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Preface

With advantages in high strength, good ductility and fast fabrication and erection, steel frames are widely

used for industrial, commercial and residential buildings. Currently, the common procedures for the

structural design of steel frames worldwide are: (1) to conduct linearly elastic structural analysis to

determine the resultants of structural members under various actions; and (2) to check the resultants against

the limit states of structural members specified in the codes, based on the reliability theory for the limit state

of structural members. However, drawbacks of the current approach exist in the following two aspects.

Firstly, the normal elastic analysis of steel frames takes account of only typical flexural, shear and axial

deformations of frame components, and cannot consider effects such as shear deformation of joint-panels,

flexibility of beam-to-column connections, brace buckling and nonprismatic sections (tapered members).

Also, material and geometric nonlinearities and imperfection (residual stress and initial geometric imper-

fection) cannot be involved in linearly elastic analysis. Secondly, the structural members of a frame is

generally in an elasto-plastic state when they approach limit states, whereas the member resultants used in

limit state check are taken from the linearly elastic analysis of the frame. The incompatibility of the member

resultants obtained in structural analysis for limit state check and those in real limit state results in uncertain

member reliability.

To overcome the drawback mentioned above, the concept of Advanced Design has been proposed.

Second-order inelastic analysis is used in Advanced Design of steel frames to determine the structural

ultimate capacities, which considers all the effects significant for structural nonlinear behavior and is termed

as advanced analysis.

A large amount of achievements have been made in the past two decades on advanced analysis of steel

frames. However, in the view of structural design, the reliability evaluation of structural systems should be

incorporated into advanced analysis to make the steel frames designed have certain system reliability. Such

structural design with definite system reliability is termed as advanced design. Unfortunately, little progress

was reported in this area. In this book, a concept of reliability-based advanced design is developed and

proposed for steel frames.

The first author of this book began to study the theory of structural reliability design in 1982 when he was

in Chongqing Institute of Architecture and Engineering for his Master degree and began to study the theory

of advanced analysis for steel frames in 1985 when he was in Tongji University for his PhD degree. The main

contents of this book are actually the summarization of our research achievements in structural reliability

design and advanced analysis of steel frames for over 20 years, including the contribution from Ms. Yushu

Liu and Ms. Xing Zhao, who are the former PhD students of the first author.

Two parts are included in this book. Part One is advanced analysis for beam (prismatic beam, tapered

beam and composite beam), column, joint-panel, connection, brace, and shear beam elements in steel

frames, and methods for stability analysis, nonlinear analysis and seismic analysis of steel frames. Part Two

is reliability-based advanced design for steel portal frames and multi-storey frames.

We are grateful for the advice from Prof. Jihua Li and Prof. Zuyan Shen who supervised the first author’s

Master and PhD degree study and guide him to an attractive field in structural engineering.



We wish also to thank the following persons in helping to prepare the manuscript of the book, including

typing and checking the text and drawing all the figures. They are Ms. Yamei He, Mr. Wenlong Shi, Mr.

Peijun Wang, Mr. Baolin Hu, Mr. Wubo Li, Mr. Dazhu Hu, Mr. Hui Gao, Mr. Chaozhen Chen and Mr. Yang

Zhang. Without their assistance, the timely outcome of the book would have been difficult.

We also want to thank our families for their continuous support and understanding in our research

presented in this book for many years at Tongji University.

Finally, we want to thank the National Natural Science Foundation of China for continuous support on

the research, many results of which are reported in this book.

Guo-Qiang Li and Jin-Jun Li

September 2006
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Symbols

Unless the additional specification appears in the text, the physical or mathematical definitions of the

symbols in this book are as follows:

1 Variable

A Sectional area

Af Flange area of H- or box-shape sections

Aw Web area of H- or box-shape sections

D Displacement

Dc Sway stiffness of frame columns (also termed to as the D-value of frame columns)

E Elastic tensile modulus

F Load, force

f Force

fy Yielding stress

G Elastic shear modulus

H Structural height

Hi Height of the ith story

hc Sectional height of column

hg Sectional height of beam

I Inertial moment

i Linear stiffness i ¼ I

l

� �
K Stiffness

k Stiffness, element of stiffness matrix

l Length of beam, column or brace

M Moment

Mp Ultimate yielding moment (plastic moment)

MpN Ultimate yielding moment accounting effect of axial force

Ms Initial yielding moment

MsN Initial yielding moment accounting effect of axial force

Mg Shear moment

Mgp Shear yielding moment

N Axial force (positive in tension and negative in compression)

Ncg Buckling load in axial compression

NE Euler load

Np Yielding load in axial compression

P Load

Q Shear force



q Uniformly distributed load, hardening factor

q0 Amplitude of distributed triangle load

R Recovery force parameter

t Time, duration

tf Flange thickness of H- or box-shape sections

tp Thickness of joint panel

tw Web thickness of H- or box-shape sections

u Horizontal displacement of frame floor

ug Horizontal ground movement

V Shear force between floors

W Sectional modulus

w Vertical displacement of nodes

y Deflection

� Yielding function

g Shear strain, shear deformation of joint panel

� Displacement

� Story drift

� Effective length factor

� Rotation

l Slenderness

� Shear shape factor of sections

�p Mean value of failure probability

� Damp ratio

� Normal stress

�s Yielding stress

�p Deviation of failure probability

" Normal strain

"y Yielding strain

� Shear stress

�s Shear yielding stress

’ Rotation of beam-to-column connection (relative rotation between adjacent

beam and column)

� Curvature parameter

� Curvature

�p The elastic curvature corresponding to Mp �p ¼
Mp

EI

����
����

�pN The elastic curvature corresponding to MpN �pN ¼
MpN

EI

����
����

f�g Vector of vibration modes

	p Plastic shape factor of sections

! Circular frequency

r� Correlation factor of material yielding strength

rw Correlation factor of member section modulus

2 Superscript

T Transfer of vector or matrix

3 Subscript

b Brace

c Column

e Elastic

G Geometrical nonlinearity

g Beam

H Horizontal

k Number of frame floor

xiv SYMBOLS



o Reference point of frame floor

p Plastic, elasto-plastic, ultimate yielding

s Yielding, initial yielding

t In tension

u Unloading

u; v;w Global coordinate axis

x; y; z Local coordinate axis

g Joint panel

1, 2 Elemental ends without joint panel

i; j Elemental ends with joint panel

4 Arithmetic operator

d Differential, incremental

� IncrementalP
Summation

SYMBOLS xv
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1 Introduction

1.1 TYPE OF STEEL FRAMES

Steel frames have been widely used in single-storey, low-rise industrial buildings (Figure 1.1(a)), power

plants (Figure 1.1(b)), ore mines (Figure 1.1(c)), oil and gas offshore platforms (Figure 1.1(d)) and multi-

storey, high-rise buildings (Figure 1.1(e)). The discussions contained in this book will be mainly on, but not

limited to, the steel frames used in buildings. According to the elevation view, steel frames used in low-rise

and high-rise buildings can be categorized into (1) pure frame (Figure 1.2), (2) concentrically braced frame

(Figure 1.3), (3) eccentrically braced frame (Figure 1.4) and (4) frame tube (Figure 1.5).

A pure frame has good ductility with not so good sway stiffness for multi-storey buildings. Strengthened

with braces to pure frame, the sway stiffness of a concentrically braced frame is much improved. However,

its capacity against lateral loading will be easily reduced if braces in compression are buckled, which is

unfavourable under conditions such as earthquakes. An eccentrically braced frame is a compromise in sway

stiffness and capacity between the pure frame and the concentrically braced frame. Buckling of braces in

compression can be prevented by introducing shear yielding of an eccentric shear beam, which provides

good energy-consuming performance to the eccentrically braced frame (Li, 2004). A frame tube is actually a

frame group with very close columns, where because of small span and relatively large stiffness of steel

beams, columns in the peripheral bend as a thin-walled tube to resist sway loads. Because it has good sway

stiffness and load capacity, the frame tube is generally used in high-rise buildings (Council on Tall

Buildings, 1979).

1.2 TYPE OF COMPONENTS FOR STEEL FRAMES

For convenience of fabrication, the prismatic components with uniform section (Figure 1.6(a)) are usually

used for steel frames. However, to reduce steel consumption, tapered beams and columns (Figure 1.6(b))

are normally employed for steel portal frames (Figure 1.7) to keep relatively uniform strength to resist

the dominant vertical loads (Li, 2001). In multi-storey steel buildings, the cast in-site concrete is widely used

for floor slabs (Figure 1.8). To utilize the capacity of concrete slabs, a composite beam can be designed, and

with headed shear studs, the composite action between concrete slabs and steel beams can be obtained

(Nethercot, 2003), as shown in Figure 1.9.

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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Figure 1.1 Application of steel frames: (a) single-storey industrial building; (b) power plant; (c) ore miners tower;

(d) oil and gas offshore platform; (e) high-rise building
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Figure 1.2 Pure frame

Figure 1.3 Concentrically braced frames

e e

Eccentric
beam

Figure 1.4 Eccentrically braced frames

A A

A-A

Figure 1.5 Frame-tube structures
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Figure 1.6 (a) Prismatic and (b) tapered members in steel frames

Figure 1.7 Steel portal frame with tapered members

Profile steel sheet 

Headed shear stud

Steel beam

In-site concrete

Transverse rebar

Figure 1.8 Floor system in multi-storey, high-rise steel buildings

t
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Figure 1.9 Section of a steel–concrete composite beam

c 0cg =−=
g

0

0= ≠−

M ≠ 0

0≠−=

g

(a) (b) (c)

=

Figure 1.10 Forces and deformations of beam–column connections
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1.3 TYPE OF BEAM–COLUMN CONNECTIONS

According to the moment–curvature characteristic, connections of beam to column in steel frames can be

categorized into (Chen, Goto and Liew, 1996)

(1) rigid connection, where no relative rotation occurs between adjacent beams and columns and bending

moment can be transferred fully from a beam to the neighbouring column (Figure 1.10(a));

(2) pinned connection, where relative rotation occurs and bending moment cannot be transferred at all

(Figure 1.10(b));

(3) semi-rigid connection, where relative rotation occurs and bending moment can be transferred partially

(Figure 1.10(c)).

Some typical beam-to-column connection configurations are illustrated in Figure 1.11(a)–(c) for rigid,

pinned and semi-rigid connections, respectively. Semi-rigid connections are often engineering options in the

application of steel frames.

1.4 DEFORMATION OF JOINT PANEL

Joint panel is the connection zone of beam and column members in steel frames, as shown in Figure 1.12.

Subjected to reaction forces of the beam and column ends adjacent to a joint panel, three possible

deformations can occur in the joint panel (Figure 1.13): (1) stretch/contract, (2) bending and (3) shear

deformations.

Due to restraint of adjacent beams, stretch/contract and bending deformations of the joint panel are very

small and can be ignored. Shear deformation is therefore dominant for the joint panel and an experimental

deformation of the joint panel is shown in Figure 1.14 (Li and Shen, 1998).

Bolt Bolt

Welding

(a) (b) (c)

Figure 1.11 Typical configurations of beam–column connections in steel frames

Column
Panel zone

Beam

Figure 1.12 Joint panel in steel frames
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1.5 ANALYSIS TASKS AND METHOD FOR STEEL FRAME DESIGN

The analysis tasks for the steel frame design include (1) linearly elastic frame analysis to determine resultant

forces and deformation of frame members, (2) elastic stability analysis of the frame under vertical loads, (3)

nonlinear frame analysis to determine the load-bearing capacity, and (4) elastic and elasto-plastic seismic

frame analysis (Liu and Ge, 2005). The first analysis task is the most common practice in structural design,

and the latter three analyses will be discussed in this book.

Traditional structure analysis methods such as the force method, displacement method and moment

distribution method can be used in linearly elastic analysis of steel frames. However, for the frames with

many storeys and bays when nonlinear analysis is performed, traditional analysis methods are not applic-

able. With the development of computer hardware and software, the matrix analysis method based on finite

elements has been widely employed in structural engineering. For the analysis of steel frames, the

procedures of the matrix analysis method based on finite component elements are (Bath, 1996)

(1) Discretizing frame. Generally, the whole beam, column or brace component can be represented with

one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within

two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel

should be represented with an independent element.

(2) Establishing elemental stiffness equations. Elemental stiffness equation is the relationship between

nodal forces and deformations of the element, which can be expressed with the matrix and vector

∆
Figure 1.13 Deformations of the joint panel

Panel zone

l/3 l/3 l/3 l/3 l/3 l/3

G1/2 G1/2 G2/2 G2/2

H

h/
2

h/
2

P

l l

VbVa

Figure 1.14 Joint panel in the experiment
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equation as ½k�f�g ¼ ffg, where ½k� is the elemental stiffness matrix, and f�g and ffg are nodal

deformation and force vectors. In linearly elastic analysis, ½k� is a constant matrix, whereas in nonlinear

analysis it relates to the history of elemental force and deformation.

(3) Assembling the global stiffness equation. Elemental stiffness equations can be assembled into a global

stiffness equation through incidence between the local node number of the elements and the global node

number of the frame for the analysis, and with nodal force equilibrium.

(4) Calculating nodal deformation. With consideration of boundary conditions, nodal deformation in

global coordinates can be solved from the global stiffness equation.

(5) Determining elemental resultant. Nodal deformation in global coordinates can be transformed to that in

local coordinates, namely elemental deformation. Then the elemental resultant can be calculated using

the elemental stiffness equation with the given elemental deformation.

It can be found from the above procedures that the key step in finite element analysis of steel frames is the

development of the elemental stiffness equation because other steps are standard and commonplace in the

finite element method.

1.6 DEFINITION OF ELEMENTS IN STEEL FRAMES

The following elements are defined in this book for the analysis of steel frames (Li and Shen, 1998):

(1) Beam element. A beam element is often subjected to uniaxial bending moment and minor axial force

with negligible axial deformation. Generally, beam members in steel frames can be represented with the

beam element due to restraints of floor slabs or floor braces. In addition, column members in steel frames

can also be represented with the beam element if the axial deformation can be ignored. It should be noted

that, although axial deformation is excluded, effects of axial force on bending stiffness can be involved

in the beam element.

(2) Column element. A column element is usually subjected to uniaxial or biaxial bending moment and

significant axial force. Column members in steel frames can be represented with the column element,

and the beam in steel frames can also be represented with the column element if effects of axial

deformation are considered. In addition, braces, for example eccentric braces, can be treated as column

elements if buckling is precluded.

(3) Brace element. A brace element is subjected to no more than axial force. Brace members in steel frames

are dominated by axial forces and can be represented with the brace element.

(4) Shear beam element. It is a special beam element where shear deformation and shear yielding failure are

dominant. An eccentric beam in eccentrically braced frames should be represented with the shear beam

element.

(5) Joint-panel element. It is a special element to represent the shear deformation of the joint panel in the

beam–column connection zone.
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2 Elastic Stiffness Equation
of Prismatic Beam Element

2.1 GENERAL FORM OF EQUATION

Beam element is one of the basic element types in finite element analysis of frame systems, the elastic

stiffness of which in commonplace can be found in many textbooks on structural analysis (McGuire,

Gallagher and Ziemian, 1999; Norris, Wilbur and Utku, 1976). However, the effects of shear deformation

and axial force on the stiffness of beam elements were seldom considered simultaneously in previous

investigations (Tranberg, Meek and Swannell, 1976).

For steel-framed systems, simultaneous effects of shear deformation and axial force on the behaviour of

beam elements cannot be ignored in certain cases (Li and Shen, 1995). This section describes the derivation

of elastic stiffness equations from the differential equilibrium equation, for the beam elements including the

above two effects.

2.1.1 Beam Element in Tension

The nodal forces and displacements of beam elements in tension are illustrated in Figure 2.1. Under the

simultaneous action of moment, shear force and axial tension force, element deflection y consists of the

portion induced by bending deformation yM and that by shear deformation yQ, i.e.

y ¼ yM þ yQ: ð2:1Þ

The curvature of the element caused by bending is

y00M ¼ �
M

EI
; ð2:2Þ

where E is the elastic modulus, I is the moment of inertia of the cross section and M is the cross-sectional

moment given by

M ¼ M1 � Q1z� Ny: ð2:3Þ

The work done by shear in the differential element is (see Figure 2.2; Timoshenko and Gere, 1961)

dWQ ¼
1

2
Q dyQ: ð2:4aÞ
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and the shear strain energy is

dUQ ¼
�Q2

2GA
dz; ð2:4bÞ

where G is the elastic shear modulus, A is the area of the cross section, Q is the shear force of the cross

section and � is the shear shape factor of the cross section, considering effects of uneven distribution of shear

deformation over the cross section, as shown in Figure 2.3.

By energy theory, dWQ ¼ dUQ, one can derive from Equation (2.4) that

y0Q ¼
�Q

GA
¼ �

GA

dM

dz
: ð2:5Þ

Substituting Equation (2.3) into Equation (2.5) yields

y0Q ¼
�

GA
ð�Q1 � Ny0Þ; ð2:6Þ

and differentiating Equation (2.6) once gives

y00Q ¼ �
�N

GA
y00: ð2:7Þ

Combining Equations (2.2) and (2.7), one has

y00 ¼ �M1 � Q1z� Ny

EI
� �N

GA
y00: ð2:8Þ

1

2

1

2

M1

Q1

N

N

M2

Q2

l

zy

z

y

Figure 2.1 Forces and deformations of a beam element

Figure 2.2 Shear and shear deformation on beam sections
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Let

� ¼ 1þ �N

GA
; ð2:9Þ

a2 ¼ N

�EI
; ð2:10Þ

and then rewrite Equation (2.8) as

y00 � a2y ¼ �M1 � Q1z

�EI
: ð2:11Þ

The solution of Equation (2.11) is

y ¼ a cosh azþ b sinh azþM1 � Q1z

N
; ð2:12Þ

where a and b are the unknown coefficients depending on boundary conditions. Boundary conditions of the

beam element are

� for z ¼ 0:

y ¼ 0; ð2:13aÞ

y0 ¼ y0M þ y0Q ¼ �1 þ
�

GA
ð�Q1 � Ny0Þ ! y0 ¼ 1

�
�1 �

�Q1

GA

� �
; ð2:13bÞ

� for z ¼ l:

y ¼ �2 � �1; ð2:13cÞ

y0 ¼ y0M þ y0Q ¼ �2 þ
�

GA
ð�Q1 � Ny0Þ ! y0 ¼ 1

�
�2 �

�Q1

GA

� �
: ð2:13dÞ

1.2
+

=1.2= 2=

Af

+
=

+
=

10

9
=

Figure 2.3 Shear shape factor of various beam sections
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Substituting Equation (2.12) into Equations (2.13a)–(2.13d) yields four simultaneous linear equations in

terms of a, b, �1 and �2, i.e.

aþM1

N
¼ 0; ð2:14aÞ

ba� Q1

N
¼ 1

�
�1 �

�Q1

GA

� �
; ð2:14bÞ

a cosh alþ b sinh alþM1 � Q1l

N
¼ �2 � �1; ð2:14cÞ

aa sinh alþ ba cosh al� Q1

N
¼ 1

�
�2 �

�Q1

GA

� �
: ð2:14dÞ

Then, a and b are obtained from Equations (2.14a) and (2.14c) as

a ¼ �M1

N
; ð2:15aÞ

b ¼ 1

sinh al

M1

N
ðcosh al� 1Þ þ Q1l

N
þ ð�2 � �1Þ

� �
: ð2:15bÞ

Substituting Equations (2.15a) and (2.15b) into Equations (2.14b) and (2.14d) yields

�1 ¼
�al

sinh al

M1

Nl
ðcosh al� 1Þ þ �al

sinh al
� 1

� �
Q1

N
þ �al

sinh al

�2 � �1

l
; ð2:16aÞ

�2 ¼ �al
M1

Nl

1� cosh al

sinh al
þ �al cosh al

sinh al
� 1

� �
Q1

N
þ �al cosh al

sinh al

�2 � �1

l
: ð2:16bÞ

The equilibrium of elemental moments can be written as

M1 þM2 � Q1l� Nð�2 � �1Þ ¼ 0;

by which one obtains

Q1 ¼
M1 þM2

l
� N

�2 � �
l

: ð2:17Þ

From Equation (2.10), axial force can be expressed as

N ¼ a2�EI ¼ �EI
ðalÞ2

l2
: ð2:18Þ

Substituting Equation (2.17) into Equations (2.16a) and (2.16b) yields

�1 �
�2 � �1

l
¼ � sinh al� �al cosh al

�ðalÞ2 sinh al

M1l

EI
� sinh al� �al

�ðalÞ2 sinh al

M2l

EI
; ð2:19aÞ

�2 �
�2 � �1

l
¼ � sinh al� �al

�ðalÞ2 sinh al

M1l

EI
� sinh al� �al cosh al

�ðalÞ2 sinh al

M2l

EI
: ð2:19bÞ

From the above two equations, one obtains

M1 ¼
EI

l
4 3�1 þ 2 4�2 � 6 2

�2 � �1

l

� �
; ð2:20aÞ

M2 ¼
EI

l
2 4�1 þ 4 3�2 � 6 2

�2 � �1

l

� �
: ð2:20bÞ
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Substituting Equations (2.20a), (2.20b) and (2.18) into Equation (2.17) yields

Q1 ¼ �Q2 ¼
EI

l
6 2

�1

l
þ 6 2

�2

l
� 12 1

�2 � �
l2

� �
; ð2:20cÞ

where

 1 ¼
1

12 t

�2ðalÞ3 sinh al; ð2:21aÞ

 2 ¼
1

6 t

�ðalÞ2ðcosh al� 1Þ; ð2:21bÞ

 3 ¼
1

4 t

alð�al cosh al� sinh alÞ; ð2:21cÞ

 4 ¼
1

2 t

alðsinh al� �alÞ ð2:21dÞ

and

 t ¼ 2� 2 cosh alþ �al sinh al: ð2:21eÞ

Equations (2.20a)–(2.20c) are factually the elastic stiffness equations for beam elements considering effects

of shear deformation and axial force simultaneously, which can be expressed in matrix form as

EI

l

12

l2
 1

6

l
 2 � 12

l2
 1

6

l
 2

6

l
 2 4 3 � 6

l
 2 2 4

� 12

l2
 � 6

l
 2

12

l2
 � 6

l
 2

6

l
 2 2 4 � 6

l
 2 4 3

2
6666666664

3
7777777775

�1

�1

�2

�2

8>>><
>>>:

9>>>=
>>>;
¼

Q1

M1

Q2

M2

8>>><
>>>:

9>>>=
>>>;

ð2:22aÞ

or

½kge�f�gg ¼ ffgg; ð2:22bÞ

where

f�gg ¼ f�1; �1; �2; �2gT;

ffgg ¼ fQ1; M1; Q2; M2gT;

½kge� ¼
EI

l

12

l2
 1

6

l
 2 � 12

l2
 1

6

l
 2

6

l
 2 4 3 � 6

l
 2 2 4

� 12

l2
 � 6

l
 2

12

l2
 � 6

l
 2

6

l
 2 2 4 � 6

l
 2 4 3

2
66666666664

3
77777777775

ð2:23Þ

and ½kge� is the elastic stiffness matrix of beam elements in tension.
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2.1.2 Beam Element in Compression

The nodal forces and displacements of beam elements in compression are the same as those shown in

Figure 2.1, but N < 0. The differential equilibrium equation can be established in the similar way as

y00 þ a2y ¼ �M1 � Q1z

�EI
; ð2:24Þ

where � is defined by Equation (2.9) as well, but

a2 ¼ � N

�EI
: ð2:25Þ

The solution of Equation (2.24) becomes

y ¼ a cos azþ b sin azþM1 � Q1z

N
:

With the same boundary conditions as adopted in Equation (2.13) and the similar derivation in Section 2.1.1

for beam elements in tension, the elastic stiffness equation of beam elements in compression can be

developed and has the same form as that in Equation (2.22), but

 1 ¼
1

12 c

�2ðalÞ3 sin al; ð2:26aÞ

 2 ¼
1

6 c

�ðalÞ2ð1� cos alÞ; ð2:26bÞ

 3 ¼
1

4 c

alðsin al� �al cos alÞ; ð2:26cÞ

 4 ¼
1

2 c

alð�al� sin alÞ ð2:26dÞ

and

 c ¼ 2� 2 cos al� �al sin al: ð2:26eÞ

2.1.3 Series Expansion of Stiffness Equations

It can be found from Equations (2.21e) and (2.26e) that if a! 0 due to N ! 0, then  t or  c ! 0.

Numerical instability may thus occur when axial forces of beam elements are zero or very small in the frame

analysis using Equation (2.21) or (2.26) directly. Employment of a series expansion of sinha l, cosha l, sina l

and cosa l functions in the definitions of  1 �  4 can avoid numerical instability due to zero or small axial

force. No matter the beam element is in tension or compression,  1 �  4 can be expressed uniformly in

series expansions as

 1 ¼
1

12 
½1þ bðalÞ2�2 1þ

X1
n¼1

1

ð2nþ 1Þ! ½ðalÞ2�n
( )

; ð2:27aÞ

 2 ¼
1

6 
½1þ bðalÞ2�2 1

2
þ
X1
n¼1

1

ð2nþ 2Þ! ½ðalÞ2�n
( )

; ð2:27bÞ

 3 ¼
1

4 

1

3
þ
X1
n¼1

2ðnþ 1Þ
ð2nþ 3Þ! ½ðalÞ2�n þ b 1þ

X1
n¼1

1

ð2nÞ! ½ðalÞ2�n
 !( )

; ð2:27cÞ

 4 ¼
1

2 

1

6
þ
X1
n¼1

1

ð2nþ 3Þ! ½ðalÞ2�n � b

( )
ð2:27dÞ
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and

 ¼ 1

12
þ
X1
n¼1

2ðnþ 1Þ
ð2nþ 4Þ! ½ðalÞ2�n þ b 1þ

X1
n¼1

1

ð2nþ 1Þ! ½ðalÞ2�n
( )

; ð2:27eÞ

where

b ¼ �EI

GAl2
; ð2:28Þ

ðalÞ2 ¼ Nl2

�EI
: ð2:29Þ

It should be noted that N is positive for axial tension force and negative for compression force.

If N ! 0, then  ! 1=12þ b from Equation (2.27e) and numerical difficulty is avoided in the

calculation of  1 �  4. In practical calculation, the first m terms of the series expansion can be used, where

the truncation error can be estimated from Equation (2.27) as

R �
X1

n¼mþ1

½ðalÞ2�n

ð2nÞ! �
ðalÞ2ðmþ1Þ

ð2mþ 2Þ! 1þ
X1
i¼1

ðalÞ2i

ð2mþ 3Þ2i

" #
¼ ðalÞ2ðmþ1Þ

ð2mþ 2Þ!
ð2mþ 3Þ2

ð2mþ 3Þ2 � ðalÞ2

" #
: ð2:30Þ

The upper boundary value of ðalÞ is limited by the tensile yielding load for elements in tension and by the

squash load or the Euler load for elements in compression. If the Euler load of the beam element is less than

the squash load for the element in compression, the upper boundary value of ðalÞ is equal to 2� and the

relationship between m and the truncation error is tabulated in Table 2.1. It can be concluded from Table 2.1

that a good accuracy can be obtained when m ¼ 10.

2.1.4 Beam Element with Initial Geometric Imperfection

The initial imperfection of a steel member is random and of arbitrary shape in reality (McNamee and Lu,

1972). In design codes or researches, initial geometric imperfection is typically assumed to be in a half-sine

curve, as shown in Figure 2.4. Therefore, the imperfection function along the element length z is adopted as

y0 ¼ y0m sin
�z

l
; ð2:31Þ

where y0m is the maximum imperfection at mid-span of the member.

Table 2.1 The relative errors resulting from term number of series

m 10 12 14 16 18

Upper bound of R 3.49� 10�4 1.48� 10�6 3.47� 10�9 4.81� 10�12 4.20� 10�15

y01

y

2

1 1

2

2

y1

Figure 2.4 A beam element with initial geometric imperfection
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As for the beam element in tension and with initial geometric imperfection defined in Equation (2.31),

Equations (2.2), (2.3) and (2.7) become

y001M ¼ �
M

EI
; ð2:32Þ

M ¼ M1 � Q1z� Nðy1 þ y0Þ; ð2:33Þ

y001Q ¼ �
�N

GA
ðy001 þ y000Þ: ð2:34Þ

The governing equation to determine the curvature of the deflection of the element can then be obtained as

y001 ¼ y001M þ y001Q

¼ �M1 � Q1z� Nðy0 þ y1Þ
EI

� �N

GA
ðy000 þ y001Þ:

ð2:35Þ

Substituting Equation (2.31) into Equation (2.35) gives

y001 � a2y1 ¼ �
M1 � Q1z

�EI
þ g sin

�z

l
; ð2:36Þ

where

g ¼ 1

EI
þ �

GA

�2

l2

� �
N

�
y0m: ð2:37Þ

The solution of Equation (2.36) is

y1 ¼ a cosh azþ b sinh azþM1 � Q1z

N
� g

�

l

� �2

þa2

sin
�z

l
; ð2:38Þ

where a and b share the definitions expressed in Equations (2.15a) and (2.15b). Boundary conditions in

Equations (2.13b) and (2.13d) become

y01 ¼ �1 þ
�

GA
½�Q1 � Nðy01 þ y00Þ� ! y01 ¼

1

�
�1 �

�Q1

GA
þ �

l
y0m

� �
� �

l
y0m; ð2:39aÞ

y01 ¼ �2 þ
�

GA
½�Q1 � Nðy01 þ y00Þ� ! y01 ¼

1

�
�2 �

�Q1

GA
� �

l
y0m

� �
þ �

l
y0m: ð2:39bÞ

Following the same procedures as described in Section 2.1.1, one can develop the elastic stiffness equation

for the beam element in tension and with initial geometric imperfection as

M1 ¼
EI

l
4 3�1 þ 2 4�2 � 6 2

�2 � �1

l
þ  5

y0m

l

� �
; ð2:40aÞ

M2 ¼
EI

l
2 4�1 þ 4 3�2 � 6 2

�2 � �1

l
�  5

y0m

l

� �
; ð2:40bÞ

Q1 ¼ �Q2 ¼
EI

l
6 2

�1

l
þ 6 2

�2

l
� 12 1

�2 � �
l2

� �
; ð2:40cÞ

where  1 �  4 and  t are defined in Equation (2.21) and

 5 ¼
1

 tl

�=l

ð�=lÞ2 þ a2

�a2

GA
EI � 1

� �
�ðalÞ3 2 sinh al� �al cosh al� �al½ �: ð2:41Þ

For beam elements in compression and with initial geometric imperfection, a similar derivation can be given

and the stiffness equation has the same form as that in Equation (2.40) but replacing  1 �  4 with those in
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Equations (2.26a)–(2.26d), replacing  t with  c in Equation (2.26e) and replacing  5 in Equation (2.41)

with the following expression:

 5 ¼
1

 cl

�=l

a2 � ð�=lÞ2
�a2

GA
EI þ 1

� �
�ðalÞ3 2 sinh al� �al cosh al� �al½ �: ð2:42Þ

2.2 SPECIAL FORMS OF ELEMENTAL EQUATIONS

The general form of the elastic stiffness equation for the beam element considering effects of shear

deformation, axial force and initial geometric imperfection is given in Equation (2.40). It can be found

that Equation (2.40) may simply regress to Equation (2.20) when y0 ¼ 0, i.e. initial geometric imperfection

is neglected. In this section, special forms of elemental stiffness equations neglecting shear deformation or/

and axial force are presented based on Equation (2.20).

2.2.1 Neglecting Effect of Shear Deformation

If the effect of shear deformation is neglected, i.e. GA!1, then � ¼ 1 from Equation (2.9). Hence,

 1 �  4 in Equation (2.22) become

� for the element in tension:

 1 ¼
1

12 t

ðalÞ3 sinh al; ð2:43aÞ

 2 ¼
1

6 t

ðalÞ2ðcosh al� 1Þ; ð2:43bÞ

 3 ¼
1

4 t

alðal cosh al� sinh alÞ; ð2:43cÞ

 4 ¼
1

2 t

alðsinh al� alÞ; ð2:43dÞ

in which

 t ¼ 2� 2 cosh alþ al sinh al; ð2:43eÞ

� for the element in compression:

 1 ¼
1

12 c

ðalÞ3 sin al; ð2:44aÞ

 2 ¼
1

6 c

ðalÞ2ð1� cos alÞ; ð2:44bÞ

 3 ¼
1

4 c

alðsin al� al cos alÞ; ð2:44cÞ

 4 ¼
1

2 c

alðal� sin alÞ; ð2:44dÞ

in which

 c ¼ 2� 2 cos al� al sin al: ð2:44eÞ
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From Equation (2.28), b ¼ 0 when the effect of shear deformation is neglected (GA!1). The series

expansions of  1 �  4 in Equation (2.27) become

 1 ¼
1

12 
1þ

X1
n¼1

1

ð2nþ 1Þ! ½ðalÞ2�n
( )

; ð2:45aÞ

 2 ¼
1

6 

1

2
þ
X1
n¼1

1

ð2nþ 2Þ! ½ðalÞ2�n
( )

; ð2:45bÞ

 3 ¼
1

4 

1

3
þ
X1
n¼1

2ðnþ 1Þ
ð2nþ 3Þ! ½ðalÞ2�n

( )
; ð2:45cÞ

 4 ¼
1

2 

1

6
þ
X1
n¼1

1

ð2nþ 3Þ! ½ðalÞ2�n
( )

; ð2:45dÞ

in which

 ¼ 1

12
þ
X1
n¼1

2ðnþ 1Þ
ð2nþ 4Þ! ½ðalÞ2�n: ð2:45eÞ

If only the first term in series expansions of ðalÞ2 is adopted, 1=12 can be expressed as

1

12 
� 1� ðalÞ2

15
;

and then  1 �  4 in Equation (2.45) become

 1 � 1þ ðalÞ2

6

" #
1� ðalÞ2

15

" #
� 1þ ðalÞ2

10
; ð2:46aÞ

 2 � 1þ ðalÞ2

12

" #
1� ðalÞ2

15

" #
� 1þ ðalÞ2

60
; ð2:46bÞ

 3 � 1þ ðalÞ2

10

" #
1� ðalÞ2

15

" #
� 1þ ðalÞ2

30
; ð2:46cÞ

 4 � 1þ ðalÞ2

20

" #
1� ðalÞ2

15

" #
� 1� ðalÞ2

60
: ð2:46dÞ

Substituting Equation (2.46) into Equation (2.23) and considering Equation (2.29) can yield the stiffness

matrix of beam elements neglecting effects of shear deformation as

½kge� ¼ ½kg0� þ ½kgG�; ð2:47Þ
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where

½kg0� ¼
EI

l

12

l2

6

l
� 12

l2

6

l

6

l
4 � 6

l
2

� 12

l2
� 6

l

12

l2
� 6

l

6

l
2 � 6

l
4

2
66666666664

3
77777777775
; ð2:48Þ

kgG

� �
¼ N

6

5l

1

10
� 6

5l

1

10

1

10

2l

15
� 6

l
� l

30

� 6

5l
� 6

l

6

5l
� 1

10

1

10
� l

30
� 1

10

2l

15

2
66666666664

3
77777777775
: ð2:49Þ

½kg0� is the elastic stiffness matrix of beam elements neglecting effects of both shear deformation and axial

forces and ½kgG� is the geometric stiffness matrix of beam elements due to axial force.

The effect of axial force on the stiffness of beam elements is reflected directly in Equation (2.47), where

tension axial force ðN > 0Þ can increase the bending stiffness of beam elements whereas compression axial

force ðN < 0Þ can reduce it. It should be noted that Equation (2.47) is the linear approximation of the

stiffness matrix of beam elements considering effects of axial force. The maximum relative error R1 in the

elements of the matrix may be estimated with

R1 �
X1
n¼2

½ðalÞ2�n

ð2nþ 1Þ! �
ðalÞ4

5!
1þ

X1
i¼1

ðalÞ2i

72i

" #
¼ ðalÞ4

120

49

49� ðalÞ2
: ð2:50Þ

The relationship between R1 and ðalÞ2 is listed in Table 2.2. It can be found from Equation (2.50) that when

ðalÞ2 > 3, relatively large error can be produced by Equation (2.47) in the calculation of the stiffness matrix

of beam elements.

2.2.2 Neglecting Effect of Axial Force

When the effect of axial force is neglected, one may let N ¼ 0 and then ðalÞ2 ¼ Nl2=�EI ¼ 0. Expressions

of  1 �  4 may be simplified from Equation (2.27) as

 1 ¼
1

1þ r
; ð2:51aÞ

 2 ¼
1

1þ r
; ð2:51bÞ

 3 ¼
1þ r=4

1þ r
; ð2:51cÞ

 4 ¼
1� r=2

1þ r
; ð2:51dÞ

Table 2.2 The relative error R1 versus (al)2

(al)2 1 1.5 2 2.5 3

R1 0.85% 1.93% 3.48% 5.49% 7.99%
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where

r ¼ 12b ¼ 12�EI

GAl2
: ð2:51eÞ

Substituting Equation (2.51) into Equation (2.23), one can derive the stiffness matrix of beam elements

including only the effect of shear deformation:

½kge� ¼
EI

ð1þ rÞl

12

l2
6

l
� 12

l2

6

l
6

l
4þ r � 6

l
2� r

� 12

l2
� 6

l

12

l2
� 6

l
6

l
2� r � 6

l
4þ r

2
666666664

3
777777775
: ð2:52Þ

2.2.3 Neglecting Effects of Shear Deformation and Axial Force

If N ¼ 0 and GA!1ðr ! 0Þ, the stiffness matrix of beam elements is simplified from Equation (2.52) as

½kge� ¼ ½kg0�; ð2:53Þ

where ½kg0� is defined by Equation (2.48). Obviously, one has

 1 ¼  2 ¼  3 ¼  4 ¼ 1: ð2:54Þ

2.3 EXAMPLES

2.3.1 Bent Frame

In order to illustrate the effects of shear deformation and axial force on the elastic stiffness equation of beam

elements, a simple bent frame is considered (see Figure 2.5). The cross-sectional area of the flange plate is

equal to that of the web plate, i.e. Af ¼ Aw, for the columns in this bent frame. By employing the stiffness

equation of beam elements to the columns of the bent frame and introducing the boundary conditions

considering symmetry of the frame, the elastic stiffness equation of the bent frame in terms of the drift and

rotation at the top of the columns can be expressed as

EI

l

12

l2
 1

6

l
 2

6

l
 2 4 3

2
664

3
775 �

�

( )
¼

F

0

( )
; ð2:55Þ

l w

Figure 2.5 A bent frame and its column section
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where I is the moment of inertia of the cross section of the column and l is the length of the column.

The solution of Equation (2.55) is

� ¼  3

12 1 3 � 9 2
2

Fl3

EI
: ð2:56Þ

Let �0 be the column drift neglecting effects of axial force and shear deformation, i.e.

�0 ¼
Fl3

EI
; ð2:57Þ

then

�

�0

¼  3

12 1 3 � 9 2
2

: ð2:58Þ

Introduce a parameter C and the slenderness of the cantilever column l as

C ¼ P

NE

; ð2:59Þ

l ¼ 2lffiffiffiffiffiffiffiffi
I=A

p ; ð2:60Þ

where NE ¼ �2EI=ð2lÞ2 is the Euler load.

Noticing E=G ¼ 2:6 for steel, one can obtain

� ¼ 1� �P

GA
¼ 1� 76:983C

l2
; ð2:61Þ

ðalÞ ¼

ffiffiffiffiffiffiffiffi
Pl2

�EI

s
¼ �

2

ffiffiffiffi
C

�

s
: ð2:62Þ

When C 6¼ 0,  1 �  3 in Equation (2.58) are calculated with Equation (2.26), and when C ¼ 0 with

Equation (2.51), where

r ¼ 12�EI

GAl2
¼ 374:4

l2
: ð2:63Þ

Table 2.3 lists the relationship between �=�0 with C and l. It can be concluded from Table 2.3 that

(1) Both shear deformation and axial force affect the stiffness of beam elements, where the effect of shear

deformation relates to the slenderness and the effect of axial force relates to the ratio of axial force to the

Euler load, C. As C is inversely proportional to the square of slenderness, the smaller the beam

slenderness, the larger the effect of shear deformation and the smaller the effect of axial force on the

Table 2.3 The relationship between l and C

�=�0

C l¼ 15 l¼ 20 l¼ 30 l¼ 50 l¼ 80 l¼ 120

0 1.416 1.234 1.104 1.037 1.015 1.007

0.05 1.513 1.308 1.166 1.091 1.067 1.060

0.1 1.625 1.394 1.234 1.155 1.127 1.118

0.3 2.320 1.893 1.622 1.493 1.450 1.436

0.6 6.920 4.200 3.105 2.685 2.555 2.514
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bending stiffness of beam elements. Conversely, the larger the beam slenderness, the smaller the effect of

shear deformation and the larger the effect of axial force.

(2) Effects of shear deformation and axial force interact on beam stiffness. The joint effects are larger than

the superposition of individual effect of shear deformation and axial force, respectively.

(3) When l < 30, the effect of shear deformation on the stiffness of beam elements cannot be neglected, but

when l > 50 it can be neglected approximately.

(4) When C > 0:1, the effect of axial force on the stiffness of beam elements cannot be neglected, but when

C < 0:05 it can be neglected approximately.

2.3.2 Simply Supported Beam

The rotation at the left end of a simply supported steel beam is examined as shown in Figure 2.6. The elastic

and shear modulus of the steel material, E and G, are 206 GPa and 80 GPa, respectively. Only one element is

used to represent the entire beam.

The effects of initial geometric imperfection (y0m ¼ 3 mm and y0m ¼ 10 mm) are involved in the analysis

of the beam considering two values of C, C ¼ 0:007 and C ¼ 0:2. The rotations at the left end of the beam

subjected to different effects are listed in Table 2.4. The following observations can be found:

(1) The larger the axial compression force, the smaller the bending stiffness of the beam element.

(2) The initial geometric imperfection may significantly reduce the bending stiffness of the beam subjected

to axial compression.

(3) The joint effects of shear deformation, axial force and initial geometric imperfection on stiffness of

beam elements are larger than the superposition of their individual effect.

Table 2.4 Rotations at the left end of the beam subjected to different effects

C¼ 0.007 C¼ 0.2

Rotation Relative Rotation Relative

Effects considered (rad) � 10�3 error (%) (rad)� 10�3 error (%)

Idealized beam a 1.416 — 1.416 —

Effect of axial force (1) 1.421 0.353 1.645 16.172

Effect of shear deformation (2) 1.496 5.650 1.496 5.650

Effect of initial yom ¼ 3 mm (3) 1.419 0.212 1.419 0.212

geometric

imperfection yom ¼ 10 mm (4) 1.425 0.636 1.425 0.636

(1)þ (2) 1.502 6.073 1.737 22.670

(1)þ (2)þ (3) 1.524 7.627 2.561 80.862

(1)þ (2)þ (4) 1.575 11.229 4.485 216.737

a Idealized beam means that effects of axial force, shear deformation and initial geometric imperfection
are neglected.

3000 

M

P

300 

15 

20
 

30
0 

Figure 2.6 A simply supported steel beam
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3 Elastic Stiffness Equation
of Tapered Beam Element

3.1 TAPERED BEAM ELEMENT

Shear deformation has been verified to significantly influence the structural behaviour of prismatic steel

members with I-section under certain conditions, and this conclusion should be true for tapered members as

well. It is possible that effects of axial force and shear deformation will act simultaneously on tapered

members and influence the stiffness of structures consisting of tapered members. Although there are some

works on this topic (Banerjee, 1986; Cleghorn and Tabarrok, 1992; Just, 1977), the aim of this chapter is to

derive, for the first time according to the authors’ knowledge, the governing equilibrium differential

equation of tapered beam elements, including the joint effects, and to propose a method using the Chebyshev

polynomial approach to obtain the elemental stiffness matrix.

3.1.1 Differential Equilibrium Equation

The cross section of steel tapered members is usually I-shaped, hot-rolled or welded by three plates. The

height of the web is frequently linearly varied, whereas the flanges are symmetric and kept uniform in width

along the length direction, as shown in Figure 3.1. For the tapered element described above, the axis of the

element remains straight, and the applied forces as well as the corresponding deformations of the element

can thus be modelled in the same manner as that shown in Figure 2.1. Following the same procedure as in

Section 2.1.1, the equilibrium differential equation of the tapered beam element can be established.

Under the simultaneous action of moment, shear force and axial force (positive for tension and negative

for compression), the element deflection consists of two portions. One is induced by the bending deforma-

tion and the other by the shear deformation, namely

y ¼ yM þ yQ: ð3:1Þ

The curvature of the element caused by bending is

y00M ¼ �
M

E � IðzÞ ; ð3:2Þ

where IðzÞ is the moment of inertia of the cross section at distance z from the left end of the element, E is the

elastic modulus and M is the cross-sectional moment which can be expressed by

M ¼ M1 � Q1 � z� N � y: ð3:3Þ

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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The slope of the element caused by shearing is

y0Q ¼
� � Q

G � AðzÞ ¼
�

G � AðzÞ �
dM

dz
; ð3:4Þ

where AðzÞ is the area of the cross section at distance z, Q is the cross-sectional shear force, G is the shear

modulus and � is the shear shape factor varying with the shape of the cross section. For the I-shaped section,

� can be approximately calculated by

� ¼ AðzÞ
AwðzÞ ; ð3:5Þ

where Aw ðzÞ is the cross-sectional area of the web at the same cross section for AðzÞ.
Substituting Equation (3.5) into Equation (3.4) gives

y0Q ¼
1

G � AwðzÞ
� dM

dz
; ð3:6Þ

and substituting Equation (3.3) into Equation (3.6) leads to

y0Q ¼
1

G � AwðzÞ
� ð�Q1 � N � y0Þ: ð3:7Þ

Differentiating Equation (3.7) gives

y00Q ¼
1

G � AwðzÞ
� A0wðzÞ

AwðzÞ
� ðQ1 þ N � y0Þ � N � y00

� �
: ð3:8Þ

Differentiating Equation (3.1) twice and associating Equation (3.2) with Equation (3.8), we obtain

y00 ¼ y00M þ y00Q ¼ �
M1 � Q1 � z� N � y

E � IðzÞ þ 1

G � AwðzÞ
� A0wðzÞ

AwðzÞ
� ðQ1 þ N � y0Þ � N � y00

� �
: ð3:9Þ

Equation (3.9) can be simplified as

aðzÞ � y00 � bðzÞ � N � y0 � N � y ¼ bðzÞ � Q1 � ðM1 � Q1 � zÞ; ð3:10Þ

dt
d

A–A

A

A

z

y

L

s

Figure 3.1 A steel tapered member
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where

aðzÞ ¼ E � IðzÞ � gðzÞ;

bðzÞ ¼ E � IðzÞ � A0wðzÞ
G � A2

wðzÞ
;

gðzÞ ¼ 1þ N

G � AwðzÞ
:

Equation (3.10) is the governing equation for the equilibrium of tapered beam elements. It should be

noted significantly that Equation (3.10) has a general form for any solid or latticed nonprismatic members,

other than the forenamed I-shaped sectional tapered members, as long as an appropriate expression is

replaced for shear factor � in Equation (3.5).

3.1.2 Stiffness Equation

Let � ¼ z
L
; Equation (3.10) is converted to nondimensional form by

að�Þ � y00 � bð�Þ � L � N � y0 � L2 � N � y ¼ bð�Þ � L2 � Q1 � L2 � ðM1 � Q1 � L � �Þ: ð3:11Þ

By using the Chebyshev polynomial, the functions yð�Þ; að�Þ and bð�Þ can be approached by

yð�Þ ¼
XM
n¼0

yn � �n; ð3:12aÞ

að�Þ ¼
XM
n¼0

an � �n; ð3:12bÞ

bð�Þ ¼
XM
n¼0

bn � �n: ð3:12cÞ

Substituting Equation. (3.12) into Equation (3.11) leads to

XM
n¼0

Xn

i¼0

aiðnþ 2� iÞðnþ 1� iÞynþ2�i

" #
� �n

� L � N �
XM
n¼0

Xn

i¼0

biðnþ 1� iÞynþ1�i

" #
� �n � L2 � N �

XM
n¼0

yn � �n

¼ L2 � Q1 �
XM
n¼0

bn � �n � L2 �M1 þ L3 � Q1 � �:

ð3:13Þ

According to the principle that the factors at the two sides of Equation (3.13) for the same exponent of

� should be equal (Eisenberger, 1995), we have

� for n ¼ 0:

2a0 � y2 � L � N � b0 � y1 � L2 � N � y0 ¼ L2 � Q1 � b0 � L2 �M1; ð3:14Þ

� for n ¼ 1:

6a0 � y3 þ 2a1 � y2 � L � Nð2b0 � y2 þ b1 � y1Þ � L2 � N � y1

¼ L2 � Q1 � b1 þ L3 � Q1;
ð3:15Þ
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� for n 	 2:

Xn

i¼0

aiðnþ 2� iÞðnþ 1� iÞynþ2�i � L � N

�
Xn

i¼0

biðnþ 1� iÞynþ1�i � L2 � N � yn ¼ L2 � Q1 � bn:

ð3:16aÞ

Rewrite Equation (3.16a) as

ynþ2 ¼ L � N �
Xn

i¼0

biðnþ 1� iÞynþ1�i þ L2 � N � yn þ L2 � Q1

" bn �
Pn
i¼1

aiðnþ 2� iÞðnþ 1� iÞynþ2�i

a0ðnþ 2Þðnþ 1Þ :

ð3:16bÞ

As aðzÞ and bðzÞ are functions known ahead, the series fang and fbng are determinate. Hence, it can be

found from Equation (3.16b) that any yn in series fyngðn 	 4Þ can be expressed by one of the linear

combinations of y0; y1; y2; y3 and Q1, and series fyngmay be determined when the values of y0; y1; y2; y3 and

Q1 are obtained.

Consider the following boundary conditions:

� for � ¼ 0:

yð0Þ ¼ y0 ¼ 0; ð3:17aÞ

y0ð0Þ ¼ y1 ¼
L

gð0Þ �1 �
Q1

G � Awð0Þ

� �
; ð3:17bÞ

� for � ¼ 1:

yð1Þ ¼
XM
n¼0

yn ¼ c1y1 þ c2y2 þ c3y3 þ c4Q1 ¼ �2 � �1; ð3:18aÞ

y0ð1Þ ¼
XM
n¼0

n � yn ¼ c5y1 þ c6y2 þ c7y3 þ c8Q1 ¼
L

gð1Þ �2 �
Q1

G � Awð1Þ

� �
: ð3:18bÞ

The reason that yð1Þ and y0ð1Þ in Equation (3.18) are expressed as the linear combinations of y1, y2, y3 and

Q1 is the conclusion obtained from Equation (3.16b) and y0 ¼ 0 from Equation (3.17a).

Letting y1 ¼ 1 and y2 ¼ y3 ¼ Q1 ¼ 0, c1 and c5 can be determined from Equation (3.18) by

c1 ¼ 1þ
XM
i¼4

yð1Þn ; ð3:19aÞ

c5 ¼ 1þ
XM
i¼4

n � yð1Þn : ð3:19bÞ

where fyð1Þn g is the series of fyng determined under the initial condition y1 ¼ 1, y2 ¼ y3 ¼ Q1 ¼ 0.

If y2 ¼ 1 and y1 ¼ y3 ¼ Q1 ¼ 0; c2 and c6 can be determined in the same way. So do c3 and c7, c4 and c8.

So far y1, y2, y3, Q1 and M1 are yet unknown variables. If the boundary deformations of the elements �1,

�2, �1 and �2 are known, the five equations numbered (3.14), (3.15), (3.17b), (3.18a) and (3.18b) can be
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combined for solving Q1 and M1. The applied forces at the other end of the elements, Q2 and M2, may be

expressed as a function of Q1 and M1 by considering the following equilibrium conditions:

Q2 þ Q1 ¼ 0; ð3:20Þ
M2 þM1 � Q1 � L� N � ð�2 � �1Þ ¼ 0: ð3:21Þ

Then, the stiffness equation of the element is obtained as

½k
 � f�g ¼ ffg; ð3:22Þ

where

f�g ¼ ½�1; �1; �2; �2
T;
ffg ¼ ½Q1;M1;Q2;M2
T;

½k
 ¼

��1 �2 �1 �3

��4 �5 �4 �6

�1 ��2 ��1 ��3

��7 �8 �7 �9

2
6664

3
7775:

ð3:23Þ

The expressions of �iði ¼ 1; 2; . . . ; 9Þ are given in Section 3.3.2.

In theory, the approach described above is accurate. The unique possible error comes computationally

from the representation of the realistic deflection y and functions a and b by the Chebyshev polynomial with

definite terms, which affects directly not more than the coefficients c1 � c8. So long as the number of terms

for the Chebyshev polynomial, i.e. M, is suitably chosen to make the coefficients c1 � c8 accurate enough,

the satisfactory accuracy of the stiffness matrix of the element can be achieved.

3.2 NUMERICAL VERIFICATION

3.2.1 Symmetry of Stiffness Matrix

The stiffness matrix expressed in Equation (3.23) is of unsymmetrical form. To verify it is actually

symmetrical in numerical values, take a steel tapered fixed-hinged beam, shown in Figure 3.2, as an

example. The height of the cross section of the beam is varied linearly from 400 to 200 mm. The values

of the elements in the stiffness matrix for this beam obtained by the approach proposed hereinbefore

considering effects of axial force and shear deformation have the following relations:

�2 ¼ 3:390 034� 107 ¼ ��4 ¼ 3:390 029� 107;

�3 ¼ 2:018 891� 107 ¼ ��7 ¼ 2:018 896� 107;

�6 ¼ 2:308 029� 107 ¼ �8 ¼ 2:308 043� 107:

Obviously, the stiffness matrix is perfectly symmetric.

100 kN

E=206 GPa G=80 GPa

1500 1500

300

15

20

20
0–

40
0400 kN

Figure 3.2 A steel tapered fixed-hinged beam (mm)
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3.2.2 Static Deflection

Take the same tapered beam, shown in Figure 3.2, as an example for calculating the deflection at mid-span of

the member induced by a lateral point force. The results obtained through representing the whole beam by

two tapered Timoshenko–Euler beam elements proposed are compared with those obtained by FEM with

stepped representation of the beam in Table 3.1. The beam is divided into 10 segments in FEM. Each

segment is modelled by one uniform Timoshenko–Euler beam element (Li and Shen 1995) with the cross

section at mid-length of the segment. A compressive axial load with a value of 400 kN is applied at the

hinged end of the beam when considering the effect of axial force.

3.2.3 Elastic Critical Load

Figure 3.3 gives a steel tapered cantilever column used by Karabalis (1983) as a numerical example for

calculating the elastic critical axial load. The results obtained by Karabalis are compared with those obtained

by the approach proposed, using a single tapered Timoshenko–Euler beam element, as in Table 3.2. As

approximate geometrical stiffness matrix was employed by Karabalis, the result obtained by the approach

proposed is more believable. Moreover, it is reasonable that the elastic critical axial load is reduced when

including effects of shear deformation on member stiffness.

3.2.4 Frequency of Free Vibration

The frequencies of the first and second modes of the tapered cantilever beam shown in Figure 3.4 are

determined by a single tapered Timoshenko–Euler beam element representation and compared with the

results reported by Gupta (1986) and Wekezer (1989) in Table 3.3. The mass matrix used in the computation

proposed is cited from Karabalis (1983). As expected, the results obtained by the approach proposed agree

very with the values by Gupta (1986) when effects of shear deformation are excluded, but depart slightly on

Table 3.1 Deflection at mid-span � of a fixed-hinged beam (mm)

Method Case 1 Case 2 Case 3 Case 4

Proposed (1) 0.4078 0.4091 0.6687 0.6716

FEM (2) 0.4097 0.4110 0.6705 0.6733

½ð2Þ � ð1Þ
=ð2Þ (%) 0.46 0.46 0.27 0.25

Note: Case 1: neither N nor S; case 2: only N; case 3: only S; case 4: both N and S; N¼ axial

force effects; S¼ shear deformation effects.

P

E=206.85 GPa
G=80 GPa

25
4

2.54

25.4

2.
03

2

50
.8
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Figure 3.3 A steel tapered cantilever column (mm)
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the first frequency and significantly on the second frequency when effects of shear deformation are included.

Also, it is important to emphasize that the utilization of approximate shape functions in FEM or stepped

representations of the tapered beams yield poor results, as given by Wekezer (1989).

3.2.5 Effect of Term Number Truncated in Polynomial Series

As mentioned above, the number of terms for the Chebyshev polynomial M is the unique factor affecting the

accuracy of elemental stiffness computation. Generally, the larger the number M, the more accurate the

computation. But a larger M will consume more computation time and thus reduce the advantage of the

proposed technique. So making efforts to choose a suitable M, meeting the needs of computational

efficiency and accuracy simultaneously, is worthwhile for practical applications. The relative errors of

the results of the analyses obtained hereinbefore in Sections 3.2.2–3.2.4 with varying M are shown in

Figure 3.5. It is found that a suitable M of around 13 will produce satisfactory results (Li, 2001).

3.2.6 Steel Portal Frame

A gable frame, as shown in Figure 3.6, is analysed as a comprehensive utilization of the proposed method (Li

and Li, 2002). This three-bay pitched-roof gable frame comprises tapered external columns (EC), tapered

roof beams (RB1, RB2 and RB3) and prismatic internal sway columns (ISC), which have the same sectional

dimensions but the height of webs. Table 3.4 lists the section heights of two ends for all the members with

linear variation of the section height along the length direction.

The planar behaviour of this gable frame, such as static deflection, natural frequency and elastic critical

load, is obtained by both the stepped representation of tapered frame members using general structural

analysis software STAAD III and the tapered beam element proposed assuming that failures of out-of-plane

and local buckling are prevented. STAAD III can conduct only linear analyses and cannot be used to obtain

elastic critical load. Table 3.5 summarizes these results.

A comparison of results in Table 3.5 indicates a general coincidence between the proposed method and

STAAD III. It can be found that nonlinearity due to axial force in structural members and shear deformation

Table 3.2 Elastic critical axial load Pcr of the tapered cantilever column (kN)

Pcr

Case Proposed (1) Karabalis (2) ½ð2Þ � ð1Þ
=ð1Þð%Þ
1 238.04 241.08 1.28
2 216.62 No result No comparison

Note: Case 1: without effect of shear deformation; case 2: with effect of shear deformation.

E=206.85 GPa

4572

203

11.4

17
.8

57
2–

22
8

G=80 GPa r=7997 kg/m3

Figure 3.4 A steel tapered cantilever beam (mm)
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Table 3.3 First and second frequencies, f1 and f2, of the tapered cantilever beam

Source f1 (Hz) f2 (Hz)

Proposed 30.15 (29.27) 149.11 (131.06)

Gupta (1986) 30.533 152.20

Wekezer (1989) 39 233

Note: The values in the parentheses include the effect of shear deformation.

Table 3.4 Linear variation of section height along the length direction for all the members (mm)

Members

EC ISC RB1 RB2 RB3

Section height of two ends ds 200 300 400 400 300

dl 600 300 600 600 600

Table 3.5 Results of the gable frame analysis

Item Response Description

Joint &!! &## &!! Vertical loads applied at each

Static deflection (mm) STAAD III 10.38 11.44 10.62 purlin position with 20 kN,

Proposed 10.50 11.54 10.71 except at loads eava positions

(11.21) (12.08) (11.45) with 15 kN; horizontal applied

rightly at the top of left EC

with 12 kN and right EC

with 6 kN

Order First Second Third

Natural frequency (Hz) STAAD III 2.04 4.71 8.21 No additional mass considered

Proposed 1.92 5.03 8.30 but the gable frame’s self-mass

(1.76) (5.23) (8.18)

Elastic critical load (kN) Proposed (2160) Vertical concentrated loads

equally applied at the top of

each EC and ISC

Note: The values in the parentheses include effects of axial forces in members (namely geometrical nonlinearity) and shear

deformation.

δ

f 2
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–40
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Figure 3.5 Relative errors in computation of �, f1, f2 and Pcr versus number of terms for the Chebyshev polynomial M
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leads to significant deviation from linear analysis. Approximately, static deflection deviates about 5 %, and

natural frequencies and critical load deviate about 10 %.

3.3 APPENDIX

3.3.1 Chebyshev Polynomial Approach (Rice, 1992)

A function f ðxÞ defined in the range ½�1; 1
 can be approached approximately by

f ðxÞ � 1

2
C0 þ

XM
j¼1

CjTjðxÞ; ð3:24Þ

where Cj are the Chebyshev factors being formulated by

Cj ¼
2

M

XM
k¼1

f ðxkÞTjðxkÞ ¼
2

M

XM
k¼1

f cos
2k � 1

2M
	


 �
 ��
� cos

jð2k � 1Þ
2M

	


 ��
ðj ¼ 0; 1; . . . ;MÞ:

ð3:25Þ

For any function defined in the range ½a; b
, it can be converted to a function in the range ½�1; 1
 by

translating x with

y ¼ ½2x� ðaþ bÞ

ðb� aÞ : ð3:26Þ

If x 2 ½a; b
 and the corresponding converted variable y 2 ½�1; 1
, the Chebyshev polynomial expression

for f ðxÞ can be obtained by the Chebyshev iteration formula. It is to find a series of pj to make

f ðxÞ � 1

2
C0 þ

XM
j¼1

CjTjðyÞ ¼
XM
j¼0

qj � yj ¼
XM
j¼0

pj � xj; ð3:27Þ

where qj are temporary variables for determining pj.

From the Clenshaw formula, we have

XM

j¼0

qj � yj ¼ W1ðyÞ � y�W2ðyÞ þ
1

2
C0; ð3:28Þ

where W1ðyÞ and W2ðyÞ are polynomials with M � 1 and M � 2 exponents, respectively, which can be

obtained by the following iterative formula:

WMþ2ðyÞ ¼ WMþ1ðyÞ ¼ 0; ð3:29Þ
WjðyÞ ¼ 2Wjþ1ðyÞ �Wjþ2ðyÞ þ Cj ðj ¼ 0; 1; . . . ;M:Þ: ð3:30Þ
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12

300

15

dl
–d

S

G=80 GPa
r=7850 µg/m3

2

3

Figure 3.6 A gable frame with tapered components (mm)
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When all the factors in W1ðyÞ and W2ðyÞ are determined, qj can be obtained and further used for

determining pj.

3.3.2 Expression of Elements in Equation (3.23)

�1 ¼
 15

 11 15 �  14 12

; �2 ¼
 13 15 �  16 12

 11 15 �  14 12

; �3 ¼ �
 12 14

 11 15 �  14 12

; �4 ¼
1�  11�1

 12

;

�5 ¼
 13 �  11�2

 12

; �6 ¼ �
 11�3

 12

; �7 ¼ �1Lþ N � �4; �8 ¼ �2L� �5; �9 ¼ �3L� �6;

 1 ¼ �
gð0Þ � L

1þ gð0Þ � N ;  2 ¼
L

1þ gð0Þ � N ;  3 ¼ �
gð1Þ � L

1þ gð1Þ � N ;  4 ¼
L

1þ gð1Þ � N

 5 ¼
L � b0ðN �  1 þ LÞ

2a0

;  6 ¼ �
L2

2a0

;  7 ¼
L � N � b0 �  2

2a0

;

 8 ¼
2ðL � N � b0 � a1Þ 5 þ L � ðb1 þ LÞðN �  1 þ LÞ

6a0

;  9 ¼
2ðL � N � b0 � a1Þ 6

6a0

;

 10 ¼
2ðL � N � b0 � a1Þ 7 þ L � Nðb1 þ LÞ 2

6a0

;  11 ¼ c1 1 þ c2 5 þ c3 8 þ c4;

 12 ¼ c2 6 þ c3 9;

 13 ¼ �ðc1 2 þ c2 7 þ c3 10Þ;  14 ¼ c5 1 þ c6 5 þ c7 8 þ c8 �  3;

 15 ¼ c6 6 þ c7 9;

 16 ¼ �ðc5 2 þ c6 7 þ c7 10Þ:
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4 Elastic Stiffness Equation
of Composite Beam Element

4.1 CHARACTERISTICS AND CLASSIFICATION OF COMPOSITE BEAM

Concrete slabs are generally laid on the steel beams in multi-storey, high-rise steel buildings. A slab on a

beam will bend independently due to vertical floor loads, and a relative shear slip occurs on the interface if

there is no connection between them (Figure 4.1). In this case, the concrete slab and the steel beam resist

vertical loads jointly but as individual components.

A shear connector can be designed and laid on the slab–beam interface to restrain the relative shear slip

(see Figures 4.2 and 4.3), in which case the beam is a concrete–steel composite one and resists vertical floor

loads as an integrity (Viest et al., 1997).

Composite beams can be categorized into the following two types according to the performance of shear

studs connecting concrete slabs and steel beams:

� Composite beams with full composite action (Figure 4.2). Sufficient shear connectors are designed for the

fully composite beams so that they can resist the shear force on the interface between concrete slabs and

steel beams, and the relative slip is small. The full bending capacity of the composite beams can be

ensured in this case.

� Composite beams with partial composite action (Figure 4.3). Insufficient shear connectors are designed

for the partially composite beams so that they cannot fully resist the shear force on the interface between

concrete slabs and steel beams, and the relative slip is relatively large. The full bending capacity of the

partially composite beams cannot be achieved. When the number of shear connectors is less than 50 % of

that required for fully composite beams, the composite action between concrete slabs and steel beams is

actually small, and it is negligible in engineering practice.

A partially composite beam may be a practical option in structural design for the consideration of

construction economy, under the condition that the relative slip between the concrete–slab flange and the

steel beam is taken into account in the design.

The most efficient and effective way for the analysis of steel frames is the finite element method (FEM)

with beam–column members. Inconsistency of degree of freedom (DOF) will occur in finite element

analysis of composite frames if two independent axial DOFs are introduced at the two ends of composite

beams to consider effects of the relative shear slip (Dissanayeke, Burgess and Davidson, 1995; Faella,

Martinelli and Nigro, 2001). To avoid such inconsistency, the elastic stiffness equation of a composite beam

element, considering effects of relative slip, is derived based on elastic interaction theory proposed by

Newmark, Siess and Viest (1951) through the solution of the governing differential equilibrium equation of

the composite element.

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
# 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03061-5



M M

Relative slip Concrete slab

Steel beam

(a) (b)

Figure 4.1 Beam without composite action: (a) force and deformation of steel beam and concrete slab; (b) stress

distribution along section height

M M

Shear connectors

Concrete slab

Steel beam

(a) (b)

Figure 4.2 Beam with full composite action: (a) force and deformation of steel beam and concrete slab; (b) stress

distribution along section height

s1h
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h0

M M
Steel beam

Shear connectors

Concrete slab

Relative slip

(a) (b)

Figure 4.3 Beam with partial composite action: (a) force and deformation of steel beam and concrete slab; (b) stress

distribution along section height
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4.2 EFFECTS OF COMPOSITE ACTION ON ELASTIC STIFFNESS
OF COMPOSITE BEAM

A typical section of a steel–concrete composite beam is illustrated in Figure 4.4. Effects of composite action

on the elastic stiffness of composite beams are studied in the following. The plane section is assumed to

remain plane in the deformed beam, and an identical elastic modulus for concrete in compression and in

tension within elastic scope, namely under the condition of no crushing in compression and no crack in

tension, is adopted.

4.2.1 Beam without Composite Action

If there is no composite action between the steel beam and the concrete slab, they will deform individually

and have, in the scope of elastic small deformation, the same deflection curves. The strain distribution along

the section height of the beam is given in Figure 4.5. The internal moments in steel and concrete sections are

Ms ¼ �EsIs; ð4:1aÞ
Mc ¼ �EcIc; ð4:1bÞ

where � is the curvature of the common deflection, and EsIs and EcIc are the bending stiffnesses of steel and

concrete sections, respectively.

With the equilibrium of internal and external moments, one has

M ¼ Mc þMs ¼ �ðEcIc þ EsIsÞ; ð4:2Þ

where M is the external moment applied on the composite section.

t

h

b

Figure 4.4 A steel–concrete composite beam

d

D
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Eg

r

Mc

sM

K

K

Oc Oc

Os Os

Geometric centre 
of concrete slab

(a) (b) (c) 

Geometric centre 
of steel beam

Figure 4.5 Composite beam without composite action: (a) no composite action section; (b) strain distribution along

sectional height; (c) internal forces
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By Equation (4.2), the bending stiffness of the composite beam without composite action ðEIÞ0comp is

equal to the algebraic sum of the bending stiffnesses of the steel and concrete components, namely

ðEIÞ0comp ¼
X

EI ¼ EcIc þ EsIs: ð4:3Þ

A strain difference can be seen along the steel–concrete interface, as shown in Figure 4.1, which is defined as

slip strain as

"slip ¼
ds

dx
¼ "c � "s ¼ �

D

2
þ � d

2
¼ � D

2
þ d

2

� �
¼ MP

EI
� r; ð4:4Þ

where D and d are the thicknesses of the concrete slab and the height of the steel beam, respectively, and

r ¼ D=2þ d=2 is the distance from the central axis of the concrete slab to that of the steel beam.

Obviously, a composite beam without composite action behaves, in elastic state, actually as an ordinary

beam with a bending stiffness of
P

EI ¼ EcIc þ EsIs.

4.2.2 Beam with Full Composite Action

In the case of full composite action, strain is continuous at the steel–concrete interface and linearly

distributed along the total section height of the beam, as shown in Figure 4.6, where Ca;1 is the distance

from the central axis of the total section to that of the concrete slab. The internal moments in steel and

concrete are the same as in Equations (4.1a) and (4.1b). Due to the existence of shear on the steel–concrete

interface, the following internal axial compression in concrete, N, and axial tension in steel, T , are produced:

N ¼ "cEcAc ¼ � � Ca;1EcAc; ð4:5Þ
T ¼ "sEsAs ¼ � � ðr � Ca;1ÞEsAs; ð4:6Þ

where EsAs and EcAc are the axial stiffnesses of the steel and concrete components, respectively.

