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Preface

The 34th Iranian National Mathematical Olympiad consisted of four
rounds. The First Round was held on 18th of February 2016 nation-
wide. The exam consisted of 30 multiple-choice questions and a time of
3.5 hours. In total, more than 10000 students participated in the exam
and more than 1500 of them were admitted for participation in the next
round.

The Second Round was held on 28th and 29th of April 2016. In each
day, participants were given 3 problems and 4.5 hours to solve them.
After this round, the top 81 students were selected to participate in the
Third Round.

The examination of the Third Round consisted of six separate exams,
and a Final Exam with 6 problems. At the end of this round, 35 students
were awarded a bronze medal, 24 students were awarded a silver medal,
and the top 17 students were awarded a gold medal. The following list
represents the names of the gold medalists:

1. Hamed Abdi 10. Amir Mohammad Nazari
2. Atrin Arya 11. Farhood Rostamkhani
3. Kiarash Banihashem 12. Amirmojtaba Sabour
4. Benyamin Ghasemi Nia 13. Fateme Sajadi
5. Shayan Kiani 14. Yousef Shakiba
6. Aryo Lotfi 15. Mohammad Amin Sharifi
7. Mohammad Sadegh Mahdavi 16. Sina Taslimi
8. Taha Miranzade 17. Soroush Taslimi
9. Ashkan Mirzaei

The Team Selection Test was held on 6 days, having the same struc-
ture as the International Mathematical Olympiad (IMO). In the end,
the top 6 participants were selected to become members of the Iranian
Team at the 58th IMO.

In this booklet, we present the 6 problems of the Second Round, the
6 problems of the Final Exam of the Third Round, and 18 proposed
problems of the Team Selection Test, together with their solutions.

6



It’s a pleasure for the authors to offer their grateful appreciation to all
the people who have contributed to the conduction of the 34th Iranian
Mathematical Olympiad, including the National Committee of Mathe-
matics Olympiad, problem proposers, problem selection groups, exam
preparation groups, coordinators, editors, instructors and all those who
have shared their knowledge and effort to increase the Mathematics en-
thusiasm in our country, and assisted in various ways to the conduction
of this scientific event.
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Problems



Second Round

1. (Omid Naghshineh Arjmand) Let a, b and c be positive real numbers
with c ≥ b ≥ a. Prove that

(c− a)2

6c
≤ a+ b+ c

3
− 3

1
a + 1

b + 1
c

.

(→ p.18)

2. (Mahdi Ghasemi) ABC is a triangle with circumcircle ω1 and
Ĉ = 2B̂. A tangent line to ω1 at A intersects BC at E. Let ω2 be a
circle passing through B and tangent to AC at C. This circle intersects
AB for the second time at F . A line through E is tangent to ω2 at K
(where BC lies between A and K). Let M be the midpoint of arc BC
of ω1 (not containing A). Prove that MFAK is a cyclic quadrilateral.

(→ p.19)

3. (Omid Naghshineh Arjmand) A council has 6 members and decisions
are made based on agreeing and disagreeing votes. We call a decision
making method an Acceptable way to decide if it satisfies the two
following conditions.

• Ascension: If in some case, the final result is positive, it also stays
positive if someone changes disagreeing vote to agreeing vote.

• Symmetry: If all members change their votes, the result will also
change.
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Weighted Voting for example, is an Acceptable way to decide.
In this method, members are allotted with non-negative weights like
ω1, ω2, · · · , ω6 and the final decision is made with comparing the weight
sum of agreeing votes, and disagreeing votes. For instance if ω1 = 2 and
for all i ≥ 2, ωi = 1, decision is based on the majority of the votes, and
in case when votes are equal, the vote of the first member will be the
decider. Give an example of some Acceptable way to decide that
cannot be represented as a Weighted Voting.

(→ p.20)

4. (Mohammad Pourmohammadi) There are n ≥ 3 lines on the plane,
any two of them intersect each other and non three of them are concur-
rent. An intersection point is called interior whenever on each side of
this point , on both two lines passing through it, there exists some other
intersection point(s). (e.g. in the following figure with 5 lines, there are
4 interior points marked with filled circles.)

Prove that there are at least (n−2)(n−3)
2 interior points between the

intersection points of these n lines.
(→ p.21)

5. (Ali Zamani) Quadrilateral ABCD and point T in its interior is given
such that AC is the angle bisector of B̂CD and

ÂBC − ÂTD = D̂AC, ÂDC − ÂTB = B̂AC.

Prove that B̂AT = D̂AC. (→ p.22)

6. (Mohsen Jamali) Find all functions f : Z+ → Z+ satisfying the fol-
lowing conditions:

• For all x, y ∈ Z+, f(x) + f(y) is divisible by x+ y.

• For any integer x ≥ 1395, the inequality 2f(x) ≤ x3 holds.

(→ p.24)
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Third Round

1. (Ali Behrooz) Let f, g : R+ → R+ be two functions such that for all
positive real numbers x and y

f (x+ g(y))
2

= f(x2) + y2.

Prove that the range of g is not bounded from above.
(→ p.26)

2. (Morteza Saghafian, Mahdi Etesami Fard) ABCD is a square that is
partitioned into rectangles such that no point is a corner of 4 rectangles.
All corner points of rectangles are colored with 2 colors such that any two
diagonal corners in a rectangle (of the partition) have different colors. If
A and C have the same color, prove that B and D also have the same
color.

(→ p.26)

3. (Mostafa Eynollahzadeh) Let pm be a power of a prime number. Find
the lowest value of d such that there exists a monic polynomial Q(x) of
degree d with integer coefficients such that for any positive integer n, pm
divides Q(n).

(→ p.27)

4. (Iman Maghsoudi) An arbitrary point P lies on side BC of triangle
ABC. Angle bisectors of ÂPB and ÂPC intersect the external angle
bisector of Â at X and Y , respectively. Circumcircle of triangle PXY
meets BC for the second time at Q. Prove that B̂AP = ĈAQ.

(→ p.28)

5. (Ali Sayyadi, Mahyar Sefidgaran) a) A number m is called mirror-
symmetry if it is possible to divide the reverse decimal expansion of m
into some blocks such that the multiply of these blocks is equal to m.
For instance, numbers 6, 543 and 21 are such blocks for number 123456,
if the multiply of these 3 numbers was equal to 123456, we would call
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it a mirror-symmetry number. Find all mirror-symmetry numbers
with decimal digits of {1, 2, 3}.
b) A number m is called good if it is possible to divide m itself into

some blocks with multiply of m
7 . Prove that there are infinitely many

good numbers.
(→ p.28)

6. (Morteza Saghafian) Let A1A2 · · ·An be a convex n-gon with no two
sides parallel to each other. A graph G with vertices V1, V2, . . . , Vn is
corresponded to this n-gon as following: An edge connects Vi to Vj when-
ever it is possible to draw two parallel lines passing through Ai, Aj such
that the whole n-gon lies between these two lines (and except for Ai, Aj ,
not on them). Find the number of all labelled graphs with vertices
V1, V2, . . . , Vn that are corresponded to some n-gon. (e.g. the answer for
n = 3, 4 is 1, 4 respectively.)

(→ p.29)
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Team Selection Test

1. (Mohammad Jafari) Let a, b, c and d be positive real numbers with
a+ b+ c+ d = 2. Prove that

(a+ c)2

ad+ bc
+

(b+ d)2

ac+ bd
+ 4 ≥ 4

(
a+ b+ 1

c+ d+ 1
+
c+ d+ 1

a+ b+ 1

)
.

(→ p. 35)

2. (Morteza Saghafian) In the country of Sugarland, there are 13 stu-
dents in the IMO team selection camp. 6 team selection tests were taken
and the results have came out. Assume that no students have the same
score on the same test. To select the IMO team, the national commit-
tee of math Olympiad have decided to choose a permutation of these 6
tests and starting from the first test, the person with the highest score
between the remaining students will become a member of the team. The
committee is having a session to choose the permutation.
Is it possible that all 13 students have a chance of being a team member?

(→ p. 35)

3. (Hooman Fattahi) In triangle ABC let Ia be the A-excenter. Let
ω be an arbitrary circle that passes through A and Ia and intersects
the extensions of sides AB and AC (extended from B and C) at X
and Y , respectively. Let S and T be points on segments IaB and IaC,
respectively, such that ÂXIa = B̂T Ia and ÂY Ia = ĈSIa. Suppose that
lines BT and CS intersect at K, and lines KIa and TS intersect at Z.
Prove that X,Y, Z are collinear.

(→ p.36)

4. (Mahyar Sefidgaran, Mohyeddin Motevasel) We arranged all the prime
numbers in the ascending order: p1 = 2 < p2 < p3 < · · · .
Also assume that n1 < n2 < · · · is a sequence of positive integers that
for all i = 1, 2, 3, . . . the equation

xni
pi≡ 2,
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Has a solution for x. Is there always a number x that satisfies all the
equations?

(→ p.37)

5. (Iman Maghsoudi) In triangle ABC, arbitrary points P,Q lie on side
BC such that BP = CQ and P lies between B,Q. The circumcircle
of triangle APQ intersects sides AB and AC at E and F , respectively.
The point T is the intersection point of EP and FQ. Two lines passing
through the midpoint of BC and parallel to AB and AC, intersect EP
and FQ at points X and Y , respectively. Prove that the circumcircles
of triangles TXY and APQ are tangent to each other.

(→ p.38)

6. (Morteza Saghafian) In the unit squares of a transparent 1 × 100
tape, numbers 1, 2, . . . , 100 are written in the ascending order. We fold
this tape on its lines with arbitrary order and arbitrary directions until
we reach a 1 × 1 tape with 100 layers. A permutation of the numbers
1, 2, . . . , 100 can be seen on the tape, from the top to the bottom. Prove
that the number of possible permutations is between 2100 and 4100. (e.g.
We can produce all permutations of numbers 1, 2, 3 with a 1× 3 tape)

(→ p.41)

7. (Kasra Ahmadi) ABCD is a trapezoid with AB ‖ CD. Supposet that
the diagonals intersect at P . Let ω1 be a circle passing through B and
tangent to AC at A. Let ω2 be a circle passing through C and tangent
to BD at D. ω3 is the circumcircle of triangle BPC. Prove that the
common chord of circles ω1, ω3 and the common chord of circles ω2, ω3

intersect each other on AD.
(→ p.43)

8. (Morteza Saghafian) Find the largest natural number n for which
there exist n positive integers such that non of them divides another
one, but in any triplet of these numbers, one divides the sum of the
other two.

(→ p.44)

9. (Amin Bahjati) There are 27 cards, each has some amount of (1 or
2 or 3) shapes (a circle, a square or a triangle) with some color (white,
grey or black) on them. We call a triple of cards a match such that all
of them have the same amount of shapes or mutually distinct amount of
shapes, have the same shape or mutually distinct shapes and have the
same color or mutually distinct colors. For instance, three cards shown
in the figure are a match because they have distinct amount of shapes,
distinct shapes but the same color of shapes.
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What is the maximum number of cards that we can choose such that
non of the triples make a match?

