
Motivation
Segment trees

Windowing again

Windowing queries

Computational Geometry

Lecture 15: Windowing queries

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Zoom in; re-center and zoom in; select by outlining

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Given a set of n axis-parallel line
segments, preprocess them into a
data structure so that the ones that
intersect a query rectangle can be
reported efficiently

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Given a set of n arbitrary,
non-crossing line segments,
preprocess them into a data
structure so that the ones that
intersect a query rectangle can be
reported efficiently

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Two cases of intersection:

An endpoint lies inside the query
window; solve with range trees

The segment intersects a side of
the query window; solve how?

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Using a bounding box?

If the query window intersects the
line segment, then it also intersects
the bounding box of the line segment
(whose sides are axis-parallel
segments)

So we could search in the 4n
bounding box sides

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Using a bounding box?

But: if the query window intersects
bounding box sides does not imply
that it intersects the corresponding
segments

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Windowing

Current problem of our interest:

Given a set of arbitrarily oriented,
non-crossing line segments, preprocess
them into a data structure so that the ones
intersecting a vertical (horizontal) query
segment can be reported efficiently

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again
Windowing queries

Using an interval tree?

q q

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Interval querying

Given a set I of n intervals on the real line, preprocess them
into a data structure so that the ones containing a query
point (value) can be reported efficiently

We have the interval tree, but we will develop an alternative
solution

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Interval querying

Given a set S = {s1,s2, . . . ,sn } of n segments on the real line,
preprocess them into a data structure so that the ones
containing a query point (value) can be reported efficiently

s1

s2

s3

s4 s5

s6 s7
s8

The new structure is called the segment tree

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

The locus approach is the idea to partition the solution space
into parts with equal answer sets

s1

s2

s3

s4 s5

s6 s7
s8

For the set S of segments, we get different answer sets before
and after every endpoint

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

Let p1,p2, . . . ,pm be the sorted set of unique endpoints of the
intervals; m≤ 2n

p1 p2 p3 p4 p5 p6 p7 p8

s1

s2

s3

s4 s5

s6 s7
s8

The real line is partitioned into

(−∞,p1), [p1,p1],(p1,p2), [p2,p2], (p2,p3), . . . , (pm,+∞),
these are called the elementary intervals

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

We could make a binary search tree that has a leaf for every
elementary interval
(−∞,p1), [p1,p1],(p1,p2), [p2,p2], (p2,p3), . . . , (pm,+∞)

Each segment from the set S can be stored with all leaves
whose elementary interval it contains: [pi,pj] is stored with

[pi,pi],(pi,pi+1), . . . , [pj,pj]

A stabbing query with point q is then solved by finding the
unique leaf that contains q, and reporting all segments that it
stores

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

(−∞, p1)
[p1, p1]

(p1, p2)
[p2, p2]

(p2, p3)
[p3, p3]

(p3, p4)
[p4, p4]

(p4, p5)
[p5, p5]

(p5, p6)
[p6, p6]

(p6, p7)
[p7, p7]

(p8,+∞)(p7, p8)
[p8, p8]

s1

s2

s3

s4 s5

s6 s7
s8

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Locus approach

Question: What are the storage requirements and what is
the query time of this solution?

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Towards segment trees

In the tree, the leaves store
elementary intervals

But each internal node
corresponds to an interval too:
the interval that is the union
of the elementary intervals of
all leaves below it

(pi, pi+1)
[pi+1, pi+1]

(pi+1, pi+2)
[pi+2, pi+2]

(pi, pi+2]

pi pi+1 pi+2

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Towards segment trees

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8

(p2, p4] (p6,+∞)

(p1, p2]

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Towards segment trees

Let Int(ν) denote the interval of node ν

To avoid quadratic storage, we store any segment sj as high
as possible in the tree whose leaves correspond to elementary
intervals

More precisely: sj is stored with ν if and only if

Int(ν) ⊆ sj but Int(parent(ν)) 6⊆ sj

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Towards segment trees

(pi, pi+1)
[pi+1, pi+1]

(pi+1, pi+2)
[pi+2, pi+2]

(pi, pi+2]

pi pi+1 pi+2

(pi, pi+2]

pi−2 pi−1

(pi−2, pi+2]

(pi−2, pi+2]

sj

ν

Int(ν)
Int(parent(ν))

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segment trees

A segment tree on a set S of segments is a balanced binary
search tree on the elementary intervals defined by S, and each
node stores its interval, and its canonical subset of S in a list
(unsorted)

The canonical subset (of S) of a node ν is the subset of
segments sj for which

Int(ν) ⊆ sj but Int(parent(ν) 6⊆ sj

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segment trees

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segment trees

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segment trees

Question: Why are no segments stored with nodes on the
leftmost and rightmost paths of the segment tree?

