulary, and natural task. Large vocabulary systems in this table recognize
more than three hundred words.

TABLE 11.1: Some Speech Recognition Systems and Their Abilities

svste mrr | i [ e T v T vararan
NTT 1978 o No No No
DRAGON 1975 No Tas Mo Mo
HEARSAY 1975 Mo Yes Yes Na
HARPY 1978 ¥o Yos Yeos Mo
BELL "B2 18682 Yes No Ko Ko
FEATURE 1583 Yis Mo ¥ao Mo
TANGORA 1865 Ko Ro Tes Tes
BYBLOS 1987 Ko Yes Yes Ko
BELL 'B8 1988 Yes Yes Ko Ho
SPHINX 1968 Yes Tes Tes No
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11.4 Signal Processing

Speech signals are typically sampled at 8-16 kHz (8 to 16 thousand samples
per second ), where the value of each sample is specified by 10-12 bits. The
first step in most recognition systems is to process this signal, both to reduce
the amount of data and in an attempt to extract the features of the signal
that are relevant for recognition.

Some processing methods begin by taking short-term Fourier transforms;
short (on the order of 20 milliseconds), overlapping (by on the order of
10 milliseconds) frames of the signal are transformed into vectors whose
components are the energies associated with (approximately 10) differing
frequency bands. In this manner the speech signal would be represented by
& small number (on the order of 100) of vectors per second. Other processing
methods fit autoregressive (AR) models (of order 8 to 16) to these short,
overlapping frames of the speech signal. In that approach the speech signal
is represented by a sequence of AR parameter vectors. Note that whereas
each frame of the signal may contain 320 values (20 ms of a 16 kHz sampled
signal), this first processing step reduces it to a vector of dimension 18 or
less.

The final step of most processing algorithms is the use of vector quan-
tization [19], which reduces each vector to an acoustic label belonging to a
small discrete set (containing on the order of 256 elements).

Briefly described, the use of vector quantization first requires that stan-
dard techniques be used to find cluster centers in a set of vectors obtained
from a representative variety of recorded speech. Each of these cluster cen-
ters is given a label. Vector quantization replaces any vector in the high-
dimensional space with the label of the closest cluster center. In this way,
a l6-dimensional vector of AR parameters could be represented by a single
byte.

Although good signal processing is critical to the successful performance
of a recognition system, it is bevond the scope of this discussion, and we
refer the reader to [2), [14), and [7] for further details. For the remainder of
this discussion, it is assumed that the speech signal is already described by

a series of acoustic labels, each of which belongs to a small, fixed set.

11.5 Probabilistic Recognition

The most successful approaches to the speech recognition problem use proba-
bilistic modeling. The processed speech signal ¥ = (y,...,¥s ) is considered
to be an observation of n random variables (R.Vs) ¥ = (¥;,...,¥.). A
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sentence or string of words w = (wy,...,wy ) is considered to be an obser-
vation of m R.Vs W=(W,,...,Wx). For a fixed series of recorded acoustic
labels y, the value of the conditional distribution P{W =w|Y =y) specifies
the probability that the words w are the “script”™ of the recording. Speech
recognition can be accomplished by finding the word string that maximizes
this conditional distribution. (This is MAP estimation.)

By Bayes' rule,

P(W=w|Y=y) = P(Y=y,W=w)/P(Y=y)
= P(Y=y|W=w)P(W=w)/P(Y=y).

For any fixed recording, the value of P(Y =¥) is a constant and the w that
maximizes P{W =w[Y = y) also maximizes P(Y=y, W=w) and P(Y =
¥|W = w)P(W = w). Instead of constructing the conditional distribution
P{W = w|Y = y), we shall consider two, wholly separate problems. The
first is the construction of a distribution P(W = w) on sentences; this is
the modeling of grammar. The second is the construction of a distribution
P(Y = y|W = w) on acoustic label strings; this is the modeling of speech
production.