(→ p.46)

10. (Alireza Shavali) A (n+ 1)-tuple (h1, h2, . . . , hn+1) where for every
1 ≤ i ≤ n + 1, hi (x1, x2, . . . , xn) is a n variable polynomial with real
coefficients is called good if the following condition holds.
For any n functions f1, f2, . . . , fn : R → R if for all 1 ≤ i ≤ n + 1,
Pi(x) = hi (f1(x), f2(x), . . . , fn(x)) is a polynomial with variable x, then
f1(x), f2(x), . . . , fn(x) are polynomials.
a) Prove that for all positive integers n, there exists a good (n+1)-tuple
(h1, h2, . . . , hn+1) such that the degree of each hi is more than one.
b) Prove that there does not exist any integer n > 1 that for which there
is a good (n+ 1)-tuple (h1, h2, . . . , hn+1) such that all hi are symmetric
polynomials.

(→ p.49)

11. (Aryan Tajmir) k, n are two arbitrary positive integers. Prove that
there exists at least (k − 1)(n − k + 1) positive integers that can be
produced by n number of k’s and using only +,−,×,÷ operations and
adding parentheses between them, but cannot be produced using n− 1
number of k’s.

(→ p.51)

12. (Amirhossein Pooya) Let k > 1 be an integer. The sequence {ai}∞i=1

is defined as a1 = 1, a2 = k, and for all n > 1 we have

an+1 − (k + 1)an + an−1 = 0.

Find all positive integers n such that an is a power of k.
(→ p.52)

13. (Navid Safaei) Let n > 1 be an integer. Prove that there exists an
integer n − 1 ≥ m ≥

⌊
n
2

⌋
such that the following equation has integer

solutions with am > 0

am
m+ 1

+
am+1

m+ 2
+ · · ·+ an−1

n
=

1

lcm (1, 2, . . . , n)
.

(→ p.54)
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14. (Ali Zamani) Suppose that P is a point in the interior of quadrilat-
eral ABCD such that

B̂PC = 2B̂AC, P̂CA = P̂AD, P̂DA = P̂AC.

Prove that
P̂BD =

∣∣∣P̂CA− B̂CA∣∣∣ .
(→ p.56)

15. (Mojtaba Zare, Ali Daei Nabi) Find all functions f : R+×R+ → R+

that satisfy the following conditions for all positive real numbers x, y, z

f (f(x, y), z) = x2y2f(x, z),

f (x, 1 + f(x, y)) ≥ x2 + xyf(x, x).

(→ p.57)

16. (Morteza Saghafian) There are 6 points on the plane such that no
three of them are collinear. We know that among every 4 points of them,
there exists a point that its power with respect to the circle passing
through the other three points is a constant value k (power of a point in
the interior of a circle has a negative value). Prove that k = 0 and all 6
points lie on a circle.

(→ p.59)

17. (Navid Safaei) Let {ci}∞i=0 be a sequence of non-negative real num-
bers with c2017 > 0. A sequence of polynomials if defined as

P−1(x) = 0, P0(x) = 1,

Pn+1(x) = xPn(x) + cnPn−1(x). n ≥ 0

Prove that there does not exist any integer n > 2017 and some real
number c such that

P2n(x) = Pn(x2 + c).

(→ p.60)

18. (Iman Maghsoudi) In triangle ABC denote by O and H be the
circumcenter and the orthocenter. The point P is the reflection of A
with respect to OH. Assume that P is not on the same side of BC as
A. Points E and F lie on sides AB and AC, respectively, such that
BE = PC and CF = PB. Let K be the intersection point of AP and
OH. Prove that ÊKF = 90◦.

(→ p.61)
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Solutions



Second Round

1. First solution. Just to simplify the calculations, define S = a + c
and P = ac. In this case, the RHS of the inequality becomes

RHS =
a+ b+ c

3
− 3

1
a + 1

b + 1
c

=
S + b

3
− 3Pb

Sb+ P
.

The goal is to minimize the above phrase as a function of b; Note that the
phrase, as a function of b, has a linear term which is S+b

3 , and a fractional
term with the denominator Sb + P . Now we re-write the phrase using
the new variable t = Sb+ P and with a little calculation we shall have

RHS =
S + b

3
− 3Pb

Sb+ P
=
S2 − 10P

3S
+

t

3S
+
P 2

St
.

Note that the multiply of the last two terms is a phrase without the
variable t. Therefore with using the AM-GM inequality we obtain

RHS ≥ S2 − 10P

3S
+ 2

√
P 2

S2
=
S2 − 4P

3S
=

(c− a)2

3(c+ a)
≥ (c− a)2

6c
. �

Second solution. For the easement of calculations, for any arbitrary
formula F (a, b, c) with three variables a, b and c, the cyclic sum

F (a, b, c) + F (b, c, a) + F (c, a, b),

is shown with
∑
F (a, b, c). Using this notation, we expand the RHS of

the inequality∑
a

3
− 3∑

1
a

=

∑
a

3
− 3abc∑

ab
=

(
∑
a)(
∑
ab)− 9abc

3
∑
ab

=

∑
(a2b+ ab2)− 6abc

3
∑
ab

=

∑
a(b− c)2

3
∑
ab

.

Therefore, the claim of the problem is equivalent to the following in-
equality ∑

a(b− c)2 ≥
(∑

ab

2c

)
(c− a)2. (1)
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But note that with condition a ≤ b ≤ c, ab2c is not greater than b
2 so for

the RHS of the above inequality we have(∑
ab

2c

)
(c− a)2 =

(
ab

2c
+
a+ b

2

)
(c− a)2 ≤

(a
2

+ b
)

(c− a)2. (2)

For the LHS of (1), we have∑
a(b− c)2 ≥ b(c− a)2 + a

(
(c− b)2 + (b− a)2

)
. (3)

Note that for any two numbers X,Y ,

(X − Y )2 ≥ 0 =⇒ X2 + Y 2 − 2XY ≥ 0 =⇒ 2(x2 + Y 2) ≥ (X + Y )2

=⇒ X2 + Y 2 ≥ (X + Y )2

2
.

Therefore, if X = c− b, Y = b− a using (3), we obtain∑
a(b− c)2 ≥ b(c−a)2 +a

(
(c− b)2 + (b− a)2

)
≥ b(c−a)2 +

a

2
(c−a)2.

This inequality along with (2) implies (1) which is equivalent to the claim
of the problem. �

2. Considering the power of point E with respect to circles ω1, ω2 we
have

EC · EB = EA2

EC · EB = EK2

}
=⇒ EA = EK.
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Now we claim that the angle bisectors of angles B̂AC and B̂KC intersect
each other on side BC. For this purpose, it suffices to show that

KB

KC
=
AB

AC
.

Triangles ECK and EKB are similar therefore KB
KC = EB

EK . Triangles
EAC and EBA are also similar therefore AB

AC = EB
EA .

And since EK = EA we obtain KB
KC = AB

AC . Let D be the intersection
point of these angle bisectors with BC, points F andM are the midpoint
of arc BC in the two circles. Therefore K ,D and F are collinear and
A, D and M are also collinear. Now, consider the power of D in both
circles

BD ·DC = AD ·DM
BD ·DC = FD ·DK

}
=⇒ AD ·DM = FD ·DK,

Hence AFMK is cyclic. �

3. We number the members with 1, 2, . . . , 6. Consider the following de-
cision method:

If person number 1 to the third person have the same vote, their vote
is considered as the final result and in other case, the result is based on
the majority of the votes between forth to the sixth persons.

This method clearly satisfies both Ascension and Symmetry con-
ditions, so it is an Acceptable way to decide. We claim that this
method is impossible to be represented as a Weighted Voting.

Assume the contrary, and let (ω1, . . . , ω6) be a weighting for this
method (Means the weight of the first person is ω1, the second one is
ω2 and so on the person i is ωi). Note that the first to the third person
have the same role on this method, also the next three persons have the
same role. Therefore with this method,

(ω2, ω3, ω1, ω5, ω6, ω4)

and also
(ω3, ω1, ω2, ω6, ω4, ω5)

are other ways to represent the method as a Weighted Voting. It’s
easy to see that if some weightings lead to decide the same result, the
sum of these weightings also lead to that result. So the sum of the three
weightings we discussed is also a weighting for the presented method.
Which means if we set a = ω1+ω2+ω3 and b = ω4+ω5+ω6, (a, a, a, b, b, b)
is a weighting for the method.

Now first consider a case when first three persons have agreeing votes,
and the last three persons have disagreeing votes. Since the result is set

20



to be positive, by the given weighting we must have 3a > 3b. Consider
another case where two of the first three and one of the last three per-
sons have agreeing votes and others have disagreeing votes. In this case
the result is set to be negative, but the weight sum of the agreeing votes
and disagreeing votes are 2a + b and 2b + a, respectively, therefore we
must have 2b + a > 2a + b which implies b > a. This inequality is in
contradiction with the last one, therefore our contrary assumption leads
to contradiction. So the given example is not a Weighted Voting. �

Comment. There are other methods that can also be presented, here
is two of them:

• If some decision (agree or disagree) has more than three votes, it
will be the final result and in case of equality between the votes,
the decision that an odd number of first to third persons have made
is the result.

• Assume that the first five persons are sitting around a circular
table. In this case if three adjacent persons have the same vote,
that vote will be the result and in other case, the vote of the sixth
person will be the result.

4. Consider a graph G with vertices of the intersection points in the
statement of the problem and with edges of the segments made on these
lines (means segments that have their terminal points chosen between
the intersection points, and have no other intersection points on them).
Any two of these n lines have exactly one intersection point, therefore G
is a graph with n(n−1)

2 vertices. On the other hand, any line has n − 1
intersection points on itself, hence the segments between these points
give n− 2 edges of G. So there are a total of n(n− 2) edges in G.

Since there are at least three lines, any vertex of G has degree 2,
3 or 4, let the number of vertices with each of degree be a, b and c,
respectively. Vertices with the highest degree are the interior points.
Note that having the number of vertices of G and the fact that the sum
of the degrees is twice as the number of the edges, we obtain

a+ b+ c =
n(n− 1)

2
, 2a+ 3b+ 4c = 2n(n− 2).

If we subtract triple of the first equation from the second one we get

c− a =
n2 − 5n

2
=⇒ c = (a− 3) +

(n− 2)(n− 3)

2
.

So the problem is equivalent to prove that there are at least 3 vertices
with degree 2. To prove this, consider the convex hull of these points.
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Let it be a k-gon with k ≥ 3, it is easy to see that all vertices of the
convex hull are of degree 2. Because if l is one of the two lines passing
through P , a vertex of the convex hull, all the intersection points on
it, lie inside of the k-gon and therefore, on the same side of P . So P
has only one adjacent on this line and considering the other line passing
through P , we conclude that P has the degree of 2 in the graph.

Therefore a ≥ k ≥ 3 and the proof is complete. �

5. First solution. Vertex A lies on the angle bisector of Ĉ and has
equal distances to the lines CB and CD. So there exists a circle with
center A that is tangent to CB and CD.

Let S be the intersection of second tangent lines through points B
and D to this circle.

B̂SD = B̂CD + ĈBS + ĈDS = 2α+ 180◦ − 2β + 180◦ − 2θ
= 2(180◦ + α− β − θ),

=⇒ B̂SA = D̂SA = 180◦ + α− β − θ,

=⇒

{
ÂBC − ÂSD = (180◦ − β)− (180◦ + α− β − θ) = θ − α = D̂AC,

ÂDC − ÂSB = (180◦ − β)− (180◦ + α− β − θ) = β − α = B̂AC,
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=⇒

{
ÂSD = ÂTD,

ÂSB = ÂTB.
(1)

Note that

B̂AS = 180◦−ÂBS−ÂSB = 180◦−β−(180◦+α−β−θ) = θ−α = D̂AC.

