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Preface

What is the book and why was it written?

This book is a guide to analyzing and modeling financial time series us-
ing S-PLUS and S+FinMetrics. It is a unique blend of econometric theory,
financial models, data analysis, and statistical programming. It serves as a
user’s guide for Insightful’s S+FinMetrics module of statistical functions
for financial time series analysis and financial econometrics as well as a gen-
eral reference for models used in applied financial econometrics. The format
of the chapters in the book is to give a reasonably complete description of
a statistical model and how it works followed by illustrations of how to
analyze the model using S-PLUS and the functions in S+FinMetrics. In
this way, the book stands alone as an introduction to financial time series
analysis as well as a user’s guide for S+FinMetrics. It also highlights the
general analysis of time series data using the new time series objects in
S-PLUS 6.

Intended audience

This book is written for a wide audience of individuals who work, do
research or study in the areas of empirical finance and financial economet-
rics. The field of financial econometrics has exploded over the last decade,
and this book represents an integration of theory, methods and examples
using the S-PLUS modeling language to facilitate the practice of financial
econometrics. This audience includes researchers and practitioners in the
finance industry, academic researchers in economics and finance, and ad-
vanced MBA and graduate students in economics and finance. Researchers



xiv Contents

and practitioners in the finance industry who already use S-PLUS and de-
sire more functionality for analyzing and modeling financial data will find
this text useful. It is also appropriate for financial analysts who may not
be familiar with S-PLUS but who desire an integrated and open statistical
modeling and programming environment for the analysis of financial data.
This guide is useful for academic researchers interested in empirical finance
and financial econometrics. Finally, this book may be used as a textbook
or a textbook companion for advanced MBA and graduate level courses in
empirical finance and financial econometrics.

Audience background

It is assumed that the reader has a basic familiarity with S-PLUS at the
level of Krause and Olson (2002) and a background in mathematical statis-
tics at the level of Hogg and Craig (1994), is comfortable with linear algebra
and linear regression, and has been exposed to basic time series concepts as
presented in Harvey (1993) or Franses (1998). Most importantly, the book
assumes that the reader is interested in modeling and analyzing financial
time series.

Overview of the book

The chapters in the book cover univariate and multivariate models for an-
alyzing financial time series using S-PLUS and the functions in S+FinMetrics.
Chapter one gives a general overview of the use of S-PLUS 6 and highlights
certain aspects of the language for statistical modeling. Chapter two intro-
duces the new time series objects in S-PLUS 6 and illustrates the specifica-
tion, manipulation and visualization of these objects. Chapter three surveys
time series concepts used throughout the book. Chapters four through eight
cover a variety of topics in the modeling of univariate financial time series,
including testing for unit roots, extreme value theory, time series regression
models, GARCH models of volatility, and long memory models. Chapter
nine introduces rolling analyses of time series models and covers related
topics such as technical analysis of financial time series and moving aver-
age methods for high frequency data. Chapters ten through fifteen cover
models for the analysis of multivariate financial time series. Topics include
systems of regression equations, classical and Bayesian vector autoregres-
sive models, cointegration, factor models, multivariate GARCH models,
and state space models. Chapter 16 covers aspects of modeling time series
arising from fixed income financial assets. Chapter 17, written by Victor
Yohai and Jiahui Wang, describes robust REGARIMA models that allow
for structural change.

What is S+FinMetrics?
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S+FinMetrics is an S-PLUS module for the econometric modeling and
prediction of economic and financial time series. With some 600 functions,
version 1.0 of S+FinMetrics offers the following functionality:

• Easy-to-use Trellis plots for multivariate time series

• Time series manipulations such as missing value interpolation, dis-
aggregation, differences, distributed lags and polynomial distributed
lags

• Rolling sample statistics such as variance, maximum, and minimum

• Moving average operators for both regularly spaced and irregularly
spaced time series

• Common technical analysis measures and indicators

• Statistical tests for normality, autocorrelation, heteroskedasticity, mul-
ticollinearity, GARCH effects, and long memory

• Extreme value theory models based on generalized extreme value and
generalized Pareto distributions as well as copulas

• Autoregressive distributed lag regression models

• White and Newey-West corrections for heteroskedasticity and serial
correlation

• Robust estimation of REG-ARIMA models and robust detection of
level shifts, trend breaks, and outliers

• Rolling and recursive regression

• Generic rolling models for back-testing

• Long memory fractional ARIMA and SEMIFAR models

• Univariate GARCH models including long memory FIGARCH mod-
els

• Multivariate GARCH models

• Linear and nonlinear systems of regression equations

• Classical and Bayesian vector autoregression models

• Tests for unit roots and cointegration

• Vector error correction models

• State space models and efficient estimation, prediction, smoothing,
and simulation using the Kalman filter
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• Statistical multifactor models for large data sets based on asymptotic
principal components

• Term structure interpolation

S+FinMetrics incorporates functions from S+GARCH, the EVIS library of
functions for modeling extreme values created by Alexander McNeil, the
EVANESCA library of functions for modeling extreme values utilizing cop-
ulas created by Rene Carmona, and the SsfPack C library of state space
modeling functions created by Siem Jan Koopman. S+GARCH was originally
developed by Zhuanxin Ding, Hong-Ye Gao, Doug Martin, Jiahui Wang
and Yihui Zhan. The S+FinMetrics function arima.rob was written by
Ana Bianco, Marta Garcia Ben, Elena Martinez and Victor Yohai. The
S+FinMetrics long memory modeling functions FAR, FARIMA, SEMIFAR and
fgarch were developed by Jan Beran, Andrew Bruce, Don Percival, Alan
Gibbs and Jiahui Wang and supported by NSF grant DMI-9801614 to In-
sightful Corporation (formerly MathSoft, Inc.). Hu McCulloch kindly pro-
vided the term structure data included with S+FinMetrics, and James
MacKinnon provided data sets for the response surface critical values for
the Dickey-Fuller and Phillips-Ouliaris distributions.

Contact information and website

The authors are responsible for all of the material in the book except the
material on robust change detection, which was written by Victor Yohai.
Eric Zivot is primarily responsible for chapters 2-6, 9-12 and 14-15 and
Jiahui Wang is primarily responsible for chapters 1, 7-8, 13, and 16. The
authors may be contacted by electronic mail at

ezivot@u.washington.edu
jwang@insightful.com

and welcome feedback and suggestions for improvements to the contents of
the book. The website for the book is located on the Insightful Corporation
website at

http://www.insightful.com/support/finmetrics10
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Topographical conventions

This book obeys the following typographic conventions:

• The italic font is used for emphasis, and also for user-supplied vari-
ables within UNIX, DOS and S-PLUS commands.

• The typewriter font is used for S-PLUS functions, the output of
S-PLUS functions and examples of S-PLUS sessions.

• S-PLUS objects of a specified class are expressed in typewriter font
enclosed in quotations “ ”. For example, the S-PLUS function timeSeries
creates objects of class “timeSeries”.

Displayed S-PLUS commands are shown with the prompt character >. For
example

> summary(ols.fit)

S-PLUS commands that require more than one line of input are displayed
with the continuation prompt indicated by + or Continue string:. The
S-PLUS output and plots in this book were generated from S+FinMetrics
Version 1.0 and S-PLUS Version 6.0 release 2 for Windows. The S-PLUS
output and “timeSeries” objects were generated with the options settings

options(width=60)
options(time.zone="GMT")

In some cases, parts of long output from S-PLUS functions is omitted and
these lines are indicated by

...

Some of the output has been hand edited to avoid line overflow.
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1
S and S-PLUS

1.1 Introduction

S-PLUS is a commercial software package developed by Insightful Corpo-
ration, based on the S language originally developed at Bell Laboratories
(of AT&T and now Lucent Technologies) for statistical computation and
visualization. Both S and S-PLUS have evolved through many versions. In
1999 John M. Chambers, the principal developer of S language, received
the prestigious Software System Award from the Association for Comput-
ing Machinery (ACM), which has been awarded to UNIX, TEX, PostScript,
TCP/IP and World Wide Web in the past.
The discussion of S language in this book is based on S-PLUS 6, which

is supported on Microsoft Windows, Sun Solaris, and LINUX operating
systems. In addition to S-PLUS 6 Programmer’s Guide, there are many
excellent books available introducing different aspects of S and S-PLUS (see
Section 1.4 for a list of them), and refer to these books if you are not familiar
with S or S-PLUS. This chapter has a rather limited goal: to introduce
the object oriented approach of S language and summarize some modeling
conventions that will be followed in this book. Section 1.2 introduces the
concept of objects in S language, and Section 1.3 summarizes the usage
of modeling functions in S-PLUS and S+FinMetrics. Finally, Section 1.4
points out some useful resources for learning and using S-PLUS.
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1.2 S Objects

1.2.1 Assignment

As the S language evolved over time, different assignment operators have
been used, such as =, <-, <<-, and _ (underscore). This book will use the
assignment operator = whenever possible, because it is more intuitive and
requires only one key stroke. For example, in the command window of an
S-PLUS session, use the following command to assign the value of 3 to a
variable called a:

> a = 3
> a
[1] 3

When the name of the variable is typed at the command prompt, the value
of the variable is printed on screen with an index [1]. Since _ is reserved
as an assignment operator, it cannot be used in the names of any object.
Avoid the use of _ as an assignment operator, because the code may look
confusing to someone who is not familiar with S.
Although = has been chosen as the assignment operator whenever pos-

sible, only <- can be used as the assignment operator if the assignment is
inside a function call.1 For example, suppose the user wants to assign the
value of 10 to the variable a, and use a to initialize a 5× 5 matrix. If = is
used as the assignment operator, an error message appears:

> matrix(a = 10, 5, 5)
Problem in matrix: argument a= not matched: matrix(a = 10, 5, 5)
Use traceback() to see the call stack

But if the assignment operator <- is used, the desired behavior is achieved:

> matrix(a <- 10, 5, 5)
[,1] [,2] [,3] [,4] [,5]

[1,] 10 10 10 10 10
[2,] 10 10 10 10 10
[3,] 10 10 10 10 10
[4,] 10 10 10 10 10
[5,] 10 10 10 10 10
> a
[1] 10

and 10 is successfully assigned as the value of a.

1The reason is that S-PLUS functions allow optional arguments with default values,
and = is used to set the default values in a function call.
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1.2.2 Class

Since the S language is object oriented, everything in S-PLUS is an object
with a class, and the class function can be used to find out the class of
an object. For example:

> class(a)
[1] "integer"

thus the variable a has class “integer”. Explicitly using the decimal point
forces an integer number to be stored in double precision:

> b = 100000.
> class(b)
[1] "numeric"

A number with double precision in S-PLUS has class “numeric”. In most
situations S-PLUS is “smart” enough to perform computations in double
precision if necessary. However, one has to be a little careful with integer
arithmetic. For example, the following operation returns an NA:

> 100000 * 100000
[1] NA

because in this case, the multiplication is performed in integer mode, and
the largest integer on a 32-bit machine is:

> 2^31 - 1
[1] 2147483647

which can be verified by querying the integer.max component of the ma-
chine constant object in S-PLUS:2

> .Machine$integer.max
[1] 2147483647

However, since the variable b created earlier is stored in double precision,
the multiplication using b would return the desired result:

> b * b
[1] 1e+10

Together with “logical” and “character”, “integer” and “numeric”
objects are known as the atomic objects, upon which the user can build
more complicated data structure, such as matrix, list, data frame, function,
etc. For example, use the concatenation function c to combine the variables
a and b into a vector, and use the matrix function to reshape it into a 2×1
matrix:

2See the on-line help file for .Machine for other components in the list.
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> abMat = matrix(c(a,b), nrow=2)
> class(abMat)
[1] "matrix"
> abMat

[,1]
[1,] 1e+01
[2,] 1e+05

As another example, although matrix is a built-in function in S-PLUS,
it is just another object in S-PLUS:

> class(matrix)
[1] "function"
> matrix
function(data = NA, nrow = 1, ncol = 1, byrow = F, dimnames)
{
if(missing(nrow))
nrow <- ceiling(length(data)/ncol)

else if(missing(ncol))
ncol <- ceiling(length(data)/nrow)

dim <- c(nrow, ncol)
if(length(dim) != 2)
stop("nrow and ncol should each be of length 1")

value <- if(byrow) t(array(data, dim[2:1])) else array(data, dim)
if(!missing(dimnames))
value@.Dimnames <- dimnames

value
}

The preceding output shows that matrix is just a “function” object. When
the name of this object is typed, S-PLUS prints its function definition on
the screen.
Most complicated S-PLUS objects are constructed as a list. For example,

combine the variables a and b into a list as follows:

> abList = list(aComponent=a, bComponent=b)
> class(abList)
[1] "list"
> abList
$aComponent:
[1] 10

$bComponent:
[1] 1e+05
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where the names aComponent and bComponent are given to a and b, re-
spectively. Use the length function to find out the number of components
in a list and the names function to extract the names of those components:

> length(abList)
[1] 2
> names(abList)
[1] "aComponent" "bComponent"

A particular component of a list can be extracted using the $ operator. For
example:

> abList$aComponent
[1] 10

or the [[ operator:

> abList[[2]]
[1] 1e+05

S-PLUS 6 is based on S language Version 4 (SV4). In SV4, a new class
structure is introduced to build more complicated objects, as an alterna-
tive to using lists. One example is the “timeDate” objects in S-PLUS. For
example, in the following example, use the timeDate function to parse a
vector of character strings representing some dates:

> timeStamp = timeDate(c("1/1/2001", "1/2/2001", "1/3/2001"))
> timeStamp
[1] 01/01/2001 01/02/2001 01/03/2001
> class(timeStamp)
[1] "timeDate"

The names function cannot be used with these new class objects, which
will be referred to as SV4 objects. Instead, use the slotNames function to
extract the names of their components. For example:

> slotNames(timeStamp)
[1] ".Data" ".Data.names" ".Data.classes" "format"
[5] "time.zone"

A “timeDate” object has five slots. Instead of using the $ operator as
for lists, use the @ operator to extract the component in a particular slot.
For example:

> timeStamp@.Data
[[1]]:
[1] 14976 14977 14978

[[2]]:
[1] 0 0 0
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The .Data slot of a “timeDate” object actually stores a list with two
components.3

One difference between the list based objects and SV4 objects is that
the list based objects are more flexible and thus prone to cause accidental
programming errors if a programmer is not careful enough. In contrast, the
SV4 objects are more stringently defined and can lead to robust software
and computational efficiency. For example, the user can add or delete a
component to a list at will:

> abList$anotherComponent = "a string component"
> abList
$aComponent:
[1] 10

$bComponent:
[1] 1e+05

$anotherComponent:
[1] "a string component"

> abList$aComponent = NULL
> abList
$bComponent:
[1] 1e+05

$anotherComponent:
[1] "a string component"

However, an SV4 object is strictly defined, and a component cannot be
edited unless it is defined in its declaration:

> timeStamp@time.zone
[1] "GMT"
> timeStamp@time.zone = "Pacific"
> timeStamp@anotherSlot = "no way"
Problem in timeStamp@anotherSlot = "no way": Class "timeDate"
has no "anotherSlot" slot
Use traceback() to see the call stack

1.2.3 Method

Many S-PLUS functions are defined as generic in the sense that the user
has the freedom of defining his or her own method for a particular class.

3The first component represents the Julian dates, and the second component repre-
sents the milliseconds elapsed since midnight of each day.
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For example, the print and summary functions in S-PLUS are so generic
that they work with any object and may generate different types of results
depending on the class of the object.4 For example:

> summary(abMat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10 25008 50005 50005 75002 100000

> summary(abList)
Length Class Mode

bComponent 1 numeric
anotherComponent 1 character

For a numeric matrix object, the summary method generates some sam-
ple statistics, while for a list object, the summary method summarizes the
length and mode of each component.
In the above example, S-PLUS is “smart” enough to figure out the ap-

propriate method to use for the generic summary function. If the name of
the method function is known, the user can also call the method function
directly. For example, if the user types matrix at the command prompt,
S-PLUS will dispatch the print method for “function” objects because
matrix is a “function” object. However, it can also call the function
print.list on a “function” object to view the object using another for-
mat:

> print.list(matrix)
$data:
NA

$nrow:
[1] 1

$ncol:
[1] 1

$byrow:
F

$dimnames:

$"":
{
if(missing(nrow))

4 In fact, typing the name of an object at the command prompt, S-PLUS calls the
print method of that object automatically. So any print methods rarely need to be
called explicitly, except for Trellis graphics objects.
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nrow <- ceiling(length(data)/ncol)
else if(missing(ncol))
ncol <- ceiling(length(data)/nrow)

dim <- c(nrow, ncol)
if(length(dim) != 2)
stop("nrow and ncol should each be of length 1")

value <- if(byrow) t(array(data, dim[2:1])) else array(data, dim)
if(!missing(dimnames))
value@.Dimnames <- dimnames

value
}

1.3 Modeling Functions in S+FinMetrics

In this book, many statistical and econometric examples are illustrated
using modeling functions in S+FinMetrics. Some modeling functions in
S+FinMetrics are named using upper case acronyms as they are known
in the literature, because S is case sensitive and it distinguishes between
upper case and lower case letters.

1.3.1 Formula Specification

For many modeling functions in S+FinMetrics, S formulas are used to spec-
ify the model to be estimated. Chambers and Hastie (1993) and S-PLUS
Guide to Statistics provide detailed examples of how to specify models using
formulas in S. This section points out some restrictions in formula spec-
ification so that the user can avoid some errors in using these functions.
For illustrations, use the S-PLUS lm function as an example of modeling
function.
If a formula is used to specify models in a modeling function, usually at

least two arguments are supplied to the function: a formula object and a
data object. The args function can always be used to find out the argument
names of any function:

> args(lm)
function(formula, data, weights, subset, na.action, method =

"qr", model = F, x = F, y = F, contrasts = NULL, ...)
NULL

The data object must be a “data.frame” object, or a “timeSeries”
object with a “data.frame” in its data slot. First create a data frame
using the S-PLUS data objects stack.x and stack.loss:

> stack.df = data.frame(Loss=stack.loss, stack.x)
> colIds(stack.df)
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[1] "Loss" "Air.Flow" "Water.Temp" "Acid.Conc."

so the data frame stack.df has four columns with variable names as shown
above.
To regress the variable Loss on Air.Flow, and Water.Temp using least

squares, use the lm function as follows:

> test.mod = lm(Loss~Air.Flow + Water.Temp, data=stack.df)
> test.mod
Call:
lm(formula = Loss ~ Air.Flow + Water.Temp, data = stack.df)

Coefficients:
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

Notice that in the first formula object, Loss is on the left hand side of ˜, so
it represents the endogenous or response variable of the model; Air.Flow
and Water.Temp are on the right hand side of ˜, so they represent two
independent or explanatory variables. An intercept or a constant term is
also included automatically, as can be seen from the coefficient estimates
in the output, which is generated by a call to the print method for “lm”
objects:

> class(test.mod)
[1] "lm"
> oldClass(test.mod)
[1] "lm"

Note that since an “lm” object is a list based object, the user can also
use the oldClass function to obtain its class. However, oldClass function
does not work with SV4 objects. For example:

> oldClass(timeStamp)
NULL

The data argument can also be a “timeSeries” object with a data
frame in its data slot. To illustrate this possibility, turn stack.df into a
“timeSeries” object and call it stack.ts:

> stack.ts = timeSeries(stack.df)
> stack.ts
Positions Loss Air.Flow Water.Temp Acid.Conc.
01/01/1960 42 80 27 89
01/02/1960 37 80 27 88
01/03/1960 37 75 25 90
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01/04/1960 28 62 24 87
01/05/1960 18 62 22 87
...

Again, a linear model can be estimated using this data object just like in
the previous example:

> test.mod = lm(Loss~Air.Flow + Water.Temp, data=stack.ts)

However, the data argument must have a data frame representation. The
same function call will generate an error if the data argument is represented
by a matrix:

> stack.mat = as.matrix(stack.df)
> lm(Loss~Air.Flow+Water.Temp, data=stack.mat)
Warning messages:
Numerical expression has 84 elements: only the first used in:
model.frame(formula, data, na.action, dots)

Problem: Invalid frame number, 42
Use traceback() to see the call stack

For most modeling functions such as lm, the data argument is actually
an optional argument, which is not required. If the data argument is not
supplied by the user, then the variables specified in the formula object
must be on the search path. For example:

> lm(stack.loss~stack.x)
Call:
lm(formula = stack.loss ~ stack.x)

Coefficients:
(Intercept) stack.xAir Flow stack.xWater Temp stack.xAcid Conc.
-39.91967 0.7156402 1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364

In addition, if the data argument is not supplied, the variables specified
in the formula object must be either a vector or a matrix, and they cannot
be a data frame nor a “timeSeries” object. For example:5

> stack.x.df = as.data.frame(stack.x)
> lm(stack.loss~stack.x.df)
Problem: Length of stack.x.df (variable 2) is 3 != length of
others (21)

5 In fact, many modeling functions in S+FinMetrics actually does allow a
“timeSeries” object on the left hand side of the formula, but not the right hand side of
the formula, if the data argument is not supplied. One example is the garch function.
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Use traceback() to see the call stack

> stack.loss.ts = timeSeries(stack.loss)
> lm(stack.loss.ts~stack.x)
Problem: Length of stack.loss.ts (variable 1) is 11 != length of
others (21)
Use traceback() to see the call stack

In S+FinMetrics, the formula is extended to support autoregressive
specification, moving average specification, distributed lags and polyno-
mial distributed lags for many modeling functions. These formulas will be
illustrated in the appropriate chapters.

1.3.2 Method

In addition to print and summary functions, many other functions in
S-PLUS are defined to be generic to work with modeling functions and
objects, such as plot for diagnostic plots, coefficients or simply coef
for extracting model coefficients, residuals for extracting model residu-
als, fitted.values or simply fitted for extracting model fitted values,
predict for out of sample prediction, etc. For example, for the “lm” ob-
ject test.mod, if the generic functions coef, predict or plot are applied,
S-PLUS will figure out the appropriate method to use:

> coef(test.mod)
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544 1.295351

> predict(test.mod, matrix(1, 5, 3))
[1] -48.39233 -48.39233 -48.39233 -48.39233 -48.39233

> plot(test.mod, ask=T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
7: plot: Cook’s Distances
Selection:

In addition to the above generic functions, S+FinMetrics defines three
new generic functions for working with model objects: vcov for extracting
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the variance-covariance matrix of estimated parameters, simulate for gen-
erating simulations according to the estimated model, and cpredict for
obtaining conditional forecasts of multivariate time series models.

1.4 S-PLUS Resources

Useful books for learning S, S-PLUS are:

1. Chambers, J. M., and T. J. Hastie (1993). Statistical Models in
S. Chapman & Hall.

2. Krause, A. and M. Olson (2002). The Basics of S and S-PLUS,
Third Edition. Springer-Verlag, New York.

3. Venables, W. N. and B. D. Ripley (1999).Modern Applied Statis-
tics with S-PLUS. Springer-Verlag, New York.

For those who intend to do serious programming in S, the following books
are indispensable:

1. Becker, R. A., J. M. Chambers and A. R. Wilks (1988). The
New S Language: a Programming Environment for Data Analysis and
Graphics. Pacific Grove, Calif.: Wadsworth & Brooks/Cole.

2. Chambers, J. M. (1998). Programming with Data: A Guide to the
S Language. Springer.

3. Venables, W. N. and B. D. Ripley (2001). S Programming.
Springer-Verlag, New York.

In addition, the S archive at StatLib contains many useful programs
written in S: http://lib.stat.cmu.edu/DOS/S.
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2
Time Series Specification,
Manipulation and Visualization in
S-PLUS

2.1 Introduction

Time series data may be stored, manipulated and visualized in a variety of
ways in S-PLUS1 . This chapter discusses the basics of working with finan-
cial time series data in the form of S-PLUS “timeSeries” objects. It begins
with a discussion of the specification of “timeSeries” and “timeDate” ob-
jects in S-PLUS and gives examples of how to specify common “timeDate”
sequences for financial time series. Basic manipulations of financial time
series are discussed and illustrated. These manipulations include aggregat-
ing and disaggregating time series, handling of missing values, creations of
lags and differences and asset return calculations. The chapter ends with
an overview of time series visualization tools and techniques, including the
S-PLUS plotting functions for “timeSeries” as well as specialized plotting
functions in S+FinMetrics.

2.2 The Specification of “timeSeries” Objects in
S-PLUS

Financial time series data may be represented and analyzed in S-PLUS in
a variety of ways. By far the most flexible way to analyze, manipulate

1Chapters 25 - 27 in the S-PLUS Guide to Statistic Vol. II discusses the analysis of
time series in S-PLUS.
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and visualize time series data is through the use of S-PLUS calendar-based
“timeSeries” objects. A calendar-based “timeSeries” object, hereafter
referred to as simply a “timeSeries” is an S version 4 (sv4) object that
stores time and date information from a “timeDate” object in a positions
slot and time series data from any rectangular data object (vector, matrix
or data frame) in a data slot. Additionally, summary information about
the time series may be stored in the title, documentation, units and
attributes slots.
To illustrate a typical “timeSeries” object, consider the S+FinMetrics

“timeSeries” object singleIndex.dat which contains monthly closing
price data on Microsoft and the S&P 500 index over the period January
1990 through January 2001:

> class(singleIndex.dat)
[1] "timeSeries"

> slotNames(singleIndex.dat)
[1] "data" "positions" "start.position"
[4] "end.position" "future.positions" "units"
[7] "title" "documentation" "attributes"
[10] "fiscal.year.start" "type"

> singleIndex.dat@title
[1] "Monthly prices on Microsoft and S&P 500 Index"

> singleIndex.dat@documentation
[1] "Monthly closing prices over the period January 1900"
[2] "through January 2001 adjusted for dividends and stock"
[3] "splits.

> singleIndex.dat@units
[1] "Monthly price"

> singleIndex.dat[1:5,]
Positions MSFT SP500
Jan 1990 1.2847 329.08
Feb 1990 1.3715 331.89
Mar 1990 1.5382 339.94
Apr 1990 1.6111 330.80
May 1990 2.0278 361.23

The date information in the positions slot may be extracted directly or
by using the positions extractor function:

> singleIndex.dat@positions[1:5]
[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990
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> positions(singleIndex.dat)[1:5]
[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

The generic start and end functions may be used to extract the start and
end dates of a “timeSeries” object:

> start(singleIndex.dat)
[1] Jan 1990
> end(singleIndex.dat)
[1] Jan 2001

The date information in the positions slot is an object of class “timeDate”

> class(positions(singleIndex.dat))
[1] "timeDate"

Details on “timeDate” objects are given later on in this chapter.
The time series data in the data slot may be accessed directly or through

the seriesData extractor function:

> singleIndex.dat@data[1:5,]
MSFT SP500

1 1.2847 329.08
2 1.3715 331.89
3 1.5382 339.94
4 1.6111 330.80
5 2.0278 361.23

> seriesData(singleIndex.dat)[1:5,]
MSFT SP500

1 1.2847 329.08
2 1.3715 331.89
3 1.5382 339.94
4 1.6111 330.80
5 2.0278 361.23

In general, the time series data in the data slot is a “rectangular” data
object and is usually a data frame or a matrix. For example,

> class(seriesData(singleIndex.dat))
[1] "data.frame"

In fact, “timeSeries” objects themselves are “rectangular” data objects
and so the functions numRows, numCols, colIds and rowIds may be used
to extract useful information:

> is.rectangular(singleIndex.dat)
[1] T
> numRows(singleIndex.dat)
[1] 133
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> numCols(singleIndex.dat)
[1] 2
> colIds(singleIndex.dat)
[1] "MSFT" "SP500"
> rowIds(singleIndex.dat)[1:5]
[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

2.2.1 Basic Manipulations

Basic manipulation of “timeSeries” objects may be done in the same
way as other S-PLUS objects. Mathematical operations may be applied to
“timeSeries” objects in the usual way and the result will be a “timeSeries”
object. Subscripting a “timeSeries” works in the same way as subscript-
ing a data frame or matrix. For example, a “timeSeries” with the prices
on Microsoft may be extracted from singleIndex.dat using

> msft.p = singleIndex.dat[,"MSFT"]
> msft.p = singleIndex.dat[,1]
> msft.p@title = "Monthly closing price on Microsoft"
> msft.p@documentation =
+ c("Monthly closing price adjusted for stock",
+ "splits and dividends.)
> msft.p@units = "US dollar price"
> class(msft.p)
[1] "timeSeries"

Subsamples from a “timeSeries” may be extracted by creating an index of
logical values that are true for the times and dates of interest. For example,
consider creating a subsample from the “timeSeries” singleIndex.dat
over the period March 1992 through January 1993.

> smpl = (positions(singleIndex.dat) >= timeDate("3/1/1992") &
+ positions(singleIndex.dat) <= timeDate("1/31/1993"))
> singleIndex.dat[smpl,]
Positions MSFT SP500
Mar 1992 4.938 403.7
Apr 1992 4.594 414.9
May 1992 5.042 415.4
Jun 1992 4.375 408.1
Jul 1992 4.547 424.2
Aug 1992 4.656 414.0
Sep 1992 5.031 417.8
Oct 1992 5.547 418.7
Nov 1992 5.820 431.4
Dec 1992 5.336 435.7
Jan 1993 5.406 438.8
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Not all S-PLUS functions have methods to handle “timeSeries” ob-
jects. Some examples are the S-PLUS functions colMeans, colVars and
colStdevs which compute the mean, variance and standard deviation value
for each column of data:

> colMeans(singleIndex.dat)
[1] NA

For these functions, the extractor function seriesData should be used to
extract the data slot of the “timeSeries” prior to applying the function:

> colMeans(seriesData(singleIndex.dat))
MSFT SP500
26.75 730.4

All of the S+FinMetrics modeling and support functions are designed to
accept “timeSeries” objects in a uniform way.

2.2.2 S-PLUS “timeDate” Objects

Time and date information in S-PLUSmay be stored in “timeDate” objects.
The S-PLUS function timeDate is used to create “timeDate” objects. For
example, to create a “timeDate” object for the date January 1, 2002 for
the US Pacific time zone use

> td = timeDate("1/1/2002",in.format="%m/%d/%Y",
+ zone="Pacific")

The date information is specified in a character string and the optional
arguments in.format and zone determine the input date format and the
time zone, respectively. The input formats are single-element character vec-
tors consisting of input fields which start with “%” and end with a letter.
The default input date format may be viewed with

> options("time.in.format")
$time.in.format:
[1] "%m[/][.]%d[/][,]%y [%H[:%M[:%S[.%N]]][%p][[(]%3Z[)]]]"

and examples of common date formats are in the S-PLUS object format.timeDate

> names(format.timeDate)
[1] "1/3/1998"
[2] "3/1/1998"
...
[32] "03 Jan 1998 14:04:32 (PST)"
> format.timeDate[[1]]$input
[1] "%m/%d/%Y"

The result of timeDate is an object of class “timeDate”
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> class(td)
[1] "timeDate"
> td
[1] 1/1/02 0:00:00 AM
> slotNames(td)
[1] ".Data" ".Data.names" ".Data.classes"
[4] "format" "time.zone"

“timeDate” objects have a number of slots that are used to specify and
control time and date information. Full details may be seen using

> ?class.timeDate

The .Data slot is a list with components giving the Julian date represen-
tation of the day and time within the day. The Julian day represents the
number of days since January 1, 1960 and the Julian time within the day
indicates the number of milliseconds since midnight Greenwich mean time
(GMT)

> td@.Data
[[1]]:
[1] 15341

[[2]]:
[1] 28800000

Since the US Pacific Time Zone is 8 hours behind GMT, the number of
milliseconds since Greenwich mean time is 8 ∗ 60 ∗ 60 ∗ 1000 = 28, 800, 000.
The output display format of the date information is specified in the format
slot

> td@format
[1] "%m/%d/%02y %H:%02M:%02S %p"

Like input formats, output formats are single-element character vectors
consisting of output fields, which start with “%” and end with a letter,
and other characters that are simply printed. The above format specifies
printing the date as month/day/year and then hour:minute:second and
AM or PM. The integers 02 before y, M and S fix the output width to 2
characters. All supported output fields are described in the help file for
class.timeDate and a list of example output formats are given in the
S-PLUS object format.timeDate. For example,

> names(format.timeDate)[18]
[1] "03 Jan 1998"
> format.timeDate[[18]]$output
[1] "%02d %b %Y"
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Time Zone Issues

The time and date information stored in a “timeDate” object is aligned to
the time zone specified in the time.zone slot

> td@time.zone
[1] "Pacific"

To modify the output format of a “timeDate” object to display time zone
information simply add "%z"

> td@format = paste(td@format,"%z")
> td
[1] 1/1/02 0:00:00 AM Pacific

The object td is aligned to the US Pacific time zone. If the zone argument
to timeDate is omitted when the “timeDate” object is created the default
time zone in options(‘‘time.zone") is used2. For example,

> options("time.zone")
$time.zone:
[1] "Pacific"
> td2 = timeDate("Mar 02, 1963 08:00 PM",
+ in.format="%m %d, %Y %H:%M %p",
+ format="%b %02d, %Y %02I:%02M %p %z")
> td2
[1] Mar 02, 1963 08:00 PM Pacific

Note that the above example shows that the output format of the “timeDate”
object can be specified when the object is created using the argument
format.
All of the time zone specifications supported by S-PLUS are described

in the help file for class.timeZone and these specifications are defined
relative to times and dates given in GMT. The time zone specifications
include daylight savings time in various areas around the world. To see
how a time zone specification affects a timeDate object, consider what
happens when the time zone for the object td is changed to US Eastern
Time:

> td@time.zone = "Eastern"
> td
[1] 1/1/02 3:00:00 AM Eastern
> td@.Data
[[1]]:

2On Windows platforms, the time zone specification is obtained from the Windows
regional settings. The examples in this section were created on a Windows computer in
the U.S. Pacific time zone. Therefore, the default time zone taken from the Windows
regional settings is “Pacific”.
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[1] 15341

[[2]]:
[1] 28800000

Since US Eastern Time is three hours ahead of US Pacific Time the dis-
played date is moved ahead three hours. That is, midnight US Pacific Time
on January 1, 2002 is the same as 3 AM US Eastern Time on January 1,
2002. Notice that changing the time zone information does not alter the
Julian date information in the .Data slot. To align the Julian date repre-
sentation to reflect the number of milliseconds from GMT on US Eastern
time the millisecond information in the second component of the .Data slot
must be adjusted directly.
If a “timeDate” object is created in GMT then the S-PLUS function

timeZoneConvert may be used to re-align the millisecond offset to a spec-
ified time zone. For example,

> tdGMT = timeDate("1/1/2002",zone="GMT",
+ format="%m/%d/%02y %H:%02M:%02S %p %z")
> tdGMT
[1] 1/1/02 0:00:00 AM GMT
> tdGMT@.Data
[[1]]:
[1] 15341

[[2]]:
[1] 0

> tdPST = timeZoneConvert(tdGMT,"PST")
> tdPST
[1] 1/1/02 0:00:00 AM PST
> tdPST@.Data
[[1]]:
[1] 15341

[[2]]:
[1] 28800000

Be aware that timeZoneConvert is not designed to convert the millisecond
offsets from one arbitrary time zone other than GMT to another arbitrary
time zone.

Mathematical Operations with “timeDate” Objects

Since “timeDate” objects have a Julian date representation, certain math-
ematical operations like addition and subtractions of numbers may be per-
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formed on them and the result will also be a “timeDate” object. For ex-
ample,

> td1 = timeDate("1/1/2002",in.format="%m/%d/%Y",
+ zone="GMT",format="%m/%d/%04Y %H:%02M:%02S %p %z")
> td2 = timeDate("2/1/2002",in.format="%m/%d/%Y",
+ zone="GMT",format="%m/%d/%04Y %H:%02M:%02S %p %z")
> td1
[1] 1/1/2002 0:00:00 AM GMT
> td2
[1] 2/1/2002 0:00:00 AM GMT

> as.numeric(td1)
[1] 15341
> td1 + 1
[1] 1/2/2002 0:00:00 AM GMT
> td1 + 0.5
[1] 1/1/2002 12:00:00 PM GMT
> td1 - 1
[1] 12/31/2001 0:00:00 AM GMT
> 2*td1
[1] 30682
> td1+td2
[1] 2/2/2044 0:00:00 AM GMT

Adding two “timeDate” objects together creates another “timeDate” ob-
ject with date given by the addition of the respective Julian dates. Subtrac-
tion of two “timeDate” objects, however, produces an sv4 object of class
“timeSpan”

> td.diff = td2 - td1
> class(td.diff)
[1] "timeSpan"
> td.diff
[1] 31d 0h 0m 0s 0MS
> slotNames(td.diff)
[1] ".Data" ".Data.names" ".Data.classes"
[4] "format"

The “timeSpan” object td.diff gives the time difference between td1 and
td2 - 31 days, 0 hours, 0 minutes, 0 seconds and 0 milliseconds. The Julian
date information is kept in the .Data slot and the output format is in the
format slot. Details about “timeSpan” objects is given in The S-PLUS
Guide to Statistics, Vol. II, chapter 25.
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2.2.3 Creating Common “timeDate” Sequences

Most historical financial time series are regularly spaced calendar-based
time series; e.g. daily, monthly or annual time series. However, some fi-
nancial time series are irregularly spaced. Two common examples of irreg-
ularly spaced financial time series are daily closing prices and intra-day
transactions level data. There are a variety of time and date functions in
S-PLUS that may be used to create regularly spaced and irregularly spaced
“timeDate” sequences for essentially any kind of financial data. These func-
tions are illustrated using the following examples3.
Regularly and irregularly spaced sequences may be created using the

S-PLUS functions timeCalendar, timeSeq and timeSequence. The func-
tion timeSeq is the most flexible. The following examples illustrate the use
of these functions for creating common “timeDate” sequences.

Annual Sequences

Creating a “timeDate” sequence for an annual time series from 1900 to
1910 may be done in a variety of ways. Perhaps, the simplest way uses the
S-PLUS timeCalendar function:

> td = timeCalendar(y=1900:1910,format="%Y")
> class(td)
[1] "timeDate"
> td
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The timeCalendar function produces an object of class “timeDate”. The
argument format="%Y" specifies the output format of the “timeDate” ob-
ject as a four digit year.
Since td contains a sequence of dates, the Julian date information for all

of the dates is available in the .Data slot

> td@.Data
[[1]]:
[1] -21914 -21549 -21184 -20819 -20454 -20088 -19723 -19358
[9] -18993 -18627 -18262

[[2]]:
[1] 0 0 0 0 0 0 0 0 0 0 0

An annual sequence from 1900 to 1910 may also be computed using the
S-PLUS function timeSeq:

> timeSeq(from="1/1/1900", to="1/1/1910", by="years",

3To avoid problems with time zone specifications, all examples in this sections were
created after setting the default time zone to GMT using options(time.zone="GMT").
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+ format="%Y")
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The argument by="years" specifies annual spacing between successive val-
ues in the sequence starting at 1/1/1900 and ending at 1/1/1910. The date
formats for the starting and ending dates must conform to the default input
format for “timeDate” objects (see options("time.in.format")).
Finally, an annual sequence from 1900 to 1910 may be created using the

S-PLUS function timeSequence:

> tds = timeSequence("1/1/1900","1/1/1910",by="years",
+ format="%Y")
> class(tds)
[1] "timeSequence"
> tds
from: 1900
to: 1910
by: +1yr
[1] 1900 1901 1902 ... 1910

timeSequence creates an object of class “timeSequence” which stores time
and date information in a compact fashion. The “timeSequence” object
may be converted to a “timeDate” object using the S-PLUS as function

> td = as(tds,"timeDate")
> td
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

Quarterly Sequences

A quarterly “timeDate” sequence from 1900:I through 1902:IV may be
created using timeSeq with the by="quarters" option:

> timeSeq(from="1/1/1900", to="10/1/1902", by="quarters",
+ format="%Y:%Q")
[1] 1900:I 1900:II 1900:III 1900:IV 1901:I 1901:II
[7] 1901:III 1901:IV 1902:I 1902:II 1902:III 1902:IV

The output format character %Q displays the quarter information. Notice
that the dates are specified as the first day of the quarter.

Monthly Sequences

Now consider creating a monthly “timeDate” sequence from January 1,
1900 through March 1, 1901. This may be done using timeCalendar

> timeCalendar(m=rep(1:12,length=15),y=rep(1900:1901,each=12,
+ length=15), format="%b %Y")
[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900
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[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900
[13] Jan 1901 Feb 1901 Mar 1901

or timeSeq

> timeSeq(from="1/1/1900",to="3/1/1901",by="months",
+ format="%b %Y")
[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900
[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900
[13] Jan 1901 Feb 1901 Mar 1901

To create a monthly sequence of end of month values from December 31,
1899 through February 28, 1901, subtract 1 from the above calculation:

> timeSeq(from="1/1/1900",to="3/1/1901",by="months",
+ format="%b %Y") - 1
[1] Dec 1899 Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900
[7] Jun 1900 Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900
[13] Dec 1900 Jan 1901 Feb 1901

Weekly Sequences

Weekly sequences are best created using timeSeq with by="weeks". For
example, a weekly sequence from Monday January 1, 1990 to Monday Feb
26, 1990 may be created using

> timeSeq(from="1/1/1990",to="3/1/1990",by="weeks",
+ format="%a %b %d, %Y")
[1] Mon Jan 1, 1990 Mon Jan 8, 1990 Mon Jan 15, 1990
[4] Mon Jan 22, 1990 Mon Jan 29, 1990 Mon Feb 5, 1990
[7] Mon Feb 12, 1990 Mon Feb 19, 1990 Mon Feb 26, 1990

To create a weekly sequence starting on a specific day, say Wednesday,
make the starting date a Wednesday.

Daily Sequences

A regularly spaced daily sequence may be created using timeSeq with
by="days". For an irregularly spaced daily sequence of weekdays use timeSeq
with by="weekdays". For financial asset price data that trades on U.S.
exchanges, the relevant “daily” sequence of dates is an irregularly spaced
sequence based on business days. Business days are weekdays excluding cer-
tain holidays. For example, consider creating a daily “timeDate” sequence
for the month of January, 2000 for a time series of asset prices that trade
on the New York stock exchange (NYSE). The NYSE is not open on week-
ends and on certain holidays and these dates should be omitted from the
“timeDate” sequence. The S-PLUS function holiday.NYSE returns the New
York Stock Exchange holidays for a given year, 1885-present, according to
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the historical and current (as of 1998) schedule, not including special-event
closure days or partial-day closures. The NYSE holidays for 2000 are

> holiday.NYSE(2000)
[1] 1/17/2000 2/21/2000 4/21/2000 5/29/2000 7/4/2000
[6] 9/4/2000 11/23/2000 12/25/2000

Martin Luther King day on Monday January 17th is the only weekday
holiday. A “timeDate” sequence of business days excluding the holiday
1/17/2000 may be created using

> timeSeq(from="1/3/2000",to="1/31/2000",by="bizdays",
+ holidays=holiday.NYSE(2000),format="%a %b %d, %Y")
[1] Mon Jan 3, 2000 Tue Jan 4, 2000 Wed Jan 5, 2000
[4] Thu Jan 6, 2000 Fri Jan 7, 2000 Mon Jan 10, 2000
[7] Tue Jan 11, 2000 Wed Jan 12, 2000 Thu Jan 13, 2000
[10] Fri Jan 14, 2000 Tue Jan 18, 2000 Wed Jan 19, 2000
[13] Thu Jan 20, 2000 Fri Jan 21, 2000 Mon Jan 24, 2000
[16] Tue Jan 25, 2000 Wed Jan 26, 2000 Thu Jan 27, 2000
[19] Fri Jan 28, 2000 Mon Jan 31, 2000

The argument holidays=holiday.NYSE(2000) in conjunction with by =
"bizdays" instructs timeSeq to exclude the weekday dates associated with
the NYSE holidays for 2000. Notice that the date Mon Jan 17, 2000 has
been omitted from the sequence.

Intra-day Irregularly Spaced Sequences

Sequences of irregularly spaced intra-day dates may be created using the
function timeCalendar. For example, consider creating a sequence of hourly
observations only during the hypothetical trading hours from 9:00 AM to
3:00 PM from Monday January 3, 2000 through Tuesday January 4, 2000.
Such a sequence may be created using timeCalendar as follows

> timeCalendar(h=rep(9:15,2),d=rep(3:4,each=7),
+ y=2000,format="%a %b %d, %Y %02I:%02M %p")
[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 10:00 AM
[3] Mon Jan 3, 2000 11:00 AM Mon Jan 3, 2000 12:00 PM
[5] Mon Jan 3, 2000 01:00 PM Mon Jan 3, 2000 02:00 PM
[7] Mon Jan 3, 2000 03:00 PM Tue Jan 4, 2000 09:00 AM
[9] Tue Jan 4, 2000 10:00 AM Tue Jan 4, 2000 11:00 AM
[11] Tue Jan 4, 2000 12:00 PM Tue Jan 4, 2000 01:00 PM
[13] Tue Jan 4, 2000 02:00 PM Tue Jan 4, 2000 03:00 PM

In a similar fashion, a sequence of minute observations from 9:00 AM to
3:00 PM on Monday January 3, 2000 and Tuesday January 4, 2000 may be
created using

> timeCalendar(min=rep(rep(0:59,6),2),
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S-PLUS Function Description
month.day.year Converts calendar dates to Julian dates
julian Converts Julian dates to calendar dates
quarters Create an ordered factor corresponding to quarters
months Create an ordered factor corresponding to months
days Create an ordered factor corresponding to days
weekdays Create an ordered factor corresponding to weekdays
years Create an ordered factor corresponding to years
yeardays Extract year day from date
hours Extract hour from date
minutes Extract minutes from date
seconds Extract seconds from date
hms Create data frame containing hours, minutes and seconds
mdy Create data frame containing month, day and year
wdydy Create data frame containing weekday, year day and year
leap.year Determines if year number corresponds to a leap year
holidays Generate a collection of holidays
holiday.fixed Generate holidays that occur on fixed dates
holiday.weekday.number Generate holidays that occur on weekdays
S+FinMetrics Function Description
days.count Count number of days between two dates
is.weekday Tests if date is a weekday
is.weekend Tests if date is a weekend
is.bizday Tests if date is a business day
imm.dates Create International Monetary Market dates

TABLE 2.1. Miscellaneous time and date functions

+ h=rep(9:14,each=60,length=360*2),
+ d=rep(3:4,each=360,length=360*2),
+ y=2000,format="%a %b %d, %Y %02I:%02M %p")
[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 09:01 AM
[3] Mon Jan 3, 2000 09:02 AM Mon Jan 3, 2000 09:03 AM
...
[359] Mon Jan 3, 2000 02:58 PM Mon Jan 3, 2000 02:59 PM
[361] Tue Jan 4, 2000 09:00 AM Tue Jan 4, 2000 09:01 AM
...
[719] Tue Jan 4, 2000 02:58 PM Tue Jan 4, 2000 02:59 PM

2.2.4 Miscellaneous Time and Date Functions

In addition to the time and date functions discussed so far, S-PLUS has a
number of miscellaneous time and date functions. In addition S+FinMetrics
provides a few time and date functions. These are summarized in Table 2.1.
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2.2.5 Creating “timeSeries” Objects

S-PLUS “timeSeries” objects are created with the timeSeries function.
Typically a “timeSeries” is created from some existing data in a data
frame or matrix and a “timeDate” object. For example,

> my.df = data.frame(x=abs(rnorm(10,mean=5)),
+ y=abs(rnorm(10,mean=10)))
> my.td = timeCalendar(y=1990:1999,format="%Y")
> my.ts = timeSeries(data=my.df,pos=my.td)
> my.ts
Positions x y
1990 4.250 11.087
1991 5.290 11.590
1992 5.594 11.848
1993 5.138 10.426
1994 5.205 9.678
1995 4.804 11.120
1996 5.726 11.616
1997 6.124 9.781
1998 3.981 10.725
1999 6.006 10.341

Information about the “timeSeries” object may be added to the title,
documentation and units slots:

> my.ts@title = "My timeSeries"
> my.ts@documentation = c("Simulated annual price data using ",
+ "the S-PLUS function rnorm")
> my.ts@units = c("US dollars","US dollars")

The title and units information is utilized in certain plot functions.

Creating “timeSeries” Objects from Time Series in Data Frames

Very often time series data that are in data frames have a date variable
with a formatted date string. The S-PLUS function timeDate has a vari-
ety of input formats that may be used to convert such date strings into
“timeDate” objects. For example, the S+FinMetrics data frame yhoo.df
contains daily high, low, open and close prices as well as volume information
for Yahoo stock for the month of February 2002

> yhoo.df[1:2,]
Date Open High Low Close Volume

1 1-Feb-02 17.26 17.3 16.35 16.68 6930100
2 4-Feb-02 16.55 16.6 15.60 15.75 8913700

The variable Date is a character vector containing the date strings. A
“timeDate” sequence created from the date strings in Date is
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> td = timeDate(yhoo.df[,1],in.format="%d-%m-%y",
+ format="%a %b %d, %Y")
> td[1:2]
[1] Fri Feb 1, 2002 Mon Feb 4, 2002

A “timeSeries” object containing the data from yhoo.df is created using

> yhoo.ts = timeSeries(pos=td,data=yhoo.df[,-1])
> yhoo.ts[1:2,]

Positions Open High Low Close Volume
Fri Feb 1, 2002 17.26 17.3 16.35 16.68 6930100
Mon Feb 4, 2002 16.55 16.6 15.60 15.75 8913700

High frequency data, however, is often recorded using nonstandard time
formats. For example, consider the transactions level data for the month of
December 1999 for 3M stock in the S+FinMetrics data frame highFreq3m.df

> highFreq3M.df[1:2,]
trade.day trade.time trade.price

1 1 34412 94.688
2 1 34414 94.688

The variable trade.day contains the integer trading day of the month,
the variable trade.time contains the integer trade time recorded as the
number of seconds from midnight and the variable trade.price contains
the transaction price in dollars. A “timeDate” sequence may be easily
created from the trade day and trade time information as follows

> td = timeDate(julian=(highFreq3M.df$trade.day-1),
+ ms=highFreq3M.df$trade.time*1000,
+ in.origin=c(month=12,day=1,year=1999),zone="GMT")
> td[1:2]
[1] 12/1/99 9:33:32 AM 12/1/99 9:33:34 AM

The function timeDate can create a “timeDate” sequence using Julian date
and millisecond information. The argument julian takes an integer vector
containing the number of days since the date specified in the argument
in.origin, and the argument ms takes an integer vector containing the
number of milliseconds since midnight. In the above example, in.origin
is specified as December 1, 1999 and the optional argument zone is used
to set the time zone to GMT. A “timeSeries” object containing the high
frequency data in highFreq3M.df is created using

> hf3M.ts = timeSeries(pos=td,data=highFreq3M.df)

2.2.6 Aggregating and Disaggregating Time Series

Often a regularly spaced financial time series of a given frequency may
need to be aggregated to a coarser frequency or disaggregated to a finer
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frequency. In addition, aggregation and disaggregation may involve flow or
stock variables. The S-PLUS functions aggregateSeries and alignmay be
used for such purposes. To enhance and extend the disaggregation function-
ality in S-PLUS the S+FinMetrics function disaggregate is introduced.

Aggregating Time Series

Given a monthly “timeSeries” of end of month prices over a number of
years, suppose one would like to create an annual time series consisting of
the end of month December prices. Such a series may be easily constructed
by subsetting using the S-PLUS function months:

> dec.vals = "Dec"==months(positions(singleIndex.dat))
> annual.p = singleIndex.dat[dec.vals,]
> annual.p
Positions MSFT SP500
Dec 1990 2.090 330.2
Dec 1991 4.635 417.1
Dec 1992 5.336 435.7
Dec 1993 5.039 466.4
Dec 1994 7.641 459.3
Dec 1995 10.969 615.9
Dec 1996 20.656 740.7
Dec 1997 32.313 970.4
Dec 1998 69.344 1229.2
Dec 1999 116.750 1469.3
Dec 2000 43.375 1320.3

Another way to create the above annual time series is to use the S-PLUS
aggregateSeries function with a user-written function to pick off Decem-
ber values. One such function, based on the S-PLUS function hloc used to
compute high, low, open and close values, is

pickClose = function(x)
{
# return closing values of a vector

if(length(dim(x))) x = as.vector(as.matrix(x))
len = length(x)
if(!len)

as(NA, class(x))
else x[len]

}

The annual data is then constructed using aggregateSerieswith FUN=pickClose
and by="years"

> annual.p = aggregateSeries(singleIndex.dat,
+ FUN=pickClose,by="years")
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> positions(annual.p)@format = "%Y"
> annual.p
Positions MSFT SP500
1990 2.090 330.2
1991 4.635 417.1
1992 5.336 435.7
1993 5.039 466.4
1994 7.641 459.3
1995 10.969 615.9
1996 20.656 740.7
1997 32.313 970.4
1998 69.344 1229.2
1999 116.750 1469.3
2000 43.375 1320.3
2001 61.063 1366.0

The function aggregateSeries passes to the function pickClose data
from singleIndex.dat in blocks of year’s length. The function pickClose
simply picks off the last value for the year. Since singleIndex.dat only
has data for January 2, 2001, the 2001 value for annual.p is this value.
The method described above may also be used to construct end-of-month

closing price data from a “timeSeries” of daily closing price data. For ex-
ample, the commands to create end of month closing prices from daily
closing prices for Microsoft, taken from the S+FinMetrics “timeSeries”
DowJones30, using aggregateSerieswith FUN=pickClose and by="months"
are

> msft.daily.p = DowJones30[,"MSFT"]
> msft.daily.p@title = "Daily closing price on Microsoft"
> msft.daily.p@units = "Dollar price"
> msft.monthly.p = aggregateSeries(msft.daily.p,FUN=pickClose,
+ by="months",adj=0.99)
> msft.monthly.p[1:12]
Positions MSFT
1/31/1991 2.726
2/28/1991 2.882
3/31/1991 2.948
4/30/1991 2.750
5/31/1991 3.049
6/30/1991 2.838
7/31/1991 3.063
8/31/1991 3.552
9/30/1991 3.708
10/31/1991 3.912
11/30/1991 4.052
12/31/1991 4.635



2.2 The Specification of “timeSeries” Objects in S-PLUS 33

The option adj=0.99 adjusts the positions of the monthly data to the end
of the month. Notice that the end of month dates are not necessarily the
last trading days of the month.
The monthly closing price data may be extracted from the daily closing

price data by clever use of subscripting4. One way to do this is

> end.month.idx =
+ which(diff(as.numeric(months(positions(msft.daily.p)))) != 0)
> msft.monthly.p = msft.daily.p[end.month.idx]
> msft.monthly.p[1:12]
Positions MSFT
1/31/1991 2.726
2/28/1991 2.882
3/28/1991 2.948
4/30/1991 2.750
5/31/1991 3.049
6/28/1991 2.838
7/31/1991 3.063
8/30/1991 3.552
9/30/1991 3.708
10/31/1991 3.912
11/29/1991 4.052
12/31/1991 4.635

A common aggregation operation with financial price data is to construct
a volume weighted average price (vwap). This may be easily accomplished
with aggregateSeries and a user-specified function to compute the vwap.
For example, consider the daily open, high, low and close prices and volume
on Microsoft stock from October 2, 2000 through August 31, 2001 in the
S+FinMetrics “timeSeries” msft.dat.

> smpl = (positions(msft.dat) >= timeDate("10/1/2000") &
+ positions(msft.dat) <= timeDate("8/31/2001"))
> msft.dat[smpl,]
Positions Open High Low Close Volume
10/2/2000 60.50 60.81 58.25 59.13 29281200
...
8/31/2001 56.85 58.06 56.30 57.05 28950400

A function that can be used to aggregate open, high, low and close prices,
volume and compute the open and close vwap is

vol.wtd.avg.price = function(x) {
VolumeSum = as.double(sum(x[, "Volume"]))
nrowx = numRows(x)

4This method was suggested by Steve McKinney.
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return(data.frame(Open = x[1, "Open"],
High = max(x[, "High"]),
Low = min(x[, "Low"]),
Close = x[nrowx, "Close"],
vwap.Open = sum(x[, "Open"] * x[, "Volume"])/VolumeSum,
wap.Close = sum(x[, "Close"] * x[, "Volume"])/VolumeSum,
Volume = VolumeSum))

}

Using aggregateSeries and the function vol.wtd.avg.price one can
compute the monthly open, high, low, close prices, volume, and open and
close vwap

> msft.vwap.dat = aggregateSeries(x = msft.dat[smpl,],
+ by = "months",FUN = vol.wtd.avg.price,
+ together = T)
> positions(msft.vwap.dat)@format="%b %Y"
> msft.vwap.dat[,-7]
Positions Open High Low Close vwap.Open vwap.Close
Oct 2000 60.50 70.13 48.44 68.88 59.10 59.48
Nov 2000 68.50 72.38 57.00 57.38 68.35 67.59
...
Aug 2001 66.80 67.54 56.30 57.05 62.99 62.59

Disaggregating Time Series

Consider the problem of creating a daily “timeSeries” of inflation adjusted
(real) prices on Microsoft stock over the period January 2, 1991 through
January 2, 2001. To do this the daily nominal prices must be divided by
a measure of the overall price level; e.g. the consumer price level (CPI).
The daily nominal stock price data is in the “timeSeries” msft.daily.p
created earlier and the CPI data is in the S+FinMetrics “timeSeries”
CPI.dat. The CPI data, however, is only available monthly.

> start(CPI.dat)
[1] Jan 1913
> end(CPI.dat)
[1] Nov 2001

and represents the average overall price level during the month but is
recorded at the end of the month. The CPI data from December 1990
through January 2001 is extracted using

> smpl = (positions(CPI.dat) >= timeDate("12/1/1990")
+ & positions(CPI.dat) <= timeDate("2/1/2001"))
> cpi = CPI.dat[smpl,]
> cpi[1:3]
Positions CPI
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Dec 1990 134.3
Jan 1991 134.8
Feb 1991 134.9

To compute real daily prices on Microsoft stock, the monthly CPI data in
the “timeSeries” object cpi must be disaggregated to daily data. This
disaggregation may be done in a number of ways. For example, the CPI for
every day during the month of January, 1991 may be defined as the monthly
CPI value for December, 1990 or the monthly CPI value for January, 1991.
Alternatively, the daily values for January 1991 may be computed by lin-
early interpolating between the December, 1990 and January, 1991 values.
The S-PLUS function align may be used to do each of these disaggrega-
tions.
The align function aligns a “timeSeries” object to a given set of po-

sitions and has options for the creation of values for positions in which
the “timeSeries” does not have values. For example, the disaggregated
CPI using the previous month’s value for the current month’s daily data is
constructed using

> cpi.daily.before =
+ align(cpi,positions(msft.daily.p),how="before")
> cpi.daily.before[c(1:3,21:23)]
Positions CPI
1/2/1991 134.3
1/3/1991 134.3
1/4/1991 134.3
1/30/1991 134.3
1/31/1991 134.8
2/1/1991 134.8

The new positions to align the CPI values are the daily positions of the
“timeSeries” msft.daily.p, and the argument how="before" specifies
that the previous month’s CPI data is to be used for the current month’s
daily CPI values. Similarly, the disaggregated CPI using the next month’s
value for the current month’s daily data is constructed using

> cpi.daily.after =
+ align(cpi,positions(msft.daily.p),how="after")
> cpi.daily.after[c(1:3,21:23)]
Positions CPI
1/2/1991 134.8
1/3/1991 134.8
1/4/1991 134.8
1/30/1991 134.8
1/31/1991 134.8
2/1/1991 134.9
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Finally, the disaggregated daily CPI using linear interpolation between the
monthly values is constructed using

> cpi.daily.interp = align(cpi,positions(msft.daily.p),
+ how="interp")
> cpi.daily.interp[c(1:3,21:23)]
Positions CPI
1/2/1991 134.3
1/3/1991 134.3
1/4/1991 134.4
1/30/1991 134.8
1/31/1991 134.8
2/1/1991 134.8

The daily real prices on Microsoft stock using the interpolated daily CPI
values are then

> msft.daily.rp = (msft.daily.p/cpi.daily.interp)*100

Disaggregating Time Series using the S+FinMetrics disaggregate
Function

With economic and financial time series, it is sometimes necessary to dis-
tribute a flow variable or time average a stock variable that is observed at
a low frequency to a higher frequency. For example, a variable of interest
may only be observed on an annual basis and quarterly or monthly val-
ues are desired such that their sum is equal to the annual observation or
their average is equal to the annual observation. The S+FinMetrics func-
tion disaggregate performs such disaggregations using two methods. The
first method is based on cubic spline interpolation and is appropriate if the
only information is on the series being disaggregated. The second method
utilizes a generalized least squares (gls) fitting method due to Chow and
Lin (1971) and is appropriate if information is available on one or more re-
lated series that are observed at the desired disaggregated frequency. The
arguments expected by disaggregate are

> args(disaggregate)
function(data, k, method = "spline", how = "sum", x = NULL,
+ out.positions = NULL, ...)

where data is a vector, matrix or “timeSeries” of low frequency data, k is
the number of disaggregtion periods, method determines the disaggregation
method (spline or gls), how specifies if the disaggregated values sum to the
aggregated values or are equal on average to the disaggregated values, x
respresents any related observed data at the disaggregated frequency and
out.positions represents a “timeDate” sequence for the resulting output.
To illustrate the use of disaggregate, consider the problem of disag-

gregating the annual dividend on the S&P 500 index to a monthly divi-
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dend. Since the annual dividend is a flow variable, the sum of the monthly
dividends should equal the annual dividend. The annual S&P 500 div-
idend information over the period 1871 - 2000 is in the S+FinMetrics
“timeSeries” shiller.annual. The disaggregated monthly dividend val-
ues such that their sum is equal to the annual values is created using

> monthly.dates = timeSeq(from="1/1/1871",to="12/31/2000",
+ by="months",format="%b %Y")
> div.monthly =
+ disaggregate(shiller.annual[,"dividend"],12,
+ out.positions=monthly.dates)
> div.monthly[1:12]
Positions dividend
Jan 1871 0.02999
Feb 1871 0.01867
Mar 1871 0.01916
Apr 1871 0.01963
May 1871 0.02009
Jun 1871 0.02054
Jul 1871 0.02097
Aug 1871 0.02140
Sep 1871 0.02181
Oct 1871 0.02220
Nov 1871 0.02259
Dec 1871 0.02296

> sum(div.monthly[1:12])
[1] 0.26
> shiller.annual[1,"dividend"]
Positions dividend
1871 0.26

For the S&P 500 index, the index price is available monthly in the S+FinMetrics
“timeSeries” shiller.dat. This information may be utilized in the dis-
aggregation of the annual dividend using the gls method as follows

> smpl = positions(shiller.dat) <= timeDate("12/31/2000")
> price.monthly = as.matrix(seriesData(shiller.dat[smpl,"price"]))
> div2.monthly =
+ disaggregate(shiller.annual[,"dividend"], 12,
+ method="gls", x=price.monthly, out.positions=monthly.dates)
> div2.monthly[1:12]
Positions dividend
Jan 1871 0.006177
Feb 1871 0.010632
Mar 1871 0.014610
Apr 1871 0.018104
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May 1871 0.021104
Jun 1871 0.023569
Jul 1871 0.025530
Aug 1871 0.027043
Sep 1871 0.028063
Oct 1871 0.028508
Nov 1871 0.028548
Dec 1871 0.028111

> sum(div2.monthly[1:12])
[1] 0.26
> shiller.annual[1,"dividend"]
Positions dividend
1871 0.26

2.2.7 Merging Time Series

Often one would like to combine several “timeSeries” objects into a
single “timeSeries” object. The S-PLUS functions c, concat and cbind
do not operate on “timeSeries” objects. Instead, the S-PLUS function
seriesMerge is used to combine or merge a collection of “timeSeries”. To
illustrate, consider creating a new “timeSeries” consisting of the S+FinMetrics
object “timeSeries” CPI.dat and IP.dat containing monthly observa-
tions on the U.S. consumer price index and U.S. industrial production
index, respectively:

> CPI.dat
Positions CPI
Jan 1913 9.80
Feb 1913 9.80
...
Nov 2001 177.60

> IP.dat
Positions IP
Jan 1919 7.628
Feb 1919 7.291
...
Nov 2001 137.139

Notice that the start date for CPI.dat is earlier than the start date for
IP.dat,but the end dates are the same. A new “timeSeries” containing
both CPI.dat and IP.dat with positions aligned to those for IP.dat using
seriesMerge is

> IP.CPI.dat = seriesMerge(IP.dat,CPI.dat,
+ pos=positions(IP.dat))
> IP.CPI.dat[1:2,]



2.2 The Specification of “timeSeries” Objects in S-PLUS 39

Positions IP CPI
Jan 1919 7.628 16.5
Feb 1919 7.291 16.2

To create a “timeSeries” with positions given by the union of the positions
for CPI.dat and IP.dat set pos="union" in the call to seriesMerge. Since
IP.dat does not have observations for the dates January 1913 through
December 1918, NA values for IP for these dates will be inserted in the new
“timeSeries”.

2.2.8 Dealing with Missing Values Using the S+FinMetrics
Function interpNA

Occasionally, time series data contain missing or incorrect data values. One
approach often used to fill-in missing values is interpolation5. The S-PLUS
align function may be used for this purpose. The S+FinMetrics func-
tion interpNA performs similar missing value interpolation as align but
is easier to use and is more flexible. The arguments expected by interpNA
are

> args(interpNA)
function(x, method = "spline")

where x is a rectangular object and method sets the interpolation method.
Valid interpolation methods are “before”, “after”, “nearest”, “linear”
and (cubic) “spline”. To illustrate the use of interpNA, note that the clos-
ing price for the Dow Jones Industrial Average in the S-PLUS “timeSeries”
djia has a missing value on January 18, 1990:

> djia.close = djia[positions(djia) >= timeDate("1/1/1990"),
+ "close"]
> djia.close[10:12,]
Positions close
01/17/1990 2659.1
01/18/1990 NA
01/19/1990 2677.9

To replace the missing value with an interpolated value based on a cubic
spline use

> djia.close = interpNA(djia.close)
> djia.close[10:12,]
Positions 1
01/17/1990 2659.1

5More sophisticated imputation methods for dealing with missing values are available
in the library S+MISSINGDATA which is included with S-PLUS.
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01/18/1990 2678.7
01/19/1990 2677.9

2.3 Time Series Manipulation in S-PLUS

There are several types of common manipulations and transformations that
often need to be performed before a financial time series is to be analyzed.
The most important transformations are the creation of lagged and differ-
enced variables and the creation of returns from asset prices. The following
sections describe how these operations may be performed in S-PLUS.

2.3.1 Creating Lags and Differences

Three common operations on time series data are the creation of lags, leads,
and differences. The S-PLUS function shift may be used to create leads
and lags, and the generic function diff may be used to create differences.
However, these functions do not operate on “timeSeries” objects in the
most convenient way. Consequently, the S+FinMetrics module contains
the functions tslag and diff.timeSeries for creating lags/leads and dif-
ferences.

Creating Lags and Leads Using the S+FinMetrics Function tslag

The S+FinMetrics function tslag creates a specified number of lag/leads
of a rectangular data object. The arguments expected by tslag are

> args(tslag)
function(x, k = 1, trim = F)

where x is any rectangular object, k specifies the number of lags to be
created (negative values create leads) and trim determines if NA values are
to be trimmed from the result. For example, consider the “timeSeries”
singleIndex.dat containing monthly prices on Microsoft and the S&P
500 index. The first five values are

> singleIndex.dat[1:5,]
Positions MSFT SP500
Jan 1990 1.285 329.1
Feb 1990 1.371 331.9
Mar 1990 1.538 339.9
Apr 1990 1.611 330.8
May 1990 2.028 361.2

The “timeSeries” of lagged values using tslag are

> tslag(singleIndex.dat[1:5,])
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Positions MSFT.lag1 SP500.lag1
Jan 1990 NA NA
Feb 1990 1.285 329.1
Mar 1990 1.371 331.9
Apr 1990 1.538 339.9
May 1990 1.611 330.8

Notice that tslag creates a “timeSeries” containing the lagged prices
on Microsoft and the S&P 500 index. The variable names are adjusted to
indicate the type of lag created and since trim=F, NA values are inserted
for the first observations. To create a “timeSeries” without NA values in
the first position, use tslag with trim=T:

> tslag(singleIndex.dat[1:5,],trim=T)
Positions MSFT.lag1 SP500.lag1
Feb 1990 1.285 329.1
Mar 1990 1.371 331.9
Apr 1990 1.538 339.9
May 1990 1.611 330.8

Leads are created by setting k equal to a negative number:

> tslag(singleIndex.dat[1:5,],k=-1)
Positions MSFT.lead1 SP500.lead1
Jan 1990 1.371 331.9
Feb 1990 1.538 339.9
Mar 1990 1.611 330.8
Apr 1990 2.028 361.2
May 1990 NA NA

To create a “timeSeries” with multiple lagged values, simply specify
the lags to create in the call to tslag. For example, specifying k=c(1,3)
creates the first and third lag

> tslag(singleIndex.dat[1:5,],k=c(1,3))
Positions MSFT.lag1 SP500.lag1 MSFT.lag3 SP500.lag3
Jan 1990 NA NA NA NA
Feb 1990 1.285 329.1 NA NA
Mar 1990 1.371 331.9 NA NA
Apr 1990 1.538 339.9 1.285 329.1
May 1990 1.611 330.8 1.371 331.9

Similarly, specifying k=-1:1 creates

> tslag(singleIndex.dat[1:5,],k=-1:1)
Positions MSFT.lead1 SP500.lead1 MSFT.lag0 SP500.lag0
Jan 1990 1.371 331.9 1.285 329.1
Feb 1990 1.538 339.9 1.371 331.9
Mar 1990 1.611 330.8 1.538 339.9



42 2. Time Series Specification, Manipulation and Visualization in S-PLUS

Apr 1990 2.028 361.2 1.611 330.8
May 1990 NA NA 2.028 361.2
MSFT.lag1 SP500.lag1

NA NA
1.285 329.1
1.371 331.9
1.538 339.9
1.611 330.8

Creating Differences Using the S+FinMetrics Function diff.timeSeries

The S+FinMetrics function diff.timeSeries is a method function for
the generic S-PLUS function diff for objects of class “timeSeries” and
creates a specified number of differences of a “timeSeries” object. The
arguments expected by diff.timeSeries are

> args(diff.timeSeries)
function(x, lag = 1, differences = 1, trim = T, pad = NA)

where x represents a “timeSeries” object, lag specifies the number of
lagged periods used in the difference, differences specifies the number
of times to difference the series, trim determines if the resulting series is
to have NA values removed and trimmed and pad specifies the value to
be padded to the series in the positions where the differencing operation
exceeds the start or the end positions. For example, consider again the
“timeSeries” singleIndex.dat containing monthly prices on Microsoft
and the S&P 500 index. Let Pt denote the price at time t. To create the
first difference ∆Pt = Pt − Pt−1 use diff with lag=1:

> diff(singleIndex.dat[1:5,],lag=1,trim=F)
Positions MSFT SP500
Jan 1990 NA NA
Feb 1990 0.0868 2.81
Mar 1990 0.1667 8.05
Apr 1990 0.0729 -9.14
May 1990 0.4167 30.43

To create the difference Pt − Pt−2 and pad the result with zeros instead of
NAs use diff with lag=2 and pad=0:

> diff(singleIndex.dat[1:5,],lag=2,trim=F,pad=0)
Positions MSFT SP500
Jan 1990 0.0000 0.00
Feb 1990 0.0000 0.00
Mar 1990 0.2535 10.86
Apr 1990 0.2396 -1.09
May 1990 0.4896 21.29



2.3 Time Series Manipulation in S-PLUS 43

To create the 2nd difference ∆2Pt = ∆(Pt−Pt−1) = Pt− 2Pt−1+Pt−2 use
diff with lag=1 and diff=2:

> diff(singleIndex.dat[1:5,],lag=1,diff=2,trim=F)
Positions MSFT SP500
Jan 1990 NA NA
Feb 1990 NA NA
Mar 1990 0.0799 5.24
Apr 1990 -0.0938 -17.19
May 1990 0.3438 39.57

Unlike tslag, diff.timeSeries does not rename the variables to indi-
cate the differencing operation performed. Additionally, diff.timeSeries
will not accept a vector of values for the arguments lag and differences.

2.3.2 Return Definitions

Simple Returns

Let Pt denote the price at time t of an asset that pays no dividends and
let Pt−1 denote the price at time t − 1. Then the simple net return on an
investment in the asset between times t− 1 and t is defined as

Rt =
Pt − Pt−1

Pt−1
= %∆Pt. (2.1)

Writing Pt−Pt−1
Pt−1

= Pt
Pt−1

− 1, we can define the simple gross return as

1 +Rt =
Pt
Pt−1

. (2.2)

Unless otherwise stated, references to returns mean net returns.
The simple two-period return on an investment in an asset between times

t− 2 and t is defined as

Rt(2) =
Pt − Pt−2

Pt−2
=

Pt
Pt−2

− 1

=
Pt
Pt−1

· Pt−1
Pt−2

− 1

= (1 +Rt)(1 +Rt−1)− 1.

Then the simple two-period gross return becomes

1 +Rt(2) = (1 +Rt)(1 +Rt−1) = 1 +Rt−1 +Rt +Rt−1Rt,

which is a geometric (multiplicative) sum of the two simple one-period gross
returns and not the simple sum of the one period returns. If, however, Rt−1
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and Rt are small then Rt−1Rt ≈ 0 and 1 +Rt(2) ≈ 1 +Rt−1 +Rt so that
Rt(2) ≈ Rt−1 +Rt.
In general, the k-period gross return is defined as the geometric average

of k one period gross returns

1 +Rt(k) = (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1) (2.3)

=
k−1Y
j=0

(1 +Rt−j)

and the k-period net return is

Rt(k) =
k−1Y
j=0

(1 +Rt−j)− 1. (2.4)

Continuously Compounded Returns

Let Rt denote the simple one period return on an investment. The contin-
uously compounded one period return, rt, is defined as

rt = ln(1 +Rt) = ln

µ
Pt
Pt−1

¶
(2.5)

where ln(·) is the natural log function. To see why rt is called the con-
tinuously compounded return, take exponentials of both sides of (2.5) to
give

ert = 1 +Rt =
Pt
Pt−1

.

Rearranging gives
Pt = Pt−1ert ,

so that rt is the continuously compounded growth rate in prices between
periods t − 1 and t. This is to be contrasted with Rt which is the simple
growth rate in prices between periods t−1 and t without any compounding.
Since ln

³
x
y

´
= ln(x)− ln(y) it follows that

rt = ln

µ
Pt
Pt−1

¶
= ln(Pt)− ln(Pt−1)
= pt − pt−1

where pt = ln(Pt). Hence, the continuously compounded one period return,
rt, can be computed simply by taking the first difference of the natural
logarithms of prices between periods t− 1 and t.
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Given a one period continuously compounded return rt, it is straightfor-
ward to solve back for the corresponding simple net return Rt:

Rt = ert − 1

Hence, nothing is lost by considering continuously compounded returns
instead of simple returns.
The computation of multi-period continuously compounded returns is

considerably easier than the computation of multi-period simple returns. To
illustrate, consider the two period continuously compounded return defined
as

rt(2) = ln(1 +Rt(2)) = ln

µ
Pt
Pt−2

¶
= pt − pt−2.

Taking exponentials of both sides shows that

Pt = Pt−2ert(2)

so that rt(2) is the continuously compounded growth rate of prices between
periods t− 2 and t. Using Pt

Pt−2
= Pt

Pt−1
· Pt−1Pt−2

and the fact that ln(x · y) =
ln(x) + ln(y) it follows that

rt(2) = ln

µ
Pt
Pt−1

· Pt−1
Pt−2

¶
= ln

µ
Pt
Pt−1

¶
+ ln

µ
Pt−1
Pt−2

¶
= rt + rt−1.

Hence the continuously compounded two period return is just the sum of
the two continuously compounded one period returns.
The continuously compounded k-period return is defined as

rt(k) = ln(1 +Rt(k)) = ln

µ
Pt
Pt−k

¶
= pt − pt−k. (2.6)

Using similar manipulations to the ones used for the continuously com-
pounded two period return the continuously compounded k-period return
may be expressed as the sum of k continuously compounded one period
returns:

rt(k) =
k−1X
j=0

rt−j . (2.7)

The additivitity of continuously compounded returns to form multiperiod
returns is an important property for statistical modeling purposes.
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2.3.3 Computing Asset Returns Using the S+FinMetrics
Function getReturns

Given a data set with asset prices the S+FinMetrics function getReturns
may be used to compute discrete and continuously compounded returns.
The arguments to getReturns are

> args(getReturns)
function(x, type = "continuous", percentage = F, trim = T)

where x is any rectangular data object and type specifies the type of re-
turns to compute (discrete or continuously compounded). To illustrate, the
S+FinMetrics “timeSeries” singleIndex.dat contains monthly closing
prices on Microsoft stock and the S&P 500 index, adjusted for stock splits
and dividends, over the period January 1990 through January 2001.

> colIds(singleIndex.dat)
[1] "MSFT" "SP500"
> singleIndex.dat[1:3,]
Positions MSFT SP500
Jan 1990 1.2847 329.08
Feb 1990 1.3715 331.89
Mar 1990 1.5382 339.94

A “timeSeries” of simple one-period discrete returns expressed as per-
centages is computed as

> ret.d = getReturns(singleIndex.dat,type="discrete",
+ percentage=T)
> ret.d[1:3,]
Positions MSFT SP500
Feb 1990 6.756 0.8539
Mar 1990 12.155 2.4255
Apr 1990 4.739 -2.6887

By default the first observation in the “timeSeries” is trimmed. To retain
the first (NA) observation use the optional argument trim=F

> ret.d = getReturns(singleIndex.dat,type="discrete",trim=F)
> ret.d[1:3,]
Positions MSFT SP500
Jan 1990 NA NA
Feb 1990 0.067564 0.008539
Mar 1990 0.121546 0.024255

Continuously compounded returns are created by specifying type="continuous"

> ret.cc = getReturns(singleIndex.dat,type="continuous")
> ret.cc[1:3,]
Positions MSFT SP500
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Feb 1990 0.065380 0.0085027
Mar 1990 0.114708 0.0239655
Apr 1990 0.046304 -0.0272552

Multiperiod returns may be computed from a “timeSeries” of one pe-
riod returns using the S-PLUS function aggregateSeries. Multiperiod re-
turns may be either overlapping or non-overlapping. For example, consider
computing a monthly “timeSeries” of overlapping annual continuously
compounded returns from the monthly continuously compounded returns
in the “timeSeries” ret.cc using aggregateSeries:

> ret12.cc = aggregateSeries(ret.cc,moving=12,FUN=sum)
> ret12.cc[1:3,]
Positions MSFT SP500
Feb 1990 0.75220 0.044137
Mar 1990 0.74254 0.100749
Apr 1990 0.65048 0.098743
> colSums(seriesData(ret.cc[1:12,]))

MSFT SP500
0.7522 0.044137

The argument moving=12 and FUN=sum tells aggregateSeries to compute
a moving sum of twelve returns. Hence, the annual return reported for
Feb 1990 is the sum of the twelve monthly returns from February 1990
through January 1991. Non-overlapping annual returns are computed from
the monthly returns using aggregateSeries with the option by="years"

> ret12.cc = aggregateSeries(ret.cc,by="years",FUN=sum)
> ret12.cc[1:3,]
Positions MSFT SP500
Jan 1990 0.48678 0.0034582
Jan 1991 0.79641 0.2335429
Jan 1992 0.14074 0.0436749
> colSums(seriesData(ret.cc[1:11,]))

MSFT SP500
0.48678 0.0034582

The “timeSeries” ret12.cc is now an annual series of non-overlapping
annual returns. Notice that the annual return for January 1990 is computed
using only the eleven returns from February 1990 through December 1990.
Multiperiod discrete returns (2.4) may be computed using the function

aggregateSeries with FUN=prod. For example, a monthly “timeSeries”
of overlapping annual discrete returns is computed as

> ret12.d = aggregateSeries((1+ret.d),moving=12,FUN=prod)-1
> ret12.d[1:3,]
Positions MSFT SP500
Feb 1990 1.12166 0.045126
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Mar 1990 1.10128 0.105999
Apr 1990 0.91646 0.103783
> prod(seriesData(1+ret.d[1:12,1]))-1
[1] 1.1217

Notice that 1 is added to the return data and 1 is subtracted from the result
in order to compute (2.4) properly. Non-overlapping multiperiod discrete
returns may be computed using

> ret12.d = aggregateSeries((1+ret.d),by="years",FUN=prod)-1
> ret12.d[1:3,]
Positions MSFT SP500
Jan 1990 NA NA
Jan 1991 1.2176 0.26307
Jan 1992 0.1511 0.04464

2.4 Visualizing Time Series in S-PLUS

Time series data in “timeSeries” objects may be visualized by using the
S-PLUS generic plot function, the S-PLUS trellisPlot function, or by
using the S+FinMetrics plotting functions based on Trellis graphics.

2.4.1 Plotting “timeSeries” Using the S-PLUS Generic plot
Function

The S-PLUS generic plot function has a method function, plot.timeSeries,
for plotting “timeSeries” objects. To illustrate, consider the monthly clos-
ing prices of Microsoft stock over the period January 1990 to January 2001
in the “timeSeries” object msft.p created earlier:

> msft.p@title
[1] "Monthly closing price on Microsoft"
> msft.p@units
[1] "US dollar price"

Figure 2.1 shows the output produced by the generic plot function

> plot(msft.p)

Notice how the information in the title and units slots is utilized
in the plot. To eliminate the horizontal and vertical grid lines specify
reference.grid=F in the call to plot. To show the price data on a loga-
rithmic scale specify log.axes="y" in the call to plot.
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FIGURE 2.1. Monthly closing prices on Microsoft stock created using
plot.timeSeries.

Multiple series (on the same scale) may also be plotted together on the
same plot using plot6 . For example, the prices for Microsoft and the S&P
500 index in the “timeSeries” singleIndex.dat may be plotted together
using

> plot(singleIndex.dat,plot.args=list(lty=c(1,3)))
> legend(0.1,1400,legend=colIds(singleIndex.dat),lty=c(1,3))

The plot is illustrated in Figure 2.2. Notice how the line types are specified
as a list argument to the optional argument plot.args. In the placement
of the legend, the x-axis units are treated as values in the unit interval.
Multipanel plots may be created by specifying the plot layout using the

S-PLUS function par. Figure 2.3 shows a two panel plot of the price data
in singleIndex.dat produced using

> par(mfrow=c(2,1))
> plot(singleIndex.dat[,"MSFT"],
+ main="Monthly price on Microsoft")
> plot(singleIndex.dat[,"SP500"],

6To create a scatterplot of two “timeSeries” use the extractor function seriesData
possibly in conjunction with the coersion function as.matrix on the “timeSeries” ob-
jects in the call to plot. Alternatively, the S+FinMetrics function rvfPlot may be used.
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FIGURE 2.2. Monthly closing prices on Microsoft and the S&P 500 index created
using plot.timeSeries.

+ main="Monthly price on S&P 500 index")

Two specialized plot types for financial data can be made with the func-
tion plot.timeSeries. The first is a high/low/open/close (hloc) plot and
the second is a stackbar plot. These plots are made by setting plot.type =
"hloc" or plot.type = "stackbar" in the call to plot.timeSeries. For
a hloc plot, the “timeSeries” to be plotted must have hloc information or
such information must be created using aggregateSeries with the S-PLUS
function hloc. Stackbar plots are generally used for plotting asset volume
information. To illustrate these plot types, consider the monthly data from
the Dow Jones Industrial Averages in the S-PLUS “timeSeries” djia

> colIds(djia)
[1] "open" "high" "low" "close" "volume"

Figure 2.4 gives a multipanel plot showing high, low, open, close and volume
information created by

> smpl = (positions(djia) >= timeDate("9/1/1987") &
+ positions(djia) <= timeDate("11/30/1987"))
> par(mfrow=c(2,1))
> plot(djia[smpl,1:4],plot.type="hloc")
> plot(djia[smpl,5],plot.type="stackbar")
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FIGURE 2.3. Two panel plot created using par(mfrow=c(2,1)) in conjunction
with plot.timeSeries.

Function Description
seriesPlot Trellis time series plot
histPlot Trellis histogram plot
qqPlot Trellis qq-plot for various distributions

TABLE 2.2. S+FinMetrics Trellis plotting functions

Lines may be added to an existing time series plot using the S-PLUS
function lines.render and stackbar information may be added using the
S-PLUS function stackbar.render. See chapter 26 in the S-PLUS Guide
to Statistics Vol. II for details on using these functions.

2.4.2 Plotting “timeSeries” Using the S+FinMetrics Trellis
Plotting Functions

S+FinMetrics provides several specialized Trellis-based plotting functions
for “timeSeries” objects. These functions extend the S-PLUS function
TrellisPlot.timeSeries and are summarized in Table 2.2. All of the
functions in the table can create multi-panel plots with text labels in the
panel strips. For the following examples, monthly return data on six stocks
from the S+FinMetrics “timeSeries” DowJones30 will be used. This data
is created using
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FIGURE 2.4. Monthly high, low, open, close and volume information for the
Dow Jones Industrial Average using plot.timeSeries with type="hloc" and
type="stackbar".

> DJ.ret = getReturns(DowJones30[,1:6], percentage=T)
> colIds(DJ.ret)
[1] "AA" "AXP" "T" "BA" "CAT" "C"

The function seriesPlot may be used to create single panel or multi-
panel time plots. To create the multi-panel time plot of the six Dow Jones
30 assets shown in Figure 2.5 use

> seriesPlot(DJ.ret,one.plot=F,strip.text=colIds(DJ.ret),
+ main="Monthly returns on six Dow Jones 30 stocks")

Notice that each time plot has a different scale.
The function histPlot may be used to create either a single panel his-

togram of one data series or a multi-panel plot of histograms for multiple
series. The multi-panel plot in Figure 2.6 is created using

> histPlot(DJ.ret,strip.text=colIds(DJ.ret),
+ main="Histograms of returns on six Dow Jones 30 stocks")

Notice that each histogram uses the same bins.
Single panel or multi-panel Trellis-based qq-plots using Gaussian, Student-

t, and double exponential distributions may be created using the function
qqPlot. To illustrate, consider computing qq-plots for the six Dow Jones 30
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FIGURE 2.5. Multi-panel time plot created using the S+FinMetrics function
seriesPlot.

assets using six Student-t reference distributions with degrees of freedom
equal to 5, 6, 7, 8, 9 and 10. These qq-plots, shown in Figure 2.7, are created
using

> s.text = paste(colIds(DJ.ret),5:10,sep=" ","df")
> qqPlot(DJ.ret,strip.text=s.text,
+ distribution="t",dof=c(5,6,7,8,9,10), id.n=FALSE,
+ main="Student-t QQ-plots for returns on six Dow Jones
+ 30 stocks")

Notice how the degress of freedom for each Student-t distribution along
with the asset name is indicated in the strip text. The optional argument
id.n=FALSE suppresses the identification of outliers on the qq-plots.
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FIGURE 2.6. Multi-panel histogram plot created using the S+FinMetrics func-
tion histPlot.
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FIGURE 2.7. Multi-panel qq-plots created using the S+FinMetrics function
qqPlot.
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3
Time Series Concepts

3.1 Introduction

This chapter provides background material on time series concepts that
are used throughout the book. These concepts are presented in an informal
way, and extensive examples using S-PLUS are used to build intuition. Sec-
tion 3.2 discusses time series concepts for stationary and ergodic univariate
time series. Topics include testing for white noise, linear and autoregressive
moving average (ARMA) process, estimation and forecasting from ARMA
models, and long-run variance estimation. Section 3.3 introduces univariate
nonstationary time series and defines the important concepts of I(0) and
I(1) time series. Section 4.4 explains univariate long memory time series.
Section ?? covers concepts for stationary and ergodic multivariate time
series, introduces the class of vector autoregression models, and discusses
long-run variance estimation.
Rigorous treatments of the time series concepts presented in this chapter

can be found in Fuller (1996) and Hamilton (1994). Applications of these
concepts to financial time series are provided by Campbell, Lo and MacKin-
lay (1997), Mills (1999), Gourieroux and Jasiak (2001), Tsay (2001), Alexan-
der (2001) and Chan (2002).
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3.2 Univariate Time Series

3.2.1 Stationary and Ergodic Time Series

Let {yt} = {. . . yt−1, yt, yt+1, . . .} denote a sequence of random variables
indexed by some time subscript t. Call such a sequence of random variables
a time series.
The time series {yt} is covariance stationary if

E[yt] = µ for all t

cov(yt, yt−j) = E[(yt − µ)(yt−j − µ)] = γj for all t and any j

For brevity, call a covariance stationary time series simply a stationary
time series. Stationary time series have time invariant first and second
moments. The parameter γj is called the j

th order or lag j autocovariance
of {yt} and a plot of γj against j is called the autocovariance function. The
autocorrelations of {yt} are defined by

ρj =
cov(yt, yt−j)p
var(yt)var(yt−j)

=
γj
γ0

and a plot of ρj against j is called the autocorrelation function (ACF).
Intuitively, a stationary time series is defined by its mean, variance and
ACF. A useful result is that any function of a stationary time series is also
a stationary time series. So if {yt} is stationary then {zt} = {g(yt)} is
stationary for any function g(·).
The lag j sample autocovariance and lag j sample autocorrelation are

defined as

γ̂j =
1

T

TX
t=j+1

(yt − ȳ)(yt−j − ȳ) (3.1)

ρ̂j =
γ̂j
γ̂0

(3.2)

where ȳ = 1
T

PT
t=1 yt is the sample mean. The sample ACF (SACF) is a

plot of ρ̂j against j.
A stationary time series {yt} is ergodic if sample moments converge in

probability to population moments; i.e. if ȳ
p→ µ, γ̂j

p→ γj and ρ̂j
p→ ρj .

Example 1 Gaussian White Noise (GWN) processes

Perhaps the most simple stationary time series is the independent Gaus-
sian white noise process yt ∼ iid N(0, σ2) ≡ GWN(0, σ2). This process
has µ = γj = ρj = 0 (j 6= 0). To simulate a GWN(0, 1) process in S-PLUS
use the rnorm function:
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FIGURE 3.1. Simulated Gaussian white noise process and SACF

> set.seed(101)
> y = rnorm(100,sd=1)

To compute the sample moments ȳ, γ̂j , ρ̂j (j = 1, . . . , 10) and plot the data
and SACF use

> y.bar = mean(y)
> g.hat = acf(y,lag.max=10,type="covariance",plot=F)
> r.hat = acf(y,lag.max=10,type="correlation",plot=F)
> par(mfrow=c(1,2))
> tsplot(y,ylab="y")
> acf.plot(r.hat)

By default, as shown in Figure 3.1, the SACF is shown with 95% confidence
limits about zero. These limits are based on the result (c.f. Fuller (1996)
pg. 336) that if {yt} ∼ iid (0, σ2) then

ρ̂j
A∼ N

µ
0,
1

T

¶
, j > 0.

The notation ρ̂j
A∼ N

¡
0, 1T

¢
means that the distribution of ρ̂j is approxi-

mated by normal distribution with mean 0 and variance 1
T and is based on

the central limit theorem result
√
T ρ̂j

d→ N (0, 1). The 95% limits about
zero are then ±1.96√

T
.
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FIGURE 3.2. Normal qq-plot for simulated GWN.

Two slightly more general processes are the independent white noise
(IWN) process, yt ∼ IWN(0, σ2), and the white noise (WN) process,
yt ∼ WN(0, σ2). Both processes have mean zero and variance σ2, but
the IWN process has independent increments, whereas the WN process
has uncorrelated increments.

Testing for Normality

In the previous example, yt ∼ GWN(0, 1). There are several statistical
methods that can be used to see if an iid process yt is Gaussian. The most
common is the normal quantile-quantile plot or qq-plot, a scatterplot of the
standardized empirical quantiles of yt against the quantiles of a standard
normal random variable. If yt is normally distributed, then the quantiles
will lie on a 45 degree line. A normal qq-plot with 45 degree line for yt may
be computed using the S-PLUS functions qqnorm and qqline

> qqnorm(y)
> qqline(y)

Figure 3.2 shows the qq-plot for the simulated GWN data of the previous
example. The quantiles lie roughly on a straight line. The S+FinMetrics
function qqPlot may be used to create a Trellis graphics qq-plot.
The qq-plot is an informal graphical diagnostic. Two popular formal

statistical tests for normality are the Shapiro-Wilks test and the Jarque-
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Bera test. The Shapiro-Wilk’s test is a well-known goodness of fit test for
the normal distribution. It is attractive because it has a simple, graphical
interpretation: one can think of it as an approximate measure of the cor-
relation in a normal quantile-quantile plot of the data. The Jarque-Bera
test is based on the result that a normally distributed random variable has
skewness equal to zero and kurtosis equal to three. The Jarque-Bera test
statistic is

JB =
T

6

Ã
[skew

2
+
(dkurt− 3)2

4

!
(3.3)

where [skew denotes the sample skewness and dkurt denotes the sample
kurtosis. Under the null hypothesis that the data is normally distributed

JB
A∼ χ2(2).

Example 2 Testing for normality using the S+FinMetrics function normalTest

The Shapiro-Wilks and Jarque-Bera statistics may be computed using
the S+FinMetrics function normalTest. For the simulated GWN data of
the previous example, these statistics are

> normalTest(y, method="sw")
Test for Normality: Shapiro-Wilks

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 0.9703
p.value 0.1449

Dist. under Null: normal
Total Observ.: 100

> normalTest(y, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 1.8763
p.value 0.3914

Dist. under Null: chi-square with 2 degrees of freedom
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Total Observ.: 100

The null of normality is not rejected using either test.

Testing for White Noise

Consider testing the null hypothesis

H0 : yt ∼WN(0, σ2)

against the alternative that yt is not white noise. Under the null, all of the
autocorrelations ρj for j > 0 are zero. To test this null, Box and Pierce
(1970) suggested the Q-statistic

Q(k) = T
kX

j=1

ρ̂2j (3.4)

where ρ̂j is given by (3.2). Under the null, Q(k) is asymptotically dis-
tributed χ2(k). In a finite sample, the Q-statistic (3.4) may not be well
approximated by the χ2(k). Ljung and Box (1978) suggested the modified
Q-statistic

MQ(k) = T (T + 2)
kX

j=1

ρ̂2j
T − k

(3.5)

which is better approximated by the χ2(k) in finite samples.

Example 3 Daily returns on Microsoft

Consider the time series behavior of daily continuously compounded re-
turns on Microsoft for 2000. The following S-PLUS commands create the
data and produce some diagnostic plots:

> r.msft = getReturns(DowJones30[,"MSFT"],type="continuous")
> r.msft@title = "Daily returns on Microsoft"
> sample.2000 = (positions(r.msft) > timeDate("12/31/1999")
+ & positions(r.msft) < timeDate("1/1/2001"))
> par(mfrow=c(2,2))
> plot(r.msft[sample.2000],ylab="r.msft")
> r.acf = acf(r.msft[sample.2000])
> hist(seriesData(r.msft))
> qqnorm(seriesData(r.msft))

The daily returns on Microsoft resemble a white noise process. The qq-
plot, however, suggests that the tails of the return distribution are fatter
than the normal distribution. Notice that since the hist and qqnorm func-
tions do not have methods for “timeSeries” objects the extractor func-
tion seriesData is required to extract the data frame from the data slot
of r.msft.
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FIGURE 3.3. Daily returns on Microsoft with diagnostic plots

The S+FinMetrics functions histPlot and qqPlot will produce a his-
togram and qq-plot for a “timeSeries” object using Trellis graphics. For
example,

> histPlot(r.msft,strip.text="MSFT monthly return")
> qqPlot(r.msft,strip.text="MSFT monthly return")

However, Trellis plots cannot be displayed in a multipanel plot created
using par.
The S+FinMetrics function autocorTest may be used to compute the

Q-statistic and modified Q-statistic to test the null that the returns on
Microsoft follow a white noise process:

> autocorTest(r.msft, lag.n=10, method="lb")

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.7746
p.value 0.3004

Dist. under Null: chi-square with 10 degrees of freedom
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Total Observ.: 2527

The argument lag.n=10 specifies that k = 10 autocorrelations are used
in computing the statistic, and method="lb" specifies that the modified
Box-Pierce statistic (3.5) be computed. To compute the simple Box-Pierce
statistic, specify method="bp". The results indicate that the white noise
null cannot be rejected.

3.2.2 Linear Processes and ARMA Models

Wold’s decomposition theorem (c.f. Fuller (1996) pg. 96) states that any
covariance stationary time series {yt} has a linear process or infinite order
moving average representation of the form

yt = µ+
∞X
k=0

ψkεt−k (3.6)

ψ0 = 1,
∞X
k=0

ψ2k <∞

εt ∼ WN(0, σ2)

In the Wold form, it can be shown that

E[yt] = µ

γ0 = var(yt) = σ2
∞X
k=0

ψ2k

γj = cov(yt, yt−j) = σ2
∞X
k=0

ψkψk+j

ρj =

P∞
k=0 ψkψk+jP∞

k=0 ψ
2
k

Hence, the pattern of autocorrelations in any stationary and ergodic time
series {yt} is determined by the moving average weights {ψj} in its Wold
representation. To ensure convergence of the linear process representation
to a stationary and ergodic process with nice properties, it is necessary
to further restrict the behavior of the moving average weights {ψj}. A
standard assumption used in the econometrics literature (c.f. Hamilton
(1994) pg. 504) is 1-summability

∞X
j=0

j|ψj | = 1 + 2|ψ2|+ 3|ψ3|+ · · · <∞.

The moving average weights in the Wold form are also called impulse
responses since

∂yt+s
∂εt

= ψs, s = 1, 2, . . .
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For a stationary and ergodic time series lims→∞ ψs = 0 and the long-run
cumulative impulse response

P∞
s=0 ψs <∞. A plot of ψs against s is called

the impulse response function (IRF).
The general Wold form of a stationary and ergodic time series is handy

for theoretical analysis but is not practically useful for estimation purposes.
A very rich and practically useful class of stationary and ergodic processes is
the autoregressive-moving average (ARMA) class of models made popular
by Box and Jenkins (1976). ARMA(p, q) models take the form of a pth
order stochastic difference equation

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) (3.7)

+εt + θ1εt−1 + · · ·+ θqεt−q
εt ∼ WN(0, σ2)

ARMA(p, q) models may be thought of as parsimonious approximations
to the general Wold form of a stationary and ergodic time series. More
information on the properties of ARMA(p, q) process and the procedures
for estimating and forecasting these processes using S-PLUS are in the S-
PLUS Guide to Statistics Vol. II, chapter 27, Venables and Ripley (1999)
chapter 13, and Meeker (2001)1.

Lag Operator Notation

The presentation of time series models is simplified using lag operator no-
tation. The lag operator L is defined such that for any time series {yt},
Lyt = yt−1. The lag operator has the following properties: L2yt = L ·Lyt =
yt−2, L0 = 1 and L−1yt = yt+1. The operator ∆ = 1 − L creates the first
difference of a time series: ∆yt = (1 − L)yt = yt − yt−1. The ARMA(p, q)
model (3.7) may be compactly expressed using lag polynomials. Define
φ(L) = 1− φ1L− · · ·− φpL

p and θ(L) = 1 + θ1L+ · · ·+ θqL
q. Then (3.7)

may be expressed as
φ(L)(yt − µ) = θ(L)εt

Similarly, the Wold representation in lag operator notation is

yt = µ+ ψ(L)εt

ψ(L) =
∞X
k=0

ψkL
k, ψ0 = 1

and the long-run cumulative impulse response is ψ(1) (i.e. evaluate ψ(L)
at L = 1). With ARMA(p, q) models the Wold polynomial ψ(L) is approx-

1William Meeker also has a library of time series functions
for the analysis of ARMA models available for download at
(http://www.public.iastate.edu/~stat451/splusts/splusts.html)
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imated by the ratio of the AR and MA polynomials

ψ(L) =
θ(L)

φ(L)

3.2.3 Autoregressive Models

AR(1) Model

A commonly used stationary and ergodic time series in financial modeling
is the AR(1) process

yt − µ = φ(yt−1 − µ) + εt, t = 1, . . . , T

where εt ∼WN(0, σ2) and |φ| < 1. The above representation is called the
mean-adjusted form. The characteristic equation for the AR(1) is

φ(z) = 1− φz = 0 (3.8)

so that the root is z = 1
φ . Stationarity is satisfied provided the absolute

value of the root of the characteristic equation (3.8) is greater than one:
| 1φ | > 1 or |φ| < 1. In this case, it is easy to show that E[yt] = µ, γ0 =

σ2

1−φ2 ,
ψj = ρj = φj and the Wold representation is

yt = µ+
∞X
j=0

ρjεt−j .

Notice that for the AR(1) the ACF and IRF are identical. This is not true
in general. The long-run cumulative impulse response is ψ(1) = 1

1−φ .
The AR(1) model may be re-written in components form as

yt = µ+ ut

ut = φut−1 + εt

or in autoregression form as

yt = c+ φyt−1 + εt

c = µ(1− φ)

An AR(1) with µ = 1, φ = 0.75, σ2 = 1 and T = 100 is easily simulated
in S-PLUS using the components form:

> set.seed(101)
> e = rnorm(100,sd=1)
> e.start = rnorm(25,sd=1)
> y.ar1 = 1 + arima.sim(model=list(ar=0.75), n=100,
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FIGURE 3.4. Simulated AR(1), ACF, IRF and SACF.

+ innov=e, start.innov=e.start)
> mean(y.ar1)
[1] 1.271
> var(y.ar1)
[1] 2.201

The ACF and IRF may be computed as

> gamma.j = rep(0.75,10)^seq(10)

The simulated data, ACF and SACF are illustrated in Figure 3.4 using

> par(mfrow=c(2,2))
> tsplot(y.ar1,main="Simulated AR(1)")
> abline(h=1)
> tsplot(gamma.j, type="h", main="ACF and IRF for AR(1)",
+ ylab="Autocorrelation", xlab="lag")
> tmp = acf(y.ar1, lag.max=10)

Notice that {yt} exhibits mean-reverting behavior. That is, {yt} fluctuates
about the mean value µ = 1. The ACF and IRF decay at a geometric rate.
The decay rate of the IRF is sometimes reported as a half-life — the lag
jhalf at which the IRF reaches 12 . For the AR(1) with positive φ, it can be
shown that jhalf = ln(0.5)/ ln(φ). For φ = 0.75, the half-life is

> log(0.5)/log(0.75)
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US/CA 30 day interest rate differential
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FIGURE 3.5. US/CA 30 day interest rate differential and SACF

[1] 2.409

Many economic and financial time series are well characterized by an
AR(1) process. Leading examples in finance are valuation ratios (dividend-
price ratio, price-earning ratio etc), real exchange rates, interest rates,
and interest rate differentials (spreads). To illustrate, consider the 30-
day US/CA interest rate differential2 constructed from the S+FinMetrics
“timeSeries” object lexrates.dat:

> uscn.id = 100*(lexrates.dat[,"USCNF"]-
+ lexrates.dat[,"USCNS"])
> colIds(uscn.id) = "USCNID"
> uscn.id@title = "US/CA 30 day interest rate differential"
> par(mfrow=c(2,1))
> plot(uscn.id,reference.grid=F)
> abline(h=0)
> tmp = acf(uscn.id)

The interest rate differential is clearly persistent: autocorrelations are
significant at the 5% level up to 15 months.

2By covered interest rate parity, the nominal interest rate differential between risk
free bonds from two countries is equal to the difference between the nominal forward
and spot exchange rates.
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AR(p) Models

The AR(p) model in mean-adjusted form is

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) + εt

or, in lag operator notation,

φ(L)(yt − µ) = εt

where φ(L) = 1− φ1L− · · ·− φpL
p. The autoregressive form is

φ(L)yt = c+ εt.

It can be shown that the AR(p) is stationary and ergodic provided the
roots of the characteristic equation

φ(z) = 1− φ1z − φ2z
2 − · · ·− φpz

p = 0 (3.9)

lie outside the complex unit circle (have modulus greater than one). A nec-
essary condition for stationarity that is useful in practice is that

¯̄
φ1 + · · ·+ φp

¯̄
<

1. If (3.9) has complex roots then yt will exhibit sinusoidal behavior. In
the stationary AR(p), the constant in the autoregressive form is equal to
µ(1− φ1 − · · ·− φp).
The moments of the AR(p) process satisfy the Yule-Walker equations

γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2 (3.10)

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p

A simple recursive algorithm for finding the Wold representation is based
on matching coefficients in φ(L) and ψ(L) such that φ(L)ψ(L) = 1. For
example, in the AR(2) model

(1− φ1L− φ2L
2)(1 + ψ1L+ ψ2L

2 + · · · ) = 1

implies

ψ1 = 1

ψ2 = φ1ψ1 + φ2

ψ3 = φ1ψ2 + φ2ψ1
...

ψj = φ1ψj−1 + φ2ψj−2

Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a useful tool to help iden-
tify AR(p) models. The PACF is based on estimating the sequence of AR
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models

zt = φ11zt−1 + ε1t

zt = φ21zt−1 + φ22zt−2 + ε2t
...

zt = φp1zt−1 + φp2zt−2 + · · ·+ φppzt−p + εpt

where zt = yt−µ is the demeaned data. The coefficients φjj for j = 1, . . . , p
(i.e., the last coefficients in each AR(p) model) are called the partial auto-
correlation coefficients. In an AR(1) model the first partial autocorrelation
coefficient φ11 is non-zero, and the remaining partial autocorrelation coef-
ficients φjj for j > 1 are equal to zero. Similarly, in an AR(2), the first
and second partial autocorrelation coefficients φ11 and φ22 are non-zero
and the rest are zero for j > 2. For an AR(p) all of the first p partial
autocorrelation coefficients are non-zero, and the rest are zero for j > p.
The sample partial autocorrelation coefficients up to lag p are essentially
obtained by estimating the above sequence of p AR models by least squares
and retaining the estimated coefficients φ̂jj .

Example 4 Monthly Real Interest Rates

The “timeSeries” object varex.ts in the S+FinMetrics module con-
tains monthly data on real stock returns, real interest rates, inflation and
real output growth.

> colIds(varex.ts)
[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Figure 3.6 shows the real interest rate, RF.REAL, over the period January
1961 through December 2000 produced with the S-PLUS commands

> smpl = (positions(varex.ts) > timeDate("12/31/1960"))
> irate.real = varex.ts[smpl,"RF.REAL"]
> par(mfrow=c(2,2))
> acf.plot(acf(irate.real, plot=F))
> plot(irate.real, main="Monthly Real Interest Rate")
> tmp = acf(irate.real, type="partial")

The SACF and SPACF indicate that the real interest rate might be modeled
as an AR(2) or AR(3) process.

3.2.4 Moving Average Models

MA(1) Model

The MA(1) model has the form

yt = µ+ εt + θεt−1, εt ∼WN(0, σ2)
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FIGURE 3.6. Monthly U.S. real interest rate, SACF and SPACF.

For any finite θ the MA(1) is stationary and ergodic. The moments are
E[yt] = µ, γ0 = σ2(1+θ2), γ1 = σ2θ, γj = 0 for j > 1 and ρ1 = θ/(1+θ2).
Hence, the ACF of an MA(1) process cuts off at lag one, and the maximum
value of this correlation is ±0.5.
There is an identification problem with the MA(1) model since θ = 1/θ

produce the same value of ρ1. The MA(1) is called invertible if |θ| < 1 and
is called non-invertible if |θ| ≥ 1. In the invertible MA(1), the error term
εt has an infinite order AR representation of the form

εt =
∞X
j=0

θ∗j(yt−j − µ)

where θ∗ = −θ so that εt may be thought of as a prediction error based on
past values of yt. A consequence of the above result is that the PACF for
an invertible MA(1) process decays towards zero at an exponential rate.

Example 5 Signal plus noise model
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MA(1) models often arise through data transformations like aggregation
and differencing3. For example, consider the signal plus noise model

yt = zt + εt, εt ∼WN(0, σ2ε)

zt = zt−1 + ηt, ηt ∼WN(0, σ2η)

where εt and ηt are independent. For example, zt could represent the funda-
mental value of an asset price and εt could represent an iid deviation about
the fundamental price. A stationary representation requires differencing yt

∆yt = ηt + εt − εt−1

It can be shown, e.g. Harvey (1993), that ∆yt is an MA(1) process with θ =
−(q+2)+

√
q2+4q

2 where q = σ2ε
σ2η
is the signal-to-noise ratio and ρ1 =

−1
q+2 < 0.

Simulated data with σ2ε = 1 and σ2η = (0.5)2 created with the S-PLUS
commands

> set.seed(112)
> eps = rnorm(100,1)
> eta = rnorm(100,0.5)
> z = cumsum(eta)
> y = z + eps
> dy = diff(y)
> par(mfrow=c(2,2))
> tsplot(y, main="Signal plus noise",ylab="y")
> tsplot(dy, main="1st difference",ylab="dy")
> tmp = acf(dy)
> tmp = acf(dy,type="partial")

are illustrated in Figure 3.7. The signal-to-noise ratio q = 1.4142 implies a
first lag autocorrelation of ρ1 = −0.293. This negative correlation is clearly
reflected in the SACF.

MA(q) Model

The MA(q) model has the form

yt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q, where εt ∼WN(0, σ2)

The MA(q) model is stationary and ergodic provided θ1, . . . , θq are finite.
It is invertible if all of the roots of the MA characteristic polynomial

θ(z) = 1 + θ1z + · · · θqzq = 0 (3.11)

3MA(1) type models for asset returns often occur as the result of no-trading effects
or bid-ask bounce effects. See Campbell, Lo and MacKinlay (1997) chapter 3 for details.
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FIGURE 3.7. Simulated data, SACF and SPACF from signal plus noise model.

lie outside the complex unit circle. The moments of the MA(q) are

E[yt] = µ

γ0 = σ2(1 + θ21 + · · ·+ θ2q)

γj =

½
(θj + θj+1θ1 + θj+2θ2 + · · ·+ θqθq−j)σ2 for j = 1, 2, . . . , q

0 for j > q

Hence, the ACF of an MA(q) is non-zero up to lag q and is zero afterwards.
As with the MA(1), the PACF for an invertible MA(q) will show exponen-
tial decay and possibly pseudo cyclical behavior if the roots of (3.11) are
complex.

Example 6 Overlapping returns and MA(q) models

MA(q) models often arise in finance through data aggregation trans-
formations. For example, let Rt = ln(Pt/Pt−1) denote the monthly con-
tinuously compounded return on an asset with price Pt. Define the an-
nual return at time t using monthly returns as Rt(12) = ln(Pt/Pt−12) =P11

j=0Rt−j. SupposeRt ∼WN(µ, σ2) and consider a sample {R1, R2, . . . , RT }
of size T of monthly returns. A sample of annual returns may be created us-
ing overlapping or non-overlapping returns. Let {R12(12), R13(12), . . . , RT (12)}
denote a sample of T ∗ = T − 11 monthly overlapping annual returns and
{R12(12), R24(12), . . . , RT (12)} denote a sample of T/12 non-overlapping
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annual returns. Researchers often use overlapping returns in analysis due
to the apparent larger sample size. One must be careful using overlap-
ping returns because the monthly annual return sequence {Rt(12)} is not
a white noise process even if the monthly return sequence {Rt} is. To see
this, straightforward calculations give

E[Rt(12)] = 12µ

γ0 = var(Rt(12)) = 12σ
2

γj = cov(Rt(12), Rt−j(12)) = (12− j)σ2 for j < 12

γj = 0 for j ≥ 12

Since γj = 0 for j ≥ 12 notice that {Rt(12)} behaves like an MA(11)
process

Rt(12) = 12µ+ εt + θ1εt−1 + · · ·+ θ11εt−11
εt ∼ WN(0, σ2)

To illustrate, consider creating annual overlapping continuously com-
pounded returns on the S&P 500 index over the period February 1990
through January 2001. The S+FinMetrics “timeSeries” object singleIndex.dat
contains the S&P 500 price data and the continuously compounded monthly
returns are computed using the S+FinMetrics function getReturns

> sp500.mret = getReturns(singleIndex.dat[,"SP500"],
+ type="continuous")
> sp500.mret@title = "Monthly returns on S&P 500 Index"

The monthly overlapping annual returns are easily computed using the
S-PLUS function aggregateSeries

> sp500.aret = aggregateSeries(sp500.mret,moving=12,FUN=sum)
> sp500.aret@title = "Monthly Annual returns on S&P 500 Index"

The optional argument moving=12 specifies that the sum function is to be
applied to moving blocks of size 12. The data together with the SACF and
PACF of the monthly annual returns are displayed in Figure 3.8.
The SACF has non-zero values up to lag 11. Interestingly, the SPACF is

very small at all lags except the first.

3.2.5 ARMA(p,q) Models

The general ARMA(p, q) model in mean-adjusted form is given by (3.7).
The regression formulation is

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt + θεt−1 + · · ·+ θεt−q (3.12)

It is stationary and ergodic if the roots of the characteristic equation φ(z) =
0 lie outside the complex unit circle, and it is invertible if the roots of the
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FIGURE 3.8. Monthly non-overlapping and overlapping annual returns on the
S&P 500 index.

MA characteristic polynomial θ(z) = 0 lie outside the unit circle. It is
assumed that the polynomials φ(z) = 0 and θ(z) = 0 do not have canceling
or common factors. A stationary and ergodic ARMA(p, q) process has a
mean equal to

µ =
c

1− φ1 − · · ·− φp
(3.13)

and its autocovariances, autocorrelations and impulse response weights sat-
isfy the recursive relationships

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p
ρj = φ1ρj−1 + φ2ρj−2 + · · ·+ φpρj−p
ψj = φ1ψj−1 + φ2ψj−2 + · · ·+ φpψj−p

The general form of the ACF for an ARMA(p, q) process is complicated.
See Hamilton (1994) chapter five for details. In general, for an ARMA(p, q)
process, the ACF behaves like the ACF for an AR(p) process for p > q, and
the PACF behaves like the PACF for an MA(q) process for q > p. Hence,
both the ACF and PACF eventually show exponential decay.
ARMA(p, q) models often arise from certain aggregation transforma-

tions of simple time series models. An important result due to Granger
and Morris (1976) is that if y1t is an ARMA(p1, q1) process and y2t is
an ARMA(p2, q2) process, which may be contemporaneously correlated
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with y1t, then y1t + y2t is an ARMA(p, q) process with p = p1 + p2 and
q = max(p1 + q2, q1 + p2). For example, if y1t is an AR(1) process and y2
is a AR(1) process, then y1 + y2 is an ARMA(2,1) process.
High order ARMA(p, q) processes are difficult to identify and estimate

in practice and are rarely used in the analysis of financial data. Low order
ARMA(p, q) models with p and q less than three are generally sufficient for
the analysis of financial data.

ARIMA(p, d, q) Models

The specification of the ARMA(p, q) model (3.7) assumes that yt is station-
ary and ergodic. If yt is a trending variable like an asset price or a macroeco-
nomic aggregate like real GDP, then yt must be transformed to stationary
form by eliminating the trend. Box and Jenkins (1976) advocate removal of
trends by differencing. Let∆ = 1−L denote the difference operator. If there
is a linear trend in yt then the first difference ∆yt = yt−yt−1 will not have
a trend. If there is a quadratic trend in yt, then ∆yt will contain a linear
trend but the second difference ∆2yt = (1− 2L+L2)yt = yt− 2yt−1+yt−2
will not have a trend. The class of ARMA(p, q) models where the trends
have been transformed by differencing d times is denoted ARIMA(p, d, q)4.

3.2.6 Estimation of ARMA Models and Forecasting

ARMA(p, q) models are generally estimated using the technique of maxi-
mum likelihood, which is usually accomplished by putting the ARMA(p, q)
in state-space form from which the prediction error decomposition of the
log-likelihood function may be constructed. Details of this process are given
in Harvey (1993). An often ignored aspect of the maximum likelihood es-
timation of ARMA(p, q) models is the treatment of initial values. These
initial values are the first p values of yt and q values of εt in (3.7). The
exact likelihood utilizes the stationary distribution of the initial values in
the construction of the likelihood. The conditional likelihood treats the
p initial values of yt as fixed and often sets the q initial values of εt to
zero. The exact maximum likelihood estimates (mles) maximize the ex-
act log-likelihood, and the conditional mles maximize the conditional log-
likelihood. The exact and conditional mles are asymptotically equivalent
but can differ substantially in small samples, especially for models that are
close to being nonstationary or noninvertible.5

4More general ARIMA(p, d, q) models allowing for seasonality are discussed in chapter
27 of the S-PLUS Guide to Statistics, Vol. II.