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Query algorithm

The query algorithm is trivial:

For a query point q, follow the path down the tree to the
elementary interval that contains q, and report all segments
stored in the lists with the nodes on that path

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Example query

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Example query

s1

s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Query time

The query time is O(logn+ k), where k is the number of
segments reported

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segments stored at many nodes

A segment can be stored in several lists of nodes. How bad
can the storage requirements get?

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segments stored at many nodes

Lemma: Any segment can be stored at up to two nodes of
the same depth

Proof: Suppose a segment si is stored at three nodes ν1, ν2,
and ν3 at the same depth from the root

ν1 ν2 ν3

sisisi

parent(ν2)

si

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segments stored at many nodes

If a segment tree has depth O(logn), then any segment is
stored in at most O(logn) lists ⇒ the total size of all lists is
O(n logn)

The main tree uses O(n) storage

The storage requirements of a segment tree on n segments is
O(n logn)

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Segments and range queries

Note the correspondence with 2-dimensional range trees

ν

µ µ′ p

p

p

p

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Result

Theorem: A segment tree storing n segments (= intervals) on
the real line uses O(n logn) storage, can be built in O(n logn)
time, and stabbing queries can be answered in O(logn+ k)
time, where k is the number of segments reported

Property: For any query, all segments containing the query
point are stored in the lists of O(logn) nodes

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Definition
Querying
Storage

Stabbing counting queries

Question: Do you see how to adapt the segment tree so that
stabbing counting queries can be answered efficiently?

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Back to windowing

Problem arising from windowing:

Given a set of arbitrarily oriented,
non-crossing line segments, preprocess
them into a data structure so that the ones
intersecting a vertical (horizontal) query
segment can be reported efficiently

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Idea for solution

The main idea is to build a segment tree on the x-projections
of the 2D segments, and replace the associated lists with a
more suitable data structure

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

s1

s2

s3

s4

s5

s6

s7 s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

s1

s2

s3

s4

s5

s6

s7 s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Observe that nodes now correspond to vertical slabs of the
plane (with or without left and right bounding lines), and:

if a segment si is stored with a node ν , then it crosses the
slab of ν completely, but not the slab of the parent of ν

the segments crossing a slab have a well-defined
top-to-bottom order

Int(ν)

sj sj is stored at one
or more nodes
below ν

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

s1

s3

s4

s5

p3 p4

s1, s3, s4

s5

s5

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

s1

s3

s4

s5

p3 p4

s1, s3, s4

s5

s5

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Querying

Recall that a query is done with a vertical
line segment q

Only segments of S stored with nodes on
the path down the tree using the
x-coordinate of q can be answers

At any such node, the query problem is:
which of the segments (that cross the slab
completely) intersects the vertical query
segment q?

q

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Querying

We store the canonical
subset of a node ν in a
balanced binary search tree
that follows the
bottom-to-top order in its
leaves

q

s1

s2

s3

s4

s5

s6

s7

s1

s2

s4

s6

s5

s3

s1

s2

s3

s4

s5

s6

s7

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Data structure

A query with q follows one path down the main tree, using
the x-coordinate of q

At each node, the associated tree is queried using the
endpoints of q, as if it is a 1-dimensional range query

The query time is O(log2 n+ k)

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Data structure

The data structure for intersection queries with a vertical
query segment in a set of non-crossing line segments is a
segment tree where the associated structures are binary
search trees on the bottom-to-top order of the segments in
the corresponding slab

Since it is a segment tree with lists replaced by trees, the
storage remains O(n logn)

Computational Geometry Lecture 15: Windowing queries



Motivation
Segment trees

Windowing again

Segment tree variation
Querying
Storage

Result

Theorem: A set of n non-crossing line segments can be
stored in a data structure of size O(n logn) so that intersection
queries with a vertical query segment can be answered in
O(log2 n+k) time, where k is the number of answers reported

Theorem: A set of n non-crossing line segments can be
stored in a data structure of size O(n logn) so that windowing
queries can be answered in O(log2 n+ k) time, where k is the
number of answers reported

Computational Geometry Lecture 15: Windowing queries


	Motivation
	Windowing queries

	Segment trees
	Definition
	Querying
	Storage

	Windowing again
	Segment tree variation
	Querying
	Storage