The remainder of this chapter is designed to provide a brief introduction
to the techniques used to implement the above approach. The construction
of P(W =w) is not discussed. (The interested reader should refer back to
§11.2 for a few references regarding the choice of a grammar.}] We concen-
tate instead on presenting in some detail a simplified parametric model for
P(Y =y|W =w) similar to the SPHINX baseline system [14], which formed
the basis for the SPHINX system, a successful large-vocabulary, continu-
ous speech, speaker-independent recognition system. (We recommend [14]
as a detailed guide to the construction of a complex and functional speech
recognition system.) Discussion follows on estimating the parameters of this
distribution (§11.11). The final topic is the identification of the word string
that has maximal probability conditioned on the spoken signal.

11.6 Image-Processing Parallels

This probabilistic approach to speech recognition has many points in com-
mon with Bayesian image processing using MRFs. A typical digital picture
is a specification of intensities or colors at the sites of a finite two-dimensional
lattice L = {(i,7)});=0- Modeling can be accomplished by introducing two
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types of random variables, F={F;;}ijer, corresponding to an observed pic-
ture, and U = {Uij}ijer, corresponding to an unobserved “true” picture.
One method of image restoration is to calculate for any observed image f
the u that maximizes P(U=u|F=1{). Bayes’ rule is applied, just as it was
in speech, to reduce the construction of P{U=u|F={) to the construction
of two separate distributions: P(U = u) and P(F =f]lU = u). P(U=u)
is called the prior distribution and has the same role that P{W = w), the
sentence model, did for speech. P{F = f|U = u) is the degradation model,
and is the analogue of the speech production model.

Both image-processing tasks and speech recognition require the place-
ment of distributions on very large (3 2'%%), but finite, spaces. Both rely
on Markov assumptions to allow computational feasibility. Major differences
are that the speech problem is inherently one-dimensional, whereas pictures
are multidimensional. The inherent one-dimensionality of speech signals al-
lows the use of fast estimation and search techniques. Although some image
models allow the use of similar techniques [11], the class of such models is
highly restricted and may not be particularly useful.

11.7 Modeling of Speech

The recognition system we describe uses phoneme models as an intermediate
stage between acoustic labels and words. For every phoneme we will form
a distribution on acoustic label strings produced during the enunciation of
the phoneme. These distributions take the form of HMMs. In our simplified
presentation, the effects of co-articulation will be ignored; the distribution
of the acoustic labels associated with a given phoneme will be assumed to
be independent of the neighboring phonemes.

A more ambitious speech recognition system would model phonemes in
context. In such a system, the goal would still be to put a distribution
on acoustic strings produced during the enunciation of the phoneme. How-
ever, the distribution would also depend (commonly) on the preceding and
following phonemes (e.g., a distribution would be formed for the acoustic
label strings associated with the phoneme \R\ when that phoneme is in
the phoneme string \TH\ \R\ ¥\ ). The fundamental difficulty of this ap-
proach is that the number of such distributions would be approximately 407,
and parameter estimation becomes impossible. However, clever implemen-
tations of context-dependent phoneme models have been made, and we refer
the reader to [14] for details.
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The use of phoneme models (either context-dependent or context-inde-
pendent) usually necessitates the assumption that the distribution of the
acoustic labels produced during a given phoneme, or that lies within a given
context for context-dependent models, be independent of the acoustic labels
produced during other phonemes. This assumption allows the production
of acoustic labels for a string of phonemes to be considered as though each
phoneme was produced independently and the results concatenated. This
type of assumption is necessary in order to build models by “instantiation,”
a technique that is described in §11.10.

Although many words have multiple pronunciations, this model assumes
that each word has a unique pronunciation, and therefore a unique phonemic
representation. This assumption is used in some state-of-the art systems.
Such an assumption forces the phoneme models to model implicitly some of
the variability in pronunciation.

In the remainder of this chapter it is assumed that a grammar, and thus
P(W = w}), has been specified. The modeling strategies and assumptions
above will be used to produce P{Y = y|W =w). Combining this with the
value for PIW =w) vields P(W=w,Y =¥).