With view of N ¼ T , the height of the neutral axial Ca;1 of the total section can be solved as

Ca;1 ¼
EsAsr

EcAc þ EsAs

: ð4:7Þ

The equilibrium of internal and external moments leads to

M ¼ Mc þMs þ N � r
¼ � � ðEcIc þ EsIsÞ þ � � Ca;1EcAcr:

ð4:8Þ

d
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r M
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O O
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of steel beam

(a) (b) (c) 

Geometric centre of 
entire composite beam

Geometric centre 
of concrete slab

Figure 4.6 Composite beam with full composite action: (a) full composite action section; (b) strain distribution along

sectional height; (c) internal forces
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Substituting Equation (4.7) into the above equation yields

M ¼ � � EcIc þ EsIs þ
EcAc � EsAs

EcAc þ EsAs

r2

� �
: ð4:9Þ

Let

1

EA
¼ 1

EcAc

þ 1

EsAs

; ð4:10Þ

then Equation (4.9) becomes

M ¼ � � ðEcIc þ EsIs þ EA � r2Þ ¼ � � ðEIÞ1comp; ð4:11Þ

where ðEIÞ1comp is the bending stiffness of the composite beam with full composite action and is given by

ðEIÞ1comp ¼
X

EI þ EA � r2: ð4:12Þ

From Equations (4.8) and (4.12), it can be found that the additional axial forces in the steel and concrete

components due to composite action lead to an evident increase of bending stiffness EA � r2 from
P

EI

(bending stiffness without composite action).

4.2.3 Beam with Partial Composite Action

Restrained slip occurs in partial composite action. The strain diagram is given in Figure 4.7. Denote Cc and

Cs as the distances from the neutral axes of concrete and steel components to their top surfaces, respectively;

the slip strain at the steel–concrete interface can then be expressed as

"slip ¼ "c � "s ¼ ðD� CcÞ � �þ Cs � � ¼ ðD� Cc þ CsÞ � �: ð4:13Þ

The compression in the concrete slab and the tension in the steel beam are given by

N ¼ � � Cc �
D

2

� �
EcAc; ð4:14Þ

T ¼ � � d

2
� Cs

� �
EsAs: ð4:15Þ

The equilibrium of N and T , i.e. N ¼ T , results in

EcAcCc þ EaAsCs ¼ EcAc

D

2
þ EsAs

d

2
: ð4:16Þ

Figure 4.7 Composite beam with partial composite action: (a) partial composite action section; (b) strain distribution

along sectional height; (c) internal forces
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Combining Equations (4.13) and (4.16), Cc and Cs can be expressed with "slip and �:

Cc ¼
1

EcAc

EsAs

d

2
þ D

� �
þ EcAc

D

2
� "slip

�
EsAs

� �
; ð4:17Þ

Cs ¼
1

EcAc

EsAs

d

2
þ D

� �
� EcAc

D

2
þ ðEcAc � EsAsÞ

"slip

�

� �
: ð4:18Þ

Substituting Equation (4.17) back into Equation (4.14) yields

N ¼ EAr � �� EA"slip: ð4:19Þ

The equilibrium of internal and external moments gives

M ¼ Mc þMs þ N � r
¼ �ðEcIc þ EsIsÞ þ EAr2 � �� EA � r"slip

¼ ðEIÞ1comp � �� EA � r"slip

¼ ðEIÞcomp � �;

ð4:20Þ

where ðEIÞcomp is the bending stiffness of the composite beam with partial composite action and is given by

ðEIÞcomp ¼ ðEIÞ1comp � EA � r"slip

�
: ð4:21Þ

Obviously, the relationship between moment and curvature of the composite beam with partial composite

action is no longer linear. In addition to sectional and material parameters, the bending stiffness of the

partially composite beam depends also on the slip strain. In Section 4.3, the elastic stiffness equation of the

partially composite beam, based on Newmark partial interaction theory, will be derived.

4.3 ELASTIC STIFFNESS EQUATION OF STEEL–CONCRETE
COMPOSITE BEAM ELEMENT

4.3.1 Basic Assumptions

The following assumptions are employed in this section:

(1) Both steel and concrete are in elastic state.

(2) The shear stud is also in elastic state, and the shear–slip relationship for single shear stud is

Q ¼ K � s; ð4:22Þ

where K is the shear stiffness of a stud with unit N/mm.

(3) The composite action is smeared uniformly on the steel–concrete interface, although the actual shear

studs providing composite action are discretely distributed.

(4) The plane section of the concrete slab and the steel beam remains plane independently, which indicates

that the strains are linearly distributed along steel and concrete section heights, respectively.

(5) Lift-up of shear studs, namely pull-out of shear studs form the concrete slab, is prevented. The deflection

of the steel beam and the concrete slab at the same position along the length is identical, or the steel and

concrete components of the composite beam are subjected to the same curvature in deformation.
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4.3.2 Differential Equilibrium Equation of Partially Composite Beam

The strains of the concrete and steel components at the interface can be expressed with internal

forces as

"c ¼ �
N

EcAc

þ Mc

EcIc

� D
2
; ð4:23aÞ

"s ¼
N

EsAs

� Ms

EsIs

� d
2
; ð4:23bÞ

and the slip strain at the steel–concrete interface can then be expressed as

"slip ¼
ds

dx
¼ "c � "s ¼ �N � 1

EcAc

þ 1

EsAs

� �
þ Mc

EcIc

� D
2
þ Ms

EsIs

� d
2

� �
: ð4:24Þ

By Equation (4.22), the slip on the interface can be determined with

s ¼ Q

K
: ð4:25Þ

By assumption (3), the shear density transferred by single shear stud on the interface is

q ¼ Q=a; ð4:26Þ

where a is the spacing of shear studs.

Consider a differential unit of the concrete flange (see Figure 4.8), and the force equilibrium of the unit in

horizontal is

dN

dx
¼ �q: ð4:27Þ

Combining Equations (4.25)–(4.27) gives

s ¼ � a

K
� dN

dx
: ð4:28Þ

Then, the slip strain at the steel–concrete interface can also be expressed as

"slip ¼
ds

dx
¼ � a

K
� d

2N

dx2
: ð4:29Þ

Equalling Equation (4.24) to Equation (4.29) results in

a

K

d2N

dx2
� 1

EcAc

þ 1

EsAs

� �
N þ Mc

EcIc

� D
2
þ Ms

EsIs

� d
2
¼ 0: ð4:30Þ

q

N dNN

dx

Concrete slab

Shear connector

Figure 4.8 Horizontal balance of the concrete unit
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By assumptions (4) and (5), the moment–curvature relationship of the steel and concrete components is

Mc

EcIc

¼ Ms

EsIs

¼ � ¼ �y
00
; ð4:31Þ

and it leads to

Mc þMs

EcIc þ EsIs

¼ � ¼ �y
00
: ð4:32Þ

By Equation (4.20), one has

N ¼ ðM �Mc þMsÞ=r: ð4:33Þ

Substituting Equations (4.31)–(4.33) into Equation (4.30) leads to the following fourth-order differential

equilibrium equation of the partially composite beam:

d4y

dx4
� K

a

1

EcAc

þ 1

EsAs

þ r2

EcIc þ EsIs

� �
d2y

dx2
þ 1

EcIc þ EsIs

� d
2M

dx2

� K

a

1

EcAc

þ 1

EsAs

� �
� 1

EcIc þ EsIs

M ¼ 0:

ð4:34Þ

Employing the definition of ðEIÞ0comp and ðEIÞ1comp, we can simplify the above equation as

d4y

dx4
�

k � ðEIÞ1comp

EA � ðEIÞ0comp

d2y

dx2
þ 1

ðEIÞ0comp

d2M

dx2
� k

EA � ðEIÞ0comp

M ¼ 0; ð4:35Þ

where k ¼ K=a is the shear modulus of the steel–concrete interface (unit: N/mm2). When k ¼ 1, namely

there is no slip on the interface, Equation (4.35) returns to the equation for the composite beam with full

composite action, i.e.

ðEIÞ1comp

d2y

dx2
þM ¼ 0: ð4:36Þ

And when k ¼ 0, Equation (4.35) can also return to the equation for the composite beam with none of

composite action, i.e.

ðEIÞ0comp

d2y

dx2
þM ¼ 0: ð4:37Þ

4.3.3 Stiffness Equation of Composite Beam Element

The typical forces and deformations of the beam element are as in Figure 4.9. The moment at an arbitrary

location distance x away from end 1 can be expressed with the end moment M1 and the end shear Q1 as

M ¼ M1 � Q1x: ð4:38Þ

The force balance also determines

Q1 ¼
1

l
ðM1 þM2Þ; ð4:39Þ

Q1 ¼ �Q2: ð4:40Þ
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Substituting Equation (4.38) into Equation (4.35) yields

d4y

dx4
� a2 d2y

dx2
� bðM1 � Q1xÞ ¼ 0; ð4:41Þ

where a and b are parameters relevant to material properties and section dimensions and are defined as

a2 ¼
kðEIÞ1comp

EA � ðEIÞ0comp

; ð4:42Þ

b ¼ k

EA � ðEIÞ0comp

¼ a2

ðEIÞ1comp

: ð4:43Þ

The solution of the above fourth-order differential equation (4.41) is

z ¼ y
00 ¼ C1 cosh axþ C2 sinh ax� 1

ðEIÞ1comp

ðM1 � Q1xÞ; ð4:44Þ

where C1 and C2 are integration constants.

Integrating Equation (4.44) twice results in the deflection of the composite beam element with slip as

y ¼ C1

a2
cosh axþ C2

a2
sinh ax� 1

ðEIÞ1comp

1

2
M1x2 � 1

6
Q1x3

� �
þ C3xþ C4; ð4:45Þ

where C3 and C4 are also integration constants.

Consider the following boundary conditions:

� for x ¼ 0:

y ¼ 0; ð4:46aÞ
y0 ¼ �1; ð4:46bÞ

� for x ¼ l:

y ¼ �2 � �1; ð4:47aÞ
y0 ¼ �2: ð4:47bÞ

M

y

x

l

x

y

M1

Q1

Q2

M2θ2
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d1
d2 x

l

x

y

Figure 4.9 The typical forces and deformations of the beam element
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Introducing the above boundary conditions into Equation (4.45) yields four simultaneous algebra equations:

C1

a2
þ C4 ¼ 0; ð4:48aÞ

C2

a
þ C3 ¼ �1; ð4:48bÞ

C1

a2
cosh alþ C2

a2
sinh al� 1

ðEIÞ1comp

1

2
M1l2 � 1

6
Q1l3

� �
þ C3lþ C4 ¼ �2 � �1; ð4:48cÞ

C1

a
sinh alþ C2

a
cosh al� 1

ðEIÞ1comp

M1l� 1

2
Q1l2

� �
þ C3 ¼ �2: ð4:48dÞ

Solving Equations (4.48a)–(4.48d), one has

C1 ¼
a

12þ 6al sinh al� 12 cosh al

�
6aðcosh al� 1Þð�2 � �1Þ � 6 sinh alð�2 � �1Þ

� Q1al3

ðEIÞ1comp

ð2þ cosh alÞ þ 3M1al2

ðEIÞ1comp

ð1þ cosh alÞ þ 6alð�2 � �1 cosh alÞ� 3l sinh al

ðEIÞ1comp

ð2M1 � Q1lÞ
�
;

ð4:49aÞ

C2 ¼
a

12þ 6al sinh al� 12 cosh al

�
�6a sinh alð�2 � �1Þ þ 6ðcosh al� 1Þð�2 � �1Þ

� 3Q1l2

ðEIÞ1comp

ðcosh al� 1Þ � 6M1l

ðEIÞ1comp

ð1� cosh alÞ � al2 sinh al

ðEIÞ1comp

ð3M1 � Q1lÞ þ 6al�1 sinh al

�
;

ð4:49bÞ

C3 ¼
1

12þ 6al sinh al� 12 cosh al

�
6ð1� cosh alÞð�2 þ �1Þ þ 6a sinh alð�2 � �1Þ

þ 6

ðEIÞ1comp

M1lð1� cosh alÞ � 3

ðEIÞ1comp

Q1l2ð1� cosh alÞ þ 1

ðEIÞ1comp

al2 sinh alð3M1 � Q1lÞ
�
;

ð4:49cÞ

C4 ¼
1

að12þ 6al sinh al� 12 cosh alÞ

�
6að1� cosh alÞð�2 � �1Þ þ 6�2ðsinh al� alÞ

þ 6�1ðal cosh al� sinh alÞ � 3a
ðEIÞ1comp

M1l2ð1þ cosh alÞ

þ a
ðEIÞ1comp

Q1l3ð2þ cosh alÞ þ 3l sinh al

ðEIÞ1comp

ð2M1 � Q1lÞ
�
:

ð4:49dÞ

In most cases, steel beams are connected to columns fixedly, and when the anchor-hold of negative

reinforcement bars in concrete slabs has good performance, it is reasonable to assume that the slip between

the steel beams and concrete slabs at the ends of composite beams is negligible, namely

sjx¼0 ¼ 0 ð4:50aÞ

and

sjx¼l ¼ 0: ð4:50bÞ
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Substituting Equation (4.50) into Equation (4.28) leads to

dN

dx
jx¼0 ¼ 0; ð4:51aÞ

dN

dx
jx¼l ¼ 0: ð4:51bÞ

Combing Equations (4.20), (4.33), (4.38) and (4.44), one has

dN

dx
¼ 1

r
ðEIÞ0compðC1a sinh alþ C2a cosh alÞ þ

ðEIÞ0comp

ðEIÞ1comp

� 1

 !
Q1

" #
: ð4:52Þ

Substituting Equation (4.52) into Equation (4.51) and considering Equations (4.49), (4.39) and (4.40)

yields

M1 ¼
ðEIÞ0compa

3 sinh al

Ks

� 6ð�1 � �2Þ þ
3lðEIÞ0compa

3 sinh al

Ks

þ
ðEIÞ1comp

l

 !
�1

þ
3lðEIÞ0compa

3 sinh al

Ks

�
ðEIÞ1comp

l

 !
�2; ð4:53aÞ

M1 ¼
ðEIÞ0compa

3 sinh al

Ks

� 6ð�1 � �2Þ þ
3lðEIÞ0compa

3 sinh al

Ks

þ
ðEIÞ1comp

l

 !
�1

þ
3lðEIÞ0compa

3 sinh al

Ks

þ
ðEIÞ1comp

l

 !
�2; ð4:53bÞ

Q1 ¼ �Q2 ¼
M1 þM2

l
¼
ðEIÞ0compa

3 sinh al

Ks � l
½12ð�2 � �1Þ þ 6lð�1 þ �2Þ�; ð4:53cÞ

where

Ks ¼
l

ðEIÞ1comp

ðEIÞ0compa
3l sinh alþ 2

l2
ððEIÞ1comp � ðEIÞ0compÞð12þ 6al sinh al� 12 cosh alÞ

� �
: ð4:54Þ

Equation (4.53) can also be expressed with the standard form as

M1 ¼
ðEIÞ1comp

l
4j2�1 þ 2j3�2 þ 6j1

�1 � �2

l

� �
; ð4:55aÞ

M2 ¼
ðEIÞ1comp

l
2j3�1 þ 4j2�2 þ 6j1

�1 � �2

l

� �
; ð4:55bÞ

Q1 ¼ �Q2 ¼
ðEIÞ1comp

l

4j2 þ 2j3

l
�1 þ

4j2 þ 2j3

l
�2 þ 12j1

�1 � �2

l2

� �
; ð4:55cÞ
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where

j1 ¼
ðEIÞ0compðalÞ3 sinh al

ðEIÞ0compðalÞ3 sinh alþ 2ððEIÞ1comp � ðEIÞ0compÞð12þ 6al sinh al� 12 cosh alÞ
; ð4:56aÞ

j2 ¼
3

4
�

ðEIÞ0compðalÞ3 sinh al

ðEIÞ0compðalÞ3 sinh alþ 2ððEIÞ1comp � ðEIÞ0compÞð12þ 6al sinh al� 12 cosh alÞ
þ 1

4
; ð4:56bÞ

j3 ¼
3

2
�

ðEIÞ0compðalÞ3 sinh al

ðEIÞ0compðalÞ3 sinh alþ 2ððEIÞ1comp � ðEIÞ0compÞð12þ 6al sinh al� 12 cosh alÞ
� 1

2
: ð4:56cÞ

The matrix expression of Equation (4.55) is

ðEIÞ1comp

l

12

l2
j1

4j2 þ 2j3

l
� 12

l2
j1

4j2 þ 2j3

l
6

l
j1 4j2 � 6

l
j1 2j3

� 12

l2
j1 � 4j2 þ 2j3

l

12

l2
j1 � 4j2 þ 2j3

l
6

l
j1 2j3 � 6

l
j1 4j2

2
66666666664

3
77777777775

�1

�1

�2

�2

8>>><
>>>:

9>>>=
>>>;
¼

Q1

M1

Q2

M2

8>>><
>>>:

9>>>=
>>>;

ð4:57Þ

or

½kce�f�cg ¼ ffcg; ð4:58Þ

where

f�cg ¼ ½�1; �1; �2; �2�T ; ð4:59aÞ

ffcg ¼ ½Q1;M1;Q2;M2�T ; ð4:59bÞ

½kce� ¼
ðEIÞ1comp

l

12

l2
j1

4j2 þ 2j3

l
� 12

l2
j1

4j2 þ 2j3

l
6

l
j1 4j2 � 6

l
j1 2j3

� 12

l2
j1 � 4j2 þ 2j3

l

12

l2
j1 � 4j2 þ 2j3

l
6

l
j1 2j3 � 6

l
j1 4j2

2
66666666664

3
77777777775
: ð4:60Þ

Equation (4.57) or (4.58) is the elastic stiffness equation for the steel–concrete composite beam element with

partial composite action and ½kce� is the corresponding elastic stiffness matrix of the element.

The parameters in ½kce� satisfy

6j1 ¼ 4j2 þ 2j3; ð4:61Þ

which indicates that ½kce� is exactly symmetric.

4.3.4 Equivalent Nodal Load Vector

When a composite beam element is subjected to non-nodal loads, the equivalent nodal load vector of the

element is necessary for structural analysis using FEM. The equivalent nodal load vectors for three types of

non-nodal loads on the composite beam element are to be discussed in this section.
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The first non-nodal load is the uniformly distributed load applied on a two-end fixed composite beam, as

shown in Figure 4.10. By force balance and symmetry, one has

Q1 ¼ Q2 ¼
1

2
ql2; ð4:62Þ

M1 ¼ �M2: ð4:63Þ

And the moment along elemental length is

M ¼ Q1x�M1 �
1

2
qx2: ð4:64Þ

Substituting Equation (4.64) into Equation (4.35) results in the differential equilibrium equation of the two-

end fixed composite beam element subjected to the uniform load as

d4y

dx4
� a2 d2y

dx2
� 1

ðEIÞ0comp

q� a2

ðEIÞ1comp

Q1x�M1 �
1

2
qx2

� �
¼ 0: ð4:65Þ

The solution of Equation (4.65) is

y
00 ¼ C1 cosh axþ C2 sinh ax� q

a2

1

ðEIÞ0comp

� 1

ðEIÞ1comp

 !
� 1

ðEIÞ1comp

Q1x�M1 �
1

2
qx2

� �
: ð4:66Þ

The deflection and rotation can be obtained by integrating Equation (4.66) as

� ¼ y0 ¼ C1

a
sinh axþ C2

a
cosh ax� qx

a2

1

ðEIÞ0comp

� 1

ðEIÞ1comp

 !

� 1

ðEIÞ1comp

1

2
Q1x2 �M1x� 1

6
qx3

� �
þ C3; ð4:67Þ

y ¼ C1

a2
cosh axþ C2

a2
sinh ax� 1

2

qx2

a2

1

ðEIÞ0comp

� 1

ðEIÞ1comp

 !

� 1

ðEIÞ1comp

1

6
Q1x3 � 1

2
M1x2 � 1

24
qx4

� �
þ C3xþ C4; ð4:68Þ

where C1–C4 are integration parameters.

C3 and C4 can be determined with the deflection boundary condition, yjx¼0 ¼ yjx¼l ¼ 0, as

C3 ¼ �
C1

a2l
cosh al� C2

a2l
sinh alþ 1

2

ql

a2

1

ðEIÞ1comp

� 1

ðEIÞ1comp

 !

þ 1

ðEIÞ1comp

1

6
Q1l2 � 1

2
M1l� 1

24
ql3

� �
þ C1

a2l
;

ð4:69Þ

C4 ¼ �
C1

a2
: ð4:70Þ

Figure 4.10 A two-end fixed composite beam subject to a uniformly distributed load
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C1 and C2 can be determined with the slip boundary condition, Equation (4.50), as

C2 ¼
Q1

a
1

ðEIÞ1comp

� 1

ðEIÞ0comp

 !
¼ ql

2a
1

ðEIÞ1comp

� 1

ðEIÞ0comp

 !
; ð4:71Þ

C1 ¼
qlð1þ cosh alÞ

2a sinh al

1

ðEIÞ0comp

� 1

ðEIÞ1comp

 !
: ð4:72Þ

Finally, with the rotation boundary condition �jx¼0 ¼ 0, one has

C2

a
þ C3 ¼ 0: ð4:73Þ

Substituting Equations (4.69), (4.71) and (4.72) into Equation (4.73) leads to

M1 ¼ �M2 ¼
1

12
ql2: ð4:74Þ

Equations (4.62) and (4.74) are the equivalent nodal forces for the uniformly distributed load applied on the

composite beam element, which is obviously independent of the composite action of the beam.

As for the other two cases, a concentrated load at mid-span of the beam (see Figure 4.11) and the

triangularly distributed load (see Figure 4.12), the equivalent nodal forces can also be determined by a

similar procedure as presented hereinabove.

For a concentrated load at mid-span, it can be obtained that

Q1 ¼ Q2 ¼
1

2
Pl; ð4:75Þ

M1 ¼ �M2 ¼
1

8
Pl: ð4:76Þ

And for distributed triangle loads, it can be obtained that

Q1 ¼
1

2
q0l� Q2 ¼

3

20
q0l

�

ðEIÞ1comp � ðEIÞ0comp

ðEIÞ1comp � ðEIÞ0comp

1� cosh al

a3l sinh al

40

3a2l
þ 10l

3

� �
þ 1

a2

10l

9
þ 20

3a2l

� �� �
� l3

12ðEIÞ1comp

ðEIÞ1comp � ðEIÞ0comp

ðEIÞ1comp � ðEIÞ0comp

2ð1� cosh alÞ
a3 sinh al

� l

a2

� �
þ l3

12ðEIÞ1comp

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

ð4:77Þ

M1 ¼
1

2
Q1l� 1

24
q0l2; ð4:78aÞ

M2 ¼ Q1l�M1 �
1

6
q0l2: ð4:78bÞ

M
M

Q
l 2

Q

P

x

y

l 2

Figure 4.11 A composite beam subjected to a concentrated load at mid-span
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From the above results, it can be found that the equivalent nodal forces of the composite beam element

are independent of the shear stiffness on the steel–concrete interface for symmetric load cases (such as

uniformly distributed load shown in Figure 4.10 and concentrated load at mid-span shown in Figure 4.11)

and have the same form as that of an ordinary beam element. However, for the asymmetric load case (such as

distributed triangular loads shown in Figure 4.12), the equivalent nodal forces rely on the shear stiffness on

the steel–concrete interface of the composite beam element.

4.4 EXAMPLE

A five-storey steel frame (Baotou Steel & Iron Design and Research Institute, 2000) is selected to illustrate

the effectiveness of the stiffness equation of composite beams derived above. The plan and elevation views

of the frame are shown in Figure 4.13. The cross-sectional sizes of the frame beams and columns are also

given in Figure 4.13, and the material for all the beams and columns is Q235 according to the Chinese

standard. This frame was analysed as a pure steel frame, and the composite action from the concrete slab was

neglected, under dead and live floor loads, wind and earthquake actions, by Baotou Steel & Iron Design and

Research Institute (2000).

The composite beam element developed hereinabove, with various values of steel–concrete interface

shear stiffness k, is used to investigate the effects of composite action on resultants and deformations of the

steel frame. The effective width of the concrete–slab flange for the composite beams of the frame is

determined based on Chinese code GB50017-2003. Alternatively, it is recommended in Chinese code

JGJ99-98 that the moment of inertia of the composite beam can be approximately adopted as 1.5 times that

of the pure steel beam in high-rise steel buildings when the full composite action between the cast-in-site

y

M1

Q1 Q2

M2

q0

l

x

Figure 4.12 A composite beam subjected to a triangularly distributed load
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Figure 4.13 The steel frame for example
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concrete slab and the steel beam is considered. The results of various considerations on the composite

actions of the frame will be compared as follows.

The values of the steel–concrete interface shear stiffness k are taken as 0.01, 0.1, 0.5 and 1.0 % of the

elastic modulus of steel, Es, and k ¼ 1 represents the fully composite case. It is revealed by numerical

analyses that the effect of composite action from the concrete slab is small and can be negligible on internal

forces of the frame under vertical and horizontal loads, but this effect is evident on the global lateral stiffness

of the frame under horizontal loads and relates to the steel–concrete interface shear stiffness. The effect of

composite action on the lateral deflection of the frame subjected to a horizontal earthquake load is given in

Figure 4.14, and the relationship between the storey drift and the steel–concrete interface shear stiffness is

shown in Figure 4.15.

It can be found from Figure 4.14 that the global frame sway is the greatest when the contribution of

concrete slabs is waived and it is the least when the full composite action is considered between concrete

slabs and steel beams (the deflection gap between these two extreme cases in this example is 34 %). The

deflection curves for partial composite actions are fallen in between these two extreme cases. The results of

the approximate consideration of the composite action according to Chinese code JGJ99-98 agree with those

of the frame with partially composite beams with a kvalue of 0.1 % Es.

Figure 4.14 Effects of composite action on frame stiffness

Figure 4.15 Effect of composite action on frame storey drifts
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It can be found from Figure 4.15 that the effect of the steel–concrete interface shear stiffness on frame

lateral stiffness is significant when k/Es is less than 1.0 %, otherwise it has little significance. It can also be

found that the effect of kon the drifts of the storeys at higher levels is more evident.

4.5 PROBLEMS IN PRESENT WORK

In the derivation of the stiffness equation of the composite beam element with relative slip, an important

assumption is made that there is no slip between the concrete slab and the steel beam at the two ends of the

element. This assumption is to enhance the stiffness of the composite beam element because there will

always be, more or less, a relative slip at the beam ends.

Equation (4.60) can be regressed into

� for k ¼ 1:

½k1� ¼
ðEIÞ1comp

l

12

l2

6

l
� 12

l2

6

l

6

l
4 � 6

l
2

� 12

l2
� 6

l

12

l2
� 6

l

6

l
2 � 6

l
4

2
66666666664

3
77777777775

; ð4:79Þ

� for k ¼ 0:

½k0� ¼

12

l3
ðEIÞ0comp

6

l2
ðEIÞ0comp � 12

l3
ðEIÞ0comp

6

l2
ðEIÞ0comp

6

l2
ðEIÞ0comp

3

l
ðEIÞ0comp þ

1

l
ðEIÞ1comp

� �
� 6

l2
ðEIÞ0comp

3

l
ðEIÞ0comp �

1

l
ðEIÞ1comp

� �

� 12

l3
ðEIÞ0comp � 6

l2
ðEIÞ0comp

12

l3
ðEIÞ0comp � 6

l2
ðEIÞ0comp

6

l2
ðEIÞ0comp

3

l
ðEIÞ0comp �

1

l
ðEIÞ1comp

� �
� 6

l2
ðEIÞ0comp

3

l
ðEIÞ0comp þ

1

l
ðEIÞ1comp

� �

2
66666666666664

3
77777777777775

:

ð4:80Þ

Obviously, Equation (4.60) can be regressed into that for the fully composite beam element, whereas it

cannot be regressed into that for the element without any composite action. This error results from the slip

boundary condition on the steel–concrete interface assumed in Equation (4.50). By further analysis, when

beam bends in asymmetric form (Figure 4.16(a)), it can be derived from Equation (4.80) that

6

l

X
EI

� �
� ¼ M; ð4:81Þ

M

M

M M

(a) (b)

Figure 4.16 Two typical deformations of the beam element: (a) asymmetric deformation; (b) symmetric deformation
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and when beam bends in symmetric form (Figure 4.16(b)), it can be

2

l
�E�I

� �
� ¼ M: ð4:82Þ

Equation (4.80) is consistent but Equation (4.81) is not with the bending stiffness relationship of the beam

without any composite action. Therefore, good accuracy can be obtained when Equation (4.60) is used for

the analysis of frames subjected to horizontal loads because frame beams bend in asymmetric form under

horizontal loads. However, error will occur when Equation (4.60) is used for the analysis of frames subjected

to vertical loads when beams bend in symmetric form. This is a problem in present research and needs

further study.
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5 Sectional Yielding and
Hysteretic Model of Steel
Beam Columns

5.1 YIELDING OF BEAM SECTION SUBJECTED
TO UNIAXIAL BENDING

The different states in the yielding process of the beam section subjected to uniaxial bending are shown in

Figure 5.1, where �s is the steel yielding stress, Ms is the moment at yielding of the sectional edge (termed as

initial yielding moment) and Mp is the moment at yielding of the full section (termed as plastic or ultimate

yielding moment). Ms and Mp can be calculated as

Ms ¼ We�s; ð5:1Þ
Mp ¼ Wp�s; ð5:2Þ

where We is the elastic section modulus and Wp is the plastic section modulus.

Let

�p ¼
Mp

Me

¼ Wp

We

; ð5:3Þ

which is relevant only to sectional shape and thus can be called as the section plastic shape factor. The values

of �p for normal symmetric sections are given in Figure 5.2.

5.2 YIELDING OF COLUMN SECTION SUBJECTED
TO UNIAXIAL BENDING

Axial forces generally exist in frame columns, and Figure 5.3 illustrates the yielding process of a column

section, where MsN and MpN are, respectively, the initial and ultimate yielding moments of the section

including the contribution of axial force.

The condition of initial yielding for a section of any shape can be expressed as

MsN

We

þ N

A
¼ �s: ð5:4Þ
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Figure 5.1 Yielding process and moment–curvature relationship of a beam section subjected to uniaxial bending
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Figure 5.2 Values of plastic shape factors for various symmetric sections
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Figure 5.3 Yielding process and moment–curvature relationship of a column section subjected to uniaxial bending
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Rewriting it results in

MsN ¼ 1� N

Np

� �
Ms; ð5:5Þ

where A is the sectional area, N is the axial force and Np ¼ A�s is the yielding load of the section when single

axial force is applied.

The ultimate yielding moment can be derived from the equilibrium between sectional internal and

external forces on a section in the ultimate state. Considering the ultimate yielding state of a rectangular

section (Figure 4), one obtains the equilibrium equations as

N ¼ 2�sby0;

MpN ¼
�sb

4
ðh2 � 4y2

0Þ:

Eliminating y0 from the above two equations and noting that Mp ¼ �sbh2=4 for the rectangular section lead

to the expression of MpN as

MpN ¼ 1� N

Np

� �2
" #

Mp: ð5:6Þ

Following the similar procedures as described above, one can calculate MpN of frame columns with

biaxial symmetric H sections as follows:

(1) when bending in the major axis:

– for the neutral axis within the web plate, i.e. 0 � N=Np � a=ð2þ aÞ,

MpN ¼ 1� ð2þ aÞ2

ð4þ aÞa
N

Np

� �2
" #

Mp; ð5:7aÞ

– for the neutral axis within the flange plate, i.e. a=ð2þ aÞ � N=Np � 1,

MpN ¼ 1� N

Np

� �� �
2ð2þ aÞ

4þ a
Mp; ð5:7bÞ

(2) when bending in the minor axis:

– for the neutral axis within the web plate, i.e. 0 � N=Np � a=2þ a,

MpN ¼ Mp; ð5:8aÞ

– for the neutral axis within the flange plate, i.e. a=ð2þ aÞ � N=Np � 1,

MpN ¼
4� a2

4
1� 2a

2� a
N

Np

� �
� 2þ a

2� a
N

Np

� �2
" #

Mp; ð5:8bÞ

where a is the cross-sectional area ratio of the web to one flange.
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The above expressions for H sections bending in the major axis can be used to calculate MpN of box

sections except that a is replaced with the cross-sectional area ratio of two web plates to one flange.

For circular or annular sections, MpN is determined by

MpN ¼
3

4
sin ’� 1

3
sin 3’

� �
Mp; ð5:9aÞ

where ’ is solved from

1� 2

�
’� 1

2
sin 2’

� �
¼ N

Np

: ð5:9bÞ

5.3 YIELDING OF COLUMN SECTION SUBJECTED
TO BIAXIAL BENDING

5.3.1 Equation of Initial Yielding Surface

The cross section of frame columns is usually biaxial symmetric because frame columns are often subjected

to biaxial bending. The initial yielding surface of a column section can be determined by linear super-

imposition of normal stresses within elastic scope and can be written as

Mx

Msx

����
����þ My

Msy

����
����þ N

Np

����
���� ¼ 1; ð5:10Þ

where Mx and My are the bending moments applied about the orthotropic x-axis and y-axis, respectively, N is

the axial force applied, and Msx and Msy are the initial yielding moments of the section when Mx and My are

applied alone, respectively.

Equation (5.10) is the equation of the initial yielding surface for the column section subjected to biaxial

bending, which can also be rewritten as

�pxmx þ �pymy þ n ¼ 1; ð5:11Þ

in which mx ¼ jMx=Mpxj, my ¼ jMy=Mpyj, n ¼ jN=Npj, Mpx and Mpy are the ultimate yielding moments of

the section when Mx and My are applied alone, respectivley, and �px and �py are the plastic shape factors

about the x-axis and y-axis of the section, respectively.

5.3.2 Equation of Ultimate Yielding Surface

The ultimate yielding surface of a column section subjected to biaxial bending moments and axial force can

also be defined with mx, my and n. The following describes the derivation of the ultimate yielding surface

equation for the rectangular section.

As shown in Figure 5.4, let y ¼ f ðxÞ be the neutral curve in the ultimate state, which indicates that the part

of the section above y ¼ f ðxÞ is yielding in tension and that below is yielding in compression. The

equilibrium conditions of the section in this ultimate state are governed by

N ¼ �
Z b=2

�b=2

2�sf ðxÞ dx; ð5:12aÞ

Mx ¼ �
Z b=2

�b=2

�s

h2

4
� f 2ðxÞ

� �
dx; ð5:12bÞ

My ¼ �
Z b=2

�b=2

2�sf ðxÞ dx; ð5:12cÞ
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where f ðxÞ is an undetermined function and can be determined with functional extremum theory. Assume

that N and My are constant and then f ðxÞ should make Mx maximum. This problem is actually a definite

integral inflexion problem with restrain of the definite integral. According to the Lagrange multiplicator

method, the functional of the problem can be expressed as

H ¼ �s½h2=4� f 2ðxÞ� � l1½2�sxf ðxÞ� � l2½2�sf ðxÞ�: ð5:13Þ

From the Euler equation,

@H

@f ðxÞ �
d

dx

@H

@f 0ðxÞ

� �
¼ 0; ð5:14Þ

one obtains

f ðxÞ ¼ �l1x� l2: ð5:15Þ

Equation (5.15) indicates that the neutral curve of the rectangular section is a straight line (see

Figure 5.5). Substituting Equation (5.15) into Equation (5.12) yields

N ¼ 2�sbl2; ð5:16aÞ

Mx ¼ 2�s

bh2

8
� l2

1

3

b

2

� �3

�l2
2

b

2

� �" #
; ð5:16bÞ

My ¼
1

6
�sb

3l1: ð5:16cÞ

sσ−

b

o

y-f(x)

sσ+

x

y

h

Figure 5.4 Ultimate yielding state of the rectangular section

y y y

x xx

(a) (b) (c)

o o o

Figure 5.5 Neutral axial positions of the rectangular section
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For the rectangular section, the ultimate yielding axial force and ultimate yielding moments are,

respectively, obtained by

N ¼ �sbh; ð5:17aÞ

Mx ¼
1

4
�sbh2; ð5:17bÞ

My ¼
1

4
�sb

2h: ð5:17cÞ

Combining Equations (5.16) and (5.17) leads to

n ¼ N

Np

¼ 2l2

h
; ð5:18aÞ

mx ¼
Mx

Mpx

¼ 8

bh2

bh2

8
� l2

1

3

b

2

� �3

�l2
2

b

2

� �" #
; ð5:18bÞ

my ¼
My

Mpy

¼ 2b

3h
l1: ð5:18cÞ

Eliminating l1 and l2 from Equation (5.18) results in the explicit equation of the ultimate yielding

surface for rectangular sections as

n2 þ mx þ
3

4
m2

y ¼ 1: ð5:19aÞ

It should be noted that Equation (5.19a) is correct only for the layout of the neutral axis as shown in

Figure 5.5(a), and the condition is

my �
2

3
ð1� nÞ � mx: ð5:20aÞ

For the layout of the neutral axis as shown in Figure 5.5(b), the equation of the ultimate yielding surface

is

n2 þ 3

4
m2

x þ my ¼ 1; ð5:19bÞ

and the corresponding condition is

mx �
2

3
ð1� nÞ � my: ð5:20bÞ

For the layout of the neutral axis as shown in Figure 5.5(c), the equation of the ultimate yielding surface is

nþ 9

4
1� mx

2ð1� nÞ

� �
1� my

2ð1� nÞ

� �
¼ 1; ð5:19cÞ

and the condition is

mx �
2

3
ð1� nÞ; my �

2

3
ð1� nÞ: ð5:20cÞ

It can be seen from the above derivation that the equation of the ultimate yielding surface is not unique

and depends on the position of the neutral axis.

Following the similar derivation, one can obtain the equations of the ultimate yielding surfaces of biaxial

symmetric H and box sections, which are listed in Tables 5.1 and 5.2, respectively. The parameters in such

equations are defined in Figures 5.6 and 5.7 for H and box sections, respectively.
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Table 5.1 Yielding surface equation for the H section

Position of the

Order neutral axis Yielding surface equation Condition

n ¼ 2

ð2þ aÞb l2ðabþ 2l1Þ
0 � l2 � 1=2

1 mx ¼
1

ð4þ aÞb ½4l1 þ abð1� 4l2
2Þ�

0 � l1 � b
1þ2l2

my ¼
1

b2
ðb2 � l2

1 � 4l2
1l

2
2Þ

2 n ¼ 1

2þ a
2al2 þ

b� l1 þ l1l2

b

� �
l1 � b=2

0 � l2 � 1=2

mx ¼
2

4þ a
1þ l1 � 2l1l2

b
þ a

1

2
� 2l2

� �� �

my ¼
1

b2

b2

2
� l1

2
� l1l2

� �2
" #

n ¼ 1

2þ a
aþ 4l1l2

b

� �
l2 � 1=2

3 mx ¼
4

4þ a
l1

b
0 � l1 � b

1þ2l2

my ¼
1

b2
ðb2 � l2

1 � 4l2
1l

2
2Þ

n ¼ 1

2þ a
aþ b� l1 þ l1l2

b

� �

l2 � 1=2

4 mx ¼
2

4þ a
1þ l1 � 2l1l2

b

� �
b

1þ 2l2

� l1 �
b

2l2 � 1
my ¼

1

b2

b2

2
� l1

2
� l1l2

� �2
" #

y

x
Aw

Af

h

b

f

w

A

A
=α

1
1λ−tg h

b
=β

2h

Figure 5.6 Definition of parameters in Table 5.1
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Figure 5.7 Definition of parameters in Table 5.2

Table 5.2 Yielding surface function for the box section

Position of the

Order neutral axis Yielding surface equation Condition

n ¼ 1� al1 þ l2

1þ a

mx ¼
al1 þ l2ð1� l1Þ

aþ 1=2
0 � n � 1

1

l1b

l2h my ¼
l2 þ al1ð1� l1Þ

1þ a=2
0 � mx � 4aþ1

2ð2aþ1Þ

1
1þa ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ a2Þð1� nÞ � ðaþ a2=2Þmy

p
0 � my � 4þa

2ð2þaÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞð1� nÞ � ðaþ 1=2Þmx

p
� � n ¼ 1

n ¼ 1� l1 � l2

1þ a

2

l1h

l mx ¼
aþ l1ð1� l1Þ þ l2ð1� l2Þ

aþ 1=2
0 � n � 1

1þa

my ¼
l2 � l1

1þ a=2
2a

2aþ1
� mx � 1

0 � my � 2
2það1þ aÞ2

2aþ 1
n2 þ ð1þ a=2Þ2

2aþ 1
m2

y þ mx ¼ 1

n ¼ að1� l1 � l2Þ
1þ a

0 � n � a
1þa

3

l1b

l2b

mx ¼
aðl1 � l2Þ
aþ 1=2

0 � mx � 2a
2aþ1

my ¼
1þ al1ð1� l1Þ þ al2ð1� l2Þ

1þ a=2
2

2aþ1
� my � 1ð1þ aÞ2

ð2þ aÞa n2 þ ðaþ 1=2Þ2

ð2þ aÞa m2
x þ my ¼ 1
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The similar equations for circular and annular sections in parametric form are

n ¼ 1� 2

�
’� 1

2
sin 2’

� �
; ð5:21aÞ

mx ¼
3

4
cos � sin ’� 1

3
sin 3’

� �
; ð5:21bÞ

my ¼
3

4
sin � sin ’� 1

3
sin 3’

� �
; ð5:21cÞ

where the parameters ’ and � are defined in Figure 5.8.

5.3.3 Approximate Expression of Ultimate Yielding Surface

It can be seen from Section 5.3.2 that the exact expression of the ultimate yielding surface for either

rectangular, circular sections or H and box sections needs a group of equations, and in some cases the

explicit expression cannot be derived. For the sake of convenient application, an approximate expression of

the ultimate yielding surface uniformly to all kinds of sections is proposed as

ms
x

1� nu
þ

mt
y

1� nv
þ nw ¼ 1; ð5:22Þ

where s, t, u, v and w are indeterminate parameters and can be determined through the exact equations of the

ultimate yielding surface.

Considering the five groups of the control points on the ultimate yielding surface from the exact

equations, one can solve the five indeterminate parameters. For example, the five control points may be

� for H section:

n ¼ a
2ð2þ aÞ ; mx ¼

16þ 3a
4ð4þ aÞ ; my ¼ 0;

n ¼ 1þ a
2þ a

; mx ¼
2

4þ a
; my ¼ 0;

n ¼ 1þ a
2þ a

; mx ¼ 0; my ¼
3

4
;

n ¼ 0; mx ¼
2þ a
4þ a

; my ¼
3

4
;

n ¼ 1þ 2a
4ð2þ aÞ ; mx ¼

3

4þ a
; my ¼

7

16
;

ϕ ϕ

θ θ

Figure 5.8 Definition of parameters in Equation (5.21)
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� for box section:

n ¼ 1

2ð1þ aÞ ; mx ¼
8aþ 3

8aþ 4
; my ¼ 0;

n ¼ a
2ð1þ aÞ ; mx ¼ 0; my ¼

8þ 3a
8þ 4a

;

n ¼ 0; mx ¼
8þ 3a
8þ 4a

; my ¼
1

2þ a
;

n ¼ 0; mx ¼
a

2aþ 1
; my ¼

8þ 3a
8þ 4a

;

n ¼ 1

2
; mx ¼

1

2
; my ¼

1

2
;

� for circular or annular sections:

s ¼ t ¼ 2; u ¼ v;

n ¼ 0:215; mx ¼ 0:957; my ¼ 0;

n ¼ 0:609; mx ¼ 0:650; my ¼ 0;

where a is defined in Figures 5.6 and 5.7.

A comparison between the approximate and exact equations of the ultimate yielding surfaces for H and

box sections is provided in Figure 5.9, where a good coincidence can be found.

5.3.4 Effects of Torsion Moment

Frame columns are possibly subjected to torsion moment, which produces shear stresses to reduce the

yielding strength of sections. Therefore, torsion moment affects the equations of the initial and ultimate

yielding surfaces for column sections.

Normally, shear stresses resulting from torsion are unevenly distributed over a section, and it is difficult

to evaluate the effects of shear stresses on the yielding surfaces of the section. For the sake of simplification,

it is assumed that the ratio of the average shear stress over the section, � , to yielding shear stress, �s, is equal

to the magnitude of the ratio of the torque applied on the section, Mz, to the ultimate yielding torque, Mpz, i.e.

�

�s

¼ Mz

Mpz

����
���� ð5:23Þ

my my

mx mx

n=0.3 n=0.3

1.0

1.0

1.0

1.0

(b)(a)
Accurate value Approximate value

Figure 5.9 Comparison of accurate and approximate ultimate yielding surfaces: (a) box section; (b) H section
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and

� ¼ mz�s; ð5:24Þ

in which

mz ¼
Mz

Mpz

����
����; ð5:25Þ

Mpz ¼ Wpz�s; ð5:26Þ

where Wpz is the plastic torsional section modulus and its expression for various sections is given in

Figure 5.10.

According to Mises yielding criteria,

�2 þ 3�2 ¼ �2
s ¼ 3�2

s ; ð5:27Þ

which leads to

�

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3�2

�2
s

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

2

�2
s

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

z

q
: ð5:28Þ

It indicates that the section yielding stresses decrease due to the existence of torsion moment, and n, mx

and my should be replaced with nT, mxT and myT, respectively, as

nT ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
z

p ; ð5:29aÞ

mxT ¼
mxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
z

p ; ð5:29bÞ

myT ¼
myffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
z

p : ð5:29cÞ
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Figure 5.10 Values of plastic torsional section modulus
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The equation of the initial yielding surface including effects of torque becomes

�pxmxT þ �pymyT þ nT ¼ 1; ð5:30Þ

and the approximate equation of the ultimate yielding surface including effects of torque becomes

ms
xT

1� nu
T

þ
mt

yT

1� nv
T

þ nw
T ¼ 1: ð5:31Þ

5.4 HYSTERETIC MODEL

5.4.1 Cyclic Loading and Hysteretic Behaviour

Frames are possibly subjected to cyclic loads under earthquake and other dynamic loads. Experiments have

shown that after yielding at one loading step, assuming that it is the nth loading, the initial yielding stress of

steel in the next unloading and reversal loading, the ðnþ 1Þth loading, will be lower than before (see

Figure 5.11), i.e. �snþ1 < �sn, which is known as the Bauschinger effect. If the reversal loading continues,

the stress in steel continues to increase till it meets the ultimate yielding stress being higher than before, i.e.

�pnþ1 > �pn, which is known as the strain-hardening effect. Let �un be the stress at the commence of

unloading at the nth loading and �un > �pn; the ultimate yielding stress at the ðnþ 1Þth loading, �pnþ1, can

then be approximately equal to �un, i.e. �pnþ1 ¼ �un. For the first loading, �s1 ¼ �p1 ¼ �s.

When a steel beam is subjected to cyclic moments, the Bauschinger effect will reflect similarly in the

M � � relationship (see Figure 5.12), where Msnþ1 < Msn. In the same way and due to the strain-hardening

effect, Mpnþ1 > Mpn and Mpnþ1 ¼ Mun. For the first loading, Ms1 ¼ Ms and Mp1 ¼ Mp.

unσ
pnσ

snσ

1+− snσ

1+− pnσ

1+− unσ

σ

ε

Figure 5.11 Stress–strain curve of steel under cyclic loading

unM
pnM

snM

1+− snM

1+− pnM

1+− unM

M

Figure 5.12 Moment–curvature curve under cyclic loading
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The solid line in Figure 5.13 is the measured hysteretic load–deflection curve of a cantilever beam subjected

to a cyclic load at the free end, where the Bauschinger effect and the strain-hardening effect are evident. The

unloading of the beam behaving in elastic stiffness can also be found.

5.4.2 Hysteretic Model of Beam Section

A hysteretic model is the one that describes the relationship between force and displacement of structural

members under cyclic loading conditions. A simple model for the hysteretic M � � relationship of steel

beam sections is a bilinear model, as shown in Figure 5.14, where q is the hardening factor and q ¼ 0:015

usually.

The dashed line in Figure 5.13 is the prediction to the hysteretic load–deflection curves of the cantilever

beam by the bilinear M � � model. Clearly, the bilinear model can represent the basic hysteretic behaviour

of a steel beam under cyclic loading, but cannot reflect the nonlinear phase from initial yielding to ultimate

yielding very well.

To overcome the above deficit, a nonlinear hysteretic model can be adopted. For this purpose, define the

yielding function of a beam section as

� ¼ M

Mp

����
���� ð5:32Þ

∆
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Figure 5.13 Measured versus predicted hysteretic load–deflection curves of a cantilever beam
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Figure 5.14 Bilinear hysteretic model
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and the curvature parameter as

� ¼ �

�p

����
����; ð5:33Þ

where �p is the elastic curvature corresponding to Mp.

Figure 5.15 gives the nonlinear model to describe the hysteretic M � � relationship of beam sections,

where �sn and �sn are the initial and ultimate yielding functions at the nth loading, respectively, �un is the

yielding function at the nth unloading, and �snþ1 and �pnþ1 are the initial and ultimate yielding functions at

the ðnþ 1Þth loading, respectively. Considering the Bauschinger effect and the strain-hardening effect, one

can define

�snþ1 ¼ �s � ð�bnþ1 � 1Þ; ð5:34Þ
�pnþ1 ¼ �bnþ1; ð5:35Þ

in which

�bnþ1 ¼
�un; �un > �bn;
�bn; �un � �bn;

�
ð5:36Þ

where �bn and �bnþ1 are the characteristic values of the yielding function at the nth and the ðnþ 1Þth
loading, respectively. For the first loading, �b1 ¼ 1.

�s is the initial yielding function at the first loading and is defined as

�s ¼
Ms

Mp

¼ 1

�p

: ð5:37Þ

Further, define the recovery force parameter of beam sections as

R ¼ d�

d�
: ð5:38Þ

Then, for the nth loading, one has

R ¼ 1; � � �sn; ð5:39aÞ
R ¼ q; � � �pn; ð5:39bÞ

R ¼ 1� �� �sn

�pn � �sn

ð1� qÞ; �sn < � < �pn; ð5:39cÞ

unΓ
pnΓ

snΓ

1+Γ− sn

1+Γ− pn

1+Γ− un

Γ

Φ

Γ

Φ

α
αtgR =

Figure 5.15 Hysteretic �� � curve
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and for any unloading

R ¼ 1: ð5:40Þ

Equations (5.34)–(5.40) construct the nonlinear model for the hysteretic M � � relationship of beam

sections. The hysteretic behaviour between the yielding function and the recovery force parameter is

governed by Equations (5.39) and (5.40), as shown in Figure 5.16.

5.4.3 Hysteretic Model of Column Section Subjected
to Uniaxial Bending

If the variation of axial forces in a column is small under cyclic loading, the bilinear hysteretic model

illustrated in Figure 5.14 can also be used to represent the hysteretic M � � relationship of column sections

subjected to uniaxial bending except that Mp should be replaced with MpN. The value of MpN can be

determined with Equations (5.6)– (5.9) using the average of axial forces in the process of cyclic loading.

Generally, models in Figure 5.15 or 5.16 can be used to predict the hysteretic �� � or �� R relationship

of column sections subjected to uniaxial bending, but modify

� ¼ M

MpN

����
����; ð5:41Þ

� ¼ �

�pN

����
���� ð5:42Þ

and

�s ¼
MsN

MpN

; ð5:43Þ

where MsN and MpN are the initial and ultimate yielding moments, respectively, varying with the axial force

in the column in the process of loading and �pN is the elastic curvature corresponding to MpN.

5.4.4 Hysteretic Model of Column Section Subjected to Biaxial Bending

The moment–curvature relationship about one axis will be influenced by the bending moment about the

other axis for column sections subjected to biaxial bending, which makes it much complex to simply use the

Γ

Γ

R R1 q

unΓ

pnΓ

snΓ
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Figure 5.16 Hysteretic �� � curve
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hysteretic moment–curvature relationship based on uniaxial bending, and the models given in Figure 5.14 or

5.15 become unapplicable.

However, the value of the yielding function � can be regarded as an index indicating to what extent

the section yields under loads, and the value of the recovery force factor R as an index indicating the

sectional stiffness after deformation. The hysteretic model shown in Figure 5.16 can therefore be used to

depict the hysteretic �� R relationship of column sections subjected to biaxial bending. The left-hand side

of the ultimate yielding equation in the form of �ðmxT; myT; nTÞ ¼ 1 can be defined as the yielding

function as

� ¼ �ðmxT; myT; nTÞ: ð5:44Þ

If the approximate equation for the ultimate yielding, Equation (5.31), is adopted, the yielding function

becomes

� ¼ ms
xT

1� nu
T

þ
mt

yT

1� nv
T

þ nw
T : ð5:45Þ

The recovery force factor R is calculated with Equations (5.39) and (5.40) as well, where �sn and �pn are

determined according to the recurrence formulae, Equation (5.34)–(5.36), in which �s becomes

�s ¼ �ðm0xT; m0yT; n0TÞ; ð5:46Þ

where ðm0xT; m0yT; n0TÞ is the intersection of the line from the origin to the force state point

ðmxT; myT; nTÞ with the initial yielding surface in the orthotropic coordinate mxT � myT � nT, as shown

in Figure 5.17.

The validity of the hysteretic model for columns subjected to biaxial bending is obtained with experi-

ments, which will be presented in Chapter 8.

5.5 DETERMINATION OF LOADING AND DEFORMATION STATES
OF BEAM–COLUMN SECTIONS

The yielding function can be used to identify the state of beam and column sections loaded as follows:

� if �tþ�t > �t , it is a loading state,

� if �tþ�t < �t , it is an unloading state,

1
''' ,, TyTxT nmm

),,( TyTxT nmm

yTm

xTm

Tn

py+/1

pxχ/1

Figure 5.17 Initial yielding surface and the force state point
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� if �tþ�t ¼ �t, it is a constant load state retaining certain loads,

where �t and �tþ�t are the values of the yielding function at times t and t þ�t, respectively.

Three deformation states corresponding to the above three loading states are

(1) loading state: if �tþ�t < �sn, the section is in elastic state and the recovery force factor R ¼ 1, and if

�tþ�t � �sn, the section is in elasto-plastic state and the recovery force factor R can be determined with

Equations (5.39b) and (5.39c);

(2) unloading state: the section is in elastic state and the recovery force factor R ¼ 1;

(3) constant load state: the deformation state of the section at time t þ�t is the same as that at time t.
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6 Hysteretic Behaviour
of Composite Beams

6.1 HYSTERETIC MODEL OF STEEL AND CONCRETE MATERIAL
UNDER CYCLIC LOADING

6.1.1 Hysteretic Model of Steel Stress–Strain Relationship

A large amount of effort has been made worldwide to the stress–strain relationship of the steel material

under cyclic loading. Several hysteretic models have been developed, where the simplest one is the perfectly

elastic–plastic model (see Figure 6.1(a)) ignoring the strain-hardening effect and the Bauschinger effect.

The models given in Figure 6.1(b)–(d) can consider both the strain-hardening effect and the Bauschinger

effect. The model in Figure 6.1(b) is a bilinear model and the other two are trilinear models with,

respectively, softening phase and yielding plateau.

The bilinear model is employed in this chapter because it can capture the principal characteristics of the

steel material under cyclic loadings and is convenient to programming. In the bilinear model, q is the

hardening factor and generally q ¼ 0:01–0:02. If unloading before hardening, the initial elastic modulus Es

is used as loading or unloading stiffness and the Bauschinger effect is ignored, but if unloading after

hardening, Es is used as unloading stiffness and the Bauschinger effect is considered.

6.1.2 Hysteretic Model of Concrete Stress–Strain Relationship

As concrete is a mixture of different materials and there is microcrack in nature, the damage mechanism of

concrete is inherently initiated from microcrack developing to macrocrack, and eventually from macrocrack

developing to material failure. In the past experiments, it has been found that the skeletal of the hysteretic

stress–strain curve of concrete is very close to its uniaxial stress–strain curve. In this chapter, the uniaxial

stress–strain curves, well accepted both in compression and in tension, are adopted as the skeletal of the

hysteretic curve of the concrete material under cyclic loading. Additionally, unloading and reloading parts

are involved in the hysteretic curve constructed to consider the effects of cracking and softening of concrete

under cyclic loading.

6.1.2.1 Skeletal curve

Unconfined concrete is considered herein due to little restrains of reinforcement bars to the concrete block in

composite beams.

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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Uniaxial compressive constitution

The uniaxial compressive stress–strain curve of concrete includes stiffening (upward) and softening

(downward) phases. The well-known Hognestad formula (Jiang, 1998) is used to construct the stiffening

curve and the equations recommended in the Chinese code (GB50010, 2002) for the softening one, i.e.

� for " � "c0:

� ¼ fc 2
"

"c0

� "

"c0

� �2
" #

; ð6:1Þ

� for " > "c0:

� ¼ fc

"="c0

"="c0 þ að"="c0 � 1Þ2
; ð6:2Þ

where fc is the ultimate compressive strength of concrete in uniaxial loading, "c0 is the corresponding strain

to fc and a is a softening parameter relating to material strength, generally ranging from 0.4 to 2.0.

Uniaxial tensile constitution

The following stress–strain relationship is used for uniaxial tension of concrete:

� for " � "t0:

� ¼ E0"; ð6:3Þ

qEs
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Figure 6.1 Hysteretic stress–strain relationships of the steel material: (a) perfectly elastic–plastic model; (b) bilinear

model; (c) trilinear model with softening; (d) trilinear model with yielding
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� for " > "t0:

� ¼ 0:9ft exp �0:1
"

"t0

� 1

� �� �
þ 0:1ft; ð6:4Þ

where ft is the ultimate tensile strength of concrete in uniaxial loading, "t0 is the corresponding strain to ft and

E0 is the tensile modulus of concrete, E0 ¼ ft="t0.

6.1.2.2 Loading and unloading rule

Unloading in compression and reloading

In the compression state, the unloading and reloading rule (see Figure 6.2) is

(a) when " � 0:55"c0, the stress–strain unloading and reloading path is determined according to elastic

stiffness;

(b) when " > 0:55"c0, the stress–strain unloading and reloading path is determined according the focal

point method described below.

The focal points F1, F2, F3 and F4 are located at the tangent of the skeletal stress–strain curve at origin

and their stress coordinates are �3fc, �fc, �0:75fc and �0:2fc, respectively. Assume that unloading is

from an arbitrary point A ("A, �A), as shown in Figure 6.2. The unloading path is along A–D–B, where point

B ("B, 0) is the intersection of line AF2 with the "-axis, point D ("D, �D) is the intersection of line CF1 and
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Figure 6.2 Hysteretic stress–strain relationships of the concrete material
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line BF4, and point C ("C,�C) is that in BF3 and with a strain value of "A. By the rule described above, the

coordinates of points B, C and D can be calculated as

"B ¼
fc"A � �A"1

fc þ �A

; ð6:5Þ

�C ¼
0:75fc

0:75"1 þ "B

ð"A � "BÞ; ð6:6Þ

"D ¼
3"1D2 þ "BD1 � 3fc

D1 � D2

; ð6:7Þ

�D ¼ ð"D � "BÞD1; ð6:8Þ

D1 ¼
0:2fc

"B þ 0:2"1

; ð6:9aÞ

D2 ¼
�C þ 3fc

"A þ 3"1

; ð6:9bÞ

where "B is the residual strain after unloading and "1 ¼ "c0=2.

When reloading to compression from point B, the reloading path is along B–C–E, where point E is in the

skeletal curve and with a strain value of 1.15"A, and when reloading in reverse to tension from B, the

reloading path depends on the maximum of tensile strain in history, "�t . If "�t � "t0, namely concrete in

tension never cracking, the reloading is along BF, where F (ft, "t0) is the point in the skeletal curve

corresponding to the maximum tensile stress. However, if "�t > "t0, the reloading is along B–G, where G

("G, �G) is the point corresponding to the maximum tensile stain.

Unloading in tension and reloading

In the tension state, the unloading and reloading rule (see Figure 6.2) is

(a) when " � "t0, the stress–strain unloading and reloading path is determined according to elastic stiffness;

(b) when " > "t0, the stress–strain unloading and reloading path is determined by the equations given

below.

Assume that unloading is from point G in the softening part of the skeletal curve, as shown in Figure 6.2. The

unloading path is along BH and H is the initial point from which the cracking effect is produced, and the

strain at point H, "H, is

"H ¼ "G 0:1þ 0:9"c0

"c0 þ j"Gj

� �
: ð6:10Þ

The path of reloading in reverse depends on the maximum of compressive strain in history, "�c . If "�c � "c0,

namely concrete in compression never crushing, the reloading is along H–I–J, but if "�c > "c0, the reloading

is along H–I0–C–E.

Point I or I0 is the intersection of reloading path with the �-axis, and the contact stress corresponding to

" ¼ 0 is

�con ¼ 0:3�R 2þ j"Hj="c0 � 4

j"Hj="c0 þ 2

� �
; ð6:11Þ

where �R ¼ fc for "�c � "c0 or �R ¼ �A for "�c > "c0.

Equation for HI or HI0 is

� ¼ �con 1� 2 � j"j
j"Hj þ j"j

� �
ð"H � " < 0Þ: ð6:12Þ
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Equation for IJ is

� ¼ �conð1� "="c0Þ þ
2"

"0 þ "
fc ð0 � " < "c0Þ: ð6:13Þ

Equation for I0C is

� ¼ �conð1� "="AÞ þ
2"

"A þ "
�C ð0 � " < "CÞ: ð6:14Þ

If unloading occurs at any point of GI, the unloading path is the direct line from that point to G.

6.2 NUMERICAL METHOD FOR MOMENT–CURVATURE
HYSTERETIC CURVES

6.2.1 Assumptions

(1) A plane section of composite beams remains plane when subjected to bending.

(2) The stress–strain relationship for steel and concrete material can be determined according to Figures 6.1(b)

and 6.2.

(3) The effect of shear lag in the concrete slab flange of composite beams can be neglected.

(4) No slip occurs at the steel–concrete interface of composite beams, namely full composite action is

considered.

6.2.2 Sectional Division

Fibre model is used to analyse the sectional hysteretic behaviour. Strip fibre is divided along the sectional

width, as shown in Figure 6.3. Each strip is distributed with uniform normal stress, and the longitudinal

reinforcement bar is dealt with as an independent strip.

For the sake of calculation convenience, take the central axis of the steel section as the reference axis.

Suppose the strain at the reference axis to be "s0 and the sectional curvature �; the strain of each strip can

then be expressed as

"i ¼ "s0 þ � � yi; ð6:15Þ

where yi is the distance from the central point of each strip to the reference axis.
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Figure 6.3 Fibre division and strain distribution of the composite section
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The stress of each strip can be calculated from the strain given in Equation (6.15) and according to the

material constitution of steel and concrete presented in Section 6.1, following which the axial force on each

strip can be obtained with

Nci ¼ �Aci�ci; ð6:16aÞ

Nsb ¼ Asb�sb; ð6:16bÞ

Nsi ¼ �Asi�si; ð6:16cÞ

where �Aci, �Asb and �Asi are the cross-sectional areas of the concrete strip, longitudinal reinforcement bar

and steel strip, respectively, and �ci, �sb and �si are strip stresses, respectively.

Then, the axial force N and bending moment M carried by the total section are

N ¼
Xnc

i¼1

�Aci�ci þ
Xns

i¼1

�Asi�si þ Asb�sb; ð6:17Þ

M ¼
Xnc

i¼1

�Aci�ciyci þ
Xns

i¼1

�Asi�siysi þ Asb�sbysb: ð6:18Þ

6.2.3 Calculation Procedure of Moment–Curvature Relationship

In general, a set of values about the bending moment, curvature and strain at the reference axis (reference

strain) may be determined for each point in the moment–curvature curve, which satisfy strain compatibility

and internal force equilibrium in the section considered. The numerical procedure for determining the

moment–curvature curve of composite sections is given in Figure 6.4. To capture the softening (downward)

phase in the moment–curvature curve, a curvature-incremental strain-iterative strategy is employed, and the

iteration convergence criterion for each incremental analysis is that the axial force on the section considered

vanishes, namely

Nð"s0Þ ¼ 0: ð6:19Þ

In strain iteration, a linear interpolation technique is used to speed up the calculation. For this purpose, a

convergence function is defined as

 ¼ Nð"s0Þ: ð6:20Þ

If two trial values of reference strain, "1
s0 and "2

s0, are obtained, the next trial value of reference strain is

determined with linear interpolation as

"0s0 ¼ "1
s0 �

"2
s0 � "1

s0

 2 �  1

 1; ð6:21Þ

where  1 ¼ Nð"1
s0Þ and  2 ¼ Nð"2

s0Þ.
It should be noted that the double precision format is necessary to set up the variables to preclude the

numerical difficulty in iterative calculation. The convergent rate is very good in the iterative procedure

proposed, and generally, convergence will be achieved within 10 runs.
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6.3 HYSTERETIC CHARACTERISTICS OF MOMENT–CURVATURE
RELATIONSHIPS

A typical hysteretic moment–curvature curve of the composite section is illustrated in Figure 6.5. The

characteristics and typical phases of this curve are discussed in this section.

6.3.1 Characteristics of Hysteretic Curves

(1) The hysteretic hoop of the composite beam is plump and stable, without strength or stiffness

regression.

Begin

Input section parameters

Calculate strip geometric parameters

Set initial values for the strain of each strip, =0, I=0

I = I + 1

k = k + ∆ k

Assume reference strain

Calculate strain of eacn strip with Equation (6.14)

Calculate stress of each strip using hysteretic stress–strain relationship of steel and concrete

Calculate internal forces of the section considered with Equation’s (6.16) and (6.17)

N = 0

I = T

Record strain of each strip

Draw hysteretic M– curve

End

No

Yes

Yes

No

Figure 6.4 Flow chart of moment–curvature calculation
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(2) Asymmetry exists between the positive (sagging) moment zone and the negative (hogging) moment

zone in the hysteretic hoop (see Figure 6.5), which results from the asymmetric distribution of the

material over the section (see Figure 6.3).

(3) A concrete flange is in compression by positive moment and the hysteretic curve has the characteristics

of reinforced concrete beams, whereas the concrete flange is in tension and can be negligible by negative

moment and the hysteretic curve has the characteristics of steel beams.

(4) The Bauschinger effect and the strain-hardening effect can be observed in the hysteretic M–� curves of

composite beam sections.

6.3.2 Typical Phases

(1) Phase OA. The moment–curvature relationship in this phase is linear. The steel beam and concrete slab

flange are in elastic states. Point A is the initial yielding of the lower steel flange.

(2) Phase AB. The moment–curvature relationship in this phase is nonlinear, and the section is in elasto-

plastic state. Yielding spreads upwards with the increase of moment, and the neutral axis lifts to keep

force balance. The compressive ultimate strength of concrete has not been reached in this phase. The

global stiffness of the composite section reduces gradually.

(3) Phase BC. Unloading occurs at point B, and the moment–curvature relationship in this phase is

linear again. Unloading stiffness is the same as that of initial loading (phase OA). The moment

reduces to zero at point C, but the residual positive curvature remains unchanged due to plastic

strain.

(4) Phase CD. Negative moment is applied in reverse, and the moment–curvature relationship in this

phase is linear. The loading stiffness in this phase is equal to the unloading stiffness in phase BC. The

concrete in compression is in unloading and at point D, compression in concrete reduces to zero.

(5) Phase DE. The moment–curvature relationship in this phase is nonlinear. Tension zone spreads in

the concrete flange of the section with the increase of moment, and the contribution of concrete to

the stiffness of the composite beam becomes small. The sectional moment resistance is mainly

provided by the steel beam and rebar in concrete. Yielding occurs in the compressive lower steel

flange at point E.

(6) Phase EF. The moment–curvature relationship in this phase is nonlinear. As the plastic zone spreads in

the steel beam, the stiffness reduces significantly compared to that in phase DE. At point F, the rebar in

tension yields.
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Figure 6.5 Hysteretic curve of the composite section
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(7) Phase FG. The moment–curvature relationship in this phase is approximately linear and the slope is

small. The section enters the strain-hardening phase. Plastic zones of steel in tension and compression

increase.

(8) Phase GH. Unloading is from point G, and the moment–curvature relationship in this phase is linear.

The unloading stiffness is equal to the loading stiffness in phase DE. Rebars in tension are in elastic

unloading. Aggregate locking occurs in the concrete flange of the section at point E.

(9) Phase HI. The moment–curvature relationship in this phase is linear. The concrete flange is assumed

to come again into compression due to aggregate locking, which gives sectional stiffness an

increase so that an antiflexural point appears at H. The unloading stiffness is equal to the loading

stiffness in phase OA. The lower part of the steel beam comes in tension after the moment unloads to

zero.

(10) Phase IJ. Yielding occurs on the outer fibre of the lower steel flange. Even though concrete in

compression again can increase sectional stiffness, the entire stiffness reduces with the increase of

moment because the plastic zone spreads in the steel beam.

(11) Phase JK. The moment–curvature relationship in this phase is linear, but the slope is small. The section

enters strain hardening, and the concrete flange crushes when the ultimate compressive strength

exceeds.

6.4 PARAMETRIC STUDIES

The skeletal curve of the hysteretic moment–curvature relationship of composite beams is an envelope of

many hysteretic hoops. A large amount of numerical studies indicate that the skeletal curve coincides well

with the moment–curvature curve of the beam subjected to monotonic loading. Comparisons are given in

Figure 6.6 between the hysteretic moment–curvature curve and the monotonic moment–curvature curve for

three composite beams.

In this section, parametric studies are given for both skeletal curve and hysteretic curve of composite

sections. The typical parameters investigated include height of concrete flange hc, width of concrete

flange Bc, height of steel beam hs, strength ratio g, yielding strength of steel fy and compressive strength

of concrete fck.

6.4.1 Height of Concrete Flange hc

Five skeletal curves are obtained in Figure 6.7, where results from four different values of hc as well as from

a pure steel beam (hc ¼ 0) are compared. The comparisons reveal that in the positive bending (sagging)

moment zone, the initial and ultimate yielding moments increase evidently with the increase of concrete

flange height, but in the negative bending (hogging) moment zone, such an increase is small. The bending

stiffness and ultimate moment of a composite section are greater than those of the corresponding pure steel

section, especially in the positive bending moment zone.

Studies are also conducted on the hysteretic curves of the composite beams with concrete flange heights

hc of 60 and 120 mm. The hysteretic moment–curvature curves, shown in Figure 6.8, demonstrate that the

stiffness degradation of composite sections is evident in the positive moment zone, especially in the case of

large concrete flange height.

6.4.2 Width of Concrete Flange Bc

The skeletal curves and hysteresis hoops for various widths of concrete flange are shown in Figures 6.9 and

6.10. The effects of concrete flange width on skeletal curves and hysteresis hoops are very similar to those of
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concrete flange height. It can be seen from Figure 6.9 that the elastic stiffness and initial yielding moment of

composite sections with concrete flange width greater than 1000 mm do not vary much, in both positive and

negative moment zones.