5As pointed out by Venables and Ripley (1999) page 415, the maximum likelihood
estimates computed using the S-PLUS function arima.mle are conditional mles. Exact
mles may be easily computed using the S+FinMetrics state space modeling functions.
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For pure AR models, the conditional mles are equivalent to the least
squares estimates from the model

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt (3.14)

Notice, however, that c in (3.14) is not an estimate of E[yt] = µ. The least
squares estimate of µ is given by plugging in the least squares estimates of
c, φ1, . . . , φp into (3.13).

Model Selection Criteria

Before an ARMA(p, q) may be estimated for a time series yt, the AR and
MA orders p and q must be determined by visually inspecting the SACF
and SPACF for yt. Alternatively, statistical model selection criteria may
be used. The idea is to fit all ARMA(p, q) models with orders p ≤ pmax and
q ≤ qmax and choose the values of p and q which minimizes some model
selection criteria. Model selection criteria for ARMA(p, q) models have the
form

MSC(p, q) = ln(σ̃2(p, q)) + cT · ϕ(p, q)

where σ̃2(p, q) is the mle of var(εt) = σ2 without a degrees of freedom cor-
rection from the ARMA(p, q) model, cT is a sequence indexed by the sample
size T , and ϕ(p, q) is a penalty function which penalizes large ARMA(p, q)
models. The two most common information criteria are the Akaike (AIC)
and Schwarz-Bayesian (BIC):

AIC(p, q) = ln(σ̃2(p, q)) +
2

T
(p+ q)

BIC(p, q) = ln(σ̃2(p, q)) +
lnT

T
(p+ q)

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC estimate the order consistently under fairly
general conditions if the true orders p and q are less than or equal to pmax
and qmax. However, in finite samples the BIC generally shares no particular
advantage over the AIC.

Forecasting Algorithm

Forecasts from an ARIMA(p, d, q) model are straightforward. The model
is put in state space form, and optimal h-step ahead forecasts along with
forecast standard errors (not adjusted for parameter uncertainty) are pro-
duced using the Kalman filter algorithm. Details of the method are given
in Harvey (1993).
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Estimation and Forecasting ARIMA(p, d, q) Models Using the S-PLUS
Function arima.mle

Conditional mles may be computed using the S-PLUS function arima.mle.
The form of the ARIMA(p, d, q) assumed by arima.mle is

yt = φ1yt−1 + · · ·+ φpyt−p
+εt − θ1εt−1 − · · ·− θqεt−q
+β0xt

where xt represents additional explanatory variables. It is assumed that
yt has been differenced d times to remove any trends and that the uncon-
ditional mean µ has been subtracted out so that yt is demeaned. Notice
that arima.mle assumes that the signs on the MA coefficients θj are the
opposite to those in (3.7).
The arguments expected by arima.mle are

> args(arima.mle)
function(x, model = NULL, n.cond = 0, xreg = NULL, ...)

where x is a univariate “timeSeries” or vector, model is a list object de-
scribing the specification of the ARMA model, n.cond sets the number
of initial observations on which to condition in the formation of the log-
likelihood, and xreg is a “timeSeries”, vector or matrix of additional ex-
planatory variables. By default, arima.mle assumes that the ARIMA(p, d, q)
model is stationary and in mean-adjusted form with an estimate of µ sub-
tracted from the observed data yt. To estimate the regression form (3.12)
of the ARIMA(p, q) model, simply set xreg=1. ARIMA(p, d, q) models are
specified using list variables the form

> mod.list = list(order=c(1,0,1))
> mod.list = list(order=c(1,0,1),ar=0.75,ma=0)
> mod.list = list(ar=c(0.75,-0.25),ma=c(0,0))

The first list simply specifies an ARMA(1,0,1)/ARMA(1,1) model. The
second list specifies an ARIMA(1,0,1) as well as starting values for the
AR and MA parameters φ and θ. The third list implicitly determines an
ARMA(2,2) model by giving the starting values for the AR and MA pa-
rameters. The function arima.mle produces an object of class “arima” for
which there are print and plot methods. Diagnostics from the fit can
be created with the S-PLUS function arima.diag, and forecasts may be
produced using arima.forecast.

Example 7 Estimation of ARMA model for US/CA interest rate differ-
ential

Consider estimating an ARMA(p, q) for the monthly US/CA interest
rate differential data in the “timeSeries” uscn.id used in a previous
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example. To estimate an ARMA(1,1) model for the demeaned interest rate
differential with starting values φ = 0.75 and θ = 0 use

> uscn.id.dm = uscn.id - mean(uscn.id)
> arma11.mod = list(ar=0.75,ma=0)
> arma11.fit = arima.mle(uscn.id.dm,model=arma11.mod)
> class(arma11.fit)
[1] "arima"

The components of arma11.fit are

> names(arma11.fit)
[1] "model" "var.coef" "method" "series"
[5] "aic" "loglik" "sigma2" "n.used"
[9] "n.cond" "converged" "conv.type" "call"

To see the basic fit simply type

> arma11.fit
Call: arima.mle(x = uscn.id.dm, model = arma11.mod)
Method: Maximum Likelihood
Model : 1 0 1

Coefficients:
AR : 0.82913
MA : 0.11008

Variance-Covariance Matrix:
ar(1) ma(1)

ar(1) 0.002046 0.002224
ma(1) 0.002224 0.006467

Optimizer has converged
Convergence Type: relative function convergence
AIC: -476.25563

The conditional mles are φ̂cmle = 0.829 and θ̂cmle = −0.110. Standard
errors for these parameters are given by the square roots of the diagonal
elements of variance-covariance matrix

> std.errs = sqrt(diag(arma11.fit$var.coef))
> names(std.errs) = colIds(arma11.fit$var.coef)
> std.errs

ar(1) ma(1)
0.04523 0.08041

It appears that the θ̂cmle is not statistically different from zero.
To estimate the ARMA(1,1) for the interest rate differential data in

regression form (3.12) with an intercept use
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> arma11.fit2 = arima.mle(uscn.id,model=arma11.mod,xreg=1)
> arma11.fit2
Call: arima.mle(x = uscn.id, model = arma11.mod, xreg = 1)
Method: Maximum Likelihood
Model : 1 0 1

Coefficients:
AR : 0.82934
MA : 0.11065

Variance-Covariance Matrix:
ar(1) ma(1)

ar(1) 0.002043 0.002222
ma(1) 0.002222 0.006465
Coeffficients for regressor(s): intercept
[1] -0.1347

Optimizer has converged
Convergence Type: relative function convergence
AIC: -474.30852

The conditional mles for φ and θ are essentially the same as before, and the
mle for c is ĉcmle = −0.1347. Notice that the reported variance-covariance
matrix only gives values for the estimated ARMA coefficients φ̂cmle and
θ̂cmle.
Graphical diagnostics of the fit produced using the plot method

> plot(arma11.fit)

are illustrated in Figure 3.9. There appears to be some high order serial
correlation in the errors as well as heteroskedasticity.
h-step ahead forecasts of future values may be produced with the S-PLUS

function arima.forecast. For example, to produce monthly forecasts for
the demeaned interest rate differential from July 1996 through June 1997
use

> fcst.dates = timeSeq("7/1/1996", "6/1/1997",
+ by="months", format="%b %Y")
> uscn.id.dm.fcst = arima.forecast(uscn.id.dm, n=12,
+ model=arma11.fit$model, future.positions=fcst.dates)
> names(uscn.id.dm.fcst)
[1] "mean" "std.err"

The object uscn.id.dm.fcst is a list whose first component is a “timeSeries”
containing the h-step forecasts, and the second component is a “timeSeries”
containing the forecast standard errors:

> uscn.id.dm.fcst[[1]]
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Plot of Standardized Residuals
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ARIMA Model Diagnostics:  uscn.id.dm

ARIMA(1,0,1) Model with Mean 0

FIGURE 3.9. Residual diagnostics from ARMA(1,1) fit to US/CA interest rate
differentials.

Positions 1
Jul 1996 0.09973
Aug 1996 0.08269
Sep 1996 0.06856
Oct 1996 0.05684
Nov 1996 0.04713
Dec 1996 0.03908
Jan 1997 0.03240
Feb 1997 0.02686
Mar 1997 0.02227
Apr 1997 0.01847
May 1997 0.01531
Jun 1997 0.01270

The data, forecasts and 95% forecast confidence intervals shown in Figure
3.10 are produced by

> smpl = positions(uscn.id.dm) >= timeDate("6/1/1995")
> plot(uscn.id.dm[smpl,],uscn.id.dm.fcst$mean,
+ uscn.id.dm.fcst$mean+2*uscn.id.dm.fcst$std.err,
+ uscn.id.dm.fcst$mean-2*uscn.id.dm.fcst$std.err,
+ plot.args=list(lty=c(1,2,3,3)))
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US/CA 30 day interest rate differential
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FIGURE 3.10. Forecasts for 12 months for the series uscn.id.dm.

Estimating AR(p) by Least Squares Using the S+FinMetrics Function
OLS

As previously mentioned, the conditional mles for an AR(p) model may
be computed using least squares. The S+FinMetrics function OLS, which
extends the S-PLUS function lm to handle general time series regression,
may be used to estimate an AR(p) in a particularly convenient way. The
general use of OLS is discussed in Chapter 6, and its use for estimating an
AR(p) is only mentioned here. For example, to estimate an AR(2) model
for the US/CA interest rate differential use

> ar2.fit = OLS(USCNID~ar(2), data=uscn.id)
> ar2.fit

Call:
OLS(formula = USCNID ~ar(2), data = uscn.id)

Coefficients:
(Intercept) lag1 lag2
-0.0265 0.7259 0.0758

Degrees of freedom: 243 total; 240 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.09105
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The least squares estimates of the AR coefficients are φ̂1 = 0.7259 and
φ̂2 = 0.0758. Since φ̂1 + φ̂2 < 1 the estimated AR(2) model is stationary.
To be sure, the roots of φ(z) = 1− φ̂1z − φ̂2z

2 = 0 are

> abs(polyroot(c(1,-ar2.fit$coef[2:3])))
[1] 1.222 10.798

are outside the complex unit circle.

3.2.7 Martingales and Martingale Difference Sequences

Let {yt} denote a sequence of random variables and let It = {yt,yt−1, . . .}
denote a set of conditioning information or information set based on the
past history of yt. The sequence {yt, It} is called a martingale if

• It−1 ⊂ It (It is a filtration)

• E[|yt|] <∞

• E[yt|It−1] = yt−1 (martingale property)

The most common example of a martingale is the random walk model

yt = yt−1 + εt, εt ∼WN(0, σ2)

where y0 is a fixed initial value. Letting It = {yt, . . . , y0} impliesE[yt|It−1] =
yt−1 since E[εt|It−1] = 0.
Let {εt} be a sequence of random variables with an associated informa-

tion set It. The sequence {εt, It} is called a martingale difference sequence
(MDS) if

• It−1 ⊂ It

• E[εt|It−1] = 0 (MDS property)

If {yt, It} is a martingale, a MDS {εt, It} may be constructed by defining

εt = yt − E[yt|It−1]

By construction, a MDS is an uncorrelated process. This follows from the
law of iterated expectations. To see this, for any k > 0

E[εtεt−k] = E[E[εtεt−k|It−1]]
= E[εt−kE[εt|It−1]]
= 0

In fact, if zn is any function of the past history of εt so that zn ∈ It−1 then

E[εtzn] = 0
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Although a MDS is an uncorrelated process, it does not have to be an
independent process. That is, there can be dependencies in the higher order
moments of εt. The autoregressive conditional heteroskedasticity (ARCH)
process in the following example is a leading example in finance.
MDSs are particularly nice to work with because there are many useful

convergence results (laws of large numbers, central limit theorems etc.).
White (1984), Hamilton (1994) and Hayashi (2000) describe the most useful
of these results for the analysis of financial time series.

Example 8 ARCH process

A well known stylized fact about high frequency financial asset returns
is that volatility appears to be autocorrelated. A simple model to capture
such volatility autocorrelation is the ARCH process due to Engle (1982).
To illustrate, let rt denote the daily return on an asset and assume that
E[rt] = 0. An ARCH(1) model for rt is

rt = σtzt (3.15)

zt ∼ iid N(0, 1)

σ2t = ω + αr2t−1 (3.16)

where ω > 0 and 0 < α < 1. Let It = {rt, . . .}. The S+FinMetrics function
simulate.garchmay be used to generate simulations from above ARCH(1)
model. For example, to simulate 250 observations on rt with ω = 0.1 and
α = 0.8 use

> rt = simulate.garch(model=list(a.value=0.1, arch=0.8),
+ n=250, rseed=196)
> class(rt)
[1] "structure"
> names(rt)
[1] "et" "sigma.t"

Notice that the function simulate.garch produces simulated values of
both rt and σt. These values are shown in Figure 3.11.
To see that {rt, It} is a MDS, note that

E[rt|It−1] = E[ztσt|It−1]
= σtE[zt|It−1]
= 0

Since rt is a MDS, it is an uncorrelated process. Provided |α| < 1, rt is a
mean zero covariance stationary process. The unconditional variance of rt
is given by

var(rt) = E[r2t ] = E[E[z2t σ
2
t |It−1]]

= E[σ2tE[z
2
t |It−1] = E[σ2t ]
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FIGURE 3.11. Simulated values from ARCH(1) process with ω = 1 and α = 0.8.

since E[z2t |It−1] = 1. Utilizing (3.16) and the stationarity of rt, E[σ2t ] may
be expressed as

E[σ2t ] =
ω

1− α

Furthermore, by adding ε2t to both sides of (3.16) and rearranging it follows
that r2t has an AR(1) representation of the form

ε2t = ω + αε2t−1 + vt

where vt = ε2t − σ2t is a MDS.

3.2.8 Long-run Variance

Let yt be a stationary and ergodic time series. Anderson’s central limit
theorem for stationary and ergodic processes (c.f. Hamilton (1994) pg. 195)
states

√
T (ȳ − µ)

d→ N(0,
∞X

j=−∞
γj)

or

ȳ
A∼ N

µ,
1

T

∞X
j=−∞

γj
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The sample size, T , times the asymptotic variance of the sample mean is
often called the long-run variance of yt6 :

lrv(yt) = T · avar(ȳ) =
∞X

j=−∞
γj .

Since γ−j = γj , lrv(yt) may be alternatively expressed as

lrv(yt) = γ0 + 2
∞X
j=1

γj .

Using the long-run variance, an asymptotic 95% confidence interval for
µ takes the form

ȳ ± 1.96 ·
q
T−1clrv(yt)

where clrv(yt) is a consistent estimate of lrv(yt).
Estimating the Long-Run Variance

If yt is a linear process, it may be shown that

∞X
j=−∞

γj = σ2

 ∞X
j=0

ψj

2

= σ2ψ(1)2

and so
lrv(yt) = σ2ψ(1)2 (3.17)

Further, if yt ∼ ARMA(p, q) then

ψ(1) =
1 + θ1 + · · ·+ θq
1− φ1 − · · ·− φp

=
θ(1)

φ(1)

so that

lrv(yt) =
σ2θ(1)2

φ(1)2
. (3.18)

A consistent estimate of lrv(yt) may then be computed by estimating the
parameters of the appropriate ARMA(p, q) model and substituting these
estimates into (3.18). Alternatively, the ARMA(p, q) process may be ap-
proximated by a high order AR(p∗) process

yt = c+ φ1yt−1 + · · ·+ φp∗yt−p∗ + εt

6Using spectral methods, lrv(ȳ) has the alternative representation

lrv(ȳ) =
1

T
2πf(0)

where f(0) denotes the spectral density of yt evaluated at frequency 0.
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where the lag length p∗ is chosen such that εt is uncorrelated. This gives
rise to the autoregressive long-run variance estimate

lrvAR(yt) =
σ2

φ∗(1)2
. (3.19)

A consistent estimate of lrv(yt)may also be computed using non-parametric
methods. An estimator made popular by Newey and West (1987) is the
weighted autocovariance estimator

clrvNW (yt) = γ̂0 + 2

MTX
j=1

wj,T · γ̂j (3.20)

where wj,T are weights which sum to unity and MT is a truncation lag
parameter that satisfies MT = O(T 1/3). For MA(q) processes, γj = 0 for
j > q and Newey and West suggest using the rectangular weights wj,T = 1
for j ≤MT = q; 0 otherwise. For general linear processes, Newey and West
suggest using the Bartlett weights wj,T = 1− j

MT+1
with MT equal to the

integer part of 4(T/100)2/9.

Example 9 Long-run variance of AR(1)

Let yt be an AR(1) process created using

> set.seed(101)
> e = rnorm(100,sd=1)
> y.ar1 = 1 + arima.sim(model=list(ar=0.75),innov=e)

Here ψ(1) = 1
φ(1) =

1
1−φ and

lrv(yt) =
σ2

(1− φ)2
.

For φ = 0.75, σ2 = 1, lrv(yt) = 16 implies for T = 100 an asymptotic
standard error for ȳ equal to SE(ȳ) = 0.40. If yt ∼ WN(0, 1), then the
asymptotic standard error for ȳ is SE(ȳ) = 0.10.
lrvAR(yt) may be easily computed in S-PLUS using OLS to estimate the

AR(1) parameters:

> ar1.fit = OLS(y.ar1~ar(1))
> rho.hat = coef(ar1.fit)[2]
> sig2.hat = sum(residuals(ar1.fit)^2)/ar1.fit$df.resid
> lrv.ar1 = sig2.hat/(1-rho.hat)^2
> as.numeric(lrv.ar1)
[1] 13.75

Here lrvAR(yt) = 13.75, and an estimate for SE(ȳ) isdSEAR(ȳ) = 0.371.
The S+FinMetrics function asymp.var may be used to compute the

nonparameteric Newey-West estimate lrvNW (yt). The arguments expected
by asymp.var are
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> args(asymp.var)
function(x, bandwidth, window = "bartlett", na.rm = F)

where x is a “timeSeries”, bandwidth sets the truncation lagMT in (3.20)
and window specifies the weight function. Newey and West suggest setting
the bandwidth using the sample size dependent rule

MT = 4(T/100)
2/9

which is equal to 4 in the present case. The Newey-West long-run variance
estimate is then

> lrv.nw = asymp.var(y.ar1, bandwidth=4)
> lrv.nw
[1] 7.238

and the Newey-West estimate of SE(ȳ) isdSENW (ȳ) = 0.269.

3.3 Univariate Nonstationary Time Series

A univariate time series process {yt} is called nonstationary if it is not
stationary. Since a stationary process has time invariant moments, a non-
stationary process must have some time dependent moments. The most
common forms of nonstationarity are caused by time dependence in the
mean and variance.

Trend Stationary Process

{yt} is a trend stationary process if it has the form

yt = TDt + xt

where TDt are deterministic trend terms (constant, trend, seasonal dum-
mies etc) that depend on t and {xt} is stationary. The series yt is nonsta-
tionary because E[TDt] = TDt which depends on t. Since xt is stationary,
yt never deviates too far away from the deterministic trend TDt. Hence, yt
exhibits trend reversion. If TDt were known, yt may be transformed to a
stationary process by subtracting off the deterministic trend terms:

xt = yt − TDt

Example 10 Trend stationary AR(1)

A trend stationary AR(1) process with TDt = µ+ δt may be expressed
in three equivalent ways

yt = µ+ δt+ ut, ut = φut−1 + εt

yt − µ− δt = φ(yt−1 − µ− δ(t− 1)) + εt

yt = c+ βt+ φyt−1 + εt



3.3 Univariate Nonstationary Time Series 89

y

0 20 40 60 80 100

5
10

15
20

FIGURE 3.12. Simulated trend stationary process.

where |φ| < 1, c = µ(1−φ)+ δ, β = δ(1−φ)t and εt ∼WN(0, σ2). Figure
3.12 shows T = 100 observations from a trend stationary AR(1) with µ = 1,
δ = 0.25, φ = 0.75 and σ2 = 1 created with the S-PLUS commands

> set.seed(101)
> y.tsar1 = 1 + 0.25*seq(100) +
+ arima.sim(model=list(ar=0.75),n=100)
> tsplot(y.tsar1,ylab="y")
> abline(a=1,b=0.25)

The simulated data show clear trend reversion.

Integrated Processes

{yt} is an integrated process of order 1, denoted yt ∼ I(1), if it has the form

yt = yt−1 + ut (3.21)

where ut is a stationary time series. Clearly, the first difference of yt is
stationary

∆yt = ut

Because of the above property, I(1) processes are sometimes called differ-
ence stationary processes. Starting at y0, by recursive substitution yt has
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the representation of an integrated sum of stationary innovations

yt = y0 +
tX

j=1

uj . (3.22)

The integrated sum
Pt

j=1 uj is called a stochastic trend and is denoted
TSt. Notice that

TSt = TSt−1 + ut

where TS0 = 0. In contrast to a deterministic trend, changes in a stochastic
trend are not perfectly predictable.
Since the stationary process ut does not need to be differenced, it is called

an integrated process of order zero and is denoted ut ∼ I(0). Recall, from
the Wold representation (3.6) a stationary process has an infinite order
moving average representation where the moving average weights decline
to zero at a geometric rate. From (3.22) it is seen that an I(1) process has
an infinite order moving average representation where all of the weights on
the innovations are equal to 1.
If ut ∼ IWN(0, σ2) in (3.21) then yt is called a random walk. In general,

an I(1) process can have serially correlated and heteroskedastic innovations
ut. If yt is a random walk and assuming y0 is fixed then it can be shown
that

γ0 = σ2t

γj = (t− j)σ2

ρj =

r
t− j

t

which clearly shows that yt is nonstationary. Also, if t is large relative to
j then ρj ≈ 1. Hence, for an I(1) process, the ACF does not decay at a
geometric rate but at a linear rate as j increases.
An I(1) process with drift has the form

yt = µ+ yt−1 + ut, where ut ∼ I(0)

Starting at t = 0 an I(1) process with drift µ may be expressed as

yt = y0 + µt+
tX

j=1

ut

= TDt + TSt

so that it may be thought of as being composed of a deterministic linear
trend TDt = y0 + µt as well as a stochastic trend TSt =

Pt
j=1 uj .

An I(d) process {yt} is one in which ∆dyt ∼ I(0). In finance and eco-
nomics data series are rarely modeled as I(d) process with d > 2. Just as
an I(1) process with drift contains a linear deterministic trend, an I(2)
process with drift will contain a quadratic trend.
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FIGURE 3.13. Simulated I(d) processes for d = 0, 1 and 2.

Example 11 Simulated I(1) processes

Consider the simulation of T = 100 observations from various I(1) pro-
cesses where the innovations ut follow an AR(1) process ut = 0.75ut−1+εt
with εt ∼ GWN(0, 1).

> set.seed(101)
> u.ar1 = arima.sim(model=list(ar=0.75), n=100)
> y1 = cumsum(u.ar1)
> y1.d = 1 + 0.25*seq(100)+ y1
> y2 = rep(0,100)
> for (i in 3:100) {
+ y2[i] = 2*y2[i-1] - y2[i-2] + u.ar1[i]
+ }

The simulated data are illustrated in Figure 3.13 .

Example 12 Financial Time Series

Many financial time series are well characterized by I(1) processes. The
leading example of an I(1) process with drift is the logarithm of an asset
price. Common examples of I(1) processes without drifts are the logarithms
of exchange rates, nominal interest rates, and inflation rates. Notice that
if inflation is constructed as the the difference in the logarithm of a price
index and is an I(1) process, then the logarithm of the price index is an
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FIGURE 3.14. Monthly financial time series

I(2) process. Examples of these data are illustrated in Figure 3.14. The
exchange rate is the monthly log of the US/CA spot exchange rate taken
from the S+FinMetrics “timeSeries” lexrates.dat, the asset price of
the monthly S&P 500 index taken from the S+FinMetrics “timeSeries”
object singleIndex.dat, the nominal interest rate is the 30 day T-bill rate
taken from the S+FinMetrics “timeSeries” object rf.30day, and the
monthly consumer price index is taken from the S+FinMetrics “timeSeries”
object CPI.dat.

3.4 Long Memory Time Series

If a time series yt is I(0) then its ACF declines at a geometric rate. As a
result, I(0) process have short memory since observations far apart in time
are essentially independent. Conversely, if yt is I(1) then its ACF declines
at a linear rate and observations far apart in time are not independent. In
between I(0) and I(1) processes are so-called fractionally integrated I(d)
process where 0 < d < 1. The ACF for a fractionally integrated processes
declines at a polynomial (hyperbolic) rate, which implies that observations
far apart in time may exhibit weak but non-zero correlation. This weak cor-
relation between observations far apart is often referred to as long memory.
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A fractionally integrated white noise process yt has the form

(1− L)dyt = εt, εt ∼WN(0, σ2) (3.23)

where (1− L)d has the binomial series expansion representation (valid for
any d > −1)

(1− L)d =
∞X
k=0

µ
d
k

¶
(−L)k

= 1− dL+
d(d− 1)
2!

L2 − d(d− 1)(d− 2)
3!

L3 + · · ·

If d = 1 then yt is a random walk and if d = 0 then yt is white noise. For
0 < d < 1 it can be shown that

ρk ∝ k2d−1

as k →∞ so that the ACF for yt declines hyperbolically to zero at a speed
that depends on d. Further, it can be shown yt is stationary and ergodic
for 0 < d < 0.5 and that the variance of yt is infinite for 0.5 ≤ d < 1.

Example 13 Simulated fractional white noise

The S+FinMetrics function simulate.FARIMA may be used to generate
simulated values from a fractional white noise process. To simulate 500
observations from (3.23) with d = 0.3 and σ2 = 1 use

> set.seed(394)
> y.fwn = simulate.FARIMA(list(d=0.3), 500)

Figure 3.15 shows the simulated data along with the sample ACF created
using

> par(mfrow=c(2,1))
> tsplot(y.fwn)
> tmp = acf(y.fwn,lag.max=50)

Notice how the sample ACF slowly decays to zero.
A fractionally integrated process with stationary and ergodic ARMA(p, q)

errors
(1− L)dyt = ut, ut ~ARMA(p, q)

is called an autoregressive fractionally integrated moving average (ARFIMA)
process. The modeling of long memory process is described in detail in
Chapter 8.

Example 14 Long memory in financial time series



94 3. Time Series Concepts

0 100 200 300 400 500

-2
0

2
4

Lag

AC
F

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : y.fwn

FIGURE 3.15. Simulated values from a fractional white noise process with d = 0.3
and σ = 1.

Long memory behavior has been observed in certain types of financial
time series. Ding, Granger and Engle (1993) find evidence of long memory
in the absolute value of daily stock returns. Baillie and Bollerslev (1994)
find evidence for long memory in the monthly interest rate differentials
between short term U.S. government bonds and short term foreign govern-
ment bonds. To illustrate, consider the absolute values of the daily returns
on Microsoft over the 10 year period 1/2/1991 - 1/2/2001 taken from the
S+FinMetrics “timeSeries” DowJones30

> msft.aret = abs(getReturns(DowJones30[,"MSFT"]))

Consider also the monthly US/CA 30-day interest rate differential over the
period February 1976 through June 1996 in the “timeSeries” uscn.id
constructed earlier and taken from the S+FinMetrics “timeSeries” object
lexrates.dat. Figure 3.16 shows the SACFs these series create by

> par(mfrow=c(2,1))
> tmp = acf(msft.aret, lag.max=100)
> tmp = acf(uscn.id, lag.max=50)

For the absolute return series, notice the large number of small but ap-
parently significant autocorrelations at very long lags. This is indicative of
long memory. For the interest rate differential series, the ACF appears to
decay fairly quickly, so the evidence for long memory is not as strong.
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FIGURE 3.16. SACFs for the absolute value of daily returns on Microsoft and
the monthly 30-day interest rate differential between U.S. bonds and Candian
bonds.

3.5 Multivariate Time Series

Consider n time series variables {y1t}, . . . , {ynt}. A multivariate time se-
ries is the (n × 1) vector time series {Yt} where the ith row of {Yt} is
{yit}. That is, for any time t, Yt = (y1t, . . . , ynt)

0. Multivariate time series
analysis is used when one wants to model and explain the interactions and
co-movements among a group of time series variables. In finance, multi-
variate time series analysis is used to model systems of asset returns, asset
prices and exchange rates, the term structure of interest rates, asset re-
turns/prices, and economic variables etc. Many of the time series concepts
described previously for univariate time series carry over to multivariate
time series in a natural way. Additionally, there are some important time
series concepts that are particular to multivariate time series. The follow-
ing sections give the details of these extensions and provide examples using
S-PLUS and S+FinMetrics.

3.5.1 Stationary and Ergodic Multivariate Time Series

A multivariate time series Yt is covariance stationary and ergodic if all of
its component time series are stationary and ergodic. The mean of Yt is
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defined as the (n× 1) vector

E[Yt] = µ = (µ1, . . . , µn)
0

where µi = E[yit] for i = 1, . . . , n. The variance/covariance matrix of Yt

is the (n× n) matrix

var(Yt) = Γ0 = E[(Yt−µ)(Yt−µ)0]

=


var(y1t) cov(y1t, y2t) · · · cov(y1t, ynt)

cov(y2t, y1t) var(y2t) · · · cov(y2t, ynt)
...

...
. . .

...
cov(ynt, y1t) cov(ynt, y2t) · · · var(ynt)


The matrix Γ0 has elements γ0ij = cov(yit, yjt). The correlation matrix of
Yt is the (n× n) matrix

corr(Yt) = R0 = D
−1Γ0D−1

whereD is an (n×n) diagonal matrix with jth diagonal element
¡
γ0jj
¢1/2

=
SD(yjt). The parameters µ, Γ0 andR0 are estimated from data (Y1, . . . ,YT )
using the sample moments

Ȳ =
1

T

TX
t=1

Yt

Γ̂0 =
1

T

TX
t=1

(Yt−Ȳ)(Yt−Ȳ)0

R̂0 = D̂−1Γ̂0D̂−1

whereD is the (n×n) diagonal matrix with the sample standard deviations
of yjt along the diagonal. In order for the sample variance matrix Γ̂0 and
correlation matrix R̂0 to be positive definite, the sample size T must be
greater than the number of component time series n.

Example 15 System of asset returns

The S+FinMetrics “timeSeries” object DowJones30 contains daily clos-
ing prices on the 30 assets in the Dow Jones index. An example of a station-
ary and ergodic multivariate time series is the continuously compounded
returns on the first four assets in this index:

> Y = getReturns(DowJones30[,1:4],type="continuous")
> colIds(Y)
[1] "AA" "AXP" "T" "BA"

The S-PLUS function colMeans may be used to efficiently compute the
mean vector of Y
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> colMeans(seriesData(Y))
AA AXP T BA

0.0006661 0.0009478 -0.00002873 0.0004108

The function colMeans does not have a method for “timeSeries” objects
so the extractor function seriesData is used to extract the data slot of the
variable Y. The S-PLUS functions var and cor, which do have methods for
“timeSeries” objects, may be used to compute Γ̂0 and R̂0

> var(Y)
AA AXP T BA

AA 0.00041096 0.00009260 0.00005040 0.00007301
AXP 0.00009260 0.00044336 0.00008947 0.00009546
T 0.00005040 0.00008947 0.00040441 0.00004548
BA 0.00007301 0.00009546 0.00004548 0.00036829
> cor(Y)

AA AXP T BA
AA 1.0000 0.2169 0.1236 0.1877
AXP 0.2169 1.0000 0.2113 0.2362
T 0.1236 0.2113 1.0000 0.1179
BA 0.1877 0.2362 0.1179 1.0000

If only the variances or standard deviations of Yt are needed the S-PLUS
functions colVars and colStdevs may be used

> colVars(seriesData(Y))
AA AXP T BA

0.000411 0.0004434 0.0004044 0.0003683
> colStdevs(seriesData(Y))

AA AXP T BA
0.020272 0.021056 0.02011 0.019191

Cross Covariance and Correlation Matrices

For a univariate time series yt the autocovariances γk and autocorrelations
ρk summarize the linear time dependence in the data. With a multivariate
time series Yt each component has autocovariances and autocorrelations
but there are also cross lead-lag covariances and correlations between all
possible pairs of components. The autocovariances and autocorrelations of
yjt for j = 1, . . . , n are defined as

γkjj = cov(yjt, yjt−k),

ρkjj = corr(yjt, yjt−k) =
γkjj
γ0jj
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and these are symmetric in k: γkjj = γ−kjj , ρ
k
jj = ρ−kjj . The cross lag covari-

ances and cross lag correlations between yit and yjt are defined as

γkij = cov(yit, yjt−k),

ρkij = corr(yjt, yjt−k) =
γkijq
γ0iiγ

0
jj

and they are not necessarily symmetric in k. In general,

γkij = cov(yit, yjt−k) 6= cov(yit, yjt+k) = cov(yjt, yit−k) = γ−kij

If γkij 6= 0 for some k > 0 then yjt is said to lead yit. Similarly, if γ
−k
ij 6= 0

for some k > 0 then yit is said to lead yjt. It is possible that yit leads yjt
and vice-versa. In this case, there is said to be feedback between the two
series.
All of the lag k cross covariances and correlations are summarized in the

(n× n) lag k cross covariance and lag k cross correlation matrices

Γk = E[(Yt−µ)(Yt−k−µ)0]

=


cov(y1t, y1t−k) cov(y1t, y2t−k) · · · cov(y1t, ynt−k)
cov(y2t, y1t−k) cov(y2t, y2t−k) · · · cov(y2t, ynt−k)

...
...

. . .
...

cov(ynt, y1t−k) cov(ynt, y2t−k) · · · cov(ynt, ynt−k)


Rk = D−1ΓkD−1

The matrices Γk and Rk are not symmetric in k but it is easy to show that
Γ−k= Γ0k and R−k= R

0
k. The matrices Γk and Rk are estimated from data

(Y1, . . . ,YT ) using

Γ̂k =
1

T

TX
t=k+1

(Yt−Ȳ)(Yt−k−Ȳ)0

R̂k = D̂−1Γ̂kD̂−1

Example 16 Lead-lag covariances and correlations among asset returns

Consider computing the cross lag covariances and correlations for k =
0, . . . , 5 between the first two Dow Jones 30 asset returns in the “timeSeries”
Y. These covariances and correlations may be computed using the S-PLUS
function acf

> Ghat = acf(Y[,1:2],lag.max=5,type="covariance",plot=F)
> Rhat = acf(Y[,1:2],lag.max=5,plot=F)

Ghat and Rhat are objects of class “acf” for which there is only a print
method. For example, the estimated cross lag autocorrelations are
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> Rhat
Call: acf(x = Y[, 1:2], lag.max = 5, plot = F)

Autocorrelation matrix:
lag AA.AA AA.AXP AXP.AXP

1 0 1.0000 0.2169 1.0000
2 1 0.0182 0.0604 -0.0101
3 2 -0.0556 -0.0080 -0.0710
4 3 0.0145 -0.0203 -0.0152
5 4 -0.0639 0.0090 -0.0235
6 5 0.0142 -0.0056 -0.0169

lag AXP.AA
1 0 0.2169
2 -1 -0.0015
3 -2 -0.0187
4 -3 -0.0087
5 -4 -0.0233
6 -5 0.0003

The function acf.plot may be used to plot the cross lag covariances and
correlations produced by acf.

> acf.plot(Rhat)

Figure 3.17 shows these cross lag correlations. The matrices Γ̂k and R̂k

may be extracted from acf component of Ghat and Rhat, respectively. For
example,

> Ghat$acf[1,,]
[,1] [,2]

[1,] 0.00041079 0.00009256
[2,] 0.00009256 0.00044318
> Rhat$acf[1,,]

[,1] [,2]
[1,] 1.0000 0.2169
[2,] 0.2169 1.0000
> Ghat$acf[2,,]

[,1] [,2]
[1,] 7.488e-006 2.578e-005
[2,] -6.537e-007 -4.486e-006
> Rhat$acf[2,,]

[,1] [,2]
[1,] 0.018229 0.06043
[2,] -0.001532 -0.01012

extracts Γ̂1, R̂1, Γ̂2 and R̂2.
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FIGURE 3.17. Cross lag correlations between the first four Dow Jones 30 asset
returns.

3.5.2 Multivariate Wold Representation

Any (n× 1) covariance stationary multivariate time series Yt has a Wold
or linear process representation of the form

Yt = µ+ εt+Ψ1εt−1+Ψ2εt−2 + · · · (3.24)

= µ+
∞X
k=0

Ψkεt−k

where Ψ0 = In and εt is a multivariate white noise process with mean zero
and variance matrix E[εtε

0
t] = Σ. In (3.24), Ψk is an (n× n) matrix with

(i, j)th element ψkij . In lag operator notation, the Wold form is

Yt = µ+Ψ(L)εt

Ψ(L) =
∞X
k=0

ΨkL
k

The moments of Yt are given by

E[Yt] = µ

var(Yt) =
∞X
k=0

ΨkΣΨ
0
k
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VAR Models

The most popular multivariate time series model is the vector autoregressive
(VAR) model. The VAR model is a multivariate extension of the univariate
autoregressive model. For example, a bivariate VAR(1) model has the formµ

y1t
y2t

¶
=

µ
c1
c2

¶
+

µ
π111 π112
π121 π122

¶µ
y1t−1
y2t−1

¶
+

µ
ε1t
ε2t

¶
or

y1t = c1 + π111y1t−1 + π112y2t−1 + ε1t

y2t = c2 + π121y1t−1 + π122y2t−1 + ε2t

where µ
ε1t
ε2t

¶
∼ iid

µµ
0
0

¶
,

µ
σ11 σ12
σ12 σ22

¶¶
In the equations for y1 and y2, the lagged values of both y1 and y2 are
present.
The general VAR(p) model for Yt = (y1t, y2t, . . . , ynt)

0 has the form

Yt= c+Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p + εt, t = 1, . . . , T (3.25)

where Πi are (n×n) coefficient matrices and εt is an (n× 1) unobservable
zero mean white noise vector process with covariance matrix Σ. VAR mod-
els are capable of capturing much of the complicated dynamics observed
in stationary multivariate time series. Details about estimation, inference,
and forecasting with VAR models are given in chapter eleven.

3.5.3 Long Run Variance

Let Yt be an (n× 1) stationary and ergodic multivariate time series with
E[Yt] = µ. Anderson’s central limit theorem for stationary and ergodic
process states

√
T (Ȳ − µ) d→ N

0, ∞X
j=−∞

Γj


or

Ȳ
A∼ N

µ, 1
T

∞X
j=−∞

Γj


Hence, the long-run variance of Yt is T times the asymptotic variance of
Ȳ:

lrv(Yt) = T · avar(Ȳ) =
∞X

j=−∞
Γj
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Since Γ−j= Γ0j , lrv(Yt) may be alternatively expressed as

lrv(Yt) = Γ0 +
∞X
j=1

(Γj+Γ
0
j)

Using the Wold representation of Yt it can be shown that

lrv(Yt) = Ψ(1)ΣΨ(1)
0

where Ψ(1) =
P∞

k=0Ψk.

VAR Estimate of the Long-Run Variance

TheWold representation (3.24) may be approximated by high order VAR(p∗)
model

Yt= c+Φ1Yt−1+ · · ·+Φp∗Yt−p∗+εt

where the lag length p∗ is chosen such p∗ = O(T 1/3). This gives rise to the
autoregressive long-run variance matrix estimate

clrvAR(Yt) = Ψ̂(1)Σ̂Ψ̂(1)0 (3.26)

Ψ̂(1) = (In − Φ̂1 − · · ·− Φ̂p)
−1 (3.27)

Σ̂ =
1

T

TX
t=1

ε̂tε̂
0
t (3.28)

where Φ̂k (k = 1, . . . , p
∗) are estimates of the VAR parameter matrices.

Non-parametric Estimate of the Long-Run Variance

A consistent estimate of lrv(Yt) may be computed using non-parametric
methods. A popular estimator is the Newey-West weighted autocovariance
estimator clrvNW (Yt) = Γ̂0 +

MTX
j=1

wj,T ·
³
Γ̂j + Γ̂

0
j

´
(3.29)

where wj,T are weights which sum to unity and MT is a truncation lag
parameter that satisfies MT = O(T 1/3).

Example 17 Newey-West estimate of long-run variance matrix for stock
returns

The S+FinMetrics function asymp.var may be used to compute the
Newey-West long-run variance estimate (3.29) for a multivariate time series.
The long-run variance matrix for the first four Dow Jones assets in the
“timeSeries” Y is
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> M.T = floor(4*(nrow(Y)/100)^(2/9))
> lrv.nw = asymp.var(Y,bandwidth=M.T)
> lrv.nw

AA AXP T BA
AA 0.00037313 0.00008526 3.754e-005 6.685e-005
AXP 0.00008526 0.00034957 7.937e-005 1.051e-004
T 0.00003754 0.00007937 3.707e-004 7.415e-006
BA 0.00006685 0.00010506 7.415e-006 3.087e-004
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4
Unit Root Tests

4.1 Introduction

Many economic and financial time series exhibit trending behavior or non-
stationarity in the mean. Leading examples are asset prices, exchange rates
and the levels of macroeconomic aggregates like real GDP. An important
econometric task is determining the most appropriate form of the trend in
the data. For example, in ARMA modeling the data must be transformed
to stationary form prior to analysis. If the data are trending, then some
form of trend removal is required.
Two common trend removal or de-trending procedures are first differ-

encing and time-trend regression. First differencing is appropriate for I(1)
time series and time-trend regression is appropriate for trend stationary
I(0) time series. Unit root tests can be used to determine if trending data
should be first differenced or regressed on deterministic functions of time
to render the data stationary. Moreover, economic and finance theory often
suggests the existence of long-run equilibrium relationships among nonsta-
tionary time series variables. If these variables are I(1), then cointegration
techniques can be used to model these long-run relations. Hence, pre-testing
for unit roots is often a first step in the cointegration modeling discussed
in Chapter 12. Finally, a common trading strategy in finance involves ex-
ploiting mean-reverting behavior among the prices of pairs of assets. Unit
root tests can be used to determine which pairs of assets appear to exhibit
mean-reverting behavior.
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This chapter is organized as follows. Section 4.2 reviews I(1) and trend
stationary I(0) time series and motivates the unit root and stationary
tests described in the chapter. Section 4.3 describes the class of autoregres-
sive unit root tests made popular by David Dickey, Wayne Fuller, Pierre
Perron and Peter Phillips. Section 4.4 describes the stationarity tests of
Kwiatkowski, Phillips, Schmidt and Shinn (1992).
In this chapter, the technical details of unit root and stationarity tests are

kept to a minimum. Excellent technical treatments of nonstationary time
series may be found in Hamilton (1994), Hatanaka (1995), Fuller (1996)
and the many papers by Peter Phillips. Useful surveys on issues associated
with unit root testing are given in Stock (1994), Maddala and Kim (1998)
and Phillips and Xiao (1998).

4.2 Testing for Nonstationarity and Stationarity

To understand the econometric issues associated with unit root and sta-
tionarity tests, consider the stylized trend-cycle decomposition of a time
series yt:

yt = TDt + zt

TDt = κ+ δt

zt = φzt−1 + εt, εt ∼WN(0, σ2)

where TDt is a deterministic linear trend and zt is an AR(1) process. If
|φ| < 1 then yt is I(0) about the deterministic trend TDt. If φ = 1, then
zt = zt−1 + εt = z0 +

Pt
j=1 εj , a stochastic trend and yt is I(1) with drift.

Simulated I(1) and I(0) data with κ = 5 and δ = 0.1 are illustrated in
Figure 4.1. The I(0) data with trend follows the trend TDt = 5+0.1t very
closely and exhibits trend reversion. In contrast, the I(1) data follows an
upward drift but does not necessarily revert to TDt.
Autoregressive unit root tests are based on testing the null hypothesis

that φ = 1 (difference stationary) against the alternative hypothesis that
φ < 1 (trend stationary). They are called unit root tests because under the
null hypothesis the autoregressive polynomial of zt, φ(z) = (1 − φz) = 0,
has a root equal to unity.
Stationarity tests take the null hypothesis that yt is trend stationary. If

yt is then first differenced it becomes

∆yt = δ +∆zt

∆zt = φ∆zt−1 + εt − εt−1

Notice that first differencing yt, when it is trend stationary, produces a
unit moving average root in the ARMA representation of ∆zt. That is, the
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FIGURE 4.1. Simulated trend stationary (I(0)) and difference stationary (I(1))
processes.

ARMA representation for ∆zt is the non-invertible ARMA(1,1) model

∆zt = φ∆zt−1 + εt + θεt−1

with θ = −1. This result is known as overdifferencing. Formally, stationar-
ity tests are based on testing for a unit moving average root in ∆zt.
Unit root and stationarity test statistics have nonstandard and nonnor-

mal asymptotic distributions under their respective null hypotheses. To
complicate matters further, the limiting distributions of the test statistics
are affected by the inclusion of deterministic terms in the test regressions.
These distributions are functions of standard Brownian motion (Wiener
process), and critical values must be tabulated by simulation techniques.
MacKinnon (1996) provides response surface algorithms for determining
these critical values, and various S+FinMetrics functions use these algo-
rithms for computing critical values and p-values.

4.3 Autoregressive Unit Root Tests

To illustrate the important statistical issues associated with autoregressive
unit root tests, consider the simple AR(1) model

yt = φyt−1 + εt, where εt ∼WN(0, σ2)
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The hypotheses of interest are

H0 : φ = 1 (unit root in φ(z) = 0)⇒ yt ∼ I(1)

H1 : |φ| < 1⇒ yt ∼ I(0)

The test statistic is

tφ=1 =
φ̂− 1
SE(φ̂)

where φ̂ is the least squares estimate and SE(φ̂) is the usual standard error
estimate1. The test is a one-sided left tail test. If {yt} is stationary (i.e.,
|φ| < 1) then it can be shown (c.f. Hamilton (1994) pg. 216)

√
T (φ̂− φ)

d→ N(0, (1− φ2))

or

φ̂
A∼ N

µ
φ,
1

T
(1− φ2)

¶
and it follows that tφ=1

A∼ N(0, 1). However, under the null hypothesis of
nonstationarity the above result gives

φ̂
A∼ N (1, 0)

which clearly does not make any sense. The problem is that under the unit
root null, {yt} is not stationary and ergodic, and the usual sample moments
do not converge to fixed constants. Instead, Phillips (1987) showed that
the sample moments of {yt} converge to random functions of Brownian
motion2:

T−3/2
TX
t=1

yt−1
d→ σ

Z 1

0

W (r)dr

T−2
TX
t=1

y2t−1
d→ σ2

Z 1

0

W (r)2dr

T−1
TX
t=1

yt−1εt
d→ σ2

Z 1

0

W (r)dW (r)

1The AR(1) model may be re-written as ∆yt = πyt−1 +ut where π = φ− 1. Testing
φ = 1 is then equivalent to testing π = 0. Unit root tests are often computed using this
alternative regression and the S+FinMetrics function unitroot follows this convention.

2A Wiener processW (·) is a continuous-time stochastic process, associating each date
r ∈ [0, 1] a scalar random variable W (r) that satisfies: (1) W (0) = 0; (2) for any dates
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 the changes W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tk)−W (tk−1)
are independent normal with W (s)−W (t) ∼ N(0, (s− t)); (3) W (s) is continuous in s.
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whereW (r) denotes a standard Brownian motion (Wiener process) defined
on the unit interval. Using the above results Phillips showed that under the
unit root null H0 : φ = 1

T (φ̂− 1) d→
R 1
0
W (r)dW (r)R 1
0
W (r)2dr

(4.1)

tφ=1
d→

R 1
0
W (r)dW (r)³R 1

0
W (r)2dr

´1/2 (4.2)

The above yield some surprising results:

• φ̂ is super-consistent ; that is, φ̂
p→ φ at rate T instead of the usual

rate T 1/2.

• φ̂ is not asymptotically normally distributed and tφ=1 is not asymp-
totically standard normal.

• The limiting distribution of tφ=1 is called the Dickey-Fuller (DF)
distribution and does not have a closed form representation. Conse-
quently, quantiles of the distribution must be computed by numerical
approximation or by simulation3.

• Since the normalized bias T (φ̂− 1) has a well defined limiting distri-
bution that does not depend on nuisance parameters it can also be
used as a test statistic for the null hypothesis H0 : φ = 1.

4.3.1 Simulating the DF and Normalized Bias Distributions

As mentioned above, the DF and normalized bias distributions must be ob-
tained by simulation methods. To illustrate, the following S-PLUS function
wiener produces one random draw from the functions of Brownian motion
that appear in the limiting distributions of tφ=1 and T (φ̂− 1):

wiener = function(nobs) {
e = rnorm(nobs)
y = cumsum(e)
ym1 = y[1:(nobs-1)]
intW2 = nobs^(-2) * sum(ym1^2)
intWdW = nobs^(-1) * sum(ym1*e[2:nobs])
ans = list(intW2=intW2,

intWdW=intWdW)

3Dickey and Fuller (1979) first considered the unit root tests and derived the asymp-
totic distribution of tφ=1. However, their representation did not utilize functions of
Wiener processes.
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FIGURE 4.2. Histograms of simulated DF and normalized bias distributions.

ans
}

A simple loop then produces the simulated distributions:

> nobs = 1000
> nsim = 1000
> NB = rep(0,nsim)
> DF = rep(0,nsim)
> for (i in 1:nsim) {
+ BN.moments = wiener(nobs)
+ NB[i] = BN.moments$intWdW/BN.moments$intW2
+ DF[i] = BN.moments$intWdW/sqrt(BN.moments$intW2)
}

Figure 4.2 shows the histograms and density estimates of the simulated
distributions. The DF density is slightly left-skewed relative to the standard
normal, and the normalized bias density is highly left skewed and non-
normal. Since the alternative is one-sided, the test statistics reject if they
are sufficiently negative. For the DF and normalized bias densities the
empirical 1%, 5% and 10% quantiles are

> quantile(DF,probs=c(0.01,0.05,0.1))
1% 5% 10%

-2.451 -1.992 -1.603
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> quantile(NB,probs=c(0.01,0.05,0.1))
1% 5% 10%

-11.94 -8.56 -5.641

For comparison purposes, note that the 5% quantile from the standard
normal distribution is -1.645.
The simulation of critical values and p-values from (4.1) and (4.2) is

straightforward but time consuming. The punitroot and qunitroot func-
tions in S+FinMetrics produce p-values and quantiles of the DF and nor-
malized bias distributions based on MacKinnon’s (1996) response surface
methodology. The advantage of the response surface methodology is that
accurate p-values and quantiles appropriate for a given sample size can be
produced. For example, the 1%, 5% and 10% quantiles for (4.2) and (4.1)
based on a sample size of 100 are

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="t",
+ n.sample=100)
[1] -2.588 -1.944 -1.615
> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="n",
+ n.sample=100)
[1] -13.086 -7.787 -5.565

The argument trend="nc" specifies that no constant is included in the
test regression. Other valid options are trend="c" for constant only and
trend="ct" for constant and trend. These trend cases are explained be-
low. To specify the normalized bias distribution, set statistic="n". For
asymptotic quantiles set n.sample=0.
Similarly, the p-value of -1.645 based on the DF distribution for a sample

size of 100 is computed as

> punitroot(-1.645, trend="nc", statistic="t")
[1] 0.0945

4.3.2 Trend Cases

When testing for unit roots, it is crucial to specify the null and alternative
hypotheses appropriately to characterize the trend properties of the data
at hand. For example, if the observed data does not exhibit an increasing
or decreasing trend, then the appropriate null and alternative hypotheses
should reflect this. The trend properties of the data under the alternative
hypothesis will determine the form of the test regression used. Further-
more, the type of deterministic terms in the test regression will influence
the asymptotic distributions of the unit root test statistics. The two most
common trend cases are summarized below and illustrated in Figure 4.3.
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FIGURE 4.3. Simulated I(1) and I(0) data under trend cases I and II .

Case I: Constant only

The test regression is
yt = c+ φyt−1 + εt

and includes a constant to capture the nonzero mean under the alternative.
The hypotheses to be tested are

H0 : φ = 1 ⇒ yt ∼ I(1) without drift

H1 : |φ| < 1⇒ yt ∼ I(0) with nonzero mean

This formulation is appropriate for non-trending financial series like interest
rates, exchange rates, and spreads. The test statistics tφ=1 and T (φ̂ − 1)
are computed from the above regression. Under H0 : φ = 1 the asymptotic
distributions of these test statistics are different from (4.2) and (4.1) and
are influenced by the presence but not the coefficient value of the constant
in the test regression. Quantiles and p-values for these distributions can be
computed using the S+FinMetrics functions punitroot and qunitroot
with the trend="c" option:

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="t",
+ n.sample=100)
[1] -3.497 -2.891 -2.582
> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="n",
+ n.sample=100)
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[1] -19.49 -13.53 -10.88
> punitroot(-1.645, trend="c", statistic="t", n.sample=100)
[1] 0.456
> punitroot(-1.645, trend="c", statistic="n", n.sample=100)
[1] 0.8172

For a sample size of 100, the 5% left tail critical values for tφ=1 and T (φ̂−1)
are -2.891 and -13.53, respectively, and are quite a bit smaller than the 5%
critical values computed when trend="nc". Hence, inclusion of a constant
pushes the distributions of tφ=1 and T (φ̂− 1) to the left.

Case II: Constant and time trend

The test regression is

yt = c+ δt+ φyt−1 + εt

and includes a constant and deterministic time trend to capture the deter-
ministic trend under the alternative. The hypotheses to be tested are

H0 : φ = 1 ⇒ yt ∼ I(1) with drift

H1 : |φ| < 1⇒ yt ∼ I(0) with deterministic time trend

This formulation is appropriate for trending time series like asset prices or
the levels of macroeconomic aggregates like real GDP. The test statistics
tφ=1 and T (φ̂ − 1) are computed from the above regression. Under H0 :
φ = 1 the asymptotic distributions of these test statistics are different from
(4.2) and (4.1) and are influenced by the presence but not the coefficient
values of the constant and time trend in the test regression. Quantiles and
p-values for these distributions can be computed using the S+FinMetrics
functions punitroot and qunitroot with the trend="ct" option:

> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="t",
+ n.sample=100)
[1] -4.052 -3.455 -3.153
> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="n",
+ n.sample=100)
[1] -27.17 -20.47 -17.35
> punitroot(-1.645, trend="ct", statistic="t", n.sample=100)
[1] 0.7679
> punitroot(-1.645, trend="ct", statistic="n", n.sample=100)
[1] 0.9769

Notice that the inclusion of a constant and trend in the test regression
further shifts the distributions of tφ=1 and T (φ̂ − 1) to the left. For a
sample size of 100, the 5% left tail critical values for tφ=1 and T (φ̂− 1) are
now -3.455 and -20.471.
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4.3.3 Dickey-Fuller Unit Root Tests

The unit root tests described above are valid if the time series yt is well
characterized by an AR(1) with white noise errors. Many financial time
series, however, have a more complicated dynamic structure than is cap-
tured by a simple AR(1) model. Said and Dickey (1984) augment the basic
autoregressive unit root test to accommodate general ARMA(p, q) models
with unknown orders and their test is referred to as the augmented Dickey-
Fuller (ADF) test. The ADF test tests the null hypothesis that a time
series yt is I(1) against the alternative that it is I(0), assuming that the
dynamics in the data have an ARMA structure. The ADF test is based on
estimating the test regression

yt = β0Dt + φyt−1 +
pX

j=1

ψj∆yt−j + εt (4.3)

where Dt is a vector of deterministic terms (constant, trend etc.). The p
lagged difference terms, ∆yt−j , are used to approximate the ARMA struc-
ture of the errors, and the value of p is set so that the error εt is serially
uncorrelated. The error term is also assumed to be homoskedastic. The
specification of the deterministic terms depends on the assumed behavior
of yt under the alternative hypothesis of trend stationarity as described in
the previous section. Under the null hypothesis, yt is I(1) which implies
that φ = 1. The ADF t-statistic and normalized bias statistic are based on
the least squares estimates of (4.3) and are given by

ADFt = tφ=1 =
φ̂− 1
SE(φ)

ADFn =
T (φ̂− 1)

1− ψ̂1 − · · ·− ψ̂p

An alternative formulation of the ADF test regression is

∆yt = β0Dt + πyt−1 +
pX

j=1

ψj∆yt−j + εt (4.4)

where π = φ− 1. Under the null hypothesis, ∆yt is I(0) which implies that
π = 0. The ADF t-statistic is then the usual t-statistic for testing π = 0
and the ADF normalized bias statistic is T π̂/(1− ψ̂1 − · · ·− ψ̂p). The test
regression (4.4) is often used in practice because the ADF t-statistic is the
usual t-statistic reported for testing the significance of the coefficient yt−1.
The S+FinMetrics function unitroot follows this convention.

Choosing the Lag Length for the ADF Test

An important practical issue for the implementation of the ADF test is the
specification of the lag length p. If p is too small then the remaining serial
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FIGURE 4.4. US/CN spot rate, first difference and SACF.

correlation in the errors will bias the test. If p is too large then the power
of the test will suffer. Ng and Perron (1995) suggest the following data
dependent lag length selection procedure that results in stable size of the
test and minimal power loss. First, set an upper bound pmax for p. Next,
estimate the ADF test regression with p = pmax. If the absolute value of the
t-statistic for testing the significance of the last lagged difference is greater
than 1.6 then set p = pmax and perform the unit root test. Otherwise,
reduce the lag length by one and repeat the process.
A useful rule of thumb for determining pmax, suggested by Schwert

(1989), is

pmax =

"
12 ·

µ
T

100

¶1/4#
(4.5)

where [x] denotes the integer part of x. This choice allows pmax to grow
with the sample so that the ADF test regressions (4.3) and (4.4) are valid
if the errors follow an ARMA process with unknown order.

Example 18 Testing for a unit root in exchange rate data using ADF tests

To illustrate the ADF test procedure, consider testing for a unit root
in the logarithm of the US/CA monthly spot exchange rate, denoted st,
over the 30 year period 1976 - 1996. Figure 4.4 shows st,∆st as well as the
sample autocorrelations for these series. The data and plots are created
with the S-PLUS commands
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> uscn.spot = lexrates.dat[,"USCNS"]
> uscn.spot@title = "Log US/CN spot exchange rate"
> par(mfrow=c(2,2))
> plot.timeSeries(uscn.spot, reference.grid=F,
+ main="Log of US/CN spot exchange rate")
> xx = acf(uscn.spot)
> plot.timeSeries(diff(uscn.spot), reference.grid=F,
+ main="First difference of log US/CN spot exchange rate")
> xx = acf(diff(uscn.spot))

Clearly, st exhibits random walk like behavior with no apparent positive or
negative drift. However, ∆st behaves very much like a white noise process.
The appropriate trend specification is to include a constant in the test re-
gression. Regarding the maximum lag length for the Ng-Perron procedure,
given the lack of serial correlation in ∆st a conservative choice is pmax = 6.
The ADF t-statistic computed from the test regression with a constant and
p = 6 lags can be computed using the S+FinMetrics function unitroot as
follows

> adft.out = unitroot(uscn.spot, trend="c", statistic="t",
+ method="adf", lags=6)
> class(adft.out)
[1] "unitroot"

The output of unitroot is an object of class “unitroot” for which there
are print and summary methods. Typing the name of the object invokes
the print method and displays the basic test result

> adft.out
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t-test

Test Statistic: -2.6
P-value: 0.09427

Coefficients:
lag1 lag2 lag3 lag4 lag5 lag6 constant

-0.0280 -0.1188 -0.0584 -0.0327 -0.0019 0.0430 -0.0075

Degrees of freedom: 239 total; 232 residual
Time period: from Aug 1976 to Jun 1996
Residual standard error: 0.01386

With p = 6 the ADF t-statistic is -2.6 and has a p-value (computed using
punitroot) of 0.094. Hence we do not reject the unit root null at the 9.4%
level. The small p-value here may be due to the inclusion of superfluous lags.
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To see the significance of the lags in the test regression, use the summary
method

> summary(adft.out)
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test

Test Statistic: -2.6
P-value: 0.09427

Coefficients:
Value Std. Error t value Pr(>|t|)

lag1 -0.0280 0.0108 -2.6004 0.0099
lag2 -0.1188 0.0646 -1.8407 0.0669
lag3 -0.0584 0.0650 -0.8983 0.3700
lag4 -0.0327 0.0651 -0.5018 0.6163
lag5 -0.0019 0.0651 -0.0293 0.9766
lag6 0.0430 0.0645 0.6662 0.5060

constant -0.0075 0.0024 -3.0982 0.0022

Regression Diagnostics:

R-Squared 0.0462
Adjusted R-Squared 0.0215
Durbin-Watson Stat 2.0033

Residual standard error: 0.01386 on 235 degrees of freedom
F-statistic: 1.874 on 6 and 232 degrees of freedom, the
p-value is 0.08619
Time period: from Aug 1976 to Jun 1996

The results indicate that too many lags have been included in the test
regression. Following the Ng-Perron backward selection procedure p = 2
lags are selected. The results are

> adft.out = unitroot(uscn.spot, trend="c", lags=2)
> summary(adft.out)
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test

Test Statistic: -2.115
P-value: 0.2392

Coefficients:
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Value Std. Error t value Pr(>|t|)
lag1 -0.0214 0.0101 -2.1146 0.0355
lag2 -0.1047 0.0635 -1.6476 0.1007

constant -0.0058 0.0022 -2.6001 0.0099

Regression Diagnostics:

R-Squared 0.0299
Adjusted R-Squared 0.0218
Durbin-Watson Stat 2.0145

Residual standard error: 0.01378 on 239 degrees of freedom
F-statistic: 3.694 on 2 and 240 degrees of freedom, the
p-value is 0.02629
Time period: from Apr 1976 to Jun 1996

With 2 lags the ADF t-statistic is -2.115, the p-value 0.239 and we have
greater evidence for a unit root in st. A similar result is found with the
ADF normalized bias statistic

> adfn.out = unitroot(uscn.spot, trend="c", lags=2,
+ statistic="n")
> adfn.out
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: normalized test

Test Statistic: -5.193
P-value: 0.4129

Coefficients:
lag1 lag2 constant

-0.0214 -0.1047 -0.0058

Degrees of freedom: 243 total; 240 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.01378

Example 19 Testing for a unit root in log stock prices

The log levels of asset prices are usually treated as I(1) with drift. Indeed,
the random walk model of stock prices is a special case of an I(1) process.
Consider testing for a unit root in the log of the monthly S&P 500 index,
pt, over the period January 1990 through January 2001. The data is taken
from the S+FinMetrics “timeSeries” singleIndex.dat. The data and
various plots are created with the S-PLUS commands
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FIGURE 4.5. Log prices on the S&P 500 index, first difference and SACF.

> lnp = log(singleIndex.dat[,1])
> lnp@title = "Log of S&P 500 Index"
> par(mfrow=c(2,2))
> plot.timeSeries(lnp, reference.grid=F,
+ main="Log of S&P 500 index")
> acf.plot(acf(lnp,plot=F))
> plot.timeSeries(diff(lnp), reference.grid=F,
+ main="First difference of log S&P 500 Index")
> acf.plot(acf(diff(lnp),plot=F))

and are illustrated in Figure 4.5. Clearly, the pt is nonstationary due to the
positive trend. Also, there appears to be some negative autocorrelation at
lag one in ∆pt. The null hypothesis to be tested is that pt is I(1) with drift,
and the alternative is that the pt is I(0) about a deterministic time trend.
The ADF t-statistic to test these hypotheses is computed with a constant
and time trend in the test regression and four lags of ∆pt (selecting using
the Ng-Perron backward selection method)

> adft.out = unitroot(lnp, trend="ct", lags=4)
> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
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Type of Test: t test
Test Statistic: -1.315

P-value: 0.8798

Coefficients:
Value Std. Error t value Pr(>|t|)

lag1 -0.0540 0.0410 -1.3150 0.1910
lag2 -0.1869 0.0978 -1.9111 0.0583
lag3 -0.0460 0.0995 -0.4627 0.6444
lag4 0.1939 0.0971 1.9964 0.0481

constant 0.1678 0.1040 1.6128 0.1094
time 0.0015 0.0014 1.0743 0.2848

Regression Diagnostics:

R-Squared 0.1016
Adjusted R-Squared 0.0651
Durbin-Watson Stat 1.9544

Residual standard error: 0.1087 on 125 degrees of freedom
F-statistic: 2.783 on 5 and 123 degrees of freedom, the
p-value is 0.0204
Time period: from May 1990 to Jan 2001

ADFt = −1.315 and has a p-value of 0.8798, so one clearly does not reject
the null that pt is I(1) with drift.

4.3.4 Phillips-Perron Unit Root Tests

Phillips and Perron (1988) developed a number of unit root tests that have
become popular in the analysis of financial time series. The Phillips-Perron
(PP) unit root tests differ from the ADF tests mainly in how they deal
with serial correlation and heteroskedasticity in the errors. In particular,
where the ADF tests use a parametric autoregression to approximate the
ARMA structure of the errors in the test regression, the PP tests ignore
any serial correlation in the test regression. The test regression for the PP
tests is

∆yt = β0Dt + πyt−1 + ut

where ut is I(0) and may be heteroskedastic. The PP tests correct for
any serial correlation and heteroskedasticity in the errors ut of the test
regression by directly modifying the test statistics tπ=0 and T π̂. These



4.3 Autoregressive Unit Root Tests 123

modified statistics, denoted Zt and Zπ, are given by
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are consistent estimates of the variance parameters
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¤
where ST =

PT
t=1 ut. The sample variance of the least squares residual

ût is a consistent estimate of σ2, and the Newey-West long-run variance
estimate of ut using ût is a consistent estimate of λ

2.
Under the null hypothesis that π = 0, the PP Zt and Zπ statistics have

the same asymptotic distributions as the ADF t-statistic and normalized
bias statistics. One advantage of the PP tests over the ADF tests is that
the PP tests are robust to general forms of heteroskedasticity in the error
term ut. Another advantage is that the user does not have to specify a lag
length for the test regression.

Example 20 Testing for a unit root in exchange rates using the PP tests

Recall the arguments for the S+FinMetrics unitroot function are

> args(unitroot)
function(x, trend = "c", method = "adf",
statistic = "t",lags = 1, bandwidth = NULL,
window = "bartlett", asymptotic = F, na.rm = F)

The PP statistics may be computed by specifying the optional argument
method="pp". When method="pp" is chosen, the argument window speci-
fies the weight function and the argument bandwidth determines the lag
truncation parameter used in computing the long-run variance parameter
λ2. The default bandwidth is the integer part of (4 · (T/100))2/9 where T
is the sample size.
Now, consider testing for a unit root in the log of the US/CN spot ex-

change rate using the PP Zt and Zπ statistics:

> unitroot(uscn.spot, trend="c", method="pp")
Test for Unit Root: Phillips-Perron Test
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Null Hypothesis: there is a unit root
Type of Test: t-test

Test Statistic: -1.97
P-value: 0.2999

Coefficients:
lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.01383

> unitroot(uscn.spot, trend="c", method="pp", statistic="n")
Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root
Type of Test: normalized test

Test Statistic: -4.245
P-value: 0.5087

Coefficients:
lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.01383

As with the ADF tests, the PP tests do not reject the null that the log of
the US/CN spot rate is I(1) at any reasonable significance level.

4.3.5 Some Problems with Unit Root Tests

The ADF and PP tests are asymptotically equivalent but may differ sub-
stantially in finite samples due to the different ways in which they correct
for serial correlation in the test regression. In particular, Schwert (1989)
finds that if ∆yt has an ARMA representation with a large and negative
MA component, then the ADF and PP tests are severely size distorted
(reject I(1) null much too often when it is true) and that the PP tests are
more size distorted than the ADF tests. Recently, Perron and Ng (1996)
have suggested useful modifications to the PP tests to mitigate this size
distortion.
In general, the ADF and PP tests have very low power against I(0)

alternatives that are close to being I(1). That is, unit root tests cannot
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distinguish highly persistent stationary processes from nonstationary pro-
cesses very well. Also, the power of unit root tests diminish as deterministic
terms are added to the test regressions. That is, tests that include a con-
stant and trend in the test regression have less power than tests that only
include a constant in the test regression. For maximum power against very
persistent alternatives the recent tests proposed by Elliot, Rothenberg and
Stock (1996) should be used.

4.4 Stationarity Tests

The ADF and PP unit root tests are for the null hypothesis that a time
series yt is I(1). Stationarity tests, on the other hand, are for the null that
yt is I(0). The most commonly used stationarity test, the KPSS test, is
due to Kwiatkowski, Phillips, Schmidt and Shin (1992). They derive their
test by starting with the model

yt = β0Dt + µt + ut (4.6)

µt = µt−1 + εt, εt ∼WN(0, σ2ε)

where Dt contains deterministic components (constant or constant plus
time trend), ut is I(0) and may be heteroskedastic. Notice that µt is a pure
random walk with innovation variance σ2ε. The null hypothesis that yt is
I(0) is formulated as H0 : σ

2
ε = 0, which implies that µt is a constant.

Although not directly apparent, this null hypothesis also implies a unit
moving average root in the ARMA representation of ∆yt. The KPSS test
statistic is the Lagrange multiplier (LM) or score statistic for testing σ2ε = 0
against the alternative that σ2ε > 0 and is given by

KPSS =

Ã
T−2

TX
t=1

Ŝ2t

!
/λ̂

2
(4.7)

where Ŝt =
Pt

j=1 ûj , ût is the residual of a regression of yt on Dt and λ̂
2
is

a consistent estimate of the long-run variance of ut using ût. Under the null
that yt is I(0), Kwiatkowski, Phillips, Schmidt and Shin show that KPSS
converges to a function of standard Brownian motion that depends on the
form of the deterministic terms Dt but not their coefficient values β. In
particular, if Dt = 1 then

KPSS →
Z 1

0

V1(r)dr (4.8)

where V1(r) =W (r)−rW (1) and W (r) is a standard Brownian motion for
r ∈ [0, 1]. If Dt = (1, t)

0 then

KPSS →
Z 1

0

V2(r)dr (4.9)
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Right tail quantiles
Distribution 0.90 0.925 0.950 0.975 0.99R 1
0
V1(r)dr 0.349 0.396 0.446 0.592 0.762R 1

0
V2(r)dr 0.120 0.133 0.149 0.184 0.229

TABLE 4.1. Quantiles of the distribution of the KPSS Statistic

where V2(r) = W (r) + r(2 − 3r)W (1) + 6r(r2 − 1)
R 1
0
W (s)ds. Critical

values from the asymptotic distributions (4.8) and (4.9) must be obtained
by simulation methods, and these are summarized in Table 4.1.

The stationary test is a one-sided right-tailed test so that one rejects the
null of stationarity at the 100 · α% level if the KPSS test statistic (4.7) is
greater than the 100 · (1 − α)% quantile from the appropriate asymptotic
distribution (4.8) or (4.9).

4.4.1 Simulating the KPSS Distributions

The distributions in (4.8) and (4.9) may be simulated using methods similar
to those used to simulate the DF distribution. The following S-PLUS code
is used to create the quantiles in Table 4.1:

wiener2 = function(nobs) {
e = rnorm(nobs)

# create detrended errors
e1 = e - mean(e)
e2 = residuals(OLS(e~seq(1,nobs)))

# compute simulated Brownian Bridges
y1 = cumsum(e1)
y2 = cumsum(e2)
intW2.1 = nobs^(-2) * sum(y1^2)
intW2.2 = nobs^(-2) * sum(y2^2)
ans = list(intW2.1=intW2.1,

intW2.2=intW2.2)
ans

}
#
# simulate KPSS distributions
#
> nobs = 1000
> nsim = 10000
> KPSS1 = rep(0,nsim)
> KPSS2 = rep(0,nsim)
> for (i in 1:nsim) {
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BN.moments = wiener2(nobs)
KPSS1[i] = BN.moments$intW2.1
KPSS2[i] = BN.moments$intW2.2

}
#
# compute quantiles of distribution
#
> quantile(KPSS1, probs=c(0.90,0.925,0.95,0.975,0.99))

90.0% 92.5% 95.0% 97.5% 99.0%
0.34914 0.39634 0.46643 0.59155 0.76174
> quantile(KPSS2, probs=c(0.90,0.925,0.95,0.975,0.99))

90.0% 92.5% 95.0% 97.5% 99.0%
0.12003 0.1325 0.14907 0.1841 0.22923

Currently, only asymptotic critical values are available for the KPSS test.

4.4.2 Testing for Stationarity Using the S+FinMetrics
Function stationaryTest

The S+FinMetrics function stationaryTest may be used to test the null
hypothesis that a time series yt is I(0) based on the KPSS statistic (4.7).
The function stationaryTest has arguments

> args(stationaryTest)
function(x, trend = "c", bandwidth = NULL, na.rm = F)

where x represents a univariate vector or “timeSeries”. The argument
trend specifies the deterministic trend component in (4.6) and valid choices
are "c" for a constant and "ct" for a constant and time trend. The argu-
ment bandwidth determines the lag truncation parameter used in com-
puting the long-run variance parameter λ2. The default bandwidth is the
integer part of (4 · (T/100))2/9 where T is the sample size. The output of
stationaryTest is an object of class “stationaryTest” for which there is
only a print method. The use of stationaryTest is illustrated with the
following example.

Example 21 Testing for stationarity in exchange rates

Consider the US/CN spot exchange data used in the previous examples.
To test the null that st is I(0), the KPSS statistic is computed using a
constant in (4.6):

> kpss.out = stationaryTest(uscn.spot, trend="c")
> class(kpss.out)
[1] "stationaryTest"
> kpss.out
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Test for Stationarity: KPSS Test

Null Hypothesis: stationary around a constant

Test Statistics:
USCNS

1.6411**

* : significant at 5% level
** : significant at 1% level

Total Observ.: 245
Bandwidth : 5

The KPSS statistic is 1.641 and is greater than the 99% quantile, 0.762,
from Table.4.1. Therefore, the null that st is I(0) is rejected at the 1%
level.
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5
Modeling Extreme Values

5.1 Introduction

One of the goals of financial risk management is the accurate calculation of
the magnitudes and probabilities of large potential losses due to extreme
events such as stock market crashes, currency crises, trading scandals, or
large bond defaults. In statistical terms, these magnitudes and probabili-
ties are high quantiles and tail probabilities of the probability distribution
of losses. The importance of risk management in finance cannot be over-
stated. The catastrophes of October 17, 1987, Long-Term Capital Manage-
ment, Barings PLC, Metallgesellschaft, Orange County and Daiwa clearly
illustrate the losses that can occur as the result of extreme market move-
ments1. The objective of extreme value analysis in finance is to quantify
the probabilistic behavior of unusually large losses and to develop tools for
managing extreme risks.
Traditional parametric and nonparametric methods for estimating distri-

butions and densities work well in areas of the empirical distribution where
there are many observations, but they often give very poor fits to the ex-
treme tails of the distribution. This result is particularly troubling because
the management of extreme risk often requires estimating quantiles and tail
probabilities beyond those observed in the data. The methods of extreme
value theory focus on modeling the tail behavior of a loss distribution using
only extreme values rather than all of the data.

1See Jorian (2001) for a detailed description of these financial disasters.
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This chapter is organized as follows. Section 5.2 covers the modeling of
block maximum and minimum values using the generalized extreme value
(GEV) distribution. The maximum likelihood estimator for the parameters
of the GEV distribution is derived and analyzed, and graphical diagnostics
for evaluating the fit are discussed. The use of the GEV distribution is
illustrated with examples from finance, and the concept of return level
is introduced. Section 5.3 discusses the modeling of extremes over high
thresholds or “peaks over thresholds”. This technique is well suited for
the estimation of common risk measures like value-at-risk and expected
shortfall. Parametric models utilizing the generalized Pareto distribution
as well as non-parametric models are presented.
Two excellent textbooks on extreme value theory are Embrechts, Klüppel-

berg and Mikosch (1997) and Coles (2001). Both books provide many ex-
amples utilizing S-PLUS. Less rigorous treatments of extreme value theory
with many examples in finance are given in Alexander (2001), Jorian (2001)
and Tsay (2001). Useful surveys of extreme value theory applied to finance
and risk management are given in Diebold, Schuermann and Stroughair
(1997), Danielsson and de Vries (2001), McNeil (1998) and Longin (2000).
The S+FinMetrics functions for modeling extreme values described in

this chapter are based on the functions in the EVIS (Extreme Values In
S-PLUS) library written by Alexander McNeil at ETH Zurich. S+FinMetrics
also contains functions for modeling multivariate extremes based on the
functions in the EVANESCA library written by Rene Carmona. These
functions are described in Carmona (2001) and Carmona and Morrison
(2001).

5.2 Modeling Maxima and Worst Cases

To motivate the importance of the statistical modeling of extreme losses in
finance, consider the following example taken from McNeil (1998). Figure
5.1 shows the daily closing prices and percentage changes in the S&P 500
index over the period January 5, 1960 through October 16, 1987 taken from
the S+FinMetrics “timeSeries” object sp.raw

> spto87 = getReturns(sp.raw, type="discrete", percentage=T)
> par(mfrow=c(2,1))
> plot(sp.raw, main="Daily Closing Prices")
> plot(spto87, main="Daily Percentage Returns")

Before the October crash, the stock market was unusually volatile with
several large price drops in the index resulting in large negative returns. Of
interest is the characterization of the worst case scenario for a future fall
in S&P 500 index utilizing the historical data prior to the crash given in
Figure 5.1. To do this, the following two questions will be addressed:
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FIGURE 5.1. Daily closing prices and percentage returns on the S&P 500 Index
from January, 1960 through October 16, 1987.

• What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns? In other words, what is
the probability that next year’s maximum negative return is a new
record?

• What is the 40-year return level of the negative returns? That is, what
is the negative return which, on average, should only be exceeded in
one year every forty years?

To answer these questions, the distribution of extreme negative returns on
S&P 500 index is required. The distribution theory required to analyze
maximum values is briefly discussed in the next section.

5.2.1 The Fisher-Tippet Theorem and the Generalized
Extreme Value Distribution

Let X1,X2, . . . be iid random variables representing risks or losses with
an unknown cumulative distribution function (CDF) F (x) = Pr{Xi ≤ x}.
Examples of the random risksXi are losses or negative returns on a financial
asset or portfolio, operational losses, catastrophic insurance claims, and
credit losses. Throughout this chapter, a loss is treated as a positive number
and extreme events occur when losses take values in the right tail of the
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loss distribution F . Define Mn = max (X1, . . . ,Xn) as the worst-case loss
in a sample of n losses. An important part of extreme value theory focuses
on the distribution of Mn. From the iid assumption, the CDF of Mn is

Pr{Mn ≤ x} = Pr{X1 ≤ x, . . . ,Xn ≤ x} =
nY
i=1

F (x) = Fn(x)

Since Fn is assumed to be unknown and the empirical distribution function
is often a very poor estimator of Fn(x), an asymptotic approximation to
Fn based on the Fisher-Tippet Theorem (Fisher and Tippett, 1928) is used
to make inferences on Mn. Furthermore, since Fn(x) → 0 or 1 as n → ∞
and x is fixed, the asymptotic approximation is based on the standardized
maximum value

Zn =
Mn − µn

σn
(5.1)

where σn > 0 and µn are sequences of real numbers such that σn is in-
terpreted as a scale measure and µn is interpreted as a location measure.
The Fisher-Tippet Theorem states that if the standardized maximum (5.1)
converges to some non-degenerate distribution function, it must be a gen-
eralized extreme value (GEV) distribution of the form

Hξ(z) =

½
exp

©
−(1 + ξz)−1/ξ

ª
exp {− exp(−z)}

ξ 6= 0, 1 + ξz > 0
ξ = 0, −∞ ≤ z ≤ ∞ (5.2)

If (5.1) converges to (5.2), then the CDF F of the underlying data is in
the domain of attraction of Hξ. The Fisher-Tippet Theorem is the analog
of the Central Limit Theorem for extreme values. Whereas the Central
Limit Theorem applies to normalized sums of random variables, the Fisher-
Tippet Theorem applies to standardized maxima of random variables. The
parameter ξ is a shape parameter and determines the tail behavior of Hξ.
The parameter α = 1/ξ is called the tail index if ξ > 0.
The tail behavior of the distribution F of the underlying data deter-

mines the shape parameter ξ of the GEV distribution (5.2). If the tail of
F declines exponentially, then Hξ is of the Gumbel type and ξ = 0. Dis-
tributions in the domain of attraction of the Gumbel type are thin tailed
distributions such as the normal, log-normal, exponential, and gamma. For
these distributions, all moments usually exist. If the tail of F declines by
a power function, i.e.

1− F (x) = x−1/ξL(x)

for some slowly varying function L(x), then Hξ is of the Fréchet type and
ξ > 02 . Distributions in the domain of attraction of the Fréchet type include
fat tailed distributions like the Pareto, Cauchy, Student-t, alpha-stable with

2A function L on (0,∞) is slowly varying if limx→∞ L(tx)/L(x) = 1 for t > 0.
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characteristic exponent in (0, 2), as well as various mixture models. Not all
moments are finite for these distributions. In fact, it can be shown that
E[Xk] = ∞ for k ≥ α = 1/ξ. Last, if the tail of F is finite then Hξ is of
the Weibull type and ξ < 0. Distributions in the domain of attraction of
the Weibull type include distributions with bounded support such as the
uniform and beta distributions. All moments exist for these distributions.
The Fisher-Tippet Theorem applies to iid observations. However, the

GEV distribution (5.2) may be shown (e.g. Embrechts et. al. (1997)) to
be the correct limiting distribution for maxima computed from stationary
time series including stationary GARCH-type processes.
The GEV distribution (5.2) characterizes the limiting distribution of the

standardized maximum (5.1). It turns out that the GEV distribution (5.2)
is invariant to location and scale transformations such that for location and
scale parameters µ and σ > 0

Hξ(z) = Hξ

µ
x− µ

σ

¶
= Hξ,µ,σ(x) (5.3)

The Fisher-Tippet Theorem may then be interpreted as follows. For large
enough n

Pr {Zn < z} = Pr
½
Mn − µn

σn
< z

¾
≈ Hξ(z)

Letting x = σnz + µn then

Pr{Mn < x} ≈ Hξ,µ,σ

µ
x− µn
σn

¶
= Hξ,µn,σn(x) (5.4)

The result (5.4) is used in practice to make inferences about the maximum
loss Mn.

Example 22 Plots of GEV distributions

The S+FinMetrics/EVIS functions pgev, qgev, dgev and rgev compute
cumulative probability, quantiles, density, and random generation, respec-
tively, from the GEV distribution (5.3) for ξ 6= 0 and general values for
x, µ and σ. For example, the S-PLUS code to compute and plot the GEV
CDF Hξ and the pdf hξ for a Fréchet (ξ = 0.5), Weibull (ξ = −0.5) and
Gumbell (ξ = 0) is

> z.vals = seq(-5, 5, length=200)
> cdf.f = ifelse((z.vals > -2), pgev(z.vals,xi=0.5), 0)
> cdf.w = ifelse((z.vals < 2), pgev(z.vals,xi=-0.5), 1)
> cdf.g = exp(-exp(-z.vals))
> plot(z.vals, cdf.w, type="l", xlab="z", ylab="H(z)")
> lines(z.vals, cdf.f, type="l", lty=2)
> lines(z.vals, cdf.g, type="l", lty=3)
> legend(-5, 1, legend=c("Weibull H(-0.5,0,1)",
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FIGURE 5.2. Generalized extreme value CDFs Hξ for Fréchet (ξ = −0.5),
Weibull (ξ = 0.5) and Gumbell (ξ = 0).
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FIGURE 5.3. Generalized extreme value pdfs hξ for Fr échet (ξ = −0.5),Weibull
(ξ = 0.5) and Gumbell (ξ = 0).
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+ "Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), lty=1:3)
> # pdfs
> pdf.f = ifelse((z.vals > -2), dgev(z.vals,xi=0.5), 0)
> pdf.w = ifelse((z.vals < 2), dgev(z.vals,xi=-0.5), 0)
> pdf.g = exp(-exp(-z.vals))*exp(-z.vals)
> plot(z.vals, pdf.w, type="l", xlab="z", ylab="h(z)")
> lines(z.vals, pdf.f, type="l", lty=2)
> lines(z.vals, pdf.g, type="l", lty=3)
> legend(-5.25, 0.4, legend=c("Weibull H(-0.5,0,1)",
+ "Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), lty=1:3)

The CDF and pdf values are illustrated in Figures 5.2 and 5.3. Notice that
the Fréchet is only defined for z > −2, and that the Weibull is only defined
for z < 2.

5.2.2 Estimation of the GEV Distribution

The GEV distribution (5.4) depends on three parameters: the shape pa-
rameter ξ and the standardizing constants σn and µn. These parameters
may be estimated using parametric maximum likelihood estimation (mle).
The S+FinMetrics/EVIS functions gev and gumbel fit the GEV distribu-
tion (5.2) by mle to block maxima data. The calculation of the parametric
mle is briefly described below and illustrated with examples.

Parametric Maximum Likelihood Estimator

LetX1, . . . ,XT be identically distributed losses from a sample of size T with
unknown CDF F and let MT denote the sample maximum. For inference
on MT using (5.4) the parameters ξ, σT and µT must be estimated. Since
there is only one value of MT for the entire sample, it is not possible to
form a likelihood function for ξ, σT and µT . However, if interest is on the
maximum of X over a large finite subsample or block of size n < T , Mn,
then a sub-sampling method may be used to form the likelihood function
for the parameters ξ, σn and µn of the GEV distribution for Mn. To do
this, the sample is divided into m non-overlapping blocks of essentially
equal size n = T/m

[X1, . . . ,Xn|Xn+1, . . . ,X2n| . . . |X(m−1)n+1, . . . ,Xmn]

and M
(j)
n is defined as the maximum value of Xi in block j = 1, . . . ,m.

The likelihood function for the parameters ξ, σn and µn of the GEV
distribution (5.4) is then constructed from the sample of block maxima
{M (1)

n , . . . ,M
(m)
n }. It is assumed that the block size n is sufficiently large

so that the Fisher-Tippet Theorem holds.
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The log likelihood function assuming iid observations from a GEV dis-
tribution with ξ 6= 0 is

l(µ, σ, ξ) = −m ln(σ)− (1 + 1/ξ)
mX
i=1

ln

"
1 + ξ

Ã
M

(i)
n − µ

σ

!#

−
mX
i=1

"
1 + ξ

Ã
M

(i)
n − µ

σ

!#−1/ξ
such that

1 + ξ

Ã
M

(i)
n − µ

σ

!
> 0

The log-likelihood for the case ξ = 0 (Gumbel family) is

l(µ, σ) = −m ln(σ)−
mX
i=1

Ã
M

(i)
n − µ

σ

!

−
mX
i=1

exp

"
−
Ã
M

(i)
n − µ

σ

!#

Details of the maximum likelihood estimation are discussed in Embrechts
et. al. (1997) and Coles (2001). For ξ > −0.5 the mles for µ, σ and ξ
are consistent and asymptotically normally distributed with asymptotic
variance given by the inverse of the observed information matrix. The finite
sample properties of the mle will depend on the number of blocks m and
the block size n, see McNeil (1998) for an illustration. There is a trade-off
between bias and variance. The bias of the mle is reduced by increasing
the block size n, and the variance of the mle is reduced by increasing the
number of blocks m.

Example 23 MLE of GEV CDF for block maxima from daily S&P 500
returns

Consider determining the appropriate GEV distribution for the daily
negative returns on S&P 500 index discussed at the beginning of this sec-
tion. A normal qq-plot of the returns computed using

> qqPlot(spto87,strip.text="Daily returns on S&P 500",
+ xlab="Quantiles of standard normal",
+ ylab="Quantiles of S&P 500")

is shown in Figure 5.4. The returns clearly have fatter tails than the normal
distribution which suggests the Fréchet family of GEV distributions with
ξ > 0 for the block maximum of negative returns.
Before the GEV distribution is fit by mle, consider first some exploratory

data analysis on the annual block maxima of daily negative returns. The
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FIGURE 5.4. Normal qq-plot for the daily percentage returns on the S&P 500
index over the period January, 1960 through October 16, 1987.

block maxima may be easily computed using the aggregateSeries func-
tion:

> annualMax.sp500 = aggregateSeries(-spto87, by="years",
+ FUN=max)

Figure 5.5 created using

> Xn = sort(seriesData(annualMax.sp500))
> par(mfrow=c(2,2))
> plot(annualMax.sp500)
> hist(seriesData(annualMax.sp500),xlab="Annual maximum")
> plot(Xn,-log(-log(ppoints(Xn))),xlab="Annual maximum")
> tmp = records(-spto87)

gives several graphical summaries of the annual block maxima. The largest
daily negative return in an annual block is 6.68% occurring in 1962. The
histogram resembles a Fréchet density (see example above). The qq-plot
uses the Gumbel,H0, as the reference distribution. For this distribution, the
quantiles satisfy H−10 (p) = − ln(− ln(p)). The downward curve in the plot
indicates a GEV distribution with ξ > 0. The plot of record development
is created with the S+FinMetrics/EVIS function records and illustrates
the developments of records (new maxima) for the daily negative returns
along with the expected number of records for iid data, see Embrechts et.
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FIGURE 5.5. Annual block maxima, histogram, Gumbel qq-plot and records
summary for the daily returns on the S&P 500.

al. (1997) section 6.2.5. Apart from the somewhat large number of records
early on, the number of records appears consistent with iid behavior.
The mles for the parameters of the GEV distribution with ξ 6= 0 using

block maxima may be computed using the S+FinMetrics/EVIS function
gev. For example, to compute the mles using annual blocks from the daily
(negative) returns on S&P 500 index use

> gev.fit.year = gev(-spto87, block="year")
> class(gev.fit.year)
[1] "gev"

The argument block determines the blocking method for the supplied data.
An integer value for block gives the number of observations in each block.
If the data supplied are a “timeSeries” then the value of block can be also
be the character strings “year”, “semester”, “quarter” or “month”. If no
value for block is given then the data are interpreted as block maxima.
The function gev returns an sv3 object of class “gev” for which there is

only a plot method. The components of gev.fit.year are

> names(gev.fit.year)
[1] "n.all" "n" "call" "block"
[5] "data" "par.ests" "par.ses" "varcov"
[9] "converged" "nllh.final"
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and a description of these components is given in the online help for
gev.object. The component n gives the number of blocks m:

> gev.fit.year$n
[1] 28

The block maxima M
(i)
n (i = 1, . . . ,m) are in the data component. Since

the data supplied to gev are in a “timeSeries”, the block maxima in
gev.fit.year$data are also a “timeSeries”. The mles and asymptotic
standard errors for the parameters µ, σ and ξ are in the components
par.ests and par.ses:

> gev.fit.year$par.ests
xi sigma mu

0.3344 0.6716 1.975
> gev.fit.year$par.ses

xi sigma mu
0.2081 0.1308 0.1513

The mle for ξ is 0.334 with asymptotic standarddSE(ξ̂) = 0.208. An asymp-
totic 95% confidence interval for ξ is [−0.081, 0.751] and indicates consid-
erably uncertainty about the value of ξ.
The fit to the GEV distribution may be evaluated graphically using the

plot method:

> plot(gev.fit.year)

Make a plot selection (or 0 to exit):
1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals
Selection:

Plot options 1 and 2 are illustrated in Figure 5.6. The plots show aspects
of the crude residuals

Wi =

Ã
1 + ξ̂

M
(i)
n − µ̂

σ̂

!−1/ξ
which should be iid unit exponentially distributed random variables if the
fitted model is correct. The scatterplot of the residuals, with a lowest esti-
mate of trend, does not reveal any significant unmodeled trend in the data.
The qq-plot, using the exponential distribution as the reference distribu-
tion, is linear and appears to validate the GEV distribution.
Using the mles of the GEV distribution fit to the annual block maxima

of the (negative) daily returns on S&P 500 index, the question

• What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns?
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FIGURE 5.6. Residual plots from GEV distribution fit to annual block maxima
of daily negative return on the S&P 500 index.

may be answered using (5.4). Since the largest block maxima is 6.68%, this
probability is estimated using

Pr
³
M

(29)
260 > max

³
M

(1)
260, . . . ,M

(28)
260

´´
= 1−Hξ̂,µ̂,σ̂ (6.68)

Using the S+FinMetrics/EVIS function pgev, the result is

> 1- pgev(max(gev.fit.year$data),
+ xi=gev.fit.year$par.ests["xi"],
+ mu=gev.fit.year$par.ests["mu"],
+ sigma=gev.fit.year$par.ests["sigma"])
0.02677

That is, there is a 2.7% chance that a new record maximum daily negative
return will be established during the next year.
The above analysis is based on annual block maxima. The GEV distri-

bution fit to quarterly block maxima is obtained using

> gev.fit.quarter= gev(-spto87,block="quarter")
> gev.fit.quarter$n
[1] 112
> gev.fit.quarter$par.ests

xi sigma mu
0.191 0.5021 1.401
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> gev.fit.quarter$par.ses
xi sigma mu

0.06954 0.0416 0.05296

The mles for ξ, µ and σ using quarterly blocks are slightly smaller than the
mles using annual blocks. Notice, however, that the estimated asymptotic
standard errors are much smaller using quarterly block. In particular, an
asymptotic 95% confidence interval for ξ is [0.052, 0.330] and contains only
positive values for ξ indicating a fat-tailed distribution. An estimate of the
probability that next quarter’s maximum exceeds all previous maxima is

> 1- pgev(max(gev.fit.quarter$data),
+ xi=gev.fit.quarter$par.ests["xi"],
+ mu=gev.fit.quarter$par.ests["mu"],
+ sigma=gev.fit.quarter$par.ests["sigma"])
0.003138

As expected, this probability is smaller than the corresponding probability
computed for annual maxima.

5.2.3 Return Level

For α ∈ (0, 1) the 100 · α% quantile of a continuous distribution with
distribution function F is the value qα such that

qα = F−1(α).

A useful risk measure for block maxima that is related to a high quantile
is the so-called return level. The k n-block return level, Rn,k, is defined to
be that level which is exceeded in one out of every k blocks of size n. That
is, Rn,k is the loss value such that

Pr{Mn > Rn,k} = 1/k (5.5)

The n-block in which the return level is exceeded is called a stress period.
If the distribution of the maxima Mn in blocks of length n is characterized
by (5.4) then Rn,k is simply the 1− 1/k quantile of this distribution:

Rn,k ≈ H−1ξ,µ,σ(1− 1/k) = µ− σ

ξ

¡
1− (− log(1− 1/k))−ξ

¢
(5.6)

By the invariance property of maximum likelihood estimation, given the
mles for the parameters ξ, µ and σ, the mle for Rn,k is

R̂n,k = µ̂− σ̂

ξ̂

³
1− (− log(1− 1/k))−ξ̂

´
An asymptotically valid confidence interval for Rn,k may be computed us-
ing the delta method (see Greene (2000) page 118) or from the concen-
trated/profile log-likelihood function. Given that (5.6) is a highly nonlinear
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function of σ, µ and ξ, the delta method is not recommended. Details of con-
structing a confidence interval for Rn,k based on the profile log-likelihood
are given in chapter three of Coles (2001) and the appendix of McNeil
(1998).
The return level probability in (5.5) is based on the GEV distribution

Hξ,µ,σ of the maxima Mn. For iid losses X with CDF F , Hξ,µ,σ ≈ Fn so
that

F (Rn,k) = Pr{X ≤ Rn,k} ≈ (1− 1/k)1/n (5.7)

Hence, for iid losses the return level Rn,k is approximately the (1− 1/k)1/n
quantile of the loss distribution F .

Example 24 Return Levels for S&P 500 negative returns

Given the mles for the GEV distribution fit to the annual block maxima
of the (negative) daily returns on S&P 500 index, the question

• What is the 40-year return level of the index returns?

may be answered using (5.6). The S+FinMetrics/EVIS function rlevel.gev
computes (5.6) as well as an asymptotic 95% confidence interval based on
the profile likelihood using the information from a “gev” object. To com-
pute the 40 year return level for the S&P 500 returns from the “gev” object
gev.fit.year and to create a plot of the 95% confidence interval use

> rlevel.gev(gev.fit.year, k.blocks=40, type="profile")
> class(rlevel.year.40)
[1] "list"
> names(rlevel.year.40)
[1] "Range" "rlevel"
> rlevel.year.40$rlevel
[1] 6.833

When type="profile", the function rlevel.gev returns a list object, con-
taining the return level and range information used in the construction of
the profile log-likelihood confidence interval, and produces a plot of the
profile log-likelihood confidence interval for the return level. The estimate
of the 40 year return level is 6.83%. Assuming iid returns and using (5.7),
the estimated return level of 6.83% is approximately the 99.99% quantile of
the daily return distribution. An asymptotic 95% confidence interval for the
true return level is illustrated in Figure 5.7. Notice the asymmetric shape
of the asymptotic confidence interval. Although the point estimate of the
return level is 6.83%, the upper endpoint of the 95% confidence interval
is about 21%. This number may seem large; however, on Monday October
19th 1987 S&P 500 index closed down 20.4%.
By default, the function rlevel.gev produces a plot of the asymptotic

95% confidence level. Alternatively, if rlevel.gev is called with the op-
tional argument type="RetLevel":
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FIGURE 5.7. Asymptotic 95% confidence interval for the 40 year return level
based on the profile log-likelihood function.

> rlevel.year.40 = rlevel.gev(gev.fit.year, k.blocks=40,
+ type="RetLevel")
> names(rlevel.year.40)
[1] "LowerCB" "rlevel" "UpperCB"
> rlevel.year.40
$LowerCB:
[1] 4.646

$rlevel:
[1] 6.833

$UpperCB:
[1] 20.5

A plot of the estimated return level along with the block maxima, as shown
in Figure 5.8, is created, and the components of the returned list are the
estimated return level along with the end points of the 95% confidence
interval.
The 40 year return level may also be estimated from the GEV distribu-

tion fit to quarterly maxima. Since 40 years is 160 quarters, the 40 year
return level computed from the “gev” object gev.fit.quarter is

> rlevel.160.q = rlevel.gev(gev.fit.quarter, k.blocks=160,



146 5. Modeling Extreme Values

da
ta

0 5 10 15 20 25

2
3

4
5

6

FIGURE 5.8. Estimated 40-year return level with 95% confidence band for the
S&P 500 daily negative returns.

+ type="RetLevel")
> rlevel.160.q
$LowerCB:
[1] 4.433

$rlevel:
[1] 5.699

$UpperCB:
[1] 8.549

Here, the estimated return level and asymptotic 95% confidence interval
are smaller than the corresponding quantities estimated from annual data.

5.3 Modeling Extremes Over High Thresholds

Modeling only block maxima data is inefficient if other data on extreme val-
ues are available. A more efficient alternative approach that utilizes more
data is to model the behavior of extreme values above some high threshold.
This method is often called peaks over thresholds (POT). Another advan-
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tage of the POT approach is that common risk measures like Value-at-Risk
(VaR) and expected shortfall (ES) may easily be computed3.
To illustrate the concepts of VaR and ES, review the daily S&P 500

returns analyzed in the previous section. Suppose the S&P 500 is the only
asset in a large portfolio for an investor and that the random variable X
with CDF F represents the daily loss on the portfolio. The daily VaR on
the portfolio is simply a high quantile of the distribution F of daily losses.
For example, the daily 1% VaR on the portfolio is the 99% quantile of X

V aR.99 = F−1(0.99).

That is, with 1% probability the loss in portfolio value over a day will
exceed V aR.99. Often the high quantile V aR.99 is computed assuming X ∼
N(µ, σ2). In this case, the calculation of V aR.99 reduces to the simple
formula

V aR.99 = µ+ σ · q.99 (5.8)

where q.99 is the 99% quantile of the standard normal distribution. The
distribution of daily portfolio losses, however, generally has fatter tails than
the normal distribution so that (5.8) may severely under-estimate V aR.99.
Estimates of VaR based on the POT methodology are much more reliable.
The ES on the portfolio is the average loss given that VaR has been

exceeded. For example, the 1% ES is the conditional mean of X given that
X > V AR.99

ES.99 = E[X|X > V aR.99]

If X ∼ N(µ, σ2) then ES.99 may be computed as the mean of a truncated
normal random variable:

ES.99 = µ+ σ · φ(z)

1− Φ(z) (5.9)

where z = (V aR.99 − µ)/σ, φ(z) is the standard normal density function
and Φ(z) is the standard normal CDF. Again, if the distribution of losses
has fatter tails than the normal, then (5.9) will underestimate ES.99. The
POT methodology estimates the distribution of losses over a threshold and
produces an estimate of ES as a by-product of the estimation.
For another example, consider the “timeSeries” danish representing

Danish fire loss data in S+FinMetrics, which is analyzed in McNeil (1999).
The data in danish consist of 2167 daily insurance claims for losses exceed-
ing one million Danish Krone from January 3, 1980 through December 31,
1990. The reported loss is an inflation adjusted total loss for the event con-
cerned and includes damages to buildings, damage to contents of buildings
as well as loss of profits. Figure 5.9 created using

3Notice that VaR and ES are based on the distribution of the losses and not on the
distribution of the maximum losses. The analysis of block maxima based on the GEV
distribution allowed inferences to be made only on the maxima of returns. The POT
analysis will allow inferences to be made directly on the distribution of losses.
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FIGURE 5.9. Large fire loss insurance claims.

> plot(danish, ain="Fire Loss Insurance Claims",
+ ylab="Millions of Danish Krone")

shows the data and reveals several extreme losses. For risk management
purposes, insurance companies may be interested in the frequency of oc-
currence of large claims above some high threshold as well as the average
value of the claims that exceed the high threshold. Additionally, they may
be interested in daily VaR and ES. The statistical models for extreme values
above a high threshold may be used to address these issues.

5.3.1 The Limiting Distribution of Extremes Over High
Thresholds and the Generalized Pareto Distribution

As with the analysis of block maxima, let X1,X2, . . . be a sequence of
iid random variables representing risks or losses with an unknown CDF
F and let Mn = max{X1, . . . ,Xn}. A natural measure of extreme events
are values of the Xi that exceed a high threshold u. Define the excess
distribution above the threshold u as the conditional probability:

Fu(y) = Pr{X − u ≤ y|X > u} = F (y + u)− F (u)

1− F (u)
, y > 0 (5.10)

For the class of distributions F such that the CDF of the standardized
value of Mn converges to a GEV distribution (5.2), it can be shown (c.f.
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Embrechts et. al. (1997)) that for large enough u there exists a positive
function β(u) such that the excess distribution (5.10) is well approximated
by the generalized Pareto distribution (GPD)

Gξ,β(u)(y) =

½
1− (1 + ξy/β(u)) for ξ 6= 0
1− exp(−y/β(u)) for ξ = 0 , β(u) > 0 (5.11)

defined for y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β(u)/ξ when ξ < 0.

Remarks:

• Operationally, for a sufficiently high threshold u, Fu(y) ≈ Gξ,β(u)(y)
for a wide class of loss distributions F . To implement this result, the
threshold value u must be specified and estimates of the unknown
parameters ξ and β(u) must be obtained.

• There is a close connection between the limiting GEV distribution
for block maxima and the limiting GPD for threshold excesses. For a
given value of u, the parameters ξ, µ and σ of the GEV distribution
determine the parameters ξ and β(u). In particular, the shape pa-
rameter ξ of the GEV distribution is the same shape parameter ξ in
the GPD and is independent of the threshold value u. Consequently,
if ξ < 0 then F is in the Weibull family and Gξ,β(u) is a Pareto type
II distribution; if ξ = 0 then F is in the Gumbell family and Gξ,β(u)

is an exponential distribution; and if ξ > 0 then F is in the Fréchet
family and Gξ,β(u) is a Pareto distribution.

• For ξ > 0, the most relevant case for risk management purposes, it
can be shown that E[Xk] = ∞ for k ≥ α = 1/ξ. For example, if
ξ = 0.5 then E[X2] =∞ and the distribution of losses, X, does not
have finite variance. If ξ = 1 then E[X] =∞.

• Consider a limiting GPD with shape parameter ξ and scale param-
eter β(u0) for an excess distribution Fu0 with threshold u0. For an
arbitrary threshold u > u0, the excess distribution Fu has a limit-
ing GPD distribution with shape parameter ξ and scale parameter
β(u) = β(u0)+ξ(u−u0). Alternatively, for any y > 0 the excess distri-
bution Fu0+y has a limiting GPD distribution with shape parameter
ξ and scale parameter β(u0) + ξy.

Example 25 Plots of GPDs

The S+FinMetrics/EVIS functions pgpd, qgpd, dgpd and rgpd compute
cumulative probability, quantiles, density and random number generation,
respectively, from the GPD (5.11) for ξ 6= 0 and general values for β(u).
For example, the S-PLUS code to compute and plot the CDFs and pdfs
with β(u) = 1 for a Pareto (ξ = −0.5), exponential (ξ = 0) and Pareto
type II (ξ = −0.5) is
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> par(mfrow=c(1,2))
> y.vals = seq(0,8,length=200)
> cdf.p = pgpd(y.vals, xi=0.5)
> cdf.p2 = ifelse((y.vals < 2), pgpd(y.vals,xi=-0.5), 1)
> cdf.e = 1-exp(-z.vals)
> plot(y.vals, cdf.p, type="l", xlab="y", ylab="G(y)",
+ ylim=c(0,1))
> lines(y.vals, cdf.e, type="l", lty=2)
> lines(y.vals, cdf.p2, type="l", lty=3)
> legend(1,0.2,legend=c("Pareto G(0.5,1)","Exponential G(0,1)",
+ "Pareto II G(0.5,1)"),lty=1:3)
> # PDFs
> pdf.p = dgpd(y.vals, xi=0.5)
> pdf.p2 = ifelse((y.vals < 2), dgpd(y.vals,xi=-0.5), 0)
> pdf.e = exp(-y.vals)
> plot(y.vals, pdf.p, type="l", xlab="y", ylab="g(y)",
+ ylim=c(0,1))
> lines(y.vals, pdf.e, type="l", lty=2)
> lines(y.vals, pdf.p2, type="l", lty=3)
> legend(2,1,legend=c("Pareto g(0.5,1)","Exponential g(0,1)",
+ "Pareto II g(-0.5,1)"),lty=1:3)

The CDFs and pdfs are illustrated in Figure 5.10. Notice that the Pareto
type II is only defined for y < 2.

Example 26 qq-plots to determine tail behavior

A simple graphical technique infers the tail behavior of observed losses is
to create a qq-plot using the exponential distribution as a reference distri-
bution. If the excesses over thresholds are from a thin-tailed distribution,
then the GPD is exponential with ξ = 0 and the qq-plot should be linear.
Departures from linearity in the qq-plot then indicate either fat-tailed be-
havior (ξ > 0) or bounded tails (ξ < 0). The S+FinMetrics/EVIS function
qplot may be used to create a qq-plot using a GPD as a reference distri-
bution. For example, to create qq-plots with the exponential distribution
as the reference distribution for the S&P 500 negative returns over the
threshold u = 1 and the Danish fire loss data over the threshold u = 10 use

> par(mfrow=c(1,2))
> qplot(-spto87, threshold=1, main="S&P 500 negative returns")
> qplot(danish, threshold=10, main="Danish fire losses")

Figure 5.11 shows these qq-plots. There is a slight departure from linearity
for the negative S&P 500 returns and a rather large departure from linearity
for the Danish fire losses.
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FIGURE 5.10. Generalized Pareto CDFs, Gξ,1, and pdfs, gξ,1, for Pareto
(ξ = 0.5), exponential (ξ = 0) and Pareto type II (ξ = −0.5).

Mean Excess Function

Suppose the threshold excess X−u0 follows a GPD with parameters ξ < 1
and β(u0). Then the mean excess over the threshold u0 is

E[X − u0|X > u0] =
β(u0)

1− ξ
. (5.12)

For any u > u0, define the mean excess function e(u) as

e(u) = E[X − u|X > u] =
β(u0) + ξ(u− u0)

1− ξ
. (5.13)

Alternatively, for any y > 0

e(u0 + y) = E[X − (u0 + y)|X > u0 + y] =
β(u0) + ξy

1− ξ
. (5.14)

Notice that for a given value of ξ, the mean excess function is a linear
function of y = u − u0. This result motivates a simple graphical way to
infer the appropriate threshold value u0 for the GPD. Define the empirical
mean excess function

en(u) =
1

nu

nuX
i=1

(x(i) − u) (5.15)
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FIGURE 5.11. QQ-plots with exponential reference distribution for the S&P 500
negative returns over the threshold u = 1 and the Danish fire losses over the
threshold u = 10.

where x(i) (i = 1, . . . , nu) are the values of xi such that xi > u. The mean
excess plot is a plot of en(u) against u and should be linear in u for u > u0.

Example 27 Mean excess plots for S&P 500 and fire loss data

The S+FinMetrics/EVIS function meplot computes the empirical mean
excess function (5.15) and creates the mean excess plot. The mean excess
functions and mean excess plots for the S&P 500 negative returns and the
Danish fire losses are computed using

> me.sp500 = meplot(-spto87)
> me.dainsh = meplot(danish)
> class(me.sp500)
[1] "data.frame"
> colIds(me.sp500)
[1] "threshold" "me"

The function meplot returns a data frame containing the thresholds u and
the mean excesses en(u) and produces a mean excess plot. The mean excess
plots for the S&P 500 and Danish data are illustrated in Figures 5.12 and
5.13. The mean excess plot for the S&P 500 negative returns is linear in
u for u < −1 and for u > 1. The plot for the fire loss data appears to be
linear for almost all values of u.
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FIGURE 5.13. Mean excess plot for the danish fire loss data.
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5.3.2 Estimating the GPD by Maximum Likelihood

Let x1, . . . , xn be iid sample of losses with unknown CDF F . For a given
high threshold u, extreme values are those xi values for which xi − u >
0. Denote these values x(1), . . . , x(k) and define the threshold excesses as
yi = x(i) − u for i = 1, . . . , k. The results of the previous section imply
that if u is large enough then {y1, . . . , yk} may be thought of as a random
sample from a GPD with unknown parameters ξ and β(u). For ξ 6= 0, the
log-likelihood function based on (5.11) is

l(ξ, β(u)) = −k ln(β(u))− (1 + 1/ξ)
kX
i=1

ln(1 + ξyi/β(u))

provided yi ≥ 0 when ξ > 0 and 0 ≤ yi ≤ −β(u)/ξ when ξ < 0. For ξ = 0
the log-likelihood function is

l(β(u)) = −k ln(β(u))− β(u)−1
kX
i=1

yi.

5.3.3 Estimating the Tails of the Loss Distribution

For a sufficiently high threshold u, Fu(y) ≈ Gξ,β(u)(y). Using this result
in (5.10) and setting x = u + y, an approximation to the tails of the loss
distribution F (x) for x > u is given by

F (x) = (1− F (u))Gξ,β(u)(y) + F (u) (5.16)

The CDF value F (u) may be estimated non-parametrically using the em-
pirical CDF

F̂ (u) =
(n− k)

n
(5.17)

where k denotes the number of exceedences over the threshold u. Combin-
ing the parametric representation (5.11) with the non-parametric estimate
(5.17) gives the resulting estimate of (5.16)

F̂ (x) = 1− k

n

Ã
1 + ξ̂ · x− u

β̂(u)

!
(5.18)

where ξ̂ and β̂(u) denote the mles of ξ and β(u), respectively.

Example 28 Estimating the GPD for the S&P 500 negative returns

Maximum likelihood estimation of the parameters ξ and β(u) of the
GPD (5.11) may be computed using the S+FinMetrics/EVIS function gpd.
In order to compute the mle, a threshold value u must be specified. The
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threshold should be large enough so that the GPD approximation is valid
but low enough so that a sufficient number of observations k are available
for a precise fit.
To illustrate, consider fitting GPD to the negative returns on the S&P

500 index. The S+FinMetrics/EVIS function gpd may be used to compute
the mles for the GPD (5.11) for a given threshold u. The mean excess plot
for the S&P 500 returns in Figure 5.12 suggests a value of u = 1 may be
appropriate for the GPD approximation to be valid. The mle using u = 1
is computed using

> gpd.sp500.1 = gpd(-spto87, threshold=1)
> class(gpd.sp500.1)
[1] "gpd"

The function gpd returns an object of class “gpd” for which there is only a
plot method. The components of a “gpd” object are

> names(gpd.sp500.1)
[1] "n" "data"
[3] "upper.exceed" "lower.exceed"
[5] "upper.thresh" "lower.thresh"
[7] "p.less.upper.thresh" "p.larger.lower.thresh"
[9] "n.upper.exceed" "n.lower.exceed"
[11] "upper.method" "lower.method"
[13] "upper.par.ests" "lower.par.ests"
[15] "upper.par.ses" "lower.par.ses"
[17] "upper.varcov" "lower.varcov"
[19] "upper.info" "lower.info"
[21] "upper.converged" "lower.converged"
[23] "upper.nllh.final" "lower.nllh.final"

and a description of these components is given in the online help for
gpd.object. The threshold information is

> gpd.sp500.1$upper.thresh
[1] 1
> gpd.sp500.1$n.upper.exceed
[1] 595
> gpd.sp500.1$p.less.upper.thresh
[1] 0.9148

The mles for ξ and β(1) and asymptotic standard errors are

> gpd.sp500.1$upper.par.ests
xi beta

0.06767 0.4681
> gpd.sp500.1$upper.par.ses

xi beta
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FIGURE 5.14. Diagnostic plots for GPD fit to daily negative returns on S&P 500
index.

0.03973 0.02669

Notice that ξ̂ = 0.068 is fairly close to zero and indicates that the return
distribution is not so heavy-tailed. Also, the GPD estimate of ξ is quite a
bit smaller than the GEV estimate ξ̂ = 0.334 based on annual data, but it
is very close to the GEV estimate ξ̂ = 0.069 based on quarterly data.
Diagnostic plots of the GDP fit are created using the plot method

> plot(gpd.sp500.1)

Make a plot selection (or 0 to exit):
1: plot: Excess Distribution
2: plot: Tail of Underlying Distribution
3: plot: Scatterplot of Residuals
4: plot: QQplot of Residuals
Selection:

The four plot options are depicted in Figure 5.14. The first plot option
shows the GPD estimate of the excess distribution, and the second plot
option shows the tail estimate (5.18). The GPD appears to fit the dis-
tribution of threshold excesses fairly well. Note, the S+FinMetrics/EVIS
function tailplot may be used to compute plot option 2 directly.
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FIGURE 5.15. Estimates of shape parameter ξ for S&P 500 negative returns as
a function of the threshold value u.

The S+FinMetrics/EVIS function shape can be used to create a plot
showing how the mle of the shape parameter ξ varies with the selected
threshold u:

> shape(-spto87, end=600)

The optional argument end=600 specifies the maximum number of thresh-
old exceedences to consider. The resulting plot is shown in Figure 5.15. The
estimates of ξ are fairly stable and close to zero for thresholds values less
than 2.

Example 29 Estimating the GPD for the Danish fire loss data

The mean excess plot in Figure 5.13 suggests a threshold value of u = 10.
The mles of the GPD parameters for the Danish fire loss data using a high
threshold of 10 million Krone are computed using

> gpd.fit.10 = gpd(danish, threshold=10)
> gpd.danish.10 = gpd(danish, threshold=10)
> gpd.danish.10$n.upper.exceed
[1] 109
> gpd.danish.10$p.less.upper.thresh
[1] 0.9497
> gpd.danish.10$upper.par.ests
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FIGURE 5.16. Diagnostic plots from GPD fit to Danish fire loss data.

xi beta
0.497 6.975
> gpd.danish.10$upper.par.ses

xi beta
0.1363 1.113

The estimate of ξ shows heavy tails and suggests that the variance may
not be finite. The diagnostic plots in Figure 5.16, created using

> par(mfrow=c(1,2))
> tailplot(gpd.danish.10)
> shape(danish)

show that the GPD fits the data well and that the estimates of ξ are fairly
stable for a wide range of threshold values.