11.8 Hidden Markov Modeling

First, we introduce hidden Markov models {(HMMs), and then describe their
use in speech recognition. A HMM describes the behavior of two series of
discrete R.V.s, call them X = (X}, X;,...) and Y = (¥},¥5,...). The X
series 15 called the hidden R.V.s, and the other series is called the observed
R.V.s. The conditional distribution of X; given the values of all the previous
R.V.s (X}, Y;,¥j < i) will be dependent only on the value of X;_, (and not
on i). The conditional distribution of ¥;, given the values of all other R.V.s
(both hidden and observed), will be dependent only on the value of X; and
X;_1 (and not on i):

P(Xi=zi|X;=z2; Y;=p;, ¥j < i) P(Xi=zi|Xic1=2i11)
P(Yi=yi|lXj=z;,Yi=y, ¥i# i) = PYisplXi=sz, Xici=zi).

The “hidden™ part of a HMM arises from its use. Only observations of
the R.V.s ¥ will be used to estimate the transition matrix P{X;|X;-1) and
the conditional distribution P(Y;|X;, X;-1). These conditional probabilities
are sometimes called the paramefers of the model.
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For each phoneme, we construct a distribution on acoustic label strings ¥
and hidden state strings x. Based on these distributions we can construct the
distribution P(Y =y, X =x|W =w). Note that this distribution specifies
the distribution P(Y =y|W=w).

11.9 The SPHINX Phoneme Model

We now present a model for the production of one phoneme. Note that
although a phoneme may be pronounced either quickly or slowly, the acoustic
labals are produced at a constant rate. A phoneme model must allow the
production of variable numbers of acoustic labels. As shown in Figure 11.1,
let X, take on seven allowed values, and call them §5,,..,57. X, equals 5,
with probability 1. In Figure 11.1, arrows connect two states S; and 5;
{possibly the same) if P(Xy = 5;|Xy-) =5;) is allowed to be nonzero. With
every allowed transition (from 5; to 5;) there is an associated character, B,
M, or E, denoting the beginning, middle, or end of the pronunciation of the
phoneme. The distribution of ¥; conditioned on observations of all the other
R.V.s will only depend on the character associated with the transition from
Xi-1 to X| (e.g., from Figure 11.1, P(¥; = ;| X;_y = 53, X; = 53) = Py(Y;=
¥i)). When Sy is reached, the pronunciation of the phoneme is complete.

Kote that Pg, Py, and Pg are distributions on ¥, and recall that an
acoustic label can typically have any one of a few hundred values. The
distributions Pg, Py, and Pg will not be parametrized, so the specification
of each distribution requires the specification of many probabilities. For the
non-baseline SPHINX system, approximately 700 probabilities are needed
to describe each of the distributions Pr, Py, and Pg.

Hidden Markov models possess desirable properties. The observed R.V .5
(Y') behave in a very simple fashion (they are independent ) when conditioned
on the hidden R.V.s (X)), but the marginal distribution of ¥ possesses no
such independence. The behavior of the observed R.V.s is quite compli-
cated. The model above allows variable length label strings, and allows
the probabilities of strings of length 1, 2, and 3 to be anywhere between 0
and 1. The loops at states 53, Sa, and 5 allow the phoneme to idle at a
particular state, helping to model the various ways in which phonemes can
be extended in duration (e.g., some phonemes may occasionally have long
“middles,” other phonemes may always have short “middles™).
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FIGURE 11.1: Allowed transitions.

11.10 Instantiation

We now use the phoneme models and the assumptions listed in the por-
tion on modeling to construct P{Y =y, X = x|W = w). The distribution
PF(Y =y,X =x|W = w) is formed by using the values of the probahili-
ties P(X;|X-1) and P(Y;|.X;, X:-1) as specified by appropriate phoneme
models. The manner in which this is done is called “instantiation.” and is
described below. For each sentence w = [, w3, .., ww ) there is an associ-
ated string of phonemes p = (p},p{,.. .. PU* Phy- o P30y - .., P ), where p!
is the ** phoneme in the i*® word. The total number of phonemes associated
with the sentence is n = }_; n;. The distribution P(Y=y X=xW=w) is
a HMM where the hidden variables X; can take on values in

{S1(pi)s-- -, Solpd), Sa(pd),- .., o), oo S2(PE ), oo Se(PT)) -

This set contains 6n + 1 states, six for each phoneme and one state signifying
the end of the sentence. Note that the state of the hidden variable X;
specifies the word, phoneme, and part of phoneme that is being produced
at time 1.