So it suffices to show that S = T . If S and T are not coincident, then
using (1), quadrilaterals ABST and ADST are cyclic, therefore BADS
is also cyclic and

β + θ = 180◦ =⇒ B̂SA = D̂SA = 180◦ + α− β − θ = α,

=⇒ B̂SD = B̂SA+ D̂SA = 2α,

=⇒ B̂TD = B̂SD = 2α = B̂CD.

But according to the statement of the problem, T lies in the interior of
ABCD and B̂TD > B̂CD. Therefore S and T are coincident on each
other, hence the claim of the problem. �
Second solution.

B̂CA = D̂CA =⇒ ÂBC + B̂AC = ÂDC + D̂AC,

=⇒ ÂBC − D̂AC = ÂDC − B̂AC,
=⇒ ÂTD = ÂTB = α.

Point P lies on diagonal AC such that P̂BC = D̂AC, so we have

ÂBP = ÂBC − P̂BC = ÂBC − D̂AC = α,

4
BPC ∼

4
ADC =⇒ BC

AC
=
PC

DC
.
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Hence,

B̂CA = D̂CA
BC
PC = AD

DC

}
=⇒

4
DPC ∼

4
ABC,

=⇒ P̂DC = B̂AC,

=⇒ ÂDP = ÂDC − P̂DC = ÂDC − B̂AC = α.

Let X be the intersection point of DP and BT , we have

ÂDX = ÂTX = α =⇒ ADTX is cyclic.

ÂXD = ÂTD = ÂBP = α =⇒ ABPX is cyclic.

Therefore,

B̂AP = B̂XP = D̂XT = D̂AT =⇒ B̂AT = D̂AC.

�

6. First note that setting x = y in the first assumption implies f(x) is
divisible by x and therefore we can write f(x) = xg(x) where g(x) is
always an integer. Now set g(1) = a and g(2) = b. We are going to show
that for an odd and sufficiently large number x, g(x) is equal to a. To
prove this, we use the first assumption twice, for y = 1 and y = 2, and
an odd number x

x+ 1 | xg(x) + a
x+ 1 | (x+ 1)g(x)

}
=⇒ x+ 1 | g(x)− a,

x+ 2 | xg(x) + 2b
x+ 2 | (x+ 2)g(x)

}
=⇒ x+ 2 | 2(g(x)− b) =⇒ x+ 2 | g(x)− b.

(The last result is true because x + 2 is odd.) Therefore, according to
the fact that x+ 1 and x+ 2 are relatively prime, the remainder of g(x)
when divided by (x+ 1)(x+ 2) is uniquely found knowing the remainder
when divided by x + 1 and x + 2. The number a(x + 2) − b(x + 1) as
g(x) satisfies both the above relations. So we have

g(x) = a(x+2)−b(x+1)+c(x+1)(x+2) = cx2+(3c+a−b)x+(2c+2a−b).

Where c is an integer. According to the statement of the problem, for
sufficiently large x we have 0 < g(x) ≤ x2

2 , therefore c is a non-negative
number and is at most 1

2 , since it is an integer, c = 0 and we have

g(x) = (a− b)x+ (2a− b).

(For sufficiently large odd values of x.)
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Lemma. If X,Y are relatively prime, then X + Y | g(X)− g(Y ).

Proof. By the statement of the problem, Xg(X) +Y g(Y ) is divisible by
X+Y . Adding −(X+Y )g(Y ) to that number, implies X(g(X)− g(Y ))
is divisible by X + Y . But X and X + Y are relatively prime, therefore
X + Y | g(X)− g(Y ).

Now assume that x′ is an odd and sufficiently large number that is
relatively prime to x , in this case according to the lemma

x+ x′ | (a− b)(x− x′),

but since gcd(x+x′, x−x′) = 2 we obtain that x+x′

2 |(a−b). Now choose
x′ such that it is greater than 2 |a− b|, it implies a− b = 0 and therefore
for large odd numbers x we have g(x) = 2a − b = a and the claim is
proved.

Now let y be an arbitrary positive integer, if x is a sufficiently large
number, relatively prime with 2y, according to the lemma

x+ y | g(x)− g(y) = a− g(y).

Setting x such that it is greater than |a− g(y)|, implies g(y) = a and
hence f(y) = ay.

Finally, using the second assumption we get that the only solutions
are f(x) = ax where a is a positive integer not exceeding 13952

2 . �
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Third Round

1. Let P (x, y) be the assertion

f(x+ g(y))2 = f(x2) + y2

If g(f(t)) < t for some t > 0, then P (t− g(f(t)), f(t)) implies

f(t)2 = f
(
(t− g(t))2

)
+ f(t)2 =⇒ f

(
(t− g(t))2

)
= 0

which is impossible.
So g(f(x)) ≥ x, for all positive real numbers x. Hence the solution is

complete. �

2. Consider a graph G as follows, vertices of rectangles of the partition
are vertices of G, two vertices are connected if they are opposite corners
of a rectangle of the partition. Obviously, there are 2n edges in G where
n is the number of rectangles used in the partition.

Note that if some point is a vertex of 3 rectangles, it must be a vertex
of exactly 4 rectangles. By the statement of the problem, we conclude
that each vertex of G has degree equal to 1 or 2 and also, the only
points with degree 1 are A,B,C,D. Therefore, it is easy to see that
G can be partitioned into some cycles and some paths. Each cycle has
an even number of vertices, since any two adjacent vertices have the
opposite colors. Also, since the first and the last vertices of each path
are of degree 1, we conclude that there are exactly two paths in G, with
ending points of A,B,C,D. There are two possibilities.

• A and C are in the same path.
We know that the total number of edges is an even number (2n)
and each cycle also has an even number of edges, and since A and
C have the same color. the path containing A and C also has an
even number of edges. Therefore, the remaining path of the graph,
starts and ends with B and D and must have an even number of
edges. Since any two adjacent vertices have different colors, we
conclude that B and D are of the same color.
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• A and C are not in the same path.
Without loss of generality, assume that pairs A and D are in the
same path and therefore B and C are also in the same path. With
similar argument, we find out that either both paths have an odd
number of edges, or both have an even number of edges.
In the first case we conclude that the color of A is different with
D, and the color of C is different with B. Since A and C have the
same color, this implies that B and D have the same color.
Similarly in the second case we conclude that A,B,C,D all have
the same color.

So in each case, the claim of the problem is proved. �

3. We prove the problem using the following lemma, that is actually a
more general form of the problem.

Lemma. Let l be a fixed non-zero integer and P (x) = anx
n+ · · ·+a0 be

a polynomial with integer coefficients such that for all integers k, P (k)
is divisible by l. Then we have l | an · n! .

Proof. We use induction on n. For n = 0 the claim of the lemma is
obvious. Now we assume that the claim is true for n.

Let P (x) = an+1x
n+1 + · · ·+ a0 be a polynomial of degree n+ 1 such

that for all integers k, l | P (k). We define two polynomials R(x) and
S(x) as

P (x+ 1)− P (x) = R(x) = (n+ 1)an+1x
n + S(x),

then R is a polynomial of degree n and S has a degree less than n. Now
according to the lemma for n, since l | R(x) we obtain

l | ((n+ 1)an+1) · n! = an+1(n+ 1)! ,

so the lemma is proved.

Now applying the Lemma for l = pm and Q(x) = xd + · · · from the
problem, we get pm | d!. Let s be the smallest integer such that pm | s!,
we obtained d ≥ s. Now consider the following polynomial

Q(x) = (x− s)(x− (s− 1)) · · · (x− 1).

For any integer n, the number t = Q(n) is a multiply of s consecutive
integers and it is well-known that for such t, s! | t. Thus we have

pm | s! | Q(n).

Therefore the answer of the problem is the smallest number d such that
pm | d!. �
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4. Let Q′ be a point on side BC such that B̂AP = ĈAQ′ = α.

Note that X,Y also lie on the exterior angle bisector of P̂AQ′, that’s
because

P̂AX = Q̂′AY =
(

90◦ − Â
2

)
+ α .

Also PX,PY are exterior and interior angle bisector of vertex P in
triangle APQ′. Therefore X is the Q′-excenter, and Y is the P -excenter
of this triangle. So we get

X̂PY = X̂Q′Y = 90◦ =⇒ XPQ′Y is cyclic.

Since the intersection of C 4
XPQ

with BC (other than P ), is a unique point,

we get Q = Q′. Therefore B̂AP = ĈAQ′ = ĈAQ �

5. a) For any number A, let
←−
A be the reverse decimal expansion of A.

Assume that A = AnAn−1 · · ·A1 is a mirror-symmetry number with
m digits, all from {1, 2, 3}, and An, An−1, . . . , A1 are blocks of A with
number of digits mn, . . . ,m1 such that

A =
←−
An ×

←−−−
An−1 × · · · ×

←−
A1.

Note that for all 1 ≤ i ≤ n, we have

←−
Ai ≤ 333 · · · 33︸ ︷︷ ︸

mi

=
10mi − 1

3
.

On the other hand,

A ≥ 111 · · · 11︸ ︷︷ ︸
m

=
10m − 1

9
.
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Therefore we obtain

10m − 1

9
≤ 10mn − 1

3
× · · · × 10m1 − 1

3
.

If n ≥ 2 we have

3n−2(10m − 1) ≤ (10mn − 1)(10mn−1 − 1) · · · (10m1 − 1)

< 10mn × 10mn−1 × · · · × 10m2 × (10m1 − 1)

< 10mn+mn−1+···+m1 − 1 = 10m − 1.

Which is impossible. Therefore n = 1. So the only possible case is when
A =

←−
A , that means A is a Palindromic number (a number that re-

mains the same when its digits are reversed). Clearly, all Palindromic
numbers with digits of {1, 2, 3} satisfy the conditions.

b) This part is a test of effort! Note that if we could find a good
number m = A1A2 · · ·An where Ai’s are blocks of m such that

m

7
= A1 × · · · ×An,

then 10m is also a good number because

10m

7
= A1 × · · · ×An0.

Therefore m, 10m, 100m, . . . are all good numbers . So indeed, we just
need to find a single good number. Now if we start to check the mul-
tiplies of 7 one by one, we shall finally reach 7 × 45 = 315 that for
which

315

7
= 3× 15.

Therefore by putting m = 315, we can find infinitely many good num-
bers, {315, 3150, 31500, . . .}.

�

6. Let A1A2 · · ·An be an arbitrary n-gon and assume that G is the
graph corresponded to this n-gon. First, a lemma is proved. Note that
throughout the solution, indices are considered modulo n.
(i.e. An+1 = A1, Vn+1 = V1,... .) We start with some lemmas.

Lemma. There is no isolated vertex in G, i.e. every vertex Vi of G is
connected to at least one other vertex.
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Proof. Since the polygon is convex, there exist a line l passing through
Ai such that the whole polygon (except point Ai) is placed in one side of
l. We can choose l such that it is not parallel to any side of the polygon.
Now let Aj be the farthest vertex of the polygon from the line l. Let l′
be the parallel line to l, passing through Aj . Since l was not parallel to
any side of our polygon, there are no other vertex of the polygon on l′.
So the pair (l, l′) satisfies the desired property and so Vi is connected to
Vj .