5.3.4 Risk Measures

As mentioned in the introduction to this section, two common risk measures
are Value-at-Risk (VaR) and expected shortfall (ES). VaR is a high quantile
of the loss distribution. That is, for 0.95 ≤ q < 1, say, V aRq is the qth
quantile of the distribution F

V aRq = F−1(q) (5.19)
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where F−1 is the inverse of F . For a given probability q > F (u), an estimate
of (5.19) based on inverting the tail estimation formula (5.18) is

[V aRq = u+
β̂(u)

ξ̂

µ³n
k
(1− q)

´−ξ̂
− 1
¶

(5.20)

Expected shortfall is the expected loss size, given that V aRq is exceeded

ESq = E[X|X > V aRq] (5.21)

The measure ESq is related to V aRq via

ESq = V aRq +E[X − V aRq|X > V aRq]. (5.22)

where the second term in (5.22) is simply the mean of the excess distribution
FV aRq (y) over the threshold V aRq. By the translation property of the GPD
distribution, the GPD approximation to FV aRq(y) has shape parameter ξ
and scale parameter β(u) + ξ(V aRq − u). Consequently, using (5.13)

E[X − V aRq|X > V aRq] =
β(u) + ξ(V aRq − u)

1− ξ
(5.23)

provided ξ < 1. Combining (5.23) with (5.20) and substituting into (5.22)
gives the GPD approximation to ESq

dESq = [V aRq

1− ξ̂
+

β̂(u)− ξ̂u

1− ξ̂
. (5.24)

Example 30 Computing VaR and ES for negative S&P 500 returns

The S+FinMetrics/EVIS function riskmeasures computes estimates of
V aRq and ESq based on the GPD approximations (5.20) and (5.24), re-
spectively, using the information from a “gpd” object. For example, the
V aRq and ESq estimates for the negative S&P 500 negative returns for
q = 0.95, 0.99 are computed using

> riskmeasures(gpd.sp500.1, c(0.95,0.99))
p quantile sfall

[1,] 0.95 1.2539 1.7744
[2,] 0.99 2.0790 2.6594

That is, with 5% probability the daily return could be as low as −1.254%
and, given that the return is less than 1.254%, the average return value is
−1.774%. Similarly, with 1% probability the daily return could be as low
as −2.079% with an average return of −2.659% given that the return is
less than −2.079%.
It is instructive to compare these results to those based on the assump-

tion of normally distributed returns. Using the formulas (5.8) and (5.9),
estimates of V aRq and ESq for q = 0.95, 0.99 are computed using
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> sp500.mu = mean(-spto87)
> sp500.sd = sqrt(var(-spto87))
> var.95 = sp500.mu + sp500.sd*qnorm(0.95)
> var.99 = sp500.mu + sp500.sd*qnorm(0.99)
> var.95
[1] 1.299
> var.99
[1] 1.848

> z95 = (var.95 - sp500.mu)/sp500.sd
> z99 = (var.99 - sp500.mu)/sp500.sd
> es.95 = sp500.mu + sp500.sd*dnorm(z95)/(1-pnorm(z95))
> es.99 = sp500.mu + sp500.sd*dnorm(z99)/(1-pnorm(z99))
> es.95
[1] 1.636
> es.99
[1] 2.121

The estimates of V aRq and ESq based on the normal distribution are fairly
close to the estimates based on the GPD. This result is to be expected since
ξ̂ = 0.068 is close zero.

Example 31 Computing VaR and ES for Danish Fire loss data

The V aRq and ESq estimates for the Danish fire loss data for q =
0.95, 0.99 are

> riskmeasures(gpd.danish.10, c(0.95,0.99))
p quantile sfall

[1,] 0.95 10.042 23.95
[2,] 0.99 27.290 58.24

The estimates of V aRq and ESq based on the normal distribution are

> danish.mu = mean(danish)
> danish.sd = sqrt(var(danish))
> var.95 = danish.mu + danish.sd*qnorm(0.95)
> var.99 = danish.mu + danish.sd*qnorm(0.99)
> var.95
[1] 17.38
> var.99
[1] 23.18
>
> z95 = (var.95 - danish.mu)/danish.sd
> z99 = (var.99 - danish.mu)/danish.sd
> es.95 = danish.mu + danish.sd*dnorm(z95)/(1-pnorm(z95))
> es.99 = danish.mu + danish.sd*dnorm(z99)/(1-pnorm(z99))
> es.95
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FIGURE 5.17. Asymptotic confidence intervals for V aR.99 and ES.99 based on
the GPD fit to the Danish fire loss data.

[1] 20.93
> es.99
[1] 26.06

In this case, because ξ̂ = 0.497, the estimates based on the GPD and normal
distribution differ considerably.
Estimates and asymptotically valid confidence intervals for V aRq and

ESq may be computed using the S+FinMetrics/EVIS function gpd.q and
gpd.sfall, respectively. Wald-type confidence intervals based on the delta
method or likelihood ratio-type confidence intervals based on the profile log-
likelihood function may be computed, and these confidence intervals may
be visualized on a plot with the tail estimate (5.18). First create plot of
the excess distribution using the S+FinMetrics/EVIS function tailplot

> tailplot(gpd.danish.10)

After the plot has been created, the asymptotic confidence intervals for
V aRq and ESq may be added using

> gpd.q(0.99,plot=T)
> gpd.sfall(0.99,plot=T)

The combined plots are illustrated in Figure 5.17. Notice, in particular, the
wide asymmetric confidence interval for ES.99. This result is due to the
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FIGURE 5.18. V aR.99 estimates as a function of u for the Danish fire loss data.

uncertainty created by only a few observations in the extreme tails of the
distribution.
The sensitivity of the V aRq estimates to changes in the threshold u

may be investigated using the S+FinMetrics/EVIS function quant. For
example, to see how the V aR.99 estimates vary with u use

> quant(danish, p=0.99)

which produces the graph in Figure 5.18. The V aR.99 estimates are stable
for u < 20.

5.4 Hill’s Non-parametric Estimator of Tail Index

The shape parameter ξ, or equivalently, the tail index a = 1/ξ, of the GEV
and GPD distributions (5.2) and (5.11) may be estimated non-parametrically
in a number of ways. A popular method due to Hill (1975) applies to the
case where ξ > 0 (α > 0) so that the data is generated by some fat-tailed
distribution in the domain of attraction of a Fréchet type GEV. To describe
the Hill estimator, consider a sample of losses X1, . . . ,XT and define the
order statistics as

X(1) ≥ X(2) ≥ · · · ≥ X(T )
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For a positive integer k, the Hill estimator of ξ is defined as

ξ̂
Hill

(k) =
1

k

kX
j=1

¡
logX(j) − logX(k)

¢
(5.25)

and the Hill estimator of α is

α̂Hill(k) = 1/ξ̂
Hill

(k) (5.26)

The Hill estimators of ξ and α depend on the integer k. Notice that k in
(5.26) plays the same role as k in (5.17) for the analysis of the GPD. It can
be shown that if F is in the domain of attraction of a GEV distribution,

then ξ̂
Hill

(k) converges in probability to ξ as k →∞ and k
n → 0, and that

ξ̂
Hill

(k) is asymptotically normally distributed with asymptotic variance

avar(ξ̂
Hill

(k)) =
ξ2

k

By the delta method, α̂Hill(k) is asymptotically normally distributed with
asymptotic variance

avar(α̂Hill(k)) =
α2

k

In practice, the Hill estimators ξ̂
Hill

(k) or α̂Hill(k) are often plotted against
k to find the value of k such that the estimator appears stable.

5.4.1 Hill Tail and Quantile Estimation

Suppose that the loss distribution F is such that 1−F (x) = x−αL(x) with
α = 1/ξ > 0, where L(x) is a slowly varying function. Let x > X(k+1)

where X(k+1) is a high order statistic. Then the Hill estimator of F (x) is
given by

F̂Hill(x) = 1− k

n

µ
x

X(k+1))

¶−α̂Hill(k)
, x > X(k+1) (5.27)

Inverting the Hill tail estimator (5.27) gives the Hill quantile estimator

x̂Hill
q,k = X(k+1) −X(k+1)

Ã³n
k
(1− q)

´−ξ̂Hill(k)
− 1
!

(5.28)

where q > 1−k/n. The Hill quantile estimator (5.28) is very similar to the
mle GPD quantile estimator (5.20) with u = X(k+1).

Example 32 Nonparametric estimation of ξ for Danish fire loss data
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The Hill estimates of α, ξ and the quantile xq,k may be computed and
plotted using the S+FinMetrics/EVIS function hill. The arguments ex-
pected by hill are

> args(hill)
function(data, option = "alpha", start = 15, end = NA,
p = NA, ci = 0.95, plot = T, reverse = F,
auto.scale = T, labels = T, ...)

where data is a univariate numeric vector or “timeSeries”, option de-
termines if α (“alpha”), ξ (“xi”) or xq,k (“quantile”) is to be computed,
start and end specify the starting and ending number of order statistics to
use in computing the estimates, p specifies the probability required when
option=“quantile”, ci determines the probability for asymptotic confi-
dence bands, and plot determines if a plot is to be created. To illustrate
the use of hill, consider the computation of (5.25) for the Danish fire loss
data using all of the order statistics less than X(15)

> hill.danish = hill(danish, option="xi")
> class(hill.danish)
[1] "data.frame"
> names(hill.danish)
[1] "xi" "orderStat" "threshold"

The function hill returns a data frame with components xi containing
the estimates of ξ, orderStat containing the order statistic labels k, and
threshold containing the order statistic or threshold values X(k). Since
the default option plot=T is used, hill also produces the plot shown in

Figure 5.19. For k > 120 (X(k) < 9), ξ̂
Hill

(k) is fairly stable around 0.7.
The GPD estimate of ξ with threshold u = 10 is 0.497. The Hill estimates
for threshold values near 10 are

> idx = (hill.danish$threshold >= 9.8 &
+ hill.danish$threshold <= 10.2)
> hill.danish[idx,]

xi orderStat threshold
2059 0.6183 109 9.883
2060 0.6180 108 10.011
2061 0.6173 107 10.072
2062 0.6191 106 10.137
2063 0.6243 105 10.178
2064 0.6285 104 10.185

The 99% quantile estimates (5.28) for 15 ≤ k ≤ 500 are computed using
> hill.danish.q = hill(danish, option="quantile", p=0.99,
+ end=500)

and are illustrated in Figure 5.20. For threshold values around 10, the Hill
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FIGURE 5.19. Hill estimates of ξ for the Danish fire loss data.
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FIGURE 5.20. Hill estimates of 1% quantile of Danish fire loss data.
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estimates of the 99% quantile are similar to the mle GPD estimates shown
in Figure 5.18.
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6
Time Series Regression Modeling

6.1 Introduction

Time series regression techniques are widely used in the analysis of financial
data and for estimating and testing models for asset prices and returns like
the capital asset pricing model and the arbitrage pricing model. They are
used to uncover and exploit predictive relationships between financial vari-
ables. For example, the predictability of asset returns using valuation ratios
like dividend/price, earnings/price and book/market is usually established
using time series regression techniques, and the resulting regression mod-
els are used to forecast future returns. Time series regression techniques
are also used for testing the informational efficiency of financial markets.
Market efficiency often implies that certain financial variables should not
be predictable based on observable information, and time series regression
techniques may be used to verify efficiency implications.
Regression modeling with financial time series requires some care because

the time series properties of the data can influence the properties of stan-
dard regression estimates and inference methods. In general, standard re-
gression techniques are appropriate for the analysis of I(0)/stationary data.
For example, asset returns are often treated as stationary and ergodic, and
standard regression techniques are then used to estimate models involving
asset returns. For nonstationary trending data like asset prices, however,
standard regression techniques may or may not be appropriate depending
on the nature of the trend. This chapter discusses regression modeling tech-
niques appropriate for I(0)/stationary and introduces and illustrates the
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use of various S+FinMetrics functions designed for time series regression
analysis.
The rest of the chapter is organized as follows: Section 6.2 gives an

overview of the linear time series regression model and covers estimation,
goodness of fit, inference and residual diagnostics. Section 6.3 introduces
the S+FinMetrics function OLS that extends the S-PLUS linear model func-
tion lm to handle general time series regression and illustrates the use of
OLS through examples. Section 6.4 reviews dynamic regression models in-
volving distributed lags of the dependent and explanatory variables and
gives examples of how OLS may be used analyze these models. Section 6.5
discusses heteroskedasticity and autocorrelation consistent coefficient co-
variance matrices and their use in constructing robust standard errors for
estimated regression coefficients. Section 6.6 ends the chapter with a discus-
sion of recursive regression techniques for assessing the parameter stability
of time series regression models.
In this chapter, the technical details of time series regression are kept to

a minimum. Excellent treatments of time series regression models from an
econometric perspective are given in Hamilton (1994) and Hayashi (2000).
Many applications of time series regression to financial data can be found
in Mills (1999).

6.2 Time Series Regression Model

Consider the linear time series regression model

yt = β0 + β1x1t + · · ·+ βkxkt + εt = x
0
tβ + εt, t = 1, . . . , T (6.1)

where xt = (1, x1t, . . . , xkt)0 is a (k+1)×1 vector of explanatory variables,
β = (β0, β1, . . . , βk)

0 is a (k+1)×1 vector of coefficients, and εt is a random
error term. In matrix form the model is expressed as

y = Xβ + ε (6.2)

where y and ε are (T × 1) vectors and X is a (T × (k + 1)) matrix.
The standard assumptions of the time series regression model are (e.g.

Hayashi (2000), chapters 1 and 2):

• the linear model (6.1) is correctly specified.

• {yt,xt} is jointly stationary and ergodic.

• the regressors xt are predetermined : E[xisεt] = 0 for all s ≤ t and
i = 1, . . . , k.

• E[xtx
0
t] = ΣXX is of full rank k + 1.
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• {xtεt} is an uncorrelated process with finite (k+1)×(k+1) covariance
matrix E[ε2txtx

0
t] = S = σ2ΣXX .

The second assumption rules out trending regressors, the third rules out
endogenous regressors but allows lagged dependent variables, the fourth
avoids redundant regressors or exact multicolinearity, and the fifth implies
that the error term is a serially uncorrelated process with constant uncondi-
tional variance σ2. In the time series regression model, the regressors xt are
random and the error term εt is not assumed to be normally distributed.

6.2.1 Least Squares Estimation

Ordinary least squares (OLS) estimation is based on minimizing the sum
of squared residuals

SSR(β) =
TX
t=1

(yt − x0tβ)2 =
TX
t=1

ε2t

and produces the fitted model

yt = x
0
tβ̂ + ε̂t, t = 1, . . . , T

where β̂ = (X
0
X)
−1
X0y and ε̂t = yt − ŷt = yt −x0tβ̂. The error variance is

estimated as σ̂2 = ε̂0ε̂/(T − k − 1).
Under the assumptions described above, the OLS estimates β̂ are con-

sistent and asymptotically normally distributed. A consistent estimate of
the asymptotic variance of β̂, avar(β̂), is given by1

[avar(β̂) = σ̂2(X0X)−1 (6.3)

Estimated standard errors for β̂i (i = 0, ..., k), denoteddSE(β̂i), are given
by the square root of the diagonal elements of (6.3).

6.2.2 Goodness of Fit

Goodness of fit is summarized by the R2 of the regression

R2 = 1− ε̂0ε̂
(y− ȳ1)0(y− ȳ1)

1The following convention is used throughout this book. A consistent and asymptot-

ically normal estimator β̂ satisfies
√
T (β̂ − β)

d→ N(0,V) where
d→ denotes convergence

in distribution. Call V the asymptotic variance of
√
T (β̂ − β) and T−1V the asymptotic

variance of β̂. Use the notation β̂ A∼ N(β, T−1V) to denote the asymptotic approximat-
ing distribution of β̂ and [avar(β̂) to denote the asymptotic variance T−1V.
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where ȳ is the sample mean of yt and 1 is a (T × 1) vector of 1’s. R2
measures the percentage of the variability of yt that is explained by the
regressors, xt. The usual R2 has the undesirable feature of never decreasing
as more variables are added to the regression, even if the extra variables
are irrelevant. To remedy this, the R2 statistic may be adjusted for degrees
of freedom giving

R2a = 1−
ε̂0ε̂/(T − k)

(y− ȳ1)0(y− ȳ1)/(T − 1) =
σ̂2dvar(yt)

The adjusted R2, R2a, may decrease with the addition of variables with low
explanatory power. If fact, it can be shown, e.g. Greene (2000) pg. 240,
that R2a will fall (rise) when a variable is deleted from the regression if
the absolute value of the t-statistic associated with this variable is greater
(less) than 1.

6.2.3 Hypothesis Testing

The simple null hypothesis

H0 : βi = β0i

is tested using the t-ratio

t =
β̂i − β0idSE(β̂i) (6.4)

which is asymptotically distributed N(0, 1) under the null. With the addi-
tional assumption of iid Gaussian errors and regressors independent of the
errors for all t, β̂ is normally distributed in finite samples and the t-ratio
is distributed Student-t with T − k − 1 degrees of freedom.
Linear hypotheses of the form

H0 : Rβ = r (6.5)

where R is a fixed q× (k+1) matrix of rank q and r is a fixed q× 1 vector
are tested using the Wald statistic

Wald = (Rβ̂ − r)0
h
R[avar(β̂)R0

i−1
(Rβ̂ − r) (6.6)

Under the null, the Wald statistic is asymptotically distributed χ2(q). Un-
der the additional assumption of iid Gaussian errors and regressors inde-
pendent of the errors for all t, Wald/q is distributed F (q, T − k − 1) in
finite samples.
The statistical significance of all of the regressors excluding the constant

is captured by the F -statistic

F =
R2/k

(1−R2)/(T − k − 1)
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which is distributed F (k, T −k−1) under the null hypothesis that all slope
coefficients are zero and the errors are iid Gaussian.

6.2.4 Residual Diagnostics

In the time series regression models, several residual diagnostic statistics
are usually reported along with the regression results. These diagnostics
are used to evaluate the validity of some of the underlying assumptions of
the model and to serve as warning flags for possible misspecification. The
most common diagnostic statistics are based on tests for normality and
serial correlation in the residuals of (6.1).
The most common diagnostic for serial correlation based on the estimated

residuals ε̂t is the Durbin-Watson statistic

DW =

PT
t=2(ε̂t − ε̂t−1)2PT

t=1 ε̂
2
t

.

It is easy to show that DW ≈ 2(1− ρ̂). where ρ̂ is the estimated correlation
between and ε̂t and ε̂t−1. Hence, values of DW range between 0 and 4.
Values of DW around 2 indicate no serial correlation in the errors, values
less than 2 suggest positive serial correlation, and values greater than 2
suggest negative serial correlation2. Another common diagnostic for serial
correlation is the Ljung-Box modified Q statistic discussed in Chapter 3.
Although error terms in the time series regression model are not as-

sumed to be normally distributed, severe departures from normality may
cast doubt on the validity of the asymptotic approximations utilized for
statistical inference especially if the sample size is small. Therefore, an-
other diagnostic statistic commonly reported is the Jarque-Bera test for
normality discussed in Chapter 3.

6.3 Time Series Regression Using the
S+FinMetrics Function OLS

Ordinary least squares estimation of the time series regression model (6.1)
in S-PLUS is carried out with the S+FinMetrics function OLS. OLS extends
the S-PLUS linear model function lm to handle time series regression in a

2The DW statistic is an optimal test only for the special case that εt in (1) follows
an AR(1) process and that the regressors xt are fixed. Critical values for the bounding
distribution of DW in this special case are provided in most econometrics textbooks.
However, in practice there is often little reason to believe that εt follows an AR(1)
process and the regressors are rarely fixed and so the DW critical values are of little
practical use.
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more natural way. The arguments expected by OLS are similar to those for
lm:

> args(OLS)
function(formula, data, weights, subset, na.rm = F, method
= "qr", contrasts = NULL, start = NULL, end = NULL,...)

The main arguments are formula, which is an S-PLUS formula with the
response variable(s) on the left hand side of the ~ character and the re-
sponse variables separated by + on the right hand side3, and data, which is
“timeSeries” or data frame in which to interpret the variables named in
the formula and subset arguments. The other arguments will be explained
and their use will be illustrated in the examples to follow.
OLS produces an object of class “OLS” for which there are print, summary,

plot and predict methods as well as extractor functions coefficients
(coef), residuals (resid), fitted.values (fitted), vcov and IC. The
extractor functions coef, resid and fitted are common to many S-PLUS
model objects. Note that if “timeSeries” objects are used in the regression
then the extracted residuals and fitted values are also “timeSeries” ob-
jects. The extractor functions vcov, which extracts[avar(β̂), and IC, which
extracts information criteria, are specific to S+FinMetrics model objects
and work similarly to the extractor functions vcov and AIC from the MASS
library.
There are several important differences between lm and OLS. First, the

argument formula is modified to accept lagged values of the dependent
variable through the use of AR terms and lagged values of regressors through
the use of the S+FinMetrics functions tslag and pdl. Second, subset re-
gression for “timeSeries” data is simplified through the use of the start
and end options. Third, summary output includes time series diagnostic
measures and standard econometric residual diagnostic tests may be com-
puted from OLS objects. Fourth, heteroskedasticity consistent as well as
heteroskedasticity and autocorrelation consistent coefficient covariance ma-
trices may be computed from OLS objects.
The use of OLS for time series regression with financial data is illustrated

with the following examples

Example 33 Estimating and testing the Capital Asset Pricing Model

The famous Capital Asset Pricing Model (CAPM) due to Sharpe, Litner
and Mosen is usually estimated using the excess return single index model

Rit − rft = αi + βi(RMt − rft) + εit, i = 1, . . . , N ; t = 1, . . . , T (6.7)

where Rit is the return on asset i (i = 1, . . . ,N) between time periods
t − 1 and t, RMt is the return on a market index portfolio between time

3See Chapter 1 for details on specifying formulas in S-PLUS.
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periods t− 1 and t, rft denotes the rate of return between times t− 1 and
t on a risk-free asset, and εit is a normally distributed random error such
that εit ∼ GWN(0, σ2i ). The market index portfolio is usually some well
diversified portfolio like the S&P 500 index, the Wilshire 5000 index or the
CRSP4 equally or value weighted index. In practice, rft is taken as the T-
bill rate to match the investment horizon associated with Rit. The CAPM
is an equilibrium model for asset returns and, if RMt is the value-weighted
portfolio of all publicly traded assets, it imposes the relationship

E[Rit]− rft = βi(E[RMt]− rft).

In other words, the above states that the risk premium on asset i is equal
to its beta, βi, times the risk premium on the market portfolio. Hence,
βi is the appropriate risk measure for asset i. In the excess returns single
index model, the CAPM imposes the testable restriction that αi = 0 for
all assets.
The intuition behind the CAPM is as follows. The market index RMt

captures “macro” or market-wide systematic risk factors that affect all re-
turns in one way or another. This type of risk, also called covariance risk,
systematic risk and market risk, cannot be eliminated in a well diversified
portfolio. The beta of an asset captures the magnitude of this nondiversifi-
able risk. The random error term εit represents random “news” that arrives
between time t− 1 and t that captures “micro” or firm-specific risk factors
that affect an individual asset’s return that are not related to macro events.
For example, εit may capture the news effects of new product discoveries
or the death of a CEO. This type of risk is often called firm specific risk,
idiosyncratic risk, residual risk or non-market risk. This type of risk can be
eliminated in a well diversified portfolio. The CAPM says that in market
equilibrium the risk premium on any asset is directly related to the mag-
nitude of its nondiversifiable risk (beta). Diversifiable risk is not priced;
i.e., diversifiable risk does not command a risk premium because it can be
eliminated by holding a well diversified portfolio.
In the CAPM, the independence between RMt and εit allows the un-

conditional variability of an asset’s return Rit to be decomposed into the
variability due to the market index, β2iσ

2
M , plus the variability of the firm

specific component, σ2i . The proportion of the variance Rit explained by
the variability in the market index is the usual regression R2 statistic. Ac-
cordingly, 1−R2 is then the proportion of the variability of Rit that is due
to firm specific factors. One can think of R2 as measuring the proportion
of risk in asset i that cannot be diversified away when forming a portfolio
and 1−R2 as the proportion of risk that can be diversified away.

4CRSP refers to the Center for Research in Security Prices at the University of
Chicago.
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Estimating the CAPM Using the S+FinMetrics Function OLS

Consider the estimation of the CAPM regression (6.7) for Microsoft us-
ing monthly data over the ten year period January 1990 through January
2000. The S&P 500 index is used for the market proxy, and the 30 day
T-bill rate is used for the risk-free rate. The S+FinMetrics “timeSeries”
singleIndex.dat contains the monthly price data for Microsoft, and the
S&P 500 index and the “timeSeries” rf.30day contains the monthly 30
day T-bill rate. The excess return data are created using

> colIds(singleIndex.dat)
[1] "MSFT" "SP500"
> colIds(rf.30day)
[1] "RF"
> ret.ts = getReturns(singleIndex.dat, type="continuous")
> excessRet.ts = seriesMerge(ret.ts,log(1+rf.30day))
> excessRet.ts[,"MSFT"] = excessRet.ts[,"MSFT"] -
+ excessRet.ts[,"RF"]
> excessRet.ts[,"SP500"] = excessRet.ts[,"SP500"] -
+ excessRet.ts[,"RF"]
> excessRet.ts = excessRet.ts[,1:2]

Time plots and a scatterplot of the excess returns created by

> par(mfrow=c(2,1))
> plot(excessRet.ts, plot.args=list(lty=c(1,3)),
+ main="Monthly excess returns on Microsoft and S&P 500 Index")
> legend(0, -0.2, legend=c("MSFT","S&P 500"), lty=c(1,3))
> plot(seriesData(excessRet.ts[,"SP500"]),
+ seriesData(excessRet.ts[,"MSFT"]),
+ main="Scatterplot of Returns",
+ xlab="SP500", ylab="MSFT")

are given in Figure 6.1. The returns on Microsoft and the S&P 500 index
appear stationary and ergodic and tend to move in the same direction over
time with the returns on Microsoft being more volatile than the returns on
the S & P 500 index. The estimate of the CAPM regression for Microsoft
using OLS is:

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)
> class(ols.fit)
[1] "OLS"

OLS produces an object of class “OLS” with the following components

> names(ols.fit)
[1] "R" "coef" "df.resid" "fitted"
[5] "residuals" "assign" "contrasts" "ar.order"
[9] "terms" "call"
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FIGURE 6.1. Monthly excess returns on Microsoft and the S&P 500 Index.

The results of the OLS fit are displayed using the generic print and
summary methods. The print method produces minimal output:

> ols.fit
Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Coefficients:
(Intercept) SP500
0.0128 1.5259

Degrees of freedom: 131 total; 129 residual
Time period: from Feb 1990 to Dec 2000
Residual standard error: 0.09027

Notice that since the object specified in data is a “timeSeries”, the start
and end dates of the estimation sample are printed. The summary method
produces the standard econometric output:

> summary(ols.fit)
Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:
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Min 1Q Median 3Q Max
-0.3835 -0.0566 0.0023 0.0604 0.1991

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0128 0.0080 1.6025 0.1115
SP500 1.5259 0.1998 7.6354 0.0000

Regression Diagnostics:

R-Squared 0.3113
Adjusted R-Squared 0.3059
Durbin-Watson Stat 2.1171

Residual Diagnostics:
Stat P-Value

Jarque-Bera 41.6842 0.0000
Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom
Time period: from Feb 1990 to Dec 2000
F-statistic: 58.3 on 1 and 129 degrees of freedom, the
p-value is 4.433e-012

The estimated value for β for Microsoft is 1.526 with an estimated stan-
dard errordSE(β̂) = 0.200. An approximate 95% confidence interval for β
is β̂ ± 2· dSE(β̂) = [1.126, 1.926], and so Microsoft is judged to be riskier
than the S&P 500 index. The estimated value of α is 0.013 with an esti-
mated standard error of dSE(α̂) = 0.008. An approximate 95% confidence
interval for α is α̂±2·dSE(α̂) = [−0.003, 0.029]. Since α = 0 is in the confi-
dence interval the CAPM restriction hold for Microsoft. The percentage of
nondiversifiable (market specific) risk is R2 = 0.31 and the percentage of
diversifiable (firm specific) risk is 1−R2 = 0.69. The estimated magnitude
of diversifiable risk is σ̂ = 0.090 or 9% per month. Notice that the Jarque-
Bera statistic indicates that the residuals from the CAPM regression are
not normally distributed. The DW and Ljung-Box statistics, however, in-
dicate that the residuals are serially uncorrelated (at least at the first lag).
The extractor functions for an “OLS” object are used to extract the vec-

tors of estimated coefficients β̂, fitted values ŷ, residuals ε̂ and asymptotic
variance matrix [avar(β̂) :

> coef(ols.fit)
(Intercept) SP500

0.01281 1.526
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> fitted(ols.fit)[1:3]
Positions 1
Feb 1990 0.01711
Mar 1990 0.03965
Apr 1990 -0.03927

> resid(ols.fit)[1:3]
Positions 1
Feb 1990 0.04258
Mar 1990 0.06868
Apr 1990 0.07870

> vcov(ols.fit)
(Intercept) SP500

(Intercept) 0.00006393 -0.0002618
SP500 -0.00026181 0.0399383

Notice that to use the extractor functions residuals and fitted.values
one only has to type resid and fitted. Since the data used for estimation
is a “timeSeries” object, the extracted residuals and fitted values are also
“timeSeries” objects.
To illustrate the use of the extractor functions, the t-statistics for testing

the null hypothesis that the intercept is zero and the slope is unity are

> (coef(ols.fit)-c(0,1))/sqrt(diag(vcov(ols.fit)))
(Intercept) SP500

1.603 2.631

and summary statistics for the residuals using the S+FinMetrics function
summaryStats are

> summaryStats(residuals(ols.fit))

Sample Quantiles:
min 1Q median 3Q max

-0.3835 -0.05661 0.002342 0.06037 0.1991

Sample Moments:
mean std skewness kurtosis

-7.204e-018 0.08993 -0.7712 5.293

Number of Observations: 131

Testing Linear Restrictions

The CAPM regression (6.7) in matrix form is (6.2) with xt = (1, RMt−rft)0
and β = (α, β)0. Consider testing the joint null hypothesis H0 : α = 0 and



180 6. Time Series Regression Modeling

β = 1. This hypothesis imposes two linear restrictions on the parameter
vector β = (α, β)0 that may be written in the form (6.5) with

R =

µ
1 0
0 1

¶
, r =

µ
0
1

¶
The Wald statistic (6.6) may be computed directly as

> Rmat = diag(2)
> rvec = c(0,1)
> bhat = coef(ols.fit)
> avarRbhat = Rmat%*%vcov(ols.fit)%*%t(Rmat)
> wald.stat =
+ t(Rmat%*%bhat-rvec)%*%solve(avarRbhat)%*%(Rmat%*%bhat-rvec)
> as.numeric(wald.stat)
[1] 11.17
> p.value = 1 - pchisq(wald.stat,2)
> p.value
[1] 0.003745

The small p-value suggests that null H0 : α = 0 and β = 1 should be
rejected at any reasonable significance level. The F-statistic version of the
Wald statistic based on normal errors is

> F.stat = wald.stat/2
> p.value = 1 - pf(F.stat,2,ols.fit$df.resid)
> p.value
[1] 0.004708

and also suggests rejection of the null hypothesis.
The F-statistic version of the Wald statistic for general linear restrictions

of the form (6.5) may be conveniently computed using the S+FinMetrics
function waldTest. For example,

> waldTest(ols.fit,Intercept==0,SP500==1)

Wald Test of Coefficients:

Null Hypothesis: constraints are true
Test Statistic: 5.587

Dist. under Null: F with ( 2 , 129 ) degrees of freedom
P-value: 0.004708

produces the F-statistic version of the Wald test for the null hypothesisH0 :
α = 0 and β = 1. Notice how the restrictions under the null being tested
are reflected in the call to waldTest. More complicated linear restrictions
like H0 : α+ 2β = 2 are also easily handled

> waldTest(ols.fit,Intercept-2*SP500==2)
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Wald Test of Coefficients:

Null Hypothesis: constraints are true
Test Statistic: 157.8

Dist. under Null: F with ( 1 , 129 ) degrees of freedom
P-value: 0

Likelihood ratio (LR) statistics for testing linear hypotheses may also
be computed with relative ease since the OLS estimates are the maximum
likelihood estimates assuming the errors have a normal distribution. The
log-likelihood value of the OLS fit assuming normal errors may be extracted
using the S+FinMetrics function IC. For example, the log-likelihood for the
unrestricted CAPM fit is

> IC(ols.fit, "loglike")
[1] 130.2

Consider testing the CAPM restriction H0 : α = 0 using a LR statistic.
The restricted OLS fit, imposing α = 0, is computed using

> ols.fit2 = OLS(MSFT~SP500-1,data=excessRet.ts)

The LR statistic is then computed as

> LR = -2*(IC(ols.fit2,"loglike")-IC(ols.fit,"loglike"))
> LR
[1] 2.571
> 1 - pchisq(LR,1)
[1] 0.1089

Given the p-value of 0.109, the CAPM restriction is not rejected at the
10% significance level.

Graphical Diagnostics

Graphical summaries of the OLS fit are produced with the generic plot
function. By default, plot produces a menu of plot choices:

> plot(ols.fit)
Make a plot selection (or 0 to exit):

1: plot: all
2: plot: response vs fitted values
3: plot: response and fitted values
4: plot: normal QQ-plot of residuals
5: plot: residuals
6: plot: standardized residuals
7: plot: residual histogram
8: plot: residual ACF
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Plot Function Description
xygPlot trellis xyplot with grid and strip.text options
rvfPplot trellis response vs. fitted plot with grid and strip.text options
rafPlot trellis plot of response and fitted values
histPlot trellis density estimate with strip.text options
qqPlot trellis QQ-plot with grid and strip.text options
residPlot trellis plot of residuals
acfPlot trellis ACF plot

TABLE 6.1. S+FinMetrics Utility Trellis Plotting Functions

9: plot: residual PACF
10: plot: residual^2 ACF
11: plot: residual^2 PACF
Selection:

The plot choices are different from those available for “lm” objects and focus
on time series diagnostics. All plots are generated using Trellis graphics5.
Table 6.1 summarizes the utility plot functions used to create the various
OLS plots. See the help files for more information about the plot functions.
Figures 6.2 and 6.3 illustrate plot choices 3 (response and fitted) and 8
(residual ACF). From the response and fitted plot, it is clear that the
return on the S&P 500 index is a weak predictor of return on Microsoft.
The residual ACF plot indicates that the residuals do not appear to be
autocorrelated, which supports the results from the residual diagnostics
reported using summary.
Individual plots can be created directly, bypassing the plot menu, using

the which.plot option of plot.OLS. For example, the following command
creates a normal qq-plot of the residuals:

> plot(ols.fit,which.plot=3)

Notice that number used for the qq-plot specified by which.plot is one
less than the value specified in the menu. The qq-plot may also be created
by calling the Trellis utility plot function qqPlot directly:

> qqPlot(resid(ols.fit), strip.text="ols.fit",
+ xlab="Quantile of Standard Normal",
+ ylab="Residuals",main="Normal QQ Plot")

Residual Diagnostics

The residual diagnostics reported by summary may be computed directly
from an “OLS” object. The S+FinMetrics functions normalTest and autocorTest
may be used to compute test statistics for normality and autocorrelation

5Unfortunately, the Trellis plots cannot be easily combined into multipanel plots.
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from the residuals of an OLS fit. For example, to compute the Jarque-Bera
normality test and the Ljung-Box test from the residuals of the CAPM
regression use

> normalTest(ols.fit,method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 41.68
p.value 0.00

Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 131

> autocorTest(ols.fit,method="lb")

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.9213
p.value 0.9417

Dist. under Null: chi-square with 21 degrees of freedom
Total Observ.: 131

Subset Regression

The estimated β for Microsoft uses all of the data over the 11 year period
from January 1990 to December 2000. It is generally thought that β does
not stay constant over such a long time period. To estimate β using only
the most recent five years of data the start option of OLS may be utilized

> OLS(MSFT~SP500, data=excessRet.ts,
+ start="Jan 1996", in.format="%m %Y")

Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts, start =
"Jan 1996", in.format = "%m %Y")
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Coefficients:
(Intercept) SP500
0.0035 1.7828

Degrees of freedom: 60 total; 58 residual
Time period: from Jan 1996 to Dec 2000
Residual standard error: 0.1053

Notice that date string passed to start uses the same display format as
the “timeDate” objects in the positions slot of excessRet.ts, and that
this format is specified directly using in.format="%m %Y". Estimation over
general sub-periods follows by specifying both the start date and the end
date of the sub-period in the call to OLS.
Regression estimates may be computed over general subsets by using the

optional argument subset to specify which observations should be used in
the fit. Subsets can be specified using a logical vector (which is replicated
to have length equal to the number of observations), a numeric vector
indicating the observation numbers to be included, or a character vector of
the observation names that should be included. For example, to estimate
the CAPM only for the observations for which the excess return on the
S&P 500 is positive, use

> OLS(MSFT~SP500, data=excessRet.ts, subset=(SP500>=0))

Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts, subset = (
SP500 >= 0))

Coefficients:
(Intercept) SP500
0.0231 1.3685

Degrees of freedom: 80 total; 78 residual
Residual standard error: 0.08341

Regression with Dummy Variables

In the analysis of asset returns, it is often noticed that excess returns are
higher in January than in any other month. To investigate this claim, a
dummy variable is created which equals 1 if the month is January and 0
otherwise:

> is.Jan = (months(positions(excessRet.ts))=="Jan")
> Jan.dum = timeSeries(pos=positions(excessRet.ts),
+ data=as.integer(is.Jan))



186 6. Time Series Regression Modeling

Next, the January dummy variable is added to the time series of excess
returns:

> newdat.ts = seriesMerge(excessRet.ts,Jan.dum)
> colIds(newdat.ts)[3] = "Jan.dum"

The CAPM regression allowing for a different intercept in January is

> summary(OLS(MSFT~SP500+Jan.dum, data=newdat.ts))

Call:
OLS(formula = MSFT ~SP500 + Jan.dum, data = newdat.ts)

Residuals:
Min 1Q Median 3Q Max

-0.3804 -0.0532 0.0065 0.0604 0.2032

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0090 0.0082 1.0953 0.2755
SP500 1.5085 0.1986 7.5972 0.0000

Jan.dum 0.0513 0.0295 1.7371 0.0848

Regression Diagnostics:

R-Squared 0.3271
Adjusted R-Squared 0.3166
Durbin-Watson Stat 2.0814

Residual Diagnostics:
Stat P-Value

Jarque-Bera 43.4357 0.0000
Ljung-Box 12.1376 0.9358

Residual standard error: 0.08958 on 128 degrees of freedom
Time period: from Feb 1990 to Dec 2000
F-statistic: 31.11 on 2 and 128 degrees of freedom, the
p-value is 9.725e-012

The coefficient on the January dummy is positive and significant at the 9%
level indicating that excess returns are slightly higher in January than in
other months. To allow for a different intercept and slope in the regression,
use

> summary(OLS(MSFT~SP500*Jan.dum, data=newdat.ts))

Call:
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OLS(formula = MSFT ~SP500 * Jan.dum, data = tmp1.ts)

Residuals:
Min 1Q Median 3Q Max

-0.3836 -0.0513 0.0047 0.0586 0.2043

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0095 0.0082 1.1607 0.2479
SP500 1.4307 0.2017 7.0917 0.0000

Jan.dum 0.0297 0.0317 0.9361 0.3510
SP500:Jan.dum 1.6424 0.9275 1.7707 0.0790

Regression Diagnostics:

R-Squared 0.3433
Adjusted R-Squared 0.3278
Durbin-Watson Stat 2.0722

Residual Diagnostics:
Stat P-Value

Jarque-Bera 51.4890 0.0000
Ljung-Box 12.7332 0.9177

Residual standard error: 0.08884 on 127 degrees of freedom
Time period: from Feb 1990 to Dec 2000
F-statistic: 22.13 on 3 and 127 degrees of freedom, the
p-value is 1.355e-011

Notice that the formula uses the short-hand notation A*B = A+B+A:B. In-
terestingly, when both the slope and intercept are allowed to be different
in January only the slope is significantly higher.

Predictions

Predictions or forecasts from an OLS fit may be computed using the generic
predict function. For example, consider computing forecasts of the excess
return on Microsoft conditional on specified values for the S&P 500 excess
return based on the CAPM fit. The excess returns on the S&P 500 for the
conditioinal forecasts are

> sp500.new = data.frame(c(-0.2,0,2))
> colIds(sp500.new) = "SP500"

These new data values must be in a data frame with the same name as the
variable containing the S&P 500 data in excessRet.ts. The forecasts are
computed using



188 6. Time Series Regression Modeling

> ols.pred = predict(ols.fit,n.predict=3,newdata=sp500.new)
> class(ols.pred)
[1] "forecast"
> ols.pred

Predicted Values:

[1] -0.2924 0.0128 3.0646

The result of predict is an object of class “forecast” for which there
are print, summary and plot methods. The print method shows just the
forecasts. The summary method shows the forecasts and forecast standard
errors (ignoring parameter estimation error)

> summary(ols.pred)

Predicted Values with Standard Errors:

prediction std.err
1-step-ahead -0.2924 0.0903
2-step-ahead 0.0128 0.0903
3-step-ahead 3.0646 0.0903

To view the forecasts and standard error band along with the historical
data use

> plot(ols.pred, xold=excessRet.ts[,1], n.old=5, width=2)

The argument xold contains the historical data for the response variable,
n.old determines how many historical observations to plot along with the
forecasts and width specifies the multiplier for the forecast standard errors
in the construction of the error bands. The created plot is illustrated in
Figure 6.4.

6.4 Dynamic Regression

Often the time series regression model (6.1) contains lagged variables as
regressors to capture dynamic effects. The general dynamic time series
regression model contains lagged values of the response variable yt and
lagged values of the exogenous stationary regressors x1t, . . . , xkt:

yt = α+

pX
j=1

φjyt−j +
q1X
j=0

β1jx1t−j + · · ·+
qkX
j=0

βkjxkt−j + εt (6.8)

where the error term εt is assumed to be WN(0, σ2). The model (6.8) is
called an autoregressive distributed lag (ADL) model and generalizes an
AR(p) by including exogenous stationary regressors.
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FIGURE 6.4. Conditional forecasts for the excess returns on Microsoft from the
CAPM regression.

The main issues associated with the analysis and interpretation of the
ADL model (6.8) can be illustrated using the following simple ADL model
with a single exogenous variable xt:

yt = α+ φyt−1 + β0xt + β1xt−1 + εt (6.9)

Since xt is assumed to be stationary, and εt ∼ WN(0, σ2), yt behaves like
an AR(1) process

yt = α+ φyt−1 + wt

where wt = β0xt + β1xt−1 + εt is a composite error term. Therefore, the
ADL model (6.9) is stationary provided |φ| < 1. Given that yt is stationary
it has an infinite order moving average representation (impulse response
function) in terms of the composite errors wt

yt = µ+
∞X
j=0

ψjwt−j

= µ+ wt + ψ1wt−1 + ψ2wt−2 + · · ·
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where µ = 1/(1 − φ) and ψj = φj . Substituting wt = β0xt + β1xt−1 + εt
and ψj = φj into the above moving average representation gives

yt = µ+ (β0xt + β1xt−1 + εt) + φ(β0xt−1 + β1xt−2 + εt−1)
+φ2(β0xt−2 + β1xt−3 + εt−2) + · · ·

= µ+ β0xt + (β1 + φβ0)xt−1 + φ(β1 + φβ0)xt−2 + · · · (6.10)

+φj−1(β1 + φβ0)xt−j + · · ·+ εt + φεt−1 + φ2εt−2 + · · ·

Using (6.10), the interpretation of the coefficients in (6.9) becomes clearer.
For example, the immediate impact multiplier is the impact of a change in
xt on yt is

∂yt
∂xt

= β0

The first lag multiplier is the impact of a change in xt−1 on yt

∂yt
∂xt−1

= β1 + φβ0

which incorporates a feedback effect φβ0 due to the lagged response variable
in (6.9). The second lag multiplier is

∂yt
∂xt−2

= φ (β1 + φβ0)

and is smaller in absolute value than the first lag multiplier since |φ| < 1.
In general, the kth lag multiplier is

∂yt
∂xt−k

= φk−1 (β1 + φβ0)

Notice that as k →∞, ∂yt
∂xt−k

→ 0 so that eventually the effect of a change
in xt on yt dies out. The long-run effect of a change in xt on yt is defined
as the cumulative sum of all the lag impact multipliers

long-run effect =
∂yt
∂xt

+
∂yt

∂xt−1
+

∂yt
∂xt−2

+ · · ·

=
∞X
k=0

φk(β0 + β1)

=
β0 + β1
1− φ

The parameter φ on yt−1 determines the speed of adjustment between the
immediate impact of xt on yt and the long-run impact. If φ = 0, then the
long-run impact is reached in one time period since ∂yt

∂xt−k
= 0 for k > 1.

In contrast, if φ ≈ 1, then the long-run impact takes many periods. A
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parameter often reported is the half-life of the adjustment; that is, the
lag at which one half of the adjustment to the long-run impact has been
reached. In the simple ADL (6.9), it can be shown that the half-life is equal
to ln(2)/ ln(φ).
For the general ADL model (6.8), stationarity of yt requires that all xit

be stationary and that the roots of the characteristic polynomial φ(z) =
1 − φ1z − · · · − φpz

p = 0 have modulus greater than one. The k immedi-
ate impact multipliers are the coefficients β10, . . . , βk0 and the k long-run
multipliers are Pq2

j=0 β1j

1− φ1 − · · ·− φp
, . . . ,

Pqk
j=0 βkj

1− φ1 − · · ·− φp

The speed of adjustment to the long-run impacts is determined by the sum
of the coefficients on the lagged responses φ1 + · · ·+ φp.

Example 34 Estimating a simple dynamic CAPM regression for Microsoft

Consider estimating a simple dynamic version of the CAPM regression

Rit − rft = α+ φ(Rit − rft) + β0(RMt − rft) + β1(RMt−1 − rft−1) + εit

using the monthly excess return data for Microsoft and the S&P 500 index.
The “short-run beta” for Microsoft is β0 and the “long-run beta” is (β0 +
β1)/(1− φ). The dynamic CAPM estimated using OLS is

> adl.fit = OLS(MSFT~SP500+ar(1)+tslag(SP500),
+ data=excessRet.ts)

In the regression formula, the lagged dependent variable (MSFT) is speci-
fied using the ar(1) term, and the lagged explanatory variable (SP500) is
created using the S+FinMetrics function tslag. The dynamic regression
results are

> summary(adl.fit)

Call:
OLS(formula = MSFT ~SP500 + ar(1) + tslag(SP500), data =
excessRet.ts)

Residuals:
Min 1Q Median 3Q Max

-0.3659 -0.0514 0.0059 0.0577 0.1957

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0156 0.0083 1.8850 0.0617
SP500 1.5021 0.2017 7.4474 0.0000
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tslag(SP500) -0.0308 0.2453 -0.1257 0.9001
lag1 -0.1107 0.0921 -1.2021 0.2316

Regression Diagnostics:

R-Squared 0.3248
Adjusted R-Squared 0.3087
Durbin-Watson Stat 1.9132

Residual Diagnostics:
Stat P-Value

Jarque-Bera 41.5581 0.0000
Ljung-Box 10.5031 0.9716

Residual standard error: 0.0904 on 126 degrees of freedom
Time period: from Mar 1990 to Dec 2000
F-statistic: 20.2 on 3 and 126 degrees of freedom, the
p-value is 9.384e-011

The least squares estimates of dynamic CAPM parameters are α̂ = 0.016,
φ̂ = −0.111, β̂0 = 1.502 and β̂1 = −0.031. The estimated “short-run beta”
for Microsoft is 1.502 and the estimated “long-run beta” is6

> bhat = coef(adl.fit)
> lr.beta = (bhat[2]+bhat[3])/(1-bhat[4])
> lr.beta
SP500
1.325

Notice that the “long-run beta” is smaller than the “short-run beta”. How-
ever, since the standard errors on the dynamic terms φ̂ and β̂1 are large
relative to the estimated values, the data do not support the dynamic
CAPM model.

6.4.1 Distributed Lags and Polynomial Distributed Lags

A special case of the general ADL model (6.8) is the distributed lag model

yt = α+

qX
j=0

βjxt−j + εt (6.11)

For simplicity, the model is shown with one exogenous variable x. The
extension to multiple exogenous variables is straightforward. Given the

6Since the “long-run beta” is a nonlinear function of the least squares estimates,
estimated standard errors for the “long-run beta” may be computed using the so-called
“delta method”. See Greene (2000) page 118.
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results of the previous section, βj is interpreted as the jth lag multiplier,
and the long-run impact on y of a change in x is

Pq
j=1 βj .

Determining the Lag Length

In many applications, the lag length q needs to be long to adequately cap-
ture the dynamics in the data. To determine the lag length, all models with
q ≤ qmax are fit and the preferred model minimizes some model selection
criterion like the Akaike (AIC) or Schwarz (BIC). For the distributed lag
model, the AIC and BIC have the form

AIC(q) = ln(σ̃2(q)) +
2

T
q

BIC(q) = ln(σ̃2(q)) +
lnT

T
q

where σ̃2(q) is the least squares estimate of σ2 without a degrees of freedom
correction. For objects of class “OLS”, S+FinMetrics provides the extractor
function IC to compute the AIC or BIC information criteria.
If the exogenous variable xt is highly persistent, then lagged values

xt, xt−1, . . . , xt−q may be highly correlated and problems associated with
near multicollinearity may occur in (6.11)7. In this case, the S+FinMetrics
function collinearTest may be used to diagnose the extent of near multi-
collinearity in the data. The function collinearTest computes either the
condition number for X0X or the variance inflation statistics associated
with each variable.

Example 35 Distributed lag model for U.S. real GDP growth

The S+FinMetrics “timeSeries” policy.dat contains monthly data
on U.S. real GDP and the Federal Funds rate. Consider estimating a dis-
tributed lag model with q = 12 for the growth rate in real GDP using the
Federal Funds rate as an exogenous variable over the period January 1990
to March 1998:

> dl.fit = OLS(diff(log(GDP))~FFR+tslag(FFR,1:12),data=policy.dat,
+ start="Jan 1990",in.format="%m %Y",na.rm=T)

The AIC and BIC information criteria may be extracted using

> IC(dl.fit,type="AIC")
[1] -1271
> IC(dl.fit,type="BIC")
[1] -1235

7 See Greene (2000) pages 255-259 for a discussion of the problems associated with
near multicollinearity.
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The model may be re-fit with different values of q and the preferred model
is the one which produces the smallest value of the chosen information
criterion.
The condition number and variance inflation statistics from the least

square fit are

> collinearTest(dl.fit, method="cn")
[1] 311.2
> collinearTest(dl.fit, method="vif")

FFR tslag(FFR, 1:12)lag1 tslag(FFR, 1:12)lag2
111.8 278.7 293

tslag(FFR, 1:12)lag3 tslag(FFR, 1:12)lag4
304.9 331.8

tslag(FFR, 1:12)lag5 tslag(FFR, 1:12)lag6
344.9 370.5

tslag(FFR, 1:12)lag7 tslag(FFR, 1:12)lag8
369 390

tslag(FFR, 1:12)lag9 tslag(FFR, 1:12)lag10
389.5 410

tslag(FFR, 1:12)lag11 tslag(FFR, 1:12)lag12
424.5 162.6

The large condition number and variance inflation statistics indicate that
high correlation among the regressors is a potential problem.

6.4.2 Polynomial Distributed Lag Models

The unrestricted distributed lag model (6.11) may produce unsatisfactory
results due to high correlation among the lagged variables. If the sample size
is small and the lag length q is large then these problems are exacerbated.
In these cases, one may want to restrict the behavior of the lag coefficients
βj in (6.11). One popular way to do this is to use the polynomial distributed
lag (PDL) model8. The PDL model specifies that βj follows a polynomial

βj = α0 + α1j + α2j
2 + · · ·+ αdj

d (6.12)

for j = 1, . . . , q > d. Usually, the order of the polynomial, d, is small.
Whereas the general distributed lag model (6.11) has q lag parameters the
PDL model has only d + 1 lag parameters. To see this more explicitly,

8The PDL model is also known as the Almon lag model.
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the distributed lag model with p lags under the restriction (6.12) may be
re-written as the linear regression with d variables

yt = α+ α0z0t + α1z1t + · · ·+ αdzdt + εt (6.13)

where

zjt =

qX
i=1

ijxt−i (6.14)

Example 36 PDL model for U.S. real GDP growth

To estimate a PDL model for U.S. GDP growth using the Federal Funds
rate with d = 2 and q = 12 use

> pdl.fit = OLS(diff(log(GDP))~pdl(FFR,d=2,q=12),
+ data=policy.dat, start="Jan 1990",
+ in.format="%m %Y", na.rm=T)
> pdl.fit

Call:
OLS(formula = diff(log(GDP)) ~pdl(FFR, d = 2, q = 12),
data = policy.dat, na.rm = T, start = "Jan 1990",
in.format = "%m %Y")

Coefficients:
(Intercept) pdl(FFR, d = 2, q = 12)FFR.PDL0
0.0006 -0.0070

pdl(FFR, d = 2, q = 12)FFR.PDL1
0.0031

pdl(FFR, d = 2, q = 12)FFR.PDL2
-0.0002

Degrees of freedom: 97 total; 93 residual
dropped 1 cases due to missing observations.
Time period: from Feb 1990 to Feb 1998
Residual standard error: 0.0003371

The S+FinMetrics function pdl used in the formula compute the regressors
(6.14) for the PDL regression (6.13).
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6.5 Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix Estimation

In the time series regression model, the efficiency of the least squares esti-
mates and the validity of the usual formulas for the estimated coefficient
standard errors and test statistics rely on validity of the underlying assump-
tions of the model outlined in the beginning of Section 6.2. In empirical
applications using financial time series, it is often the case that the error
terms εt have non constant variance (heteroskedasticity) as well as auto-
correlation. As long as the regressors xt are uncorrelated with the errors
εt the least squares estimates of β will generally still be consistent and
asymptotically normally distributed. However, they will not be efficient
and the usual formula (6.3) for computing [avar(β̂) will not be correct. As
a result, any inference procedures based on (6.3) will also be incorrect. If
the form of heteroskedasticity and autocorrelation is known, then efficient
estimates may be computed using a generalized least squares procedure9. If
the form of heteroskedasticity and autocorrelation is not known, it is possi-
ble to estimate [avar(β̂) consistently so that valid standard errors and test
statistics may be obtained. This section describes the construction of het-
eroskedasticity and autocorrelation consistent estimates of [avar(β̂). First,
the heteroskedasticity consistent estimate of [avar(β̂) due to Eicker (1967)
and White (1980) is discussed and then the heteroskedasticity and auto-
correlation consistent estimate of [avar(β̂) due to Newey and West (1987)
is covered.

6.5.1 The Eicker-White Heteroskedasticity Consistent (HC)
Covariance Matrix Estimate

A usual assumption of the time series regression model is that the errors εt
are conditionally homoskedastic; i.e., E[ε2t |X] = σ2 > 0. In many situations
it may be more appropriate to assume that the variance of εt is a function
of xt so that εt is conditionally heteroskedastic: E[ε2t |xt] = σ2f(xt) >
0. Formally, suppose the assumptions of the time series regression model
hold but that E[ε2txtx

0
t] = S 6= σ2ΣXX . This latter assumption allows the

regression errors to be conditionally heteroskedastic and dependent on xt;
i.e., E[ε2t |xt] = σ2f(xt). In this case, it can be shown that the asymptotic
variance matrix of the OLS estimate, β̂, is

avar(β̂) = T−1Σ−1XXSΣ
−1
XX . (6.15)

The above generalized OLS asymptotic variance matrix will not be equal to
the usual OLS asymptotic matrix σ2Σ−1XX , and the usual estimate[avar(β̂) =

9The S-PLUS function gls may be used to compute generalized least squares estimates
using a variety of models for heteroskedasticity and autocorrelation.
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σ̂2(X0X)−1 will not be correct. Hence, in the presence of heteroskedastic-
ity the usual OLS t-statistics, standard errors, Wald statistics cannot be
trusted.
If the values of f(xt) are known, then the generalized or weighted least

squares (GLS) estimator

β̂GLS = (X
0V(X)−1X)−1X0V(X)y,

where V(X) is a (T × T ) diagonal matrix with f(xt) along the diagonal,
is efficient.
In most circumstances f(xt) is not known so that the efficient GLS es-

timator cannot be computed. If the OLS estimator is to be used, then a
consistent estimate for the generalized OLS covariance matrix is needed for
proper inference. A heteroskedasticity consistent (HC) estimate of avar(β̂)
due to Eicker (1967) and White (1980) is

[avarHC(β̂) = (X
0X)−1ŜHC(X

0X)−1 (6.16)

where

ŜHC =
1

T − k

TX
t=1

ε̂2txtx
0
t (6.17)

and ε̂t is the OLS residual at time t.
The square root of the diagonal elements of [avarHC(β̂) gives the Eicker-

White heteroskedasticity consistent standard errors (HCSEs) for the least
squares estimates of βi. These are denoted dSEHC(β̂i). Heteroskedasticity
robust t-statistics and Wald statistics are computed in the usual way using
(6.4) and (6.6) but with [avarHC(β̂) anddSEHC(β̂i) replacing[avar(β̂) anddSE(β̂i), respectively.
Example 37 Heteroskedasticity robust inference for the CAPM

Once a model has been fit using OLS, the HC estimate (6.16) may be
extracted using vcov anddSEHC(β̂i) may be computed using summary by
specifying the optional argument correction="white" as follows

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)
> avar.HC = vcov(ols.fit, correction="white")
> summary(ols.fit, correction="white")

Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:
Min 1Q Median 3Q Max

-0.3835 -0.0566 0.0023 0.0604 0.1991
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Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0128 0.0080 1.5937 0.1134
SP500 1.5259 0.1920 7.9463 0.0000

Regression Diagnostics:

R-Squared 0.3113
Adjusted R-Squared 0.3059
Durbin-Watson Stat 2.1171

Residual Diagnostics:
Stat P-Value

Jarque-Bera 41.6842 0.0000
Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom
Time period: from Feb 1990 to Dec 2000
F-statistic: 58.3 on 1 and 129 degrees of freedom, the
p-value is 4.433e-012

Here, the HCSE values dSEHC(β̂i) are almost identical to the usual OLS
valuesdSE(β̂i) which suggests that the errors are not heteroskedastic.
6.5.2 Testing for Heteroskedasticity

If the error terms in the time series regression model are heteroskedastic,
then the OLS estimates are consistent but not efficient and the usual for-
mula (6.3) for computing [avar(β̂) is incorrect. As shown in the previous
section, [avarHC(β̂) given by (6.16) provides a consistent estimate of the
generalized asymptotic variance (6.15). If the errors are not heteroskedastic,
however, (6.15) is still consistent, but the usual formula (6.3) will gener-
ally give smaller standard errors and more powerful tests. Therefore, it is
of interest to test for the presence of heteroskedasticity. If the errors are
heteroskedastic and depend on some function of exogenous variables, then
tests for heteroskedasticity may help determine which variables affect the
error variance and how they might affect the variance. Finally, if the time
series regression model is misspecified, e.g. some important variables have
been omitted or the parameters are not constant over time, then often
the errors will appear to be heteroskedastic. Hence, the presence of het-
eroskedasticity may also signal inadequacy of the estimated model. In this
section, two common tests for heteroskedasticity are introduced. The first
is Breusch and Pagan’s (1979) LM test for heteroskedasticity caused by
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specified exogenous variables and the second is White’s (1980) general test
for unspecified heteroskedasticity.

Breusch-Pagan Test for Specific Heteroskedasticity

Suppose it is suspected that the variance of εt in (6.1) is functionally related
to some known (p×1) vector of exogenous variables zt, whose first element
is unity, via the relation

E[εt|xt] = f(z0tα)

where f(·) is an unknown positive function. Let ε̂t denote the least squares
residual from (6.1), and consider the auxiliary regression

ε̂2t
σ̄2
= z0tα+ error (6.18)

where σ̄2 = T−1
PT

t=1 ε̂
2
t . Since the first element of zt is unity, the null

hypothesis of homoskedasticity, E[ε2t |xt] = σ2, implies that all of the ele-
ments of α except the first are equal to zero. Under the homoskedasticity
null, Breusch and Pagan (1979) show that the test statistic

1

2
RSSaux

A
~ χ2(p− 1)

where RSSaux is the residual sum of squares from the auxiliary regression
(6.18).
The Breusch-Pagan LM test is based on the assumption that the error

terms are normally distributed. Koenker and Basset (1982) suggest a mod-
ification of the Breusch-Pagan LM test that is robust to non-normal errors
and generally has more power than the Breusch-Pagan test when the errors
are non-normal.

White’s Test for General Heteroskedasticity

Suppose εt is generally heteroskedastic such that E[ε2txtx
0
t] = S, where S

is a (k × k) matrix. Recall, if εt is homoskedastic then S = σ2ΣXX . Now,
under general heteroskedasticity ŜHC in (6.17) is a consistent estimate of
S and σ̂2(X0X)−1 is a consistent estimate of σ2ΣXX and S 6= σ2ΣXX .
However, under the null hypothesis of homoskedasticity, the difference be-
tween ŜHC and σ̂

2(X0X)−1 should go to zero as the sample size gets larger.
White (1980) utilized this result to develop a very simple test for general
heteroskedasticity. To describe this test, let ψt denote the (m×1) vector of
unique and nonconstant elements of the (k× k) matrix xtx0t. Let ε̂t denote
the least squares residual from (6.1) and form the auxiliary regression

ε̂t = ψ0tγ + error (6.19)
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Under the null hypothesis of homoskedasticity, White (1980) showed that

T ·R2aux ∼ χ2(m)

where R2aux is the R
2 from the auxiliary regression (6.19).

Testing for Heteroskedasticity Using the S+FinMetrics Function
heteroTest

Once a model has been fit using OLS (or lm), the Breusch-Pagan, Koenker-
Basset and White tests for heteroskedasticity may be computed using
the S+FinMetrics function heteroTest. For example, consider the sim-
ple CAPM regression for Microsoft

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)

To apply the Breusch-Pagan LM test, a set of variables zt for which var(εt)
is related must be identified. For illustrative purposes let zt = (RMt −
rft, (RMt − rft)

2)0. The LM may then be computed using

> z1 = as.matrix(seriesData(excessRet.ts[,"SP500"]))
> zmat = cbind(z1,z1^2)
> heteroTest(ols.fit, method="lm", regressors=zmat)

Test for Heteroskedasticity: Breusch-Pagan LM Test

Null Hypothesis: data is homoskedastic
Test Statistic: 0.152

Dist. under Null: chi-square with 2 degrees of freedom
P-value: 0.9268

Coefficients:
Intercept SP500 SP500^2
1.041 -1.320 -20.407

Degrees of freedom: 131 total; 128 residual
Residual standard error: 2.095

Notice that the regressors specified for the LM test must be in the form
of a matrix. The high p-value of the test clearly signals that the null of
homoskedasticity should not be rejected against the alternative that var(εt)
depends on zt. To compute the Koenker-Basset robust LM test, set the
optional argument robust=T in the call to heteroTest.
The application of White’s test for heteroskedasticity is more straight-

forward since var(εt) is assumed to be functionally related to the variables
used in the OLS fit:

> heteroTest(ols.fit, method="white")
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Test for Heteroskedasticity: White General Test

Null Hypothesis: data is homoskedastic
Test Statistic: 0.152

Dist. under Null: chi-square with 2 degrees of freedom
P-value: 0.9268

Coefficients:
Intercept SP500 SP500^2
0.0084 -0.0106 -0.1638

Degrees of freedom: 131 total; 128 residual
Residual standard error: 0.01681

Notice that in this particular example the LM test and White’s test are
identical.

6.5.3 The Newey-West Heteroskedasticity and Autocorrelation
Consistent (HAC) Covariance Matrix Estimate

In some applications of time series regression, εt in (6.1) may be both
conditionally heteroskedastic and serially correlated. In this case, the er-
ror covariance matrix E[εε0|X] is non-diagonal. Under certain assumptions
about the nature of the error heteroskedasticity and serial correlation a
consistent estimate of the generalized OLS covariance matrix can be com-
puted. The most popular heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimate, due to Newey and West (1987), has the
form

[avarHAC(β̂) = (X
0X)−1ŜHAC(X

0X)−1 (6.20)

where

ŜHAC =
TX
t=1

ε̂2txtx
0
t +

qX
l=1

wl

TX
t=l+1

(xtε̂tε̂t−lx0t−l + xt−lε̂t−lε̂tx
0
t) (6.21)

is a nonparametric long-run variance estimate, and wl is the Bartlett weight
function

wl = 1−
l

q + 1
.

The Bartlett weight function, wl, depends on a truncation parameter q that
must grow with the sample size in order for the estimate to be consistent.
Newey and West suggest choosing q to be the integer part of 4(T/100)2/9.
In some cases, a rectangular weight function

wl =

½
1, for l ≤ q
0, for l > q
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is used if it is known that autocovariances in (6.21) cut off at lag q. The
square root of the diagonal elements of the HAC estimate (6.21) gives
the heteroskedasticity and autocorrelation consistent standard errors (HAC-
SEs) for the least squares estimates of βi. These are denoteddSEHAC(β̂i).
Heteroskedasticity robust t-statistics and Wald statistics are computed in
the usual way using (6.4) and (6.6) but with [avarHAC(β̂) anddSEHAC(β̂i)

replacing [avar(β̂) anddSE(β̂i), respectively.
Example 38 Long horizon regressions of stock returns on dividend-price
ratio

There has been much interest recently in whether long-term stock returns
are predictable by valuation ratios like dividend-to-price and earnings-to-
price. See chapter 7 in Campbell, Lo and MacKinlay (1997) and chapter
20 in Cochrane (2001) for reviews of this literature. Predictability is inves-
tigated by regressing future multiperiod stock returns on current values of
valuation ratios. To illustrate, let rt denote the continuously compounded
real annual total return on an asset in year t and and let dt−pt denote the
log dividend price ratio. The typical long-horizon regression has the form

rt+1 + · · ·+ rt+K = αK + βK(dt − pt) + εt+K , t = 1, . . . , T (6.22)

where rt+1+ · · ·+rt+K is the continuously compounded future K-year real
total return. The dividend-price ratio predicts future returns if βK 6= 0 at
some horizon. Since the sampling frequency of the data is annual and the
return horizon of the dependent variable is K years the dependent variable
and error term in (6.22) will behave like an MA(K−1) process. This serial
correlation invalidates the usual formula for computing the estimated stan-
dard error of the least squares estimate of βK . The HACSE,dSEHAC(β̂K),
however, will provide a consistent estimate.
The long-horizon regression (6.22) with K = 10 years is estimated using

the annual stock price and dividend data on the S&P 500 composite index
in the S+FinMetrics “timeSeries” object shiller.annual. The relevant
data are constructed as

> colIds(shiller.annual)
[1] "price" "dividend" "earnings"
[4] "cpi" "real.price" "real.dividend"
[7] "real.earnings" "pe.10"
> # compute log of real data
> ln.p = log(shiller.annual[,"real.price"])
> colIds(ln.p) = "ln.p"
> ln.d = log(shiller.annual[,"real.dividend"])
> colIds(ln.d) = "ln.d"
> ln.dpratio = ln.d - ln.p
> colIds(ln.dpratio) = "ln.dpratio"
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> # compute cc real total returns
> ln.r = diff(ln.p) + log(1+exp(ln.dpratio[-1,]))
> colIds(ln.r) = "ln.r"
> # create 10-year cc total returns
> ln.r.10 = aggregateSeries(ln.r,moving=10,FUN=sum)
> colIds(ln.r.10) = "ln.r.10"
> stockdiv.ts = seriesMerge(ln.p,ln.d,ln.dpratio,
+ ln.r,ln.r.10,pos="union")

The continuously compounded real total return is computed as

rt = ln

µ
Pt +Dt − Pt−1

Pt−1

¶
=

ln(Pt/Pt−1) + ln(1 + exp(ln(Dt)− ln(Pt)))

where Pt is the real price andDt is the real dividend. Notice how the S-PLUS
function aggregateSeries is used to compute the 10 year continuously
compounded real total returns.
The long-horizon regression (6.22) using10 year real total return returns

over the postwar period 1947 - 1995 is computed using

> ols.fit10 = OLS(ln.r.10~tslag(ln.dpratio),data=stockdiv.ts,
+ start="1947", end="1995", in.format="%Y", na.rm=T)

Figure 6.5 shows the residual ACF. There is clearly serial correlation in
the residuals. The HACSEs are computed using summary with the optional
argument correction="nw". By default, the Newey-West HAC covariance
matrix is computed using a Bartlett kernel with automatic lag truncation
q = 4(T/100)2/9. In the present context, the serial correlation is known
to be of the form of an MA(9) process. Therefore, it is more appropriate
to compute the Newey-West HAC covariance using a rectangular weight
function with q = 9 which is accomplished by specifying bandwidth=9 and
window="rectangular" in the call to summary:

> summary(ols.fit10, correction="nw", bandwidth=9,
+ window="rectangular")

Call:
OLS(formula = ln.r.10 ~tslag(ln.dpratio), data =
stockdiv.ts, na.rm = T, start = "1947", end =
"1995", in.format = "%Y")

Residuals:
Min 1Q Median 3Q Max

-0.6564 -0.2952 0.0030 0.1799 0.9997

Coefficients:
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FIGURE 6.5. Residual ACF from regression of ten year real returns on divi-
dend-price ratio.

Value Std. Error t value Pr(>|t|)
(Intercept) 5.7414 0.9633 5.9600 0.0000

tslag(ln.dpratio) 1.5604 0.3273 4.7668 0.0000

Regression Diagnostics:

R-Squared 0.5012
Adjusted R-Squared 0.4896
Durbin-Watson Stat 0.2554

Residual Diagnostics:
Stat P-Value

Jarque-Bera 1.7104 0.4252
Ljung-Box 105.9256 0.0000

Residual standard error: 0.4116 on 43 degrees of freedom
Time period: from 1947 to 1991
F-statistic: 43.21 on 1 and 43 degrees of freedom, the
p-value is 5.359e-008

Notice the low DW statistic and the large value of the Ljung-Box statistic
indicating serial correlation in the residuals. The regression results with the
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corrected standard errors indicate that future 10 year real total returns are
highly predictable and positively related to the current dividend-price ratio.
The predictability coefficient is β̂10 = 1.560 withdSEHAC(β̂10) = 0.416 and
R2 = 0.501.

6.6 Recursive Least Squares Estimation

The time series regression model (6.1) assumes that the parameters of the
model, β, are constant over the estimation sample. A simple and intuitive
way to investigate parameter constancy is to compute recursive estimates
of β; that is, to estimate the model

yt = β0txt + εt (6.23)

by least squares recursively for t = k+1, . . . , T giving T −k recursive least
squares (RLS) estimates (β̂k+1, . . . , β̂T ). If β is really constant then the
recursive estimates β̂t should quickly settle down near a common value. If
some of the elements in β are not constant then the corresponding RLS
estimates should show instability. Hence, a simple graphical technique for
uncovering parameter instability is to plot the RLS estimates β̂it (i =
0, . . . , k) and look for instability in the plots.
An alternative approach to investigate parameter instability is to com-

pute estimates of the model’s parameters over a fixed rolling window of a
given length. Such rolling analysis is discussed in Chapter 9.

6.6.1 CUSUM and CUSUMSQ Tests for Parameter Stability

Brown, Durbin and Evans (1976) utilize the RLS estimates of (6.23) and
propose two simple tests for parameter instability. These tests, know as
the CUSUM and CUSUMSQ tests, are based on the standardized 1-step
ahead recursive residuals

ŵt =
ε̂t

f̂t
=

yt − β̂
0
t−1xt

f̂t

where f̂2t is an estimate of the recursive error variance

f2t = σ2
h
1 + x0t(X

0
t−1Xt−1)

−1
xt

i
and Xt is the (t × k) matrix of observations on xs using data from s =
1, . . . , t.
The CUSUM test is based on the cumulated sum of the standardized

recursive residuals

CUSUMt =
tX

j=k+1

ŵj

σ̂w
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where σ̂w is the sample standard deviation of ŵj . Under the null hypothesis
that β in (6.1) is constant, CUSUMt has mean zero and variance that is
proportional to t−k−1. Brown, Durbin and Evans (1976) show that approx-
imate 95% confidence bands for CUSUMt are given by the two lines which
connect the points (k,±0.948

√
T − k − 1) and (T,±0.948 · 3

√
T − k − 1).

If CUSUMt wanders outside of these bands, then the null of parameter
stability may be rejected.
The CUSUMSQ test is based on the cumulative sum of the squared stan-

dardized recursive residuals and is given by

CUSUMSQt =

Pt
j=k+1 ŵ

2
jPT

j=k+1 ŵ
2
j

.

The distribution of CUSUMSQt under the null of parameter stability
is given in Brown, Durbin and Evans (1976) where it is shown that 95%
confidence bands for CUSUMSQt have the form c±t/

√
T − k − 1. As with

the CUSUMt statistic, if CUSUMSQt wanders outside the confidence
bands, then the null of parameter stability may be rejected.

6.6.2 Computing Recursive Least Squares Estimates Using
the S+FinMetrics Function RLS

Efficient RLS estimation of the time series regression model (6.1) may be
performed using the S+FinMetrics function RLS. The calling syntax of RLS
is exactly the same as that of OLS so that any model that may be estimated
using OLS may also be estimated using RLS. For example, to compute the
RLS estimates of the CAPM regression for Microsoft use

> rls.fit = RLS(MSFT~SP500, data=excessRet.ts)
> class(rls.fit)
[1] "RLS"

RLS produces an object of class “RLS” for which there are coef, plot, print
and residuals methods. The print method give a basic description of the
RLS fit

> rls.fit

Call:
RLS(formula = MSFT ~SP500, data = excessRet.ts)
Time period: from Feb 1990 to Dec 2000

Coefficients:
(Intercept) SP500

mean 0.0284 1.2975
std. dev. 0.0121 0.1531
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FIGURE 6.6. RLS coefficient estimates from the CAPM regression for Microsoft.

Recursive Residuals Summary:
mean std. dev.

-0.0157 0.0893

The recursive intercept and slope estimates do not seem to vary too much.
The plot method allows one to see the recursive coefficients, CUSUM and
CUSUMSQ residuals

> plot(rls.fit)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Coefficient Estimates
3: plot: CUSUM of Residuals
4: plot: CUSUM of Squared Residuals
Selection:

Figures 6.6, 6.7 and 6.8 show the plots from options 2, 3 and 4. The RLS
estimates of α and β settle down in the middle of the sample but then the es-
timates of α decrease and the estimates of β increase. The CUSUMt statis-
tics stay within the 95% confidence bands but the CUSUMSQt statistics
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FIGURE 6.7. CUSUM of residuals from the CAPM regression for Microsoft.

wander outside the bands. Hence, there is some evidence for instability in
the CAPM coefficients.
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7
Univariate GARCH Modeling

7.1 Introduction

Previous chapters have concentrated on modeling and predicting the con-
ditional mean, or the first order moment, of a univariate time series, and
are rarely concerned with the conditional variance, or the second order mo-
ment, of a time series. However, it is well known that in financial markets
large changes tend to be followed by large changes, and small changes tend
to be followed by small changes. In other words, the financial markets are
sometimes more volatile, and sometimes less active.
The volatile behavior in financial markets is usually referred to as the

“volatility”. Volatility has become a very important concept in different
areas in financial theory and practice, such as risk management, portfolio
selection, derivative pricing, etc. In statistical terms, volatility is usually
measured by variance, or standard deviation. This chapter introduces the
class of univariate generalized autoregressive conditional heteroskedasticity
(GARCH) models developed by Engle (1982), Bollerslev (1986), Nelson
(1991), and others, which are capable of modeling time varying volatility
and capturing many of the stylized facts of the volatility behavior usu-
ally observed in financial time series. It will show how to formulate, esti-
mate, evaluate and predict from various types of GARCH models, such as
EGARCH, TGARCH, PGARCH, etc.
The outline of the chapter follows. Section 7.2 shows how to test for

ARCH effects in a time series, then section 7.3 introduces the basic GARCH
model and its properties. GARCH model estimation and diagnostics using
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Daily Stock Returns of FORD

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

1984 1985 1986 1987 1988 1989 1990 1991 1992

-0
.1

5
-0

.1
0

-0
.0

5
0.

00
0.

05
0.

10

FIGURE 7.1. Daily Ford Stock Returns: ford.s

the S+FinMetrics family of GARCH functions are illustrated in section 7.4.
Section 7.5 extends the basic GARCH model to accommodate some well-
known stylized facts of financial time series. Prediction and simulation from
various GARCH models are treated at the end of the chapter.
The statistical properties of GARCH models are nicely summarized in

Hamilton (1994), Tsay (2001) and the review papers by Bera and Hig-
gins (1986), Bolerslev, Engle and Nelson (1994) and Diebold and Lopez
(1996). Bollerslev, Chou and Kroner (1992) give a comprehensive survey
of GARCH modeling in finance. Alexander (2001) provides many examples
of the use of GARCH models in finance, and Engle (2001) and Engle and
Patton (2001) discuss the usefulness of volatility modeling.

7.2 The Basic ARCH Model

Figure 7.1 plots a daily time series of Ford stock returns as contained in
the “timeSeries” object ford.s in S+FinMetrics:

> class(ford.s)
[1] "timeSeries"
> plot(ford.s, reference.grid=F)
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FIGURE 7.2. ACF of ford.s and ford.sˆ2

Although there is little serial correlation in the time series ford.s itself,
it seems that both large changes and small changes are clustered together,
which is typical of many high frequency macroeconomic and financial time
series. To confirm this conjecture, use the S-PLUS function acf to look at
the autocorrelation plot of Ford returns and its squared returns:

> par(mfrow=c(1,2))
> tmp = acf(ford.s, lag=12)
> tmp = acf(ford.s^2, lag=12)
> par(mfrow=c(1,1))

The plots are shown in Figure 7.2. Obviously there is no autocorrelation in
the return series itself, while the squared returns exhibit significant autocor-
relation at least up to lag 5. Since the squared returns measure the second
order moment of the original time series, this result indicates that the vari-
ance of ford.s conditional on its past history may change over time, or
equivalently, the time series ford.s may exhibit time varying conditional
heteroskedasticity or volatility clustering.
The serial correlation in squared returns, or conditional heteroskedastic-

ity, can be modeled using a simple autoregressive (AR) process for squared
residuals. For example, let yt denote a stationary time series such as finan-
cial returns, then yt can be expressed as its mean plus a white noise if there
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is no significant autocorrelation in yt itself:

yt = c+ �t (7.1)

where c is the mean of yt, and �t is i.i.d. with mean zero. To allow for volatil-
ity clustering or conditional heteroskedasticity, assume that V art−1(�t) =
σ2t with V art−1(·) denoting the variance conditional on information at time
t− 1, and

σ2t = a0 + a1�
2
t−1 + · · ·+ ap�

2
t−p. (7.2)

since �t has a zero mean, V art−1(�) = Et−1(�2t ) = σ2t , the above equation
can be rewritten as:

�2t = a0 + a1�
2
t−1 + · · ·+ ap�

2
t−p + ut (7.3)

where ut = �2t − Et−1(�2t ) is a zero mean white noise process. The above
equation represents an AR(p) process for �2t , and the model in (7.1) and
(7.2) is known as the autoregressive conditional heteroskedasticity (ARCH)
model of Engle (1982), which is usually referred to as the ARCH(p) model.
An alternative formulation of the ARCH model is

yt = c+ �t

εt = ztσt

σ2t = a0 + a1�
2
t−1 + · · ·+ ap�

2
t−p

where zt is an iid random variable with a specified distribution. In the
basic ARCH model zt is assumed to be iid standard normal. The above
representation is convenient for deriving properties of the model as well as
for specifying the likelihood function for estimation.

Exercise 39 Simulating an ARCH(p) model

The S+FinMetrics function simulate.garch may be used to simulate
observations from a variety of time-varying conditional heteroskedastic-
ity models. For example, to simulate 250 observations from the ARCH(p)
model (7.1)-(7.2) with c = 0, p = 1, a0 = 0.01 and a1 = 0.8 use

> sim.arch1 = simulate.garch(model=list(a.value=0.01, arch=0.8),
+ n=250, rseed=196)
> names(sim.arch1)
[1] "et" "sigma.t"

The component et contains the ARCH errors εt and the component sigma.t
contains the conditional standard deviations σt. These components are il-
lustrated in Figure 7.3 created using

> par(mfrow=c(2,1))
> tsplot(sim.arch1$et,main="Simulated ARCH(1) errors",
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FIGURE 7.3. Simulated values of εt and σt from ARCH(1) process.

+ ylab="e(t)")
> tsplot(sim.arch1$sigma.t,main="Simulated ARCH(1) volatility",
+ ylab="sigma(t)")

Some summary statistics for the simulated data are

> summaryStats(sim.arch1$et)

Sample Quantiles:
min 1Q median 3Q max

-0.6606 -0.1135 0.0112 0.1095 0.6357

Sample Moments:
mean std skewness kurtosis

-0.003408 0.1846 -0.2515 4.041

Number of Observations: 250

Notice the somewhat high kurtosis value (relative to the kurtosis value of 3
for a normal distribution). Finally, Figure 7.4 shows the sample ACFs for
ε2t and σ

2
t . Both series exhibit almost identical serial correlation properties.
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FIGURE 7.4. Sample ACFs for ε2t and σ2t from simulated ARCH(1) process.

7.2.1 Testing for ARCH Effects

Before estimating a full ARCH model for a financial time series, it is usually
good practice to test for the presence of ARCH effects in the residuals.
If there are no ARCH effects in the residuals, then the ARCH model is
unnecessary and misspecified.
Since an ARCHmodel can be written as an ARmodel in terms of squared

residuals as in (7.3), a simple Lagrange Multiplier (LM) test for ARCH
effects can be constructed based on the auxiliary regression (7.3). Under
the null hypothesis that there are no ARCH effects: a1 = a2 = · · · = ap = 0,
the test statistic

LM = T ·R2 A∼ χ2(p)

where T is the sample size and R2 is computed from the regression (7.3)
using estimated residuals.1

The S+FinMetrics function archTest can be used to carry out the
above test for ARCH effects. For example, to test for the presence of ARCH
effects in ford.s, use the following command:

> archTest(ford.s, lag.n=12)

Test for ARCH Effects: LM Test

1We refer to Engle (1982) for details.
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Null Hypothesis: no ARCH effects

Test Statistics:
FORD

Test Stat 112.6884
p.value 0.0000

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

In this case, the p-value is essentially zero, which is smaller than the con-
ventional 5% level, so reject the null hypothesis that there are no ARCH
effects. Note that archTest function takes a time series and an optional
argument lag.n specifying the order of the ARCH effects. Since S-PLUS
allows lazy evaluation, lag instead of lag.n could have been supplied as
the optional argument.

7.3 The GARCH Model and Its Properties

If the LM test for ARCH effects is significant for a time series, one could
proceed to estimate an ARCH model and obtain estimates of the time
varying volatility σt based on past history. However, in practice it is often
found that a large number of lags p, and thus a large number of parameters,
is required to obtain a good model fit. A more parsimonious model proposed
by Bollerslev (1986) replaces the AR model in (7.2) with the following
formulation:

σ2t = a0 +

pX
i=1

ai�
2
t−i +

qX
j=1

bjσ
2
t−j (7.4)

where the coefficients ai (i = 0, · · · , p) and bj (j = 1, · · · , q) are all assumed
to be positive to ensure that the conditional variance σ2t is always positive.

2

The model in (7.4) together with (7.1) is known as the generalized ARCH
or GARCH(p, q) model. When q = 0, the GARCH model reduces to the
ARCH model.
Under the GARCH(p, q) model, the conditional variance of �t, σ2t , de-

pends on the squared residuals in the previous p periods, and the con-
ditional variance in the previous q periods. Usually a GARCH(1,1) model
with only three parameters in the conditional variance equation is adequate
to obtain a good model fit for financial time series.

2Positive coefficients are sufficient but not necessary conditions for the positivity of
conditional variance. We refer to Nelson and Cao (1992) for the general conditions.
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7.3.1 ARMA Representation of GARCH Model

Just as an ARCH model can be expressed as an AR model of squared
residuals, a GARCH model can be expressed as an ARMAmodel of squared
residuals. Consider the GARCH(1,1) model:

σ2t = a0 + a1�
2
t−1 + b1σ

2
t−1. (7.5)

Since Et−1(�2t ) = σ2t , the above equation can be rewritten as:

�2t = a0 + (a1 + b1)�
2
t−1 + ut − b1ut−1 (7.6)

which is an ARMA(1,1) model with ut = �2t − Et−1(�2t ) being the white
noise disturbance term.
Given the ARMA representation of the GARCH model, many proper-

ties of the GARCH model follow easily from those of the corresponding
ARMA process for �2t . For example, for the GARCH(1,1) model to be sta-
tionary, requires that a1 + b1 < 1 as in (7.6). Assuming the stationarity of
GARCH(1,1) model, the unconditional variance of �t can be shown to be
V ar(�t) = E(�2t ) = a0/(1− a1 − b1), because from (7.6):

E(�2t ) = a0 + (a1 + b1)E(�
2
t−1)

and thus
E(�2t ) = a0 + (a1 + b1)E(�

2
t )

based on the assumption that �2t is stationary.
For the general GARCH(p, q) model (7.4), the squared residuals ε2t be-

have like an ARMA(max(p, q), q) process. Covariance stationarity requiresPp
i=1 ai +

Pq
j=1 bi < 1 and the unconditional variance of εt is

V ar(εt) =
a0

1−
³Pp

i=1 ai +
Pq

j=1 bi

´ . (7.7)

7.3.2 GARCH Model and Stylized Facts

In practice, researchers have uncovered many so-called “stylized facts”
about the volatility of financial time series; Bollerslev, Engle and Nelson
(1994) give a complete account of these facts. Using the ARMA repre-
sentation of GARCH models shows that the GARCH model is capable of
explaining many of those stylized facts. This section will focus on three im-
portant ones: volatility clustering, fat tails, and volatility mean reversion.
Other stylized facts are illustrated and explained in later sections.

Volatility Clustering

Consider the GARCH(1, 1) model in (7.5). Usually the GARCH coefficient
b1 is found to be around 0.9 for many weekly or daily financial time series.
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Given this value of b1, it is obvious that large values of σ2t−1 will be fol-
lowed by large values of σ2t , and small values of σ

2
t−1 will be followed by

small values of σ2t . The same reasoning can be obtained from the ARMA
representation in (7.6), where large/small changes in �2t−1 will be followed
by large/small changes in �2t .

Fat Tails

It is well known that the distribution of many high frequency financial time
series usually have fatter tails than a normal distribution. That is, large
changes are more often to occur than a normal distribution would imply.
Bollerslev (1986) gives the condition for the existence of the fourth order
moment of a GARCH(1, 1) process. Assuming the fourth order moment ex-
ists, Bollerslev (1986) shows that the kurtosis implied by a GARCH(1, 1)
process is greater than 3, the kurtosis of a normal distribution. He and
Teräsvirta (1999a, 1999b) extend Bollerslev’s results to general GARCH(p, q)
models. Thus a GARCH model can replicate the fat tails usually observed
in financial time series.

Volatility Mean Reversion

Although financial markets may experience excessive volatility from time
to time, it appears that volatility will eventually settle down to a long
run level. The previous subsection showed that the long run variance of
�t for the stationary GARCH(1, 1) model is a0/(1− a1 − b1). In this case,
the volatility is always pulled toward this long run level by rewriting the
ARMA representation in (7.6) as follows:

(�2t −
a0

1− a1 − b1
) = (a1 + b1)(�

2
t−1 −

a0
1− a1 − b1

) + ut − b1ut−1.

If the above equation is iterated k times, one can show that

(�2t+k −
a0

1− a1 − b1
) = (a1 + b1)

k(�2t −
a0

1− a1 − b1
) + ηt+k

where ηt is a moving average process. Since a1 + b1 < 1 for a stationary
GARCH(1, 1) model, (a1 + b1)

k → 0 as k → ∞. Although at time t there
may be a large deviation between �2t and the long run variance, �

2
t+k −

a0/(1 − a1 − b1) will approach zero “on average” as k gets large, i.e., the
volatility “mean reverts” to its long run level a0/(1− a1− b1). In contrast,
if a1 + b1 > 1 and the GARCH model is non-stationary, the volatility will
eventually explode to infinity as k → ∞. Similar arguments can be easily
constructed for a GARCH(p, q) model.
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7.4 GARCH Modeling Using S+FinMetrics

7.4.1 GARCH Model Estimation

This section illustrates how to estimate a GARCH model using functions
in S+FinMetrics. Recall, the general GARCH(p, q) model has the form

yt = c+ �t (7.8)

σ2t = a0 +

pX
i=1

ai�
2
t−i +

qX
j=1

bjσ
2
t−j (7.9)

for t = 1, · · · , T , where σ2t = V art−1(�t). Assuming that �t follows nor-
mal or Gaussian distribution conditional on past history, the prediction
error decomposition of the log-likelihood function of the GARCH model
conditional on initial values is:

logL = −T
2
log(2π)− 1

2

TX
t=1

log σ2t −
TX
t=1

�2t
σ2t

. (7.10)

The unknown model parameters c, ai (i = 0, · · · , p) and bj (j = 1, · · · , q)
can be estimated using (conditional) maximum likelihood estimation (MLE).
Details of the maximization are given in Hamilton (1994). Once the MLE
estimates of the parameters are found, estimates of the time varying volatil-
ity σt (t = 1, . . . , T ) are also obtained as a side product.
For a univariate time series, S+FinMetrics provides the garch function

for GARCH model estimation. For example, to fit a simple GARCH(1,1)
model as in (7.8) and (7.9) to the “timeSeries” object ford.s, use the
command:

> ford.mod11 = garch(ford.s~1, ~garch(1,1))
Iteration 0 Step Size = 1.00000 Likelihood = 2.62618
Iteration 0 Step Size = 2.00000 Likelihood = 2.61237
Iteration 1 Step Size = 1.00000 Likelihood = 2.62720
Iteration 1 Step Size = 2.00000 Likelihood = 2.62769
Iteration 1 Step Size = 4.00000 Likelihood = 2.59047
Iteration 2 Step Size = 1.00000 Likelihood = 2.62785
Iteration 2 Step Size = 2.00000 Likelihood = 2.62795
Iteration 2 Step Size = 4.00000 Likelihood = 2.62793

Convergence R-Square = 4.630129e-05 is less than tolerance = 0.0001
Convergence reached.

In the above example, the garch function takes two arguments: the first ar-
gument is an S-PLUS formula which specifies the conditional mean equation
(7.8), while the second argument is also an S-PLUS formula which specifies
the conditional variance equation (7.9). The specification of the conditional
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mean formula is the same as usual S-PLUS formulas.3 For the conditional
variance formula, nothing needs to be specified on the left hand side, and
the garch(1,1) term on the right hand side denotes the GARCH(1, 1)
model. By default, the progress of the estimation is printed on screen. Those
messages can be suppressed by setting the optional argument trace=F in
the call to the garch function.
The object returned by garch function is of class “garch”. Typing the

name of the object at the command line invokes its print method:

> class(ford.mod11)
[1] "garch"
> ford.mod11

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(1, 1))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Coefficients:

C 7.708e-04
A 6.534e-06

ARCH(1) 7.454e-02
GARCH(1) 9.102e-01

The print method for a “garch” object shows the formulas for the con-
ditional mean equation and conditional variance equation, together with
the estimated model coefficients. Note that in the output C corresponds
to the constant c in the conditional mean equation (7.8), A, ARCH(1) and
GARCH(1) correspond to a0, a1 and b1 in the conditional variance equa-
tion (7.9), respectively. Notice that the estimated GARCH(1) parameter is
close to one and the ARCH(1) parameter is close to zero. The sum of these
parameters is 0.985 which indicates a covariance stationary model with
a high degree of persistence in the conditional variance. Use the S-PLUS
function names to extract the component names for a “garch” object. For
example:

> names(ford.mod11)
[1] "residuals" "sigma.t" "df.residual" "coef" "model"
[6] "cond.dist" "likelihood" "opt.index" "cov" "prediction"
[11] "call" "asymp.sd" "series"

3Chapter 1 provides a review of the usage of S-PLUS formulas and modeling functions.
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It should be clear what most of the components are and the on-line help file
for the garch function provides details for these components. Of particular
interest is the component asymp.sd, which gives an estimate of the uncon-
ditional standard deviation of the GARCH residuals provided the GARCH
model is stationary. That is,

> ford.mod11$asymp.sd
[1] 0.02068

is an estimate of the square root of a0/(1− α1 − b1).
For most components that a user is interested in, S+FinMetrics pro-

vides methods for generic functions such as coef, residuals, and vcov for
extracting those components. For example, the estimated coefficients can
be extracted by calling the generic coef function:

> coef(ford.mod11)

C 7.708418e-04
A 6.534363e-06

ARCH(1) 7.454134e-02
GARCH(1) 9.101842e-01

Similarly, call the generic vcov function to obtain the covariance matrix of
the estimated coefficients:

> vcov(ford.mod11)
C A ARCH(1) GARCH(1)

C 1.415744e-07 -1.212045e-13 -3.569911e-07 2.213101e-07
A -1.212045e-13 3.046074e-12 2.553283e-09 -1.243965e-08

ARCH(1) -3.569911e-07 2.553283e-09 2.875056e-05 -3.432774e-05
GARCH(1) 2.213101e-07 -1.243965e-08 -3.432774e-05 7.676607e-05

By default, the vcov method for “garch” objects uses the covariance ma-
trix based on the outer product of gradients. However, for maximum likeli-
hood estimation, there are three different ways of computing the covariance
matrix of model parameters which are asymptotically equivalent if the un-
derlying error distribution is Gaussian: one based on the outer product of
gradients, one based on the numerical Hessian matrix, and one based on
the asymptotic formula for quasi-maximum likelihood estimation (QMLE).
These different covariance matrices can be obtained by setting the optional
argument method to "op", "hessian", or "qmle", respectively. For exam-
ple, to obtain the covariance matrix of ford.mod11 parameters based on
QMLE formula, use the following command:

> vcov(ford.mod11, method="qmle")
C A ARCH(1) GARCH(1)

C 1.266714e-07 -7.543983e-11 5.676068e-07 -7.711838e-08
A -7.543983e-11 2.698419e-11 1.375760e-07 -2.003637e-07
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ARCH(1) 5.676068e-07 1.375760e-07 1.280160e-03 -1.467187e-03
GARCH(1) -7.711838e-08 -2.003637e-07 -1.467187e-03 1.841734e-03

This covariance matrix is sometimes referred to as the robust covariance
matrix, because it is robust to possible misspecification of the error distri-
bution, or the sandwich estimate, because of the form of the asymptotic
formula (see Bollerslev and Wooldrige, 1992 or Davidson and MacKinnon,
1993).
The residuals method for a “garch” object takes an optional argument

standardize, which can be used to obtain estimates of the standardized
residuals �t/σt. For example:

> residuals(ford.mod11, standardize=T)

returns the standardized residuals of the fitted GARCHmodel ford.mod11.
S+FinMetrics also provides another function sigma.t for extracting the
fitted volatility series σt. Note that if the original data is a “timeSeries”
object, the calendar information of the original data is also retained in the
residual and volatility series.

7.4.2 GARCH Model Diagnostics

The previous subsection showed how to estimate a GARCH model using
the S+FinMetrics function garch and how to extract various components
of the fitted model. To assess the model fit, S+FinMetrics provides method
functions for two generic functions: summary and plot, one for statistical
summary information and the other for visual diagnostics of the model fit.
For example, to obtain a more detailed summary of ford.mod11, call the

generic summary function:

> summary(ford.mod11)

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(1, 1))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Conditional Distribution: gaussian

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 7.708e-04 3.763e-04 2.049 2.031e-02
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A 6.534e-06 1.745e-06 3.744 9.313e-05
ARCH(1) 7.454e-02 5.362e-03 13.902 0.000e+00
GARCH(1) 9.102e-01 8.762e-03 103.883 0.000e+00

--------------------------------------------------------------

AIC(4) = -10503.79
BIC(4) = -10481.39

Normality Test:
--------------------------------------------------------------
Jarque-Bera P-value Shapiro-Wilk P-value

364.2 0 0.9915 0.9777

Ljung-Box test for standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

14.82 0.2516 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

14.04 0.2984 12

Lagrange multiplier test:
--------------------------------------------------------------
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8
2.135 -1.085 -2.149 -0.1347 -0.9144 -0.2228 0.708 -0.2314

Lag 9 Lag 10 Lag 11 Lag 12 C
-0.6905 -1.131 -0.3081 -0.1018 0.9825

TR^2 P-value F-stat P-value
14.77 0.2545 1.352 0.2989

By default, the summary method shows the standard errors and p-values for
the t-statistics for testing that the true coefficients are zero, together with
various tests on the standardized residuals ε̂t/σ̂t for assessing the model fit.
The standard errors and p-values are computed using the default covariance
estimate. To use robust or numerical Hessian based standard errors to
compute the p-values, the summary method takes an optional argument
method just like the vcov method does.
The various tests returned by the summarymethod can also be performed

separately by using standard S+FinMetrics functions. For example, if the
model is successful at modeling the serial correlation structure in the condi-
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tional mean and conditional variance, then there should be no autocorrela-
tion left in the standardized residuals and squared standardized residuals.
This can be checked by using the S+FinMetrics function autocorTest:

> autocorTest(residuals(ford.mod11, standardize=T), lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.8161
p.value 0.2516

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

> autocorTest(residuals(ford.mod11, standardize=T)^2, lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.0361
p.value 0.2984

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

In both cases, the tests are the same as those returned by the summary
method, and the null hypothesis that there is no autocorrelation left can-
not be rejected because the p-values in both cases are greater than the
conventional 5% level. Note that lag was chosen to be 12 to match the
results returned by the summary method.
Similarly, one can also apply the ARCH test on the standardized residuals

to see if there are any ARCH effects left. For example, call archTest on
the standardized residuals of ford.mod11 as follows:

> archTest(residuals(ford.mod11, standardize=T), lag=12)

Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects
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FIGURE 7.5. Normal QQ-Plot of Standardized Residuals: ford.mod11

Test Statistics:

Test Stat 14.7664
p.value 0.2545

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

Again, the results match the Lagrange Multiplier test as returned by the
summary method.
The basic garch model assumes a normal distribution for the errors εt.

If the model is correctly specified then the estimated standardized residu-
als εt/σt should behave like a standard normal random variable. To eval-
uate the normality assumption, the summary method reports both the
Jarque-Bera test and the Shapiro-Wilks test for the standardized residuals,
which again can be performed separately using the S+FinMetrics function
normalTest. However, in the above example, the Jarque-Bera test and the
Shapiro-Wilks test lead to opposite conclusions, with one p-value close to
zero and the other close to one.
To get a more decisive conclusion regarding the normality assumption,

resort to the QQ-plot by calling the generic plot function on a “garch”
object:
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FIGURE 7.6. ACF of Squared Standardized Residuals: ford.mod11

> plot(ford.mod11)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Series and Conditional SD
3: plot: Series with 2 Conditional SD Superimposed
4: plot: ACF of the Observations
5: plot: ACF of Squared Observations
6: plot: Cross Correlation between Squared Series and Series
7: plot: Residuals
8: plot: Conditional Standard Deviations
9: plot: Standardized Residuals
10: plot: ACF of Standardized Residuals
11: plot: ACF of Squared Standardized Residuals
12: plot: Cross Correlation between Squared Std.Res and Std.
13: plot: QQ-Plot of Standardized Residuals
Selection:

By selecting 13, the QQ-plot of standardized residuals can be obtained as
shown in Figure 7.5 In this case, there is significant deviation in both tails
from the normal QQ-line, and thus it seems that the normality assumption
for the residuals may not be appropriate. Section 7.5.6 will show how to
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use alternative distributions.Other plots can also be chosen to visualize the
model fit. For example, choosing 11 generates the ACF plot of squared
standardized residuals as shown in Figure 7.6, which shows that there is
little autocorrelation left in the squared standardized residuals. Choosing
2 plots the original return series and the fitted volatility series as shown in
Figure 7.7.

7.5 GARCH Model Extensions

In many cases, the basic GARCH model (7.4) provides a reasonably good
model for analyzing financial time series and estimating conditional volatil-
ity. However, there are some aspects of the model which can be improved so
that it can better capture the characteristics and dynamics of a particular
time series. For example, the previous section showed that the normality
assumption may not be appropriate for the time series ford.s. This sec-
tion introduces several extensions to the basic GARCH model that make
GARCH modeling more flexible and shows how to estimate those models
using the S+FinMetrics garch function.
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7.5.1 Asymmetric Leverage Effects and News Impact

In the basic GARCHmodel (7.9), since only squared residuals �2t−i enter the
equation, the signs of the residuals or shocks have no effects on conditional
volatility. However, a stylized fact of financial volatility is that bad news
(negative shocks) tends to have a larger impact on volatility than good
news (positive shocks). Black (1976) attributes this effect to the fact that
bad news tends to drive down the stock price, thus increasing the leverage
(i.e., the debt-equity ratio) of the stock and causing the stock to be more
volatile. Based on this conjecture, the asymmetric news impact is usually
referred to as the leverage effect. All the GARCH variants implemented in
S+FinMetrics are capable of incorporating leverage effects. This subsection
focuses on the EGARCH, TGARCH and PGARCH models.

EGARCH Model

Nelson (1991) proposed the following exponential GARCH (EGARCH)
model to allow for leverage effects:

ht = a0 +

pX
i=1

ai
|�t−i|+ γi�t−i

σt−i
+

qX
j=1

bjht−j (7.11)

where ht = log σ2t or σ
2
t = eht . Note that when �t−i is positive or there is

“good news”, the total effect of �t−i is (1+ γi)|�t−i|; in contrast, when �t−i
is negative or there is “bad news”, the total effect of �t−i is (1− γi)|�t−i|.
Bad news can have a larger impact on volatility, and the value of γi would
be expected to be negative.
The garch function can be used to fit an EGARCH model by specifying

˜egarch(p,q) as the conditional variance formula. For example, to fit an
EGARCH(1, 1)model with leverage effects using the daily Hewlett-Packard
stock returns contained in the S+FinMetrics “timeSeries” object hp.s,
use the following command:

> hp.egarch = garch(hp.s~1, ~egarch(1,1), leverage=T, trace=F)
> hp.egarch

Call:
garch(formula.mean = hp.s ~ 1, formula.var = ~ egarch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ egarch(1, 1)

Coefficients:
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C 0.000313
A -1.037907

ARCH(1) 0.227878
GARCH(1) 0.886652
LEV(1) -0.133998

Note that the optional argument trace=F is set to suppress the iteration
messages, and set leverage=T to impose leverage effects. In the output,
the estimated γ1 coefficient for the leverage effect is denoted by LEV(1)and
is negative in this case. The t-statistic for testing γ1 = 0 is

> coef(hp.egarch)[5]/sqrt(vcov(hp.egarch)[5,5])
[1] -2.159

Another advantage of the EGARCH model over the basic GARCH model
is that the conditional variance σ2t is guaranteed to be positive regardless of
the values of the coefficients in (7.11), because the logarithm of σ2t instead
of σ2t itself is modeled.

TGARCH Model

Another GARCH variant that is capable of modeling leverage effects is the
threshold GARCH (TGARCH) model,4 which has the following form:

σ2t = a0 +

pX
i=1

ai�
2
t−i +

pX
i=1

γiSt−i�
2
t−i +

qX
j=1

bjσ
2
t−j (7.12)

where

St−i =
½
1 if �t−i < 0
0 if �t−i ≥ 0

That is, depending on whether �t−i is above or below the threshold value
of zero, �2t−i has different effects on the conditional variance σ

2
t : when �t−i

is positive, the total effects are given by ai�
2
t−i; when �t−i is negative,

the total effects are given by (ai + γi)�
2
t−i. So one would expect γi to be

positive for bad news to have larger impacts. This model is also known as
the GJR model because Glosten, Jagannathan and Runkle (1993) proposed
essentially the same model.
Use the garch function to estimate a TGARCH model by specifying

˜tgarch(p,q) as the conditional variance formula. For example, to fit a
TGARCH instead of an EGARCH model to hp.s, use the following com-
mand:

> hp.tgarch = garch(hp.s~1, ~tgarch(1,1), trace=F)
> hp.tgarch

4The original TGARCH model proposed by Zakoian (1991) models σt instead of σ2t .
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Call:
garch(formula.mean = hp.s ~ 1, formula.var = ~ tgarch(1, 1),

trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ tgarch(1, 1)

Coefficients:

C 3.946e-04
A 3.999e-05

ARCH(1) 6.780e-02
GARCH(1) 8.369e-01
GAMMA(1) 3.306e-02

Note that when using the TGARCH model, the leverage effects are au-
tomatically imposed, so it is not necessary to set leverage=T. Also, the
coefficient γ1 for leverage effects is denoted by GAMMA(1) in the output to
distinguish it from the EGARCH-type formulation of leverage effects. The
estimated value of γ1 is positive, indicating the presence of leverage effects,
and is statistically different from zero at the 5% significance level since its
t-statistic is greater than 2:

> coef(hp.tgarch)[5]/sqrt(vcov(hp.tgarch)[5,5])
[1] 2.5825

PGARCH Model

The basic GARCH model in S+FinMetrics is also extended to allow for
leverage effects. This is made possible by treating the basic GARCH model
as a special case of the power GARCH (PGARCH) model proposed by
Ding, Granger and Engle (1993):

σdt = a0 +

pX
i=1

ai(|�t−i|+ γi�t−i)
d +

qX
j=1

bjσ
d
t−j (7.13)

where d is a positive exponent, and γi denotes the coefficient of leverage ef-
fects. Note that when d = 2, (7.13) reduces to the basic GARCHmodel with
leverage effects. Ding, Granger and Engle (1993) show that the PGARCH
model also includes many other GARCH variants as special cases.
To estimate a basic GARCH(1, 1) model with leverage effects, specify

~garch(1,1) as the conditional variance formula and set the optional ar-
gument leverage=T:

> hp.garch = garch(hp.s~1, ~garch(1,1), leverage=T, trace=F)
> hp.garch
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Call:
garch(formula.mean = hp.s ~ 1, formula.var = ~ garch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Coefficients:

C 4.536e-04
A 3.823e-05

ARCH(1) 7.671e-02
GARCH(1) 8.455e-01
LEV(1) -1.084e-01

The estimated value of γ1 is negative and its t-statistic

> coef(hp.garch)[5]/sqrt(vcov(hp.garch)[5,5])
[1] -2.2987

is less than 2 so one can reject the null of no leverage effects. If ˜pgarch(p,q)
instead of ˜garch(p,q) is used as the conditional variance formula, the
garch function will estimate the PGARCH model (7.13) where the expo-
nent d is also estimated by MLE.
One can fix the exponent d in PGARCH model at a value other than two.

For example, a popular choice is to set d = 1 so that the GARCH model is
robust to outliers. To fit such a model, simply use ˜pgarch(p,q,d) as the
conditional variance formula:

> hp.pgarch = garch(hp.s~1, ~pgarch(1,1,1), leverage=T, trace=F)
> hp.pgarch

Call:
garch(formula.mean = hp.s ~ 1, formula.var = ~ pgarch(1, 1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ pgarch(1, 1, 1)

Coefficients:

C 0.0003312
A 0.0015569

ARCH(1) 0.0892505
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GARCH(p, q) σ̄2 = a0/[1−
Pp

i=1 ai(1 + γ2i )−
Pq

j=1 bj ]

TGARCH(p, q) σ̄2 = a0/[1−
Pp

i=1(ai + γi/2)−
Pq

j=1 bj ]

PGARCH(p, q, 1) σ̄2 = a20/[1−
Pp

i=1 ai
p
2/π −

Pq
j=1 bj ]

2

EGARCH(p, q) σ̄2 = exp{(a0 +
Pp

i=1 ai
p
2/π)/(1−

Pq
j=1 bj)}

TABLE 7.1. Unconditional Variance of GARCH Processes

GARCH(1) 0.8612378
LEV(1) -0.1499219

> coef(hp.pgarch)[5]/sqrt(vcov(hp.pgarch)[5,5])
[1] -2.2121

News Impact Curve

The above subsections have shown that GARCH, EGARCH, TGARCH and
PGARCH models are all capable of modeling leverage effects. The choice
of a particular model can be made by using a model selection criterion such
as the Bayesian information criterion (BIC). Alternatively, Engle and Ng
(1993) proposed that the news impact curve could also be used to compare
these different models. Here is the definition of the news impact curve
following Engle and Ng (1993):
The news impact curve is the functional relationship between conditional

variance at time t and the shock term (error term) at time t − 1, hold-
ing constant the information dated t − 2 and earlier, and with all lagged
conditional variance evaluated at the level of the unconditional variance.
To facilitate the comparison of news impact curves of different GARCH

models, Table 7.1 summarizes the unconditional variance, σ̄2, of various
GARCH models and Table 7.2 summarizes the news impact curves for
models with p = 1 and q = 1.
For example, to compare the news impact curves implied by hp.tgarch,

hp.pgarch and hp.garch, plot the corresponding news impact curves using
the following commands:

> a0 = hp.tgarch$coef[2]
> a1 = hp.tgarch$coef[3]
> b1 = hp.tgarch$coef[4]
> g1 = hp.tgarch$coef[5]
> A = a0 + b1 * hp.tgarch$asymp.sd^2

> epsilon = seq(-0.21, 0.14, length=100)
> sigma2.t.TGARCH = A + (a1+g1*(epsilon < 0))*(epsilon^2)
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GARCH(1, 1) σ2t = A+ a1(|�t−1|+ γ1�t−1)2

A = a0 + b1σ̄
2

TGARCH(1, 1) σ2t = A+ (a1 + γ1St−1)�2t−1
A = a0 + b1σ̄

2

PGARCH(1, 1, 1) σ2t = A+ 2
√
Aa1(|�t−1|+ γ1�t−1) + a21(|�t−1|+ γ1�t−1)2

A = (a0 + b1σ̄)
2

EGARCH(1, 1) σ2t = A exp{a1(|�t−1|+ γ1�t−1)/σ̄}
A = σ̄2b1 exp{a0}

TABLE 7.2. News Impact Curves of GARCH Processes

> a0 = hp.pgarch$coef[2]
> a1 = hp.pgarch$coef[3]
> b1 = hp.pgarch$coef[4]
> g1 = hp.pgarch$coef[5]
> A = (a0 + b1 * hp.pgarch$asymp.sd)^2

> error = abs(epsilon) + g1*epsilon
> sigma2.t.PGARCH = A + 2*sqrt(A)*a1*error + (a1*error)^2

> a0 = hp.garch$coef[2]
> a1 = hp.garch$coef[3]
> b1 = hp.garch$coef[4]
> g1 = hp.garch$coef[5]
> A = a0 + b1 * hp.garch$asymp.sd^2

> error = abs(epsilon) + g1*epsilon
> sigma2.t.GARCH = A + a1*(error^2)

> matplot(cbind(epsilon, epsilon, epsilon), cbind(
sigma2.t.TGARCH, sigma2.t.PGARCH, sigma2.t.GARCH), type="l")

> key(-0.05, 0.0045, lines=list(type="l", lty=1:3), text=
list(c("TGARCH", "PGARCH", "GARCH")), border=1, adj=1)

In this plot, the range of �t is determined by the residuals from the fitted
models. The resulting plot is shown in Figure 7.8. This plot shows that the
news impact curves are all asymmetric because leverage effects are allowed
in all three models, and negative shocks or bad news have larger impacts
on volatility. The TGARCH model suggests larger impacts of shocks on
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volatility than the GARCH model with leverage effects, regardless of the
size of the shock. Moreover, since the PGARCH model with d = 1 is more
robust to extreme shocks, impacts of small shocks implied by the PGARCH
model are larger compared to those from GARCH and TGARCH models,
whereas impacts of large shocks implied by the PGARCH model are smaller
compared to those from GARCH and TGARCH models.

7.5.2 Two Components Model

Section 7.3.2 illustrated that the GARCH model can be used to model
mean reversion in conditional volatility; that is, the conditional volatility
will always “mean revert” to its long run level if the GARCH model is
stationary. Recall the mean reverting form of the basic GARCH(1, 1)model:

(�2t − σ̄2) = (a1 + b1)(�
2
t−1 − σ̄2) + ut − b1ut−1

where σ̄2 = a0/(1− a1 − b1) is the unconditional long run level of volatil-
ity. As previous examples have shown, the mean reverting rate a1 + b1
implied by most fitted models is usually very close to 1. For example, the
ford.mod11 object fitted in Section 7.4,has the following mean reverting
rate:

> ford.mod11$coef[3] + ford.mod11$coef[4]
[1] 0.9847255
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which is almost one. The half life of a volatility shock implied by this mean
reverting rate is:5

> log(0.5)/log(ford.mod11$coef[3] + ford.mod11$coef[4])
[1] 45.03192

which amounts to more than two calendar months. So the fitted GARCH
model implies that the conditional volatility is very persistent.
Engle and Lee (1999) suggest that the high persistence in volatility may

be due to a time-varying long run volatility level. In particular, they suggest
decomposing conditional variance into two components:

σ2t = qt + st (7.14)

where qt is a highly persistent long run component, and st is a transitory
short run component.
S+FinMetrics supports a wide range of two component models by ex-

tending all the previously discussed GARCH variants to incorporate the two
components form (7.14). The general form of the two components model is
based on a modified version of Ding and Granger (1996):

σdt = qdt + sdt (7.15)

qdt = α1|�t−1|d + β1q
d
t−1 (7.16)

sdt = a0 + α2|�t−1|d + β2s
d
t−1. (7.17)

That is, the long run component qt follows a highly persistent PGARCH(1, 1)
model, and the transitory component st follows another PGARCH(1, 1)
model. By expressing the above two PGARCH models using lag operator
notation

qdt = (1− β1L)
−1α1|�t−1|d

sdt = a0 + (1− β2L)
−1α2|�t−1|d

and then substituting them into (7.15), it can be shown that the reduced
form of the two components model is:

σdt = a0 + (α1 + α2)|�t−1|d − (α1β2 + α2β1)|�t−2|d

+ (β1 + β2)σ
d
t−1 − β1β2σ

d
t−2

which is in the form of a constrained PGARCH(2, 2) model. However,
the two components model is not fully equivalent to the PGARCH(2, 2)
model because not all PGARCH(2, 2) models have the component struc-
ture. In fact, since the two components model is a constrained version

5See Chapter 2 for the definition of half life.
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of the PGARCH(2, 2) model, the estimation of a two components model
is often numerically more stable than the estimation of an unconstrained
PGARCH(2, 2) model.
Although the PGARCH(1, 1)model is used here as the component for the

two components model, S+FinMetrics actually allows any valid GARCH
variant as the component, and leverage effects are also allowed correspond-
ingly. For example, to fit a two components model using a GARCH compo-
nent, EGARCH component, or PGARCH component, simply use the condi-
tional variance formulas ˜garch.2comp, ˜egarch.2comp, or ˜pgarch.2comp(d),
respectively. Note that since a two components model reduces to a GARCH(2, 2)
model of the corresponding type, the orders of the ARCH and GARCH
terms need not be given in the formula specification. The only exception
is the PGARCH two components model, which can explicitly specify the
exponent d for the underlying PGARCH model. For example, to estimate
a two components PGARCH model with d = 2 using the daily Ford stock
returns ford.s, use the following command:

> ford.2comp = garch(ford.s~1, ~pgarch.2comp(2))
> summary(ford.2comp)

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ pgarch.2comp(2))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ pgarch.2comp(2)

Conditional Distribution: gaussian

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 6.870e-04 3.795e-04 1.810 3.519e-02
A 1.398e-06 5.877e-07 2.379 8.716e-03

ALPHA(1) 2.055e-02 6.228e-03 3.300 4.925e-04
ALPHA(2) 1.422e-01 2.532e-02 5.617 1.110e-08
BETA(1) 9.664e-01 8.637e-03 111.883 0.000e+00
BETA(2) 3.464e-01 1.091e-01 3.175 7.617e-04

The coefficients for the two components, α1, β1, α2 and β2, are identified by
ALPHA(1), BETA(1), ALPHA(2) and BETA(2) in the output. As expected, the
long run component associated with α1 and β1 is very persistent, whereas
the second component associated with α2 and β2 is not persistent at all.
Also, all the coefficients are highly significant.
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In the above example, fixing d = 2 for the two components PGARCH
model can be easily verified that the model is equivalent to a two compo-
nents GARCH model. If the exponent d is not specified in the formula, it
will be estimated by MLE. In addition, setting leverage=T when fitting
a two components model, the coefficients for leverage effects will also be
estimated, and the form of leverage effects is same as in (7.11) and (7.13).
However, for the two components PGARCH model, S+FinMetrics also al-
lows leverage effects to take the form as in the TGARCH model (7.12). The
resulting model can be estimated by using ˜two.comp(i,d) as the condi-
tional variance formula, with i = 2 corresponding to the leverage effects as
in (7.12), and i = 1 corresponding to the leverage effects as in (7.13). For
example, the following model is essentially the two components TGARCH
model:

> garch(ford.s~1, ~two.comp(2,2), leverage=T, trace=F)

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ two.comp(2, 2),

leverage = T, trace = F)

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ two.comp(2, 2)

Coefficients:

C 5.371e-04
A 1.368e-06

ALPHA(1) 1.263e-02
ALPHA(2) 1.154e-01
BETA(1) 9.674e-01
BETA(2) 2.998e-01
LEV(1) 8.893e-02
LEV(2) -5.235e-02

7.5.3 GARCH-in-the-Mean Model

In financial investment, high risk is often expected to lead to high returns.
Although modern capital asset pricing theory does not imply such a simple
relationship, it does suggest there are some interactions between expected
returns and risk as measured by volatility. Engle, Lilien and Robins (1987)
propose to extend the basic GARCH model so that the conditional volatil-
ity can generate a risk premium which is part of the expected returns.
This extended GARCH model is often referred to as GARCH-in-the-mean
(GARCH-M) model.
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Possible Functions for g(σt) Formula Name
σ sd.in.mean
σ2 var.in.mean

ln(σ2) logvar.in.mean

TABLE 7.3. Possible Functions for g(σt)

The GARCH-M model extends the conditional mean equation (7.8) as
follows:

yt = c+ αg(σt) + �t (7.18)

where g(·) can be an arbitrary function of volatility σt. The garch func-
tion allows the GARCH-M specification in the conditional mean equation
together with any valid conditional variance specification. However, the
function g(σt) must be one of the functions listed in Table 7.3, where the
corresponding formula specifications are also given.
For example, to fit a GARCH-M model with g(σt) = σ2t to Hewlett-

Packard stock returns using a PGARCH(1, 1, 1)model with leverage effects,
use the following command:

> hp.gmean = garch(hp.s~var.in.mean, ~pgarch(1,1,1), leverage=T)
Iteration 0 Step Size = 1.00000 Likelihood = 2.40572
Iteration 0 Step Size = 2.00000 Likelihood = 2.40607
Iteration 0 Step Size = 4.00000 Likelihood = 2.38124
Iteration 1 Step Size = 1.00000 Likelihood = 2.40646
Iteration 1 Step Size = 2.00000 Likelihood = 2.40658
Iteration 1 Step Size = 4.00000 Likelihood = 2.40611
Iteration 2 Step Size = 1.00000 Likelihood = 2.40667
Iteration 2 Step Size = 2.00000 Likelihood = 2.40669
Iteration 2 Step Size = 4.00000 Likelihood = 2.40653

Convergence R-Square = 7.855063e-05 is less than tolerance = 0.0001
Convergence reached.
> summary(hp.gmean)

Call:
garch(formula.mean = hp.s ~ var.in.mean, formula.var =

~ pgarch(1, 1, 1), leverage = T)

Mean Equation: hp.s ~ var.in.mean

Conditional Variance Equation: ~ pgarch(1, 1, 1)

Conditional Distribution: gaussian

--------------------------------------------------------------
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Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C -0.001712 0.0013654 -1.254 1.050e-01

ARCH-IN-MEAN 4.373179 2.8699425 1.524 6.386e-02
A 0.001648 0.0003027 5.444 2.920e-08

ARCH(1) 0.093854 0.0096380 9.738 0.000e+00
GARCH(1) 0.853787 0.0176007 48.509 0.000e+00
LEV(1) -0.161515 0.0648241 -2.492 6.399e-03

The coefficient α in (7.18) is identified by ARCH-IN-MEAN in the output.
In this case, the risk premium is positive which implies that high risk
(volatility) leads to high expected returns. However, the p-value for the
t-statistic is slightly larger than the conventional 5% level.