6.4.3 Height of Steel Beam hs

The height of steel beam has great influence on the stiffness and bending strength of composite sections, as

shown in Figures 6.11 and 6.12, no matter they are in the positive or negative zone. The results reveal that the
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height of steel beams is a crucial dimension factor to influence the stiffness and strength of composite

sections.

6.4.4 Strength Ratio c

The strength ratio g is defined as the ratio of longitudinal reinforcement bar strength to steel beam strength,

i.e.

g ¼ Asb fsb

As f
; ð6:22Þ

where Asb and fsb are the sectional area and design tensile strength of the longitudinal reinforcement bar

within the effective breadth of the concrete flange, and As and f are the sectional area and design tensile

strength of the steel beam, respectively.

The skeletal curves and hysteresis hoops with different strength ratios are given in Figures 6.13 and 6.14.

In contrast to the observation above, the effects of strength ratio on skeletal curves in the negative moment

zone are greater than those in the positive moment zone. By the results in Figure 6.13, the skeletal curves
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tend to be symmetric with an increase of the strength ratio, namely the stiffness and strength behaviour in the

negative moment zone become close to those in the positive zone.

In Figure 6.14, the effects of strength ratio on the hysteretic behaviour in the positive moment zone are

evident when the strength ratio is small. But for large strength ratios, the hysteresis hoops of composite

sections are close to those of pure steel beams because the concrete contribution is small.

6.4.5 Yielding Strength of Steel fy

The yielding strength of steel beams has great influence on the bending strength of the corresponding

composite beams, as shown in Figures 6.15 and 6.16, no matter they are in the positive or negative zone.

However, it does not affect the elastic stiffness because elastic stiffness relates to the elastic modulus of the

material, not to the yielding strength.

6.4.6 Compressive Strength of Concrete fck

By the results illustrated in Figures 6.17 and 6.18, it can be concluded that the compressive strength of

concrete has a small effect on the skeletal curves and hysteresis hoops of composite sections.

–1200
–1000
–800
–600
–400
–200

0
200
400
600
800

1000
1200

–60 –40 –20 0 20 40 60

f y = 390 MPa

f y = 345 MPa

f y = 235 MPa

Curvature (1/mm×10–6)

M
om

en
t (

kN
 m

)

Bc=1400 mm, hc=100 mm;
hs=450mm, g =0.25;
f ck=20 MPa

Figure 6.15 Effects of steel yielding strength on skeletal curves

–500

–1000

0

500

1000

1500

– 60 – 40 – 20 0 20 40 60

fy = 390 MPa

fy = 345 MPa

fy = 235 MPa

Curvature (1/mm×10–6)

M
om

en
t (

kN
 m

)

Bc=1400 mm, hc=100 mm;
hs=450mm, g =0.25;
f ck=20 MPa

Figure 6.16 Effect of steel yielding strength on hysteresis hoops

84 HYSTERETIC BEHAVIOUR OF COMPOSITE BEAMS



6.4.7 Summary of Parametric Studies

By parametric studies, the following conclusions can be drawn:

(1) Width and thickness of the concrete flange have an evident influence on the elastic bending stiffness,

yielding moment and limit moment of composite beams in positive moment, but have a negligible

influence on them when composite beams are in negative moment.

(2) Height of steel beams is the dominant factor to determine the values of bending stiffness and capacity of

composite beams, no matter they are in positive or negative bending. But it does not influence the shape

of the hysteretic moment–curvature curves much.

(3) Strength ratio is a significant factor relevant to hysteretic behaviour of composite beams. When

composite beams are in negative rather than positive moment, the effect of strength ratio is evident.

Elastic stiffness, yielding moment and limit moment of composite beams in negative moment increase

with strength ratio. The elastic stiffness and yielding moment of composite beams in positive moment

are nearly the same, but limit moment increases with the increase of strength ratio.

(4) Strength ratio also affects the shape of hysteretic curves of composite beams. When the strength ratio is

small, the effect of concrete on hysteretic curves of composite beams becomes relatively large.
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However, the effect of concrete becomes small when the strength ratio increases, and the hysteretic

curves of composite beams will become similar to those of steel beams.

(5) Yielding strength of steel and compression strength of concrete have an influence on the bending

capacity of composite beams, not on elastic stiffness. The values of such material properties also have a

minor influence on the hysteretic shape of composite beams.

6.5 SIMPLIFIED HYSTERETIC MODEL

The numerical method can produce a large amount of skeletal curves and hysteresis hoops for composite

sections, but it has low feasibility to be incorporated into a dynamic analysis of steel frames with composite

beams, for example, in the appraisal of earthquake resistance of steel frames. A simplified hysteretic model

is therefore necessary and can be derived rationally based on the numerical results, which is the task in this

section.

6.5.1 Skeletal Curve

A simplified bilinear model is used for the skeletal curve of composite beams, in both positive and negative

moment zones, as shown in Figure 6.19. Six parameters are needed to describe the complete bilinear model,

which include elastic stiffness Kþe , yielding moment Mþy and hardening stiffness Kþp in positive moment and

elastic stiffness K�e , yielding moment M�y and hardening stiffness K�p in negative moment.

6.5.1.1 Positive elastic stiffness K+
e

It has been known from the parametric studies that the effect of longitudinal reinforcement bars on the elastic

stiffness of composite beams can be negligible. So Equation (5.13), the expression for the elastic bending

stiffness of composite sections with full composite action, can be used to define the positive elastic stiffness,

i.e.

Kþe ¼ ðEIÞ0comp þ EA � r2: ð6:23Þ

6.5.1.2 Positive yielding moment M+
y

The positive ultimate moment corresponds to the load making the top compressive concrete fibre achieve the

maximum compressive strain. Such ultimate moment defined can be calculated by the block-stress

assumption over the composite section as shown in Figure 6.20 (for the plastic neutral axis within the

concrete flange) and Figure 6.21 (for the plastic neutral axis within the steel beam).
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Figure 6.19 Moment–curvature skeletal curve model of the composite section
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When the plastic neutral axis is located within the concrete flange (see Figure 6.20), namely

As fy � behc fck þ Asb fysb, one has

Mþu ¼ bexfckyþ Asb fysbysb; ð6:24Þ
x ¼ ðAs fy � Asb fysbÞ=ðbe fckÞ;

where As and Asb are the cross-sectional areas of the steel beam and the longitudinal reinforcement bars in

the concrete flange, respectively, fy and fysb are the yielding strength of the steel beam and longitudinal bars,

respectively, fck is the compressive strength of the concrete material, x is the height of the concrete flange in

compression, y is the distance from the centre of the compressive concrete to that of the steel beam and ysb is

the distance of the longitudinal bars to the centre of the steel beam.

When the plastic neutral axis is located within the steel beam (see Figure 6.21), namely

As fy � behc fck þ Asbfysb, one has

Mþu ¼ behc fcky1 þ Asbysb1 þ Ac fyy2; ð6:25Þ
Ac ¼ 0:5ðAs � behc fck=fy � Asb fysb=fyÞ; ð6:26Þ

where Ac is the cross-sectional area of the steel beam in compression, y1 is the distance from the centre of the

compressive concrete to that of the steel beam in tension, ysb1 is the distance of the longitudinal bars to the

centre of the steel beam in tension and y2 is the distance from the centre of the steel beam in compression to

that of the steel beam in tension.
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The positive yielding moment is defined as the moment at the intersection of extension lines of the M–�
elastic curve and hardening curve, as shown in Figure 6.22. Based on numerical results, Mþy can be expressed

with Mþu as

Mþy ¼ 0:95Mþu ; ð6:27Þ

6.5.1.3 Positive hardening stiffness K+
p

The positive hardening stiffness Kþp can be expressed with the elastic stiffness Kþe as

Kþp ¼ a � Kþe ; ð6:28Þ

where a is a hardening factor.

From parametric studies hereinbefore, there is no factor of significance to the hardening stiffness of

composite sections. To preserve sufficient strength and ductility, the hardening effect is only considered on

the positive moment–resistance of composite sections and the maximum strain of the tensile fibre in the steel

beam is limited to 10 000�". Under such conditions, a can be taken as constant (0.025).

6.5.1.4 Negative elastic stiffness K�e

In the negative moment zone, concrete cracks at a very early stage and its contribution to elastic stiffness is

small and can be neglected. The elastic stiffness of composite sections can then be determined by ignoring

concrete and considering the contribution only from the steel beam and longitudinal bars, as shown in

Figure 6.23, i.e.

K�e ¼ EsðIs þ As � y2
4 þ Asby2

3Þ; ð6:29Þ

where Es is the elastic modulus of steel and Is is the inertial moment of the steel beam about its centre.
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6.5.1.5 Negative yielding moment M-
y

In the negative moment zone, the behaviour of composite sections is similar to that of pure steel sections.

With reference to the method used for the hysteretic model of steel beams presented in Chapter 5, M�y can be

expressed as

M�y ¼ �Mys � Asb fysbðy5 þ y6=2Þ; ð6:30Þ

where Mys is the ultimate moment of the steel beam section, Mys ¼ Wp fy, Wp and fy are the plastic section

resistant modulus and yielding strength of steel, respectively, fysb is the yielding strength of longitudinal

bars, and y5 and y6 are denoted in Figure 6.24.

6.5.1.6 Negative hardening stiffness K-
p

The negative hardening stiffness K�p can be expressed with the elastic stiffness K�e as

K�p ¼ q � K�e ; ð6:31Þ

where q is a hardening factor, the value of which can be same as that for steel sections, generally

q ¼ 0:01–0:02.

6.5.2 Hysteresis Model

The model for the moment–curvature hysteresis hoops of composite sections may be developed on the basis

of numerical studies, as illustrated in Figure 6.25.
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obtained with the numerical method
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6.5.2.1 Loading

The loading path of the hysteresis hoop is determined through the skeletal curves with elastic stiffness in

both positive and negative moment zones.

6.5.2.2 Unloading in positive moment zone

In the positive moment zone, the unloading path is along the elastic stiffness Kþe . After the moment enters

the negative zone, loading in reverse is along elastic stiffness K�e up to the negative yielding moment. The

determination of the negative yielding moment in reverse loading, M��y , should account for the Bauschinger

effect, where M��y depends on whether the positive moment applied on the composite section was greater

than the positive yielding moment or not in history. If the positive moment has never reached the positive

yielding moment, M��y is calculated with Equation (6.30) (actually equal to M�y ), but if the positive moment

has reached the positive yielding moment, M��y is that at the intersection of reversal loading path (2) with

negative hardening path (4) (see Figure 6.25) passing through the point ð�M�y ;���y Þ, where ���y is the

curvature corresponding to the negative yielding moment and is given by

��y ¼ M�y =K�e : ð6:32Þ

6.5.2.3 Unloading in negative moment zone

When the negative moment on the section has never reached the negative yielding moment, the unloading

path is along the skeletal curve. If the negative moment has reached the negative yielding moment, the

unloading of the moment is according to the elastic stiffness K�e , and when the moment enters the positive

zone, loading in reverse is also along the elastic stiffness K�e up to the positive yielding moment.

The positive yielding moment in reverse loading Mþ�y is that at the intersection of reverse loading path

(2) with the positive hardening path (4), symmetric and parallel to the negative hardening path (4) (see

Figure 6.25). After yielding, the moment increases with the hardening stiffness K�p , till the negative

curvature vanishes. After the curvature is positive, the moment–curvature path follows the link line (5),

which is from the point with zero curvature, the intersection of path (4) in the positive moment zone and
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SIMPLIFIED HYSTERETIC MODEL 91



the axis of M, to the unloading point of positive moment last time on the skeletal curve. If the unloading

positive moment last time did not exceed the positive yielding moment, the link line (5) is from the zero-

curvature point to the point (Mþy , �þy ), where �þy is determined by

�þy ¼ Mþy =Kþe : ð6:33Þ

The comparisons of skeletal curves and hysteresis hoops of composite sections between the results of the

simplified model presented hereinabove and those obtained with the numerical method are plotted in

Figure 6.26(a)–(d). Good agreement can be found in those figures.

The comparison of hysteresis hoops between the results of the simplified model and those obtained by

test (Lee and Lu, 1989) is given in Figure 6.27, where good coincidence can be observed as well.
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7 Elasto-Plastic Stiffness
Equation of Beam Element

When a beam element is in elasto-plastic state, the relationship between the nodal forces and displacements

of the element depends on the elemental displacement history. As the elemental displacement history is

relevant to the loading history, which is arbitrary, there is no way to establish the stiffness equation with

total-quantity form for nodal forces and displacements. However, there is a certain stiffness relationship

between incremental nodal forces and displacements with minor step, and it is known as the elasto-plastic

incremental stiffness equation.

Assume that equilibrium has been obtained with nodal rotations �1 and �2 and translations �1 and �2

corresponding to nodal moments M1 and M2 and shears Q1 and Q2, as shown in Figure 2.1. If incremental

moments dM1 and dM2 and shears dQ1 and dQ2 are applied, the corresponding incremental rotations d�1 and

d�2 and translations d�1 and d�2 will occur, as shown Figure 7.1. The incremental forces and displacements

can be expressed with vector forms as

fd�gg ¼ fd�1; d�1; d�2; d�2gT; ð7:1Þ

fdfgg ¼ fdQ1; dM1; dQ2; dM2gT: ð7:2Þ

The elasto-plastic incremental stiffness equation of beam elements can then be expressed as

½kgp�fd�gg ¼ fdfgg; ð7:3Þ

where ½kgp� is the elasto-plastic tangent stiffness matrix of beam elements.

7.1 PLASTIC HINGE THEORY

The simple or original plastic hinge theory is a straightforward way to establish the elasto-plastic incre-

mental stiffness equation of beam elements, where the following assumptions are raised:

(1) the plastic deformation is concentrated on the two ends of elements;

(2) plastic hinge forms at a section of elements once the moment applied at the section equals to the plastic

moment of elements.

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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Assumption (1) is the concentrated plastic assumption, which is commonly accepted in the elasto-plastic

analysis of frame structures, whereas assumption (2) is based on the ideal elasto-plastic M � � relationship,

as shown in Figure 7.2.

7.1.1 Hinge Formed at One End of Element

Equation (2.22) can be used for the incremental stiffness equation of a beam element as well, i.e.
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where  1 �  4 are determined with the axial force in the beam element before the incremental axial force is

applied.
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Figure 7.1 Nodal forces and deformations of the beam element
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Figure 7.2 Ideal moment–rotation curve of the beam element
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Assume that a plastic hinge forms at element end 1, i.e. M1 ¼ Mp, which will lead to dM1 ¼ 0. With

static condensation, Equation (7.4) can be rewritten as
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where

 5 ¼
1

 3

ð4 1 3 � 3 2
2Þ; ð7:6aÞ

 6 ¼
 2

 3

ð2 3 �  4Þ; ð7:6bÞ

 7 ¼
1

3 3

ð4 2
3 �  2

4Þ: ð7:6cÞ

As

 2 ¼
2 3 þ  4

3
; ð7:7Þ

substituting it into Equation (7.6b) and noting Equation (7.6c) yields

 6 ¼  7: ð7:8Þ

With Equation (7.8), the incremental stiffness equation of the beam element with a plastic hinge formed at

end 1 can be written as

½kgp1�fd�gg ¼ fdfgg; ð7:9Þ

where
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A similar stiffness equation of the element when a plastic hinge forms at end 2 can be

½kgp2�fd�gg ¼ fdfgg; ð7:11Þ

where

½kge2� ¼
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 5 and  6 in Equations (7.10) and (7.12) are calculated according to Equations (7.6a) and (7.6b),

respectively. If the effects of axial force are neglected, substituting Equation (2.40) into Equation (7.6)

results in

 5 ¼  6 ¼
4

4þ r
: ð7:13Þ

If the effects of shear deformation are neglected, and only the first term of ðalÞ2 in series expansions of  5

and  6 is reserved, substituting Equation (2.27) into Equation (7.6) leads to

 5 ¼ 1þ 6

15
ðalÞ2 ¼ 1þ 6

15

Nl2

EI
; ð7:14aÞ

 6 ¼ 1þ 1

15
ðalÞ2 ¼ 1þ 1

15

Nl2

EI
: ð7:14bÞ

Substituting Equation (7.14) into Equations (7.10) and (7.12) yields

½kgp1� ¼ ½kge1� þ ½kgG1�; ð7:15aÞ

½kgp2� ¼ ½kge2� þ ½kgG2�; ð7:15bÞ

where
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In the above equations, ½kge1� and ½kge2� are the elastic stiffness matrices for the beam element with hinge at

end 1 and end 2, respectively, which exclude effects of both shear deformation and axial forces, and ½kgG1�
and ½kgG2� are the geometrical stiffness matrices for the beam element with hinge at end 1 and end 2,

respectively.

If effects of both shear deformation and axial force are neglected, Equation (7.15) is simplified to

½kgp1� ¼ ½kge1�; ð7:18aÞ
½kgp2� ¼ ½kge2�: ð7:18bÞ

7.1.2 Hinge Formed at Both Ends of Element

If plastic hinges form at both end 1 and end 2 of the element, the equilibrium conditions before and after

incremental forces applied are (see Figures 2.1 and 7.1)

Q2 ¼ �Q1 ¼ N
�2 � �1

l
; ð7:19aÞ

Q2 þ dQ2 ¼ �ðQ1 þ dQ1Þ ¼ ðN þ dNÞ ð�2 þ d�2Þ � ð�1 þ d�1Þ
l

: ð7:19bÞ

Substituting Equation (7.19a) into Equation (7.19b) and omitting high-order minor quantities lead to

dQ2 ¼ �dQ1 ¼
N

l
ðd�2 � d�1Þ: ð7:20Þ

Equation (7.20) can be rewritten in matrix form as

½kgp3�fd�gg ¼ fdfgg; ð7:21Þ

where

½kge3� ¼ N

1

l
0

1

l
0

0 0 0 0

1

l
0

1

l
0

0 0 0 0

2
66666664

3
77777775
: ð7:22Þ

7.2 CLOUGH MODEL

Clough, Benuska and Wilson (1965) proposed a model based on plastic hinge theory and bilinear M � �
relationship of beam sections, which actually introduces the hardening effect of material to the simple

plastic hinge model. The beam element of the Clough model is assumed to be superpositioned with two

parallel components working together, as shown in Figure 7.3, where one is an idealized elasto-plastic

component and the other an infinitely elastic component.
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When the bending moment at one end of the beam element is equal to or larger than the sectional plastic

moment Mp and the element is at the same time in loading state, plastic hinge will form at the same end of the

idealized elasto-plastic component. As the two components of the element work together, the stiffness of the

beam element can be the summation of these two components assumed. That is if end 1 of the element is

yielding (M1 � Mp and M1dM1 � 0):

½kgp� ¼ ð1� qÞ½kgp1� þ q½kge�; ð7:23aÞ

� if end 2 of the element is yielding (M2 � Mp and M2dM2 � 0):

½kgp� ¼ ð1� qÞ½kgp2� þ q½kge�; ð7:23bÞ

� if both ends of the element are yielding:

½kgp� ¼ ð1� qÞ½kgp3� þ q½kge�; ð7:23cÞ

where ½kgp1�, ½kgp2� and ½kgp3� are the stiffness matrices of the beam element, determined with plastic hinge

theory; ½kge� is the elastic stiffness matrix of the beam element and q is the hardening factor in the bilinear

M � � model.

When the beam element is subjected to cyclic loading, the stiffness matrices of the beam element can be

calculated by combining the Clough model with the bilinear M � � hysteretic model.

7.3 GENERALIZED CLOUGH MODEL

The realistic M � � relationship of steel beams can be represented with the curve shown in Figure 7.4, which

is different from the bilinear model, and nonlinearity occurs in the phase from initial yielding to ultimate

yielding. To determine the nonlinear M � � relationship of beam elements, the authors proposed a general-

ized Clough model in 1990.

IER
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M

EI

qEI

M
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s

Figure 7.4 Realistic moment–curvature curve of the steel beam

φ

M

O

M

EI

qEI 

M

φO

(1–q)M
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Figure 7.3 Clough model
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In the generalized Clough model, a beam element is assumed to be superpositioned with three parallel

components working together, as shown in Figure 7.5. The first is a two-end clamped component, the second

is a hinged-clamped component and the third is a two-end hinged component. It can be seen from Figure 7.5

that the generalized Clough model is a transient one and corresponds to the loading state of the beam element

at the time considered.

The tangent stiffness matrices of the beam element can be expressed with the generalized Clough

model as

½kgp� ¼ R2½kge� þ ðR1 � R2Þ½kgp2� þ ð1� R1Þ½kgp3�; for R1 � R2; ð7:24aÞ

or

½kgp� ¼ R1½kge� þ ðR2 � R1Þ½kgp1� þ ð1� R2Þ½kgp3�; for R1 � R2; ð7:24bÞ

where R1 and R2 are the recovery force parameters for end 1 and end 2 of the element, respectively, which are

relevant to the moments at the both ends of the element, M1 and M2, and the deformation state of the element,

and can be calculated according to Equations (5.39) and (5.40).

7.4 ELASTO-PLASTIC HINGE MODEL

Giberson (1969) proposed an end-spring model (see Figure 7.6) to establish the elasto-plastic stiffness

equation of a beam element after its ends yield. Based on the model by Giberson, Li (1988) proposed the

elasto-plastic hinge model. The principal assumptions involved in the elasto-plastic hinge model are as

follows:

(1) The rotation of the elemental end section always includes elastic and plastic portions, namely the

elemental end is constantly an elasto-plastic hinge.

(2) The plastic rotation of the elemental end can be represented by a virtual rotating spring, which is

dependent only on the bending moment at the same end.

R2EI 

R2EI

M

O φ

O φ

M
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O φ
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Figure 7.5 Generalized Clough model (R1 � R2)
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By assumption (1), the incremental deformations of the elements can be written as

fd�gg ¼ fd�geg þ fd�gpg; ð7:25Þ

where fd�geg and fd�gpg are the elastic and plastic deformation components.

Dividing the incremental deformations by the two ends results in

fd�gg ¼
h
fd�g1gT; fd�g2gT

iT

; ð7:26Þ

where

fd�g1g ¼ ½d�1; d�1�T; ð7:27aÞ
fd�g2g ¼ ½d�2; d�2�T: ð7:27bÞ

Note that

fd�gp1g ¼ ½0; d�p1�T ¼ ½g�f1gd�p1; ð7:28aÞ
fd�gp2g ¼ ½0; d�p2�T ¼ ½g�f1gd�p2; ð7:28bÞ

where

½g� ¼
0 0

0 1

� �
; ð7:29Þ

½1� ¼ ½1 1�T: ð7:30Þ

Dividing the incremental forces with two components fdfgtg and fdfgng, one has

fdfgg ¼ fdfgtg þ fdfgng; ð7:31Þ

where

fdfgtg ¼
�
fdfgt1gT; fdfgt2gT

�
; ð7:32aÞ

fdfgt1g ¼
�
dQ1; 0

�T
; ð7:32bÞ

fdfgt2g ¼
�
dQ2; 0

�T
; ð7:32cÞ

fdfgng ¼
�
fdfgn1gT; fdfgn2gT

�
; ð7:33aÞ

fdfgn1g ¼
�
0; dM1

�T
; ð7:33bÞ

fdfgn2g ¼
�
0; dM2

�T
: ð7:33cÞ
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Figure 7.6 Elasto-plastic spring model
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Evidently, fdfgtg and fdfgng are the components of fdfgg orthotropic to each other. The relationship between

the incremental forces fdfgng and incremental elastic deformations fd�gegisconstantly

fdfgg ¼ ½kge�fd�geg: ð7:34Þ

Rewrite Equation (7.34) in partitioned matrix form as

fdfg1g
fdfg2g

� �
¼ ½kgebb� ½kgebt�
½kgetb� ½kgebb�

� �
fd�ge1g
fd�ge1g

� �
ð7:35Þ

or

fdfg1g ¼ ½kgebb�fd�ge1g þ ½kgebt�fd�ge2g; ð7:36aÞ
fdfg2g ¼ ½kgetb�fd�ge1g þ ½kgebb�fd�ge2g: ð7:36bÞ

By assumption (2), one has

fdfgng ¼ ½kn�fd�gpg; ð7:37Þ

where

½kn� ¼
½knb� 0

0 ½knt�

� �
: ð7:38Þ

Then, fdfgng can be partitioned as

fdfgn1g ¼ ½knb�fd�gp1g; ð7:39aÞ
fdfgn2g ¼ ½knt�fd�gp2g; ð7:39bÞ

where

½knb� ¼
0 0

0 Bb

� �
; ½knt� ¼

0 0

0 Bt

� �
; ð7:40Þ

Bb ¼ a1kge22; Bt ¼ a2kge44: ð7:41Þ

kge22 and kge44 are the elements of the second row and second column and fourth row and fourth column,

respectively, in the stiffness matrix ½kge�, and a1 and a2 are the elasto-plastic hinge factors for the two ends of

the beam element.

The elasto-plastic hinge factor can be understood as the stiffness factor of the virtual rotating spring and

should satisfy the following two conditions:

(1)If the section considered is in elastic state, a ¼ 1 and the plastic incremental rotation of the section is

zero.

(2)If the section considered is in ideal plastic state (without hardening), a ¼ 0 and the plastic incremental

rotation of the section is arbitrary.

To satisfy the above conditions, a can be defined as

ai ¼
Ri

1� Ri

; i ¼ 1; 2; ð7:42Þ

where R1 and R2 are the recovery force parameters defined in Equation (5.38) and can be calculated

according to Equations (5.39) and (5.40).
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From Equations (7.25), (7.31), (7.36) and (7.39), one has

fdfgt1g ¼ fdfg1g � fdfgn1g ¼ ½kgebb�fd�g1g þ ½kgebt�fd�g2g � ð½kgebb� þ ½knb�Þfd�gp1g � ½kgebt�fd�gp2g;

¼ ½kgebb�fd�g1g þ ½kgebt�fd�g2g � ð½kgebb� þ ½knb�Þfd�gp1g � ½kgebt�fd�gp2g; ð7:43aÞ

fdfgt2g ¼ fdfg2g � fdfgn2g

¼ ½kgetb�fd�g1g þ ½kgett�fd�g2g � ½kgetb�fd�gp1g � ð½kgett� þ ½knt�Þfd�gp2g: ð7:43bÞ

As vectors fd�gp1gand fd�gp2g are orthotropic with fdfgt1g and fdtgt2g, which can be known from Equations

(7.28) and (7.32), one has

fd�gp1gTfdfgt1g ¼ d�p1f1gT½g�Tfdfgt1g ¼ 0; ð7:44aÞ
fd�gp2gTfdfgt2g ¼ d�p2f1gT½g�Tfdfgt2g ¼ 0: ð7:44bÞ

The solutions of d�p1 and d�p2 and the expressions of the stiffness matrix of the element will be relevant to

the state of the elemental ends, which is discussed in the following.

7.4.1 Both Ends Yielding

When both ends of the element yield, d�p1 6¼ 0 and d�p2 6¼ 0, with which Equation (7.44) becomes

f1gT½g�Tfdfgt1g ¼ 0; ð7:45aÞ

f1gT½g�Tfdfgt2g ¼ 0: ð7:45bÞ

Substituting Equation (7.43) into Equation (7.45) yields

f1gT½g�Tð½kgebb� þ ½knb�Þ½g�f1gd�p1 þ f1gT½g�T½kgebt�½g�f1gd�p2

¼ f1gT½g�T½kgebb�fd�g1g þ f1gT½g�T½kgebt�fd�g2g; ð7:46aÞ
f1gT½g�T½kgetb�½g�f1gd�p1 þ f1gT½g�Tð½kgett� þ ½knt�Þ½g�f1gd�p2

¼ f1gT½g�T½kgetb�fd�g1g þ f1gT½g�T½kgett�fd�g2g: ð7:46bÞ

The solution of the above equations about d�p1 and d�p2 is

d�p1

d�p2

� �
¼ kbb kbt

ktb ktt

� ��1 ½Hbb� ½Hbt�
½Htb� ½Htt�

� �
d�g1

d�g2

� �
; ð7:47Þ

where

kbb ¼ f1gT½g�Tð½kgebb� þ ½knb�Þ½g�f1g; ð7:48aÞ

ktt ¼ f1gT½g�Tð½kgett� þ ½knt�Þ½g�f1g; ð7:48bÞ

kbt ¼ f1gT½g�T½kgebt�½g�f1g; ð7:48cÞ

ktb ¼ f1gT½g�T½kgetb�½g�f1g; ð7:48dÞ

½Hbb� ¼ f1gT½g�T½kgebb�; ð7:49aÞ

½Htt� ¼ f1gT½g�T½kgett�; ð7:49bÞ

½Hbt� ¼ f1gT½g�T½kgebt�; ð7:49cÞ

½Htb� ¼ f1gT½g�T½kgetb�: ð7:49dÞ
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Let

½G� ¼
½g� 0

0 ½g�

� �
; ð7:50Þ

½E� ¼
f1g 0

0 f1g

� �
; ð7:51Þ

½Lbt� ¼
kbb kbt

ktb ktt

� ��1

: ð7:52Þ

From Equations (7.28), (7.47) and (7.49), one has

fd�gpg ¼ ½G�½E�½Lbt�½E�T½G�T½kge�fd�gg; ð7:53Þ

and substituting Equations (7.25) and (7.53) into Equation (7.34) yields

fdfgg ¼ ð½kge� � ½kge�½G�½E�½Lbt�½E�T½G�T½kge�Þfd�gg: ð7:54Þ

Thus, the stiffness matrix when both ends of the element are yielding is

½kgp� ¼ ½kge� � ½kge�½G�½E�½Lbt�½E�T½G�T½kge�: ð7:55Þ

7.4.2 Only End 1 Yielding

When only end 1 of the element yields, d�p1 6¼ 0 and d�p2 ¼ 0, with which Equations (7.43a), (7.44a) and

(7.45a) become

f1gT½g�Tð½kgebb� þ ½knb�Þ½g�f1gd�p1 ¼ f1gT½g�T½kgebb�fd�g1g þ f1gT½g�T½kgebt�fd�g2g; ð7:56Þ

Solution of Equation (7.56) about d�p1 gives

d�p1 ¼
1

kbb

ðf1gT½g�T½kgebb�fd�g1g þ f1gT½g�T½kgebt�fd�g2gÞ ð7:57Þ

or

d�p1

d�p2

� �
¼ 1=kbb 0

0 0

� �
½Hbb� ½Hbt�
½Htb� ½Htt�

� �
d�g1

d�g2

� �
: ð7:58Þ

Let

½Lb� ¼
1=kbb 0

0 0

� �
: ð7:59Þ

Then, the stiffness matrix of the element when end 1 yields can be expressed as

½kgp� ¼ ½kge� � ½kge�½G�½E�½Lb�½E�T½G�T½kge�: ð7:60Þ

7.4.3 Only End 2 Yielding

When only end 2 of the element yields, d�p1 ¼ 0 and d�p2 6¼ 0. Similar to the discussion in Section 7.4.2, let

½Lt� ¼
0 0

0 1=ktt

� �
: ð7:61Þ
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Then, the stiffness matrix of the element when end 2 yields can be expressed similarly as

½kgp� ¼ ½kge� � ½kge�½G�½E�½Lt�½E�T½G�T½kge�: ð7:62Þ

7.4.4 Summary

As a summary, the form of the stiffness matrix of the beam element obtained with the elasto-plastic hinge

model can be expressed in the following unified form as

½kgp� ¼ ½kge� � ½kge�½G�½E�½L�½E�T½G�T½kge�; ð7:63Þ

where matrix ½L� can be determined with

(a) when no yielding occurring at both ends of the element:

½L� ¼ 0 0

0 0

� �
; ð7:64aÞ

(b) when yielding occurring at only end 1 of the element:

½L� ¼ 1=kbb 0

0 0

� �
; ð7:64bÞ

(c) when yielding occurring at only end 2 of the element:

½L� ¼ 0 0

0 1=ktt

� �
; ð7:64cÞ

(d) when yielding occurring at both ends of the element:

½L� ¼ kbb kbt

ktb ktt

� ��1

: ð7:64dÞ

7.5 COMPARISON BETWEEN ELASTO-PLASTIC HINGE MODEL
AND GENERALIZED CLOUGH MODEL

For the sake of comparison, let l ¼ 1 and EI ¼ 1 for the beam element, and ignore the effects of axial force

and shear deformation in the following discussion.

7.5.1 Only End 1 Yielding

The stiffness matrix of the element based on the elasto-plastic hinge model can be determined with

Equations (7.63) and (7.64b) as

½kgp�B1 ¼

3þ 9R1 6R1 �3� 9R1 3þ 3R1

6R1 4R1 �6R1 2R1

�3� 9R �6R1 3þ 9R1 �3� 9R

3þ 3R1 2R1 �3� 9R 4R1

2
664

3
775: ð7:65Þ
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From Equation (7.65), we may find that when end 1 of the element is in elastic state, i.e. R1 ! 1, then

½kgp�B1 ! ½kge�, and when end 1 yields fully and the element is perfectly elasto-plastic, then ½kgp�B1 is

absolutely equal to the result from the simple plastic hinge theory. The above agreements indicate that

½kgp�B1 satisfies the continuity condition on the yielding at one end of the element.

The stiffness matrix from the generalized Clough model when only end 1 yields is

½kgp�C1 ¼ R1

12 6 �12 6

6 4 �6 2

�12 �6 12 �6

6 2 �6 4

2
66664

3
77775þ ð1� R1Þ

3 0 �3 0

0 0 0 0

�3 0 3 �3

3 0 �3 3

2
66664

3
77775: ð7:66Þ

Comparison of Equations (7.65) and (7.66) shows coincidence between the elasto-plastic hinge model and

the generalized Clough model.

7.5.2 Both Ends Yielding

The stiffness matrix of the element based on the elasto-plastic hinge model can be determined with

Equations (7.63) and (7.64d) as

½kgp�B3 ¼
1

D

�

12R1 þ 12R2 þ 24R1R2 12R1 þ 12R1R2 �12R1 � 12R2 � 24R1R2 12R2 þ 12R1R2

12R1 þ 12R1R2 12R1 þ 4R1R2 �12R1 � 12R1R2 8R1R2

�12R1 � 12R2 � 24R1R2 �12R1 � 12R1R2 12R1 þ 12R2 þ 24R1R2 �12R2 � 12R1R2

12R2 þ 24R1R2 8R1R2 �R2 � 12R1R2 12R2 þ 4R1R2

2
666664

3
777775
:

ð7:67Þ

where D ¼ 3þ R1 þ R2 � R1R2.

It can be seen from Equation (7.67) that when end 2 of the element is elastic, i.e. R2 ! 1, then

½kgp�B3 ! ½kgp�B1; when both ends are elastic, i.e. R1 ! 1, R2 ! 1, then ½kgp�B3 ! ½kge�; and when both

ends enter the same plastic state, namely R1 ¼ R2 ¼ R, then

½kgp�B3 ¼
R

3þ 2R� R2

24þ 24R 12þ 12R �242 � 24R 12þ 12R

12þ 12R 12þ 4R �12� 12R 8R

�24� 24R �12� 12R 24þ 24R �12� 12R

12þ 12R 8R �12� 12R 12þ 4R

2
66664

3
77775: ð7:68Þ

If both ends are fully yielding and the element is perfectly elasto-plastic, i.e. R ¼ 0, then with Equation

(7.68), ½kgp�B3 ¼ 0. It can be found from the above discussions that the stiffness of the beam element by the

elasto-plastic hinge model can be continuous along with arbitrary deformation states.

The significant limitation of the Clough model is that there is a stiffness break when beam elements enter

elasto-plastic state from elastic state. On the contrary, the generalized Clough model overcomes this point

and keeps the stiffness of beam elements changing smoothly between elastic and elasto-plastic states.

However, comparison of Equations (7.67) and (7.24) indicates disagreement between the stiffness of the

beam element by elasto-plastic hinge model and that by the generalized Clough model. For the sake of
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convenient comparison, assume the plastic states at both ends of the element are the same, namely

R1 ¼ R2 ¼ R, then the stiffness of the beam element by the generalized Clough model is

½kgp�C3 ¼ R

12 �6 �12 6

6 4 �6 2

�12 �6 12 �6

6 2 �6 4

2
664

3
775: ð7:69Þ

The following reasons may cause the difference between Equations (7.68) and (7.69):

(1) Two or three parallel components are assumed to be working together in the Clough and generalized

Clough models. However, compatibility between deformations of the idealized elastic component and

those of the idealized elasto-plastic component is hardly satisfied. On the contrary, the elasto-plastic

hinge model is deformation compatible.

(2) When one end (end 1) is elastic and the other end yields, the moment transfer factor from the elastic end

to the yielding end is 2R1=ð3þ R1Þ in the beam element. This value can be considered as the capability

to accept moment at the yielding end from the other end, which is regardless with the other end being

elastic or plastic. The moment transfer factor by the Clough model for both ends yielding is 0.5, whereas

that by the generalized Clough model depends on the yielding extent at the other end and is

2R1=ð3þ R1Þ (if R2 � R1Þ or 0.5 (if R1 � R2Þ. In the elasto-plastic hinge model, however, this moment

transfer factor is constantly equal to 2R1=ð3þ R1Þ, which indicates its advantage over the Clough or

generalized Clough model.

7.5.3 Numerical Example

Consider the frame as shown in Figure 7.7, where the moment–curvature relationship of the frame column is

assumed to be

M ¼ 1� e�; ð7:70Þ

and , Mp ¼ 1; �p ¼ Mp=EI ¼ 1. So, the recovery force parameter of the column section is

R ¼ dðM=MpÞ
dð�=�pÞ

¼ dM

d�
¼ e�� ¼ 1�M: ð7:71Þ

Noting that the yielding extent at both column ends is constantly equal and the structure is symmetric, the

relationship between the drift and the horizontal force at the top of the frame column can be determined by

the elasto-plastic hinge model as

R

3þ 2R� R2
ð24þ 24RÞd�B ¼ dF

or

d�B ¼
1

8R
� 1

24

� �
dF: ð7:72Þ

EI =1 EI =1 

EI =
2 F 

l 
1 

=

Figure 7.7 Rigid frame with a beam of infinite stiffness
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As the moment at the top of the column is M ¼ 1
2
F, substituting Equation (7.71) into Equation (7.72) results

in

d�B ¼
1

4

1

1�M
� 1

3

� �
dM: ð7:73Þ

The solution for �B of the above equation is

�B ¼
1

4
ln

1

1�M
�M

3

� �
: ð7:74Þ

Similarly, the relationship between the drift and the horizontal force at the top of the column can also be

obtained with the generalized Clough model as

12Rd�C ¼ dF ð7:75Þ

or

d�C ¼
1

6

dM

1�M

� �
: ð7:76Þ

The solution for �C of the above equation is

�C ¼
1

6
ln

1

1�M
: ð7:77Þ

Dividing �B by �C yields

�B

�C

¼ 1

2
3þ M

lnð1�MÞ

� �
: ð7:78Þ

Table 7.1 lists the values of �B=�C varying with M, where it can be found that when both ends of the beam

element yield, the stiffness determined by the elasto-plastic hinge model is smaller than that by the

generalized Clough model.

7.6 EFFECTS OF RESIDUAL STRESSES AND TREATMENT
OF TAPERED ELEMENT

7.6.1 Effects of Residual Stresses on Plasticity Spread Along
Element Section

No matter hot-rolled or welded steel members, residual stresses with significant magnitude exist (see Figure

7.8) in beam and column members with the shape of H or box in section for multi-storey, high-rise steel

buildings because the flange and web plates are normally quite thick. Generally, tensile stresses will be

produced at the cross of flange and web plates or where cooling speed is relatively slow after welding or hot

rolling, and self-balanced compression stresses will be produced at other area of sections. Due to the

Table 7.1 ð�B=�CÞ �M relationship

M 0 0.1 0.3 0.5 0.7 0.9 1

�B=�C 1.000 1.025 1.079 1.139 1.209 1.304 1.500
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existence of initially compressive stresses, the part of a section in compression may go into plasticity in

advance although the ultimate plastic strength of the section is the same. The effects of residual stresses on

M � � relationship of steel sections in bending are given in Figure 7.9, where OCB and ODB curves

correspond to those without and with effects of residual stresses, respectively, and OEB is a simplified one of

OCB. The material property of steel in Figure 7.9 is assumed to be idealized elasto-plastic.

The realistic distribution of residual stresses along the section of steel members is complicated, which

relates not only to the processes of cutting, welding and rolling but also to the plate thickness and sectional

shape. It is deemed to be difficult to exactly consider the effects of residual stresses on the plastic spread over

the section. In practice, a more straightforward and efficient way is to modify the equation of the initial

yielding surface of sections.

The typical equations for the initial yielding surfaces of wide flange H sections are

� without residual stresses:

N

Ny

þ �pM

Mp

¼ 1:0; ð7:79Þ

� with residual stresses:

N

0:8Ny

þ �pM

0:9Mp

¼ 1:0; ð7:80Þ

where�p is the plastic shape factor of sections. The corresponding curves for Equations (7.79) and (7.80) are

shown in Figure 7.10.

(a) (b) (c)

Figure 7.8 Typical distribution of residual stresses for steel members: (a) hot-rolled H-type section; (b) welded H-type

section; (c) welded box section
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Figure 7.9 Effect of residual stresses on the moment–curvature relationship of steel sections
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7.6.2 Effects of Residual Stresses on Plasticity Spread
Along Element Length

When the ratio of axial force to squash load is large for a member in compression, residual stresses can

influence the plasticity distribution along element length. A transient elastic modulus concept, namely the

concept of tangent modulus, is proposed to take this effect into account.

Two types of tangent modulus based on different column strength equations have been proposed.

The CRC column strength equations (Galambos, 1988) can be employed in deriving the tangent modulus.

The ratio of the tangent modulus to the elastic modulus Et=E is proposed to be (Galambos, 1988)

Et

E
¼ 1:0; for N � 0:5Ny; ð7:81aÞ

Et

E
¼ 4N

Ny

1� N

Ny

� �
; for N > 0:5Ny: ð7:81bÞ
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Figure 7.10 Initial and ultimate yielding curves of the H section

Figure 7.11 Tangent modulus with and without consideration of initial geometric imperfection
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The LRFD column strength equation can also be used to derive the tangent modulus, where the effects of

residual stresses and the initial geometric deflection of the compressive member are included. The ratio of

the tangent modulus to the elastic modulus, Et=E, is given by (AISC, 1994)

Et

E
¼ 1:0; for N � 0:39Np; ð7:82aÞ

Et

E
¼ �2:7243

N

Np

ln
N

Np

� �
; for N > 0:39Np: ð7:82bÞ

As the LRFD equation includes the effect of initial geometric deflection, the tangent modulus by LRFD is

less than that by CRC, at the same axial force. A comparison of these two tangent modulus proposals is given

in Figure 7.11.

7.6.3 Treatment of Tapered Element

Plastic hinge theory, Clough model, generalized Clough model and elasto-plastic hinge model based on

centralized plasticity at the ends of elements can be used to establish the elasto-plastic stiffness equation for

tapered elements. Because the elasto-plastic hinge model is the most generalized one for the elasto-plastic

beam element, Equation (7.63) can be used in practice to calculate the elasto-plastic stiffness matrix ½kgP� of

the tapered element where the elastic stiffness matrix ½kge� can be obtained with the methods proposed in

Chapter 3.

The ratio of the axial force to the squash load is different at the two ends of a tapered element with the

same axial force. If the effects of residual stresses should be involved, the following equations can be used to

determine the modified tangent modulus Et:

Et ¼
A1

A1 þ A2

Et1 þ
A2

A1 þ A2

Et2; ð7:83Þ

where A1 and A2 are sectional areas of the two ends of the tapered element, and Et1 and Et2 are the tangent

moduli determined by Equation (7.81) or (7.82).

7.7 BEAM ELEMENT WITH PLASTIC HINGE BETWEEN TWO ENDS

To eliminate the needs to divide a frame member into two or more elements to model the effects of

distributed loads on the member in the second-order inelastic analysis of the frame, Chen and Chan (1995)

proposed an elemental stiffness equation for a beam element with mid-span plastic hinge. This method is

refined in this section to consider a possible plastic hinge at any position between the elemental ends.

Referring to Figure 7.12, an internal node C between elemental ends is inserted so that the element is

divided into two parts, the lengths of which are La and Lb, respectively. Assume the maximum bending

L

L L

N N

Q2Q1

q (x)

C
1

θ 2
θ

δ∆

1
θ 2c

θ
c

ba

M2M1

Figure 7.12 A beam element with plastic hinge within two ends
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moment Mð1Þ at time t is at position C0 and the maximum bending moment Mð3Þ at time t þ dt is at position C

(see Figure 7.13). For derivation of incremental stiffness matrix of the element during t ! t þ dt, a

virtual state of moment Mð2Þ is conceived, which is the bending moment at the same position of Mð3Þ at

the time t . The incremental stiffness relationship of each part of the element can be expressed in the standard

form as

� for the part of La:

dQ1

dM1

dQ1c

dM1c

8>>><
>>>:

9>>>=
>>>;
¼ ½Kpa�

d�1

d�1

d�1c

d�1c

8>>><
>>>:

9>>>=
>>>;
¼

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

2
6664

3
7775

d�1

d�1

d�1c

d�1c

8>>><
>>>:

9>>>=
>>>;

; ð7:84aÞ

� for the part of Lb:

dQ2c

dM2c

dQ2

dM2

8>>><
>>>:

9>>>=
>>>;
¼ ½Kpb�

d�2c

d�2c

d�2

d�2

8>>><
>>>:

9>>>=
>>>;
¼

b11 b12 b13 b14

b22 b23 b24

b33 b34

b44

2
6664

3
7775

d�2c

d�2c

d�2

d�2

8>>><
>>>:

9>>>=
>>>;
; ð7:84bÞ

where ½Kpa� and ½Kpb� are the elasto-plastic stiffness matrices for the parts of La and Lb of the element,

respectively, and aij and bij (i; j ¼ 1; 2; 3; 4) are the corresponding elements in such matrices.

It can be seen from Figure 7.12 that the two parts of the elements share the same deformation components

at their junction, namely d�1c ¼ d�2c ¼ d�c and d�1c ¼ d�2c ¼ d�c. Combining Equations (7.84a) and

(7.84b), one has

dQ1

dM1

dQ2

dM2

dQ1c þ dQ2c

dM1c þ dM2c

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

a11 a12 0 0 a13 a14

a22 0 0 a23 a24

b33 b34 b13 b23

b44 b14 b24

a33 þ b11 a34 þ b12

a44 þ b22

2
66666664

3
77777775

d�1

d�1

d�2

d�2

d�c

d�c

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð7:85Þ

For the purpose of static condensation to eliminate the freedom degree of the displacements of internal node,

the above stiffness matrix is partitioned into internal and external degrees of freedom as

dfe

dfi

� �
¼ kee kei

kT
ei kii

� �
d�e

d�i

� �
; ð7:86Þ

M

M

Time t

Time 
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(2) M
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Figure 7.13 Position of the maximum moment within two ends
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where fdfeg and fdfig are the elemental end and internal force vectors, respectively, and fd�eg and fd�ig are

the elemental end and internal deformation vectors, respectively. Their expressions are as follows:

fdfeg ¼ ½dQ1; dM1; dQ2; dM2�T;

fd�eg ¼ ½d�1; d�1; d�2; d�2�T;

fdfig ¼ ½dQ1c þ dQ2c; dM1c þ dM2c�T;

fdfeg ¼ ½dQ1 dM1 dQ2 dM2�T;

fd�eg ¼ ½d�1 d�1 d�2 d�2�T;

fdfig ¼ ½dQ1c þ dQ2c dM1c þ dM2c�T;

fd�ig ¼ ½d�c d�c�T;

kee ¼

a11 a12 0 0

a12 a22 0 0

0 0 b33 b34

0 0 b34 b44

2
66664

3
77775; ð7:87aÞ

kei ¼

a13 a14

a23 a24

b13 b23

b14 b24

2
66664

3
77775; ð7:87bÞ

kii ¼
a33 þ b11 a34 þ b12

a34 þ b12 a44 þ b22

" #
: ð7:87cÞ

As no external forces are applied at internal node C, namely fdfig ¼ 0f g, d�if g in Equation (7.86) can be

expressed with d�ef g. The stiffness equation condensed off the internal displacement vector is

ðkee � keik
�1
ii kT

eiÞfd�eg ¼ fdfeg: ð7:88Þ

In the above derivation, it is assumed that the internal plastic hinge occurs at position of C at time , and the

moment increases from Mð2Þ at t to Mð3Þ at t þ dt. But actually in the duration t! t þ dt, the moment change

should have been from Mð1Þ at position of C0 to Mð3Þ at position of C. A stiffness matrix modification

(½kee � keik
�1
ii kT

ei�Ct � ½kee � keik
�1
ii kT

ei�C0 t) may be superimposed to approximately take the effect from

position change of internal plastic hinge into account. The subscripts in the stiffness matrix modification

indicate the position and the time of maximum bending moment.

Assume that the internal plastic hinge occurs at the position of maximum bending moment between the

two ends. The position of the maximum bending moment between the two ends of the element, position C,

varies in the loading process. Hence, the rational way to trace the internal plastic hinge is to calculate the

position of the maximum bending moment at each loading step after elemental yielding. Two common

internal loading patterns for beam elements are concentrated load and uniformly distributed load, as shown

in Figure 7.14.

If one concentrated load is applied within the beam span, the position of the maximum moment within

span is certainly the loading position. But if a uniformly distributed load is applied, the position of the

maximum moment within span is changeable. The condition of the maximum moment within the beam span

is

dMðxÞ
dx

¼ 0 or QðxÞ ¼ 0: ð7:89Þ
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The shear at end 1 can be expressed as

Q1 ¼
M1 �M2

L
þ 1

2
qL: ð7:90Þ

And letting the shear be equal to zero yields the position of the maximum moment desired:

x ¼ M1 �M2

qL
þ 1

2
L: ð7:91Þ

As for the beam element with both concentrated load and uniformly distributed load within span, one can

divide this element into two segments at the position where the concentrated load is applied. The maximum

moment position of each segment can be determined according the method for the uniformly distributed

load case as mentioned above. With comparison of the maximum moments of two segments of the element

induced by the uniformly distributed load and the bending moment where the concentrated load is applied,

the real maximum moment of this beam element can be obtained with the maximum of the above three

moments.

7.8 SUBDIVIDED MODEL WITH VARIABLE STIFFNESS
FOR COMPOSITE BEAM ELEMENT

7.8.1 Subdivided Model

The composite beams in steel frames resist vertical loads not only from frame slabs, but also subjected to

several types of horizontal loads. Figure 7.15 gives typical bending moment diagrams of the steel frame

storeys under three different loading conditions, i.e. vertical loads, horizontal loads and combination of

vertical and horizontal loads. It can be seen from Figure 7.15 that the positive (sagging) and negative

(hogging) moments will apply at the ends of composite beams repeatedly when horizontal loads induced by

earthquakes occur. This gives new challenges to elasto-plastic analysis of steel frames comprising composite

beams.

A subdivided model with variable stiffness is proposed in this section to construct a practical analysis

model for elasto-plastic analysis of composite beams. The following assumptions are adopted:

Q Q

M1 M2

q

x
L

(b)

Q Q

M1 M2

P

a
L

b

(a)

Figure 7.14 Load patterns within beam span: (a) concentrated load case; (b) uniformly distributed load case

Figure 7.15 Typical moment diagrams of frame storeys: (a) subjected to vertical load; (b) subjected to horizontal load;

(c) subjected to both vertical and horizontal loads

SUBDIVIDED MODEL WITH VARIABLE STIFFNESS FOR COMPOSITE BEAM ELEMENT 113



(1) ignore the tensile strength of concrete, namely fct ¼ 0;

(2) involve contribution of rebars within effective width of concrete flange of composite beams;

(3) the portion of a beam in the positive moment zone is considered as a composite beam;

(4) the portion of a beam in the negative moment zone is regarded as a pure steel beam.

Figure 7.16 illustrates four cases of the composite beam divided into subelements with different stiffness.

The positive moment is in the clockwise direction.

In Figure 7.16(a), the moments at the left and right ends of the element are positive, which indicates a

linear variation of moment within the span of the beam. Concrete flange is in compression in the part of the

beam close to the left end and in tension in the part of the beam close to the right end.

In Figure 7.16(b), the moment at the left end is positive and that at the right end is negative (in sagging

bending). The concrete flange of the beam is always in compression.

The moments at the left and right ends of the beam, as shown in Figure 7.16(c), are negative, and the

curvature reverses within the span. The concrete flange of the beam is in tension in the part close to the left

end and in compression in the part close to the right end.

In Figure 7.16(d), the moment at the left end is negative and that at the right end is positive (in hogging

bending). The concrete flange of the composite beam is therefore always in tension.

7.8.2 Stiffness Equation of Composite Beam Element

To use the stiffness equations of prismatic beam elements for establishing the stiffness equation of a

composite beam element, an internal node A is inserted at the position where curvature reverses. The

composite beam with two segments of different curvatures is shown in Figure 7.17, where the force and

deformation of the two segments are also illustrated.

The stiffness equation of subelement 1 with the concrete flange in compression is

h11 h12 h13 h14

h12 h22 h23 h24

h13 h23 h33 h34

h14 h24 h34 h44

2
664

3
775

�1

�1

�A

�A

8>><
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>>;
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Q1
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MA
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>>:

9>>=
>>;

ð7:92aÞ
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Figure 7.16 Subdivided model with variable stiffness for composite beams
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or

½K�ð1Þf�gð1Þ ¼ ffgð1Þ: ð7:92bÞ

The stiffness equation of subelement 2 with the concrete flange in tension and out of action is

g11 g12 g13 g14

g12 g22 g23 g24

g13 g23 g33 g34

g14 g24 g34 g44

2
664

3
775

�A0

�A0

�A

�A

8>><
>>:

9>>=
>>;
¼

QA0

MA0

Q2

M2

8>><
>>:

9>>=
>>;

ð7:93aÞ

or

½K�ð2Þf�gð2Þ ¼ ffgð2Þ: ð7:93bÞ

It should be noted that the elemental stiffness matrices ½K�ð1Þ and ½K�ð2Þ can denote the elastic stiffness

matrices or incremental elasto-plastic stiffness matrices of subelements 1 and 2.

To condense the degree of freedom of the internal node A, employ the deformation compatibility at

node A as

�A ¼ �A0 ; ð7:94aÞ
�A ¼ �A0 ð7:94bÞ

and the equilibrium condition as

QA þ QA0 ¼ 0; ð7:95aÞ
MA þMA0 ¼ 0; ð7:95bÞ

By Equations (7.92) and (7.93), one has

QA ¼ h13�1 þ h23�1 þ h33�Aþ h34�A; ð7:96aÞ
QA0 ¼ g11�Aþ g12�Aþ g13�2 þ g14�2; ð7:96bÞ
MA ¼ h14�1 þ h24�1 þ h34�Aþ h44�A; ð7:96cÞ
MA0 ¼ g12�Aþ g22�Aþ g23�2 þ g24�2: ð7:96dÞ

Substituting Equation (7.96) into Equation (7.95) yields

ðh33 þ g11Þ�A þ ðh34 þ g12Þ�A ¼ �h13�1 � h23�1 � g13�2 � g14�2; ð7:97aÞ
ðh34 þ g12Þ�A þ ðh44 þ g22Þ�A ¼ �h14�1 � h24�1 � g23�2 � g24�2: ð7:97bÞ
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Figure 7.17 Subdivided composite beam element
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Solving Equation (7.97), one obtains

�A

�A

� �
¼ h33 þ g11 h34 þ g12

h34 þ g12 h44 þ g22

� ��1 �h13 �h23 �g13 �g14

�h14 �h24 �g23 �g24

� � �1

�1

�2

�2

8>>><
>>>:

9>>>=
>>>;
: ð7:98Þ

Let

G ¼ det
h33 þ g11 h34 þ g12

h34 þ g12 h44 þ g22

� �� �
: ð7:99Þ

The nodal forces of node 1 can be expressed with the nodal deformations with Equation (7.92a) as

h11 h12 0 0

h12 h22 0 0

� � �1

�1

�2

�2

8>><
>>:

9>>=
>>;
þ h13 h14

h23 h24

� �
�A

�A

� �
¼ Q1

M1

� �
: ð7:100Þ

Substituting Equation (7.98) into Equation (7.100) yields

h11 h12 0 0

h12 h22 0 0

� �
þ h13 h14

h23 h24

� �
h33þ g11 h34þ g12

h34þ g12 h44þ g22

� ��1 �h13 �h23 �g13 �g14

�h14 �h24 �g23 �g24

� � ! �1

�1

�2

�2

8>><
>>:

9>>=
>>;
¼ Q1

M1

� �
:

ð7:101Þ

The nodal forces of node 2 can be expressed with the nodal deformations with Equation (7.92b) as

g13 g23

g14 g24

� �
�A0
�A0

� �
þ 0 0 g33 g34

0 0 g34 g44

� � �1

�1

�2

�2

8>><
>>:

9>>=
>>;
¼ Q2

M2

� �
: ð7:102Þ

Substituting Equation (7.98) into Equation (7.102) yields

0 0 g33 g34

0 0 g34 g44

� �
þ g13 g23

g14 g24

� �
h33þ g11 h34þ g12

h34þ g12 h44þ g22

� ��1 �h13 �h23 �g13 �g14

�h14 �h24 �g23 �g24

� � ! �1

�1

�2

�2

8>>><
>>>:

9>>>=
>>>;
¼ Q2

M2

� �
:

ð7:103Þ

Combining Equations (7.101) and (7.103) leads to the elemental stiffness equation as

k11 k12 k13 k14

k22 k23 k24

k33 k34

symm k44

2
6664

3
7775

�1

�1

�2

�2

8>>><
>>>:

9>>>=
>>>;
¼

Q1

M1

Q2

M2

8>>><
>>>:

9>>>=
>>>;
: ð7:104aÞ

or

½K�f�g ¼ ffg; ð7:104bÞ
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where ½K� is the stiffness matrix of the composite beam element and the elements in the matrix are obtained

with

k11 ¼ h11 þ
1

G
½�h2

13ðh44 þ g22Þ þ 2h13h14ðh34 þ g12Þ � h2
14ðh33 þ g11Þ�;

k22 ¼ h22 þ
1

G
½�h2

23ðh44 þ g22Þ þ 2h23h24ðh34 þ g12Þ � h2
24ðh33 þ g11Þ�;

k33 ¼ g33 þ
1

G
½�g2

13ðh44 þ g22Þ þ 2g13g23ðh34 þ g12Þ � g2
23ðh33 þ g11Þ�;

k44 ¼ g44 þ
1

G
½�g2

14ðh44 þ g22Þ þ 2g14g24ðh34 þ g12Þ � g2
24ðh33 þ g11Þ�;

k12 ¼ h12 þ
1

G
½�h13h23ðh44 þ g22Þ þ h13h24ðh34 þ g12Þ þ h14h23ðh34 þ g12Þ � h14h24ðh33 þ g11Þ�;

k13 ¼
1

G
½�h13g13ðh44 þ g22Þ þ h13g23ðh34 þ g12Þ þ h14g13ðh34 þ g12Þ � h14g23ðh33 þ g11Þ�;

k14 ¼
1

G
½�h13g14ðh44 þ g22Þ þ h13g24ðh34 þ g12Þ þ h14g14ðh34 þ g12Þ � h14g24ðh33 þ g11Þ�;

k23 ¼
1

G
½�h23g13ðh44 þ g22Þ þ h23g23ðh34 þ g12Þ þ h24g13ðh34 þ g12Þ � h24g23ðh33 þ g11Þ�;

k24 ¼
1

G
½�h23g14ðh44 þ g22Þ þ h23g24ðh34 þ g12Þ þ h24g14ðh34 þ g12Þ � h24g24ðh33 þ g11Þ�;

k34 ¼ g34 þ
1

G
½�g13g14ðh44 þ g22Þ þ g13g24ðh34 þ g12Þ þ g23g14ðh34 þ g12Þ � g23g24ðh33 þ g11Þ�:

7.9 EXAMPLES

7.9.1 A Steel Portal Frame with Prismatic Members

The steel portal frame with prismatic members shown in Figure 7.18 is taken as a benchmark example for the

plastic analysis of steel frames, the plastic zone and plastic hinge solution of which can be found in

references (Chen, Li and Xia, 1985; Toma and Chen, 1992; Vogel, 1985). For verification purpose, this frame

is also analysed using the prismatic beam element proposed in this chapter. The material properties of steel

are E ¼ 205kN=mm2 and � ¼ 235N=mm2.

When the effects of initial geometric imperfection and strain hardening are neglected, the ultimate load

factor (the ratio of the limit load-bearing capacity to the reference load shown in Figure 7.18) obtained with

the elasto-plastic hinge model proposed in this chapter is l ¼ 0:96, whereas the result by the plastic zone

method (Chen, 1993) is l ¼ 0:97. When the effects of initial geometric imperfection and strain hardening

20 m 

q =11 kN/m 

3 kN 6 kN 

15°

 m4

 063

 7.218.0 

170 

Figure 7.18 A steel portal frame with prismatic members
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are considered in the analysis, the result from this chapter is l ¼ 1:10, whereas l ¼ 1:07 by the plastic zone

method. The load–deflection curves are plotted in Figure 7.19.

Considering moment resistance is the dominant factor for the load-bearing capacity of steel portal

frames, all of the members used in this example frame have compact sections so that their plastic rotation

capacity is very good, which makes the effect of strain hardening significant on the ultimate capacity of the

frame. As the strain-hardening model used in this chapter neglects the yielding plateau and that used in

reference (Chen, 1993) considers it, it is rational that the result obtained by the method proposed in this

chapter is slightly greater than that in reference when the strain-hardening effect is considered.

7.9.2 A Steel Portal Frame with Tapered Members

A steel portal frame with tapered members, as shown in Figure 7.20, is analysed in reference with the

plastic zone method (Chen, 2000b). Such an analysis is repeated with the tapered beam element proposed in
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Figure 7.19 Load–deflection curves of the prismatic portal frame
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Figure 7.20 A steel portal frame with tapered members
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this chapter, where each tapered column and beam of the frame is represented with a tapered beam element.

The load–displacement curves are plotted and compared in Figure 7.21.

As the tapered element model proposed can consider the effects of strain hardening, shear deformation,

residual stresses and initial geometric imperfection, the ultimate load factors obtained with consideration of

such individual and joint effects are listed in Table 7.2. The hardening factor q ¼ 0:02 and shear modulus

G ¼ 80 GPa are adopted for the analysis.

It can be seen from Table 7.2 that the effects of shear deformation, residual stresses and initial geometric

imperfection are negligible on the load-bearing capacity of normal single-storey steel portal frames. But the

effect of strain hardening is significant if the plastic deformation capacity of the frame members can be

ensured.

7.9.3 Vogel Portal Frame

Vogel portal frame (Vogel, 1985) had received a wide study as a benchmark frame (Avery and

Mahendran, 2000a, 2000b, 2000c, 2000d; Chen, 1993; Chen and Kim, 1997; Kim and Lü, 1992;

Toma and Chen, 1992). The frame size, material properties and load information are illustrated in

Figure 7.22, and the frame member sizes are listed in Table 7.3. The horizontal displacement of

rightupper corner (node A) versus load factor curve by the elasto-plastic hinge model presented in

this chapter is compared with that by Toma and Chen (1992) with the plastic zone method in Figure 7.23.

The ultimate load factor obtained by the method proposed is l ¼ 1:03, whereas that by Toma and Chen

(1992) is l ¼ 1:022.
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Figure 7.21 Load–displacement curves of the tapered steel portal frame

Table 7.2 Load factors of the steel portal frame obtained by the method proposed

Without effects of initial geometric imperfection, strain hardening and shear deformation 1.306

With the effect of residual stresses 1.300

With the effect of initial geometric imperfection 1.298

With the effect of shear deformation 1.306

With the effect of strain hardening 1.402

With the effect of initial geometric imperfection, strain hardening and shear deformation 1.380
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7.9.4 Vogel Six-Storey Frame

Vogel six-storey frame (Vogel, 1985) usually appears in benchmark study of planar steel frames (Avery and

Mahendran, 2000a, 2000b, 2000c, 2000d; Chan and Chui, 1997; Chen, 1993; Chen and Kim, 1997; Kim and

Lü, 1992; Morteza, Torkamani and Sonmez, 2001; Toma and Chen, 1992). The frame size, material

properties and load information are illustrated in Figure 7.24, and the frame member sizes are listed in

Table 7.4. The horizontal displacement of rightupper corner (node A) versus load factor curve by the elasto-

plastic hinge model presented in this chapter is compared with that by Toma and Chen (1992) with the

plastic zone method in Figure 7.25. The ultimate load factor obtained by the method proposed is l ¼ 1:15,
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Figure 7.22 Vogel portal frame

Table 7.3 Member sizes and sectional properties of the Vogel portal frame

Section properties d (mm) bf (mm) tw (mm) tf (mm) A (mm2) I (�106 mm4) S (�103 mm3)

HEA340 330 300 9.5 16.5 13 300 276.9 1850

HEB300 300 300 11.0 19.0 14 900 251.7 1869
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Figure 7.23 Displacement–load factor curve of the Vogel portal frame
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whereas that by Toma and Chen (1992) is l ¼ 1:18. The axial force and moment diagrams in the ultimate

state are shown in Figure 7.26, where the final plastic hinge distribution is dotted in the moment diagram.

7.9.5 A Single-Storey Frame with Mid-Span Concentrated Load

A simple portal frame with mid-span concentrated load at the beam is selected as an example. Figure 7.27

gives the frame size and load information. The elastic modulus and yielding strength of the material for the
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Figure 7.24 Vogel six-storey frame

Table 7.4 Member sizes and sectional properties of the Vogel six-storey frame

Section properties d (mm) bf (mm) tw (mm) tf (mm) A (mm2) I (�106 mm4) S (�103 mm3)

HEA340 330 300 9.5 16.5 13 300 276.9 1850

HEB160 160 160 8.0 13.0 5430 24.92 354

HEB200 200 200 9.0 15.0 7810 56.96 643

HEB220 220 220 9.5 16.0 9100 80.91 827

HEB240 240 240 10.0 17.0 10 600 112.6 1053

HEB260 260 260 10.0 17.5 11 800 149.2 1283

HEB300 300 300 11.0 19.0 14 900 251.7 1869

IPE240 240 120 6.2 9.8 3910 38.92 367

IPE300 300 150 7.1 10.7 5380 83.56 628

IPE330 330 160 7.5 11.5 6260 117.7 804

IPE360 360 170 8.0 12.7 7270 162.7 1019

IPE400 400 180 8.6 13.5 8450 231.3 1307
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Figure 7.25 Displacement–load factor curve of the Vogel six-storey frame
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Figure 7.27 Single-storey frame with a concentrated load at the beam
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frame are E ¼ 206 GPa and fy ¼ 235 MPa, respectively. USAwide flange sections W18� 50 and W12� 65

are selected for the beam and column of the frame, respectively. The rotation versus load factor curves by

different element strategies are shown in Figure 7.28. In conventional element treatment where the beam is

represented with one common element (without consideration of possible plastic hinge between ends) and

the equivalent force and moment of the mid-span concentrated load are enforced at the two end nodes of the

element, redistribution of internal forces due to formation of the mid-span plastic hinge within the beam is

ignored, and large error occurs for the rotation at node A as shown in Figure 7.28.

To consider the effect of the mid-span plastic hinge, two common beam elements may be used with a

common node set at the location of the concentrated load. Alternatively, the beam with mid-span concen-

trated load can be represented by a single beam element with plastic hinge within span, which is obviously

good for computational efficiency in the analysis of the frames.

7.9.6 A Single-Storey Frame with Distributed Load

A simple portal frame with distributed load at the beam is analysed. Figure 7.29 gives the frame size and load

information. The elastic modulus and yielding strength of the material for the frame are E ¼ 206 GPa and

fy ¼ 345 MPa, respectively. USAwide flange section W18� 31 is selected for all the members of the frame.

The horizontal displacement versus load factor curve obtained with a single element with plastic hinge

between two ends of the beam of the frame is given in Figure 7.30. The results by representation with two

elements for the beam (Chen and Chan, 1995) are also shown in Figure 7.30 for comparison. The change of

position of the maximum moment in the beam is checked and tabulated in Table 7.5. It can be found from

Table 7.5 that the position of the maximum moment in the beam of the single-storey frame does not change

much during loading.
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7.9.7 A Four-Storey Frame with Mid-Span Concentrated Load

The structure examined is a four-storey frame with mid-span concentrated loads as shown in Figure 7.31.

Table 7.6 gives the frame member size. The horizontal displacement versus load factor curves obtained both

by analysis with the elements with internal hinge proposed in this chapter and with the normal elements

through dividing the frame beam into two elements (Shu and Shen 1993) are shown in Figure 7.32.

The ultimate load factor obtained with the proposed elements is l ¼ 1:03, whereas that with normal

elements (Shu and Shen, 1993) is l ¼ 0:99. The sequence of plastic hinges formed in the frame is illustrated

in Figure 7.33.

Table 7.5 Variation of the location (away from the left end of the beam) of the maximum moment with load factors

Load factor 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

Location (m) 1.6611 1.6608 1.6606 1.6604 1.6602 1.6600 1.6597 1.6595 1.6592

Load factor 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Location (m) 1.6595 1.6666 1.6825 1.6975 1.7115 1.7243 1.7350 1.7440 1.7524
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Figure 7.31 Four-storey frame with concentrated loads at beams
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Figure 7.30 Displacement–load factor curve of the single-storey frame
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Table 7.6 Member sizes of the four-storey frame

Member section H (mm) B (mm) tw (mm) tf (mm) A (mm2) I (�106 mm4)

W16� 40 406.7 177.5 7.9 12.7 7610 215

W10� 60 259.6 256 10.7 17.3 11 400 142

W12� 79 314.5 306.8 11.9 18.8 15 000 276
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Figure 7.32 Displacement–load factor curve of the four-storey frame

Figure 7.33 Sequence of plastic hinges

Table 7.7 Member sizes of the composite frame

Member section H (mm) B (mm) tw (mm) tf (mm) A (mm2) I (�106 mm4)

W12� 27 304 165 6.02 10.16 5062 84.0

W12� 50 310 205 9 16 8484 157.9
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7.9.8 A Two-Span Three-Storey Composite Frame

Consider a two-span three-storey frame (Figure 7.34(a)) with steel columns and steel–concrete composite

beams (Figure 7.34(b)). The sizes of steel beams (W12� 27) and steel columns (W12� 50) are given in

Table 7.7, and the elastic modulus of steel, Es ¼ 200 GPa, steel yielding strength, fy ¼ 252:4 MPa, concrete

compressive strength, fc ¼ 16 MPa, and concrete–steel interface shear stiffness k ¼ 0:1 % Es are adopted

for the analysis of the frame.