Lemma. If ViVj is an edge of the graph, then exactly one of ViVj+1 or
Vi+1Vj is an edge in G. Similarly, exactly one of Vi−1Vj and ViVj−1 is
an edge in G.

Proof. Since ViVj is an edge of the graph, there are two parallel lines l1
and l2, passing through Ai and Aj such that the whole polygon is placed
between l1 and l2.
Define αi+1 = ] (Ai+1Ai, l1) and αj+1 = ] (Aj+1Aj , l2). Note that
αi+1 6= αj+1, because otherwise we must have

AiAi+1 ‖ AjAj+1,

Which is impossible because of the statement of the problem.

We claim that if αi+1 > αj+1, then ViVj+1 is an edge of the graph (and
vice versa). That is because there exist two parallel lines l and l′, such
that the strip bounded by l and l′ contains the polygon; Consider a line
l intersecting the n-gon only at Aj+1 such that

] (l, AjAj+1) < αi+1 − αj+1 .

And l′ is a parallel line to l, passing through Ai. Also, any line l such
that the polygon is placed between l and a parallel line to l through Ai,
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satisfies the given inequalities.
Similarly, in other case we have αj+1 > αi+1 if and only if Vi+1Vj is an
edge of the graph.
So the lemma is proved.

Now it is deduced, from the lemma, that if ViVj is an edge of the
graph, then at least one of the deg(Vi) ≥ 2 or deg(Vj) ≥ 2 inequalities
hold.
Another lemma is needed to continue the solution.

Lemma. Suppose that Vi is adjacent to two other vertices Vj and Vk in
G such that Aj lies between Ai and Ak on the perimeter of the polygon,
when we move from Ai to Ak clockwise. Then Vi is also connected to
Vh, for any h such that Ah lies between Aj and Ak in clockwise order (if
such h exists). Also deg(Vh) = 1.

Proof. To prove the lemma, we claim that if ViVj and ViVk are two edges
in graph and AjAk is not a side of the polygon, then there exists some
h (where Ah is between Aj and Ak) such that ViVh is also an edge in G.
If there are a total of s points on the perimeter of polygon, between Aj
and Ak, then applying this claim for s times will lead to the conclusion
of the first part of the lemma.
Since ViVj and ViVk are edges of the graph, there are lines l1 and l2
passing through Aj and Ak, respectively, and lines l′1 and l′2 passing
through Ai such that l1 ‖ l′1, l2 ‖ l′2 and two pairs (l1, l

′
1) and (l2, l

′
2) have

the desired property. Hence, the polygon lies inside of the parallelogram
bounded by these four lines.

Consider a line l passing through Ai such that the difference between
the line scopes of l and AiAj is sufficiently small and moreover l is not
parallel to any side of the polygon; Hence, the whole polygon is on one
side of l. Between the points on the perimeter of the polygon, when we
move from Aj to Ak clockwise, consider the point Ah with the farthest

31



distance to l. Let l′ be a line through Ah and parallel to l, hence similar
to the first lemma, the pair (l, l′) has the desired property, therefore ViVh
is an edge of the graph. So the first part of the lemma is proved. Hence,
Vi is connected to a consecutive set of vertices {Vj , Vj+1, . . . , Vk−1, Vk}.

Since both ViVh−1 and ViVh are edges of the graph, according to the
first lemma, Vi−1Vh cannot be an edge. Also since both ViVh+1 and ViVh
are edges of the graph, then Vi+1Vh cannot be an edge of the graph. Now
if Vh is connected to any other vertex, according to the previous part
of this lemma, it should be connected to one of Vi−1 or Vi+1, which is
impossible. So deg(Vh) = 1. Therefore the lemma is proved.

So G is a graph where (according to the third lemma,) any vertex Vi
is connected to a consecutive set of vertices {Vj , Vj+1, . . . , Vj+k} with
k ≥ 0. Note that since ViVj−1 is not an edge of the graph, accord-
ing to the second lemma we conclude that Vi−1Vj is an edge, therefore
deg(Vj) > 1, similarly Vi+1Vj+k is an edge, hence deg(Vj+k) > 1. So
the lemma says that the neighbours of a fixed vertex, are consecutive
vertices in the polygon, also, only the first and the last vertex of the list
have a degree more than 1, and the others are of degree 1.

In summary we have

(1) Referring to the first lemma, for every vertex Vi of G, deg(Vi) ≥ 1.

(2) If deg(Vi) = 1, for some i, then according to the second lemma,
the only neighbour of Vi has degree more than 1.

(3) If deg(Vi) ≥ 2, for some i, then Vi is connected to exactly two other
vertices of degree at least two, say Vj and Vk (i 6= {j, j+1, . . . , k}),
such that all vertices of the form Vj+r for 1 ≤ r ≤ k − j − 1, have
degree one and they are connected only to Vi.

Now just focus on vertices of G that have a degree of at least 2,
and set H to be the induced sub-graph of G on these vertices. As-
sume that w1 = Vi1 , w2 = Vi2 , . . . , wm = Vim are all vertices of H,
where 1 ≤ i1 ≤ · · · ≤ im ≤ n. (Indices of wi’s are considered mod-
ulo m.) Note that if wl−1wkwlwk−1 is a path is H, then by the third
lemma, Vil−1VikVilVik−1 is a path in G, which is impossible by the sec-
ond lemma. So the second lemma is also true for H, means

If wiwj is an edge of H, then exactly one of the
wi+1wj or wiwj+1 is also an edge of H. Similarly
exactly one of wi−1wj and wiwj−1 is an edge of H.

(∗)

Now assume that w1 is connected to wa, wa+1 (in H). By (∗), wa+1

cannot be connected to wm, so its second neighbour is w2. Similarly
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the second neighbour of w2 cannot be wa and so w2 is connected to
wa+2. Repeating these arguments implies that for any 1 ≤ t ≤ m, the
neighbours of wt are {wt+a−1, wt+a}.
Now, on one hand w1 and wm are both connected to wa and on the
other hand, neighbours of wa are w2a−1 and w2a. Hence w2a = w1 and
therefore m | 2a − 1, but since 1 < a < m, 2a − 1 < 2m − 1, we must
have 2a− 1 = m ≥ 3.
So we have found the figuration of H. Any subset of {1, 2, . . . , n} with
odd number of members (and at least 3), is corresponded with a graph
G as following.

Assume that S = {i1, i2, . . . , im} is a subset such that m is an odd
number and i1 < i2 < · · · < im. A graph H with m vertices is cor-
responded with S such that vertex Vik is connected to Vi

k+m−1
2

and

Vi
k+m+1

2

, whatever 1 ≤ k ≤ m is (indices are considered modulo m).
Also, the graph G with n vertices is uniquely found by H, for all
1 ≤ k ≤ m, vertex Vik is connected to all vertices between Vi

k+m−1
2

and

Vi
k+m+1

2

(when we move clockwise). Any other vertex Vj among these

is a vertex of degree 1, and its only neighbour is Vik).
The following figure for example, is what G looks like when m = 7.

Also, for such graph G, we can correspond a n-gon as following.
First, consider a regular m-gon Ai1Ai2 . . . Aim such that vertices are

labelled clockwise (The graph corresponded to regularm-gon isH itself).
Set a = m+1

2 . Now, for all 1 ≤ k ≤ m, put deg(Vik) more points on the
circle with center Aik and radius AikAik+a−1

= AikAik+a
on the smaller

arc Aik+a−1
Aik+a

in this circle. Finally, label these points clockwise
by ik+a−1 + 1, . . . , ik+a − 1 (modulo n). Since VikVik+a−1

and VikVik+a

are edges of G, according to the third lemma, there exist two parallel
lines passing trough Aik and every point in Aik+a−1

, . . . , Aik+a
satisfying
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desired properties . So indeed, this figuration is corresponded with the
desired graph G.

Therefore, the answer of the problem is the number of subsets of
{1, 2, . . . , n} with odd amount of members, an at least three members;
Which is equal to 2n−1 − n. �
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Team Selection Test

1. According to Cauchy-Schwarz inequality

( (a+ c)2

ad+ bc
+

(b+ d)2

ac+ bd
+ 4
)(

(ad+ bc) + (ac+ bd) + 1
)

≥ (a+ c+ b+ d+ 2)
2

= 16

=⇒ (a+ c)2

ad+ bc
+

(b+ d)2

ac+ bd
+ 4 ≥ 16

ad+ bc+ ac+ bd+ 1
.

Set a+ b = x , c+ d = y (therefore x+ y = 2 , x2 + y2 = 4− 2xy).
It suffices to show that

16

ad+ bc+ ac+ bd+ 1
=

16

xy + 1
≥ 4

(
x+ 1

y + 1
+
y + 1

x+ 1

)
.

This is equivalent to

4(x+ 1)(y + 1) ≥ (xy + 1)
(
(x+ 1)2 + (y + 1)2

)
⇐⇒ 4(xy + 3) ≥ (xy + 1)(10− 2xy)
⇐⇒ 4xy + 12 ≥ 8xy − 2(xy)2 + 10
⇐⇒ (xy)2 + 1 ≥ 2xy
⇐⇒ (xy − 1)2 ≥ 0.

Which is true, hence the claim of the problem. �

2. The answer of the problem is yes.

Although the statement is discussed on 13 students, here is an example
for 14 students, all having a chance of being a team member.
(students are labelled by 1, 2, . . . , 14.)
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Note that the fifth person in each test can become a team member, only
if all the other four persons above already have been chosen as a team
member. Therefore, to prove that the example works, it suffices to show
that the fifth person in each test can become a team member. For each
of the students 9, 10, 11, 12, 13, 14, consider these permutations of tests

Student 9 :

Permutation of Tests︷ ︸︸ ︷
5→ 6→ 2→ 4→ 3→ 1 =⇒

Team Members︷ ︸︸ ︷
{1, 2, 3, 4, 6, 9},

Student 10 : 3→ 4→ 1→ 6→ 5→ 2 =⇒ {1, 2, 3, 5, 7, 10},
Student 11 : 5→ 6→ 2→ 4→ 1→ 3 =⇒ {1, 2, 3, 4, 6, 11},
Student 12 : 1→ 2→ 3→ 5→ 6→ 4 =⇒ {1, 2, 4, 5, 8, 12},
Student 13 : 3→ 4→ 1→ 6→ 2→ 5 =⇒ {1, 2, 3, 5, 7, 13},
Student 14 : 1→ 2→ 3→ 5→ 4→ 6 =⇒ {1, 2, 4, 5, 8, 14}.

�

3. Let M be the reflection of X with respect to IaB.
Clearly,M is a point on BC, since IaB is angle bisector of both angles

X̂BM and X̂BC. Note that

ÎaMC = 180◦ − ÎaMB = 180◦ − ÎaXA = ĈY Ia.

And since ÎaCM = ÎaCY , we get
4

CY Ia ≡
4

CMIa. Therefore M is also
the reflection of Y over IaC. For quadrilateral KSIaT we have

K̂SIa + K̂TIa = ÂY Ia + ÂXIa = 180◦.