7.5.4 ARMA Terms and Exogenous Variables in Conditional
Mean Equation

So far the conditional mean equation has been restricted to a constant
when considering GARCH models, except for the GARCH-M model where
volatility was allowed to enter the mean equation as an explanatory vari-
able. The garch function in S+FinMetrics allows ARMA terms as well
as exogenous explanatory variables in the conditional mean equation. The
most general form for the conditional mean equation is

yt = c+
rX

i=1

φiyt−i +
sX

j=1

θj�t−j +
LX
l=1

β0lxt−l + �t (7.19)

where xt is a k × 1 vector of weakly exogenous variables, and βl is the
k × 1 vector of coefficients. Note that distributed lags of the exogenous
variables in xt are also allowed. To include AR(r), MA(s), or ARMA(r, s)
terms in the conditional mean, simply add ar(r), ma(s), or arma(r,s) to
the conditional mean formula.

Example 40 Single Factor Model with GARCH Errors

From the Capital Asset Pricing Model (CAPM), stock returns should be
correlated with the returns on a market index, and the regression coefficient
is usually referred to as the “market beta”. S+FinMetrics comes with a
“timeSeries” object nyse.s which represents daily returns on a value
weighted New York Stock Exchange index and covers the same time period
as ford.s. Use the S+FinMetrics function rvfPlot to generate a Trellis
scatter plot of ford.s versus nyse.s:

> rvfPlot(ford.s, nyse.s, strip.text="Market Beta",
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FIGURE 7.9. Daily Ford Returns versus NYSE Returns

id.n=0, hgrid=T, vgrid=T,
xlab="NYSE Returns", ylab="Ford Returns")

The plot is shown in Figure 7.9, from which a clear linear relationship can
be seen. To estimate the market beta for daily Ford returns allowing for a
GARCH(1, 1) error, use the following command:

> ford.beta = garch(ford.s~ma(1)+seriesData(nyse.s),
~garch(1,1), trace=F)

> summary(ford.beta)

Call:
garch(formula.mean = ford.s ~ ma(1) + seriesData(nyse.s),

formula.var = ~ garch(1, 1), trace = F)

Mean Equation: ford.s ~ ma(1) + seriesData(nyse.s)

Conditional Variance Equation: ~ garch(1, 1)

Conditional Distribution: gaussian

--------------------------------------------------------------

Estimated Coefficients:
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--------------------------------------------------------------
Value Std.Error t value Pr(>|t|)

C 8.257e-05 3.063e-04 0.2695 3.938e-01
MA(1) 4.448e-02 2.186e-02 2.0348 2.100e-02

seriesData(nyse.s) 1.234e+00 2.226e-02 55.4418 0.000e+00
A 1.406e-06 5.027e-07 2.7971 2.603e-03

ARCH(1) 3.699e-02 4.803e-03 7.7019 1.044e-14
GARCH(1) 9.566e-01 6.025e-03 158.7691 0.000e+00

Note that an MA(1) term has also been added in the mean equation to allow
for first order serial correlation in the daily returns caused by the possible
bid-ask bounce often observed in daily stock prices. The above summary
shows that both the MA(1) coefficient and market beta are highly signif-
icant. The estimated volatility is shown in Figure 7.10, which is obtained
by choosing choice 8 from the plot method. Compare this with the esti-
mated volatility without using nyse.s as shown in Figure 7.7: the estimated
volatility has the same pattern, but the magnitude of volatility has signif-
icantly decreased. Since the market effects are taken into consideration
here by using nyse.s as an explanatory variable, the resulting volatility
may be interpreted as the “idiosyncratic” volatility, while the volatility in
Figure 7.7 includes both the idiosyncratic component and the systematic
market component.
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7.5.5 Exogenous Explanatory Variables in the Conditional
Variance Equation

Adding explanatory variables into the conditional variance formula may
have impacts on conditional volatility.6 To illustrate, it is widely believed
that trading volume affects the volatility. The S+FinMetrics object dell.s
contains a time series of daily stock returns of Dell Computer Corporation,
and dell.v contains daily trading volume of Dell stocks spanning the same
time period. In the next example, use the percentage change in trading
volume to forecast volatility.

Example 41 Trading Volume and Volatility

First, use the S+FinMetrics function getReturns to compute rates of
changes in trading volume. Then look at the scatter plot of log absolute
returns versus the changes in trading volume:

> log.abs.ret = log(abs(dell.s-mean(dell.s)))[-1]
> d.volume = getReturns(dell.v)
> rvfPlot(log.abs.ret, d.volume, strip="Scatter Plot",

id.n=0, hgrid=T, vgrid=T,

6To guarantee that the conditional variance is always positive, one has to make sure
that exogenous variables are positive unless an EGARCH type model is selected.
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xlab="% Volume", ylab="Volatility")

The resulting plot is shown in Figure 7.11. There seems to exist a fairly
linear relationship between the changes in volume and the volatility as
measured by the log absolute returns. Based on this observation, use the
changes in volume as an explanatory variable in the EGARCH variance
equation:

> dell.mod = garch(dell.s~1, ~egarch(1,1)+seriesData(d.volume),
series.start=2)

> summary(dell.mod)

Call:
garch(formula.mean = dell.s ~ 1, formula.var = ~ egarch(1, 1) +

seriesData(d.volume), series.start = 2)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ egarch(1, 1) +
seriesData(d.volume)

Conditional Distribution: gaussian

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.15678 0.06539 2.3977 8.321e-03
A -0.02078 0.03927 -0.5293 2.984e-01

ARCH(1) 0.14882 0.03721 3.9992 3.364e-05
GARCH(1) 0.95140 0.01695 56.1226 0.000e+00

seriesData(d.volume) 1.39898 0.08431 16.5928 0.000e+00

The optional argument series.start=2 is used because the “timeSeries”
d.volume has one less observation than the “timeSeries” dell.s. From
the summary output, the coefficient on changes in volume is estimated to
be 1.4 and is highly significant with a p-value essentially equal to zero. The
estimated model implies a 1% change in trading volume causes about a
1.4% change in conditional variance.

7.5.6 Non-Gaussian Error Distributions

In all the examples illustrated so far, a normal error distribution has been
exclusively used. However, given the well known fat tails in financial time
series, it may be more desirable to use a distribution which has fatter tails
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than the normal distribution. The garch function in S+FinMetrics allows
three fat-tailed error distributions for fitting GARCH models: the Student-t
distribution; the double exponential distribution; and the generalized error
distribution.

Student-t Distribution

If a random variable ut has a Student-t distribution with ν degrees of
freedom and a scale parameter st, the probability density function (PDF)
of ut is given by:

f(ut) =
Γ[(ν + 1)/2]

(πν)1/2Γ(ν/2)

s
−1/2
t

[1 + u2t/(stν)]
(ν+1)/2

where Γ(·) is the gamma function. The variance of ut is given by:

V ar(ut) =
stν

ν − 2 , v > 2.

If the error term �t in a GARCH model follows a Student-t distribution
with ν degrees of freedom and V art−1(�t) = σ2t , the scale parameter st
should be chosen to be

st =
σ2t (ν − 2)

ν
.

Thus the log-likelihood function of a GARCH model with Student-t dis-
tributed errors can be easily constructed based on the above PDF.

Generalized Error Distribution

Nelson (1991) proposed to use the generalized error distribution (GED) to
capture the fat tails usually observed in the distribution of financial time
series. If a random variable ut has a GED with mean zero and unit variance,
the PDF of ut is given by:

f(ut) =
ν exp[−(1/2)|ut/λ|ν ]
λ · 2(ν+1)/νΓ(1/ν)

where

λ =

·
2−2/νΓ(1/ν)
Γ(3/ν)

¸1/2
and ν is a positive parameter governing the thickness of the tail behavior
of the distribution. When ν = 2 the above PDF reduces to the standard
normal PDF; when ν < 2, the density has thicker tails than the normal
density; when ν > 2, the density has thinner tails than the normal density.
When the tail thickness parameter ν = 1, the PDF of GED reduces to

the PDF of double exponential distribution:

f(ut) =
1√
2
e−
√
2|ut|.
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Based on the above PDF, the log-likelihood function of GARCH mod-
els with GED or double exponential distributed errors can be easily con-
structed. Refer to Hamilton (1994) for an example.

GARCH Estimation with Non-Gaussian Error Distributions

To estimate a GARCH model with the above three non-Gaussian error
distributions using the garch function, simply set the optional argument
cond.dist to ”t” for the Student-t distribution, ”ged” for the GED dis-
tribution, and ”double.exp” for the double exponential distribution, re-
spectively.
For example, to estimate a basic GARCH(1, 1) model with Student-t

distribution using daily Ford stock returns ford.s, use the command:

> ford.mod11.t = garch(ford.s~1, ~garch(1,1), cond.dist="t")
Iteration 0 Step Size = 1.00000 Likelihood = 2.64592
Iteration 0 Step Size = 2.00000 Likelihood = -1.00000e+10
Iteration 1 Step Size = 1.00000 Likelihood = 2.64788
Iteration 1 Step Size = 2.00000 Likelihood = 2.64367
Iteration 2 Step Size = 1.00000 Likelihood = 2.64808
Iteration 2 Step Size = 2.00000 Likelihood = 2.64797

Convergence R-Square = 4.712394e-05 is less than tolerance = 0.0001
Convergence reached.

The distribution information is saved in the cond.dist component of the
returned object:

> ford.mod11.t$cond.dist
$cond.dist:
[1] "t"

$dist.par:
[1] 7.793236

$dist.est:
[1] T

where the dist.par component contains the estimated degree of freedom
ν for Student-t distribution. Calling the generic summary function on the
returned object will also show the standard error of the estimate of ν.
To assess the goodness-of-fit of ford.mod11.t, generate the QQ-plot

based on the estimated Student-t distribution by calling the plot function
on ford.mod11.t, which is shown in Figure 7.12. Compare this with Fig-
ure 7.5 and the Student-t error distribution provides a much better fit than
the normal error distribution.
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FIGURE 7.12. Student-t QQ-Plot of Standardized Residuals: ford.mod11.t

When using Student-t or GED distributions, the distribution parameter
ν is estimated as part of the MLE procedure by default. One can also choose
to fix ν at a certain value during the estimation. For example, to fix ν = 1
for GED distribution, use the command:

> ford.mod11.dexp = garch(ford.s~1, ~garch(1,1),
+ cond.dist="ged", dist.par=1, dist.est=F)

where the optional argument dist.par is used to set the value, and dist.est
is used to exclude the distribution parameter for MLE. It can be easily ver-
ified that this is equivalent to setting cond.dist="double.exp".

7.6 GARCH Model Selection and Comparison

The previous sections have illustrated the variety of GARCH models avail-
able in S+FinMetrics. Obviously selecting the best model for a particular
data set can be a daunting task. Model diagnostics based on standard-
ized residuals and news impact curves for leverage effects can be used to
compare the effectiveness of different aspects of GARCH models. In addi-
tion, since GARCH models can be treated as ARMA models for squared
residuals, traditional model selection criteria such as Akaike information
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criterion (AIC) and Bayesian information criterion (BIC) can also be used
for selecting models.
To facilitate the selection and comparison of different GARCH models,

S+FinMetrics provides the function compare.mgarch to compare the fits
of different “garch” objects.7 For example, to compare the GARCH(1,1)
fits of the “garch” objects ford.mod11 and ford.mod11.t, one fitted with
the Gaussian distribution and the other with the Student-t distribution,
use the following command:

> ford.compare = compare.mgarch(ford.mod11, ford.mod11.t)
> oldClass(ford.compare)
[1] "compare.garch" "compare.mgarch"
> ford.compare

ford.mod11 ford.mod11.t
AIC -10504 -10582
BIC -10481 -10554

Likelihood 5256 5296

The returned object ford.compare is an S version 3 object with class
“compare.garch”, which inherits from the class “compare.mgarch”. The
print method for this class of objects shows the AIC, BIC, and log-
likelihood values of the fitted models. Since the BIC of ford.mod11.t is
much smaller than that of ford.mod11, Student-t distribution seems to
provide a much better fit than the normal distribution.
S+FinMetrics also provides a method for the generic plot function for

objects inheriting from class “compare.mgarch”. To see the arguments of
the plot method, use the args function as usual:

> args(plot.compare.mgarch)
function(x, qq = F, hgrid = F, vgrid = F, lag.max = NULL,

ci = 2, ...)
> plot(ford.compare)

The resulting plot is shown Figure 7.13. By default, the plot method com-
pares the ACF of squared standardized residuals from the fitted models.
This plot demonstrates that both models are successful at modeling condi-
tional volatility. If the optional argument is set at qq=T, then a comparison
of QQ-plots is generated:

> plot(ford.compare, qq=T, hgrid=T, vgrid=T)

which is shown in Figure 7.14. Note that since ford.mod11 is fitted using
the normal distribution, the QQ-plot is based on normal assumption. In

7This is originally designed as a method function for the generic compare function for
an S version 3 object. However, for S-PLUS 6 which is based on S version 4, the generic
function compare does not work correctly when more than two objects are compared. So
we suggest calling compare.mgarch directly.
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FIGURE 7.13. Comparison of ACF of Squared Std. Residuals

contrast, since ford.mod11.t is fitted using Student-t distribution, the
QQ-plot is based on a Student-t distribution with degrees of freedom taken
from the cond.dist component of the object.

7.6.1 Constrained GARCH Estimation

For a GARCH model, some model parameters can also be fixed at certain
values to evaluate the fit of a particular model. Section 13.7 in Chapter 13
provides some examples.

7.7 GARCH Model Prediction

An important task of modeling conditional volatility is to generate accurate
forecasts for both the future value of a financial time series as well as its
conditional volatility. Since the conditional mean of the general GARCH
model (7.19) assumes a traditional ARMA form, forecasts of future values
of the underlying time series can be obtained following the traditional ap-
proach for ARMA prediction. However, by also allowing for a time varying
conditional variance, GARCH models can generate accurate forecasts of
future volatility, especially over short horizons. This section illustrates how
to forecast volatility using GARCH models.
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For simplicity, consider the basic GARCH(1, 1) model:

σ2t = a0 + a1�
2
t−1 + b1σ

2
t−1

which is estimated over the time period t = 1, 2, · · · , T . To obtainET [σ
2
T+k],

the forecasts of future volatility σ2T+k, for k > 0, given information at time
T . The above equation can easily obtain:

ET [σ
2
T+1] = a0 + a1ET [�

2
T ] + b1ET [σ

2
T ]

= a0 + a1�
2
T + b1σ

2
T

since it already has �2T and σ2T after the estimation.
8 Now for T + 2

ET [σ
2
T+2] = a0 + a1ET [�

2
T+1] + b1ET [σ

2
T+1]

= a0 + (a1 + b1)ET [σ
2
T+1].

since ET [ε
2
T+1] = ET [σ

2
T+1]. The above derivation can be iterated to give

the conditional volatility forecasting equation

ET [σ
2
T+k] = a0

k−2X
i=1

(a1 + b1)
i + (a1 + b1)

k−1ET [σ
2
T+1] (7.20)

8We are a little bit loose with notations here because �T and σ2T are actually the
fitted values instead of the unobserved “true” values.
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FIGURE 7.15. PGARCH Forecasts of Future Volatility: hp.pgarch

for k ≥ 2. Notice that as k → ∞, the volatility forecast in (7.20) ap-
proaches the unconditional variance a0/(1−a1−b1) if the GARCH process
is stationary (i.e., if α1 + b1 < 1).
The forecasting algorithm (7.20) produces forecasts for the conditional

variance σ2T+k. The forecast for the conditional volatility, σT+k, is defined
as the square root of the forecast for σ2T+k.
The predict method for “garch” objects in S+FinMetrics implements

the forecasting procedure as described above for all the supported GARCH
variants, allowing for leverage effects and the use of exogenous variables
in both the conditional mean and the conditional variance. The forecasts
can be easily obtained by calling the generic predict function on a fitted
model object with the desired number of forecasting periods. For example,
consider the PGARCH object hp.pgarch in Section 7.5.1. To obtain 10-
step-ahead forecasts, simply use the command:

> hp.pgarch.pred = predict(hp.pgarch,10)
> class(hp.pgarch.pred)
[1] "predict.garch"
> names(hp.pgarch.pred)
[1] "series.pred" "sigma.pred" "asymp.sd"
> hp.pgarch.pred
$series.pred:
[1] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312
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[6] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312

$sigma.pred:
[1] 0.02523 0.02508 0.02494 0.02482 0.02470 0.02458 0.02448
[8] 0.02438 0.02429 0.02421

$asymp.sd:
[1] 0.02305

attr(, "class"):
[1] "predict.garch"

The returned object hp.pgarch.pred is of class “predict.garch” for which
there is only a plot method. Since the conditional mean was restricted to
a constant in hp.pgarch, the forecasts of the future values contained in
the component series.pred are simply the estimate of the mean. The
component sigma.pred contains the forecasts of σt, and the component
asymp.sd contains the estimate of the unconditional standard deviation if
the estimated model is stationary. If a very large number of steps lie ahead,
the forecasted volatility should approach the unconditional level. This can
be easily verified for hp.pgarch as follows:

> plot(predict(hp.pgarch, 100))

where the plot method for the returned object can be directly invoked
and the resulting plot is shown in Figure 7.15. Note that a plot of the
forecasted series values can also be obtained. See the on-line help file for
plot.predict.garch for details.
The forecasted volatility can be used together with forecasted series val-

ues to generate confidence intervals of the forecasted series values. In many
cases, the forecasted volatility is of central interest, and confidence inter-
vals for the forecasted volatility can be obtained as well. However, analytic
formulas for confidence intervals of forecasted volatility are only known for
some special cases (see Baillie and Bollerslev, 1992). The next section will
show how a simulation-based method can be used to obtain confidence in-
tervals for forecasted volatility from any of the GARCH variants available
in S+FinMetrics.

7.8 GARCH Model Simulation

S+FinMetrics provides a method for the generic S-PLUS function simulate
for objects of class “garch”. This function, simulate.garch, allows obser-
vations as well as volatility to be simulated from a user-specified GARCH
model or from the model contained in a fitted “garch” object. This section
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illustrates the use of simulate to create confidence intervals for volatility
forecasts from a fitted GARCH model.

Example 42 Simulation-based GARCH Forecasts

To obtain volatility forecasts from a fitted GARCH model, simply sim-
ulate from the last observation of the fitted model. This process can be
repeated many times to obtain an “ensemble” of volatility forecasts. For
example, suppose 100-step-ahead volatility forecasts need to be generated
from hp.pgarch, take the residual term and fitted volatility of the last
observation:9

> sigma.start = as.numeric(hp.pgarch$sigma.t[2000])
> eps.start = as.numeric(hp.pgarch$residuals[2000])
> eps.start = matrix(eps.start, 1, 1000)
> error = rbind(eps.start, matrix(rnorm(100*1000), 100))

Note that the first row of error contains the pre-sample values of �t to
start off the simulation for each of the 1000 replications, whereas the rest
of error are simply random variates with zero mean and unit variance
which will be updated by the simulation procedure to result in GARCH
errors. Now use these values to obtain the simulations as follows:

> set.seed(10)
> hp.sim.pred = simulate(hp.pgarch, n=100, n.rep=1000,

sigma.start=sigma.start, etat=error)$sigma.t

The argument n specifies the desire to simulate 100 steps ahead, and n.rep
specifies wanting to repeat this 1000 times. The simulation procedure re-
turns both the simulated GARCH errors and volatility. Only take the sim-
ulated volatility contained in the sigma.t component; thus hp.sim.pred
is a 100×1000 matrix with each column representing each simulation path.
The simulation-based forecasts are simply the average of the 1000 simula-
tion paths. 95% confidence intervals for the forecasts may be computed in
two ways. They can be computed using the usual formula based on nor-
mally distributed forecasts; that is, mean forecast ±2· standard deviation
of forecasts. Alternatively, the 95% confidence interval may be constructed
from the 2.5% and 97.5% quantiles of the simulated forecasts. Use the fol-
lowing code to compute the forecasts and plot the 95% confidence interval
based on the normal formula:

> vol.mean = rowMeans(hp.sim.pred)
> vol.stdev = rowStdevs(hp.sim.pred)
> vol.cf = cbind(vol.mean+2*vol.stdev, vol.mean-2*vol.stdev)
> tsplot(cbind(vol.mean, vol.cf))

9 If the order of the fitted GARCH model is m = max(p, q), then m last observations
are required.
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FIGURE 7.16. Simulation-based Volatility Forecasts: hp.pgarch

> points(predict(hp.pgarch, 100)$sigma.pred, pch=1)
> title(main="Simulated Confidence Interval of Volatility",

xlab="Time", ylab="Volatility")

The resulting plot is shown in Figure 7.16. Note that analytic forecasts
are also added as points in the plot for comparison. The simulation-based
forecasts agree with the analytic ones produced by the predict method.
In the above example, the “standardized” errors were generated by ran-

dom sampling from the standard normal distribution. In practice, it may
be desirable to generate standardized errors by bootstrapping from stan-
dardized residuals.

7.9 Conclusion

This chapter illustrated how to estimate and forecast from various GARCH
models. The range of GARCH models supported by S+FinMetrics is very
broad. Table 7.4 summarizes all the conditional variance formulas sup-
ported by the garch function.
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Formula Model
˜garch(p,q) GARCH(p, q) model
˜egarch(p,q) EGARCH(p, q) model
˜tgarch(p,q) TGARCH(p, q) model
˜pgarch(p,q) PGARCH(p, q) model with free exponent d
˜pgarch(p,q,d) PGARCH(p, q) model with fixed exponent d
˜garch.2comp GARCH TWO.COMP model
˜egarch.2comp EGARCH TWO.COMP model
˜pgarch.2comp PGARCH TWO.COMP model with free exponent d
˜pgarch.2comp(d) PGARCH TWO.COMP model with fixed exponent d
˜two.comp(i) PGARCH TWO.COMP model with choice of leverage effects
˜two.comp(i,d) PGARCH TWO.COMP model with choice of leverage effects

TABLE 7.4. GARCH Formula Specifications
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8
Long Memory Time Series Modeling

8.1 Introduction

Earlier chapters have demonstrated that many macroeconomic and finan-
cial time series like nominal and real interest rates, real exchange rates,
exchange rate forward premiums, interest rate differentials and volatility
measures are very persistent, i.e., that an unexpected shock to the under-
lying variable has long lasting effects. Persistence can occur in the first
or higher order moments of a time series. The persistence in the first mo-
ment, or levels, of a time series can be confirmed by applying either unit
root tests or stationarity tests to the levels, while the persistence in the
volatility of the time series is usually exemplified by a highly persistent
fitted GARCH model. Although traditional stationary ARMA processes
often cannot capture the high degree of persistence in financial time series,
the class of non-stationary unit root or I(1) processes have some unap-
pealing properties for financial economists. In the last twenty years, more
applications have evolved using long memory processes, which lie halfway
between traditional stationary I(0) processes and the non-stationary I(1)
processes. There is substantial evidence that long memory processes can
provide a good description of many highly persistent financial time series.
This chapter will cover the concept of long memory time series. Sec-

tion 8.3 will explain various tests for long memory, or long range depen-
dence, in a time series and show how to perform these tests using functions
in S+FinMetrics module. In Section 8.4 will illustrate how to estimate
the long memory parameter using R/S statistic and two periodogram-
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based method. Section 8.5 will extend the traditional ARIMA processes
to fractional ARIMA (FARIMA) processes, which can be used to model
the long range dependence and short run dynamics simultaneously. The
semiparametric fractional autoregressive (SEMIFAR) process recently pro-
posed by Beran and his coauthors will also be introduced. Section 8.6 will
extend GARCH models to fractionally integrated GARCH models to al-
low for long memory in conditional volatility. Finally, section 8.7 will con-
sider the prediction from long memory models such as FARIMA and FI-
GARCH/FIEGARCH models. Beran (1994) gives an exhaustive treatment
of statistical aspects of modeling with long memory processes, while Bail-
lie (1996) provides a comprehensive survey of econometric analysis of long
memory processes and applications in economics and finance.

8.2 Long Memory Time Series

To illustrate the long memory property in financial time series, consider
the daily returns on the S&P500 index from January 4, 1928 to August 30,
1991 contained in the S+FinMetrics “timeSeries” object sp500. Since
daily returns usually have a mean very close to zero, the absolute return
is sometimes used as a measure of volatility. The sample autocorrelation
function of the daily absolute returns can be plotted using the following
commands:

> tmp = acf(abs(sp500), lag=200)
> sp500.ar = ar(abs(sp500))
> sp500.ar$order
[1] 37
> tmp.mod = list(ar=as.vector(sp500.ar$ar), sigma2=1, d=0)
> ar.acf = acf.FARIMA(tmp.mod, lag.max=200)
> lines(ar.acf$lags, ar.acf$acf/ar.acf$acf[1])

and the plot is shown in Figure 8.1. The autocorrelation of absolute re-
turns is highly persistent and remains very significant at lag 200. In the
above code fragment, the S-PLUS function ar is used to select the best fit-
ting AR process using AIC, which turns out to be an AR(37) model. The
S+FinMetrics function acf.FARIMA compares the theoretical autocorrela-
tion function implied by the AR(37) process with the sample autocorrela-
tion function. The following comments apply to this example:

1. Traditional stationary ARMA processes have short memory in the
sense that the autocorrelation function decays exponentially. In the
above example, the theoretical autocorrelation closely matches the
sample autocorrelation at small lags. However, for large lags, the
sample autocorrelation decays much more slowly than the theoret-
ical autocorrelation.
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FIGURE 8.1. ACF of Daily Absolute Returns of S&P500 Index

2. When the sample autocorrelation decays very slowly, traditional sta-
tionary ARMA processes usually result in an excessive number of
parameters. In the above example, 37 autoregressive coefficients were
found necessary to capture the dependence in the data.

Based on the above observations, a stationary process yt has long mem-
ory , or long range dependence, if its autocorrelation function behaves like

ρ(k)→ Cρk
−α as k →∞ (8.1)

where Cρ is a positive constant, and α is a real number between 0 and 1.
Thus the autocorrelation function of a long memory process decays slowly
at a hyperbolic rate. In fact, it decays so slowly that the autocorrelations
are not summable:

∞X
k=−∞

ρ(k) =∞.

For a stationary process, the autocorrelation function contains the same
information as its spectral density. In particular, the spectral density is
defined as:

f(ω) =
1

2π

∞X
k=−∞

ρ(k)eikω
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where ω is the Fourier frequency (c.f. Hamilton, 1994). From (8.1) it can
be shown that

f(ω)→ Cfω
α−1 as ω → 0 (8.2)

where Cf is a positive constant. So for a long memory process, its spectral
density tends to infinity at zero frequency. Instead of using α, in practice
use

H = 1− α/2 ∈ (0.5, 1), (8.3)

which is known as the Hurst coefficient (see Hurst, 1951) to measure the
long memory in yt. The larger H is, the longer memory the stationary
process has.
Based on the scaling property in (8.1) and the frequency domain property

in (8.2), Granger and Joyeux (1980) and Hosking (1981) independently
showed that a long memory process yt can also be modeled parametrically
by extending an integrated process to a fractionally integrated process. In
particular, allow for fractional integration in a time series yt as follows:

(1− L)d(yt − µ) = ut (8.4)

where L denotes the lag operator, d is the fractional integration or fractional
difference parameter, µ is the expectation of yt, and ut is a stationary short-
memory disturbance with zero mean.
In practice, when a time series is highly persistent or appears to be

non-stationary, let d = 1 and difference the time series once to achieve
stationarity. However, for some highly persistent economic and financial
time series, it appears that an integer difference may be too much, which is
indicated by the fact that the spectral density vanishes at zero frequency
for the differenced time series. To allow for long memory and avoid taking
an integer difference of yt, allow d to be fractional. The fractional difference
filter is defined as follows, for any real d > −1:

(1− L)d =
∞X
k=0

µ
d
k

¶
(−1)kLk (8.5)

with binomial coefficients:µ
d
k

¶
=

d!

k!(d− k)!
=

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
.

Notice that the fractional difference filter can be equivalently treated as an
infinite order autoregressive filter.1 It can be shown that when |d| > 1/2,
yt is non-stationary; when 0 < d < 1/2, yt is stationary and has long

1The S+FinMetrics function FARIMA.d2ar can be used to compute the autoregressive
representation of the fractional difference filter.
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FIGURE 8.2. Autocorrelation of Fractional Integrated Process

memory; when −1/2 < d < 0, yt is stationary and has short memory, and
is sometimes referred to as anti-persistent.
When a fractionally integrated series yt has long memory, it can also be

shown that
d = H − 1/2, (8.6)

and thus d and H can be used interchangeably as the measure of long
memory. Hosking (1981) showed that the scaling property in (8.1) and the
frequency domain property in (8.2) are satisfied when 0 < d < 1/2.

Example 43 Theoretical ACF of Fractionally Integrated Processes

In this example,use the S+FinMetrics function acf.FARIMA to plot the
theoretical autocorrelation function of a fractionally integrated process with
a standard normal disturbance ut, for d = 0.3 and d = −0.3, respectively:

> d.pos = acf.FARIMA(list(d=0.3, sigma2=1), 100)
> d.pos$acf = d.pos$acf / d.pos$acf[1]
> d.neg = acf.FARIMA(list(d=-0.3, sigma2=1), 100)
> d.neg$acf = d.neg$acf / d.neg$acf[1]

> par(mfrow=c(2,1))
> plot(d.pos$lags, d.pos$acf, type="h", main="d = 0.3",
+ xlab="lags", ylab="ACF")
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> plot(d.neg$lags, d.neg$acf, type="h", main="d = -0.3",
+ xlab="lags", ylab="ACF")
> par(mfrow=c(1,1))

and the plot is shown in Figure 8.2. Notice that the signs of the ACF
coefficients are determined by the sign of d.

8.3 Statistical Tests for Long Memory

Given the scaling property of the autocorrelation function, the frequency
domain property and the fractionally integrated process representation of a
long memory time series, various tests have been proposed to determine the
existence of long memory in a time series. This section introduces the R/S
statistic and GPH test. However, before getting into the details of those
test statistics, it is important to note that the definition of long memory
does not dictate the general behavior of the autocorrelation function or its
spectral density. Instead, they only specify the asymptotic behavior when
k → ∞ or ω → 0. What this means is that for a long memory process, it
is not necessary for the autocorrelation to remain significant at large lags
as in the previous sp500 example, as long as the autocorrelation function
decays slowly. Beran (1994) gives an example to illustrate this property.

8.3.1 R/S Statistic

The best-known test for long memory or long range dependence is prob-
ably the rescaled range, or range over standard deviation, or simply R/S
statistic, which was originally proposed by Hurst (1951), and later refined
by Mandelbrot and his coauthors. The R/S statistic is the range of partial
sums of deviations of a time series from its mean, rescaled by its standard
deviation. Specifically, consider a time series yt, for t = 1, · · · , T . The R/S
statistic is defined as:

QT =
1

sT

 max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

 (8.7)

where ȳ = 1/T
PT

i=1 yi is the sample mean and sT =
q
1/T

PT
i=1(yi − ȳ)2

is the sample standard deviation. If yt’s are i.i.d. normal random variables,
then

1√
T
QT ⇒ V

where⇒ denotes weak convergence and V is the range of a Brownian bridge
on the unit interval. Lo (1991) gives selected quantiles of V .
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Lo (1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if yt is autocorrelated (has short memory) then
the limiting distribution of QT /

√
T is V scaled by the square root of the

long run variance of yt. To allow for short range dependence in yt, Lo (1991)
modified the R/S statistic as follows:

Q̃T =
1

σ̂T (q)

 max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

 (8.8)

where the sample standard deviation is replaced by the square root of the
Newey-West estimate of the long run variance with bandwidth q.2 Lo (1991)
showed that if there is short memory but no long memory in yt, Q̃T also
converges to V , the range of a Brownian bridge.
The S+FinMetrics function rosTest can be used to test for long memory

in a time series using the R/S statistic (8.7) or the modified R/S statistic
(8.8). For example, to test for long memory in the absolute returns of
S&P500 index, use the following command:

> rosTest(abs(sp500))

Test for Long Memory: Modified R/S Test

Null Hypothesis: no long-term dependence

Test Statistics:

7.8823**

* : significant at 5% level
** : significant at 1% level

Total Observ.: 17054
Bandwidth : 14

By default, Lo’s modified R/S statistic is computed and the bandwidth q
for obtaining the long run variance is chosen to be [4(T/100)1/4], where T
is the sample size, and [·] denotes integer part of. In the above example, the
modified R/S statistic is significant at 1% level of significance. A different
bandwidth can be used by setting the optional argument bandwidth. If
bandwidth is set to zero, then classical R/S statistic is returned:

> rosTest(abs(sp500), bandwidth=0)

2 See Chapter 2 for the definition and estimation of long run variance and the online
help file for the S+FinMetrics function asymp.var.
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Test for Long Memory: R/S Test

Null Hypothesis: no long-term dependence

Test Statistics:

17.821**

* : significant at 5% level
** : significant at 1% level

Total Observ.: 17054

which is also significant at 1% level of significance in this case.

8.3.2 GPH Test

Based on the fractionally integrated process representation of a long mem-
ory time series as in (8.4), Geweke and Porter-Hudak (1983) proposed a
semi-nonparametric approach to testing for long memory. In particular, the
spectral density of the fractionally integrated process yt is given by:

f(ω) = [4 sin2(
ω

2
)]−dfu(ω) (8.9)

where ω is the Fourier frequency, and fu(ω) is the spectral density cor-
responding to ut. Note that the fractional difference parameter d can be
estimated by the following regression:

ln f(ωj) = β − d ln[4 sin2(
ωj
2
)] + ej , (8.10)

for j = 1, 2, · · · , nf (T ). Geweke and Porter-Hudak (1993) showed that
using a periodogram estimate of f(ωj), the least squares estimate d̂ using
the above regression is normally distributed in large samples if nf (T ) = Tα

with 0 < α < 1:

d̂ ∼ N(d,
π2

6
Pnf

j=1(Uj − Ū)2
)

where
Uj = ln[4 sin

2(
ωj
2
)]

and Ū is the sample mean of Uj , j = 1, · · · , nf . Under the null hypothesis
of no long memory (d = 0), the t-statistic

td=0 = d̂ ·
Ã

π2

6
Pnf

j=1(Uj − Ū)2

!−1/2
(8.11)
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has a limiting standard normal distribution.
The S+FinMetrics function gphTest can be used to estimate d from

(8.10) and compute the test statistic (8.11), which is usually referred to as
the GPH test. The arguments taken by gphTest are:

> args(gphTest)
function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, alpha = 0.5, na.rm = F)

The optional arguments spans, taper, pad, detrend and demean are ac-
tually passed to the S-PLUS function spec.pgram to obtain a periodogram
estimate.3 The optional argument alpha is used to choose the number of
frequencies nf (T ). By default, nf (T ) = Tα with α = 0.5. To illustrate the
use of gphTest, consider estimating d and testing for long memory in the
S&P 500 index absolute returns:

> gph.sp500 = gphTest(abs(sp500),taper=0)
> class(gph.sp500)
[1] "gphTest"
> names(gph.sp500)
[1] "d" "n" "na" "n.freq" "std.err"

The result of gphTest is an object of class “gphTest” for which there is
only a print method:

> gph.sp500

Test for Long Memory: GPH Test

Null Hypothesis: d = 0

Test Statistics:

d 0.4573
stat 7.608**

* : significant at 5% level
** : significant at 1% level

Total Observ.: 17054
Number of Freq: 130

The estimated value of d from (8.10) is d̂ = 0.457, which suggests long
memory, and the gph test statistic (8.11) is 7.608. Hence, the null of no
long memory is rejected at the 1% significance level. The estimate of d is

3See S-PLUS Guide to Statistics for an introduction to the estimation of periodogram
and the usage of spec.pgram.
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close to the nonstationary range. In fact, a 95% confidence interval for d
based on the asymptotic standard error

> gph.sp500$std.err
[1] 0.06011

is [0.337, 0.578] and contains d > 0.5.

8.4 Estimation of Long Memory Parameter

The previous section introduced the R/S statistic and the GPH log-periodogram
regression to test for long memory in a time series. Cheung (1993) con-
ducted a Monte Carlo comparison of these tests. Obtaining an estimate of
the long memory parameter H or d is also of interest. The GPH test pro-
duces an estimate of d automatically. This section will show that the R/S
statistic can also be used to obtain an estimate of the Hurst coefficient H.
It will also introduce two periodogram-based methods for estimating the
long memory parameter: the periodogram method and Whittle’s method.
In addition, the fractional difference parameter d can also be estimated
by using a general FARIMA(p, d, q) model, which will be introduced in
the next section. Taqqu, Teverovsky and Willinger (1995) and Taqqu and
Teverovsky (1998) compared the performance of many different estimators
of the long memory parameter, including the above mentioned methods.

8.4.1 R/S Analysis

Section 8.3.1 mentioned that when there is no long memory in a stationary
time series, the R/S statistic converges to a random variable at rate T 1/2.
However, when the stationary process yt has long memory, Mandelbrot
(1975) showed that the R/S statistic converges to a random variable at
rate TH , where H is the Hurst coefficient. Based on this result, the log-log
plot of the R/S statistic versus the sample size used should scatter around
a straight line with slope 1/2 for a short memory time series. In contrast,
for a long memory time series, the log-log plot should scatter around a
straight line with slope equal to H > 1/2, provided the sample size is large
enough.
To use the above method to estimate the long memory parameter H,

first compute the R/S statistic using k1 consecutive observations in the
sample, where k1 should be large enough. Then increase the number of
observations by a factor of f ; that is, compute the R/S statistic using
ki = fki−1 consecutive observations for i = 2, · · · , s. Note that to obtain
the R/S statistic with ki consecutive observations, one can actually divide
the sample into [T/ki] blocks and obtain [T/ki] different values, where [·]
denotes the integer part of a real number. Obviously, the larger ki is, the
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smaller [T/ki] is. A line fit of all those R/S statistics versus ki, i = 1, · · · , s,
on the log-log scale yields an estimate of the Hurst coefficient H.
The S+FinMetrics function d.ros implements the above procedure for

estimating H. The arguments taken by d.ros are:

> args(d.ros)
function(x, minK = 4, k.ratio = 2, minNumPoints = 3,

method = "ls", output = "d", plot = F, ...)

where minK specifies the value for k1, k.ratio specifies the ratio factor
f , and minNumPoints specifies the minimum requirement for [T/ks]. For
example, if minNumPoints=3, s must be such that one can divide T ob-
servations into three blocks with at least ks observations in each block.
The optional argument output specifies the type of output: if output="H",
then the Hurst coefficient is returned; if output="d", then the fractional
difference parameter d is returned. For example, to estimate the Hurst co-
efficient for absolute returns of S&P500 index using R/S statistic, use the
following command:

> d.ros(abs(sp500), minK=50, k.ratio=2, minNumPoints=10,
output="H", plot=T)

[1] 0.8393

By setting plot=T, the log-log plot of R/S statistics versus ki is generated,
as shown in Figure 8.3: the solid line represents the fitted line, and the
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dotted line represents the case for no long memory. In this case, the solid
line is far away from the dotted line, which is substantial evidence for long
memory. The estimate of d using (8.6) is 0.3393.
The weakness of the above procedure is that for a particular sample, it

is not clear what value of k1 is “large enough”. In addition, for large values
of ki, few values of the R/S statistic can be calculated unless the sample
size is very large. To mitigate the latter problem, set the optional argument
method=”l1” when calling d.ros, which will direct the procedure to use
the L1 method or least absolute deviation (LAD) method, for the line fit,
and thus result in a robust estimate of the long memory parameter. For the
S&P 500 absolute returns, the results using the L1 method are essentially
the same as using the least squares method:

> d.ros(abs(sp500),minK=50,k.ratio=2,minNumPoints=10,
+ output="H",method="l1",plot=F)
[1] 0.8395

8.4.2 Periodogram Method

Section 2 demonstrates that for a long memory process, its spectral density
approaches Cfω

1−2H when the frequency ω approaches zero. Since the
spectral density can be estimated by a periodogram, the log-log plot of
periodogram versus the frequency should scatter around a straight line
with slope 1 − 2H for frequencies close to zero. This method can also be
used to obtain an estimate of the long memory parameter H, and it is
usually referred to as the periodogram method.
The S+FinMetrics function d.pgram implements a procedure to esti-

mate the long memory parameter using the periodogram method, which
calls the S-PLUS function spec.pgram to obtain an estimate of periodogram.
The arguments taken by d.pgram are:

> args(d.pgram)
function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, method = "ls", output = "d",
lower.percentage = 0.1, minNumFreq = 10, plot = F, ...)

Similar to the gphTest function, the optional arguments spans, taper,
pad, detrend and demean are passed to spec.pgram to obtain the peri-
odogram estimate. The optional argument lower.percentage=0.1 speci-
fies that only the lower 10% of the frequencies are used to estimate H. For
example, to estimate the long memory parameter H of abs(sp500) with
no tapering,use the following command:

> d.pgram(abs(sp500), taper=0, output="H", plot=F)
[1] 0.8741311

The implied estimate of d is then 0.3741.
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FIGURE 8.4. Periodogram estimates of long memory parameter using least
squares and LAD.

Just like with the R/S estimate of the long memory parameter, it can be
difficult to choose the value for lower.percentage. To obtain a more robust
line fit, set the optional argument method=”l1” when calling d.pgram, to
use L1 method or LAD method instead of the default least squares fit. For
example, to compare the least squares and L1 fits for abs(sp500)use

> par(mfrow=c(1,2))
> H.ls = d.pgram(abs(sp500),taper=0, output="d",plot=T)
> H.l1 = d.pgram(abs(sp500),taper=0, output="d",method="l1",
+ plot=T)
> H.ls
[1] 0.3741
> H.l1
[1] 0.1637

8.4.3 Whittle’s Method

Whittle’s method for estimating d is based on a frequency domain max-
imum likelihood estimation of a fractionally integrated process (8.4). It
can be shown that the unknown parameters in (8.4) can be estimated by
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minimizing a discretized version of

Q(θ) =

Z π

−π

I(ω)

f(θ;ω)
dω

where θ is the vector of unknown parameters including the fractional dif-
ference parameter d, I(ω) is the periodogram of yt, and f(θ, ω) is the the-
oretical spectral density of yt. Refer to Beran (1994) for the derivation of
Whittle’s method.
To use Whittle’s method to estimate the fractional difference parameter

d, use the S+FinMetrics function d.whittle. The syntax of d.whittle is
similar to but more simple than that of d.pgram:

> args(d.whittle)
function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, output = "d")

where again the arguments spans, taper, pad, detrend and demean are
passed to the S-PLUS function spec.pgram to obtain the periodogram. For
example, to estimate the fractional difference parameter d of abs(sp500)
with no tapering, use the command:

> d.whittle(abs(sp500), taper=0)
[1] 0.2145822

A caveat to using d.whittle is that although the Whittle’s method
is defined for a general fractionally integrated process yt in (8.4), it is
implemented assuming that ut is a standard normal disturbance and thus
yt follows a FARIMA(0, d, 0) process.

8.5 Estimation of FARIMA and SEMIFAR Models

Previous sections illustrated how to test for long memory and estimate the
long memory parameter H or d. This section introduces the more flexible
fractional ARIMA models, which are capable of modeling both the long
memory and short run dynamics in a stationary time series. It will also
introduce a semiparametric model for long memory, which allows a semi-
parametric estimation of a trend component.
Many empirical studies have found that there is strong evidence for long

memory in financial volatility series, for example, see Lobato and Savin
(1998) and Ray and Tsay (2000). Indeed, Andersen, Bollerslev, Diebold and
Labys (1999) suggested to use FARIMA models to forecast daily volatility
based on logarithmic realized volatility. This section will focus on modeling
a volatility series for the examples.
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8.5.1 Fractional ARIMA Models

The traditional approach to modeling an I(0) time series yt is to use the
ARIMA model:

φ(L)(1− L)d(yt − µ) = θ(L)�t (8.12)

where φ(L) and θ(L) are lag polynomials

φ(L) = 1−
pX
i=1

φiL
i

θ(L) = 1 +

qX
j=1

θjL
j

with roots outside the unit circle, and �t is assumed to be an iid normal
random variable with zero mean and variance σ2.4 This is usually referred
to as the ARIMA(p, d, q) model. By allowing d to be a real number in-
stead of a positive integer, the ARIMA model becomes the autoregressive
fractionally integrated moving average (ARFIMA) model, or simply, frac-
tional ARIMA (FARIMA) model5 .
For a stationary FARIMA model with −1/2 < d < 1/2, Sowell (1992)

describes how to compute the exact maximum likelihood estimate (MLE).
The S-PLUS function arima.fracdiff implements a very fast procedure
based on the approximate MLE proposed by Haslett and Raftery (1989),
and refer the reader to the S-PLUS Guide to Statistics for a discussion of
this procedure.
However, for many economic and financial time series, the data usually

seem to lie on the borderline separating stationarity from non-stationarity.
As a result, one usually needs to decide whether or not to difference the
original time series before estimating a stationary FARIMA model, and
the inference of unknown FARIMA model parameters ignores this aspect of
uncertainty in d. Beran (1995) extended the estimation of FARIMA models
for any d > −1/2 by considering the following variation the FARIMA
model:

φ(L)(1− L)δ[(1− L)myt − µ] = θ(L)�t (8.13)

where −1/2 < δ < 1/2, and φ(L) and θ(L) are defined as above. The
integer m is the number of times that yt must be differenced to achieve
stationarity, and thus the difference parameter is given by d = δ +m. In
the following discussions and in the S+FinMetrics module, restrictm to be
either 0 or 1, which is usually sufficient for modeling economic and financial

4Note that the definition of the polynomial θ(L) is different from that of the ARIMA
model defined in S-PLUS Guide to Statistics. In particular, the signs of θj are the
opposite of those for ARIMA models.

5The S+FinMetrics module actually provides a convenience function FAR for estimat-
ing a FARIMA(p, d, 0) model.
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FIGURE 8.5. Garman-Klass Volatility of Daily NASDAQ-100 Returns

time series. Note that when m = 0, µ is the expectation of yt; in contrast,
when m = 1, µ is the slope of the linear trend component in yt.
The S+FinMetrics function FARIMA implements a procedure (based on

arima.fracdiff) to estimate the FARIMA model (8.13), and the standard
errors of unknown parameters are computed using the asymptotic distri-
bution derived by Beran (1995), which takes into account that m is also
determined by data rather than by a prior decision.
To illustrate the usage of the FARIMA function, consider modeling the

volatility of daily NASDAQ-100 index returns. In recent years, intra-day
security prices have been employed to compute daily realized volatility,
for example, see Andersen, Bollerslev, Diebold and Labys (2001a, 2001b).
Since intra-day security prices can be hard to obtain, compute daily volatil-
ity based on the daily opening, highest, lowest, and closing prices, as pro-
posed by Garman and Klass (1980) and implemented by the S+FinMetrics
function TA.garmanKlass.

Example 44 Long Memory Modeling of NASDAQ-100 Index Volatility

The S+FinMetrics “timeSeries” ndx.dat contains the daily opening,
highest, lowest and closing prices of NASDAQ-100 index from January 2,
1996 to October 12, 2001. First compute the volatility series using the
Garman-Klass estimator and visualize its sample ACF:

> ndx.vol = TA.garmanKlass(ndx.dat[,"Open"], ndx.dat[,"High"],
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+ ndx.dat[,"Low"], ndx.dat[,"Close"])
> par(mfrow=c(2,1))
> plot(ndx.vol, reference.grid=F)
> tmp = acf(log(ndx.vol), lag=200)
> par(mfrow=c(1,1))

The volatility series ndx.vol and the sample ACF of logarithmic volatility
are shown in Figure 8.5. The ACF decays very slowly and remains highly
significant at lag 200, which indicates that the series may exhibit long
memory.
First estimate a FARIMA(0, d, 0) model for logarithmic volatility as fol-

lows:

> ndx.d = FARIMA(log(ndx.vol), p=0, q=0)
> class(ndx.d)
[1] "FARIMA"
> names(ndx.d)
[1] "call" "model" "m" "delta"
[5] "n.used" "BIC" "loglike" "residuals"
[9] "fitted" "x.name" "cov" "CI"

The result of FARIMA is an object of class “FARIMA”, for which there are
print, summary, plot and predict methods as well as extractor functions
coef, fitted, residuals and vcov. The summary method gives

> summary(ndx.d)

Call:
FARIMA(x = log(ndx.vol), p = 0, q = 0)

Coefficients:
Value Std. Error t value Pr(>|t|)

d 0.3534 0.0205 17.1964 0.0000

Information Criteria:
log-likelihood BIC
-732.3 1471.9

Residual scale estimate: 0.4001

total residual
Degree of freedom: 1455 1453
Time period: from 01/04/1996 to 10/12/2001

The estimated model appears stationary and has long memory since 0 <
d̂ < 1/2. Notice that m is estimated to be zero:

> ndx.d$m
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[1] 0

To allow for long memory and short memory at the same time, use a
FARIMA(p, d, q) model with p 6= 0 or q 6= 0. However, in practice, it is
usually difficult to choose the appropriate value for p or q. The FARIMA
function can choose the best fitting FARIMA model based on finding val-
ues of p ≤ pmax and q ≤ qmax which minimize the Bayesian Information
Criterion (BIC). For example, to estimate all the FARIMA models with
0 ≤ p ≤ 2 and 0 ≤ q ≤ 2, use the optional arguments p.range and
q.range as follows:

> ndx.bic = FARIMA(log(ndx.vol), p.range=c(0,2),
+ q.range=c(0,2), mmax=0)
p = 0 q = 0
p = 0 q = 1
p = 0 q = 2
p = 1 q = 0
p = 1 q = 1
p = 1 q = 2
p = 2 q = 0
p = 2 q = 1
p = 2 q = 2

In the above example, set mmax=0 to restrict m to be zero because the pre-
vious FARIMA(0, d, 0) model fit suggests that the data may be stationary.
A summary of the fitted model is

> summary(ndx.bic)

Call:
FARIMA(x = log(ndx.vol), p.range = c(0, 2), q.range = c(0, 2),

mmax = 0)

Coefficients:
Value Std. Error t value Pr(>|t|)

d 0.4504 0.0287 15.6716 0.0000
MA(1) 0.2001 0.0359 5.5687 0.0000

Information Criteria:
log-likelihood BIC
-717.9342 1450.4325

Residual scale estimate: 0.3963

total residual
Degree of freedom: 1454 1451
Time period: from 01/05/1996 to 10/12/2001
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FIGURE 8.6. FARIMA Residual QQ-Plot of log(ndx.vol)

BIC of all models estimated:
q=0 q=1 q=2

p=0 1466.898 1450.432 1451.055
p=1 1457.319 1462.694 1455.590
p=2 1464.800 1457.243 1464.238

The BIC values for all the models considered are shown in the output.
The model minimizing the BIC is a FARIMA(0, d, 1) model. The estimates
of d and the moving average coefficient are very significant, but the 95%
Wald-type confidence interval of d includes 1/2 and thus the non-stationary
case.6

Further diagnostics of the model fit can be obtained by using the plot
method:

> plot(ndx.bic)

Make a plot selection (or 0 to exit):

1: plot: all

6Currently the standard error of the mean parameter is not available because
arima.fracdiff concentrates out the mean and thus does not compute its standard
error.
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FIGURE 8.7. FARIMA Residual ACF of log(ndx.vol)

2: plot: response vs fitted values
3: plot: response and fitted values
4: plot: normal QQ-plot of residuals
5: plot: residuals
6: plot: standardized residuals
7: plot: residual histogram
8: plot: residual ACF
9: plot: residual PACF
10: plot: residual^2 ACF
11: plot: residual^2 PACF
Selection:

For example, if 4 is chosen at the prompt the normal QQ-plot of the model
residuals �t will be shown as in Figure 8.6. The normality assumption does
not agree too well with the data. If 8 is chosen at the prompt, the ACF of
model residuals will be shown as in Figure 8.7 , and the FARIMA model is
not very successful at capturing the long memory in logarithmic volatility.
The problem with the above FARIMA model is that the value of m was

restricted to be zero. If m is allowed to be estimated the results are very
different:

> ndx.bic2 = FARIMA(log(ndx.vol),p.range=c(0,2),
+ q.range=c(0,2), mmax=1)
p = 0 q = 0
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...
p = 2 q = 2

> ndx.bic2$m
[1] 1

> summary(ndx.bic2)

Call:
FARIMA(x = log(ndx.vol), p.range = c(0, 2), q.range =
c(0, 2), mmax = 1)

Coefficients:
Value Std. Error t value Pr(>|t|)

d 0.5161 0.1056 4.8864 0.0000
AR(1) 1.1387 0.3753 3.0340 0.0025
AR(2) -0.1561 0.3724 -0.4193 0.6751
MA(1) 1.4364 0.4416 3.2528 0.0012
MA(2) -0.4309 0.7574 -0.5689 0.5695

Information Criteria:
log-likelihood BIC
-696.3 1429.0

Residual scale estimate: 0.3903

total residual
Degree of freedom: 1453 1447
Time period: from 01/08/1996 to 10/12/2001

BIC of all models estimated:
q=0 q=1 q=2

p=0 1467 1450 1451
p=1 1457 1459 1456
p=2 1456 1454 1429

Here the best fitting model is a FARIMA(2, 0.52, 2) model. However, the
values of the AR and MA coefficients indicate an explosive model. The
problem appears to be near canceling roots in the AR and MA polynomials.
If the model is re-fitted with p = q = 1 , the results make more sense:

> ndx.bic2 = FARIMA(log(ndx.vol),p=1,q=1, mmax=1)
> summary(ndx.bic2)

Call:
FARIMA(x = log(ndx.vol), p = 1, q = 1, mmax = 1)



284 8. Long Memory Time Series Modeling

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

ndx.bic2

Lag

AC
F

Residual Autocorrelation

FIGURE 8.8. Residual ACF from FARIMA(1, 0.51, 1)model fit to log(ndx.vol).

Coefficients:
Value Std. Error t value Pr(>|t|)

d 0.5051 0.0436 11.5965 0.0000
AR(1) 0.2376 0.0687 3.4597 0.0006
MA(1) 0.4946 0.0367 13.4894 0.0000

Information Criteria:
log-likelihood BIC
-712.7 1447.3

Residual scale estimate: 0.3948

total residual
Degree of freedom: 1454 1450
Time period: from 01/05/1996 to 10/12/2001

Figure 8.8 gives the residual ACF from the above model. The long memory
behavior has been well captured by the model. However, the fitted model
has the undesirable property of being non-stationary.
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8.5.2 SEMIFAR Model

The previous subsection demonstrated that for logarithmic volatility of
NASDAQ-100 index returns, the FARIMA model chosen by BIC suggests
that the underlying series may be non-stationary. In addition, from the time
series plot in Figure 8.5, the volatility has become much larger since the
middle of 2000. To allow for a possible deterministic trend in a time series,
in addition to a stochastic trend, long memory and short memory compo-
nents, Beran, Feng and Ocker (1998), Beran and Ocker (1999), and Beran
and Ocker (2001) propose the semiparametric fractional autoregressive
(SEMIFAR) model. The SEMIFAR model is based on the following exten-
sion to the FARIMA(p, d, 0) model (8.12):

φ(L)(1− L)δ[(1− L)myt − g(it)] = �t (8.14)

for t = 1, · · · , T . The above equation is very similar to (8.13), except that
the constant term µ is now replaced by g(it), a smooth trend function on
[0, 1], with it = t/T . By using a nonparametric kernel estimate of g(it),
the S+FinMetrics function SEMIFAR implements a procedure to estimate
the SEMIFAR model, and it uses BIC to choose the short memory au-
toregressive order p. Refer to Beran, Feng and Ocker (1998) for a detailed
description of the algorithm.

Example 45 Estimation of SEMIFAR model for NASDAQ-100 index volatil-
ity

To obtain a SEMIFAR model of logarithmic volatility of NASDAQ-100
index returns, use the following command:

> ndx.semi = SEMIFAR(log(ndx.vol), p.range=c(0,2), trace=F)
> class(ndx.semi)
[1] "SEMIFAR"

Note that the optional argument trace=F is used to suppress the mes-
sages printed by the procedure. The result of SEMIFAR is an object of class
“SEMIFAR” for which there are print, summary, plot and predictmethods
as well as extractor functions coef, residuals and vcov. The components
of ndx.semi are

> names(ndx.semi)
[1] "model" "m" "delta" "BIC"
[5] "loglike" "trend" "g.CI" "bandwidth"
[9] "Cf" "nu" "residuals" "cov"
[13] "CI" "call"

The basic fit is

> ndx.semi
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FIGURE 8.9. SEMIFAR Decomposition of log(ndx.vol)

Call:
SEMIFAR(x = log(ndx.vol), p.range = c(0, 2), trace = F)

Difference:
0: estimates based on original series.

FAR coefficients:
d

0.2928

Residual scale estimate: 0.3946

total residual
Degree of freedom: 1453 1452
Time period: from 01/08/1996 to 10/12/2001

From the above output, after accounting for a smooth nonparametric trend
component g(it), the logarithmic volatility appears to be stationary and has
long memory.
The estimated trend component can be visualized by calling the plot

method of fitted model object:

> plot(ndx.semi)
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FIGURE 8.10. SEMIFAR Residual ACF of log(ndx.vol)

Make a plot selection (or 0 to exit):

1: plot: all
2: plot: trend, fitted values, and residuals
3: plot: normal QQ-plot of residuals
4: plot: standardized residuals
5: plot: residual histogram
6: plot: residual ACF
7: plot: residual PACF
8: plot: residual^2 ACF
9: plot: residual^2 PACF
Selection:

If 2 is selected at the prompt, a plot as in Figure 8.9 will be shown, which
indicates the original time series, the estimated smooth trend component,
the fitted values and model residuals. The smooth trend component is also
plotted with a confidence band. If the trend falls outside the confidence
band, it indicates that the trend component is significant. In this case, the
trend in logarithmic volatility appears to be very significant, at least for
the time period investigated. The model fit can also be checked by choosing
6 at the prompt, which will generate the ACF plot of residuals, as shown
in Figure 8.10. Again, the SEMIFAR model seems to be very successful at
modeling the long memory in the original time series.
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Prediction from SEMIFAR models will be discussed in section 8.7.

8.6 Long Memory GARCH Models

8.6.1 FIGARCH and FIEGARCH Models

The previous section showed that the FARIMA or SEMIFAR model can be
used directly to model the long memory behavior observed in the volatility
of financial asset returns, given that a time series representing the volatility
exists. However, sometimes a reliable estimate of volatility may be hard to
obtain, or the user may want to model the dynamics of the asset returns
together with its volatility. In those situations, the GARCH class models
provide viable alternatives for volatility modeling.
Section 7.5.2 of Chapter 7 has illustrated that the two components GARCH

models can be used to capture the high persistence in volatility by allow-
ing a highly persistent long run component and a short run transitory
component in volatility. This subsection shows how GARCH models can
be extended to allow directly for long memory and high persistence in
volatility.

FIGARCH Model

Section 7.3 of Chapter 7 shows that a basic GARCH(1, 1) model can be
written as an ARMA(1, 1) model in terms of squared residuals. In the same
spirit, for the GARCH(p, q) model:

σ2t = a+

pX
i=1

ai�
2
t−i +

qX
j=1

bjσ
2
t−j

easily shows that it can be rewritten as follows:

φ(L)�2t = a+ b(L)ut (8.15)

where

ut = �2t − σ2t

φ(L) = 1− φ1L− φ2L
2 − · · ·− φmL

m

b(L) = 1− b1L− b2L
2 − · · ·− bqL

q

with m = max(p, q) and φi = ai+ bi. Obviously equation (8.15) represents
an ARMA(m, q) process in terms of squared residuals �2t with ut being a
MDS disturbance term.
The high persistence in GARCH models suggests that the polynomial

φ(z) = 0 may have a unit root, in which case the GARCH model becomes
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the integrated GARCH (IGARCH) model. See Nelson (1990) for which
the unconditional variance does not exist. To allow for high persistence
and long memory in the conditional variance while avoiding the complica-
tions of IGARCH models, extend the ARMA(m, q) process in (8.15) to a
FARIMA(m, d, q) process as follows:

φ(L)(1− L)d�2t = a+ b(L)ut (8.16)

where all the roots of φ(z) = 0 and b(z) = 0 lie outside the unit circle.
When d = 0, this reduces to the usual GARCH model; when d = 1, this
becomes the IGARCH model; when 0 < d < 1, the fractionally differenced
squared residuals, (1−L)d�2t , follow a stationary ARMA(m, q) process. The
above FARIMA process for ε2t can be rewritten in terms of the conditional
variance σ2t :

b(L)σ2t = a+ [b(L)− φ(L)(1− L)d]�2t . (8.17)

Baillie, Bollerslev and Mikkelsen (1996) refer to the above model as the
fractionally integrated GARCH, or FIGARCH(m,d, q) model. When 0 <
d < 1, the coefficients in φ(L) and b(L) capture the short run dynamics of
volatility, while the fractional difference parameter d models the long run
characteristics of volatility.

FIEGARCH

The FIGARCHmodel directly extends the ARMA representation of squared
residuals, which results from the GARCH model, to a fractionally inte-
grated model. However, to guarantee that a general FIGARCH model is
stationary and the conditional variance σ2t is always positive, usually com-
plicated and intractable restrictions have to be imposed on the model coef-
ficients. For example, see Baillie, Bollerslev and Mikkelsen (1996) or Boller-
slev and Mikkelsen (1996) for a discussion.
Noting that an EGARCH model can be represented as an ARMA process

in terms of the logarithm of conditional variance and thus always guarantees
that the conditional variance is positive, Bollerslev and Mikkelsen (1996)
proposed the following fractionally integrated EGARCH (FIEGARCH)
model:

φ(L)(1− L)d lnσ2t = a+

qX
j=1

(bj |xt−j |+ γjxt−j) (8.18)

where φ(L) is defined as earlier for the FIGARCH model, γj 6= 0 allows
the existence of leverage effects, and xt is the standardized residual:

xt =
�t
σt

(8.19)

Bollerslev and Mikkelsen (1996) showed that the FIEGARCH model is
stationary if 0 < d < 1.
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8.6.2 Estimation of Long Memory GARCH Models

Given the iterative formulations of conditional variance as in (8.17) and
(8.18), the FIGARCH and FIEGARCH model coefficients can be estimated
using maximum likelihood estimation (MLE), if the residuals follow a con-
ditional normal distribution. The S+FinMetrics function fgarch can be
used to estimate the long memory FIGARCH or FIEGARCH model.
The syntax of fgarch is very similar to that of the garch function, except

that ˜figarch(m,q) is used as the FIGARCH conditional variance formula
and ˜fiegarch(m,q) as the FIEGARCH conditional variance formula. For
example, to fit a FIGARCH(1, d, 1) model to daily stock returns of Dell
Computer contained in the S+FinMetrics “timeSeries” object dell.s,
simply use the following command:

> dell.figarch = fgarch(dell.s~1, ~figarch(1,1))
Initializing model parameters.
Iteration No. 1: log-likelihood=-3282.303431
...
Iteration No. 10: log-likelihood=-3279.508705
Convergence in gradient.
> oldClass(dell.figarch)
[1] "fgarch" "garch"

The returned object is of class “fgarch”, which inherits the “garch” class.
Consequently, most of the method functions for a “garch” object (e.g.
print, summary, plot, predict, coef, residuals, sigma.t, vcov)also
work for a “fgarch” object. One exception is that currently there is no
simulate method for “fgarch” objects. For example, the print method
gives

> dell.figarch

Call:
fgarch(formula.mean = dell.s ~1, formula.var = ~figarch(1, 1))

Mean Equation: dell.s ~1

Conditional Variance Equation: ~figarch(1, 1)

Coefficients:

C 0.4422
A 0.6488

GARCH(1) 0.6316
ARCH(1) 0.4481
fraction 0.2946
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The estimate of d is 0.295, which indicates the existence of long memory.
However, the sum ARCH(1) and GARCH(1) is greater than one which
indicates a nonstationary model.
If the FIEGARCH model instead of FIGARCH model is desired, the

optional argument leverage can be used to allow for leverage effects. For
example,

> dell.fiegarch = fgarch(dell.s~1, ~fiegarch(1,1), leverage=T)
Initializing model parameters.
Iteration No. 1: log-likelihood=-3286.169656
...
Iteration No. 20: log-likelihood=-3274.244677
Convergence in gradient.

> summary(dell.fiegarch)

Call:
fgarch(formula.mean = dell.s ~1, formula.var = ~fiegarch( 1, 1),
leverage = T)

Mean Equation: dell.s ~1

Conditional Variance Equation: ~fiegarch(1, 1)

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.39494 0.08981 4.397 5.946e-006
A -0.06895 0.04237 -1.627 5.195e-002

GARCH(1) 0.65118 0.17820 3.654 1.343e-004
ARCH(1) 0.15431 0.04578 3.370 3.867e-004
LEV(1) -0.09436 0.02691 -3.507 2.346e-004

fraction 0.34737 0.11408 3.045 1.188e-003

--------------------------------------------------------------

AIC(6) = 6560.5
BIC(6) = 6591.3

Normality Test:
--------------------------------------------------------------
Jarque-Bera P-value Shapiro-Wilk P-value

13.22 0.001348 0.9888 0.7888
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Ljung-Box test for standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

13.13 0.3597 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

14.51 0.2696 12

Lagrange multiplier test:
--------------------------------------------------------------
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8
-0.925 0.6083 -1.581 0.2593 0.3943 0.6991 -0.03191 0.3339

Lag 9 Lag 10 Lag 11 Lag 12 C
1.959 -0.8794 2.422 0.1089 0.8896

TR^2 P-value F-stat P-value
15.1 0.2362 1.389 0.2797

In the above output, C corresponds to the constant term in the conditional
mean equation, A corresponds to the constant term a, GARCH(1) corre-
sponds to b1, ARCH(1) corresponds to φ1, LEV(1) corresponds to γ1 and
fraction corresponds to the fractional difference parameter d in the con-
ditional variance equation (8.18). Notice that the leverage term is negative
and significant, and the sum of ARCH(1) and GARCH(1) is now less than
one. It appears that the FIEGARCH model fits the data better than the
FIGARCH model.
Just like for “garch” objects, the generic plot function can be used vi-

sually to diagnose the model fit. Use compare.mgarch to compare multiple
model fits. For example, consider comparing the above two FIGARCH,
FIEGARCH with short memory GARCH and EGARCH models:

> dell.garch = garch(dell.s~1, ~garch(1,1), trace=F)
> dell.egarch = garch(dell.s~1, ~egarch(1,1),
+ leverage=T, trace=F)
> dell.comp = compare.mgarch(dell.garch,dell.egarch,
+ dell.figarch,dell.fiegarch)
> dell.comp

dell.garch dell.egarch dell.figarch dell.fiegarch
AIC 6564 6559 6569 6560
BIC 6585 6584 6595 6591

Likelihood -3278 -3274 -3280 -3274
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FIGURE 8.11. QQ-Plot of Standardized Residuals from Long Memory GARCH
Models

Here, the EGARCH and FIEGARCH models seem to provide better fits
than the GARCH and FIGARCH models. The QQ-plots of standardized
residuals for the four models can be compared using:

> plot(dell.comp, qq=T)

and the plot is shown in Figure 8.11, where the FIEGARCH model seems
to provide a slightly better fit to the outliers in both tails.

8.6.3 Custom Estimation of Long Memory GARCH Models

ARMA Terms and Exogenous Variables

Just like with the garch function, the fgarch function also allows ARMA
terms and exogenous variables in the conditional mean equation, as well as
the conditional variance equation.

Example 46 Trading Volume and Volatility (Extended)

The previous subsection shows that the fitted FIEGARCH model object
dell.fiegarch suggests that there may be long memory in the volatility
of Dell stocks. In Section 7.5 of Chapter 7, the changes in trading volume
were used to explain the volatility of Dell stocks. If there is a 1% change
in trading volume, it will cause about 1.4% change in conditional variance
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using an EGARCH model for volatility. In this example, the analysis using
the FIEGARCH model instead of the EGARCH model is done again.

> dell.mod2 = fgarch(dell.s~1, ~fiegarch(1,1) +
+ seriesData(d.volume), series.start=2)
> summary(dell.mod2)

Call:
fgarch(formula.mean = dell.s ~ 1, formula.var = ~ fiegarch(1, 1) +

seriesData(d.volume), series.start = 2)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ fiegarch(1, 1) + seriesData(d.volume)

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.14514 0.06245 2.3242 1.014e-002
A -0.13640 0.03117 -4.3761 6.542e-006

GARCH(1) 0.04123 0.10703 0.3852 3.501e-001
ARCH(1) 0.16600 0.03809 4.3583 7.091e-006

seriesData(d.volume) 1.49123 0.07814 19.0849 0.000e+000
fraction 0.80947 0.07523 10.7596 0.000e+000

...

First, compare the above output with dell.fiegarch, the FIEGARCH
model fitted in the previous subsection. After controlling for the effects of
trading volume, the GARCH coefficient has decreased significantly and be-
come insignificant, while the fractional difference parameter has increased
from 0.34 to 0.8. Second, compare this with the EGARCHmodel fit dell.mod
in Chapter 7: after allowing for long memory, the GARCH coefficient de-
creased from 0.95 to 0.04, while the effects of trading volume remain almost
the same.

Control of Model Estimation

For a “fgarch” object, all the model specific information is contained in the
model component of the object. For example, view the model information
of the fitted dell.figarch object as follows:

> dell.figarch$model

Mean Equation: dell.s ~ 1
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Conditional Variance Equation: ~ figarch(1, 1)

Values
constant in mean 0.4422
constant in var 0.6488

GARCH(1) 0.6316
ARCH(1) 0.4481
fraction 0.2946

This model object can be edited to provide starting values for re-estimating
the same model with the same or a different time series.7 For example, to
use this set of values as starting values for a FIGARCH model of the time
series hp.s, use the following command:

> hp.figarch = fgarch(series=hp.s*100, model=dell.figarch$model)
Iteration No. 1: log-likelihood=-4419.644144
...
Iteration No. 10: log-likelihood=-4390.179116
Convergence in gradient.
> hp.figarch

Call:
fgarch(series = hp.s * 100, model = dell.figarch$model)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ figarch(1, 1)

Coefficients:

C 0.05776
A 0.55897

GARCH(1) 0.49103
ARCH(1) 0.40210
fraction 0.22533

Unlike the garch and mgarch functions which use the BHHH algorithm
for MLE, the FIGARCH/FIEGARCHmodels are estimated using the BFGS
algorithm (for example, see Press, Teukolsky, Vetterling, and Flannery,
1992 for details). Since daily financial returns are very small numbers, the
algorithm can become badly scaled and may fail to converge. That is why

7However, unlike “garch” and “mgarch” objects, currently the coefficients cannot
be fixed at certain values during the estimation of long memory GARCH models. See
Section 13.7 in Chapter 13 for discussions related to “garch” and “mgarch” objects.
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in the above example the percentage returns are used to improve the con-
vergence.
Other aspects of the BFGS algorithm can be controlled by passing the

optional argument control to the fgarch function, where control must
be set to an object returned by the fgarch.control function. For example,
to change the convergence tolerance of gradient zeroing from the default
value of 1e-5 to 1e-6 when fitting a FIGARCH model to dell.s, use the
following command:

> fgarch(dell.s~1, ~figarch(1,1), control=
+ fgarch.control(tolg=1e-6))

The on-line help file for fgarch.control provides more details for the
arguments accepted by the fgarch.control function.
Finally, introducing the FIGARCH/FIEGARCH models illustrated that

both models are essentially an ARMAmodel fitted to the fractionally differ-
enced squared residuals or fractionally differenced logarithmic conditional
variance. The fractional difference operator is defined in (8.5), which in-
volves an infinite order autoregressive filter. In practice, a very large num-
ber is usually chosen to approximate the fractional difference operator.
Following Bollerslev and Mikkelsen (1996), the fgarch function sets the
order to be 1000 by default. To change this number to another value, pass
the optional argument lag to fgarch.control. For example, the command

> fgarch(dell.s~1, ~figarch(1,1), control=
+ fgarch.control(lag=500))

estimates a FIGARCH model using only 500 lags to approximate the frac-
tional difference operator.

8.7 Prediction from Long Memory Models

S+FinMetrics long memory modeling functions FARIMA, SEMIFAR and fgarch
all return objects for which there are corresponding predict methods.
Therefore, predictions from those fitted model objects can be readily gen-
erated. This section gives an overview of how to predict from a long memory
process. In particular, the truncation method and the best linear predictor
will be introduced ,see Bhansali and Kokoszka (2001). How to predict from
fitted model objects in S+FinMetrics module will be illustrated.
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8.7.1 Prediction from FARIMA/SEMIFAR Models

To illustrate prediction from long memory processes, consider the FARIMA(p, d, q)
model in (8.12), which can be rewritten as:

φ(L)(1− L)d

θ(L)
(yt − µ) = �t

The lag polynomial on the left hand side of the above equation can be
expressed as an infinite order polynomial so that a FARIMA(p, d, q) model
can be equivalently expressed as an AR(∞) model. Once the parameters
of the FARIMA(p, d, q) model are known, one can solve for the parameters
of the equivalent AR(∞) model. In practice, however, forecasting from the
AR(∞) representation usually truncates the AR(∞) model to an AR(p)
model with a very large value of p. This method is usually referred to as
the truncation method.
In the truncation method, the AR(p) coefficients are the first p coeffi-

cients of the AR(∞) representation of the FARIMA(p, d, q) model. How-
ever, for any stationary process, choose to use p lagged values to predict
future values:

ŷT+1 = ψ1yT + · · ·+ ψpyT−p+1

where ψi for i = 1, · · · , p are chosen to yield the best linear predictor of
yT+1 in terms of yT , · · · , yT−p+1 for any T . Note that although both the
above method and the truncation method use an AR(p) model for predic-
tion, the AR(p) coefficients in the truncation method do not necessarily
correspond to best linear prediction coefficients ψi. Brockwell and Davis
(1991) showed that the best linear prediction coefficients can be recursively
computed using the Durbin-Levinson algorithm given the autocovariance
function of the stationary process.8

The predict method for “FARIMA” objects in S+FinMetrics implements
the Durbin-Levinson algorithm to compute the forecasts. The arguments
taken by predict.FARIMA are:

> args(predict.FARIMA)
function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,

series = NULL)

where n.predict indicates the number of steps to predict ahead, ar.approx
gives the order p of the AR representation used for prediction, kapprox is
passed to acf.FARIMA to obtain the theoretical autocovariance function of

8Although exact expressions of the autocovariance functions for FARIMA(p, d, q)
models have been given by Sowell (1992), the derivation assumes that all the roots
of the AR polynomial are distinct. The S+FinMetrics function acf.FARIMA implements
a numerical quadrature procedure based on fast Fourier transform to approximate the
autocovariance function of the FARIMA models, as proposed by Bhansali and Kokoszka
(2001).
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the FARIMA model, and series can be used to pass the original time
series used to fit the model. For example, to predict 100 steps ahead using
an AR(100) representation from the fitted model object ndx.bic, use the
following command:

> ndx.pred1 = predict(ndx.bic, n.predict=100, ar.approx=100)
> class(ndx.pred1)
[1] "forecast"

The returned object has class “forecast” and has components

> names(ndx.pred1)
[1] "values" "std.err" "coef"

where the values contains the predicted values, std.err contains the stan-
dard errors of the predictions, and coef contains the best linear prediction
coefficients ψi (i = 1, . . . , p). The predictions and standard errors can be
seen by calling the summary function on a “forecast” object. For example:

> summary(ndx.pred1)

Predicted Values with Standard Errors:

prediction std.err
1-step-ahead -3.4713 0.3965
2-step-ahead -3.5407 0.4732
3-step-ahead -3.5638 0.5023
4-step-ahead -3.5792 0.5148
5-step-ahead -3.5883 0.5204
...

A “forecast” object can be plotted together with the original data
to visualize the predictions. For example, since ndx.bic was fitted using
log(ndx.vol), the predictions can be visualized as follows:

> plot(ndx.pred1, ndx.vol, n.old=200)

where the optional argument n.old specifies the number of observations
in the original data to be used in the plot. The plot is shown Figure 8.12.
Also, the best linear prediction coefficients can also be visualized to see the
effects of using more lags for prediction. For example:

> plot(ndx.pred1$coef, type="h", ylab="coef")

generates the coefficient plot shown in Figure 8.13. Adding lags beyond 30
should not change the predictions very much.
In S+FinMetrics, predictions from SEMIFAR models are computed in

a similar fashion to predictions from FARIMA models, except that there
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is a choice to use a constant extrapolation or linear extrapolation for the
trend component9

> args(predict.SEMIFAR)
function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,
trend = "constant", series = NULL)

For example, to produce 100 steps ahead forecasts from the fitted model
object ndx.semi using constant extrapolation, use the following command:

> ndx.pred2 = predict(ndx.semi, n.predict=100, trend="constant")

The returned object is also a “forecast” object, so the predictions can be
visualized together with the original data

> plot(ndx.pred2, ndx.vol, n.old=200)

8.7.2 Prediction from FIGARCH/FIEGARCH Models

Predictions from the S+FinMetrics long memory GARCH models are com-
puted using the truncation method because the user needs to generate fore-
casts for both the level and the volatility of the series at the same time.
The arguments taken by the predict method are:

> args(predict.fgarch)
function(object, n.predict = 1, n.lag = 1000)
NULL

where n.predcit specifies the number of periods to predict ahead, and
n.lag specifies the order p of the AR(p) representation used in the trunca-
tion method. For example, to use an AR(100) representation to predict 100
steps ahead from the fitted model object dell.figarch, use the following
command:

> dell.pred3 = predict(dell.figarch, n.predict=100, n.lag=100)
> oldClass(dell.pred3)
[1] "predict.fgarch" "predict.garch"

The returned object is of class “predict.fgarch”, which inherits from the
class “predict.garch”. So just like for a “predict.garch” object, use the
generic plot function to visualize the volatility forecast:

> plot(dell.pred3, hgrid=T, vgrid=T)

and the plot is shown in Figure 8.14. The volatility predictions approach
the long run level in a slowly decaying fashion for the long memory GARCH
model10.

9We refer to Beran and Ocker (1999) for the details of predicting from a SEMIFAR
model.
10Currently, standard errors are not available for the volatility predictions.
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9
Rolling Analysis of Time Series

9.1 Introduction

A rolling analysis of a time series model is often used to assess the model’s
stability over time. When analyzing financial time series data using a sta-
tistical model, a key assumption is that the parameters of the model are
constant over time. However, the economic environment often changes con-
siderably, and it may not be reasonable to assume that a model’s parame-
ters are constant. A common technique to assess the constancy of a model’s
parameters is to compute parameter estimates over a rolling window of a
fixed size through the sample. If the parameters are truly constant over the
entire sample, then the estimates over the rolling windows should not be
too different. If the parameters change at some point during the sample,
then the rolling estimates should capture this instability.
Rolling analysis is commonly used to backtest a statistical model on

historical data to evaluate stability and predictive accuracy. Backtesting
generally works in the following way. The historical data is initially split
into an estimation sample and a prediction sample. The model is then
fit using the estimation sample and h − step ahead predictions are made
for the prediction sample. Since the data for which the predictions are
made are observed h − step ahead prediction errors can be formed. The
estimation sample is then rolled ahead a given increment and the estimation
and prediction exercise is repeated until it is not possible to make any
more h − step predictions. The statistical properties of the collection of
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h− step ahead prediction errors are then summarized and used to evaluate
the adequacy of the statistical model.
Moving average methods are common in rolling analysis, and these meth-

ods lie at the heart of the technical analysis of financial time series. Moving
averages typically use either equal weights for the observations or exponen-
tially declining weights. One way to think of these simple moving average
models is that they are a “poor man’s” time varying parameter model.
Sometimes simple moving average models are not adequate, however, and
a general time varying parameter model is required. In these cases, the
state space models discussed in Chapter 14 should be used.
This chapter describes various types of rolling analysis of financial time

series using S-PLUS. Section two covers rolling descriptive statistics for uni-
variate and bivariate time series with an emphasis on moving average tech-
niques. Section three discusses rolling regression using the S+FinMetrics
function rollOLS and illustrates how rollOLS may be used for backtesting
regression models. Section four describes rolling analysis of general models
using the S+FinMetrics function roll.
Rolling analysis of financial time series is widely used in practice but

the technique is seldom discussed in textbook treatments of time series
analysis. Notable exceptions are Alexander (2001) and Dacorogna et. al.
(2001). Rolling analysis techniques in finance are generally discussed in
the technical analysis literature, but the statistical properties of backtest-
ing technical analysis are rarely addressed. A comprehensive treatment of
technical analysis indicators is given in Colby and Meyers (1988) and a
critical evaluation of technical analysis is provided in Bauer and Dahlquist
(1999). The econometric literature on evaluating the predictive accuracy of
models through backtesting has matured over the last decade. The main
reference is Diebold and Mariano (1995).

9.2 Rolling Descriptive Statistics

9.2.1 Univariate Statistics

Consider the analysis of a univariate time series yt over a sample from
t = 1, . . . , T. Whether the mean and variance (or standard deviation) pa-
rameters of the distribution of yt are constant over the entire sample is
of interest. To assess parameter constancy, let n denote the width of a
sub-sample or window and define the rolling sample means, variances and
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standard deviations

µ̂t(n) =
1

n

n−1X
i=0

yt−i (9.1)

σ̂2t (n) =
1

n− 1

n−1X
i=0

(yt−i − µ̂t(n))
2 (9.2)

σ̂t(n) =

q
σ̂2t (n) (9.3)

for windows t = n, . . . T. The rolling mean and variance estimates at time t
with window width n are the usual sample estimates using the most recent
n observations. Provided the windows are rolled through the sample one
observation at a time, there will be T − n + 1 rolling estimates of each
parameter. The rolling mean µ̂t(n) is sometime called a n-period simple
moving average.

Computing rolling descriptive statistics using the S-PLUS function
aggregateSeries

Consider the monthly continuously compounded returns on Microsoft stock
over the period February, 1990 through January, 2001 computed from the
monthly closing prices in the S+FinMetrics “timeSeries” object singleIndex.dat

> msft.ret = getReturns(singleIndex.dat[,"MSFT"])
> start(msft.ret)
[1] Feb 1990
> end(msft.ret)
[1] Jan 2001
> nrow(msft.ret)
[1] 132

24-month rolling mean and standard deviations may be computed easily
using the S-PLUS function aggregateSeries1

> roll.mean = aggregateSeries(msft.ret,moving=24,adj=1,FUN=mean)
> roll.sd = aggregateSeries(msft.ret,moving=24,adj=1,FUN=stdev)

The arguments moving=24, adj=1 and FUN=mean(stdev) tell aggregateSeries
to evaluate the mean (stdev) function on a rolling window of size 24 and
to adjust the output positions to the end of each window. roll.mean and
roll.sd are “timeSeries” objects containing 109 rolling estimates:

> class(roll.mean)
[1] "timeSeries"

1aggregateSeries is the method function of the generic S-PLUS function aggregate
for objects of class “timeSeries” and “signalSeries”.
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FIGURE 9.1. Monthly returns on Microsoft stock along with 24 month rolling
means and standard deviations.

> nrow(roll.mean)
[1] 109
> roll.mean[1:5]
Positions 1
Jan 1992 0.05671
Feb 1992 0.05509
Mar 1992 0.04859
Apr 1992 0.04366
May 1992 0.03795

The monthly returns along with the rolling means and standard devia-
tions may be plotted together using

> plot(msft.ret,roll.mean,roll.sd,plot.args=list(lty=c(1,3,4)))
> legend(0,-0.2,legend=c("Returns","Rolling mean","Rolling sd"),
+ lty=c(1,3,4))

which is illustrated in Figure 9.1 .The 24 month rolling estimates µ̂t(24)
and σ̂t(24) clearly vary over the sample. The rolling means start out around
2.5%, fall close to 0% in 1994, rise again to about 2.5% until 2000 and then
fall below 0%. The rolling σ̂t(24) values start out around 10%, fall slightly
until 1997 and then begin to steadily rise for the rest of the sample. The
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end of sample value of σ̂t(24) is almost twice as big as the beginning of
sample value.
The moving average estimates (9.1) - (9.3) are one-sided backward look-

ing estimates. The S-PLUS function aggregateSeries may also compute
two-sided asymmetric moving averages by specifying a value between 0
and 1 for the optional argument adj. For example, to compute a 24 month
symmetric two-sided simple moving average set adj=0.5

> roll.mean.5 = aggregateSeries(msft.ret,moving=24,adj=0.5,
+ FUN=mean)
> roll.mean.5[1:5]
Positions MSFT
Feb 1991 0.056708
Mar 1991 0.055095
Apr 1991 0.048594
May 1991 0.043658
Jun 1991 0.037950

Instead of computing the rolling means and standard deviations in sep-
arate calls to aggregateSeries, they can be computed in a single call by
supplying a user-written function to aggregateSeries that simply returns
the mean and standard deviation. One such function is

mean.sd = function (x) {
tmp1 = mean(x)
tmp2 = stdev(x)
ans = concat(tmp1,tmp2)

ans
}

The call to aggregateSeries to compute the rolling means and standard
deviations is then

> roll.mean.sd = aggregateSeries(msft.ret,moving=24,adj=1,
+ FUN=mean.sd,colnames=c("mean","sd"))
> roll.mean.sd[1:5,]
Positions mean sd
Jan 1992 0.05671 0.09122
Feb 1992 0.05509 0.09140
Mar 1992 0.04859 0.09252
Apr 1992 0.04366 0.09575
May 1992 0.03795 0.08792

Notice that the column names of roll.mean.sd are specified using the op-
tional argument colnames=c("mean","sd") in the call to aggregateSeries.
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Standard error bands around the rolling estimates of µ, and σ may be
computed using the asymptotic formulas

dSE(µ̂t(n)) = σ̂t(n)√
n

, dSE(σ̂t(n)) = σ̂t(n)√
2n

Using the rolling estimates in roll.mean.sd, the S-PLUS commands to
compute and plot the rolling estimates along with approximate 95% confi-
dence bands are

> lower.mean = roll.mean.sd[,"mean"]-
+ 2*roll.mean.sd[,"sd"]/sqrt(24)
> upper.mean = roll.mean.sd[,"mean"]+
+ 2*roll.mean.sd[,"sd"]/sqrt(24)
> lower.sd = roll.mean.sd[,"sd"]-
+ 2*roll.mean.sd[,"sd"]/sqrt(2*24)
> upper.sd = roll.mean.sd[,"sd"]+
+ 2*roll.mean.sd[,"sd"]/sqrt(2*24)
> par(mfrow=c(2,1))
> plot(roll.mean.sd[,"mean"],lower.mean,upper.mean,
+ main="24 month rolling means",plot.args=list(lty=c(1,2,2)))
> plot(roll.mean.sd[,"sd"],lower.sd,upper.sd,
+ main="24 month rolling standard deviations",
+ plot.args=list(lty=c(1,2,2)))

Figure 9.2 shows the results. In general, the rolling σ̂t(24) values are esti-
mated much more precisely than the rolling µ̂t(24) values.
The rolling means, variances and standard deviations are not the only

rolling descriptive statistics of interest, particularly for asset returns. For
risk management purposes, one may be interested in extreme values. There-
fore, one may want to compute rolling minima and maxima. These may be
computed using aggregateSeries with FUN=min and FUN=max.

Computing rolling means, variances, maxima and minima using the
S+FinMetrics functions SMA, rollVar, rollMax and rollMin.

The S-PLUS function aggregateSeries is extremely flexible but not ef-
ficient for computing rolling means, variances, maxima and minima. The
S+FinMetrics functions SMA (simple moving average), rollVar, rollMax
and rollMin implement efficient algorithms for computing rolling means,
variances, maxima and minima. The arguments expected by these functions
are

> args(SMA)
function(x, n = 9, trim = T, na.rm = F)
> args(rollVar)
function(x, n = 9, trim = T, unbiased = T, na.rm = F)
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FIGURE 9.2. 24 month rolling estimates of µ̂t(24) and σ̂t(24) for Microsoft with
95% confidence bands.

> args(rollMax)
function(x, n = 9, trim = T, na.rm = F)
> args(rollMin)
function(x, n = 9, trim = T, na.rm = F)

where x is a vector or univariate “timeSeries”, n is the window width,
trim determines if start-up values are trimmed from the output series and
na.rm determines if missing values are to be removed. For rollVar, the
option unbiased=T computes the unbiased variance estimator using 1

n−1
as a divisor and unbiased=F computes the biased estimator using 1

n .
To illustrate the use of SMA , rollVar, rollMax and rollMin 24 month

rolling means, standard deviations, maxima and minima from the monthly
returns on Microsoft are computed as

> roll2.mean = SMA(msft.ret,n=24)
> roll2.sd = sqrt(rollVar(msft.ret,n=24))
> roll.max = rollMax(msft.ret,n=24)
> roll.min = rollMin(msft.ret,n=24)

These estimates are identical to those computed using aggregateSeries,
but the computation time required is much less. To compare the compu-
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tation times in seconds within S-PLUS 6 for Windows the S-PLUS function
dos.time may be used2

> dos.time(SMA(msft.ret,n=24))
[1] 0.05
> dos.time(aggregateSeries(msft.ret,moving=24,adj=1,FUN=mean))
[1] 4.23
> dos.time(sqrt(rollVar(msft.ret,n=24)))
[1] 0.06
> dos.time(aggregateSeries(msft.ret,moving=24,adj=1,FUN=stdev))
[1] 6.76

Example 47 Computing rolling standard deviations from high frequency
returns

Rolling estimates of σ2 and σ based on high frequency continuously com-
pounded return data are often computed assuming the mean return is zero

σ̂2t (n) =
1

n

nX
i=1

r2t−i

In this case the rolling estimates of σ2 may be computed using the compu-
tationally efficient S+FinMetrics function SMA. For example, consider com-
puting rolling estimates of σ based on the daily continuously compounded
returns for Microsoft over the 10 year period from January 1991 through
January 2001. The squared return data is computed from the daily closing
price data in the S+FinMetrics “timeSeries” object DowJones30

> msft.ret2.d = getReturns(DowJones30[,"MSFT"],
+ type="continuous")^2

Rolling estimates of σ based on 25, 50 and 100 day windows are computed
using SMA

> roll.sd.25 = sqrt(SMA(msft.ret2.d,n=25))
> roll.sd.50 = sqrt(SMA(msft.ret2.d,n=50))
> roll.sd.100 = sqrt(SMA(msft.ret2.d,n=100))

The rolling estimates σ̂t(n) are illustrated in Figure 9.3 created using

> plot(roll.sd.25,roll.sd.50,roll.sd.100,
+ plot.args=(list(lty=c(1,3,4))))
> legend(0,0.055,legend=c("n=25","n=50","n=100"),
+ lty=c(1,3,4))

2The computations are carried out using S-PLUS 6 Professional Release 2 on a Dell
Inspiron 3500 400Mhz Pentium II with 96MB RAM.
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FIGURE 9.3. 25, 50 and 100 day rolling estimates of σ for the daily returns on
Microsoft stock.

There is considerable variation in the rolling estimates of daily σ, and
there appears to be a seasonal pattern with higher volatility in the summer
months and lower volatility in the winter months.

9.2.2 Bivariate Statistics

Consider now the analysis of two univariate time series y1t and y2t over
the sample from t = 1, . . . , T. To assess if the covariance and correlation
between y1t and y2t is constant over the entire sample the n-period rolling
sample covariances and correlations

σ̂12,t(n) =
1

n− 1

n−1X
i=0

(y1t−i − µ̂1t(n))(y2t−i − µ̂2t(n))

ρ̂12,t(n) =
σ̂12,t(n)

σ̂1t(n)σ̂2t(n)

may be computed.

Example 48 24 month Rolling correlations between the returns on Mi-
crosoft and the S&P 500 index

Consider the monthly continuously compounded returns on Microsoft
stock and the S&P 500 index over the period February, 1990 through Jan-
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uary, 2001 computed from the monthly closing prices in the S+FinMetrics
“timeSeries” object singleIndex.dat

> ret.ts = getReturns(singleIndex.dat,type="continuous")
> colIds(ret.ts)
[1] "MSFT" "SP500"

The 24-month rolling correlations between the returns on Microsoft and the
S&P 500 index may be computed using the S-PLUS function aggregateSeries
with a user specified function to compute the correlations. One such func-
tion is

> cor.coef = function(x) cor(x)[1,2]

The 24-month rolling correlations are then computed as

> smpl = positions(ret.ts)>=start(roll.cor)
> roll.cor = aggregateSeries(ret.ts,moving=24,together=T,
+ adj=1,FUN=cor.coef)
> roll.cor[1:5]
Positions 1
Jan 1992 0.6549
Feb 1992 0.6535
Mar 1992 0.6595
Apr 1992 0.6209
May 1992 0.5479

In the call to aggregateSeries the argument together=T passes all of
the columns of ret.ts to the function cor.coef instead of passing each
column separately. The monthly returns on Microsoft and the S&P 500
index along with the rolling correlations are illustrated in Figure 9.4 which
is created by

> par(mfrow=c(2,1))
> plot(ret.ts[smpl,],main="Returns on Microsoft and
+ S&P 500 index",
+ plot.args=list(lty=c(1,3)))
> legend(0,-0.2,legend=c("Microsoft","S&P 500"),
+ lty=c(1,3))
> plot(roll.cor,main="24-month rolling correlations")

At the beginning of the sample, the correlation between Microsoft and the
S&P 500 is fairly high at 0.6. The rolling correlation declines steadily, hits
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FIGURE 9.4. Returns on Microsoft and the S&P 500 index along with 24-month
rolling correlations.

a low of about 0.1 at the beginning of 1997, then increases quickly to 0.6
and stabilizes at this value through the end of the sample3.

9.2.3 Exponentially Weighted Moving Averages

The rolling descriptive statistics described in the previous sections are based
on equally weighted moving averages of an observed time series yt. Equally
weighted moving averages are useful for uncovering periods of instability
but may produce misleading results if used for short-term forecasting. This
is because equally weighted averages are sensitive (not robust) to extreme
values. To illustrate, consider T = 100 observations from a simulated time
series yt ~GWN(0, 1) with an outlier inserted at t = 20 : i.e., y20 = 10.
The data and rolling values µ̂t(10) and σ̂t(10) are illustrated in Figure 9.5.
Notice how the outlier at t = 20 inflates the rolling estimates µ̂t(10) and
σ̂t(10) for 9 periods

3Approximate standard errors for the rolling correlations may be computed using

dSE(ρ̂t(n)) =
s
1− ρ̂t(n)

2

n
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FIGURE 9.5. Effect of an outlier on equally weighted rolling estimates of µ and
σ.

To mitigate the effects of extreme observations on moving average es-
timates the observations in a rolling window can be weighted differently.
A common weighting scheme that puts more weight on the most recent
observations is based on exponentially declining weights and the resulting
weighted moving average is called an exponentially weighted moving average
(EWMA). An n-period EWMA of a time series yt is defined as

µ̃t(n) =
n−1X
i=0

wi·yt−i, wi =
λi−1Pn−1
i=0 λi−1

where 0 < λ < 1 is the decay parameter. As n→∞, λn → 0, wn → 0, and
the EWMA converges to

µ̃t(λ) = (1− λ)
∞X
i=0

λiyt−i (9.4)

so the EWMA may be defined independently of the window width n. The
EWMA in (9.4) may be efficiently computed using the recursion

µ̃t(λ) = (1− λ)yt + λµ̃t−1(λ) (9.5)

From (9.5), it is clear that the closer λ is to one the more weight is put on the
the previous period’s estimate relative to the current period’s observation.
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Therefore, λ may be interpreted as a persistence parameter. The recursive
formula (9.5) requires a starting value µ0(λ). Common choices are the first
observation and the average over a local window.
EWMA estimates of descriptive statistics for continuously compounded

asset returns are usually computed using high frequency data with the
assumption that the mean returns are zero. Accordingly, the EWMA esti-
mates of σ2 and σ12 are

σ̃2t (λ) = (1− λ)r2t + λσ̃2t−1(λ) (9.6)

σ̃12,t(λ) = (1− λ)r1tr2t + λσ̃12,t−1(λ)

where rt denotes the continuously compounded return on an asset. The
EWMA estimate of volatility (9.6) is in the form of a IGARCH(1,1) model
without an constant term.

Computing EWMA estimates using the S+FinMetrics function EWMA

EWMA estimates based on (9.5) may be efficiently computed using the
S+FinMetrics function EWMA. The arguments expected by EWMA are

> args(EWMA)
function(x, n = 9, lambda = (n - 1)/(n + 1), start =
"average", na.rm = F)

where x is the data input, n is a window width, lambda is the decay pa-
rameter and start specifies the starting value for the recursion (9.5). The
implied default value for λ is 0.8. Valid choices for start are "average"
and "first". The use of EWMA is illustrated with the following examples.

Example 49 Outlier example

Consider again the outlier example data shown in Figure 9.5. EWMA
estimates of µ for λ = 0.95, 0.75 and 0.5 are computed and plotted in
Figure 9.6 using

> ewma95.mean = EWMA(e,lambda=0.95)
> ewma75.mean = EWMA(e,lambda=0.75)
> ewma50.mean = EWMA(e,lambda=0.5)
> tsplot(ewma95.mean,ewma75.mean,ewma50.mean)
> legend(60,4,legend=c("lamda=0.95","lamda=0.75",
+ "lamda=0.50"),lty=1:3)

Notice that the EWMA estimates with λ = 0.95, which put the most weight
on recent observations, are only minimally affected by the one-time outlier
whereas the EWMA estimates with λ = 0.75 and 0.5 increase sharply at
the date of the outlier.

Example 50 EWMA estimates of standard deviations and correlations
from high frequency data



320 9. Rolling Analysis of Time Series

0 20 40 60 80 100

-1
0

1
2

3
4

lamda=0.95
lamda=0.75
lamda=0.50

FIGURE 9.6. EWMA estimates of µ for outlier example data.

EWMA estimates of asset return standard deviations computed from
high frequency data are commonly used as local or short-term estimates of
volatility. Similarly, EWMA estimates of pairwise return correlations are
often used to infer local interactions between assets. Indeed, J.P. Morgan’s

RiskMetrics
R°
methodology is based on EWMA estimates of volatility and

correlation. To illustrate, consider computing EWMA estimates of volatility
and correlation with λ = 0.95 using daily closing price data on Microsoft
and IBM stock over the five year period 1996 - 2000.

> smpl = (positions(DowJones30) >= timeDate("1/1/1996"))
> msft.ret.d = getReturns(DowJones30[smpl,"MSFT"])
> ibm.ret.d = getReturns(DowJones30[smpl,"IBM"])
> msft.ewma95.sd = sqrt(EWMA(msft.ret.d^2,lambda=0.95))
> ibm.ewma95.sd = sqrt(EWMA(ibm.ret.d^2,lambda=0.95))
> cov.ewma95 = EWMA(msft.ret.d*ibm.ret.d,lambda=0.95)
> cor.ewma95 = cov.ewma95/(msft.ewma95.sd*ibm.ewma95.sd)
> par(mfrow=c(2,1))
> plot(msft.ewma95.sd,ibm.ewma95.sd,
+ main="Rolling EWMA SD values",
+ plot.args=list(lty=c(1,3)))
> legend(0,0.055,legend=c("Microsoft","IBM"),lty=c(1,3))
> plot(cor.ewma95,main="Rolling EWMA correlation values")
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FIGURE 9.7. EWMA estimates of daily volatility and correlation with λ = 0.95.

Figure 9.7 shows the EWMA estimates of volatility and correlation. Daily
volatility for Microsoft and IBM varies considerably, exhibiting apparent
seasonality and an increasing trend. The daily correlations fluctuate around
0.5 for the first part of the sample and then drop to about 0.1 at the end
of the sample.

9.2.4 Moving Average Methods for Irregularly Spaced High
Frequency Data

The use of moving average and rolling methods on irregularly spaced or
inhomogeneous high frequency time series data requires care. The moving
average tools discussed so far are designed to work on regularly spaced
or homogeneous time series data. Two approaches have been used to apply
moving average methods to irregularly spaced data. The first approach con-
verts the irregularly spaced data to regularly spaced data and then applies
the tools for appropriate for regularly spaced data. The second approach,
pioneered by Zumback and Müller (2001), utilizes moving average methods
specifically designed for irregularly spaced data.

Converting inhomogeneous time series to homogeneous time series

To illustrate the conversion of a inhomogeneous time series to a homoge-
neous time series, consider the transactions level data on 3M corporation
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stock for December, 1999 in the S+FinMetrics data frame highFreq3M.df.
As in chapter 2, a “timeSeries” object may be created using

> td = timeDate(julian=(highFreq3M.df$trade.day-1),
+ ms=highFreq3M.df$trade.time*1000,
+ in.origin=c(month=12,day=1,year=1999),zone="GMT")
> hf3M.ts = timeSeries(pos=td,data=highFreq3M.df)
> hf3M.ts[1:20,]

Positions trade.day trade.time trade.price
12/1/99 9:33:32 AM 1 34412 94.69
12/1/99 9:33:34 AM 1 34414 94.69
12/1/99 9:33:34 AM 1 34414 94.69
...
12/1/99 9:34:45 AM 1 34485 94.69
12/1/99 9:34:47 AM 1 34487 94.63
...

The trade time is measured in second from midnight. Notice that many of
the first trades took place at the same price and that there are instances of
multiple transactions at the same time. The analysis is limited to the first
three trading days of December

> smpl = positions(hf3M.ts) < timeDate("12/4/1999")
> hf3M.ts = hf3M.ts[smpl,]

The data in hf3m.ts may be made homogeneous by use of an interpola-
tion method to align the irregularly spaced time sequence and associated
data to a regularly spaced time sequence. For example, consider creating
a homogeneous time series of five minute observations. Since the data in
hf3m.ts may not be recorded at all five minute intervals, some interpo-
lation scheme must be used to create the data. Two common iterpolation
schemes are: previous tick interpolation, and linear interpolation. The for-
mer method uses the most recent values, and the latter method uses obser-
vations bracketing the desired time. The S-PLUS functions align may be
used to perform these interpolation schemes.
The function align takes a “timeSeries” and a “timeDate” vector of

new positions to align to. An easy way to create a “timeDate” sequence of
five minute observations covering the trading hours for 3M stock is to use
the S-PLUS function aggregateSeries as follows:

> tmp = aggregateSeries(hf3M.ts,by="minutes",k.by=5,FUN=mean)

The positions slot of “timeSeries” tmp contains the desired five minute
“timeDate” sequence:

> positions(tmp)
[1] 12/1/99 9:30:00 AM 12/1/99 9:35:00 AM
[3] 12/1/99 9:40:00 AM 12/1/99 9:45:00 AM
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To align the 3M price data to the five minute time sequence using previous
tick interpolation use

> hf3M.5min[1:5,]
Positions trade.price

12/1/99 9:30:00 AM NA
12/1/99 9:35:00 AM 94.63
12/1/99 9:40:00 AM 94.75
12/1/99 9:45:00 AM 94.50
12/1/99 9:50:00 AM 94.31

To align the price data using linear interpolation use

> hf3M.5min[1:5,]
Positions trade.price

12/1/99 9:30:00 AM NA
12/1/99 9:35:00 AM 94.65
12/1/99 9:40:00 AM 94.75
12/1/99 9:45:00 AM 94.42
12/1/99 9:50:00 AM 94.26

The usual methods for the analysis of homogeneous data may now be
performed on the newly created data. For example, to compute and plot
an EWMA of price with λ = 0.9 use

> hf3M.5min.ewma = EWMA(hf3M.5min,lambda=0.9,na.rm=T)
> plot(hf3M.5min.ewma)

The resulting plot is shown in Figure 9.8.

Inhomogeneous moving average operators

Zumbach and Müller (2001) present a general framework for analyzing in-
homogeneous time series. A detailed exposition of this framework is beyond
the scope of this book. Only a brief description of the most fundamental
inhomogeneous time series operators is presented and reader is referred to
Zumbach and Müller (2001) or Dacorogna et. al. (2001) for technical details
and further examples.
Zumbach and Müller (2001) distinguish between microscopic and macro-

scopic operations on inhomogeneous time series. A microscopic operation
depends on the actual sampling times of the time series, whereas a macro-
scopic operator extracts an average over a specified range. Macroscopic
operations on high frequency inhomogeneous time series are advantageous
because they are essentially immune to small variations in the individual
data observations and are better behaved and more robust than microscopic
operations. The S+FinMetrics functions for analyzing inhomogeneous time
series are based on a subset of the macroscopic operators discussed in Zum-
bach and Müller (2001). These functions are summarized in table 9.1.
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FIGURE 9.8. EWMA of five minute prices on 3M stock.

In general, given a continuous time signal z(t), a macroscopic operator
Ω can be defined as a convolution with a causal kernel ω(·):

Ω(t) =

Z t

0

w(t− s)z(s)ds (9.7)

for t > 0. Note that for a causal kernel ω(t) = 0 for any t < 0, since future
information cannot be utilized. In addition, it is usually required thatZ ∞

0

ω(t)dt = 1

so that the operator can be interpreted as a weighted moving average of the
signal z(t). For example, the exponential moving average (EMA) operator
is defined with an exponential kernel:

ω(t) =
e−t/τ

τ
(9.8)

and it is easy to verify that Z ∞
0

e−t/τ

τ
= 1

The parameter τ can be shown to be the range of the EMA kernel.4

4The range is defined as the first moment of the kernel, i.e.,
R∞
0 ω(t)tdt.



9.2 Rolling Descriptive Statistics 325

Function Description
iEMA inhomogeneous EWMA
iMA inhomogeneous moving average
iMNorm inhomogeneous moving norm
iMVar inhomogeneous moving variance
iMSD inhomogeneous moving SD
iMSkewness inhomogeneous moving skewness
iMKurtosis inhomogeneous moving kurtosis
iMCor inhomogeneous moving correlation
iDiff inhomogeneous moving difference
iEMA.kernel kernal function for iEMA
iMA.kernel kernel function for iMA

TABLE 9.1. S+FinMetrics inhomogeneous time series function

In reality, a time series signal is usually observed at discrete times. In
addition, financial transactions level data are usually observed on irregular
intervals. For the EMA operator, Zumbach and Müller suggest to use the
following iterative formula to compute a discrete time approximation to
(9.7):5

EMA(tn; τ) = µEMA(tn−1; τ)+(1−µ)z(tn)+(µ−ν)[z(tn)−z(tn−1)] (9.9)

where
µ = e−α, ν = (1− µ)/α

and
α = (tn − tn−1).

Note that when α is very small, eα ≈ 1 + α and it can be shown that
µ ≈ ν. In this case, the above formula reduces to the same iteration for
evenly spaced EWMA operator.
Using the basic EMA operator, different operators can be constructed.

For example, Zumbach and Müller suggest that the basic EMA operator can
be iterated a finite number of times to obtain an operator with a different
kernel, denoted EMA(τ , k). The EMA(τ , k) operator can be summed to
obtain the analog of the moving average (MA) operator for inhomogeneous
time series:

MA(τ , k) =
1

k

kX
i=1

EMA(s, i)

where s = 2τ/(k + 1) so that the range of EMA(τ , k) is equal to τ , inde-
pendent of k.

5This formula is actually obtained by assuming linear interpolation between points.
If previous tick interpolation is used, then ν = 1.
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The S+FinMetrics functions iEMA.kernel and iMA.kernel can be used
to plot the kernel functions for EMA and MA operators, while iEMA and iMA
can be used to compute the EMA and MA operator for inhomogeneous time
series. For example, the following code plots the EMA(τ , k) and MA(τ , k)
kernel functions for τ = 1 for k = 1, 2, · · · , 10:

> par(mfrow=c(2,1))
> knl = iEMA.kernel(1, 1)
> plot(knl, type="l", main="EMA Kernel")
> for(i in 2:10) {
> knl = iEMA.kernel(1, i)
> lines(knl, lty=i)
> }

> knl = iMA.kernel(1, 1)
> plot(knl, type="l", main="MA Kernel")
> for(i in 2:10) {
> knl = iMA.kernel(1, i)
> lines(knl, lty=i)
> }
> par(mfrow=c(1,1))

and the resulting plot is shown in Figure 9.9. From the figure, it can be
seen that when k = 1, EMA(τ , k) andMA(τ , 1) are equivalent by definition.
However, as k gets larger, the kernel function of EMA(τ , k) becomes flatter,
while the kernel function ofMA(τ , 1) becomes more like a rectangle. In fact,
Zumbach and Müller show that the range of EMA(τ , k) is kτ , while the
range ofMA(τ , 1) becomes a constant for t <= 2τ as k →∞. As a result, to
obtain an MA operator with window width equal to 9 (which corresponds
to a range of 8, i.e., using 8 observations in the past), one sets τ = 4 and
k to a large number:

> iMA(1:100, 4, iter=10)
[1] 1.000 1.084 1.305 1.662 2.150 2.761 3.481
[8] 4.289 5.166 6.091 7.047 8.024 9.011 10.005
[15] 11.002 12.001 13.000 14.000 15.000 16.000 17.000
[22] 18.000 19.000 20.000 21.000 22.000 23.000 24.000
[29] 25.000 26.000 27.000 28.000 29.000 30.000 31.000
[36] 32.000 33.000 34.000 35.000 36.000 37.000 38.000
[43] 39.000 40.000 41.000 42.000 43.000 44.000 45.000
[50] 46.000 47.000 48.000 49.000 50.000 51.000 52.000
[57] 53.000 54.000 55.000 56.000 57.000 58.000 59.000
[64] 60.000 61.000 62.000 63.000 64.000 65.000 66.000
[71] 67.000 68.000 69.000 70.000 71.000 72.000 73.000
[78] 74.000 75.000 76.000 77.000 78.000 79.000 80.000
[85] 81.000 82.000 83.000 84.000 85.000 86.000 87.000
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FIGURE 9.9. Kernel function for EMA and MA operators for inhomogeneous
time series.

[92] 88.000 89.000 90.000 91.000 92.000 93.000 94.000
[99] 95.000 96.000

The S+FinMetrics iMA function requires at least two arguments: the
first is the input series, and the second specifies the value for τ . In the
above example, the optional argument iter is used to specify the number
of iterations k; in addition, since the input series is not a “timeSeries”
object, iMA treats it as evenly spaced and τ is in units of observations. If
the input series is a “timeSeries” object, then τ should be specified in
units of “business days”. To illustrate the usage of iMA in this case, first
create a “timeSeries” object representing the transaction price data from
hf3M.ts created earlier6 :

> smpl2 = positions(hf3M.ts) < timeDate("12/02/1999")
> hf3m.1min = aggregateSeries(hf3M.ts[smpl2,"trade.price"],
+ by="minutes", FUN=mean)
> hf3m.1min[103:110]

Positions trade.price
12/1/1999 11:28:00 AM 94.25000

6The S-PLUS function aggregateSeries is used to eliminate multiple transactions
that occur at the same time. Currently, the S+FinMetrics inhomogeneous time series
functions do not work if there are multiple observations with the same time stamp.
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FIGURE 9.10. 20 minute moving average computed from iMA for 3M stock prices.

12/1/1999 11:30:00 AM 94.18750
12/1/1999 11:32:00 AM 94.25000
12/1/1999 11:33:00 AM 94.25000
12/1/1999 11:34:00 AM 94.21875
12/1/1999 11:36:00 AM 94.26563
12/1/1999 11:37:00 AM 94.18750
12/1/1999 11:39:00 AM 94.18750

Note that the data is not evenly spaced. To obtain a 20 minute moving
average of hf3m.1min, set τ = 10/(6.5∗ 60) because there are 6.5 hours for
the default trading hours (from 9:30 AM to 4:00 PM):

> hf3m.ma = iMA(hf3m.1min, 10/(6.5*60), iter=10)
> plot(seriesMerge(hf3m.1min, hf3m.ma),
+ plot.args=list(lty=c(1,3)))

The original data and the 20 minutes moving average hf3m.ma are plotted
together in Figure 9.10.

9.2.5 Rolling Analysis of Miscellaneous Functions

The standard analysis tools for time series require the data to be stationary.
Rolling analysis of descriptive statistics can give an indication of structural
change or instability in the moments of a time series. Level shifts and
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FIGURE 9.11. S & P 500 annual dividend/price ratio

variance changes can usually be detected by rolling analyses. The S-PLUS
function aggregateSeries may be used to perform rolling analysis with a
variety of functions to uncover periods of instability and nonstationarity.
The following example illustrates the use of aggregateSeries with the
S+FinMetrics function unitroot to determine periods of unitroot nonsta-
tionarity of a time series.

