
## 880 - Cantor Fractions

Time limit: 3.000 seconds

### **Cantor Fractions**

# **Background**

In the late XIXth century the German mathematician George Cantor argued that the set of positive fractions  $\mathbf{Q}^+$  is equipotent to the set of positive integers  $\mathbf{N}$ , meaning that they are both infinite, but of the same class. To justify this, he exhibited a mapping from  $\mathbf{N}$  to  $\mathbf{Q}^+$  that is onto. This mapping is just *traversal* of the  $\mathbf{N} \times \mathbf{N}$  plane that covers all the pairs:



The first fractions in the Cantor mapping are:

$$\frac{1}{1}$$
,  $\frac{2}{1}$ ,  $\frac{1}{2}$ ,  $\frac{3}{1}$ ,  $\frac{2}{2}$ ,  $\frac{1}{3}$ , ...

#### **Problem**

Write a program that finds the *i*-th Cantor fraction following the mapping outlined above.

### Input

The inputs consists of several lines with a positive integer number *i* each one.

### **Output**

The output consists of a line per input case, that contains the *i*-th fraction, with numerator and denominator separed by a slash (/). The fraction should **not** be in the most simple form.

#### Sample Input

6

### **Sample Output**

1/3