The distribution P{Y = ¥, X = x|W = w) is formed by defining the
transition probabilities

P(X=Si(pil Xe-1=5i(ph)), 1S4,/ <6, 1<k<m, 1€1<n,

to be the same as those specified by the phoneme model for the phoneme
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FIGURE 11.2: Graphical representation of the HMM for the word string
she.

ph. The values of

P(Xy=51(p" ) Xecr = Siph)), 1€i<6, 1<k<m1<ic<n
P(Xe=51(phi )l X1 =5ipk)), 1<i<6, 1<k<mi=mn
P(Xe=S:(ph)| Xe-1=5i(pi)), 1€i<6, k=m,l=n,

have the values that transitions to Sy had in the phoneme model for p|. All
the other transition probabilities have value zero. When X; is observed to
have value S3{pl=), the sentence has been completed.

The distributions P(¥;|X;, X;_1), similarly, are those associated with
the related phoneme model. To account for between-word pauses, a nonzero
term P{X,= 5:1(p})|Xi-1=5:1(pl)) can be added where P(Y;=silence|X,=
S1(pl), Xeq = 5:1(pl)) = 1; for the sake of clarity, we will not discuss this
detail.

Figure 11.2 is a graphical representation of the HMM for the word string
she. Notice that the distribution P(Y =y, X = x|W = “she") contains no
explicit mention of phonemes or words. It is a distribution on strings of
acoustic labels and hidden states.

As indicated previously, any string of hidden states x is associated with a
unique word string. Note that this forces the value of P Y =y, X=x, W=
w) to be either zero or equal to P(Y =y X=x).
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11.11 Computational Issues: Parameter
Estimation and Searches

The model for P(W = w,Y = y) is based on phoneme models. The esti-
mation of parameters for this distribution consists primarily of estimating
the parameters of the phoneme models. The simplest way to estimate the
parameters of phoneme models would be to excise examples of phonemes
from speech, and estimate parameters for each phoneme separately. This is
not done, perhaps because the excision of phonemes (accomplished by hand)
cannot be done in a manner consistent with the assumptions implicit in the
phoneme models. Most current systems estimate parameters using training
data consisting of utterances of whole known sentences. Below we present
the algorithm used to perform this very difficult computational task. We
also briefly present the typical approach used to speed the computations
associated with the use of a trained system.

We wish to estimate the parameters of a HMM from one or more obser-
vations of (¥),...,Y¥r). It may seem counter-intuitive that the parameters
of a HMM can be estimated. We are, after all, trying to estimate the be-
havior of variables that are never observed. However, some thought yields
examples of HMMs where we should be able to estimate parameters. For
example, consider the simplest possible HMM. Let both the hidden and ob-
served values take on only the values 0 and 1. Let P(X;=1|X;_;=1)= .0
and .F{I. = I]JI,-_;L = ﬂ} = .?1 and let P{H = llx, = ]_] = B3 and
P(Y; = 0|X; = 0) = .B. These four terms completely describe the behav-
jor of the HMM. An excerpt from a simulation of this HMM is below:

z: 000000000011001111811111121210111111001112221111111111110111
y: 110000000011001111111111111111111111001111110110010111010111

Notice that there are long strings of both 1s and 0s in the observation y.
Remember that the }¥; are conditionally independent given X. The strings
must be caused by the behavior of the hidden variables. Since long strings
exist, we can guess that there is not much “noise,” and that P{¥;=0|X;=0)
and P(Y; = 1|X; = 1) should both be close to 1 or both close to 0. (The
distribution of ¥ given X might turn most Ds to 1s, and most 15 to 0s. It is
impossible to tell from the observations whether the underlying process is
as above or is governed by P(X;=0|X;_1=0)= 9, P(X;=1|X;;=1) = .7,
P(Y;=01X;=1) = 85 and P(¥;=1|X;=0) = .8.) We can then guess that
both P(X; =0]X;_y =0) and P(X; =1|X;—y = 1) should be > .5 in order
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to consistently produce strings, and that one of these terms should be > .8
because a string of length 22 would otherwise be quite unlikely.