Example 51 Rolling unit root tests applied to annual dividend/price ratio

Predictive regressions of asset returns on valuation ratios like dividend/price
or earnings/price require the valuation ratios to be stationary or, more
generally, I(0), for the regressions to be statistically valid. Since asset re-
turns are I(0), if valuation ratios are I(1) then the predictive regressions
are unbalanced and the results will be nonsensical. To illustrate, consider
the annual dividend-price (D/P) ratio on the S&P 500 taken from the
S+FinMetrics “timeSeries” shiller.annual

> dp.ratio = shiller.annual[,"dp.ratio"]
> plot(dp.ratio,main="S&P 500 Annual D/P",ylab="D/P")

shown in Figure 9.11. For most of the sample the annual D/P looks to
be I(0) with mean near 5%. However, there are long periods when the
ratio stays above or below 5% suggesting periods of non-mean reverting
(nonstationary) behavior. Also, there is a clear drop in the ratio at the
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end of the sample suggesting a fundamental change in the mean. Rolling
unit root tests may be used to uncover periods of nonstationary behavior
in D/P. To compute rolling ADF t-tests and normalized bias statistics
using the S-PLUS function aggregateSeries create the following function
adf.tests

adf.tests = function(x, trend = "c", lags = 3)
{

tmp1 = unitroot(x,trend=trend,lags=lags,statistic="t")
tmp2 = unitroot(x,trend=trend,lags=lags,statistic="n")
ans = concat(tmp1$sval,tmp2$sval)

}

The function adf.tests takes a time series x, passes it to the S+FinMetrics
function unitroot twice and returns the ADF t-statistic and normalized
bias statistic. Three lags are chosen for the tests based on a full sample anal-
ysis using the Ng-Perron backward selection procedure. Rolling unit root
tests using a window of 50 years are then computed using aggregateSeries

> roll.adf = aggregateSeries(dp.ratio,moving=50,adj=1,
+ FUN=adf.tests,colnames=c("t.test","norm.bias"))

The object roll.adf is a “timeSeries” containing the rolling unit root
tests

> roll.adf[1:3,]
Positions t.test norm.bias
Dec 1920 -1.840 -13.24
Dec 1921 -2.168 -15.24
Dec 1922 -2.270 -16.03

Figure 9.12 is created using

> cvt.05 = qunitroot(0.05,trend="c",n.sample=50)
> cvn.05 = qunitroot(0.05,trend="c",statistic="n",
+ n.sample=50)
> par(mfrow=c(2,1))
> plot(roll.adf[,"t.test"],main="Rolling ADF t-statistics",
+ reference.grid=F)
> abline(h=cvt.05)
> plot(roll.adf[,"norm.bias"],main="Rolling ADF normalized
+ bias", reference.grid=F)
> abline(h=cvn.05)

and shows the rolling unit root tests along with 5% critical values.The
results indicate that D/P is stationary mainly in the middle of the sample
and becomes nonstationary toward the end of the sample. However, some
care must be used when interpreting the significance of the rolling unit
root tests. The 5% critical values shown in the figures are appropriate for
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FIGURE 9.12. 50 year Rolling ADF t-statistics and normalized bias statistics for
the S&P 500 dividend-price ratio.

evaluating a single test and not a sequence of rolling tests. Critical values
appropriate for rolling unit root tests are given in Banerjee, Lumsdaine and
Stock (1992).

9.3 Technical Analysis Indicators

Technical analysis is, perhaps, the most widely used method for analyzing
financial time series. Many of the most commonly used technical indicators
are based on moving average techniques so it is appropriate to include a
discussion of them here. A comprehensive survey of technical analysis is be-
yond the scope of this book. Useful references are Colby and Meyers (1988)
and Bauer and Dahlquist (1999). The S+FinMetrics technical analysis in-
dicators are implemented using the definitions in Colby and Meyers (1988).
Broadly, the main technical indicators can be classified into four categories:
price indicators, momentum indicators and oscillators, volatility indicators
and volume indicators.
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Function Description
TA.Bollinger Bollinger band
TA.medprice Median price
TA.typicalPrice Typical price
TA.wclose Weighted close

TABLE 9.2. S+FinMetrics Price Indicators

9.3.1 Price Indicators

The S+FinMetrics price indicator functions are summarized in table 9.2.
To illustrate the use of these functions, consider the calculation of the
typical daily price, which is defined to be the average of the highest, low-
est and closing prices during the day, using the S+FinMetrics function
TA.typicalPrice. The arguments expected by TA.typicalPrice are

> args(TA.typicalPrice)
function(high, low, close)

In order to compute this indicator, a data set with high, low and close
prices is required. To compute the typical price for the Dow Jone Industrial
Average over the period January 1, 1990 to February 20, 1990 using the
S-PLUS “timeSeries” djia, use

> smpl = positions(djia) >= timeDate("1/1/1990")
> dj = djia[smpl,]
> tp.dj = TA.typicalPrice(dj[,"high"],
+ dj[,"low"],dj[,"close"])
> class(tp.dj)
[1] "timeSeries"

The typical price along with the high, low, open and close prices may be
plotted together using

> plot.out = plot(dj[,1:4],plot.type="hloc")
> lines.render(positions(tp.dj),seriesData(tp.dj),
+ x.scale=plot.out$scale)

and the resulting plot is shown in Figure 9.13.

9.3.2 Momentum Indicators and Oscillators

The S+FinMetrics momentum indicator and oscillator functions are sum-
marized in table 9.3. For example, consider the popular moving average
convergence divergence (MACD) indicator. This is an oscillator that rep-
resents the difference between two exponential moving averages. A sig-
nal line is computed as the exponential moving average of MACD. When
the oscillator crosses above the signal line, it indicates a buy signal; when
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FIGURE 9.13. Typical price along with high, low, open and close prices for the
Dow Jones Industrial Average.

the oscillator crosses below the signal line, it indicates a sell signal. The
S+FinMetrics function TA.macd computes the MACD and has arguments

> args(TA.macd)
function(x, n.short = 12, n.long = 26, n.signal = 9, start
= "average", na.rm = F)

where x is a price series, n.short is a positive integer specifying the number
of periods to be used for calculating the short window EWMA, n.long
is a positive integer specifying the number of periods to be used for the
calculating the long window EWMA, and n.signal is a positive integer

Function Description
TA.accel Acceleration
TA.momentum Momentum
TA.macd Moving average convergence divergence
TA.roc Price rate of change
TA.rsi Relative strength index
TA.stochastic Stochastic Oscillator
TA.williamsr Williams’ %R
TA.williamsad Williams’ accumulation distribution

TABLE 9.3. S+FinMetrics momentum indicators
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FIGURE 9.14. MACD and signal for daily closing prices on Microsoft stock.

Function Description
TA.adoscillator accumulation/distribution oscillator
TA.chaikinv Chaikin’s volatility
TA.garmanKlass Garman-Klass estimator of volatility

TABLE 9.4. S+FinMetrics volatility indicator functions

giving the number of periods for the signal line. To compute and plot the
MACD using daily closing prices on Microsoft use

> msft.macd = TA.macd(msft.dat[,"Close"])
> colIds(msft.macd) = c("MACD","Signal")
> plot(msft.macd,plot.args=list(lty=c(1:3)))
> legend(0.5,-3,legend=colIds(msft.macd),
+ lty=c(1,3))

Figure 9.14 shows the plot of the MACD and signal.

9.3.3 Volatility Indicators

The S+FinMetrics volatility indicator functions are summarized in table
9.4. These functions compute estimates of volatility based on high, low,
open and close information. For example, consider Chaikin’s volatility in-
dicator computed using the S+FinMetrics function TA.chaikin. It com-
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FIGURE 9.15. Chainkin’s volatility estimate using the daily prices on Microsoft
stock.

pares the spread between a security’s high and low prices and quantifies
volatility as a widening of the range between the high and low price. Let
ht and lt represent the highest and lowest price for period t, respectively.
Chaikin’s Volatility is calculated as the percentage change in the EWMA
of rt = ht − lt :

rt − rt−nc
rt−nc

· 100

where nc is a positive number specifying the number of periods to use for
computing the percentage change. To compute and plot Chaikin’s Volatility
with nc = 10 and a ten day EWMA for the daily high and low price for
Microsoft stock use

> msft.cv = TA.chaikinv(msft.dat[,"High"],
+ msft.dat[,"Low"],n.range=10,n.change=10)
> plot(msft.cv)

Figure 9.15 shows the estimated Chaikin volatility.

9.3.4 Volume Indicators

The S+FinMetrics volume indicator functions are summarized in table
9.5. These indicators relate price movements with volume movements. To
illustrate, consider the S+FinMetrics function TA.adi which computes the
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Function Description
TA.adi Accumulation/distribution indicator
TA.chaikino Chaikin oscillator
TA.nvi Negative volume index
TA.pvi Positive volume index
TA.obv On balance volume
TA.pvtrend Price-volume trend

TABLE 9.5. S+FinMetrics volume indicator functions

accumulations/distribution (A/D) indicator. This indicator associates price
changes with volume as follows. Let ct denote the closing price, ht the
highest price, lt the lowest price, and vt the trading volume for time t. The
A/D indicator is the cumulative sum

ADt =
tX

i=1

ci − li − (hi − ci)

hi − li
· vi

When ADt moves up, it indicates that the security is being accumulated;
when it moves down it indicates that the security is being distributed. To
compute and plot the A/D indicator for Microsoft stock use

> msft.adi = TA.adi(msft.dat[,"High"],msft.dat[,"Low"],
+ msft.dat[,"Close"],msft.dat[,"Volume"])
> plot(msft.adi)

The resulting plot is shown in Figure 9.16.

9.4 Rolling Regression

For the linear regression model, rolling analysis may be used to assess the
stability of the model’s parameters and to provide a simple “poor man’s”
time varying parameter model. For a window of width n < T , the rolling
linear regression model may be expressed as

yt(n) = Xt(n)βt(n) + εt(n), t = n, . . . , T (9.10)

where yt(n) is an (n× 1) vector of observations on the response, Xt(n) is
an (n × k) matrix of explanatory variables, βt(n) is an (k × 1) vector of
regression parameters and εt(n) is an (n× 1) vector of error terms. The n
observations in yt(n) and Xt(n) are the n most recent values from times
t−n+1 to t. It is assumed that n > k. The rolling least squares estimates
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FIGURE 9.16. Accumulation/Distribution indicator for Microsoft stock.

are

β̂t(n) = [Xt(n)
0Xt(n)]

−1
Xt(n)

0yt(n)

σ̂2t (n) =
1

n− k
ε̂t(n)

0ε̂t(n)

=
1

n− k

h
yt(n)−Xt(n)β̂t(n)

i0 h
yt(n)−Xt(n)β̂t(n)

i
[avar(β̂t(n)) = σ̂2t (n) · [Xt(n)

0Xt(n)]
−1

9.4.1 Estimating Rolling Regressions Using the
S+FinMetrics Function rollOLS

The S+FinMetrics function rollOLS may be used to estimate general
rolling regression models. rollOLS is based on the S+FinMetrics regres-
sion function OLS and implements efficient block updating algorithms for
fast computation of rolling estimates. The arguments expected by rollOLS
are

> args(rollOLS)
function(formula, data, subset, na.rm = F, method = "fit",
contrasts = NULL, start = NULL, end = NULL, width =
NULL, incr = 1, tau = 1e-010, trace = T, ...)
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which are similar to those used by OLS. In particular, AR may be used in
formulas to allow for lagged dependent variables and tslag and pdl may
be used to allow for lagged independent variables. The argument width
determines the rolling window width and the argument incr determines
the increment size by which the windows are rolled through the sample.
The output of rollOLS is an object of class “rollOLS” for which there
are print, summary, plot and predict methods and extractor function
coefficients. The use of rollOLS is illustrated with the following exam-
ple.

Example 52 Rolling estimation of CAPM for Microsoft

Consider the estimation of the capital asset pricing model (CAPM) for
an asset using rolling regression on the excess returns market model

rt − rft = α+ β(rMt − rft) + εt, εt ~WN(0, σ2) (9.11)

where rt denotes the monthly return on an asset, rft denotes the 30 day
T-bill rate, and rMt denotes the monthly return on a market portfolio
proxy. The coefficient β measures the magnitude of market risk, and the
CAPM imposes the restriction that α = 0. Positive values of α indicate
an average excess return above that predicted by the CAPM and nega-
tive values indicate an average return below that predicted by the CAPM.
Rolling regression can be used to assess the stability of the CAPM regres-
sion over time and to uncover periods of time where an asset may have
been overpriced or underpriced relative to the CAPM.
The monthly excess return data on Microsoft stock and the S&P 500

index over the ten year period February 1990 through December 2000 are
in the S+FinMetrics “timeSeries” object excessReturns.ts.

> colIds(excessReturns.ts)
[1] "MSFT" "SP500"
> start(excessReturns.ts)
[1] Feb 1990
> end(excessReturns.ts)
[1] Dec 2000

The full sample CAPM estimates using the S+FinMetrics function OLS are

> ols.fit = OLS(MSFT~SP500,data=excessReturns.ts)
> summary(ols.fit)

Call:
OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Residuals:
Min 1Q Median 3Q Max

-0.3101 -0.0620 -0.0024 0.0581 0.2260



9.4 Rolling Regression 339

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0175 0.0081 2.1654 0.0322
SP500 1.5677 0.2015 7.7788 0.0000

Regression Diagnostics:

R-Squared 0.3193
Adjusted R-Squared 0.3140
Durbin-Watson Stat 2.1891

Residual standard error: 0.09095 on 129 degrees of freedom
Time period: from Feb 1990 to Dec 2000
F-statistic: 60.51 on 1 and 129 degrees of freedom, the p-va
lue is 2.055e-012

The estimated full sample β for Microsoft is 1.57, which indicates that
Microsoft was riskier than the market. Also, the full sample estimate of α
is significantly different from zero so, on average, the returns on Microsoft
are larger than predicted by the CAPM.
Consider now the 24-month rolling regression estimates incremented by

1 month computed using rollOLS

> roll.fit = rollOLS(MSFT~SP500,data=excessReturns.ts,
+ width=24,incr=1)
Rolling Window #1: Total Rows = 24
Rolling Window #2: Total Rows = 25
Rolling Window #3: Total Rows = 26
...
Rolling Window #108: Total Rows = 131

To suppress the printing of the window count, specify trace=F in the call
to rollOLS. The returned object roll.fit is of class “rollOLS” and has
components

> names(roll.fit)
[1] "width" "incr" "nwin" "contrasts" "rdf"
[6] "coef" "stddev" "sigma" "terms" "call"
[11] "positions"

The components coef, stddev and sigma give the estimated coefficients,
standard errors, and residual standard deviations for each of the nwin re-
gressions. The positions component gives the start and end date of the
estimation sample.
The print method, invoked by typing the object’s name, gives a brief

report of the fit
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> roll.fit

Call:
rollOLS(formula = MSFT ~SP500, data = excessReturns.ts,
width = 24, incr = 1)

Rolling Windows:
number width increment

108 24 1
Time period: from Feb 1990 to Dec 2000

Coefficients:
(Intercept) SP500

mean 0.0221 1.2193
std. dev. 0.0120 0.4549

Coefficient Standard Deviations:
(Intercept) SP500

mean 0.0177 0.5057
std. dev. 0.0034 0.1107

Residual Scale Estimate:
mean std. dev.

0.0827 0.0168

Regression estimates are computed for 108 rolling windows. The mean and
standard deviation are computed for the estimates and for the estimated
coefficient standard errors. The average and standard deviation of the α̂
values are 0.0221 and 0.0120, respectively, and the average and standard
deviation of the SE(α̂) values are 0.0177 and 0.0034, respectively. Hence,
most of the α̂ values appear to be not significantly different from zero as
predicted by the CAPM. The average and standard deviation of the β̂
values are 1.2193 and 0.4549, respectively. The β̂ values are quite variable
and indicate that amount of market risk in Microsoft is not constant over
time.
The rolling coefficient estimates for each rolling regression may be viewed

using summary

> summary(roll.fit)

Call:
rollOLS(formula = MSFT ~SP500, data = excessReturns.ts,
width = 24, incr = 1)

Rolling Windows:
number width increment



9.4 Rolling Regression 341

108 24 1
Time period: from Feb 1990 to Dec 2000

Coefficient: (Intercept)
Value Std. Error t value Pr(>|t|)

Jan 1992 0.05075 0.01551 3.271 0.003492
Feb 1992 0.04897 0.01559 3.141 0.004751
Mar 1992 0.04471 0.01561 2.863 0.009035
...
Coefficient: SP500

Value Std. Error t value Pr(>|t|)
Jan 1992 1.3545 0.3322 4.077 0.0004993
Feb 1992 1.3535 0.3337 4.056 0.0005260
Mar 1992 1.3735 0.3332 4.123 0.0004472
...

or by using the coef extractor function. Notice that the first 24-month
rolling estimates are computed for Jan 1992, which is 24 months after the
sample start date of Feb 1990. The rolling estimates, however, are best
viewed graphically using plot

> plot(roll.fit)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Coef Estimates
3: plot: Coef Estimates with Confidence Intervals
4: plot: Residual Scale Estimates
Selection:

Plot selections 3 and 4 are illustrated in figures 9.17 and 9.18. From the
graphs of the rolling estimate it is clear that α̂ is significantly positive
only at the very beginning of the sample. The β̂ values are near unity for
most windows and increase sharply at the end of the sample. However, the
large standard errors make it difficult to determine if β is really changing
over time. The residual scale estimates, σ̂, increase sharply after 1999. This
implies that the magnitude of the non-market risk in Microsoft increased
after 1999.
In rollOLS, the optional argument incr sets the number of observa-

tions between the rolling blocks of data of length determined by width.
Therefore, rolling regressions may be computed for arbitrary overlapping
and non-overlapping blocks of data. For example, consider computing the
CAPM estimates for Microsoft over the two non-overlapping but adjacent
subsamples, February 1990 - June 1995 and July 1996 - November 2000
using rollOLS:
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> roll.fit2 = rollOLS(MSFT~SP500,data=excessReturns.ts,
+ width=65,incr=65)
Rolling Window #1: Total Rows = 65
Rolling Window #2: Total Rows = 130
> summary(roll.fit2)

Call:
rollOLS(formula = MSFT ~SP500, data = excessReturns.ts,
width = 65, incr = 65)

Rolling Windows:
number width increment

2 65 65
Time period: from Feb 1990 to Dec 2000

Coefficient: (Intercept)
Value Std. Error t value Pr(>|t|)

Jun 1995 0.02765 0.009185 3.0100 0.003755
Nov 2000 0.01106 0.012880 0.8585 0.393851

Coefficient: SP500
Value Std. Error t value Pr(>|t|)

Jun 1995 1.339 0.2712 4.937 6.125e-006
Nov 2000 1.702 0.2813 6.050 8.739e-008

9.4.2 Rolling Predictions and Backtesting

Rolling regressions may be used to evaluate a model’s predictive perfor-
mance based on historical data using a technique commonly referred to as
backtesting. To illustrate, consider the rolling regression model (9.10). The
“out-of-sample” predictive performance of (9.10) is based on the rolling
h− step predictions and prediction errors

ŷt+h|t = x0t+hβ̂t(n), (9.12)

ε̂t+h|t = yt+h − ŷt+h|t = yt+h − x0t+hβ̂t(n) (9.13)

The predictions are “out-of-sample” because β̂t(n) only uses data up to
time t , whereas the predictions are for observations at times t + h for
h > 0.The rolling predictions are adaptive since β̂t(n) is updated when
t is increased. When h = 1 there are T − n rolling 1 − step predictions
{ŷn+1|n, ŷn+2|n+1, . . . , ŷT |T−1}, when h = 2 there are T − n − 1 rolling
2− step predictions {ŷn+2|n, ŷn+3|n+1, . . . , ŷT |T−2} and so on.
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Forecast evaluation statistics

The rolling forecasts (9.12) may be evaluated by examining the properties
of the rolling forecast errors (9.13). Common evaluation statistics are

ME =
1

T − n− h+ 1

T−hX
t=n

ε̂t+h|t (9.14)

MSE(h) =
1

T − n− h+ 1

T−hX
t=n

ε̂2t+h|t (9.15)

RMSE(h) =
p
(MSE(h)

MAE(h) =
1

T − n− h+ 1

T−hX
t=n

|ε̂t+h|t|

MAPE(h) =
1

T − n− h+ 1

T−hX
t=n

¯̄̄̄
ε̂t+h|t
yt+h

¯̄̄̄
The first measure evaluates the bias of the forecasts, and the other measures
evaluate bias and precision.

Example 53 Backtesting the CAPM

Consider again the estimation of the CAPM (9.11) for Microsoft using
rolling regression. The rolling regression information is contained in the
“rollOLS” object roll.fit. The rolling h − step predictions (9.12) may
be computed using the generic predict method. For example, the rolling
1− step forecasts are computed as

> roll.pred = predict(roll.fit,n.step=1)
> class(roll.pred)
[1] "listof"
> names(roll.pred)
[1] "1-Step-Ahead Forecasts"

The argument n.step determines the step length of the predictions. The
object roll.pred is of class “listof” whose list component is a “timeSeries”
object containing the rolling 1− step predictions:

> roll.pred[[1]]
Positions 1
Feb 1992 0.05994784
Mar 1992 0.01481398
...
Dec 2000 -0.00049354
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FIGURE 9.19. Monthly returns on Microsoft, 1− step rolling forecasts and fore-
cast errors.

The prediction errors (9.13) are then computed as

ehat.1step = excessReturns.ts[,"MSFT"]-roll.pred[[1]]

The monthly returns on Microsoft, 1− step forecasts and 1− step forecast
errors are shown in Figure 9.19 created by

> par(mfrow=c(2,1))
> plot(excessReturns.ts[,"MSFT"],roll.pred[[1]],
+ main="Returns on MSFT and 1-step forecasts",
+ plot.args=list(lty=c(1,3)))
> legend(0,-0.2,legend=c("Actual","1-step forecast"),
+ lty=c(1,3))
> plot(ehat.1step,main="1-step forecast error")

The forecast evaluation statistics (9.14) may be computed as

> me.1step = mean(ehat.1step)
> mse.1step = as.numeric(var(ehat.1step))
> rmse.1step = sqrt(mse.1step)
> mae.1step = mean(abs(ehat.1step))
> mape.1step = mean(abs(ehat.1step/excessReturns.ts[,"MSFT"]),
+ na.rm=T)
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To compute just the 2 − step forecasts, specify n.step=2 in the call to
predict. To compute the 1−step and 2−step forecasts specify n.step=1:2

> roll.pred.12 = predict(roll.fit,n.steps=1:2)
> names(roll.pred.12)
[1] "1-Step-Ahead Forecasts" "2-Step-Ahead Forecasts"

> roll.pred.12[[1]]
Positions 1
Feb 1992 0.05994784
Mar 1992 0.01481398
...
Dec 2000 -0.00049354

> roll.pred.12[[2]]
Positions 1
Mar 1992 0.0165764
Apr 1992 0.0823867
...
Dec 2000 -0.0025076

Since the 1−step and 2−step predictions are components of the list object
roll.pred.12, the S-PLUS function lapply may be used to simplify the
computation of the forecast errors and evaluation statistics. To illustrate,
supplying the user-defined function

>make.ehat = function(x,y){
+ ans = y - x
+ ans[!is.na(ans),]
+}

to lapply creates a “named” object containing the 1 − step and 2 − step
forecasts errors as components:

> ehat.list = lapply(roll.pred.12,make.ehat,
+ excessReturns.ts[,"MSFT"])
> names(ehat.list)
[1] "1-Step-Ahead Forecasts" "2-Step-Ahead Forecasts"

The forecast evaluation statistics (9.14) may be computed for each compo-
nent of ehat.list using lapply with the following user-defined function

> make.errorStats = function(x){
+ me = mean(x)
+ mse = as.numeric(var(x))
+ rmse = sqrt(mse)
+ mae = mean(abs(x))



9.4 Rolling Regression 347

+ ans = list(ME=me,MSE=mse,RMSE=rmse,MAE=mae)
+ ans
+ }

> errorStat.list = lapply(ehat.list,make.errorStats)
> unlist(errorStat.list)
1-Step-Ahead Forecasts.ME 1-Step-Ahead Forecasts.MSE

-0.006165 0.009283

1-Step-Ahead Forecasts.RMSE 1-Step-Ahead Forecasts.MAE
0.09635 0.07207

2-Step-Ahead Forecasts.ME 2-Step-Ahead Forecasts.MSE
-0.007269 0.009194

2-Step-Ahead Forecasts.RMSE 2-Step-Ahead Forecasts.MAE
0.09589 0.07187

The S-PLUS function sapply may be used instead of lapply to summarize
the forecast error evaluation statistics:

> sapply(ehat.list,make.errorStats)
1-Step-Ahead Forecasts 2-Step-Ahead Forecasts

[1,] -0.006165 -0.007269
[2,] 0.009283 0.009194
[3,] 0.09635 0.09589
[4,] 0.07207 0.07187

Comparing Predictive Accuracy

Backtesting is often used to compare the forecasting accuracy of two or
more competing models. Typically, the forecast evaluation statistics (9.14)
are computed for each model, and the model that produces the smallest
set of statistics is judged to be the better model. Recently, Diebold and
Mariano (1995) proposed a simple procedure using rolling h−step forecast
errors for statistically determining if one model’s forecast is more accurate
than another’s. Let ε̂1t+h|t and ε̂2t+h|t denote the h − step forecast errors
from two competing models, and let N denote the number of h − step
forecasts. The accuracy of each forecast is measured by a particular forecast
evaluation or loss function

L(ε̂it+h|t), i = 1, 2
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Two popular loss functions are the squared error loss L(ε̂it+h|t) =
³
ε̂it+h|t

´2
and absolute error loss L(ε̂it+h|t) =

¯̄̄
ε̂it+h|t

¯̄̄
. To determine if one model fore-

casts better than another Diebold and Mariano (1995) suggest computing
the loss differential

dt = L(ε̂1t+h|t)− L(ε̂2t+h|t)

and testing the null hypothesis of equal forecasting accuracy

H0 : E[dt] = 0

The Diebold-Mariano test statistic is the simple ratio

DM =
d̄clrv(d̄)1/2 (9.16)

where

d̄ =
1

N

NX
t=1

dt

is the average loss differential, and clrv(d̄) is a consistent estimate of the
long-run asymptotic variance of d̄. Diebold and Mariano suggest computingclrv(d̄) using the Newey-West nonparametric estimator with a rectangular
weight function and a lag truncation parameter equal to the forecast step
length, h, less one. Diebold and Mariano show that under the null hy-
pothesis of equal predictive accuracy the DM statistic is asymptotically
distributed N(0, 1).

Example 54 Backtesting regression models for predicting asset returns

To illustrate model comparison and evaluation by backtesting, consider
the problem of predicting the annual real return on the S&P 500 index
using two different valuation ratios. The regression model is of the form

rt = α+ βxt−1 + εt (9.17)

where rt denotes the natural logarithm of the annual real total return on
the S&P 500 index and xt denotes the natural logarithm of a valuation
ratio. The first valuation ratio considered is the dividend/price ratio and
the second ratio is the earning/price ratio. The data are constructed from
the S+FinMetrics “timeSeries” shiller.annual as follows:

> colIds(shiller.annual)
[1] "price" "dividend" "earnings"
[4] "cpi" "real.price" "real.dividend"
[7] "real.earnings" "pe.10" "dp.ratio"
[10] "dp.yield"
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> # compute log of real data
> ln.p = log(shiller.annual[,"real.price"])
> colIds(ln.p) = "ln.p"
> ln.dpratio = log(dp.ratio)
> colIds(ln.dpratio) = "ln.dpratio"
> ln.epratio = -log(shiller.annual[,"pe.10"])
> ln.epratio = ln.epratio[!is.na(ln.epratio),]
> colIds(ln.epratio) = "ln.epratio"
> # compute cc real total returns - see CLM pg. 261
> ln.r = diff(ln.p) + log(1+exp(ln.dpratio[-1,]))
> colIds(ln.r) = "ln.r"
> stock.ts = seriesMerge(ln.p,ln.d,ln.dpratio,
+ ln.epratio,ln.r,pos=positions(ln.epratio))
> start(stock.ts)
[1] Dec 1881
> end(stock.ts)
[1] Dec 2000

Rolling regression estimates of (9.17) with the two valuation ratios using a
50 year window incremented by 1 year are computed as

> roll.dp.fit = rollOLS(ln.r~tslag(ln.dpratio),data=stock.ts,
+ width=50,incr=1)
Rolling Window #1: Total Rows = 50
Rolling Window #2: Total Rows = 51
...
> roll.ep.fit = rollOLS(ln.r~tslag(ln.epratio),data=stock.ts,
+ width=50,incr=1)
Rolling Window #1: Total Rows = 50
Rolling Window #2: Total Rows = 51
...
Rolling Window #70: Total Rows = 119

Figures 9.20 and 9.21 show the rolling coefficient estimates from the two
models along with standard error bands. The rolling estimates of β for
the two models are similar. For both models, the strongest evidence for
return predictability occurs between 1960 and 1990. The value of β for the
earning/price model appears to be different from zero during more periods
than the value of β for the dividend/price model.
The rolling h−step predictions for h = 1, . . . , 5 and prediction errors are

> roll.dp.pred = predict(roll.dp.fit,n.steps=1:5)
> roll.ep.pred = predict(roll.ep.fit,n.steps=1:5)
> ehat.dp.list = lapply(roll.dp.pred,make.ehat,
+ stock.ts[,"ln.r"])
> ehat.ep.list = lapply(roll.ep.pred,make.ehat,
+ stock.ts[,"ln.r"])
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FIGURE 9.20. 50 year rolling regression estimates of (9.17) using dividend/price
ratio.
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FIGURE 9.21. 50 year rolling regression estimates of (9.17) using earning/price.
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The forecast evaluation statistics are

> errorStats.dp.list = lapply(ehat.dp.list,make.errorStats)
> errorStats.ep.list = lapply(ehat.ep.list,make.errorStats)
> tmp = cbind(unlist(errorStats.dp.list),
+ unlist(errorStats.ep.list))
> colIds(tmp) = c("D/P","E/P")
> tmp
numeric matrix: 20 rows, 2 columns.

D/P E/P
1-Step-Ahead Forecasts.ME 0.03767 0.01979
1-Step-Ahead Forecasts.MSE 0.03150 0.03139
1-Step-Ahead Forecasts.RMSE 0.17749 0.17718
1-Step-Ahead Forecasts.MAE 0.14900 0.14556
2-Step-Ahead Forecasts.ME 0.04424 0.02334
2-Step-Ahead Forecasts.MSE 0.03223 0.03205
2-Step-Ahead Forecasts.RMSE 0.17952 0.17903
2-Step-Ahead Forecasts.MAE 0.15206 0.14804
3-Step-Ahead Forecasts.ME 0.04335 0.02054
3-Step-Ahead Forecasts.MSE 0.03203 0.03180
3-Step-Ahead Forecasts.RMSE 0.17898 0.17832
3-Step-Ahead Forecasts.MAE 0.14993 0.14731
4-Step-Ahead Forecasts.ME 0.04811 0.02397
4-Step-Ahead Forecasts.MSE 0.03292 0.03248
4-Step-Ahead Forecasts.RMSE 0.18143 0.18022
4-Step-Ahead Forecasts.MAE 0.15206 0.14855

D/P E/P
5-Step-Ahead Forecasts.ME 0.04707 0.02143
5-Step-Ahead Forecasts.MSE 0.03339 0.03255
5-Step-Ahead Forecasts.RMSE 0.18272 0.18043
5-Step-Ahead Forecasts.MAE 0.15281 0.14825

The forecast evaluation statistics are generally smaller for the model using
the earning/price ratio. The Diebold-Mariano statistics based on squared
error and absolute error loss functions may be computed using

> for (i in 1:5) {
+ d.mse[,i] = ehat.dp.list[[i]]^2 - ehat.ep.list[[i]]^2
+ DM.mse[i] = mean(d.mse[,i])/sqrt(asymp.var(d.mse[,i],
+ bandwidth=i-1,window="rectangular"))
+ d.mae[,i] = abs(ehat.dp.list[[i]]) - abs(ehat.ep.list[[i]])
+ DM.mae[i] = mean(d.mae[,i])/sqrt(asymp.var(d.mae[,i],
+ bandwidth=i-1,window="rectangular"))
+ }
> names(DM.mse) = names(ehat.dp.list)
> names(DM.mae) = names(ehat.dp.list)
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> cbind(DM.mse,DM.mae)
DM.mse DM.mae

1-Step-Ahead Forecasts 0.07983 0.07987
2-Step-Ahead Forecasts 0.09038 0.08509
3-Step-Ahead Forecasts 0.07063 0.05150
4-Step-Ahead Forecasts 0.08035 0.06331
5-Step-Ahead Forecasts 0.07564 0.06306

Since the DM statistics are asymptotically standard normal, one cannot
reject the null hypothesis of equal predictive accuracy at any reasonable
significance level based on the 1− step through 5− step forecast errors for
the two models.

9.5 Rolling Analysis of General Models Using the
S+FinMetrics Function roll

The S-PLUS aggregateSeries function is appropriate for rolling analy-
sis of simple functions and the S+FinMetrics function rollOLS handles
rolling regression. The S+FinMetrics function roll is designed to perform
rolling analysis of general S-PLUS modeling functions that take a formula
argument describing the relationship between a response and explanatory
variables and where the data, usually a data frame or “timeSeries” ob-
ject with a data frame in the data slot, is supplied explicitly in a data
argument. The arguments expected by roll are

> args(roll)
function(FUN, data, width, incr = 1, start = NULL, end =
NULL, na.rm = F, save.list = NULL, arg.data =
"data", trace = T, ...)

where FUN is the S-PLUS modeling function to be applied to each rolling
window, data is the data argument to FUN which must be either a data
frame or a “timeSeries” with a data frame in the data slot,width specifies
the width of the rolling window and incr determines the increment size by
which the windows are rolled through the sample. The argument save.list
specifies the components of the object returned by FUN to save in the object
returned by roll. If FUN requires more arguments in addition to data, for
example a formula relating a response to a set of explanatory variables,
then these arguments should be supplied in place of .... The use of roll
is illustrated with the following examples.

Example 55 Rolling regression

In this example, the 24-month rolling regression estimation of the CAPM
for Microsoft using the “timeSeries” excessReturns.ts is repeated us-
ing the S+FinMetrics function roll with FUN=OLS. OLS requires a formula
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argument for model specification and a data frame or “timeSeries” in data
argument. The 24 month rolling CAPM estimates using roll are

> roll.fit = roll(FUN=OLS,data=excessReturns.ts,
+ width=24,incr=1,formula=MSFT~SP500)
Rolling Window #1: Total Rows = 24
Rolling Window #2: Total Rows = 25
...
Rolling Window #108: Total Rows = 131
> class(roll.fit)
[1] "roll"

The return roll.fit is an object of class “roll” for which there are no
specific method functions. Since the data argument excessReturns.ts is
a “timeSeries”, the default components of roll.fit are the positions of
the rolling windows and “timeSeries” objects containing the components
that are produced by OLS for each of the windows:

> names(roll.fit)
[1] "R" "coef" "df.resid" "fitted"
[5] "residuals" "assign" "contrasts" "ar.order"
[9] "terms" "call" "positions"
> class(roll.fit$coef)
[1] "timeSeries"
> nrow(roll.fit$coef)
[1] 108
> class(roll.fit$residuals)
[1] "timeSeries"
> nrow(roll.fit$residuals)
[1] 108

The first column of the “timeSeries” roll.fit$coef contains the rolling
intercept estimates, and the second column contains the rolling slope esti-
mates.

> roll.fit$coef[1:2,]
Positions 1 2
Jan 1992 0.05075 1.354
Feb 1992 0.04897 1.353

The rows of the “timeSeries” roll.fit$residuals contain the residuals
for the OLS fit on each 24-month window

> roll.fit$residuals[1:2,]
Positions 1 2 3 4 5
Jan 1992 0.007267 0.04021 0.03550 0.085707 0.004596
Feb 1992 0.042014 0.03726 0.08757 0.006368 -0.164498
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...

24
0.05834
-0.03393

If only some of the components of OLS are needed for each rolling window,
these components may be specified in the optional argument save.list.
For example, to retain only the components coef and residuals over the
rolling windows specify save.list=c("coef","residuals") in the call to
roll:

> roll.fit = roll(FUN=OLS,data=excessReturns.ts,
+ width=24,incr=1,formula=MSFT~SP500,
+ save.list=c("coef","residuals"),trace=F)
> names(roll.fit)
[1] "coef" "residuals" "call" "positions"
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10
Systems of Regression Equations

10.1 Introduction

The previous chapters dealt with models for univariate financial time se-
ries. In many applications, it is desirable to model the joint behavior of
multiple time series because of possible efficiency gains to the joint estima-
tion of a system of time series models. For example, there may be complex
interactions between the variables and/or the error structure across mod-
els. Univariate models cannot capture these interactions whereas multivari-
ate models can. Furthermore, many equilibrium models for asset returns,
like the capital asset pricing model (CAPM) or the arbitrage price model
(APT), imply parameter restrictions that are common to the model rep-
resentation of all assets. Hence, the testing of equilibrium asset pricing
models requires the testing of cross equation parameter constraints, and
the proper estimation of these models would impose these cross equation
restrictions.
This chapter introduces methods for modeling and analyzing systems

of linear and nonlinear regression equations. Section two describes Zell-
ner’s seemingly unrelated regression (SUR) system of regression equations
that may be linked through common regressors, correlated error terms,
or cross equation parameter restrictions. Section three describes the spec-
ification and estimation of linear SUR models and gives examples using
the S+FinMetrics function SUR. Section four describes the specification
and estimation of nonlinear SUR models and gives examples using the
S+FinMetrics function NLSUR.



358 10. Systems of Regression Equations

The SUR model was developed by Theil (1961) and Zellner (1962) and
is described in most econometric textbooks. The nonlinear SUR model was
developed by Gallant (1974). Greene (2000) gives a general overview of
linear and nonlinear SUR models and Srivastava and Giles (1987) provides
a thorough treatment. Burmeister and McElroy (1986) and Campbell, Lo
and MacKinlay (1997) describe the estimation and testing of systems of
asset pricing models using SUR and nonlinear SUR models.

10.2 Systems of Regression Equations

Many applications in economics and finance involve a system of linear re-
gression equations of the form

y1 = X1β1+ε1 (10.1)

y2 = X2β2+ε2
...

yM = XMβM+εM

where yi is a (T ×1) vector of dependent variables, Xi is a (T ×ki) matrix
of explanatory variables and εi is a (T × 1) vector of errors for equations
i = 1, ...,M. It is assumed that each Xi is exogenous, i.e., uncorrelated
with εi. Depending on the application, each Xi may be distinct or there
may be common regressors across equations. The equations in (10.1) are
potentially linked either through the covariance structure of the errors or
through cross equation restrictions on the elements of βi (i = 1, ...,M), and
estimation of the entire system generally produces more efficient estimates
than the estimation of each equation individually.
Economic theory often implies a system of nonlinear regression equations

of the form

y1 = f1(β1,X1) + ε1

y2 = f2(β2,X2) + ε2
...

yM = fM (βM ,XM ) + εM

where fi(βi,Xi) is a (T×1) vector containing the nonlinear function values
fi(βi,xit) for equations i = 1, . . . ,M. The functions fi may be the same
or different across equations, the error structures may be linked, and there
may be cross equation restrictions on the elements of βi (i = 1, ...,M).
Some common applications in finance are illustrated below.

Example 56 Exchange rate regressions.
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Consider the system of M exchange rate regressions

∆si,t+k = αi + γi(f
k
i,t − si,t) + εi,t+k, i = 1, . . . ,M (10.2)

where si,t+k represents the natural log of the spot exchange exchange rate
for currency i (relative, say, to the U.S. dollar) at time t + k and fki,t de-
notes the natural log of the forward exchange rate at time t for a forward
contract in currency i that will deliver at time t + k. In terms of the pre-
vious notation for the system of linear regression equations, yit = si,t+k,
xit = (1, f

k
i,t − si,t)

0 and βi = (αi, γi)0, the only common regressor in the
system is a vector of ones. The error terms, εi,t+k, are likely to be corre-
lated contemporaneously across equations due to common random shocks
affecting all exchange rates. That is, E[εiε0j ] = σijIT where E[εitεjs] = σij
for t = s and 0 otherwise. In the present context, this across equation cor-
relation can be used to increase the efficiency of the parameter estimates
for each equation.

Example 57 The Capital Asset Pricing Model with a risk-free asset.

Consider the excess return single index model regression

Rit − rft = αi + βi(RMt − rft) + εit, i = 1, . . . ,M

where Rit denotes the return on asset i at time t, rft denotes the return
on a risk-free asset, RMt denotes the return on an proxy for the “market
portfolio” and εit denotes the residual return not explained by the “market”
for asset i. In terms of the previous notation for the system of regression
equations, yit = Rit − rft,xit = (1, RMt − rft)

0, and βi = (αi, βi)
0 so

that all regression equations share the same regressors. It is likely that the
residual returns, εit, are contemporaneously correlated across assets due
to common shocks not related to the “market”. That is, E[εiε0j ] = σijIT
where E[εitεjs] = σij for t = s and 0 otherwise. However, unless there
are across equation restrictions on βi, the fact that xit is the same for
each equation means that there will be no efficiency gain in estimating
the parameters from exploiting the across equation error correlation. The
capital asset pricing model (CAPM) imposes the restriction αi = 0 for
all assets i so that E[Rit] − rft = βi(E[RMt − rft). Testing the CAPM
therefore involves a joint test of many cross equation zero restrictions.

Example 58 The Capital Asset Pricing Model without a risk-free asset.

The CAPM formulation above assumes the existence of a risk-free asset.
If there is no risk-free asset, then Black (1972) showed that the CAPM
takes the form

E[Rrealit ]− γ = βi(E[R
real
Mt ]− γ)

where Rrealit denotes the real return on asset i, RrealMt denotes the real return
on the market, and γ denotes the unobservable return on a zero-beta port-
folio. The Black form of the CAPM may be estimated from the system of
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nonlinear regression equations

Rrealit = (1− βi)γ + βiR
real
Mt + εit, i = 1, . . . ,M (10.3)

In terms of the above notation for systems of nonlinear regression equations,
Black’s restricted CAPM has yit = Rrealit , xit = (1, R

real
Mt )

0,βi = (γ, βi)0 and
fi(βi,xit) = (1 − βi)γ + βiR

real
Mt . Notice that the parameter γ is common

across all equations. The Black form of the CAPM may be tested by esti-
mating the unrestricted system

Rrealit = αi + βiR
real
Mt + εit, i = 1, . . . ,M (10.4)

and testing the M nonlinear cross equation restrictions αi = (1− βi)γ.

10.3 Linear Seemingly Unrelated Regressions

The seemingly unrelated regression (SUR) model due to Theil (1961) and
Zellner (1962) is the unrestricted system of M linear regression equations

yi = Xiβi+εi, i = 1, . . . ,M (10.5)

where yi is (T ×1), Xi is (T ×ki), βi is (k×1) and εi is (T ×1). The error
terms are assumed to be contemporaneously correlated across equations
but temporally uncorrelated: E[εitεjs] = σij for t = s, 0 otherwise.
The M equations may be stacked to form the giant regression model y1

...
yM

 =

 X1 0 0

0
. . . 0

0 0 XM


 β1

...
βM

+
 ε1

...
εM


or

y= Xβ+ε (10.6)

where y is (MT × 1), X is (MT ×K), β is (K × 1) and ε is (MT × 1).
Here K =

PM
i=1 ki is the total number of regressors across all equations.

The error term in the giant regression has non-diagonal covariance matrix

V = E[εε0] = Σ⊗ IT (10.7)

where the (M ×M) matrix Σ has elements σij .

10.3.1 Estimation

SinceV is not diagonal, least squares estimation of β in the giant regression
(10.6) is not efficient. The generalized least squares (GLS) estimator of β,

β̂GLS = (X0V−1X)−1X0V−1y (10.8)

= (X0(Σ−1 ⊗ IT )X)−1X0(Σ−1 ⊗ IT )y
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is efficient.
It can be shown, e.g. Greene (2000) chapter 15, that if Xi = X for

all equations i = 1, ...,M (i.e., all equations have the same regressors),
or if the error covariance matrix V is diagonal and there are no cross
equation restrictions on the values of βi then least squares estimation of
(10.5) equation by equation produces the GLS estimator (10.8).

Feasible GLS estimation

The GLS estimator of β is usually not feasible since the covariance matrix
Σ, and hence V, is generally not known. However, in the SUR model the
elements of Σ can be consistently estimated by equation least squares of
(10.5),

σ̂ij = T−1ε̂0iε̂j
= T−1(yi−Xiβ̂i)

0(yj−Xjβ̂j),

producing Σ̂. The feasible generalized least squares estimator (FGLS) is

β̂FGLS = (X
0(Σ̂
−1 ⊗ IT )X)−1X0(Σ̂

−1 ⊗ IT )y (10.9)

and its asymptotic variance is consistently estimated by

[avar(β̂FGLS) = (X
0(Σ̂
−1 ⊗ IT )X)−1

The FGLS estimator (10.9) is asymptotically equivalent to the GLS esti-
mator (10.8).
Tests of linear hypotheses of the form Rβ = r, which may incorporate

cross equation linear restrictions, may be computed in the usual way with
the Wald statistic

Wald = (Rβ̂FGLS−r)0
h
R[avar(β̂FGLS)R0

i−1
(Rβ̂FGLS−r) (10.10)

which is asymptotically distributed chi-square with degrees of freedom
equal to the number of restrictions being tested under the null.

Iterated feasible GLS estimation

The estimate of Σ in FGLS estimation uses the inefficient least squares
estimate of βi. The iterated FGLS estimator repeats the construction of
the FGLS estimator using an updated estimator of Σ based on the FGLS
estimator (10.9). That is, at each iteration updated estimates of σij are
computed as

σ̂ij,FGLS = T−1(yi−Xiβ̂i,FGLS)
0(yj−Xjβ̂j,FGLS)

and the resulting updated estimator of Σ is used to recompute the FGLS
estimator. This process is iterated until β̂FGLS no longer changes. If the
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error terms for each equation are Gaussian, it can be shown that the iter-
ated FGLS estimator of β is the maximum likelihood estimator (mle). It
should be noted, however, that iteration does not improve the asymptotic
properties of the FGLS estimator.

Maximum likelihood estimation

Although the mle of β may be obtained by iterating the FGLS estimator,
it is often computationally more efficient to compute the mle directly. To
conveniently express the likelihood function for the SUR model it is nec-
essary to re-express the SUR model by grouping the data horizontally by
observations instead of vertically by equations. The SUR model expressed
this way is given by

y0t= x
0
tΠ+ ε0t, t = 1, . . . , T

where y0t = (y1t, y2t, . . . , yMt) is (1 ×M) vector of dependent variables,
x0t = (x1t, x2t, . . . , xKt) is the (1 ×K) vector containing all of the unique
explanatory variables,Π = [π1,π2, . . . ,πM ] is a (K×M)matrix where the
(K × 1) vector πi contains the coefficients on x0t for the ith equation, and
ε0t = (ε1t, ε2t, . . . , εMt) is a (1 ×M) vector of error terms with covariance
matrix Σ. Note that since the ith equation may not have all of the variables
as regressors so that some of the values in πi may be equal to zero.
The log-likelihood function for a sample of size T is

lnL(β,Σ) = −MT

2
ln(2π)− T

2
ln |Σ|− 1

2

TX
t=1

ε0tΣ
−1εt

where β represents the appropriate non-zero elements ofΠ. The log-likelihood
function may be concentrated with respect to Σ giving

lnL(β) = −MT

2
(ln(2π) + 1)− T

2
ln (|Σ(β)|) (10.11)

where

Σ(β) = T−1
TX
t=1

εtε
0
t (10.12)

is the mle for Σ given β. Hence, the mle for β solves

min
β

1

2
ln (|Σ(β)|) .

and the resulting estimator β̂MLE is equivalent to the iterated feasible GLS
estimator.
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Likelihood ratio tests

The form of the concentrated log-likelihood function (10.11), implies that
likelihood ratio (LR) tests for hypotheses about elements of β have the
simple form

LR = T
³
ln
³
|Σ(β̃mle)|

´
− ln

³
|Σ(β̂mle)|

´´
(10.13)

where β̃mle denotes the mle imposing the restrictions under the null being
tested and β̂mle denotes the unrestricted mle. The LR statistic (10.13) is
asymptotically distributed chi-square with degrees of freedom equal to the
number of restrictions being tested under the null.

10.3.2 Analysis of SUR Models with the S+FinMetrics
Function SUR

The S+FinMetrics function SUR may be used for the estimation of linear
SUR models without cross equation restrictions. The arguments for SUR
are

> args(SUR)
function(formulas, data, subset, na.rm = F, start = NULL, end
= NULL, method = "fit", contrasts = NULL, df = 1,
tol = 1e-006, iterate = F, trace = T, ...)

Generally, the two specified arguments are formulas, which is a list con-
taining the formulas for each equation in the SUR model, and data, which
must be either a data frame, or a “timeSeries” object with a data frame
in the data slot. Formulas are specified in the usual way with the response
variables on the left hand side of the ~character and explanatory variables
on the right hand side. If the variables in formulas can be directly ac-
cessed, e.g. through an attached data frame, then the data argument may
be skipped. The default fitting method is one-step (not iterated) feasible
GLS as in (10.9). To specify iterated feasible GLS set the optional argu-
ment iterate=T. In this case, the trace option controls printing of the
iteration count and the tol option specifies the numerical tolerance of the
convergence criterion.
SUR produces an object of class “SUR” for which there are print, summary

and plotmethods as well as extractor functions residuals, fitted.values
(or fitted), coef, and vcov1. The use of SUR is illustrated using the fol-
lowing examples.

Example 59 Testing efficiency in foreign exchange markets

1Currently, AR terms are not supported in formulas and there is no predict method.
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Consider estimating the system of exchange rate regressions (10.2) using
monthly data on six currencies relative to the US dollar over the period
August 1978 through June 1996. The data are in the “timeSeries” ob-
ject surex1.ts, which is constructed from the data in the “timeSeries”
lexrates.dat. The variables in surex1.ts are

> colIds(surex1.ts)
[1] "USCN.FP.lag1" "USCNS.diff" "USDM.FP.lag1" "USDMS.diff"
[5] "USFR.FP.lag1" "USFRS.diff" "USIL.FP.lag1" "USILS.diff"
[9] "USJY.FP.lag1" "USJYS.diff" "USUK.FP.lag1" "USUKS.diff"

The variables with extensions .FP.lag1 are one month forward premia,
f1i,t − si,t, and variables with extensions .diff are future returns on spot
currency, ∆si,t+1. The list of formulas for the regressions in the system
(10.2) is created using

> formula.list = list(USCNS.diff~USCN.FP.lag1,
+ USDMS.diff~USDM.FP.lag1,
+ USFRS.diff~USFR.FP.lag1,
+ USILS.diff~USIL.FP.lag1,
+ USJYS.diff~USJY.FP.lag1,
+ USUKS.diff~USUK.FP.lag1)

The command to compute the feasible GLS estimator of the SUR system
over the period August 1978 through June 1996 is

> sur.fit = SUR(formula.list,data=surex1.ts,
+ start="Aug 1978",in.format="%m %Y")
> class(sur.fit)
[1] "SUR"

As usual, the print method is invoked by typing the name of the object
and gives basic output:

> sur.fit

Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~USCN.FP.lag1

Coefficients:
(Intercept) USCN.FP.lag1
-0.0031 -1.6626

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0135
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Eq. 2: USDMS.diff ~USDM.FP.lag1

Coefficients:
(Intercept) USDM.FP.lag1
0.0006 0.5096

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0358

...

Eq. 6: USUKS.diff ~USUK.FP.lag1

Coefficients:
(Intercept) USUK.FP.lag1
-0.0035 -1.2963

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0344

Log determinant of residual covariance: -47.935

In the above output, the log determinant of residual covariance is the quan-

tity ln
³
|Σ(β̂FGLS)|

´
. The forward rate is an unbiased predictor of the

future spot rate if the coefficient on the forward premium is equal to 1.
The results above suggest that unbiasedness holds only for the US/France
exchange rate.
The summary method provides more detailed information about the fit

including estimated standard errors of coefficients and fit measures for each
equation

> summary(sur.fit)
Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~USCN.FP.lag1

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0031 0.0012 -2.5943 0.0101
USCN.FP.lag1 -1.6626 0.5883 -2.8263 0.0052

Regression Diagnostics:
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R-Squared 0.0300
Adjusted R-Squared 0.0254
Durbin-Watson Stat 2.2161

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0135

. . .

Eq. 6: USUKS.diff ~USUK.FP.lag1

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0035 0.0027 -1.3256 0.1864
USUK.FP.lag1 -1.2963 0.6317 -2.0519 0.0414

Regression Diagnostics:

R-Squared 0.0253
Adjusted R-Squared 0.0207
Durbin-Watson Stat 1.9062

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0344

Log determinant of residual covariance: -47.935

Graphical summaries of each equation are provided by the plot method
which produces a menu of plot choices:

> plot(sur.fit)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Response and Fitted Values
3: plot: Residuals
4: plot: Normal QQplot of Residuals
5: plot: ACF of Residuals
6: plot: PACF of Residuals
7: plot: ACF of Squared Residuals
8: plot: PACF of Squared Residuals
Selection:
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FIGURE 10.1. Residual ACF plots from SUR fit to exchange rate data

Plot choices 2-8 create multi-panel plots, one panel for each equation, using
Trellis graphics. For example, figure 10.1 shows the ACF of Residuals plot
for the exchange rate data.
The above results are based on the non-iterated feasible GLS estimator

(10.9). The iterated estimator is computed using

> sur.fit2 = SUR(formula.list,data=surex1.ts,
+ start="Aug 1978",in.format="%m %Y",iterate=T)
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8

which converges after eight iterations. The non-iterated and iterated esti-
mators may be easily compared using the coef extractor function:



368 10. Systems of Regression Equations

> cbind(coef(sur.fit),coef(sur.fit2))
[,1] [,2]

(Intercept) -0.00312063 -0.00312126
USCN.FP.lag1 -1.66255897 -1.66303965
(Intercept) 0.00058398 0.00035783
USDM.FP.lag1 0.50956590 0.65014949
(Intercept) 0.00133327 0.00135930
USFR.FP.lag1 1.01512081 1.02834484
(Intercept) -0.00058789 -0.00083921
USIL.FP.lag1 0.46173993 0.40852433
(Intercept) 0.00778918 0.00744485
USJY.FP.lag1 -1.76416190 -1.63952144
(Intercept) -0.00354947 -0.00334026
USUK.FP.lag1 -1.29625869 -1.19508947

There is not much difference between the two estimators.
The SUR estimator is more efficient than least squares equation-by-

equation in this example provided the error terms across equations are
correlated. The residual correlation matrix of the SUR fit (10.12) may be
computed using

> sd.vals = sqrt(diag(sur.fit$Sigma))
> cor.mat = sur.fit$Sigma/outer(sd.vals,sd.vals)
> cor.mat

USCNS.diff USDMS.diff USFRS.diff USILS.diff
USCNS.diff 1.00000 0.20187 0.19421 0.27727
USDMS.diff 0.20187 1.00000 0.97209 0.85884
USFRS.diff 0.19421 0.97209 1.00000 0.85090
USILS.diff 0.27727 0.85884 0.85090 1.00000
USJYS.diff 0.12692 0.61779 0.61443 0.50835
USUKS.diff 0.31868 0.71424 0.70830 0.72274

USJYS.diff USUKS.diff
USCNS.diff 0.12692 0.31868
USDMS.diff 0.61779 0.71424
USFRS.diff 0.61443 0.70830
USILS.diff 0.50835 0.72274
USJYS.diff 1.00000 0.53242
USUKS.diff 0.53242 1.00000

Many of the estimated correlations are large so there appears to be an
efficiency benefit to using SUR.
The forward rate unbiasedness implies that γi = 1 in (10.2) for i =

1, . . . , 6. A formal test of the unbiasedness hypothesis for all six currencies
simultaneously may be done using the Wald statistic (10.10) or the LR
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statistic (10.13). For the LR statistic, the iterated FGLS estimate should
be used. The S-PLUS commands to compute the Wald statistic are

> bigR = matrix(0,6,12)
> bigR[1,2] = bigR[2,4] = bigR[3,6] = bigR[4,8] = bigR[5,10]
+ = bigR[6,12] = 1
> rr = rep(1,6)
> bHat = as.vector(coef(sur.fit))
> avar = bigR%*%vcov(sur.fit)%*%t(bigR)
> Wald = t((bigR%*%bHat-rr))%*%solve(avar)%*%(bigR%*%bHat-rr)
> Wald

[,1]
[1,] 47.206
> 1-pchisq(Wald,6)
[1] 1.7025e-008

The data clearly reject the unbiased hypothesis. To compute the LR statis-
tic (10.13), the restricted model with γi = 1 for i = 1, . . . , 6 must first be
computed. The restricted model takes the form

∆si,t+k − (fki,t − si,t) = αi + εi,t+k

The S-PLUS commands to compute the restricted model are

> formula.list = list((USCNS.diff-USCN.FP.lag1)~1,
+ (USDMS.diff-USDM.FP.lag1)~1,
+ (USFRS.diff-USFR.FP.lag1)~1,
+ (USILS.diff-USIL.FP.lag1)~1,
+ (USJYS.diff-USJY.FP.lag1)~1,
+ (USUKS.diff-USUK.FP.lag1)~1)
> sur.fit2r = SUR(formula.list,data=surex1.ts,
+ start="Aug 1978",in.format="%m %Y",iterate=T)
Iteration 1
Iteration 2
> sur.fit2r

Seemingly Unrelated Regression:

Eq. 1: (USCNS.diff - USCN.FP.lag1) ~1

Coefficients:
(Intercept)
0.0004

Degrees of freedom: 215 total; 214 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.014
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...

Eq. 6: (USUKS.diff - USUK.FP.lag1) ~1

Coefficients:
(Intercept)
0.0012

Degrees of freedom: 215 total; 214 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0353

Log determinant of residual covariance: -47.61

The LR statistic (10.13) may then be computed using

> nobs = nrow(residuals(sur.fit2r))
> LR = nobs*(determinant(sur.fit2r$Sigma,log=T)$modulus-
+ determinant(sur.fit2$Sigma,log=T)$modulus)
> as.numeric(LR)
[1] 70.09
> 1-pchisq(LR,6)
[1] 3.912e-013

The LR statistic also confirms the rejection of the unbiasedness hypothesis.

10.4 Nonlinear Seemingly Unrelated Regression
Models

The nonlinear SURmodel is the system ofM nonlinear regression equations

yi= f i(βi,Xi) + εi, i = 1, . . . ,M

where yi is a (T × 1) vector of response variables, fi(βi,Xi) is a (T × 1)
vector containing the nonlinear function values fi(βi,xit), Xi is a (T × ki)
matrix of explanatory variables, and βi is a (ki × 1) vector of parameters.
As with the linear SUR model, some of the explanatory variables in each
Xi may be common across equations and some of the parameters in each
βi may also be common across equations. Without loss of generality, let X
denote the (T ×K) matrix of unique variables and let β denote the (Q×1)
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vector of unique parameters,2 and rewrite the nonlinear SUR system as

yi= f i(β,X) + εi, i = 1, . . . ,M

The assumptions about the (MT × 1) system error vector ε= (ε01 . . . , ε0M )
0

are the same as in the linear SUR model. That is, the covariance matrix of
ε is given by (10.7).
The estimation of nonlinear SUR models is detailed in Greene (2000)

chapter 15 and only a brief description is given here. The nonlinear FGLS
estimator of β solves

min
β

MX
i=1

MX
j=1

σ̂ij (yi − fi(β,X))0 (yj − fj(β,X)) (10.14)

where σij denotes the ijth element of Σ−1. The nonlinear FGLS estimator
utilizes initial estimates of σij based on minimizing (10.14) with σ̂ij = 1.
The iterated FGLS estimator minimizes (10.14) utilizing updated estimates
of σij . Assuming standard regularity conditions on the functions fi the
FGLS and iterated FGLS estimators are consistent and asymptotically nor-
mally distributed with asymptotic covariance matrix given by the inverse
of the empirical Hessian matrix of (10.14).

10.4.1 Analysis of Nonlinear SUR Models with the
S+FinMetrics Function NLSUR

The S+FinMetrics function NLSUR may be used to estimate general nonlin-
ear SUR models as well as linear SUR models with parameter restrictions.
The arguments for NLSUR are

> args(NLSUR)
function(formulas, data, na.rm = F, coef = NULL, start = NULL,
end = NULL, control = NULL, ...)

The usage of NLSUR is similar to that of SUR. The argument formulas
contains a list of nonlinear model formulas for each equation in the SUR
model. Nonlinear formulas are specified with the response on the left hand
side of the ~character and the nonlinear regression function specified on the
right hand side. The K parameters of the nonlinear regression functions in
the SUR model are specified explicitly by user specified coefficient values.
For example, consider a “timeSeries” specified in the data argument with
variables y1, y2, y3, x1 and suppose the nonlinear SUR model has three

2 In nonlinear models the number of parameters does not have to be equal to the
number of variables.
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equations

y1t = β10 + β11x
β
1t + ε1t

y2t = β20 + β21x
β
1t + ε2t

y3t = β30 + β31x
β
1t + ε3t

The vector of K = 7 parameters of the SUR system are

β = (β10, β11, β20, β21, β30, β31, β)
0

Notice that the parameter β is common across the three equations. The
formulas for the three equations above could be specified in a list as

>formula.list = list(y1~b10+b11*x1^b,
+ y2~b20+b21*x1^b,
+ y3~b30+b31*x1^b)

Notice that the user-specified coefficients b10, b11, b20, b21, b30, b31,
b match the values in the parameter vector β. The common parameter
β across equations is given by the user specified coefficient b. Starting
values for the coefficients may be specified in the named object coef. The
parameter coefficients specified in the formulas argument must match the
named elements in coef. For example, the starting values β10 = β20 =
β30 = 0, β11 = β21 = β31 = 1 and β = 0.5 may be specified using

> start.vals = c(0,1,0,1,0,1,0.5)
> names(start.vals) = c("b10","b11","b20","b21","b30",
+ "b31","b")

Finally, the argument control is a list variable containing control parame-
ters for the nonlinear optimization. These control parameters are the same
as those used for the S-PLUS function nlregb. See the online help for
nlregb.control for details.
NLSUR produces an object of class “NLSUR”, that inherits from the class

“SUR”, for which there are print, summary and plot methods as well as
extractor functions residuals, fitted, coef and vcov. The use of NLSUR
is illustrated with the following examples.

Example 60 Black CAPM model

Consider estimating and testing the Black form of the CAPM (10.3) using
monthly data on 16 assets over the five year period January, 1983 through
December, 1987. The real return data are in the “timeSeries” black.ts
which is constructed from the nominal return data in the “timeSeries”
berndt.dat and the consumer price data in the “timeSeries” CPI.dat.
The variables in black.ts are

> colIds(black.ts)
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[1] "BOISE" "CITCRP" "CONED" "CONTIL" "DATGEN" "DEC"
[7] "DELTA" "GENMIL" "GERBER" "IBM" "MARKET" "MOBIL"
[13] "PANAM" "PSNH" "TANDY" "TEXACO" "WEYER"

The variable MARKET is a value weighted index of all stocks on the NYSE
and AMEX. The system (10.3) imposes M = 16 nonlinear cross equation
restrictions on the intercept parameters: αi = (1 − βi)γ. As a result, the
parameter vector β has K = 17 elements: β = (γ, β1, . . . , β16)

0. A list
of formulas for the 16 nonlinear regressions imposing the cross equation
restrictions αi = (1− βi)γ is

formula.list = list(BOISE~(1-b1)*g + b1*MARKET,
CITCRP~(1-b2)*g + b2*MARKET,
CONED~(1-b3)*g + b3*MARKET,
CONTIL~(1-b4)*g + b4*MARKET,
DATGEN~(1-b5)*g + b5*MARKET,
DEC~(1-b6)*g + b6*MARKET,
DELTA~(1-b7)*g + b7*MARKET,
GENMIL~(1-b8)*g + b8*MARKET,
GERBER~(1-b9)*g + b9*MARKET,
IBM~(1-b10)*g + b10*MARKET,
MOBIL~(1-b11)*g + b11*MARKET,
PANAM~(1-b12)*g + b12*MARKET,
PSNH~(1-b13)*g + b13*MARKET,
TANDY~(1-b14)*g + b14*MARKET,
TEXACO~(1-b15)*g + b15*MARKET,
WEYER~(1-b16)*g + b16*MARKET)

The user specified coefficients g, b1,. . . ,b16 represent the elements of the
parameter vector β, and the cross equation restrictions are imposed by
expressing each intercept coefficient as the function (1-bi)*g for i =
1, . . . , 16. The starting values γ = 0 and βi = 1 (i = 1, . . . 16) for the
estimation may be specified using

start.vals = c(0,rep(1,16))
names(start.vals) = c("g",paste("b",1:16,sep=""))

The FGLS nonlinear SUR estimator is computed using NLSUR

> nlsur.fit = NLSUR(formula.list,data=black.ts,
+ coef=start.vals,start="Jan 1983",in.format="%m %Y")
> class(nlsur.fit)
[1] "NLSUR"

The components of a “NLSUR” object are

> names(nlsur.fit)
[1] "coef" "objective" "message" "grad.norm"
[5] "iterations" "r.evals" "j.evals" "scale"
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[9] "cov" "call" "parm.list" "X.k"
[13] "residuals" "fitted" "Sigma"

The message component indicates that the nonlinear optimation converged:

> nlsur.fit$message
[1] "RELATIVE FUNCTION CONVERGENCE"

Since “NLSUR” objects inherit from “SUR” objects the print, summary and
plot methods for “NLSUR” objects are identical to those for “SUR” objects.
The print method gives basic fit information:

> nlsur.fit

Nonlinear Seemingly Unrelated Regression:

Eq. 1: BOISE ~(1 - b1) * g + b1 * MARKET

Coefficients:
b1 g

1.0120 0.0085

Degrees of freedom: 60 total; 58 residual
Time period: from Jan 1983 to Dec 1987
Residual scale estimate: 0.065

Eq. 2: CITCRP ~(1 - b2) * g + b2 * MARKET

Coefficients:
b2 g

1.0699 0.0085

Degrees of freedom: 60 total; 58 residual
Time period: from Jan 1983 to Dec 1987
Residual scale estimate: 0.0581

...

Eq. 16: WEYER ~(1 - b16) * g + b16 * MARKET

Coefficients:
b16 g

1.0044 0.0085

Degrees of freedom: 60 total; 58 residual
Time period: from Jan 1983 to Dec 1987
Residual scale estimate: 0.0574
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Log determinant of residual covariance: -85.29

The estimated coefficients and their standard errors may be extracted using
coef and vcov:

> std.ers = sqrt(diag(vcov(nlsur.fit)))
> cbind(coef(nlsur.fit),std.ers)
numeric matrix: 17 rows, 2 columns.

std.ers
g 0.008477 0.004642
b1 1.012043 0.134400
b2 1.069874 0.119842
b3 0.028169 0.104461
b4 1.479293 0.361368
b5 1.133384 0.218596
b6 1.099063 0.195965
b7 0.704410 0.182686
b8 0.547502 0.127458
b9 0.960858 0.157903
b10 0.649761 0.096975
b11 0.741609 0.121843
b12 0.715984 0.265048
b13 0.205356 0.348101
b14 1.054715 0.185498
b15 0.574735 0.145838
b16 1.004 0.1186

More detailed information about the fit may be viewed using summary,
and a graphical analysis of the fit may be created using plot. For example,
figure 10.2 shows the residuals from the 16 nonlinear equations.
The nonlinear restrictions implied by the Black form of the CAPM may

be tested using a LR statistic. The unrestricted model (10.4) is specified
using the formula list

formula.list = list(BOISE~a1+b1*MARKET,
CITCRP~a2+b2*MARKET,
CONED~a3+b3*MARKET,
CONTIL~a4+b4*MARKET,
DATGEN~a5+b5*MARKET,
DEC~a6+b6*MARKET,
DELTA~a7+b7*MARKET,
GENMIL~a8+b8*MARKET,
GERBER~a9+b9*MARKET,
IBM~a10+b10*MARKET,
MOBIL~a11+b11*MARKET,
PANAM~a12+b12*MARKET,
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FIGURE 10.2. Estimated residuals from nonlinear SUR fit to Black’s form of the
CAPM.

PSNH~a13+b13*MARKET,
TANDY~a14+b14*MARKET,
TEXACO~a15+b15*MARKET,
WEYER~a16+b16*MARKET)

and is estimated using NLSUR with the starting values αi = 0 and βi = 1
(i = 1, . . . , 16)

> start.vals = c(rep(0,16),rep(1,16))
> names(start.vals) =
+ c(paste("a",1:16,sep=""),paste("b",1:16,sep=""))
> nlsur.fit2 = NLSUR(formula.list,data=black.ts,
+ coef=start.vals,start="Jan 1983",in.format="%m %Y")

The LR statistic for testing the M = 16 nonlinear cross equation restric-
tions αi = (1− βi)γ is computed using

> nobs = nrow(residuals(nlsur.fit2))
> LR = nobs*(determinant(nlsur.fit$Sigma,log=T)$modulus-
+ determinant(nlsur.fit2$Sigma,log=T)$modulus)
> as.numeric(LR)
[1] 15.86
> 1-pchisq(LR,16)
[1] 0.4625
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The p-value of the test is 0.4627, and so the Black CAPM restrictions are
not rejected at any reasonable significance level.

Example 61 Estimation of exchange rate system with cross equation pa-
rameter restrictions

Consider estimating the system of exchange rates (10.2), using the data
described in the previous section, imposing the cross equation restriction
that γ1 = · · · = γM = γ. The list of formulas for this restricted system
may be constructed as

> formula.list = list(USCNS.diff~a1+g*USCN.FP.lag1,
+ USDMS.diff~a2+g*USDM.FP.lag1,
+ USFRS.diff~a3+g*USFR.FP.lag1,
+ USILS.diff~a4+g*USIL.FP.lag1,
+ USJYS.diff~a5+g*USJY.FP.lag1,
+ USUKS.diff~a6+g*USUK.FP.lag1)

Notice that the common parameter β is captured by the user-specified
coefficient g. The starting values are chosen to be α1 = · · · = α6 = 0 and
γ = 1 and are specified using

> start.vals = c(rep(0,6),1)
> names(start.vals) = c(paste("a",1:6,sep=""),"g")

The FGLS estimator is computed using NLSUR

> nlsur.fit = NLSUR(formula.list,data=surex1.ts,
+ coef=start.vals, start="Aug 1978",in.format="%m %Y")
> nlsur.fit

Nonlinear Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~a1 + g * USCN.FP.lag1

Coefficients:
a1 g

-0.0005 0.3467

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.0138

...

Eq. 6: USUKS.diff ~a6 + g * USUK.FP.lag1

Coefficients:
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a6 g
-0.0002 0.3467

Degrees of freedom: 215 total; 213 residual
Time period: from Aug 1978 to Jun 1996
Residual scale estimate: 0.035

Log determinant of residual covariance: -47.679

The estimate of the common parameter γ is 0.3467, and its asymptotic
standard error is

> sqrt(diag(vcov(nlsur.fit)))[7]
[1] 0.16472

Hence, the data indicate that the common value of γ is less than 1.The LR
statistic, however, rejects the common parameter restriction

> nobs = nrow(residuals(nlsur.fit))
> LR = nobs*(determinant(nlsur.fit$Sigma,log=T)$modulus
+ -determinant(sur.fit2$Sigma,log=T)$modulus)
> as.numeric(LR)
[1] 55.65
> 1 - pchisq(LR,6)
[1] 3.433e-010
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11
Vector Autoregressive Models for
Multivariate Time Series

11.1 Introduction

The vector autoregression (VAR) model is one of the most successful, flexi-
ble, and easy to use models for the analysis of multivariate time series. It is
a natural extension of the univariate autoregressive model to dynamic mul-
tivariate time series. The VAR model has proven to be especially useful for
describing the dynamic behavior of economic and financial time series and
for forecasting. It often provides superior forecasts to those from univari-
ate time series models and elaborate theory-based simultaneous equations
models. Forecasts from VAR models are quite flexible because they can be
made conditional on the potential future paths of specified variables in the
model.
In addition to data description and forecasting, the VAR model is also

used for structural inference and policy analysis. In structural analysis, cer-
tain assumptions about the causal structure of the data under investiga-
tion are imposed, and the resulting causal impacts of unexpected shocks or
innovations to specified variables on the variables in the model are summa-
rized. These causal impacts are usually summarized with impulse response
functions and forecast error variance decompositions.
This chapter focuses on the analysis of covariance stationary multivari-

ate time series using VAR models. The following chapter describes the
analysis of nonstationary multivariate time series using VAR models that
incorporate cointegration relationships.
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This chapter is organized as follows. Section two describes specification,
estimation and inference in VAR models and introduces the S+FinMetrics
function VAR. Section three covers forecasting from VAR model. The discus-
sion covers traditional forecasting algorithms as well as simulation-based
forecasting algorithms that can impose certain types of conditioning infor-
mation. Section four summarizes the types of structural analysis typically
performed using VAR models. These analyses include Granger-causality
tests, the computation of impulse response functions, and forecast error
variance decompositions. Section five gives an extended example of VAR
modeling. The chapter concludes with a brief discussion of Bayesian VAR
models.
This chapter provides a relatively non-technical survey of VAR models.

VARmodels in economics were made popular by Sims (1980). The definitive
technical reference for VAR models is Lütkepohl (1991), and updated sur-
veys of VAR techniques are given in Watson (1994) and Lütkepohl (1999)
and Waggoner and Zha (1999). Applications of VAR models to financial
data are given in Hamilton (1994), Campbell, Lo and MacKinlay (1997),
Cuthbertson (1996), Mills (1999) and Tsay (2001).

11.2 The Stationary Vector Autoregression Model

LetYt = (y1t, y2t, . . . , ynt)
0 denote an (n×1) vector of time series variables.

The basic p-lag vector autoregressive (VAR(p)) model has the form

Yt= c+Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p + εt, t = 1, . . . , T (11.1)

where Πi are (n×n) coefficient matrices and εt is an (n× 1) unobservable
zero mean white noise vector process (serially uncorrelated or independent)
with time invariant covariance matrix Σ. For example, a bivariate VAR(2)
model equation by equation has the formµ

y1t
y2t

¶
=

µ
c1
c2

¶
+

µ
π111 π112
π121 π122

¶µ
y1t−1
y2t−1

¶
(11.2)

+

µ
π211 π212
π221 π222

¶µ
y1t−2
y2t−2

¶
+

µ
ε1t
ε2t

¶
(11.3)

or

y1t = c1 + π111y1t−1 + π112y2t−1 + π211y1t−2 + π212y2t−2 + ε1t

y2t = c2 + π121y1t−1 + π122y2t−1 + π221y1t−1 + π222y2t−1 + ε2t

where cov(ε1t, ε2s) = σ12 for t = s; 0 otherwise. Notice that each equation
has the same regressors - lagged values of y1t and y2t. Hence, the VAR(p)
model is just a seemingly unrelated regression (SUR) model with lagged
variables and deterministic terms as common regressors.
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In lag operator notation, the VAR(p) is written as

Π(L)Yt = c+ εt

where Π(L) = In −Π1L− ...−ΠpL
p.The VAR(p) is stable if the roots of

det (In −Π1z − · · ·−Πpz
p) = 0

lie outside the complex unit circle (have modulus greater than one), or,
equivalently, if the eigenvalues of the companion matrix

F =


Π1 Π2 · · · Πn

In 0 · · · 0

0
. . . 0

...
0 0 In 0


have modulus less than one. Assuming that the process has been initialized
in the infinite past, then a stable VAR(p) process is stationary and ergodic
with time invariant means, variances, and autocovariances.
If Yt in (11.1) is covariance stationary, then the unconditional mean is

given by
µ = (In −Π1 − · · ·−Πp)

−1c

The mean-adjusted form of the VAR(p) is then

Yt − µ = Π1(Yt−1 − µ)+Π2(Yt−2 − µ)+ · · ·+Πp(Yt−p − µ) + εt

The basic VAR(p) model may be too restrictive to represent sufficiently
the main characteristics of the data. In particular, other deterministic terms
such as a linear time trend or seasonal dummy variables may be required
to represent the data properly. Additionally, stochastic exogenous variables
may be required as well. The general form of the VAR(p) model with de-
terministic terms and exogenous variables is given by

Yt= Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p +ΦDt+GXt + εt (11.4)

where Dt represents an (l × 1) matrix of deterministic components, Xt

represents an (m × 1) matrix of exogenous variables, and Φ and G are
parameter matrices.

Example 62 Simulating a stationary VAR(1) model using S-PLUS

A stationary VAR model may be easily simulated in S-PLUS using the
S+FinMetrics function simulate.VAR. The commands to simulate T =
250 observations from a bivariate VAR(1) model

y1t = −0.7 + 0.7y1t−1 + 0.2y2t−1 + ε1t

y2t = 1.3 + 0.2y1t−1 + 0.7y2t−1 + ε2t
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with

Π1 =

µ
0.7 0.2
0.2 0.7

¶
, c =

µ
−0.7
1.3

¶
, µ =

µ
1
5

¶
, Σ =

µ
1 0.5
0.5 1

¶
and normally distributed errors are

> pi1 = matrix(c(0.7,0.2,0.2,0.7),2,2)
> mu.vec = c(1,5)
> c.vec = as.vector((diag(2)-pi1)%*%mu.vec)
> cov.mat = matrix(c(1,0.5,0.5,1),2,2)
> var1.mod = list(const=c.vec,ar=pi1,Sigma=cov.mat)
> set.seed(301)
> y.var = simulate.VAR(var1.mod,n=250,
+ y0=t(as.matrix(mu.vec)))
> dimnames(y.var) = list(NULL,c("y1","y2"))

The simulated data are shown in Figure 11.1. The VAR is stationary since
the eigenvalues of Π1 are less than one.

> eigen(pi1,only.values=T)
$values:
[1] 0.9 0.5

$vectors:
NULL

Notice that the intercept values are quite different from the mean values of
y1 and y2.

> c.vec
[1] -0.7 1.3
> colMeans(y.var)

y1 y2
0.8037 4.751

11.2.1 Estimation

Consider the basic VAR(p) model (11.1). Assume that the VAR(p) model
is covariance stationary, and there are no restrictions on the parameters of
the model. In SUR notation, each equation in the VAR(p) may be written
as

yi = Zπi + ei, i = 1, . . . , n

where yi is a (T × 1) vector of observations on the ith equation, Z is
a (T × k) matrix with tth row given by Z0t = (1,Y0

t−1, . . . ,Y0
t−p), k =

np+ 1, πi is a (k × 1) vector of parameters and ei is a (T × 1) error with
covariance matrix σ2i IT . Since the VAR(p) is in the form of a SUR model
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FIGURE 11.1. Simulated stationary VAR(1) model.

where each equation has the same explanatory variables, each equation may
be estimated separately by ordinary least squares without losing efficiency
relative to generalized least squares. Let Π̂ = [π̂1, . . . , π̂n] denote the (k×n)
matrix of least squares coefficients for the n equations.
Let vec(Π̂) denote the operator that stacks the columns of the (n × k)

matrix Π̂ into a long (nk × 1) vector. That is,

vec(Π̂) =

 π̂1
...
π̂n


Under standard assumptions regarding the behavior of stationary and er-
godic VAR models (see Hamilton (1994) or Lütkepohl (1991)) vec(Π̂) is
consistent and asymptotically normally distributed with asymptotic covari-
ance matrix

[avar(vec(Π̂)) = Σ̂⊗ (Z0Z)−1

where

Σ̂ =
1

T − k

TX
t=1

ε̂tε̂
0
t

and ε̂t = Yt−Π̂
0
Zt is the multivariate least squares residual from (11.1) at

time t.



386 11. Vector Autoregressive Models for Multivariate Time Series

11.2.2 Inference on Coefficients

The ith element of vec(Π̂), π̂i, is asymptotically normally distributed with
standard error given by the square root of ith diagonal element of Σ̂⊗ (Z0Z)−1.
Hence, asymptotically valid t−tests on individual coefficients may be con-
structed in the usual way. More general linear hypotheses of the form
R·vec(Π) = r involving coefficients across different equations of the VAR
may be tested using the Wald statistic

Wald = (R·vec(Π̂)−r)0
n
R
h
[avar(vec(Π̂))

i
R0
o−1

(R·vec(Π̂)−r) (11.5)

Under the null, (11.5) has a limiting χ2(q) distribution where q = rank(R)
gives the number of linear restrictions.

11.2.3 Lag Length Selection

The lag length for the VAR(p) model may be determined using model
selection criteria. The general approach is to fit VAR(p) models with orders
p = 0, ..., pmax and choose the value of p which minimizes some model
selection criteria. Model selection criteria for VAR(p) models have the form

IC(p) = ln |Σ̃(p)|+ cT · ϕ(n, p)

where Σ̃(p) = T−1
PT

t=1 ε̂tε̂
0
t is the residual covariance matrix without a de-

grees of freedom correction from a VAR(p) model, cT is a sequence indexed
by the sample size T , and ϕ(n, p) is a penalty function which penalizes
large VAR(p) models. The three most common information criteria are the
Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ):

AIC(p) = ln |Σ̃(p)|+ 2

T
pn2

BIC(p) = ln |Σ̃(p)|+ lnT
T

pn2

HQ(p) = ln |Σ̃(p)|+ 2 ln lnT
T

pn2

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC and HQ criteria estimate the order consis-
tently under fairly general conditions if the true order p is less than or
equal to pmax. For more information on the use of model selection criteria
in VAR models see Lütkepohl (1991) chapter four.

11.2.4 Estimating VAR Models Using the S+FinMetrics
Function VAR

The S+FinMetrics function VAR is designed to fit and analyze VAR models
as described in the previous section. VAR produces an object of class “VAR”
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for which there are print, summary, plot and predict methods as well
as extractor functions coefficients, residuals, fitted and vcov. The
calling syntax of VAR is a bit complicated because it is designed to handle
multivariate data in matrices, data frames as well as “timeSeries” objects.
The use of VAR is illustrated with the following example.

Example 63 Bivariate VAR model for exchange rates

This example considers a bivariate VAR model for Yt = (∆st, fpt)
0,

where st is the logarithm of the monthly spot exchange rate between the US
and Canada, fpt = ft− st = iUSt − iCAt is the forward premium or interest
rate differential, and ft is the natural logarithm of the 30-day forward
exchange rate. The data over the 20 year period March 1976 through June
1996 is in the S+FinMetrics “timeSeries” lexrates.dat. The data for
the VAR model are computed as

> dspot = diff(lexrates.dat[,"USCNS"])
> fp = lexrates.dat[,"USCNF"]-lexrates.dat[,"USCNS"]
> uscn.ts = seriesMerge(dspot,fp)
> colIds(uscn.ts) = c("dspot","fp")
> uscn.ts@title = "US/CN Exchange Rate Data"
> par(mfrow=c(2,1))
> plot(uscn.ts[,"dspot"],main="1st difference of US/CA spot
+ exchange rate")
> plot(uscn.ts[,"fp"],main="US/CN interest rate
+ differential")

Figure 11.2 illustrates the monthly return ∆st and the forward premium
fpt over the period March 1976 through June 1996. Both series appear
to be I(0) (which can be confirmed using the S+FinMetrics functions
unitroot or stationaryTest) with ∆st much more volatile than fpt. fpt
also appears to be heteroskedastic.

Specifying and estimating the VAR(p) model

To estimate a VAR(1) model for Yt use

> var1.fit = VAR(cbind(dspot,fp)~ar(1),data=uscn.ts)

Note that the VAR model is specified using an S-PLUS formula, with the
multivariate response on the left hand side of the~ operator and the built-
in AR term specifying the lag length of the model on the right hand side.
The optional data argument accepts a data frame or “timeSeries” ob-
ject with variable names matching those used in specifying the formula.
If the data are in a “timeSeries” object or in an unattached data frame
(“timeSeries” objects cannot be attached) then the data argument must
be used. If the data are in a matrix then the data argument may be omit-
ted. For example,
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FIGURE 11.2. US/CN forward premium and spot rate

> uscn.mat = as.matrix(seriesData(uscn.ts))
> var2.fit = VAR(uscn.mat~ar(1))

If the data are in a “timeSeries” object then the start and end options
may be used to specify the estimation sample. For example, to estimate the
VAR(1) over the sub-period January 1980 through January 1990

> var3.fit = VAR(cbind(dspot,fp)~ar(1),data=uscn.ts,
+ start="Jan 1980",end="Jan 1990",in.format="%m %Y")

may be used. The use of in.format=“%m %Y” sets the format for the date
strings specified in the start and end options to match the input format
of the dates in the positions slot of uscn.ts.
The VARmodel may be estimated with the lag length p determined using

a specified information criterion. For example, to estimate the VAR for the
exchange rate data with p set by minimizing the BIC with a maximum lag
pmax = 4 use

> var4.fit = VAR(uscn.ts,max.ar=4,criterion="BIC")
> var4.fit$info

ar(1) ar(2) ar(3) ar(4)
BIC -4028 -4013 -3994 -3973

When a formula is not specified and only a data frame, “timeSeries” or
matrix is supplied that contains the variables for the VAR model, VAR fits
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all VAR(p) models with lag lengths p less than or equal to the value given
to max.ar, and the lag length is determined as the one which minimizes
the information criterion specified by the criterion option. The default
criterion is BIC but other valid choices are logL, AIC and HQ. In the com-
putation of the information criteria, a common sample based on max.ar
is used. Once the lag length is determined, the VAR is re-estimated us-
ing the appropriate sample. In the above example, the BIC values were
computed using the sample based on max.ar=4 and p = 1 minimizes BIC.
The VAR(1) model was automatically re-estimated using the sample size
appropriate for p = 1.

Print and summary methods

The function VAR produces an object of class “VAR” with the following
components.

> class(var1.fit)
[1] "VAR"
> names(var1.fit)
[1] "R" "coef" "fitted" "residuals"
[5] "Sigma" "df.resid" "rank" "call"
[9] "ar.order" "n.na" "terms" "Y0"

To see the estimated coefficients of the model use the print method:

> var1.fit

Call:
VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:
dspot fp

(Intercept) -0.0036 -0.0003
dspot.lag1 -0.1254 0.0079

fp.lag1 -1.4833 0.7938

Std. Errors of Residuals:
dspot fp
0.0137 0.0009

Information Criteria:
logL AIC BIC HQ
2058 -4104 -4083 -4096

total residual
Degree of freedom: 243 240
Time period: from Apr 1976 to Jun 1996
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The first column under the label “Coefficients:” gives the estimated
coefficients for the∆st equation, and the second column gives the estimated
coefficients for the fpt equation:

∆st = −0.0036− 0.1254 ·∆st−1 − 1.4833 · fpt−1
fpt = −0.0003 + 0.0079 ·∆st−1 + 0.7938 · fpt−1

Since uscn.ts is a “timeSeries” object, the estimation time period is also
displayed.
The summary method gives more detailed information about the fitted

VAR:

> summary(var1.fit)

Call:
VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:
dspot fp

(Intercept) -0.0036 -0.0003
(std.err) 0.0012 0.0001
(t.stat) -2.9234 -3.2885

dspot.lag1 -0.1254 0.0079
(std.err) 0.0637 0.0042
(t.stat) -1.9700 1.8867

fp.lag1 -1.4833 0.7938
(std.err) 0.5980 0.0395
(t.stat) -2.4805 20.1049

Regression Diagnostics:
dspot fp

R-squared 0.0365 0.6275
Adj. R-squared 0.0285 0.6244
Resid. Scale 0.0137 0.0009

Information Criteria:
logL AIC BIC HQ
2058 -4104 -4083 -4096

total residual
Degree of freedom: 243 240
Time period: from Apr 1976 to Jun 1996

In addition to the coefficient standard errors and t-statistics, summary also
displays R2 measures for each equation (which are valid because each equa-



11.2 The Stationary Vector Autoregression Model 391

tion is estimated by least squares). The summary output shows that the
coefficients on ∆st−1 and fpt−1 in both equations are statistically signifi-
cant at the 10% level and that the fit for the fpt equation is much better
than the fit for the ∆st equation.
As an aside, note that the S+FinMetrics function OLS may also be used

to estimate each equation in a VAR model. For example, one way to com-
pute the equation for ∆st using OLS is

> dspot.fit = OLS(dspot~ar(1)+tslag(fp),data=uscn.ts)
> dspot.fit

Call:
OLS(formula = dspot ~ar(1) + tslag(fp), data = uscn.ts)

Coefficients:
(Intercept) tslag(fp) lag1
-0.0036 -1.4833 -0.1254

Degrees of freedom: 243 total; 240 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.01373

Graphical diagnostics

The plotmethod for “VAR” objects may be used to graphically evaluate the
fitted VAR. By default, the plot method produces a menu of plot options:

> plot(var1.fit)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Response and Fitted Values
3: plot: Residuals
4: plot: Normal QQplot of Residuals
5: plot: ACF of Residuals
6: plot: PACF of Residuals
7: plot: ACF of Squared Residuals
8: plot: PACF of Squared Residuals
Selection:

Alternatively, plot.VAR may be called directly. The function plot.VAR has
arguments

> args(plot.VAR)
function(x, ask = T, which.plots = NULL, hgrid = F, vgrid
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FIGURE 11.3. Response and fitted values from VAR(1) model for US/CN ex-
change rate data.

= F, ...)

To create all seven plots without using the menu, set ask=F. To create the
Residuals plot without using the menu, set which.plot=2. The optional
arguments hgrid and vgrid control printing of horizontal and vertical grid
lines on the plots.
Figures 11.3 and 11.4 give the Response and Fitted Values and Residuals

plots for the VAR(1) fit to the exchange rate data. The equation for fpt fits
much better than the equation for ∆st. The residuals for both equations
look fairly random, but the residuals for the fpt equation appear to be
heteroskedastic. The qq-plot (not shown) indicates that the residuals for
the ∆st equation are highly non-normal.

Extractor functions

The residuals and fitted values for each equation of the VAR may be ex-
tracted using the generic extractor functions residuals and fitted:

> var1.resid = resid(var1.fit)
> var1.fitted = fitted(var.fit)
> var1.resid[1:3,]
Positions dspot fp
Apr 1976 0.0044324 -0.00084150
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FIGURE 11.4. Residuals from VAR(1) model fit to US/CN exchange rate data.

May 1976 0.0024350 -0.00026493
Jun 1976 0.0004157 0.00002435

Notice that since the data are in a “timeSeries” object, the extracted
residuals and fitted values are also “timeSeries” objects.
The coefficients of the VAR model may be extracted using the generic

coef function:

> coef(var1.fit)
dspot fp

(Intercept) -0.003595149 -0.0002670108
dspot.lag1 -0.125397056 0.0079292865

fp.lag1 -1.483324622 0.7937959055

Notice that coef produces the (3 × 2) matrix Π̂ whose columns give the
estimated coefficients for each equation in the VAR(1).
To test stability of the VAR, extract the matrix Π1 and compute its

eigenvalues

> PI1 = t(coef(var1.fit)[2:3,])
> abs(eigen(PI1,only.values=T)$values)
[1] 0.7808 0.1124

Since the modulus of the two eigenvalues of Π1 are less than 1, the VAR(1)
is stable.
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Testing linear hypotheses

Now, consider testing the hypothesis that Π1= 0 (i.e., Yt−1 does not help
to explain Yt) using the Wald statistic (11.5). In terms of the columns of
vec(Π) the restrictions are π1 = (c1, 0, 0)0 and π2 = (c2, 0, 0) and may be
expressed as Rvec(Π) = r with

R =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , r =


0
0
0
0


The Wald statistic is easily constructed as follows

> R = matrix(c(0,1,0,0,0,0,
+ 0,0,1,0,0,0,
+ 0,0,0,0,1,0,
+ 0,0,0,0,0,1),
+ 4,6,byrow=T)
> vecPi = as.vector(var.coef)
> avar = R%*%vcov(var1.fit)%*%t(R)
> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)
> wald

[,1]
[1,] 417.1
> 1-pchisq(wald,4)
[1] 0

Since the p-value for the Wald statistic based on the χ2(4) distribution
is essentially zero, the hypothesis that Π1= 0 should be rejected at any
reasonable significance level.

11.3 Forecasting

Forecasting is one of the main objectives of multivariate time series analysis.
Forecasting from a VAR model is similar to forecasting from a univariate
AR model and the following gives a brief description.

11.3.1 Traditional Forecasting Algorithm

Consider first the problem of forecasting future values of Yt when the
parameters Π of the VAR(p) process are assumed to be known and there
are no deterministic terms or exogenous variables. The best linear predictor,
in terms of minimummean squared error (MSE), ofYt+1 or 1−step forecast
based on information available at time T is

YT+1|T = c+Π1YT + · · ·+ΠpYT−p+1
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Forecasts for longer horizons h (h− step forecasts) may be obtained using
the chain-rule of forecasting as

YT+h|T = c+Π1YT+h−1|T + · · ·+ΠpYT+h−p|T

where YT+j|T = YT+j for j ≤ 0. The h − step forecast errors may be
expressed as

YT+h −YT+h|T =
h−1X
s=0

ΨsεT+h−s

where the matrices Ψs are determined by recursive substitution

Ψs =

p−1X
j=1

Ψs−jΠj (11.6)

withΨ0 = In andΠj = 0 for j > p.1 The forecasts are unbiased since all of
the forecast errors have expectation zero and the MSE matrix for Yt+h|T
is

Σ(h) = MSE
¡
YT+h −YT+h|T

¢
=

h−1X
s=0

ΨsΣΨ
0
s (11.7)

Now consider forecasting YT+h when the parameters of the VAR(p) pro-
cess are estimated using multivariate least squares. The best linear predic-
tor of YT+h is now

ŶT+h|T = Π̂1ŶT+h−1|T + · · ·+ Π̂pŶT+h−p|T (11.8)

where Π̂j are the estimated parameter matrices. The h−step forecast error
is now

YT+h − ŶT+h|T =
h−1X
s=0

ΨsεT+h−s +
³
YT+h − ŶT+h|T

´
(11.9)

and the term
³
YT+h − ŶT+h|T

´
captures the part of the forecast error due

to estimating the parameters of the VAR. The MSE matrix of the h− step
forecast is then

Σ̂(h) = Σ(h) +MSE
³
YT+h − ŶT+h|T

´
1The S+FinMetrics fucntion VAR.ar2ma computes the Ψs matrices given the Πj ma-

trices using (11.6).
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In practice, the second termMSE
³
YT+h − ŶT+h|T

´
is often ignored and

Σ̂(h) is computed using (11.7) as

Σ̂(h) =
h−1X
s=0

Ψ̂sΣ̂Ψ̂
0
s (11.10)

with Ψ̂s =
Ps

j=1 Ψ̂s−jΠ̂j . Lütkepohl (1991, chapter 3) gives an approxi-

mation to MSE
³
YT+h − ŶT+h|T

´
which may be interpreted as a finite

sample correction to (11.10).
Asymptotic (1−α)·100% confidence intervals for the individual elements

of ŶT+h|T are then computed as£
ŷk,T+h|T − c1−α/2σ̂k(h), ŷk,T+h|T + c1−α/2σ̂k(h)

¤
where c1−α/2 is the (1−α/2) quantile of the standard normal distribution
and σ̂k(h) denotes the square root of the diagonal element of Σ̂(h).

Example 64 Forecasting exchange rates from a bivariate VAR

Consider computing h − step forecasts, h = 1, . . . , 12, along with esti-
mated forecast standard errors from the bivariate VAR(1) model for ex-
change rates. Forecasts and forecast standard errors from the fitted VAR
may be computed using the generic S-PLUS predict method

> uscn.pred = predict(var1.fit,n.predict=12)

The predict function recognizes var1.fit as a “VAR” object, and calls the
appropriate method function predict.VAR. Alternatively, predict.VAR
can be applied directly on an object inheriting from class “VAR”. See the
online help for explanations of the arguments to predict.VAR.
The output of predict.VAR is an object of class “forecast” for which

there are print, summary and plot methods. To see just the forecasts, the
print method will suffice:

> uscn.pred

Predicted Values:

dspot fp
1-step-ahead -0.0027 -0.0005
2-step-ahead -0.0026 -0.0006
3-step-ahead -0.0023 -0.0008
4-step-ahead -0.0021 -0.0009
5-step-ahead -0.0020 -0.0010
6-step-ahead -0.0018 -0.0011
7-step-ahead -0.0017 -0.0011
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8-step-ahead -0.0017 -0.0012
9-step-ahead -0.0016 -0.0012
10-step-ahead -0.0016 -0.0013
11-step-ahead -0.0015 -0.0013
12-step-ahead -0.0015 -0.0013

The forecasts and their standard errors can be shown using summary:

> summary(uscn.pred)

Predicted Values with Standard Errors:

dspot fp
1-step-ahead -0.0027 -0.0005

(std.err) 0.0137 0.0009
2-step-ahead -0.0026 -0.0006

(std.err) 0.0139 0.0012

...

12-step-ahead -0.0015 -0.0013
(std.err) 0.0140 0.0015

Lütkepohl’s finite sample correction to the forecast standard errors com-
puted from asymptotic theory may be obtained by using the optional ar-
gument fs.correction=T in the call to predict.VAR.
The forecasts can also be plotted together with the original data using

the generic plot function as follows:

> plot(uscn.pred,uscn.ts,n.old=12)

where the n.old optional argument specifies the number of observations to
plot from uscn.ts. If n.old is not specified, all the observations in uscn.ts
will be plotted together with uscn.pred. Figure 11.5 shows the forecasts
produced from the VAR(1) fit to the US/CN exchange rate data2. At the
beginning of the forecast horizon the spot return is below its estimated
mean value, and the forward premium is above its mean values. The spot
return forecasts start off negative and grow slowly toward the mean, and the
forward premium forecasts decline sharply toward the mean. The forecast
standard errors for both sets of forecasts, however, are fairly large.

2Notice that the dates associated with the forecasts are not shown. This is the result
of “timeDate” objects not having a well defined frequency from which to extrapolate
dates.
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FIGURE 11.5. Predicted values from VAR(1) model fit to US/CN exchange rate
data.

11.3.2 Simulation-Based Forecasting

The previous subsection showed how to generate multivariate forecasts from
a fitted VAR model, using the chain-rule of forecasting (11.8). Since the
multivariate forecast errors (11.9) are asymptotically normally distributed
with covariance matrix (11.10), the forecasts of Yt+h can be simulated
by generating multivariate normal random variables with mean zero and
covariance matrix (11.10). These simulation-based forecasts can be ob-
tained by setting the optional argument method to "mc" in the call to
predict.VAR.
When method="mc", the multivariate normal random variables are ac-

tually generated as a vector of standard normal random variables scaled
by the Cholesky factor of the covariance matrix (11.10). Instead of using
standard normal random variables, one could also use the standardized
residuals from the fitted VAR model. Simulation-based forecasts based on
this approach are obtained by setting the optional argument method to
"bootstrap" in the call to predict.VAR.

Example 65 Simulation-based forecasts of exchange rate data from bivari-
ate VAR

The h − step forecasts (h = 1, . . . , 12) for ∆st+h and fpt+h using the
Monte Carlo simulation method are
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> uscn.pred.MC = predict(var1.fit,n.predict=12,method="mc")
>summary(uscn.pred.MC)

Predicted Values with Standard Errors:

dspot fp
1-step-ahead -0.0032 -0.0005

(std.err) 0.0133 0.0009
2-step-ahead -0.0026 -0.0006

(std.err) 0.0133 0.0012
...
12-step-ahead -0.0013 -0.0013

(std.err) 0.0139 0.0015

TheMonte Carlo forecasts and forecast standard errors for fpt+h are almost
identical to those computed using the chain-rule of forecasting. The Monte
Carlo forecasts for ∆st+h are slightly different and the forecast standard
errors are slightly larger than the corresponding values computed from the
chain-rule.
The h− step forecasts computed from the bootstrap simulation method

are

> uscn.pred.boot = predict(var1.fit,n.predict=12,
+ method="bootstrap")
>summary(uscn.pred.boot)

Predicted Values with Standard Errors:

dspot fp
1-step-ahead -0.0020 -0.0005

(std.err) 0.0138 0.0009
2-step-ahead -0.0023 -0.0007

(std.err) 0.0140 0.0012
...
12-step-ahead -0.0023 -0.0013

(std.err) 0.0145 0.0015

As with the Monte Carlo forecasts, the bootstrap forecasts and forecast
standard errors for fpt+h are almost identical to those computed using the
chain-rule of forecasting. The bootstrap forecasts for ∆st+h are slightly
different from the chain-rule and Monte Carlo forecasts. In particular, the
bootstrap forecast standard errors are larger than corresponding values
from the chain-rule and Monte Carlo methods.
The simulation-based forecasts described above are different from the

traditional simulation-based approach taken in VAR literature, e.g., see
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Runkle (1987). The traditional approach is implemented using the following
procedure:

1. Obtain VAR coefficient estimates Π and residuals εt.

2. Simulate the fitted VAR model by Monte Carlo simulation or by
bootstrapping the fitted residuals ε̂t.

3. Obtain new estimates of Π and forecasts of Yt+h based on the sim-
ulated data.

The above procedure is repeated many times to obtain simulation-based
forecasts as well as their confidence intervals. To illustrate this approach,
generate 12-step ahead forecasts from the fitted VAR object var1.fit by
Monte Carlo simulation using the S+FinMetrics function simulate.VAR
as follows:

> set.seed(10)
> n.pred=12
> n.sim=100
> sim.pred = array(0,c(n.sim, n.pred, 2))
> y0 = seriesData(var1.fit$Y0)
> for (i in 1:n.sim) {
+ dat = simulate.VAR(var1.fit,n=243)
+ dat = rbind(y0,dat)
+ mod = VAR(dat~ar(1))
+ sim.pred[i,,] = predict(mod,n.pred)$values
+ }

The simulation-based forecasts are obtained by averaging the simulated
forecasts:

>colMeans(sim.pred)
[,1] [,2]

[1,] -0.0017917 -0.0012316
[2,] -0.0017546 -0.0012508
[3,] -0.0017035 -0.0012643
[4,] -0.0016800 -0.0012741
[5,] -0.0016587 -0.0012814
[6,] -0.0016441 -0.0012866
[7,] -0.0016332 -0.0012904
[8,] -0.0016253 -0.0012932
[9,] -0.0016195 -0.0012953
[10,] -0.0016153 -0.0012967
[11,] -0.0016122 -0.0012978
[12,] -0.0016099 -0.0012986
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Comparing these forecasts with those in uscn.pred computed earlier, one
can see that for the first few forecasts, these simulated forecasts are slightly
different from the asymptotic forecasts. However, at larger steps, they ap-
proach the long run stable values of the asymptotic forecasts.

Conditional Forecasting

The forecasts algorithms considered up to now are unconditional multivari-
ate forecasts. However, sometimes it is desirable to obtain forecasts of some
variables in the system conditional on some knowledge of the future path
of other variables in the system. For example, when forecasting multivari-
ate macroeconomic variables using quarterly data from a VAR model, it
may happen that some of the future values of certain variables in the VAR
model are known, because data on these variables are released earlier than
data on the other variables. By incorporating the knowledge of the future
path of certain variables, in principle it should be possible to obtain more
reliable forecasts of the other variables in the system. Another use of con-
ditional forecasting is the generation of forecasts conditional on different
“policy” scenarios. These scenario-based conditional forecasts allow one to
answer the question: if something happens to some variables in the system
in the future, how will it affect forecasts of other variables in the future?
S+FinMetrics provides a generic function cpredict for computing con-

ditional forecasts, which has a method cpredict.VAR for “VAR” objects.
The algorithms in cpredict.VAR are based on the conditional forecasting
algorithms described in Waggoner and Zha (1999). Waggoner and Zha clas-
sify conditional information into “hard” conditions and “soft conditions”.
The hard conditions restrict the future values of certain variables at fixed
values, while the soft conditions restrict the future values of certain vari-
ables in specified ranges. The arguments taken by cpredict.VAR are:

> args(cpredict.VAR)
function(object, n.predict = 1, newdata = NULL, olddata = NULL,
method = "mc", unbiased = T, variables.conditioned =
NULL, steps.conditioned = NULL, upper = NULL, lower =
NULL, middle = NULL, seed = 100, n.sim = 1000)

Like most predict methods in S-PLUS, the first argument must be a fitted
model object, while the second argument, n.predict, specifies the number
of steps to predict ahead. The arguments newdata and olddata can usually
be safely ignored, unless exogenous variables were used in fitting the model.
With classical forecasts that ignore the uncertainty in coefficient esti-

mates, hard conditional forecasts can be obtained in closed form as shown
by Doan, Litterman and Sims (1984), and Waggoner and Zha (1999). To
obtain hard conditional forecasts, the argument middle is used to specify
fixed values of certain variables at certain steps. For example, to fix the
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1-step ahead forecast of dspot in var1.fit at -0.005 and generate other
predictions for 2-step ahead forecasts, use the following command:

> cpredict(var1.fit, n.predict=2, middle=-0.005,
+ variables="dspot", steps=1)

Predicted Values:

dspot fp
1-step-ahead -0.0050 -0.0005
2-step-ahead -0.0023 -0.0007

In the call to cpredict, the optional argument variables is used to specify
the restricted variables, and steps to specify the restricted steps.
To specify a soft condition, the optional arguments upper and lower

are used to specify the upper bound and lower bound, respectively, of a
soft condition. Since closed form results are not available for soft condi-
tional forecasts, either Monte Carlo simulation or bootstrap methods are
used to obtain the actual forecasts. The simulations follow a similar proce-
dure implemented in the function predict.VAR, except that a reject/accept
method to sample from the distribution conditional on the soft conditions
is used. For example, to restrict the range of the first 2-step ahead forecasts
of dspot to be (−0.004,−0.001) use:

> cpredict(var1.fit, n.predict=2, lower=c(-0.004, -0.004),
+ upper=c(-0.001, -0.001), variables="dspot",
+ steps=c(1,2))

Predicted Values:

dspot fp
1-step-ahead -0.0027 -0.0003
2-step-ahead -0.0029 -0.0005

11.4 Structural Analysis

The general VAR(p) model has many parameters, and they may be difficult
to interpret due to complex interactions and feedback between the variables
in the model. As a result, the dynamic properties of a VAR(p) are often
summarized using various types of structural analysis. The three main types
of structural analysis summaries are (1) Granger causality tests; (2) impulse
response functions; and (3) forecast error variance decompositions. The
following sections give brief descriptions of these summary measures.
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11.4.1 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the
VAR model provides information about a variable’s or a group of variables’
forecasting ability for other variables. The following intuitive notion of a
variable’s forecasting ability is due to Granger (1969). If a variable, or
group of variables, y1 is found to be helpful for predicting another variable,
or group of variables, y2 then y1 is said to Granger-cause y2; otherwise it
is said to fail to Granger-cause y2. Formally, y1 fails to Granger-cause y2
if for all s > 0 the MSE of a forecast of y2,t+s based on (y2,t, y2,t−1, . . .) is
the same as the MSE of a forecast of y2,t+s based on (y2,t, y2,t−1, . . .) and
(y1,t, y1,t−1, . . .). Clearly, the notion of Granger causality does not imply
true causality. It only implies forecasting ability.

Bivariate VAR Models

In a bivariate VAR(p) model for Yt = (y1t, y2t)
0, y2 fails to Granger-cause

y1 if all of the p VAR coefficient matrices Π1, . . . ,Πp are lower triangular.
That is, the VAR(p) model has the formµ

y1t
y2t

¶
=

µ
c1
c2

¶
+

µ
π111 0
π121 π122

¶µ
y1t−1
y2t−1

¶
+ · · ·

+

µ
πp11 0
πp21 πp22

¶µ
y1t−p
y2t−p

¶
+

µ
ε1t
ε2t

¶
so that all of the coefficients on lagged values of y2 are zero in the equation
for y1. Similarly, y1 fails to Granger-cause y2 if all of the coefficients on
lagged values of y1 are zero in the equation for y2. The p linear coefficient
restrictions implied by Granger non-causality may be tested using the Wald
statistic (11.5). Notice that if y2 fails to Granger-cause y1 and y1 fails
to Granger-cause y2, then the VAR coefficient matrices Π1, . . . ,Πp are
diagonal.

General VAR Models

Testing for Granger non-causality in general n variable VAR(p) models
follows the same logic used for bivariate models. For example, consider a
VAR(p) model with n = 3 and Yt = (y1t, y2t, y3t)

0. In this model, y2 does
not Granger-cause y1 if all of the coefficients on lagged values of y2 are zero
in the equation for y1. Similarly, y3 does not Granger-cause y1 if all of the
coefficients on lagged values of y3 are zero in the equation for y1. These
simple linear restrictions may be tested using the Wald statistic (11.5). The
reader is encouraged to consult Lütkepohl (1991) or Hamilton (1994) for
more details and examples.

Example 66 Testing for Granger causality in bivariate VAR(2) model for
exchange rates
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Consider testing for Granger causality in a bivariate VAR(2) model for
Yt = (∆st, fpt)

0. Using the notation of (11.2), fpt does not Granger cause
∆st if π112 = 0 and π212 = 0. Similarly, ∆st does not Granger cause fpt if
π121 = 0 and π221 = 0. These hypotheses are easily tested using the Wald
statistic (11.5). The restriction matrix R for the hypothesis that fpt does
not Granger cause ∆st is

R =

µ
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

¶
and the matrix for the hypothesis that ∆st does not Granger cause fpt is

R =

µ
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

¶
The S-PLUS commands to compute and evaluate these Granger causality
Wald statistics are

> # H0: fp does not Granger cause dspot
> R = matrix(c(0,0,1,0,0,0,0,0,0,0,
+ 0,0,0,0,0,1,0,0,0,0),
+ 2,10,byrow=T)
> vecPi = as.vector(coef(var2.fit))
> avar = R%*%vcov(var2.fit)%*%t(R)
> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)
> wald

[,1]
[1,] 14.5
> 1-pchisq(wald,2)
[1] 0.0007113

> R = matrix(c(0,0,0,0,0,0,1,0,0,0,
+ 0,0,0,0,0,0,0,0,1,0),
+ 2,10,byrow=T)
> vecPi = as.vector(coef(var2.fit))
> avar = R%*%vcov(var2.fit)%*%t(R)
> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)
> wald

[,1]
[1,] 6.157
> 1-pchisq(wald,2)
[1] 0.04604

The p-values for the Wald tests indicate a strong rejection of the null that
fpt does not Granger cause ∆st but only a weak rejection of the null that
∆st does not Granger cause fpt. Hence, lagged values of fpt appear to be
useful for forecasting future values of ∆st and lagged values of ∆st appear
to be useful for forecasting future values of fpt.
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11.4.2 Impulse Response Functions

Any covariance stationary VAR(p) process has a Wold representation of
the form

Yt= µ+ εt+Ψ1εt−1+Ψ2εt−2 + · · · (11.11)

where the (n× n) moving average matrices Ψs are determined recursively
using (11.6). It is tempting to interpret the i, j-th element, ψsij , of the
matrix Ψs as the dynamic multiplier or impulse response

∂yi,t+s
∂εj,t

=
∂yi,t
∂εj,t−s

= ψsij , i, j = 1, . . . , n

However, this interpretation is only possible if var(εt) = Σ is a diagonal
matrix so that the elements of εt are uncorrelated. One way to make the
errors uncorrelated is to follow Sims (1980) and estimate the triangular
structural VAR(p) model

y1t = c1 + γ011Yt−1+ · · ·+ γ01pYt−p + η1t (11.12)

y2t = c1 + β21y1t+γ
0
21Yt−1+ · · ·+ γ02pYt−p + η2t

y3t = c1 + β31y1t + β32y2t+γ
0
31Yt−1+ · · ·+ γ03pYt−p + η3t

...

ynt = c1 + βn1y1t + · · ·+ βn,n−1yn−1,t + γ0n1Yt−1+ · · ·+ γ0npYt−p + ηnt

In matrix form, the triangular structural VAR(p) model is

BYt= c+ Γ1Yt−1+Γ2Yt−2+ · · ·+ ΓpYt−p + ηt (11.13)

where

B =


1 0 · · · 0
−β21 1 0 0
...

...
. . .

...
−βn1 −βn2 · · · 1

 (11.14)

is a lower triangular matrix with 10s along the diagonal. The algebra of
least squares will ensure that the estimated covariance matrix of the error
vector ηt is diagonal. The uncorrelated/orthogonal errors ηt are referred
to as structural errors.
The triangular structural model (11.12) imposes the recursive causal or-

dering
y1 → y2 → · · ·→ yn (11.15)

The ordering (11.15) means that the contemporaneous values of the vari-
ables to the left of the arrow → affect the contemporaneous values of the
variables to the right of the arrow but not vice-versa. These contempora-
neous effects are captured by the coefficients βij in (11.12). For example,
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the ordering y1 → y2 → y3 imposes the restrictions: y1t affects y2t and y3t
but y2t and y3t do not affect y1; y2t affects y3t but y3t does not affect y2t.
Similarly, the ordering y2 → y3 → y1 imposes the restrictions: y2t affects
y3t and y1t but y3t and y1t do not affect y2; y3t affects y1t but y1t does not
affect y3t. For a VAR(p) with n variables there are n! possible recursive
causal orderings. Which ordering to use in practice depends on the context
and whether prior theory can be used to justify a particular ordering. Re-
sults from alternative orderings can always be compared to determine the
sensitivity of results to the imposed ordering.
Once a recursive ordering has been established, the Wold representation

of Yt based on the orthogonal errors ηt is given by

Yt= µ+Θ0ηt+Θ1ηt−1+Θ2ηt−2 + · · · (11.16)

where Θ0 = B−1 is a lower triangular matrix. The impulse responses to
the orthogonal shocks ηjt are

∂yi,t+s
∂ηj,t

=
∂yi,t
∂ηj,t−s

= θsij , i, j = 1, . . . , n; s > 0 (11.17)

where θsij is the i, j th element of Θs. A plot of θ
s
ij against s is called the

orthogonal impulse response function (IRF) of yi with respect to ηj . With
n variables there are n2 possible impulse response functions.
In practice, the orthogonal IRF (11.17) based on the triangular VAR(p)

(11.12) may be computed directly from the parameters of the non triangular
VAR(p) (11.1) as follows. First, decompose the residual covariance matrix
Σ as

Σ = ADA0

whereA is an invertible lower triangular matrix with 10s along the diagonal
and D is a diagonal matrix with positive diagonal elements. Next, define
the structural errors as

ηt= A
−1εt

These structural errors are orthogonal by construction since var(ηt) =
A−1ΣA−10= A−1ADA0A−10= D. Finally, re-express the Wold represen-
tation (11.11) as

Yt = µ+AA−1εt+Ψ1AA−1εt−1+Ψ2AA−1εt−2 + · · ·
= µ+Θ0ηt ++Θ1ηt−1+Θ2ηt−2

where Θj= ΨjA.Notice that the structural B matrix in (11.13) is equal to
A−1.

Computing the orthogonal impulse response function using the
S+FinMetrics function impRes

The orthogonal impulse response function (11.17) from a triangular struc-
tural VAR model (11.13) may be computed using the S+FinMetrics func-
tion impRes. The function impRes has arguments
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> args(impRes)
function(x, period = NULL, std.err = "none", plot = F,
unbiased = T, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed. To compute asymptotic standard errors for the responses,
specify std.err="asymptotic". To create a panel plot of all the response
functions, specify plot=T. The default recursive causal ordering is based on
the ordering of the variables in Yt when the VAR model is fit. The optional
argument order may be used to specify a different recursive causal order-
ing for the computation of the impulse responses. The argument order ac-
cepts a character vector of variable names whose order defines the recursive
causal ordering. The output of impRes is an object of class “impDecomp” for
which there are print, summary and plot methods. The following example
illustrates the use of impRes.

Example 67 IRF from VAR(1) for exchange rates

Consider again the VAR(1) model for Yt = (∆st, fpt)
0. For the impulse

response analysis, the initial ordering of the variables imposes the assump-
tion that structural shocks to fpt have no contemporaneous effect on ∆st
but structural shocks to ∆st do have a contemporaneous effect on fpt. To
compute the four impulse response functions

∂∆st+h
∂η1t

,
∂∆st+h
∂η2t

,
∂fpt+h
∂η1t

,
∂fpt+h
∂η2t

for h = 1, . . . , 12 we use S+FinMetrics function impRes.The first twelve
impulse responses from the VAR(1) model for exchange rates are computed
using

> uscn.irf = impRes(var1.fit,period=12,std.err="asymptotic")

The print method shows the impulse response values without standard
errors:

> uscn.irf

Impulse Response Function:
(with responses in rows, and innovations in columns)

, , lag.0
dspot fp

dspot 0.0136 0.0000
fp 0.0000 0.0009

, , lag.1
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dspot fp
dspot -0.0018 -0.0013

fp 0.0001 0.0007

, , lag.2
dspot fp

dspot 0.0000 -0.0009
fp 0.0001 0.0006

...