Effects of concrete flange cracking of the composite beam in action of negative bending moment on

the behaviour of the frame may be considered with the composite beam element presented here-

inabove. A comparison of the horizontal load versus lateral deflection curves obtained with different

elemental strategies is given in Figure 7.35. From the results in Figure 7.35, it is clear that the

composite action coming from concrete slabs can enhance the sway stiffness and ultimate capacity

of steel frames.
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Figure 7.34 A two-span three-storey composite frame: (a) geometry and loading; (b) steel–concrete composite beam
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8 Elastic and Elasto-Plastic
Stiffness Equations of Column
Element

8.1 FORCE AND DEFORMATION OF COLUMN ELEMENT

Generally, three forces Nz, Qx and Qy and three moments Mx, My and Mz are applied at each end of a column

element, as shown in Figure 8.1, where all the directions of the forces and moments are positive. Correspond-

ingly, the deformation components of the column element include three translations, �x, �y and �z, and three

rotations, �x, �y and �z. Denote the force and deformation vectors of the column element as ffcg and f�cg, then

ffcg ¼ ffc1gT; ffc2gT
h iT

; ð8:1Þ

f�cg ¼ f�c1gT; f�c2gT
h iT

; ð8:2Þ

where

ffc1g ¼ Nz1; Qx1; My1; Qy1; Mx1; Mz1

� �T
; ð8:3aÞ

ffc2g ¼ Nz2; Qx2; My2; Qy2; Mx2; Mz2

� �T
; ð8:3bÞ

f�c1g ¼ �z1; �x1; �y1; �y1; �x1; �z1

� �T
; ð8:4aÞ

f�c2g ¼ �z2; �x2; �y2; �y2; �x2; �z2

� �T
: ð8:4bÞ

8.2 ELASTIC STIFFNESS EQUATION OF COLUMN ELEMENT
SUBJECTED TO BIAXIAL BENDING

Under the precondition of small deflection, it is independent between the lateral deflections with axial and

torsional deformations for column elements. The elastic stiffness equation of a column element is therefore

obtained by combining the stiffness equation of the corresponding beam element with axial and torsional

stiffness relationship, i.e.
ffcg ¼ ½kce�f�cg ð8:5aÞ

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
# 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03061-5



or "
ffc1g
ffc2g

#
¼
"
½kcebb� ½kcebt�
½kcetb� ½kcett�

#"
f�c1g
f�c2g

#
; ð8:5bÞ

in which ½kce� is the elastic stiffness matrix of the spatial column element and ½kcebb�, ½kcebt�, ½kcetb� and ½kcett�
are the partitioned matrices of ½kce� given by

½kcebb� ¼

EA

l
0 0 0 0 0

0
12EIy

l3
c1y

6EIy

l2
c2y 0 0 0

0
6EIy

l2
c2y

4EIy

l3
c3y 0 0 0

0 0 0
12EIx

l3
c1x

6EIy

l2
c2x 0

0 0 0
6EIy

l2
c2x

4EIx

l3
c3x 0

0 0 0 0 0
GIz

l

2
666666666666666666664

3
777777777777777777775

; ð8:6aÞ

½kcett� ¼

EA
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3
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; ð8:6bÞ
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Figure 8.1 Forces on the column element
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½kcetb� ¼ ½kcebt�T ¼

�EA

l
0 0 0 0 0

0 � 12EIy

l3
c1y � 6EIy

l2
c2y 0 0 0

0
6EIy

l2
c2y

4EIy

l3
c4y 0 0 0

0 0 0 � 12EIx

l3
c1x � 6EIy

l2
c2x 0

0 0 0
6EIy

l2
c2x

4EIx

l3
c4x 0

0 0 0 0 0 �GIz

l

2
66666666666666666664

3
77777777777777777775

; ð8:6cÞ

where Ix and Iy are the inertial moments about the x and y axes of the element section, respectively, Iz is the

torsional inertial moment of the section, and c1x � c4x and c1y. It should be noted that for opened sections,

such as the H section, the torsional stiffness, c4y are the factors defined in Equation (2.21) or (2.26),

calculated with the inertial GIz=l, in Equation (8.5) is relatively small due to warping action. In the analysis

of steel moment of section and the shear shape factors about the x and y axes, respectively. frames, the

structural torsional stiffness is provided in majority not by that of frame columns themselves, but by the

‘planar frame action’ (see Equation (15.64)). So the error from the torsional stiffness in the column stiffness

equation can be neglected in the frame analysis.

8.3 ELASTO-PLASTIC STIFFNESS EQUATIONS OF COLUMN
ELEMENT SUBJECTED TO BIAXIAL BENDING

When the column element is in elasto-plastic state, its stiffness will change continuously. The incremental

method can be used to develop the elasto-plastic tangent stiffness equation based on the elasto-plastic hinge

model.

Similarly, the deformations at the element ends may be divided into elastic and plastic portions as

fd�cg ¼ fd�ceg þ fd�cpg; ð8:7Þ
where

fd�ceg ¼ fd�ce1gT; fd�ce2gT
h iT

; ð8:8Þ

fd�cpg ¼ fd�cp1gT; fd�cp2gT
h iT

; ð8:9Þ

fd�ce1g ¼ d�z1e; d�x1e; d�y1e; d�y1e; d�x1e; d�z1e

	 
T
; ð8:10aÞ

fd�ce2g ¼ d�z2e; d�x2e; d�y2e; d�y2e; d�x2e; d�z2e

	 
T
; ð8:10bÞ

fd�cp1g ¼
	
d�z1p; d�x1p; d�y1p; d�y1p; d�x1p; d�z1p


T
; ð8:11aÞ

fd�cp2g ¼ d�z2p; d�x2p; d�y2p; d�y2p; d�x2p; d�z2p

	 
T
: ð8:11bÞ

Also, the forces at the element ends can be divided into two portions as

fdfcg ¼ fdfctg þ fdfcng; ð8:12Þ

where

fdfctg ¼
	
fdfct1gT=; fdfct2gT


T
; ð8:13Þ

fdfcng ¼
	
fdfcn1gT=; fdfcn2gT


T
; ð8:14Þ
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fdfct1g ¼
�
0; dQx1; 0; dQy1; 0; 0

�T
; ð8:15aÞ

fdfct2g ¼
�
0; dQx2; 0; dQy2; 0;0

�T
; ð8:15bÞ

fdfcn1g ¼
�
dNz1; 0; dMy1; 0; dMx1; dMz1

�T
; ð8:16aÞ

fdfcn2g ¼
�
dNz2; 0; dMy2; 0; dMx2; dMz2

�T
: ð8:16bÞ

According to the rule of plasticity flow, one has

fd�cp1g ¼ ½g1�f1gl1; ð8:17aÞ

fd�cp2g ¼ ½g2�f1gl2; ð8:17bÞ

in which

½g1� ¼ diag
@�1

@Nz1

; 0;
@�1

@My1

; 0;
@�1

@Mx1

;
@�1

@Mz1


 �
; ð8:18aÞ

½g2� ¼ diag
@�2

@Nz2

; 0;
@�2

@My2

; 0;
@�2

@Mx2

;
@�2

@Mz2


 �
; ð8:18bÞ

½1� ¼ ½1; 1; 1; 1; 1; 1�T: ð8:19Þ

where �1 and �2 are the yielding functions at the two ends of the column element, defined in Equation (5.45),

and l1 and l2 are the proportional factors of the plastic deformations at the two ends of the element.

The relationship between incremental forces fdfcg and incremental elastic deformations fd�ceg is

constantly

fdfgg ¼ ½kce�fd�geg: ð8:20Þ

Rewriting Equation (8.20) in partitioned form leads to

fdfc1g ¼ ½kcebb�fd�ce1g þ ½kcebt�fd�ce2g; ð8:21aÞ

fdfc2g ¼ ½kcetb�fd�ce1g þ ½kcebb�fd�ce2g: ð8:21bÞ

According to the elasto-plastic hinge model, the plastic deformation at the end of the element is merely

relevant to the forces at the same end of the element. Then,

fdfcn1g ¼ ½knb�fd�cp1g; ð8:22aÞ

fdfcn2g ¼ ½knt�fd�cp2g ð8:22bÞ

or

fdfcng ¼ ½kn�fd�cpg; ð8:23Þ

where

½kn� ¼
½knb� 0

0 ½knt�

" #
;

½knb� ¼ diag
�
Bb1; Bb2; Bb3; Bb4; Bb5; Bb6

�
;

½knt� ¼ diag
�
Bt1; Bt2; Bt3; Bt4; Bt5; Bt6

�
:

ð8:24Þ
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Equation (8.17) indicates that the plastic deformation components of a plastic hinge are proportional to the

same factor so that, noting Equation (8.22), the force components corresponding to the plastic deformation

components should also be proportional to the same factor. Hence,

Bbi ¼ a1kceii; i ¼ 1; 2; 3; 4; 5; 6

Bti ¼ a2kcejj; j ¼ 7; 8; 9; 10; 11; 12;
ð8:25Þ

where, a1 and a2 are the elasto-plastic hinge factors for the two ends of the element, and kceii is the element of

the ith row and the ith column of the stiffness matrix ½kce�.
When the elemental section is in elastic state, all the plastic deformation components of the section are zero,

and then it is required that a ¼ 1, and when the section is in idealized plastic state, these plastic deformation

components can be arbitrary in value and then a ¼ 0. To satisfy the above conditions, a can be defined as

ai ¼
Ri

1� Ri

; i ¼ 1; 2; ð8:26Þ

where R1 and R2 are the recovery force factors defined in Equation (5.38) for the two ends of the element and

can be calculated according to Equations (5.39) and (5.40).

From Equations (8.12), (8.21) and (8.22), one has

fdfct1g ¼ fdfc1g � fdfcn1g ¼ ½kcebb�fd�c1g þ ½kcebt�fd�c2g
�ð½kcebb� þ ½knb�Þ½g1�f1gl1 � ½kcebt�½g2�f1gl2; ð8:27aÞ

fdfct2g ¼ fdfc2g � fdfcn2g ¼ ½kcetb�fd�c1g þ ½kcett�fd�c2g
�½kcetb�½g1�f1gl1 � ð½kcett� þ ½knt�Þ½g2�f1gl2: ð8:27bÞ

It is known from Equations (8.11) and (8.15) that vectors fd�cp1g and fd�cp2g are orthotropic with fdfct1g
and fdtct2g, respectively. Hence,

fd�cp1gTfdfct1g ¼ l1ðkbbl1 þ kbtl2 � ½H11�fd�c1g � ½H12�fd�c2gÞ ¼ 0; ð8:28aÞ

fd�cp2gTfdfct2g ¼ l2ðktbl1 þ kttl2 � ½H21�fd�c1g � ½H22�fd�c2gÞ ¼ 0; ð8:28bÞ

where

kbb ¼ f1gT½g1�Tð½kcebb� þ ½knb�Þ½g1�f1g; ð8:29aÞ

kbt ¼ f1gT½g1�T½kcebt�½g2�f1g; ð8:29bÞ

ktb ¼ f1gT½g2�T½kcetb�½g1�f1g; ð8:29cÞ

ktt ¼ f1gT½g2�Tð½kcett� þ ½knt�Þ½g2�f1g; ð8:29dÞ

½H11� ¼ f1gT½g1�T½kcebb�; ð8:30aÞ

½H12� ¼ f1gT½g1�T½kcebt�; ð8:30bÞ

½H21� ¼ f1gT½g2�T½kcetb�; ð8:30cÞ

½H22� ¼ f1gT½g2�T½kcett�: ð8:30dÞ

8.3.1 Both Ends Yielding

Solutions of l1 and l2 and further formulations of the elasto-plastic stiffness equation of the element are

related to the deformation condition of the element ends, which are discussed as follows.
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When both ends of the element yield, fd�cp1g 6¼ 0 and fd�cp2g 6¼ 0, then l1 6¼ 0 and l2 6¼ 0, with which

Equation (8.28) becomes

kbb kbt

ktb ktt


 �
l1

l2

� �
¼ ½H11� ½H12�
½H21� ½H22�


 �
d�c1

d�c2

� �
: ð8:31Þ

The solution of l1 and l2 with the above equation is

l1

l2

� �
¼ kbb kbt

ktb ktt


 ��1 ½H11� ½H12�
½H21� ½H22�


 �
d�c1

d�c2

� �
: ð8:32Þ

Substituting Equation (8.32) into Equation (8.17) leads to

fd�cp1g
fd�cp1g

� �
¼ ½g1� 0

0 ½g2�


 �
f1g 0

0 f1g


 �
kbb kbt

ktb ktt


 ��1 ½H11� ½H12�
½H21� ½H22�


 �
d�c1

d�c2

� �
: ð8:33Þ

Equation (8.30) can be rewritten in partitioned matrix form as

½H11� ½H12�
½H21� ½H22�


 �
¼ f1g 0

0 f1g


 �T ½g1� 0

0 ½g2�


 �T
kbb kbt

ktb ktt


 ��1

: ð8:34Þ

Let

½G� ¼
½g1� 0

0 ½g2�

" #
; ð8:35Þ

½E� ¼
f1g 0

0 f1g

" #
; ð8:36Þ

½L� ¼
½kbb� ½kbt�

½ktb� ½ktt�

" #�1

: ð8:37Þ

Equation (8.33) can then be rewritten as

fd�cpg ¼ ½G�½E�½L�½E�T½G�T½kce�fd�cg: ð8:38Þ

Noting Equation (8.7), one has

fd�ceg ¼ fd�cg � fd�cpg ¼ ð½I� � ½G�½E�½L�½E�T½G�T½kce�Þfd�cg; ð8:39Þ

where ½I� is the unit matrix.

Substituting Equation (8.39) into Equation (8.20) yields

fdfcg ¼ ð½kce� � ½kce�½G�½E�½L�½E�T½G�T½kce�Þfd�cg: ð8:40Þ

The above is the elemental stiffness equation for the column element whose both ends are in plastic state.

8.3.2 Only End 1 Yielding

When only end 1 of the element yields, fd�cp1g 6¼ 0 and fd�cp2g ¼ 0, then l1 6¼ 0 and l2 ¼ 0, with which

Equation (8.28a) becomes

kbbl1 ¼ ½H11�fd�c1g þ ½H12�fd�c2g: ð8:41Þ
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Solving l1 with the above equation, one has

l1 ¼ ð1=kbbÞð½H11�fd�c1g þ ½H12�fd�c2gÞ: ð8:42Þ

Equation (8.42) can also be written in matrix form as

l1

l2

� �
¼ 1=kbb 0

0 0


 �
½H11� ½H12�
½H21� ½H22�


 �
d�c1

d�c2

� �
: ð8:43Þ

Combining Equations (8.34) and (8.17) with the above equation, one has

fd�cpg ¼ ½G�½E�½Lb�½E�T½G�T½kce�fd�cg; ð8:44Þ

where

½Lb� ¼
1=kbb 0

0 0


 �
: ð8:45Þ

Substituting Equation (8.44) into Equation (8.7) yields fd�ceg and then substituting fd�ceg into Equation

(8.20) yields the stiffness equation of the element with end 1 yielding as

fdfcg ¼ ð½kce� � ½kce�½G�½E�½Lb�½E�T½G�T½kce�Þfd�cg: ð8:46Þ

8.3.3 Only End 2 Yielding

When only end 2 of the element yields, fd�cp1g ¼ 0 and fd�cp2g 6¼ 0, then l1 ¼ 0 and l2 6¼ 0, with which

Equation (8.28b) becomes

kttl2 ¼ ½H21�fd�c1g þ ½H22�fd�c2g: ð8:47Þ

With a similar procedure for end 1 yielding, the stiffness equation of the element when plasticity yields at

end 2 can be derived as

fdfcg ¼ ð½kce� � ½kce�½G�½E�½Lt�½E�T½G�T ½kce�Þfd�cg; ð8:48Þ

where

½Lt� ¼
0 0

0 1=ktt


 �
: ð8:49Þ

8.3.4 Summary

In summary, the stiffness equation of the column element based on the elasto-plastic hinge model can be

expressed in the uniform equation as

fdfcg ¼ ½kcp�fd�cg; ð8:50Þ

where ½kcp� is the tangent elasto-plastic stiffness matrix of the element, given by

½kcp� ¼ ½kce� � ½kce�½G�½E�½L�½E�T½G�T½kce�; ð8:51Þ
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where matrix ½L� can be determined according to the following four cases:

(a) no yielding occurring at both ends of the element:

½L� ¼ 0 0

0 0


 �
; ð8:52aÞ

(b) yielding occurring at only end 1 of the element:

½L� ¼ 1=kbb 0

0 0


 �
; ð8:52bÞ

(c) yielding occurring at only end 2 of the element:

½L� ¼ 0 0

0 1=ktt


 �
; ð8:52cÞ

(d) yielding occurring at both ends of the element:

½L� ¼ kbb kbt

ktb ktt


 ��1

: ð8:52dÞ

Noting Equations (8.29), (8.35) and (8.36), ½L� for the above four cases can also be uniformly expressed as

½L� ¼ ð½E�T½G�Tð½kce� þ ½kn�Þ½G�½E�Þ�1: ð8:52eÞ

8.4 ELASTIC AND ELASTO-PLASTIC STIFFNESS EQUATIONS
OF COLUMN ELEMENT SUBJECTED TO UNIAXIAL BENDING

The force and deformation components for the column element subjected to uniaxial bending (about y-axis

assumed) are

ffcg ¼ ½Nz1; Qx1; My1; Nz2; Qx2; My2�T; ð8:53Þ
f�cg ¼ ½�z1; �x1; �y1; �z2; �x2; �y2�T: ð8:54Þ

The elastic stiffness equation of the element has the same form as Equation (8.5), but the stiffness matrix

becomes

½kce� ¼

EA

l
0 0 �EA

l
0 0

0
12EIy

l3
c1y

6EIy

l2
c2y 0 � 12EIy

l3
c1y

6EIy

l2
c2y

0
6EIy

l2
c2y

4EIy

l
c3y 0 � 6EIy

l2
c2y

2EIy

l
c4y

�EA

l
0 0

EA

l
0 0

0 � 12EIy

l3
c1y � 6EIy

l2
c2y 0

12EIy

l3
c1y � 6EIy

l2
c2y

0
6EIy

l2
c2y

2EIy

l
c4y 0 � 6EIy

l2
c2y

4EIy

l
c3y

2
666666666666666666664

3
777777777777777777775

: ð8:55Þ
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Similarly, the elasto-plastic stiffness equation of the element has the same form as Equation (8.50), and

the stiffness matrix of the element has the same form as Equation (8.51), but the matrices in the expression of

the stiffness matrix become

½G� ¼ diag
@�1

@Nz1

; 0;
@�1

@My1

;
@�2

@Nz2

; 0;
@�21

@My2


 �
; ð8:56Þ

½E� ¼

1 0

1 0

1 0

0 1

0 1

0 1

2
666666664

3
777777775
; ð8:57Þ

½kn� ¼ diag½ a1kce11; a1kce22; a1kce33; a2kce44; a2kce55; a2kce66 �; ð8:58Þ

where, a1 and a2 are the elasto-plastic hinge factors for the two ends of the element; kceii is the ith row and

the ith column element in the stiffness matrix ½kce�.

8.5 AXIAL STIFFNESS OF TAPERED COLUMN ELEMENT

The discussions in Sections 8.2–8.4 are for prismatic column elements. The axial stiffness in the stiffness

equations presented hereinabove for prismatic column elements is not suitable to tapered column elements.

The axial stiffness of tapered column elements can be determined with the following method.

8.5.1 Elastic Stiffness

For a tapered column element, axial force is given by N ¼ EAðdu=dxÞ, where the sectional area A is a

function of the axial coordinate (see Figure 3.1). The differential equilibrium equation of the element in the

axial direction is

dN

dz
¼ E AðzÞ d

2u

dz2
þ dA

dz

� �
du

dz


 �
¼ 0; ð8:59Þ

where AðzÞ is the sectional area varying with the axial coordinate z and uðzÞ is the corresponding axial

deformation. Solving the above equation leads to the axial stiffness

kz ¼
E

ZL

0

1

AðzÞ dz

: ð8:60Þ

8.5.2 Elasto-Plastic Stiffness

If the effects of residual stresses and initial deflection are considered, the axial force–deformation relation-

ship of the tapered column element can be obtained from Equations (7.81) and (7.82). For CRC tangent

modulus (Galambos, 1988), the axial deformation of the element can be expressed as

u ¼ 0:5NpL

EA
þ
ZN

0:5Np

L

AEt

dN; for N > 0:5Np: ð8:61Þ
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Substituting Equation (7.81) into Equation (8.61) and integrating it gives the expression for the nondimen-

sionalized axial force–deformation relationship of the element as

N

Np

¼ 1

1þ expð2� 4"="yÞ
; for N > 0:5Np; ð8:62Þ

where " and "y are the axial strain and the yielding strain, respectively. Then "="y ¼ Eu=ð	yLÞ, where 	y is

the yielding strength of material and L is the element length.

With the same approach, the similar axial force–deformation relationships of the tapered column

element based on LRFD tangent modulus (AISC, 1994) can be obtained as

u ¼ 0:39NpL

EA
þ

ZN

0:39Np

L

AEt

dN; for N > 0:39Np; ð8:63Þ

N

Np

¼ exp �0:9416 exp 2:7243 0:39� "

"y


 �� �
 �
; for N > 0:39Np: ð8:64Þ

The curves corresponding to Equations (8.62) and (8.64) are given in Figure 8.2. The axial stiffness of the

tapered column element can be obtained from the differential operation of dN=du.

8.6 EXPERIMENT VERIFICATION

To verify the elastic and elasto-plastic stiffness equations of column elements, and the hysteretic model

proposed in Chapter 5 for the column section subjected to biaxial bending, five box-section columns and

four H-section columns were tested in Tongji University (Li, Huang and Shen , 1993; Li, Shen and Huang,

1999). The cyclic behaviour of these columns was investigated under a constant vertical load and repeated

and reversed horizontal loads in two principal directions, by which the stiffness equations for column

elements proposed have been validated.

8.6.1 Experiment Specimen

The box-section columns and H-section columns tested are shown in Figures 8.3 and 8.4, respectively. The

steel material for the specimens is Chinese Q235 and material properties are as follows:

Figure 8.2 Nondimensionalized axial force–strain relationship of the tapered column element
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Figure 8.3 Specimen of the box-section column
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Figure 8.4 Specimen of the H-section column
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(1) For box-section columns:

– yielding strength 	s ¼ 261:97 MPa,

– ultimate tensile strength 	b ¼ 415:61 MPa,

– elastic modulus E ¼ 1:915 MPa.

(2) For H-section columns:

– yielding strength 	s ¼ 290:08 MPa,

– ultimate tensile strength 	b ¼ 440:37 MPa,

– elastic modulus E ¼ 1:972 MPa.

The specimens are designed as cantilever columns to model the half of the frame columns with consideration

that the point of contraflexure is at mid-height.

8.6.2 Set-Up and Instrumentation

The test set-up is shown in Figure 8.5. Because horizontal displacements at the top of the column specimen

in two directions will be produced during test, the two horizontal orthotropic push–pull jacks should have

some degree of freedom to certain extent in the horizontal plane. To achieve it, the jack base is connected

with a hinge to its support frame. The sequence of loading devices in the horizontal direction from column

top is column, horizontal hinge, loading sensor, jack, hinge and support frame (see Figure 8.5(a)).

The difficulty of vertical loading is that a large axial force should be applied and kept constant at the top

of the column, whereas the nature of the free end of the cantilever column should be ensured. For the purpose

of meeting the above requirements, two rows of roll shafts orthotropic to each other, separated by a steel

plate, are placed against the vertical support frame. Beneath the roll shafts, a ball hinge is used to connect to

the column specimen. The vertical support frame is a steel beam supported by two portal frames. The

sequence of loading devices in the vertical direction from column top is column, jack, ball hinge, two rows of

roll shafts and support frame (see Figure 8.5(b)).

One cable from the two horizontal force sensors is linked to the monitor for convenience of test control,

and the other is linked to the computer for data acquisition.

Six displacement transducers are placed in two horizontal directions (each three), as shown in Figure 8.5(a).

A glass piece is glued on the interface of the column and transducer to reduce friction. The central

(a)
(b)

Figure 8.5 Horizontal loading diagram of the box-section column: (a) plan ; (b) elevation. Notes: (1) specimen; (2)

hinge; (3) loading sensor; (4) horizontal jack; (5) displacement transducer; (6) vertical jack; (7) ball hinge; (8) roll shafts;

(9) support frame; (10) support wall
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transducer in each direction is linked to the monitor to control test, and the others are linked to the auto-

acquisition computer.

8.6.3 Horizontal Loading Scheme

8.6.3.1 For box-section column

First, a vertical load of 600 kN is applied, and the ratio of axial force to squash load of the column is n ¼ 0:3.

Then, cyclic horizontal loads are applied at the column top. Five horizontal loading schemes are selected for

five specimens, four of which are as follows:

� Scheme 1: Two horizontal jacks keep the same pace to completely simulate earthquake forces in two

orthotropic directions in the same frequency and the same phase (see Figure 8.6(a)).

� Scheme 2: One jack keeps constant force, whereas the other produces cyclic force. Then, gradually

increase the constant force and the cyclic force until the specimen fails (see Figure 8.6(b)).

� Scheme 3: Always keep force of one jack constant, whereas increase that of the other and make the jacks

in two directions change the nature of loading alternatively until the specimen fails (see Figure 8.6(c)).

� Scheme 4: Simulate earthquake forces in two directions in the same period but with a phase difference of


/2 and gradually increase the forces of two jacks until the specimen fails (see Figure 8.6(d)).

The loading history for the four loading schemes measured is given in Figure 8.7.

8.6.3.2 For H-section column

First the vertical load is applied and then cyclic horizontal loads are applied in two horizontal orthotropic

directions. Four horizontal loading schemes are selected for four specimens, three of which are as follows:

� Scheme 1: The jack in the sectional weak axis keeps constant force, whereas the other exerts

cyclic force. Then gradually increase the constant force and the cyclic force until the specimen fails

(a) (b)

(c) (d)

Py

Py Py

Py

Px Px

Px Px

O

O O

O

Figure 8.6 Horizontal loading schemes for box-section column specimens: (a) scheme 1; (b) scheme 2; (c) scheme 3;

(d) scheme 4
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(see Figure 8.8(a)). The axial force applied for this plan is 300 kN and the ratio of the axial force to

squash load of the column is n ¼ 0:265.

� Scheme 2: This plan is same as plan 3 for the box-section column specimen except that no axial force is

applied , namely n ¼ 0 (see Figure 8.8(b)).

� Scheme 3: This plan is same as plan 3 for the box-section column specimen except that the axial force

applied is 300 kN, namely n ¼ 0:265 (see Figure 8.8(c)).

The loading history for the three loading schemes measured is given in Figure 8.9.

8.6.4 Theoretical Predictions of Experiments

The column specimen tested can be regarded as a structure with only one column. Representing the column

with one column element results in the global stiffness equation of the structure as

½kc�fd�cg ¼ fdfcg; ð8:65Þ

Figure 8.7 Loading history measured for box-section column specimens: (a) scheme 1; (b) scheme 2; (c) scheme 3;

(d) scheme 4
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(a) (b)

(c)

Py Py

Px Px
O O

Py

Px
O

Figure 8.8 Horizontal loading schemes for H-section column specimens: (a) scheme 1 (n ¼ 0:265); (b) scheme 2

(n ¼ 0); (c) scheme 3 (n ¼ 0:265)

Figure 8.9 Loading history measured for H-section column specimens: (a) scheme 1; (b) scheme 2; (c) scheme 3
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Figure 8.10 Predicted versus measured displacement curves of box-section column specimens: (a) scheme 1; (b)

scheme 2; (c) scheme 3; (d) scheme 4
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where ½kc� is the elemental stiffness matrix of the column element. If the column is in elastic state, ½kc� is

determined by Equation (8.6), whereas if it is elasto-plastic, ½kc� can be determined by Equation (8.52).

Equation (8.65) can be partitioned as

½kcbb� ½kcbt�
½kctb� ½kctt�


 �
fd�c1g
fd�c2g

� �
¼ fdfc1g
fdfc2g

� �
: ð8:66Þ

Introducing boundary conditions to the above equation yields the equation for the lateral displacements at

the top of the column as

fd�c2g ¼ ½kctt��1fdfc2g: ð8:67Þ

8.6.5 Comparison of Analytical and Tested Results

The predicted and measured horizontal displacements for box-section and H-section column specimens are

compared in Figures 8.10 and 8.11, respectively, where Dx and Dy are the displacements at the top of the

Figure 8.11 Predicted versus measured displacement curves of H-section column specimens: (a) scheme 1; (b) scheme

2; (c) scheme 3
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columns corresponding to the horizontal forces Px and Py. Good agreement can be found between analytical

and experimental results.

Both analytical and experimental results indicate that interaction effects exist in steel columns subjected

to biaxial bending. The interaction is that after yielding in columns under biaxial bending, incremental force

in one horizontal direction produces the displacement not only in the same direction but also in the other

horizontal orthotropic direction. It also includes that the displacement in the direction with smaller

horizontal force is more evidently influenced by the larger horizontal force in the other direction. In

addition, for the H-section column, the effect of horizontal force in the strong axis on the displacement

in the weak axis is much more evident than that of the force in the weak axis on the displacement in the

strong axis.
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9 Effects of Joint Panel and
Beam–Column Connection

9.1 BEHAVIOUR OF JOINT PANEL

9.1.1 Elastic Stiffness of Joint Panel

The four edges of a beam–column joint panel are subjected to the reaction forces from beams and columns

connected to the joint panel, as shown in Figure 9.1, in which MgL, QgL, MgR MgR and QgR are, respectively,

the moments and shears from the left and right beam ends, whereas McT, QcT, NcT, McB, QcB and NcB are,

respectively, the moments, shears and thrusts from the top and bottom column ends. All the directions of

actions shown in Figure 9.1 are positive. All these actions make the joint panel in a shear state, which can be

equalized to that indicated in Figure 9.2, in which QH and QV are, respectively, the equivalent horizontal and

vertical shear forces and can be written as

QH ¼ �
MgL þMgR

hg

þ 1

2
ðQcB � QcTÞ; ð9:1aÞ

QV ¼ �
McT þMcB

hc

þ 1

2
ðQgR � QgLÞ: ð9:1bÞ

The horizontal and vertical shear stresses in the joint panel can then be obtained by

tH ¼
QH

hctp
; ð9:2aÞ

tV ¼
QV

hgtp

; ð9:2bÞ

where hc and hg are sectional heights of columns and beams, respectively, and tp is the thickness of the joint

panel.

The determination of the thickness of various joint panels is given in Figure 9.3.

According to the symmetry of shear stresses, the horizontal and vertical shear stresses in the joint panel

are equal, i.e.

QH

hctp
¼ QV

hgtp

ð9:3aÞ

or

QHhg ¼ QVhc: ð9:3bÞ
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The shear moment of the joint panel can be defined as

Mg ¼ QHhg ¼ QVhc ¼
1

2
ðQHhg þ QVhcÞ: ð9:4Þ

Substituting Equation (9.1) into Equation (9.4) yields

Mg ¼
1

2
McT þMcB �MgL �MgR þ

hg

2
ðQcB � QcTÞ þ

hc

2
ðQgR � QgLÞ

� �
: ð9:5Þ

Then, the shear stress of the joint panel may be expressed as

t ¼ Mg

hghctp
; ð9:6Þ

and the shear strain of the joint panel may be expressed as

g ¼ Mg

Ghghctp
; ð9:7Þ

where G is the shear elastic modulus.

The elastic stiffness of the joint panel is therefore defined as

kge ¼ Ghghctp: ð9:8Þ
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h g
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Figure 9.1 Forces applied on a joint panel
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Figure 9.2 Equivalent shears on a joint panel
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9.1.2 Elasto-Plastic Stiffness of Joint Panel

An experimental curve for the relationship between shear deformation and shear moment of a joint panel is

shown in Figure 9.4, which indicates that the bilinear model can be used to simulate the hysteretic and

elasto-plastic behaviour of joint panels, as shown in Figure 9.5. In Figure 9.5, q is the hardening factor of

joint panels and generally q ¼ 0:015, and gp and Mgp are the shear yielding strain and shear yielding moment

of joint panels, respectively. In view of the existence of axial forces in columns and with application of the

Mises yielding rule, gp and Mgp can be determined with

gp ¼
�sffiffiffi
3
p

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�N

Ps

� �2
s

; ð9:9Þ

Mgp ¼ kgegp; ð9:10Þ

in which

gp ¼
�sffiffiffi
3
p

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�N

Ps

� �2
s

; ð9:11Þ

Ps ¼ Ac�s; ð9:12Þ
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Figure 9.3 Values of tp for various joint panels
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where �s is the yielding stress of joint panels and Ac is the cross-sectional area of the column at the position

of joint panels.

9.2 EFFECT OF SHEAR DEFORMATION OF JOINT PANEL ON
BEAM/COLUMN STIFFNESS

Inequality occurs on the end deformations of the beam and the column connected to the same joint due to

shear deformation of the joint panel even if the connection is rigid. This discontinuity of deformation leads

to difficulty in the assembly of global stiffness for the structure of frames using beam and column elements.

For this purpose, the deformations of joint panels can be adopted as basic variables for frame structures,

which include the horizontal displacement u, vertical displacement v, rotation � and shear deformation g, as

shown in Figure 9.6. Based on these variables, the stiffness equation for beam or column elements with joint

panels can be established.

9.2.1 Stiffness Equation of Beam Element with Joint Panel

As illustrated in Figure 9.7, the relationship between the deformations of a beam element and those of the

adjacent joint panels is

�1 ¼ �i þ
hcj

2
�i �

hci

4
gi; ð9:13aÞ
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γ
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Figure 9.4 Hysteretic M–g curves of the joint panel from test
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Figure 9.5 Hysteretic model for the Mg–g relationship of the joint panel
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�1 ¼ �i þ
1

2
gi; ð9:13bÞ

�2 ¼ �j �
hcj

2
�j þ

hcj

4
gj; ð9:13cÞ

�2 ¼ �j þ
1

2
gj: ð9:13dÞ

Let the deformation vector of the beam element and the deformation vector of the two adjacent joint panels be

f�gg ¼ f�1; �1; �2; �2gT; ð9:14aÞ
f�ggg ¼ f�i; �i; gi; �j; �j; gjgT: ð9:14bÞ

Equation (9.13) can then be rewritten in matrix form as

f�gg ¼ ½Ag�f�ggg; ð9:15Þ
where

½Ag� ¼

1
hci

2
� hci

4
0 0 0

0 1
1

2
0 0 0

0 0 0 1 � hcj

2

hcj

2

0 0 0 0 1
1

2

2
6666666664

3
7777777775
: ð9:16Þ
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Figure 9.6 The basic variables of a frame involving joint-panel shear deformation
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Figure 9.7 Deformation of the frame beam
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Transition of the actions at the beam ends to those at the centres of the adjacent joint panels results in the

following equations :

Qi ¼ Q1; ð9:17aÞ

Mi ¼
1

2
hciQ1 þM1; ð9:17bÞ

Qj ¼ Q2; ð9:17cÞ

Mj ¼ �
1

2
hcjQ2 þM2: ð9:17dÞ

Rewrite Equation (9.5) as

�Mg ¼ � 1

2
McT þ

1

4
hgQcT

� �
þ � 1

2
McB �

1

4
hgQcB

� �
þ 1

2
MgL þ

1

4
hcQgL

� �
þ 1

2
MgR þ

1

4
hcQgR

� �
:

ð9:18Þ

The terms in each parentheses on the right-hand side of the above equation are the contributions of the

actions at the beam end or column end connected with the joint panel to the minus of shear moment, �Mg.

Note that MgR, QgR, MgL MgL and QgL applied on the joint panels correspond to M1, Q1, M2 and Q2 applied

on the two beam ends connected to the joint panels and define

Mgi ¼
1

2
M1 �

1

4
hciQ1; ð9:19aÞ

Mgj ¼
1

2
M2 þ

1

4
hcjQ2; ð9:19bÞ

where Mgi and Mgj are the contributions of the beam end actions to the minus of shear moments of the left and

right adjacent joint panels.

Let

ffgg ¼ fQ1; M1; Q2; M2gT; ð9:20aÞ
ffggg ¼ fQi; Mi; Mi; Qj; Mj; MjgT: ð9:20bÞ

Combining Equations (9.17) and (9.19) results in

ffggg ¼ ½Ag�Tffgg: ð9:21Þ

Express the incremental stiffness relation of the beam element as

fdfgg ¼ ½kg�fd�gg; ð9:22Þ

where ½kg� is the stiffness matrix of the pure beam element. If the beam is in elastic state, ½kg� is determined

according to the method presented in Chapter 2 and ½kg� ¼ ½kge�, whereas if it is in elasto-plastic state, ½kg� is
determined according to the method presented in Chapter 5 and ½kg� ¼ ½kgp�.

By Equations (9.15), (9.21) and (9.22), the incremental stiffness relation between fdfggg and fd�ggg can

be derived as

fdfggg ¼ ½kgg�fd�ggg: ð9:23Þ

The above is the incremental stiffness equation of the beam element with joint panels, where ½kgg� is the

stiffness matrix of the beam element including shear deformation of the joint panel given by

½kgg� ¼ ½Ag�T½kg�½Ag�: ð9:24Þ

152 EFFECTS OF JOINT PANEL AND BEAM–COLUMN CONNECTION



9.2.2 Stiffness Equation of Column Element with Joint Panel Subjected
to Uniaxial Bending

The deformation of a frame column subjected to uniaxial bending is given in Figure 9.8. Let

f�cg ¼ f�z1; �x1; �y1; �z2; �x2; �y2gT; ð9:25aÞ
f�cgg ¼ f�zi; �xi; �yi; gyi; �zj; �xj; �yj; gyjgT; ð9:25bÞ
ffcg ¼ fNz1; Qx1; My1; Nz2; Qx2; My2gT; ð9:26aÞ
ffcgg ¼ fNzi; Qxi; Myi; Myi; Nzj; Qxj; Myj; MyjgT; ð9:26bÞ

where f�cg is the vector of deformations at the column ends, f�cgg is the deformation vector of the two joint

panels adjacent to the column, ffcg is the vector of forces at the column ends and ffcgg is the force vector of

the two joint panels adjacent to the column.

Let Mgyi and Mgyj represent, respectively, the contributions of the actions at the column ends to the minus

of shear moment in the adjacent top and bottom joint panels as

Mgyi ¼ �
1

2
My1 þ

1

4
hgiQx1; ð9:27aÞ

Mgyj ¼ �
1

2
My2 �

1

4
hgjQx2: ð9:27bÞ

Similar to that discussed for the beam element with joint panels, through the geometry relationship the

deformations of the column ends are related to those of the adjacent joint panels with

f�cg ¼ ½Ac�f�cgg: ð9:28Þ

Similarly, by equilibrium relationship of forces, the forces of the joint panels can be expressed with those of

the adjacent column ends as

ffcgg ¼ ½Ac�Tffcg; ð9:29Þ
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Figure 9.8 Deformation of the frame column
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where

½Ac� ¼

1 0 0 0 0 0 0 0

0 1
1

2
hgi

1

4
hgi 0 0 0 0

0 0 1 � 1

2
0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 � 1

2
hgj �

1

4
hgj

0 0 0 0 0 0 1 � 1

2

2
66666666666664

3
77777777777775

: ð9:30Þ

Assume the incremental stiffness equation of the column element be expressed as

fdfcg ¼ ½kc�fd�cg; ð9:31Þ

where ½kc� is the stiffness matrix of the pure column element and can be determined according to the

deformation state of the element by the method presented in Chapter 6. If the column is in elastic state,

½kc� ¼ ½kce�, whereas if it is in elasto-plastic state, ½kc� ¼ ½kcp�.
By Equations (9.28), (9.29) and (9.31), the incremental stiffness equation of the column element with

joint panels subjected to uniaxial bending can be derived as

fdfcgg ¼ ½kcg�fd�cgg; ð9:32Þ

where ½kcg� is the stiffness matrix of the column element subjected to uniaxial bending including shear

deformation of the joint panel given by

½kcg� ¼ ½Ac�T½kc�½Ac�: ð9:33Þ

9.2.3 Stiffness Equation of Column Element with Joint Panel Subjected
to Biaxial Bending

The deformation and force vector of the two joint panels connected to the column subjected to biaxial

bending may be expressed as

f�cgg ¼ ½f�cgigT; f�cgjgT�T; ð9:34aÞ
f�cgig ¼ f�zi; �xi; �yi; gyi; �yi; �xi; gxi; �zigT; ð9:35aÞ
f�cgjg ¼ f�zi; �xj; �yj; gyj; �yj; �xj; gxj; �zjgT; ð9:35bÞ
ffcgg ¼ ½ffcgigT; ffcgjgT�T; ð9:36Þ
ffcgig ¼ fNzi; Qxi; Myi; Mgyi; Qyi; Mxi; Mgxi; MzigT; ð9:37aÞ
ffcgjg ¼ fNzj; Qxj; Myj; Mgyj; Qyj; Mxj; Mgxj; MzjgT; ð9:37bÞ

where gxi, gxj, gyi and gyj are, respectively, the shear deformations of the two joint panels about the x-axis and

y-axis of the column section, Myi and Myj are the contributions of the actions at the column ends to the minus

of shear moment in the joint panels about the y-axis of the column section and determined by Equation

(9.27), and Mxi and Mxj are the contributions of the actions at the column ends to the minus of shear moment

in the joint panels about the x- axis of the column section and determined by

Mgxi ¼ �
1

2
Mx1 þ

1

4
hgiQy1; ð9:38aÞ

Mgxj ¼ �
1

2
Mx2 �

1

4
hgjQy2: ð9:38bÞ
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Noting that the deformation and force vectors of the column element subjected to biaxial bending are those

expressed in Equations (8.2), (8.4) and (8.1), (8.3), the stiffness equation of the column element in biaxial

bending with joint panels can be derived in the similar way as that for the column element in uniaxial

bending with joint panels. The incremental stiffness equation obtained has the same form as Equation (9.32)

and the expression of the corresponding stiffness matrix for the column element in biaxial bending with joint

panels is the same as Equation (9.33), but

½Ac� ¼
½Aci� 0

0 ½Acj�

� �
; ð9:39Þ

where

½Aci� ¼

1 0 0 0 0 0 0 0

0 1
1

2
hgi

1

4
hgi 0 0 0 0

0 0 1 � 1

2
0 0 0 0

0 0 0 0 1
1

2
hgi

1

4
hgi 0

0 0 0 0 0 1 � 1

2
0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

ð9:40aÞ

and

½Acj� ¼

1 0 0 0 0 0 0 0

0 1
1

2
hgj

1

4
hgj 0 0 0 0

0 0 1 � 1

2
0 0 0 0

0 0 0 0 1
1

2
hgj

1

4
hgj 0

0 0 0 0 0 1 � 1

2
0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

: ð9:40bÞ

9.3 BEHAVIOUR OF BEAM–COLUMN CONNECTIONS

Beams and columns in steel frames are generally connected with welding or bolting (usually using high-

strength bolts). Subjected to the bending moments at beam ends, deformation of connections occurs more or

less and is dominant by relative rotations as shown in Figure 9.9. For the connection with the top and bottom

flanges of the beam welded to the column while the web of the beam connected to the column with high-

strength bolts or also welding (see Figure 9.9(e)), rigid connection assumption with no relative rotation

between the beam and the column can be adopted in frame analysis because of the sufficient rotation stiffness

of the connection. For the connection where only the web of the beam is connected to the column (especially

with bolts, see Figure 9.9(a)), pinned connection assumption allowing for arbitrary relative rotation between

the beam and the column can be used in frame analysis because of lack of enough rotation stiffness.

Rigid beam–column connections have good moment–resistance behaviour, but the difficulty in

fabrication and erection for such connections is high. Configuration of pinned connections is relatively

simple, but their stiffness and energy-absorption capacity are low, which is disadvantageous to aseismic

design. Semi-rigid beam–column connections, however, are the compromise of rigid and pinned connec-

tions, and when used in steel frames, good comprehensive technique-economy index is hoped to achieve.

As the behaviour of semi-rigid connections evidently affects the stiffness and load-carrying capacity of

steel frames, clarifying the moment–rotation relationship and hysteretic behaviour of semi-rigid beam–
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column connections is a key point to static and dynamic analysis and design of steel frames involving such

connections.

This section is to summarize, based on previous investigations, the moment–curvature relationship and

hysteretic behaviour of some types of semi-rigid connections.

9.3.1 Moment–Rotation Relationship

9.3.1.1 Top- and seat-angle connection

The connection configuration is shown in Figure 9.10 and its moment–rotation relationship was given by

Maxwell, Jenkins and Howlett (1981) as

M ¼ kj; when j < jp; ð9:41aÞ
M ¼ Mp; when j � jp; ð9:41bÞ

ϕ

a

b

c
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e
M

ϕ

(b) (a) (e) 
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M

Figure 9.9 Connection configurations and the corresponding moment–rotation curves
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Figure 9.10 Top- and seat-angle connection
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in which

k ¼ Eh2

10

ðbm � d=2Þ3

lt3
1

þ lb

3Abnb

" #
;

Mp ¼
�slt

2
1

2

hþ bm

b
� 1

� �
;

jp ¼
Mp

k
;

where Ab is the effective cross-sectional area of a bolt, lb is the effective length of the bolt, as shown in

Figure 9.11, nb is the number of bolts in the first row at the vertical leg of the angle in tension, l and t1 are the

length and thickness of the angle, respectively, bm and b are the distances from the bolt centre to the back of

the angle and to the arc edge of the angle, respectively, d is the diameter of the bolt, h is the height of the

beam, E is the elastic modulus and �s is the yielding strength of the angle steel.

A similar moment–rotation relationship was also given by Frye and Morris (1975) as

j ¼ 7:49� 10�6ðkMÞ þ 7:00� 10�11ðkMÞ3 þ 6:37� 10�19ðkMÞ5; ð9:42Þ

in which

k ¼ 2:14� 10�4t0:5
1 h�1:5d�1:1l�0:7;

where j is the relative rotation between the beam and the column of the connection. The units of the

variables in Equation (9.42) are as follows: j is in rad, M is in N m and all units of dimension in the

calculation of k are in m.

9.3.1.2 Top- and seat-angle connection with double web angles

The connection configuration is shown in Figure 9.12 and its moment–rotation relationship was given by

Frye and Morris (1975) as

j ¼ 1:976� 10�7ðkMÞ þ 1:283� 10�14ðkMÞ3 þ 1:732� 10�22ðkMÞ5; ð9:43Þ

lb

Figure 9.11 Effective length of a bolt
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in which

k ¼ 3:41� 10�4t�1:128
1 d�1:287t�0:4145

2 l�0:6941 a� d

2

� �1:35

;

where t1 and t2 are the thicknesses of the angles at the flange and web of the beam and a is the length of the

vertical leg of top and seat angles. The units of the variables in Equation (9.43) are same as those in Equation

(9.42).

9.3.1.3 Flange- and web-plate connection

The configuration of the connection is shown in Figure 9.13 and its moment–rotation relationship was given

by Ackroyd (1987) as

M ¼ kj

½1þ ðkj=MpÞ15:5�1=15:5
; ð9:44Þ

in which

k ¼ 0:5Ebth2=l;

Mp ¼ bth�s;

where l, b and t are the length, width and thickness of the flange-connection plate, respectively, h is the

height of the beam and �s is the yielding strength of the connection plate.

t1

h
a

l

t2

Figure 9.12 Top- and seat-angle connection with double web angles

b

t

h

l

Figure 9.13 Flange- and web-plate connection
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9.3.1.4 Flush end-plate connection

The connection configuration is shown in Figure 9.14 and its moment–rotation relationship was given by

Kukreti, Murray and Abolmaali (1987) as

j ¼ 5:695� 10�5ðcMÞ1:356; ð9:45Þ

in which

c ¼ 1:230� 10�10p2:227
f h�2:616t�0:501

w t�0:038
f d�0:849g�0:519

b b�0:218
p t�1:539

p ;

gb ¼
1

3

�bs

�s

Ab

d
;

A similar moment–rotation relationship was given by Kishi and Chen (1986) as

j ¼ 1:62� 10�5ðkMÞ þ 7:21� 10�11ðkMÞ3 þ 3:47� 10�16ðkMÞ5; ð9:46Þ

in which

k ¼ 1:383� 10�7h�2:4t�0:4
p t�1:5

fc ;

where tf and tw are the thicknesses of the flange and web of the beam, respectively, tfc is the thickness of

the column flange, bp and tp are the width and thickness of the end plate, respectively, Ab is the cross-

sectional area of a bolt, pf is the minimum distance from the bolt centre to the outer edge of the beam

flange, and �bs and �s are the yielding strengths of bolts and end plate, respectively. The units of length,

moment and rotation in above equations are same as those in Equation (9.42), and the unit of strength

is Pa.

9.3.1.5 Extended end-plate connection

The connection configuration is shown in Figure 9.15 and its moment–rotation relationship was given by

Krishnamurthy et al. (1979) as

j ¼ 7:076� 10�8 cM1:58

t1:38
p

; ð9:47Þ

tp

t

h

bp

f

fp
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Figure 9.14 Flush end-plate connection
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in which

c ¼ 172:1b�p2:03
f A�0:36

b1 ;

b ¼ 2:267� 10�5b0:61
f t1:03

f d�1:30t�0:26
w w�1:58;

� ¼ 6:38� 1010��1:20
bs :

A similar moment–rotation relationship was given by Frey and Morris (1975) as

� for unstiffened connection:

j ¼ 1:62� 10�5ðkMÞ þ 7:21� 10�11ðkMÞ3 þ 3:47� 10�16ðkMÞ5; ð9:48Þ

in which

k ¼ 1:383� 10�7ðhþ 2pfÞ�2:4
t�0:4
p t�1:5

fc ;

� for stiffened connection:

j ¼ 1:58� 10�5ðkMÞ þ 1:21� 10�10ðkMÞ3 þ 1:11� 10�14ðkMÞ5; ð9:49Þ

in which

k ¼ 1:639� 10�5ðhþ 2pfÞ�2:4
t�0:6
p ;

where tp is the thickness of the end plate, bf and tf are the width and thickness of the beam flange,

respectively, tw is the thickness of the beam web, tfc is the thickness of the column flange, w is the bending

resistance moment of the beam, Ab1 is the total cross-sectional area of the connection bolts in one row and pf

is the distance from the centre of outside bolts to the edge of the beam flange. All units of above quantities

are same with those used in Equation (9.42).

Yee and Melchers (1986) and Boswell and O’Conner (1988) proposed another moment–rotation

relationship (as shown in Figure 9.16) for the extended end-plate connection as

M ¼ Mp 1� exp
�ðke � kp þ cjÞj

Mp

� �� �
þ kpj; ð9:50Þ
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Figure 9.15 Extended end-plate connection
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where Mp is the plastic moment of the connection, ke is the initial stiffness of the connection, kp is the

hardening stiffness of the connection and c is a factor with a value of 3.5 for the stiffened connection and 1.5

for the unstiffened connection.

A method to calculate Mp, ke and kp was proposed in detail by Yee and Melchers (1986).

9.3.2 Hysteretic Behaviour

The hysteretic behaviour of semi-rigid connections is actually the moment–rotation relationship of con-

nections in the process of loading–unloading–reloading. It has been verified from experiments that the

connection stiffness in unloading is equal to the initial stiffness (see Figure 9.17), by which a hysteretic

moment–rotation relationship of semi-rigid connections was proposed as shown in Figure 9.18 (Ackroyd

Mp
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ϕ

Figure 9.16 Moment–rotation curve expressed in Equation (9.50)
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Figure 9.17 Unloading stiffness of a semi-rigid connection
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Figure 9.18 Hysteretic M–j relationship of a semi-rigid connection
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and Gerstle, 1982; Azizinamini, Bradburn and Radziminski, 1987), in which the definitions of the variables

are same as those in Equation (9.50) except that Ms is defined as the initial yielding moment of the

connection.

A triple-linear model was used to approximately predict the hysteretic behaviour of semi-rigid connec-

tions by Moncarz and Gerstle (1981) and Stelmack, Marley and Gerstle (1986), as shown in Figure 9.19. In

the triple-linear model, kn is the average stiffness between the initial stiffness ke and the hardening stiffness

kp of connections.

For sake of application convenience, a hysteretic model as shown in Figure 9.20 was proposed by Li

and Shen (1990) with consideration of nonlinearity of the moment–rotation relationship of semi-rigid

connections. In this model, jp is the rotation corresponding to the plastic moment of connections. The

tangent stiffness of connections under arbitrary moment M can be determined as

� for loading:

k ¼ ke

1þ ke

kp � 1

� �
jMj
Mp

� �n ; jMj < Mp; ð9:51aÞ

k ¼ kp; jMj � Mp; ð9:51bÞ

� for unloading:

k ¼ ke; ð9:52Þ
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Figure 9.19 Trilinear hysteretic M–j model of a semi-rigid connection
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Figure 9.20 Curvilinear hysteretic M–j model of a semi-rigid connection governed by Equations (9.51) and (9.52)
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where

n ¼

ke

kp

� 1

je

jp

� 1
� 1; je ¼

Mp

ke

:

The model illustrated in Figure 9.20 uses four parameters, namely initial stiffness ke, hardening stiffness kp,

plastic moment Mp and the corresponding jp, to determine the hysteretic moment–rotation relationship of

semi-rigid connections. If the M–j relationship is

M ¼ f ðjÞ; ð9:53Þ

then

ke ¼
dM

dj

����
j¼0

¼ f 0ðjÞ; ð9:54Þ

kp ¼
dM

dj

����
j¼jp

¼ f 0ðjpÞ; ð9:55Þ

or

j ¼ gðMÞ; ð9:56Þ

then

ke ¼
1

dj
dM

����
M¼0

¼ 1

g0ð0Þ ; ð9:57Þ

kp ¼
1

dj
dM

����
M¼Mp

¼ 1

g0ðMpÞ
: ð9:58Þ

If parameters jp and Mp cannot be determined, the value of jp can be determined approximately by

jp ¼ 4je ¼
4Mp

ke

ð9:59Þ

and Mp can be solved from

gðMpÞ ¼ 4
Mp

ke

: ð9:60Þ

9.4 EFFECT OF DEFORMATION OF BEAM–COLUMN CONNECTION
ON BEAM STIFFNESS

Due to the deformation of the beam–column connection, the rotation of the beam end is not compatible with

that of the edge of the beam–column joint panel. To overcome this incompatibility, the stiffness equation of

the beam element with beam–column connections can be developed by regarding the vertical translation and

rotation of the edge of the two adjacent joint panels as unknown variables.
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9.4.1 Stiffness Equation of Beam Element with Beam–Column
Connections

The deformations of the beam element with beam–column connections are given in Figure 9.21, where �1

and �2 are vertical displacements at both element ends (namely the displacements of the edges of the joint

panels adjacent to the two ends of the beam ), �a1 and �a2 are rotations of the edges of the joint panels, j1 and

j2 are relative rotations due to flexible connections between the beam ends and the corresponding edges of

the joint panels, and �1 and �2 are the real rotations of the beam ends.

Let

f�gg ¼ f�1; �1; �2; �2gT; ð9:61Þ

f�gag ¼ f�1; �a1; �2; �a2gT; ð9:62Þ

f�ag ¼ f0; j1; 0; j2g
T: ð9:63Þ

Then

f�gag ¼ f�gg þ f�ag: ð9:64Þ

Assuming that the shear forces at both beam ends are, respectively, Q1 and Q2, and the moments are M1 and

M2, let

ffgg ¼ fQ1; M1; Q2; M2gT; ð9:65Þ

ffgtg ¼ fQ1; 0; Q2; 0gT; ð9:66Þ

ffgng ¼ f0; M1; 0; M2gT; ð9:67Þ

and then

ffgg ¼ ffgtg þ ffgng: ð9:68Þ

By the incremental stiffness equation of the pure beam element, the increments of ffgg and f�gg are related

by Equation (9.22). The incremental equation for the moment at the end of the beam and the relative rotation

between the beam and the column of the connection adjacent to the beam end can be obtained with the

tangent stiffness of the beam-to-column connection as

fdfgng ¼ ½ka�fd�ag; ð9:69Þ

in which

½ka� ¼ diag ½0; k1; 0; k2�; ð9:70Þ

2δ

1δ

1ϕ

a2θ

1aθ
1θ

2ϕ
2θ

Beam end

Edge of joint panel

Figure 9.21 Deformation of a beam with connection
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where k1 and k2 are tangent stiffnesses of the beam-to-column connection corresponding to the moments at

the two ends of the beam, M1 and M2, respectively, which can be determined with the moment–rotation

relationship or hysteretic model of the connections, such as given by Equations (9.51) and (9.52).

With Equation (9.68), one has

fdfgtg ¼ fdfgg � fdfgng: ð9:71Þ

Substituting Equations (9.22) and (9.69) into Equation (9.71) leads to

fdfgtg ¼ ½kg�fd�gg � ½ka�fd�ag ¼ ½kg�ðfd�gag � fd�ggÞ � ½ka�fd�ag

¼ ½kg�fd�gag � ð½kg� þ ½ka�Þfd�ag:
ð9:72Þ

Express fd�ag as

fd�ag ¼ ½H�Tfdjg; ð9:73Þ

where

fdjg ¼ ½dj1; dj2�
T; ð9:74Þ

½H� ¼
0 1 0 0

0 0 0 1

" #
: ð9:75Þ

It is known from Equations (9.63) and (9.66) that fd�ag is orthotropic with fdfgtg, namely

fd�agTfdfgtg ¼ fdjgT½H�fdfgtg ¼ 0: ð9:76Þ

Due to the connection flexibility, fdjg 6¼ f0g and then

½H�fdfgtg ¼ 0: ð9:77Þ

Substituting Equation (9.73) into Equation (9.72) and then into Equation (9.77) results in

½H�½kg�fd�gag � ½H�ð½kg� þ ½ka�Þ½H�Tfdjg ¼ 0: ð9:78Þ

Solution of fdjg from the above equation is obtained as

fdjg ¼ ð½H�ð½kg� þ ½ka�Þ½H�TÞ�1½H�½kg�fd�gag: ð9:79Þ

Substituting Equation (9.79) into Equation (9.73) leads to

fd�ag ¼ ½H�Tð½H�ð½kg� þ ½ka�Þ½H�TÞ�1½H�½kg�fd�gag; ð9:80Þ

and then

fd�gg ¼ fd�gag � fd�ag

¼ ð½I� � ½H�Tð½H�ð½kg� þ ½ka�Þ½H�TÞ�1½H�½kg�Þfd�gag:
ð9:81Þ

Finally, substituting Equation (9.81) into Equation (9.22) yields

fdfgg ¼ ½kga�fd�gag; ð9:82Þ
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in which

½kga� ¼ ½kg� � ½kg�½H�Tð½H�ð½kg� þ ½ka�Þ½H�TÞ�1½H�½kg�; ð9:83Þ

where ½kga� is the stiffness matrix of the beam element including flexibility of beam-to-column connections.

9.4.2 Stiffness Equation of Beam Element with Connections
and Joint Panels

When effects of connection flexibility and joint-panel shear deformation are considered simultaneously, the

stiffness equation of the beam element with connections and joint panels can be established. In this case, the

basic variables include vertical displacement of the centres of joint panels adjacent to the beam, and rotation

and shear deformations of the joint panels. With the similar derivation as in Sections 9.2.1 and 9.4.1, the

expression of the stiffness equation desired for the beam element with connections and joint panels can be

obtained as

fdfggg ¼ ½Ag�Tfdfgg ¼ ½Ag�T½kga�fd�gag ¼ ½Ag�T½kga�½Ag�fd�ggg ð9:84aÞ

or

fdfggg ¼ ½kgag�fd�ggg; ð9:84bÞ

in which

½kgag� ¼ ½Ag�T½kga�½Ag�; ð9:85Þ

where ½kgag� is the stiffness matrix of the beam element including flexibility of beam-to-column connections

and joint-panel shear deformations.

9.5 EXAMPLES

9.5.1 Effect of Joint Panel

To examine the effect of joint panels on the lateral displacement of steel frames, consider a simple frame as

shown in Figure 9.22. This frame is actually a substructure of realistic frames (see Figure 9.23) and can

tc

cb

hc g

g

g

L
 /

2

t

bg

Beam section

h

F

L /g 2 L /g 2

Joint panel

Beam 1 Beam 2 

Column section

Figure 9.22 A subframe structure with the joint panel
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reflect the characteristics of the lateral displacement behaviour of realistic frames. The geometries of the

structure size are as follows:

Lg ¼ 6 m; Lc ¼ 3:5 m; hg ¼ 0:6 m; hc ¼ 0:5 m;

bg ¼ 0:3 m; tg ¼ 0:02 m; bc ¼ 0:4 m; tc ¼ 0:02 m:

The column and beam of the example frame are both symmetric H sections. For sake of simplification, omit

the web plate in the calculation of inertial moments of the beam, Ig, and the column, Ic. Then

Ig ¼ 2bgtg
hg

2

� �2

¼ 1:08� 10�3 m4;

Ic ¼ 2bctc

hc

2

� �2

¼ 1:00� 10�3 m4:

Assume the thickness of the joint panel to be

tp ¼ ctc ¼ 0:02c;

where c is a factor greater than zero, on the value of which the thickness and stiffness of the joint panel

depend. The relationship between the elastic lateral displacement of the frame and the value of c is discussed

in the following.

To stand out the effect of the joint panel, effects of axial force and shear deformation are ignored in

the elemental stiffness, and axial deformations of the structural components are also excluded. The basic

variables of the structure are horizontal displacement u, rotation � and shear deformation g of the joint

panel.

Subjected to the above assumption, each of the beams and columns is represented with a clamped-hinged

beam element (see Figure 9.24), and the elemental lengths are

lg ¼
Lg

2
� hc

2
¼ 2:75 m; lc ¼

Lc

2
� hg

2
¼ 1:45 m:

By introducing boundary conditions, elemental stiffness equations for each member of the structure are as

follows:

Lg

L
L

Lg

c
c

F1

F 2

Contraflexure
point

Substructure Contraflexure point

Figure 9.23 Typical bending moment distribution of the sway frame
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� for beam 1:

Qg1

Mg1

� �
¼ EIg

lg

3=l2
g �3=lg

�3=lg 3

� �
�g1

�g1

� �
¼ 0:1558 �0:4284

�0:4284 1:1782

� �
� 10�3E

�g1

�g1

� �
;

� for beam 2:

Qg2

Mg2

� �
¼ EIg

lg

3=l2
g 3=lg

3=lg 3

� �
�g2

�g2

� �
¼ 0:1558 0:4284

0:4284 1:1782

� �
� 10�3E

�g2

�g2

� �
;

� for column:

Qc

Mc

� �
¼ EIc

lc

3=l2c �3=lc
�3=lc 3

� �
�c

�c

� �
¼ 0:9841 �1:4269

�1:4269 2:0690

� �
� 10�3E

�c

�c

� �
;

where �g1, �g1, �g2, �g2 �c and �c are the displacement components corresponding to the force components

Qg1, Mg1, Qg2, Mg2, Qc and Mc, respectively, and E is the elastic modulus.

Considering the effect of the joint panel, the stiffness equations of the beam and the column with the joint

panel are (referring to Sections 9.2.1 and 9.2.2)

� for beam 1:

Qgn1

Mg�1

Mgg1

8><
>:

9>=
>; ¼

1 0

�hc=2 1

hc=4 1=2

2
64

3
75 0:1558 �0:4284

�0:4284 1:1782

� �
� 10�3E

1 �hc=2 hc=4

0 1 1=2

� � n

�

g

8><
>:

9>=
>;

¼
0:1558 �0:4674 �0:1947

�0:4674 1:4021 0:5842

�0:1947 0:5842 0:2435

2
64

3
75� 10�3E

v

�

g

8><
>:

9>=
>;;

� for beam 2:

Qgv2

Mg�2

Mgg2

8><
>:

9>=
>; ¼

1 0

�hc=2 1

hc=4 1=2

2
64

3
75 0:1558 0:4284

0:4284 1:1782

� �
� 10�3E

1 �hc=2 hc=4

0 1 1=2

� � v

�

g

8><
>:

9>=
>;

¼
0:1558 0:4674 0:1947

0:4674 1:4021 0:5842

0:1947 0:5842 0:2435

2
64

3
75� 10�3E

v

�

g

8><
>:

9>=
>;;

Beam 1 Beam 2

lg

l

lg

Mg1 Mg2

Qg1 Qg2

Qc

c

Mc

Column

Figure 9.24 Element division
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� for column:

Qc1

Mc1

Mc1

8><
>:

9>=
>; ¼

1 0

�hg=2 1

hg=4 1=2

2
64

3
75 0:9841 �1:4296

�1:4296 2:0690

� �
� 10�3E

1 �hg=2 hg=4

0 1 1=2

� � u

�

g

8><
>:

9>=
>;

¼
0:9841 �1:7221 0:5658

�1:7221 3:0137 �0:9902

0:5658 �0:9902 0:3254

2
64

3
75� 10�3E

u

�

g

8><
>:

9>=
>;;

where Qgv1, Mg�1, Mgg1, Qgv2, Mg�2 and Mgg2 are the vertical shear, bending moment and shear moment

(negative) at the joint panels adjacent to beams 1 and 2, respectively, Qcv, Mc� and Mcg are the horizontal

shear, bending moment and shear moment (negative) at the joint panels adjacent to the column, respectively,

and u, v, � and g are the horizontal displacement, vertical displacement, rotation and shear deformation of the

panel of the example frame, respectively.

The elemental stiffness equation of the joint panel is

Mg ¼ Ghghctpg ¼ ðE=2:6Þ � 0:6� 0:5� 0:02cg ¼ 2:3077cg:

The relationship G ¼ E=2:6 is used in the above equation.

Force equilibrium of the structure includes

Qcu ¼ F;

Mg�1 þMg�2 þMc� ¼ 0;

Mgg1 þMgg2 þMcg ¼ �Mg:

Ignoring the axial deformation of the column, namely v ¼ 0, results in the global stiffness equation of the

structure as

F

0

0

8><
>:

9>=
>; ¼

0:9841 �1:7221 0:5658

�1:7221 3:0137þ 2� 1:4021 �0:9902þ 2� 0:5842

0:5658 �0:9902þ 2� 0:5842 0:3254þ 2� 0:2435þ 2:3077c

2
64

3
75� 10�3E

u

�

g

8><
>:

9>=
>;

¼
0:9841 �1:7221 0:5658

�1:7221 5:8179 0:1782

0:5658 0:1782 0:8124þ 2:3077c

2
64

3
75� 10�3E

u

�

g

8><
>:

9>=
>;:

The solution of u from the above equation is

u ¼ 2:108þ 0:737

c

� �
� 103 F

E
:

To specify the effect of the joint panel on the lateral displacement of the frame, two simplified

approaches neglecting the effect of joint-panel shear deformation are used to analyse the structure

additionally. They are

� approach I: neglecting the shear deformation of joint panels and treating joint panels as rigid bodies;

� approach II: neglecting the size of joint panels and extending the lengths of frame beams and columns to

the distances between the central lines of the frame members. For this example, let lg ¼ Lg=2 ¼ 3:00 m

and lc ¼ Lc=2 ¼ 1:75 m.
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The lateral displacements by the above two simplified approaches are

uI ¼ 2:108� 103 F

E
;

uII ¼ 3:204� 103 F

E
;

and then

u

uI

¼ 1þ 0:350

c
;

u

uII

¼ 0:658þ 0:230

c
:

The relationship of u=uI and u=uII with c is listed in Table 9.1, from which the following conclusions can be

drawn:

(1) The value of u=uI is always more than 1, which indicates that the neglect of joint-panel shear

deformation overestimates the frame stiffness.

(2) In approach II, the extension of beam and column lengths to the distances between the central lines of

the frame members underestimates frame stiffness, which partially counteracts the overestimation from

the neglect of joint-panel shear deformation. The value of u=uII depends on the strength of the above two

factors. When the effect of the former is evident, u=uII < 1, and when the effect of the latter is dominant,

u=uII > 1 . If u=uII ¼ 1, these two effects kill each other.

(3) For general H-section columns, the range of c is 0.5–1.0. Obviously, good estimation can be obtained in

elastic analysis of steel frames with approach II strategy if frame columns are H sections.

(4) Generally c ¼ 2 for box-section columns, which underestimates frame stiffness in approach II. As

approach I will overestimate frame stiffness, a trade-off method is needed to approximately analyse the

frame with box-section columns. This trade-off method can be that neglect shear deformation of joint

panels and treat joint panels as rigid bodies, but the half size of a real panel is assigned to the

corresponding rigid body.

(5) Number of degrees of freedom reduces if joint-panel shear deformation is neglected in frame analysis.

However, if yielding of joint panels is possible in elasto-plastic analysis, the effect of joint-panel shear

deformation should be included, otherwise the analysis cannot catch the frame stiffness change due to

panel yielding.

9.5.2 Effect of Beam–Column Connection

To examine the effect of beam-to-column connection flexibility on lateral displacement of steel frames,

consider a single-storey frame with semi-rigid connections as shown in Figure 9.25, where Ig and Ic are the

inertial moments of beams and columns, respectively, lg and lc are the lengths of beams and columns,

respectively and ke is the elastic stiffness of the beam-to-column connection. The relationship between the

elastic lateral displacement of the frame and the ke value is discussed as follows.

Table 9.1 Variation of u=uI and u=uII with c

c 0.25 0.5 0.75 1 2 4 10

u=uI 2.400 1.700 1.467 1.350 1.175 1.088 1.035

u=uII 1.578 1.118 0.965 0.888 0.773 0.716 0.681
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To stand out the effect of connection flexibility, effects of axial force and shear deformation are ignored

in the elemental stiffness, and axial deformations of the beams and column and shear deformation of the

joint panels are also excluded. For sake of simplification, let

Ig

lg

¼ Ic

lc
; ke ¼

EIc

lc

c; ke ¼
EIc

lc
c;

where c is a non-negative factor and c ¼ 0 indicates a hinged beam-to-column connection, whereas c ¼ 1
is a fixed connection. The elemental stiffness equation of the beam is

Mg1

Mg2

� �
¼ EIg

lg

4 2

2 4

� �
�g1

�g2

� �
¼ EIc

lc

4 2

2 4

� �
�g1

�g2

� �
;

and those of the two columns are

Qc1

Mc1

� �
¼ EIc

lc

12=l2
c �6=lc

�6=lc 4

" #
u

�c1

� �
;

Qc2

Mc2

� �
¼ EIc

lc

12=l2
c �6=lc

�6=lc 4

" #
u

�c2

� �
;

where Mg1 and Mg2 are the bending moments at the ends of the beam, Qc1, Mc1, Qc2 and Mc2 are the shears

and bending moments at the top of the two columns, as shown in Figure 9.26, �g1 and �g2 are the rotations of

the beam at the ends, and �c1 and �c2 are the rotations of the two columns at the top.