Therefore, KSIaT is cyclic. Now since B̂MIa = B̂XIa = B̂T Ia, we get
BMTIa and similarly, CMSIa are cyclic. This means M is the Miquel
point of the complete quadrilateral KSIaT .
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Let ω1 and ω2 be the circumcircles of triangles CSIa and BTIa, respec-
tively. The point M has the same Simson line with respect to each of
these two triangles, and since X and Y are the reflections of M in IaB
and IaC, respectively, line XY is homothetic with the Simson line ofM ,
with center M and radius 2. So the problem is to prove that the Simson
line ofM with respect to ω1 and ω2 passes through the midpoint ofMZ.

It is well-known that the Simson line of any point P lying on the
circumcircle of some triangle QRU , passes through the midpoint of PH
where H is the orthocenter of QRU . So according to this fact, the
Simson line of M passes through the midpoint of MH1 and MH2 where
H1 and H2 are orthocenters of triangles BTIa and CSIa, respectively.
Now, it is sufficient to show that Z lies on H1H2. Consider two circles
Γ and Ω with diameters ST and KIa, respectively. Let T ′ be the foot
of the perpendicular line from T to BIa. We know that T ′ ∈ Γ. Also
let I ′a be the foot of the perpendicular line from Ia to BT . Similarly
I ′a ∈ Ω. Note that Z is a point on the radical axis of Γ and Ω, and since
IaI
′
a ∩ TT ′ = H1, we get PΓ(H1) = H1T ·H1T

′ = HIa ·HI ′a = PΩ(H1),
where Pλ(Q) is the power of point Q with respect to circle λ. therefore
H1 and similarly H2 lie on the radical axis of Γ and Ω. So the line
passing through Z, H1 and H2, is the radical axis of Γ and Ω and hence
the claim of the problem. �

4. Consider a sequence n1 < n2 < · · · of integers such that

∀i 6= 3 : ni = pi + ϕ(pi) = 2pi − 1, n3 = 7.

For all i 6= 3, xi = 2 and for i = 3, xi = 3 are solutions for

xni
i

pi≡ 2.
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Now assume that there exists a number x that satisfies all the equations.
Note that 2n3 6≡ 2 (mod p3), therefore x 6= 2. Let pk be a prime divisor
of x− 1, we have

xnk
pk≡ 1

pk≡ 2,

which is clearly impossible, this contradiction shows us that the answer
of the problem is no. �

5. Let M be the midpoint of BC. Since BP = CQ, it is clear that
MP = MQ and BQ = CP . Let Z be the second intersection point of
circumcircles of triangles MPX and MQY . We claim that the circum-
circles of triangles APQ and XY T are tangent to each other at Z.

We have 

P̂ZQ = P̂ZM + Q̂ZM,

C 4
MQY

: Q̂ZM = M̂Y Q = Q̂FC,

C 4
APQ

: Q̂FC = ÂPQ,

C 4
MPX

: P̂ZM = M̂XP = P̂EB,

C 4
APQ

: P̂EB = ÂQP ,
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And so P̂ZQ = ÂPQ + ÂQP = 180◦ − P̂AQ. Which means Z lies
on the circumcircle of triangle APQ. AlsoC 4

MQY
: M̂ZY = 180◦ − M̂QT ,

C 4
MPX

: M̂ZX = 180◦ − M̂PT .

These imply

X̂ZY = 360◦ − (M̂ZY + M̂ZX) = M̂QT + M̂PT = 180◦ − P̂ TQ.

Which means Z also lies on the circumcircle of triangle XY T . We use
a lemma to prove the problem.

Lemma. Given two circles Ω and Γ with a common point X and a line
intersecting Ω at Y and P , and intersecting Γ at Q and Z (P and Q lie
between Y and Z). In this case, these circles are tangent to each other
at X if

P̂XQ = X̂Y Z + X̂ZY .

Proof. Let l be the tangent line to Ω through X, therefore P̂Xl = X̂Y P
(with a fixed direction on l, and angles are considered with respect to
this direction). l is also tangent to Γ, if and only if X̂ZQ = Q̂Xl.
But P̂Xl = P̂XQ− Q̂Xl. Therefore

X̂ZQ = P̂XQ− X̂Y Z = P̂XQ− P̂Xl = Q̂Xl.
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Now back to the problem, according to the lemma (for two circles
C 4
MQY

, C 4
APQ

), it suffices to show that

Q̂ZY = ẐFT + ẐTF .

We have 

Q̂ZY = Q̂MY = Ĉ,

C 4
TXY

: ẐTF = ẐXY ,

C 4
APQ

: T̂FZ = Q̂PZ,

C 4
MPX

: Q̂PZ = M̂XZ.

Note that X̂MY = Â and the problem is equivalent to prove that

Ĉ = M̂XZ + ẐXY = M̂XY ⇐⇒
4

MXY ∼
4

ACB,

⇐⇒ MY

MX
=
AB

AC
.

We also have:

MY ‖ AC =⇒ MY
FC = MQ

QC

MX ‖ AB =⇒ MX
EB = MP

PB
MP = MQ , BP = CQ

 =⇒ MY

MX
=
FC

EB
.

So the problem is equivalent to show that FC
EB = AB

AC , or equivalently
FC ·AC = EB ·AB. In order to prove this, we have

CF · CA = PC4
APQ

(C) = CQ · CP = BP ·BQ = PC4
APQ

(B) = BE ·BA,
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(Where Pλ(S) is the power of point S with respect to circle λ.) Hence
the claim. �

6. To prove that at least 2100 permutations of numbers can be reached,
we use induction. We can see that for n = 4, there are exactly 24 possible
permutations of a 1 × 4 tape, and for n = 5, this number is something
greater than 25. Therefore, assume that the claim of the problem is
true for n = k, that there are more than 2k possible permutations. For
n = k+1, consider a possible permutation of numbers 1, 2, . . . , n−1. We
can first fold number n above or below n−1, and then repeat the process
of folding to get that permutation for n−1. Means, each permutation of
n− 1 layers can lead to at least two permutations of n layers. Therefore
if Pn is the total number of possible permutations of a 1 × n tape, we
obtain Pn ≥ 2Pn−1. Therefore

P100 ≥ 2P99 ≥ 4P98 ≥ · · · ≥ 295P5 > 2100,

Hence, the first claim of the problem is proved.
Now for the second part, consider a graph on a convex 100-gon, with

labelled vertices A1, A2, . . . , A100. Assume that after folding the tape,
there is a permutation of {1, 2, . . . , 100} such that the place of number i
is equal to ai. Then on the graph, draw the directed path

Aa1 → Aa2 → · · · → Aa100 ,

with edges alternatively colored blue, red, blue, red,... Then, the permu-
tation a1a2 . . . a100 can be seen on the perimeter of the polygon, starting
from A1.
For example, the permutation 1, 4, 3, 2, 5, 6 of six numbers is corresponded
with the following graph. (This permutation is a valid one, and is reach-
able by folding a 1× 6 tape.)
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There are no two edges with the same color that intersect each other,
because every blue edge corresponds to a piece of tape connecting an odd
number like 2k − 1 in the tape to 2k and every red edge corresponds to
a piece of tape connecting an even number in the tape like 2k to 2k+ 1.
The following figure shows the folded tape corresponded to the graph
above.

Since all possible permutations are uniquely corresponded with a path
on the polygon, we just need to show that the total number of valid paths
is less than 4100.

Note that there are a total of 50 blue edges, pairing all the 100 vertices,
and there are a total of 49 red edges, other than the first and the last
vertex in the path, pairing the other 98 vertices. Set Cn to be the possible
ways to draw n edges in a convex polygon with 2n vertices, such that
each vertex is connected to exactly one edge, and no two edges intersect
each other. We can obtain a recurrence relation for Cn; Fix a vertex V
in the graph, assume that U is the vertex that is connected to V . Since
we are dealing with a convex polygon, the edge UV bisects the graph
into two sets of vertices. There must be no edge between the two sets,
otherwise UV will intersect that edge. Therefore, each vertex must be
connected to another vertex on its own side. So the first conclusion is
that each side has an even number of vertices, assume that there are 2i
vertices on one side and (2n− 2)− 2i other points on the other side.
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There are Ci ways to connect the points on the first side, and C(n−1)−i
ways to connect the points on the other side. Also in case when i = 0,
we just need to connect the remaining 2n − 2 points in Cn−1 ways.
Therefore, if we set C0 = 1, we obtain the following recurrence relation.

C0 = 1, Cn =

n−1∑
i=0

CiCn−1−i.

These numbers are known for Catalan Numbers, and their exact value
in terms of binomial coefficients is

Cn =

(
2n
n

)
n+ 1

.

So there are a total of C50 ways to just draw the blue edges. Also, we
need to set the initial and the final vertices of the path (in 100×99 ways)
and then pair the remaining 98 vertices in C49 ways. So the following
inequality is obtained.

P100 ≤ 100× 99 · C49 · C50 = 100× 99 ·
(

98
49

)
50
·
(

100
50

)
51

Note that
(

2n
n

)
<
∑2n
i=0

(
2n
i

)
= (1 + 1)2n = 4n.

So we can finally get

P100 ≤
100

51
× 99

50
·
(

98

49

)
·
(

100

50

)
< 2× 2× 449 × 450 = 4100.

Therefore 2100 < P100 < 4100. �

7. Let Q be the second intersection point of AD with ω1, and let R be
the second intersection point of ω2 and ω3.
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We have

D̂RB = 180◦ − (B̂DR+ D̂BR)

ω2 : B̂DR = R̂CD = θ

ω3 : D̂BR = P̂CR = β

 =⇒ D̂RB = 180◦ − ÂCD. (?)

AB ‖ CD =⇒ ÂCD = B̂AC = α

ω1 : B̂AC = B̂QD = α

}
?

=⇒ D̂RB = 180◦ − D̂QB.

This implies that the quadrilateral DQBR is cyclic.
So D̂QR = D̂BR = β = ÂCR, which means AQCR is also cyclic. Let
CR meet AD at S. We have

Pω3
(S) = SR · SC = SA · SQ = Pω1

(S).

(Where Pλ(U) is the power of point U with respect to circle λ.) That
implies S lies on the common chord of ω1, ω3.

Therefore the common chord of ω1 and ω3, common chord of ω2 and
ω3, and the line AD are concurrent at S. �

Comment. By considering the power of points A,D with respect to
circles ω2, ω1, we can also prove that S is the midpoint of AD.

8. The answer is n = 6. First, we will give an example for n = 6 and then
we will prove that there are not 7 numbers with the desired property.

In our example, four numbers are 2, 3, 7, 17 and the fifth number x
is a number satisfying the following relations. Such x exists due to the
Chinese Remainder Theorem.

3 | 7 + x , 7 | 17 + x , 17 | 3 + x , 2 - x.

(For instance, x = 473.) Note that x is relatively prime with each of
the previous four numbers. Now consider a number y satisfying the fol-
lowing relations. Again, such y exists due to the Chinese Remainder
Theorem. 

3 | 17 + y =⇒ 3 | x+ y, (since 3 | 7 + x.)

7 | 3 + y =⇒ 7 | 17 + y,

17 | x+ y , x | 7 + y , 2 - y.

In this case y is also relatively prime with other numbers. So these 6
numbers satisfy the conditions.

Now assume that there is a set with (at least) 7 numbers satisfying
the condition, we can divide them to their greatest common divisor, thus
we can assume that at least one of the numbers is odd. Three following
claims prove the problem:
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• There are at most two even numbers in the set.