, , lag.11
dspot fp

dspot 0.0000 -0.0001
fp 0.0000 0.0001

The summary method will display the responses with standard errors and
t-statistics. The plot method will produce a four panel Trellis graphics
plot of the impulse responses

> plot(uscn.irf)

A plot of the impulse responses can also be created in the initial call to
impRes by using the optional argument plot=T.
Figure 11.6 shows the impulse response functions along with asymptotic

standard errors. The top row shows the responses of ∆st to the structural
shocks, and the bottom row shows the responses of fpt to the structural
shocks. In response to the first structural shock, η1t, ∆st initially increases
but then drops quickly to zero after 2 months. Similarly, fpt initially in-
creases, reaches its peak response in 2 months and then gradually drops
off to zero after about a year. In response to the second shock, η2t, by
assumption ∆st has no initial response. At one month, a sharp drop occurs
in ∆st followed by a gradual return to zero after about a year. In contrast,
fpt initially increases and then gradually drops to zero after about a year.
The orthogonal impulse responses in Figure 11.6 are based on the recur-

sive causal ordering ∆st → fpt. It must always be kept in mind that this
ordering identifies the orthogonal structural shocks η1t and η2t. If the or-
dering is reversed, then a different set of structural shocks will be identified,
and these may give very different impulse response functions. To compute
the orthogonal impulse responses using the alternative ordering fpt → ∆st
specify order=c("fp","dspot") in the call to impRes:

> uscn.irf2 = impRes(var1.fit,period=12,std.err="asymptotic",
+ order=c("fp","dspot"),plot=T)

These impulse responses are presented in Figure 11.7 and are almost iden-
tical to those computed using the ordering ∆st → fpt. The reason for this



11.4 Structural Analysis 409

0.
0

0.
00

01
0

0.
00

02
0

0 2 4 6 8 10

Inno.: dspot
Resp.: fp

0.
0

0.
00

04
0.

00
08

Inno.: fp
Resp.: fp

0.
0

0.
00

5
0.

01
0

Inno.: dspot
Resp.: dspot

-0
.0

01
5

-0
.0

00
5

0.
0

0 2 4 6 8 10

Inno.: fp
Resp.: dspot

Steps

Im
pu

ls
e 

R
es

po
ns

e

Orthogonal Impulse Response Function

FIGURE 11.6. Impulse response function from VAR(1) model fit to US/CN ex-
change rate data with ∆st ordered first.

response is that the reduced form VAR residuals ε̂1t and ε̂2t are almost
uncorrelated. To see this, the residual correlation matrix may be computed
using

> sd.vals = sqrt(diag(var1.fit$Sigma))
> cor.mat = var1.fit$Sigma/outer(sd.vals,sd.vals)
> cor.mat

dspot fp
dspot 1.000000 0.033048

fp 0.033048 1.000000

Because of the near orthogonality in the reduced form VAR errors, the
error in the ∆st equation may be interpreted as an orthogonal shock to the
exchange rate and the error in the fpt equation may be interpreted as an
orthogonal shock to the forward premium.

11.4.3 Forecast Error Variance Decompositions

The forecast error variance decomposition (FEVD) answers the question:
what portion of the variance of the forecast error in predicting yi,T+h is
due to the structural shock ηj? Using the orthogonal shocks ηt the h−step
ahead forecast error vector, with known VAR coefficients, may be expressed
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FIGURE 11.7. Impulse response function from VAR(1) model fit to US/CN ex-
change rate with fpt ordered first.

as

YT+h −YT+h|T =
h−1X
s=0

ΘsηT+h−s

For a particular variable yi,T+h, this forecast error has the form

yi,T+h − yi,T+h|T =
h−1X
s=0

θsi1η1,T+h−s + · · ·+
h−1X
s=0

θsinηn,T+h−s

Since the structural errors are orthogonal, the variance of the h − step
forecast error is

var(yi,T+h − yi,T+h|T ) = σ2η1

h−1X
s=0

(θsi1)
2 + · · ·+ σ2ηn

h−1X
s=0

(θsin)
2

where σ2ηj = var(ηjt). The portion of var(yi,T+h − yi,T+h|T ) due to shock
ηj is then

FEVDi,j(h) =
σ2ηj

Ph−1
s=0

¡
θsij
¢2

σ2η1
Ph−1

s=0 (θ
s
i1)

2 + · · ·+ σ2ηn
Ph−1

s=0 (θ
s
in)

2
, i, j = 1, . . . , n

(11.18)
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In a VAR with n variables there will be n2 FEVDi,j(h) values. It must be
kept in mind that the FEVD in (11.18) depends on the recursive causal or-
dering used to identify the structural shocks ηt and is not unique. Different
causal orderings will produce different FEVD values.

Computing the FEVD using the S+FinMetrics function fevDec

Once a VAR model has been fit, the S+FinMetrics function fevDec may
be used to compute the orthogonal FEVD. The function fevDec has ar-
guments

> args(fevDec)
function(x, period = NULL, std.err = "none", plot = F,
unbiased = F, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed and no plot is created. To compute asymptotic standard
errors for the responses, specify std.err="asymptotic" and to plot the
decompositions, specify plot=T. The default recursive causal ordering is
based on the ordering of the variables inYt when the VAR model is fit. The
optional argument ordermay be used to specify a different recursive causal
ordering for the computation of the FEVD. The argument order accepts
a text string vector of variable names whose order defines the recursive
causal ordering. The output of fevDec is an object of class “impDecomp”
for which there are print, summary and plot methods. The use of fevDec
is illustrated with the following example.

Example 68 FEVD from VAR(1) for exchange rates

The orthogonal FEVD of the forecast errors from the VAR(1) model
fit to the US/CN exchange rate data using the recursive causal ordering
∆st → fpt is computed using

> uscn.fevd = fevDec(var1.fit,period=12,
+ std.err="asymptotic")
> uscn.fevd

Forecast Error Variance Decomposition:
(with responses in rows, and innovations in columns)

, , 1-step-ahead
dspot fp

dspot 1.0000 0.0000
fp 0.0011 0.9989

, , 2-step-ahead
dspot fp
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FIGURE 11.8. Orthogonal FEVDs computed from VAR(1) model fit to US/CN
exchange rate data using the recursive causal ordering with ∆st first.

dspot 0.9907 0.0093
fp 0.0136 0.9864

...

, , 12-step-ahead
dspot fp

dspot 0.9800 0.0200
fp 0.0184 0.9816

The summary method adds standard errors to the above output if they are
computed in the call to fevDec. The plot method produces a four panel
Trellis graphics plot of the decompositions:

> plot(uscn.fevd)

The FEVDs in Figure 11.8 show that most of the variance of the forecast
errors for ∆st+s at all horizons s is due to the orthogonal ∆st innovations.
Similarly, most of the variance of the forecast errors for fpt+s is due to the
orthogonal fpt innovations.
The FEVDs using the alternative recursive causal ordering fpt → ∆st

are computed using

> uscn.fevd2 = fevDec(var1.fit,period=12,
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FIGURE 11.9. Orthogonal FEVDs from VAR(1) model fit to US/CN exchange
rate data using recursive causal ordering with fpt first.

+ std.err="asymptotic",order=c("fp","dspot"),plot=T)

and are illustrated in Figure 11.9. Since the residual covariance matrix is
almost diagonal (see analysis of IRF above), the FEVDs computed using
the alternative ordering are almost identical to those computed with the
initial ordering.

11.5 An Extended Example

In this example the causal relations and dynamic interactions among monthly
real stock returns, real interest rates, real industrial production growth and
the inflation rate is investigated using a VAR model. The analysis is similar
to that of Lee (1992). The variables are in the S+FinMetrics “timeSeries”
object varex.ts

> colIds(varex.ts)
[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Details about the data are in the documentation slot of varex.ts

> varex.ts@documentation
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FIGURE 11.10. Monthly data on stock returns, interest rates, output growth and
inflation

To be comparable to the results in Lee (1992), the analysis is conducted
over the postwar period January 1947 through December 1987

> smpl = (positions(varex.ts) >= timeDate("1/1/1947") &
+ positions(varex.ts) < timeDate("1/1/1988"))

The data over this period is displayed in Figure 11.10. All variables appear
to be I(0), but the real T-bill rate and the inflation rate appear to be highly
persistent.
To begin the analysis, autocorrelations and cross correlations at leads

and lags are computed using

> varex.acf = acf(varex.ts[smpl,])

and are illustrated in Figure 11.11. The real return on the market shows a
significant positive first lag autocorrelation, and inflation appears to lead
the real market return with a negative sign. The real T-bill rate is highly
positively autocorrelated, and inflation appears to lead the real T-bill rate
strongly with a negative sign. Inflation is also highly positively autocorre-
lated and, interestingly, the real T-bill rate appears to lead inflation with
a positive sign. Finally, industrial production growth is slightly positively
autocorrelated, and the real market return appears to lead industrial pro-
duction growth with a positive sign.
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FIGURE 11.11. Autocorrelations and cross correlations at leads and lags of data
in VAR model

The VAR(p) model is fit with the lag length selected by minimizing the
AIC and a maximum lag length of 6 months:

> varAIC.fit = VAR(varex.ts,max.ar=6,criterion="AIC",
+ start="Jan 1947",end="Dec 1987",
+ in.format="%m %Y")

The lag length selected by minimizing AIC is p = 2 :

> varAIC.fit$info
ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)

AIC -14832 -14863 -14853 -14861 -14855 -14862
> varAIC.fit$ar.order
[1] 2

The results of the VAR(2) fit are

> summary(varAIC.out)

Call:
VAR(data = varex.ts, start = "Jan 1947", end = "Dec 1987",
max.ar = 6, criterion = "AIC", in.format = "%m %Y")

Coefficients:



416 11. Vector Autoregressive Models for Multivariate Time Series

MARKET.REAL RF.REAL INF IPG
(Intercept) 0.0074 0.0002 0.0010 0.0019
(std.err) 0.0023 0.0001 0.0002 0.0007
(t.stat) 3.1490 4.6400 4.6669 2.5819

MARKET.REAL.lag1 0.2450 0.0001 0.0072 0.0280
(std.err) 0.0470 0.0011 0.0042 0.0146
(t.stat) 5.2082 0.0483 1.7092 1.9148

RF.REAL.lag1 0.8146 0.8790 0.5538 0.3772
(std.err) 2.0648 0.0470 0.1854 0.6419
(t.stat) 0.3945 18.6861 2.9867 0.5877

INF.lag1 -1.5020 -0.0710 0.4616 -0.0722
(std.err) 0.4932 0.0112 0.0443 0.1533
(t.stat) -3.0451 -6.3147 10.4227 -0.4710

MARKET.REAL RF.REAL INF IPG
IPG.lag1 -0.0003 0.0031 -0.0143 0.3454
(std.err) 0.1452 0.0033 0.0130 0.0452
(t.stat) -0.0018 0.9252 -1.0993 7.6501

MARKET.REAL.lag2 -0.0500 0.0022 -0.0066 0.0395
(std.err) 0.0466 0.0011 0.0042 0.0145
(t.stat) -1.0727 2.0592 -1.5816 2.7276

RF.REAL.lag2 -0.3481 0.0393 -0.5855 -0.3289
(std.err) 1.9845 0.0452 0.1782 0.6169
(t.stat) -0.1754 0.8699 -3.2859 -0.5331

INF.lag2 -0.0602 0.0079 0.2476 -0.0370
(std.err) 0.5305 0.0121 0.0476 0.1649
(t.stat) -0.1135 0.6517 5.1964 -0.2245

MARKET.REAL RF.REAL INF IPG
IPG.lag2 -0.1919 0.0028 0.0154 0.0941
(std.err) 0.1443 0.0033 0.0130 0.0449
(t.stat) -1.3297 0.8432 1.1868 2.0968

Regression Diagnostics:
MARKET.REAL RF.REAL INF IPG

R-squared 0.1031 0.9299 0.4109 0.2037
Adj. R-squared 0.0882 0.9287 0.4011 0.1905
Resid. Scale 0.0334 0.0008 0.0030 0.0104
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Information Criteria:
logL AIC BIC HQ
7503 -14935 -14784 -14875

total residual
Degree of freedom: 489 480
Time period: from Mar 1947 to Nov 1987

The signs of the statistically significant coefficient estimates corroborate
the informal analysis of the multivariate autocorrelations and cross lag au-
tocorrelations. In particular, the real market return is positively related to
its own lag but negatively related to the first lag of inflation. The real T-bill
rate is positively related to its own lag, negatively related to the first lag of
inflation, and positively related to the first lag of the real market return. In-
dustrial production growth is positively related to its own lag and positively
related to the first two lags of the real market return. Judging from the
coefficients it appears that inflation Granger causes the real market return
and the real T-bill rate, the real T-bill rate Granger causes inflation, and
the real market return Granger causes the real T-bill rate and industrial
production growth. These observations are confirmed with formal tests for
Granger non-causality. For example, the Wald statistic for testing the null
hypothesis that the real market return does not Granger-cause industrial
production growth is

> bigR = matrix(0,2,36)
> bigR[1,29]=bigR[2,33]=1
> vecPi = as.vector(coef(varAIC.fit))
> avar = bigR%*%vcov(varAIC.fit)%*%t(bigR)
> wald = t(bigR%*%vecPi)%*%solve(avar)%*%(bigR%*%vecPi)
> as.numeric(wald)
[1] 13.82
> 1-pchisq(wald,2)
[1] 0.0009969

The 24-period IRF using the recursive causal ordering MARKET.REAL →
RF.REAL → IPG → INF is computed using

> varAIC.irf = impRes(varAIC.fit,period=24,
+ order=c("MARKET.REAL","RF.REAL","IPG","INF"),
+ std.err="asymptotic",plot=T)

and is illustrated in Figure 11.12. The responses of MARKET.REAL to unex-
pected orthogonal shocks to the other variables are given in the first row of
the figure. Most notable is the strong negative response of MARKET.REAL to
an unexpected increase in inflation. Notice that it takes about ten months
for the effect of the shock to dissipate. The responses of RF.REAL to the
orthogonal shocks is given in the second row of the figure. RF.REAL also
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FIGURE 11.12. IRF using the recursive causal ordering MARKET.REAL→ RF.REAL
→ IPG → INF.

reacts negatively to an inflation shock and the effect of the shock is felt for
about two years. The responses of IPG to the orthogonal shocks is given
in the third row of the figure. Industrial production growth responds posi-
tively to an unexpected shock to MARKET.REAL and negatively to shocks to
RF.REAL and INF. These effects, however, are generally short term. Finally,
the fourth row gives the responses of INF to the orthogonal shocks. Infla-
tion responds positively to a shock to the real T-bill rate, but this effect is
short-lived.
The 24 month FEVD computed using the recursive causal ordering MARKET.REAL

→ RF.REAL → IPG → INF,

> varAIC.fevd = fevDec(varAIC.out,period=24,
> order=c("MARKET.REAL","RF.REAL","IPG","INF"),
> std.err="asymptotic",plot=T)

is illustrated in Figure 11.13.The first row gives the variance decompositions
for MARKET.REAL and shows that most of the variance of the forecast errors
is due to own shocks. The second row gives the decompositions for RF.REAL.
At short horizons, most of the variance is attributable to own shocks but
at long horizons inflation shocks account for almost half the variance. The
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FIGURE 11.13. FEVDs using the recursive causal ordering MARKET.REAL →
RF.REAL → IPG → INF.

third row gives the variance decompositions for IPG. Most of the variance
is due to own shocks and a small fraction is due to MARKET.REAL shocks.
Finally, the fourth row shows that the forecast error variance of INF is due
mostly to its own shocks.
The IRFs and FEVDs computed above depend on the imposed recursive

causal ordering. However, in this example, the ordering of the variables will
have little effect on the IRFs and FEVDs because the errors in the reduced
form VAR are nearly uncorrelated:

> sd.vals = sqrt(diag(varAIC.out$Sigma))
> cor.mat = varAIC.out$Sigma/outer(sd.vals,sd.vals)
> cor.mat

MARKET.REAL RF.REAL INF IPG
MARKET.REAL 1.00000 -0.16855 -0.04518 0.03916

RF.REAL -0.16855 1.00000 0.13046 0.03318
INF -0.04518 0.13046 1.00000 0.04732
IPG 0.03916 0.03318 0.04732 1.00000
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11.6 Bayesian Vector Autoregression

VAR models with many variables and long lags contain many parameters.
Unrestricted estimation of these models reqires lots of data and often the
estimated parameters are not very precise, the results are hard to inter-
pret, and forecasts may appear more precise than they really are because
standard error bands do not account for parameter uncertainty. The esti-
mates and forecasts can be improved if one has prior information about
the structure of the model or the possible values of the parameters or func-
tions of the parameters. In a classical framework, it is difficult to incorpo-
rate non-sample information into the estimation. Nonsample information
is easy to incorporate in a Bayesian framework. A Bayesian framework
also naturally incorporates parameter uncertainty into common measures
of precision. This section briefly describes the Bayesian VAR modeling tools
in S+FinMetrics and illustrates these tools with an example. Details of
underlying Bayesian methods are given in Sims and Zha (1998) and Zha
(1998).

11.6.1 An Example of a Bayesian VAR Model

S+FinMetrics comes with a “timeSeries” object policy.dat, which con-
tains six U.S. macroeconomic variables:

> colIds(policy.dat)
[1] "CP" "M2" "FFR" "GDP" "CPI" "U"

which represent IMF’s index of world commodity prices, M2 money stock,
federal funds rate, real GDP, consumer price index for urban consumers,
and civilian unemployment rate. The data set contains monthly observa-
tions from January 1959 to March 1998. Tao Zha and his co-authors have
analyzed this data set in a number of papers, for example see Zha (1998).
To use the same time period as in Zha (1998), create a subset of the data:

> zpolicy.dat = policy.dat[1:264,]
> zpolicy.mat = as.matrix(seriesData(zpolicy.dat))

which contains monthly observations from January 1959 to December 1980.

Estimating a Bayesian VAR Model

To estimate a Bayesian vector autoregression model, use the S+FinMetrics
function BVAR. For macroeconomic modeling, it is usually found that many
trending macroeconomic variables have a unit root, and in some cases,
they may also have a cointegrating relationship (as described in the next
chapter). To incorporate these types of prior beliefs into the model, use
the unit.root.dummy and coint.dummy optional arguments to the BVAR
function, which add some dummy observations to the beginning of the data
to reflect these beliefs:
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> zpolicy.bar13 = BVAR(zpolicy.mat~ar(13), unit.root=T, coint=T)
> class(zpolicy.bar13)
[1] "BVAR"

The returned object is of class “BVAR”, which inherits from “VAR”, so many
method functions for “VAR” objects work similarly for “BVAR” objects, such
as the extractor functions, impulse response functions, and forecast error
variance decomposition functions.
The Bayesian VAR models are controlled through a set of hyper param-

eters, which can be specified using the optional argument control, which
is usually a list returned by the function BVAR.control. For example, the
tightness of the belief in the unit root prior and cointegration prior is spec-
ified by mu5 and mu6, respectively. To see what default values are used for
these hyper parameters, use

> args(BVAR.control)
function(L0 = 0.9, L1 = 0.1, L2 = 1, L3 = 1, L4 = 0.05,

mu5 = 5, mu6 = 5)

For the meanings of these hyper parameters, see the online help file for
BVAR.control.

Adding Exogenous Variables to the Model

Other exogenous variables can be added to the estimation formula, just
as for OLS and VAR functions. The BVAR function and related functions
will automatically take that into consideration and return the coefficient
estimates for those variables.

Unconditional Forecasts

To forecast from a fitted Bayesian VAR model, use the generic predict
function, which automatically calls the method function predict.BVAR for
an object inheriting from class “BVAR”. For example, to compute 12− step
ahead forecasts use

> zpolicy.bpred = predict(zpolicy.bar13,n.predict=12)
> class(zpolicy.bpred)
[1] "forecast"
> names(zpolicy.bpred)
[1] "values" "std.err" "draws"
> zpolicy.bpred

Predicted Values:

CP M2 FFR GDP CPI U
1-step-ahead 4.6354 7.3794 0.1964 8.4561 4.4714 0.0725
2-step-ahead 4.6257 7.3808 0.1930 8.4546 4.4842 0.0732
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FIGURE 11.14. Forecasts from Bayesian VAR model

3-step-ahead 4.6247 7.3834 0.1823 8.4505 4.4960 0.0746
4-step-ahead 4.6310 7.3876 0.1670 8.4458 4.5065 0.0763
5-step-ahead 4.6409 7.3931 0.1515 8.4414 4.5160 0.0785
6-step-ahead 4.6503 7.3998 0.1384 8.4394 4.5244 0.0810
7-step-ahead 4.6561 7.4075 0.1309 8.4390 4.5321 0.0833
8-step-ahead 4.6552 7.4159 0.1307 8.4403 4.5397 0.0852
9-step-ahead 4.6496 7.4242 0.1362 8.4428 4.5475 0.0867
10-step-ahead 4.6415 7.4323 0.1451 8.4453 4.5561 0.0879
11-step-ahead 4.6321 7.4402 0.1546 8.4473 4.5655 0.0889
12-step-ahead 4.6232 7.4476 0.1618 8.4482 4.5753 0.0899

The forecasts can also be plotted along with the original data using

> plot(zpolicy.bpred, zpolicy.mat, n.old=20)

The resulting plot is shown in Figure 11.14. The Bayesian forecasts usually
have wider error bands than classical forecasts, because they take into ac-
count the uncertainty in the coefficient estimates. To ignore the uncertainty
in coefficient estimates, one can call the classical VAR predict method
function, predict.VAR, directly instead of the generic predict function.
The forecasts from Bayesian VAR models are of class “forecast”, and

are computed using Monte Carlo integration. By default, 1000 simulation
draws are used. To change the number of simulation draws and random
seed, specify the n.sim and seed optional arguments, respectively. For
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forecasts from Bayesian VAR models, there is one more component in the
returned object: draws, which contains all the simulated forecasts. This can
be used to assess other statistical properties of the forecasts.

11.6.2 Conditional Forecasts

As mentioned earlier, conditional forecasts from classical VAR models ig-
nore the uncertainty in estimated coefficients. In contrast, conditional fore-
casts from Bayesian VAR models take into account the uncertainty asso-
ciated with estimated coefficients. To perform conditional forecasts from a
fitted Bayesian VAR model, use the generic cpredict function. For exam-
ple, if it is known that FFR in January 1981 is between 0.185 and 0.195, one
can incorporate this (soft condition) information into the forecasts using:

> zpolicy.spred = cpredict(zpolicy.bar13, 12, steps=1,
+ variables="FFR", upper=0.195, lower=0.185)
> zpolicy.spred

Predicted Values:

CP M2 FFR GDP CPI U
1-step-ahead 4.6374 7.3797 0.1910 8.4554 4.4714 0.0729
2-step-ahead 4.6286 7.3816 0.1855 8.4540 4.4840 0.0736
3-step-ahead 4.6279 7.3850 0.1743 8.4498 4.4954 0.0752
4-step-ahead 4.6349 7.3899 0.1587 8.4452 4.5057 0.0768
5-step-ahead 4.6447 7.3960 0.1443 8.4414 4.5149 0.0791
6-step-ahead 4.6525 7.4033 0.1324 8.4406 4.5231 0.0814
7-step-ahead 4.6549 7.4114 0.1270 8.4412 4.5307 0.0835
8-step-ahead 4.6523 7.4201 0.1283 8.4428 4.5383 0.0851
9-step-ahead 4.6453 7.4284 0.1349 8.4457 4.5461 0.0864
10-step-ahead 4.6389 7.4365 0.1432 8.4482 4.5547 0.0876
11-step-ahead 4.6317 7.4444 0.1516 8.4501 4.5641 0.0885
12-step-ahead 4.6264 7.4519 0.1572 8.4511 4.5741 0.0896

For conditional forecasts with soft conditions, a Monte Carlo integra-
tion with acceptance/rejection method is used. By default, 1000 simulation
draws are used. However, it may occur that only a small number of draws
satisfy the soft conditions if the intervals are very tight. To see how many
draws satisfied the soft conditions and thus are used for inference, simply
check the dimension of the draws component of the returned object (see
the on-line help file for forecast.object for details):

> dim(zpolicy.spred$draws)
[1] 372 72

In this case, only 372 out of 1000 simulation draws satisfied the con-
ditions. To continue simulating from the posterior moment distribution,
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use the same command as before, with seed set to the current value of
.Random.seed:

> zpolicy.spred2 = cpredict(zpolicy.bar13, 12, steps=1,
+ variables="FFR", upper=0.195, lower=0.185, seed=.Random.seed)
> dim(zpolicy.spred2$draws)
[1] 389 72

Note that the draws in zpolicy.spred2 can be combined with the draws
in zpolicy.spred to obtain an updated and more accurate estimate of
conditional forecasts.
To ignore the coefficient uncertainty for the conditional forecasts, call

the classical method function cpredict.VAR directly on a fitted Bayesian
VAR object. The technique introduced above can also be used for classical
prediction with soft conditions.
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12
Cointegration

12.1 Introduction

The regression theory of Chapter 6 and the VAR models discussed in the
previous chapter are appropriate for modeling I(0) data, like asset returns
or growth rates of macroeconomic time series. Economic theory often im-
plies equilibrium relationships between the levels of time series variables
that are best described as being I(1). Similarly, arbitrage arguments imply
that the I(1) prices of certain financial time series are linked. This chapter
introduces the statistical concept of cointegration that is required to make
sense of regression models and VAR models with I(1) data.
The chapter is organized as follows. Section 12.2 gives an overview of

the concepts of spurious regression and cointegration, and introduces the
error correction model as a practical tool for utilizing cointegration with
financial time series. Section 12.3 discusses residual-based tests for coin-
tegration. Section 12.4 covers regression-based estimation of cointegrating
vectors and error correction models. In Section 12.5, the connection be-
tween VAR models and cointegration is made, and Johansen’s maximum
likelihood methodology for cointegration modeling is outlined. Some tech-
nical details of the Johansen methodology are provided in the appendix to
this chapter.
Excellent textbook treatments of the statistical theory of cointegration

are given in Hamilton (1994), Johansen (1995) and Hayashi (2000). Ap-
plications of cointegration to finance may be found in Campbell, Lo and
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MacKinlay (1997), Mills (1999), Alexander (2001), Cochrane (2001) and
Tsay (2001).

12.2 Spurious Regression and Cointegration

12.2.1 Spurious Regression

The time series regression model discussed in Chapter 6 required all vari-
ables to be I(0). In this case, the usual statistical results for the linear
regression model hold. If some or all of the variables in the regression are
I(1) then the usual statistical results may or may not hold1. One important
case in which the usual statistical results do not hold is spurious regres-
sion when all the regressors are I(1) and not cointegrated. The following
example illustrates.

Example 69 An illustration of spurious regression using simulated data

Consider two independent and not cointegrated I(1) processes y1t and
y2t such that

yit = yit−1 + εit, where εit ∼ GWN(0, 1), i = 1, 2

Following Granger and Newbold (1974), 250 observations for each series
are simulated and plotted in Figure 12.1 using

> set.seed(458)
> e1 = rnorm(250)
> e2 = rnorm(250)
> y1 = cumsum(e1)
> y2 = cumsum(e2)
> tsplot(y1, y2, lty=c(1,3))
> legend(0, 15, c("y1","y2"), lty=c(1,3))

The data in the graph resemble stock prices or exchange rates. A visual
inspection of the data suggests that the levels of the two series are positively
related. Regressing y1t on y2t reinforces this observation:

> summary(OLS(y1~y2))

Call:
OLS(formula = y1 ~y2)

1A systematic technical analysis of the linear regression model with I(1) and I(0) vari-
ables is given in Sims, Stock and Watson (1990). Hamilton (1994) gives a nice summary
of these results and Stock and Watson (1989) provides useful intuition and examples.
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FIGURE 12.1. Two simulated independent I(1) processes

Residuals:
Min 1Q Median 3Q Max

-16.360 -4.352 -0.128 4.979 10.763

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 6.7445 0.3943 17.1033 0.0000
y2 0.4083 0.0508 8.0352 0.0000

Regression Diagnostics:

R-Squared 0.2066
Adjusted R-Squared 0.2034
Durbin-Watson Stat 0.0328

Residual standard error: 6.217 on 248 degrees of freedom
F-statistic: 64.56 on 1 and 248 degrees of freedom, the p-value
is 3.797e-014

The estimated slope coefficient is 0.408 with a large t-statistic of 8.035
and the regression R2 is moderate at 0.201. The only suspicious statistic
is the very low Durbin-Watson statistic suggesting strong residual auto-
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correlation. These statistics are representative of the spurious regression
phenomenon with I(1) that are not cointegrated. If ∆y1t is regressed on
∆y2t the correct relationship between the two series is revealed

> summary(OLS(diff(y1)~diff(y2)))

Call:
OLS(formula = diff(y1) ~diff(y2))

Residuals:
Min 1Q Median 3Q Max

-3.6632 -0.7706 -0.0074 0.6983 2.7184

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0565 0.0669 -0.8447 0.3991
diff(y2) 0.0275 0.0642 0.4290 0.6683

Regression Diagnostics:

R-Squared 0.0007
Adjusted R-Squared -0.0033
Durbin-Watson Stat 1.9356

Residual standard error: 1.055 on 247 degrees of freedom
F-statistic: 0.184 on 1 and 247 degrees of freedom, the p-value
is 0.6683

Similar results to those above occur if cov(ε1t, ε2t) 6= 0. The levels re-
gression remains spurious (no real long-run common movement in levels),
but the differences regression will reflect the non-zero contemporaneous
correlation between ∆y1t and ∆y2t.

Statistical Implications of Spurious Regression

Let Yt = (y1t, . . . , ynt)
0 denote an (n×1) vector of I(1) time series that are

not cointegrated. Using the partition Yt = (y1t,Y
0
2t)

0, consider the least
squares regression of y1t on Y2t giving the fitted model

y1t = β̂
0
2Y2t + ût (12.1)

Since y1t is not cointegrated with Y2t (12.1) is a spurious regression and
the true value of β2 is zero. The following results about the behavior of β̂2
in the spurious regression (12.1) are due to Phillips (1986):

• β̂2 does not converge in probability to zero but instead converges in
distribution to a non-normal random variable not necessarily centered
at zero. This is the spurious regression phenomenon.
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• The usual OLS t-statistics for testing that the elements of β2 are zero
diverge to ±∞ as T →∞. Hence, with a large enough sample it will
appear that Yt is cointegrated when it is not if the usual asymptotic
normal inference is used.

• The usual R2 from the regression converges to unity as T → ∞ so
that the model will appear to fit well even though it is misspecified.

• Regression with I(1) data only makes sense when the data are coin-
tegrated.

12.2.2 Cointegration

Let Yt = (y1t, . . . , ynt)
0 denote an (n× 1) vector of I(1) time series. Yt is

cointegrated if there exists an (n× 1) vector β = (β1, . . . , βn)0 such that

β0Yt = β1y1t + · · ·+ βnynt ∼ I(0) (12.2)

In words, the nonstationary time series in Yt are cointegrated if there is
a linear combination of them that is stationary or I(0). If some elements
of β are equal to zero then only the subset of the time series in Yt with
non-zero coefficients is cointegrated. The linear combination β0Yt is often
motivated by economic theory and referred to as a long-run equilibrium
relationship. The intuition is that I(1) time series with a long-run equilib-
rium relationship cannot drift too far apart from the equilibrium because
economic forces will act to restore the equilibrium relationship.

Normalization

The cointegration vector β in (12.2) is not unique since for any scalar c
the linear combination cβ0Yt = β∗0Yt ∼ I(0). Hence, some normalization
assumption is required to uniquely identify β. A typical normalization is

β = (1,−β2, . . . ,−βn)0

so that the cointegration relationship may be expressed as

β0Yt = y1t − β2y2t − · · ·− βnynt ∼ I(0)

or
y1t = β2y2t + · · ·+ βnynt + ut (12.3)

where ut ∼ I(0). In (12.3), the error term ut is often referred to as the
disequilibrium error or the cointegrating residual. In long-run equilibrium,
the disequilibrium error ut is zero and the long-run equilibrium relationship
is

y1t = β2y2t + · · ·+ βnynt
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Multiple Cointegrating Relationships

If the (n×1) vectorYt is cointegrated there may be 0 < r < n linearly inde-
pendent cointegrating vectors. For example, let n = 3 and suppose there are
r = 2 cointegrating vectors β1 = (β11, β12, β13)

0 and β2 = (β21, β22, β23)0.
Then β01Yt = β11y1t + β12y2t + β13y3t ∼ I(0), β02Yt = β21y1t + β22y2t +
β23y3t ∼ I(0) and the (3× 2) matrix

B0 =
µ
β01
β02

¶
=

µ
β11 β12 β13
β21 β22 β33

¶
forms a basis for the space of cointegrating vectors. The linearly indepen-
dent vectors β1 and β2 in the cointegrating basis B are not unique unless
some normalization assumptions are made. Furthermore, any linear combi-
nation of β1 and β2, e.g. β3 = c1β1 + c2β2 where c1 and c2 are constants,
is also a cointegrating vector.

Examples of Cointegration and Common Trends in Economics and
Finance

Cointegration naturally arises in economics and finance. In economics, coin-
tegration is most often associated with economic theories that imply equi-
librium relationships between time series variables. The permanent income
model implies cointegration between consumption and income, with con-
sumption being the common trend. Money demand models imply cointe-
gration between money, income, prices and interest rates. Growth theory
models imply cointegration between income, consumption and investment,
with productivity being the common trend. Purchasing power parity im-
plies cointegration between the nominal exchange rate and foreign and
domestic prices. Covered interest rate parity implies cointegration between
forward and spot exchange rates. The Fisher equation implies cointegration
between nominal interest rates and inflation. The expectations hypothesis
of the term structure implies cointegration between nominal interest rates
at different maturities. The equilibrium relationships implied by these eco-
nomic theories are referred to as long-run equilibrium relationships, because
the economic forces that act in response to deviations from equilibriium
may take a long time to restore equilibrium. As a result, cointegration
is modeled using long spans of low frequency time series data measured
monthly, quarterly or annually.
In finance, cointegration may be a high frequency relationship or a low

frequency relationship. Cointegration at a high frequency is motivated by
arbitrage arguments. The Law of One Price implies that identical assets
must sell for the same price to avoid arbitrage opportunities. This implies
cointegration between the prices of the same asset trading on different
markets, for example. Similar arbitrage arguments imply cointegration be-
tween spot and futures prices, and spot and forward prices, and bid and
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ask prices. Here the terminology long-run equilibrium relationship is some-
what misleading because the economic forces acting to eliminate arbitrage
opportunities work very quickly. Cointegration is appropriately modeled
using short spans of high frequency data in seconds, minutes, hours or
days. Cointegration at a low frequency is motivated by economic equilib-
rium theories linking assets prices or expected returns to fundamentals. For
example, the present value model of stock prices states that a stock’s price
is an expected discounted present value of its expected future dividends or
earnings. This links the behavior of stock prices at low frequencies to the
behavior of dividends or earnings. In this case, cointegration is modeled
using low frequency data and is used to explain the long-run behavior of
stock prices or expected returns.

12.2.3 Cointegration and Common Trends

If the (n × 1) vector time series Yt is cointegrated with 0 < r < n coin-
tegrating vectors then there are n − r common I(1) stochastic trends.
To illustrate the duality between cointegration and common trends, let
Yt = (y1t, y2t)

0 ∼ I(1) and εt = (ε1t, ε2t, ε3t)0 ∼ I(0) and suppose that Yt

is cointegrated with cointegrating vector β = (1,−β2)0. This cointegration
relationship may be represented as

y1t = β2

tX
s=1

ε1s + ε3t

y2t =
tX

s=1

ε1s + ε2t

The common stochastic trend is
Pt

s=1 ε1s. Notice that the cointegrating
relationship annihilates the common stochastic trend:

β0Yt = β2

tX
s=1

ε1s + ε3t − β2

Ã
tX

s=1

ε1s + ε2t

!
= ε3t − β2ε2t ∼ I(0).

12.2.4 Simulating Cointegrated Systems

Cointegrated systems may be conveniently simulated using Phillips’ (1991)
triangular representation. For example, consider a bivariate cointegrated
system for Yt = (y1t, y2t)

0 with cointegrating vector β = (1,−β2)0. A
triangular representation has the form

y1t = β2y2t + ut, where ut ∼ I(0) (12.4)

y2t = y2t−1 + vt, where vt ∼ I(0) (12.5)
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The first equation describes the long-run equilibrium relationship with an
I(0) disequilibrium error ut. The second equation specifies y2t as the com-
mon stochastic trend with innovation vt:

y2t = y20 +
tX

j=1

vj .

In general, the innovations ut and vt may be contemporaneously and serially
correlated. The time series structure of these innovations characterizes the
short-run dynamics of the cointegrated system. The system (12.4)-(12.5)
with β2 = 1, for example, might be used to model the behavior of the
logarithm of spot and forward prices, spot and futures prices or stock prices
and dividends.

Example 70 Simulated bivariate cointegrated system

Consider simulating T = 250 observations from the system (12.4)-(12.5)
using β = (1,−1)0, ut = 0.75ut−1 + εt, εt ∼ iid N(0, (0.5)2) and vt ∼ iid
N(0, (0.5)2). The S-PLUS code is

> set.seed(432)
> e = rmvnorm(250, mean=rep(0,2), sd=c(0.5,0.5))
> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])
> y2 = cumsum(e[,2])
> y1 = y2 + u.ar1
> par(mfrow=c(2,1))
> tsplot(y1, y2, lty=c(1,3),
+ main="Simulated bivariate cointegrated system",
+ sub="1 cointegrating vector, 1 common trend")
> legend(0, 7, legend=c("y1","y2"), lty=c(1,3))
> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.2 shows the simulated data for y1t and y2t along with the cointe-
grating residual ut = y1t − y2t. Since y1t and y2t share a common stochas-
tic trend they follow each other closely. The impulse response function for
ut may be used to determine the speed of adjustment to long-run equi-
librium. Since ut is an AR(1) with φ = 0.75 the half life of a shock is
ln(0.5)/ ln(0.75) = 2.4 time periods.
Next, consider a trivariate cointegrated system for Yt = (y1t, y2t, y3t)

0.
With a trivariate system there may be one or two cointegrating vectors.
With one cointegrating vector there are two common stochastic trends and
with two cointegrating vectors there is one common trend. A triangular
representation with one cointegrating vector β = (1,−β2,−β3)0 and two
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Simulated bivariate cointegrated system
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FIGURE 12.2. Simulated bivariate cointegrated system with β = (1,−1)0

stochastic trends is

y1t = β2y2t + β3y3t + ut, where ut ∼ I(0) (12.6)

y2t = y2t−1 + vt, where vt ∼ I(0) (12.7)

y3t = y3t−1 + wt, where wt ∼ I(0) (12.8)

The first equation describes the long-run equilibrium and the second and
third equations specify the common stochastic trends. An example of a
trivariate cointegrated system with one cointegrating vector is a system of
nominal exchange rates, home country price indices and foreign country
price indices. A cointegrating vector β = (1,−1,−1)0 implies that the real
exchange rate is stationary.

Example 71 Simulated trivariate cointegrated system with 1 cointegrating
vector

The S-PLUS code for simulating T = 250 observation from (12.6)-(12.8)
with β = (1,−0.5,−0.5)0, ut = 0.75ut−1+εt, εt ∼ iid N(0, (0.5)2), vt ∼ iid
N(0, (0.5)2) and wt ∼ iid N(0, (0.5)2) is

> set.seed(573)
> e = rmvnorm(250, mean=rep(0,3), sd=c(0.5,0.5,0.5))
> u1.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])
> y2 = cumsum(e[,2])
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Simulated trivariate cointegrated system
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FIGURE 12.3. Simulated trivariate cointegrated system with one cointegrating
vector β = (1,−0.5,−0.5)0 and two stochastic trends

> y3 = cumsum(e[,3])
> y1 = 0.5*y2 + 0.5*y3 + u1.ar1
> par(mfrow=c(2,1))
> tsplot(y1, y2, y3, lty=c(1,3,4),
+ main="Simulated trivariate cointegrated system",
+ sub="1 cointegrating vector, 2 common trends")
> legend(0, 12, legend=c("y1","y2","y3"), lty=c(1,3,4))
> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.3 illustrates the simulated data. Here, y2t and y3t are the two
independent common trends and y1t = 0.5y2t + 0.5y3t + ut is the average
of the two trends plus an AR(1) residual.
Finally, consider a trivariate cointegrated system with two cointegrat-

ing vectors and one common stochastic trend. A triangular representa-
tion for this system with cointegrating vectors β1 = (1, 0,−β13)0 and
β2 = (0, 1,−β23)0 is

y1t = β13y3t + ut, where ut ∼ I(0) (12.9)

y2t = β23y3t + vt, where vt ∼ I(0) (12.10)

y3t = y3t−1 + wt, where wt ∼ I(0) (12.11)

Here the first two equations describe two long-run equilibrium relations
and the third equation gives the common stochastic trend. An example in
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finance of such a system is the term structure of interest rates where y3
represents the short rate and y1 and y2 represent two different long rates.
The cointegrating relationships would indicate that the spreads between
the long and short rates are stationary.

Example 72 Simulated trivariate cointegrated system with 2 cointegrating
vectors

The S-PLUS code for simulating T = 250 observation from (12.9)-(12.11)
with β1 = (1, 0,−1)0, β2 = (0, 1,−1)0, ut = 0.75ut−1 + εt, εt ∼ iid
N(0, (0.5)2), vt = 0.75vt−1 + ηt, ηt ∼ iid N(0, (0.5)2) and wt ∼ iid
N(0, (0.5)2) is

> set.seed(573)
> e = rmvnorm(250,mean=rep(0,3), sd=c(0.5,0.5,0.5))
> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])
> v.ar1 = arima.sim(model=list(ar=0.75), innov=e[,2])
> y3 = cumsum(e[,3])
> y1 = y3 + u.ar1
> y2 = y3 + v.ar1
> par(mfrow=c(2,1))
> tsplot(y1, y2, y3, lty=c(1,3,4),
+ main="Simulated trivariate cointegrated system",
+ sub="2 cointegrating vectors, 1 common trend")
> legend(0, 10, legend=c("y1","y2","y3"), lty=c(1,3,4))
> tsplot(u.ar1, v.ar1, lty=c(1,3),
+ main="Cointegrated residuals")
> legend(0, -1, legend=c("u","v"), lty=c(1,3))

12.2.5 Cointegration and Error Correction Models

Consider a bivariate I(1) vector Yt = (y1t, y2t)
0 and assume that Yt is

cointegrated with cointegrating vector β = (1,−β2)0 so that β0Yt = y1t −
β2y2t is I(0). In an extremely influential and important paper, Engle and
Granger (1987) showed that cointegration implies the existence of an error
correction model (ECM) of the form

∆y1t = c1 + α1(y1t−1 − β2y2t−1) (12.12)

+
X
j

ψj11∆y1t−j +
X
j

ψj12∆y2t−j + ε1t

∆y2t = c2 + α2(y1t−1 − β2y2t−1) (12.13)

+
X
j

ψj21∆y1t−j +
X
j

ψ222∆y2t−j + ε2t

that describes the dynamic behavior of y1t and y2t. The ECM links the
long-run equilibrium relationship implied by cointegration with the short-
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Simulated trivariate cointegrated system
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FIGURE 12.4. Simulated trivatiate cointegrated system with two cointegrating
vectors β1 = (1, 0,−1)0, β2 = (0, 1,−1)0 and one common trend

run dynamic adjustment mechanism that describes how the variables react
when they move out of long-run equilibrium. This ECM makes the concept
of cointegration useful for modeling financial time series.

Example 73 Bivariate ECM for stock prices and dividends

As an example of an ECM, let st denote the log of stock prices and dt
denote the log of dividends and assume that Yt = (st, dt)

0 is I(1). If the
log dividend-price ratio is I(0) then the logs of stock prices and dividends
are cointegrated with β = (1,−1)0. That is, the long-run equilibrium is

dt = st + µ+ ut

where µ is the mean of the log dividend-price ratio, and ut is an I(0) random
variable representing the dynamic behavior of the log dividend-price ratio
(disequilibrium error). Suppose the ECM has the form

∆st = cs + αs(dt−1 − st−1 − µ) + εst

∆dt = cd + αd(dt−1 − st−1 − µ) + εdt

where cs > 0 and cd > 0. The first equation relates the growth rate of
dividends to the lagged disequilibrium error dt−1−st−1−µ, and the second
equation relates the growth rate of stock prices to the lagged disequilibrium
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as well. The reactions of st and dt to the disequilibrium error are captured
by the adjustment coefficients αs and αd.
Consider the special case of (12.12)-(12.13) where αd = 0 and αs = 0.5.

The VECM equations become

∆st = cs + 0.5(dt−1 − st−1 − µ) + εst,

∆dt = cd + εdt.

so that only st responds to the lagged disequilibrium error. Notice that
E[∆st|Yt−1] = cs + 0.5(dt−1 − st−1 − µ) and E[∆dt|Yt−1] = cd. Consider
three situations:

1. dt−1−st−1−µ = 0. Then E[∆st|Yt−1] = cs and E[∆dt|Yt−1] = cd, so
that cs and cd represent the growth rates of stock prices and dividends
in long-run equilibrium.

2. dt−1− st−1−µ > 0. Then E[∆st|Yt−1] = cs+0.5(dt−1− st−1−µ) >
cs. Here the dividend yield has increased above its long-run mean
(positive disequilibrium error) and the ECM predicts that st will grow
faster than its long-run rate to restore the dividend yield to its long-
run mean. Notice that the magnitude of the adjustment coefficient
αs = 0.5 controls the speed at which st responds to the disequilibrium
error.

3. dt−1− st−1−µ < 0. Then E[∆st|Yt−1] = cs+0.5(dt−1− st−1−µ) <
cs. Here the dividend yield has decreased below its long-run mean
(negative disequilibrium error) and the ECM predicts that st will
grow more slowly than its long-run rate to restore the dividend yield
to its long-run mean.

In Case 1, there is no expected adjustment since the model was in long-run
equilibrium in the previous period. In Case 2, the model was above long-
run equilibrium last period so the expected adjustment in st is downward
toward equilibrium. In Case 3, the model was below long-run equilibrium
last period and so the expected adjustment is upward toward the equilib-
rium. This discussion illustrates why the model is called an error correction
model. When the variables are out of long-run equilibrium, there are eco-
nomic forces, captured by the adjustment coefficients, that push the model
back to long-run equilibrium. The speed of adjustment toward equilibrium
is determined by the magnitude of αs. In the present example, αs = 0.5
which implies that roughly one half of the disequilibrium error is corrected
in one time period. If αs = 1 then the entire disequilibrium is corrected in
one period. If αs = 1.5 then the correction overshoots the long-run equi-
librium.
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12.3 Residual-Based Tests for Cointegration

Let the (n×1) vectorYt be I(1). Recall,Yt is cointegrated with 0 < r < n
cointegrating vectors if there exists an (r × n) matrix B0 such that

B0Yt =

 β01Yt

...
β0rYt

 =

 u1t
...
urt

 ∼ I(0)

Testing for cointegration may be thought of as testing for the existence
of long-run equilibria among the elements of Yt. Cointegration tests cover
two situations:

• There is at most one cointegrating vector

• There are possibly 0 ≤ r < n cointegrating vectors.

The first case was originally considered by Engle and Granger (1986) and
they developed a simple two-step residual-based testing procedure based
on regression techniques. The second case was originally considered by Jo-
hansen (1988) who developed a sophisticated sequential procedure for de-
termining the existence of cointegration and for determining the number of
cointegrating relationships based on maximum likelihood techniques. This
section explains Engle and Granger’s two-step procedure. Johansen’s more
general procedure will be discussed later on.
Engle and Granger’s two-step procedure for determining if the (n × 1)

vector β is a cointegrating vector is as follows:

• Form the cointegrating residual β0Yt = ut

• Perform a unit root test on ut to determine if it is I(0).

The null hypothesis in the Engle-Granger procedure is no-cointegration and
the alternative is cointegration. There are two cases to consider. In the first
case, the proposed cointegrating vector β is pre-specified (not estimated).
For example, economic theory may imply specific values for the elements
in β such as β = (1,−1)0. The cointegrating residual is then readily con-
structed using the prespecified cointegrating vector. In the second case, the
proposed cointegrating vector is estimated from the data and an estimate
of the cointegrating residual β̂

0
Yt = ût is formed. Tests for cointegration

using a pre-specified cointegrating vector are generally much more powerful
than tests employing an estimated vector.

12.3.1 Testing for Cointegration when the Cointegrating
Vector is Pre-specified

Let Yt denote an (n× 1) vector of I(1) time series, let β denote an (n× 1)
prespecified cointegrating vector and let ut = β0Yt denote the prespecified
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cointegrating residual. The hypotheses to be tested are

H0 : ut = β0Yt ∼ I(1) (no cointegration) (12.14)

H1 : ut = β0Yt ∼ I(0) (cointegration)

Any unit root test statistic may be used to evaluate the above hypotheses.
The most popular choices are the ADF and PP statistics. Cointegration is
found if the unit root test rejects the no-cointegration null. It should be kept
in mind, however, that the cointegrating residual may include deterministic
terms (constant or trend) and the unit root tests should account for these
terms accordingly. See chapter four for details about the application of unit
root tests.

Example 74 Testing for cointegration between spot and forward exchange
rates using a known cointegrating vector

In international finance, the covered interest rate parity arbitrage re-
lationship states that the difference between the logarithm of spot and
forward exchange rates is equal to the difference between nominal domes-
tic and foreign interest rates. It seems reasonable to believe that interest
rate spreads are I(0) which implies that spot and forward rates are coin-
tegrated with cointegrating vector β = (1,−1)0. To illustrate, consider the
log monthly spot, st, and 30 day forward, ft, exchange rates between the
US and Canada over the period February, 1976 through June, 1996 taken
from the S+FinMetrics “timeSeries” object lexrates.dat

> uscn.s = lexrates.dat[,"USCNS"]
> uscn.s@title = "Log of US/CA spot exchange rate"
> uscn.f = lexrates.dat[,"USCNF"]
> uscn.f@title = "Log of US/CA 30-day forward exchange rate"
> u = uscn.s - uscn.f
> colIds(u) = "USCNID"
> u@title = "US/CA 30-day interest rate differential"

The interest rate differential is constructed using the pre-specified cointe-
grating vector β = (1,−1)0 as ut = st−ft. The spot and forward exchange
rates and interest rate differential are illustrated in Figure 12.5. Visually,
the spot and forward exchange rates clearly share a common trend and the
interest rate differential appears to be I(0). In addition, there is no clear de-
terministic trend behavior in the exchange rates. The S+FinMetrics func-
tion unitroot may be used to test the null hypothesis that st and ft are
not cointegrated (ut ∼ I(1)). The ADF t-test based on 11 lags and a con-
stant in the test regression leads to the rejection at the 5% level of the
hypothesis that st and ft are not cointegrated with cointegrating vector
β = (1,−1)0 :

> unitroot(u, trend="c", method="adf", lags=11)
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FIGURE 12.5. Log of US/CA spot and 30-day exchange rates and 30-day interest
rate differential

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t-test

Test Statistic: -2.881
P-value: 0.04914

Coefficients:
lag1 lag2 lag3 lag4 lag5 lag6 lag7

-0.1464 -0.1171 -0.0702 -0.1008 -0.1234 -0.1940 0.0128

lag8 lag9 lag10 lag11 constant
-0.1235 0.0550 0.2106 -0.1382 0.0002

Degrees of freedom: 234 total; 222 residual
Time period: from Jan 1977 to Jun 1996
Residual standard error: 8.595e-4
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12.3.2 Testing for Cointegration when the Cointegrating
Vector is Estimated

Let Yt denote an (n × 1) vector of I(1) time series and let β denote an
(n × 1) unknown cointegrating vector. The hypotheses to be tested are
given in (12.14). Since β is unknown, to use the Engle-Granger procedure
it must be first estimated from the data. Before β can be estimated some
normalization assumption must be made to uniquely identify it. A common
normalization is to specify the first element inYt as the dependent variable
and the rest as the explanatory variables. Then Yt = (y1t,Y

0
2t)

0 where
Y2t = (y2t, . . . , ynt)

0 is an ((n− 1)× 1) vector and the cointegrating vector
is normalized as β = (1,−β02)0. Engle and Granger propose estimating the
normalized cointegrating vector β2 by least squares from the regression

y1t = c+ β02Y2t + ut (12.15)

and testing the no-cointegration hypothesis (12.14) with a unit root test
using the estimated cointegrating residual

ût = y1t − ĉ− β̂2Y2t (12.16)

where ĉ and β̂2 are the least squares estimates of c and β2. The unit root
test regression in this case is without deterministic terms (constant or con-
stant and trend). Phillips and Ouliaris (1990) show that ADF and PP unit
root tests (t-tests and normalized bias) applied to the estimated cointegrat-
ing residual (12.16) do not have the usual Dickey-Fuller distributions under
the null hypothesis (12.14) of no-cointegration. Instead, due to the spurious
regression phenomenon under the null hypothesis (12.14), the distribution
of the ADF and PP unit root tests have asymptotic distributions that are
functions of Wiener processes that depend on the deterministic terms in
the regression (12.15) used to estimate β2 and the number of variables,
n− 1, in Y2t. These distributions are known as the Phillips-Ouliaris (PO)
distributions, and are described in Phillips and Ouliaris (1990). To further
complicate matters, Hansen (1992) showed the appropriate PO distribu-
tions of the ADF and PP unit root tests applied to the residuals (12.16)
also depend on the trend behavior of y1t and Y2t as follows:

Case I: Y2t and y1t are both I(1) without drift. The ADF and PP unit root
test statistics follow the PO distributions, adjusted for a constant,
with dimension parameter n− 1.

Case II: Y2t is I(1) with drift and y1t may or may not be I(1) with drift. The
ADF and PP unit root test statistics follow the PO distributions,
adjusted for a constant and trend, with dimension parameter n− 2.
If n− 2 = 0 then the ADF and PP unit root test statistics follow the
DF distributions adjusted for a constant and trend.
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Case III: Y2t is I(1) without drift and y1t is I(1) with drift. In this case, β2
should be estimated from the regression

y1t = c+ δt+ β02Y2t + ut (12.17)

The resulting ADF and PP unit root test statistics on the residuals
from (12.17) follow the PO distributions, adjusted for a constant and
trend, with dimension parameter n− 1.

Computing Quantiles and P-values from the Phillips-Ouliaris
Distributions Using the S+FinMetrics Functions pcoint and qcoint

The S+FinMetrics functions qcoint and pcoint, based on the response
surface methodology of MacKinnon (1996), may be used to compute quan-
tiles and p-values from the PO distributions. For example, to compute the
10%, 5% and 1% quantiles from the PO distribution for the ADF t-statistic,
adjusted for a constant, with n− 1 = 3 and a sample size T = 100 use
> qcoint(c(0.1,0.05,0.01), n.sample=100, n.series=4,
+ trend="c", statistic="t")
[1] -3.8945 -4.2095 -4.8274

Notice that the argument n.series represents the total number of variables
n. To adjust the PO distributions for a constant and trend set trend="ct".
To compute the PO distribution for the ADF normalized bias statistic
set statistic="n". The quantiles from the PO distributions can be very
different from the quantiles from the DF distributions, especially if n−1 is
large. To illustrate, the 10%, 5% and 1% quantiles from the DF distribution
for the ADF t-statistic with a sample size T = 100 are

> qunitroot(c(0.1,0.05,0.01), n.sample=100,
+ trend="c", statistic="t")
[1] -2.5824 -2.8906 -3.4970

The following examples illustrate testing for cointegration using an esti-
mated cointegrating vector.

Example 75 Testing for cointegration between spot and forward exchange
rates using an estimated cointegrating vector

Consider testing for cointegration between spot and forward exchange
rates assuming the cointegrating vector is not known using the same data as
in the previous example. Let Yt = (st, ft)

0 and normalize the cointegrating
vector on st so that β = (1,−β2)0. The normalized cointegrating coefficient
β2 is estimated by least squares from the regression

st = c+ β2ft + ut

giving the estimated cointegrating residual ût = st − ĉ − β̂2ft. The OLS
function in S+FinMetrics is used to estimate the above regression:
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> uscn.ts = seriesMerge(uscn.s,uscn.f)
> ols.fit = OLS(USCNS~USCNF,data=uscn.ts)
> ols.fit

Call:
OLS(formula = USCNS ~USCNF, data = uscn.ts)

Coefficients:
(Intercept) USCNF
0.0023 1.0041

Degrees of freedom: 245 total; 243 residual
Time period: from Feb 1976 to Jun 1996
Residual standard error: 0.001444

The estimated value of β2 is 1.004 and is almost identical to the value
β2 = 1 implied by covered interest parity. The estimated cointegrating
residual ût is extracted from the least squres fit using

> u.hat = residuals(ols.fit)

Next, the no-cointegration hypothesis (12.14) is tested using the ADF and
PP t-tests. Because the mean of ût is zero, the unitroot test regressions are
estimated without a constant or trend. The ADF t-statistic is computed
using 11 lags, as in the previous example, and the PP t-statistic is computed
using an automatic lag truncation parameter:

> adf.fit = unitroot(u.hat,trend="nc",method="adf",lags=11)
> adf.tstat = adf.fit$sval
> adf.tstat

lag1
-2.721

> pp.fit = unitroot(u.hat,trend="nc",method="pp")
> pp.tstat = pp.fit$sval
> pp.tstat

lag1
-5.416

The ADF t-statistic is −2.721 whereas the PP t-statistic is −5.416. Since
st and ft are both I(1) without drift, the 10%, 5% and 1% quantiles from
the approrpiate Phillips-Ouliaris distribution for the ADF t-statistic is

> qcoint(c(0.10,0.05,0.01),n.sample=nrow(uscn.s),n.series=2,
+ trend="c",statistic="t")
[1] -3.062 -3.361 -3.942
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The no-cointegration null hypothesis is not rejected at the 10% level using
the ADF t-statistic but is rejected at the 1% level using the PP t-statistic.
The p-values for the ADF and PP t-statistics are

> pcoint(adf.tstat, n.sample=nrow(uscn.s), n.series=2,
+ trend="c", statistic="t")
[1] 0.1957

> pcoint(pp.tstat, n.sample=nrow(uscn.s), n.series=2,
+ trend="c", statistic="t")
[1] 0.00003925

12.4 Regression-Based Estimates of Cointegrating
Vectors and Error Correction Models

12.4.1 Least Square Estimator

Least squares may be used to consistently estimate a normalized cointe-
grating vector. However, the asymptotic behavior of the least squares es-
timator is non-standard. The following results about the behavior of β̂2 if
Yt is cointegrated are due to Stock (1987) and Phillips (1991):

• T (β̂2−β2) converges in distribution to a non-normal random variable
not necessarily centered at zero.

• The least squares estimate β̂2 is consistent for β2 and converges to
β2 at rate T instead of the usual rate T 1/2. That is, β̂2 is super
consistent.

• β̂2 is consistent even if Y2t is correlated with ut so that there is no
asymptotic simultaneity bias.

• In general, the asymptotic distribution of T (β̂2 − β2) is asymptoti-
cally biased and non-normal. The usual OLS formula for computing
[avar(β̂2) is incorrect and so the usual OLS standard errors are not
correct.

• Even though the asymptotic bias goes to zero as T gets large β̂2 may
be substantially biased in small samples. The least squres estimator
is also not efficient.

The above results indicate that the least squares estimator of the coin-
tegrating vector β2 could be improved upon. A simple improvement is
suggested by Stock and Watson (1993).
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12.4.2 Stock and Watson’s Efficient Lead/Lag Estimator

Stock and Watson (1993) provide a very simple method for obtaining an
asymptotically efficient (equivalent to maximum likelihood) estimator for
the normalized cointegrating vector β2 as well as a valid formula for com-
puting its asymptotic variance2.
Let Yt = (y1t,Y

0
2t)

0 where Y2t = (y2t, . . . , ynt)
0 is an ((n−1)×1) vector

and let the cointegrating vector be normalized as β = (1,−β02)0. Stock and
Watson’s efficient estimation procedure is:

• Augment the cointegrating regression of y1t on Y2t with appropriate
deterministic terms Dt with p leads and lags of ∆Y2t

y1t = γ0Dt + β02Y2t +

pX
j=−p

ψ0j∆Y2t−j + ut (12.18)

= γ0Dt + β02Y2t +ψ0j+p∆Y2t+p + · · ·+ψ0j+1∆Y2t+1

+ψ00∆Y2t +ψ0j−1∆Y2t−1 + · · ·+ψ0j−p∆Y2t−p + ut

• Estimate the augmented regression by least squares. The resulting
estimator of β2 is called the dynamic OLS estimator and is denoted
β̂2,DOLS . It will be consistent, asymptotically normally distributed
and efficient (equivalent to mle) under certain assumptions (see Stock
and Watson (1993))

• Asymptotically valid standard errors for the individual elements of
β̂2,DOLS are given by the OLS standard errors from (12.18) multiplied
by the ratio Ã

σ̂2uclrv(ut)
!1/2

where σ̂2u is the OLS estimate of var(ut) and clrv(ut) is any consistent
estimate of the long-run variance of ut using the residuals ût from
(12.18). Alternatively, the Newey-West HAC standard errors may also
be used.

Example 76 DOLS estimation of cointegrating vector using exchange rate
data3

Let st denote the log of the monthly spot exchange rate between two
currencies at time t and let fkt denote the log of the forward exchange rate
at time t for delivery of foreign currency at time t + k. Under rational

2Hamilton (1994) chapter 19, and Hayashi (2000) chapter 10, give nice discussions of
the Stock and Watson procedure.

3This example is based on Zivot (2000).
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expectations and risk neutrality fkt is an unbiased predictor of st+k, the
spot exchange rate at time t+ k. That is

st+k = fkt + εt+k

where εt+k is a white noise error term. This is known as the forward
rate unbiasedness hypothesis (FRUH). Assuming that st and fkt are I(1)
the FRUH implies that st+k and fkt are cointegrated with cointegrat-
ing vector β = (1,−1)0. To illustrate, consider again the log monthly
spot, st, and one month forward, f1t , exchange rates between the US and
Canada over the period February 1976 through June 1996 taken from the
S+FinMetrics “timeSeries” object lexrates.dat.The cointegrating vec-
tor between st+1 and f1t is estimated using least squares and Stock and
Watson’s dynamic OLS estimator computed from (12.18) with y1t = st+1,
Dt = 1,Y2t = f1t and p = 3. The data for the DOLS regression equation
(12.18) are constucted as

> uscn.df = diff(uscn.f)
> colIds(uscn.df) = "D.USCNF"
> uscn.df.lags = tslag(uscn.df,-3:3,trim=T)
> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.df.lags)
> colIds(uscn.ts)
[1] "USCNS" "USCNF" "D.USCNF.lead3"
[4] "D.USCNF.lead2" "D.USCNF.lead1" "D.USCNF.lag0"
[7] "D.USCNF.lag1" "D.USCNF.lag2" "D.USCNF.lag3"

The least squares estimator of the normalized cointegrating coefficient β2
computed using the S+FinMetrics function OLS is

> summary(OLS(tslag(USCNS,-1)~USCNF,data=uscn.ts,na.rm=T))

Call:
OLS(formula = tslag(USCNS, -1) ~USCNF, data = uscn.ts,
na.rm = T)

Residuals:
Min 1Q Median 3Q Max

-0.0541 -0.0072 0.0006 0.0097 0.0343

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0048 0.0025 -1.9614 0.0510
USCNF 0.9767 0.0110 88.6166 0.0000

Regression Diagnostics:

R-Squared 0.9709
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Adjusted R-Squared 0.9708
Durbin-Watson Stat 2.1610

Residual standard error: 0.01425 on 235 degrees of freedom
Time period: from Jun 1976 to Feb 1996
F-statistic: 7853 on 1 and 235 degrees of freedom,
the p-value is 0

Notice that in the regression formula, tslag(USCN,-1) computes st+1. The
least squares estimate of β2 is 0.977 with an estimated standard error of
0.011 indicating that f1t underpredicts st+1. However, the usual formula
for computing the estimated standard error is incorrect and should not be
trusted.
The DOLS estimator of β2 based on (12.18) is computed using

> dols.fit = OLS(tslag(USCNS,-1)~USCNF +
+ D.USCNF.lead3+D.USCNF.lead2+D.USCNF.lead1 +
+ D.USCNF.lag0+D.USCNF.lag1+D.USCNF.lag2+D.USCNF.lag3,
+ data=uscn.ts,na.rm=T)

The Newey-West HAC standard errors for the estimated coefficients are
computed using summary with correction="nw"

> summary(dols.fit,correction="nw")
Call:
OLS(formula = tslag(USCNS, -1) ~USCNF + D.USCNF.lead3 +
D.USCNF.lead2 + D.USCNF.lead1 + D.USCNF.lag0 +
D.USCNF.lag1 + D.USCNF.lag2 + D.USCNF.lag3, data =
uscn.ts, na.rm = T)

Residuals:
Min 1Q Median 3Q Max

-0.0061 -0.0008 0.0000 0.0009 0.0039

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0023 0.0005 4.3948 0.0000
USCNF 1.0040 0.0019 531.8862 0.0000

D.USCNF.lead3 0.0114 0.0063 1.8043 0.0725
D.USCNF.lead2 0.0227 0.0068 3.3226 0.0010
D.USCNF.lead1 1.0145 0.0090 112.4060 0.0000
D.USCNF.lag0 0.0005 0.0073 0.0719 0.9427
D.USCNF.lag1 -0.0042 0.0061 -0.6856 0.4937
D.USCNF.lag2 -0.0056 0.0061 -0.9269 0.3549
D.USCNF.lag3 -0.0014 0.0045 -0.3091 0.7575

Regression Diagnostics:



450 12. Cointegration

R-Squared 0.9997
Adjusted R-Squared 0.9997
Durbin-Watson Stat 0.4461

Residual standard error: 0.001425 on 228 degrees of freedom
Time period: from Jun 1976 to Feb 1996
F-statistic: 101000 on 8 and 228 degrees of freedom,
the p-value is 0

The DOLS estimator of β2 is 1.004 with a very small estimated standard
error of 0.0019 and indicates that f1t is essentially an unbiased predictor of
the future spot rate st+1.

12.4.3 Estimating Error Correction Models by Least Squares

Consider a bivariate I(1) vectorYt = (y1t, y2t)
0 and assume thatYt is coin-

tegrated with cointegrating vector β = (1,−β2)0 so that β0Yt = y1t−β2y2t
is I(0). Suppose one has a consistent estimate β̂2 (by OLS or DOLS) of
the cointegrating coefficient and is interested in estimating the correspond-
ing error correction model (12.12) - (12.13) for ∆y1t and ∆y2t. Because β̂2
is super consistent it may be treated as known in the ECM, so that the
estimated disequilibrium error y1t − β̂2y2t may be treated like the known
disequilibrium error y1t − β2y2t. Since all variables in the ECM are I(0),
the two regression equations may be consistently estimated using ordinary
least squares (OLS). Alternatively, the ECM system may be estimated by
seemingly unrelated regressions (SUR) to increase efficiency if the number
of lags in the two equations are different.

Example 77 Estimation of error correction model for exchange rate data

Consider again the monthly log spot rate, st, and log forward rate, ft,
data between the U.S. and Canada. Earlier it was shown that st and ft are
cointegrated with an estimated cointegrating coefficient β̂2 = 1.004. Now
consider estimating an ECM of the form (12.12) - (12.13) by least squares
using the estimated disequilibrium error st−1.004 ·ft. In order to estimate
the ECM, the number of lags of ∆st and ∆ft needs to be determined. This
may be done using test statistics for the significance of the lagged terms
or model selection criteria like AIC or BIC. An initial estimation using one
lag of ∆st and ∆ft may be performed using

> u.hat = uscn.s - 1.004*uscn.f
> colIds(u.hat) = "U.HAT"
> uscn.ds = diff(uscn.s)
> colIds(uscn.ds) = "D.USCNS"
> uscn.df = diff(uscn.f)
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> colIds(uscn.df) = "D.USCNF"
> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.ds,uscn.df,u.hat)
> ecm.s.fit = OLS(D.USCNS~tslag(U.HAT)+tslag(D.USCNS)
+ +tslag(D.USCNF),data=uscn.ts,na.rm=T)
> ecm.f.fit = OLS(D.USCNF~tslag(U.HAT)+tslag(D.USCNS)+
+ tslag(D.USCNF),data=uscn.ts,na.rm=T)

The estimated coefficients from the fitted ECM are

> ecm.s.fit

Call:
OLS(formula = D.USCNS ~tslag(U.HAT) + tslag(D.USCNS) + tslag(
D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:
(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)
-0.0050 1.5621 1.2683 -1.3877

Degrees of freedom: 243 total; 239 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.013605

> ecm.f.fit

Call:
OLS(formula = D.USCNF ~tslag(U.HAT) + tslag(D.USCNS) + tslag(
D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:
(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)
-0.0054 1.7547 1.3595 -1.4702

Degrees of freedom: 243 total; 239 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.013646

12.5 VAR Models and Cointegration

The Granger representation theorem links cointegration to error correction
models. In a series of important papers and in a marvelous textbook, Soren
Johansen firmly roots cointegration and error correction models in a vector
autoregression framework. This section outlines Johansen’s approach to
cointegration modeling.
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12.5.1 The Cointegrated VAR

Consider the levels VAR(p) model for the (n× 1) vector Yt

Yt= ΦDt+Π1Yt−1+ · · ·+ΠpYt−p+εt, t = 1, . . . , T, (12.19)

where Dt contains deterministic terms (constant, trend, seasonal dummies
etc.). Recall, the VAR(p) model is stable if

det(In −Π1z − · · ·−Πpz
p) = 0 (12.20)

has all roots outside the complex unit circle. If (12.20) has a root on the
unit circle then some or all of the variables in Yt are I(1) and they may
also be cointegrated. Recall, Yt is cointegrated if there exists some linear
combination of the variables in Yt that is I(0). Suppose Yt is I(1) and
possibly cointegrated. Then the VAR representation (12.19) is not the most
suitable representation for analysis because the cointegrating relations are
not explicitly apparent. The cointegrating relations become apparent if
the levels VAR (12.19) is transformed to the vector error correction model
(VECM)

∆Yt = ΦDt+Πyt−1+Γ1∆yt−1+ · · ·+ Γp−1∆yt−p+1+εt (12.21)

where Π = Π1+ · · ·+Πp−In and Γk = −
Pp

j=k+1Πj , k = 1, . . . , p − 1.
The matrix Π is called the long-run impact matrix and Γk are the short-
run impact matrices. Notice that the VAR parametersΠi may be recovered
from the VECM parameters Π and Γk via

Π1 = Γ1+Π+ In, (12.22)

Πk = Γk−Γk−1, k = 2, . . . , p.

In the VECM (12.21), ∆Yt and its lags are I(0). The term ΠYt−1 is
the only one which includes potential I(1) variables and for ∆Yt to be
I(0) it must be the case that ΠYt−1 is also I(0). Therefore, ΠYt−1 must
contain the cointegrating relations if they exit. If the VAR(p) process has
unit roots then from (12.20) it is clear that Π is a singular matrix. If Π is
singular then it has reduced rank ; that is rank(Π) = r < n. There are two
cases to consider:

1. rank(Π) = 0. This implies that Π = 0 and Yt is I(1) and not cointe-
grated. The VECM (12.21) reduces to a VAR(p−1) in first differences

∆Yt= ΦDt+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt.

2. 0 < rank(Π) = r < n. This implies that Yt is I(1) with r linearly
independent cointegrating vectors and n−r common stochastic trends
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(unit roots)4. Since Π has rank r it can be written as the product

Π
(n×n)

= α
(n×r)

β
(r×n)

0

where α and β are (n × r) matrices with rank(α) = rank(β) = r.
The rows of β0 form a basis for the r cointegrating vectors and the
elements of α distribute the impact of the cointegrating vectors to
the evolution of ∆Yt. The VECM (12.21) becomes

∆Yt= ΦDt+αβ
0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

(12.23)
where β0Yt−1 ∼ I(0) since β0 is a matrix of cointegrating vectors.

It is important to recognize that the factorizationΠ = αβ0 is not unique
since for any r × r nonsingular matrix H we have

αβ0= αHH−1β0= (aH)(βH−10)0= a∗β∗0.

Hence the factorization Π = αβ0 only identifies the space spanned by the
cointegrating relations. To obtain unique values of α and β0 requires further
restrictions on the model.

Example 78 A Bivariate Cointegrated VAR(1) Model

Consider the bivariate VAR(1) model for Yt = (y1t, y2t)
0

Yt= Π1Yt−1+²t.

The VECM is
∆Yt= ΠYt−1+εt

where Π = Π1−I2. Assuming Yt is cointegrated there exists a 2 × 1 vec-
tor β = (β1, β2)

0 such that β0Yt = β1y1t + β2y2t is I(0). Using the
normalization β1 = 1 and β2 = −β the cointegrating relation becomes
β0Yt = y1t − βy2t. This normalization suggests the stochastic long-run
equilibrium relation

y1t = βy2t + ut

where ut is I(0) and represents the stochastic deviations from the long-run
equilibrium y1t = βy2t.
Since Yt is cointegrated with one cointegrating vector, rank(Π) = 1 and

can be decomposed as

Π = αβ0 =
µ

α1
α2

¶¡
1 −β

¢
=

µ
α1 −α1β
α2 −α2β

¶
.

4To see that Yt has n−r common stochastic trends we have to look at the Beveridge-
Nelson decomposition of the moving average representation of ∆Yt.
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The elements in the vector α are interpreted as speed of adjustment coef-
ficients. The cointegrated VECM for ∆Yt may be rewritten as

∆Yt= αβ0Yt−1+εt. (12.24)

Writing the VECM equation by equation gives

∆y1t = α1(y1t−1 − βy2t−1) + ε1t,

∆y2t = α2(y1t−1 − βy2t−1) + ε2t.

The first equation relates the change in y1t to the lagged disequilibrium
error β0Yt−1 = (y1t−1−βy2t−1) and the second equation relates the change
in ∆y2t to the lagged disequilibrium error as well. Notice that the reactions
of y1 and y2 to the disequilibrium errors are captured by the adjustment
coefficients α1 and α2.
The stability conditions for the bivariate VECM are related to the stabil-

ity conditions for the disequilibrium error β0Yt. By pre-multiplying (12.24)
by β0, it is straightforward to show that β0Yt follows an AR(1) process

β0Yt= (1+ β
0
α)β

0
Yt−1+β0εt

or

ut = φut−1 + vt

where ut = β0Yt, φ = 1+β
0α = 1+(α1−βα2) and vt = β0εt = u1t−βu2t.

The AR(1) model for ut is stable as long as |φ| = |1+ (α1−βα2)| < 1. For
example, suppose β = 1. Then the stability condition is |φ| = |1 + (α1 −
α2)| < 1 which is satisfied if α1−α2 < 0 and α1−α2 > −2. If α2 = 0 then
−2 < α1 < 0 is the required stability condition.

12.5.2 Johansen’s Methodology for Modeling Cointegration

The basic steps in Johansen’s methodology are:

• Specify and estimate a VAR(p) model for Yt.

• Construct likelihood ratio tests for the rank of Π to determine the
number of cointegrating vectors.

• If necessary, impose normalization and identifying restrictions on the
cointegrating vectors.

• Given the normalized cointegrating vectors estimate the resulting
cointegrated VECM by maximum likelihood.
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12.5.3 Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in (12.23) are restricted
to the form

ΦDt = µt= µ0+µ1t

If the deterministic terms are unrestricted then the time series in Yt may
exhibit quadratic trends and there may be a linear trend term in the coin-
tegrating relationships. Restricted versions of the trend parameters µ0 and
µ1 limit the trending nature of the series in Yt. The trend behavior of Yt

can be classified into five cases:

1. Model H2(r): µt = 0 (no constant). The restricted VECM is

∆Yt= αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

and all the series in Yt are I(1) without drift and the cointegrating
relations β0Yt have mean zero.

2. Model H∗1 (r): µt = µ0 = αρ0 (restricted constant). The restricted
VECM is

∆Yt= α(β0Yt−1 + ρ0)+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

the series in Yt are I(1) without drift and the cointegrating relations
β0Yt have non-zero means ρ0.

3. Model H1(r): µt= µ0 (unrestricted constant). The restricted VECM
is

∆Yt=µ0 +αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

the series in Yt are I(1) with drift vector µ0 and the cointegrating
relations β0Yt may have a non-zero mean.

4. ModelH∗(r): µt= µ0+αρ1t (restricted trend). The restricted VECM
is

∆Yt = µ0 +α(β0Yt−1 + ρ1t)

+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

the series in Yt are I(1) with drift vector µ0 and the cointegrating
relations β0Yt have a linear trend term ρ1t.

5. Model H(r): µt= µ0+µ1t (unrestricted constant and trend). The un-
restricted VECM is

∆Yt= µ0 + µ1t+αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

the series inYt are I(1) with a linear trend (quadratic trend in levels)
and the cointegrating relations β0Yt have a linear trend.
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FIGURE 12.6. Simulated Yt from bivariate cointegrated VECM for five trend
cases
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FIGURE 12.7. Simulated β0Yt from bivariate cointegrated VECM for five trend
cases
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Simulated data from the five trend cases for a bivariate cointegrated
VAR(1) model are illustrated in figures 12.6 and 12.7. Case I is not really
relevant for empirical work. The restricted contstant Case II is appropriate
for non-trending I(1) data like interest rates and exchange rates. The un-
restriced constant Case III is appropriate for trending I(1) data like asset
prices, macroeconomic aggregates (real GDP, consumption, employment
etc). The restricted trend case IV is also appropriate for trending I(1) as
in Case III. However, notice the deterministic trend in the cointegrating
residual in Case IV as opposed to the stationary residual in case III. Fi-
nally, the unrestricted trend Case V is appropriate for I(1) data with a
quadratic trend. An example might be nominal price data during times of
extreme inflation.

12.5.4 Likelihood Ratio Tests for the Number of Cointegrating
Vectors

The unrestricted cointegrated VECM (12.23) is denoted H(r). The I(1)
model H(r) can be formulated as the condition that the rank of Π is less
than or equal to r. This creates a nested set of models

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(n)

where H(0) represents the non-cointegrated VAR model with Π = 0 and
H(n) represents an unrestricted stationary VAR(p) model. This nested
formulation is convenient for developing a sequential procedure to test for
the number r of cointegrating relationships.
Since the rank of the long-run impact matrixΠ gives the number of coin-

tegrating relationships in Yt, Johansen formulates likelihood ratio (LR)
statistics for the number of cointegrating relationships as LR statistics for
determining the rank ofΠ. These tests are based on the estimated eigenval-
ues λ̂1 > λ̂2 > · · · > λ̂n of the matrix Π5 . These eigenvalues also happen to
equal the squared canonical correlations between ∆Yt and Yt−1 corrected
for lagged ∆Yt and Dt and so lie between 0 and 1. Recall, the rank of Π
is equal to the number of non-zero eigenvalues of Π.

Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

H0(r) : r = r0 vs. H1(r0) : r > r0

The LR statistic, called the trace statistic, is given by

LRtrace(r0) = −T
nX

i=r0+1

ln(1− λ̂i)

5The calculation of the eigenvalues λ̂i (i = 1, . . . , n) is described in the appendix.
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If rank(Π) = r0 then λ̂r0+1, . . . , λ̂n should all be close to zero and LRtrace(r0)

should be small. In contrast, if rank(Π) > r0 then some of λ̂r0+1, . . . , λ̂n
will be nonzero (but less than 1) and LRtrace(r0) should be large. The
asymptotic null distribution of LRtrace(r0) is not chi-square but instead
is a multivariate version of the Dickey-Fuller unit root distribution which
depends on the dimension n − r0 and the specification of the determinis-
tic terms. Critical values for this distribution are tabulated in Osterwald-
Lenum (1992) for the five trend cases discussed in the previous section for
n− r0 = 1, . . . , 10.

Sequential Procedure for Determining the Number of Cointegrating
Vectors

Johansen proposes a sequential testing procedure that consistently deter-
mines the number of cointegrating vectors. First test H0(r0 = 0) against
H1(r0 > 0). If this null is not rejected then it is concluded that there are
no cointegrating vectors among the n variables in Yt. If H0(r0 = 0) is
rejected then it is concluded that there is at least one cointegrating vector
and proceed to test H0(r0 = 1) against H1(r0 > 1). If this null is not re-
jected then it is concluded that there is only one cointegrating vector. If the
null is rejected then it is concluded that there is at least two cointegrating
vectors. The sequential procedure is continued until the null is not rejected.

Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

H0(r0) : r = r0 vs. H1(r0) : r0 = r0 + 1

The LR statistic, called the maximum eigenvalue statistic, is given by

LRmax(r0) = −T ln(1− λ̂r0+1)

As with the trace statistic, the asymptotic null distribution of LRmax(r0)
is not chi-square but instead is a complicated function of Brownian mo-
tion, which depends on the dimension n − r0 and the specification of the
deterministic terms. Critical values for this distribution are tabulated in
Osterwald-Lenum (1992) for the five trend cases discussed in the previous
section for n− r0 = 1, . . . , 10.

Finite Sample Correction to LR Tests

Reinsel and Ahn (1992) and Reimars (1992) have suggested that the LR
tests perform better in finite samples if the factor T − np is used instead
of T in the construction of the LR tests.
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12.5.5 Testing for the Number of Cointegrating Vectors Using
the S+FinMetrics Function coint

The Johansen LR tests for determining the number of cointegrating vec-
tors in multivariate time series may be computed using the S+FinMetrics
function coint. The function coint has arguments

> args(coint)
function(Y, X = NULL, lags = 1, trend = "c", save.VECM = T)

where Y is a matrix, data frame or “timeSeries” containing the I(1) vari-
ables in Yt, X is a numeric object representing exogenous variables to be
added to the VECM, lags denotes the number of lags in the VECM (one
less than the number of lags in the VAR representation), trend determines
the trend case specification, and save.VECM determines if the VECM in-
formation is to be saved. The result of coint is an object of class “coint”
for which there are print and summary methods. The use of coint is il-
lustrated with the following examples.

Example 79 Exchange rate data

Consider testing for the number of cointegrating relations among the log-
arithms of the monthly spot and forward exchange rates in the “timeSeries”
uscn.ts examined earlier. The first step is to determine the number of lags
to use in the VECM. Using the S+FinMetrics function VAR, the lag length
that minimizes the AIC with a maximum lag of 6 is p = 2 :

> var.fit = VAR(uscn.ts,max.ar=6,criterion="AIC")
> var.fit$ar.order
[1] 2

The lag length for the VECM is then p−1 = 1. Since the monthly exchange
rate data are not trending, the Johansen LR tests are computed assuming
the restricted constant case II:

> coint.rc = coint(uscn.ts,trend="rc",lags=1)
> class(coint.rc)
[1] "coint"
> coint.rc

Call:
coint(Y = uscn.ts, lags = 1, trend = "rc")

Trend Specification:
H1*(r): Restricted constant

Trace tests significant at the 5% level are flagged by ’ +’.
Trace tests significant at the 1% level are flagged by ’++’.
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Max Eigenvalue tests significant at the 5% level are flagged
by ’ *’.
Max Eigenvalue tests significant at the 1% level are flagged
by ’**’.

Tests for Cointegration Rank:
Eigenvalue Trace Stat 95% CV 99% CV Max Stat

H(0)++** 0.0970 32.4687 19.9600 24.6000 24.8012
H(1) 0.0311 7.6675 9.2400 12.9700 7.6675

95% CV 99% CV
H(0)++** 15.6700 20.2000
H(1) 9.2400 12.9700

Recall, the number of cointegrating vectors is equal to the number of non-
zero eigenvalues ofΠ. The two estimated eigenvalues are 0.0970 and 0.0311.
The first row in the table gives LRtrace(0) and LRmax(0) for testing the null
of r0 = 0 cointegrating vectors as well as the 95% and 99% quantiles of the
appropriate asymptotic distributions taken from the tables in Osterwald-
Lenum (1992). Both the trace and maximum eigenvalue statistics reject the
r0 = 0 null at the 1% level. The second row in the table gives LRtrace(1)
and LRmax(1) for testing the null of r0 = 1. Neither statistic rejects the
null that r0 = 1.
The summary method gives the same output as print as well as the un-

normalized cointegrating vectors, adjustment coefficients and the estimate
of Π.

12.5.6 Maximum Likelihood Estimation of the Cointegrated
VECM

If it is found that rank(Π) = r, 0 < r < n, then the cointegrated VECM
(12.23) becomes a reduced rank multivariate regression. The details of the
maximum likelihood estimation of (12.23) under the reduced rank restric-
tion rank(Π) = r is briefly outlined in the Appendix to this chapter. There
it is shown that

β̂mle = (v̂1, . . . , v̂r), (12.25)

where v̂i are the eigenvectors associated with the eigenvalues λ̂i, and that
the mles of the remaining parameters are obtained by multivariate least
squares estimation of (12.23) with β replaced by β̂mle.

Normalized Estimates

Recall, the factorization Π = αβ0 is not unique and so the columns of
β̂mle in (12.25) may be interpreted as linear combinations of the under-
lying cointegrating relations. For interpretations, it is often convenient to
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normalize or identify the cointegrating vectors by choosing a specific coor-
dinate system in which to express the variables. One arbitrary way to do
this, suggested by Johansen, is to solve for the triangular representation of
the cointegrated system. The details of this normalization process is given
in the appendix. The resulting normalized cointegrating vector is denoted
β̂c,mle. The normalization of the mle for β to β̂c,mle will affect the mle of
α but not the mles of the other parameters in the VECM.
It must be emphasized that it is not possible to estimate the individual

elements of β without a specific normalization or identification scheme
and that the normalization based on Phillips’ triangular representation is
arbitrary and the resulting normalized cointegrating vectors (12.29) may
not have any economic meaning. Only in the case r = 1 can a unique
cointegrating vector be found after normalization.

Example 80 Unnormalzed MLEs for exchange rate, term structure and
stock index data

The unnormalized cointegrating vector assuming r0 = 1 may also be
extracted directly from the “coint” object:

> coint.rc$coint.vectors[1,]
USCNS USCNF Intercept*
-782.9 786.6 1.913

Notice in the case of a restricted constant, the last coefficient in β̂mle is an
estimate of the restricted constant. Normalizing on USCNS by dividing each
element in β̂mle by −782.9 gives

> coint.rc$coint.vectors[1,]/
+ as.numeric(-coint.rc$coint.vectors[1,1])
USCNS USCNF Intercept*

-1 1.006 0.002738

The normalized mles, β̂c,mle = (−1, 1.006)0 and µ̂c = 0.0027 are almost
identical to the least squares estimates β̂ = (1,−1.004)0 and µ̂ = 0.0023
found earlier.

Asymptotic Distributions

Let β̂c,mle denote the mle of the normalized cointegrating matrix βc. Jo-
hansen (1995) shows that T (vec(β̂c,mle)−vec(βc)) is asymptotically (mixed)
normally distributed and that a consistent estimate of avar(vec(β̂c,mle)) is
given by

[avar(vec(β̂c,mle)) (12.26)

= T−1(In−β̂c,mlec
0)S−111 (In−β̂c,mlec

0)0 ⊗
³
α̂0c,mleΩ̂

−1α̂c,mle

´−1
(12.27)
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Notice that this result implies that β̂c,mle
p→ βc at rate T instead of the

usual rate T 1/2. Hence, like the least squares estimator, β̂c,mle is super con-
sistent. However, unlike the least squares estimator, asymptotically valid
standard errors may be compute using the square root of the diagonal
elements of (12.26).

12.5.7 Maximum Likelihood Estimation of the Cointegrated
VECM Using the S+FinMetrics Function VECM

Once the number of cointegrating vectors is determined from the coint
function, the maximum likelihood estimates of the full VECM may be
obtained using the S+FinMetrics function VECM. The arguments expected
by VECM are

> args(VECM)
function(test, coint.rank = 1, unbiased = T, levels = F)

where test is a “coint” object, usually produced by a call to the func-
tion coint, and coint.rank is the rank of Π (number of cointegrating
vectors). The optional argument levels determines if the VECM is to be
fit to the levels Yt or to the first differences ∆Yt, and determines if fore-
casts are to be computed for the levels or the first differences. The result
of VECM is an object of class “VECM”, which inherits from “VAR” for which
there are print, summary, plot, cpredict and predict methods and ex-
tractor functions coef, fitted, residuals and vcov. Since “VECM” objects
inherit from “VAR” objects, most of the method and extractor functions for
“VECM” objects work similarly to those for “VAR” objects. The use of VECM
is illustrated with the following example.

Example 81 Maximum likelihood estimation of the VECM for exchange
rate data

Using the “coint” object coint.rc computed from the VAR(2) model
with a restricted constant, the VECM(1) with a restricted constant for the
exchange rate data is computed using

> vecm.fit = VECM(coint.rc)
> class(vecm.fit)
[1] "VECM"
> inherits(vecm.fit,"VAR")
[1] T

The print method gives the basic output

> vecm.fit

Call:
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VECM(test = coint.rc)

Cointegrating Vectors:
coint.1

USCNS 1.0000
USCNF -1.0058

Intercept* -0.0027

VECM Coefficients:
USCNS USCNF

coint.1 1.7771 1.9610
USCNS.lag1 1.1696 1.2627
USCNF.lag1 -1.2832 -1.3679

Std. Errors of Residuals:
USCNS USCNF
0.0135 0.0136

Information Criteria:
logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual
Degree of freedom: 243 240
Time period: from Apr 1976 to Jun 1996

The print method output is similar to that created by the VAR function.
The output labeled Cointegrating Vectors: gives the estimated cointe-
grating vector coefficients normalized on the first variable in the specifica-
tion of the VECM. To see standard errors for the estimated coefficients use
the summary method

> summary(vecm.fit)

Call:
VECM(test = coint.rc)

Cointegrating Vectors:
coint.1
1.0000

USCNF -1.0058
(std.err) 0.0031
(t.stat) -326.6389

Intercept* -0.0027
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(std.err) 0.0007
(t.stat) -3.9758

VECM Coefficients:
USCNS USCNF

coint.1 1.7771 1.9610
(std.err) 0.6448 0.6464
(t.stat) 2.7561 3.0335

USCNS.lag1 1.1696 1.2627
(std.err) 0.9812 0.9836
(t.stat) 1.1921 1.2837

USCNF.lag1 -1.2832 -1.3679
(std.err) 0.9725 0.9749
(t.stat) -1.3194 -1.4030

Regression Diagnostics:
USCNS USCNF

R-squared 0.0617 0.0689
Adj. R-squared 0.0538 0.0612
Resid. Scale 0.0135 0.0136

Information Criteria:
logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual
Degree of freedom: 243 240
Time period: from Apr 1976 to Jun 1996

The VECM fit may be inspected graphically using the generic plot
method

> plot(vecm.fit)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Response and Fitted Values
3: plot: Residuals
4: plot: Normal QQplot of Residuals
5: plot: ACF of Residuals
6: plot: PACF of Residuals
7: plot: ACF of Squared Residuals
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FIGURE 12.8. Cointegrating residual from maximum likelihood estimation of
VECM(1) for exchange rate data

8: plot: PACF of Squared Residuals
9: plot: Cointegrating Residuals
10: plot: ACF of Cointegrating Residuals
11: plot: PACF of Cointegrating Residuals
12: plot: ACF of Squared Cointegrating Residuals
13: plot: PACF of Squared Cointegrating Residuals
Selection:

The first eight plot options are the same as those created for a “VAR” object.
The remaining plot options allow a graphical inspection of the cointegrat-
ing residual. For example, plot option 9 is illustrated in Figure 12.8. The
estimated cointegrating residual appears to be I(0).

12.5.8 Forecasting from the VECM

Forecasts from a VECM are computed by first transforming the VECM to
a VAR using (12.22), and then using the forecasting algorithms for VAR
models described in the previous chapter. For VECM models, one may
forecast the changes in the variables, ∆Yt, or the levels of the variables Yt.
The generic S+FinMetrics functions predict and cpredict are used to
compute unconditional and conditional forecasts from a “VECM” object. The
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following example illustrates the use of the predict method to compute
forecasts for the differences and levels of the exchange rate data.

Example 82 Forecasts from VECM fit to exchange rate data

The “VECM” object vecm.fit was produced with the optional argument
levels=F. Consequently, the predict method will produce forecasts for
the changes in st and ft. To compute h-step forecasts for ∆st and ∆ft for
h = 1, . . . , 12 use

> vecm.fcst = predict(vecm.fit,n.predict=12)
> class(vecm.fcst)
[1] "forecast"

To see the forecast and forecast standard errors use

> summary(vecm.fcst)

Predicted Values with Standard Errors:

USCNS USCNF
1-step-ahead -0.0105 -0.0110

(std.err) 0.0136 0.0136
2-step-ahead -0.0130 -0.0139

(std.err) 0.0183 0.0183
...
12-step-ahead -0.0237 -0.0260

(std.err) 0.0435 0.0432

By default, the forecasts are computed using the chain-rule of forecasting.
To compute simulation-based forecasts use method = "mc" or method =
"bootstrap" in the call to predict.
To see the forecasts with standard error bands along the original data

use

> plot(vecm.fcst, xold=diff(uscn.ts), n.old=12)

Since the forecasts are of the first differenced data, the data passed to xold
must be first differenced. The resulting plot is shown in Figure 12.9.
To compute forecasts for the levels st and ft, re-fit the VECM with the

optional argument levels=T

> vecm.fit.level = VECM(coint.rc, levels=T)

and then call the predict method as before

> vecm.fcst.level = predict(vecm.fit.level, n.predict=12)
> summary(vecm.fcst.level)

Predicted Values with Standard Errors:
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FIGURE 12.9. VECM forecasts of first differences of exchange rate data

USCNS USCNF
1-step-ahead -0.3150 -0.3154

(std.err) 0.0136 0.0136
2-step-ahead -0.3157 -0.3161

(std.err) 0.0183 0.0183
...
12-step-ahead -0.3185 -0.3193

(std.err) 0.0435 0.0432

To plot the forecasts use

> plot(vecm.fcst.level, xold=uscn.ts, n.old=12)

The resulting plot is shown in Figure 12.10.

12.6 Appendix: Maximum Likelihood Estimation
of a Cointegrated VECM

The following brief discussion of maximum likelihood estimation of the
cointegrated VECM (12.23) follows Hamilton (1994) and Johansen (1995).
For simplicity, assume the absence of deterministic terms.
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FIGURE 12.10. VECM forecasts of levels of exchange rate data.

• Concentrate the likelihood function with respect to the error covari-
ance matrix and short-run dynamics by estimating the regressions

∆Yt = Γ̂1∆Yt−1+ · · · Γ̂p−1∆Yt−p+1+Ût

Yt = Φ̂1∆Yt−1+ · · · Φ̂p−1∆Yt−p+1+V̂t

• Form the sample covariance matrices

S00 =
1

T

TX
t=1

ÛtÛ
0
t, S01 =

1

T

TX
t=1

ÛtV̂
0
t, S11 =

1

T

TX
t=1

V̂tV̂
0
t

• Solve the eigenvalue problem

|λS11 − S10S−100 S01| = 0

giving ordered eigenvalues6 λ̂1 > λ̂2 > · · · > λ̂n and associated eigen-
vectors v̂1, v̂2, . . . , v̂n that satisfy

λ̂iS11v̂i = S10S
−1
00 S01, i = 1, . . . , n

V̂S11V̂ = In

6These eigenvalues are the squared canonical correlations between Yt and ∆Yt cor-
rected for ∆Yt−1, . . . ,∆Yt−p+1.Johansen (1995) describes how to solve for the eigen-
values.
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where V̂ = [v̂1, . . . , v̂n]

• The unnormalized mle for the (n× r) matrix β based on 0 < r < n
cointegrating vectors is given by the first r eigenvectors

β̂mle = (v̂1, . . . , v̂r)

• Form the normalized estimator β̂c,mle by imposing the appropriate
normalizing and identifying restrictions. The mle for the normalized
estimator of α may be computed as

α̂c,mle = S01β̂c,mle

• The maximum likelihood estimators for the remaining parameters
may be obtained by multivariate least squares of the VECM with β
replaced by β̂c,mle

∆Yt= αcβ̂
0
c,mleYt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

• The maximized value of the likelihood function based on r cointe-
grating vectors used in the construction of LR tests for the number
of cointegrating vectors is

L−2/Tmax ∝ |S00|
rY

i=1

(1− λ̂i)

• Estimates of the orthogonal complements of αc and βc are given by

α̂c,⊥ = S−100 S11(v̂r+1, . . . , v̂n)

β̂c,⊥ = S11(v̂r+1, . . . , v̂n)

Let c be any (n× r) matrix such that β0c has full rank. Then β may be
normalized as

βc = β(c
0
β)
−1

satisfying c0βc = Ir provided |c0β| 6= 0. Johansen suggests setting

c = (Ir
...0)0 (12.28)

This choice of c corresponds to solving the cointegrating relations β0Yt for
the first r variables. To see this, let Yt= (Y

0
1t,Y

0
2t)

0, where Y1t contains
the first r variables and Y2t contains the remaining n−r variables, and let
β0 = (−β1

...β2), where β1 is (r×r) and β2 is (r× (n−r)).Then β0c = −β1
and

βc =

µ
Ir

−β−11 β2

¶
(12.29)
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provided β1 has full rank r.
Some examples will help clarify the normalization scheme described above.

First, suppose there is only one cointegrating vector so that r = 1. Let the
(n × 1) vector β = (−β1, β2, . . . , βn)0 and define c = (1, 0, . . . , 0)0 so that
β0c = −β1 and βc = (1,−β2/β1, . . . ,−βn/β1)0 is the normalized coin-
tegrating vector. Notice that this normalization requires β1 6= 0. Next,
suppose there are two cointegrating vectors, r = 2, and let

β0 =

µ
−β11 −β12 β13 . . . β1n
−β21 −β22 β23 . . . β2n

¶
=

µ
−β1

...β2

¶
c0 =

µ
1 0 0 . . . 0
0 1 0 . . . 0

¶
= (I2

...0)

such that β1 has full rank. Then β
0c = −β1 and

β0c =
µ
1 0 β∗13 . . . β∗1n
0 1 β∗23 . . . β∗2n

¶
= (I2

...β∗)

where β∗= −β−11 β2. The rows of β
0
c are the normalized cointegrating vec-

tors.
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13
Multivariate GARCH Modeling

13.1 Introduction

When modeling multivariate economic and financial time series using vector
autoregressive (VAR) models, squared residuals often exhibit significant
serial correlation. For univariate time series, Chapter 7 indicates that the
time series may be conditionally heteroskedastic, and GARCH models have
been proved to be very successful at modeling the serial correlation in the
second order moment of the underlying time series.
This chapter extends the univariate GARCH models to the multivari-

ate context and shows how multivariate GARCH models can be used to
model conditional heteroskedasticity in multivariate time series. In partic-
ular, it will focus on modeling and predicting the time varying volatility
and volatility co-movement of multivariate time series. The multivariate
GARCH models in S+FinMetrics are so general that they actually include
the vector ARMA (VARMA) model as a special case.
To motivate multivariate GARCH models, Section 13.2 first introduces

an exponentially weighted covariance estimate and shows how to esti-
mate the optimal weight using the mgarch function in S+FinMetrics. Sec-
tion 13.3 modifies exponentially weighted covariance estimates to obtain
the popular diagonal VEC (DVEC) model. Section 13.4 illustrates how to
use the mgarch function to estimate a multivariate GARCH model such
as the DVEC model. Section 13.5 introduces some alternative formula-
tions of multivariate GARCH models. Section 13.6 focuses on how to pre-
dict from multivariate GARCH models supported by S+FinMetrics. Sec-
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FIGURE 13.1. ACF of Multivariate hp.ibmˆ2

tion 13.7 gives a detailed explanation of the structure of “garch.model”
and “mgarch.model” objects and shows how to use them to fine-tune or
constrain a GARCH model, univariate or multivariate. Finally, section 13.8
illustrates how to simulate from selected multivariate GARCH models.

13.2 Exponentially Weighted Covariance Estimate

S+FinMetrics module comes with two “timeSeries” objects, hp.s and
ibm.s, which represent daily stock returns of Hewlett-Packard and In-
ternational Business Machine for the same time period. Chapter 7 shows
that these financial return series usually exhibit little serial correlation, but
squared returns are usually autocorrelated. In multivariate context, cross-
correlations of the levels as well as the volatility of the time series are also
of interest. Cross-correlation in the levels can be modeled using vector au-
toregression (VAR) as shown in the previous chapter. This chapter focuses
on cross-correlation, or co-movement, of the volatility.
Just as in the univariate context, the existence of cross-correlation can be

diagnosed using the S-PLUS function acf, which also takes a multivariate
time series as an argument, to produce both autocorrelation and cross-
correlation plots:

> hp.ibm = seriesMerge(hp.s, ibm.s)
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> tmp = acf(hp.ibm^2)

Use the S-PLUS function seriesMerge, which is specifically designed for
“timeSeries” objects, to create a multivariate time series. The plot is
shown in Figure 13.1. Both the autocorrelation and cross-correlation of the
second order moments are significant at least up to lag 5, which indicates
that the covariance matrix of hp.ibm may be time varying and serially
correlated.
Now let yt be a k × 1 vector of multivariate time series:

yt = c+ ²t, for t = 1, 2, · · · , T (13.1)

where c is the k× 1 mean vector, and ²t is k× 1 vector of white noise with
zero mean. The sample covariance matrix is given by:

Σ =
1

T − 1

TX
t=1

(yt − ȳ)(yt − ȳ)0

where ȳ is the k × 1 vector of sample mean. In the above calculation, the
same weight 1/(T−1) is applied to the outer product of “demeaned” multi-
variate time series. To allow for time varying covariance matrix, in practice
an ad hoc approach uses exponentially decreasing weights as follows:1

Σt = λ²t−1²0t−1 + λ2²t−2²0t−2 + · · ·

=
∞X
i=1

λi²t−i²0t−i

where 0 < λ < 1 so that smaller weights are placed on observations further
back into the past history. Since

λ+ λ2 + · · · = λ

1− λ

the weights are usually scaled so that they sum up to one:

Σt = (1− λ)
∞X
i=1

λi−1²t−i²0t−i. (13.2)

The above equation can be easily rewritten to obtain the following recursive
form for exponentially weighted covariance matrix:

Σt = (1− λ)²t−1²0t−1 + λΣt−1 (13.3)

which will be referred to as the EWMA model of time varying covariance.
From the above equation, given λ and an initial estimate Σ1, the time
varying exponentially weighted covariance matrices can be computed easily.

1This approach has recently been justified and exhaustively investigated by Foster
and Nelson (1996), and Andreou and Ghysels (2002). Fleming, Kirby and Ostdiek (2001)
applied this method for constructing portfolios.
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FIGURE 13.2. Exponentially Weighted Covariance Estimate

The S+FinMetrics function EWMA.cov can be used to compute the ex-
ponentially weighted covariance matrix. For example, to obtain the time
varying covariance estimate of hp.ibm, use the following command:

> hp.ibm.cov = EWMA.cov(hp.ibm, lambda=0.9672375)
> seriesPlot(cbind(hp.ibm.cov[,1,1], hp.ibm.cov[,2,2],
+ hp.ibm.cov[,1,2]), one.plot=F,
+ strip.text=c("HP Vol.", "IBM Vol.", "Cov."))

The returned object hp.ibm.cov is an array of dimension 2000 × 2 × 2
representing the time varying covariance matrices, since there are 2000
observations in hp.ibm. Then use the S+FinMetrics function seriesPlot
to obtain a Trellis multivariate plot of the time varying covariance matrix
as shown in Figure 13.2, where the large spikes in the middle correspond
to the 1987 stock market crash.
In practice, the value of λ is usually chosen in an ad hoc way as typified by

the RiskMetrics proposal. However, if one assumes that ²t in (13.1) follows
a multivariate normal distribution with zero mean, and Σt = Covt−1(²t)
is treated as the covariance of ²t conditional on the past history, then the
log-likelihood function of the observed time series can be written as:

logL = −kT
2
log(2π)− 1

2

TX
t=1

|Σt|−
1

2

TX
t=1

(yt − c)0Σ−1t (yt − c). (13.4)



13.2 Exponentially Weighted Covariance Estimate 477

Since Σt can be recursively calculated as in (13.3), the log-likelihood func-
tion can also be easily evaluated. Thus the mean vector c and λ can be
treated as unknown model parameters and estimated using quasi-maximum
likelihood estimation (MLE), given the initial value Σ1.
The mgarch function in S+FinMetrics actually allows the estimation of

the above EWMA model using either (13.3) or an exact form of (13.2) with
limited past history. The syntax of mgarch is very much similar to that of
garch function. For example, to estimate the EWMA model as in (13.3),
use the following command:

> hp.ibm.ewma = mgarch(hp.ibm~1, ~ewma1, trace=F)
> hp.ibm.ewma

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ ewma1,

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ewma1

Coefficients:

C(1) 0.0005202
C(2) 0.0004732
ALPHA 0.0327625

where the conditional variance formula is specified by ˜ewma1. In the out-
put, C(1) and C(2) correspond to the 2×1 vector of c in (13.1), and ALPHA
corresponds to 1−λ in (13.3). This is why lambda=0.9672375 is set in the
earlier EWMA.cov example.
The EWMA model with an exact form of (13.2) can also be estimated

by specifying ˜ewma2 as the conditional variance formula. However, in that
case, the coefficient labeled by ALPHA actually corresponds to λ in (13.2):

> mgarch(hp.ibm~1, ~ewma2, trace=F)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ ewma2,

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ewma2

Coefficients:
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C(1) 0.0007369
C(2) 0.0002603
ALPHA 0.9730018

13.3 Diagonal VEC Model

In the univariate context, the EWMA model introduced in the previous
section reduces to:

Σt = (1− λ)�2t−1 + λΣt−1

which is simply a GARCH(1, 1) model with a1 = 1 − λ, b1 = λ and thus
a1 + b1 = 1. Since a1 + b1 corresponds to the AR(1) coefficient in the
ARMA representation of GARCH models (see Section 7.3 in Chapter 7),
the condition a1+ b1 = 1 implies that the GARCH model is not stationary
in the weak sense.2 Engle and Bollerslev (1986) termed this model the
integrated GARCH (IGARCH) model in the univariate context.3 Given
the non-stationarity of IGARCH and EWMA models, they are sometimes
not favored for modeling volatility.
To preserve the intuition behind EWMA models while allowing for a

flexible and stationary model for time varying covariance, generalize the
EWMA model as follows:

Σt = A0 +

pX
i=1

Ai ⊗ (²t−i²0t−i) +
qX

j=1

Bj ⊗Σt−j (13.5)

where the symbol ⊗ stands for Hadamard product, i.e., element-by-element
multiplication, and all the coefficient matrices have dimension k × k. This
model is first proposed by Bollerslev, Engle and Wooldridge (1988), and
they called it the diagonal VEC, or DVEC(p, q) model.
To appreciate the intuition behind DVEC model, consider the bivariate

DVEC(1, 1) model:"
Σ
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t Σ
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t
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2Unlike the unit root time series, a GARCH model may be strongly stationary, even
when it is not weakly stationary. See Nelson (1990) and Bougerol and Picard (1992) for
technical proof.

3 In fact, the mgarch function can be called with a univariate time series using ˜ewma1
as the conditional variance formula to estimate such an IGARCH model.
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where only the lower triangular part of the system is considered, with X(ij)

denoting the (i, j)-th element of matrix X, and ²(i) the i-th element of
vector ². The above matrix notation can be rewritten as follows:4

Σ
(11)
t = A

(11)
0 +A

(11)
1 ²

(1)
t−1²

(1)
t−1 +B

(11)
1 Σ

(11)
t−1

Σ
(21)
t = A

(21)
0 +A

(21)
1 ²

(2)
t−1²

(1)
t−1 +B

(21)
1 Σ

(21)
t−1

Σ
(22)
t = A

(22)
0 +A

(22)
1 ²

(2)
t−1²

(2)
t−1 +B

(22)
1 Σ

(22)
t−1

so the (i, j)-th element of the time varying covariance matrix only depends
on its own lagged element and the corresponding cross-product of errors.
As a result, the volatility of each series follows a GARCH process, while
the covariance process can also be treated as a GARCH model in terms of
the cross-moment of the errors.
Since a covariance matrix must be symmetric, in practice it suffices to

treat Σt as symmetric and only consider the lower triangular part of the
system. A covariance matrix must be also positive semi-definite (PSD).
However, Σt in the DVEC model cannot be guaranteed to be PSD, which
is considered a weakness of the DVEC model. Section 13.5 will introduce
other formulations of multivariate GARCH models that guarantee the time
varying covariance matrix to be PSD.

13.4 Multivariate GARCH Modeling in FinMetrics

13.4.1 Multivariate GARCH Model Estimation

Section 13.2 showed that the mgarch function in S+FinMetrics can be used
to estimate a multivariate GARCH model such as the EWMA model. It
can also be used to fit other types of multivariate GARCH models such
as the DVEC model by using a different conditional variance formula. For
example, to fit a DVEC(1, 1) model to the bivariate time series hp.ibm,
use the following command:

> hp.ibm.dvec = mgarch(hp.ibm~1, ~dvec(1,1), trace=F)
> class(hp.ibm.dvec)
[1] "mgarch"
> hp.ibm.dvec

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1),

trace = F)

4 If these equations are written using matrix notation with a vector on the left hand
side, then the coefficient matrices become diagonal matrices; thus this model is referred
to as the diagonal VEC model.
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Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)

Coefficients:

C(1) 7.018e-04
C(2) 2.932e-04

A(1, 1) 3.889e-05
A(2, 1) 1.322e-05
A(2, 2) 2.877e-05

ARCH(1; 1, 1) 6.226e-02
ARCH(1; 2, 1) 3.394e-02
ARCH(1; 2, 2) 1.049e-01
GARCH(1; 1, 1) 8.568e-01
GARCH(1; 2, 1) 8.783e-01
GARCH(1; 2, 2) 7.421e-01

The returned object is of class “mgarch”. Similar to “garch” objects, the
print method shows the conditional mean equation, conditional variance
equation, together with the estimated model coefficients. In the output,
C(i) corresponds to the i-th element of c in (13.1), while A(i,j) cor-
responds to the (i, j)-th element of A0, ARCH(i;j,k) corresponds to the
(j, k)-th element of Ai, and GARCH(j;i,k) corresponds to the (i, k)-th el-
ement of Bj in (13.5).
As usual, use the S-PLUS function names to find out the component

names of an “mgarch” object:

> names(hp.ibm.dvec)
[1] "residuals" "sigma.t" "df.residual" "coef"
[5] "model" "cond.dist" "likelihood" "opt.index"
[9] "cov" "std.residuals" "R.t" "S.t"
[13] "prediction" "call" "series"

These components are similar to those of “garch” objects, and the on-line
help file for mgarch provides details for them. For most components that
a user is interested in, S+FinMetrics provides methods for generic func-
tions such as coef, residuals, and vcov for extracting those components.
For example, extract the estimated coefficients by calling the generic coef
function:

> coef(hp.ibm.dvec)

C(1) 7.017567e-04
C(2) 2.932253e-04

A(1, 1) 3.888696e-05
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A(2, 1) 1.322108e-05
A(2, 2) 2.876733e-05

ARCH(1; 1, 1) 6.225657e-02
ARCH(1; 2, 1) 3.393546e-02
ARCH(1; 2, 2) 1.048581e-01
GARCH(1; 1, 1) 8.567934e-01
GARCH(1; 2, 1) 8.783100e-01
GARCH(1; 2, 2) 7.421328e-01

Note that since only the lower triangular part of the system is considered
for DVEC models, only that part of the coefficient matrices are shown here.
Similarly, call the generic vcov function to obtain the covariance matrix

of the estimated coefficients. By default, the covariance matrix based on
the outer product of gradients is returned. Just like in the univariate case,
the covariance matrix based on the inverse of numerical Hessian and the
robust covariance matrix can be obtained by setting the optional argument
method to "op" and "qmle", respectively. For example, to obtain the robust
standard error of the estimated coefficients, use the command:

> sqrt(diag(vcov(hp.ibm.dvec, method="qmle")))
[1] 4.881667e-04 3.079090e-04 3.606681e-05 1.108198e-05 1.710150e-05
[6] 3.116502e-02 2.993269e-02 6.660177e-02 1.037381e-01 9.415019e-02
[11] 1.343835e-01

Similar to the method functions for “garch” objects, residuals and
sigma.t can be used to extract the model residuals and estimated volatil-
ity, respectively. If the original multivariate data is a “timeSeries” ob-
ject, the extracted model residuals and conditional volatility will also be
“timeSeries” objects with the same dimension. Note that in the multivari-
ate case, the standardized residuals are computed as Σ−1/2t ²t, where Σ

1/2
t

is the Cholesky factor of Σt. To obtain the standardized residuals, set the
optional argument standardize=T when calling the residuals function:

> residuals(hp.ibm.dvec, standardize=T)

The sigma.t function only extracts the conditional standard deviation
of each series, and ignores the conditional covariance term. To obtain the
conditional covariance or conditional correlation term, extract the S.t and
R.t component, respectively. Both S.t and R.t are three dimensional ar-
rays with dimension T × k × k.

13.4.2 Multivariate GARCH Model Diagnostics

The previous subsection showed how to estimate a multivariate GARCH
model in S+FinMetrics, and how to extract various components of the
fitted model. To assess the model fit, S+FinMetrics provides method func-
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tions for two generic functions: summary and plot, one for statistical sum-
mary and the other for visual diagnostics of the model fit.
For example, to obtain more detailed summary of hp.ibm.dvec, call the

generic summary function:

> summary(hp.ibm.dvec)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1),

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)

Conditional Distribution: gaussian

------------------------------------------------------------

Estimated Coefficients:
------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 7.018e-04 4.630e-04 1.516 6.489e-02
C(2) 2.932e-04 2.870e-04 1.022 1.536e-01

A(1, 1) 3.889e-05 6.175e-06 6.297 1.860e-10
A(2, 1) 1.322e-05 2.461e-06 5.372 4.345e-08
A(2, 2) 2.877e-05 4.302e-06 6.687 1.469e-11

ARCH(1; 1, 1) 6.226e-02 8.690e-03 7.164 5.498e-13
ARCH(1; 2, 1) 3.394e-02 6.848e-03 4.955 3.916e-07
ARCH(1; 2, 2) 1.049e-01 9.212e-03 11.382 0.000e+00
GARCH(1; 1, 1) 8.568e-01 1.762e-02 48.625 0.000e+00
GARCH(1; 2, 1) 8.783e-01 1.885e-02 46.589 0.000e+00
GARCH(1; 2, 2) 7.421e-01 2.966e-02 25.019 0.000e+00

------------------------------------------------------------

AIC(11) = -21886.25
BIC(11) = -21824.64

Normality Test:
------------------------------------------------------------

Jarque-Bera P-value Shapiro-Wilk P-value
HP 755.8 0 0.9891 0.7105
IBM 2606.3 0 0.9697 0.0000
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Ljung-Box test for standardized residuals:
------------------------------------------------------------

Statistic P-value Chi^2-d.f.
HP 18.57 0.09952 12
IBM 11.76 0.46511 12

Ljung-Box test for squared standardized residuals:
------------------------------------------------------------

Statistic P-value Chi^2-d.f.
HP 11.43 0.4925 12
IBM 4.44 0.9741 12

Lagrange multiplier test:
------------------------------------------------------------

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7
HP -0.1990 0.2496 -0.7004 2.594 0.1039 -0.1167 -0.2286
IBM -0.7769 -0.9883 -0.5770 -1.198 0.4664 -0.2077 -0.4439

Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 C
HP 0.09018 -0.7877 -0.1279 -0.9280 -0.03133 1.8549
IBM -0.26423 -0.5352 -0.6724 0.1852 0.02102 -0.0729

TR^2 P-value F-stat P-value
HP 11.914 0.4526 1.090 0.4779
IBM 4.522 0.9721 0.412 0.9947

By default, the summary method shows the standard errors and P-values
of estimated coefficients, together with various tests on the standardized
residuals for assessing the model fit. The standard errors and P-values are
computed using the default covariance estimate. To use robust or numer-
ical Hessian based standard errors to compute the P-values, the summary
method takes an optional argument method just like the vcov method does.
All the tests performed on the standardized residuals can also be per-

formed independently by using standard S+FinMetrics functions. In gen-
eral, if the model is successful at modeling the serial correlation in the time
series and the time varying aspect of covariance matrix, there should be no
serial correlation left in both the first order and second order moments of
standardized residuals. For example, to check that there is no serial corre-
lation left in squared standardized residuals, use the following command:

> autocorTest(residuals(hp.ibm.dvec, standardize=T)^2, lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation
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Test Statistics:
HP IBM

Test Stat 11.4299 4.4404
p.value 0.4925 0.9741

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

which is the same as the test results returned by the summary method.
Since the P-values for both series are much greater than the conventional
5% level, the null hypothesis that there is no autocorrelation left cannot
be rejected.
Similarly, the LM test for ARCH effects can be performed on the multi-

variate standardized residuals:

> archTest(residuals(hp.ibm.dvec, standardize=T), lag=12)

Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects

Test Statistics:
HP IBM

Test Stat 11.9136 4.5219
p.value 0.4526 0.9721

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

which is also the same as the LM test returned by the summary method.
The P-values for LM tests are very close to those of the autocorrelation
tests, which confirms that the DVEC model is very successful at modeling
the time varying aspect of covariance matrix.
Note the above tests are applied to each series separately, and they do

not check the serial correlation of the cross-moment. Hence those tests are
not really multivariate tests. However, the autocorTest function does have
an option to produce a multivariate portmanteau test as proposed by Hosk-
ing (1980), which is a multivariate extension of the univariate Ljung-Box
test. For example, to produce the multivariate test of squared standardized
residuals, use the command:

> autocorTest(residuals(hp.ibm.dvec, standardize=T)^2,
+ lag=12, bycol=F)

Multivariate Portmanteau Test: Ljung-Box Type

Null Hypothesis: no serial correlation
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FIGURE 13.3. ACF of Squared Standardized Residuals

Test Statistics:

Test Stat 42.4585
p.value 0.6985

Dist. under Null: chi-square with 48 degrees of freedom
Total Observ.: 2000

where the optional argument bycol is set to FALSE to use the Hosking’s
test. The autocorTest function sets bycol to TRUE by default, and thus
tests the multivariate series column by column.
The goodness-of-fit of a multivariate GARCH model can also be assessed

by calling the generic plot function on a fitted “mgarch” object. For ex-
ample:

> plot(hp.ibm.dvec)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Original Observations
3: plot: ACF of Observations
4: plot: ACF of Squared Observations
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FIGURE 13.4. QQ-Plot of Standardized Residuals

5: plot: Residuals
6: plot: Conditional SD
7: plot: Standardized Residuals
8: plot: ACF of Standardized Residuals
9: plot: ACF of Squared Standardized Residuals
10: plot: QQ-Plots of Standardized Residuals
Selection:

By selecting 9 the ACF of squared standardized residuals can be ob-
tained, which is shown in Figure 13.3. After fitting the DVEC model, there
is essentially little serial correlation left in the second order moments of the
residuals. Normal QQ-plot of standardized residuals can be obtained by
selecting 10, which is shown in Figure 13.4. There is significant deviation
in the tails from the normal QQ-line for both residuals, which is also con-
firmed by the normality tests in the summary output shown earlier. Thus
it seems that the normality assumption for the residuals may not be ap-
propriate. Section 13.5.5 will show how to use alternative distributions in
multivariate GARCH models.
Other plots can also be chosen to visualize the model fit. For example,

choosing 6 plots the estimated conditional standard deviation as shown in
Figure 13.5. For the bivariate time series hp.ibm, the time varying cross-
correlation, which is contained in the R.t component of the fitted object,
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is also of interest. Since R.t is a three-dimensional array, use the following
command to generate a time series of the conditional cross-correlation:

> hp.ibm.cross = hp.ibm.dvec$R.t[,1,2]
> hp.ibm.cross = timeSeries(hp.ibm.cross, pos=positions(hp.ibm))
> seriesPlot(hp.ibm.cross, strip="Conditional Cross Corr.")