One of the reasons for the success of HMM is the existence of a compu-
tationally efficient method for approximate maximum likelihood parameter
estimation (as opposed to the completely ad hoc estimation above). Starting
with an initial guess for the parameters, and an observation ¥ = (y,....¥1)
of ¥ =(¥;,...,Y7), the Banm-Welch algorithm [5,4] (also known of as the
forward-backward algorithm) is an iterative method for selecting parameters
that ensures that at every iteration the likelihood increases. Convergence to
a local maxima of the likelihood is guaranteed. The Baum-Welch algorithm
iz equivalent to, and predates, the expectation maximization (EM) method
[10).

We present here the Baum-Welch algorithm. Let

aie = P(Xi=klXiai=j) jk=1,...,3
bi(l) = PYi=l|Xi=k, Xia1=j) jik=1,....8 [I=1...,r.

Assume, for simplicity, that a; = P(Xo=7j) and b;(l) = P(Yr=I|X1=7j) are
known. Let P, be the distribution on (Xg,..., X7, ¥1,...,Y7) generated
by a and b. The likelihood of y is T, P(Y =¥, X =x), which can be written
as

FulY=y)= Y @050 (e 5bi i) - 8 irbip(vT) .
P
Note that a naive calculation of the expression above would require an ex-
treme amount of computation, the performance of 2T x s7*! multiplication
operations. A more efficient approach is to rewrite it as

PuY=p)= 3 a5 ¥ a5ibinin(mn) ¥ asibii(e) ... 3 aip_yirbir(vr)
fa=l n=1 =i Fr=l

and perform the computation by first calculating 3, a;;_, ;- b;-(yr) and

storing its value for all values of jr-;. Then the sum over jr_; can be com-

puted and stored for all values of jr_;. Repeating this until the likelihood

it evaluated results in 2T % §° multiplications being conducted.

Each iteration of the Baum-Welch algorithm results in new estimates
{@;:} and {b;s(1)}, based on the data y and on the previous estimates {a;:}
and {bjs(1)}:

Li Pu(Xica=5, Xi=k|Y =y)

&; = -
ik T Pl Xic1= Y =)




Lt Pas(Xica =4, Xi=k[Y =y)
TPl Xicy =5, Xi=k|Y=y) ~

These re-estimation equations are the heart of the algorithm. For those
more familiar with the EM algorithm, the above formulas can be interpreted
as the calculation of 3~ Eau( XX, Xic1, Y)Y =¥), where X; denotes
the indicator function for the value i; X5(j)=1if i = j, and 0 otherwise.
These indicator functions are the natural sufficient statistics when a HMM
is represented as an exponential family (which can be accomplished via
the Gibbs-MRF equivalence). The maximization step of the EM algorithm
becomes trivial in this case. We shall not present any proof that the above
re-estimation increases the likelihood of y; instead we refer the reader to
[4,5].

The Baum-Welch algorithm in addition to the formulas above, specifies
a method to calculate the new estimates quickly. This is essential since the
distribution FPo(Xi—y = 5, X, = kY = y) is dependent on all the valoes of
Y, and a naive calculation would require as many operations as a naive
calculation of the likelihood. However, we can implement a computational
strategy similar to that introduced above to compute the likelihood. The
re-estimation equations above can be written as

2 (i) B (k)asubi(pisvr)
2 ai(7)8i(5)
o=t @il 1 )Bip1 (K Dagibyi( s
i ail7 B (k)ajubia(yivr)

where a and 3 can be defined inductively in i, forward and backward re-
spectively, by

bj(l)

djy, =

bjsll)

a1 (k) = Eﬂi{i]‘ﬂjkbjkfrﬁl}- Bili) = 3 i (K)ajubsu(pisn) .

j=1 jml

The implementation of the Baum-Welch algorithm for speech recognition
depends, obviously, on the form of training data. The standard scenario, as
mentioned above, is that there is a list of known sentences and pronuncia-
tions of them. We can therefore construct a HMM P(Y =y, X=x|W =w)
for each known sentence (as in §11.10). The estimation of parameters for
the HMMs can proceed by the Baum-Welch algorithm with the simple mod-
ification that the jterations be performed synchronously. One iteration will
be conducted for each HMM sentence model, then the estimated parameters
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for each sentence will be combined into one estimate for all the parameters
of all the phoneme models at the end of every iteration.