Assume that a, b, c are three even numbers in the set. Consider
an odd number k in the set, between k, a, b only k can divide the
sum of the other two. Therefore k | a + b and similarly k | b + c,
k | c + a. Since k is odd, we obtain k | a, k | b and k | c which is
impossible. So there are at most two even numbers in the set.

• There is at most five odd numbers in the set.

Assume that there exists six odd numbers a < b < c < d < e < f .
There are a total of 20 dividing relations between these numbers.
On the other hand, it is easy to see that the largest number , f ,
cannot divide the sum of any two odd numbers smaller than itself,
e can divide at most one sum and d can divide at most three sums.
Therefore, at least 16 of the dividings were made by a, b, c. So
one of them divides at least 6 sums. We denote this number by x.
Consider a graph with vertices of the other five odd numbers, two
vertices are connected if x divides the sum of these two numbers.
So this graph has five vertices and at least six edges. It is easy to
see that such graph has a vertex with degree of at least 3. Therefore
there exists odd numbers y, u, v and w, different from x, such that

x | y + w, x | y + u, x | y + v.

Without loss of generality, assume that w < v < u. So we have

x | v − w, x | u− v, x | u− w.

Since x is odd and it must not divide any of the other numbers, so
x cannot divide the sum of any pair among {u, v, w}. On the other
hand, x is not the largest number in any triplet, and the largest
odd number cannot divide the sum of the other two, therefore

w | x+ v, w | x+ u, v | x+ u.

So w | u−v that implies w - u+v, therefore v | w+u. This implies
that v | w − x. But because w and x are both less than u, this
result is impossible.

• Two even numbers and five odd numbers do not satisfy the condi-
tions.

Assume that two even numbers are a < b and five odd numbers
are c < d < e < f < g. Similar to the previous arguments we
conclude that all of these odd numbers must divide a+ b and since
they are odd numbers, they must divide a+b

2 . Which implies b is
the largest number of all.
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Now assume that b divides the sum of two of the odd numbers,
hence b must be equal to the sum of those two numbers. But in
this case, the larger number of two (and thus g itself) must be
greater than or equal to b

2 . So 2g ≥ b > a+b
2 . But g was a divisor

of a+b
2 , and so we must have g = a+b

2 which means all other odd
numbers are divisors of g, which is impossible.

So b cannot divide the sum of any two of the odd numbers. Now
consider all pairs of odd numbers along with b. We obtain 10
dividing relations and the divisor is one of the 5 odd numbers, in
other hand, g can only divide a single sum. So there is a number
that divides at least 3 sums, which similar to the previous cases,
leads that this number also divides the difference of any pair chosen
of 3 odd numbers, and the same contradiction is made.

So indeed, there is no set with at least 7 elements, hence the answer of
the problem is n = 6. �

9. We will prove that the answer of the problem is 9.
Each card can be corresponded with a point in Z3

3. A line in Z3
3 is

defined to be a subset of the form {P, P +V, P +2V } where P and V are
two elements in Z3

3, such that V 6= ~0 (in Z3
3). It is easy to see that three

elements of Z3
3 form a line, if and only if their sum (in Z3

3) is equal to
~0. For instance, in the following figure we can see three different lines.
In this new language, the problem is to find the maximum number of
points in Z3

3 such that no three of them are collinear.

The following lemma is the statement of the problem in Z2
3, and proof

that the answer is not greater than 4.
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Lemma. There are no 5 points in Z2
3 such that no three of them are

collinear (definition of line in Z2
3 is similar).

Proof. Assume to the contrary that S is a set in Z2
3 with more than 4

elements such that no three points of S are collinear. let P be one point
in Z2

3. There are exactly 4 lines (in Z2
3) passing through P . For example,

if P is a point in the corner, these are the lines containing P .

Since no three points of S are collinear, each line passing through P ∈ S
contains at most one other point in this set. So there are at most five
points in S (Note that for any point in Z2

3 like Q 6= P , there is a unique
line containing both P and Q).

Now assume that S has exactly 5 elements. Consider P ∈ S. Again,
since there are only four lines passing through P , and there are exactly
four other points in S, every line passing through P will contain another
point of S.
It means that every line in Z2

3, intersects S in exactly zero or two points.
So there are

(
5
2

)
= 10 lines in Z2

3 containing two points of S. On the
other hand, the total number of lines in Z2

3 is 12 (for each of 9 points
in Z2

3, there are 4 lines containing that point, and every line consists of
3 different points). Therefore there are two lines l1 and l2 in Z2

3 having
empty intersection with S. But the union of l1 and l2 contains at least
5 points. This contradicts |S| = 5.

Back to the problem. First we review some definitions and properties
for planes in Z3

3.
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• We call a subset P of Z3
3 a plane, if there exist a, b, c, d ∈ Z3 with

at least one of a, b and c is non-zero (in Z3) and such that

P = Pd(a, b, c) =
{

(x, y, z) : ax+ by + cz = d (mod 3)
}
.

It is easy to see that every plane consists of exactly 9 points and for
every three points A, B and C in Z3

3, either there exists a unique
plane passing through them, or they are collinear. In the latter
case there are exactly four different planes containing them.

• We call two planes parallel, if they have no common points. Again,
it is easy to check that if two planes P1 and P2 are parallel, there
exist two different numbers i, j ∈ Z3 and (a, b, c) 6= ~0 in Z3

3 such
that

P1 = Pi(a, b, c), P2 = Pj(a, b, c).

For any (a, b, c) 6= ~0 (in Z3
3), all 27 points in Z3

3 can be partitioned
into three parallel planes P0(a, b, c), P1(a, b, c) and P2(a, b, c). But since
Pi(a, b, c) = P−i(−a,−b,−c), two points (a, b, c) and (−a,−b,−c) give
the same partition. Therefore, there are exactly 26

2 = 13 ways to parti-
tion Z3

3 into three parallel planes. Note that if we consider all these 13
partitions, every plane in Z3

3 will appear exactly in one of the partitions.
Now assume that there exist a set S with 10 elements satisfying the

desired properties. Consider one of above partitions. According to the
lemma, each plane in this partition contains at most 4 points of S. Since
there are 10 points in total, there are two different type of partitions.

(1) Partitions such that two planes contain 4 points of S, and the third
one contains 2.

(2) Partitions such that two planes contain 3 points of S, and the third
one contains 4.

Let m and n be the total number of partitions of types (1) and (2),
respectively. There are totally 13 ways to partition the points. So we
obtain the following equation.

m+ n = 13.

We are going to find another equation for m,n.
For this reason, we count the number of elements of the following set in
two different ways.

W =
{(
{A,B},P

)
: P is a plane, A,B ∈ P ∩ S

}
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On one hand, if we count the number of pairs of points of S in each
plane of partitions of type (1), we get a total of(

4

2

)
+

(
4

2

)
+

(
2

2

)
= 13

pairs of points for each partition of this type. And for the type (2), this
number is (

4

2

)
+

(
3

2

)
+

(
3

2

)
= 12.

So the cardinality of W is

13m+ 12n.

On the other hand, for any two points A,B ∈ S, the total amount of
planes containing both A and B is 4. Since there are totally

(
10
2

)
= 45

pairs, the cardinality ofW is 4×45 = 180, so we obtain 13m+12n = 180.
But this equation is clearly impossible when m+ n = 13 because

169 = 13m+ 13n ≥ 13m+ 12n = 180,

Contradiction. So there are at most 9 points with the desired properties.
Also the following set of points is a valid example for 9 points (look at
the figure below).

(0, 0, 1), (0, 1, 0), (0, 1, 2), (0, 2, 1),

(1, 1, 1),

(2, 0, 0), (2, 0, 2), (2, 2, 0), (2, 2, 2),

Translating the solution into the main problem, the total number of
cards we can choose is 9. �

10. a) We set an example using induction on n. For n = 1, consider the
following pair of polynomials of degree 2

h1(x) = x2 + x, h2(x) = −x2.
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Now for any function f : R→ R if P1(x)=h1(f(x)) and P2(x)=h2(f(x))
are polynomials, then P1(x) + P2(x) = f(x) is a polynomial.

Now assume that (h1, h2, . . . , hn+1) is a good (n+ 1)-tuple of n vari-
able polynomials. Define the following (n+ 2)-tuple (g1, g2, . . . , gn+2) of
polynomials with n+ 1 variables as

{
gi(x1, x2, . . . , xn+1) = hi(x1, x2, . . . xn), 1 ≤ i ≤ n+ 1,

gn+2(x1, x2, . . . , xn+1) = x2
1 + xn+1, i = n+ 2.

Now let f1, f2, . . . , fn+1 : R → R be some functions such that for all
1 ≤ i ≤ n+ 2

Pi(x1, . . . , xn+1) = gi(f1, f2, . . . , fn+1),

is a polynomial. By induction hypothesis we obtain that f1(x), f2(x), . . . , fn(x)
are polynomials. Note that f1(x)2 is a polynomial.
Therefore, fn+1 = Pn+2 − f2

1 is also a polynomial.
The degree of all gi’s are more than 1. Therefore the given example

is a good (n+ 2)-tuple.

b) According to the Fundamental Theorem of Symmetric Polyno-
mials, for any symmetric polynomial hi(x1, . . . , xn) there exists another
polynomial gi(x1, . . . , xn) such that

hi(x1, . . . , xn) = gi

(∑
sym

xi,
∑
sym

xixj , . . . , x1x2 · · ·xn
)
.

Now assume that for some n > 1 there exists a good (n + 1)-tuple of
symmetric polynomials. Consider the following functions

f1(x) = |x| , f2(x) = − |x| , f3(x) = f4(x) = · · · = fn+1(x) = 0.

Note that 
∑
sym

fifj = −x2,∑
sym

fi1fi2 · · · fik = 0, ∀k 6= 2 .

Therefore,

Pi(x) = hi
(
f1(x), . . . , fn(x)

)
= gi(0,−x2, 0, . . . , 0) = Hi(−x2).

Where Hi is a polynomial with real coefficients. So for any i, Pi(x) is a
polynomial, and therefore all fi’s are polynomials, too. But f1 and f2

are not polynomials. Contradiction, hence the claim. �
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11. Consider numbers of the form km(ki + j) for i ∈ {1, . . . , n− k + 1},
j ∈ {1, . . . , k − 1} and m ≥ 0.
Note that for such i and j in these intervals, we have i + j ≤ n. Based
on n− (i+ j) is an odd number or an even number, we have two cases.

• If n− (i+ j) is odd, there is some integer t ≥ 0 such that

n− (i+ j) = 2t+ 1.

In this case, the number ki + j can be represented using n number
of k’s as

ki + j = (k × · · · × k)︸ ︷︷ ︸
i+t

÷ (k × · · · × k)︸ ︷︷ ︸
t

+ (k + · · ·+ k)︸ ︷︷ ︸
j

÷k.

• If n− (i+ j) is even, there is some integer t ≥ 0 such that

n− (i+ j) = 2t.

In this case, the number k(ki + j) can be shown using n number
of k’s as

k(ki + j) = k × ((k × · · · × k)︸ ︷︷ ︸
i+t−1

÷ (k × · · · × k)︸ ︷︷ ︸
t−1

+ (k + · · ·+ k)︸ ︷︷ ︸
j

÷k).

(In case when t = 0, we have t− 1 = −1, so in the above equation,
instead of multiplying the parentheses to −1 t’s, we divide it by
one t.)