The plot is shown in Figure 13.6. Although the conditional cross correla-
tion between hp.s and ibm.s usually fluctuates around 0.5, it can suddenly
drop down to 0.3 and then go back to 0.5 very quickly.

13.5 Multivariate GARCH Model Extensions

13.5.1 Matrix-Diagonal Models

Although the DVEC model provided a good model fit for the bivariate time
series hp.ibm, the time varying covariance matrices are not guaranteed to
be PSD given the formulation as in (13.5). Note that a sufficient condition
for Σt to be PSD is that A0, Ai (for i = 1, · · · , p) and Bj (for j = 1, · · · , q)
are all PSD. Based on this observation, Ding (1994) and Bollerslev, Engle
and Nelson (1994) proposed to estimate the Cholesky factors of the coeffi-
cient matrices:

Σt = A0A
0
0 +

pX
i=1

(AiA
0
i)⊗ (²t−i²0t−i) +

qX
j=1

(BjB
0
j)⊗Σt−j (13.6)

where A0, Ai (for i = 1, · · · , p) and Bj (for j = 1, · · · , q) are all lower
triangular matrices. This model will be referred to as the matrix-diagonal
model.
The matrix-diagonal models can be further simplified by restricting Ai

and Bj to be a vector, which results in:

Σt = A0A
0
0 +

pX
i=1

(aia
0
i)⊗ (²t−i²0t−i) +

qX
j=1

(bjb
0
j)⊗Σt−j (13.7)

where ai and bj are k × 1 vectors. Even simpler, use the following formu-
lation:

Σt = A0A
0
0 +

pX
i=1

ai ⊗ (²t−i²0t−i) +
qX

j=1

bj ⊗Σt−j (13.8)

where ai and bj are positive scalars. It is easy to show that all the formu-
lations given in (13.6), (13.7), and (13.8) guarantee that the time varying
covariance matrix Σt is PSD. However, the simpler the model is, the more
stringent restrictions are placed on the dynamics of the model.
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The mgarch function in S+FinMetrics allows the estimation of all the
above modifications of the DVEC model by using ˜dvec.type.type(p,q)
as the conditional variance formula, where type can be mat for the (13.6)
formulation, vec for the (13.7) formulation, or scalar for the (13.8) for-
mulation, and the first type refers to the type of Ai, the second type refers
to the type of Bj . Hence, one can use mgarch to estimate a multivariate
GARCH model with different formulations for Ai and Bj . For example,
to estimate a multivariate GARCH model with the following covariance
matrix formulation:

Σt = A0A
0
0 +A1A

0
1 ⊗ (²t−i²0t−i) + b1 ⊗Σt−j (13.9)

with A0 and A1 being lower triangular matrices and b1 just a scalar, use
the following conditional variance formula:

> mgarch(hp.ibm~1, ~dvec.mat.scalar(1,1), trace=F)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ dvec.mat.scalar(1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec.mat.scalar(1, 1)

Coefficients:

C(1) 0.0007500
C(2) 0.0003268

A(1, 1) 0.0099384
A(2, 1) 0.0037295
A(2, 2) 0.0044583

ARCH(1; 1, 1) 0.3215890
ARCH(1; 2, 1) 0.1984259
ARCH(1; 2, 2) 0.2958904

GARCH(1) 0.6968114

Note that in the output the GARCH(1) coefficient corresponds to b1, while
ARCH(1;i,j) corresponds to the (i, j)-th element of A1 in (13.9).

13.5.2 BEKK Models

Although the DVEC model can be modified in various ways to ensure the
time varying covariance matrices are PSD, the dynamics allowed in the con-
ditional covariance matrix are still somewhat restricted. In particular, the
conditional variance and covariance are only dependent on their own lagged
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element and the corresponding cross-product of shocks or error terms. For
example, consider the bivariate time series hp.ibm. If there is a shock to
hp.s in the current period, it will affect the conditional volatility of hp.s
and the conditional correlation between hp.s and ibm.s in the next period.
However, it will not directly affect the volatility of ibm.s.
The BEKK model, as formalized by Engle and Kroner (1995), provides

an alternative formulation of the conditional variance equation:

Σt = A0A
0
0 +

pX
i=1

Ai(²t−i²0t−i)A
0
i +

qX
j=1

BjΣt−jB0j

where A0 is a lower triangular matrix, but Ai (i = 1, · · · , p) and Bj

(j = 1, · · · , q) are unrestricted square matrices. It is easy to show that
Σt is guaranteed to be symmetric and PSD in the above formulation. Fur-
thermore, the dynamics allowed in the BEKK model are richer than the
DVEC model, which can be illustrated by considering the (2, 2) element of
Σt in the BEKK(1, 1) model:

Σ
(22)
t = A

(22)
0 A

(22)
0 + [A

(21)
1 ²

(1)
t−1 +A

(22)
1 ²

(2)
t−1]

2+

[B
(21)
1 B

(21)
1 Σ

(11)
t−1 + 2B

(21)
1 B

(22)
1 Σ

(21)
t−1 +B

(22)
1 B

(22)
1 Σ

(22)
t−1 ]

where both ²(1)t−1 and ²
(2)
t−1 enter the equation. In addition, Σ

(11)
t−1 , the volatil-

ity of the first series, also has direct impacts on Σ(22)t , the volatility of the
second series. However, for the bivariate BEKK(1, 1) model, flexibility is
achieved at the cost of two extra parameters, i.e., A(12)

1 and B(12)1 , which
are not needed for the DVEC(1, 1) model. In general, a BEKK(p, q) model
requires k(k − 1)(p + q)/2 more parameters than a DVEC model of the
same order.
One can fit a BEKK model by using ˜bekk(p,q) as the conditional

variance formula. For example, to fit a BEKK(1, 1) model to the bivariate
time series hp.ibm, use the following command:

> hp.ibm.bekk = mgarch(hp.ibm~1, ~bekk(1,1))
> hp.ibm.bekk

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ bekk(1, 1))

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ bekk(1, 1)

Coefficients:
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FIGURE 13.7. Comparison of Conditional Correlation: hp.ibm

C(1) 0.0007782
C(2) 0.0002870

A(1, 1) 0.0077678
A(2, 1) -0.0035790
A(2, 2) 0.0046844

ARCH(1; 1, 1) 0.2054901
ARCH(1; 2, 1) -0.0287318
ARCH(1; 1, 2) -0.0734735
ARCH(1; 2, 2) 0.4169672
GARCH(1; 1, 1) 0.8078184
GARCH(1; 2, 1) 0.1277266
GARCH(1; 1, 2) 0.2867068
GARCH(1; 2, 2) 0.6954790

Note that in the output, the coefficient matrix A1 (the ARCH(1;i,j) coef-
ficients) and B1 (the GARCH(1;i,j)) are not restricted.
Compare the conditional correlations between hp.s and ibm.s implied

by the DVEC model and BEKK model as follows:

> seriesPlot(cbind(hp.ibm.dvec$R.t[,1,2], hp.ibm.bekk$R.t[,1,2]),
strip=c("DVEC Corr.", "BEKK Corr."), one.plot=F,
layout=c(1,2,1))
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The plot is shown in Figure 13.7, from which one can see that the condi-
tional correlation implied by the BEKK model is more volatile than that
implied by the DVEC model.

13.5.3 Univariate GARCH-based Models

For BEKK model, DVEC model and its modifications, the conditional co-
variance matrix is modeled directly. This approach can result in a large
number of parameters since the covariance terms need to be modeled sepa-
rately. Another approach in multivariate GARCH modeling is to transform
the multivariate time series into uncorrelated time series and then apply the
univariate GARCH models in Chapter 7 to each of those uncorrelated se-
ries. This subsection introduces three types of multivariate GARCH models
in this fashion.

Constant Conditional Correlation Model

In general, a k×k covariance matrixΣ can be decomposed into the following
form:

Σ =∆R∆

where R is the correlation matrix, ∆ is a diagonal matrix with the vec-
tor (σ1, · · · , σk) on the diagonal, and σi is the standard deviation of the
i-th series. Based on the observation that the correlation matrix of for-
eign exchange rate returns is usually constant over time, Bollerslev (1990)
suggested modelling the time varying covariance matrix as follows:

Σt =∆tR∆t

where R is the constant conditional correlation matrix, and ∆t is the fol-
lowing diagonal matrix:

∆t =

σ1t . . .
σkt


with σit following any univariate GARCH process, for i = 1, · · · , k. This
model is usually referred to as the constant conditional correlation (CCC)
model.
The mgarch function can be used to estimate a CCC model with a

GARCH(p, q) model for each series, by specifying ˜ccc(p,q) as the con-
ditional variance formula. In addition, a more general formula such as
˜ccc.type(p,q) can also be used, where type can be any of the GARCH
variants supported by the garch function.5 For example, to use a two com-

5See Section 7.9 in Chapter 7 for a summary of those specifications.
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ponents model for each series when fitting a CCC model to the bivariate
time series hp.ibm, use the following conditional variance formula:

> mgarch(hp.ibm~1, ~ccc.two.comp(1,1), trace=F)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ ccc.two.comp(1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ccc.two.comp(1, 1)

Coefficients:

C(1) 4.907e-04
C(2) 1.844e-04

A(1, 1) 8.722e-05
A(2, 2) 6.579e-05

ARCH(1; 1, 1) 8.102e-03
ARCH(1; 2, 2) 9.621e-03
ARCH(2; 1, 1) 9.669e-02
ARCH(2; 2, 2) 9.582e-02
GARCH(1; 1, 1) 9.699e-01
GARCH(1; 2, 2) 9.654e-01
GARCH(2; 1, 1) 7.365e-01
GARCH(2; 2, 2) 7.271e-01

Conditional Constant Correlation Matrix:
HP IBM

HP 1.0000 0.5582
IBM 0.5582 1.0000

When fitting a CCC model, mgarch function allows several alternatives
for the estimation of the constant conditional correlation matrix R by set-
ting the optional argument cccor.choice:

1. cccor.choice=0: The sample correlation matrix is used, and no fur-
ther MLE estimation of R is carried out.

2. cccor.choice=1: The sample correlation matrix is used as the initial
estimate, and the final estimate of R is obtained as part of the MLE
method. This is the default value.

3. cccor.choice=2: The user supplies an initial correlation matrix es-
timate, and the final estimate of R is obtained as part of the MLE
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method. In this case, the user needs to supply the initial estimate
with the optional argument cccor.value.

A potentially important use of the last choice is to obtain robustness
toward multivariate outliers by using a robust initial covariance matrix
estimate. The covRob function in S-PLUS robust library provides several
robust covariance and correlation estimates.

Principal Component Model

In principal component analysis, it is well known that for any covariance
matrix Σ, one can always find an orthogonal matrix Λ and a diagonal
matrix ∆ such that

Λ∆Λ0 = Σ

where Λ is usually normalized so that ΛΛ0 = I with I being an identity
matrix. It can be shown that the diagonal elements of ∆ are the eigen-
values of Σ, while the columns of Λ correspond to the eigenvectors of Σ.
Based on this result, the principal components of yt, which are defined as
zt = Λ

0yt, have a diagonal covariance matrix. Ding (1994) describes the
principal component GARCH model, which essentially models each prin-
cipal component in zt as a univariate GARCH model. This model is also
proposed by Alexander (1998).
The mgarch function can be used to estimate a principal component

model with a GARCH(p, q) model for principal component, by specifying
˜prcomp(p,q) as the conditional variance formula. Similar to the CCC
model, a more general formula such as ˜prcomp.type(p,q) can also be
used, where type can be any of the GARCH variants supported by the
garch function. For example, to use a PGARCH(1, 1, 1) model for each
series when fitting the principal component model to the bivariate time
series hp.ibm, use the following conditional variance formula:

> mgarch(hp.ibm~1, ~prcomp.pgarch(1,1,1), trace=F)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ prcomp.pgarch(1, 1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ prcomp.pgarch(1, 1, 1)

Coefficients:

C(1) -3.519e-04
C(2) -1.614e-05

A(1, 1) 1.848e-03
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A(2, 2) 3.565e-04
ARCH(1; 1, 1) 1.100e-01
ARCH(1; 2, 2) 5.992e-02
GARCH(1; 1, 1) 8.380e-01
GARCH(1; 2, 2) 9.222e-01

Eigenvectors: (orthonormal transform matrix):
HP IBM

HP -0.9054 0.4245
IBM -0.4245 -0.9054

Eigenvalues:
[1] 0.0006002 0.0001222

Pure Diagonal Model

Sometimes, the user may want to fit the same type of GARCH model to a
large number of time series. The mgarch function also allows this type of
univariate GARCH-based estimation, which totally ignores the correlation
of the multivariate time series. For this purpose, any univariate GARCH
specification can be used directly with the mgarch function. For example,
to estimate a TGARCH(1, 1) model to both hp.s and ibm.s at the same
time, use the following command:

> mgarch(hp.ibm~1, ~egarch(1,1), leverage=T, trace=F)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ egarch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ egarch(1, 1)

Coefficients:

C(1) 0.0004561
C(2) 0.0001810

A(1, 1) -0.7959068
A(2, 2) -0.9192535

ARCH(1; 1, 1) 0.1618657
ARCH(1; 2, 2) 0.1350345
GARCH(1; 1, 1) 0.9124564
GARCH(1; 2, 2) 0.9066042
LEV(1; 1, 1) 0.0243099
LEV(1; 2, 2) -0.1743824
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Although the optional argument leverage can be used with any uni-
variate GARCH-based models for mgarch function, it is ignored for BEKK,
DVEC and its modifications.

13.5.4 ARMA Terms and Exogenous Variables

All the multivariate GARCH models considered so far have been restricted
to a constant mean assumption. However, the mgarch function actually
allows a more general model with a vector ARMA (VARMA) structure
and optional inclusion of weakly exogenous variables in the conditional
mean:

yt = c+
rX

i=1

Φiyt−i +
LX
l=0

βlxt−l + ²t +
sX

j=1

Θj²t−j (13.10)

where Φi are k × k autoregressive coefficient matrix, Θj are k × k moving
average coefficient matrix, xt is the m × 1 vector of weakly exogenous
variables, and βl is k ×m coefficients of xt−l. Note that a distributed lag
structure of xt is allowed in the above equation by setting L to be a positive
integer.
To include an AR(r), MA(s), or ARMA(r, s) term in the conditional

mean, the user can simply add an ar(r), ma(s), or arma(r,s) term to the
conditional mean formula. However, by default, Φi and Θj are restricted
to be diagonal matrices for parsimonious reasons. This behavior can be
changed by setting the optional argument armaType of the mgarch func-
tion. In particular, if armaType="lower", then Φi and Θj are restricted
to be lower triangular matrices; if armaType="full", then Φi and Θj are
not restricted. When weakly exogenous variables xt are used, the optional
argument xlag can be set to a positive integer to use a distributed lag
structure.

Example 83 Single Factor Model with Multivariate GARCH Errors

Section 7.5 of Chapter 7 developed a single factor model with GARCH
errors. Here that example is extended to multivariate context using the
bivariate time series hp.ibm. The univariate example used daily returns
on the value weighted New York Stock Exchange index as the “market
returns” to estimate the “market beta”. In practice, this market beta can
be biased due to the serial correlation in the market returns. Hence, both
nyse.s and its first lag as regressors are included in the conditional mean
equation, and the DVEC(1, 1) model is used in the conditional variance:

> hp.ibm.beta = mgarch(hp.ibm~seriesData(nyse.s), ~dvec(1,1),
+ xlag=1)
> summary(hp.ibm.beta)
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FIGURE 13.8. Idiosyncratic Volatility of Bivariate hp.ibm

Call:
mgarch(formula.mean = hp.ibm ~ seriesData(nyse.s),

formula.var = ~ dvec(1, 1), xlag = 1)

Mean Equation: hp.ibm ~ seriesData(nyse.s)

Conditional Variance Equation: ~ dvec(1, 1)

Conditional Distribution: gaussian

------------------------------------------------------------

Estimated Coefficients:
------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 7.860e-05 3.714e-04 0.2116 4.162e-01
C(2) -3.343e-04 1.947e-04 -1.7166 4.311e-02

X(0; 1, 1) 1.491e+00 2.867e-02 52.0032 0.000e+00
X(0; 2, 1) 1.112e+00 1.751e-02 63.4896 0.000e+00
X(1; 1, 1) -1.497e-01 3.233e-02 -4.6297 1.949e-06
X(1; 2, 1) -1.802e-01 1.898e-02 -9.4945 0.000e+00

A(1, 1) 1.028e-04 1.420e-05 7.2413 3.160e-13
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A(2, 1) 6.166e-06 4.520e-06 1.3642 8.633e-02
A(2, 2) 3.117e-05 3.226e-06 9.6600 0.000e+00

ARCH(1; 1, 1) 1.230e-01 1.812e-02 6.7878 7.482e-12
ARCH(1; 2, 1) 5.030e-03 1.530e-02 0.3288 3.712e-01
ARCH(1; 2, 2) 2.567e-01 2.155e-02 11.9125 0.000e+00
GARCH(1; 1, 1) 5.494e-01 5.543e-02 9.9112 0.000e+00
GARCH(1; 2, 1) 7.904e-01 1.483e-01 5.3285 5.511e-08
GARCH(1; 2, 2) 4.261e-01 4.432e-02 9.6126 0.000e+00

...

In the above output, the coefficient matrix β0 of nyse.s is denoted by
X(0;i,j) and β1 of the first lag of nyse.s is denoted by X(1;i,j). All
those coefficients are very significant. Now compare the GARCH(1;i,j) co-
efficients with those of hp.ibm.dvec; after taking account of the market
effects, the persistence in the GARCH volatilities has dropped quite a bit.
The estimated conditional volatility can also be plotted as shown in Fig-
ure 13.8. Compare this with Figure 13.5: since the market effects are already
taken into account in the above single factor model, the volatility in Fig-
ure 13.8 can be treated as the “idiosyncratic” volatility, while Figure 13.5
also includes the systematic market component.
Weakly exogenous variables are also allowed in the conditional variance

equation for multivariate GARCH models. For example, for the DVEC(p, q)
model, the general conditional variance equation is:

Σt = A0 +

pX
i=1

Ai ⊗ (²t−i²0t−i) +
qX

j=1

Bj ⊗Σt−j +D · Zt ·D0 (13.11)

where Zt is a diagonal matrix with the m × 1 weakly exogenous variable
(Zt1, · · · , Ztm) on the diagonal, andD is k×m coefficient matrix. Note that
using this formulation, the regressor effects are guaranteed to be positive
semi-definite as long as the regressors Zt are non-negative.

Example 84 Monday and Friday Effects of Volatility

There is a conjecture that the volatility in stock markets may be higher
on Mondays and Fridays. To investigate if this conjecture holds for the
bivariate time series hp.ibm, build a dummy variable for those observations
falling on a Monday or a Friday:

> weekdaysVec = as.integer(weekdays(positions(hp.ibm)))
> MonFriDummy = (weekdaysVec == 2 | weekdaysVec == 6)

Note that the integer representation of Monday in S-PLUS is two because
Sunday is represented as one. Now add MonFriDummy as an exogenous vari-
able in the conditional variance formula:
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> hp.ibm.dummy = mgarch(hp.ibm~1, ~dvec(1,1)+MonFriDummy)
> summary(hp.ibm.dummy)

Call:
mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1)

+ MonFriDummy)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1) + MonFriDummy

Conditional Distribution: gaussian

------------------------------------------------------------

Estimated Coefficients:
------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 6.953e-04 4.696e-04 1.4806 6.943e-02
C(2) 2.659e-04 2.849e-04 0.9333 1.754e-01

A(1, 1) 3.369e-05 8.612e-06 3.9124 4.723e-05
A(2, 1) 7.384e-06 5.682e-06 1.2997 9.693e-02
A(2, 2) 2.011e-05 5.214e-06 3.8565 5.934e-05

ARCH(1; 1, 1) 6.400e-02 8.952e-03 7.1494 6.088e-13
ARCH(1; 2, 1) 3.546e-02 7.029e-03 5.0443 2.482e-07
ARCH(1; 2, 2) 1.076e-01 1.004e-02 10.7141 0.000e+00
GARCH(1; 1, 1) 8.600e-01 1.716e-02 50.1061 0.000e+00
GARCH(1; 2, 1) 8.805e-01 1.816e-02 48.4743 0.000e+00
GARCH(1; 2, 2) 7.472e-01 2.855e-02 26.1706 0.000e+00

Z(1,1) 3.139e-03 2.440e-03 1.2865 9.921e-02
Z(2,1) 4.426e-03 1.074e-03 4.1215 1.959e-05

...

In the above output, Z(1,1) denotes the coefficient of the dummy variable
for hp.s, the P-value of which is higher than the conventional 5% level,
and Z(2,1) denotes the coefficient for ibm.s, the P-value of which is very
close to zero. So it seems that for IBM stocks, the volatility tends to be
slightly higher on Mondays and Fridays.

13.5.5 Multivariate Conditional t-Distribution

In all the multivariate GARCH models fitted so far, it has been assumed
that the residuals ²t follow a conditional multivariate normal distribu-
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tion. The mgarch function also allows the residuals to follow a multivariate
Student-t distribution.
If a k-dimensional random variable ut follows a multivariate Student-t

distribution with ν degrees of freedom and the scale matrix St, the proba-
bility density function (PDF) of ut is given by:

f(ut) =
Γ[(ν + k)/2]

(πν)k/2Γ(ν/2)

|St|−1/2

[1 + u0tS
−1
t ut/ν](ν+k)/2

(13.12)

where Γ(·) is the gamma function. The covariance matrix of ut is given by:

Cov(ut) =
ν

ν − 2St.

If the error term ²t is assumed in multivariate GARCH models follows a
conditional multivariate Student-t distribution with ν degrees of freedom
and Cov(²t) = Σt, obviously the scale matrix St should be chosen so that

St =
ν − 2
ν
Σt.

By substituting the above relationship into (13.12), the user can easily
derive the log-likelihood function for multivariate GARCH models with
conditional multivariate Student-t distributed errors. The unknown model
parameters can also be routinely estimated using maximum likelihood es-
timation.
To use multivariate Student-t distribution with the mgarch function to

estimate a multivariate GARCH model, simply set the optional argument
cond.dist to "t". For example:

> hp.ibm.dvec.t = mgarch(hp.ibm~1, ~dvec(1,1), cond.dist="t")

The estimated degree of freedom ν is contained in the cond.dist com-
ponent of the returned object:

> hp.ibm.dvec.t$cond.dist
$cond.dist:
[1] "t"

$dist.par:
[1] 6.697768

$dist.est:
[1] T

Compare this model with the one fitted using multivariate normal distri-
bution:

> hp.ibm.comp = compare.mgarch(hp.ibm.dvec, hp.ibm.dvec.t)
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FIGURE 13.9. Comparison of QQ-Plot Using Normal and Student-t Distributions

> hp.ibm.comp
hp.ibm.dvec hp.ibm.dvec.t

AIC -21886 -22231
BIC -21825 -22164

Likelihood 10954 11128
> plot(hp.ibm.comp, qq=T)

Obviously, the multivariate Student-t distribution provides a much better
fit. This can also be confirmed by comparing the QQ-plot of standardized
residuals, which is shown in Figure 13.9.

13.6 Multivariate GARCH Prediction

Predictions from multivariate GARCH models can be generated in a simi-
lar fashion to predictions from univariate GARCH models. Indeed, for the
univariate GARCH-based models, such as CCC model and principal com-
ponent model, the predictions are generated from the underlying univariate
GARCH models and then converted to the scale of the original multivariate
time series by using the appropriate transformation. This section focuses
on predicting from DVEC model, because predicting from BEKK model
can be performed similarly.
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For multivariate GARCH models, predictions can be generated for both
the levels of the original multivariate time series and its conditional covari-
ance matrix. Predictions of the levels are obtained just as for vector au-
toregressive (VAR) models. Compared with VAR models, the predictions of
the conditional covariance matrix from multivariate GARCH models can
be used to construct more reliable confidence intervals for predictions of
the levels.
To illustrate the prediction of conditional covariance matrix for multi-

variate GARCH models, consider the conditional variance equation for the
DVEC(1, 1) model:

Σt = A0 +A1 ⊗ (²t−1²0t−1) +B1 ⊗ Σt−1

which is estimated over the time period t = 1, 2, · · · , T . To obtainET (ΣT+k),
use the forecasts of conditional covariance matrix at time T + k for k > 0,
given information at time T . For one-step-ahead prediction, it is easy to
obtain:

ET (ΣT+1) = A0 +A1 ⊗ET (²T ²
0
T ) +B1 ⊗ET (ΣT )

= A0 +A1 ⊗ (²T ²0T ) +B1 ⊗ΣT

since an estimate of ²T and ΣT already exists after estimating the DVEC
model. When k = 2, it can be shown that

ET (ΣT+2) = A0 +A1 ⊗ET (²T+1²
0
T+1) +B1 ⊗ET (ΣT+1)

= A0 + (A1 +B1)⊗ET (ΣT+1).

where ET (ΣT+1) is obtained in the previous step. This procedure can be
iterated to obtain ET (ΣT+k) for k > 2.
The predict method for “mgarch” objects in S+FinMetrics implements

the forecasting procedure for all the multivariate GARCH models sup-
ported by the mgarch function. The forecasts can be easily obtained by
calling the generic predict function for an “mgarch” object with the de-
sired number of forecasting periods. For example, to obtain 10-step-ahead
forecasts from the BEKK model object hp.ibm.bekk fitted in Section 13.5,
use the following command:

> hp.ibm.pred = predict(hp.ibm.bekk, 10)
> class(hp.ibm.pred)
[1] "predict.mgarch"
> names(hp.ibm.pred)
[1] "series.pred" "sigma.pred" "R.pred"

The returned object hp.ibm.pred is of class “predict.mgarch”, and has
three components: series.pred represents the forecasts of the levels of the
time series, sigma.pred represents the forecasts of the conditional standard
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FIGURE 13.10. BEKK Prediction of Conditional Standard Deviations

deviations, and R.pred represents the forecasts of the conditional correla-
tion matrix. Note that the sigma.pred and R.pred components can be
used together to obtain the forecasts of the conditional covariance matrix.
S+FinMetrics also implements a plot method for “predict.mgarch”

objects, so that the multivariate forecasts can be visualized directly. For ex-
ample, if the user calls the generic plot function directly on hp.ibm.pred:

> plot(hp.ibm.pred)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Predicted Conditional Mean
3: plot: Predicted Conditional SD
Selection:

Selecting 3 will generate the plot of predicted conditional standard devi-
ations, as shown in Figure 13.10, the confidence interval of the volatility
forecasts should be obtained as well. Section 13.8 shows how to obtain a
confidence interval using simulation-based forecasts.
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13.7 Custom Estimation of GARCH Models

13.7.1 GARCH Model Objects

For both “garch” and “mgarch” objects, there is a model component which
contains all the necessary model specific information about the fitted uni-
variate or multivariate GARCH model. For example, for the univariate
“garch” object ford.mod11 fitted in Section 7.4 of Chapter 7:

> class(ford.mod11$model)
[1] "garch.model"
> ford.mod11$model

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

------------ Constants in mean ------------

value which
0.0007708 1

---------- Constants in variance ----------

value which
6.534e-06 1

------------------- ARCH ------------------

value which
lag 1 0.07454 1

------------------ GARCH ------------------

value which
lag 1 0.9102 1

So the model component of a “garch” object is of class “garch.model”.
Similarly, for the “mgarch” object hp.ibm.dvec fitted in this chapter:

> class(hp.ibm.dvec$model)
[1] "mgarch.model"
> hp.ibm.dvec$model

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)
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------------ Constants in mean ------------

value which
v1 0.0007017567 T
v2 0.0002932253 T

---------- Constants in variance ----------

v1.value v2.value *** v1.which v2.which
v1 3.888696e-05 1.322108e-05 *** T T
v2 1.322108e-05 2.876733e-05 *** T T

------------------- ARCH ------------------

Lag 1
v1.value v2.value *** v1.which v2.which

v1 0.06225657 0.03393546 *** T T
v2 0.03393546 0.10485809 *** T T

------------------ GARCH ------------------

Lag 1
v1.value v2.value *** v1.which v2.which

v1 0.8567934 0.8783100 *** T T
v2 0.8783100 0.7421328 *** T T

So the model component of an “mgarch” object is of class “mgarch.model”,
which has similar structures to a “garch.model” object. This section will
focus on “mgarch.model” objects, though all the things illustrated can also
be applied to “garch.model” objects.
Since an “mgarch.model” object contains all the necessary information

about a fitted GARCH model, this object can be saved or edited for many
purposes.6 The names of the components of an “mgarch.model” object can
be obtained using the S-PLUS function names:

> names(hp.ibm.dvec$model)
[1] "c.which" "c.value" "MA" "AR" "arch" "garch"
[7] "a.which" "a.value" "info"

6 In the first release of S+GARCH module, there was a revise function which provides
a graphical user interface for editing this object. However, the function was broken as
the graphical user interface of S-PLUS went through several evolutions. Currently there
is no revise function in S+FinMetrics module.
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The component c.value contains the value of the constant terms in the
conditional mean equation, while the component a.value contains the
value of the constant terms in the conditional variance equation. The MA,
AR, arch and garch components are lists themselves. For example:

> hp.ibm.dvec$model$arch
$order:
[1] 1

$value:
$lag.1:

[,1] [,2]
[1,] 0.06225657 0.03393546
[2,] 0.03393546 0.10485809

$which:
$lag.1:

[,1] [,2]
[1,] T T
[2,] T T

Note that for each of the model coefficients, there is a corresponding which
component that specifies if the coefficient is free to be estimated by MLE.
If the which component is 1 or TRUE, then the corresponding coefficient
is free to be estimated; otherwise, the corresponding coefficient is fixed at
that value during MLE. The next subsection shows how these values can
be edited for different purposes.

13.7.2 Revision of GARCH Model Estimation

For both univariate and multivariate GARCH models, the unknown model
parameters are estimated using the BHHH algorithm (for example, see
Bollerslev, 1986). Both garch and mgarch functions take an optional argu-
ment control, which can be used to control certain numerical aspects of
the BHHH algorithm. The defaults for those settings are provided in the
on-line help file for bhhh.control.
Like many other nonlinear optimization algorithms, the BHHH algorithm

performs local optimization in the sense that the optimal solution it finds
may well be just a local optimum instead of the global optimum. To make
sure that the global optimum has indeed been reached, start the algorithm
using a few different starting values and see if they all lead to the same
optimum. For this purpose, edit the model component of a fitted “garch”
or “mgarch” object and use it as a new starting value.

Example 85 Restarting Multivariate GARCH Estimation
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> bekk.mod = hp.ibm.bekk$model
> bekk.mod$a.value[2,1] = 0
> hp.ibm.bekk2 = mgarch(series=hp.ibm, model=bekk.mod)

Note that when a model object is supplied directly to the mgarch (or garch)
function, the series argument must be used to supply the data. The user
can easily verify that hp.ibm.bekk2 reached a smaller log-likelihood value,
so the original fit hp.ibm.bekk seems to be better.

Example 86 Constraining Multivariate GARCH Estimation

For some GARCH models, the user may want to fix certain parameters
at certain values during maximum likelihood estimation. For example, most
daily financial security returns seem to fluctuate around a zero mean. In
this example, fix the constant terms in the conditional mean equation of
hp.ibm.bekk to zero and re-estimate the model:

> bekk.mod = hp.ibm.bekk$model
> bekk.mod$c.value = rep(0,2)
> bekk.mod$c.which = rep(F,2)
> hp.ibm.bekk3 = mgarch(series=hp.ibm, model=bekk.mod)
> LR.stat = -2*(hp.ibm.bekk3$likelihood-
+ hp.ibm.bekk$likelihood)

Note that since the log-likelihood value of the fitted model is returned, a
likelihood ratio (LR) test of the restrictions imposed in the above example
can easily be performed.
The “garch.model” or “mgarch.model” object can be used for sim-

ulation. For example, simulation from fitted univariate GARCH models
actually uses this component. The next section illustrates this usage for
multivariate GARCH models.

13.8 Multivariate GARCH Model Simulation

S+FinMetrics provides a method of the generic function simulate for
objects of class “mgarch”. The method function, simulate.mgarch, can
take a fitted “mgarch” object, or an “mgarch.model object, or simply a
user specified list. This section illustrates how to create confidence intervals
for the predictions of conditional standard deviations using simulations.

Example 87 Simulation-based Multivariate GARCH Forecasts

The function simulate.mgarch only supports those multivariate GARCH
models of order (1, 1), which should be enough for most applications. To
simulate a multivariate GARCH process directly from a fitted “mgarch”
object such as hp.ibm.bekk, call the generic function simulate as follows:
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> hp.ibm.sim = simulate(hp.ibm.bekk, n=10)

where n = 10 specifies the length of the simulated time series. Since all
the model specific information is contained in the model component of an
“mgarch” object, which is an “mgarch.model” object as shown in the previ-
ous section, an “mgarch.model can also pass directly to the simulate.mgarch
function. The following code example simulates 100 steps ahead from the
end of estimation period in hp.ibm.bekk, and replicates the simulation 200
times:

> eps.start = residuals(hp.ibm.bekk)[2000,]@data
> V.start = hp.ibm.bekk$S.t[2000, , ]
> n.rep = 200
> hp.ibm.sim = array(0, c(100, 2, n.rep))

> set.seed(10)
> for (i in 1:n.rep) {
+ eps.pred = rbind(eps.start, rmvnorm(100))
+ tmp = simulate(hp.ibm.bekk, n=100, n.start=0,
+ etat=eps.pred, V.start=V.start)$V.t
+ hp.ibm.sim[, , i] = matrix(tmp, byrow=T, nrow=100)[,c(1,4)]
+ }

> hp.ibm.sim = sqrt(hp.ibm.sim)
> hp.ibm.simpred = rowMeans(hp.ibm.sim, dims=2)
> hp.ibm.simstde = rowStdevs(hp.ibm.sim, dims=2)

Note that to simulate the multivariate GARCH process using the last ob-
servation in the sample as the starting value, set n.start=0 and V.start
to the last estimated conditional covariance matrix. Similarly, the last es-
timated residual vector is used as the starting value in eps.pred, which
is otherwise standard normal random variables. All the simulated condi-
tional standard deviations are saved in hp.ibm.sim, which is a three di-
mensional array. The simulation-based forecasts of conditional standard
deviations are computed as the average of hp.ibm.sim, and saved in the
object hp.ibm.simpred, while hp.ibm.simstde contains the standard er-
rors of those forecasts.
Finally, use the following code to plot confidence intervals around the

simulation-based forecasts:

> par(mfrow=c(2,1))
> ci.upper = hp.ibm.simpred + 2*hp.ibm.simstde
> ci.lower = hp.ibm.simpred - 2*hp.ibm.simstde

> tsplot(cbind(hp.ibm.simpred[,1], ci.upper[,1], ci.lower[,1]))
> title("Forecasted HP Volatility", xlab="Time", ylab="SD")
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FIGURE 13.11. Simulation-based Forecasts of BEKK Model

> tsplot(cbind(hp.ibm.simpred[,2], ci.upper[,2], ci.lower[,2]))
> title("Forecasted IBM Volatility", xlab="Time", ylab="SD")
> par(mfrow=c(1,1))

The plot shown in Figure 13.11 only used 200 replications, so the confidence
intervals are a little rough. If more replications are used, the confidence
intervals should be relatively smooth.
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14
State Space Models

14.1 Introduction

The state space modeling tools in S+FinMetrics are based on the algo-
rithms in SsfPack 3.0 developed by Siem Jan Koopman and described in
Koopman, Shephard and Doornik (1999, 2001)1. SsfPack is a suite of C
routines for carrying out computations involving the statistical analysis of
univariate and multivariate models in state space form. The routines allow
for a variety of state space forms from simple time invariant models to
complicated time-varying models. Functions are available to put standard
models like ARMA and spline models in state space form. General rou-
tines are available for filtering, smoothing, simulation smoothing, likelihood
evaluation, forecasting and signal extraction. Full details of the statistical
analysis is provided in Durbin and Koopman (2001). This chapter gives an
overview of state space modeling and the reader is referred to the papers by
Koopman, Shephard and Doornik for technical details on the algorithms
used in the S+FinMetrics/SsfPack functions.
This chapter is organized as follows. Section two describes the gen-

eral state space model and state space representation required for the
S+FinMetrics/SsfPack state space functions. Subsections describe the
various S+FinMetrics/SsfPack functions for putting common time series
models into state space form. The process of simulating observations from a
given state space model is also covered. Section three summarizes the main

1 Information about Ssfpack can be found at http://www.ssfpack.com.
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algorithms used for the analysis of state space models. These include the
Kalman filter, Kalman smoother, moment smoothing, disturbance smooth-
ing and forecasting. Estimation of the unknown parameters in a state space
model is described in Section four. The chapter concludes with a short dis-
cussion of simulation smoothing.
Textbook treatments of state space models are given in Harvey (1989,

1993), Hamilton (1994), West and Harrison (1997), and Kim and Nelson
(1999). Interesting applications of state space models in finance are given
in Engle and Watson (1987), Bomhoff (1994), Duan and Simonato (1999),
and Harvey, Ruiz and Shephard (1994), Carmona (2001) and Chan (2002).

14.2 State Space Representation

Many dynamic time series models in economics and finance may be rep-
resented in state space form. Some common examples are ARMA mod-
els, time-varying regression models, dynamic linear models with unob-
served components, discrete versions of continuous time diffusion processes,
stochastic volatility models, non-parametric and spline regressions. The lin-
ear Gaussian state space model may be represented as the system of equa-
tions

αt+1
m×1

= dt
m×1

+ Tt
m×m

· αt
m×1

+Ht
m×r

· ηt
r×1

(14.1)

θt
N×1

= ct
N×1

+ Zt
N×m

· αt
m×1

(14.2)

yt
N×1

= θt
N×1

+ Gt
N×N

· εt
N×1

(14.3)

where t = 1, . . . , n and

α1 ~N(a,P), (14.4)

ηt ~iid N(0, Ir) (14.5)

εt ~iid N(0, IN ) (14.6)

and it is assumed that
E[εtη

0
t] = 0

In (14.4), a and P are fixed and known but that can be generalized. The
state vector αt contains unobserved stochastic processes and unknown fixed
effects and the transition equation (14.1) describes the evolution of the
state vector over time using a first order Markov structure. The measure-
ment equation (14.3) describes the vector of observations yt in terms of the
state vector αt through the signal θt and a vector of disturbances εt. It
is assumed that the innovations in the transition equation and the innova-
tions in the measurement equation are independent, but this assumption
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can be relaxed. The deterministic matrices Tt,Zt,Ht,Gt are called system
matrices and are usually sparse selection matrices. The vectors dt and ct
contain fixed components and may be used to incorporate known effects or
known patterns into the model; otherwise they are equal to zero.
The state space model (14.1) - (14.6) may be compactly expressed asµ

αt+1

yt

¶
= δt

(m+N)×1
+ Φt
(m+N)×m

· αt
m×1

+ ut
(m+N)×1

, (14.7)

α1 ~N(a,P) (14.8)

ut ~iid N(0,Ωt) (14.9)

where

δt =

µ
dt
ct

¶
, Φt =

µ
Tt

Zt

¶
, ut =

µ
Htηt
Gtεt

¶
, Ωt =

µ
HtH

0
t 0

0 GtG
0
t

¶
The initial value parameters are summarized in the (m+ 1)×m matrix

Σ =

µ
P
a0

¶
(14.10)

For multivariate models, i.e. N > 1, it is assumed that the N ×N matrix
GtG

0
t is diagonal. In general, the system matrices in (14.7) are time varying.

14.2.1 Initial Conditions

The variance matrix P of the initial state vector α1 is assumed to be of
the form

P = P∗ + κP∞ (14.11)

where P∞ and P∗ are symmetric m ×m matrices with ranks r∞ and r∗,
respectively, and κ is a large scalar value, e.g. κ = 106. The matrix P∗
captures the covariance structure of the stationary components in the ini-
tial state vector, and the matrix P∞ is used to specify the initial variance
matrix for nonstationary components. When the ith diagonal element of
P∞ is negative, the corresponding ith column and row of P∗ are assumed
to be zero, and the corresponding row and column of P∞ will be taken
into consideration. When some elements of state vector are nonstation-
ary, the S+FinMetrics/SsfPack algorithms implement an “exact diffuse
prior” approach as described in Durbin and Koopman (2001) and Koop-
man, Shephard and Doornik (2001).

14.2.2 State Space Representation in S+FinMetrics/SsfPack

State space models in S+FinMetrics/SsfPack utilize the compact repre-
sentation (14.7) with initial value information (14.10). The following ex-
amples describe the specification of a state space model for use in the
S+FinMetrics/SsfPack state space modeling functions.
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Example 88 State space representation of the local level model

Consider the following simple model for the stochastic evolution of the
logarithm of an asset price yt

αt+1 = αt + η∗t , η
∗
t ~iid N(0, σ2η) (14.12)

yt = αt + ε∗t , ε
∗
t ~iid N(0, σ2ε) (14.13)

α1 ~N(a, P ) (14.14)

where it is assumed that E[ε∗t η
∗
t ] = 0. In the above model, the observed

asset price yt is the sum of two unobserved components, αt and ε∗t . The
component αt is the state variable and represents the fundamental value
(signal) of the asset. The transition equation (14.12) shows that the fun-
damental values evolve according to a random walk. The component ε∗t
represents random deviations (noise) from the fundamental value that are
assumed to be independent from the innovations to αt. The strength of
the signal in the fundamental value relative to the random deviation is
measured by the signal-to-noise ratio of variances q = σ2η/σ

2
ε. The model

(14.12) - (14.14) is called the random walk plus noise model, signal plus
noise model or the local level model.2

The state space form (14.7) of the local level model has time invariant
parameters

δ =

µ
0
0

¶
,Φ =

µ
1
1

¶
,Ω =

µ
σ2η 0
0 σ2ε

¶
(14.15)

with errors σηηt = η∗t and σεεt = ε∗t . Since the state variable αt is I(1),
the unconditional distribution of the initial state α1 doesn’t have finite
variance. In this case, it is customary to set a = E[α1] = 0 and P = var(α1)
to some large positive number, e.g. P = 107, in (14.14) to reflect that no
prior information is available. Using (14.11), the initial variance is specified
with P∗ = 0 and P∞ = 1. Therefore, the initial state matrix (14.10) for the
local level model has the form

Σ =

µ
−1
0

¶
(14.16)

where −1 implies that P∞ = 1.
In S+FinMetrics/SsfPack, a state space model is specified by creating

either a list variable with components giving the minimum components
necessary for describing a particular state space form or by creating an
“ssf” object. To illustrate, consider creating a list variable containing the
state space parameters in (14.15)-(14.16), with ση = 0.5 and σε = 1

2A detailed technical analysis of this model is given in Durbin and Koopman (2001),
chapter 2.



14.2 State Space Representation 517

State Space Parameter List Component Name
δ mDelta
Φ mPhi
Ω mOmega
Σ mSigma

TABLE 14.1. State space form list components

> sigma.e = 1
> sigma.n = 0.5
> a1 = 0
> P1 = -1
> ssf.ll.list = list(mPhi=as.matrix(c(1,1)),
+ mOmega=diag(c(sigma.n^2,sigma.e^2)),
+ mSigma=as.matrix(c(P1,a1)))
> ssf.ll.list
$mPhi:

[,1]
[1,] 1
[2,] 1

$mOmega:
[,1] [,2]

[1,] 0.25 0
[2,] 0.00 1

$mSigma:
[,1]

[1,] -1
[2,] 0

In the list variable ssf.ll.list, the component names match the state
space form parameters in (14.7) and (14.10). This naming convention, sum-
marized in table 14.1, must be used for the specification of any valid state
space model. Also, notice the use of the coercion function as.matrix. This
ensures that the dimensions of the state space parameters are correctly
specified.
An “ssf” object may be created from the list variable ssf.ll.list using

the S+FinMetrics/SsfPack function CheckSsf:

> ssf.ll = CheckSsf(ssf.ll.list)
> class(ssf.ll)
[1] "ssf"
> names(ssf.ll)
[1] "mDelta" "mPhi" "mOmega" "mSigma" "mJPhi"
[6] "mJOmega" "mJDelta" "mX" "cT" "cX"
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[11] "cY" "cSt"
> ssf.ll
$mPhi:

[,1]
[1,] 1
[2,] 1

$mOmega:
[,1] [,2]

[1,] 0.25 0
[2,] 0.00 1

$mSigma:
[,1]

[1,] -1
[2,] 0

$mDelta:
[,1]

[1,] 0
[2,] 0

$mJPhi:
[1] 0

$mJOmega:
[1] 0

$mJDelta:
[1] 0

$mX:
[1] 0

$cT:
[1] 0

$cX:
[1] 0

$cY:
[1] 1

$cSt:
[1] 1
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attr(, "class"):
[1] "ssf"

The function CheckSsf takes a list variable with a minimum state space
form, coerces the components to matrix objects and returns the full parame-
terization of a state space model used in many of the S+FinMetrics/SsfPack
state space modeling functions. See the online help for CheckSsf for de-
scriptions of the components of an “ssf” object.

Example 89 State space representation of a time varying parameter re-
gression model

Consider the Capital Asset Pricing Model (CAPM) with time varying
intercept and slope

rt = αt + βtrM,t + νt, νt ~GWN(0, σ2ν) (14.17)

αt+1 = αt + ξt, ξt ~GWN(0, σ2ξ) (14.18)

βt+1 = βt + ςt, ςt ~GWN(0, σ2ς ) (14.19)

where rt denotes the return on an asset in excess of the risk free rate,
and rM,t denotes the excess return on a market index. In this model, both
the abnormal excess return αt and asset risk βt are allowed to vary over
time following a random walk specification. Let αt = (αt, βt)

0, yt = rt,
xt = (1, rM,t)

0, Ht = diag(σξ, σς)
0 and Gt = σν . Then the state space form

(14.7) of (14.17) - (14.19) isµ
αt+1

yt

¶
=

µ
I2
x0t

¶
αt +

µ
Hηt
Gεt

¶
and has parameters

Φt =

µ
I2
x0t

¶
, Ω =

 σ2ξ 0 0

0 σ2ς 0
0 0 σ2ν

 (14.20)

Since αt is I(1) the initial state vector α1 doesn’t have finite variance so
it is customary to set a = 0 and P = κI2 where κ is large. Using (14.11),
the initial variance is specified with P∗ = 0 and P∞ = I2. Therefore, the
initial state matrix (14.10) for the time varying CAPM has the form

Σ =

 −1 0
0 −1
0 0


The state space parameter matrixΦt in (14.20) has a time varying system

element Zt= x0t. In S+FinMetrics/SsfPack, the specification of this time
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varying element in Φt requires an index matrix JΦ and a data matrix
X to which the indices in JΦ refer. The index matrix JΦ must have the
same dimension as Φt. The elements of JΦ are all set to −1 except the
elements for which the corresponding elements of Φt are time varying. The
non-negative index value indicates the column of the data matrix X which
contains the time varying values.
The specification of the state space form for the time varying CAPM

requires values for the variances σ2ξ, σ
2
ς , and σ2ν as well as a data ma-

trix X whose rows correspond with Zt = x0t = (1, rM,t). For example, let
σ2ξ = (0.01)2, σ2ς = (0.05)2 and σ2ν = (0.1)2 and construct the data ma-
trix X using the excess return data in the S+FinMetrics “timeSeries”
excessReturns.ts

> X.mat = cbind(1,as.matrix(seriesData(excessReturns.ts[,"SP500"]))

The state space form may be created using

> Phi.t = rbind(diag(2),rep(0,2))
> Omega = diag(c((.01)^2,(.05)^2,(.1)^2))
> J.Phi = matrix(-1,3,2)
> J.Phi[3,1] = 1
> J.Phi[3,2] = 2
> Sigma = -Phi.t
> ssf.tvp.capm = list(mPhi=Phi.t,
+ mOmega=Omega,
+ mJPhi=J.Phi,
+ mSigma=Sigma,
+ mX=X.mat)
> ssf.tvp.capm
$mPhi:

[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0

$mOmega:
[,1] [,2] [,3]

[1,] 0.0001 0.0000 0.00
[2,] 0.0000 0.0025 0.00
[3,] 0.0000 0.0000 0.01

$mJPhi:
[,1] [,2]

[1,] -1 -1
[2,] -1 -1
[3,] 1 2
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Parameter Index Matrix List Component Name
Jδ mJDelta
JΦ mJPhi
JΩ mJOmega

Time Varying Component Data Matrix List Component Name
X mX

TABLE 14.2. S+FinMetrics time varying state space components

$mSigma:
[,1] [,2]

[1,] -1 0
[2,] 0 -1
[3,] 0 0

$mX:
numeric matrix: 131 rows, 2 columns.

SP500
1 1 0.002803
2 1 0.017566
...
131 1 -0.0007548

Notice in the specification of Φt the values associated with x0t in the third
row are set to zero. In the index matrix JΦ, the (3,1) element is 1 and
the (3,2) element is 2 indicating that the data for the first and second
columns of x0t come from the first and second columns of the component
mX, respectively.
In the general state space model (14.7), it is possible that all of the system

matrices δt, Φt and Ωt have time varying elements. The corresponding
index matrices Jδ, JΦ and JΩ indicate which elements of the matrices δt,Φt

and Ωt are time varying and the data matrix X contains the time varying
components. The naming convention for these components is summarized
in table 14.2.

14.2.3 Missing Values

The S+FinMetrics/SsfPack state space modeling functions can handle
missing values in the vector of response variables yt in (14.3). Missing
values are not allowed in the state space system matrices Φt,Ωt,Σ and δt.
Missing values are represented by NA in S-PLUS.
In the S+FinMetrics/SsfPack state space functions, the observation vec-

tor yt with missing values will be be reduced to the vector y
†
t without

missing values and the measurement equation will be adjusted accordingly.
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For example, the measurement equation yt= ct+Ztαt+Gtεt with

yt =


5

NA
3

NA

 , ct =


1
2
3
4

 , Zt =


Z1,t
Z2,t
Z3,t
Z4,t

 , Gt =


G1,t
G2,t
G3,t
G4,t


reduces to the measurement equation y†t= c

†
t+Z

†
tαt+G

†
tεt with

y†t =
µ
5
3

¶
, c†t =

µ
1
3

¶
, Z†t =

µ
Z1,t
Z3,t

¶
, G†

t =

µ
G1,t
G3,t

¶
The SsfPack algorithms in S+FinMetrics automatically replace the ob-
servation vector yt with y

†
t when missing values are encountered and the

system matrices are adjusted accordingly.

14.2.4 S+FinMetrics/SsfPack Functions for Specifying the
State Space Form for Some Common Time Series
Models

S+FinMetrics/SsfPack has functions for the creation of the state space
representation of some common time series models. These functions and
models are described in the following sub-sections.

ARMA Models

Following Harvey (1993, Section 4.4), the ARMA(p, q) model with zero
mean3

yt = φ1yt−1 + · · ·+ φpyt−p + ξt + θ1ξt−1 + · · ·+ θqξt−q (14.21)

may be put in state space form with transition and measurement equations

αt+1 = Tαt +Hξt, ξt ~N(0, σ
2
ε)

yt = Zαt

and time invariant system matrices

T =


φ1 1 0 · · · 0
φ2 0 1 0
...

. . .
...

φm−1 0 0 1
φm 0 0 · · ·

 , H =


1
θ1
...

θm−1
θm

 , (14.22)

Z =
¡
1 0 · · · 0 0

¢
3Note that the MA coefficients are specified with positive signs, which is the opposite

of how the MA coefficients are specified for models estimated by the S-PLUS function
arima.mle.
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where d, c and G of the state space form (14.1)-(14.3) are all zero and
m = max(p, q + 1). The state vector αt has the form

αt =


yt

φ2yt−1 + · · ·+ φpyt−m+1 + θ1ξt + · · ·+ θm−1ξt−m+2
φ3yt−1 + · · ·+ φpyt−m+2 + θ2ξt + · · ·+ θm−1ξt−m+3

...
φmyt−1 + θm−1ξt

 (14.23)

In compact state space form (14.7), the model isµ
αt+1

yt

¶
=

µ
T
Z

¶
αt +

µ
H
0

¶
ξt

= Φαt + ut

and

Ω =

µ
σ2ξHH

0 0

0 0

¶
If yt is stationary then αt ~N(0,V) is the unconditional distribution of the
state vector, and the covariance matrix V satisfies V = TVT0+σ2ξHH

0,
which can be solved for the elements of V. The initial value parameters are
then

Σ =

µ
V
00

¶
The S+FinMetrics/SsfPack function GetSsfArma creates the state space

system matrices for any univariate stationary and invertible ARMA model.
The arguments expected by GetSsfArma are

> args(GetSsfArma)
function(ar = NULL, ma = NULL, sigma = 1, model = NULL)

where ar is the vector of p AR coefficients, ma is the vector of q MA coef-
ficients, sigma is the innovation standard deviation σξ, and model is a list
with components giving the AR, MA and innovation standard deviation. If
the arguments ar, ma, and sigma are specified, then model is ignored. The
function GetSsfArma returns a list containing the system matrices Φ,Ω
and the initial value parameters Σ.

Example 90 AR(1) and ARMA(2,1)

Consider the AR(1) model

yt = 0.75yt−1 + ξt, ξt ~ GWN(0, (0.5)2)

The state space form may be computed using
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> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)
> ssf.ar1
$mPhi:

[,1]
[1,] 0.75
[2,] 1.00

$mOmega:
[,1] [,2]

[1,] 0.25 0
[2,] 0.00 0

$mSigma:
[,1]

[1,] 0.5714
[2,] 0.0000

In the component mSigma, the unconditional variance of the initial state
α1 is computed as var(α1) = (0.5)2/(1− 0.752) = 0.5714.
Next, consider the ARMA(2,1) model

yt = 0.6yt−1 + 0.2yt−2 + εt − 0.2εt−1, εt ~GWN(0, 0.9)

The state space system matrices may be computed using

> arma21.mod = list(ar=c(0.6,0.2),ma=c(-0.2),sigma=sqrt(0.9))
> ssf.arma21 = GetSsfArma(model=arma21.mod)
> ssf.arma21
$mPhi:

[,1] [,2]
[1,] 0.6 1
[2,] 0.2 0
[3,] 1.0 0

$mOmega:
[,1] [,2] [,3]

[1,] 0.90 -0.180 0
[2,] -0.18 0.036 0
[3,] 0.00 0.000 0

$mSigma:
[,1] [,2]

[1,] 1.58571 0.01286
[2,] 0.01286 0.09943
[3,] 0.00000 0.00000
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The unconditional variance of the initial state vector α1 = (α11, α12)0 is in
the top 2× 2 block of mSigma and is

var(α1) =

µ
1.586 0.013
0.013 0.099

¶
.

Structural Time Series Models

The basic univariate unobserved components structural time series model
(STSM) for a time series yt has the form

yt = µt + γt + ψt + ξt (14.24)

where µt represents the unobserved trend component, γt represents the
unobserved seasonal component, ψt represents the unobserved cycle com-
ponent, and ξt represents the unobserved irregular component.
The nonstationary trend component µt has the form of a local linear

trend :

µt+1 = µt + βt + ηt, ηt ~GWN(0, σ2η) (14.25)

βt = βt + ςt, ςt ~GWN(0, σ2ς ) (14.26)

with µ1 ~N(0, κ) and β1 ~N(0, κ) where k is a large number, e.g. k = 10
6.

If σ2ς = 0 then µt follows a random walk with drift β1. If both σ2ς = 0 and
σ2η = 0 then µt follows a linear deterministic trend.
The stochastic seasonal component γt has the form

S(L)γt = ωt, ωt ~GWN(0, σ2ω) (14.27)

S(L) = 1 + L+ · · ·+ Ls−1

where s gives the number of seasons. When σ2ω = 0, the seasonal component
becomes fixed.
The stochastic cycle component ψt is specified asµ

ψt+1
ψ∗t+1

¶
= ρ

µ
cosλc sinλc
− sinλc cosλc

¶µ
ψt
ψ∗t

¶
+

µ
χt
χ∗t

¶
,(14.28)µ

χt
χ∗t

¶
~GWN

µµ
0
0

¶
, σ2ψ(1− ρ2)I2

¶
where ψ0 ~N(0, σ

2
ψ), ψ

∗
0 ~N(0, σ

2
ψ) and cov(ψ0, ψ

∗
0) = 0. The parameter

ρ ∈ (0, 1] is interpreted as a damping factor. The frequency of the cycle
is λc = 2π/c and c is the period. When ρ = 1 the cycle reduces to a
deterministic sine-cosine wave.
The S+FinMetrics/SsfPack function GetSsfStsm creates the state

space systemmatrices for the univariate structural time series model (14.24).
The arguments expected by GetSsfStsm are
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Argument STSM Parameter
irregular ση
level σξ
slope σς
seasonalDummy s
seasonalTrig σω, s
seasonalHS σω, s
cycle0 σψ, λc, ρ
...

...
cycle9 σψ, λc, ρ

TABLE 14.3. Arguments to the S+FinMetrics function GetSsfStsm

> args(GetSsfStsm)
function(irregular = 1, level = 0.1, slope = NULL,

seasonalDummy = NULL, seasonalTrig = NULL, seasonalHS
= NULL, cycle0 = NULL, cycle1 = NULL, cycle2 = NULL,
cycle3 = NULL, cycle4 = NULL, cycle5 = NULL, cycle6 =
NULL, cycle7 = NULL, cycle8 = NULL, cycle9 = NULL)

These arguments are explained in table 14.3.

Example 91 Local level model

The state space for the local level model (14.12)-(14.14) may be con-
structed using

> ssf.stsm = GetSsfStsm(irregular=1,level=0.5)
> class(ssf.stsm)
[1] "list"
> ssf.stsm
$mPhi:

[,1]
[1,] 1
[2,] 1

$mOmega:
[,1] [,2]

[1,] 0.25 0
[2,] 0.00 1

$mSigma:
[,1]

[1,] -1
[2,] 0
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The arguments irregular=1 and level=0.5 specify σε = 1 and ση = 1 in
(14.13) and (14.14), respectively.

Regression Models

The linear regression model

yt= x
0
tβ+ξt, ξt ~GWN(0, σ2ξ),

where xt is a k × 1 data matrix and β is a k × 1 fixed parameter vector,
may be put in the state spaceµ

αt+1

yt

¶
=

µ
Ik
x0t

¶
αt +

µ
0

σξεt

¶
(14.29)

The state vector satisfies αt+1= αt= β. The state space system matrices
are Tt= Ik,Zt= x

0
t, Gt = σξ and Ht = 0. The coefficient vector β is fixed

and unknown so that the initial conditions are α1 ~N(0, κIk) where κ is
large. An advantage of analyzing the linear regression model in state space
form is that recursive least squares estimates of the regression coefficient
vector β are readily computed. Another advantage is that it is straightfor-
ward to allow some or all of the regression coefficients to be time varying.
The linear regression model with time varying parameters may be intro-

duced by setting Ht not equal to zero in (14.29). For example, to allow all
regressors to evolve as random walks set

Ht =

 σβ1
...

σβk


so that the state equation becomes

αt+1= αt+Htηt (14.30)

More explicitly, since αi,t+1 = αi,t = βi,t the state equation (14.30) implies

βi,t+1 = βi,t + σβi · ηi,t, i = 1, . . . , k

If σβi = 0 then βi is constant.
The S+FinMetrics/SsfPack function GetSsfReg creates the state space

system matrices for the linear regression model. The arguments expected
by GetSsfReg are

> args(GetSsfReg)
function(mX)

where mX is a rectangular data object which represents the regressors in the
model. The function GetSsfReg returns a list with components describing
the minimal state space representation of the linear regression model.
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Example 92 Time trend regression model

Consider the time trend regression model

yt = µ+ δt+ ξt, ξt ~GWN(0, σ2ξ)

The state space form for a sample of size n = 10 is computed using

> ssf.reg = GetSsfReg(cbind(1,1:10))
> class(ssf.reg)
[1] "list"
> names(ssf.reg)
[1] "mPhi" "mOmega" "mSigma" "mJPhi" "mX"
> ssf.reg
$mPhi:

[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0

$mOmega:
[,1] [,2] [,3]

[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 1

$mSigma:
[,1] [,2]

[1,] -1 0
[2,] 0 -1
[3,] 0 0

$mJPhi:
[,1] [,2]

[1,] -1 -1
[2,] -1 -1
[3,] 1 2

$mX:
[,1] [,2]

[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 1 6
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[7,] 1 7
[8,] 1 8
[9,] 1 9
[10,] 1 10

Since the system matrix Zt= x0t, the parameter Φt is time varying and
the index matrix JΦ, represented by the component mJPhi, determines the
association between the time varying data in Zt and the data supplied in
the component mX.
To specify a time trend regression with a time varying slope of the form

δt+1 = δt + ζt, ζt ~GWN(0, σ2ζ) (14.31)

one needs to specify a non-zero value for σ2ζ in Ωt. For example, if σ2ζ = 0.5
then

> ssf.reg.tvp = ssf.reg
> ssf.reg.tvp$mOmega[2,2] = 0.5
> ssf.reg.tvp$mOmega

[,1] [,2] [,3]
[1,] 0 0.0 0
[2,] 0 0.5 0
[3,] 0 0.0 1

modifies the state space form for the time trend regression to allow a time
varying slope of the form (14.31).

Regression Models with ARMA Errors

The ARMA(p, q) models created with GetSsfArma do not have determinis-
tic terms (e.g., constant, trend, seasonal dummies) or exogenous regressors
and are therefore limited. The general ARMA(p, q) model with exogenous
regressors has the form

yt = x
0
tβ + ξt

where ξt follows an ARMA(p, q) process of the form (14.21). Let αt be
defined as in (14.23) and let

α∗t =
µ
αt

βt

¶
(14.32)

where βt= β.Writing the state equation implied by (14.32) asα∗t+1= T
∗α∗t+H

∗ηt
let

T∗ =

·
T 0
0 Ik

¸
, H∗ =

·
H
0

¸
,

Z∗t = ( 1 0 . . . 0 x0t )
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where T and H are defined in (14.23). Then the state space form of the
regression model with ARMA errors isµ

αt+1

yt

¶
=

µ
T∗

Z∗t

¶
α∗t +

µ
H∗ηt
0

¶
The S+FinMetrics/SsfPack function GetSsfRegArma creates the state

space system matrices for the linear regression model with ARMA errors.
The arguments expected by GetSsfRegArma are

> args(GetSsfRegArma)
function(mX, ar = NULL, ma = NULL, sigma = 1, model = NULL)

where mX is a rectangular data object which represents the regressors in the
model, and the remaining arguments are the same as those for GetSsfArma.
The function GetSsfRegArma returns a list with components describing the
minimal state space representation of the linear regression model.

Example 93 Time trend regression with AR(2) errors

The state space form of the time trend regression with AR(2) errors

yt = µ+ δt+ ξt,

ξt = φ1ξt−1 + φ2ξt−2 + νt, νt ~ GWN(0, σ2ξ)

may be computed using

> ssf.reg.ar2 = GetSsfRegArma(cbind(1,1:10),
+ ar=c(1.25,-0.5))
> ssf.reg.ar2
$mPhi:

[,1] [,2] [,3] [,4]
[1,] 1.25 1 0 0
[2,] -0.50 0 0 0
[3,] 0.00 0 1 0
[4,] 0.00 0 0 1
[5,] 1.00 0 0 0

$mOmega:
[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0

$mSigma:
[,1] [,2] [,3] [,4]
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[1,] 4.364 -1.818 0 0
[2,] -1.818 1.091 0 0
[3,] 0.000 0.000 -1 0
[4,] 0.000 0.000 0 -1
[5,] 0.000 0.000 0 0

$mJPhi:
[,1] [,2] [,3] [,4]

[1,] -1 -1 -1 -1
[2,] -1 -1 -1 -1
[3,] -1 -1 -1 -1
[4,] -1 -1 -1 -1
[5,] -1 -1 1 2

$mX:
[,1] [,2]

[1,] 1 1
[2,] 1 2
...
[10,] 1 10

Nonparametric Cubic Spline Model

Suppose the continuous time process y(t) is observed at discrete time points
t1, . . . , tn. Define δi = ti − ti−1 ≥ 0 as the time duration between obser-
vations. The goal of the nonparametric cubic spline model is to estimate a
smooth signal µ(t) from y(t) using

y(t) = µ(t) + ε(t)

where ε(t) is a stationary error. The signal µ(t) is extracted by minimizing

nX
i=1

(y(ti)− µ(ti))
2 + q−1

Z µ
∂2µ(t)

∂t2

¶2
dt

where the second term is a penalty term that forces µ(t) to be “smooth”4,
and q may be interpreted as a signal-to-noise ratio. The resulting function
µ(t) may be expressed as the structural time series model

µ(ti+1) = µ(ti) + δiβ(ti) + η(ti) (14.33)

β(ti+1) = β(ti) + ς(ti)

4This process can be interpreted as an interpolation technique and is similar to the
technique used in the S+FinMetrics functions interpNA and hpfilter. See also the
smoothing spline method described in chapter sixteen.



532 14. State Space Models

where µ
η(ti)
ς(ti)

¶
~N

·µ
0
0

¶
, σ2ς δi

µ
1
3δ
2
i

1
2δi

1
2δi 1

¶¸
Combining (14.33) with the measurement equation

y(ti) = µ(ti) + ε(ti)

where ε(ti) ~N(0, σ2ε) and is independent of η(ti) and ς(ti), gives the state
space form for the nonparametric cubic spline model. The state space
system matrices are

Φt =

 1 δi
0 1
1 0

 , Ωt =

 qδ2t
3

qδ2t
2 0

qδ2t
2 qδt 0
0 0 1


When the observations are equally spaced, δi is constant and the above
system matrices are time invariant.
The S+FinMetrics/SsfPack function GetSsfSpline creates the state

space system matrices for the nonparametric cubic spline model. The ar-
guments expected by GetSsfSpline are

> args(GetSsfSpline)
function(snr = 1, delta = 0)

where snr is the signal-to-noise ratio q, and delta is a numeric vector
containing the time durations δi (i = 1, . . . , n). If delta=0 then δi is as-
sumed to be equal to unity and the time invariant form of the model is
created. The function GetSsfSpline returns a list with components de-
scribing the minimal state space representation of the nonparametric cubic
spline model.

Example 94 State space form of non-parametric cubic spline model

The default non-parametric cubic spline model with δt = 1 is created
using

> GetSsfSpline()
$mPhi:

[,1] [,2]
[1,] 1 1
[2,] 0 1
[3,] 1 0

$mOmega:
[,1] [,2] [,3]

[1,] 0.3333 0.5 0
[2,] 0.5000 1.0 0
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[3,] 0.0000 0.0 1

$mSigma:
[,1] [,2]

[1,] -1 0
[2,] 0 -1
[3,] 0 0

$mJPhi:
NULL

$mJOmega:
NULL

$mX:
NULL

For unequally spaced observations

> t.vals = c(2,3,5,9,12,17,20,23,25)
> delta.t = diff(t.vals)

and q = 0.2, the state space form is

> GetSsfSpline(snr=0.2,delta=delta.t)
$mPhi:

[,1] [,2]
[1,] 1 1
[2,] 0 1
[3,] 1 0

$mOmega:
[,1] [,2] [,3]

[1,] 0.06667 0.1 0
[2,] 0.10000 0.2 0
[3,] 0.00000 0.0 1

$mSigma:
[,1] [,2]

[1,] -1 0
[2,] 0 -1
[3,] 0 0

$mJPhi:
[,1] [,2]

[1,] -1 1
[2,] -1 -1
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[3,] -1 -1

$mJOmega:
[,1] [,2] [,3]

[1,] 4 3 -1
[2,] 3 2 -1
[3,] -1 -1 -1

$mX:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.00000 2.0000 4.000 3.0 5.000 3.0 3.0 2.0000
[2,] 0.20000 0.4000 0.800 0.6 1.000 0.6 0.6 0.4000
[3,] 0.10000 0.4000 1.600 0.9 2.500 0.9 0.9 0.4000
[4,] 0.06667 0.5333 4.267 1.8 8.333 1.8 1.8 0.5333

14.2.5 Simulating Observations from the State Space Model

Once a state space model has been specified, it is often interesting to draw
simulated values from the model. The S+FinMetrics/SsfPack function
SsfSim may be used for such a purpose. The arguments expected from
SsfSim are

> args(SsfSim)
function(ssf, n = 100, mRan = NULL, a1 = NULL)

where ssf represents either a list with components giving a minimal state
space form or a valid “ssf” object, n is the number of simulated obser-
vations, mRan is user-specified matrix of disturbances, and a1 is the initial
state vector. The use of SsfSim is illustrated with the following examples.

Example 95 Simulating observations from the local level model

To generate 250 observations on the state variable αt+1 and observations
yt in the local level model (14.12) - (14.14) use

> set.seed(112)
> ll.sim = SsfSim(ssf.ll.list,n=250)
> class(ll.sim)
[1] "matrix"
> colIds(ll.sim)
[1] "state" "response"

The function SsfSim returns a matrix containing the simulated state vari-
ables αt+1 and observations yt. These values are illustrated in Figure 14.1
created using

> tsplot(ll.sim)
> legend(0,4,legend=c("State","Response"),lty=1:2)
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FIGURE 14.1. Simulated values from local level model created using the
S+FinMetrics function SsfSim.

Example 96 Simulating observations from CAPM with time varying pa-
rameters

When simulating observations from a state space form with a data matrix
component mX using the function SsfSim, the number of simulated values
must match the number of rows of mX. The state space form for the CAPM
with time varying parameters created earlier uses a data matrix mX with
n = 131 observations

> nrow(ssf.tvp.capm$mX)
[1] 131

The state variables are the time varying intercept αt+1 and the time varying
βt+1. Natural initial values for these parameters are α1 = 0 and β1 = 1.
Using these initial values, n = 131 observations are generated from the
CAPM with time varying parameters using

> set.seed(444)
> tvp.sim = SsfSim(ssf.tvp.capm,n=nrow(X.mat),a1=c(0,1))
> colIds(tvp.sim)
[1] "state.1" "state.2" "response"

The simulated state and response variables are illustrated in Figure 14.2
created using
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FIGURE 14.2. Simulated state and response values from the CAPM with time
varying parameters state space form ssf.tvp.

> par(mfrow=c(3,1))
> tsplot(tvp.sim[,"state.1"],main="Time varying intercept",
+ ylab="alpha(t)")
> tsplot(tvp.sim[,"state.2"],main="Time varying slope",
+ ylab="beta(t)")
> tsplot(tvp.sim[,"response"],main="Simulated returns",
+ ylab="returns")

14.3 Algorithms

14.3.1 Kalman Filter

The Kalman filter is a recursive algorithm for the evaluation of moments
of the normally distributed state vector αt+1 conditional on the observed
data Yt = (y1, . . . , yt). To describe the algorithm, let at = E[αt|Yt−1]
denote the conditional mean of αt based on information available at time
t− 1 and let Pt = var(αt|Yt−1) denote the conditional variance of αt.
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The filtering or updating equations of the Kalman filter compute at|t =
E[αt|Yt] and Pt|t = var(αt|Yt) using

at|t = at+Ktvt (14.34)

Pt|t = Pt−PtZ0tK
0
t (14.35)

where

vt = yt−ct − Ztat (14.36)

Ft = ZtPtZ
0
t+GtG

0
t (14.37)

Kt = PtZ
0
tF
−1
t (14.38)

The variable vt is themeasurement equation innovation or prediction error,
Ft = var(vt) and Kt is the Kalman gain matrix.
The prediction equations of the Kalman filter compute at+1 and Pt+1

using

at+1 = Ttat|t (14.39)

Pt+1 = TtPt|tT0t+HtH
0
t (14.40)

In the Kalman filter recursions, if there are missing values in yt then
vt= 0, F

−1
t = 0 and Kt = 0. This allows out-of-sample forecasts of αt and

yt to be computed from the updating and prediction equations.

14.3.2 Kalman Smoother

The Kalman filtering algorithm is a forward recursion which computes one-
step ahead estimates at+1 and Pt+1 based on Yt for t = 1, . . . , n. The
Kalman smoothing algorithm is a backward recursion which computes the
mean and variance of specific conditional distributions based on the full
data set Yn = (y1, . . . , yn). The smoothing equations are

r∗t = T0trt, N
∗
t= TtNtT

0
t, K

∗
t= N

∗
tKt (14.41)

et = F−1t vt−K0
tr
∗
t , Dt= F

−1
t +KtK

∗0
t

and the backwards updating equations are

rt−1= Z0tet+r
∗
t , Nt−1= Z0tDtZt− < K∗tZt> +N

∗
t (14.42)

for t = n, . . . , 1 with initializations rn = 0 and Nn = 0. For any square
matrix A, the operator < A >= A+A0. The values rt are called state
smoothing residuals and the values et are called response smoothing residu-
als. The recursions (14.41) and (14.42) are somewhat non-standard. Durbin
and Koopman (2001) show how they may be re-expressed in more standard
form.
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14.3.3 Smoothed State and Response Estimates

The smoothed estimates of the state vector αt and its variance matrix
are denoted α̂t = E[αt|Yn] and var(α̂t|Yn), respectively. The smoothed
estimate α̂t is the optimal estimate of αt using all available information
Yn, whereas the filtered estimate ât|t is the optimal estimate only using
information available at time t,Yt. The computation of α̂t and its variance
from the Kalman smoother algorithm is described in Durbin and Koopman
(2001).
The smoothed estimate of the response yt and its variance are computed

using

ŷt = θ̂t = E[θt|Yn] = ct+Ztα̂t

var(ŷt|Yn) = Ztvar(α̂t|Yn)Z
0
t

14.3.4 Smoothed Disturbance Estimates

The smoothed disturbance estimates are the estimates of the measure-
ment equations innovations εt and transition equation innovations ηt based
on all available information Yn, and are denoted ε̂t = E[εt|Yn] and
η̂t = E[ηt|Yn], respectively. The computation of ε̂t and η̂t from the
Kalman smoother algorithm is described in Durbin and Koopman (2001).
These smoothed disturbance estimates are useful for parameter estimation
by maximum likelihood and for diagnostic checking. See chapter seven in
Durbin and Koopman (2001) for details.

14.3.5 Forecasting

The Kalman filter prediction equations (14.39) - (14.40) produces one-step
ahead predictions of the state vector, at+1 = E[αt+1|Yt], along with pre-
diction variance matrices Pt+1. Out of sample predictions, together with
associated mean square errors, can be computed from the Kalman filter
prediction equations by extending the data set y1, . . . ,yn with a set of
missing values. When yτ is missing, the Kalman filter reduces to the pre-
diction step described above. As a result, a sequence of m missing values
at the end of the sample will produce a set of h− step ahead forecasts for
h = 1, . . . ,m.

14.3.6 S+FinMetrics/SsfPack Implementation of State
Space Modeling Algorithms

The S+FinMetrics/SsfPack function KalmanFil implements the Kalman
filter forward recursions in a computationally efficient way, see Koopman,
Shephard and Doornik (2001). It produces an object of class “KalmanFil”
for which there are print and plot methods. The S+FinMetrics/SsfPack
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function KalmanSmo computes the Kalman smoother backwards recursions,
and produces an object of class “KalmanSmo” for which there are print
and plot methods. The functions KalmanFil and KalmanSmo are primarily
used by other S+FinMetrics/SsfPack state space functions that require
the output from the Kalman filter and Kalman smoother.
Filtered and smoothed estimates of αt and yt, with estimated variances,

as well as smoothed estimates of εt and ηt, with estimated variances, are
computed using the S+FinMetrics/SsfPack function SsfMomentEst. The
result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plot method. The function SsfMomentEst may also be used
to compute out-of-sample forecasts and forecast variances of αt and yt.
The use of the S+FinMetrics/SsfPack functions for implementing the

state space algorithms are illustrated with the following examples.

Example 97 State space algorithms applied to local level model

Consider the simulated data for the local level model (14.12) - (14.14) in
the object ll.sim computed earlier. The response variable yt is extracted
using

> y.ll = ll.sim[,"response"]

Kalman filter

The Kalman filter recursions for the simulated data from the local level
model are obtained using the S+FinMetrics/SsfPack function KalmanFil
with the optional argument task="STFIL" (state filtering)

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STFIL")
> class(KalmanFil.ll)
[1] "KalmanFil"

The function KalmanFil takes as input a vector of response data and either
a list describing the minimal state space form or a valid “ssf” object. The
result of KalmanFil is an object of class “KalmanFil” with components

> names(KalmanFil.ll)
[1] "mOut" "innov" "std.innov"
[4] "mGain" "loglike" "loglike.conc"
[7] "dVar" "mEst" "mOffP"
[10] "task" "err" "call"

A complete explanation of the components of a “KalmanFil” object is given
in the online help for KalmanFil. These components are mainly used by
other S+FinMetrics/SsfPack functions and are only briefly discussed here.
The component mOut contains the basic Kalman filter output.

> KalmanFil.ll$mOut
numeric matrix: 250 rows, 3 columns.
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[,1] [,2] [,3]
[1,] 0.00000 1.0000 0.0000
[2,] -1.28697 0.5556 0.4444
...
[250,] -1.6371 0.3904 0.6096

The first column of mOut contains the prediction errors vt, the second col-
umn contains the Kalman gains,Kt, and the last column contains the in-
verses of the prediction error variances, F−1t . Since task="STFIL" the fil-
tered estimates at|t and yt|t = Ztat|t are in the component mEst

> KalmanFil.ll$mEst
numeric matrix: 250 rows, 4 columns.

[,1] [,2] [,3] [,4]
[1,] 1.10889 1.10889 1.0000 1.0000
[2,] 0.39390 0.39390 0.5556 0.5556
...
[250,] 4.839 4.839 0.3904 0.3904

The plotmethod allows for a graphical analysis of the Kalman filter output

> plot(KalmanFil.ll)

Make a plot selection (or 0 to exit):

1: plot: all
2: plot: innovations
3: plot: standardized innovations
4: plot: innovation histogram
5: plot: normal QQ-plot of innovations
6: plot: innovation ACF
Selection:

The standardized innovations vt/Ft are illustrated in Figure 14.3.

Kalman smoother

The Kalman smoother backwards recursions for the simulated data from
the local level model are obtained using the S+FinMetrics/SsfPack func-
tion KalmanSmo

> KalmanSmo.ll = KalmanSmo(KalmanFil.ll,ssf.ll)
> class(KalmanSmo.ll)
[1] "KalmanSmo"

The function KalmanSmo takes as input an object of class “KalmanFil” and
an associated list variable containing the state space form used to produce
the “KalmanFil” object. The result of KalmanSmo is an object of class
“KalmanSmo” with components
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FIGURE 14.3. Standardized innovations from Kalman filter applied to simulated
data from local level model.

> names(KalmanSmo.ll)
[1] "state.residuals" "response.residuals"
[3] "state.variance" "response.variance"
[5] "aux.residuals" "scores"
[7] "call"

The component state.residuals contains the smoothing residuals from
the state equation, the component response.residuals contains the smooth-
ing residuals from the measurement equation. The corresponding variances
of these residuals are in the components state.variance and response.variance.
A multi-panel timeplot of the standardized residuals in the component
aux.residuals, illustrated in Figure 14.7, is created with the plot method

> plot(KalmanSmo.ll,layout=c(1,2))

Filtered and smoothed moment estimates

Filtered and smoothed estimates of αt and yt with corresponding estimates
of variances may be computed using the S+FinMetrics/SsfPack function
SsfMomentEst. To compute filtered estimates, call SsfMomentEst with the
argument task="STFIL" (state filtering)

> FilteredEst.ll = SsfMomentEst(y.ll,ssf.ll,task="STFIL")
> class(FilteredEst.ll)
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FIGURE 14.4. Standardized smoothing residuals from Kalman smoother recur-
sions computed from simulated data from local level model.

[1] "SsfMomentEst"
> names(FilteredEst.ll)
[1] "state.moment" "state.variance"
[3] "response.moment" "response.variance"
[5] "task"

The function SsfMomentEst takes as input a vector of response data and
either a list describing the minimal state space form or a valid “ssf” object.
The result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plotmethod. The filtered estimates at|t and yt|t = ct+Ztat|t
are in the components state.moment and response.moment, respectively,
and the corresponding filtered variance estimates are in the components
state.variance and response.variance. From the measurement equa-
tion (14.13) in the local level model, at|t = yt|t

> FilteredEst.ll$state.moment[1:5]
[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461
> FilteredEst.ll$response.moment[1:5]
[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461

The plot method creates a multi-panel timeplot, illustrated in figure 14.5,
of the estimates of αt and yt

> plot(FilteredEst.ll,layout=c(1,2))
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FIGURE 14.5. Filtered estimates of αt and yt computed from simulated data
from local level model.

A plot of the filtered state estimates with 95% confidence intervals may be
created using

> upper.state = FilteredEst.ll$state.moment +
+ 2*sqrt(FilteredEst.ll$state.variance)
> lower.state = FilteredEst.ll$state.moment -
+ 2*sqrt(FilteredEst.ll$state.variance)
> tsplot(FilteredEst.ll$state.moment,upper.state,lower.state,
+ lty=c(1,2,2),ylab="filtered state")

and is shown in Figure 14.6.
The smoothed estimates α̂t and ŷt along with estimated variances may

be computed using SsfMomentEst with task="STSMO" (state smoothing)

> SmoothedEst.ll = SsfMomentEst(y.ll,ssf.ll.list,task="STSMO")

In the local level model, α̂t = ŷt

> SmoothedEst.ll$state.moment[1:5]
[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455
> SmoothedEst.ll$response.moment[1:5]
[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455



544 14. State Space Models

fil
te

re
d 

st
at

e

0 50 100 150 200 250

-6
-4

-2
0

2
4

6

FIGURE 14.6. Filtered estimates of αt with 95% confidence intervals computed
from simulated values from local level model.
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FIGURE 14.7. Smoothed estimates of αt with 95% confidence intervals computed
from simulated values from local level model.
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The smoothed state estimates with 95% confidence bands are illustrated
in Figure 14.7. Compared to the filtered state estimates, the smoothed
estimates are “smoother” and the confidence bands are slightly smaller.
Smoothed estimates of αt and yt without estimated variances may be

obtained using the S+FinMetrics/SsfPack function SsfCondDens with the
argument task="STSMO" (state smoothing)

> smoothedEst.ll = SsfCondDens(y.ll,ssf.ll.list,task="STSMO")
> class(smoothedEst.ll)
[1] "SsfCondDens"
> names(smoothedEst.ll)
[1] "state" "response" "task"

The object smoothedEst.ll is of class “SsfCondDens” with components
state, giving the smoothed state estimates α̂t, response, giving the smoothed
response estimates ŷt, and task, naming the task performed. The smoothed
estimates ŷt and α̂t may be visualized using the plotmethod for “SsfCondDens”
objects

> plot(smoothedEst.ll)

The resulting plot has the same format at the plot shown in Figure 14.5.

Smoothed disturbance estimates

The smoothed disturbance estimates ε̂t and η̂t may be computed using
SsfMomentEstwith the optional argument task="DSSMO" (disturbance smooth-
ing)

> disturbEst.ll = SsfMomentEst(y.ll,ssf.ll,task="DSSMO")
> names(disturbEst.ll)
[1] "state.moment" "state.variance"
[3] "response.moment" "response.variance"
[5] "task"

The estimates η̂t are in the component state.moment, and the estimates ε̂t
are in the component response.moment. These estimates may be visualized
using the plot method.
Koopman, Shephard and Doornik (1999) point out that, in the local level

model, the standardized smoothed disturbances

η̂tpdvar(η̂t) , ε̂tpdvar(ε̂t) (14.43)

may be interpreted as t-statistics for impulse intervention variables in the
transition and measurement equations, respectively. Consequently, large
values of (14.43) indicate outliers and/or structural breaks in the local
level model.
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FIGURE 14.8. Actual values, h− step forecasts and 95% confidence intervals for
yt from local level model.

Forecasting

To produce out-of-sample h− step ahead forecasts yt+h|t for h = 1, . . . , 5 a
sequence of 5 missing values is appended to the end of the response vector
y.ll

> y.ll.new = c(y.ll,rep(NA,5))

The forecast values and mean squared errors are computed using SsfMomentEst
with the argument task="STPRED"

> PredictedEst.ll = SsfMomentEst(y.ll.new,ssf.ll,task="STPRED")
> y.ll.fcst = PredictedEst.ll$response.moment
> fcst.var = PredictedEst.ll$response.variance

The actual values, forecasts and 95% confidence bands are illustrated in
Figure 14.8 created by

> upper = y.ll.fcst + 2*sqrt(fcst.var)
> lower = y.ll.fcst - 2*sqrt(fcst.var)
> upper[1:250] = lower[1:250] = NA
> tsplot(y.ll.new[240:255],y.ll.fcst[240:255],
+ upper[240:255],lower[240:255],lty=c(1,2,2,2))
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14.4 Estimation of State Space Models

14.4.1 Prediction Error Decomposition of Log-Likelihood

The prediction error decomposition of the log-likelihood function for the un-
known parameters ϕ of a state space model may be conveniently computed
using the output of the Kalman filter

lnL(ϕ|Yn) =
nX
t=1

ln f(yt|Yt−1;ϕ) (14.44)

= −nN
2
ln(2π)− 1

2

nX
t=1

¡
ln |Ft|+ v0tF−1t vt

¢
where f(yt|Yt−1;ϕ) is a conditional Gaussian density implied by the state
space model (14.1) - (14.6). The vector of prediction errors vt and pre-
diction error variance matrices Ft are computed from the Kalman filter
recursions.
A useful diagnostic is the estimated variance of the standardized predic-

tion errors for a given value of ϕ :

σ̂2(ϕ) =
1

Nn

nX
t=1

v0tF
−1
t vt (14.45)

As mentioned by Koopman, Shephard and Doornik (1999), it is helpful to
choose starting values for ϕ such that σ̂2(ϕstart) ≈ 1. For well specified
models, σ̂2(ϕ̂mle) should be very close to unity.

Concentrated log-likelihood

In some models, e.g. ARMA models, it is possible to solve explicitly for one
scale factor and concentrate it out of the log-likelihood function (14.44).
The resulting log-likelihood function is called the concentrated log-likelihood
or profile log-likelihood and is denoted lnLc(ϕ|Yn). Following Koopman,
Shephard and Doornik (1999), let σ denote such a scale factor, and let

yt= θt+G
c
tε

c
t

with εct ~iid N(0, σ2I) denote the scaled version of the measurement equa-
tion (14.3). The state space form (14.1) - (14.3) applies but withGt = σGc

t

and Ht = σHc
t . This formulation implies that one non-zero element of σG

c
t

or σHc
t is kept fixed, usually at unity, which reduces the dimension of the

parameter vector ϕ by one. The solution for σ2 from (14.44) is given by

σ̃2(ϕ) =
1

Nn

nX
t=1

v0t (F
c
t )
−1
vt
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and the resulting concentrated log-likelihood function is

lnLc(ϕ|Yn) = −
nN

2
ln(2π)− nN

2
ln
¡
σ2(ϕ) + 1

¢
− 1
2

nX
t=1

ln |Fct | (14.46)

14.4.2 Fitting State Space Models Using the
S+FinMetrics/SsfPack Function SsfFit

The S+FinMetrics/SsfPack function SsfFitmay be used to compute mles
of the unknown parameters in the state space model (14.1) - (14.6) from
the prediction error decomposition of the log-likelihood function (14.44).
The arguments expected by SsfFit are

> args(SsfFit)
function(parm, data, FUN, conc = F, scale = 1, gradient =
NULL, hessian = NULL, lower = - Inf, upper = Inf,
trace = T, control = NULL, ...)

where parm is a vector containing the starting values of the unknown pa-
rameters ϕ, data is a rectangular object containing the response variables
yt, and FUN is a character string giving the name of the function which takes
parm together with the optional arguments in ... and produces an “ssf”
object representing the state space form. The remaining arguments control
aspects of the S-PLUS optimization algorithm nlminb. An advantage of us-
ing nlminb is that box constraints may be imposed on the parameters of
the log-likelihood function using the optional arguments lower and upper.
See the online help for nlminb for details. A disadvantage of using nlminb
is that the value of the Hessian evaluated at the mles is returned only if an
analytic formula is supplied to compute the Hessian. The use of SsfFit is
illustrated with the following examples.

Example 98 Exact maximum likelihood estimation of AR(1) model

Consider estimating by exact maximum likelihood the AR(1) model dis-
cussed earlier. First, n = 250 observations are simulated from the model

> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)
> set.seed(598)
> sim.ssf.ar1 = SsfSim(ssf.ar1,n=250)
> y.ar1 = sim.ssf.ar1[,"response"]

Least squares estimation of the AR(1) model, which is equivalent to con-
ditional mle, gives

> OLS(y.ar1~tslag(y.ar1)-1)

Call:
OLS(formula = y.ar1 ~tslag(y.ar1) - 1)
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Coefficients:
tslag(y.ar1)
0.7739

Degrees of freedom: 249 total; 248 residual
Residual standard error: 0.4921

The S+FinMetrics/SsfPack function SsfFit requires as input a func-
tion which takes the unknown parameters ϕ = (φ, σ2)0 and produces the
state space form for the AR(1). One such function is

ar1.mod = function(parm) {
phi = parm[1]
sigma2 = parm[2]
ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))
CheckSsf(ssf.mod)

}

In addition, starting values for ϕ are required. Somewhat arbitrary starting
values are

> ar1.start = c(0.5,1)
> names(ar1.start) = c("phi","sigma2")

The prediction error decomposition of the log-likelihood function evalu-
ated at the starting values ϕ = (0.5, 1)0 may be computed using the
S+FinMetrics/SsfPack function KalmanFil with task="KFLIK"

> KalmanFil(y.ar1,ar1.mod(ar1.start),task="KFLIK")

Call:
KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.start), task =
"KFLIK")

Log-likelihood: -265.5222
Prediction error variance: 0.2851
Sample observations: 250

Standardized Innovations:
Mean Std.Error

-0.0238 0.5345

Notice that the standardized prediction error variance (14.45) is 0.285, far
below unity, which indicates that the starting values are not very good.
The mles for ϕ = (φ, σ2)0 using SsfFit are computed as

> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod",
+ lower=c(-.999,0),upper=c(0.999,Inf))
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Iteration 0 : objective = 265.5
Iteration 1 : objective = 282.9
...
Iteration 18 : objective = 176.9
RELATIVE FUNCTION CONVERGENCE

In the call to SsfFit, the stationarity condition −1 < φ < 1 and the
positive variance condition σ2 > 0 is imposed in the estimation. The result
of SsfFit is a list with components

> names(ar1.mle)
[1] "parameters" "objective" "message" "grad.norm"
[5] "iterations" "f.evals" "g.evals" "hessian"
[9] "scale" "aux" "call"

The exact mles for ϕ = (φ, σ2)0 are

> ar1.mle$parameters
phi sigma2

0.7708 0.2403

and the mle for σ is

> sqrt(ar1.mle$parameters["sigma2"])
sigma2
0.4902

These values are very close to the least squares estimates. A summary of
the log-likelihood evaluated at the mles is

> KalmanFil(y.ar1,ar1.mod(ar1.mle$parameters),
+ task="KFLIK")

Call:
KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.mle$parameters),
task = "KFLIK")

Log-likelihood: -176.9359
Prediction error variance: 1
Sample observations: 250

Standardized Innovations:
Mean Std.Error

-0.0213 1.0018

Notice that the estimated variance of the standardized prediction errors is
equal to 1.
An alternative function to compute the state space form of the AR(1) is

ar1.mod2 = function(parm) {
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phi = parm[1]
sigma2 = exp(parm[2])
ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))
CheckSsf(ssf.mod)

}

In the above model, a positive value for σ2 is guaranteed by parameterizing
the log-likelihood in terms γ = ln(σ2) instead of σ2. By the invariance
property of maximum likelihood estimation, σ̂2mle = exp(γ̂mle) where γ̂mle

is the mle for γ. The mles for ϕ = (φ, θ)0 are computed using

> ar1.start = c(0.5,0)
> names(ar1.start) = c("phi","ln(sigma2)")
> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod2")
Iteration 0 : objective = 265.5
Iteration 1 : objective = 194.9
...
Iteration 8 : objective = 176.9
RELATIVE FUNCTION CONVERGENCE
> ar1.mle$parameters

phi ln(sigma2)
0.7708 -1.426

The mle for φ is identical to the one computed earlier. The mles for σ2 and
σ are

> exp(ar1.mle$parameters["ln(sigma2)"])
ln(sigma2)

0.2403
> sqrt(exp(ar1.mle$parameters["ln(sigma2)"]))
ln(sigma2)

0.4902

and exactly match the previous mles.
In the AR(1) model, the variance parameter σ2 can be analytically con-

centrated out of the log-likelihood. To maximize the resulting concentrated
log-likelihood function (14.46), use SsfFit with the optional argument
conc=T and the starting value for σ2 equal to unity:

> ar1.start = c(0.5,1)
> names(ar1.start) = c("phi","sigma2")
> ar1.cmle = SsfFit(ar1.start,y.ar1,"ar1.mod",conc=T)
Iteration 0 : objective = 198
Iteration 1 : objective = 1e+010
Iteration 2 : objective = 177.2
Iteration 3 : objective = 176.9
Iteration 4 : objective = 176.9
Iteration 5 : objective = 176.9
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RELATIVE FUNCTION CONVERGENCE
> ar1.cmle$parameters

phi sigma2
0.7708 1

The value of the log-likelihood and the mle for φ are the same as found
previously. The mle for σ2 may be recovered by running the Kalman filter
and computing the variance of the prediction errors:

> ar1.KF = KalmanFil(y.ar1,ar1.mod(ar1.cmle$parameters),
+ task="KFLIK")
> ar1.KF$dVar
[1] 0.2403

Example 99 Maximum likelihood estimation of CAPM with time varying
parameters

Consider estimating the CAPM with time varying coefficients (14.17) -
(14.19) using monthly data on Microsoft and the S&P 500 index over the pe-
riod February, 1990 through December, 2000 contained in the S+FinMetrics
“timeSeries” excessReturns.ts. The parameters of the model are the
variances of the innovations to the transition and measurement equations;
σ2ξ , σ

2
ς and σ2ν . Since these variances must be positive the log-likelihood

is parameterized using ϕ = (ln(σ2ξ), ln(σ
2
ς ), ln(σ

2
ν))

0. Since the state space
form for the CAPM with time varying coefficients requires a data matrixX
containing the excess returns on the S&P 500 index, the function SsfFit
requires as input a function which takes both ϕ and X and returns the
appropriate state space form. One such function is

tvp.mod = function(parm,mX=NULL) {
parm = exp(parm)
Phi.t = rbind(diag(2),rep(0,2))
Omega = diag(parm)
J.Phi = matrix(-1,3,2)
J.Phi[3,1] = 1
J.Phi[3,2] = 2
Sigma = -Phi.t
ssf.tvp = list(mPhi=Phi.t,
mOmega=Omega,
mJPhi=J.Phi,
mSigma=Sigma,
mX=mX)
CheckSsf(ssf.tvp)

}

Starting values for ϕ are specified as

> tvp.start = c(0,0,0)
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> names(tvp.start) = c("ln(s2.alpha)","ln(s2.beta)","ln(s2.y)")

The mles for ϕ are computed using

> y.capm = as.matrix(seriesData(excessReturns.ts[,"MSFT"]))
> X.mat = cbind(1,as.matrix(seriesData(excessReturns.ts[,"SP500"])))
> tvp.mle = SsfFit(tvp.start,y.capm,"tvp.mod",mX=X.mat)
Iteration 0 : objective = 183.2
Iteration 1 : objective = 138.4
...
Iteration 18 : objective = -124.5
RELATIVE FUNCTION CONVERGENCE
> tvp.mle$parameters
ln(s2.alpha) ln(s2.beta) ln(s2.y)

-11.57 -5.314 -4.855

The mles for the associated standard deviations are then

> sigma.mle = sqrt(exp(tvp.mle$parameters))
> names(sigma.mle) = c("s.alpha","s.beta","s.y")
> sigma.mle
s.alpha s.beta s.y
0.003078 0.07015 0.08825

The smoothed estimates of the time varying parameters αt and βt as
well as the expected returns may be extracted and plotted using

> smoothedEst.tvp = SsfCondDens(y.capm,
+ tvp.mod(tvp.mle$parameters,mX=X.mat),
+ task="STSMO")
> plot(smoothedEst.tvp,strip.text=c("alpha(t)",
+ "beta(t)","Expected returns"),main="Smoothed Estimates")

These estimates are illustrated in Figure 14.9. Notice the increase in β̂t and
decrease in α̂t over the sample.

14.5 Simulation Smoothing

The simulation of state and response vectors αt and yt or disturbance
vectors ηt and εt conditional on the observations Yn is called simula-
tion smoothing. Simulation smoothing is useful for evaluating the appro-
priateness of a proposed state space model and for the Bayesian analysis of
state space models using Markov chain Monte Carlo (MCMC) techniques.
The S+FinMetrics/SsfPack function SimSmoDraw generates random draws
from the distributions of the state and response variables or from the dis-
tributions of the state and response disturbances. The arguments expected
by SimSmoDraw are
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FIGURE 14.9. Smoothed estimates of αt and βt from CAPM with time varying
parameter fit to the monthly excess returns on Microsoft.

> args(SimSmoDraw)
function(kf, ssf, task = "DSSIM", mRan = NULL, a1 = NULL)

where kf is a “KalmanFil” object, ssf is a list which either contains the
minimal necessary components for a state space form or is a valid “ssf”
object and task determines whether the state smoothing (“STSIM”) or
disturbance smoothing (“DSSIM”) is performed.

Example 100 Simulation smoothing from the local level model

Simulated state and response values from the local level model may be
generated using

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STSIM")
> ll.state.sim = SimSmoDraw(KalmanFil.ll,ssf.ll,
+ task="STSIM")
> class(ll.state.sim)
[1] "SimSmoDraw"
> names(ll.state.sim)
[1] "state" "response" "task"

The resulting simulated values may be visualized using

> plot(ll.state.sim,layout=c(1,2))
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To simulate disturbances from the state and response equations, set
task="DSSIM" in the calls to KalmanFil and SimSmoDraw.
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15
Factor Models for Asset Returns

15.1 Introduction

Multifactor models can be used to predict returns, generate estimates of
abnormal return, and estimate the variability and covariability of returns.
This chapter focuses on the use of multifactor models to describe the co-
variance structure of returns1. Asset return covariance matrices are key
inputs to portfolio optimization routines used for asset allocation and ac-
tive asset management. A factor model decomposes an asset’s return into
factors common to all assets and an asset specific factor. Often the com-
mon factors are interpreted as capturing fundamental risk components, and
the factor model isolates an asset’s sensitivities to these risk factors. The
three main types of multifactor models for asset returns are: (1) macroe-
conomic factor models; (2) fundamental factor models; and (3) statistical
factor models. Macroeconomic factor models use observable economic time
series like interest rates and inflation as measures of pervasive or common
factors in asset returns. Fundamental factor models use observable firm or
asset specific attributes such as firm size, dividend yield, and industry clas-
sification to determine common factors in asset returns. Statistical factor
models treat the common factors as unobservable or latent factors. Esti-
mation of multifactor models is type-specific, and this chapter summarizes

1A recent review of factor models for this purpose is given in Chan, Karceski and
Lakonishok (1998).
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the econometric issues associated with estimating each type of factor model
and gives illustrations using S-PLUS.
This chapter is organized as follows. Section two presents the general

factor model specification. Section three describes the macroeconomic fac-
tor model. Examples using Sharpe’s single index model as well as a general
macroeconomic model are given. Section four surveys the fundamental fac-
tor model and provides illustrations of an industry factor model and a
Fama-French type model. Statistical factor models estimated using factor
analysis and principal components analysis are covered in Section five. Par-
ticular emphasis is given to techniques appropriate for the case in which
the number of assets is greater than the number of time periods.
Connor (1995) gives an overview of three types of factor models for asset

returns and compares their explanatory power. Campbell, Lo and MacKin-
lay (1997) and Grinold and Kahn (2000) survey the econometric specifi-
cation of these models. Johnson and Wichern (1998) provides an excellent
treatment of statistical factor models. Good textbook discussions of sta-
tistical factor models with applications in finance are given in Alexander
(2001) and Tsay (2001).

15.2 Factor Model Specification

Each of the three types of multifactor models for asset returns has the
general form

Rit = αi + β1if1t + β2if2t + · · ·+ βKifKt + εit (15.1)

= αi + β0ift + εit

where Rit is the return (real or in excess of the risk-free rate) on asset i
(i = 1, . . . ,N) in time period t (t = 1, . . . , T ), αi is the intercept, fkt is
the kth common factor (k = 1, . . . ,K), βki is the factor loading or factor
beta for asset i on the kth factor, and εit is the asset specific factor. In the
multifactor model, it is assumed that the factor realizations, ft, are I(0)
with unconditional moments

E[ft] = µf
cov(ft) = E[(ft−µf )(f t−µf )0] = Ωf

and that the asset specific error terms, εit, are uncorrelated with each of
the common factors, fkt, so that

cov(fkt, εit) = 0, for all k, i and t.

It is also assumed that the error terms εit are serially uncorrelated and
contemporaneously uncorrelated across assets

cov(εit, εjs) = σ2i for all i = j and t = s

= 0, otherwise
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In applications, it is often the case that the number of assets, N, is sub-
stantially larger than the number of time periods, T. In what follows a
subscript t represents time and a subscript i represents asset so that Rt

represents an (N ×1) vector of assets at time t and Ri represents a (T ×1)
vector of returns on asset i.
The multifactor model (15.1) may be rewritten as a cross-sectional re-

gression model at time t by stacking the equations for each asset to give

Rt
(N×1)

= α
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

, t = 1, . . . , T (15.2)

E[εtε
0
t|ft] = D

where B is the (N ×K) matrix of factor betas, ft is the (K × 1) vector of
factor realizations for time period t, and εt is the (N × 1) vector of asset
specific error terms with (N ×N) diagonal covariance matrix D. Given the
assumption of the multifactor model, the (N × N) covariance matrix of
asset returns has the form

cov(Rt) = Ω = BΩfB
0+D

The multifactor model (15.1) may also be rewritten as a time-series
regression model for asset i by stacking observations for a given asset i to
give

Ri
(T×1)

= 1T
(T×1)

αi
(1×1)

+ F
(T×K)

βi
(K×1)

+ εi
(T×1)

, i = 1, . . . , N (15.3)

E[εiε
0
i] = σ2i IT

where 1T is a (T × 1) vector of ones, F is a (T × K) matrix of factor
realizations (the tth row of F is f 0t), βi is a (K×1) vector of factor loadings,
and εi is a (T × 1) vector of error terms with covariance matrix σ2i IT .
Finally, collecting data from t = 1, . . . , T allows the model (15.2) to be

expressed in matrix form as the multivariate regression

R
(N×T )

= α
(N×1)

+ B
(N×K)

F
(K×T )

+ E
(N×T )

(15.4)

15.3 Macroeconomic Factor Models for Returns

In a macroeconomic factor model, the factor realizations ft in (15.1) are
observed macroeconomic variables that are assumed to be uncorrelated
with the asset specific error terms εit. The two most common macroeco-
nomic factor models are Sharpe’s (1970) single factor model and Chen, Roll
and Ross’s (1986) multifactor model. Once the macroeconomic factors are
specified and constructed the econometric problem is then to estimate the
factor betas, βki, residual variances, σ

2
i , and factor covariance, Ωf , using

time series regression techniques.
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15.3.1 Sharpe’s Single Index Model

The most famous macroeconomic factor model is Sharpe’s single factor
model or market model

Rit = αi + βiRMt + εit, i = 1, . . . , N ; t = 1, . . . , T (15.5)

where RMt denotes the return or excess return (relative to the risk-free
rate) on a market index (typically a value weighted index like the S&P 500
index) in time period t. The market index is meant to capture economy-
wide or market risk, and the error term captures non-market firm specific
risk. The multifactor model (15.1) reduces to (15.5) if f1t = RMt, βik =
0 (i = 1, . . . , N ; k = 2, . . . ,K). The covariance matrix of assets from the
single factor model is

Ω = σ2Mββ
0 +D (15.6)

where σ2M = var(RMt), β = (β1, . . . , βN )
0 and D is a diagonal matrix with

σ2i = var(εit) along the diagonal.
Because RMt is observable, the parameters βi and σ

2
i of the single factor

model (15.5) for each asset can be estimated using time series regression
giving

Ri = bαi1+RM
bβi + bεi, i = 1, . . . , Nbσ2i =

1

T − 2bε0ibεi
The variance of the market index is estimated using the time series sample
variance

bσ2M =
1

T − 1

TX
t=1

(RMt −RM )
2

RM =
1

T

TX
t=1

RMt

The estimated single factor model covariance is then

bΩ = bσ2M bβbβ0 + bD,

where bD has bσ2i along the diagonal.
Remarks

1. Computational efficiency may be obtained by using multivariate re-
gression2. The coefficients αi and βi and the residual variances σ

2
i

2 Since RM is the regressor for each asset, multivariate OLS estimates are numerically
equivalent to multivariate GLS estimates that take into account the across equation
correlation between the errors in each equation.
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may be computed in one step in the multivariate regression model

RT = XΓ
0 +ET

where RT is a (T × N) matrix of asset returns, X = [1 : RM ] is a
(T × 2) matrix, Γ0 = [α : β]0 is a (2×N) matrix of coefficients and
ET is a (T ×N) matrix of errors. The multivariate OLS estimator of
Γ0 is bΓ0 = (X0X)−1X0RT .

The estimate of the residual covariance matrix is

bΣ = 1

T − 2
bE0T bET

where ÊT= RT−XΓ̂
0
is the multivariate least squares residual ma-

trix. The diagonal elements of bΣ are the diagonal elements of bD.

2. The R2 from the time series regression is a measure of the propor-
tion of “market” risk, and 1− R2 is a measure of asset specific risk.
Additionally, bσi is a measure of the typical size of asset specific risk.

3. Robust regression techniques can be used to estimate βi and σ
2
i . Also,

a robust estimate of σ2M could be computed.

4. In practice, the estimated value of βi is often adjusted toward unity.
Adjusted βi values are discussed in chapter seven of Elton and Gruber
(1997).

5. The single factor covariance matrix (15.6) is constant over time. This
may not be a good assumption. There are several ways to allow (15.6)
to vary over time. For example, assume that βi is constant and that σ

2
i

and σ2M are conditionally time varying. That is, σ2i = σ2it and σ2M =
σ2Mt. To capture conditional heteroskedasticity, GARCH models may
be used for σ2it and σ2Mt. One may also use exponential weights in
computing the sample variances of σ2i and σ2M . Alternatively, one
may assume that βi is not constant over time.

Example 101 Estimation of Sharpe’s single factor model using S-PLUS

The single factor model parameters and the return covariance matrix
(15.6) may be efficiently estimated using the matrix functions in S-PLUS.
To illustrate, consider estimating the single factor model using the monthly
return data over the period January 1978 through December 1987 in the
“timeSeries” berndt.dat. The variables in berndt.dat are

> colIds(berndt.dat)
[1] "CITCRP" "CONED" "CONTIL" "DATGEN" "DEC" "DELTA"
[7] "GENMIL" "GERBER" "IBM" "MARKET" "MOBIL" "PANAM"
[13] "PSNH" "TANDY" "TEXACO" "WEYER" "RKFREE"
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See the online help for berndt.dat for a description of these variables. The
return data on the assets and the market index are extracted using:

> returns = as.matrix(seriesData(berndt.dat[, c(-10, -17)]))
> market = as.vector(seriesData(berndt.dat)[,10])

The single factor model parameters may be estimated by multivariate re-
gression using

> n.obs = nrow(returns)
> X.mat = cbind(rep(1,n.obs),market)
> G.hat = solve(X.mat,returns)
> beta.hat = G.hat[2,]
> E.hat = returns - X.mat%*%G.hat
> diagD.hat = diag(crossprod(E.hat)/(n.obs-2))
> names(diagD.hat) = colIds(G.hat)
> r.square = 1 - (n.obs-2)*diagD.hat/diag(var(returns,SumSquares=T))

The second row of G.hat contains the estimated βi values, and the vector
diagD.hat contains the estimated residual variances σ2i :

> t(rbind(beta.hat,sqrt(diagD.hat),r.square))
beta.hat r.square

CITCRP 0.667776 0.067163 0.317769
CONED 0.091021 0.050096 0.015316
CONTIL 0.738357 0.142597 0.112158
DATGEN 1.028160 0.106880 0.303631

DEC 0.843053 0.081018 0.337829
DELTA 0.489461 0.090289 0.121627
GENMIL 0.267765 0.062676 0.079188
GERBER 0.624807 0.076966 0.236938

IBM 0.453024 0.050461 0.275235
MOBIL 0.713515 0.064072 0.368818
PANAM 0.730140 0.122507 0.143372
PSNH 0.212632 0.108961 0.017627
TANDY 1.055494 0.105649 0.319860
TEXACO 0.613277 0.068076 0.276615
WEYER 0.816867 0.064448 0.430829

The βi and R2 values are illustrated graphically in Figure 15.1. The as-
sets most sensitive to the market factor (those with highest βi values) are
the technology and forest sector stocks DATGEN, DEC, TANDY AND
WEYER. Those least sensitive are the utility stocks CONED and PSNH.
These stocks also have the lowest R2 values.
The single factor covariance matrix (15.6) and corresponding correlation

matrix are computed using

> cov.si = var(market)*(beta.hat%o%beta.hat) +
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FIGURE 15.1. Estimated βi and R2 values from single index model for Berndt
data.

+ diag(diagD.hat)
> sd = sqrt(diag(cov.si))
> cor.si = cov.si/outer(sd,sd)

Since all estimated βi values are positive, all of the values in the single
factor covariance (15.6) will be positive. To illustrate, some of the single
factor correlations are displayed below

> print(cor.si,digits=1,width=2)
CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

CITCRP 1.00 0.07 0.19 0.31 0.33 0.20 0.16 0.27
CONED 0.07 1.00 0.04 0.07 0.07 0.04 0.03 0.06
CONTIL 0.19 0.04 1.00 0.18 0.19 0.12 0.09 0.16
DATGEN 0.31 0.07 0.18 1.00 0.32 0.19 0.15 0.27

DEC 0.33 0.07 0.19 0.32 1.00 0.20 0.16 0.28
DELTA 0.20 0.04 0.12 0.19 0.20 1.00 0.10 0.17
GENMIL 0.16 0.03 0.09 0.15 0.16 0.10 1.00 0.14
GERBER 0.27 0.06 0.16 0.27 0.28 0.17 0.14 1.00

IBM 0.29 0.06 0.17 0.29 0.30 0.18 0.15 0.25
MOBIL 0.34 0.07 0.20 0.33 0.35 0.21 0.17 0.29
PANAM 0.21 0.05 0.13 0.21 0.22 0.13 0.11 0.18
PSNH 0.07 0.02 0.04 0.07 0.08 0.05 0.04 0.06
TANDY 0.32 0.07 0.19 0.31 0.33 0.20 0.16 0.27
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TEXACO 0.29 0.06 0.17 0.29 0.30 0.18 0.15 0.25
WEYER 0.37 0.08 0.22 0.36 0.38 0.23 0.18 0.32
...

These correlations may be compared with the sample correlations

> print(cor(returns),digits=1,width=2)
CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

CITCRP 1.0 0.269 0.5 0.53 0.49 0.40 0.473
CONED 0.3 1.000 0.1 0.10 0.11 0.09 0.329
CONTIL 0.5 0.105 1.0 0.26 0.23 0.17 0.206
DATGEN 0.5 0.096 0.3 1.00 0.58 0.33 0.280

DEC 0.5 0.108 0.2 0.58 1.00 0.43 0.212
DELTA 0.4 0.092 0.2 0.33 0.43 1.00 0.373
GENMIL 0.5 0.329 0.2 0.28 0.21 0.37 1.000
GERBER 0.4 0.171 0.4 0.14 0.16 0.19 0.350

IBM 0.4 0.091 0.3 0.49 0.44 0.34 0.170
MOBIL 0.3 0.003 0.2 0.32 0.41 0.13 0.047
PANAM 0.3 0.163 0.1 0.29 0.27 0.39 0.207
PSNH 0.1 0.112 0.1 0.08 0.04 0.03 0.059
TANDY 0.5 0.102 0.2 0.51 0.49 0.46 0.400
TEXACO 0.3 -0.106 0.2 0.32 0.25 0.13 0.002
WEYER 0.5 0.158 0.2 0.48 0.59 0.49 0.357
...

Another way to compare the single index covariance matrix to the sample
covariance is to compute the global minimum variance portfolio. The global
minimum variance portfolio is the portfolio w that solves

min
w

σ2p,w = w
0Ωw s.t. w01 = 1

and is given by

w =
Ω−11
10Ω−11

The global minimum variance portfolios based on the single index covari-
ance and the sample covariance are

> w.gmin.si = solve(cov.si)%*%rep(1,nrow(cov.si))
> w.gmin.si = w.gmin.si/sum(w.gmin.si)
> t(w.gmin.si)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA
[1,] 0.04379 0.3757 0.005229 -0.02348 -0.004413 0.0525

GENMIL GERBER IBM MOBIL PANAM PSNH
[1,] 0.1819 0.04272 0.1866 0.03372 0.007792 0.06618
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TANDY TEXACO WEYER
[1,] -0.02719 0.05782 0.001173

> w.gmin.sample = solve(var(returns))%*%rep(1,nrow(cov.si))
> w.gmin.sample = w.gmin.sample/sum(w.gmin.sample)
> t(w.gmin.sample)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA
[1,] -0.06035 0.3763 -0.002152 -0.06558 0.03626 0.03155

GENMIL GERBER IBM MOBIL PANAM PSNH
[1,] 0.1977 -0.02966 0.2846 0.02257 0.01071 0.07517

TANDY TEXACO WEYER
[1,] -0.01868 0.1996 -0.05804

15.3.2 The General Multifactor Model

The general macroeconomic multifactor model specifiesK observable macro-
variables as the factor realizations ft in (15.1). The paper by Chen, Roll
and Ross (1986) provides a description of the most commonly used macroe-
conomic factors. Typically, the macroeconomic factors are standardized to
have mean zero and a common scale. The factors must also be transformed
to be stationary (not trending). Sometimes the factors are made orthogonal
but this in not necessary.
The general form of the covariance matrix for the macroeconomic factor

model is
Ω = BΩfB

0 +D

where B = [β1,β2, · · · ,βN ]0, Ωf = E[(ft−µf )(ft−µf )0] is the covariance
matrix of the observed factors and D is a diagonal matrix with σ2i =
var(εit) along the diagonal.
Because the factor realizations are observable, the parameter matrices B

and D of the model may be estimated using time series regression giving

Ri = bαi1+Fbβi + bεi, i = 1, . . . , Nbσ2i =
1

T −K − 1bε0ibεi
The covariance matrix of the factor realizations may be estimated using
the time series sample covariance matrix

bΩf =
1

T − 1

TX
t=1

(ft − f)(ft − f)0

f =
1

T

TX
t=1

ft
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The estimated multifactor model covariance matrix is thenbΩ = bBbΩf
bB0 + bD (15.7)

Remarks

1. As with the single factor model, robust regression may be used to
compute βi and σ2i . A robust covariance matrix estimator may also
be used to compute and estimate of Ωf .