The performance of the Baum-Welch algorithm depends highly on the
quality of the initial estimates. While every iteration of the algorithm guar-
antees an increase in the likelihood, a bad initial guess may cause con-
vergence to a bad (low) local maximum of the likelihood. Whereas whole
sentences are used to train the phoneme models, the initial estimates for
the distributions P(Y;|X;, X;-,) often come from excised phoneme data. In
(15], for every phoneme the three distributions Pg(Y;), Pa(Y;), and Pg(Y;)
are initialized to a histogram of the acoustic label values associated with
that phoneme in hand-labeled data. The initial estimates of the transition
probabilities of the hidden states were chosen so that all allowed transitions
from a state had equal probability.

Another interesting implementational detail is that the Baum-Welch al-
gorithm is typically used for only 2 or 3 iterations [7, page 35), [14]. On
the other hand, EM is well known for slowness after the first few iterations.
In [14] the performance of the recognition system is stated to worsen with
continued iterations, suggesting to us that an overfit of the training data is
occurring.

Once parameter estimation is accomplished, there remains the use of the
recognition system. As was stated at the beginning of this section, our goal
is the calculation of the string w that maximized P(W =w|Y =y). The
use of Bayes' rule allowed us to modify this to the calculation of the string
w that maximized P(Y = y, W = w). Recall that we have constructed
P(Y=y,X=x,W=w), which equals P(Y =y, X =x) when w is the word
string associated with x, and zero otherwise,

The string w that maximizes P(Y =y, W =w] is usually approximated
by the w associated with the x that maximizes P{Y = y,X = x). The
principal justification for this approximation, besides its success and com-
putational simplicity, is that the most likely word string should have at least
one corresponding hidden state string that will also be very likelv. The most
likely string of hidden states, for small vocabulary and simple grammar sys-
tems, can be found by a simple dynamic programming [6] scheme called the
Viterbi algorithm [2]. For more complicated systems the search is performed
by more ad hoc methods that are based on dynamic programming [2,14]

11.12 Future Directions

The construction of a large-vocabulary, speaker-independent, complicated-
grammar speech recognition system from seratch is a daunting task. How-
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ever, it is one that new researchers interested in speech recognition will not
have to face. Databases for speech recognition are becoming commonly avail-
able. As a result, various fascinating and extremely challenging subproblems
can be approached by single researchers on current generation workstations.
One such problem is the speaker-independent recognition of phonemes in
continuous speech; another is the recognition of connected digits.

Whereas HMMs have been the most successful approach to date, the fun-
damental reason for their current superiority is the dedication and creativity
of thoese who have implemented them. Preliminary research indicating that
other approaches can be as accurate and computationally feasible is pre-
sented in [17]. It is hoped that, as the computational resources to approach
the speech recognition problem become available to a larger community, a
diversification of approaches will occur and that this chapter encourages
research in this direction.
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(b)

PLATE 2.1: L-band synthetic aperture radar (SAR) image of ice floes in the
ocean: (a) original image, 512 x 512 (pixel resolution is about 4m x 4m}), (b)
evolution of segmentation via stochastic relaxation with constraints; shown
are sixteen *snapshots™ from sixty sweeps (every third sweep) of stochas-
tic relaxation (upper left panel shows the random starting configuration of
edges, and the lower right panel shows the final configuration of the bound-
aries). Reprinted, by permission, from Geman et al. (1990). Copyright
(© 1990 by Institute of Electrical and Electronics Engineers.



(b)

PLATE 2.2: Collage composed of nine Brodatz textures: leather, grass,
and pigskin (top row), raffia, wool, and straw (middle row), and water,
wood, and sand (bottom row). Two of the textures, leather and water, are
repeated in the two circles; (a) original image 3584 x 384, individual textures
all 128 x 128; (b) estimated boundaries via deterministic (left panel) and
stochastic (right panel) algorithms. Reprinted, by permission, from Geman
et al. (1990). Copyright (© 1990 by Institute of Electrical and Electronics
Engineers.



(b)
(a)

PLATE 2.3: Single photon emission computer tomography (SPECT) recon-
struction of a slice of a human skull across the eyes, from real (hospital)
data: (a) filtered back projection (FBP) reconstruction, (b) reconstruction
via the iterative conditional expectations (ICE) algorithms using J = 2.7,
the ML estimator. Note that in (b) one can distinguish details such as nose
bone, eyes, and brain, most of which cannot be distinguished in (a).