So in both cases, there is m ≥ 0 such that km(ki + j) can be be repre-
sented using n number of k’s. Set m to be the largest number such that
km(ki+j) can be represented using only n number of k’s (for fixed i and
j). There are a total of (n − k + 1)(k − 1) numbers created with given
properties. We prove that they are all distinct numbers and also cannot
be represented using n− 1 number of k’s.
If some number u = km(ki + j) can be shown using n− 1 number of k’s,
then clearly k× u = km+1(ki + j) has a representation, using n number
of k’s, therefore m cannot be the largest number such that km(ki + j)
has a representation using n number of k’s, so we conclude that it is
impossible to reach these numbers with only n− 1 number of k’s.

Finally, if for two such triples (i1, j1,m1) 6= (i2, j2,m2) withm1 ≥ m2,
we have

km1
(
ki1 + j1

)
= km2

(
ki2 + j2

)
,

then
km1−m2

(
ki1 + j1

)
= ki2 + j2.

51



But ifm1−m2 > 0, the above equation implies k | j2, which is impossible
because j2 < k. Therefore m1 = m2 and so ki1 + j1 = ki2 + j2. Without
loss of generality, we assume i1 ≥ i2. So

ki2
(
ki1−i2 − 1

)
= j2 − j1.

Again, if i1 > i2, we get k | j2 − j1. Note that j1, j2 ∈ {1, . . . , k − 1},
therefore −k < |j1 − j2| < k, so we must have j1 − j2 = 0 and thus
ki1 = ki2 which means i1 = i2, that is impossible in this case be cause
we assumed that i1 > i2. The only possible case is when i1 = i2 which
leads to j1 = j2. Therefore (i1, j1,m1) = (i2, j2,m2), contradiction.
So indeed, all of the created numbers are distinct and hence the claim
of the problem. �

12. The answer is n = 1, 2 as a1 = k0, a2 = k1.
We are going to find the general term of the sequence. Note that since

k > 1, the characteristic polynomial P (x) = x2 − (k + 1)x + 1 has two
different roots

r1 =
k + 1 +

√
(k − 1)(k + 3)

2
, r2 =

k + 1−
√

(k − 1)(k + 3)

2
.

So an has a general form as

an = c1r
n
1 + c2r

n
2 ,

where c1, c2 are fixed numbers. Considering the values of a1, a2, the
values of c1, c2 are found

c1 =

√
k + 3−

√
k − 1

2
√
k + 3

, c2 =

√
k + 3 +

√
k − 1

2
√
k + 3

.

Lemma. The sequence has a general form as

an =
ϕ2n−1 + 1

ϕ2n−1

ϕ+ 1
ϕ

,

where ϕ =
√
k+3+

√
k−1

2 .

Proof. Note that r1 +r2 = k+1 and r1r2 = 1. If we set ϕ =
√
k+3+

√
k−1

2 ,
we have

ϕ2 =
k + 1 +

√
(k − 1)(k + 3)

2
= r1 =

1

r2
,

1

ϕ
=

√
k + 3−

√
k − 1

2
,

ϕ+
1

ϕ
=
√
k + 3.
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Therefore
c1 =

1

ϕ
· 1

ϕ+ 1
ϕ

, c2 = ϕ · 1

ϕ+ 1
ϕ

.

So we get

an =
1

ϕ(ϕ+ 1
ϕ )
·
(
ϕ2
)n

+
ϕ

ϕ+ 1
ϕ

·
(

1

ϕ2

)n
=
ϕ2n−1 + 1

ϕ2n−1

ϕ+ 1
ϕ

.

It is easy to see, by induction, that if we consider the sequence modulo
k we have

(a6n+1, a6n+2, a6n+3, a6n+4, a6n+5, a6n+6)
k≡ (1, 0,−1,−1, 0, 1) .

Therefore another lemma is concluded.

Lemma. For any positive integer n, we have

k | an ⇐⇒ n
3≡ 2, and gcd(k, an) = 1 ⇐⇒ n

3

6≡ 2.

Now we prove the third and the final lemma.

Lemma. For any two odd numbers m and n such that n | m, we have

an+1
2
| am+1

2

Proof. First, we claim that for any integer n, ϕ2n + 1
ϕ2n ∈ Z+. For

n = 0, 1 the claim is correct. Assume that the claim is true for n−1, n−2.
We have(
ϕ2(n−2) +

1

ϕ2(n−2)

)
︸ ︷︷ ︸

∈Z+

+

(
ϕ2n +

1

ϕ2n

)
=

(
ϕ2(n−1) +

1

ϕ2(n−1)

)(
ϕ2 +

1

ϕ2

)
︸ ︷︷ ︸

∈Z+

.

Therefore ϕ2n + 1
ϕ2n ∈ Z+, so the claim is proved, using induction on n.

Now set m = nl (therefore l is also odd). We have

an+1
2

=
ϕn + 1

ϕn

ϕ+ 1
ϕ

, am+1
2

=
ϕnl + 1

ϕnl

ϕ+ 1
ϕ

.

Therefore
am+1

2

an+1
2

=
ϕnl + 1

ϕnl

ϕn + 1
ϕn

= ϕ(l−1)n − ϕ(l−3)n + · · · − 1

ϕ(l−3)n
+

1

ϕ(l−1)n

=
∑
i
2
≡ l−1

2

(
ϕ2in +

1

ϕ2in

)
−
∑
j

2
≡ l−3

2

(
ϕ2jn +

1

ϕ2jn

)
= s ∈ Z,

So am+1
2

= s · an+1
2
, hence the lemma.
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Back to the problem, let n be an integer such that an = km is a power
of k. Assume that n ≥ 3.

Consider a prime factor of 2n− 1 like p. Since both p and 2n− 1 are
odd numbers, according to the final lemma we have

a p+1
2
| an.

Again, consider a prime factor of a p+1
2

like q, we have

q | a p+1
2
| an = km =⇒ q | k.

Therefore gcd(k, a p+1
2

) ≥ q. So according to the second lemma, since
gcd(k, a p+1

2
) 6= 1 we have

p+ 1

2

3≡ 2 =⇒ p
3≡ 0 =⇒ p = 3.

So 2n−1 = 3v for some integer v. Since n ≥ 3 we have v ≥ 2. Therefore

9 | 3v | 2n− 1.

Again, according to the final lemma we obtain

a5 = a 9+1
2
| an.

But a5 = k(k3 + 3k2 − 3). So we must have t = k3 + 3k2 − 3 | km−1.
Note that k ≥ 2, so t ≥ 17. Thus m− 1 > 0. Let r be a prime factor of
t. We have

r | t | km−1 =⇒ r | k
r | k3 + 3k2 − 3

}
=⇒ r | 3 =⇒ r = 3.

Therefore k3 + 3k3 − 3 = 3h, since t ≥ 17 we have h ≥ 3. The final
equation implies k = 3u for some integer u. So we can rewrite it as

27u3 + 27u− 3 = 3h.

Since h ≥ 3, we have 27 | 3h but 27 - 27u3 + 27u− 3. Contradiction.
This means our assumption that such n ≥ 3 exists was incorrect.

So n = 1, 2 are the only answers of the problem. �

13. Two simple lemmas are needed to prove the problem.

Lemma. For all integers k > 1, if x1, x2, . . . , xk are integers with

gcd(x1, . . . , xk) = 1,

then there are integers a1, . . . , ak such that

a1x1 + · · ·+ akxk = 1.
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Proof. For k = 2 the statement of the lemma is Bézout’s Lemma for
relatively prime numbers, that is well-known. Now we use induction on
k. Knowing that the lemma is true for k = n, for numbers x1, . . . , xn+1

that are relatively prime, we have

gcd
(
x1, x2, . . . , xn−1, gcd(xn, xn+1)

)
= 1.

Now applying the lemma for k = n, there are numbers a1, . . . , an such
that

a1x1 + a2x2 + · · ·+ an−1xn−1 + angcd(xn, xn+1) = 1

Using the Bézout’s Lemma, there are bn, bn+1 such that

gcd(xn, xn+1) = bnxn + bn+1xn+1.

Set yi = ai for i < n, yn = anbn and yn+1 = anbn+1 to get

y1x1 + · · ·+ yn+1xn+1 = 1.

Which is the statement of the lemma for k = n + 1. So the lemma is
proved using induction.

Now the second lemma.

Lemma. Set L = lcm(1, 2, . . . , n), then gcd
(

L
m+1 ,

L
m+2 , . . . ,

L
n

)
= 1

where m =
⌊
n
2

⌋
.

Proof. First note that lcm (1, 2, . . . , n) = lcm(m+1,m+2, . . . , n). That
is because for all 1 ≤ k ≤ m, the number s =

⌈
log2(m+1

k )
⌉
is an integer

such that
2s · k ∈ {m+ 1,m+ 2, . . . , n}.

Now assume that

d = gcd
(

L

m+ 1
,

L

m+ 2
, . . . ,

L

n

)
.

For all m+ 1 ≤ i ≤ n we have

d | L
i

=⇒ ∃k; d · k =
L

i
=⇒ i · k =

L

d
=⇒ i | L

d
.

Which implies

L = lcm(m+ 1,m+ 2, . . . , n) | L
d

=⇒ d = 1.
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Back to the problem, according to both lemmas, since

gcd
(

L

m+ 1
,

L

m+ 2
, . . . ,

L

n

)
= 1,

we obtain there are some integers xm, xm+1, . . . , xn−1 such that

xm ·
L

m+ 1
+ xm+1 ·

L

m+ 2
+ · · ·+ xn−1 ·

L

n
= 1.

Now consider a natural number t such that xm + t · L
m+2 > 0 and set

am = xm + t · L
m+2 ,

am+1 = xm+1 − t · L
m+1 ,

ai = xi, ∀i > m+ 1

to get
am

m+ 1
+
am+1

m+ 2
+ · · ·+ an−1

n
=

1

lcm (1, 2, . . . , n)
.

Since am = xm + t · L
m+2 > 0, this is the desired equation for m = bn2 c.

�

14. Label the circumcircles of triangles APC and APD with ω1 and ω2,
respectively. Q is the second intersection point of PB with ω1. DB
cuts ω2 and the line AQ at X and Y , respectively. Also let Z be the
second intersection point of AB with ω1. Set P̂AD = P̂CA = β and
P̂DA = P̂AC = θ. (Note that Y exists, otherwise AQ ‖ DB which
implies D̂XP = ÂQB = D̂BP , that means B = X, therefore we can
get ÂBD = ÂXD = ÂPD = 180◦ − (β + θ). Thus, in triangle ABD,
we obtain B̂AC + ÂDB = 0◦, which is impossible, because it means
A,B,C,D are collinear.)
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We have
P̂CA = P̂AD

ω1 : P̂CA = P̂QA

ω2 : P̂AD = P̂XD

 =⇒ P̂XD = P̂QA,

Which means PXQY is cyclic. Therefore

=⇒ BX ·BY = BP ·BQ
Pω1

(B) = BP ·BQ = BZ ·BA

}
=⇒ BX ·BY = BZ ·BA.

Which means AXZY is also cyclic. So we have

=⇒ ÂZY = ÂXY = 180◦ − ÂXD
ω2 : ÂXD = ÂPD = 180◦ − (β + θ)

}
=⇒ ÂZY = β + θ.

Also in circle ω1

ÂZC = P̂AC + P̂CA = β + θ.