Example 102 Estimating a general macroeconomic factor model using
S-PLUS

As explained in Chen, Roll and Ross (1986), the macroeconomic factors
should be constructed as surprise variables so that the returns on assets will
respond to unexpected changes in economy-wide factors. To illustrate the
construction of a macroeconomic factor model with macroeconomic sur-
prise variables, consider a simple factor model for the monthly returns in
the “timeSeries” returns, constructed earlier, using as factors the sur-
prise to inflation and the surprise to industrial production growth. Monthly
observations on inflation and industrial production growth are constructed
from the S+FinMetrics “timeSeries” CPI.dat and IP.dat as follows

>infl = getReturns(CPI.dat)
>ipg = getReturns(IP.dat)

In general, to compute surprise variables, one must first explain the ex-
pected behavior and then define the surprise to be the difference between
what is observed and what is expected. A common way to compute the ex-
pected behavior is to use a VAR model. For simplicity, consider a VAR(6)
model for inflation and industrial production growth fit over the period
July, 1977 through December, 1987

> factor.ts = seriesMerge(ipg,infl)
> var6.fit = VAR(cbind(CPI,IP)~ar(6),data=factor.ts,
> start="July 1977",end="Jan 1988",in.format="%m %Y")

The start date of July 1977 allows for six initial values so that the first
fitted value is for January, 1978. The factor surprises are constructed as
the residuals from the VAR(6) fit:

> factor.surprise = residuals(var6.fit)

The factor betas and R2 values for the fifteen assets in the “timeSeries”
returns are computed using

> factor.surprise = as.matrix(seriesData(factor.surprise))
> n.obs = nrow(returns)
> X.mat = cbind(rep(1,n.obs),factor.surprise)
> G.hat = solve(X.mat,returns)



15.3 Macroeconomic Factor Models for Returns 569

-10 -5 0 5

Beta values for inflation surprise

-2 -1 0 1

Beta values for IP growth surprise

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

0.0 0.01 0.02 0.03 0.04

R-square values

FIGURE 15.2. Estimated macroeconomic factor model for Berndt data.

> beta.hat = t(G.hat[2:3,])
> E.hat = returns - X.mat%*%G.hat
> diagD.hat = diag(crossprod(E.hat)/(n.obs-3))
> names(diagD.hat) = colIds(G.hat)
> r.square = 1 - (n.obs-2)*diagD.hat/diag(var(returns,SumSquares=T))

These results are illustrated graphically in Figure 15.2 created by

> par(mfrow=c(1,3))
> barplot(beta.hat[,1],names=names(beta.hat),horiz=T,
+ main="Beta values for inflation surprise")
> barplot(beta.hat[,2],names=names(beta.hat),horiz=T,
+ main="Beta values for IP growth surprise")
> barplot(r.square,names=names(r.square),horiz=T,
+ main="R-square values")

Most stocks have negative loadings on the inflation surprise factor. Notice
the very low R2 values indicating that the factor surprises do not explain
much of the variability in the monthly asset returns.
The estimated factor model covariance using (15.7) is

> cov.macro = beta.hat%*%var(factor.surprise)%*%t(beta.hat) +
+ diag(diagD.hat)

and the corresponding correlation matrix is
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> sd = sqrt(diag(cov.macro))
>cor.macro = cov.macro/outer(sd,sd)
> print(cor.macro,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER
CITCRP 1.000 0.0181 0.0035 -0.010 -0.008 -0.0019 0.017 0.0115
CONED 0.018 1.0000 -0.0056 -0.007 0.002 0.0214 0.030 0.0300
CONTIL 0.004 -0.0056 1.0000 -0.005 -0.008 -0.0134 -0.002 -0.0062
DATGEN -0.010 -0.0069 -0.0052 1.000 0.009 0.0081 -0.008 -0.0030

DEC -0.008 0.0017 -0.0083 0.009 1.000 0.0164 -0.002 0.0042
DELTA -0.002 0.0214 -0.0134 0.008 0.016 1.0000 0.011 0.0200
GENMIL 0.017 0.0301 -0.0017 -0.008 -0.002 0.0114 1.000 0.0218
GERBER 0.011 0.0300 -0.0062 -0.003 0.004 0.0200 0.022 1.0000

IBM 0.007 0.0208 -0.0049 -0.001 0.004 0.0150 0.015 0.0164
MOBIL -0.002 -0.0128 0.0053 -0.002 -0.006 -0.0137 -0.008 -0.0109
PANAM 0.019 0.0195 0.0061 -0.013 -0.012 -0.0066 0.019 0.0115
PSNH 0.003 0.0033 0.0005 -0.002 -0.001 -0.0001 0.003 0.0021
TANDY 0.007 0.0335 -0.0121 0.003 0.013 0.0325 0.022 0.0280
TEXACO 0.003 0.0002 0.0027 -0.003 -0.004 -0.0051 0.001 -0.0008
WEYER 0.007 0.0183 -0.0042 -0.001 0.003 0.0131 0.013 0.014
...

The macroeconomic factor model global minimum variance portfolio is

> w.gmin.macro = solve(cov.macro)%*%rep(1,nrow(cov.macro))
> w.gmin.macro = w.gmin.macro/sum(w.gmin.macro)
> t(w.gmin.macro)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL
[1,] 0.06958 0.1776 0.02309 0.03196 0.04976 0.04766 0.1049

GERBER IBM MOBIL PANAM PSNH TANDY
[1,] 0.05463 0.1318 0.08186 0.02469 0.04019 0.02282

TEXACO WEYER
[1,] 0.07759 0.06185

15.4 Fundamental Factor Model

Fundamental factor models use observable asset specific characteristics (fun-
damentals) like industry classification, market capitalization, style classifi-
cation (value, growth) etc. to determine the common risk factors. In prac-
tice, fundamental factor models are estimated in two ways. The first way
was pioneered by Bar Rosenberg, founder of BARRA Inc., and is discussed
at length in Grinold and Kahn (2000). In this approach, hereafter referred
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to as the “BARRA” approach, the observable asset specific fundamen-
tals (or some transformation of them) are treated as the factor betas, βi,
which are time invariant3. The factor realizations at time t, ft, however,
are unobservable. The econometric problem is then to estimate the factor
realizations at time t given the factor betas. This is done by running T
cross-section regressions. The second way was introduced by Eugene Fama
and Kenneth French (1992) and is referred to as the “Fama-French” ap-
proach. For a given observed asset specific characteristic, e.g. size, they
determined factor realizations using a two step process. First they sorted
the cross-section of assets based on the values of the asset specific charac-
teristic. Then they formed a hedge portfolio which is long in the top quintile
of the sorted assets and short in the bottom quintile of the sorted assets.
The observed return on this hedge portfolio at time t is the observed factor
realization for the asset specific characteristic. This process is repeated for
each asset specific characteristic. Then, given the observed factor realiza-
tions for t = 1, . . . , T the factor betas for each asset are estimated using N
time series regressions.

15.4.1 BARRA-type Single Factor Model

Consider a single factor model in the form of a cross-sectional regression
at time t

Rt
(N×1)

= β
(N×1)

ft
(1×1)

+ εt
(N×1)

, t = 1, . . . , T

where β is a vector of observed values of an asset specific attribute (e.g.,
market capitalization, industry classification, style classification) and ft is
an unobserved factor realization. It is assumed that

var(ft) = σ2f
cov(ft, εit) = 0, for all i, t

var(εit) = σ2i , i = 1, . . . , N.

In the above model the factor realization ft is the parameter to be es-
timated for each time period t = 1, . . . , T . Since the error term εt is het-
eroskedastic, efficient estimation of ft is done by weighted least squares
(WLS) (assuming the asset specific variances σ2i are known)

f̂t,wls = (β
0D−1β)−1β0D−1Rt, t = 1, . . . , T (15.8)

where D is a diagonal matrix with σ2i along the diagonal. The above WLS
estimate of ft is infeasible since σ2i is not known. However, σ

2
i may be

consistently estimated and a feasible WLS estimate may be computed.

3See Sheikh (1995) for a description of the BARRA fundamental factor model for
U.S. equities.
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How σ2i may be consistently estimated and how a feasible WLS estimate
may be computed is illustrated below.
The WLS estimate of ft in (15.8) has an interesting interpretation as the

return on a portfolio h = (h1, . . . , hN )0 that solves

min
h

1

2
h0Dh subject to h0β = 1

The portfolio h minimizes asset return residual variance subject to having
unit exposure to the attribute β and is given by

h0 = (β0D−1β)−1β0D−1

The estimated factor realization is then the portfolio return

f̂t,wls = h
0Rt

When the portfolio h is normalized such that
PN

i hi = 1 , it is referred to
as a factor mimicking portfolio.

15.4.2 BARRA-type Industry Factor Model

As an example of a fundamental factor model with K factors, consider
a stylized BARRA-type industry factor model with K mutually exclusive
industries. The factor sensitivities βik in (15.1) for each asset are time
invariant and of the form

βik = 1 if asset i is in industry k

= 0, otherwise

and fkt represents the factor realization for the kth industry in time period
t. Notice that factor betas are simply dummy variables indicating whether
a given asset is in a particular industry. Hence, the industry factor betas do
not have to be estimated from the data. The factor realizations, however,
are not initially observable. As will become apparent, the estimated value
of fkt will be equal to the weighted average excess return in time period t
of the firms operating in industry k. This weighted average excess return
at time t can be easily estimated using a cross-section regression over all
asset returns at time t.
The industry factor model with K industries is summarized as

Rit = βi1f1t + · · ·+ βiKfKt + εit, i = 1, . . . , N ; t = 1, . . . , T

var(εit) = σ2i , i = 1, . . . ,N

cov(εit, fjt) = 0, j = 1, . . . ,K; i = 1, . . . ,N

cov(fit, fjt) = σfij , i, j = 1, . . . ,K
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where βik = 1 if asset i is in industry k (k = 1, . . . ,K) and is zero oth-
erwise4. It is assumed that there are Nk firms in the kth industry suchPK

k=1Nk = N .

Least Squares Estimation of the Factor Realizations

The factor realizations f1t, . . . , fKt for t = 1, . . . , T, can be estimated from
the observed cross-section of asset returns at time period t as follows. Con-
sider the cross-section regression at time t

Rt = β1f1t + · · ·+ βKfKt + εt, (15.9)

= Bf t + εt

E[εtε
0
t] = D, cov(ft) = Ωf

where Rt is an (N × 1) vector of returns, B = [β1, . . . ,βK ] is a (N ×
K) matrix of zeros and ones reflecting the industry factor sensitivities for
each asset, ft = (f1t, . . . , fKt)

0 is a (K × 1) vector of unobserved factor
realizations, εt is an (N × 1) error term, and D is a diagonal matrix with
σ2i along the diagonal. Note that the error term is heteroskedastic across
assets. Since the industries are mutually exclusive it follows that

β0jβk = Nk for j = k, 0 otherwise (15.10)

An unbiased but inefficient estimate of the factor realizations ft can be
obtained by OLS giving

bft,OLS = (B0B)−1B0Rt (15.11)

or 
bf1t,OLS
...bfKt,OLS

 =


1
N1

PN1

i=1R
1
it

...
1
NK

PNK

i=1R
K
it


using (15.10) where Rk

it denotes the return on asset i if it is in industry
k. Here, the estimated factor realizations bfkt have nice interpretations.
They represent an equally weighted average return in time period t on the
industry k assets. Of course, this is expected given the nature of the binary
industry factor beta values.
To get the time series of factor realizations, the cross-section regression

(15.9) needs to be estimated for each t = 1, . . . , T giving the estimated
factor realizations (bf1,OLS , . . . ,bfT,OLS).

4Notice that there is no intercept in the industry factor model. With K mutually
exclusive industries, the intercept will be collinear with the factor betas and not identi-
fiable.
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Estimation of Factor Realization Covariance Matrix

Given the time series of factor realizations, the covariance matrix of the
industry factors may be computed as the time series sample covariance

bΩF
OLS =

1

T − 1

TX
t=1

(bft,OLS − fOLS)(bft,OLS − fOLS)0, (15.12)

fOLS =
1

T

TX
t=1

bft,OLS
Estimation of Residual Variances

The residual variances, var(εit) = σ2i , can be estimated from the time
series of residuals from the T cross-section regressions given in (15.9) as
follows. Let bεt,OLS , t = 1, . . . , T, denote the (N×1) vector of OLS residuals
from (15.9), and let bεit,OLS denote the ith row of bεt,OLS . Then σ2i may be
estimated using

bσ2i,OLS =
1

T − 1

TX
t=1

(bεit,OLS − εi,OLS)
2, i = 1, . . . ,N (15.13)

εi,OLS =
1

T

TX
t=1

bεit,OLS
Estimation of Industry Factor Model Asset Return Covariance Matrix

The covariance matrix of the N assets is then estimated bybΩOLS = BbΩF
OLSB

0 + bDOLS

where bDOLS is a diagonal matrix with bσ2i,OLS along the diagonal.
Remarks

1. Multivariate regression may be used to compute all of the factor re-
turns in one step. The multivariate regression model is

R = BF+E,

where R is a (N × T ) matrix of cross-sectionally demeaned asset
returns, F is a (K ×T ) matrix of parameters to be estimated (factor
returns) and E is a (N × T ) matrix of errors such that E[EE0] = D.

2. Robust regression techniques can be used to estimate ft, and a robust
covariance matrix estimate of Ωf can be computed.

3. The industry factor model may be extended to cover cases where an
asset may be classified into several industry categories.
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4. Given the estimated factor realizations, a time series regression may
be run to assess the constructed model. The estimated factor loading
may be compared to the imposed values and the proportion of asset
variance attributable to all of the factors may be computed.

Weighted Least Squares Estimation

The OLS estimation of the factor realizations ft is inefficient due to the
cross-sectional heteroskedasticity in the asset returns. The estimates of the
residual variances from (15.13) may be used as weights for weighted least
squares (feasible GLS) estimation:

bft,GLS = (B0 bD−1OLSB)−1B0 bD−1OLS(Rt −Rt1), t = 1, . . . , T (15.14)

Given the time series of factor realizations, (bf1,GLS , . . . ,bfT,GLS), the co-
variance matrix of the industry factors may be computed as the time series
sample covariance

bΩF
GLS =

1

T − 1

TX
t=1

(bft,GLS − fGLS)(bft,GLS − fGLS)0, (15.15)

fGLS =
1

T

TX
t=1

bft,GLS
The residual variances, var(εit) = σ2i , can be re-estimated from the time

series of residuals from the T cross-section GLS regressions as follows. Letbεt,GLS , t = 1, . . . , T, denote the (N × 1) vector of GLS residuals from the
industry factor model (15.9) and let bεit,GLS denote the ith row of bεt,GLS .
Then σ2i may be estimated using

bσ2i,GLS =
1

T − 1

TX
t=1

(bεit,GLS − εi,GLS)
2, i = 1, . . . , N (15.16)

εi,GLS =
1

T

TX
t=1

bεit,GLS
The covariance matrix of the N assets is then estimated by

bΩGLS = BbΩF
GLSB

0 + bDGLS

where bDGLS is a diagonal matrix with bσ2i,GLS along the diagonal.
Remarks

1. Since B and bDOLS are time invariant, (B0 bD−1OLSB)−1B0 bD−1OLS only
needs to be computed once, and this greatly speeds up the computa-
tion of bft,GLS (t = 1, . . . , T ).
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2. In principle, the GLS estimator may be iterated. Iteration does not
improve the asymptotic efficiency of the estimator, and it may per-
form better or worse than the non-iterated estimator.

3. Weighted robust regression techniques can be used to estimate ft, and
a robust covariance matrix estimate of Ωf can be computed.

Factor Mimicking Portfolios

The GLS estimates of the factor realizations (15.14) are just linear combi-
nations of the observed returns in each industry. Further, these linear com-
binations sum to unity so that they can be interpreted as factor mimicking
portfolios. Notice that they are simply weighted averages of the returns in
each industry where the weights on each asset are based on the size of the
residual variance. The (N×1) vector of weights for the ith factor mimicking
portfolio is given by

wi =Hi =
³
(B0 bD−1OLSB)−1B0 bD−1OLS,´

i
, i = 1, . . . ,K

where Hi denotes the ith row of H.

Seemingly Unrelated Regression Formulation of Industry Factor Model

The industry factor model may be expressed as a seemingly unrelated re-
gression (SUR) model. The cross section regression models (15.9) can be
stacked to form the giant regression R1

...
RT

 =

 B 0 0

0
. . . 0

0 0 B


 f1

...
fT

+
 ε1

...
εT

 .

The giant regression may be compactly expressed using Kronecker products
as

vec(R) = (IT ⊗B)f + ε

E[εε0] = IT ⊗D

where vec(R) is a (NT × 1) vector of returns, f is a (TK × 1) vector of
factor realizations, and ε is a (NT ×1) vector of errors. The GLS estimator
of f is

bfGLS =
h
(IT ⊗B)0(IT ⊗D)−1(IT ⊗B)

i−1
(IT ⊗B)0(IT ⊗D)−1R

=
£
IT ⊗ (B0D−1B)−1B0D−1

¤
R

or 
bf1,GLS
...bfT,GLS

 =

 (B0D−1B)−1B0D−1R1

...
(B0D−1B)−1B0D−1RT
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which is just weighted least squares on each of the cross section regressions
(15.9). Hence, equation by equation GLS estimation of (15.9) is efficient.
Of course, the above GLS estimator is not feasible because it requires

knowledge of the firm specific variances inD. However, using the techniques
described above to estimate σ2i , feasible GLS estimation is possible.

Example 103 Estimating an industry factor model using S-PLUS

Consider creating a three industry factor model for the fifteen assets
taken from the S+FinMetrics “timeSeries” berndt.dat. The three in-
dustries are defined to be “technology”, “oil” and “other”. The 15 × 3
matrix B of industry factor loadings are created using

> n.stocks = numCols(returns)
> tech.dum = oil.dum = other.dum = matrix(0,n.stocks,1)
> tech.dum[c(4,5,9,13),] = 1
> oil.dum[c(3,6,10,11,14),] = 1
> other.dum = 1 - tech.dum - oil.dum
> B = cbind(tech.dum,oil.dum,other.dum)
> dimnames(B) = list(colIds(returns),c("TECH","OIL","OTHER"))
> B
integer matrix: 15 rows, 3 columns.

TECH OIL OTHER
CITCRP 0 0 1
CONED 0 0 1
CONTIL 0 1 0
DATGEN 1 0 0

DEC 1 0 0
DELTA 0 1 0
GENMIL 0 0 1
GERBER 0 0 1

IBM 1 0 0
MOBIL 0 1 0
PANAM 0 1 0
PSNH 0 0 1
TANDY 1 0 0
TEXACO 0 1 0
WEYER 0 0 1

The multivariate least squares estimates of the factor realizations are

> returns = t(returns)
> F.hat = solve(crossprod(B))%*%t(B)%*%returns

The multivariate GLS estimates are computed using

> E.hat = returns - B%*%F.hat
> diagD.hat = rowVars(E.hat)
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> Dinv.hat = diag(diagD.hat^(-1))
> H = solve(t(B)%*%Dinv.hat%*%B)%*%t(B)%*%Dinv.hat
> F.hat = H%*%returns
> F.hat = t(F.hat)

The rows of the matrix H contain the weights for the factor mimicking
portfolios:

> t(H)
numeric matrix: 15 rows, 3 columns.

TECH OIL OTHER
[1,] 0.0000 0.00000 0.19918
[2,] 0.0000 0.00000 0.22024
[3,] 0.0000 0.09611 0.00000
[4,] 0.2197 0.00000 0.00000
[5,] 0.3188 0.00000 0.00000
[6,] 0.0000 0.22326 0.00000
[7,] 0.0000 0.00000 0.22967
[8,] 0.0000 0.00000 0.12697
[9,] 0.2810 0.00000 0.00000
[10,] 0.0000 0.28645 0.00000
[11,] 0.0000 0.11857 0.00000
[12,] 0.0000 0.00000 0.06683
[13,] 0.1806 0.00000 0.00000
[14,] 0.0000 0.27561 0.00000
[15,] 0.0000 0.00000 0.15711

Notice that the weights sum to unity

> rowSums(H)
TECH OIL OTHER

1 1 1

The factor realizations are illustrated in Figure 15.3.
The industry factor model covariance and correlation matrices are com-

puted using

> cov.ind = B%*%var(F.hat)%*%t(B) + diag(diagD.hat)
> sd = sqrt(diag(cov.ind))
> cor.ind = cov.ind/outer(sd,sd)
> print(cor.ind,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER
CITCRP 1.0 0.4 0.10 0.2 0.2 0.1 0.3 0.2
CONED 0.4 1.0 0.14 0.2 0.3 0.2 0.4 0.3
CONTIL 0.1 0.1 1.00 0.1 0.1 0.2 0.1 0.1
DATGEN 0.2 0.2 0.12 1.0 0.3 0.2 0.2 0.1

DEC 0.2 0.3 0.14 0.3 1.0 0.2 0.2 0.2
DELTA 0.1 0.2 0.20 0.2 0.2 1.0 0.2 0.1
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FIGURE 15.3. Estimated industry factor realizations from Berndt data.

GENMIL 0.3 0.4 0.12 0.2 0.2 0.2 1.0 0.3
GERBER 0.2 0.3 0.10 0.1 0.2 0.1 0.3 1.0

IBM 0.2 0.3 0.18 0.4 0.5 0.3 0.3 0.2
MOBIL 0.2 0.2 0.22 0.2 0.2 0.3 0.2 0.2
PANAM 0.1 0.2 0.15 0.1 0.2 0.2 0.1 0.1
PSNH 0.2 0.3 0.08 0.1 0.1 0.1 0.2 0.2
TANDY 0.2 0.2 0.12 0.3 0.3 0.2 0.2 0.1
TEXACO 0.2 0.2 0.22 0.2 0.2 0.3 0.2 0.2
WEYER 0.3 0.3 0.10 0.2 0.2 0.1 0.3 0.2

The industry factor model global minimum variance portfolio is

> w.gmin.ind = solve(cov.ind)%*%rep(1,nrow(cov.ind))
> w.gmin.ind = w.gmin.ind/sum(w.gmin.ind)
> t(w.gmin.ind)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL
[1,] 0.0905 0.2409 0.02232 0.006256 0.01039 0.05656 0.1416

GERBER IBM MOBIL PANAM PSNH TANDY
[1,] 0.07775 0.02931 0.07861 0.02972 0.04878 0.006455

TEXACO WEYER
[1,] 0.0794 0.08149
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15.5 Statistical Factor Models for Returns

In statistical factor models, the factor realizations ft in (15.1) are not di-
rectly observable and must be extracted from the observable returns Rt

using statistical methods. The primary methods are factor analysis and
principal components analysis. Traditional factor analysis and principal
component analysis are usually applied to extract the factor realizations
if the number of time series observations, T, is greater than the number
of assets, N. If N > T, then the sample covariance matrix of returns be-
comes singular which complicates traditional factor and principal compo-
nents analysis. In this case, the method of asymptotic principal component
analysis due to Connor and Korajczyk (1988) is more appropriate.
Traditional factor and principal component analysis is based on the (N×

N) sample covariance matrix5

bΩN =
1

T
RR0.

where R is the (N × T ) matrix of observed returns. Asymptotic principal
component analysis is based on the (T × T ) covariance matrix

bΩT =
1

N
R0R

15.5.1 Factor Analysis

Traditional factor analysis assumes a time invariant orthogonal factor struc-
ture6

Rt
(N×1)

= µ
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

(15.17)

cov(ft, εs) = 0, for all t, s

E[ft] = E[εt] = 0

var(ft) = IK

var(εt) = D

where D is a diagonal matrix with σ2i along the diagonal. Then, the return
covariance matrix, Ω, may be decomposed as

Ω = BB0+D

5The matrix of returns is assumed to be in deviations about the mean form. In some
applications, a mean correction is not used because the means are small.

6An excellent overview of factor analysis is given in Johnson and Wichern (1998).
Factor analysis using S-PLUS is described in the S-PLUS 6 Guide to Statistics Vol. 2,
chapter 21.
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Hence, the K common factors ft account for all of the cross covariances of
asset returns.
For a given asset i, the return variance variance may be expressed as

var(Rit) =
KX
j=1

β2ij + σ2i

The variance portion due to the common factors,
PK

j=1 β
2
ij , is called the

communality, and the variance portion due to specific factors, σ2i , is called
the uniqueness.
The orthogonal factor model (15.17) does not uniquely identify the com-

mon factors ft and factor loadings B since for any orthogonal matrix H
such that H0=H−1

Rt = µ+BHH0ft+εt
= µ+B∗f∗t + εt

whereB∗= BH, f∗t =H
0ft and var(f∗t ) = IK . Because the factors and factor

loadings are only identified up to an orthogonal transformation (rotation
of coordinates), the interpretation of the factors may not be apparent until
suitable rotation is chosen.

Estimation

Estimation using factor analysis consists of three steps:

• Estimation of the factor loading matrix B and the residual covariance
matrix D.

• Construction of the factor realizations ft.

• Rotation of coordinate system to enhance interpretation

Traditional factor analysis provides maximum likelihood estimates of B
and D under the assumption that returns are jointly normally distributed
and temporally iid. Given estimates bB and bD, an empirical version of the
factor model (15.2) may be constructed as

Rt − bµ = bBft + bεt (15.18)

where bµ is the sample mean vector of Rt. The error terms in (15.18) are
heteroskedastic so that OLS estimation is inefficient. Using (15.18), the
factor realizations in a given time period t, ft, can be estimated using the
cross-sectional generalized least squares (GLS) regression

bft = (bB0 bD−1 bB)−1 bB0 bD−1(Rt−bµ) (15.19)
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Performing this regression for t = 1, . . . , T times gives the time series of
factor realizations (bf1, . . . ,bfT ).
The factor model estimated covariance matrix is given by

bΩF = bBbB0+bD
Remarks:

• Traditional factor analysis starts with a
√
T− consistent and asymp-

totically normal estimator of Ω, usually the sample covariance matrixbΩ, and makes inference on K based on bΩ. A likelihood ratio test is
often used to select K under the assumption that εit is normally dis-
tributed (see below). However, when N → ∞ consistent estimation
of Ω, an N × N matrix, is not a well defined problem. Hence, if N
is large relative to T , then traditional factor analysis may run into
problems. Additionally, typical algorithms for factor analysis are not
efficient for very large problems.

• Traditional factor analysis is only appropriate if εit is cross-sectionally
uncorrelated, serially uncorrelated, and serially homoskedastic.

Factor mimicking portfolios

From (15.19), we see that the estimated factor realizations bft are simply
linear combinations of the observed returns Rt. As such, it is possible to
normalize the linear combination so that the weights sum to unity. The
resulting re-scaled factors are the factor mimicking portfolios and are per-
fectly correlated with the factor realizations.

Tests for the number of factors

Using the maximum likelihood estimates of B and D based on a K−factor
model and the sample covariance matrix bΩ, a likelihood ratio test (modified
for improved small sample performance) of the adequacy of K factors is of
the form

LR(K) = −(T − 1− 1
6
(2N + 5)− 2

3
K) ·

³
ln |bΩ|− ln |bBbB0+bD|´ .

LR(K) is asymptotically chi-square with 1
2

¡
(N −K)2 −N −K

¢
degrees

of freedom.

Example 104 Estimating a statistical factor model by factor analysis us-
ing S-PLUS

Factor analysis in S-PLUS is performed using the function factanal,
which performs estimation of B and D using either the principal factor
method or the maximum likelihood method, and it takes as input either raw
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data or an estimated covariance or correlation matrix. A robust version
of factor analysis can be computed if the inputted covariance matrix is a
robust covariance matrix (MCD, MVE or M-estimate). If the maximum
likelihood method is used, then the LR test for the adequacy of the K
factor model is computed.
A factor model with k = 2 factors for the fifteen returns from berndt.dat

computed using maximum likelihood method is

> factor.fit = factanal(returns,factors=2,method="mle")
> class(factor.fit)
[1] "factanal"
> factor.fit
Sums of squares of loadings:
Factor1 Factor2
3.319 2.471

The number of variables is 15 and the number of observations
is 120

Test of the hypothesis that 2 factors are sufficient
versus the alternative that more are required:
The chi square statistic is 118.25 on 76 degrees of freedom.
The p-value is 0.00138

Component names:

"loadings" "uniquenesses" "correlation" "criteria"

"factors" "dof" "method" "center" "scale" "n.obs" "scores"

"call"

Call:
factanal(x = returns, factors = 2, method = "mle")

The likelihood ratio test for determining the number of factors indicates
that two factors is not enough to adequately explain the sample return
covariance. A factor model with k = 3 factor appears to be adequate

> factor.fit = factanal(returns,factors=3,method="mle")
> factor.fit
Sums of squares of loadings:
Factor1 Factor2 Factor3
3.137 1.765 1.719
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The number of variables is 15 and the number of observations
is 120

Test of the hypothesis that 3 factors are sufficient
versus the alternative that more are required:
The chi square statistic is 71.6 on 63 degrees of freedom.
The p-value is 0.214
...

A summary of the three factor model is

> summary(factor.fit)
Importance of factors:

Factor1 Factor2 Factor3
SS loadings 3.1370 1.7651 1.7185

Proportion Var 0.2091 0.1177 0.1146
Cumulative Var 0.2091 0.3268 0.4414

The degrees of freedom for the model is 63.

Uniquenesses:
CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER
0.3125 0.8506 0.7052 0.4863 0.3794 0.6257 0.592 0.5175

IBM MOBIL PANAM PSNH TANDY TEXACO WEYER
0.6463 0.2161 0.7643 0.9628 0.5442 0.3584 0.4182

Loadings:
Factor1 Factor2 Factor3

CITCRP 0.518 0.217 0.610
CONED 0.116 0.356
CONTIL 0.173 0.195 0.476
DATGEN 0.668 0.206 0.160

DEC 0.749 0.236
DELTA 0.563 0.239
GENMIL 0.306 0.556
GERBER 0.346 0.600

IBM 0.515 0.224 0.197
MOBIL 0.257 0.847
PANAM 0.427 0.219
PSNH 0.115 0.133
TANDY 0.614 0.264
TEXACO 0.140 0.787
WEYER 0.694 0.200 0.247
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FIGURE 15.4. Estimated loadings from three factor model fit to Berndt data by
factor analysis.

The three factors explain about forty four percent of the total variance of
returns. The reported uniqueness for each asset is standardized such that
the sum of the uniqueness and the communality is unity. Therefore, assets
with uniqueness values close to zero are well explained by the factor model.
The factor loadings may be extracted using the generic loadings func-

tion. The extracted loadings have class “loadings” and may be visualized
with plot

> plot(loadings(factor.fit))

Figure 15.4 gives the resulting plot. The first factor appears to be market-
wide factor, and the second factor is concentrated on oil stocks. Since the
factors are only defined up to an orthogonal rotation, the factor may be
rotated to aid interpretation. The generic function rotate performs such
rotation. For example, to rotate the factor using the quartimax rotation
and view the rotated loadings use

> factor.fit2 = rotate(factor.fit,rotation="quartimax")
> loadings(factor.fit2)

Factor1 Factor2 Factor3
CITCRP 0.722 0.108 0.393
CONED 0.233 -0.153 0.268
CONTIL 0.351 0.113 0.398
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DATGEN 0.693 0.168
DEC 0.734 0.212 -0.193

DELTA 0.610
GENMIL 0.485 -0.164 0.382
GERBER 0.299 0.243 0.578

IBM 0.566 0.181
MOBIL 0.307 0.829
PANAM 0.472 -0.112
PSNH 0.150 -0.101
TANDY 0.673
TEXACO 0.205 0.767 0.103
WEYER 0.748 0.148

See the online help for rotate for a description of the supported rotation
methods.
The factor realizations (15.19) may be computed using the generic predict

function:

> factor.ret = predict(factor.fit,type="weighted.ls")

The estimated factor model correlation matrix may be extracted using

> fitted(factor.fit)
numeric matrix: 15 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA
CITCRP 1.0000 0.25701 0.42245 0.48833 0.47656 0.43723
CONED 0.2570 1.00000 0.17131 0.11533 0.08655 0.15095
CONTIL 0.4224 0.17131 1.00000 0.23205 0.20474 0.21099
DATGEN 0.4883 0.11533 0.23205 1.00000 0.55841 0.41386

DEC 0.4766 0.08655 0.20474 0.55841 1.00000 0.43597
DELTA 0.4372 0.15095 0.21099 0.41386 0.43597 1.00000
GENMIL 0.4825 0.24043 0.30402 0.27919 0.24681 0.30570
GERBER 0.4693 0.18728 0.36267 0.20404 0.15936 0.17371

IBM 0.4354 0.10893 0.22663 0.42116 0.45030 0.33649
MOBIL 0.3278 -0.04399 0.21832 0.34861 0.39336 0.14722
PANAM 0.3396 0.13446 0.16438 0.30585 0.31682 0.29320
PSNH 0.1237 0.06825 0.06786 0.08206 0.07588 0.09689
TANDY 0.5000 0.15650 0.25080 0.47188 0.49859 0.40868
TEXACO 0.2712 -0.04208 0.19960 0.26285 0.29353 0.08824
WEYER 0.5531 0.14958 0.27646 0.54368 0.58181 0.44913
...

To obtain the estimated factor model covariance matrix, the estimated
loadings and uniqueness values must be re-scaled. One way to do this is

> S.hat = diag(factor.fit$scale)
> D.hat = S.hat%*%diag(factor.fit$uniqueness)%*%S.hat
> D.hat.inv = diag(1/diag(D.hat))
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> B.hat = S.hat%*%loadings(factor.fit)
> cov.factor = B.hat%*%t(B.hat)+D.hat
> dimnames(cov.fa) = list(colIds(returns),colIds(returns))

The factor analysis global minimum variance portfolio is then

> w.gmin.fa = solve(cov.fa)%*%rep(1,nrow(cov.fa))
> w.gmin.fa = w.gmin.fa/sum(w.gmin.fa)
> t(w.gmin.fa)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA
[1,] -0.0791 0.3985 -0.02537 -0.04279 -0.002584 0.04107

GENMIL GERBER IBM MOBIL PANAM PSNH TANDY
[1,] 0.1889 0.01321 0.2171 0.1027 0.01757 0.07533 -0.03255

TEXACO WEYER
[1,] 0.1188 0.009147

15.5.2 Principal Components

Principal component analysis (PCA) is a dimension reduction technique
used to explain the majority of the information in the sample covariance
matrix of returns. With N assets there are N principal components, and
these principal components are just linear combinations of the returns. The
principal components are constructed and ordered so that the first principal
component explains the largest portion of the sample covariance matrix of
returns, the second principal component explains the next largest portion,
and so on. The principal components are constructed to be orthogonal
to each other and to be normalized to have unit length. In terms of a
multifactor model, the K most important principal components are the
factor realizations. The factor loadings on these observed factors can then
be estimated using regression techniques.
Let bΩ denote the sample covariance matrix of returns. The first sample

principal component is x∗01 Rt where the (N × 1) vector x∗1 solves

max
x1

x01 bΩx1 s.t. x01x1 = 1.
The solution x∗1 is the eigenvector associated with the largest eigenvalue ofbΩ. The second principal component is x∗02 Rt where the (N × 1) vector x∗2
solves

max
x2

x02 bΩx2 s.t. x02x2 = 1 and x∗01 x2 = 0
The solution x∗2 is the eigenvector associated with the second largest eigen-
value of bΩ. This process is repeated until K principal components are
computed.



588 15. Factor Models for Asset Returns

The estimated factor realizations are simply the first K principal com-
ponents bfkt = x∗0k Rt, k = 1, . . . ,K. (15.20)

The factor loadings for each asset, βi, and the residual variances, var(εit) =
σ2i can be estimated via OLS

7 from the time series regression

Rit = αi + β0ibft + εit, t = 1, . . . , T (15.21)

giving bβi and bσ2i for i = 1, . . . ,N. The factor model covariance matrix of
returns is then bΩ = bBbΩF bB0+bD (15.22)

where

bB =


bβ01
...bβ0N
 , bD =

 bσ21 0 0

0
. . . 0

0 · · · bσ2N
 ,

and

bΩF =
1

T − 1

TX
t=1

(bft − f)(bft − f)0,
f =

1

T

TX
t=1

bft.
Usually bΩF = IK because the principal components are orthonormal.

Factor mimicking portfolios

Since the principal components (factors) x∗i are just linear combinations
of the returns, it is possible to construct portfolios that are perfectly cor-
related with the principal components by re-normalizing the weights in
the x∗i vectors so that they sum to unity. Hence, the weights in the factor
mimicking portfolios have the form

wi =

µ
1

10x∗i

¶
· x∗i , i = 1, . . . ,K (15.23)

where 1 is a (N × 1) vector of ones.

7OLS estimation is efficient even though assets are contemporaneously correlated
because the time series regression for each asset has the same regressors.
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Variance decomposition

It can be shown that

kX
i=1

var(Rit) =
kX
i=1

var(fit) =
kX
i=1

λi

where λi are the ordered eigenvalues of var(Ri) = Ω. Therefore, the ratio

λiPN
i=1 λi

gives the proportion of the total variance
PN

i=1 var(Rit) attributed to the
ith principal component factor return, and the ratioPK

i=1 λiPN
i=1 λi

gives the cumulative variance explained. Examination of these ratios help in
determining the number of factors to use to explain the covariance structure
of returns.

Example 105 Estimating a statistical factor model by principal compo-
nents using S-PLUS

Principal component analysis in S-PLUS is performed using the function
princomp. The S+FinMetrics function mfactor simplifies the process of
estimating a statistical factor model for asset returns using principal com-
ponents. To illustrate, consider estimating a statistical factor model for the
assets in the S+FinMetrics “timeSeries” berndt.dat excluding market
portfolio and the thirty-day T-bill

> returns.ts = berndt.dat[,c(-10,-17)]

To estimate a statistical factor model with the default of one factor use

> pc.mfactor = mfactor(returns.ts)
> class(pc.mfactor)
[1] "mfactor"

The result of the function mfactor is an object of class “mfactor”, for
which there are print and plot methods and extractor functions factors,
loadings, residuals and vcov. The components of an “mfactor” object
are

> names(pc.mfactor)
[1] "factors" "loadings" "k"
[4] "alpha" "Omega" "r2"
[7] "eigen" "call" "sum.loadings"
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where factors contains the estimated factor returns (15.20), loadings
contains the asset specific factor loadings β̂i estimated from (15.21), alpha
contains the estimated intercepts αi from (15.21), r2 contains the regression
R2 values from (15.21), k is the number of factors and eigen contains the
eigenvalues from the sample covariance matrix.
The print method gives a brief summary of the PCA fit

> pc.mfactor

Call:
mfactor(x = returns.ts)

Factor Model:
Factors Variables Periods

1 15 120

Factor Loadings:
Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 0.0444 0.139 0.25 0.231 0.308 0.417

Regression R-squared:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.032 0.223 0.329 0.344 0.516 0.604

Notice that all of the estimated loadings on the first factor are positive,
and the median R2 is around thirty percent. These results are very similar
to those found for the single index model. The factor loadings and factor
regression R2 values may be extracted using the functions loadings and
mfactor.r2

> loadings(pc.mfactor)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL
F.1 0.2727 0.04441 0.3769 0.4172 0.3049 0.2502 0.1326

GERBER IBM MOBIL PANAM PSNH TANDY TEXACO
F.1 0.1672 0.1464 0.1552 0.3107 0.08407 0.4119 0.1323

WEYER
F.1 0.2649
> mfactor.r2(pc.mfactor)
CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER
0.6041 0.1563 0.3285 0.5633 0.516 0.3665 0.2662 0.2181

IBM MOBIL PANAM PSNH TANDY TEXACO WEYER
0.3408 0.2277 0.2922 0.03241 0.5643 0.1635 0.5153
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The factor returns (15.20) and the residuals from the regression (15.21) may
be extracted using the functions factors and residuals, respectively.
The function vcov extracts the PCA covariance matrix (15.22). The

corresponding correlation matrix may computed using

> cov.pca = vcov(pc.mfactor)
> sd = sqrt(diag(cov.pca))
> cor.pca = cov.pca/outer(sd,sd)
> print(cor.pca,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER
CITCRP 1.0 0.16 0.4 0.6 0.5 0.5 0.36 0.34
CONED 0.2 1.00 0.1 0.2 0.1 0.1 0.09 0.09
CONTIL 0.4 0.12 1.0 0.4 0.4 0.3 0.27 0.25
DATGEN 0.6 0.15 0.4 1.0 0.5 0.4 0.35 0.33

DEC 0.5 0.14 0.4 0.5 1.0 0.4 0.33 0.31
DELTA 0.5 0.12 0.3 0.4 0.4 1.0 0.28 0.26
GENMIL 0.4 0.09 0.3 0.3 0.3 0.3 1.00 0.20
GERBER 0.3 0.09 0.2 0.3 0.3 0.3 0.20 1.00

IBM 0.4 0.11 0.3 0.4 0.4 0.3 0.26 0.25
MOBIL 0.3 0.09 0.3 0.3 0.3 0.3 0.21 0.19
PANAM 0.4 0.11 0.3 0.4 0.4 0.3 0.25 0.23
PSNH 0.1 0.04 0.1 0.1 0.1 0.1 0.08 0.08
TANDY 0.6 0.15 0.4 0.6 0.5 0.4 0.34 0.32
TEXACO 0.3 0.08 0.2 0.3 0.3 0.2 0.18 0.16
WEYER 0.5 0.14 0.4 0.5 0.5 0.4 0.33 0.31

The PCA global minimum variance portfolio is

> w.gmin.pca = solve(cov.pca)%*%rep(1,nrow(cov.pca))
> w.gmin.pca = w.gmin.pca/sum(w.gmin.pca)
> t(w.gmin.pca)
numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL
[1,] 0.02236 0.3675 -0.021 -0.06549 -0.01173 0.0239 0.1722

GERBER IBM MOBIL PANAM PSNH TANDY
[1,] 0.07121 0.2202 0.09399 -0.006415 0.06427 -0.06079

TEXACO WEYER
[1,] 0.105 0.02472

The plot method allows a graphical investigation of the PCA fit

> plot(pc.mfactor)

Make a plot selection (or 0 to exit):
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FIGURE 15.5. Screeplot of eigenvalues from PCA of Berndt returns.

1: plot: All
2: plot: Screeplot of Eigenvalues
3: plot: Factor Returns
Selection:

The Screeplot of Eigenvalues is illustrated in Figure 15.5.The first principal
component explains about thirty five percent of the total variance, and the
first two components explain about half of the total variance. It appears
that two or three factors may be sufficient to explain most of the variabil-
ity of the assets. The screeplot may also be computed directly using the
S+FinMetrics function screeplot.mfactor.
The PCA factor model is re-estimated using two factors with

> pc2.mfactor = mfactor(returns.ts,k=2)
> pc2.mfactor

Call:
mfactor(x = returns.ts, k = 2)

Factor Model:
Factors Variables Periods

2 15 120

Factor Loadings:
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FIGURE 15.6. Estimated factors from PCA of Berndt data.

Min. 1st Qu. Median Mean 3rd Qu. Max.
F.1 0.0444 0.1395 0.2502 0.23143 0.308 0.417
F.2 -0.8236 -0.0671 0.0124 -0.00245 0.142 0.365

Regression R-squared:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.033 0.253 0.435 0.419 0.577 0.925

The first factor is the same as before and has all positive loadings. The
second factor has both positive and negative loadings. The median regres-
sion R2 has increased to about forty four percent. The factor returns are
illustrated in Figure 15.6, created by selecting option 2 from the plot menu.

The factor return plot may also be computed directly by first extracting
the factors and then using the S+FinMetrics function fplot:

> fplot(factors(pc2.mfactor))

The factor loadings are shown in Figure 15.7, created by

> pc2.betas = loadings(pc2.mfactor)
> par(mfrow=c(1,2))
> barplot(pc2.betas[1,],names=colIds(pc2.betas),horiz=T,
+ main="Beta values for first PCA factor")
> barplot(pc2.betas[2,],names=colIds(pc2.betas),horiz=T,
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FIGURE 15.7. Estimated loadings on PCA factors for Berndt data.

+ main="Beta values for second PCA factor")

The factor mimicking portfolios (15.23) may be computed using the
S+FinMetrics function mimic

> pc2.mimic = mimic(pc2.mfactor)
> class(pc2.mimic)
[1] "mimic"
> pc2.mimic

F.1 F.2
CITCRP 0.07856 2.3217
CONED 0.01279 -0.0324
...
WEYER 0.07630 -3.5637
attr(, "class"):
[1] "mimic"

These weights in these portfolios may be summarized using

> pc2.mimic.sum = summary(pc2.mimic,n.top=3)
> pc2.mimic.sum

Factor 1
Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 DATGEN 12% CONED 1.3%
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2 TANDY 12% PSNH 2.4%
3 CONTIL 11% TEXACO 3.8%

Factor 2
Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 CONTIL 2200% PANAM -990%
2 GERBER 540% TANDY -560%
3 CITCRP 230% DELTA -490%

The optional argument n.top=3 specifies that the three assets with the
largest and smallest weights in each factor mimicking portfolio are dis-
played. For the first factor, the assets DATGEN, TANDY and CONTIL
have the highest weights and the assets CONED, PSNH and TEXACO
have the lowest weights. Examination of the weights helps to interpret the
factor mimicking portfolio. For the first portfolio, the weights are all pos-
itive (long positions in all assets) and are roughly equal suggesting the
interpretation of a market-wide factor. The second factor has both posi-
tive and negative weights (long and short positions in the assets), and it is
not clear how to interpret the weights. The weights may also be examined
graphically using

> par(mfrow=c(1,2))
> plot(pc2.mimic.sum)

which produces the plot in Figure 15.8.

15.5.3 Asymptotic Principal Components

Asymptotic principal component analysis (APCA), proposed and developed
in Conner and Korajczyk (1986) and based on the analysis in Chamberlain
and Rothschild (1983), is similar to traditional PCA except that it relies
on asymptotic results as the number of cross-sections N (assets) grows
large. APCA is based on eigenvector analysis of the T × T matrix bΩT .
Conner and Korajczyk prove that as N grows large, eigenvector analysis
of bΩT is asymptotically equivalent to traditional factor analysis. That is,
the APCA estimates of the factors ft are the first K eigenvectors of bΩT .
Specifically, let bF denote the orthornormal K × T matrix consisting of the
first K eigenvectors of bΩT . Then bft is the tth column of bF.
The main advantages of the APCA approach are:

• It works in situations where the number of assets, N, is much greater
than the number of time periods, T. Eigenvectors of the smaller T ×
T matrix bΩT only need to be computed, whereas with traditional
principal component analysis eigenvalues of the larger N ×N matrixbΩN need to be computed.
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FIGURE 15.8. Weights in factor mimicking portfolios from PCA fit to Berndt
data.

• The method allows for an approximate factor structure of returns.
In an approximate factor structure, the asset specific error terms εit
are allowed to be contemporaneously correlated, but this correlation
is not allowed to be too large across the cross section of returns.
Allowing an approximate factor structure guards against picking up
local factors, e.g. industry factors, as global common factors.

Refinement

Connor and Korajczyk (1988) offer a refinement of the APCA procedure
that may improve the efficiency of the procedure.

1. Estimate the factors ft (t = 1, . . . , T ) by computing the first K eigen-
values of bΩT .

2. For each asset, estimate the time series regression (factor model) by
OLS

Rit = αi + β0ibft + εit, t = 1, . . . , T
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and compute the residual variances bσ2i . Use these variance estimates
to compute the residual covariance matrix

bD =

 bσ21 0 0

0
. . . 0

0 · · · bσ2N


3. Form the N × T matrix of re-scaled returns

R∗=bD−1/2R
and recompute the T × T covariance matrix

bΩ∗T = 1

N
R∗0R∗

4. Re-estimate the factors ft by computing the first K eigenvalues ofbΩ∗T .
Example 106 Estimation of a statistical factor model by asymptotic prin-
cipal component analysis using S-PLUS

The S+FinMetrics function mfactor estimates a statistical factor model
by asymptotic principal components whenever the number of assets, N,
is greater than the number of time periods, T. To illustrate, consider
fitting a statistical factor model using the S+FinMetrics “timeSeries”
folio.dat, which contains weekly data on 1618 stocks over the period
January 8, 1997 to June 28, 2000. For this data, N = 1618 and T = 182.
To compute the APCA fit with k = 15 factors use

> folio.mf = mfactor(folio.dat,k=15)
> folio.mf

Call:
mfactor(x = folio.dat, k = 15)

Factor Model:
Factors Variables Periods

15 1618 182

Factor Loadings:
Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 -0.977 -0.4261 -0.314658 -0.33377 -0.2168 0.160
F.2 -0.420 -0.1041 -0.014446 0.06519 0.1628 1.110
F.3 -0.463 -0.0784 -0.011839 -0.00311 0.0392 0.998
F.4 -0.556 -0.0588 0.004821 0.00866 0.0771 0.495
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F.5 -1.621 -0.0622 0.015520 0.01373 0.0858 0.467
F.6 -0.835 -0.0635 -0.001544 0.00307 0.0665 0.468
F.7 -0.758 -0.0633 -0.006376 -0.01183 0.0509 2.090
F.8 -0.831 -0.0685 -0.012736 -0.01413 0.0479 0.517
F.9 -0.464 -0.0466 0.006447 0.01200 0.0640 1.095
F.10 -0.640 -0.0659 -0.008760 -0.01050 0.0482 0.687
F.11 -1.515 -0.0540 -0.001114 -0.00457 0.0539 0.371
F.12 -1.682 -0.0637 -0.005902 -0.01068 0.0451 0.515
F.13 -0.462 -0.0480 0.001901 0.00164 0.0516 0.685
F.14 -0.912 -0.0523 -0.001072 -0.00443 0.0472 0.436
F.15 -0.681 -0.0505 -0.000977 -0.00366 0.0473 0.548

Regression R-squared:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.066 0.265 0.354 0.372 0.459 0.944

By default, the APCA fit uses the Connor-Korajczyk refinement. To com-
pute the APCA fit without the refinement, set the optional argument
refine=F in the call to mfactor. The factor loadings appear to be rea-
sonably scaled and skewed toward negative values. The loadings for the
first factor appear to be almost all negative. Multiplying the first factor
by negative one would make it more interpretable. The median regression
R2 is about thirty five percent, which is a bit higher than what one would
expect from the single index model.
Figures 15.9 and 15.10 show the screeplot of eigenvalues and factor re-

turns for the APCA fit, computed using

> screeplot.mfactor(folio.mf)
> fplot(factors(folio.mf)

The first two factors clearly have the largest explanatory power, and the
fifteen factors together explain roughly forty one percent of the total vari-
ance.
The factor mimicking portfolios are computed using

> folio.m = mimic(folio.mf)

which is an object of class “mimic” of dimension 1618 × 15. It is difficult
to concisely summarize the factor mimicking portfolios when the number
of assets is large. This is why the summary method for “mimic” objects has
an option for displaying only the largest and smallest n.top weights for
each factor mimicking portfolio. To view the top five largest and smallest
weights for the fifteen factors use

> folio.ms = summary(folio.m,n.top=5)
> folio.ms

Factor 1
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FIGURE 15.9. Screeplot of eigenvalues from APCA fit to 1618 assets.
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Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight
1 OWC 0.23% BBY -0.15%
2 FNV 0.22% SCON -0.14%
3 MT 0.22% PUMA -0.12%
4 BAC 0.21% THDO -0.11%
5 CACC 0.21% AVTC -0.11%
...
Factor 15
Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 ALXN 79% SCTC -85%
2 AVID 59% MCLL -82%
3 LTXX 53% WLNK -65%
4 IDX 52% LRCX -63%
5 SEAC 51% TSCC -63%

The summary information may be visualized using the generic plot func-
tion

> plot(folio.ms)

which generates a fifteen page graph sheet, with one page for each factor.
The correlations of the assets giving the largest and smallest weights

for a given factor may be visualized using an image plot. To do this, first
compute the correlation matrix for all of the assets

> folio.cov = vcov(folio.mf)
> sd = sqrt(diag(folio.cov))
> folio.cor = folio.cov/outer(sd,sd)

Extract the names of the assets in the summary for the first factor

> top.names = c(as.character(folio.m[[1]][,1]),
+ rev(as.character(folio.ms[[1]][,3])))

and call the S+FinMetrics function image.plot

> image.plot(folio.cor[top.names, top.names],
+ sub="Risk factor 1", main="Correlations of top positions")

The resulting plot is shown in Figure 15.11.

15.5.4 Determining the Number of Factors

The statistical methods described above are based on knowing the number
of common factors. In practice, the number of factors is unknown and
must be determined from the data. If traditional factor analysis is used,
then there is a likelihood ratio test for the number of factors. However,
this test will not work if N > T. Connor and Korajczyk (1993) describe a
procedure for determining the number of factors in an approximate factor
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FIGURE 15.11. Image plot correlations between assets with top five largest and
smallest weights in first factor mimicking portfolio.

model that is valid for N > T and Connor (1995) applies this method to
a variety of factor models. Recently Bai and Ng (2002) have proposed an
alternative method.

Connor and Korajczyk method

The intuition behind this method is that if K is the correct number of
common factors then there should be no significant decrease in the cross-
sectional variance of the asset specific error, εit, in moving from K to K+1
factors. The procedure is implemented as follows.

1. Given observed returns on asset i and a time series of K + 1 factors,
estimate the time series regression models

Rit = αi + β0ibft + εit

Rit = αi + β0ibft + βK+1,ifK+1,t + ε∗it

giving residuals bεit and bε∗it.
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2. Calculate degrees-of-freedom adjusted squared residuals

bσit =
bε2it

1− (K + 1)/T −K/N

bσ∗it =
bε∗2it

1− (K + 3)/T − (K + 1)/N

3. Calculate the cross-sectional difference in squared errors based on odd
and even time periods

b∆s = bµ2s−1 − bµ∗2s, s = 1, . . . , T/2
bµt =

1

N

NX
i=1

bσit
bµ∗t =

1

N

NX
i=1

bσ∗it
and compute the T/2 ×1 vector of differences

b∆ =
³b∆1, b∆2, . . . , b∆T/2

´0
4. Compute the time series sample mean and variance of the differences

∆ =
T

2

T/2X
s=1

b∆s

bσ2∆ =
2

T − 2

T/2X
s=1

³b∆s −∆
´2

5. Compute the t-statistic

t =
∆bσ∆

and use it to test for a positive mean value.

Bai and Ng method

Bai and Ng (2002) propose some panel Cp (Mallows-type) information cri-
teria for choosing the number of factors. Their criteria are based on the
observation that eigenvector analysis on bΩ or bΩN solves the least squares
problem

min
βi,ft

(NT )−1
NX
i=1

TX
t=1

(Rit − αi − β0ift)2
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Bai and Ng’s model selection or information criteria are of the form

IC(K) = bσ2(K) +K · g(N,T )

where

bσ2(K) = 1

N

NX
i=1

bσ2i
is the cross-sectional average of the estimated residual variances for each
asset based on a model with K factors and g(N,T ) is a penalty function
depending only on N and T. The preferred model is the one which mini-
mizes the information criteria IC(K) over all values of K < Kmax. Bai and
Ng consider several penalty functions and the preferred criteria are

PCp1(K) = bσ2(K) +K · bσ2(Kmax)

µ
N + T

NT

¶
· ln
µ

NT

N + T

¶
,

PCp2(K) = bσ2(K) +K · bσ2(Kmax)

µ
N + T

NT

¶
· ln
¡
C2NT

¢
,

where CNT = min(
√
N,
√
T ).

The implementation of the Bai and Ng strategy for determining the
number of factors is a follows. First, select a number Kmax indicating the
maximum number of factors to be considered. Then for each value of K <
Kmax, do the following

1. Extract realized factors bft using the method of APCA.
2. For each asset i, estimate the factor model

Rit = αi + β0ibfKt + εit,

where the superscript K indicates that the regression has K factors,
using time series regression and compute the residual variances

bσ2i (K) = 1

T −K − 1

TX
t=1

bε2it.
3. Compute the cross-sectional average of the estimated residual vari-
ances for each asset based on a model with K factors

bσ2(K) = 1

N

NX
i=1

bσ2i (K)
4. Compute the cross-sectional average of the estimated residual vari-
ances for each asset based on a model with Kmax factors, bσ2(Kmax)



604 15. Factor Models for Asset Returns

5. Compute the information criteria PCp1(K) and PCp2(K).

6. Select the value of K that minimized either PCp1(K) or PCp2(K).

Bai and Ng perform an extensive simulation study and find that the
selection criteria PCp1 and PCp2 yield high precision whenmin(N,T ) > 40.

Example 107 Determining the number of factors for a statistical factor
model estimated by asymptotic principal components

To determine the number of factors in the “timeSeries” folio.dat
using the Connor-Korajczyk method with a maximum number of factors
equal to ten and a significance level equal to five percent use8

> folio.mf.ck = mfactor(folio.dat,k="ck",max.k=10,sig=0.05)
> folio.mf.ck

Call:
mfactor(x = folio.dat, k = "ck", max.k = 10, sig = 0.05)

Factor Model:
Factors Variables Periods

2 1618 182

Factor Loadings:
Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 -0.177 0.2181 0.31721 0.3317 0.419 0.95
F.2 -0.411 -0.0958 -0.00531 0.0777 0.181 1.12

Regression R-squared:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.124 0.188 0.206 0.268 0.837

Two factors are selected by the Connor-Korajczyk method. Notice that
most of the loadings on the first factor are positive.
Similarly, to determine the number of factors using the Bai-Ng method

use

> folio.mf.bn = mfactor(folio.dat,k="bn",max.k=10,sig=0.05)
> folio.mf.bn$k
[1] 2

Again, two factors are determined.

8For a data set with a large number of assets, the Connor-Korajczyk and Bai-Ng
methods may take a while.
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16
Term Structure of Interest Rates

16.1 Introduction

In financial markets, the term structure of interest rates is crucial to pric-
ing of fixed income securities and derivatives. The last thirty years have
seen great advances in the financial economics of term structure of interest
rates. This chapter will focus on interpolating the term structure of inter-
est rates from discrete bond yields. Refer to Campbell, Lo and MacKinlay
(1997) for basic concepts in fixed income calculations and Hull (1997) for
an introduction to theoretical term structure modeling.
Section 16.2 first defines different rates, such as spot or zero coupon

interest rate, forward rate, and discount rate, and documents how one rate
can be converted to another. Section 16.3 shows how to interpolate term
structure data using quadratic or cubic spline. Section 16.4 illustrates how
to use smoothing splines to fit term structure data. Section 16.5 introduces
the parametric Nelson-Siegel function and its extension and shows how it
can be used to interpolate term structure data. Bliss (1997) and Ferguson
and Raymar (1998) compared the performance of these different methods.
Section 16.6 concludes this chapter.
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16.2 Discount, Spot and Forward Rates

16.2.1 Definitions and Rate Conversion

Although many theoretical models in financial economics hinge on an ab-
stract interest rate, in reality there are many different interest rates. For
example, the rates of a three month U.S. Treasury bill are different from
those of a six month U.S. Treasury bill. The relationship between these dif-
ferent rates of different maturity is known as the term structure of interest
rates. The term structure of interest rates can be described in terms of spot
rate, discount rate or forward rate.
The discount function, d(m), gives the present value of $1.00 which is

repaid in m years. The corresponding yield to maturity of the investment,
y(m), or spot interest rate, or zero coupon rate, must satisfy the following
equation under continuous compounding:

d(m)ey(m)·m = 1

or
d(m) = e−y(m)·m (16.1)

Obviously, the discount function is an exponentially decaying function of
the maturity, and must satisfy the constraint d(0) = 1.
The above equation easily shows that under continuous compounding

y(m) = − log d(m)
m

.

If discrete compounding is used instead, one can similarly show that

y(m) = p[d(m)−
1

p·m − 1]

where p is the number of compounding periods in a year.
The spot interest rate is the single rate of return applied over the ma-

turity of m years starting from today. It is also useful to think of it as
the average of a series of future spot interest rates, or forward rates, with
different maturities starting from a point in the future, and thus:

ey(m)·m = e
R m
0

f(x)dx

from which one can easily obtain:

y(m) =
1

m

Z m

0

f(x)dx (16.2)

with f(m) denoting the forward rate curve as a function of the maturity
m.



16.2 Discount, Spot and Forward Rates 609

Maturity

R
at

e

0 5 10 15 20 25 30

0.
07

6
0.

08
0

0.
08

4

Yield Curve: 1/1990

Maturity

R
at

e

0 5 10 15 20 25 30

0.
06

5
0.

07
5

0.
08

5

Forward Rate Curve: 1/1990

FIGURE 16.1. Yield Curve and Forward Rate Curve for January 1990

From (16.1) and (16.2), the relationship between the discount function
and forward rate can be derived:

d(m) = exp{−
Z m

0

f(x)dx}

or

f(m) = −d
0(m)
d(m)

.

Hence the forward rate gives the rate of decay of the discount function as a
function of the maturity m. The relationship between these different rates
under discrete compounding can be similarly obtained.

16.2.2 Rate Conversion in S+FinMetrics

To facilitate the interpolation of term structure from any of discount rate,
spot rate, or forward rate, S+FinMetrics provides a group of functions for
converting one rate into another rate. These functions will be illustrated us-
ing the mk.zero2 and mk.fwd2 data sets in S+FinMetrics, which contains
the U.S. zero coupon rates and forward rates, respectively, as computed by
McCulloch and Kwon (1993).
Both mk.zero2 and mk.fwd2 are “timeSeries” objects with 55 columns,

with each column representing the rate with the corresponding maturity
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in the 55 × 1 vector mk.maturity. For example, the first element of the
vector mk.maturity is 0.083, so the first columns of mk.zero2 and mk.fwd2
correspond to the rates with maturity of one month. Use the following code
to plot the yield curve and forward rate curve for January 1990, and the
graph is shown in Figure 16.1:

> par(mfrow=c(2,1))
> plot(mk.maturity, mk.zero2[54,], xlab="Maturity", ylab="Rate")
> title(paste("Yield Curve:", positions(mk.zero2[54,])))
> plot(mk.maturity, mk.fwd2[54,], xlab="Maturity", ylab="Rate")
> title(paste("Forward Rate Curve:", positions(mk.fwd2[54,])))
> par(mfrow=c(1,1))

To convert the spot interest rate or forward rate into the discount rate,
use the S+FinMetrics function bond.discount. For example, to convert
the first 48 spot rates in Figure 16.1 to discount rates, use the following
command:

> disc.rate = bond.discount(mk.zero2[54, 1:48],
+ mk.maturity[1:48], input="spot", compounding=2)

The bond.discount function takes two required arguments: the first is
a vector of rates, and the second is a vector of the corresponding maturity.
Note that the optional argument input is used to specify the type of the in-
put rates, and compounding to specify the number of compounding periods
in each year. So compounding=2 corresponds to semi-annual compounding.1

If the input rates are forward rates, simply set input="forward".
The functions bond.spot and bond.forward can be called in a similar

fashion to compute the spot interest rate and forward rate, respectively,
from different input rates. For all those three functions, the rates should
be expressed as decimal numbers, and the maturity should be expressed in
units of years. For example, to convert disc.rate back into the spot rates,
use the following command:

> spot.rate = bond.spot(disc.rate, mk.maturity[1:48],
+ input="discount", compounding=2)

It can be easily checked that spot.rate is the same as mk.zero2[54,
1:48].

16.3 Quadratic and Cubic Spline Interpolation

The interest rates are observed with discrete maturities. In fixed income
analysis, the rate for a maturity which is not observed can sometimes be

1To use continuous compounding, specify compounding=0.
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used. Those unobserved rates can usually be obtained by interpolating the
observed term structure.
Since the discount rate should be a monotonically decreasing function of

maturity and the price of bonds can be expressed as a linear combination
of discount rates, McCulloch (1971, 1975) suggested that a spline method
could be used to interpolate the discount function, or the bond prices di-
rectly. In particular, use k continuously differentiable functions sj(m) to
approximate the discount rates:

d(m) = a0 +
kX

j=1

ajsj(m) (16.3)

where sj(m) are known functions of maturity m, and aj are the unknown
coefficients to be determined from the data. Since the discount rate must
satisfy the constraint d(0) = 1, set a0 = 1 and sj(0) = 0 for j = 1, · · · , k.
Note that once the functional form of sj(m) is determined, the coefficients
aj can be easily estimated by linear regression. Thus the discount rate, or
forward rate, or spot rate, associated with an unobserved maturity can be
easily interpolated using the above functional form, as long as the maturity
is smaller than the largest maturity used in the estimation.
Figure 16.1 shows that there are usually more points in the short end of

the term structure, and less points in the long end of the term structure.
To obtain a reliable interpolation using the spline method, the functional
form of sj(m) should be chosen so that it adapts to the density of maturity
m. McCulloch (1971) gives a functional form of sj(m) using quadratic
spline, which is based on piecewise quadratic polynomials, while McCulloch
(1975) gives a functional form of sj(m) using cubic spline, which is based
on piecewise cubic polynomials.
Term structure interpolation using quadratic or cubic spline methods can

be performed by calling the term.struct function in S+FinMetrics. The
arguments taken by term.struct are:

> args(term.struct)
function(rate, maturity, method = "cubic", input.type = "spot",

na.rm = F, plot = T, compounding.frequency = 0,
k = NULL, cv = F, penalty = 2, spar = 0, ...)

NULL

Similar to bond.spot, bond.discount and bond.forward functions, the
first argument rate should be a vector of interest rates, while the sec-
ond argument maturity specifies the corresponding maturity in units of
years. The type of the input interest rate should be specified through the
optional argument input.type. Note that the quadratic or cubic spline
methods operate on discount rates. If the input interest rates are not dis-
count rates, the optional argument compounding.frequency should also be
set for proper conversion, which is set to zero for continuous compounding
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FIGURE 16.2. U.S. Discount Function for January 1990: Quadratic Spline

by default. The optional argument k determines the number of functions
in (16.3), also known as knot points. By default, follow McCulloch (1971,
1975) and set k = [

√
n] where n is the length of the input rates. Other

optional arguments will be discussed in later sections.
To illustrate the usage of the spline methods, in order to interpolate the

term structure corresponding to January 1990, using mk.zero2, use the
following command:

> disc.rate = term.struct(mk.zero2[54,], mk.maturity,
+ method="quadratic", input="spot", na.rm=T)

Note that na.rm=T is set to remove the missing values at the long end
of the term structure. By default, the interpolated discount rate is plot-
ted automatically, which is shown in Figure 16.2. The points in the figure
represent the original discount rates, while the line represents the spline
interpolation.
The returned object disc.rate is of class “term.struct”. As usual, typ-

ing the name of the object at the command line invokes its print method:

> class(disc.rate)
[1] "term.struct"
> disc.rate

Call:
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FIGURE 16.3. U.S. Yield Curve for January 1990: Quadratic Spline

term.struct(rate = mk.zero2[54, ], maturity = mk.maturity,
method = "quadratic", input.type = "spot", na.rm = T)

Coefficients:
a1 a2 a3 a4 a5 a6

-0.0761 -0.0791 -0.0688 -0.0373 -0.0146 -0.0045

Degrees of freedom: 48 total; 42 residual
Residual standard error: 0.001067688

Since the unknown coefficients aj of the spline are estimated by linear
regression, the output looks very much similar to linear regression output.
Since there are 48 spot rates available for January 1990, the number of
knot points is chosen to be 6 by default.
The plot generated in Figure 16.2 shows the interpolated discount func-

tion because the quadratic or cubic spline methods are designed to operate
on discount function. This plot can be later regenerated by calling the
generic plot function on a “term.struct” object. However the yield curve
or forward rate curve is usually of more interest. These can also be easily
plotted using the components of a “term.struct” object. For example, use
the S-PLUS names function to find out the components of disc.rate:

> names(disc.rate)
[1] "coefficients" "residuals" "fitted.values" "effects"
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[5] "R" "rank" "assign" "df.residual"
[9] "contrasts" "terms" "call" "fitted"
[13] "knots" "method" "maturity" "rate"

The first 10 components are inherited from an “lm” object, because the
S-PLUS lm function is used for the linear regression. The fitted (instead
of the fitted.values) component represents the estimated discount rates
associated with the maturity component. To plot the interpolated yield
curve or forward rate curve, simply convert the estimated discount rates
into the rates you want. For example, use the following code to plot the
interpolated yield curve:

> spot.rate = bond.spot(disc.rate$fitted, disc.rate$maturity,
+ input="discount", compounding=0)
> plot(mk.maturity[1:48], mk.zero2[54,1:48],
+ xlab="Maturity", ylab="Rate", main="Yield Curve")
> lines(disc.rate$maturity, spot.rate)

and the plot is shown in Figure 16.3. Note that in the plot the points repre-
sent the original zero coupon rates, while the line represents the quadratic
spline interpolation.

16.4 Smoothing Spline Interpolation

The previous section demonstrated that the polynomial spline methods
proposed by McCulloch (1971, 1975) can fit the discount rate and yield
curve very well. However, since the methods operate on (linear combina-
tions of) discount functions, the implied forward rate curve usually has
some undesirable features. For example, use the following code to generate
the implied forward rate curve from the object disc.rate fitted in the
previous section:

> fwd.rate = bond.forward(disc.rate$fitted, disc.rate$maturity,
+ input="discount", compounding=0)
> plot(disc.rate$maturity, fwd.rate, type="l",
+ xlab="Maturity", ylab="Rate", main="Forward Rate")
> points(mk.maturity[1:48], mk.fwd2[54, 1:48])

The plot is shown in Figure 16.4. The implied forward rate is way off at
the long end of the term structure.
In addition to the undesirable behavior of implied forward rate, the choice

of knot points for polynomial splines is rather ad hoc. For a large number of
securities, the rule can imply a large number of knot points, or coefficients
aj . To avoid these problems with polynomial spline methods, Fisher, Ny-
chka and Zervos (1995) proposed to use smoothing splines for interpolating
the term structure of interest rates.



16.4 Smoothing Spline Interpolation 615

Forward Rate

Maturity

R
at

e

0 5 10 15 20 25 30

0.
05

0.
06

0.
07

0.
08

0.
09

FIGURE 16.4. U.S. Forward Rate for January 1990: Quadratic Spline

In general, for an explanatory variable xi and a response variable yi,
the smoothing spline tries to find a smooth function f(·) to minimize the
penalized residual sum of squares (PRSS):

PRSS =
nX
i=1

[yi − f(xi)]
2 + λ

Z
[f 00(t)]2dt (16.4)

where the first term is the residual sum of squares (RSS), and the second
term is the penalty term, and the parameter λ controls the trade-off be-
tween goodness-of-fit and parsimony. By using the penalty term, the spline
function can be over-parameterized, while using λ to reduce the effective
number of parameters.
Let S denote the n × n implicit smoother matrix such that f(xi) =Pn
j=1 S(xi, xj)yj . Fisher, Nychka and Zervos (1995) suggested using gen-

eralized cross validation (GCV) to choose λ. That is, λ is chosen to minimize

GCV =
RSS

n− θ · tr(S)

where θ is called the cost, and tr(S) denotes the trace of the implicit
smoother matrix and is usually used as the measure of effective number
of parameters.
Interpolation of term structure using smoothing spline can also be per-

formed using the term.struct function by setting the optional argument
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FIGURE 16.5. U.S. Yield Curve for January 1990: Smoothing Spline

method="smooth". The procedure uses the S-PLUS smooth.spline func-
tion as the workhorse.2 In particular, for all the arguments taken by the
function term.struct, cv, penalty and spar are specifically used for
smoothing spline methods and passed to the smooth.spline function. By
default, use GCV by setting cv=F and thus spar, which specifies the value
of λ, is ignored.3 The optional argument penalty is used to specify the
value for θ. Following Fisher, Nychka and Zervos (1995), set θ = 2 by
default.
For example, use the following command to interpolate the yield curve

for January 1990, with the smoothing spline method:

> fnz.fit = term.struct(mk.zero2[54,], mk.maturity,
+ method="smooth", input="spot", na.rm=T)

Again, the interpolated yield curve is plotted automatically, as shown in
Figure 16.5. Although the returned object fnz.fit is of class “term.struct”,
its components are different from the disc.rate object fitted in the pre-
vious section, because now the smooth.spline function is used as the
workhorse:

2Refer to Hastie (1993) and S-PLUS Guide to Statistics for the description of
smooth.spline function.

3For further details regarding these arguments, see the on-line help file for
smooth.spline function.
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> class(fnz.fit)
[1] "term.struct"
> names(fnz.fit)
[1] "x" "y" "w" "yin" "lev" "cv.crit"
[7] "pen.crit" "df" "spar" "fit" "call" "method"
[13] "maturity" "rate"

The first 10 components are inherited from a “smooth.spline” object,
while the last four components are generated by the term.struct function.
For the same reason, the print function now shows different information:

> fnz.fit
Call:
term.struct(rate = mk.zero2[54, ], maturity = mk.maturity,

method = "smooth", input.type = "spot", na.rm = T)

Smoothing Parameter (Spar): 4.767984e-11
Equivalent Degrees of Freedom (Df): 47.57122
Penalized Criterion: 4.129338e-10
GCV: 3.605842e-14

which shows the optimal smoothing parameter λ, and its associated GCV,
penalized criterion, and equivalent degrees of freedom.
For “term.struct” objects, S+FinMetrics also implements a predict

method, which can be used to obtain the interpolated rate associated with
an arbitrary vector of maturity. For example, to recover the fitted spot
rates from fnz.fit, use the predict method as follows:

> fnz.spot = predict(fnz.fit, fnz.fit$maturity)

From the fitted spot rates, one can compute the implied forward rates
for the smoothing spline:

> fnz.forward = bond.forward(fnz.spot, fnz.fit$maturity,
+ input="spot", compounding=0)
> plot(mk.maturity[1:48], mk.fwd2[54,1:48],
+ xlab="Maturity", ylab="Rate", main="Forward Rate")
> lines(fnz.fit$maturity, fnz.forward)

The “real” forward rates and the smoothing spline interpolations are
shown together in Figure 16.6. The interpolations agree very well with the
“real” forward rates. The slight difference is partly caused by the fact that
mk.zero2[54,] and the spot rates implied by mk.fwd2[54,] are slightly
different.
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FIGURE 16.6. U.S. Forward Rate for January 1990: Smoothing Spline

16.5 Nelson-Siegel Function

The previous sections have shown that both the polynomial and smoothing
spline methods can fit the term structure very well, except that the implied
forward rates from polynomial spline methods have some undesirable fea-
tures at the long end of the term structure. However, the non-parametric
spline based methods usually do not generate good out-of-sample fore-
casts. There is substantial evidence showing that a parametric function
suggested by Nelson and Siegel (1987) has better out-of-sample forecasting
performance.
Using a heuristic argument based on the expectation theory of the term

structure of interest rates, Nelson and Siegel (1987) proposed the following
parsimonious model for the forward rate:

f(m) = β0 + β1 · e−m/τ + β2 ·m/τ · e−m/τ .

They suggested that the model may also be viewed as a constant plus a
Laguerre function, and thus can be generalized to higher-order models.
Based on the above equation, the corresponding yield curve can be derived
as follows:

y(m) = β0 + β1
1− e−m/τ

m/τ
+ β2

·
1− e−m/τ

m/τ
− e−m/τ

¸
. (16.5)
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FIGURE 16.7. Short Term and Medium Term Components of Nelson-Siegel Func-
tion

For a given constant τ , both the forward rate curve and the yield curve
are linear functions of the coefficients β0, β1 and β2. Nelson and Siegel
(1987) showed that, depending on the values of β1 and β2, the yield curve
can assume the common shapes of observed yield curves, such as upward
sloping, downward sloping, humped, or inverted humped. In addition, con-
sistent with stylized facts of the yield curve, the three components in (16.5)
can be interpreted as the long term, short term and medium term compo-
nent, or the level, slope, and curvature component of the yield curve.4

Example 108 Interpretation of Nelson-Siegel Function

The function term.struct.nsx in S+FinMetrics can be used to generate
the regressors in (16.5) given a vector of maturity and a value for τ . Use
the following code to visualize these components for different values of τ :

> ns.maturity = seq(1/12, 10, length=50)
> ns05 = term.struct.nsx(ns.maturity, 0.5)
> ns15 = term.struct.nsx(ns.maturity, 1.5)
> par(mfrow=c(2,1))
> tsplot(ns05[,2:3], main="tau=0.5")
> tsplot(ns15[,2:3], main="tau=1.5")

4Refer to Diebold and Li (2002) for a detailed explanation.
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FIGURE 16.8. U.S. Yield Curve for January 1990: Nelson-Siegel Function

> par(mfrow=c(1,1))

A vector of maturity was created from one month to ten years. The regressor
matrix has three columns, and only the last two columns were plotted
because the first column is always one, and the plot is shown in Figure 16.7.
The parameter τ controls the rate of decay of those components. When τ
is smaller, the short and medium term components decay to zero at a
faster rate. Asymptotically, both the short and medium term components
approach zero, and thus β0 can be interpreted as the long term component,
or the level of the yield curve.
To interpolate yield curves using the Nelson-Siegel function, choose the

value of τ which gives the best fit for equation (16.5). The term.struct
function employs this procedure if the optional argument method is set
to "ns". For example, use the following command to interpolate the yield
curve for January 1990:

> ns.fit = term.struct(mk.zero2[54,], mk.maturity,
+ method="ns", input="spot", na.rm=T)
> ns.fit

Call:
term.struct(rate = mk.zero2[54, ], maturity = mk.maturity,

method = "ns", input.type = "spot", na.rm = T)
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Coefficients:
b0 b1 b2

0.0840 -0.0063 0.0044

Degrees of freedom: 48 total; 45 residual
Residual standard error: 0.001203026
Tau estimate: 1.7603

Again, the fit is plotted by default as shown in Figure 16.8. The graph
shows that although the Nelson-Siegel generally captures the shape of the
yield curve, the in-sample fit is usually not as good as the non-parametric
spline methods because it only uses three coefficients. The output shows
the estimates of those coefficients, along with the estimate of τ .
Since the Nelson-Siegel function does not fit the data very well when the

yield curve has a rich structure as in the above example, Svensson (1994)
proposed to extend the Nelson-Siegel forward function as follows:

f(m) = β0 + β1e
−m/τ1 + β2 ·m/τ1 · e−m/τ1 + β3 ·m/τ2 · e−m/τ2

which adds another term to the Nelson-Siegel function to allow for a second
hump. The corresponding yield function can be shown to be:

y(m) = β0 + β1
1− e−m/τ1

m/τ1
+ β2

·
1− e−m/τ1

m/τ1
− e−m/τ1

¸
+ β3

·
1− e−m/τ2

m/τ2
− e−m/τ2

¸
. (16.6)

To use the above function for interpolating yield curve, simply call the
function term.struct with method="nss":

> nss.fit = term.struct(mk.zero2[54,], mk.maturity,
+ method="nss", input="spot", na.rm=T)
> nss.fit

Call:
term.struct(rate = mk.zero2[54, ], maturity = mk.maturity,

method = "nss", input.type = "spot", na.rm = T)

Coefficients:
b0 b1 b2 b3

0.0000 0.0761 0.1351 0.0104

Degrees of freedom: 48 total; 44 residual
Residual standard error: 0.0005997949
Tau estimate: 21.8128 0.5315
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FIGURE 16.9. U.S. Yield Curve for January 1990: Svensson Function

The output now shows two estimates for τ and one more coefficient for
the additional term. The plot of the interpolated yield curve is shown in
Figure 16.9.

16.6 Conclusion

For all the term structure interpolation methods discussed in this chapter,
they all work with the yield curve for a given time, and thus do not consider
the time series aspect of the yield curve. Recently Diebold and Li (2002)
considered estimating the three components β0, β1 and β2 of the Nelson-
Siegel function for each available time, and building a time series model
(in particular, an AR(1)-GARCH(1,1) model) for the estimated β0, β1 and
β2. By employing the times series forecasts of β0, β1 and β2, they are able
to generate reliable forecasts of yield curve. However, in this approach, the
coefficients β0, β1 and β2 are still estimated ignoring the time series aspect.
In recent years, many researchers have proposed to use state space mod-

els and Kalman filter to estimate the term structure of interest rates using a
panel data, for example, see Duan and Simonato (1999), Geyer and Pichler
(1999), Babbs and Nowman (1999), de Jong and Santa-Clara (1999) and
de Jong (2000). Most of these models are special cases of the affine term
structure model proposed by Duffie and Kan (1996), which can be readily
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expressed in a state space model by discretizing the continuous-time mod-
els. These models can be easily implemented using the state space modeling
functions in S+FinMetrics.
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17
Robust Change Detection

17.1 Introduction

In time series analysis, autoregressive integrated moving average (ARIMA)
models have found extensive use since the publication of Box and Jenkins
(1976). For an introduction to the standard ARIMA modeling in S-PLUS,
see S-PLUS Guide to Statistics. Regression models are also frequently used
in finance and econometrics research and applications. For example, as
“factor” models for empirical asset pricing research and for parsimonious
covariance matrix estimation in portfolio risk models. Often ARIMA mod-
els and regression models are combined by using an ARIMA model to
account for serially correlated residuals in a regression model, resulting in
REGARIMA models.
In reality, most time series data are rarely completely well behaved and

often contain outliers and level shifts, which is especially true for economic
and financial time series. The classical maximum likelihood estimators of
both ordinary regression model parameters and ARIMA model parameters
are not robust in that they can be highly influenced by the presence of even
a small fraction of outliers and/or level shifts in a time series. It is therefore
not suprising that classical maximum likelihood estimators of REGARIMA
models also lack robustness toward outliers and/or level shifts.
S+FinMetrics provides functions that compute robust alternatives to

the classical non-robust MLE’s for robust fitting and diagnostics of RE-
GARIMA models. In particular, the robust procedure arima.rob allows
reliable model fitting when the data contain outliers and/or level shifts. In
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addition, it also detects the types and locations of the outliers in the time
series and thus can be used to perform robust change detection.
This chapter is organized as follows: Section 17.2 gives a brief introduc-

tion to REGARIMAmodels, and Section 17.3 shows how to fit a robust RE-
GARIMA model using functions in S+FinMetrics. Section 17.4 shows how
to predict from a robustly fitted REGARIMA model, while Section 17.5
illustrates more options which can be used to control the robust fitting of
REGARIMA models. Finally in Section 17.6, some technical details are
given about how REGARIMA model parameters are estimated robustly in
the procedure arima.rob.

17.2 REGARIMA Models

The REGARIMAmodel considered in this chapter takes the following form:

yt = x
0
tβ + �t, for t = 1, 2, · · · , T (17.1)

where xt is a k× 1 vector of predictor variables, and β is a k× 1 vector of
regression coefficients. The error term �t follows a seasonal ARIMA process:

Φ(L)(1− L)d(1− Ls)D�t = (1− θ∗Ls)Θ(L)ut (17.2)

where L is the lag (or backshift) operator, d the number of regular differ-
ences, D the number of seasonal differences, s the seasonality frequency,
Φ(L) = 1− φ1L− · · ·− φpL

p a stationary autoregressive operator of order
p, Θ(L) = 1− θ1L− · · ·− θqL

q a moving average operator of order q and
θ∗ a seasonal moving average parameter. Note that currently only one sea-
sonal moving average term is allowed in the discussions in this chapter. The
innovations ut are assumed to be i.i.d. random variables with distribution
F .
In practice, observed time series data are rarely well behaved as assumed

in the REGARIMA model (17.1) and (17.2). An observed time series y∗t is
usually some kind of variant of yt in equation (17.1). When the observed
time series y∗t might be influenced by some outliers, the classical maximum
likelihood estimates as implemented in the S-PLUS function arima.mle are
not robust. In contrast, the S+FinMetrics function arima.rob allows the
robust estimation of the model parameters (β,λ), where λ = (φ,θ, θ∗), φ
is a vector of the autoregressive parameters and θ is a vector of the moving
average parameters. Furthermore, it will detect three kinds of outliers in
the original data y∗t :

Additive outliers (AO): An additive outlier occurs at time t0 if y∗t0 =
yt0 + c, where c is a constant. The effect of this type of outlier is
restricted to the time period t0.
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Innovation outliers (IO): An innovation outlier occurs at time t0 if ut0 =
vt0 + c, where vt0 is generated by the distribution F . Usually it is
assumed that F is the normal distribution N(0, σ2). Note that the
effect of an innovation outlier is not restricted to time t0 because
of the structure of an ARIMA model. It also has influence on the
subsequent observations.

Level shifts (LS): If one level shift occurs at time t0, the observed series
is y∗t = yt + c for all t ≥ t0, with c being a constant. Note that if the
series y∗t has a level shift at t0, the differenced series y

∗
t − y∗t−1 has an

additive outlier at t0.

In all those three cases c is the size of the outlier or level shift. Without
any potential confusion, the general term “outlier” may refer to any of the
three types of behavior.

17.3 Robust Fitting of REGARIMA Models

The S+FinMetrics function arima.rob computes the so-called “filtered τ -
estimates” of the parameters (β,λ, σ) of REGARIMA model (17.1)-(17.2)
when a time series is influenced by outliers. The technical details of this
type of estimation can be found in Section 17.6.
S+FinMetrics comes with a “timeSeries” data frip.dat, which rep-

resents monthly industrial production of France from January 1960 to De-
cember 1989. This data set will be used to illustrate the usage of arima.rob
function. First, a plot of the data will show the general properties of the
time series:

> plot(frip.dat)

A few characteristics of the time series can be seen from Figure 17.1: (i)
there are three big outliers around 1963 and 1968; (ii) it appears that a
level shift happened around 1975; (iii) there is an obvious trend in the time
series, and the trend looks like a exponential one, especially in the last five
years. For diagnostic purpose, a robust ARIMA(2,1,0) model can be tried
on the logarithm of frip.dat, due to the exponential-looking trend:

> frip.rr = arima.rob(log(frip.dat)~1, p=2, d=1)

Note that the arima.rob function has only one required argument: a
formula specifying the regression model. The optional argument p specifies
the autoregressive order, and d specifies the order of difference. In this case,
the only predictor variable is the intercept term.

Caveat: The interpretation of the intercept term in arima.rob
is different from that for other formulas in S-PLUS. When both d
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FIGURE 17.1. Monthly Industrial Production of France

and sd (seasonal difference) are zero (which is the default), the
intercept is the constant term as usual. However, when either
d or sd is positive, the intercept is the coefficient of the lowest
order time trend that can be identified. For instance, in the
above example, the intercept corresponds to the coefficient of
the trend term t. One can easily verify this using the following
command:

> frip.t = 1:length(frip.dat)
> tmp = arima.rob(log(frip.dat)~frip.t-1, p=2, d=1)

which should give the same fit as frip.rr. The reason for this
modification is obvious: some coefficients are not identifiable
when differencing is involved.

The object returned by the function arima.rob is of class “arima.rob”,
which has print and summary methods, just like most modeling objects.
For “arima.rob” objects, there is one additional advantage of using the
summary method instead of the print method: if the data object is of class
“timeSeries”, the outliers will be lined up in a table with the time stamps
of the observations, the types of the outliers, the impacts of the outliers,
and the t-statistics. For example,

> summary(frip.rr)
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Call:
arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1)

Regression model:
log(frip.dat) ~ 1

ARIMA model:
Ordinary differences: 1 ; AR order: 2 ; MA order: 0

Regression Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0024 0.0005 4.6558 0.0000

AR Coefficients:
Value Std. Error t value Pr(>|t|)

AR(1) -0.3099 0.0537 -5.7742 0.0000
AR(2) -0.0929 0.0537 -1.7310 0.0843

Degrees of freedom: 360 total; 356 residual

Innovations standard deviation: 0.01311

Number of outliers detected: 9

Outliers detected:

|Time |Type |Impact |t-value|
-------+--------+-------+--------+-------+
1 |Mar 1963|AO |-0.1457 |13.76 |
-------+--------+-------+--------+-------+
2 |May 1968|AO |-0.3978 |38.1 |
-------+--------+-------+--------+-------+
3 |Jun 1968|AO |-0.1541 |14.55 |
-------+--------+-------+--------+-------+
4 |Sep 1968|AO |-0.04516| 4.41 |
-------+--------+-------+--------+-------+
5 |Apr 1969|LS | 0.04511| 3.814 |
-------+--------+-------+--------+-------+
6 |Sep 1974|LS |-0.04351| 3.767 |
-------+--------+-------+--------+-------+
7 |Nov 1974|LS |-0.04844| 4.092 |
-------+--------+-------+--------+-------+
8 |Sep 1976|AO | 0.0382 | 3.829 |
-------+--------+-------+--------+-------+
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9 |Apr 1986|AO | 0.03935| 3.932 |
-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:
0.01311

Innovation scale estimate after correcting outliers:
0.01215

The output generated by the summary method actually has two sections.
The first section contains the parameter estimates in the REGARIMA
model. In this section, one can see that the intercept (which, again, is
actually the slope of the first order time trend) and the first autoregres-
sive coefficient are very significant (that is, they have very small P -values),
while the second autoregressive coefficient is not very significant.
The second section contains a summary of the outliers automatically

detected by the arima.rob function. In this case, nine outliers are found:
the first four and the last two are additive outliers, while the middle three
are level shifts. The three additive outliers shown in Figure 17.1 are all
detected with very large t-statistics.
A picture is always better than a thousand words. A visual diagnostic of

the model fit frip.rr can be obtained by using the generic plot function:

> plot(frip.rr)

Make a plot selection (or 0 to exit):

1: plot: all
2: plot: Robust ACF of Innov.
3: plot: Robust PACF of Innov.
4: plot: Normal QQ-Plot of Innov.
5: plot: Original and Cleaned Series
6: plot: Detected Outliers
Selection:

Selections 2 and 3 will plot the robustly estimated autocorrelations and
partial autocorrelations of the innovations ut, respectively. Selection 4 pro-
duces the normal QQ-plot of the innovations, as shown in Figure 17.2, from
which one can see that the three additive outliers are far away from the
bulk of the data. Selection 5 plots the original response time series together
with the series obtained by cleaning the original series of additive outliers
using a robust filter, which is shown in Figure 17.3. Finally, Selection 6
plots the detected outliers, as shown in Figure 17.4.
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17.4 Prediction Using REGARIMA Models

One of the main applications of a REGARIMA model is to predict future
values of response variable yt based on past values of yt and the correspond-
ing future values of xt. If future predictions are intended, then the call to
the arima.rob function should specify the optional argument n.predict.
This argument should be set to a number equal or greater than the number
of predictions, the default of which is set to 20.
Prediction from REGARIMA models will be illustrated using the data

set import.dat in S+FinMetrics, which contains two monthly time series
from January 1983 to December 1990. The first series taxes corresponds to
Argentinian import taxes and the second import to Argentinian imports.
Another data frame newtaxes.dat contains the values of the variable taxes
from January 1992 to October 1992. First fit a REGARIMA model with
ARIMA(2,1,0) errors:

> import.rr = arima.rob(import~taxes-1, data=import.dat,
+ p=2, d=1)

Now with the new data of the predictor variable taxes in newtaxes.dat,
one can predict import from January 1992 to October 1992 as follows:

> import.hat = predict(import.rr, 10, newdata=newtaxes.dat, se=T)
> class(import.hat)
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[1] "forecast"
> names(import.hat)
[1] "values" "std.err"

The optional argument se=T to the predict method tells the procedure to
return the standard errors of the forecasts. The returned object import.hat
is a “forecast” object with two components: values are the predicted
values of import, and std.err are the standard errors of the prediction.
Since import.hat is a “forecast” object, as we have seen from earlier
chapters, the predictions can be easily plotted together with the original
data:

> plot(import.hat, import.dat[, "import"])

The plot is shown in Figure 17.5.

17.5 Controlling Robust Fitting of REGARIMA
Models

17.5.1 Adding Seasonal Effects

The arima.rob function allows for two kinds of seasonal effects options: the
order of seasonal difference and the inclusion of a seasonal moving average
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term, controlled by the optional arguments sd and sma, respectively. For
example, frip.dat is a monthly series, and you might expect that there
are some seasonal effects in the series. Toward this end, you can add a
seasonal moving average term by specifying the optional argument sma:

> frip.srr = arima.rob(log(frip.dat)~1, p=2, d=1, sfreq=12,
+ sma=T)
> summary(frip.srr)

Call:
arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1,

sfreq = 12, sma = T)

Regression model:
log(frip.dat) ~ 1

ARIMA model:
Ordinary differences: 1 ; AR order: 2 ; MA order: 0
Seasonal differences: 0 ; Seasonal period: 12 ; Seasonal MA: 1

Regression Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0024 0.0004 5.3946 0.0000

AR Coefficients:
Value Std. Error t value Pr(>|t|)

AR(1) -0.3135 0.0518 -6.0494 0.0000
AR(2) -0.1124 0.0518 -2.1697 0.0307

Seasonal MA Coefficient:
Value Std. Error t value Pr(>|t|)

[1,] 0.0945 0.0519 1.8208 0.0695

Degrees of freedom: 360 total; 355 residual

Innovations standard deviation: 0.01304

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|
-------+--------+-------+--------+-------+
1 |Mar 1963|AO |-0.1438 |13.58 |
-------+--------+-------+--------+-------+
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2 |May 1963|LS | 0.03988| 3.545 |
-------+--------+-------+--------+-------+
3 |May 1968|AO |-0.3952 |38.67 |
-------+--------+-------+--------+-------+
4 |Jun 1968|AO |-0.1519 |14.27 |
-------+--------+-------+--------+-------+
5 |Sep 1968|AO |-0.04653| 4.615 |
-------+--------+-------+--------+-------+
6 |Apr 1969|LS | 0.04602| 4.005 |
-------+--------+-------+--------+-------+
7 |Sep 1974|LS |-0.04247| 3.739 |
-------+--------+-------+--------+-------+
8 |Nov 1974|LS |-0.04914| 4.24 |
-------+--------+-------+--------+-------+
9 |Sep 1976|AO | 0.038 | 3.891 |
-------+--------+-------+--------+-------+
10 |Apr 1986|AO | 0.03792| 3.946 |
-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:
0.01304

Innovation scale estimate after correcting outliers:
0.01199

From the first section of the summary, one can see that the seasonal
moving average term is relatively significant, and the estimates of other
parameters are not altered very much. However, in the second section of
the summary, one more level shift is detected, which corresponds to May
1963.

17.5.2 Controlling Outlier Detection

The outlier detection procedure used in arima.rob is similar to those pro-
posed by Chang, Tiao and Chen (1988) and Tsay (1988) for ARIMA mod-
els, and the one used in the X12-REGARIMA program of U.S. Census
Bureau. The main difference with those procedures is that arima.rob uses
innovation residuals based on the filtered τ -estimates of β and λ, instead
of the classical maximum likelihood estimates.
To detect the presence of an outlier at a given time t0, the outlier detec-

tion procedure in arima.rob computes:

T = max
t0

max{Tt0,AO, Tt0,LS, Tt0,IO},
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where Tt0,AO, Tt0,LS and Tt0,IO are the statistics corresponding to an AO,
LS and IO at time t0 respectively. The test statistic is defined as follows:

T =
|ω̂|

V̂ (ω̂)1/2
,

where ω̂ is an estimate of ω, the size of the outlier, based on the residuals
of the filtered τ -estimates and V̂ (ω̂) an estimate of its variance. If T > ξ,
where ξ is a conveniently chosen critical value, one declares that there is
an outlier. The time t0 where the outlier occurs and the type of the outlier
are those where the double maximum is attained.
The critical value ξ is similar to the constant used by Chang, Tiao and

Chen (1988). They recommend using ξ = 3 for high sensitivity in outlier
detection, ξ = 3.5 for medium sensitivity and ξ = 4 for low sensitivity,
when the length of the series is less than 200. For arima.rob the critical
value ξ is specified by the optional argument critv. The default value of
critv is set as follows:

ξ =

 3 if T ≤ 200,
3.5 if 200 < T ≤ 500,
4 if T > 500.

More details of this procedure can be found in Bianco, Garcia Ben, Martinez
and Yohai (1996, 2001).
So far none of the outliers detected is an innovation outlier. This is not a

coincidence. By default, the outlier detection procedure in arima.rob does
not consider innovation outliers. To allow for innovation outliers, use the
optional argument innov.outlier:

> frip.nrr = arima.rob(log(frip.dat)~1, p=2, d=1, sma=T,
+ sfreq=12, innov.outlier=T)

S+FinMetrics also provides a function outliers to extract the infor-
mation of the detected outliers from an “arima.rob” object. The object
returned by outliers is of class “outliers”. The methods print and
summary are available for an “outliers” object. For example,

> summary(outliers(frip.nrr))

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|
-------+--------+-------+--------+-------+
1 |Mar 1963|AO |-0.1438 |13.58 |
-------+--------+-------+--------+-------+
2 |May 1963|LS | 0.03988| 3.545 |
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-------+--------+-------+--------+-------+
3 |May 1968|AO |-0.3952 |38.67 |
-------+--------+-------+--------+-------+
4 |Jun 1968|AO |-0.1519 |14.27 |
-------+--------+-------+--------+-------+
5 |Sep 1968|AO |-0.04653| 4.615 |
-------+--------+-------+--------+-------+
6 |Apr 1969|LS | 0.04602| 4.005 |
-------+--------+-------+--------+-------+
7 |Sep 1974|LS |-0.04247| 3.739 |
-------+--------+-------+--------+-------+
8 |Nov 1974|LS |-0.04914| 4.24 |
-------+--------+-------+--------+-------+
9 |Sep 1976|AO | 0.038 | 3.891 |
-------+--------+-------+--------+-------+
10 |Apr 1986|AO | 0.03792| 3.946 |
-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:
0.01304

Innovation scale estimate after correcting outliers:
0.01199

In this case, still no innovation outlier is detected even though we allowed
for innovation outliers.

17.5.3 Iterating the Procedure

After the outlier detection, one can clean the original series of additive
outliers and level shifts. If all the outliers in the data have been detected,
and arima.rob is called on the cleaned data again, one should not find any
new outliers. By this line of argument, the process of robust estimation and
outlier detection can be iterated to obtain a more thorough detection of
outliers. Before illustrating how this can be done using arima.rob function,
we want to warn that this procedure is ad hoc, and sometimes the results
may not be easily interpretable.
To carry out the iteration process, simply set the optional argument

iter=T when calling arima.rob function. For example,

> frip.irr = arima.rob(log(frip.dat)~1, p=2, d=1, iter=T)
> summary(frip.irr)

Call:
arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1, iter = T)
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Regression model:
log(frip.dat) ~ 1

ARIMA model:
Ordinary differences: 1 ; AR order: 2 ; MA order: 0

Regression Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0023 0.0005 4.6027 0.0000

AR Coefficients:
Value Std. Error t value Pr(>|t|)

AR(1) -0.2861 0.0577 -4.9542 0.0000
AR(2) -0.0728 0.0577 -1.2608 0.2082

Degrees of freedom: 360 total; 356 residual

Innovations standard deviation: 0.01178

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|
-------+--------+-------+--------+-------+
1 |Mar 1963|AO |-0.1457 |13.76 |
-------+--------+-------+--------+-------+
2 |May 1968|AO |-0.3978 |38.1 |
-------+--------+-------+--------+-------+
3 |Jun 1968|AO |-0.1541 |14.55 |
-------+--------+-------+--------+-------+
4 |Sep 1968|AO |-0.04516| 4.41 |
-------+--------+-------+--------+-------+
5 |Apr 1969|LS | 0.04511| 3.814 |
-------+--------+-------+--------+-------+
6 |Sep 1974|LS |-0.04351| 3.767 |
-------+--------+-------+--------+-------+
7 |Sep 1974|LS | 0.04162| 3.598 |
-------+--------+-------+--------+-------+
8 |Nov 1974|LS |-0.04844| 4.092 |
-------+--------+-------+--------+-------+
9 |Dec 1975|LS | 0.04037| 3.534 |
-------+--------+-------+--------+-------+
10 |Dec 1975|LS | 0.0414 | 3.619 |
-------+--------+-------+--------+-------+
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11 |Sep 1976|AO | 0.0382 | 3.829 |
-------+--------+-------+--------+-------+
12 |Apr 1986|AO | 0.03935| 3.932 |
-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:
0.01311

Innovation scale estimate after correcting outliers:
0.01176

In the first section of the output, the parameter estimates are from the
last iterated model. In the second section of the output, it is stated that 10
outliers have been detected altogether, though there are 12 outliers listed
in the table. The difference comes from the fact that some outliers are
detected repeatedly during the iteration process. For example, two level
shifts have been detected corresponding to September 1974.
To obtain a summary of the outliers detected for each iteration, one can

use the outliers function with an iter argument. For example,

> summary(outliers(frip.irr, iter=2))

Number of outliers detected: 2

Outliers detected:

|Time |Type |Impact |t-value|
-------+--------+-------+-------+-------+
1 |Sep 1974|LS |0.04162|3.598 |
-------+--------+-------+-------+-------+
2 |Dec 1975|LS |0.04037|3.534 |
-------+--------+-------+-------+-------+

Innovation scale estimate before correcting outliers:
0.01202

Innovation scale estimate after correcting outliers:
0.01176

which summarizes the outliers detected in the second iteration.

17.6 Algorithms of Filtered τ -Estimation

This section briefly introduces filtered τ -estimates for REGARIMA models.
The technical details can be found in the references cited in this chapter.
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17.6.1 Classical Maximum Likelihood Estimates

For the REGARIMA model in equations (17.1) and (17.2), the model pa-
rameters are usually estimated by maximum likelihood estimation (MLE).
The MLE can be computed using prediction error decomposition, for ex-
ample, see Chapter 14.
First, let d0 = d + sD. Note that we will lose the first d0 observations

because of the ARIMA differencing and/or seasonal differencing. For the
moment, consider only equation (17.2). Let

�̂t|t−1(λ) = Eλ [�t|�1, · · · , �t−1], for t ≥ d0

be the one-step-ahead predictor of �t given the knowledge of historic values
of �t. Then

ût(λ) = �t − �̂t|t−1(λ) (17.3)

will be the one-step-ahead prediction error, and the variance of ût(λ) is of
the form

σ2t (λ) = Eλ[�t − �̂t|t−1(λ)]2 = a2t (λ)σ
2
u,

where limt→∞ at(λ) = 1.
Second, for the REGARIMAmodel considered, the prediction error ût(β,λ)

can be obtained similarly as in equation (17.3), replacing �t with �t(β) =
yt − x0tβ.
Now, let L(β,λ, σ2) be the conditional likelihood function of the sample

observations, and let

Q(β,λ) = −2 argmax
σ2

logL(β,λ),

which is −2 times the log-likelihood concentrated with respect to σ2. Using
prediction error decomposition, it can be easily shown that

Q(β,λ) =
TX

t=d0+1

log a2t (λ) + (T − d0)s
2(
ûd0+1(β,λ)

ad0+1(λ)
, · · · , ûT (β,λ)

aT (λ)
),

(17.4)
up to a constant, where

s2(u1, · · · , uT ) =
1

n

nX
t=1

u2t (17.5)

is the square of the scale estimate.
The classical maximum likelihood estimates of β and λ are obtained by

minimizing Q(β,λ), that is,

(β̂, λ̂) = argmin
β,λ

Q(β,λ),

and the maximum likelihood estimate of σ2 is given by

σ̂2 = s2(β̂, λ̂).
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17.6.2 Filtered τ -Estimates

It is well known that the classical maximum likelihood estimates in the
previous section are not robust and can produce poor estimates when the
data contain outliers. Bianco, Garcia Ben, Martinez and Yohai (1996) pro-
posed a class of robust estimates for REGARIMA model called filtered
τ -estimates. See also Martin and Yohai (1996). These estimates are based
on a robustification of the log-likelihood function. The robustification is ac-
complished through two steps: (1) use the filtered prediction error instead
of the usual prediction error; (2) use a robust τ -estimate of the scale in
equation (17.4).
The filtered τ -estimation uses a robust filter proposed by Masreliesz

(1975) which eliminates the influence of previous outliers or bad obser-
vations. That is, the robust prediction error �̃t|t−1 is computed based on
cleaned series �̃t|t instead of the contaminated series �t. For an AR(1) model,
the two series �̃t|t−1 and �̃t|t are obtained simultaneously by a recursion pro-
cedure as follow:

�̃t|t = wt�t + (1− wt)�̃t|t−1,

where

wt = w(
|�t − �̃t|t−1|

mσ̂t
)

and w(·) is an even and non-increasing weight function, m is a tuning
constant, and σ̂2t is an estimate of the prediction variance σ

2
t . For the general

case the robust filtering procedure is based on the state space representation
of the ARIMA model. The details can be found in Martin, Samarov and
Vandaele (1983).
The filtered τ -estimation replaces the statistic s2 in equation (17.5) with

a robust τ -estimate of scale. For details of how τ -estimates of scale can be
computed, see Yohai and Zamar (1983).
In summary, the filtered τ -estimates are defined by

(β̂, λ̂) = argmin
β,λ

Q∗(β,λ),

where

Q∗(β,λ) =
TX

t=d0+1

log a2t (λ) + (T − d0)τ
2(
ũd0+1(β,λ)

ad0+1(λ)
, · · · , ũT (β,λ)

aT (λ)
),

with ũt = �t − �̃t|t−1, and τ2(·) is the square of the τ -estimate of scale.
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Akaike information criterion, see
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analysis (APCA), 595

autocorrelation function (ACF),
58

autocorTest function, 63, 182, 227,
483

autoregressive distributed lag (ADL)
model, 188

autoregressive fractionally integrated
moving average (ARFIMA),
93

autoregressive integrated moving
average (ARIMA) model,
76

autoregressive moving average (ARMA)
model

representation, 65
state space form, 522

autoregressive moving average model
estimation, 76

backtesting, 343
Bayesian vector autoregression (BVAR)

model, 420
BEKK model, 490
bond.discount function, 610
bond.forward, 610
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bond.spot, 610
BVAR function, 420

CCC model, 492
chain rule of forecasting, 395
characteristic equation

AR(1), 66
AR(p), 69

CheckSsf function, 517
coint function, 459
cointegration

cointegrating residual, 431
common trends, 433
definition, 431
estimation by least squares,

446
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hood estimation, 460
normalization, 431
specification of deterministic

terms, 455
triangular representation, 433

cointegration tests
residual-based tests
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colStdevs function, 97
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common stochastic trends, 433
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conditional forecasting

BVAR, 423
VAR, 401

covariance matrix
EWMA, 475
QMLE, 224
robust, 225

covRob function, 494
cpredict function, 401, 423, 465
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cross lag correlation, 98

cubic spline, 36, 611
CUSUM test, 205
CUSUMSQ test, 206

d.pgram function, 274
d.ros function, 273
d.whittle function, 276
dgev function, 135
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diagonal VEC model, 478
Diebold-Mariano (DM) statistic,

348
diff.timeSeries function, 42
difference stationary process, 89
disaggregate function, 36
discount rate, 608
dos.time function, 314
Durbin-Watson statistic, 173
dynamic OLS estimator, 447

EGARCH, 231
end function, 17
Engle-Granger two-step procedure,

443
ergodicity, 58
error correction model (ECM), 437
EVANESCA library, 132
EVIS library, 132
EWMA covariance matrix, 475
EWMA function, 319
EWMA.cov function, 476
expected shortfall (ES), 147, 158
exponentially weighted moving av-

erage (EWMA), 318
extreme value theory, 134

factanal function, 582
factor analysis, 580
factor loading, 560
factor mimicking portfolio, 572
FARIMA function, 278
fevDec function, 411
fgarch function, 290
fgarch.control function, 296
FIEGARCH model, 289
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FIGARCH model, 289
Fisher-Tippet theorem, 134
forecast error variance decompo-

sition (FEVD), 409
forecast evaluation statistics, 344
forecasting

ARIMA, 77
BVAR, 421
GARCH, 251
long memory, 297
multivariate GARCH, 502
state space models, 538
time series regression, 187
VECM, 465

forward rate, 608
fplot function, 593
fractional ARIMA model, see au-

toregressive fractionally
integrated moving aver-
age (ARFIMA)

fractional difference, 266
fractional white noise process, 93
fractionally integrated process, 92
fundamental factor model, 570

GARCH, 219
prediction, 253
simulation, 255
unconditional variance, 220,

235
garch function, 222
GARCH-M, 240
Garman-Klass estimator, 278
generalized error distribution, 247
generalized extreme value (GEV)

distribution, 134
Frechet type, 134
Gumbel type, 134
maximum likelihood estima-

tion, 138
Weibull type, 135

generalized least squares, 196
generalized Pareto distribution (GPD),

149

maximum likelihood estima-
tion, 154

getReturns function, 46
GetSsfArma function, 523
GetSsfReg function, 527
GetSsfRegArma function, 530
GetSsfSpline function, 532
GetSsfStsm function, 525
gev function, 137
GJR model, 232
gpd function, 154
gpd.q function, 161
gpd.sfall function, 161
GPH test, 270
gphTest function, 271
Granger causality, 403
gumbel function, 137

half life, 67, 191
GARCH, 238

heteroskedasticity, 196
heteroskedasticity and autocorre-

lation consistent standard
error (HACSE), 202

heteroskedasticity consistent stan-
dard error (HCSE), 197

heteroskedasticity test, 198
Breusch-Pagan test, 199
Koenker-Basset test, 199
White test, 200

heteroTest function, 200
high quantile, 131
Hill estimator, 163
hill function, 164
histPlot function, 52, 63
Hurst coefficient, 266

I(0) process, 90
I(1) process, 89
IC function, 181, 193
iEMA.kernel function, 326
IGARCH, 289, 478
iMA function, 327
iMA.kernel function, 326
image.plot function, 600
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immediate impact multiplier, 190
impRes function, 406
impulse response function (IRF)

multivariate, 405
univariate, 65

inhomogenous time series, 321
innovation outlier, 629
interpNA function, 39
invertibility, 73

Johansen’s maximum eigenvalue
statistic, 458

Johansen’s trace statistic, 457

Kalman filter, 536
KalmanFil function, 539
KalmanSmo function, 540

lag operator, 65
lapply function, 346
level shift, 629
leverage effect, 231
leverage effects, 231, 496
linear interpolation, 322
linear process, 64
linear time series regression model,

170
asymptotic distribution, 171
ordinary least squares (OLS)

estimation, 171
lines.render function, 51
Ljung-Box, see serial correlation

test
loadings function, 585
long memory, 92, 265
long range dependence, 265
long run effect, 190
long run variance

autoregressive estimate, 87, 102
multivariate, 101
Newey-West estimate, 87, 102
univariate, 86

long-run equilibrium, 431

macroeconomic factor model, 561

martingale, 83
martingale difference sequence (MDS),

83
matrix-diagonal model, 488
mean excess function, 151
mean excess plot, 152
meplot function, 152
mfactor function, 589
mgarch function, 477
mimic function, 594
model selection criteria

ARMA models, 77
VAR model, 386

momentum indicator functions, 332
multifactor model, 560
multivariate portmanteau test, 484

Nelson-Siegel function, 618
Newey-West estimate, 87, 102, 201
news impact curve, 235
nlregb function, 372
NLSUR function, 371
nonparametric cubic spline model,

see cubic spline
nonstationary time series, 88
normality test

Jarque-Bera test, 61
Shapiro-Wilk test, 61

normalTest function, 61, 182

OLS function, 173
orthogonal impulse response func-

tion, 406
outliers function, 638

par function, 49
partial autocorrelation function (PACF),

69
pcoint function, 444
pdl function, 195
peaks over thresholds (POT), 146
periodogram method, 274
PGARCH, 233
pgev function, 135
pgpd function, 149
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plot function, 48
plot.OLS function, 182
plot.timeSeries function, 48
plot.VAR function, 391
polynomial distributed lag (PDL)

model, 194
positions function, 16
predict.BVAR function, 421
predict.FARIMA function, 297
predict.VAR function, 396
prediction error decomposition, 547
previous tick interpolation, 322
principal component analysis (PCA),

587
principal component GARCH, 494
princomp function, 589
punitroot function, 113

qcoint function, 444
qgev function, 135
qgpd function, 149
qnorm function, 60
qplot function, 150
qq-plot, 60
qqPlot function, 52, 63, 182
quadratic spline, 611
quant function, 162
qunitroot function, 113

R/S statistic, 268, 272
random walk, 90
records function, 139
recursive causal ordering, 405
recursive least squares (RLS), 205
REGARIMA model, 628
return level, 143
rgev function, 135
rgpd function, 149
riskmeasures function, 159
rlevel.gev function, 144
RLS function, 206
rnorm function, 58
roll function, 352
rolling correlations, 315
rolling linear regression model, 336

rollMax function, 312
rollMin function, 312
rollOLS function, 337
rollVar function, 312
rosTest function, 269
rotate function, 585
rvfPlot function, 242

S language, 3
S+FinMetrics

description, xv
inhomogeneous time series func-

tions, 323
technical analysis functions,

331
time and date functions, 28

sample autocorrelation, 58
sapply function, 347
Schwarz information criterion, see

model selection criteria
screeplot.mfactor function, 592
seemingly unrelated regression (SUR)

model, 360
feasible generalized least squares

(FGLS) estimator, 361
maximum likelihood estima-

tor, 362
nonlinear model, 370

SEMIFAR function, 285
SEMIFAR Model, 285
serial correlation test

modified Q-statistic, 62
multivariate, 484
Q-statistic, 62

seriesData function, 17
seriesMerge function, 38
seriesPlot function, 52
shape function, 157
Sharpe’s single index model, 562
sigma.t function, 225, 481
simple moving average, 309
SimSmoDraw function, 553
simulate.FARIMA function, 93
simulate.garch function, 84, 216,
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simulate.mgarch function, 507
simulate.VAR function, 383
simulation smoothing, 553
SMA function, 312
smooth.spline function, 616
smoothing spline, 614
spot interest rate, 608
spurious regression, 428, 430
SsfConDens function, 545
SsfFit function, 548
SsfMomentEst function, 541
SsfPack library, 513
SsfSim function, 534
start function, 17
state space model, 514
stationarity, 58
stationarity test, 108
stationarity tests

KPSS test, 125
stationaryTest function, 127
stochastic trend, 90
stress period, 143
structural time series model (STSM),

525
summaryStats function, 179
SUR function, 363
Svensson function, 621
system of linear regression equa-

tions, 358
system of nonlinear regression equa-

tions, 358

t distribution, 247
multivariate, 500

t-ratio, 172
TA.adi function, 335
TA.chaikin function, 334
TA.garmanKlass function, 278
TA.macd function, 333
TA.typicalPrice function, 332
tail index, 134
tail probability, 131
tailplot function, 156, 161
technical analysis, 331
term.struct function, 611

term.struct.nsx function, 619
TGARCH, 232
timeCalendar function, 24
timeDate function, 19
timeDate object, 19
timeSeq function, 24
timeSequence function, 25
timeSeries object, 16

creating, 29
timeSpan object, 23
timeZoneConvert function, 22
trend stationary process, 88
triangular structural VAR model,

405
tslag function, 40, 191
two components model, 238

uniqueness, 581
unit root test, 108

augmented Dickey-Fuller (ADF)
test, 116

Dickey-Fuller test, 110
Phillips-Perron (PP) test, 122

unitroot function, 118

Value-at-Risk, 158
Value-at-Risk (VaR), 147
VAR function, 386
variance inflation statistics, 193
vector autoregression (VAR) model,

101, 382
conditional forecasts, 401
estimation by least squares,

385
simulation-based forecasts, 398
traditional forecasting, 394

vector error correction model (VECM),
452

volatility indicator functions, 334
volume indicator functions, 335
volume weighted average price, 33

Wald statistic, 172
waldTest function, 180
weighted least squares, 197
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white noise, 58
Whittle’s method, 276
Wold decomposition, 64

Yule-Walker equations, 69