As the connection is flexible, inequality occurs between the rotation of the beam end and that of the

adjacent column top, namely �g1 6¼ �c1 and �g2 6¼ �c2. The elemental stiffness equation of the column with

connection is

Mg1

Mg2

� �
¼ ½kga�

�g1

�g2

� �
;

ke

l

F
keIg

Ic Ic c

lg

Figure 9.25 A single-storey frame with semi-rigid connections

Mg1 Mg2

Mc2Mc1

Qc1 Qc2

Figure 9.26 Element division and elemental forces
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where

½kga� ¼ ½kg� � ½kg�½H�Tð½H�ð½kg� þ ½ka�Þ½H�TÞ�1½H�½ke�:

Knowing

½kg� ¼
EIc

lc

4 2

2 4

� �
; ½ka� ¼

ke 0

0 ke

� �
¼ EIc

l

c 0

0 c

� �

and

½H� ¼ 1 0

0 1

� �

gives

½kga� ¼
2c

12þ 8cþ c2

6þ 2c c

c 6þ 2c

� �
:

The force equilibrium of the frame includes

Mg1 þMc1 ¼ 0;

Mg2 þMc2 ¼ 0;

Qc1 þ Qc2 ¼ F:

Then the global stiffness equation of the frame may be established as

F

0

0

8>><
>>:

9>>=
>>;
¼ EI

lc

24

l2
c

� 6

lc

� 6

lc

� 6

lc

4þ 2cð16þ 2cÞ
12þ 8cþ c2

2c2

12þ 8cþ c2

� 6

lc

2c2

12þ 8cþ c2
4þ 2cð16þ 2cÞ

12þ 8cþ c2

2
666666664

3
777777775

u

�c1

�c2

8>><
>>:

9>>=
>>;
:

The solution of u from the above is

u ¼ 24þ 22cþ 5c2

12ð12þ 20cþ 7c2Þ
Fl3c
EIc

:

Table 9.2 Variation of u=u0 and u=u1 with R

R 0 0.05 0.1 0.2 0.5 0.8 0.9 0.95 1.0

c 0 0.053 0.111 0.25 1.0 4.0 9.0 19.0 1
u=u0 1.000 0.963 0.926 0.855 0.654 0.471 0.413 0.385 0.357

u=u1 2.800 2.696 2.593 2.394 1.831 1.318 1.157 1.078 1.000
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If the beam-to-column connection is hinged, i.e. c ¼ 0, one has

u0 ¼
Fl3

c

6EIc

:

If the beam-to-column connection is fixed, i.e. c ¼ 1, one has

u1 ¼
5Fl3

c

84EIc

:

Let

c ¼ R

1� R
or R ¼ c

1þ c
;

then R ¼ 0 indicates a hinged connection, whereas R ¼ 1 represents a fixed connection.

The relationship of u=u0 and u=u1 with R is listed in Table 9.2, from which the following conclusions can

be drawn:

(1) Stiffness of the beam-to-column connection significantly affects the behaviour of steel frames.

(2) When the stiffness factor R < 0:1, the connection acts as a hinged one, whereas when R > 0:9, it acts as

a fixed one.
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11 Shear Beam and its Elastic
and Elasto-Plastic Stiffness
Equations

11.1 ECCENTRICALLY BRACED FRAME AND SHEAR BEAM

11.1.1 Eccentrically Braced Frame

Eccentrically braced frames (see Figure 1.4) were proposed based on the requirement of seismic resistance

of structures. The building structures of good aseismic performance should have a balance among strength,

stiffness and energy-absorption capacity. It is true that concentrically braced frames have good strength and

stiffness behaviour, but their energy-absorption capacity is suspicious to satisfy aseismic requirement due to

the possible buckling of braces in compression. Meanwhile, although pure steel frames have good elasto-

plastic hysteretic behaviour and energy-absorption capacity, their stiffness is generally insufficient against

lateral loads due to winds or earthquakes, otherwise the design with sufficient stiffness will sometimes lose

economy. To satisfy the requirements of strength, stiffness and energy-absorption capacity simultaneously,

eccentrically braced frames are proposed as a compromise of concentrically braced frames and pure steel

frames for a better seismic resistance.

The working mechanism of eccentrically braced frames is different for different intensities of earth-

quakes. For small or moderate intensity of earthquakes, the contribution of the lateral stiffness of structures

mainly comes from eccentric braces, which act as braces in concentrically braced frames. For large intensity

of earthquakes, however, shear yielding occurs in eccentric beams to consume earthquake energy, and

eccentric braces are prevented from compressive instability. Hence, eccentrically braced frames act

similarly as pure frames for large intensity of earthquakes. So, the following two points should be noted

in the design of eccentrically braced frames: (1) the brace should be strong enough to ensure the adjacent

eccentric beam yielding taking place in advance; (2) the eccentric beam cannot be too long to ensure shear

yielding rather than other failure modes to maximize the load-carrying capacity of the eccentric beam, while

simultaneously keeping large lateral stiffness, and good ductility and energy-consumption capacity of the

structure.

11.1.2 Condition of Shear Beam

The beam yielding mainly due to shear is termed as shear beam in this book.
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Generally, the beams of steel frames are of H sections (see Figure 11.1). It has three possible ways to form

plastic hinges for H-sectional beams: (1) the hinge forms when the bending moment reaches the sectional

plastic bending moment Mp, which is called the bending plastic hinge; (2) the hinge forms when the bending

moment reaches the flange-yielding moment M�p (M�p < Mp) and the section of the beam is subjected to large

shear force, which is called the bending-shear plastic hinge; (3) the hinge forms when the shear force reaches

web-yielding shear of the section Qp, although the bending moment is less than M�p , which is called the shear

plastic hinge. M�p and Qp can be determined as

M�p ¼ ðhg � tfÞðbf � twÞtf�s; ð11:1Þ

Qp ¼ ðhg � tf Þtw�s=
ffiffiffi
3
p

; ð11:2Þ

where �s is the yielding strength of the beam.

The curve of the moment–shear interaction and zones for the three types of plastic hinges are illustrated

in Figure 11.2. The moment–shear interaction curve can be expressed as

ðM �M�pÞ
2

ðMp �M�pÞ
2
þ Q

Qp

¼ 1; for M � M�p ; ð11:3aÞ

Q 	 Qp; for M < M�p : ð11:3bÞ

Obviously, the shear plastic hinge has the largest shear-carrying capacity.

The force applied on the eccentric beam segment of eccentrically brace frames is given in Figure 11.3,

where the relationship of the moment and shear is

Ql ¼ 2M: ð11:4Þ

bf

tw

f
f

gh

t
t

Figure 11.1 H-section beam

Q

Qp
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*

Zone I 
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Bending plastic hinge

Bending-shear plastic hinge

Shear plastic hinge

Figure 11.2 Conditions to form a plastic hinge in the beam section
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The critical length of the eccentric beam to form a shear plastic hinge can be derived from

Equations (11.3b) and (11.4) as

l� ¼
2M�p
Qp

: ð11:5Þ

Substituting Equations (11.1) and (11.2) into Equation (11.5) leads to

l� ¼ 3:5bf tf

tw

: ð11:6Þ

Then the condition of shear beam is

l 
 l�: ð11:7Þ

11.2 HYSTERETIC MODEL OF SHEAR BEAM

Many specimens were tested to investigate the elasto-plastic hysteretic relationship between the shear and

shear deformation of shear beams (Kasai and Popov, 1986; Roeder and Popov, 1978; Wyllie and Degenkolb,

1977; Yang, 1982, 1984). The cyclic test set-up and specimen of a shear beam is given in Figure 11.4(a), and

the hysteretic shear versus shear deformation curves obtained are given in Figure 11.4(b). The following

findings can be drawn from the test results:

(1) Shear beams have stable hysteretic performance and very good ductility. The ductility factor of shear

beams (ratio of maximum shear strain to shear yielding strain) may be larger than 100.

(2) The dominant failure mode of shear beams is the local buckling of beam webs. This failure can be

restrained or delayed by adding stiffeners to beam webs (see Figure 11.4(a)).

A bilinear model (see Figure 11.5) can be adopted to predict the hysteretic behaviour of a shear

beam. In Figure 11.5, Q is the shear force of the beam, � is the relative displacement at the two ends

of the beam, and ke and kp are the elastic and elasto-plastic shear stiffnesses of the beam, respectively,

given by

ke ¼
GA

�l
; kp ¼ qke; ð11:8Þ

where l is the length of the beam, A is the cross-sectional area, � is the sectional shear shape factor and q is

the hardening factor of the beam.

M M Q Q 

l

Figure 11.3 Forces in the eccentric beam
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11.3 STIFFNESS EQUATION OF SHEAR BEAM

The stiffness equation of a shear beam can be derived from that of a general beam element involving the

effect of shear deformation as (neglecting the effect of axial force)

fdfgg ¼ ½kgQ� fd�gg; ð11:9Þ
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beam; (c) hysteretic curves
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in which

fdfgg ¼ ½dQ1; dM1; dQ2; dM2�T;
fd�gg ¼ ½d�1; d�1; d�2; d�2�T;

½kgQ� ¼
k

ð1þ �rÞ

1
l

2
�1

l

2

l

2
ð4�r þ 1Þ l2

12�r
� l

2
ð2�r � 1Þ l2

12�r

�1 � l

2
1 � l

2

l

2
ð2�r � 1Þ l2

12�r
� l

2
ð4�r þ 1Þ l2

12�r

2
66666666664

3
77777777775
; ð11:10Þ

�r ¼ kl3

12EI
; ð11:11Þ

k ¼ ke for the beam in elastic state; ð11:12aÞ

or

k ¼ kp for the beam in elasto-plastic state; ð11:12bÞ

where Q1; M1; Q2; M2; �1; �1; �2, are �1, are, respectively, the shear forces and moments at the two ends

of the shear beam and the corresponding deformations.

According to the method presented in Section 7.2.1, the stiffness equation of the shear beam with joint

panel (only one end of shear beam with joint panel) can be derived as

fdfggg ¼ ½kgQg�fd�ggg; ð11:13Þ

in which

fdfggg ¼ ½dQ1; dM1; dQj; dMj; dMgj�T;

fd�gg ¼ ½d�1; d�1; d�j; d�j; dgj�T;

½kgQg� ¼ ½AgQ�T½kgQ�½AgQ�; ð11:14Þ

½AgQ� ¼

1 0 0 0 0

0 1 0 0 0

0 0 1
hcj

2

hcj

4

0 0 0 1
1

2

2
666666664

3
777777775
; ð11:15Þ

where �j; �j; gj; Qj; Mj and Mgj are, respectively, the deflection, rotation and shear deformation of the joint

panel adjacent to the shear beam and the corresponding forces.
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10 Brace Element and its
Elastic and Elasto-Plastic
Stiffness Equations

10.1 HYSTERETIC BEHAVIOUR OF BRACES

Braces are important members in steel frames to resist lateral loads. A brace is dominantly subjected to axial

force and then can be represented with a truss element (see Figure 10.1). The force in braces is simple, but

they are possibly buckled in compression, and elastic or elasto-plastic bending deformations take place

(Figure 10.2), which makes the relationship between the axial force and the axial deformation of braces

complex (Higginbotham and Hanson, 1976; Kahn and Hanson, 1976). A hysteretic curve of force versus

deformation of a brace obtained by test is illustrated in Figure 10.3.

The following hysteretic characteristics of braces are found by tests:

(1) The critical load of the second time buckling of a brace is evidently lower than that of the first time

buckling. And the buckling load thereafter is gradually reduced, but this trend is finally convergent.

(2) Bending deflection occurs in the brace buckled so that the axial stiffness of the buckled brace is small till

it becomes straight again.

10.2 THEORETICAL ANALYSIS OF ELASTIC AND ELASTO-PLASTIC
STIFFNESSES OF BRACE ELEMENT

A brace subjected to repeated and reversed loads (see Figure 10.4) can be categorized into seven states ( Jain

et al., 1980):

� State I: The brace is straight in elastic state (see 0–1 and 2–3 segments in Figure 10.4).

� State II: The brace buckles elastically in compression and bending deflection occurs (see 3–4 segment in

Figure 10.4).

� State III: The plastic hinge is formed at the mid-span of the brace under the actions of compression and

moment (see 4–5 segment in Figure 10.4).

� State IV: The brace is unloaded elastically but still in compression (see 5–6 segment in Figure 10.4).
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� State V: The brace is loaded reversibly in tension and in elastic state (see 6–7 segment in Figure 10.4).

� State VI: The plastic hinge is formed at the mid-span of the brace under the actions of tension and moment

(see 7–2 segment in Figure 10.4).

� State VII: The brace yields in tension and is straight (see 1–2 segment in Figure 10.4).

To obtain the axial stiffness of the brace in each of the above states, the following assumptions are made:

(1) the brace is subjected to only axial force, and the two ends are pinned;

(2) the stress–strain relationship of the brace is perfectly elasto-plastic;

(3) the brace is straight before loading and after yielding in tension;

(4) when the axial compression force of the brace reaches critical load Ncr, global lateral buckling occurs,

but local buckling is precluded;
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Figure 10.3 Hysteretic force versus displacement curve of a brace by test
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(5) if the axial force N (positive in tension) and bending moment M ¼ Nym (ym is the lateral deflection at the

mid-span of the brace, see Figure 10.5) of the brace satisfy the following yielding function, a

concentrated plastic hinge is assumed to form at the mid-span of the brace:

�ðM;NÞ ¼ 1; ð10:1Þ

in which

�ðM;NÞ ¼ M

Mp

����
����þ N

Np

� �2

; ð10:2Þ

where Mp is the plastic bending moment of the brace about the axis of buckling and Np is the axial yielding

load of the brace;
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(6) the rotation, stretch and contraction of the concentrated plastic hinge are assumed to be rigid plastic, and

plastic axial deformation and plastic rotation of the plastic hinge are associated with plastic flow rules;

(7) the axial deformation of the brace is composed of three parts:

� ¼ �e þ �b þ �p; ð10:3Þ

where �e is the elastic axial deformation of the brace, �b is the axial deformation due to lateral deflection of

the brace and �p is the plastic axial deformation of the brace.

For the sake of derivation convenience, define the following nondimensional parameters:

n ¼ N

Np

; ncr ¼
Ncr

Np

; m ¼ M

Mp

; � ¼ �
l

EA

Np

; � ¼ 2x

l
;

ne ¼
Ne

Np

; � ¼ Np

Mp

y; a ¼ A

I

Mp

Np

� �2

; o ¼ �
2

ffiffiffiffiffi
jnj
ne

s
; � ¼ l

�

ffiffiffiffiffi
�s

E

r
;

ð10:4Þ

where A and I are the cross-sectional area and moment of inertia of the brace, respectively, l is the

slenderness of the brace, l is the length of the brace, E and �s are the elastic modulus and yielding strength of

the brace material, respectively, y is the lateral deflection of the brace and Ne is the Euler critical load of the

brace, given by

Ne ¼
�2EI

l2
: ð10:5Þ

In view of the equilibrium of the brace after buckling, the differential equation is

�00 þ o2� ¼ 0: ð10:6Þ

Introducing the boundary conditions �j�¼0 ¼ �m and �j�¼1 ¼ 0, one can solve � from the above equation

as

� ¼ �m½cosðo�Þ � ctgo sinðo�Þ�: ð10:7Þ

Then the axial deformation due to the lateral deflection is

�b ¼ �
2a

�2�2

Z1

0

ð�0Þ2d� ¼ �a�2
mo

2

�2�2

1

sin2 o
þ ctgho

o

� �
: ð10:8Þ

When the axial force of the brace is in tension (see 6–7 and 7–2 segments in Figure 10.4), the differential

equilibrium equation of the brace becomes

�00 � o2� ¼ 0; ð10:9Þ

and the contraction of the brace due to lateral deflection is

�b ¼
�a�2

mo
2

�2�2

1

sinh2 o
þ ctgho

o

� �
: ð10:10Þ

In view of the parameters defined in Equation (10.4), the yielding function expressed in Equation (10.2)

can be rewritten as

� ¼ jmj þ n2 ¼ j�mnj þ n2: ð10:11Þ
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The axial stiffness of the brace kb can be expressed with the stiffness parameter �kb as

kb ¼
dN

d�
¼ EA

l
�kb; ð10:12Þ

where

�kb ¼
dn

d�
¼ 1

d�e

dn
þ d�b

dn
þ d�p

dn

; ð10:13Þ

d�2

dn
� 1: ð10:14Þ

Summarizing the above assumptions and derivations, one can obtain the stiffness parameters of the brace

in different states:

� State I:

The identifying condition is �ncr � n � 1; jmj ¼ 0.

In this state, �b ¼ �p ¼ 0, so that

�kb ¼ 1: ð10:15Þ

� State II:

The identifying condition is ncr ¼ n ¼ constant; � < 0; jmj > 0.

Then

�kb ¼ 0: ð10:16Þ

� State III:

The identifying condition is � ¼ 1; n < 0.

In this state, a plastic hinge is formed at the mid-span of the brace. According to the plastic flow rule, the

plastic axial deformation and rotation components of the plastic hinge, �p and �p, respectively, are

�p ¼ c
@�

@N
; �p ¼ c

@�

@M
; ð10:17Þ

where c is the proportional factor and

�p ¼ �2y0 x¼0j : ð10:18Þ

Equation (10.17) can be rewritten as

�p ¼ c
EA

N2
p l

@�

@n
; jp ¼ c

2Np

M2
p

@�

@m
; ð10:19Þ

where

jp ¼ �2�0 �¼0

�� ¼ �2�mo ctgo: ð10:20Þ

Eliminating c from Equation (10.19) yields

d�p

dn
¼ 2a

�2�2

@�=@n

@�=@m

djp

dn
¼ 2a

�2�2

@�=@n

@�=@m

@jp

@�m

d�m

dn
þ
@jp

@o
do
dn

� �
: ð10:21Þ
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It can be known from Equation (10.4) that

do
dn
¼ o

2n
: ð10:22Þ

Noting that

� ¼ �mjnj þ n2 ¼ 1; ð10:23Þ

one has

d�

dn
¼ jnj d�m

dn
þ sgnðnÞ�m þ 2n ¼ 0; ð10:24Þ

where sgn ( � ) is the signal function.

Solving d�m=dn from Equations (10.23) and (10.24) results in

d�m

dn
¼ � 1

jnj nþ 1

n

� �
: ð10:25Þ

From Equation (10.11), one has

@�=@n

@�=@m
¼ 2n

sgn ðmÞ ¼
2n

sgn ðnÞ ¼ 2jnj: ð10:26Þ

Substituting Equations (10.20), (10.22), (10.25) and (10.26) into Equation (10.21) leads to

d�p

dn
¼ 8ajnj
�2�2

o ctgo
1

jnj nþ 1

n

� �
� �m ctgo� o

sin2 o

� �
o
2n

� �
: ð10:27Þ

From Equation (10.8), one has

d�b

dn
¼ @�b

@�m

d�m

dn
þ @�b

@o
do
dn

¼ a�2
mo

2

�2�2
2

1

sin2 o
þ ctgho

o

� �
1

jnj nþ 1

n

� �
� �m

ctgo
o2
þ 1

o sin2 o
� 2 coso

sin3 o

� �
o
2n

� �
:

ð10:28Þ

The stiffness parameter �kb can then be determined by substituting Equations (10.14), (10.27) and (10.28)

into Equation (10.13).

� State IV:

The identifying condition is � < 0; n � 0; jmj > 0:
This state is elastic and the plastic rotation jp at the end of state III remains unchanged, which yields

from Equation (10.21),

d�p

dn
¼ 0:

Combining Equations (10.8) and (10.20), one has

�b ¼ �
aj2

p

4�2�2

1

cos2 o
þ tgo

o

� �
ð10:29Þ

and

d�b

dn
¼ d�b

do
do
dn
¼ �

aj2
p

4�2�2

2 sino
cos3 o

� tgo
o2
þ 1

o cos2 o

� �
o
2n
: ð10:30Þ
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� State V:

The identifying condition is � < 0; n � 0; jmj > 0:
Compared to state IV, only the axial force changes its sign in this state. Note that jp can be

expressed as

jp ¼ �2�0j�¼0 ¼ �2�mo ctgho; ð10:31Þ

and from Equation (10.10), one has

d�b

dn
¼ �

aj2
p

4�2�2
� 2 sinho

cosh3 o
� tgho

o2
þ 1

o cosh2 o

� �
o
2n
: ð10:32Þ

In this state, it remains

d�p

dn
¼ 0:

� State VI:

The identifying condition is � ¼ 1; n > 0:
Taking a similar derivation as in state III yields

d�p

dn
¼ 8ajnj
�2�2

o ctgho
1

jnj nþ 1

n

� �
� �m ctgho� o

sinho

� � o
2n

� �
; ð10:33Þ

d�b

dn
¼ a�2

mo
2

�2�2
2

1

sinh2 o
þ ctgho

o
1

jnj nþ 1

n
��m

ctgho
o2

þ 1

o sin2 o
� 2 cosho

sinh3 o
o
2n

� i
:

������
ð10:34Þ

� State VII:

The identifying condition is n ¼ 1.

Then

�kb ¼ 0: ð10:35Þ

10.3 HYSTERETIC MODEL OF ORDINARY BRACES

The hysteretic model of braces is a mathematical approach for describing the hysteretic relationship between

the axial force and the axial deformation of braces. The hysteretic model can be used to determine the axial

stiffness of braces subjected to repeated and reversed loading.

It is found from experimental investigations and theoretical analysis that the hysteretic behaviour of

braces is very complicated. For the purpose of engineering application, the hysteretic model of braces can be

simplified by reserving the principle characteristics, as shown in Figure 10.6.

In Figure 10.6, point A is the yielding strength in tension, B is the positive (in tension) unloading point, C

(C0) is the first critical load in compression, C0 0 is the subsequent critical load in compression, D (D0) is the

load-carrying point after the first compressive instability, E is the negative (in compression) unloading point,

G is the intersection point of line BE and the horizontal line, N ¼ Ncr=2, H is the intersection point of line

BC and the horizontal line, N ¼ Ncr=2, and F the mid-point of GH.

The relation of the axial force and deformation of braces is divided into five phases in this model : (1)

elastic deformation phase, AOC’, BHC; (2) yielding in tension, AB; (3) instability in compression, DE; (4)

disappearing of bending deformation and stretching, EF; (5) recovery to straightness in tension, FB.
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The hysteretic phase of braces depends on the cyclic state of the axial force and deformation of braces in

the loading process. Let N be the axial force of braces and d� the incremental of the axial deformation

(stretch is positive). The identifications of the different phases of a brace are as follows:

(1) If the brace is in elastic state 1 and not subjected to first compressive instability:

– when �Ncr < N < Np, the brace retains elastic state (1);

– when N � Np, the brace enters yielding in tension (2);

– when N � Ncr, the brace enters instability in compression (3).

(2) If the brace is in elastic state 1, but subjected to first compressive instability:

– when �1
2
Ncr < N < Np, the brace retains elastic state (1);

– when N � Np, the brace enters yielding in tension (2);

– when N � �1
2
Ncr, the brace enters instability in compression (3).

(3) If the brace is in yielding in tension phase (2):

– when d� � 0, the brace retains phase (2);

– when d� < 0, the brace enters elastic state (1).

(4) If the brace is in compression instability phase (3):

– when d� � 0, the brace retains phase (3);

– when d� > 0, the brace enters stretching phase (4).

(5) If the brace is in stretching phase (4):

– when �1
2
Ncr < N < 1

2
Ncr, the brace retains phase (4);

– when N � 1
2
Ncr, the brace enters recovery to straightness phase (5);

– when N � �1
2
Ncr, the brace enters instability in compression phase (3).
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Figure 10.6 Simplified hysteretic model of ordinary braces
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(6) If the brace is in recovery to straightness phase (5):

– when �1
2
Ncr < N < Np, the brace retains phase (5);

– when N � Np, the brace enters yielding in tension phase (2);

– when N � �1
2
Ncr, the brace enters instability in compression phase (3).

The axial stiffness of the brace in different phases is

� in phase (1):

kb ¼
EA

l
; ð10:36Þ

� in phases (2) and (3):

kb ¼ 0; ð10:37Þ

� in phase (4):

kb ¼
Ncr

�F � �E

; ð10:38Þ

� in phase (5):

kb ¼
Np � Ncr=2

�B � �F

; ð10:39Þ

where �B, �E and �F are the axial deformations at points B, E and F, respectively.

10.4 HYSTERETIC CHARACTERISTICS AND MODEL
OF BUCKLING-RESTRAINED BRACE

A buckling-restrained brace is based on an ordinary brace through coating a steel tube to restrain

buckling of the brace to induce the strength and stiffness reduction. A free–slip interface is ensured

between the inner steel brace and the outer steel tube without bonding (see Figure 10.7), or between the

Figure 10.7 Buckling-restrained brace coated with the outer steel tube
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inner steel brace and the outer reinforced concrete or plain concrete filled in steel tube with bonding-

proof painting. Only the inner steel brace is connected with steel frame structures so that only the inner

brace is loaded. The outer steel tube or concrete is to restrain the lateral deflection of the inner steel

brace and to prevent it from local or global buckling. Therefore, the full strength and good ductility of

the buckling-restrained brace can be achieved (Higgins and Newell, 2004; López, 2001; Wada et al.,

1998; Watanabe et al. 1988). The hysteretic behaviour of such buckling-restrained braces is clearly

superior to that of ordinary braces (Figure 10.8).

The hysteretic model in Figure 10.9 can be used for buckling-restrained braces for practical convenience,

where Np is the axial yielding capacity of braces in tension and compression, kb is the axial stiffness of

braces and q is the hardening stiffness, normally q ¼ 0:015. The following equations can be used to

determine Np and kb:

NP ¼ A�s; ð10:40Þ

kb ¼
EA

l
: ð10:41Þ

Figure 10.8 Axial force–deformation relationship of the buckling-restrained brace
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Figure 10.9 Hysteretic model of buckling-restrained bracing
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10.5 STIFFNESS EQUATION OF BRACE ELEMENT

With the stiffness kb, the incremental stiffness equation of a brace in local coordinates as shown in

Figure 10.10 can be expressed as

dN1 ¼ kbðd�1 � d�2Þ; ð10:42aÞ
dN2 ¼ kbðd�2 � d�1Þ: ð10:42bÞ

It can also be expressed in matrix form as

dN1

dN2

	 

¼ kb

1 �1

�1 1

� �
d�1

d�2

	 

: ð10:43Þ

If the effect of joint panels needs to be considered in structural analysis, the displacement, rotation and

shear deformation of joint panels should be included in the deformation vector, and the stiffness equation of

the brace element with joint panels should be established (Figure 10.11).

By the geometric relation, the deformations of brace end 1 and end 2 due to the displacement of joint

panels i and j are

d�1 ¼ ½Abi�fd�blig; ð10:44aÞ
d�2 ¼ ½Abj�fd�bljg; ð10:44bÞ

in which

� for upwardly inclined brace:

½Abi� ¼ cos a; � sin a;
hgi

2
cos a� hci

2
sin a;

hgi

4
cos aþ hci

4
sin a

� �
; ð10:45aÞ

½Abj� ¼ cos a; � sin a; � hgj

2
cos aþ hcj

2
sin a; � hgj

4
cos a� hcj

4
sin a

� �
; ð10:45bÞ

dN1 dN2

N1 N2

x

z

End 1 End 2

1
dδ 2

dδ

Figure 10.10 Force and deformation of the brace element
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Figure 10.11 Braces in frame with joint-panel deformations
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� for downwardly inclined brace:

½Abi� ¼ cos a; sin a; � hgi

2
cos aþ hci

2
sin a; � hgi

4
cos a� hci

4
sin a

� �
; ð10:46aÞ

½Abj� ¼ cos a; sin a;
hgj

2
cos a� hcj

2
sin a;

hgj

4
cos aþ hcj

4
sin a

� �
; ð10:46bÞ

where hgi; hci; hgj and hcj are the height and width of joint panels i and j, respectively, and �xi; �zi; �yi; gyi

and �xj; �zj; �yj; gyj are the horizontal displacement, vertical displacement, rotation and shear deformation

of joint panels i and j, respectively.

The forces to joint panels i and j from the axial forces of brace end 1 and end 2 are

fdfbgig ¼ ½Abi�TdN1; ð10:47aÞ

fdfbgjg ¼ ½Abj�TdN2; ð10:47bÞ

in which

fdfbgig ¼ ½dQxi; dNzi; dMyi; dMgyi�T; ð10:48aÞ

fdfbgjg ¼ ½dQxj; dNzj; dMyj; dMgyj�T; ð10:48bÞ

where Qxi; Nzi; Myi; Mgyi and Qxj; Nzj; Myj; Mgyj are the horizontal force, vertical force, bending moment

and shear moment at joint panels i and j due to the axial force of the brace.

Combining Equations (10.43), (10.44) and (10.47) leads to the incremental stiffness equation of the brace

element with joint panels as

fdfbgg ¼ ½kbg�fd�bgg; ð10:49Þ

in which

fdfbgg ¼ fdfbgigT; fdfbgjgT
h iT

; ð10:50Þ

fd�bgg ¼
h
fd�bgigT; fd�bgjgT

iT

; ð10:51Þ

kbg
� �

¼ kb

Abi½ �T Abi½ � � Abi½ �T Abj

� �

� Abj

� �T
Abi½ � Abj

� �T
Abj

� �
2
64

3
75; ð10:52Þ

where ½kbg� is the stiffness matrix of the brace with joint panel.
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12 Elastic Stability Analysis
of Planar Steel Frames

12.1 GENERAL ANALYTICAL METHOD

The elastic stability, which will be discussed in this chapter, is a classic eigenvalue (i.e. critical load) problem

in structural analysis. The following conditions are required in elastic stability analysis (Figure 12.1):

(1) Only concentrated loads in the vertical direction are applied on the nodes (intersections of two or more

frame members) of the steel frames considered.

(2) The frame is absolutely elastic.

(3) The axial deformation of frame columns is small and can be neglected.

(4) The frame is proportionally loaded.

The vertical concentrated loads applied to the frame can be expressed with vector fPg, and according to

condition (4) it can be written as fPg ¼ afP0g (fP0g is a reference load vector and a is the load factor). The

global stiffness equation of the frame, an assembly of the elemental stiffness equations of all the beams,

columns, bracings and joint panels of the steel frame, is

½k�fDg ¼ fFg; ð12:1Þ

in which

fDg ¼
fug
f�g
fgg

8<
:

9=
;; fFg ¼

fFug
fF�g
fFgg

8<
:

9=
;; ð12:2Þ

where fug is the horizontal deflection vector involving the deflections of all the floors of the frame, f�g and

fgg are, respectively, the rotation vector and shear deformation vector of the frame joint panels, and fFug,
fF�g and fFgg are the force vectors corresponding to the deformation vectors fug, f�g and fFgg,
respectively. For the loading case described in Figure 12.1, fFg ¼ 0 because fFug ¼ 0, fF�g ¼ 0 and

fFgg ¼ 0.

As the elemental stiffness matrix of the frame columns depends on the axial forces in them due to the

effect of geometrical nonlinearity and the axial forces are related to the vertical load fPg, the global stiffness

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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matrix of the frame ½K� should be a function of fPg and finally a function of the load factor a under the

condition of proportional loading, namely

½k� ¼ ½kðfPgÞ� ¼ ½kðafP0gÞ� ¼ ½kðaÞ�: ð12:3Þ

Before the frame buckles, the global stiffness matrix of the frame is positive definite, and it can be solved

from Equation (12.1) that fDg ¼ 0. When structural instability occurs, fDg 6¼ 0, which means that Equation

(12.1) has nonzero solution and the global stiffness matrix satisfies

j½kðaÞ�j ¼ 0: ð12:4Þ

Solving the above equation can yield a series of a and the minimum positive one, acr, is desired. And the

critical load of the frame is

fPcrg ¼ acrfP0g: ð12:5Þ

12.2 EFFECTIVE LENGTH OF PRISMATIC FRAME COLUMN

12.2.1 Concept of Effective Length

Analytical investigations indicate that there are two possible buckling modes for steel frames under vertical

loads applied at nodes: non-sway mode and sway mode (see Figure 12.2). Generally, sway instability of

frames is more possible because the critical load is lower. However, if frames are restrained in the lateral

direction, for example, with braces or concrete shear wall or tube (see Figure 12.1), the non-sway buckling

mode will occur.

Economical and rational design of a steel frame should ensure all of the frame columns buckling

simultaneously, which means that the stability of the frame is equivalent to the stability of an arbitrary

column in the frame, and the frame stability analysis can then be transferred to the analysis of the elastic

critical load of the arbitrary column. Express the critical load of the frame column, the axial force in the

frame column when the frame buckles, as the Euler load of a column with the same section of the frame

column as

Ncr ¼
�2EI

l2
0

; ð12:6Þ

where l0 is called as the effective length of the frame column, given by

l0 ¼ �
ffiffiffiffiffiffiffi
EI

Ncr

r
; ð12:7Þ

P1 P2 P3

Pi

Pn

Pi

Pn

P1 P2 P3

Shear wall

Figure 12.1 Frame subjected to vertical loads on nodes
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and define � as the effective length factor of the frame column, expressed by

� ¼ l0

l
¼ �

l

ffiffiffiffiffiffiffi
EI

Ncr

r
; ð12:8Þ

where l is the realistic length of the frame column.

A physical explanation of the effective length of a frame column is the distance between two antiflexural

points of the frame column in the buckling mode, as shown in Figure 12.3.

It can be seen that if instability occurs in all of the columns in a frame, exactly or approximately

simultaneously, the frame stability problem is actually that of the effective length determination of the frame

columns.

12.2.2 Assumption and Analytical Model

To simplify the calculation of effective length of frame columns, the following assumptions are adopted:

(1) Ignore the size and shear deformation effect of joint panels; the lengths of frame beams and columns are

treated as the distances between the intersections of the axes of beams and columns.

(2) Ignore the effect of shear deformation in frame beams and columns.

(a)

1

2

3

5

4

6

3

5

1

2

4

6

(b)

Figure 12.2 Buckling modes of steel frames: (a) non-sway buckling; (b) sway buckling

Anti flexural point 

P
P

L

l

Figure 12.3 Instability of the portal frame
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(3) When instability of a frame occurs, the restrain moment provided by the beam is distributed to the

columns adjacent to the beam according to the linear stiffness ratio of the columns.

(4) The inter-storey sway-resistant stiffness provided by braces, shear walls and so on is distributed to the

frame columns on the same storey according to the sway stiffness ratio of the columns.

(5) In non-sway instability of a frame, the rotations at the two ends of a frame beam are of the same

magnitude in reverse directions, whereas in sway instability, the rotations at the two ends of the beam are

not only of the same magnitude but also in the same direction.

To determine the effective length of one arbitrary column in the frame with sway-resisting stiffness, as

shown in Figure 12.1, only the effect of the beams directly connected with the column is considered, whereas

that of other beams is ignored. For example, in the analysis of the effective length of column 1–2 in Figure

12.2, only subframe 1–2–3–4–5–6 is considered. Furthermore, a simple model as shown in Figure 12.4 can

be used to calculate the effective length of the column, where C1 and C2 are the rotational restrain stiffnesses

to the top and bottom of the column from the adjacent beams, B is the sway-restrained stiffness to the column

from the braces, shear walls and so on. Based on assumptions (3) and (4), C1, C2 and B can be determined by

B ¼ DcX
Dc

Bb ð12:9Þ

� for non-sway instability:

C1 ¼ 2
icX

ic1

X
i1g; ð12:10Þ

C2 ¼ 2
icX

ic2

X
i2g; ð12:10Þ

� for sway instability:

C1 ¼ 6
icX

ic1

X
i1g; ð12:10Þ

C2 ¼ 6
icX

ic2

X
i2g; ð12:10Þ

where Dc is the sway stiffness of the column, which can be determined with the D-value method (Long and

Bao, 1981; Yang, 1979),
P

Dc is the sum of the sway stiffness of all the columns at the same storey as the

column considered, Bb is the inter-storey sway stiffness to the column, provided by the braces or shear walls,

which can be calculated as the inverse of the inter-storey drift of the braces or shear walls when a unit load is

applied at the location of the top of the column considered to the braces or shear walls, ic is the linear

stiffness of the column considered, which is equal to the ratio of the inertial moment to the length of the

column,
P

i1c and
P

i2c are the sum of the linear stiffnesses of the columns intersected at the top and the

N

B
C1

C2

N

l

Figure 12.4 Analytical model of the effective length of the frame column
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bottom of the column considered, respectively, and
P

i1g and
P

i2g are the sums of the linear stiffnesses of

the beams intersected at the top and the bottom of the column considered, respectively.

12.2.3 Formulations of Effective Length

Based on the elemental stiffness equation of columns, the approach for determining the effective length of a

frame column with arbitrary sway-restrain stiffness can be established. Let �1 and �2 be the rotations at the

top and bottom ends of the frame column and u the relative drift between the two ends of the column; the

equilibrium equation at buckling of the subframe shown in Figure 12.4 is

k11�1 þ k12�2 þ k13u ¼ 0;

k21�1 þ k22�2 þ k23u ¼ 0;

k31�1 þ k32�2 þ k33u ¼ 0;

ð12:11Þ

in which

k11 ¼ 4ic 3ðalÞ þ C1;

k12 ¼ k21 ¼ 2ic 4ðalÞ;

k13 ¼ k31 ¼
6ic

l
 2ðalÞ;

k22 ¼ 4ic 3ðalÞ þ C2;

k23 ¼ k32 ¼
6ic

l
 2ðalÞ;

k33 ¼
12ic

l2
 1ðalÞ þ B;

where l is the length of the column and  1ðalÞ �  4ðalÞ are the modification factors to stiffness of elements

in compression. When the effects of shear deformation are neglected,  1ðalÞ �  4ðalÞ are determined by

Equation (2.44). The factor a is determined by Equations (2.10) and (12.8) as

al ¼ l

ffiffiffiffiffi
N

EI

r
¼ �
�
; ð12:12Þ

where N is the axial force applied to the column and � is the effective length factor of the column.

In view of Equation (12.4), the instability condition of the subframe shown in Figure 12.4 is

k11 k12 k13

k21 k22 k23

k31 k32 k33

������
������ ¼ 0: ð12:13Þ

Equation (12.13) is suitable not only to sway instability of frames, but also to non-sway instability of frames.

For the case of non-sway instability, let B ¼ 1, whereas for the case of sway instability, B should be

calculated with Equation (12.9). The effective length factor of the frame column can then be determined as

� ¼ maxð�1; �2Þ; ð12:14Þ

where �1 is the effective length factor of the frame column in the non-sway instability mode and �2 is that in

the sway instability mode.
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Solving �1 and �2 from Equation (12.13), respectively, leads to

�

�1

� �2

þ2ðk1 þ k2Þ � 4k1k2

" #
�

�1

sin
�

�1

� 2 ðk1 þ k2Þ
�

�1

� �2

þ4k1k2

" #
cos

�

�1

þ 8k1k2 ¼ 0;

ð12:15Þ

�

�2

� �3

6ðk1 þ k2Þ
�

�2

cos
�

�2

þ 36k1k2 �
�

�2

� �2
" #

sin
�

�2

( )

þ k
�

�2

� �2

þ6ðk1 þ k2Þ � 36k1k2

" #
�

�2

sin
�

�2

(

�6 ðk1 þ k2Þ
�

�2

� �2

þ12k1k2

" #
cos

�

�2

þ 72k1k2

)
¼ 0;

ð12:16Þ

in which

k1 ¼
X

i1gX
i1c

; k2 ¼
X

i2gX
i2c

; k ¼ Bl2

ic
: ð12:17Þ

From Equations (12.14)–(12.16), the effective length factor of the frame columns can be calculated. Let

k ¼ 0, k ¼ 1 and k ¼ 1; the effective length factors �0 , �1 and �1 for different values of k1 and k2 are

calculated and tabulated in Tables 12.1–12.3, respectively, where �0 is the effective length factor of the

columns in pure frames under the condition of sway instability without any sway-restrain stiffness,

whereas �1 is that in frames under the condition of non-sway instability with infinitely large sway-

restrain stiffness.

When the beam-to-column connection is pinned, rigid or semi-rigid, k1 and k2 in Equations (12.15) and

(12.16) and Tables 12.1–12.3 should be modified as follows:

(1) For the column of single-storey frames, or the column of the first storey in multi-storey frames, k2 ¼ 0 if

the column base is pinned and k2 ¼ 1 if the column base is fixed to the foundation.

(2) If the connection at the immediate end of the beam to the column considered is pinned, the linear

stiffness of the beam is taken as ig ¼ Ig=lg ¼ 0 for calculating k1 or k2 in Equation (12.17).

(3) If the connection at the far end of the beam to the column considered is pinned, the linear stiffness of the

beam ig should be multiplied with the factors a as

� for non-sway instability: a ¼ 1:5;

� for sway instability: a ¼ 0:5.

These two factors are determined by the ratio of the moments induced by unit rotation at the immediate end

of the beam. For non-sway instability (see Figure 12.5(a) and (c)), the ratio of the two moments is

a ¼ 3=2 ¼ 1:5; for sway instability (see Figure 12.5(b) and (d)), the ratio of the two moments is

a ¼ 3=6 ¼ 0:5.

(4) If the connection at the far end of the beam to the column considered is fixed, the linear stiffness of the

beam ig should be multiplied with the factors a as
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� for non-sway instability: a ¼ 2;

� for sway instability: a ¼ 2=3.

These two factors are obtained by the ratio of the moments in Figure 12.5(d) to that in Figure 12.5(a) and to

that Figure 12.5(b), respectively.

(5) If the connections at both ends of the beam are semi-rigid, ig should be multiplied with the factor

a as

� for non-sway instability: a ¼ 2b=ð2þ bÞ;

� for sway instability: a ¼ 6b=ð6þ bÞ,

where b is the factor of the rotational stiffness of the semi-rigid connections, ke, i.e. ke ¼ big or b ¼ ke=ig.

The calculation of a in this case is obtained according to the total rotational stiffness of the beam at both

ends with semi-rigid connections depending on the serial relation of the rotational stiffness of the beam itself

and that of the semi-rigid connections.

12.2.4 Simplified Formula of Effective Length

Equations (12.15) and (12.16) are transcendental equations, and it is not convenient to calculate the effective

length factors of frame columns with them. Three special solutions of Equations (12.15) and (12.16) when

k ¼ 0, k ¼ 1 and k ¼ 1 for the effective length of columns varying with k1 and k2 are listed in Tables 12.1–

12.3. For practical purpose, the values of the effective length of columns in Tables 12.1–12.3 can be fitted by

the formula with variables k1 and k2.

It can be found by checking Equation (12.16) that if k ¼ Bl2=ic ¼ 60, namely B ¼ 60ic=l2 , the effective

length factor of the column in the laterally restrained frame is nearly equal to that of the column in the non-

sway instability frame. It can therefore be justified that the instability of the frame column with B ¼ 60ic=l2

belongs to the non-sway instability type. Because the sway-restrain stiffness of the column itself is

Sc ¼ 12ic=l2 , so when the external sway-restrained stiffness to the column is five times the sway-restrained

stiffness of the column itself, instability of the frame column is generally non-sway.

(d) (c) 

1=θ
θ

1=θ

1=θ 1=θ

M M M 

M

M
M

M/2

M=2EI/l M=6EI/l 

M=3EI/l M=4EI/l 

(b) (a) 

θ

Figure 12.5 Moment of the beam with unit end rotation
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Through statistical study, the effective length factor of frame columns with arbitrary sway-restrain

stiffness can be calculated with the following formula:

�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6þ 4ðk1 þ k2Þ þ 7:5k1k2

k1 þ k2 þ 7:5k1k2

s
; for k ¼ 0; ð12:18aÞ

�k ¼
�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
0

�2
1
� 1

� �
k

60

� �0:5
s ; for 0 � k � 60; ð12:18bÞ

�1 ¼
3þ 1:4ðk1 þ k2Þ þ 0:64k1k2

3þ 2ðk1 þ k2Þ þ 1:28k1k2

; for k > 60; ð12:18cÞ

where �k is the effective length factor of the frame column with arbitrary sway-restrain stiffness, �0 is that of

the frame column with none of the restrain stiffness in sway instability and �1 is that of the frame column in

non-sway instability.

The values of the effective length factor for frame columns with sway restrain obtained with Equation

(12.16) through numerical analysis and with Equation (12.18b) are compared in Figure 12.6. Good

agreement can be seen in that comparison.

12.2.5 Modification of Effective Length

The premise of using effective length of columns to the elastic stability analysis of a steel frame is that the

instabilities of all of the frame columns occur simultaneously. Otherwise, the critical load by the effective

length method will not agree the realistic one, and the effective length should be modified.

12.2.5.1 Sway instability frame

Analysis indicates that the total load supported by the columns on one storey of a frame does not vary much

with various load distributions on the frame with sway instability, by which the effective length of the

columns on the same storey can be modified.

Assume the forces and inertial moments of the columns on a certain storey of the frame are Ni and Ii

(i ¼ 1; 2; . . . ;m, where m is the sum of the columns in the storey), respectively, and the effective lengths and

then the critical loads of these columns can be calculated according to the methods in Section 12.2.3 or 12.2.4 as

Ncri ¼
�2EIi

ð�ilÞ2
; i ¼ 1; 2; . . . ;m; ð12:19Þ

where l is the height of the storey.
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Figure 12.6 Effective length factor of the frame column versus sway-restrain stiffness

EFFECTIVE LENGTH OF PRISMATIC FRAME COLUMN 203



If
N1

Ncr1

¼ N2

Ncr2

¼ � � � ¼ Nm

Ncrm

; ð12:20Þ

the instabilities of all of the frame columns occur simultaneously, and thus the effective length in Equation

(12.19) need not be modified.

If Equation (12.20) is not satisfied, modification of the effective length should be conducted. For this, let

Xm

j¼1

N 0crj ¼
Xm

j¼1

ðaNjÞ ¼ a
Xm

j¼1

ðNjÞ ¼
Xm

j¼1

Ncrj: ð12:21Þ

Then, the critical load modified is

N 0cri ¼ aNi ¼
NiXm

j¼1

ðNjÞ

Xm

j¼1

Ncrj: ð12:22Þ

So, the modified effective length factor of the frame column becomes

�0i ¼
�

l

ffiffiffiffiffiffiffiffi
EIi

N 0cri

s
: ð12:23Þ

Combining Equations (12.19), (12.22) and (12.23), one has

�0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðNjÞ

Ni

� Ii

Xm

j¼1

Ij

�2
j

 !

vuuuuuuut
: ð12:24Þ

12.2.5.2 Non-sway instability frame

Analysis also indicates that the total load supported by the columns in the same vertical line of a frame does

not change with various load distributions on the frame with non-sway instability, by which the effective

length of the columns at different storeys but in the same vertical line can be modified.

Assume the forces and inertial moments of the columns in the same vertical line of the frame are,

respectively, Ni and Ii (i ¼ 1; 2; . . . ; n, where n is the total storey number of the frame in the vertical line).

The critical load represented by the effective length without modification is

Ncri ¼
�2EIi

ð�iliÞ2
; i ¼ 1; 2; . . . ; n: ð12:25Þ

With the similar derivation as that for the sway instability frame, the modified effective length factor for the

non-sway instability frame is obtained with

�0i ¼
1

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

ðNjÞ

Nj

� Ii

Pn
j¼1

Ij

�2
j l2j

 !
vuuuuuut : ð12:26Þ
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12.2.6 Effect of Shear Deformation on Effective Length of Column

The effects of shear deformation of frame beams and columns are neglected in the above derivations. When

the slenderness of the beams and the columns is small, it is necessary to include the shear deformation effect

in the stability analysis of frames. In this section, a simplified method will be introduced.

The calculation of the effective length of the column remains as described above, but the linear stiffness

ig of the beam adjacent to the column is modified to involve the shear deformation effects as

� for non-sway instability:

i0g ¼ ig; ð12:27aÞ

� for sway instability:

i0g ¼
1

1þ r
ig; ð12:27bÞ

where i0g is the modified linear stiffness of the beam with shear deformation and r is the impact factor of shear

deformation, given by

r ¼ 12�bEIb

GAbl2
b

; ð12:28Þ

where E and G are the stretch and shear elastic modulus, respectively, Ab and Ib are the sectional area and

inertial moment of the beam, respectively, lb is the length of the beam and �b is the shear shape factor of the

beam as illustrated in Figure 2.3.

After the determination of the effective length factor � of the column involving shear deformation effects

of all relevant beams, � can be modified further to involve the shear deformation effect of the column itself as

�0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�cEIc

GAcð�lcÞ2

s
; ð12:29Þ

where �0 is the modified effective length factor of the column with shear deformation, Ac and Ic are the

sectional area and inertial moment of the column, respectively, lc is the height of the column and �c is the

shear shape factor of the column.

It should be noted that Ib=Abl2b and Ic=Acð�lcÞ2 in Equations (12.28) and (12.29) are, respectively, the

inverse of square of slenderness of beams and columns, which indicates that the smaller the slenderness of

beams and columns, the larger the effects of shear deformation on the effective length of columns.

Analytical investigations demonstrate that when the slenderness of frame beams and columns is larger

than 35, the shear deformation effect can be ignored.

12.2.7 Examples

12.2.7.1 Effect of sway-restrain stiffness on effective length of columns

To examine the effect of sway-restrain stiffness on the effective length of frame columns, a symmetric

single-storey frame as shown in Figure 12.7 is investigated using the general analysis method. In Figure

12.7, i represents the linear stiffness of the frame columns, and b and k are parameters with arbitrary values.

There are three degree of freedoms in this frame, namely two rotations at the beam ends, �1 and �2, and

the lateral storey drift of the frame, u. As axial forces are applied to the frame columns, the stiffness

equations of the two columns are established as beam elements in compression as

Ei

12

l2
 1ðalÞ � 6

l
 2ðalÞ

� 6

l
 2ðalÞ 4 3ðalÞ

2
64

3
75 u

�1

� �
¼ Qc1

Mc1

� �
;
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Ei

12

l2
 1ðalÞ � 6

l
 2ðalÞ

� 6

l
 2ðalÞ 4 3ðalÞ

2
664

3
775 u

�2

( )
¼

Qc2

Mc2

( )
;

and the stiffness equation of the frame beam without the axial force is

Ebi
4 2

2 4

� �
�1

�2

� �
¼ Mg1

Mg2

� �
;

where Qc1, Mc1 and Qc2, Mc2 are the shears and bending moments at the top of the two columns, respectively,

and Mg1 and Mg2 are the bending moments at the two beam ends.

The equilibrium equations of the frame include

Mc1 þMg1 ¼ 0;

Mc2 þMg2 ¼ 0;

Qc1 þ Qc2 ¼ �Bbu ¼ �2k
i

l2
Eu:

So, the global stiffness equation of the frame is obtained as

Ei

24

l2
 1ðalÞ þ 2k

l2
� 6

l
 2ðalÞ � 6

l
 2ðalÞ

� 6

l
 2ðalÞ 4 3ðalÞ þ 4b 2b

� 6

l
 2ðalÞ 2b 4 3ðalÞ þ 4b

2
6666664

3
7777775

u

�1

�2

8<
:

9=
; ¼

0

0

0

8<
:

9=
;

and the instability condition of the frame is

24

l2
 1ðalÞ þ 2k

l2
� 6

l
 2ðalÞ � 6

l
 2ðalÞ

� 6

l
 2ðalÞ 4 3ðalÞ þ 4b 2b

� 6

l
 2ðalÞ 2b 4 3ðalÞ þ 4b

�������������

�������������
¼ 0:

Substituting Equation (2.44) into the above equation one can obtain the positive minimum root of ðalÞ,
denoted as ðalÞcr. And the effective length factor of the frame columns according to Equation (12.12) is

obtained as

� ¼ �

ðalÞcr

:

The ratio, a, of the sway-restrain stiffness Bb to the frame lateral stiffness and the effective length factor � of

the frame column with various values of b and k are listed in Table 12.4, from which one can find that

l

P P

iβ

I
i

l
=i

2
2

i
B k E

l
=

b

Figure 12.7 A symmetric single-storey frame
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(1) the sway-restrain stiffness of frames affects the effective length of frame columns significantly;

(2) when ratio a of the sway-restrain stiffness to the corresponding frame lateral stiffness is more than 5, the

effective length of the frame column is equal to that with a ¼ 1, which indicates that if a � 5, the frame

buckles generally in the non-sway mode.

12.2.7.2 Calculation of effective length of frame columns

To demonstrate the determination of the effective length of frame columns, study a symmetric two-storey

frame as shown in Figure 12.8.

In this frame, k1 ¼ 3:0 and k2 ¼ 1:0 for upper storey columns, and k1 ¼ 1:0 and k2 ¼ 1 for lower storey

columns. The ratio of the axial force applied to the inertial moment of all the frame columns is P=I, which

implies that the critical loads of the upper storey columns are less than those of the lower storey ones.

Evidently, the effective lengths of all the frame columns are of the same value, and the instability will occur

l

P

l

2P

2P

P P

P

I I 

2I 2I

2I

2I 2I

2I2I 4I

3
4

EI
k

l

3
8

EI
k

l

2

3
l

2

3
l

Figure 12.8 A symmetric two-storey frame

Table 12.4 Variation of � and a with b and k

k b ¼ 0:4 b ¼ 1:0 b ¼ 5:0 b ¼ 1

a � a � a � a �

0 0 1.329 0 1.157 0 1.033 0 1.000

0.5 0.098 1.281 0.073 1.124 0.049 1.011 0.042 0.980

1.0 0.197 0.237 0.146 1.094 0.099 0.990 0.083 0.962

2.0 0.394 1.162 0.292 1.041 0.198 0.951 0.167 0.927

3.0 0.591 1.099 0.438 0.995 0.297 0.917 0.250 0.896

5.0 0.985 1.000 0.729 0.929 0.495 0.859 0.417 0.843

8.0 1.576 0.893 1.167 0.832 0.792 0.790 0.667 0.779

10 1.970 0.840 1.458 0.787 0.990 0.752 0.833 0.744

20 3.939 0.683 2.917 0.641 1.979 0.624 1.667 0.621

30 5.909 0.663 4.375 0.626 2.969 0.548 2.500 0.548

50 9.848 0.663 7.292 0.626 4.948 0.546 4.167 0.500

1 1 0.663 1 0.626 1 0.546 1 0.500
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simultaneously to all the upper storey columns of the frame. Checking with Tables 12.1 and 12.3, the

effective length factors of the frame columns for k ¼ 0 and k ¼ 1 are

�0 ¼ 1:210; �1 ¼ 0:704:

Or, the effective length factors can be obtained with Equations (12.18a) and (12.18c) as

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6þ 4� ð3þ 1Þ þ 7:5� 3� 1

3þ 1þ 7:5� 3� 1

r
¼ 1:230;

�1 ¼
3þ 1:4� ð3þ 1Þ þ 0:64� 3� 1

3þ 2� ð3þ 1Þ þ 1:28� 3� 1
¼ 0:709:

Good agreement between the table-listed and the formulated results indicates that the simplified formulae

have satisfactory accuracy.

The sway-restrain stiffness factor of the upper storey column is k, and when k ¼ 1:0, the effective length

factor of the frame column can be calculated by Equation (12.18b) as

�
1
¼ 1:21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:212

0:7042
� 1

� �
1

60

� �0:5
s ¼ 1:087:

When k ¼ 3:6, the effective length factor of the column becomes

�
3:6
¼ 1:21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:212

0:7042
� 1

� �
3:6

60

� �0:5
s ¼ 0:995:

If the exact method, i.e. the general analysis method presented in Section 12.1, is used to analyse this frame,

the effective length factors of the columns for k ¼ 1:0 and k ¼ 3:6 are, respectively, taken as

�
1
¼ 1:156; �

3:6
¼ 0:964:

The relative errors between the above two methods are�6:5 and 3.2 %, which indicates a good accuracy of

the formulae for calculating the effective length of frame columns.

12.2.7.3 Modification of effective length of frame columns

Example 1

Figure 12.9 gives a single-storey frame with hinged column bases, the column parameters of which are

� for column A:

k1 ¼
30=2

1
¼ 15 and k2 ¼ 0;

� for column B:

k1 ¼
30

2
þ 30� 3

10
4:5

¼ 5:333 and k2 ¼ 0;
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� for column C:

k1 ¼
30� 3

10
=3 ¼ 3 and k2 ¼ 0:

Checking with Table 12.1, the effective length factors of the above columns are

�A ¼ 2:04; �B ¼ 2:07; �C ¼ 2:13;

and the elastic critical loads of the columns are

� for column A, NA ¼ �EI=ð2:04lÞ2 ¼ 0:240NE;

� for column B, NB ¼ �Eð4:5IÞ=ð2:07lÞ2 ¼ 1:050NE;

� for column C, NA ¼ �Eð3IÞ=ð2:13lÞ2 ¼ 0:661NE.

Although the actual axial forces applied on the columns are

PA ¼ P; PB ¼ 6:5P; PC ¼ 2:5P;

obviously

PA

NA

6¼ PB

NB

6¼ PC

NC

:

As the precondition that instability occurs to all the columns of the frame simultaneously is not satisfied in

this case, Equation (12.24) should be used to modify the effective length factor of the columns. The modified

values are

�0A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10P

P
� I

I

2:042
þ 4:5I

2:072
þ 3I

2:122

vuut ¼ 2:26;

�0B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10P

6:5P
� 4:5I

I

2:042
þ 4:5I

2:072
þ 3I

2:122

vuut ¼ 1:88;

�0C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10P

2:5P
� 3I

I

2:042
þ 4:5I

2:072
þ 3I

2:122

vuut ¼ 2:48:

The values modified coincide with those obtained by the exact analysis method.

l

P

l
3

10

6.5P 2.5P

I

30I 30I

4.5I 3I

A B C

2l

Figure 12.9 A single-storey frame
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Example 2

Figure 12.10 is a symmetric two-storey non-sway frame, the column information of which is as follows:

� for upper columns:

k1 ¼ 1; k2 ¼ 0:5 and then � ¼ 0:813;

� for lower columns:

k1 ¼ 0:5; k2 ¼ 1 and then � ¼ 0:656:

So, the critical load capacities of the frame columns are

� for upper columns: NT ¼ �EI=ð0:813lÞ2 ¼ 1:51NE;

� for lower columns: NB ¼ �EI=ð0:656lÞ2 ¼ 2:32NE.

The actual axial forces applied on the upper and lower columns are, respectively,

PT ¼ P; PB ¼ 2P:

Obviously,

PT

NT

6¼ PB

NB

:

Then, the modification of effective length factors is necessary. For such purpose, let

PT þ PB ¼ NT þ NB:

The critical value of P when instability of the frame occurs is then obtained as

P ¼ 1:51þ 2:32

1þ 2
NE ¼ 1:28NE:

l

P

l

P

I

P

l

I

I

I

I

I

P

Figure 12.10 A symmetric two-storey non-sway frame
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And the effective length factors modified are

� for upper columns: �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=1:28

p
¼ 0:884;

� for lower columns: �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2� 1:28Þ

p
¼ 0:628.

The values of the effective length factors modified above can also be calculated with Equation (12.26),

which coincide with those obtained by the exact analysis method.

12.3 EFFECTIVE LENGTH OF TAPERED STEEL COLUMNS

12.3.1 Tapered Columns Under Different Boundary Conditions

Examine four types of common boundary conditions, as shown in Figure 12.11, for tapered columns. Define

taper ratio as a ¼ ðd1=d2Þ � 1, where d1 and d2 are the cross-sectional height at large and small ends of

tapered columns, respectively. After obtaining the elastic critical load of a tapered column with a definite

value of taper ratio, Pcr, one can obtain the effective length factor of the column with the reference of the

parameter of the column at the small end as

�a ¼
ffiffiffiffiffiffiffi
PE2

Pcr

r
¼ �

L

ffiffiffiffiffiffiffi
EI2

Pcr

r
; ð12:30Þ

where I2 is the inertial moment of the small end of the column, E is the elastic modulus and L is the length of

the column.

If the effect of shear deformation is excluded, the effective length factor of tapered columns can be

determined with the methods presented in Sections 12.2.2 and 12.2.3, which can be fitted by

�a ¼ cþ ðK0 � cÞ � exp � a
1:56

	 

; ð12:31Þ

where K0 is the effective length factor of the corresponding prismatic columns with the same boundary

conditions and c is a constant relevant to the boundary conditions. The values of K0 and c are

K0 ¼ 2:0; c ¼ 0:3800 for boundary condition a;

K0 ¼ 1:0; c ¼ 0:3155 for boundary condition b;

K0 ¼ 0:7; c ¼ 0:2218 for boundary condition c;

K0 ¼ 0:5; c ¼ 0:1656 for boundary condition d:

(b)(a)

(c) (d)

Figure 12.11 Four boundary conditions of tapered columns: (a) large end fixed and small end free; (b) both ends hinged;

(c) large end fixed and small end hinged; (d) both ends fixed
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The comparison of the values of �a obtained with the exact analytical method and with Equation (12.31) is

given in Figure 12.12.

Generally, the effect of shear deformation on column stiffness relates to the column slenderness. The

slenderness of tapered columns can be defined using small end parameters as l ¼ L=
ffiffiffiffiffiffiffiffiffiffiffi
I2=A2

p
. When the

value of l is small, the effect of shear deformation is large and otherwise it is small. For tapered columns, the

effect of shear deformation increases with the taper ratio a. So, the effective length factor of tapered

columns, �0a, considering the effect of shear deformation can generally be expressed as

�0a ¼ �a � bða; lÞ; ð12:32Þ

where b is the magnification factor of the effective length factor due to reduction of column stiffness caused

by shear deformation, which is a function of slenderness l and taper ratio a of tapered columns simulta-

neously. The relationship of b with l and a obtained by numerical study is given in Figure 12.13.
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Figure 12.12 Effective length factor of tapered columns versus taper ratio under four boundary conditions (neglecting

shear deformation effects)
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Figure 12.13 Magnification factor of the effective length factor under four boundary conditions: (a) condition a;

(b) condition b; (c) condition c; (d) condition d
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From Figure 12.13, it can be found that among the four boundary conditions shown in Figure 12.11, the

effect of shear deformation is more evident on the value b under conditions c and d, and for the same

boundary conditions, the greater the taper ratio with smaller slenderness, the greater the effect of shear

deformation. So, when the taper ratio of tapered columns is small and at the same time the slenderness is

relatively large, the effect of shear deformation on the effective length factor is negligible and this condition,

to make b � 1:05, can be expressed as

l � l0 þ e1aþ e2a2 þ e3a3; ð12:33Þ

where the parameters are

l0 ¼ 20; e1 ¼ 21:30; e2 ¼ �7:50; e3 ¼ 1:17 for boundary condition a;

l0 ¼ 39; e1 ¼ 12:17; e2 ¼ 1:00; e3 ¼ �0:167 for boundary condition b;

l0 ¼ 65; e1 ¼ 32:85; e2 ¼ �14:36; e3 ¼ 2:58 for boundary condition c;

l0 ¼ 80; e1 ¼ 24:76; e2 ¼ �7:86; e3 ¼ 1:67 for boundary condition d:

If the condition in Equation (12.33) is not satisfied, the effect of shear deformation is proposed to be

considered. Through numerical studies, the magnification factor b can be expressed as

b ¼ f0ðaÞ þ f1ðaÞ � exp � l� 20

15

� �
� 1:0; ð12:34Þ

where f0ðaÞ and f1ðaÞ are given by

� for boundary condition a:

f0ðaÞ ¼ 1:0003� 0:000 9770aþ 0:0011a2;

f1ðaÞ ¼ 0:048 37þ 0:056 58aþ 0:006 09a2;

� for boundary condition b:

f0ðaÞ ¼ 1:0058� 0:002 530aþ 0:000 8571a2;

f1ðaÞ ¼ 0:1720þ 0:095 73aþ 0:011 86a2;

� for boundary condition c:

f0ðaÞ ¼ 1:0150� 0:008 160aþ 0:000 6929a2

f1ðaÞ ¼ 0:3527þ 0:1735aþ 0:018 89a2;

� for boundary condition d:

f0ðaÞ ¼ 1:0254� 0:009 220aþ 0:005 410a2;

f1ðaÞ ¼ 0:5589þ 0:3153aþ 0:026 82a2:

12.3.2 Tapered Column in Steel Portal Frame

The steel portal frame with tapered columns as shown in Figure 12.14 is widely used for industrial buildings.

Effective length factors of such tapered columns are given in the Chinese specification (CECS, 2002) for

simplifying safety check on the stability of tapered columns. But the specification values do not involve the
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effect of shear deformation. In reality, tapered columns employ, in most cases, H sections with linearly

varying web height and constant flange width.

12.3.2.1 Effective length factor excluding effects of shear deformation

Define the effective length factor of the tapered columns in a steel portal frame as

�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2EIc0

PcrH2

s
; ð12:35Þ

where Pcr is the elastic critical load of the steel portal frame, Ic0 is the inertial moment of the small end of the

tapered column in the frame and E is the elastic modulus.

Introduce two parameters

n ¼ Ic1

Ic0

; ð12:36Þ

K ¼ IbH

Ic1L
; ð12:37Þ

where Ic1 is the inertial moment of the large end of the tapered column, Ib is the inertial moment of the frame

girder, and H and L are the height and span of the portal frame, respectively.

After the numerical results of the elastic critical loads of steel portal frames are obtained, the effective

length factors of tapered columns in steel portal frames can be calculated with Equation (12.35). These

numerical values are compared with the specification values (CECS, 2002), as listed in Table 12.5. Good

agreement between them can be noted.

12.3.2.2 Effect of shear deformation

Define the slenderness of tapered columns in steel portal frames as

lc ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ic0=Ac0

p ; ð12:38Þ

where Ac0 is the sectional area of the small end of tapered columns.

L

P P 

I
Ic1

Ic0

H

b

Figure 12.14 A flat steel portal frame
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It is found that the effective length factor of tapered columns varies with only n and K if the effect of shear

deformation is neglected (Li and Li, 2000). However, when the effect of shear deformation is considered, the

slenderness of tapered columns lc has significant influence on the effective length factor �a. In general, the

larger the slenderness, the smaller the effect of shear deformation on the effective length factor of tapered

columns in steel portal frames.

In a similar way with that in Section 12.3.1, define the magnification factor as

b ¼ �
0
a

�a
; ð12:39Þ

where �0a and �a are the effective length factors including and excluding the effect of shear deformation,

respectively. It is very clear that the magnification factor b indicates the severity of the shear deformation

effect on the stability of tapered columns in steel portal frames. If b is obtained, �0a can easily be calculated

with Equation (12.39) and the previously known values of �a.

Table 12.6 gives the values of the magnification factor b varying with n and K when lc ¼ 23:67. It can be

found that the magnification factor reduces with n when K is constant. However, when n is constant, the

magnification factor varies slightly with K. For the purpose of simplification, bE can be used to represent all

the values of b with K ranging from 0.1 to 10.0. The even value of the maximum and minimum values of b
for each n can be used for bE, as listed in Table 12.6.

12.3.2.3 Modification to specification values

By using bE, the magnification factor becomes a function of lc and n. Figure 12.15 plots a group of curves

for bE versus lc under five values of n, by which one can quickly estimate the magnification factor of the

effective length factors for tapered columns in practice.

Table 12.5 Values of �a for tapered columns excluding effect of shear deformation

K

n 0.1 0.2 0.5 1.0 2.0 10.0

50 Given in CECS (2002) 0.706 0.591 0.518 0.494 0.484 0.475

Calculated with Equation (12.35) 0.704 0.588 0.516 0.493 0.481 0.473

20 Given in CECS (2002) 1.095 0.889 0.758 0.713 0.693 0.682

Calculated with Equation (12.35) 1.077 0.881 0.751 0.708 0.687 0.670

10 Given in CECS (2002) 1.473 1.208 1.008 0.942 0.929 0.869

Calculated with Equation (12.35) 1.495 1.201 1.002 0.933 0.918 0.871

5 Given in CECS (2002) 2.053 1.641 1.341 1.229 1.176 1.140

Calculated with Equation (12.35) 2.065 1.644 1.337 1.228 1.173 1.129

1 Given in CECS (2002) — 3.420 2.630 2.330 2.170 2.000

Calculated with Equation (12.35) 4.405 3.404 2.627 2.327 2.164 2.033

Table 12.6 Values of b when lc ¼ 23:67

K

n 0.1 0.2 0.5 1.0 2.0 10.0 bE

50 1.278 1.330 1.365 1.372 1.360 1.358 1.325

20 1.177 1.215 1.227 1.226 1.208 1.182 1.202

10 1.161 1.159 1.168 1.158 1.119 1.142 1.144

5 1.124 1.126 1.128 1.125 1.115 1.091 1.110

1 1.064 1.064 1.071 1.067 1.059 1.066 1.065
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After a careful examination of Figure 12.15, it can be found that when

lc ¼ 36
ffiffiffiffiffiffiffiffiffiffiffi
0:02n
p

þ 26; ð12:40Þ

the magnification factor is less than 1.05, so that the effect of shear deformation on the stability of tapered

columns in steel portal frames is negligible.