Therefore,

=⇒ ÂZY = ÂZC = β + θ

ẐAC = ẐAY = Q̂PC
2 = α

ZA = ZA

 =⇒
4

AZC ≡
4

AZY .

Which implies AC = AY . Now we have

AB = AB

B̂AC = B̂AY = α.
AC = AY

 =⇒
4

BAY ≡
4

BAC.

That implies B̂CA = B̂Y A. Finally we get

P̂BD = Q̂BY =
∣∣∣B̂QA− B̂Y A∣∣∣ =

∣∣∣P̂CA− B̂CA∣∣∣ .
�

15. Let P (x, y, z) be the first assertion and Q(x, y) be the second one.
First we prove two claims.

• The function g(x) = f(x, 1) is bijective.

Assume that a, b are two positive numbers with f(a, 1) = f(b, 1).
By comparing P (a, 1, 1), P (b, 1, 1) we obtain

a2f(a, 1) = f(f(a, 1), 1) = f(f(b, 1), 1) = b2f(b, 1) =⇒ a = b.

57



So f(a, 1) is injective. Also

P (1, y, 1) : f(f(1, y), 1) = y2f(1, 1).

The RHS of the above equation can be any positive real number,
so f(a, 1) is surjective.

• The function h(x) = f(1, x) is bijective.

Note that for any positive real number t, we have

P
(

1,
√

f(t,1)
f(1,1)︸ ︷︷ ︸
y

, 1
)

: f(f(1, y), 1) = f(t, 1).

According to the previous claim, we must have h(y) = f(1, y) = t
so h(x) is surjective. Now

P (1, 1, 1) : f(f(1, 1), 1) = f(1, 1) =⇒ f(1, 1) = 1.

Now if for some positive numbers a, b we have f(1, a) = f(1, b), by
comparing P (1, a, 1), P (1, b, 1) we obtain

a2 = f(f(1, a), 1) = f(f(1, b), 1) = b2 =⇒ a = b.

So h(x) is injective.

We have
P (1, y, z) : f(f(1, y), z) = y2f(1, z),

And also had
P (1, y, 1) : f(f(1, y), 1) = y2.

So we obtain

f(h(y), z) = f(f(1, y), z) = y2f(1, z) = g (h(y))h(z).

Since h is surjective, we can write a = h(y) and get

∀a, z ∈ R+ : f(a, z) = g(a)h(z).

Now using the above equation, we rewrite the first assertion P (x, y, z)
and get

g (g(x)h(y)) = x2y2g(x) , g(1) = h(1) = 1

Now set y = 1 to get g(g(x)) = x2g(x), also we had g(h(y)) = y2, so we
can rewrite the above equation as

g(g(x)h(y)) = g(g(x))g(h(y))
g,h
=⇒

are surjective
∀x, y ∈ R+ : g(xy) = g(x)g(y).
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We can also get

g(h(y)) = y2 =⇒ g(h(xy)) = x2y2 = g(h(x))g(h(y)) = g(h(x)h(y)),
g

=⇒
is injective

h(xy) = h(x)h(y).

g(g(x)) = x2g(x) =⇒ g(g(h(x))) = h(x)2g(h(x))),

=⇒ g(x2) = x2h(x2) = x2h(x2),

=⇒ ∀x ∈ R+ : g(x) = xh(x),

=⇒ h(y)h(h(y)) = y2.

Now rewrite Q(x, y)

h(x+ x2h(xy)) ≥ x+ xyh(x)2.

Set y → y
x to get

h(x+ x2h(y)) ≥ x+ yh(x)2 =⇒ h(1 + xh(y)) ≥ x

h(x)
+ yh(x).

Note that h(1) = h(x)h
(

1
x

)
, so h

(
1
x

)
= 1

h(x) . Set x = 1
h(y) above to get

h(2) ≥ h(h(y))

h(y)
+

y

h(h(y))
≥ 2

√
y

h(y)
=⇒ ∃c ∈ R+ : h(y) ≥ cy.

Also since h(xy) = h(x)h(y), we obtain h(xn) = h(x)n, for all positive
integers n. Therefore

h(y)n = h(yn) ≥ cyn =⇒ h(y) ≥ n
√
cy

n→∞
=⇒ h(y) ≥ y

=⇒ y2 = h(y)h(h(y)) ≥ y2 =⇒ h(y) = y =⇒ g(x) = x2

=⇒ f(x, y) = g(x)h(y) = x2y

So f(x, y) = x2y is the only answer of the problem which is indeed a
solution. �

16. In any quadruple of the points, consider the point which has the
power k with respect to the circle passing through the other three, name
these points good points. We claim that there are two quadruples with
the same good point, and two other common points.

There are
(

6
4

)
= 15 quadruples, each has at least one good point,

since there are six points in total, there exists a point P which is a good
point in at least

⌈
15
6

⌉
= 3 quadruples.

The other five points need to fill the remaining place in each of these
quadruples, there are a total of 3 × 3 = 9 places, so there is a point Q
that is is in at least

⌈
9
5

⌉
= 2 of the quadruples.
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Consider these two quadruples containing P and Q. There are a total
of 4 places in these quadruples need to be filled with the other 4 points.
The claim is directly proved if some point R is a member of both of these
quadruples. In other case, the remaining 4 points must appear exactly
once in these 4 remaining places. So we have two quadruples

Q1 = (P,Q,R, S), Q2 = (P,Q, T, U).

Where P,Q,R, S, T, U are all six points of the problem.
We said P is a good point in at least 3 quadruples. Consider the third
quadruple Q3 containing P as a good point. 3 remaining places must be
filled with the other five points Q,R, S, T or U . If both R,S or T,U are
members of Q3, then (respectively) Q1 or Q2 have three common points
with Q3. Otherwise, only one member of {R,S}, one member of {T,U}
along with Q are members of Q3, in this case, both Q1,Q2 have three
common points with Q3. Therefore the claim is proved in any case.

So we have found two quadruples with exactly three common points
and also the same good point P . Without loss of generality, assume
that these two quadruples are (P,Q,R, S), (P,Q,R, T ).
Let ω1 and ω2 be the circumcircles of triangles QRS and QRT , respec-
tively. We have

Pω1
(P ) = Pω2

(P ) = k,

(Where Pλ(X) is the power of point X with respect to circle λ.) If
ω1 6= ω2, the above equation implies P is a point on the radical axis
of these two circles, that means P lies on QR which is impossible since
there are no three points on a same line. So the only possible case is
when ω1 = ω2, means points Q,R, S and T lie on a circle. Therefore by
considering the quadruple (Q,R, S, T ), we obtain k = 0.
The rest of the problem is clear, k = 0 means between any quadruple,
one point lies on the circle passing through the other three point, in
other words, any four points are concyclic. Now fix three points P,Q,R,
we get that any other point is concyclic with these three points, hence
all six points lie on the circumcircle of triangle PQR. �

17. It is immediately deduced that

Pd(x) = xd + (c1 + c2 + · · ·+ cd−1)xd−2+

(c3c1 + c4c1 + c4c2 + · · ·+ cd−1cd−3)xd−4 + · · · .

The coefficient of xd−4 could be written as
∑d−1
k=3

(
ck
∑k−2
l=1 cl

)
which is

equal to

1

2

(
(c1 + c2 + · · ·+ cd−1)2 −

d−1∑
k=1

c2k

)
−
d−2∑
k=1

ckck+1.
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Now assume the contrary, that there is such n and c, by comparing the
coefficients of x2n−2 and x2n−4 we obtain

c =
1

n

2n−1∑
k=1

ck,

2n−1∑
k=3

(
ck

k−2∑
l=1

cl

)
=
n(n− 1)

2
c2 +

n−1∑
k=1

ck.

Using the first equality in the second one, we find that

1

n

(
2n−1∑
k=1

ck

)2

=

2n−1∑
k=1

c2k + 2

2n−2∑
k=1

ckck+1 + 2

n−1∑
k=1

ck. (F)

Now we prove that the above equality could not be established. Note
that by Cauchy-Schwarz inequality, we have

1

n

(
2n−1∑
k=1

ck

)2

≤ c21 +

n−1∑
k=1

(c2k+1 + c2k)2,

and also
1

n

(
2n−1∑
k=1

ck

)2

≤ c22n−1 +

n−1∑
k=1

(c2k−1 + c2k)2.

Therefore we have

2

n

(
2n−1∑
k=1

ck

)2

≤ 2

2n−1∑
k=1

c2k + 2

2n−2∑
k=1

ckck+1.

Applying the above inequality to F we obtain

2n−2∑
k=1

ckck+1 + 2

n−1∑
k=1

ck ≤ 0.

But since 0 ≤ ck and 0 < c2017, the final result is impossible when
n > 2017. Contradiction, hence the claim of the problem. �

18. Let M be the midpoint of BC and S be the reflection of P over M .
First we show that S lies on OH.
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We have
PM = MS
PK = KA

}
=⇒ MK ‖ AS , MK =

AS

2
.

Also, it is well-known that MO ‖ AH , MO = AH
2 . Combining it with

the last result we obtain
4

MKO ∼
4

AHS.

Because of the facts that MK ‖ AS and MO ‖ AH, we conclude that
KO ‖ HS which means S is a point on OH.

Now we show that ÊSF = 90◦. Note that since MB = MC and
MS = MP , BSCP is a parallelogram, therefore

B̂SC = B̂PC = 180◦ − Â,
ŜBC = P̂CB =⇒ ŜBE = B̂ − P̂CB,
ŜCB = P̂BC =⇒ ŜCF = Ĉ − P̂BC.

So we have{
BS = PC = BE =⇒ ÊSB = 90◦ − ŜBE

2 = 90◦ − B̂−P̂CB
2 ,

CS = PB = CF =⇒ F̂SC = 90◦ − ŜCF
2 = 90◦ − Ĉ−P̂BC

2 .

Therefore

ÊSF = 360◦ − ÊSB − F̂SC − B̂SC

= 360◦ −
(

90◦ − B̂−P̂CB
2

)
−
(

90◦ − Ĉ−P̂BC
2

)
−
(

180◦ − Â
)

= B̂
2 + Ĉ

2 +A− P̂CB+P̂BC
2

=
B̂

2
+
Ĉ

2
+
Â

2
= 90◦.
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Let T be the circumcenter of triangle ESF , since BT and CT are the
perpendicular bisectors of ES and FS respectively, and since ÊSF = 90◦

we obtain B̂TS = 90◦.
Now we show that MT ‖ AP . Let R be the intersection of AK with

BC. It suffices to show that T̂MB = ÂRB.
If P̂BC = α we have

ÂRB = α+ ÂPB = α+ Ĉ,

B̂TC = 90◦

MB = MC

}
=⇒ MB = MC = MT,

and so

T̂MB = 2T̂CM = 2
(
ŜCM + T̂CS

)
= 2

(
α+ Ĉ−α

2

)
= α+ Ĉ = ÂRB.

Therefore, MT ‖ AP . We have ŜKP = 90◦. Also MP = MS, so M
is the circumcenter of triangle SKP and thus it lies on the perpendicular
bisector of KS. Also since MT ‖ AP , and since AP ⊥ SK we conclude
that TM is the perpendicular bisector of KS and so TS = TK. We also
had TS = TF = TE. Therefore, points E, S, K and F lie on a circle
with center T . So finally we obtain ÊSF = ÊKF = 90◦. �
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