PLATE 2.4: SPECT reconstruction of a sim-
ulated phantom. The model used in this
experiment was developed by the Nuclear
Medicine Department of the University of
Massachusetts Medical Center, Worcester.
This is a comprehensive model that captures
the effects of photon scattering, photon atten-
uation, camera geometry, and quantum noise:
(a) original phantom, (b) FBP reconstruction,
(c) ICE reconstruction with @ = 1.




(a) (b)

PLATE 2.5: SPECT reconstruction of a human liver /spleen scan, from real
(hospital) data: (a) FBP reconstruction, (b) ICE reconstruction with 3 = 3,
the ML estimator, (c) ICE reconstruction with 3 = 0, (d) ICE reconstruction
with # = 20; (c) and (d) demonstrate the significance of the parameter
(see text).



(B)

(€) (d)

PLATE 2.6: A shape-from-shading experiment with an egg image under
uncontrolled illumination. The surface of the egg was assumed to be Lam-
bertian with unknown albedo; the algorithm (a combination of constrained
annealing and iterative conditional modes (ICM)) estimated, in addition to
the configuration N of unit normals, the albedo p of the egg (and of the
background) and an effective light source direction §: (a) original image,
64 x 64, (b) reconstruction (simultaneous estimation of NV, p, and 5, () re-
constructed scene illuminated from the r-direction, (d) reconstructed scene
illuminated from the y-direction.



(a) (b)

(d)

PLATE 3.1: (a) AVHRR band 2 (albedo) with clouds shown as white. [b)
AVHRR band 4 (infrared temperature), dark gray scales are warm. (c) Seg-
mented image produced by the PCTSMC algorithm. {d) Final cloud-masked
image (clouds and land are black) produced by the PCTSMC algorithm. De-
tails of the different gray scale maps used in the panels of Plate 3.1 are given
in the text.



(k)

PLATE 3.2: (a) One-half cycle of the image sequence constructed by super-
position of an image of an inclined plane with that of a circle. Note, the
circle is out of phase with the inclined plane and the range of data in the
inclined plane is about twice that of the circle. (b) Dominant patterns of
variance determined from the EOF analysis of the image sequence.
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PLATE 3.3: Image sequence and geographi-
cal information of a coastal filament observed
off central California by the Advanced Very
High Resolution Radiometer on the polar-
orbiting NOAA-9 and -10 satellites. Individ-
ual gray scale mappings were used to opti-
mize feature recognition. The lower temper-
ature ranges (i.e., 9.9°=12.7°C for time step
1) were mapped to a single gray scale. {Wahl
and Simpson, 1990b)



(a) (b)
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PLATE 3.4: (a) Edge maps. (b) Total velocity field from pattern-matching.

(¢) The MU normal component of velocity. (d) The tangential component
of velocity computed as a difference of (b) and (c) for time step 2 of the

image sequence shown in Plate 3.3. (Wahl and Simpson, 1990b)



PLATE 3.5: (a) A polar Landsat image showing ice floes as light gray
structures against a dark background. (b) The corresponding distribution,
size, and shape of the ice floes. Reprinted, by permission, from Banfield and
Raftery (1989). Copyright © 1989 by University of Washington.



PLATE 10.1: Plane section of a biological structure with stereclogical test
system superimposed. Lung of Grant's gazelle; white space is airway, dark
blobs are red blood cells. Microtome thin section, optical microscope image
field, magnification %1500. Standard test system on transparency, randomly
translated over photographic print. Reprinted, by permission, from Cruz-
Orive and Weibel (1981). Copyright (© 1981 by Royal Microscopial Society.



FLATE 10.2: A disector sample formed by two optical section planes. Hu-
man renal glomerulus; dark blobs are nuclei. At left is the look-up section; at
right the counting section, with a tessellation of rectangular counting frames
superimposed (randomly translated). Arrows indicate nuclei counted by the
disector ftiling rule. Optical microscope, Hematoxylin-Giemsa stain, mag-
nification x1140, section separation 4 gm. By kind permission of Dr. Niels
Marcussen, University of Aarhus, Denmark.
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