The values of bE in Figure 12.15 can be further expressed with the following equation:

bE ¼ bEðn; lcÞ ¼ 1:0þ f1ðnÞ � e�ðlc�17:75Þ=4 þ f2ðnÞ � e�ðlc�17:75Þ=22; ð12:41Þ

where

f1ðnÞ ¼ 0:029 03þ 0:0099n� 0:000 3416n2 þ 0:000 004 155n3; ð12:42Þ
f2ðnÞ ¼ 0:065 23þ 0:011 20n� 0:000 1056n2: ð12:43Þ

The fitted values in Equation (12.41) are compared with the original bE values in Table 12.7.
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Figure 12.15 Magnification factor versus slenderness of tapered columns

Table 12.7 The analytical and fitted values of bE

n

lc 50 20 10 5 1

17.750 Analytical value 1.550 1.364 1.267 1.200 1.105

Fitted value 1.550 1.371 1.265 1.189 1.115

23.670 Analytical value 1.328 1.218 1.157 1.117 1.061

Fitted value 1.319 1.217 1.150 1.107 1.067

35.505 Analytical value 1.157 1.102 1.072 1.054 1.028

Fitted value 1.163 1.112 1.076 1.054 1.035

47.340 Analytical value 1.092 1.059 1.042 1.031 1.016

Fitted value 1.094 1.064 1.044 1.031 1.020

59.175 Analytical value 1.056 1.038 1.027 1.020 1.010

Fitted value 1.055 1.038 1.025 1.018 1.012

71.010 Analytical value 1.041 1.027 1.019 1.014 1.007

Fitted value 1.032 1.022 1.015 1.011 1.007

82.845 Analytical value 1.031 1.020 1.015 1.010 1.005

Fitted value 1.019 1.013 1.009 1.006 1.004
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12.3.2.4 Example

To explain the modification process of the effective length factor of the tapered columns in steel portal

frames due to shear deformation, take an example from the case shown in Table 12.6 for lc ¼ 23:67. When

n ¼ 50 and K ¼ 0:1, it can be checked out that b ¼ 1:278 and bE ¼ 1:325 from Table 12.6 and that

�a ¼ 0:706 from Table 12.5. Hence, the accurate effective length factor considering the shear deformation

effect is �0a ¼ b�a ¼ 1:278� 0:706 ¼ 0:902, whereas the corresponding approximate value is

�00a ¼ bE�a ¼ 1:325� 0:706 ¼ 0:935. The relative error between �00a and �0a is only 3.7 %, which indicates

that bE gives a good approximation of b.
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13 Nonlinear Analysis of Planar
Steel Frames

The structural nonlinearities include geometric and material nonlinearities. The geometric nonlinearity is

due to the additional actions which result from the structural displacements and the position changes of loads

applied on the structure considered. The geometric nonlinearity is generally associated with the second-

order effect. For steel frames, the geometric nonlinearity is mainly due to the P�� effect, which on the

resultant and deflection of a cantilevered column is illustrated in Figure 13.1.

The material nonlinearity is that the structural material exhibits nonlinear stress–strain relationship after

the stresses of frame members exceed the linearly elastic limit. The structural resultants and displacements

are influenced by the material nonlinearity.

The structural analysis methods can be divided into four types, according to whether the geometric or

material nonlinearity is considered, as

(1) the first-order elastic analysis (neither nonlinearity considered);

(2) the second-order elastic analysis (geometric nonlinearity considered);

(3) the first-order elasto-plastic analysis (material nonlinearity considered);

(4) the second-order elasto-plastic analysis (both nonlinearities considered).

The tasks in structural nonlinear analysis include structural nonlinear response analysis (static and

dynamic displacement and resultant analysis), ultimate load-carrying capacity analysis and structural

dynamic stability (or collapse) analysis. The static nonlinear response analysis and ultimate load-carrying

capacity analysis of planer steel frames will be discussed in this chapter.

13.1 GENERAL ANALYSIS METHOD

13.1.1 Loading Types

Two loading types can be categorized for the loading of steel frames used for buildings or other engineering

structures. One loading type is that only vertical loads are applied (see Figure 13.2(a)), corresponding to the

load combination of vertical dead load and vertical live load. The other is that both vertical and horizontal

loads are applied (see Figure 13.2(b)), corresponding to the load combination of vertical dead load plus

vertical live load plus horizontal loads induced by wind or earthquakes. Generally, the loading sequence of

the second loading type is that first the vertical loads are applied and then the horizontal loads are applied.

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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13.1.2 Criteria for the Limit State of Ultimate Load-Carrying Capacity

Due to the geometric and material nonlinearities, the structural stiffness relates to the structural resultants

and displacements. Assume at one moment the vector of forces applied to the structure considered to be fFg
and the displacement vector to be fDg, so that the transient state of the structure can be defined as

� ¼ ðfFg; fDgÞ: ð13:1Þ

Based on the state �, let the incremental force vector be fdFg and the corresponding incremental

displacement vector be fdDg, which should satisfy the incremental stiffness equation as

fdFg ¼ ½Kð�Þ�fdDg; ð13:2Þ

where ½Kð�Þ� is the structural tangent stiffness matrix in the state �.

If the structure is in stability state (see Figure 13.3), the work done by fdFg must be positive, namely

fdDgTfdFg ¼ fdDgT½Kð�Þ�fdDg > 0 and ½Kð�Þ� is a positive definite matrix. If the structure is in

(b)(a) (c)

3EI
Fl3

∆ = ′∆ > ∆

M Fl P′ ′= + ∆

F

P

EI

P

F
F

P

M=Fl 

l

Figure 13.1 Effect of geometry nonlinearity: (a) loading condition; (b) excluding P��effect; (c) including P�� effect

(a)                          (b)

Figure 13.2 Loading of frame structures: (a) vertical loading; (b) vertical and horizontal loading
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instability state, the work done by fdFgmust not be positive, namely fdDgTfdFg ¼ fdDgT½Kð�Þ�fdDg 	 0

and ½Kð�Þ� should be a nonpositive definite matrix. It can be seen that whether ½Kð�Þ� is a positive definite

matrix or not is a criterion for the limit state of the structural ultimate load-carrying capacity. Actually, the force

vector fdFg corresponding to the state � when ½Kð�Þ� becomes a nonpositive definite matrix is the structural

load-carrying capacity.

According to theory of linear algebra, the necessary and sufficient condition of [K] being positive definite

is

kii > 0; i ¼ 1; 2; . . . ; n; ð13:3Þ

and

k11 k12 . . . k1i

k21 k22 . . . k2i

. . . . . . . . . . . .

ki1 ki2 . . . kii

��������

��������
> 0; i ¼ 1; 2; . . . ; n; ð13:4Þ

where kii is the element of the ith row and the ith column in the matrix [K].

If one of the above conditions is dissatisfied, [K] is nonpositive definite.

13.1.3 Analysis Procedure

In the structural nonlinear analysis, the loading process can be divided into many load increments

fdF1g; fdF2g and so on. The loading process should meet the realistic loading condition, and it is not neces-

sary to take a proportional loading. The calculation when the mth incremental loading is processed can be

fFm�1g ¼
Xm�1

i¼0

fdFig; ð13:5aÞ

fDm�1g ¼
Xm�1

i¼0

fdDig; ð13:5bÞ

�m�1 ¼ ðfFm�1g; fDm�1gÞ; ð13:5cÞ

fdDmg ¼ ½Kð�m�1Þ��1fdFmg; ð13:6Þ

where fF0g ¼ fdF0g; fD0g ¼ fdD0g for m ¼ 1 is the initial loading and displacement state. In the

calculation of the mth incremental loading, if ½Kð�m�1Þ� is nonpositive definite, there can be surety that

the ultimate load-bearing capacity of the structure is between fFm�2g and fFm�1g. For the sake of

conservation, fFm�2g can be taken as the ultimate load-bearing capacity of the structure.

F

K

Critical state 

Unstable zone Stable zone 

D

Limit load-bearing
capacity 

Figure 13.3 States of the frame loaded
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To enhance the accuracy, the following can be referred in the calculation:

(1) Increase the number of loading increments, namely reduce the value of loading incremental, but this will

also increase the computational cost.

(2) With the same number of loading increments, adopt larger loading incremental when the structure is in

elastic state and smaller one when in elasto-plastic state.

(3) If ½Kð�m�1Þ� being nonpositive definite has been detected, more refined loading incrementals to represent

fdFm�1g can be employed and the accuracy of the ultimate loads of the structures can be improved.

It should be noted that the geometric nonlinearity enlarges with the development of material nonlinearity

in structures. Second-order elasto-plastic analysis, therefore, should be used for structural elasto-plastic

response or ultimate load-carrying capacity analysis. Large error will be introduced if the first-order elasto-

plastic analysis is used for that purpose.

13.1.4 Basic Elements and Unknown Variables

In the nonlinear analysis of planar steel frames, basic elements include beams, columns, braces and joint

panels. Effects of shear deformation of beams and columns, axial deformation of columns, shear deforma-

tion of joint panels and relative rotations of beam-to-column connections need to be considered, whereas the

effect of axial deformation of beams can be excluded. The basic unknown variables are the horizontal

displacements on each frame storey, the vertical displacements at the centres of joint panels and the rotations

and shear deformations of joint panels (see Figure 9.6).

When relatively large concentrated loads or distributed loads are applied within the span of frame beams,

plastic hinges may occur within the beam spans, so that the beam elements with internal plastic hinges must

be used, or the frame beam should be subdivided into two or more beam elements and the additional nodes

are inserted at the possible positions to form plastic hinges. The vertical displacements and rotations of such

nodes added are also the basic variables.

13.1.5 Structural Analysis of the First Loading Type

For the analysis of the planar steel frame, as shown in Figure 13.2(a), applied with only vertical loads,

the actions of all the loads should be first equalized to vertical forces, moments and shear moments at

the nodes or joint panels of the frame, and then the incremental global stiffness equation of the frame can

be established by assembling the elemental stiffness equations of the beams, columns, braces and joint

panels as

½Kxx� ½Kxz�
½Kzx� ½Kzz�

� �
fdDxg
fdDzg

� �
¼ fdFxg
fdFzg

� �
; ð13:7Þ

where fdDxg is the incremental vector of horizontal displacements at each floor of the frame, fdDzg is the

incremental vector of vertical displacements, rotations of joint panels and nodes added within beam spans,

and shear deformations of joint panels, fdFxg is the incremental vector of horizontal forces at each floor of

the frame and fdFzg is the incremental vector of vertical forces, moments at joint panels and nodes added

within beam spans and shear moments at joint panels.

For the first loading type, fdFxg ¼ 0. By static condensation, Equation (13.7) becomes

½Kz�fdDzg ¼ fdFzg; ð13:8Þ

where

½Kz� ¼ ½Kzz� � ½Kzx�½Kxx��1½Kxz�: ð13:9Þ
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Based on Equation (13.8), using calculation procedures proposed above as in Equations (13.5) and (13.6),

one can obtain the force–displacement relationship of the structure analyzed. Once ½Kz� is nonpositive

definite, the structure reaches its limit state for supporting the vertical loads.

The difference between the structural elasto-plastic load-bearing capacity analysis of the first loading

type mentioned above and the structural elastic critical load analysis given in Chapter 10 is that (1) loads

applied within the beam spans and axial deformations of columns can be considered in the former, but not in

the latter; (2) with the same vertical loads, the solution of the latter is the upper boundary of that of the

former; (3) in mathematics, the former is the nonlinear simultaneous equations problem, whereas the latter is

the eigenvalue problem.

13.1.6 Structural Analysis of the Second Loading Type

For the planar steel frame, as shown in Figure 13.2(b), applied with both vertical and horizontal loads, the

analysis of the frame subjected to the vertical loads can be conducted at first as in Section 13.1.5. After that,

the structure should be stable and then the horizontal loads are added in the following analysis.

In the analysis of the frame subjected to the horizontal loads, the structural state obtained in the analysis

with only vertical loads is taken as its initial state. As fdFzg ¼ 0 in the analysis of applying horizontal loads,

by static condensation, Equation (13.7) becomes

½Kx�fdDxg ¼ fdFxg; ð13:10Þ
where

½Kx� ¼ ½Kxx� � ½Kxz�½Kzz��1½Kzx�: ð13:11Þ

Based on Equation (13.10), using calculation procedures proposed above as in Equations (13.5) and (13.6),

one can obtain the force–displacement relationship of the structure analysed. Once ½Kx� is nonpositive

definite, the structure reaches its limit state for supporting the horizontal loads with constant vertical loads.

13.1.7 Numerical Examples

Example 1

Four three-storey single-bay steel frames were tested and their elasto-plastic deformations and load-carrying

capacities were obtained (Ding, 1987). Three of the frames tested are analysed here using the second-order

elasto-plastic method with beam elements.

The geometric sizes of the frames tested are given in Figure 13.4, and the arrangement of the loads for the

tests is shown in Figure 13.5. The loading sequence is that first the vertical loads are applied and kept
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Figure 13.4 Geometrical sizes of the frame tested

GENERAL ANALYSIS METHOD 223



constant, and then the horizontal loads are applied and increased until frame failure. The horizontal load

versus horizontal displacement relationship results obtained through theoretical analysis and test measure-

ments are both illustrated in Figure 13.6, and the values of the load-carrying capacities are compared in

Table 13.1. Good agreement is found in those comparisons which indicates that the second-order elasto-

plastic analysis can provide satisfactory prediction of the elasto-plastic behaviour and load-carrying

capacity of steel frames.
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Figure 13.5 Loads on the frame tested
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Figure 13.6 Horizontal load–displacement curves of the frame tested

Table 13.1 Horizontal load-carrying capacity of the frame tested (kN)

Number of specimens Ht (tested) Hc (analysed) Hc�Ht

Ht

 100%

Specimen 1 0.570 0.579 1.58

Specimen 2 0.650 0.665 2.31

Specimen 3 0.490 0.485 �1.02
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Example 2

A 10-storey three-bay semi-rigid steel frame is illustrated in Figure 13.7. The distributed vertical load on

each storey (including roof) is 16 KN/m, the initial stiffness and plastic moment of the beam-to-column

connections are, respectively, ke ¼ 1:4
 105 kN m=rad and Mp ¼ 9:5
 106 kN m, and the moment–rota-

tion relationship of the connections as shown in Figure 9.20 is assumed. Let F denote the horizontal loads on

each floor of the frame and D denote the horizontal displacement at the top of the frame. The complete F�D

curves obtained with six different considerations are illustrated in Figure 13.8, where

� I represents considering F1–F5 effects;

� II represents considering F2–F5 effects;

� III represents considering F3–F5 effects;

� IV represents considering F4 and F5 effects;

� V represents considering F5 effect;

� VI represents considering F3–F5 effects and using the conventional structural analysis model.

The conventional structural analysis model is that the effect of joint panels is neglected and the lengths

of frame beams and columns are calculated according to the distances between their central axes. Effects

F1–F5 are defined as follows:

� F1: effect of beam-to-column connection flexibility;

� F2: effect of joint-panel shear deformation;

� F3: effect of geometric nonlinearity;

� F4: effect of beam and column shear deformation;

� F5: effect of material nonlinearity.

The results of analyses with considerations I–V show that the effects such as connection flexibility,

joint-panel shear deformation, geometric nonlinearity, and beam and column shear deformations are

significant for the performance of steel frames. A comparison between II and VI analyses indicates that
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Figure 13.7 Frame and member sizes of Example 2
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it is possible for the conventional structural analysis model to produce large error in elasto-plastic analysis of

steel frames.

13.2 APPROXIMATE ANALYSIS CONSIDERING P�� EFFECT

13.2.1 Formulation

As the pure steel frame is relatively weak in lateral stiffness, the second-order effect (P�� effect) has large

impact on the horizontal displacements and internal forces of the frame. It is therefore necessary to consider

the P�� effect in the analysis of the frame of the second loading type. The numerical cost increases when

the second-order elasto-plastic analysis is pursued for the P�� effect. In this section, an approximate

approach for elastic analysis of steel frames considering the P�� effect is introduced for the purpose of

engineering application.

Assume that the horizontal displacement at the ith floor of the frame by the first-order elastic analysis is

ui. The inter-storey drift �i at the ith storey is then

�i ¼ ui � ui�1: ð13:12Þ

As shown in Figure 13.9, the additional shear force at the ith storey due to the P�� effect is

dVi1 ¼
Pi�i

hi

; ð13:13Þ

where Vi is the shear force at the ith storey, Pi is the total gravity load above the ith storey and hi is the height

of the ith storey.

The additional inter-storey drift due to the additional shear force dVi1 is

d�i1 ¼
dVi1

Vi

�i ¼
Pi�i

Vihi

�i: ð13:14Þ

In turn, d�i1 will lead to the additional shear force dVi2 as

dVi2 ¼
Pid�i1

hi

¼ P2
i �2

i

Vih
2
i

; ð13:15Þ
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Figure 13.8 Horizontal load–displacement curves of Example 2 frame with various considerations
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and dVi2 will also further result in the additional inter-storey drift d�i2 as

d�i2 ¼
dVi2

Vi

�i ¼
Pi�i

Vihi

� �2

�i: ð13:16Þ

Repeating the above procedures, the final storey drift �0i considering the P�� effect can be obtained as

�0i ¼ �i þ d�i1 þ d�i2 þ d�i3 þ � � �

¼ �ið1þ ai þ a2
i þ a3

i þ � � �Þ ¼
�i

1� ai

;
ð13:17Þ

where

ai ¼
Pi�i

Vihi

: ð13:18Þ

So, to consider the P�� effect, the resultant of columns and braces at the ith storey of the frame by the first-

order elastic analysis should be multiplied with the magnification factor 1=ð1� aiÞ, whereas the resultant of

the beams with the magnification factor 1=ð1� �aiÞ, where �ai is given by

�ai ¼ ai; for the top storey; ð13:19Þ

�ai ¼
ai þ aiþ1

2
; for other storeys: ð13:20Þ

Obviously, presented above is the approximate approach for considering the P�� effect on steel frames,

based on the results of the first-order elastic analysis.

13.2.2 Example

To specify the procedure and validity of the above simplified method considering the P�� effect, a five-

storey frame is illustrated in Figure 13.10. The vertical loads and the horizontal loads on each floor of the

frame are assumed to be the same. The horizontal displacements at each floor of the frame obtained with the
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Figure 13.9 Force and deformation at a storey of the frame
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approximate and exact analysis methods are listed and compared in Table 13.2. By this comparison, it is

shown that Equation (13.17) can be validly used to modify the results of the first-order elastic analysis.

13.3 SIMPLIFIED ANALYSIS MODEL CONSIDERING P�� EFFECT

13.3.1 Development of Simplified Model

To involve the P�� effect, a geometry stiffness matrix can be added to the elemental stiffness matrix of

frame columns (see Equation (2.49)). As the geometry stiffness matrix relates to the axial force in columns

and the axial force of columns is variable under the loads applied, the elastic stiffness matrix of column

elements in frames is not constant, but is variable with horizontal loads in the second loading type. The

global stiffness equation of a frame is no longer linear, but is nonlinear. To solve it, an iterative strategy is

necessary. Although the iteration method is an exact one to consider the P�� effect, it is complicated in

engineering application. For elastic analysis of steel frames, is it possible to calculate the P�� effect

without iteration? If a positive answer is provided, it is of significance in practice.

As shown in Figure 13.11 for the second loading type, the axial forces of frame columns are produced not

only by the vertical loads, but also by the horizontal loads. For columns at the same storey, some axial forces

due to horizontal loads increase whereas others decrease. Actually, giving a section on all columns in one

storey indicates by equilibrium condition that the axial force summation of all the columns on this storey is
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Figure 13.10 A five-storey frame. Bending stiffness of beams: EIg ¼ 2:11
 105 kN m; bending stiffness of columns:

EIc ¼ 1:22
 105 kN m

Table 13.2 The analytical results of a five-storey frame with the P�� effect

First-order analysis Second-order analysis Relative error(%)

Number �0i �00i
of floor uicm �i ¼ ui � ui1 Vi(KN) Pi(KN) ai

1
1�ai

(approximated) (exact)
�00i ��i

�00
i

�00i ��0i
�00

i

Fifth 3.909 0.261 50 1593 0.0185 1.019 0.266 0.271 3.69 1.85

Fourth 3.648 0.491 100 3186 0.0348 1.036 0.509 0.524 6.30 2.86

Third 3.157 0.736 150 4779 0.0521 1.055 0.776 0.804 8.46 3.48

Second 2.421 0.987 200 6372 0.0699 1.075 1.061 1.110 11.08 4.41

First 1.434 1.434 250 7965 0.0761 1.082 1.552 1.639 12.51 5.31
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dependent only on the summation of the vertical loads applied above this storey and independent of the

horizontal loads applied. It can therefore be reasonably assumed from this point that P in the P�� effect of

steel frames relates only to vertical loads, based on which a simplified analysis model considering the P��
effect is proposed as shown in Figure 13.12.

The global stiffness equation of a frame can be obtained by assembling the elemental stiffness equations

of all the beams, columns, braces and joint panels in the frame while neglecting geometric nonlinearity as

½Kuu� ½Kuw� ½Ku�� ½Kug�
½Kwu� ½Kww� ½Kw�� ½Kwg�
½K�u� ½K�w� ½K��� ½K�g�
½Kgu� ½Kgw� ½Kg�� ½Kgg�

2
664

3
775
fug
fwg
f�g
fgg

8>><
>>:

9>>=
>>;
¼

fFug
fFwg
fF�g
fFgg

8>><
>>:

9>>=
>>;
; ð13:21Þ

where fug is the vector of the horizontal displacements of all the floors, fwg; f�g and fgg are the vectors of

the vertical displacements, rotations and shear deformations of all joint panels, respectively, fFug is the

vector of the horizontal loads on all floors, and fFwg; fF�g and fFgg are the vectors of the vertical loads,

bending moments and shear moments applied on all joint panels, respectively.

Assume the frame has n storeys and

fug ¼ ½u1; u2; . . . ; un�T; ð13:22Þ

fFug ¼ ½Fu1; Fu2; . . . ; Fun�T: ð13:23Þ
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Figure 13.11 Loads on frame structures
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Figure 13.12 The simplified model to consider the P�� effect of the frame
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In the second loading type, the vertical and horizontal loads are applied separately and then the results can be

superimposed on each other. When only horizontal loads are applied, fFwg ¼ fF�g ¼ fFgg ¼ f0g. Then,

the lateral deflection stiffness equation of the frame can be obtained with static condensation as

½Kuf �fug ¼ fFug; ð13:24Þ

where

½Kuf � ¼ ½Kuu� � ð½Kuv�½Ku��½Kug�Þ
½Kvv� ½Kv�� ½Kvg�
½K�v� ½K��� ½K�g�
½Kgv� ½Kg�� ½Kgg�

2
64

3
75
�1 ½Kvu�
½K�u�
½Kgu�

2
64

3
75: ð13:25Þ

The two parts are included in fFug as

fFug ¼ fFHg þ fFGg; ð13:26Þ

fFHg ¼ ½FH1; FH2; . . . ; FHn�T; ð13:27Þ

fFGg ¼ ½FG1; FG2; . . . ; FGn�T; ð13:28Þ

where fFHig are the horizontal loads on the floor and fFGig are the additional horizontal forces on the ith

floor due to the P�� effect.

By the model illustrated in Figure 13.12, one has

fFGig ¼ Ni

ui � ui�1

li
� Niþ1

uiþ1 � ui

liþ1

¼ Ni

li
þ Niþ1

liþ1

� �
ui �

Ni

li

ui�1 þ
Niþ1

liþ1

� �
uiþ1 ði ¼ 1; 2; . . . ; nÞ;

ð13:29Þ

in which

Ni ¼
Xn

j¼i

Pj; ð13:30Þ

where Pj is the summation of all the vertical loads applied on the ith floor, Ni is the summation of all the

vertical loads applied on and above the ith floor and li is the height of the ith storey.

In Equation (13.29), u0 ¼ 0; unþ1 ¼ 0 and Nnþ1 ¼ 0. It can then be derived by Equation (13.29) that

fFGg ¼ ½KG�fug; ð13:31Þ

where

½KG� ¼

N1

l1

þ N2

l2
�N2

l2

�N2

l2

N2

l2
þ N3

l3

�N3

l3

�N3

l3

. .
.

Nn�1

ln�1

þ Nn

ln

�Nn

ln

�Nn

ln

Nn

ln

2
6666666666666664

3
7777777777777775

: ð13:32Þ
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Combining Equations (13.24), (13.26) and (13.31) leads to

ð½Kuf � � ½KG�Þfug ¼ fFHg: ð13:33Þ

As the matrix [KG] is constant, the elastic analysis of frames considering the P�� effect can be completed

with Equation (13.33) without iteration.

It should be noted that the above simplified model can be used not only in elastic analysis, but also in

second-order elasto-plastic analysis of steel frames.

13.3.2 Example

To verify the validity of the above simplified model considering the P�� effect, a 20-storey frame as shown

in Figure 13.13 is investigated. The vertical and horizontal loads on each floor are identical. The elastic

horizontal displacements involving the P�� effect obtained with the simplified model proposed are

compared with those obtained by the exact method in Table 13.3, from which it can be seen that the

simplified model can be used for making satisfactory prediction on the behaviour of frames with the P��
effect.

Table 13.3 Effect of P�� effect on the 20-storey frame

Lateral displacement of floors (cm) Relative errors

With P�� effect

Without Exact Simplified ð2Þ � ð3Þ
ð2Þ

ð2Þ � ð1Þ
ð2ÞNumber of floor P�� effect (1) analysis (2) analysis (3)

20th 22.024 24.564 24.270 1.197 10.340

15th 20.256 22.733 22.440 1.289 10.896

10th 15.552 17.650 17.368 1.598 11.887

5th 9.330 10.762 10.487 2.555 13.306

1st 2.596 3.032 2.882 4.947 14.380

19
×4

 m
=

76
 m

 
 

 m6

F
H

=
10

 k
N

 

q=25 kN/m

12 m

Figure 13.13 A 20-storey steel frame. Bending stiffness of beams: EIg ¼ 1:22
 105 kN m; bending stiffness of

columns: EIc ¼ 0:61
 105 kN m (11th and upper storeys), EIc ¼ 0:61
 105 kN m (10th and lower storeys)
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14 Seismic Response Analysis
of Planar Steel Frames

14.1 GENERAL ANALYSIS METHOD

14.1.1 Kinetic Differential Equation

14.1.1.1 Kinetic differential equation in elastic state

A planar steel frame is shown in Figure 14.1. Let mi be the mass at the ith floor, ui be the lateral displacement

of the ith floor relative to ground (i ¼ 1; 2; . . . ; n, where n is the total storey number of the frame) and ug the

ground movement excited by earthquakes. The ground movement will arouse the dynamic movement of the

frame, due to which the inertial forces take place to the mass at each floor of the frame. In elastic state, by

regarding the inertial forces as static loads, the stiffness equation of the frame is obtained as

Ke½ � uf g ¼ fIf g; ð14:1Þ

in which

fug ¼ fu1; u2; . . . ; ung; ð14:2Þ

ffIg ¼ ½�m1ð€u1 þ €ugÞ; �m2ð€u1 þ €ugÞ; . . . ; �mnð€u1 þ €ugÞ�T ¼ �½M� f€ug þ f1g€ug

� �
; ð14:3Þ

½M� ¼ diag½m1; m2; . . . ; mn�; ð14:4Þ
f1g ¼ ½1; 1; . . . ; 1�T; ð14:5Þ

where ½Ke� is the elastic stiffness matrix of the frame, corresponding to fug, ½M� is the structural mass matrix,

and €u and €ug are, respectively, the second derivatives of u and ug with respect to time t.

With substitution of Equation (14.3) into Equation (14.1), the kinetic differential equation for the

undamped frame can be obtained as

½M�f€ug þ ½Ke�fug ¼ �½M�f1g€ug: ð14:6Þ

If damping is considered, Equation (14.6) becomes

½Ke�fug ¼ ffIg þ ffcg; ð14:7Þ

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
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where ffcg is the vector of damping forces at each floor of the frame. If the viscous damping assumption that

the damping force is proportional to the velocity of the structural motion is adopted, ffcg can be expressed as

ffcg ¼ �½C�f _ug; ð14:8Þ

where ½C� is the structural damping matrix. With substitution of Equations (14.8) and (14.3) into Equation

(14.7), the kinetic differential equation for the damped frame can be obtained as

½M�f€ug þ ½C�f _ug þ ½Ke�fug ¼ �½M�f1g€ug: ð14:9Þ

14.1.1.2 Kinetic differential equation in elasto-plastic state

In Equation (14.9), ½Ke�fug is actually the elastic recovery force vector with the structural deformation fug.
When the frame enters the elasto-plastic state, however, the recovery forces of the frame are not equal to

½Ke�fug, but depend on the structural motion history fuðtÞg. The kinetic differential equation of the frame in

elasto-plastic state is therefore

½M�f€uðtÞg þ ½C�f _uðtÞg þ ff ðuðtÞÞg ¼ �½M�f1g€ugðtÞ; ð14:10Þ

where f€uðtÞg, f _uðtÞg, fuðtÞg and €ugðtÞ
� �

are, respectively, the values of f€ug, f _ug, fug and f€ugg at time t.

The same kinetic equation at time t þ�t is

½M�f€uðt þ�tÞg þ ½C�f _uðt þ�tÞg þ ff ðuðt þ�tÞÞg ¼ �½M�f1g€ugðt þ�tÞ; ð14:11Þ

where �t is the time incremental.

Subtracting Equation (14.10) from Equation (14.11), one has

½M�f�€ug þ ½C�f�_ug þ f�fg ¼ �½M�f1g�€ug; ð14:12Þ

where

f�fg ¼ ff ðuðt þ�tÞÞg � ff ðuðtÞÞg; ð14:13Þ

�€ug ¼ €ugðt þ�tÞ � €ugðtÞ; ð14:14Þ

f�€ug ¼ f€uðt þ�tÞg � f€uðtÞg; ð14:15aÞ

f�_ug ¼ f _uðt þ�tÞg � f _uðtÞg: ð14:15bÞ

ug u

un

ui

u2

u1

W
mn

mi

m2

m1

fIn

fIi

fI2

fI1

Figure 14.1 A planar frame subjected to action of ground movement
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If �t is small, the change of structural displacement,

f�ug ¼ fuðt þ�tÞg � fuðtÞg; ð14:15cÞ

is also small and then f�fg can be calculated approximately based on the tangent stiffness matrix of the

frame at time t, ½KðtÞ�, namely (see Figure 14.2)

f�fg ¼ ½KðtÞ�f�ug: ð14:16Þ

Substituting Equation (14.16) into Equation (14.12) leads to the incremental elasto-plastic kinetic differ-

ential equation for the damped frame as

½M�f�€ug þ ½C�f�_ug þ ½KðtÞ�f�ug ¼ �½M�f1g�€ug: ð14:17Þ

14.1.2 Solution of Kinetic Differential Equation

14.1.2.1 Seismic response in elastic state

The seismic displacement response of the frame in elastic state can be obtained by solving Equation (14.9).

Substituting displacement response into elemental stiffness equations can yield the seismic resultant

response.

Equation (14.9) represents a second-order linear simultaneous differential equation in mathematics. For

the sake of convenience, the following orthotropic relationships can be used:

f�igT½M�f�jg ¼ 0; ð14:18aÞ

f�igT½Ke�f�jg ¼ 0; ð14:18bÞ

f�igT½C�f�jg ¼ 0; ð14:18cÞ

where f�ig and f�jg are, respectively, the ith and jth modes of vibration of the frame.

It is known from the knowledge of structural dynamic mechanism that Equations (14.18a) and (14.18b)

are unconditionally correct, whereas Equation (14.18c) is conditionally correct. To satisfy Equation

(14.18c), the Rayleigh damping matrix is generally used which will be introduced in the third part of this

section.

K(t)

u

f

f t+∆( t)

f(t)

∆f

∆u

u(t+∆t)u(t)

Error

Figure 14.2 Relationship between structural force and displacement incremental
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The vectors of structural vibration modes are independent of each other due to the orthotropic relation-

ships as given in Equation (14.18). The displacement vector can therefore be represented with the linear

combination of the vectors of vibration modes, according to theory of linear algebra as

fug ¼
Xn

j¼1

ajf�jg; ð14:19Þ

where aj(j ¼ 1; 2; . . . ; n) are the normalized coordinates of structural displacement vector in the coordinate

of vibration modes.

Substituting Equation (14.19) into Equation (14.9) yields

Xn

j¼1

½M�f�jg€aj þ
Xn

j¼1

½C�f�jg _aj þ
Xn

j¼1

½Ke�f�jgaj ¼ �½M�f1g€ug: ð14:20Þ

Left-multiplying the above equation with f�igT
and noting the relationships in Equation (14.18), one has

Mi€ai þ Ci _ai þ Kiai ¼ �f�igT½M�f1g€ug; ð14:21Þ

in which

Mi ¼ f�igT½M�f�ig; ð14:22aÞ

Ki ¼ f�igT½Ke�f�ig; ð14:22bÞ

Ci ¼ f�igT½C�f�ig; ð14:22cÞ

where Mi, Ki and Ci are, respectively, the ith generalized mass, stiffness and damping of the frame, mutually

related with

Ki ¼ !2
i Mi; ð14:23aÞ

Ci ¼ 2�i!iMi; ð14:23bÞ

where !i and �i are the circular frequency and damping ratio for the ith vibration mode of the frame,

respectively.

Substituting Equation (14.23) into Equation (14.21) yields

€ai þ 2�i!i _ai þ !2
i ai ¼ �gi€ug; ð14:24Þ

where gi is the vibration participating factor for the ith vibration mode, given by

gi ¼
f�igT½M�f1g

Mi

: ð14:25Þ

Equation (14.24) is actually the kinetic differential equation for a single-degree-of-freedom (SDOF) system,

the solution of which is the Duhanel integration expressed as

aiðtÞ ¼ �
gi

!iD

ðt

0

€ugð�Þ e��i!iðt��Þ sin!iDðt � �Þd�; ð14:26Þ

where !iD is the damped circular frequency for the ith vibration mode of the frame obtained with

!iD ¼ !i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

i

q
: ð14:27Þ
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The seismic displacement response of the frame in elastic state can be obtained by substituting Equation

(14.26) into Equation (14.19).

Generally, the elastic seismic response of structures is significantly dependent on the first several

vibration modes so that the structural seismic displacements can be represented with the linear combination

of the first several vibration modes.

14.1.2.2 Seismic response in elasto-plastic state

The kinetic differential equation of the frame in elasto-plastic state, Equation (14.10), is a nonlinear

differential equation, the analytical solution of which in theory does not exist. Generally, the incremental

kinetic differential equation, Equation (14.17), is used and the integration is performed with respect to time

to obtain the numerical results of the structural elasto-plastic time- dependent response.

A Taylor series expansion technique can be used to solve Equation (14.17) by representing the

displacement and velocity at time t þ�t with displacement t, velocity f _uðtÞg and acceleration f€uðtÞg at

time t as

fuðt þ�tÞg ¼ fuðtÞg þ f _uðtÞg�t þ f€uðtÞg�t2

2
þ f_€uðtÞg�t3

6
þ � � � ; ð14:28aÞ

f _uðt þ�tÞg ¼ f _uðtÞg þ f€uðtÞg�t þ f_€uðtÞg�t2

2
þ � � � : ð14:28bÞ

It can be assumed that the change of structural acceleration is linear during the incremental time �t (termed

as linear acceleration assumption), i.e.

f€u:ðtÞg ¼ 1

�t
ðf€uðt þ�tÞg � f€uðtÞgÞ ¼ 1

�t
f�€ug; ð14:29aÞ

druðtÞ
dtr

� �
¼ 0; for r ¼ 4; 5; . . . ð14:29bÞ

Substituting Equation (14.29) into Equation (14.28) yields

f�ug ¼ f _uðtÞg�t þ f€uðtÞg�t2

2
þ f€u:ðtÞg�t3

6
; ð14:30aÞ

f�_ug ¼ f€uðtÞg�t þ f�€ug�t

2
: ð14:30bÞ

The solutions of f�_ug and f�€ug from the above equations are

f�€ug ¼ 6

�t2
f�ug � 6

�t
f _uðtÞg � 3f€uðtÞg; ð14:31aÞ

f�_ug ¼ 3

�t
f�ug � 3f _uðtÞg ��t

2
f€uðtÞg: ð14:31bÞ

Substituting Equation (14.31) into Equation (14.17) leads to

½K��f�ug ¼ fF�g; ð14:32Þ

where

½K�� ¼ ½KðtÞ� þ 6

�t2
½M� þ 3

�t
½C�; ð14:33Þ

fF�g ¼ �½M�f1g�€ug þ ½M�
6

�t
f _uðtÞg þ 3f€uðtÞg

� 	
þ ½C� 3f _uðtÞg þ�t

2
f€uðtÞg

� 	
: ð14:34Þ
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Based on the equations derived above, the flow chart of calculating seismic displacement response of the

frame in elasto-plastic state is given in Figure 14.3.

14.1.3 Determination of Mass, Stiffness and Damping Matrices

14.1.3.1 Mass matrix

The mass matrix of frame structures can be determined according to Equation (14.4), where the mass mi is

lumped at the level of the ith floor and is a sum of all the masses within the scope between half-storeys

upwards and downwards of the floor.

14.1.3.2 Stiffness matrix

For planar steel frames, the basic variables are the horizontal displacements of floors and the vertical

displacements, rotations and shear deformations of joint panels. Based on the incremental stiffness

equations at time t for the elements of all the beams, columns, braces and joint panels in a frame, the

global incremental stiffness equation of the frame can be assembled as

KuuðtÞ½ � ½KurðtÞ�
½KruðtÞ� ½KrrðtÞ�

" #
�u

�r

( )
¼

�Fu

�Fr

( )
; ð14:35Þ

0=t

Input{ },u(0) { },u(0) { }u(0)

Calculate[K∗], { }F∗  with Equations (14.33)and(14.34)

Calculate { } ( ){ ( )}} { { }ututu ∆+=+∆t⇒∆u with Equation(14.32)

Calculate { } ( ){ } ( ){ } { }tutu ∆u+=+∆t⇒∆u  with Equation(14.31b) 

Calculate { } ( ){ } ( ){ } { }tutu ∆u+=+∆t⇒∆u  with Equation(14.31a) 

t +∆t=

≥t preset 

End

No

Yes

Figure 14.3 Flow chart for the analysis of structural elasto-plastic seismic response
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where

f�ug is the vector of horizontal displacements of all the floors, f�rg is the vector of other basic

variables, and f�Fug and f�Frg are the force vectors corresponding to the displacement vectors f�ug and

f�rg, respectively.

Under the action of horizontal earthquakes, f�Frg ¼ 0. And the lateral stiffness matrix of the frame at

time t can be derived with static condensation as

½KðtÞ� ¼ ½KuuðtÞ� � ½KurðtÞ�½KrrðtÞ��1½KruðtÞ�: ð14:36Þ

If the frame is in elastic state, i.e. all of the structural members are elastic, at time t, one has

½KðtÞ� ¼ ½Ke�: ð14:37Þ

In assembling the global stiffness matrix, the elemental stiffness matrix can be determined according to the

flow chart given in Figure 14.4.

14.1.3.3 Damping matrix

To satisfy the orthotropic condition in Equation (14.18c), Rayleigh damping matrix can be adopted as

½C� ¼ a½M� þ b½Ke�; ð14:38Þ

where a and b are undetermined parameters.

0=t

Input initial internal forces and deformation in elements

Judge deformation state of elements (elastic or elasto-plastic?) 

Determine elemental stiffness matrix according to elemental deformation
state and elemental recovery force model

Form global structural stiffness matrix

tt +∆t=

≥t preset 

End

No

Yes

Calculate elemental deformation incremental from structural deformation incremental 

Calculate structural deformation incremental according to flow chart in Figure.14.3 

Determine elemental force incremental according to elemental stiffness matrix and
elemental deformation incremental 

Replace elemental force with sum of previous elemental force and elemental force incremental

Figure 14.4 Flow chart of elemental and global stiffness matrix formation
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As the mass matrix ½M� and stiffness matrix ½Ke� satisfy the orthotropic condition, the Rayleigh damping

condition defined above must satisfy it as well.

To calculate the parameters a and b taking any two vibration modes to Equation (14.38) results in

f�igT½C�f�ig ¼ af�igT½M�f�ig þ bf�igT½Ke�f�ig; ð14:39aÞ

f�jgT½C�f�jg ¼ af�jgT½M�f�jg þ bf�jgT½Ke�f�jg: ð14:39bÞ

Dividing the above two equations with f�igT½M�f�ig and f�jgT½M�f�jg, respectively, and noting Equations

(14.22) and (14.23), one has

2!i�i ¼ aþ b!2
i ; ð14:40aÞ

2!j�j ¼ aþ b!2
j : ð14:40bÞ

And the solutions of a and b are

a ¼ 2!i!jð�i!j � �j!iÞ
!2

j � !2
i

; ð14:41aÞ

b ¼ 2ð!j�j � !i�iÞ
!2

j � !2
i

: ð14:41bÞ

In practice, usually let i ¼ 1, j ¼ 2 and �i ¼ �j.

14.1.4 Numerical Example

Seismic tests on a steel frame were conducted on a 4 m� 4 m shaking table in Tongji University. The frame

tested is illustrated in Figure 14.5. The record of EI Centro North–South earthquake waves in 1940 was input

along the lateral direction of the frame, and the maximum acceleration of the excitation was modified to

9:6 m=s
2
. To examine the effect of joint-panel shear deformation on the seismic response of steel frames, the

following three models are analysed for the frame tested:

� Model I: Treat the joint panel as an isolated element with shear deformation.

� Model II: Treat the joint panel as a rigid body without shear deformation.

2100 

 0541
 0021

 0021

 0104

1800 

2360 kg 

2360 kg 

2360 kg 

4

70 

4

 001
4

4
 021

4
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4

(a) (b)

(c) (d)

Figure 14.5 Frame tested on the shaking table: (a) front elevation; (b) lateral elevation; (c) section of column;

(d) section of beam
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� Model III: Neglect the joint panels and extend the lengths of the frame beam and column to the distance

between the central lines of the frame components.

The seismic response of the frame, horizontal displacements of the floors and relative inter-storey drifts,

obtained with measurements in tests and analyses are compared in Figure 14.6, from which it can be seen

that model I (directly considering the joint-panel shear deformation) produces the closest results to test data

and model III (the conventional model neglecting joint panels) also predicts the seismic response of H-

section frames with good accuracy.

14.2 HALF-FRAME MODEL

The seismic response of structures is dependent on loading history, and the exact analysis should be

conducted step by step with respect to time incremental, in each of which the global stiffness matrix of

structures must be re-formed if it is in elasto-plastic state. Total computation costs will therefore be huge in

such an exact analysis, which appeals that a simplified model with reduced degree of freedoms and

economic computation is necessary for the purpose of engineering design and analysis in practice.

A simplified half-frame model is to be introduced in this section for elastic and elasto-plastic response

analyses of planar steel frames subjected to earthquakes.

14.2.1 Assumption and Principle of Half-Frame

For the pure steel frames with rigid beam-to-column connections, the following assumptions are made:

(1) neglect axial deformation of frame columns;

(2) the size, rotation and shear deformation of each joint panel at the level of the same floor of the frame

applied with horizontal forces are same.

With the above assumptions, any frame can be transformed to a half-frame, as shown in Figure 14.7, to

perform simplified seismic analysis.

For a steel frame without any stagger storey, the elastic and elasto-plastic parameters of the correspond-

ing half-frame (see Figure 14.7) at an arbitrary storey with n bays can be determined as follows.

Floor 

1

2

3

1 2 3 4 5

Lateral displacement of floor (cm) Relative inter-storey drift

Floor 

2.5 2.01.51.00.5

1

2

3

Measured 

Predicted with model III

Predicted with model I

Predicted with model II

Figure 14.6 Maximum seismic response of the frame tested
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14.2.1.1 Elastic parameters

The bending stiffness of the column is

ðEIÞc ¼
Xnþ1

i¼1

ðEIÞci: ð14:42Þ

The length of the column is

lc ¼ lci: ð14:43Þ

The shear impact factor of the column section is

rc ¼

Xnþ1

i¼1

ðEIÞcirci

Xnþ1

i¼1

ðEIÞci

: ð14:44Þ

The bending stiffness of the beam is

ðEIÞg ¼ 2
Xn

i¼1

ðEIÞgi: ð14:45Þ

The length of the beam is

lg ¼

Xn

i¼1

ðEIÞgi

2
Xn

i¼1

ðEIÞgi

lgi

: ð14:46Þ

The shear impact factor of the beam section is

rg ¼

Xn

i¼1

ðEIÞgi

lgi

rgi

Xn

i¼1

ðEIÞgi

lgi

: ð14:47Þ

Figure 14.7 An equivalent half-frame of a complete frame
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The elastic stiffness of the joint panel is

kre ¼
Xnþ1

i¼1

ðkreÞi: ð14:48Þ

All the parameters on the right-hand side of Equations (14.42) –(14.48) are those in the original frame, and

the parameters on the left-hand side of the equations are those for the simplified half-frame model. The shear

impact factor of beam or column section is defined as

r ¼ 12EI�

GAl2
; ð14:49Þ

where E and G are the stretch and shear elastic modulus, I and A are the inertial moment and area of the beam

or column section, respectively, l is the length of the beam or column and � is the shear shape factor of the

beam or column section.

14.2.1.2 Elasto-plastic parameters

The initial yielding moment of the column is

ðMsÞc ¼ b
Xnþ1

i¼1

ðMsÞci: ð14:50Þ

The ultimate yielding moment of the column is

ðMpÞc ¼
Xnþ1

i¼1

ðMpÞci: ð14:51Þ

The initial yielding moment of the beam is

ðMsÞg ¼ 2b
Xn

i¼1

ðMsÞgi: ð14:52Þ

The ultimate yielding moment of the beam is

ðMpÞg ¼ 2
Xn

i¼1

ðMpÞgi: ð14:53Þ

The shear yielding moment of the joint panel is

Mgp ¼
Xnþ1

i¼1

ðMgpÞi: ð14:54Þ

All the parameters on the right-hand side of Equations (14.50) – (14.54) are those in the original frame, and

the parameters on the left-hand side of the equations are those for the simplified half-frame model. The

factor b is the reduction factor of the initial yielding of beams and columns to include the effects due to

nonuniform internal forces in the original frame and asynchronous initial yielding of beams and columns.

Generally, b ¼ 0:7� 0:9, where if the ratios of the internal forces of frame beams and columns on the storey

considered to their yielding capacities are uniform, the upper values can be selected and otherwise lower

values are used.
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14.2.2 Stiffness Equation of Beam Element in Half-Frame

One end of the beam element in a half-frame is pinned and the other is rigid. The stiffness equation of the

beam element in the half-frame can be developed as follows.

The corresponding complete-frame beam element to that in the half-frame model can be obtained by

elongating the half-frame beam antisymmetrically, as shown in Figure 14.8. From the symmetry, it can be

known that M1 � M2. With analysis of the common beam element, the incremental stiffness equation for the

complete-frame beam element is

dQ1

dM1

dQ2

dM2

8>>>><
>>>>:

9>>>>=
>>>>;
¼ ½k�

d�1

d�1

d�2

d�2

8>>>><
>>>>:

9>>>>=
>>>>;
; ð14:55Þ

where the elemental stiffness matrix ½k� is determined according to the approaches presented in Chapter 2 or

4. Assume that

½k� ¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2
66664

3
77775: ð14:56Þ

As d�1 ¼ d�2 and d�2 ¼ �d�1, it can be derived from Equation (14.55) that

dQ1

dM1

( )
¼ ½kn�

d�1

d�2

( )
; ð14:57Þ

where ½kn� is the elemental stiffness matrix of the half-frame beam element, given by

½kn� ¼
k11 � k13 k12 þ k14

k21 � k23 k22 þ k24

" #
: ð14:58Þ

14.2.3 Numerical Examples

To verify the reliability and validity of the simplified half-frame method, a comparative study is conducted

between non-simplified and simplified seismic analyses of the steel frames subjected to horizontal earth-

quakes. Three examples are illustrated where EI Centro North–South wave in 1940 is adopted for seismic

ground movement.

M1

lg lg

M2

Q2Q1

Figure 14.8 Analytical model of the half-frame beam element
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Example 1

This is a 14-storey regular frame as shown in Figure 14.9. The mass on each floor is 6:0� 104 kg, and the

other parameters are given in Table 14.1.

The maximum elasto-plastic lateral floor deflections, inter-storey drifts and inter-storey shears of the

frame in this example obtained with both non-simplified and simplified analytical models are compared in

Figure 14.10.

4.
5 
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3 × 6 m 

13
 ×

 3
.6
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1 2 3 4

Figure 14.9 A 14-storey regular frame for Example 1

Table 14.1 Frame parameters in Example 1

Frame components Elastic parameter Elasto-plastic parameter

Perimeter columns (1st–7th storey) 2:92� 108 1:52� 106

Perimeter columns (8th–14th storey) 2:40� 108 1:32� 106

Inside columns (1st–7th storey) 3:51� 108 1:75� 106

Inside columns (8th–14th storey) 2:92� 108 1:52� 106

Outside beams (1st–7th storey) 2:92� 108 1:39� 106

Outside beams (8th–14th storey) 2:40� 108 1:20� 106

Inside beams (1st–7th storey) 3:51� 108 1:60� 106

Inside beams (8th–14th storey) 2:92� 108 1:39� 106

Notes: (1) The elastic parameter in the table represents the bending stiffness EI in unit of N m2.
(2) The elasto-plastic parameter in the table represents the ultimate yielding moment Mp in unit
of N m. (3) The meanings of the parameters in the following tables are same as above.

Floor 

5

10

14

16 12 8 4 20 u (cm) R (%) 0.16 
0.32 

0.48 
0.64 

0.80 

Floor 

5

10 

14

V (kN) 600 
1200 

1800 
2400 

3000 

Floor 

5

10 

14

(a) (b) (c)
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Figure 14.10 Maximum elasto-plastic seismic response in Example 1: (a) lateral deflection; (b) relative inter-storey

drift; (c) inter-storey shear

HALF-FRAME MODEL 245



Example 2

As shown in Figure 14.11, an 11-storey irregular frame is studied in this example. The mass on the floors

from the 1st to the 5th is 9:0� 104 kg, that from the 6th to the 8th is 5:5� 104 kg and from the 9th to the 11th

is 2:5� 104 kg. The other information of the frame is listed in Table 14.2.

Similarly, the maximum lateral floor deflections, inter-storey drifts and inter-storey shears of the frame

in this example obtained with both non-simplified and simplified analytical models are compared in

Figure 14.12.
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Figure 14.11 An 11-storey irregular frame for Example 2
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Figure 14.12 Maximum elasto-plastic seismic response of Example 2 frame: (a) lateral deflection; (b) relative inter-

storey drift; (c) inter-storey shear

Table 14.2 Frame parameters in Example 2

Frame components Elastic parameter Elasto-plastic parameter

Columns at axis 1 2:40� 108 1:25� 104

Columns at axes 2–4 4:98� 108 2:16� 104

Beams at left span 4:98� 108 1:73� 104

Beams at middle and right spans 2:40� 108 1:00� 104
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Example 3

A 10-storey irregular frame in Figure 14.13 is studied as the third example. The mass on the floors from the

1st to the 6th is 3:5� 104 kg, that from the 7th to the 8th is 2:6� 104 kg and from the 9th to the 10th

is1:3� 104 kg. The other information of the frame is listed in Table 14.3.

The maximum lateral floor deflections, inter-storey drifts and inter-storey shears of the frame in this

example obtained with both non-simplified and simplified analytical models are compared in Figure 14.14.
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Figure 14.13 A 10-storey irregular frame for Example 3

Table 14.3 Frame parameters in Example 3

Frame components Elastic parameter Elasto-plastic parameter

Columns at axes 1–3 2:40� 108 8:75� 105

Columns at axis 4 1:57� 108 6:37� 105

Beams 2:40� 108 7:00� 105
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Figure 14.14 Maximum elasto-plastic seismic response of Example 3 frame: (a) lateral deflection; (b) relative inter-

storey drift; (c) inter-storey shear
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The above examples indicate that the half-frame model has good adaptability because it retains the

characteristics of the component-representing frame system. This simplified model is applicable to strong-

beam–weak-column frames or weak-beam–strong-column frames and to regular or irregular frames.

Satisfactory results can be obtained by the simplified model in elastic and elasto-plastic analyses of the

steel frames subjected to earthquakes. Generally, the relative error of the maximum lateral floor deflections

and inter-storey shears is under 10 % whereas that of inter-storey drifts is under 15 %.

14.3 SHEAR-BENDING STOREY MODEL

As axial deformation of frame columns is ignored in the half-frame model, it may be suspicious when the

half-frame model is used for seismic analysis of high-rise frame buildings. Another simplified model, the

shear-bending storey model (see Figure 14.15), is proposed especially for considering the characteristics of

high-rise frames. Equivalent storey-type structure is used in the shear-bending storey model, where lateral

displacement of the original frame is decoupled into the bending deflection and shear deformation of the

storey-type structure. The bending stiffness of the equivalent structure is determined by the axial stiffness of

the original frame columns, whereas the shear stiffness of the storey-type structure by the characteristics of

inter-storey recovery shear force of the original frame. For the sake of convenient application, the following

assumptions are made:

(1) Yielding of joint panels is not earlier than that of beams or columns;

(2) Effects of joint-panel shear deformations are approximately considered by neglecting joint-panel sizes

and adopting the length of beams and columns as the distance between their central lines.

14.3.1 Equivalent Stiffness

14.3.1.1 Equivalent bending stiffness

The global bending stiffness of the high-rise frame is due to the axial deformation of the frame columns,

which can be assumed to be always in elastic state.

The axial deformation lags of the frame columns will happen due to the finite stiffness of the frame

beams, which leads to a nonlinear distribution of axial deformations in the frame columns at the same storey

as shown in Figure 14.16. Based on this, the equivalent inter-storey bending stiffness can be expressed

approximately as

ðEIÞi ¼
X

j

EIij þ ai

X
j

EAijl
2
ij; ð14:59Þ

Original frame 

Elasto-plastic
shear deformation

Simplified model

EI
GA

Elastic bending

Figure 14.15 Diagram for the bending-shear storey model
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where Iij, Aij and lij are, respectively, the inertial moment, section area and the distance to the neutral axis

(see Figure 14.16) of the jth column on the ith storey of the frame and ai is the convert parameter considering

the axial deformation lag in the frame columns.

The values of ai can be calculated with trial. The horizontal displacement of the original frame, x, due to

axial deformation under different ratios of beam to column linear stiffness is calculated at first, and then a

single cantilever model with equivalent bending stiffness is used to simulate the horizontal displacement of

the frame under the same loads. When the horizontal displacement of the equivalent cantilever, x0, is equal to

x, ai is obtained. A standard regular frame, the size of which is shown in Figure 14.17, is used in such trial

calculations. A certain ratio of beam to column linear stiffness is adopted in the trial calculations for all the

beams and columns in the frame. The values of ai in different conditions are listed in Table 14.4.

In the calculation of Equation (14.59), if the linear stiffness ratios of the beams to the columns on one

storey of the frame are not the same, the average of the linear bending stiffnesses, ig and ic, of the beams and

Table 14.4 Values of ai in Equation (14.59)

ig=ic

Number of spans 0.1 0.3 0.5 0.7 0.9 1.0 2.0 3.0 5.0 8.0 10.0

3 0.956 0.960 0.963 0.963 0.965 0.965 0.968 0.970 0.975 0.980 0.983

4 0.900 0.903 0.903 0.905 0.910 0.910 0.915 0.915 0.920 0.925 0.925

5 0.800 0.803 0.805 0.810 0.815 0.820 0.825 0.825 0.830 0.835 0.840

6 0.700 0.725 0.735 0.735 0.740 0.745 0.750 0.750 0.760 0.765 0.785

lij
Axial deformation lag

Figure 14.16 Distribution of axial deformation of frame columns

6 m × n
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Figure 14.17 Standard frame
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the columns on the storey can be used to check out ai in Table 14.4. For one-bay or two-bay symmetric

frames, it simply takes ai ¼ 1, whereas for two-bay asymmetric frames, ai can be calculated according to the

condition of the three-bay frame.

14.3.1.2 Equivalent shear stiffness

The shear recovery force model for an arbitrary storey of a steel frame with the inter-storey shear

deformation under cyclic loading is given in Figure 14.18, where Vs and Vp are the shear forces correspond-

ing to initial and ultimate yielding states of the frame storey, respectively, �s and �p are the corresponding

inter-storey drifts, and Vu and �u are the inter-storey shear and inter-storey drift at the time of unloading,

respectively.

When the storey is in loading state, if storey shear jVj < Vs, the storey is in elastic, and its shear stiffness

can be calculated with the ‘D-value method’ (Long and Bao, 1981; Yang, 1979); if jV j > Vp, the storey is in

hardening state; and if Vs � jVj � Vp, the storey is in elasto-plastic state, and its shear stiffness can be

calculated with linear interpolation between those in elastic and hardening states. The equivalent shear

stiffness of the storey in loading state can be expressed as

ðGAÞi ¼
dVi

d�i

Hi ¼ RHi

X
Di; ð14:60Þ

in which

R ¼ 1; for jVj < Vs;

R ¼ q; for jVj > Vp;

R ¼ 1� ð1� qÞ jVj � Vs

Vp � Vs

; for Vs � jVj � Vp;

ð14:61Þ

where
P

Di is the total inter-storey sway stiffness of the storey, determined as the sum of the D-values of

every column at the storey of the frame (Long and Bao, 1981; Yang, 1979), Hi is height of the storey and q is

the hardening factor and generally q ¼ 0:025.

When the storey is in unloading state, it is always elastic, and its shear stiffness can be obtained by

ðGAÞi ¼ Hi

X
Di: ð14:62Þ

δ

V

δ
s p uδ δ

–Vp

–Vs

Vs

Vp

Vu

Figure 14.18 Inter-storey shear recovery force model of frame
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14.3.2 Inter-Storey Shear Yielding Parameters

To determine the equivalent shear stiffness in the simplified model, the inter-storey shear forces Vs and Vp

corresponding to the initial and ultimate yielding states of the frame storey are needed.

14.3.2.1 Calculation of Vs

Assume that the horizontal load under horizontal earthquakes applied on the frame is converse-triangular

distributed (see Figure 14.19). The end moments of the frame beams and columns, Mg and Mc, can be

calculated with the ‘D-value method’ under this load. Denote the initial yielding moments of the beams and

columns with Mgs and Mcs, then

Vs ¼ min min
Mgs

Mg

;min
Mcs

Mc

� 	
Vi; ð14:63Þ

where Vi is the inter-storey shear force induced by the converse-triangular distributed load, minðMgs=MgÞ is

the minimum value of Mgs=Mg in the beams on the ith storey and minðMcs=McÞ is the minimum value of

Mcs=Mc in the columns on the ith storey.

14.3.2.2 Calculation of Vp

For the frame where columns yield in advance of beams, Vp is the summation of the shear forces resisted by

all the columns on the storey when the end moments of the columns approach ultimate yielding moment

Mcp, namely

Vp ¼
2
P

Mcp

Hi

: ð14:64Þ

For the frame where beams yield in advance of columns and if the yielding is as shown in Figure 14.19(a), by

the virtual work principle one has

ðmþ 1ÞMcp�þ 2nmMgp ¼ P0H1�þ 2P0ðH1 þ H2Þ�þ � � � þ iP0ðH1 þ H2 þ � � � þ HiÞ�þ � � �

þ nP0ðH1 þ H2 þ � � � þ HnÞ�;þ � � � þ iP0ðH1 þ H2 þ � � � þ HiÞ�þ � � �

þ nP0ðH1 þ H2 þ � � � þ HnÞ� ð14:64Þ

(a)                                                                (b) 

nP0

iP0

P0

Hn

Hi

H1

nP0

iP0

P0

Figure 14.19 Frame where beams yield in advance of columns
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where m is the number of frame bays, n is the number of frame storeys, � is the rotation of plastic hinges, and

Mgpand Mcp are the ultimate yielding moments of frame beams and columns, respectively.

Equation (14.64) can be solved as

P0 ¼
ðmþ 1ÞMcp þ 2nmMgp

HA

; ð14:65Þ

where

HA ¼ H1 þ 2ðH1 þ H2Þ þ � � � þ iP0ðH1 þ H2 þ � � � þ HiÞ þ � � � þ nðH1 þ H2 þ � � � þ HnÞ: ð14:66Þ

If the yielding of the frame is as shown in Figure 14.19(b), the expression for P0 by similar derivation is

P0 ¼
2ðmþ 1ÞMcp þ 2ðn� 1ÞMgp

HA

: ð14:67Þ

For the frame of arbitrary yielding type, i.e. the frame can be irregular and the ultimate yielding moments of

the frame beams and columns can be arbitrary, if the distribution of the plastic hinges of the frame is

determined, one has

P0 ¼

P
j

Mcp þ
P

j

Mgp

HA

; ð14:68Þ

where
P

j

Mcp and
P

j

Mgp are the summation of the moment resistances by all the beam and column plastic

hinges, respectively.

The ultimate shear capacity of the ith storey of the frame can be expressed with P0 as

Vp ¼
Xn

j¼1

jP0: ð14:69Þ

14.3.3 Examples

A two-bay 20-storey weak-beam–strong-column regular frame, as shown in Figure 14.20, is selected as an

illustrative example to the application of the shear-bending storey model for elastic and elasto-plastic
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Figure 14.20 A 20-storey two-bay frame
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seismic analyses. The mass on each floor of the frame is constantly 2:7� 104 kg, and other parameters are

listed in Table 14.5. The input earthquake movement is the EI Centro North–South wave of 1940.

14.3.3.1 Calculation of (EI)i

The average linear stiffness of the frame beams is

ig ¼
ig1 þ ig2

2
¼ 1:57� 108=6þ 2:40� 108=8

2
¼ 7:8� 107 ðN mÞ:

The average linear stiffness of the columns is

� for the first storey:

ic0 ¼
ic10 þ ic20 þ ic30

3
¼ 6:5� 107 ðN mÞ;

� for the other storeys:

ic ¼
ic1 þ ic2 þ ic3

3
¼ 8:1� 107 ðN mÞ:

The ratio of beam to column linear stiffness is

ig=ic0 ¼
2:8� 107

6:5� 107
¼ 0:43; by Table 14:4; a ¼ 0:962;

ig=ic ¼
2:8� 107

8:1� 107
¼ 0:35; by Table 14:4; a ¼ 0:961:

Assume the neutral axis of the global bending of the frame is at the middle of overall span, and then the

equivalent bending stiffness by Equation (14.59) is

� for the first storey:

ðEIÞ0 ¼ 8:8� 108 þ 0:962� 3:18� 1011 ¼ 3:07� 1011 ðN mÞ;

� for the other storeys:

ðEIÞi ¼
X

EIij þ a
X

EAijl
2
ij ¼ ð1:57� 108 þ 4:83� 108 þ 2:40� 108Þ

þ 0:961ð2:975� 108 � 72 þ 4:45� 109 � 12 þ 3:42� 109 � 72Þ

¼ 8:8� 108 þ 0:961� 3:18� 1011

¼ 3:06� 1011 ðN mÞ:

Table 14.5 Major parameters in the example structure

Components

Columns Columns at Columns at Beams at Beams at

Parameters at axis 1 axis 2 axis 3 left span right span

Compression stiffness EA (N) 2:975� 109 4:45� 109 3:42� 109 — —

Bending stiffness EI (N m2) 1:57� 108 4:83� 108 2:40� 108 1:57� 108 2:40� 108

Initial yielding moment Ms (N m) 0:77� 106 1:84� 106 1:06� 106 0:62� 106 0:85� 106

Ultimate bending moment Mp (N m) 0:91� 106 2:16� 106 1:25� 106 0:73� 106 1:00� 106
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14.3.3.2 Calculation of (GA)i

The ‘D-value method’ is first used to calculate the D-value, i.e. the lateral stiffness of the frame columns,

which is not repeated here. And then

� for the first storey:
P

Dc0 ¼ 4:46� 107ðN=mÞ;

� for the other storeys:
P

Dc ¼ 4:02� 107ðN=mÞ:

By Equation (14.60), the equivalent inter-storey shear stiffness of the frame is obtained as

� for the first storey: ðGAÞ0 ¼ R� 4:5� 4:46� 107 ¼ 2:01� 108RðNÞ;

� for the other storeys: ðGAÞi ¼ R� 3:6� 4:02� 107 ¼ 1:45� 108RðNÞ;

where R is determined according to Equation (14.61) for loading state on the basis of the inter-storey shear

force at different time under earthquake action, whereas R ¼ 1 for unloading state.

In the calculation of R with Equation (14.61), the initial inter-storey yielding shear Vs is determined by

Equation (14.63) and the ultimate yielding shear Vp by Equation (14.69). (Note that this example is the case

that frame beams yield in advance of frame columns.) Then, P0 is obtained as

P0 ¼ ½2� 20� ð0:73� 106 þ 1:00� 106Þ þ ð0:91� 106 þ 2:16� 106 þ 1:25� 106Þ�

	 ½4:5� 20þ 3:6� ð2� 3� 2þ 4� 3þ � � � þ 20� 19Þ�

¼ 7606 N:

14.3.3.3 Analysis and results

After the equivalent inter-storey bending stiffness and equivalent shear stiffness are obtained, the frame can

be simplified to a bending-shear cantilever where only two degrees of freedom, horizontal displacement and

rotation, exist at the location of each floor. Computation effort decreases dramatically due to the largely

reduced structural degrees of freedom. The maximum horizontal displacement, inter-storey drift and inter-

storey shear results of the frame under seismic excitation determined by non-simplified and simplified

models are compared in elastic scope (Figure 14.21) and elasto-plastic scope (Figure 14.22).

Non-simplified model Simplified model

(a) (b) (c)
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Figure 14.21 Maximum elastic seismic response of the frame: (a) lateral deflection; (b) relative inter-storey drift;

(c) inter-storey drift
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The above comparisons indicate good agreement between the elastic results of the simplified bending-

shear storey model and the non-simplified complete component-representing frame model, and the max-

imum relative error is less than 10 %. The relative error of the elasto-plastic results is larger than that of

elastic ones, but within 20 %. However, usage of the simplified model reduces hugely the computation effort

and facilitates data input. Moreover, the maximum relative error happens generally at the storey where the

inter-storey drift is small, which will not play a controllable role in the practical design of frames against

earthquakes. As an approximate approach, therefore, the bending-shear storey model is applicable to the

seismic analysis of high-rise frames in practice.

14.4 SIMPLIFIED MODEL FOR BRACED FRAME

Large error is possibly produced by the half-frame model to high-rise frame seismic analysis because of

neglecting axial deformation of frame columns. Meanwhile, the bending-shear storey model may not be

satisfactory in the elasto-plastic seismic analysis of steel frames because it departs far from the component-

representing frame system. Combining the advantages of the half-frame model and the bending-shear storey

model may produce a more general and efficient simplified model for seismic analysis of arbitrary steel

frames, including braced frames.

14.4.1 Decomposition and Simplification of Braced Frame

Decompose a braced frame into two parts working together, a pure frame and a pure bracing system, as

shown in Figure 14.23. The pure frame part can be simplified with the half-frame model to reduce

structural degrees of freedom, whereas the pure bracing system can be transferred to a truss system for the

sake of analysis convenience. The geometric nonlinearity and P�� effect can be simulated with the

model of a series of hinged rigid masts (see Section 13.3 ), where the vertical loads Pi ði ¼ 1; 2; :::; nÞ
applied at hinged nodes are the total gravity loads (dead load plus live load) on the ith floor of the frame.

For the simplified model in Figure 14.23, the stiffness matrix of the frame corresponding to the lateral floor

deflections can be

½K� ¼ ½Kf � þ ½Kb� � ½KG�; ð14:70Þ

where ½Kf � is the stiffness matrix of the pure frame, ½Kb� the stiffness matrix of the pure bracing system and

½KG� the geometric matrix of the frame, determined by Equation (13.32).

The calculation of ½Kf � and ½Kb� is described in the following.
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Figure 14.22 Maximum elasto-plastic seismic response of the frame: (a) lateral deflection; (b) relative inter-storey drift;

(c) inter-storey drift
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14.4.2 Stiffness Matrix of Pure Frame

The elastic and elasto-plastic stiffness matrices of the pure frame can be obtained by the half-frame model.

But it should be noted that the half-frame model is based on the assumption that the axial deformations of

frame columns are neglected. To involve the effect of axial deformation of columns, an elastic stepped

bending bar (see Figure 14.24) can be used to approximate the global flexure due to axial deformation of

frame columns. This equivalent bending bar works together with the half-frame in a serial manner, and the

stiffness matrix of the pure frame can be expressed as

½Kf � ¼ ð½Khf ��1 þ ½Kaf ��1Þ�1; ð14:71Þ

where ½Khf � is the elastic or elasto-plastic stiffness matrix of the half-frame and is determined by the method

in Section 14.2, and ½Kaf � is the elastic stiffness matrix of the equivalent bending bar, considering that the

axial deformation of frame columns is always in elastic state.

Pn

P1

Pn–1

Pi

Pn

P1

Pn–1

Pi

Figure 14.23 Diagram of the simplified model for the analysis of the braced frame
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Figure 14.24 An equivalent bending bar
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By the elemental stiffness equations of the equivalent bending bar for each storey of the frame, the

incremental global stiffness equation of the equivalent bending bar can be assembled as

fdFug

fdF�g

( )
¼
½Kauu� ½Kau��

½Ka�u� ½Ka���

" #
fdug

fd�g

( )
; ð14:72Þ

where fdugand fd�g are the incremental vectors of the horizontal displacements and rotations of the nodes

at the level of all the floors, respectively, and fdFug and fdF�g are the incremental vectors of the nodal

horizontal forces and moments, respectively.

Under the action of horizontal earthquakes, fdF�g ¼ 0, the stiffness matrix of the equivalent bending bar

can be obtained by static condensation as

fdFug ¼ ½Kaf �fdug; ð14:73Þ

where

½Kaf � ¼ ½Kauu� � ½Kau��½Ka����1½Ka�u�: ð14:74Þ

14.4.3 Stiffness Matrix of Pure Bracing System

The elastic and elasto-plastic stiffness matrices of the pure bracing system can be determined according to

the model of the hinged truss system, where the axial deformation of truss columns is considered but that of

truss beams is neglected. The axial stiffness of truss columns remains elastic, whereas the analysis of the

bracing element can be referred to in Chapter 10. By the elemental axial stiffness equations of truss columns

and braces, the incremental global stiffness equation of the pure bracing system can be assembled as

fdFug

fdFvg

( )
¼
½Kbuu� ½Kbuv�

½Kbvu� ½Kbvv�

" # fdug

fdvg

( )
; ð14:75Þ

where fdug is the incremental vector of horizontal displacements of all the floors, fdvg is the incremental

vector of vertical displacements of the nodes in the bracing system, and fdFug and fdFvg are the incremental

vectors corresponding to fdug and fdvg, respectively.
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Figure 14.25 A 12-storey two-bay braced frame
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Under the action of horizontal earthquakes, fdFvg ¼ 0, the stiffness matrix of the pure bracing system can

be obtained by static condensation as

fdFug ¼ ½Kb�fdug; ð14:76Þ

where

½Kb� ¼ ½Kbuu� � ½Kbuv�½Kbvv��1½Kbvu�: ð14:77Þ

14.4.4 Example

To illustrate the validity of the simplified model proposed above, a 12-storey two-bay braced frame is

studied. The non-simplified complete component-representing model and the simplified model are com-

parably used in this example for elasto-plastic seismic analysis.

The frame for this example study is shown in Figure 14.25, and the mass on each floor is constantly

4:0� 104 kg. Along the whole frame height of the first bay, the X-type braces are placed. The sectional area

of the brace on the first storey is 36:24� 10�4 m2 and the slenderness ratio is 44.5, whereas the sectional

area and slenderness ratio for braces on all the other storeys are 29:29� 10�4 m2 and 51.1, respectively. The

other necessary parameters of the frame beams and columns are listed in Table 14.6. EI Centro North–South

wave in 1940 is also selected as the earthquake input. The maximum seismic response results by both

simplified and non-simplified models are given in Figure 14.26, where the comparison indicates a good

coincidence.

Floor 

4

8

12
Floor 

4

8

12
Floor 

4

8

12

30 20 10 0 

D (cm) R (%)

1.8 1.2 0.6 0 

Q (103kN)

27 18 9 0 

Non-simplified model Simplified model

(a) (b) (c)

Figure 14.26 Maximum elasto-plastic seismic response of the frame: (a) lateral deflection; (b) relative inter-storey drift;

(c) inter-storey drift

Table 14.6 Beam and column parameters in the example structure

Columns at Columns at Columns at Beams at Beams at

Components axis 1 axis 2 axis 3 left span right span

Bending stiffness EI (N m2) 1:39� 108 3:33� 108 1:93� 108 2:03� 108 2:83� 108

Plastic moment (N m) 0:73� 106 1:30� 106 0:90� 106 0:87� 106 1:08� 106
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15 Analysis Model for Space
Steel Frames

No matter what kind of structural analysis is performed, such as elastic stability analysis, nonlinear analysis

and seismic response analysis of steel frames as described in Chapters 12, 13 and 14, the important task is to

develop the global structural stiffness equation based on the analysis model of frames.

Space steel frames generally have the following characteristics (Figure 15.1):

(1) Frame columns are perpendicular to the horizontal (ground) plane, whereas frame beams are parallel to

the horizontal plane.

(2) The in-plane stiffness of each floor in the frames is very large and can be idealized to be infinite, due to

the existence of floor slabs and/or horizontal floor bracing.

Several analysis models considering the above characteristics are to be introduced in this chapter.

15.1 SPACE BAR MODEL

In the space bar model, the columns, beams, braces and joint panels in a steel frame are treated directly as

basic elements.

15.1.1 Transformation from Local to Global Coordinates

The elemental stiffness equations of the beams, columns, braces and joint panels can be established in their

own local coordinates . The first step in the analysis of a space frame is to transform force and displacement

vectors in the local coordinates to those in the global coordinates of the frame and establish the stiffness

matrix of the frame in the global coordinates.

In the following discussion, x� y� z denote the local coordinates and u� v� w the global coordinates,

where x, y and u, v are the axes in the horizontal plane, whereas z and w are the axes perpendicular to the

horizontal plane, as shown in Figure 15.2.

15.1.1.1 Coordinate transformation of beam element

An arbitrary beam element in the global coordinates is shown in Figure 15.3, where jg is the angle between

the length axis of the beam element and the global axis ou. In the local coordinates, the displacement vectors
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# 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03061-5



at ends i and j of the beam element with the joint panels are

f�ggig ¼ �zi; �yi; gyi

� �T
; ð15:1aÞ

f�ggjg ¼ ½�zj; �yj; gyj�T: ð15:1bÞ

The displacement vectors at ends i and j of the element in the global coordinates are

fDggig ¼ ½�wi; �vi; �ui; gvi; gui�T; ð15:2aÞ
fDggjg ¼ ½�wj; �vj; �uj; gvj; guj�T: ð15:2bÞ

By geometric derivation, the relationship between the displacement vectors of the beam element in the local

and global coordinates is obtained as

f�ggsg ¼ ½Bg�fDggsg; s ¼ i; j; ð15:3Þ

Figure 15.1 A space steel frame
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Figure 15.2 The global and local coordinate systems
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Figure 15.3 Beam element and global coordinates
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where

½Bg� ¼
1 0 0 0 0

0 cos jg sin jg 0 0

0 0 0 cos jg sin jg

2
4

3
5: ð15:4Þ

Combining the displacement vectors at ends i and j of the element leads to the transformation equation as

f�ggg ¼
f�ggig
f�ggjg

� �
¼ ½Bg� 0

0 ½Bg�

� �
fDggig
fDggjg

� �
¼ ½Tg�fDggg: ð15:5Þ

By a similar derivation, the transformation equation for the force vectors from the local to the global

coordinates is

fFggg ¼ ½Tg�Tf fggg; ð15:6Þ

where f fggg and fFggg are the force vectors corresponding to f�ggg and fDggg, respectively.

Assume that the incremental stiffness equation of the beam element with joint panels in the local

coordinates is

fdfggg ¼ ½kgg�fd�ggg: ð15:7Þ

Substituting Equations (15.5) and (15.6) into Equation (15.7) yields the incremental stiffness equation of the

beam element with joint panels in the global coordinates as

fdFggg ¼ ½Kgg�fdDggg; ð15:8Þ

where ½Kgg� is the stiffness matrix of the beam element with joint panels in the global coordinates, given by

½Kgg� ¼ ½Tg�T½kgg�½Tg�: ð15:9Þ

15.1.1.2 Coordinate transformation of column element

An arbitrary column element in the global coordinates is shown in Figure 15.4, where jc is the angle

between the first principal axis of the column section, ox, and the global axis ou.

In the local coordinates, the displacement vectors at ends i and j of the column element with joint panels

are

f�cgsg ¼ ½�zs; �xs; �ys; gys; �ys; �xs; gxs; �zs�T; s ¼ i; j: ð15:10Þ

v
y x

o

uO′

jc

Figure 15.4 Column element and global coordinates

SPACE BAR MODEL 261



The displacement vectors at ends i and j of the element in the global coordinates are

fDcgsg ¼ ½�ws; �us; �vs; gvs; �vs; �us; gus; �ws�T; s ¼ i; j: ð15:11Þ

The transformation equation of the displacement vectors from the local to the global coordinates is

f�cgg ¼
f�cgig
f�cgjg

� �
¼ ½Bc� 0

0 ½Bc�

� �
fDcgig
fDcgjg

� �
¼ ½Tc�fDcgg; ð15:12Þ

where

½Bc� ¼

1 0 0 0 0 0 0 0

0 cos jc 0 0 sin jc 0 0 0

0 0 cos jc 0 0 sin jc 0 0

0 0 0 cos jc 0 0 sin jc 0

0 � sin jc 0 0 cos jc 0 0 0

0 0 � sin jc 0 0 cos jc 0 0

0 0 0 � sin jc 0 0 cos jc 0

0 0 0 0 0 0 0 1

2
666666666664

3
777777777775

: ð15:13Þ

The transformation equation for the force vectors from the local to the global coordinates is

fFcgg ¼ ½Tc�Tf fcgg; ð15:14Þ

where f fcgg and fFcgg are the force vectors corresponding to f�cgg and fDcgg, respectively.

Assume that the incremental stiffness equation of the column element with joint panels in the local

coordinates is

fdfcgg ¼ ½kcg�fd�cgg: ð15:15Þ

Substituting Equations (15.12) and (15.14) into Equation (15.15) yields the incremental stiffness equation of

the column element with joint panels in the global coordinates as

fdFcgg ¼ ½Kcg�fdDcgg; ð15:16Þ

where ½Kcg� is the stiffness matrix of the column element with joint panels in the global coordinates, given by

½Kcg� ¼ ½Tc�T½kcg�½Tc�: ð15:17Þ

15.1.1.3 Coordinate transformation of brace element

An arbitrary brace element in the global coordinates is shown in Figure 15.5, where jb is the angle between

the projection of the brace element into the horizontal plane and the global axis ou.

In the local coordinates, the displacement vectors at ends i and j of the brace element with joint panels are

f�bgsg ¼ ½�xs; �zs; �ys; gys�T; s ¼ i; j; ð15:18Þ

The displacement vectors at ends i and j of the element in the global coordinates are

fDbgsg ¼ ½�us; �vs; �ws; �vs; �us; gvs; gus�T; s ¼ i; j; ð15:19Þ
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By the geometric derivation, the relationship between the displacement vectors of the beam element in the

local and global coordinates is obtained as

f�bgsg ¼ ½Bb�fDbgsg; s ¼ i; j; ð15:20Þ

where

½Bb� ¼

cos jb sin jb 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 cos jb sin jb 0 0

0 0 0 0 0 cos jb sin jb

2
664

3
775: ð15:21Þ

Combining the displacement vectors at ends i and j of the element leads to the transformation equation as

f�bgg ¼
f�bgig
f�bgjg

� �
¼ ½Bb� 0

0 ½Bb�

� �
fDbgig
fDbgjg

� �
¼ ½Tb�fDbgg: ð15:22Þ

In a similar manner, the transformation equation for the force vectors from the local to the global coordinates

is obtained as

fFbgg ¼ ½Tb�Tffbgg; ð15:23Þ

where ffbgg and fFbgg are the force vectors corresponding to f�bgg and fDbgg, respectively.

Assume that the incremental stiffness equation of the brace element with joint panels in the local

coordinates is

fdfbgg ¼ ½kbg�fd�bgg: ð15:24Þ

Substituting Equations (15.22) and (15.23) into Equation (15.24) yields the incremental stiffness equation of

the brace element with joint panels in the global coordinates as

fdFbgg ¼ ½Kbg�fdDbgg; ð15:25Þ

where ½Kbg� is the stiffness matrix of the brace element with joint panels in the global coordinates, given by

½Kbg� ¼ ½Tb�T½kbg�½Tb�: ð15:26Þ

15.1.1.4 Coordinate transformation of joint-panel element

An arbitrary joint-panel element in the global coordinates is shown in Figure 15.6, where jg is the angle

between the joint-panel plane and the global axis ou.
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Figure 15.5 Brace element and global coordinates
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Assume that the incremental stiffness equation of the joint-panel element in the local coordinates is

dMgy ¼ kg dgy: ð15:27Þ

And by the relationship between the force and the deformation vector of the joint-panel element in the local

and global coordinates,

dMgv

dMgu

� �
¼

cos jg

sin jg

" #
dMgy; ð15:28aÞ

dgy ¼ ½cos jg sin jg�
dgv

dgu

� �
; ð15:28bÞ

one can obtain the incremental stiffness equation of the joint-panel element in the global coordinates as

fdFgg ¼ ½Kg�fdDgg; ð15:29Þ

where

fdFgg ¼ ½dMgv dMgu�T; ð15:30aÞ
fdDgg ¼ ½dgv dgu�T; ð15:30bÞ

and ½Kg� is the stiffness matrix of the joint-panel element in the global coordinates, given by

½Kg� ¼
cos jg
sin jg

� �
kg½cos jg sin jg� ¼ kg

cos2 jg sin jg cos jg

sin jg cos jg sin2 jg

� �
: ð15:31Þ

15.1.2 Requirement of Rigid Floor

Considering the infinite stiffness of the floors in a steel frame building, which are denoted as rigid floors, the

horizontal displacements and rotations about the vertical axis of the nodes for structural analysis on an

arbitrary floor relate to each other and can be represented with the horizontal displacements �uok, �vok and

rotation �wok of a reference node on the floor (see Figure 15.7), namely

�ui ¼ �uok � bik�wok;

�vi ¼ �vok þ aik�wok;

�wi ¼ �wok;

ð15:32Þ

where aik and bik are the global coordinates of node i relative to the reference node Ok of the kth floor.

Horizontal displacements and rotations about the vertical axis of all the columns and braces on a floor are

therefore no longer independent . And such horizontal displacements and rotations can be incorporated and
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z
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u
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jg

Figure 15.6 Joint-panel element and global coordinates
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represented with displacements �uok, �vok and rotation �wok, by which the total structural degrees of freedom

are greatly reduced.

15.1.2.1 Stiffness equation of column element considering rigid floor

Assume that the ends i and j of an arbitrary column element are located on the ðk � 1Þth and kth floors,

respectively, and the global coordinates of these two ends relative to the reference nodes of the two floors are

aik�1, bik�1 and aik, bik, respectively. Denote the displacements of the column element in the global

coordinates with the floor displacements as

fDcgik�1g ¼ ½�wi; �uok�1; �vi; gvi; �vok�1; �ui; gui; �uok�1�T; ð15:33aÞ
fDcgjkg ¼ ½�wj; �uok; �vj; gvj; �vok; �uj; guj; �uok�T: ð15:33bÞ

By Equation (15.32), the relationship between the displacement vector of the column element itself in the

global coordinates and that considering the rigid floor can be expressed as

fDcgg ¼
fDcgig
fDcgjg

� �
¼ ½Bcik�1� 0

0 ½Bcjk�

� �
fDcgk�1ig
fDcgjkg

� �
¼ ½Tck�fDcgkg; ð15:34Þ

where

½Bcik�1� ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 �bik�1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 aik�1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

; ð15:35aÞ

½Bcjk� ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 �bjk

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 ajk

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

: ð15:35bÞ
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Figure 15.7 Horizontal displacements of a floor and node on the floor
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In a similar manner, the horizontal forces and moments about the vertical axis can be represented with the

force vector of the column element in the global coordinates as

fFcgkg ¼ ½Tck�TfFcgg ð15:36Þ

where fFcgkg is the force vector corresponding to fDcgkg.
Substituting Equations (15.34) and (15.36) into Equation (15.16) leads to the incremental stiffness

equation of the column element in the global coordinates with consideration of the rigid floor as

fdFcgkg ¼ ½Tck�T½Kcg�½Tck�fdDcgkg: ð15:37Þ

15.1.2.2 Stiffness equation of brace element considering rigid floor

By similar derivation of the column element above, the incremental stiffness equation of a brace element in

the global coordinates with consideration of the rigid floor can be obtained as

fdFbgkg ¼ ½Tbk�T½Kbg�½Tbk�fdDbgkg; ð15:38Þ

where

fDbgkg ¼
fDbgk�1ig

fDbgjkg

( )
; ð15:39Þ

fDbgik�1g ¼ ½�uok�1; �vok�1; �wok�1; �wi; �vi; �ui; gvi; gui�T; ð15:40aÞ

fDbgjkg ¼ ½�uok; �vok; �wok; �wj; �vj; �uj; gvj; guj�T; ð15:40bÞ

½Tbk� ¼
½Bbik�1� 0

0 ½Bbjk�

" #
; ð15:41Þ

½Bbik�1� ¼

1 0 �bik�1 0 0 0 0 0

0 1 aik�1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

; ð15:42aÞ

½Bbjk� ¼

1 0 �bjk 0 0 0 0 0

0 1 ajk 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

ð15:42bÞ
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15.1.3 Global Stiffness Equation of Frame and Static Condensation

The incremental global stiffness equation of a space frame with rigid floors can be obtained by assembling

all the incremental stiffness equations of the beam and joint-panel elements in the frame and all the

incremental stiffness equations of the column and brace elements considering the rigid floor as

fdFHg
fdFRg

� �
¼ ½KHH� ½KHR�
½KRH� ½KRR�

� � fdDHg
fdDRg

� �
; ð15:43Þ

where fdDHg is the incremental vector of the horizontal displacements and rotations about the vertical axis

of all the reference nodes of floors, fdDRg is the incremental vector of the vertical displacements, rotations

about the horizontal axis and joint-panel shear deformation of all the nodes in the frame for structural

analysis, and fdFHg and fdFRg are the force vectors corresponding to fdDHg and fdDRg, respectively.

If only vertical loads are applied on the frame, one has fdFHg ¼ 0. Then, Equation (15.43) can be

rewritten as

fdDHg ¼ �½KHH��1½KHR�fdDRg ð15:44Þ

and

fdFRg ¼ ½KR�fdDRg; ð15:45Þ

where

½KR� ¼ ½KRR� � ½KRH�½KHH��1½KHR�: ð15:46Þ

If only horizontal loads due to wind or horizontal earthquakes loads are applied on the frame, fdFRg ¼ 0.

Then, Equation (15.43) can be condensed as

fdDRg ¼ �½KRR��1½KRH�fdDHg ð15:47Þ

and

fdFHg ¼ ½KH�fdDHg; ð15:48Þ

where

½KH� ¼ ½KHH� � ½KHR�½KRR��1½KRH�: ð15:49Þ

It should be noted that as the stiffness equations of column elements and brace elements considering the rigid

floor relate to the position of the reference node on each floor, the global stiffness of a space frame, Equation

(15.43), depends on the selection of the reference node on each floor. Different positions of reference nodes

on floors produce different global stiffness equations of space frames. The horizontal force vector fFHg in

the global stiffness equation consists of the horizontal forces applied on the reference nodes and the

moments about the vertical axis through the reference nodes, whereas the corresponding displacement

vector fDHg consists of the horizontal displacements of the reference nodes and the torsion angles about the

vertical axis through the reference nodes. For the sake of convenience in dynamic analysis, it is best to select

the mass centre of each floor as the reference node, i.e. the origin of the floor global coordinates. Despite that

all the reference nodes on the floors of the frame may not be on the same vertical line by such a selection (see

Figure 15.8), the mass matrix of the frame corresponding to the floor horizontal movements, two orthotropic

horizontal displacements and torsion about the vertical axis is diagonal. Otherwise, such a mass matrix will

be nondiagonal.
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15.2 PLANAR SUBSTRUCTURE MODEL

When the space bar model is used in the analysis of space steel frames, results have high accuracy, but a huge

number of degrees of freedom should be dealt with. Generally, a structural node in the space bar model has

eight deformation variables if joint-panel shear deformation is involved, and even if the rigid floor is

considered, five independent variables still exist for each node. The computation effort is therefore

extremely large especially in nonlinear structural analysis and elasto-plastic seismic response analysis of

space steel frames. A compromised model between accuracy and computation effort for structural analysis

of space steel frames is necessary, and the planar substructure model is one of them. In the planar

substructure model, a space frame is divided into a number of planar subframes (planar substructures)

based on the assumption that loads are applied in the plane of the planar subframes. Meanwhile, the rigid

floor assumption is also adopted, by which all the planar subframes can resist horizontal loads together.

Structural degrees of freedom and computation effort in such a planar substructure model are evidently

reduced, and hence the model is applicable to the analysis of space steel frames subjected to horizontal

forces applied at the frame floors in practice.

15.2.1 Stiffness Equation of Planar Substructure in Global Coordinates

As shown in Figure 15.9, denote the angle between the ith planar frame in a space frame and the ou axis in

the global coordinates with ji and denote the coordinates of one point in this planar frame, in the global
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aik

The ith planar frame

O

Figure 15.9 The kth floor of the space frame and coordinate systems
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Figure 15.8 The global floor coordinate systems
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coordinate system of the kthfloor, with aik and bik, where k ¼ 1; 2; . . . ; n and n is the total number of storeys

of the frame. The sway stiffness equation of the ith planar frame can be established according to the method

described in Chapter 13 and written as

½Kx�ifdDxgi ¼ fdFxgi; ð15:50Þ

where fdDxgi and fdFxgi are, respectively, the incremental vector of the horizontal displacements of the

frame floors along the x-axis and the corresponding incremental force vector and ½Kx�ii is the sway stiffness

matrix of the ith planar frame in its own plane.

Expand Equation (15.50) to the spatial sway stiffness equation of the planar frame in its own coordinates

as

½Kx�i ½0� ½0�
½0� ½0� ½0�
½0� ½0� ½0�

2
64

3
75
fdDxgi

fdDygi

fd�zgi

8><
>:

9>=
>; ¼

fdFxgi

f0g
f0g

8><
>:

9>=
>;; ð15:51Þ

where fdDygi and fd�zgi are, respectively, the incremental vectors of the horizontal floor displacements

along they-axis and floor torsions.

By the transition relationship between the global coordinates and the local coordinates of the planar

frame, one has

fdDxgi

fdDygi

fd�zgi

8><
>:

9>=
>; ¼ ½Ti�

fdDugi

fdDvgi

fd�wgi

8><
>:

9>=
>;; ð15:52Þ

fdFugi

fdFvgi

f0g

8><
>:

9>=
>; ¼ ½Ti�T

fdFxgi

f0g
f0g

8><
>:

9>=
>;; ð15:53Þ

where fdDugi, fdDvgi and fd�wgi are, respectively, the incremental vectors of the horizontal floor

displacements along the u-axis and v-axis, and floor torsions in the global coordinates, fdFugi and

fdFvgi are the incremental vectors corresponding to fdDugi and fdDvgi, respectively, and ½Ti� is the

coordinate transition matrix of the ith planar frame, which can be expressed as

½Ti� ¼
½ci� ½si� ½0�
½�si� ½ci� ½0�
½0� ½0� ½I�

2
64

3
75; ð15:54Þ

in which

½ci� ¼ cos ji½I� ¼ ci½I�; ð15:55aÞ

½si� ¼ sin ji½I� ¼ si½I�; ð15:55bÞ

where ½I� is the unit matrix.

Substituting Equations (15.52) and (15.53) into Equation (15.51) leads to

c2
i ½Kx�i cisi½Kx�i ½0�

cisi½Kx�i s2
i ½Kx�i ½0�

½0� ½0� ½0�

2
64

3
75
fdDugi

fdDvgi

fd�wgi

8><
>:

9>=
>; ¼

fdFugi

fdFvgi

f0g

8><
>:

9>=
>;: ð15:56Þ
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Express the displacement vectors at the origin of the subframe coordinates with those at the origin of the

global coordinates in the global coordinate system as

fdDugi ¼ fdDugi � ½b�ifd�w0g;

fdDvgi ¼ fdDvgi � ½a�ifd�w0g;

fd�wgi ¼ fd�w0g;

ð15:57Þ

where fdDu0g, fdDv0g and fd�w0g are, respectively, the incremental vectors of the horizontal floor

displacements at the origin along the u-axis and v-axis, and floor torsions in the global coordinates, ½ai�
and ½bi� are diagonal matrices given by

½a�i ¼ diag½ai1; ai2;. . . ; ain�; ð15:58aÞ

½b�i ¼ diag½bi1; bi2;. . . ; bin�; ð15:58bÞ

and aik and bik (k ¼ 1; 2; . . . ; n) are the coordinates of the origin of the local coordinate system for the ith

subframe in the global coordinate system of the kth floor (see Figure 15.9). Note that each floor has its own

global coordinate system (see Figure 15.8), and the origin of each floor coordinates may not be in the same

vertical line but the directions of the u-axis and v-axis coincide, and the values of aik and bik on different

floors may be different.

Substituting Equation (15.57) into Equation (15.56) yields

c2
i ½Kx�i cisi½Kx�i ½0�

cisi½Kx�i s2
i ½Kx�i ½0�

½0� ½0� ½0�

2
664

3
775
fdDu0g � ½bi�fd�w0g

fdDv0g � ½ai�fd�w0g

fd�w0g

8>><
>>:

9>>=
>>;
¼

fdFugi

fdFvgi

f0g

8>><
>>:

9>>=
>>;

ð15:59Þ

or

c2
i ½Kx�i cisi½Kx�i ð�c2

i ½b�i þ cisi½a�iÞ½Kx�i
cisi½Kx�i s2

i ½Kx�i ð�cisi½b�i þ c2
i ½a�iÞ½Kx�i

½0� ½0� ½0�

2
664

3
775
fdDu0g

fdDv0g

fd�w0g

8>><
>>:

9>>=
>>;
¼

fdFugi

fdFvgi

f0g

8>><
>>:

9>>=
>>;
: ð15:60Þ

Left-multiplying ½b�i and ½a�i in Equation (15.60), respectively, in the lines corresponding to fdDu0g and

fdDv0g, and then adding them to the line corresponding to fd�w0g can result in

½KH�i

fdDu0g
fdDv0g
fd�w0g

8><
>:

9>=
>; ¼

fdFu0gi

fdFv0gi

fdMw0gi

8><
>:

9>=
>;; ð15:61Þ

in which

fdFu0gi ¼ fdFugi;

fdFv0gi ¼ fdFvgi;

fdMw0gi ¼ �½b�ifdFugi þ ½a�ifdFvgi;

ð15:62Þ

where fdFu0gi and fdFv0gi are, respectively, the incremental horizontal force vectors along the u-axis and

v-axis, which result from the horizontal forces of the ith planar subframe and act in the origin of the floor

global coordinates. fdMw0gi is the torque moment about the vertical axis through the origin of the floor
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global coordinates, which also results from the horizontal forces of the ith planar subframe, and ½KH�i is the

incremental stiffness matrix of the ith planar subframe in the global coordinates, given by

½KH�i ¼
½Kuu�i ½Kuv�i ½Kuj�i
½Kvu�i ½Kvv�i ½Kuu�i
½Kju�i ½Kju�i ½Kjj�i

2
64

3
75; ð15:63Þ

where

½Kuu�i ¼ c2
i ½Kx�i; ð15:64aÞ

½Kuv�i ¼ ½Kvu�Ti ¼ cisi½Kx�i; ð15:64bÞ

½Kvv�i ¼ s2
i ½Kx�i; ð15:64cÞ

½Kuj�i ¼ ½Kju�Ti ¼ cið�ci½b�i þ si½a�iÞ½Kx�i; ð15:64dÞ

½Kvj�i ¼ ½Kjv�Ti ¼ sið�ci½b�i þ si½a�iÞ½Kx�i; ð15:64eÞ

½Kjj�i ¼ ðci½b�i � si½a�iÞ
2½Kx�i: ð15:64fÞ

15.2.2 Global Stiffness Equation of Spatial Frame

Assembling the stiffness equations of all the planar subframes can produce the global stiffness equation for

the whole space frame as

½KH�fdDHg ¼ fdFHg; ð15:65Þ

in which

fdDHg ¼ ½fdDu0gT; fdDv0gT; fdDw0gT�T; ð15:66aÞ

fdFHg ¼ ½fdFu0gT; fdFv0gT; fdMw0gT�T; ð15:66bÞ

fdFu0g ¼
X

i

fdFu0gi;

fdFv0g ¼
X

i

fdFv0gi; ð15:67Þ

fdMw0g ¼
X

i

fdMw0gi;

½KH� ¼
X

i

½KH�i: ð15:68Þ

where fdFu0g and fdFv0g are the incremental horizontal force vectors, respectively, along the u-axis and

v-axis acting at the origins of each floor global coordinates, fdMw0g is the torque moment vector about the

vertical axis through the origins of each floor global coordinates, and ½KH�i and ½KH� are, respectively, the

space stiffness matrices of the planar subframes and the global space frame.
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Obviously, the simplification is achieved in the planar substructure model by transforming the analysis of

a space frame to the analysis of several planar subframes, and the number of degrees of freedom for the

structural analysis is reduced largely. However, it should be noted that the following two approximations

exist in the planar substructure model:

(1) Only consistency of the horizontal displacements of the same nodes in different planar subframes is

considered, and that of the vertical displacements is ignored.

(2) In the elasto-plastic state of the space frame, the sway stiffness of the frame columns along the two

sectional principal axes will become coupled, whereas the planar substructure model neglects this effect.

15.2.3 Numerical Example

Figure 15.10 illustrates a space steel frame, and in the plan view of the frame shown in Figure 15.11, the

member sections are identified (US wide-flange standard section used). Each floor of the frame has slab so

that the rigid floor assumption is adopted. The loading sequence is that vertical loads, the values of which are

given in Figure 15.10, are applied first and then the horizontal loads F (see Figures 15.10 and 15.11) are

applied, keeping the vertical loads constant. With the planar substructure model, the curves shown in

Figure 15.12 can be obtained, which represent the relationship between the horizontal force F and the

horizontal displacement u3, vertical displacement v3 and the slab torsion j3 of the top floor at the location

where the horizontal force acts. The peak point of the curves corresponds to the ultimate horizontal force

Fmax of the space frame.
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Figure 15.10 Space frame for example
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Figure 15.11 The plan of the space frame for example
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The results obtained by the space bar model coincide with those given in Figure 15.12 obtained by the

planar subframe model, which indicates that the inconsistency of the vertical deformation of frame columns

and the coupling effect of sway stiffness of frame columns in different directions are negligible when the

storey number of space frames is large and proportional loading sequence is applied.

Effects of the direction and position of the horizontal loads on the ultimate load-carrying capacity of the

frame Fmax are examined. Let the angle a between the horizontal force direction and the v-axis vary from��
2

to �
2
; the corresponding variation of Fmax is given in Figure 15.13. And let the positions of the horizontal

forces move in scope from �2m to 2m along the u-axis when a ¼ 0; the corresponding variation of Fmax is

shown in Figure 15.14. Obviously, the direction and position of the horizontal forces significantly affect the

ultimate load-carrying capacity of the frame .
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Figure 15.12 Horizontal load–deformation curves
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Figure 15.13 Relation between Fmax and a
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Figure 15.14 Relation between Fmax and u
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15.3 COMPONENT MODE SYNTHESIS METHOD

15.3.1 Principle of Component Mode Synthesis Method

The component mode synthesis method is a combination of the finite element method and the Ritz method.

This method effectively reduces the number of structural degrees of freedom and makes it possible to use a

microcomputer to analyse large and complex structures. The basic principle of the component mode

synthesis method is that a displacement mode is assigned to each structural node, which may be a linear

combination of functions satisfying structural boundary constrains. In the component mode synthesis

method, the nodal displacement mode in addition to the elemental displacement field for structural analysis

is established based on the finite element method. Similar to the Ritz method, variables with the number of

structural degrees of freedom much less than that needed in the finite element method can be solved in the

component mode synthesis method because the number of independent parameters controlling the dis-

placement field of the global structure is limited. As this method is based on the finite element method, it also

has some advantages of the finite element method.

Using the component mode synthesis method in the analysis of space steel frames requires a series of

functions with undetermined parameters to approach the displacement field along the height of the frame

under analysis. By the viewpoint of function approach theory, the function series ffmðwÞg ensuring

approaching to the real solution should satisfy three conditions: continuity, independence and completeness.

Mathematical investigation indicates that orthotropic function series are advantageous in stability and fast

convergence in addition to satisfying the above three conditions . So, the following orthotropic polynomial

function is selected as the displacement mode along the height of the frame:

ffmðwÞg ¼
Xm

j¼1

ð�1Þj�1 ðmþ 1Þ!
ð j� 1Þ!ð jþ 1Þ!ðm� 1Þ! ð

w

H
Þj; ð15:69Þ

where w is the height of the node considered and H is the total height of the frame.

As for the space steel frame shown in Figure 15.15, the basic variables in the global coordinate system

and considering the rigid floor include the horizontal displacements Duok and Dvok at the origin of the global

coordinates along the u-axis and v-axis and torsion �wok on the arbitrary kth floor, the vertical displacement

Dwik, rotations �wik and �vik, and joint-panel shear deformations guik and gvik of the ith column on the kth floor.

All of the basic variables can be expressed as

Duok ¼
Xr

m¼1

auomfmðwkÞ;

Dvok ¼
Xr

m¼1

avomfmðwkÞ;

�wok ¼
Xr

m¼1

bwomfmðwkÞ;

Dwik ¼
Xr

m¼1

awimfmðwkÞ;

�uik ¼
Xr

m¼1

buimfmðwkÞ;

�vik ¼
Xr

m¼1

bvimfmðwkÞ;

guik ¼
Xr

m¼1

cuimfmðwkÞ;

gvik ¼
Xr

m¼1

cvimfmðwkÞ;

ð15:70Þ

where wk is the height of the kth floor.
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The relation between the displacements of the node at the ith column on the kth floor and the origin of the

floor global coordinates is (see Figure 15.16)

Duik ¼ Duok � vik�wok;

Dvik ¼ Dvok þ uik�wok;

�wik ¼ �wok;

ð15:71Þ

where uik are vik are the coordinate values of the node at the ith column on the kth floor in the floor global

coordinate system.

The displacement vector of the node at the ith column on the kth floor can be expressed as

fDikg ¼
Xr

m¼1

½Nk�imfegim ¼ ½Nk�ifegi; ð15:72Þ

in which

fDikg ¼ ½Duik; Dvik; �wik; Dwik; �vik; �uik; gvik; guik�T; ð15:73Þ

fegi ¼ ½feg
T
i1; feg

T
i2; . . . fegT

ir�
T; ð15:74Þ

fegim ¼ ½auom; avom; bwom; awim; bvim; buim; cvim; cuim�T; ð15:75Þ

½Nk�i ¼ ½½Nk�i1; ½Nk�i2; . . . ; ½Nk�ir�
T; ð15:76Þ
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k=n

Floor k=1

i

Figure 15.15 Space frame and global coordinate system
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Figure 15.16 The floor global coordinate system
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½Nk�im ¼

fmðwkÞ �vikfmðwkÞ 0

fmðwkÞ uikfmðwkÞ

fmðwkÞ

fmðwkÞ

fmðwkÞ

fmðwkÞ

fmðwkÞ

0 fmðwkÞ

2
6666666666666666664

3
7777777777777777775

; ð15:77Þ

where fDikg is the nodal displacement vector, fegi is the vector of undetermined parameters (namely the

generalized displacement vector) and ½Nk�i is the transition matrix between the nodal displacement vector

and the generalized displacement vector.

15.3.2 Analysis of Generalized Elements

15.3.2.1 Generalized column element

A generalized column element consists of all the columns on one vertical line, i.e. the columns from bottom

to top storeys, as shown in Figure 15.17. By Equation (15.72), the relation between the end displacements of

the column at the kth floor and the generalized displacements is

fDcigk ¼
fDik�1g
fDikg

� �
¼ ½Nk�1�i

½Nk�i

� �
fegi ¼ ½Nk�1;k�ifegi: ð15:78Þ

It is known that the incremental stiffness equation of the column element with joint panels in the global

coordinates is Equation (15.16), and the relation between the elemental displacement vectors fDcgg and

fDcigk is

fDcgg ¼ ½Rc�fDcigk; ð15:79Þ

where

½Rc� ¼
½rc� ½0�
½0� ½rc�

� �
; ð15:80Þ

Floor k–1

Floor k

Column at the kth stlory 

Figure 15.17 The generalized column element
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½rc� ¼

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

2
6666666666666664

3
7777777777777775

: ð15:81Þ

By Equations (15.79), (15.78) and (15.16), the incremental relation between the generalized forces and the

generalized displacements of the node at the ith column on the kth floor is obtained as

fdfcigk ¼ ½Kci�kfdegi; ð15:82Þ

where

fdfcigk ¼ ½Nk�1;k�Ti ½Rc�TfdFcgg; ð15:83Þ

½Kci�k ¼ ½Nk�1;k�Ti ½Rc�T½Kcg�½Rc�½Nk�1;k�i: ð15:84Þ

Hence, the incremental stiffness equation of the ith generalized column element can be written as

fdfcig ¼ ½Kci�fdegi; ð15:85Þ

in which

fdfcig ¼
Xn

k¼1

fdfcigk; ð15:86Þ

½Kci� ¼
Xn

k¼1

½Kci�k; ð15:87Þ

where fdfcig is the generalized force vector in the generalized column element corresponding to the

generalized displacement vector fegi and ½Kci� is the stiffness matrix of the generalized column element.

15.3.2.2 Generalized beam element

A generalized beam element consists of all the beams between two adjacent column lines, as shown in

Figure 15.18. By Equation (15.72), the relation between the end displacements of the beam at the kth floor

and the generalized displacements is

fDgijgk ¼
fDikg
fDjkg

� �
¼ ½Nk�i ½0�

½0� ½Nk�j

� �
fegi

fegj

� �
¼ ½Nk�ijfegij: ð15:88Þ

It is known that the incremental stiffness equation of the beam element with joint panels in the global

coordinates is Equation (15.8), and the relation between the elemental displacement vectors fDggg and

fDgijgk is

fDggg ¼ ½Rg�fDgijgk; ð15:89Þ
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where

½Rg� ¼
½rg� ½0�
½0� ½rg�

" #
; ð15:90Þ

½rg� ¼

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666664

3
77777775
: ð15:91Þ

By Equations (15.89), (15.88) and (15.8), the incremental relation between the generalized forces and the

generalized displacements of the beam within the span of the ith column and the jth column on the kth floor

is obtained as

fdfgijgk ¼ ½Kgij�kfdegij; ð15:92Þ

where

fdfgijgk ¼ ½Nk�Tij ½Rg�TfdFggg; ð15:93Þ

½Kgij�k ¼ ½Nk�Tij ½Rg�T½Kgg�½Rg�½Nk�ij: ð15:94Þ

Hence, the incremental stiffness equation of the generalized beam element within the span of the ith column

and the jth column can be expressed as

fdfgijg ¼ ½Kgij�fdegij; ð15:95Þ

in which

fdfgijg ¼
Xn

k¼1

fdfgijgk; ð15:96Þ

½Kgij� ¼
Xn

k¼1

½Kgij�k; ð15:97Þ

Beam at the kth floorFloor k

Column i j

Figure 15.18 The generalized beam element
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where fdfgijg is the generalized force vector in the generalized beam element corresponding to the

generalized displacement vector fegij and ½Kgij� is the stiffness matrix of the generalized beam element.

15.3.2.3 Generalized brace element

A generalized brace element consists of all the braces between two adjacent column lines, as shown in

Figure 15.19. By Equation (15.72), the relation between the end displacements of the brace on the kth storey

and the generalized displacements is

fDbijgk ¼
fDik�1g
fDjkg

� �
¼ ½Nk�1�i ½0�

½0� ½Nk�j

� �
fegi

fegj

� �
¼ ½Nk�1;k�ijfegij: ð15:98Þ

It is known that the incremental stiffness equation of the brace element with joint panels in the global

coordinates is Equation (15.25), and the relation between the elemental displacement vectors fDbgg and

fDbijgk is

fDbgg ¼ ½Rb�fDbijgk; ð15:99Þ

where

½Rb� ¼
½rb� ½0�
½0� ½rb�

� �
; ð15:100Þ

½rg� ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
666666666664

3
777777777775

: ð15:101Þ

Similar to the derivation of the generalized column and beam element, the incremental stiffness equation of

the generalized brace element within the span of the ith column and the jth column is obtained as

fdfbijg ¼ ½Kbij�fdegij; ð15:102Þ

Floor k 

Floor k–1 

Brace on the kth story  

Column i j

Figure 15.19 The generalized brace element
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in which

fdfbijg ¼
Xn

k¼1

fdfbijgk; ð15:103Þ

½Kbij� ¼
Xn

k¼1

½Kbij�k; ð15:104Þ

fdfbijgk ¼ ½Nk�1;k�Tij ½Rb�TfdFbgg; ð15:105Þ

½Kbij�k ¼ ½Nk�1;k�Tij ½Rb�T½Kbg�½Rb�½Nk�1;k�ij; ð15:106Þ

where fdfbijg is the generalized force vector in the generalized brace element corresponding to the

generalized displacement vector fegij and ½Kbij� is the stiffness matrix of the generalized brace element.

15.3.2.4 Generalized joint-panel element

A generalized joint-panel element consists of all the joint panels along one column line, as shown in

Figure 15.20. By Equation (15.72), the relation between the joint-panel displacements and the generalized

displacements is

fDgigk ¼ fDikg ¼ ½Nk�ifegi: ð15:107Þ

It is known that the incremental stiffness equation of the joint-panel element in the global coordinates is

Equation (15.29), and the relation between the elemental displacement vectors fDgg and fDgigk is

fDgg ¼ ½Rg�fDgigk; ð15:108Þ

where

½Rg� ¼
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

� �
: ð15:109Þ

Similar to the derivation above, the incremental stiffness equation of the generalized joint-panel element

along the ith column can be obtained as

fdfgig ¼ ½Kgi�fdegi; ð15:110Þ

Joint panel at floor kFloor k

Figure 15.20 The generalized joint-panel element
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in which

fdfgig ¼
Xn

k¼1

fdfgigk; ð15:111Þ

½Kgi� ¼
Xn

k¼1

½Kgi�k; ð15:112Þ

fdfgigk ¼ ½Nk�Ti ½Rg�TfdFgg; ð15:113Þ

½Kgi�k ¼ ½Nk�Ti ½Rg�T½Kg�½Rg�½Nk�i; ð15:114Þ

where fdfgig is the generalized force vector in the generalized joint-panel element corresponding to the

generalized displacement vector fegi and ½Kgi� is the stiffness matrix of the generalized joint-panel element.

15.3.3 Stiffness Equation of Generalized Structure

Assume that the space frame considered has n storeys and s column lines. Assembly of the incremental

stiffness equations of all the generalized column, beam, brace and joint-panel elements in the frame yields

the incremental stiffness equation for the structural system as

fdfHg
fdfRg

� �
¼ ½KHH� ½KHR�
½KRH� ½KRR�

� �
fdeHg
fdeRg

� �
; ð15:115Þ

in which

feHg ¼ ½fau0gT; fav0gT; fbw0gT�T; ð15:116Þ

fau0g ¼ ½au01; au02; . . . ; au0g�T;

fav0g ¼ ½av01; av02; . . . ; av0g�T;

fbw0g ¼ ½bw01; bw02;. . . ; bw0g�T;

feRg ¼ ½feR1gT; feR2gT; . . . ; feRsgT�T; ð15:117Þ

feRig ¼ ½fawigT; fbvigT; fbuigT; fcvigT; fcuigT�T;

fawig ¼ ½awi1; awi2; . . . ; awig�T;

fbvig ¼ ½bvi1; bvi2; . . . ; bvig�T;

fbuig ¼ ½bui1; bui2; . . . ; buig�T;

fcvig ¼ ½cvi1; cvi2; . . . ; cvig�T;

fcuig ¼ ½cui1; cui2; . . . ; cuig�T;

where fdfHg and fdfRg are the incremental force vectors corresponding to the generalized displacement

vectors fdeHg and fdeRg, respectively.

The number of degrees of freedom in the original frame is equal to nð3þ 5sÞ whereas that using the

component mode synthesis method is rð3þ 5sÞ. Generally, the number of terms, r, in the displacement

functions along the frame height may be 3�5, which indicates that for the multi-storey frame (n > r),

especially for the high-rise frame (n� r), the structural degrees of freedom are largely reduced.
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If the frame is subjected to horizontal loads (for example, horizontal earthquakes), fdfRg ¼ 0. Then the

stiffness equation of the structural system after static condensation becomes

fdfHg ¼ ½KH�fdeHg; ð15:118Þ

where

½KH� ¼ ½KHH� � ½KHR�½KRR��1½KRH�: ð15:119Þ

And fdeRg can be obtained with

½deR� ¼ �½KRR��1½KRH�fdeHg: ð15:120Þ

15.3.4 Structural Analysis Procedure

This subsection describes the structural analysis procedure using the component mode synthesis method,

with the example of frames subjected to horizontal loads.

First, denote the vector of the horizontal displacements at the origin of the floor global coordinate system

as

fDHg ¼ ½fDu0gT; fDv0gT; f�w0gT�T; ð15:121Þ

where

fDu0g ¼ ½Du01; Du02; . . . ; Du0n�T;

fDv0g ¼ ½Dv01; Dv02; . . . ; Dv0n�T;

f�w0g ¼ ½�w01; �w02; . . . ; �w0n�T:

ð15:122Þ

And then express the floor displacements with the generalized displacements as

fDu0g ¼ ½Hr�fau0g;

fDv0g ¼ ½Hr�fav0g;

f�w0g ¼ ½Hr�f�w0g;

ð15:123Þ

where

½Hr� ¼

f1ðw1Þ f2ðw1Þ . . . frðw1Þ
f1ðw2Þ f2ðw2Þ . . . frðw2Þ

. . . . . . . . . . . .
f1ðwnÞ f2ðwnÞ . . . frðwnÞ

2
664

3
775: ð15:124Þ

By Equations (15.121), (15.123) and (15.116), the relation between the floor displacements and the

generalized displacements is obtained as

fDHg ¼ ½RH�feHg; ð15:125Þ

where

½RH� ¼
½Hr�

½Hr�
½Hr�

2
4

3
5: ð15:126Þ
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By the energy principle, the work by the incremental generalized horizontal forces should be equal to that by

the realistic incremental horizontal forces applied at the frame floors, namely

fdeHgTfdfHg ¼ fdDHgTfdFHg: ð15:127Þ

Substituting Equation (15.125) into the above equation yields

fdeHgTfdfHg ¼ fdeHgTfRHgTfdFHg; ð15:128Þ

which leads to

fdfHg ¼ fRHgTfdFHg; ð15:129Þ

where fdFHg is the incremental vector consisting of two horizontal orthotropic forces at the origins of all the

floor global coordinates and torque moments about the vertical axis through these origins, and fdfHg is the

generalized horizontal force vector.

Substituting Equation (15.129) into Equation (15.118), one has

½KH�fdeHg ¼ ½RH�TfdFHg: ð15:130Þ

As a summary, the structural analysis procedures using the component mode synthesis method can be

concluded as follows:

(1) Calculate the generalized displacement incremental fdeHg by Equation (15.130).

(2) Calculate the generalized displacement incremental fdeRg by Equation (15.120).

(3) With fdeHg and fdeRg, calculate the displacement incremental of structural nodes in the global

coordinate system, fdDikg, by Equation (15.72).

(4) With fdDikg, calculate the elemental displacement incremental in the local coordinate system for all the

beam, column, brace and joint-panel elements, respectively, by Equations (15.3), (15.12), (15.22) and

(15.28).

(5) Substitute the elemental displacement incremental into the corresponding elemental stiffness equations

of beam, column, brace and joint-panel elements to obtain the elemental forces (or the member

resultants).

15.3.5 Numerical Example

Three space steel frame specimens were tested by Ding (1990), the geometries and loading distribution of

which are given in Figure 15.21. One of the specimens is a symmetric structure, and the other two are

asymmetric (the section size of the columns in axis A and axis B are different). All the beams and columns of

the specimens are H sections, sizes of which are listed in Tables 15.1 and 15.2. The yielding strength of the

steel material for the specimens �s ¼ 310 N=mm
2

and the elastic modulus E ¼ 2:075� 105 N=mm
2
. In the

experiments, vertical loads were applied at first and then horizontal loads were applied. Nonsymmetric

horizontal forces were applied according to HA : HB ¼ 2 : 1. Some measures were adopted to simulate the

rigid floor.

Curves of the horizontal loads versus horizontal displacement at the top of the columns in axis A,

obtained by both the component mode synthesis method and the FEM with the space bar model, are

compared and given in Figure 15.22. Meanwhile, the corresponding horizontal ultimate load-carrying

capacities of the frames are listed in Table 15.3. Obviously, the component mode synthesis method has good

accuracy.
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Figure 15.21 Space frame specimen

Table 15.2 Member sizes of the specimens 2 and 3

Section sizes (mm)

Components b h0 t d

Beams 25 25 4 4.3

Columns in axis A 30 30 4 4.2

Columns in axis B 25 25 4 4.3

Table 15.1 Member sizes of specimen 1

Section sizes (mm)

Components b h0 t d

Beams 30 30 4 4.2

Columns 25 25 4 4.3

Table 15.3 Comparison of ultimate horizontal loads obtained by numerical analyses and tests

By the space By the component

Specimen By tests, bar model, mode synthesis
Hf � Ht

Ht

� 100%
Hs � Ht

Ht

� 100%

member HtðkNÞ HfðkNÞ method, HsðkNÞ
1 2.10 2.16 2.23 2.86 6.31

2 1.95 2.04 2.06 4.61 5.47

3 2.40 2.48 2.56 3.33 6.67
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Because the global frame displacement is enforced in the component mode synthesis method, relatively

large structural stiffness (or relatively small structural displacements) and relatively high ultimate load-

carrying capacities are detected in Figure 15.22 and Table 15.3.
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Figure 15.22 The curves of horizontal loads versus displacements of space frame specimens: (a) specimen 1; (b)

specimen 2; (c) specimen 3
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16 Development of Structural
Design Approach

The structural design approaches can be divided according to reliability measurement into deterministic

approach, reliability approach based on limit states of structural members and reliability approach based on

limit states of the structural system. Historically, the deterministic design approach is the earliest used, and

the reliability design approach based on the limit states of structural members prevails in current practice.

However, the reliability design approach will be the evolutional aim in future.

16.1 DETERMINISTIC DESIGN APPROACH

16.1.1 Allowable Stress Design (ASD) (AISC, 1989)

The allowable stress design approach was the earliest proposed after the establishment of structural analysis

theory, the design principle of which is that the stress at arbitrary structural position, �, should not be greater

than the allowable stress ½��, namely

� � ½��; ð16:1Þ

in which ½�� is determined by

½�� ¼ �s

ke

; ð16:2Þ

where �s is the material yielding strength and ke is the safety factor.

It is assumed to ensure the structure designed keeping in elastic state in ASD so that structural analysis

and design is relatively simple. However, the following drawbacks exist:

(1) The choice of the safety factor is empirical, and the structural design lacks explicit reliability

significance. Although in theory the greater the safety factor the safer the structure designed, in practice

with the same safety factor, different load patterns (e.g. dead or live load is dominant) or different

structural materials (e.g. steel or concrete is used) will evidently result in different structural reliability

levels. This cannot be reflected in ASD.

(2) Even if structural material is same, different sectional shapes of structural members or different

structural forms with the same stress level can also result in different structural reliability levels.
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For example, the steel H-shaped and rectangular sections shown in Figure 16.1 can have the same elastic

limit bending moments, but their plastic limit capacities may differ from each other up to 1.4 times. Again, it

can be found from comparison of the steel portal frame and the braced frame shown in Figure 16.2 that the

elastic capacity of the braced frame can be same as that of the portal frame, but its plastic capacity is less

because its plastic capacity is equal to its elastic one, whereas the portal frame has much capacity reservation

in plasticity after elastic capacity.

16.1.2 Plastic Design (PD) (AISC, 1978)

The plastic design approach was proposed to overcome the drawback of ASD, the design principle of which

is that the structural load effect S, with a consideration of safety reservation, should not be greater than the

corresponding structural plastic strength RP, namely

S � Rp ð16:3aÞ

or

kpS0 � Rp; ð16:3bÞ

where S0 is the nominal value of the structural load effect and kp is the load factor used to consider safety

reservation in PD.

PD is a more rational design approach over ASD because it includes the effects of plastic development on

structural limit load-bearing capacity. But the failure criterion used in PD is more dangerous than that in

ASD so that generally the load factor kp in PD is greater than the safety factor ke used in ASD.

16.2 RELIABILITY DESIGN APPROACH BASED ON LIMIT STATES
OF STRUCTURAL MEMBERS

After ASD and PD, the reliability design approach based on limit states of structural members prevails in the

design of steel frame structures worldwide. This design format is also termed as load and resistance factor

sσ

sσ sσ

sσ

(a) (b) (c) (d)

Figure 16.1 Sections of the steel member and stress distribution: (a) H section; (b) rectangular section; (c) elastic limit

stress distribution; (d) plastic limit stress distribution

Buckling Yielding Initial edge yielding

Plastic hinge

Plastic hinge (full section yielding)
HeHe(Hp) Hp

Figure 16.2 Elastic and plastic limit load-bearing capacities
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design (LRFD). LRFD is adopted in the codes for the design of steel structures in China (GB50017-2003),

United States (AISC, 1994), United Kingdom (BS5950, 1990), European Union (Eurocode3, 1992) and

Australia (AS4100, 1990). The common procedures of LRFD include the following: (1) to conduct linearly

elastic structural analysis to determine the resultants of structural members under critical load and load

combinations (with load factor and load combination factor); (2) to check member resultants against the

limit states of structural members specified in the codes with resistance factor. If all of the limit state checks

pass, the structural design is satisfactory to code requirement.

The design formula of LRFD can be expressed as

gRR � g0

X
giS;i; ð16:4Þ

where R is the member nominal resistance, being generally the limit load-bearing capacity, calculated with

material and geometric sizes of the member and according to the load form (e.g. bending, axial compression

and eccentric compression) applied on the member, Si is the nominal load effect (resultant) of the member,

g0 is the structural importance factor, gR is the resistance factor and gi is the load factor.

In Equation (16.4), i indicates different type of loads, and factors g0, gR and gi are determined with

structural reliability analysis so that the structural design by Equation (16.4) has the reliability level

approximately close to the target one pre-assigned. LRFD is therefore a reliability-based structural design

approach.

However, LRFD still has incompatibility in the following aspects:

(1) The member resultants used in design procedures 1 and 2 are incompatible (Chen, 1998). In procedure 1,

linearly elastic analysis is used to obtain structural member resultants, and material nonlinearity is not

taken into account. But in procedure 2, elasto-plastic limit states of structural members are considered,

where material nonlinearity is accounted. Resultants will be generally redistributed in structural

members after yielding occurs because a structure resists loads as an integrity rather than individual

components. This incompatibility indicates that the resultants of structural members used in the limit

state check are not realistic in LRFD.

(2) Instability mode assumed for structures is incompatible with the global instability mode occurring really

(Liew, White and Chen, 1991). The basic assumption in the determination of buckling modes of steel

frames in LRFD is ‘sway or non-sway instabilities happen simultaneously to all the columns on the same

frame storey’, which is not true when compared to the fact that ‘only individual or some columns of a

frame occur elasto-plastic instability at first’. In engineering practice, the effect of structural instability

is considered with an empirical effective length for frame columns in their limit state check in LRFD.

However, the effective length cannot reflect the true inelastic restrain relationship among structural

members.

(3) System reliability level of structures designed is incompatible with the target reliability aimed (Galam-

bos, 1990). What reliability level ensured in LRFD is for individual structural members, not for the

structural system because LRFD is based on the limit state check of structural members. There is an

evident gap between the structural system and member reliability levels because the structural capacity

relates not only to capacities of individual members, but also to structural ductility and redundancy,

structural form and the correlation between loads and structural resistance (Hendawi and Frangopol,

1994).

The above incompatibilities may result in design irrationalities. The first is that the limit load-bearing

capacity of the structural system designed is uncertain, and in majority of the cases, the design value is less

than the realistic one. An examination was done where 16 planar steel frames were studied with the LRFD

code method (member check) and the inelastic system method (structural check) (Ziemian, McGuire and

Deierlein, 1992a). The results obtained are that the limit load-bearing capacities of the overall frames

designed by the current LRFD code method are 1–58 % (average 20 %) greater than those by the inelastic

system method, and the steel consumption of the frames designed by the LRFD code method is 1.5–19 %

(average 12.4 %) greater than that by the inelastic system method. A similar comparison was also made for a

22-storey steel space frame by Ziemian, McGuire and Deierlein (1992b), where it was found that the overall
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limit load-bearing capacities of the frame designed by the LRFD code method are 14.6, 7.7 and 6.7 % greater

than those by the inelastic system method under three typical load patterns, whereas the steel consumption is

13.4 % greater. Other similar results can be found for the braced and unbraced steel frames investigated by

Kim and Chen (1996a, 1996b), the planar steel frames loaded in the weak axis by Ziemian and Miller (1997)

and the steel portal frames by King (1991). Similar results can also be found in the Chinese code based on the

LRFD method (Zhou, Duan and Chen, 1991).

The second irrationality is that the system reliability level of structures designed is ambiguous, and in

majority of the cases, the design value is less than the target one (Galambos, 1990). Although previous

research show that the structural reliability by LRFD is more uniform than that by ASD and PD, it is not

satisfactory yet. The realistic limit load-bearing capacities of 300 concrete–steel composite columns loaded

with concentrated and eccentric compression are examined with experimental tests (Lundberg and Galam-

bos, 1996), which is not consistent with the values in design. Additionally, the reliability level calculated is

also not consistent with the target one in LRFD, and note that those of steel-encased columns are smaller and

those of concrete-filled tubes are greater. The realistic member reliability of three planar steel frames was

checked with the stochastic finite element method (Mahadevan and Haldar, 1991). It is found that the

reliabilities of the members in the same portal frame are not equal to each other, and in majority of the

loading cases, the member reliability is 6–150 % greater than the target reliability. Effects of structural

plasticity on member reliability are studied in reference, and results show that the failure probability of

structural member may be 4.6 times that by linearly elastic analysis if material nonlinearity is considered

(Xiao and Mahadevan, 1994). Similar results were also found by Lin and Corotis (1985). An example was

given that the structural system reliability index reaches 3.5 though the target reliability index is 2.6 when

designing a steel portal frame with LRFD for structural members (Ellingwood, 1994). As the objective is the

simply supported individual member in the derivation of load factor, resistance factor and target reliability

level in current LRFD, the current LRFD code method cannot reflect the realistic reliability of the members

in a structural system and also cannot evaluate the structural system reliability (Moses, 1990).

16.3 STRUCTURAL SYSTEM RELIABILITY DESIGN APPROACH

With rapid development of computer technology and research progresses in the fields of structural analysis

and system reliability assessment, it is possible to propose and establish a more advanced structural design

approach than the current one. The advanced structural design approach should be based on the limit load-

bearing capacity of the structural system and system reliability evaluation. It is a development tendency in

structural engineering to combine advanced structural analysis with system reliability assessment into

reliability-based advanced design (RAD) for the structural system.

The design format of RAD can be

� � Rn � g0 �
X

gi � Sni; ð16:5Þ

where Sn and Rn are the nominal values of a load distribution and the corresponding structural system

resistance (limit load-bearing capacity), respectively, � and gi are factor of structural system resistance and

load factor, respectively, obtained with system reliability assessment and g0 is the factor relating to structural

ductility, redundancy and importance. Although the design formula of RAD has the same form as that of

LRFD, it is a totally new design approach based on the limit states of the structural system, no longer based

on the limit states of structural members as LRFD.

RAD is an evolution of limit state design approach from member level to structural system level. It can be

foreseen that RAD can not only overcome the deficient problems of the current LRFD method based on the

limit states of structural members, but also produce more rational structural solutions. Furthermore, RAD

can facilitate the design process and give benefits to both owner and practitioner, by waiving limit state

equation check member by member and determination of the ambiguous effective length factor for frame

columns.

Thereafter, the second part of this book will introduce at first the calculation of structural system

reliability (Chapter 17), and then the system reliability assessment method of steel frames (Chapter 18) and

finally the reliability-based advanced design approach for steel frames (Chapter 19).
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17 Structural System Reliability
Calculation

17.1 FUNDAMENTALS OF STRUCTURAL RELIABILITY THEORY

17.1.1 Performance Requirements of Structures

Four basic performance requirements should be satisfied for building structures:

(1) capability of resisting all kinds of loads in the phase of normal construction and utility;

(2) serviceability in normal utility;

(3) durability with normal maintenance;

(4) structural integrity during and after accidents (e.g. earthquakes and fires).

The first and fourth requirements above relate to structural safety, the second to structural serviceability

and the third to durability. Only when the structure satisfies all of the four requirements, it is reliable. The

structural reliability is therefore a synthesis of structural safety, serviceability and durability.

17.1.2 Performance Function of Structures

A general equation to govern the reliability of a structure can be expressed as

Z ¼ gðR; SÞ ¼ R� S; ð17:1Þ

where R and S denote structural resistance and load effect, respectively. Due to the uncertainties of structures

and loads, R, S and therefore Z are random variables. Three events will happen to the structure as follows:

(1) The structure is reliable when Z > 0.

(2) The structure fails when Z < 0.

(3) The structure is in limit state when Z ¼ 0.
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The value of Z can be used to justify whether the structure satisfies the performance requirements or not. So

Z is termed as the performance function and call the following equation,

Z ¼ R� S ¼ 0; ð17:2Þ

as the limit state equation of the structure.

As R and S are dependent on more basic random variables (e.g. geometric sizes of structures, sectional

dimensions of structural members, material properties and so on), the more general expression of structural

performance function becomes

Z ¼ gðX1;X2; . . . ;XnÞ; ð17:3Þ

where X1;X2; . . . ;Xn are the basic random variables.

17.1.3 Limit State of Structures

The limit state is the critical state in which the structures become disabled from reliable. When the whole

structure or part of the structure in a certain state cannot satisfy a performance requirement specified in the

design for structural reliability, this state is the limit state corresponding to the performance requirements.

There are two types of structural limit states. One is for load-carrying capacity and the other for

serviceability.

17.1.3.1 Load-carrying capacity limit state

Load-carrying capacity limit states for structural system or structural members includes.

(1) losing equilibrium for the overall structure or part of the structure as a rigid body (e.g. overturning);

(2) exceeding material strength of structural members or connections due to static and dynamic loads;

(3) becoming a mechanism from the overall structure or part of the structure;

(4) losing stability as the overall structure or individual members (e.g. buckling in compression).

17.1.3.2 Serviceability limit state

Serviceability limit states for structural system or structural members includes

(1) the structural deformation affecting the normal utility of the structure;

(2) the local damage (e.g. cracking) affecting the normal utility and durability of the structure;

(3) the structural vibration affecting the normal utility of the structure;

(4) the other states specified affecting the normal utility of the structure.

17.1.4 Structural Reliability

Structural reliability is the probabilistic measurement of structural integrity and serviceability, which can be

defined more precisely as the probability that the structure satisfies performance requirements specified in

specified time and under specified conditions.

In the above definition, the specified time generally refers to the benchmark period for structural design.

In the codes of many countries for structural design, the benchmark period or the specified time is taken as

50 years for normal structures. Moreover, the specified conditions actually mean the conditions of normal
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design, normal construction and normal use, excluding the man-made errors in the design, construction and

use of the structure affecting the structural reliability.

If the probabilistic density function of Z is fZðZÞ, the structural reliability ps can be calculated as

ps ¼ PfZ � 0g ¼
Z 1

0

fZðZÞ dZ: ð17:4Þ

Let pf denote the structural failure probability, which can be expressed as

pf ¼ PfZ < 0g ¼
Z 0

�1
fZðZÞ dZ: ð17:5Þ

As event fZ < 0g and event fZ � 0g are completely opposite, therefore

ps þ pf ¼ 1; ð17:6Þ

or

ps ¼ 1� pf : ð17:7Þ

Structural failure probability is more straightforward and concerned in structural design so that it is

calculated generally in reliability assessment of engineering structures.

If the probabilistic density functions of structural resistance, R, and load effect, S, are fRðRÞ and fSðSÞ,
respectively, and R, S are independent of each other, fZðZÞ becomes

fZðZÞ ¼ fZðR; SÞ ¼ fRðRÞ � fSðSÞ; ð17:8Þ

and the failure probability is obtained as

pf ¼ PfZ < 0g ¼ PfR� S < 0g ¼
ZZ

R�S<0

fRðRÞ � fSðSÞdRdS: ð17:9Þ

In Equation (17.7), performing integration along R at first leads to

pf ¼
Z þ1
�1

Z þ1
R

fSðSÞdS

� �
fRðRÞdR

¼
Z þ1
�1

1�
Z R

�1
fSðSÞdS

� �
fRðRÞdR

¼
Z þ1
�1
½1� FSðRÞ� fRðRÞdR:

ð17:10Þ

Performing integration along S at first leads to

pf ¼
Z þ1
�1

Z S

�1
fRðRÞdR

� �
fSðSÞdS

¼
Z þ1
�1

FRðSÞfSðSÞdS;

ð17:11Þ

where FRð�Þ and FSð�Þ are the probabilistic distribution functions of random variables, R and S, respectively.

It can be found from Equation (17.9) that as structural resistance R and load effect S are random variables,

the absolutely reliable structure ( pf ¼ 0 or ps ¼ 1) does not exist. From the viewpoint of probability, the aim

of structural design is to make ps sufficiently large or make pf sufficiently small, to the extent which can be

accepted.
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17.1.5 Reliability Index

Assume that in the structural performance function Z ¼ R� S, R and S are normal random variables

uncorrelated. The mean values and standard variances of R and S are �R; �S and �R; �S, respectively. Based

on the probabilistic theory knowledge, Z is also a normal random variable and its mean and standard

variance are

�Z ¼ �R � �S; ð17:12Þ

�Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

R þ �2
S

q
: ð17:13Þ

Then the structural failure probability is

pf ¼ PfZ < 0g ¼ P
Z

�Z

< 0

� �
¼ P

Z � �Z

�Z

< ��Z

�Z

� �
: ð17:14Þ

If

b ¼ �Z

�Z

; ð17:15Þ

Y ¼ Z � �Z

�Z

; ð17:16Þ

one has

pf ¼ PfY < �bg ¼ �ð�bÞ; ð17:17Þ

where Y is the standardized normal random variable and � is the standard normal distribution function.

Substituting Equation (17.15) into Equation (17.14) yields

pf ¼ PfZ < �Z � b�Zg: ð17:18Þ

Equation (17.18) can be illustrated with Figure 17.1. When b reduces, the area of the hatched part in

Figure 17.1 and therefore the failure probability, pf , increases, whereas this area and pf reduce if b increases.

This indicates that b is a quantitative index of the structural reliability and is defined as the structural

reliability index.

Substituting Equations (17.12) and (17.13) into Equation (17.14) results in the expression of b for the

case that R and S are normal random variables uncorrelated, given by

b ¼ �R � �Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

R þ �2
S

p : ð17:19Þ

zµ

zβσ

O

Pf

Z

Probabilistic density

Figure 17.1 Reliability index versus failure probability
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If R and S are log-normal random variables uncorrelated, Equation (17.14) becomes

pf ¼ PfZ < 0g ¼ PfR� S < 0g ¼ PfR < Sg

¼ P
R

S
< 1

� �
¼ P ln

R

S
< ln 1

� �

¼ Pfln R� ln S < 0g:

ð17:20Þ

As ln R and ln S are normal random variables, the structural reliability index in this case can be obtained

with

b ¼ �ln R � �ln Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ln R þ �2
ln S

q ; ð17:21Þ

where �ln R; �ln S are mean values and �ln R; �ln S are standard variances of ln R and ln S, respectively. It has

been proved that the statistics of ln X (assuming that X is the log-normal random variable) are

�ln X ¼ ln�X �
1

2
lnð1þ �2

XÞ; ð17:22Þ

�ln X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ �2

XÞ
q

; ð17:23Þ

where �X is the coefficient of variation of X.

With Equations (17.22) and (17.23), the expression of b for the case that R and S are log-normal random

variables uncorrelated is obtained as

b ¼
ln
�R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

S

p
�S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

R

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1þ �2

RÞð1þ �2
SÞ

� �q : ð17:24Þ

When the basic random variables are not normal or log-normal distribution or the performance function

is not linear, it is difficult to explicitly express the reliability index with statistics of basic variables. In such a

condition, b can be calculated by using the structural failure probability with Equation (17.17), i.e.

b ¼ ���1ðpfÞ; ð17:25Þ

where ��1ð�Þ is the inverse distribution function of the standard normal variable.

A group of corresponding values between b and pf are listed in Table 17.1.

17.2 THE FIRST-ORDER SECOND-MOMENT (FOSM) METHODS FOR
STRUCTURAL RELIABILITY ASSESSMENT

The definition of the structural reliability index is based on the distribution function of the basic random

variables. If the variables are normally distributed and the performance function of the structure is linear,

Table 17.1 Corresponding values of reliability index b with failure probability pf

b 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

pf 1.59�10�1 6.68 � 10�2 2.28 � 10�2 6.21 � 10�3 1.35 � 10�3 2.33 � 10�4 3.17 � 10�5 3.40 � 10�6
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then it has a simple expression with only the statistics of the variables. In reality, however, the problem

becomes much complicated. For example, the structural performance function is usually nonlinear and in

many cases the variables are non-normally distributed. In such conditions, as mentioned above, the exact

reliability index cannot be calculated directly. However, if the reliability index can be approximately

estimated with the statistics of basic random variables, it is useful in engineering practice. The FOSM

method is such a method relying on only the first and second moments of the basic random variables to

estimate the reliability index. Two FOSM methods, the central point method and the design point method,

are to be introduced in this section.

17.2.1 Central Point Method

The central point method was proposed in the early stage of structural reliability study. Its principle is to

expand the structural performance function at the mean values of basic variables, called as the central point,

as Taylor’s series and retain only the first term at first and then calculate the mean and variance of the

performance function approximately. Finally, the reliability index is expressed directly with the mean and

variance of the performance function.

17.2.1.1 Linear performance function

Assume the performance function as

Z ¼ a0 þ
Xn

i¼1

aiXi; ð17:26Þ

where a0; ai (i ¼ 1; 2; . . . ; n) are known coefficients and Xi is the random variables in the performance

function.

The mean and standard variance of the performance function are

�Z ¼ a0 þ
Xn

i¼1

ai�Xi
; ð17:27Þ

�Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðai�Xi
Þ2

s
: ð17:28Þ

According to the central limit principle, the distribution of the performance function approaches to the

normal distribution with the increase in the number of the random variables in the performance function. So,

when n is a large number, the reliability index can be approximately calculated with

b ¼ �Z

�Z

¼
a0 þ

Pn
i¼1

ai�XiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðai�Xi
Þ2

s : ð17:29Þ

And the structural failure probability can be determined with Equation (17.17).

17.2.1.2 Nonlinear performance function

Generally, the structural performance function is nonlinear. Assume

Z ¼ gðX1;X2; . . . ;XnÞ: ð17:30Þ
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Expand the performance function at the mean values of the basic variables as the Taylor’s series and

retain only the first (linear) term as

Z � gð�X1
; �X2

; . . . ; �Xn
Þ þ

Xn

i¼1

@g

@Xi

����
�X

ðXi � �Xi
Þ; ð17:31Þ

where the subscribe, �X , indicates the assignment of the basic variables with the mean value.

So, the mean and standard variance of performance function become

�Z ¼ gð�X1
; �X2

; . . . ; �Xn
Þ; ð17:32Þ

�Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

@g

@Xi

����
�X

�Xi

 !2
vuut : ð17:33Þ

And the reliability index is approximately obtained with

b ¼ �Z

�Z

¼ gð�X1
; �X2

; . . . ; �Xn
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

@g

@Xi

����
�X

�Xi

 !2
vuut

: ð17:34Þ

In the central point method, the reliability index can be expressed directly and no iteration is needed. But the

following two disadvantages are evident in this method:

(1) It does not consider the distribution type of random variables. Because the central point method is based

on variables normally distributed, for non-normal variables it makes error in predicting the reliability

index.

(2) For the nonlinear structural performance function, only the first linear term in Taylor’s expansion is

retained in the central point method so that its accuracy depends on the extent of discrepancy between

the linearized and the realistic limit state function. Although generally the central point is not at the

realistic limit state surface governed by the limit state equation with the performance function, the error

cannot be avoided.

17.2.2 Design Point Method

The design point method is an improvement over the central point method. The principles are as follows:

(1) For the nonlinear structural performance function, namely the limit state equation, gðXÞ ¼ 0, being a

nonlinear surface, the linearized approximation is not expanded at the central point but at one point

X� ¼ ½X�1 ;X�2 ; . . . ;X�n �
T

satisfying gðXÞ ¼ 0.

(2) Non-normal variable, Xi, is transformed into an equivalent normal variable at point X�, and the effect of

distribution type of the variable is therefore considered.

The point X� is called the design point.

Let

Z ¼ gðXÞ ¼ gðX1;X2; . . . ;XnÞ: ð17:35Þ

Transform X space to X̂ space by

X̂i ¼
Xi � �Xi

�Xi

; ð17:36Þ
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and the performance function in X̂ space is then

Ẑ ¼ ĝðX̂Þ ¼ ĝðX̂1; X̂2; . . . ; X̂nÞ: ð17:37Þ

In X̂ space, the tangent plane equation of Ẑ ¼ 0 at the point X̂
� ¼ ½X̂�1; X̂

�
2; . . . X̂

�
n�

T
corresponding to the

design point X� is

ĝðX̂�1; X̂
�
2; . . . X̂

�
nÞ þ

Xn

i¼1

@ĝ

@X̂i

����
X̂
�
ðX̂i � X̂

�
i Þ ¼ 0: ð17:38Þ

As X� is one of points on the surface of Ẑ ¼ 0, i.e.

ĝðX̂�1; X̂
�
2; . . . X̂

�
nÞ ¼ 0; ð17:39Þ

the tangent plane equation is simplified to

Xn

i¼1

@ĝ

@X̂i

����
X̂
�
ðX̂i � X̂

�
i Þ ¼ 0: ð17:40Þ

Actually the distance from the origin of the coordinates in X̂ space to the tangent plane defined by

Equation (17.40) is the reliability index desired (Li, 1985), i.e.

b ¼
�
Pn
i¼1

@ĝ

@X̂i

����
X̂
�
X̂
�
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

@ĝ

@X̂i

����
X̂
�

	 
2
s : ð17:41Þ

Let

ai ¼
� @ĝ

@X̂i

����
X̂
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

@ĝ

@X̂i

����
X̂
�

	 
2
s : ð17:42Þ

It can be proved that ai is the directional cosine from the origin to the design point X� in X̂ space. Hence,

one has

X̂
�
i ¼ aib: ð17:43Þ

Returning to X space, one has

X�i ¼ �Xi
þ aib�Xi

; ð17:44Þ

because

@ĝ

@X̂i

����
X̂
�
¼ @g

@Xi

����
X�
�Xi
: ð17:45Þ

Substituting Equation (17.45) into Equation (17.42) leads to

ai ¼
�
Pn
i¼1

@g

@Xi

����
X�
�XiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

@g

@Xi

����
X�
�Xi

	 
2
s : ð17:46Þ
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In addition, the design point X� satisfies

gðX�1 ;X�2 ; . . . X�nÞ ¼ 0: ð17:47Þ

There are 2nþ 1 simultaneous equations provided by Equations (17.44), (17.46) and (17.47), which can

be used to solve X�i ; ai (i ¼ 1; 2; . . . ; n) and b, a total of [Pallavi1]2nþ 1 unknowns. As gð�Þ ¼ 0 is usually

nonlinear, iterative technique is needed to obtain the final results of the unknowns.

If any variable Xi is non-normal, it should be transformed to the equivalent normal variable X
0

i at the

design point X� (see Figure 17.2) to estimate the reliability index with Equation (17.41).

According to the condition for the same value of probabilistic distribution functions at the design point

X�, one has

FiðX�i Þ ¼ �
X�i � �X0

i

�X0
i

" #
; ð17:48Þ

from which it can be derived that

�X0
i
¼ X�i � ��1½FiðX�i Þ��X0

i
: ð17:49Þ

According to the condition for the same value of probabilistic density functions at the design point X�,
one has

fiðX�i Þ ¼
1

�X0
i

�
X�i � �X0

i

�X0
i

" #
; ð17:50Þ

from which it can be derived that

�X0
i
¼ �

X�i � �X0
i

�X0
i

" #,
fiðX�i Þ ¼ �f��1½FiðX�i Þ�g=fiðX�i Þ; ð17:51Þ

where �ð�Þ and ��1ð�Þ are respectively the distribution function of the standard normal variable and its

inverse function; and �ð�Þ is the density function of the standard normal variable.

The general calculation procedure of the design point method for determining the structural reliability

index can be summarized as follows:

(1) Express the performance function in the form of gðX1;X2; . . . ;XnÞ ¼ 0, and determine the distribution

type and statistics of all the basic random variables.

( ) ( )
X i i

f X f X

X i i
( ) ( )F X F X

'

* *

i i
X

=

'

* *

i i
X

=

( )
i

X i
f X

i
Xi

X
m

'
i

X
m

Non-normal  distribution 

Figure 17.2 Conditions of equivalent normal distribution
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(2) Assume the initial values of X�i and b. Generally, the mean value of Xi is taken as the initial value of X�i .

(3) For non-normal random variable Xi, calculate the mean, �X
0
i
, and standard variance, �X

0
i
, of the

equivalent normal variable, X
0
i , according to Equations (17.49) and (17.51), and replace the correspond-

ing values, �Xi
and �Xi

, of the original variable, Xi.

(4) Calculate the directional cosine, ai, according to Equation (17.46).

(5) Solve the reliability index, b, using Equation (17.47) with Equation (17.44).

(6) Update X�i with Equation (17.44).

(7) Repeat steps (3)–(6) until the error of the updated X�i is allowable.

17.3 EFFECTS OF CORRELATION AMONG RANDOM VARIABLES

The reliability calculation mentioned above is based on the independence among random variables in the

structural performance function considered. In reality, those random variables affecting the structural

reliability are possibly correlated. For example, correlation exists between the earthquake effect and the

gravity effect on internal forces in the structure, and also between structural member sizes and material

properties. It is therefore necessary to consider variable correlation in structural reliability calculation.

Let the structural performance function be

Z ¼ gðX1;X2; � � � ;XnÞ;

and assume the correlation factor between the two arbitrary variables Xi and Xj to be rij (when

i 6¼ j; jrijj � 1; when i ¼ j; rij ¼ 1 ). The reliability index can be approximately determined with

b � �Z

�Z

¼ gð�X1
; �X2

; . . . ; �Xn
ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Pn
j¼1

@g

@xi

	 ����
x¼�

@g

@xj

����
x¼�

rij�xi
�xj



:

s ð17:52Þ

It can be proven that only when gð�Þ is a linear expression and all random variables are normal

distributed, Equation (17.52) is the exact expression for b, otherwise it is an approximate one.

17.4 STRUCTURAL SYSTEM RELIABILITY AND BOUNDARY THEORY

As the load-bearing limit state of structures corresponds to structural safety and is generally more important

than the limit state of structural serviceability, in the remaining part of this book, the structural reliability is

mainly referred to as the load-bearing limit state.

Structural reliability comprises structural component or member (including connections) reliability and

structural system reliability. Structural member reliability is based on the limit state of member failure, and

structural system reliability is based on the limit state of overall structure failure. As the overall structure

failure must be initiated from member failure, structural system reliability is necessarily related to structural

member reliability. This section will introduce the basic concepts of the system reliability and the upper–

lower boundary method.

17.4.1 Basic Concepts

17.4.1.1 Failure feature of structural member

Due to the material property and feature of load applied, the members (connection can be taken as a

particular member) comprising the structure can be divided into brittle or ductile types.

302 STRUCTURAL SYSTEM RELIABILITY CALCULATION



A brittle member is the one that loses its function completely once failure occurs. For example, a

reinforced concrete column in compression loses its load-bearing capacity once failure occurs.

A ductile member is the one that still maintains its function even when failure occurs. For example, a

member made of steel with yielding plateau in tension or in bending can still retain load-bearing capacity

even when yielding achieves.

Brittle or ductile members have different effects on structural system reliability.

17.4.1.2 Failure model of structural system

A structure is made of individual members. The different way for the members to form the structure and the

different failure feature that the members possess will lead to different structural failure modes. Three basic

failure models of structural system can be concluded as serial model, parallel model and serial–parallel

model.

(1) Serial model

If any one of the structural members fails, the entire structure fails; the structure can be logically

represented by the serial model.

All of the static-determinant structures can be represented with the serial model. For a static-determinant

truss shown in Figure 17.3, each member can be taken as one component of the serial model and the system

fails once any one of the components consisting of the system fails. No matter whether the members in the

static-determinant structures are brittle or ductile, the structural system reliability is not influenced.

(2) Parallel model

If after one or more than one member failures, the structural function can still be retained by the members

left alone or together with the members failed with ductile failure feature, this structure can be logically

represented with the parallel model. Failure of redundant structures can be represented with the parallel

model. Each column in the multispan bent frame, shown in Figure 17.4, is one component in the parallel

model, and only after all of the columns fail, the structural system fails. As for the steel beam with fixed ends,

shown in Figure 17.5, only after three plastic hinges at the mid-span and the two ends have produced, the

beam fails. If a plastic hinge is regarded as one component in a parallel system, the steel beam can also be

modelled with the parallel model.

p

S S

p p

Figure 17.3 Static-determinant truss and serial model

Figure 17.4 Bent frame structure and parallel model
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The structural reliability of a parallel system is influenced by the failure feature (brittle or ductile) of the

members consisting of the structural system. Although brittle members have no contribution after failure,

failure sequence of members should be taken into account in calculation of structural system reliability.

Ductile members, however, sustain their function after failure so that only the final failure mode of the

structure need to be considered in the structural system reliability determination.

(3) Serial–parallel model

If the final failure mode of a redundant structure comprising ductile members is not unique, the structure

can be represented with the serial–parallel model.

Plastic hinge mechanism is the failure mode of the single-span single-storey steel frame shown in Figure

17.6. There are a total of [Pallavi2]three plastic hinge modes possible (see Figure 17.6), and once any one of

the three modes occurs, the frame collapses. So, the frame can be actually represented with a serial model

comprising three subparallel models, namely the serial–parallel model.

In weakly redundant structures comprising brittle members, when one member collapses, the failure

probability of the other members will increase rapidly and the structural redundancy hardly improves the

structural system reliability. So, for this kind of structures, the subparallel components can be simplified to

only one component and structures can be represented with the serial model.

17.4.1.3 Correlation among member failure and failure modes

The reliability of a structural member depends on the load effect on the member and the corresponding

resistance of the member. Within one structure, the load effect of each member is from the same load so that

Figure 17.5 Steel beam with fixed ends and parallel model
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Figure 17.6 Plastic hinge mechanism of frame and serial–parallel model
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load effects of different structural members are highly correlated. Additionally, all or parts of structural

members are probably made of the same batch of steel so that resistances of different structural members are

also correlated. So, failures of different structural members correlate each other.

As shown in Figure 17.6, different failure modes of a redundant structure generally include the same

member failure. It is therefore necessary to consider the correlation among failures of different members in

the assessment of structural system reliability.

Due to the correlations discussed above, evaluation of structural system reliability becomes very

complicated and difficult.

17.4.2 Upper–Lower Boundary Method

In particular cases, the structural system reliability can be calculated with the structural member reliability

based on probabilistic theory. Denote the safe state of a structural member with Xi, the failure state of the

member with �Xi, the failure probability of the member with Pfi and the failure probability of the structural

system with Pf for the following discussion.

17.4.2.1 Serial system

As for a serial structural system, when safe states of components are independent, one has

Pf ¼ 1� P

	Yn

i¼1

Xi



¼ 1�

Yn

i¼1

ð1� PfiÞ: ð17:53Þ

When the safe states of components are fully and positively correlated, the failure probability of the system

is

Pf ¼ 1� Pðmin
i21;n

XiÞ ¼ 1�min
i21;n
ð1� PfiÞ ¼ max

i21;n
Pfi; ð17:54Þ

where n is the number of the components consisting of the system.

Generally, a realistic structural system falls within the above two extreme cases. The failure probability

of a real serial system is therefore between the above two results, namely

max
i21;n

Pfi � Pf � 1�
Yn

i¼1

ð1� PfiÞ: ð17:55Þ

It can be observed that the reliability of static-determinant structures is always less than or equal to the

minimum reliability of structural members.

17.4.2.2 Parallel system

For a parallel structural system, when the safe states of components are independent, one has

Pf ¼ P
Yn

i¼1

�Xi

 !
¼
Yn

i¼1

Pfi: ð17:56Þ

When they are fully and positively correlated, the failure probability of the system becomes

Pf ¼ Pðmin
i21;n

�XiÞ ¼ min
i21;n

Pfi: ð17:57Þ

So, generally

Yn

i¼1

Pfi � Pf � min
i21;n

Pfi: ð17:58Þ
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It can be found from the above analysis that the system reliability of a redundant structure is always

greater than or equal to the maximum member reliability if the failure mode of the structure is unique.

However, if the structure has several failure modes, the reliability of each failure mode is always greater than

or equal to the maximum member reliability whereas the system reliability of the structure is always less

than or equal to the minimum reliability of various structural failure modes.

17.5 SEMI-ANALYTICAL SIMULATION METHOD
FOR SYSTEM RELIABILITY

By the above discussion, there is some relationship between structural system reliability and member

reliability. In the past, many efforts have been made and some methods have been proposed to calculate the

system reliability with the reliabilities of the member consisting of the system. However, such methods are

difficult in practical application, the reasons of which are as follows:

(1) Generally, a realistic structure has many members so that it is hard to correlate all the failure modes of

the structural system with the failure of the structural member;

(2) System reliability is influenced by the correlation among member failure and among failure modes of

the structural system. The calculation of the system reliability may become too complicated to consider

the above correlation;

(3) When the effect of geometric nonlinearity on structural system failure is not negligible (e.g. steel frames

are such systems), the relationship between the system failure mode and the failure of members is hard

to be established explicitly.

To overcome the above difficulties, a semi-analytical simulation method is proposed in this section for

calculating structural system reliability, where the performance function of a structural system is expressed

with the simplest form of load and system resistance, and the random simulation technique, approximate

probability fitting and the design point method are employed.

17.5.1 General Principle

The performance function for the reliability assessment of a structural system can be generally written as

G ¼ R� S; ð17:59Þ

where R and S represent the structural resistance and the corresponding load on the structure, respectively.

As the probabilistic statistics of the load S can be found in the load codes, FOSM methods can be applied to

Equation (17.59), and the failure probability or reliability index of the structural system can be obtained,

provided that the probabilistic feature and statistics of the structural resistance are determined. So, the

structural system reliability assessment can be reduced to sufficiently simulate the probabilistic character-

istics of the structural resistance, R, under the corresponding load S applied.

In this section, the probabilistic characteristics of the structural resistance, R, is determined with random

sampling approach. The Monte Carlo sampling strategy is used to determine the strength of the material and

the geometrical sizes of a sample structure according to the probabilistic characteristics of the strength of the

material and the geometrical sizes of the structure considered, which are normally available. By implement-

ing analysis of the ultimate load-bearing capacity of the sample structure subjected to the load, S, using the

knowledge introduced in Part One of this book, a sample of the structural resistance, R, is obtained. Many

samples of R may result in the statistics of R, which may further lead to the probabilistic density function of

R approximately.

In the following sections are discussed various techniques of random sampling for random variables and

approximation of the probabilistic density function of random variables using their statistics.
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17.5.2 Random Sampling

17.5.2.1 Systematic sampling (SS)

Let fxig; i ¼ 1; 2; . . . ;N, denote a set of independent realizations of the random variable, X. Fractile

constraints employed as sampling rule in systematic sampling hold

FðxiÞ ¼
2i� 1

2N
; ði ¼ 1; 2; . . . ;NÞ; ð17:60Þ

where Fð�Þ is the cumulative distribution function of the random variable, X (Melchers, 1987).

For a random vector �X ¼ fX1;X2; . . . ;XKg, the components of which are independent, let xjk be the jth

simulated value of the kth component of �X. Define �P ¼ fpjkg to be an N � K matrix, each column of which

is an independent random permutation of f1; 2; . . . ;Ng. Then xjk is obtained by

FkðxjkÞ ¼
2pjk � 1

2N
; ð j ¼ 1; 2; . . . ;N; k ¼ 1; 2; . . . ;KÞ; ð17:61Þ

where Fkð�Þ is the cumulative distribution function of Xk.

17.5.2.2 Updated system sampling (USS)

Matrix �P in system sampling is produced randomly, which makes it possible to introduce statistic correlation

among each column of �P and reduce the efficiency of sampling. A method to improve statistic correlation

was proposed by Florian (1992), where Spearman parameter is used to describe such column correlation of
�P. The definition is

Tij ¼ 1�
6
P

k

ðRki � RkjÞ2

NðN � 1ÞðN þ 1Þ ; ðk ¼ 1; 2; . . . ;N; i; j ¼ 1; 2; . . . ;KÞ; ð17:62Þ

where Tij is Spearman parameter between the input variables i and j, the value of which is within [�1, 1], and

Rki and Rkj are the random numbers in column i and column j of row k in matrix R.

Let R be the random number matrix in sampling and T the column correlation matrix of R. The element

Tij (i; j ¼ 1; 2; . . . ;K) is the Spearman parameter of column i and column j of R. Evidently, T is symmetric

and is equal to unit matrix when each column is fully independent. When T is a positive determinant, its

Cholesky partition is

T ¼ Q � QT; ð17:63Þ

where Q is the lower triangular matrix. Let

S ¼ Q�1; ð17:64Þ

and make transformation

Rs ¼ R � ST: ð17:65Þ

The correlation between various columns of the matrix, Rs, can be described with Ts. It can be proven that

Ts is closer to unit matrix I than T . In other words, the difference between the corresponding elements of Ts

and I is less than that between the corresponding elements of T and I. The column correlation of the random

number produced according to Rs is therefore improved.

An example with random number and sample size is given in Table 17.2. The matrix of T for the random

numbers sampled as shown in Table 17.2 is listed in Table 17.3, which shows improvement of the column

correlation after modifications.
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17.5.2.3 Antithetic variates (AV)

In AV, negative correlation between different cycles of simulation is induced in order to improve the

simulation efficiency (Ayyub and Haldar, 1984). If r is the random number uniformly distributed in the

interval [0, 1] and is used to determine the estimator, Z1, the random number 1� r can be used in another run

to obtain Z2 and an improved estimator for the random variable, Z, could be given as AV by

Z ¼ 1

2
ðZ1 þ Z2Þ: ð17:66Þ

17.5.2.4 Combined sampling technique

Simulation of AV simulation is very easy to combine with direct Monte Carlo simulation or other variance-

reduction techniques. In this chapter, the Monte Carlo simulation by combining updated systemic sampling

with AV is employed to sample the structural resistance of structural systems. Numerical examples will show

that this combination can improve the efficiency of the Monte Carlo simulation.

17.5.2.5 Treatment of correlated random variables

The effects of possible correlation between random variables in structural reliability analysis should be

considered in certain cases. Generally, the correlated variables can be transformed to a set of uncorrelated

variables by using an orthogonal matrix consisting of eigenvectors of the covariance matrix of the basic

random vectors. In this method, series of independent random numbers need be converted to dependent ones

in Monte Carlo simulation, and the transformation for a standard normal vector with covariance was

provided by Melchers (1987).

Table 17.2 Random number matrix for K¼ 5 and N¼ 10

Number of Non-modified Modified, 1st iteration Modified, 2nd iteration

samples Variables Variables Variables

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 4 1 2 5 8 4 1 3 2 10 4 1 3 2 10

2 1 9 10 1 9 1 10 8 3 7 1 10 8 3 7

3 5 6 9 3 7 5 6 9 5 2 5 6 9 5 2

4 7 3 4 7 1 7 2 6 6 1 7 2 6 6 1

5 10 5 8 4 10 10 4 10 4 9 10 4 10 4 9

6 6 8 6 10 4 6 8 5 10 8 6 8 5 10 8

7 9 10 3 2 6 9 9 2 1 4 9 9 2 1 3

8 2 2 7 6 5 2 3 7 7 3 2 3 7 7 4

9 8 7 5 9 3 8 7 4 9 6 8 7 4 9 6

10 3 4 1 8 2 3 5 1 8 5 3 5 1 8 5

Table 17.3 Correlation matrix of random numbers10

Variables

Non-modified

Variables

Modified, 1st iteration

Variables

Modified, 2nd iteration

Variables

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1.00 0.26 –0.14 0.10 –0.02 1.00 0.02 0.02 –0.07 0.05 1.00 0.02 0.02 –0.07 –0.03

2 0.26 1.00 0.32 –0.27 0.15 0.02 1.00 –0.02 0.01 0.04 0.02 1.00 –0.02 0.01 –0.03

3 –0.14 0.32 1.00 –0.42 0.54 0.02 –0.02 1.00 –0.08 –0.05 0.02 –0.02 1.00 –0.08 0.01

4 0.10 –0.27 –0.42 1.00 –0.73 –0.07 0.01 –0.08 1.00 –0.13 –0.07 0.01 –0.08 1.00 –0.05

5 –0.02 0.15 0.54 –0.73 1.00 0.05 0.04 –0.05 –0.13 1.00 –0.03 –0.03 0.01 –0.05 1.00
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If the desired dependent variables are non-normal, the treatment of approximate transformation to

equivalent variables with normal distribution (Hohenbichler and Rackwitz, 1981) can be made at first and

then the linear transformation aforementioned can be done.

17.5.3 Exponential Polynomial Method (EPM)

The EPM (Er, 1998) is employed in this chapter to fit the probability density function (PDF) of the structural

resistance, R. EPM is, in fact, a method based on the principle of approximating a numerically specified

probability distribution with maximum entropy probability distribution (Kapur, 1994).

For a standardized random variable X, its PDF, f ðxÞ, could be written by the truncated form of

exponential polynomial as

f ðxÞ ¼ c � eQnðxÞ; ð17:67Þ

where

QnðxÞ ¼
Pn
i¼1

aix
i x 2 ½a; b�ð Þ

�1 ðx =2½a; b�Þ

8<
: ;

c ¼ 1

Rb
a

eQnðxÞ � dx

:

Experience shows that the contribution of eQnðxÞ to the normalizing constant, c, becomes negligible as the

value of x is greater than 4� or less than�4�, where � denotes the standard deviation of X. Hence, the values

of a and b can be set to �4� and 4�, respectively, in the numerical practice.

In Equation (17.67), ai ði ¼ 1; 2; . . . ; nÞ are progressive coefficients and can be determined by using the

first 2ðn� 1Þth moments of the random variable by
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where ~�i denotes the ith moment of X and ~�0 ¼ 1. Equation (17.71) indicates that the number of moments of

X needed for unique determination of the n unknown parameters ai is 2ðn� 1Þ.
Numerical examples (Er, 1998) showed that the EPM-estimated PDF with n ¼ 4 has sufficient accuracy.

Those examples demonstrated as well that EPM-estimated PDF has satisfactory tail behaviour, which is very

important in structural reliability assessment due to the small failure probability of structural systems.

17.6 EXAMPLE

17.6.1 A Steel Beam Section

Consider the elastic limit state in bending of a steel beam to study the efficiency of different sampling

techniques. The structural performance function is

Z ¼ fyS�M; ð17:69Þ

where fy is the steel yielding strength, S is the elastic section modulus and M is the bending moment applied.

The statistics of each random variable are listed in Table 17.4.

The failure probability of the beam for distribution type I is 1:183� 10�3 by direct Monte Carlo

simulation (DMCS) with sample size of 2� 105, and that for the distribution type II is 3:196� 10�3 by

DMCS with sample size of 1� 105. The DMCS results will be used as exact solution in this chapter.
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Four sampling techniques are used to compare the efficiency of sampling. They are SS, USS, SSþAV and

USSþAV. Ten times of calculations are conducted for each sampling technique with a sampling size of 500

for distribution type I and 300 for distribution type II, the results of which are given in Tables 17.5 and 17.6,

respectively. With the comparison listed, it can be found that combination of variance-reduction techniques

(the last three sampling methods) can improve the sampling efficiency and the best one is USSþAV.

Generally, the accuracy of sampling simulation increases with the sampling size. The results of sampling

size study for distribution types I and II, with the USSþAV sampling technique, are plotted in Figures 17.7

and 17.8. It can be observed that when sampling size achieves 300, the failure probability of the steel beam is

Table 17.4 Statistics of random variables of the steel beam

Variables Mean

Coefficient of

variation

Distribution

type I

Distribution

type II

Yielding strength (fy) 275.52 (MPa) 0.125 Normal Log-normal

Elastic section module (S) 8.19 � 10�4 (m3) 0.05 Normal Log-normal

Moment (M) 113 (kN m) 0.20 Normal Extreme type I

Table 17.5 Failure probability of the steel beam with sampling size of 500 for distribution type I case (�10�3)

Number of calculation SS method USS method SSþAV method USSþAV method

1 0.898 0.970 1.159 1.172

2 1.174 0.895 1.166 1.042*

3 1.276 1.043 1.041 1.185

4 1.186 1.138 1.169 1.187

5 1.700 1.275 1.144 1.173

6 1.253 0.994 1.158 1.182

7 1.023 1.236 1.251 1.326*

8 1.297 1.071 1.211 1.196

9 1.053 1.133 1.003 1.203

10 1.053 1.108 0.999 1.170

Mean 1.191 1.086 1.130 1.184

Standard variance 0.220 0.117 0.086 0.068

Coefficient of variation 0.184 0.108 0.076 0.057

Note: The values marked with * are maximum or minimum failure probability of the steel beam numerically obtained.

Table 17.6 Failure probability of the steel beam with sampling size of 300 for distribution type II case (�10�3)

Number of calculation SS method USS method SSþAV method USSþAV method

1 3.076 3.131 3.165 3.081

2 3.212 3.111 3.032 3.052

3 3.133 3.057 3.008 3.061

4 2.985 3.081 3.190 3.150*

5 3.075 3.040 3.055 3.109

6 2.995 3.092 3.014 3.037

7 3.048 3.153 3.150 3.031*

8 3.048 3.055 3.058 3.115

9 3.267 3.030 3.051 3.082

10 3.113 3.086 3.213 3.073

Mean 3.095 3.083 3.094 3.079

Standard variance 0.090 0.040 0.077 0.037

Coefficient of variation 0.029 0.013 0.025 0.012

Note: The values marked with * are maximum or minimum failure probability of the steel beam numerically obtained.
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Figure 17.7 Statistics of failure probability versus sampling size (distribution type I case)
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Figure 17.8 Statistics of failure probability versus sampling size (distribution type II case)
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Figure 17.9 Probabilistic density function, PDF, of moment resistance, R, of the steel beam (distribution type I case):

(a) for minimum failure probability; (b ) for maximum failure probability
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to be convergent. So, it is possible to use relatively small sampling size to achieve satisfactory accuracy in

estimating structural reliability, when the suitable sampling technique, such as USSþAV, is used.

The PDF of the moment resistance of the beam, R ¼ fyS, is given in Figures 17.9 and 17.10 for

distribution types I and II, respectively, where the maximum and minimum failure probabilities are

corresponding to the values in Tables 17.5 and 17.6 marked with asterisk. At the same time, the PDF of

log-normal distribution with the same mean value and variance as those by EPM are also plotted in

Figures 17.9 and 17.10. It can be observed that PDF by EMP is very close to that of log-normal distribution,

which agrees with the general assumption that the distribution of structural member resistance satisfies log-

normal type. The mean value and variance, and undeterminated parameters and integration (normalizing)

constant in EPM are listed in Tables 17.7 and 17.8.

The effect of correlation between material property and elastic section modulus on the failure probability

of the beam is demonstrated in Figure 17.11. It can be observed that positive correlation increases the failure

probability whereas negative correlation reduces failure probability in this study.

Table 17.7 The mean value, variance and parameters in EPM for distribution type I case

Parameters For minimum failure probability For maximum failure probability

�R (�105 N m) 2.2561 2.2568

�R (�105N m) 0.3007 0.3057

a1 �0.047 36 �0.048 03

a2 �0.4607 �0.5566

a3 0.016 55 0.014 59

a4 0.004 412 0.008 139

C 2.5541 2.4311

Table 17.8 The mean value, variance and parameters in EPM for distribution type II case

Parameters For minimum failure probability For maximum failure probability

�R (�105 N m) 2.2560 2.2566

�R (�105 N m) 0.2998 0.3041

a1 �0.2202 �0.2376

a2 �0.4732 �0.4194

a3 0.079 24 0.089 30

a4 �0.011 48 �0.021 60

C 2.5266 2.5959
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Figure 17.10 Probabilistic density function, PDF, of moment resistance, R, of the steel beam (distribution type II case):

(a ) for minimum failure probability; (b ) for maximum failure probability
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17.6.2 A Steel Portal Frame

In this example a steel portal frame, as shown in Figure 17.12, is investigated. Uncertainties of the frame are

represented by the limit yielding moments Mc and Mb respectively for the columns and the beam employed

in the portal frame. The statistics of Mc and Mb and those of the load, P, are given in Table 17.9, with

assumed normal distribution.

The limit state function of the portal frame can be expressed as

G ¼ R� S ¼ l � S� S; ð17:70Þ

where R ¼ l � S is the structural resistance (i.e. limit load-bearing capacity), S is the load effect including the

actions of the two concentrated loads, P and 2P, and l is the load factor.

Two different models for structural analysis are used to determine the structural resistance. One is the

second-order inelastic structural analysis and the other is the rigid-plastic structural analysis. Failure

probabilities of this frame with DMCS are Pf1
¼ 2:548� 10�3 (by second-order inelastic analysis model,
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Figure 17.12 A simple steel portal frame

Table 17.9 Statistics of the variable in the portal frame

Variables Mc Mb P

Mean value 75 kN m 150 kN m 20 kN

Coefficient of

variation

0.05 0.05 0.3

EXAMPLE 313



    (a) (b)

0.5

1.5

2.5

3.5

4.5

5.5

6.5

0 100 200 300 400

8

4( 10 )P −×

N

0.8

1.6

2.4

3.2

0 100 200 300 400

4

4( 10 )P −×

N

f

p

p

f

p

p

m

ss

m

Figure 17.13 Statistics of failure probability versus sampling size of the portal frame: (a) rigid-plastic analysis;

(b) second-order inelastic analysis
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Table 17.10 The mean, standard deviation and parameters in EPM-

estimated PDF for structural resistance of the portal frame

Parameters f1 f2

�R (kN) 37.25 40.00

�R (kN) 1.40 1.41

a1 0.015 90 0.0000

a2 �0.5182 �0.5001

a3 �0.0053 0.0000

a4 0.0007 0.0029

C 2.5007 2.4833

2.75

2.85

2.95

3.05

3.15

3.25

3.35

–1       – 0.5            0            0.5           1

Rigid-plastic analysis 

Second-order inelastic analysis

b

r

Figure 17.15 Effect of correlation on the system reliability of the portal frame



with 106 samples) and Pf2 ¼ 5:920� 10�4 (by rigid-plastic analysis model, with 107 samples). The

reliability index corresponding to Pf1 and Pf2
are b1 ¼ 2:800 and b2 ¼ 3:245, respectively. By comparing

the results of these two analysis models, one can find that large error may result from rigid-plastic analysis

(the failure probability is one power smaller than second-order inelastic analysis in this case) because it does

not consider material inelasticity and geometric nonlinearity. For steel frames, limit load-bearing capacities

are generally influenced by material and geometric nonlinearities. It is therefore necessary to adopt second-

order inelastic analysis model in reliability calculation of steel frames.

The variations of the mean and standard deviation of the failure probability of the portal frame with the

number of trials, obtained by simulations of SS with AV, are shown in Figure 17.13. It can be found that the

calculation is to be convergent from sampling size 400.

The EPM-based PDF curves of the structural resistance of the portal frame obtained by second-order

inelastic analysis (f1) and rigid-plastic analysis (f2) are given in Figure 17.14. The mean and standard

deviation of the structural resistance simulation and the parameters in the expression of EPM-estimated PDF

for the portal frame are listed in Table 17.10, and the corresponding curves f1 and f2 in Figure 17.14.

The effects of correlation, r, between Mc and Mb on the reliability index of the portal frame for the above-

mentioned two models of structural analysis are shown in Figure 17.15.
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18 System Reliability
Assessment of Steel
Frames

Significant random variables with existing statistics are used in this chapter to evaluate the system reliability

of steel frames, by the semi-analytical simulation method given in the last chapter, under two typical load

cases.

18.1 RANDOMNESS OF STEEL FRAME RESISTANCE

The randomness of the sectional resistance in the structural component is due to the randomness of material

properties, geometric dimension and analysis model. As for the randomness of the structural resistance for

steel frames, it becomes very complicated. In addition to the above three factors, structural imperfection

(both geometrical and mechanical imperfections) in the process of manufacture and instalment also produces

uncertainties to the structural resistance. For steel frame structures, it is recognized that the uncertainty of the

yielding strength of steel is the most principal factor contributing to the randomness of the structural

resistance. In this section, uncertainties of the sectional dimension and analysis model will also be involved

and other factors are ignored because little knowledge can be used in a practical assessment currently.

To clarify the basis of investigation, the following assumptions are made:

(1) The uncertainties of material properties are simplified and represented with no more than the uncertainty

of the yielding strength of steel. Other property parameters are treated as deterministic.

(2) The uncertainties of sectional dimensions are expressed only with that of section resisting modulus. In

other words, the uncertainties of sectional dimensions are considered to affect only bending stiffness,

not axial and shear stiffness, of frame members.

(3) A special random factor is introduced to consider the effect of the uncertainty of the analysis model on

the system reliability of steel frames.

(4) All random factors mentioned above, i.e. yielding strength of steel, section resisting modulus and

analysis model factor, are assumed to be satisfied with normal distribution.

By the initial and ultimate yielding equations introduced in Chapter 5, the initial yielding moment MsN and

ultimate yielding moment MpN of frame members coupled with the axial force depend on those moments in

pure bending, Ms and Mp, provided that the axial capacity of this member is deterministic. Furthermore,
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precluding randomness of the sectional plastic factor, �p, indicates that the uncertainty of Mp is actually

same as that of Ms because Mp ¼ �pMs. As Ms ¼ We � �s, it comprises two random factors, sectional

resisting modulus and yielding strength of steel, and becomes the unique random variable in the sampling of

the structural resistance for steel frames according to the assumption mentioned above.

The elastic resisting modulus We is a function of sectional dimensions, including breadth and thickness

of the section. The statistics of the dimensions of steel sections are listed in Table 18.1, and all of these

random variables are assumed to be satisfied with normal distribution. Based on the information in Table

18.1, the mean value and standard variance of elastic resisting modulus We can be calculated with the

function method. And the distribution of We can also be assumed to be normal because

(1) by �2 verification, We does not refuse the normal distribution and the D-value, which actually indicates

the discrepancy between realistic and analytical frequencies, is very small;

(2) the mean value and standard variance of We obtained with the quasi-normalization principle are very

close to those obtained with the function method.

In the reliability evaluation of steel frames with tapered members, a beam or column within one taper ratio is

assumed to be one ‘member’, and the randomness of each ‘member’ depends on elastic section modulus at

the two ends. For the tapered member generally used, with linearly varying web height and constant flange

breadth, the distribution of elastic section modulus along member length is a second-order function. If more

than one element is subdivided within one such ‘member’, the elastic section modulus of internal elements

can be calculated with the second-order interpolation.

The statistics of Q235 and Q345 steel are given in Table 18.1 according to different plate thicknesses

(Chen, Li and Xia, 1985; Dai et al., 2000). The yielding strength is assumed to be normally distributed.

The uncertainty parameters of the analysis model factor are also listed in Table 18.1 (Val, Bljuger and

Yankelevsky, 1997) and assumed to be normally distributed too.

18.2 RANDOMNESS OF LOADS

Consider two load cases, respectively, for steel portal frames and multi-storey steel frames, as shown in

Figure 18.1(a)–(d). In load cases (a) and (c), the incremental vertical loads are the dead and live loads; in

load case (b), the constant vertical load is the dead load and the incremental vertical and horizontal load is

the wind load; in load case (d), the constant vertical loads are dead and live loads, and the incremental

Table 18.1 Statistics of the fundamental variables influencing structural resistance of the steel frame

Mean/normal Coefficient of

Variables values variation

Geometric size Breadth 1.000 0.0135

Thickness 1.000 0.0350

Yielding strength Q235 steel t � 16 mm 1.070 0.081

16 mm < t � 40 mm 1.074 0.077

40 mm < t � 60 mm 1.118 0.066

60 mm < t � 100 mm 1.087 0.066

t � 16 mm 1.040 0.066

Q345 steel 16 mm < t � 35 mm 1.025 0.076

35 mm < t � 50 mm 1.125 0.057

50 mm < t � 100 mm 1.184 0.083

Factor of structural Vertical load 1.000 0.075

analysis model Vertical plus horizontal loads 1.000 0.075
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horizontal load is the wind load. The statistics of loads considered in the above load cases are listed in

Table 18.2 (Ellingwood and Galambos, 1981; Li, 1985).

18.3 SYSTEM RELIABILITY EVALUATION OF TYPICAL STEEL
FRAMES

Based on the information given in Tables 18.1 and 18.2, a practical evaluation on the system reliability of

steel portal frames and multi-storey frames can be made.

18.3.1 Effect of Correlation Among Random Variables

To determine the appropriate correlation parameters of random variables used in system reliability evalua-

tion, examine the effect of correlation parameters of random variables on the system reliability of steel

frames.
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Figure 18.1 Loading cases of steel frames considered: (a) steel portal frame subjected to vertical loads; (b) steel portal

frame subjected to horizontal and vertical loads; (c) multi-storey steel frame subjected to vertical loads; (d) multi-storey

steel frame subjected to horizontal and vertical loads

Table 18.2 Statistics of various loads

Mean/normal value Coefficient of variation Distribution type

Deal load 1.06 0.07 Normal

Live load 1.00 0.25 Extreme, type I

Wind load 1.00 0.193 Extreme, type I
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Evaluate the system reliability of a steel portal frame under vertical (dead and live) loads, as shown in

Figure 18.2, with the semi-analytical simulation method. The nominal values of yielding strength, dead load

and live load are 235 MPa, 50 kN/m and 50 kN/m, respectively. The sections of beams and columns are all

W8X31, and the elastic modulus of the material is 206 GPa. In the calculation of the structural system

resistance (structural limit load-bearing capacity), vertical dead and live loads are both incremental up to

system failure.

It is assumed that the yielding strength of steel is completely independent of elastic section modulus of

frame members, but correlation among yielding strengths or elastic section moduli of the different frame

members exists. The effects of such correlation on the system reliability of the steel portal frame are given in

Table 18.3, where r� denotes correlation among yielding strength of different steel members and rW denotes

correlation among elastic section modulus of different members.

The results in Table 18.3 show that r� has more impact on the system reliability index of steel portal

frames than rW, and the system reliability reduces with the increase of the correlation of yielding strength.

As in reality the material of the members for the same steel frame is generally from the same steel

production, the strong correlation of yielding strength can be accepted easily. Additionally, for the purpose

of conservative consideration, r� ¼ 1:00 will be adopted in the following investigations. Considering that

the deviation coefficient of the elastic section modulus of normal steel frame members ranges from 0.043 to

0.045, which is much less than that of the yielding strength of steel being 0.081, the effect of the correlation

of the elastic section modulus on the structural system reliability is small. Hence, the following values are

recommended for rW in evaluating the system reliability of steel frames, i.e. rW ¼ 0:0 for steel portal

frames and rW ¼ 0:5 for multi-storey steel frames.

18.3.2 Evaluation of Structural System Reliability Under Vertical Loads

18.3.2.1 Steel portal frame

Consider the load case as in Figure 18.1(a) and a steel portal frame with tapered beams and columns as

shown in Figure 18.3. The cross-sectional dimension of the flange of all the frame members is constantly

150 mm�6 mm, and the thickness of the web is 4 mm. The web height of the frame members varies linearly

3.526 m 

3.
52

6 
m

 

L

D

L – live load 

D – dead load

Figure 18.2 A steel frame used to study the correlation effect

Table 18.3 Effect of correlation of fundamental variables on the system reliability index of the steel portal frame

r�

rW 1.000 0.500 0.000

1.000 2.7231 2.8287 2.9274

0.500 2.7629 2.8728 2.9689

0.000 2.8178 2.9001 3.0150
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along the member length, and the governing values are given in Figure 18.3. In this steel portal frame

building, the column spacing is 6 m, and the nominal values of the vertical dead and live loads on the roof of

the building are 0.40 and 0.30 kN/m2, respectively. In the calculation of the structural system resistance (i.e.

structural limit load-bearing capacity) of the frame, the vertical dead and live loads are both gradually

increased up to the system failure of the frame.

Take the reference load as the sum of the nominal dead and live loads. As the ultimate load of the frame

can be expressed as the ultimate load factor multiplied with the reference load, the randomness of the frame

resistance can then be expressed as that of the ultimate load factor. By sampling the elastic resisting modulus

and yielding strength of the members comprising the frame, the mean value and standard variance of the

ultimate load factor of the frame are obtained through structural nonlinear analysis. The statistics and the

parameters for the EPM-estimated PDF curve of the ultimate load factor (see Figure 18.4) are given in

Table 18.4. The log-normal distribution curve with the same mean and variance values of the EPM-estimated

PDF is also plotted, both of which agree well in Figure 18.4.
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Figure 18.4 PDF of the ultimate load factor of the steel portal frame under vertical loads

Table 18.4 Statistics and parameters for the PDF curve of ultimate load factor of the steel portal frame under vertical

loads

M � a1 a2 a3 a4 c

1.9967 0.2224 �0.1112 �0.4592 0.039 29 –0.008 880 2.5535
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Simply applying the first-order second-moment (FOSM) design point method to performance function

Z ¼ R� D� L, the system reliability of the steel portal frame under vertical dead and live loads can be

determined. The reliability index and failure probability of the frame are equal to 3.8027 and 7:1562� 10�5,

respectively.

18.3.2.2 Steel multi-storey frame

Check a two-span three-storey steel frame, as shown in Figure 18.5, under vertical (dead and live) loads as

shown in Figure 18.1(c). The nominal value of steel yielding strength is 235 MPa. The values of the nominal

dead and live loads are both 60 kN/m on the first and second floors and 30 kN/m on the top floor (roof).

W16X50 is used for the frame beams and W16X67 is used for the columns. The steel elastic modulus is

206 GPa. In the calculation of the structural system resistance (structural limit load-bearing capacity) of the

frame, the vertical dead and live loads are both gradually increased up to the system failure of the frame.

Take the reference load as the sum of the nominal dead and live loads. By sampling, the mean value and

standard variance of the ultimate load factor of the frame are obtained to be 2.2209 and 0.2567, respectively.

The statistics and the parameters for the EPM-estimated PDF curve of the ultimate load factor (see Figure

18.6) are given in Table 18.5. The log-normal distribution curve with the same mean and variance values of

the EPM-estimated PDF is also plotted, both of which agree well in Figure 18.6.

As the performance function of the frame is Z ¼ R� D� L, the system reliability index of the frame

under the vertical dead and live loads can be easily obtained using the FOSM design point method. The
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Figure 18.5 A multi-storey steel frame
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Figure 18.6 PDF of the ultimate load factor of the multi-storey steel frame under vertical loads
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reliability index and the corresponding failure probability of the frame are b ¼ 3:8069 and

Pf ¼ 7:0366� 10�5, respectively.

18.3.3 Evaluation of Structural System Reliability Under Horizontal
and Vertical Loads

18.3.3.1 Steel portal frame

Consider the load case shown in Figure 18.1(b) and the steel portal frame shown in Figure 18.3. Wind

load is involved in the assessment of the system reliability of the frame. The nominal value of the basic

wind pressure is 0.50 kN/m2. The wind shape factor is determined according to the Chinese code (CECS,

2002). In the analysis of the ultimate load-bearing capacity of the frame, the vertical dead load remains

constant (equal to its nominal value) and the wind load keeps increasing up to the frame failure.

By sampling, the mean value and standard variance of the ultimate wind load factor of the frame are

4.0247 and 0.4420, respectively. The statistics and the parameters for the EPM-estimated PDF curve of the

ultimate load factor (see Figure 18.7) are given in Table 18.6. The log-normal distribution curve with the

same mean and variance values of the EPM-estimated PDF is also plotted, both of which agree well in

Figure 18.7.

Simply applying the FOSM design point method to the performance function Z ¼ R�W , the system

reliability of the frame under wind loads can be determined. The reliability index and failure probability of

the frame are equal to 5.3543 and 4:2944� 10�8, respectively.

Table 18.5 Statistics and parameters for the PDF curve of ultimate load factor of the multi-storey steel frame under

vertical loads

M � a1 a2 a3 a4 c

2.2209 0.2567 �0.0182 �0.5002 0.0061 0.0008 2.5061
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Figure 18.7 PDF of the ultimate wind load factor of the steel portal frame

Table 18.6 Statistics and parameters for the PDF curve of the ultimate wind load factor of the steel portal frame

M � a1 a2 a3 a4 C

4.0247 0.4420 �0.076 09 �0.4952 0.025 71 �0.001 738 2.5101
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18.3.3.2 Steel multi-storey frame

Check the load case in Figure 18.1(d) and the steel frame in Figure 18.5. Wind load, which is assumed to be

applied at beam–column joints of the frame, is to be introduced in the structural system reliability

evaluation. The nominal value of the wind load at the level of the first and second floors is 100 and

50 kN at the third floor. In the calculation of the structural system resistance (structural limit load-bearing

capacity), the vertical dead and live loads remain constant, whereas wind load is gradually increased up to

the system failure of the frame.

By sampling, the mean value and standard variance of the ultimate wind load factor of the frame are

2.7121 and 0.2903, respectively. The statistics and the parameters for the EPM-estimated PDF curve of the

ultimate wind load factor (see Figure 18.8) are given in Table 18.7. The log-normal distribution curve with

the same mean and variance values of the EPM-estimated PDF is also plotted, both of which agree well in

Figure 18.8.

As the performance function of the frame is Z ¼ R�W , the system reliability index of the frame under

both the horizontal and vertical loads can be obtained with the FOSM design point method. The reliability
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Figure 18.8 PDF of the ultimate wind load factor of the multi-storey steel frame

Table 18.7 Statistics and parameters for the PDF curve of the ultimate wind load factor of the multi-storey steel frame

� � a1 a2 a3 a4 c

2.7121 0.2903 �0.0627 �0.5019 0.0209 0.0007 2.5053

l =10 m

h 
=

 5
 m

Figure 18.9 A steel portal frame
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index and the corresponding failure probability of the frame are b ¼ 3:9813 and Pf ¼ 3:4272� 10�5 ¼,

respectively.

18.4 COMPARISON OF SYSTEM RELIABILITY EVALUATION

Currently, the failure mode method is used in majority for structural system reliability evaluations. In the

failure mode method, the dominant system failure modes of a structure are first identified with some

particular techniques and then the failure probability of each failure mode is calculated by establishing the

performance function of the failure mode based on the virtual work of mechanism. The system reliability of

the structure can be obtained finally with a consideration of correlation among all of the dominant failure

modes.

For the sake of comparing the failure mode method with the semi-analytical simulation method proposed

in the last chapter, the system reliability of a steel portal frame (see Figure 18.9) is analysed with such two

methods. The statistics of the member resistance and loads used in the analysis are given in Table 18.8.

The reliability index obtained by the failure mode method ranges from 2.91 to 2.93 (Li, 1985) and that by

the semi-analytical simulation method is 2.6980. It is revealed by this comparison that as the failure mode

method cannot consider the effects of material and geometric nonlinearities, it may overestimate the system

reliability of steel frames.

Table 18.8 Statistics of member resistance and loads of the portal frame

Mean value Coefficient of variation Distribution type

Load V 80 kN 0.2 Normal

Load H 50 kN 0.3 Extreme, type I

Ultimate yielding moment of 180 kN m 0.1 Log-normal

frame components
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19 Reliability-Based Advanced
Design of Steel Frames

Research efforts have been made for the advanced design of steel frames recently. The advanced design of

structures is the structural design based on advanced analysis. Currently, the advanced design of steel frames

is proposed by simply substituting the limit load-bearing capacity of the structural system obtained with

advanced analysis into the existing design formula based on structural member reliability (Kim and Chen,

1996a, 1996b), which avoids structural system reliability evaluation. This kind of advanced design is called

the preliminary advanced design (PAD), which cannot produce the design of steel frames with certain

structural system reliability (Buonopane and Schafer, 2006). With the viewpoint of structural reliability, the

difference is tangible between the design formula based on structural member reliability and the structural

system reliability as discussed in Chapter 16. The uncertainty of the design objective and the ambiguity of

the target reliability of the design may be obtained if such a difference is neglected in the advanced design. It

is absolutely necessary to establish the advanced design approach for steel frames based on the structural

system limit state and system reliability evaluation. This design may be called the reliability-based advanced

design (RAD), which is able to produce the design of steel frames with certain structural system reliability.

There are two methods in the structural reliability design, i.e. complete probabilistic method and

approximate probabilistic method. The complete probabilistic method is based on direct evaluation of

structural system reliability, and the system reliability is accurate. However, it is not practical or it is very

difficult to present a direct evaluation of system reliability in practice, especially for engineering structures

widely used. Currently, the complete probabilistic method is used only in the design of some special and

costive structures such as nuclear power shells and offshore platforms. In contrast, the approximate

probabilistic method is a simplified reliability design method, which has a form familiar to structural

engineers with nominal values of loads and material yielding strengths, and load and resistance factors. As

the values of load and resistance factors are constant, the structural reliability by the design is not accurate

and uniform, but within a limited scope accepted. Generally, the approximate probabilistic design method is

accepted as routine work due to its ease of application.

In this chapter, the practical design formula of the reliability-based advanced design is to be established

for steel portal frames and multi-storey steel frames with the approximate probabilistic method, based on

advanced analysis and evaluation of structural system reliability.

19.1 STRUCTURAL DESIGN BASED ON SYSTEM RELIABILITY

19.1.1 Target Reliability of Design

The target reliability of the structural design largely affects the results of the design. An excessively high

target reliability will result in an unexpectedly strong structure and an unreasonable construction cost,

Advanced Analysis and Design of Steel Frame . s Guo-Qiang Li and Jin-Jun Li
# 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03061-5



whereas a structure with an inadequate target reliability will not satisfy the performance requirements

relating to its safety, serviceability and durability. So, the selection of the target reliability for the design

of a structure should be based on the optimum balance between structural reliability and economy. Four

aspects are necessarily considered for this purpose, which are (1) public psychology, (2) structural

importance, (3) nature of structural damage and (4) endurance of society and economy to structural

failure.

One might attempt to establish reliability targets by considering risks that arise from other exposures and

human activities. Table 19.1 lists the annual death rates due to some events. General public think that

climbing and car racing are somewhat dangerous, air travel is relatively safe, travel by car is safe and death

due to electric or lightning shock is nearly impossible. From the analysis of public psychology, the

dangerous rate accepted by bold people is about 10�3 per year, whereas this value for cautious people is

10�4 per year. Such an analysis indicates furthermore that if the annual death rate is 10�5 per year or less,

normal people will not consider fatalness anymore, which may be adopted as the reference of the reliability

target for a safe structure. So, the engineering structure with annual failure rate less than 1� 10�4 can be

regarded to have less safety, that less than 1� 10�5 will be safe whereas that less than 1� 10�6 will

be extremely safe. As the design life for general structures is usually 50 years, the structures with failure

probabilities of 5� 10�3, 5� 10�4 and 5� 10�5 in the design life are accordingly thought to be less safe,

safe and extremely safe, respectively. The corresponding reliability index ranges from 2.5 to 4.0.

The target reliability of the structural design is also relevant to structural importance. For very important

structures (e.g. nuclear power station and national broadcast emitting tower), the reliability of design should

be targeted higher, whereas for temporary or secondary structures (e.g. temporary warehouse and bicycle

shed), it may be reduced proportionally. Three classes of structural importance are employed in many

countries, namely important, general and less important. The fundamental target reliability is often based on

general structures, and then the target reliability of important structures decreases by one power and that of

less important structures increases by one power.

As the damage of brittle structures (e.g. masonry structures) is nearly unpredictable, its sequence is more

serious than that of ductile structures (e.g. steel structures). The general treatment on the design of brittle

structures is to raise the target reliability properly.

One increasingly effective factor for the selection of the target reliability for structural design is the

endurance of society and economy to structural failure. Generally speaking, the more developed the

economy, the more the concern paid by public to structural failure which leads to higher target structural

reliability.

Calibration is also a compromised method to determine the target reliability used in the probability-based

structural design, especially in the early stage from the empirical design to the probabilistic design. The

Table 19.1 Annual death rate of some events

Accident Annual fatal rate Accident Annual fatal rate

Climbing, car racing 5:0� 10�3 Travel by car 2:5� 10�5

Air travel 1� 10�4 Swimming 3� 10�5

Mining 7� 10�4 Construction 3� 10�5

Building fire 2� 10�5 Electric shot 6� 10�6

Thunder 5� 10�7 Storm 4� 10�6

Table 19.2 Target reliability indices in the current Chinese code for components of

building structures

Structural importance

Important General Less important

Ductile structure 3.7 3.2 2.7

Brittle structure 4.2 3.7 3.2
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reliability in the traditional structural design is calibrated and succeeded in the new probabilistic design. As

an example, the target reliability of structural members adopted in the current probabilistic design code for

building structures in China is calibrated from that in the previous semi-empirical and semi-probabilistic

design methods. The target reliability indices are listed in Table 19.2.

The reliability-based advanced design aims at the limit states of the structural system, and its target

reliability index can be rationally higher than that aiming at the limit states of structural components because

of the failure severity of the structural system. The values of target reliability indices proposed for the

reliability-based advanced design of steel frames are listed in Table 19.3.

19.1.2 Load and Load Combination

As discussed in Chapter 18, three types of loads (dead, live and wind loads) and two load combinations are

considered for steel portal frames and multi-storey steel frames. The statistics of such loads have been given

in Chapter 18.

For multi-storey steel frames, denote load case I as a combination of dead and live loads and load case II as

that of dead plus live loads and wind loads. As for steel portal frames, it is not necessary to combine live and wind

loads because roof suction produced by wind load is offset by live load. So for steel portal frames, denote load

case II as a combination of dead and wind loads. In low-rise steel portal frames, load case I (vertical load case)

generally controls the structural design, as the effect of the horizontal action induced by wind is less dominant.

19.1.3 Practical Design Formula

The practical design formula of RAD can be written as

� � Rn � g0 �
X

gi � Sni; ð19:1Þ

where Rn and Sn are the nominal values of structural system resistance (limit load-bearing capacity) and load

effects, respectively, � and gi are, respectively, the factor of the structural system resistance and the load

factor, obtained with system reliability assessment, and g0 is the factor relating to structural ductility,

redundancy and importance. Although the design formula of RAD has the same form as that of LRFD (load

and resistance factor design), RAD is a totally new design approach based on the limit states of structural

systems, no longer based on the limit states of structural components as LRFD.

19.1.3.1 Factor of structural importance

Referring the following values of structural importance factor for the member reliability design (GB 50068,

2001):

(1) not less than 1.1, for important structures;

(2) not less than 1.0, for general structures;

(3) not less than 0.9, for less important structures,

Table 19.3 Target reliability indices and corresponding failure reliability for the

reliability-based advanced design of steel frames

Important structure General structure Less important structure

b Pf b Pf b Pf

4.2 1:3� 10�5 3.7 1:1� 10�4 3.2 6:9� 10�4
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the values of structural importance factor for the system reliability design or RAD are recommended as

(1) not less than 1.1, for important structures;

(2) not less than 1.0, for general structures;

(3) not less than 0.9, for less important structures.

19.1.3.2 Load and resistance factors

The principle to calculate the load and resistance factors is to make the nominal system resistance R�K
determined by satisfying the design target reliability index as close as possible to the nominal system

resistance RK by the following design formula:

RK ¼ gRðgGGK þ gLLKÞ: ð19:2Þ

With the above principle, the realistic reliability index of the structure designed by the above formula may be

close to the target one. Such a principle can therefore be transferred to minimize e, given by

e ¼
Xm

i¼1

Xn

j¼1

1� RKij

R�Kij

 !2

; ð19:3Þ

where R�Kij is the nominal system resistance by the complete probabilistic method aiming at the design target

reliability index, under the ith group of values of gG and gL, and the jth dead/live load ratio, RKij is the

nominal system resistance by design formula (19.2), under the same conditions as above, m is the total

number of groups of gG and gL, and n is the number of dead/live load ratios.

The flow chart to calculate the load and resistance factors is given in Figure 19.1, which is similar to that

used for the member reliability design except the statistics herein are from system reliability evaluation. The

main processes are assigning the values of resistance factors, satisfying Equation (19.3), and finally

obtaining load factors.

The statistics used for determining the design formula of RAD of steel portal frames are tabulated in

Table 19.4 and those for RAD of multi-storey steel frames in Table 19.5.

19.1.3.3 Design formula

Aiming at the target reliability index to be 3.7, the design formulae can be determined, respectively, for steel

portal frames and multi-storey steel frames made from Q235 or Q345 steel as follows.

(1) Steel portal frames

– Under load case I:

0:80Rn � 1:00Gn þ 1:80Ln for Q235 steel; ð19:4aÞ

0:80Rn � 1:05Gn þ 2:20Ln for Q345 steel; ð19:4bÞ

where Rn is the nominal value of structural resistance under load case I determined by advanced analysis,

and Gn and Ln are, respectively, the nominal values of the vertical dead load and live load.

– Under load case II:

0:80RnðG ¼ 1:00GnÞ � 1:60Wn for Q235 steel; ð19:5aÞ

0:80RnðG ¼ 1:00GnÞ � 1:85Wn for Q345 steel; ð19:5bÞ

where Rn is the nominal value of structural resistance under load case II determined by advanced analysis

when the dead load adopts its nominal values and Wn is the nominal value of the wind load.
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Start

Given resistance factor γR

Given a series of combination of dead and
live load factors (XG XL)i j=1,2,3,...,N

Given a series of live-to-dead load
ratio (LK / GK)j j=1,2,3,...,M

Structural resistance by: RKij = gR( gGi GKj + gLiLKj)

Structural resistance by R*
Kj = mRj / KR (see Note 1)

Relative error between RKij and R*
Kj

ei =Σ(1.0–RKij  / R∗
Ki)2 i=1.2.3.....,N

Desired load factors (γ∗
G γ∗

L ) is that makes ei minimum  

Optimal resistance factor under (γ∗
G γ∗

L) is
γ∗

R =ΣR∗
Ki  RKi / (RKi)2 (see Note 2)

No
i =M?

i =N?

Is γ∗
R close to γR ?

Yes

Yes

Yes

End

No

No

Note 1. �Rj is determined by the FOSM design point method with the statistics listed in Table 19.3.

Note 2. RKj is obtained by RKj ¼ gRðg�GGKj þ gLLKjÞ.
Note 3. Subscript K means the nominal value.

Figure 19.1 Flow chart for calculation of resistance and load factors

STRUCTURAL DESIGN BASED ON SYSTEM RELIABILITY 331



The comparison of the relative error given by Equation (19.3) among different load factors and target

reliability indices is plotted in Figure 19.2, and the numerical results are also given in Table 19.6.

(2) Multi-storey steel frames

– Under load case I:

0:83Rn � 1:10Gn þ 2:25Ln for Q235 steel; ð19:6aÞ

0:83Rn � 1:10Gn þ 2:20Ln for Q345 steel; ð19:6bÞ

where Rn is the nominal value of structural resistance under load case I determined by advanced analysis,

and Gn and Ln are, respectively, the nominal values of the vertical dead load and live load.

- Under load case II:

0:83RnððGþ LÞ ¼ 1:00ðGn þ LnÞÞ � 1:95Wn for Q235 steel; ð19:7aÞ

0:83RnððGþ LÞ ¼ 1:00ðGn þ LnÞÞ � 1:90Wn for Q345 steel; ð19:7bÞ

Table 19.4 Statistics for the design formula of RAD of steel portal frames

Resistance Load factor Statistics of

Steel grade Load case factor (given) (to be determined) Load ratio resistance

Q235 I 1.25 Deal load Live load Live load/dead load COV Ka
R

1.00–1.40b 1.00–2.50b 0.50–1.10c 0.115 1.20

II 1.25 Dead loadd Wind load — COV Ka
R

1.0 1.00–2.00b — 0.100 1.25

Q345 I 1.25 Dead load Live load Live load/dead load COV Ka
R

1.00–1.40b 1.40– 2.95b 0.50–1.10c 0.110 1.03

II 1.25 Dead loadd Wind load — COV Ka
R

1.0 1.10–2.65b — 0.112 1.08

aKR denotes the ratio of mean value to nominal value.
b Let the incremental be 0.05.
c Let the incremental be 0.15.
d The value of dead load is assumed to be constant, which is equal to the nominal value in load case II.

Table 19.5 Statistics for the design formula of RAD of multi-storey steel frames

Resistance Load factor Statistics of

Steel grade Load case factor (given) (to be determined) Load ratio resistance

Q235 I 1.20 Deal load Live load Live load/dead load COV Ka
R

1.00–1.60b 1.40–3.00b 0.50–1.10c 0.110 1.035

II 1.20 Dead loadd Wind load — COV Ka
R

1.0 1.10–2.65b — 0.108 1.065

Q345 I 1.20 Dead load Live load Live load/dead load COV Ka
R

1.00–1.60b 1.40–3.00b 0.50–1.10c 0.110 1.046

II 1.20 Dead loadd Wind load — COV Ka
R

1.0 1.10–2.65b — 0.121 1.103

a KR denotes the ratio of mean value to nominal value.
b Let the incremental be 0.05.
c Let the incremental be 0.15.
d The value of dead load is assumed to be constant, which is equal to the nominal value in load case II.
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where Rn is the nominal value of structural resistance under load case II determined by advanced analysis

when dead and live loads adopt their nominal values and Wn is the nominal value of the wind load.

The comparison of the relative error given by Equation. (19.3) among different load factors and target

reliability indices is plotted in Figure 19.3, and the numerical results are also given in Table 19.7.
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Figure 19.2 Relative error of structural system resistance of steel portal frames with fixed gR ¼ 1:25: (a) variation of

relative error with dead and live load factors for Q235 steel under load case I; (b) variation of relative error with target

reliability and wind load factors for Q235 steel under load case II; (c) variation of relative error with dead and live load

factors for Q345 steel under load case I; (d) variation of relative error with target reliability and wind load factors for Q345

steel under load case II

Table 19.6 Numerical results of " varying with target reliability and load factors for the steel portal frame (given

gR ¼ 1:25)

Load case I Load case II

Steel grade bt gG gL " gW "

Q235 2.7 1.00 1.20 0:1612� 10�2 1.20 0:2141� 10�4

3.2 1.00 1.50 0:7238� 10�3 1.35 0:2353� 10�3

3.7 1.00 1.80 0:2835� 10�3 1.60 0:2672� 10�3

4.2 1.00 2.15 0:1022� 10�3 1.80 0:3340� 10�4

Q345 2.7 1.05 1.55 0:7999� 10�3 1.40 0:1038� 10�5

3.2 1.05 1.85 0:7703� 10�4 1.60 0:5415� 10�4

3.7 1.05 2.20 0:4822� 10�4 1.85 0:1268� 10�4

4.2 1.05 2.60 0:7879� 10�4 2.15 0:3049� 10�4
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Figure 19.3 Relative error of structural system resistance of multi-storey steel frames with fixed gR ¼ 1:20: (a) variation

of relative error with dead and live load factors for Q235 steel under load case I; (b) variation of relative error with target

reliability and wind load factors for Q235 steel under load case II; (c) variation of relative error with dead and live load factors

for Q345 steel under load case I; (d) variation of relative error with target reliability and wind load factors for Q345 steel

under load case II

Table 19.7 Numerical results of " varying with target reliability and load factors for multi-storey steel frames (given

gR ¼ 1:20)

Load case I Load case II

Steel grade bt gG gL e gW e

Q235 2.7 1.10 1.60 5:083 98� 10�4 1.45 2:536 47� 10�4

3.2 1.10 1.90 7:090 22� 10�5 1.70 1:460 03� 10�5

3.7 1.10 2.25 2:552 64� 10�5 1.95 1:614 55� 10�7

4.2 1.10 2.70 2:217 63� 10�4 2.25 9:661 20� 10�6

Q345 2.7 1.10 1.55 2:807 23� 10�4 1.45 1:070 29� 10�5

3.2 1.10 1.85 1:023 53� 10�4 1.65 8:154 08� 10�5

3.7 1.10 2.20 1:402 13� 10�4 1.90 1:222 49� 10�4

4.2 1.10 2.65 1:130 74� 10�4 2.20 5:762 73� 10�5
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19.2 EFFECT OF CORRELATION ON LOAD
AND RESISTANCE FACTORS

If correlation exists among the random variables in the structural performance function, it will influence the

nominal values of the structural system resistance R�K determined by targeting a definite reliability index and

then influence the calculation of the load and resistance factors. In this section, such an effect is examined

with an example of a multi-storey frame using Q345 steel under load case I and aiming at a target reliability

index of 3.7. The effects of correlation on the relative error of the structural system resistance are given in

Figures 19.4–19.6, and the numerical values are listed in Tables 19.8–19.10.

From the observation of Figures 19.4 and 19.5 and Tables 19.8 and 19.9, it can be found that at the level of

the same target reliability index, the load factor decreases with the increase of positive correlation between

the system resistance R and the dead load G or the live load L, whereas the load factor increases with the
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Figure 19.4 Effect of correlation of structural system resistance and dead load on relative error of the structural system

resistance with fixed gR ¼ 1:20
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Figure 19.5 Effect of correlation of structural system resistance and live load on relative error of the structural system

resistance with fixed gR ¼ 1:20

EFFECT OF CORRELATION ON LOAD AND RESISTANCE FACTORS 335



0. 00

0. 05

0. 10

0. 15

0. 20

1. 40 1. 80 2 . 20 2 . 60 3 . 00 

Lγ

ε

0 .8G Lρ = –

–0.4

0.0 

0.8 

0.4 

Figure 19.6 Effect of correlation of dead and live loads on relative error of the structural system resistance with fixed

gR ¼ 1:20

Table 19.8 Effect of correlation of structural system resistance and dead load

on load factors with fixed gR ¼ 1:20

rRG gG gL gR �

0.8 1.00 2.20 1.2009 2:381 92� 10�4

0.4 1.05 2.20 1.2034 1:178 39� 10�4

0.0 1.10 2.20 1.2061 1:402 13� 10�4

�0.4 1.15 2.20 1.2092 3:194 24� 10�4

�0.8 1.20 2.20 1.2125 6:637 61� 10�4

Table 19.9 Effect of correlation of structural system resistance and live load

on load factors with fixed gR ¼ 1:20

rRL gG gL g0R "

0.8 1.10 1.20 1.1923 2:332 22� 10�3

0.4 1.10 1.70 1.2042 8:439 00� 10�4

0.0 1.10 2.20 1.2061 1:402 13� 10�4

�0.4 1.10 2.70 1.2030 2:715 23� 10�4

�0.8 1.10 3.20 1.2001 7:975 94� 10�4

Table 19.10 Effect of correlation of dead and live loads on load factors with

fixed gR ¼ 1:20

rGL gG gL g0R "

�0.8 0.90 2.20 1.2092 3:007 53� 10�4

�0.4 1.00 2.20 1.2090 2:861 00� 10�4

0.0 1.10 2.20 1.2061 1:402 13� 10�4

0.4 1.20 2.20 1.2014 5:406 52� 10�5

0.8 1.30 2.20 1.1952 2:216 74� 10�4
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increase of negative correlation between the system resistance R and the dead load G or the live load L. In

other words, such positive correlation reduces structural reliability, and the negative one increases it. As the

coefficient of variation of live loads is greater than that of dead loads, correlation between R and L is more

significant.

From Figure 19.6 and Table 19.10, it can be seen that at the level of the same target reliability index, the

load factor decreases with the increase of negative correlation between G and L, whereas it increases with the

increase of positive correlation between G and L. In other words, such negative correlation reduces structural

reliability, and the positive one increases it.

19.3 COMPARISON OF DIFFERENT DESIGN METHODS

19.3.1 For Steel Portal Frames

19.3.1.1 Example frames

Three typical steel portal frames with tapered members, as shown in Figures 19.7 (frame I), 19.8 (frame II)

and 19.9 (frame III), are used to compare the design results of RAD, PAD and LRFD, respectively.

The nominal values of loads are given in Figures 19.7–19.9. The dead/live load ratios of the three frames

are selected as 0.60, 0.80 and 1.00, respectively, to consider the effects of different load ratios on the design

results of the frames. The building shape factor to calculate wind pressure in load case II is determined

according to MBMA (1996).
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Figure 19.7 Steel portal frame I

10×3000=30 000 

d1

d2
d3

d4

d5 d6

d7

1
20 

Dead load=3 kN/m 

Live load=3 kN/m 

Wind load=3 kN/m 50
00

 

25
00

 
25

00
 

65
00

 

32
50

 
32

50
 

Figure 19.8 Steel portal frame II
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If the load and resistance factors in AISC (1994) are used for PAD, the design formulae of PAD are

� Under load case I:

0:90Rn � 1:20Gn þ 1:60Ln for Q235 and Q345 steel; ð19:8aÞ
where Rn is the nominal value of the structural resistance under load case I determined by advanced

analysis, and Gn and Ln are, respectively, the nominal values of the dead load and the live load.

� Under load case II:

0:90RnðG ¼ 1:20GnÞ � 1:30Wn for Q235 and Q345 steel; ð19:8bÞ

where Rn is the nominal value of the structural resistance under load case II determined by advanced analysis

when the dead load adopts its nominal values and Wn is the nominal value of the wind load.

19.3.1.2 Design results

The sectional sizes and steel consumptions of the example frames designed, respectively, by RAD, PAD and

LRFD are listed in Table 19.11, where Q345 steel is used for all cases. For the sake of comparison, all

structural members in the same frame have the same flange and identical web thickness, but different web

heights.

The frames are designed by checking member by member in LRFD for both load case I and load case II.

In RAD and PAD, the limit load-bearing capacity of the frames is first obtained with advanced analysis for

load case I, and it is used to check Equation (19.4b) in RAD and Equation (19.8a) in PAD. If they are
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Figure 19.9 Steel portal frame III

Table 19.11 Results of the example frames designed with various methods

Flange Web thickness Web height (mm) Steel consumption

Design method (mm2) (mm) d1 d2 d3 d4 d5 d6 d7 (103 kg)

Frame I LRFD 135� 6.5 4.0 200 700 200 305 0.724

PAD 120� 5.6 3.2 200 600 200 252 0.537

RAD 125� 6.0 3.6 200 600 200 252 0.601

Frame II LRFD 210� 9.8 5.4 300 900 300 600 300 1080 300 2.344

PAD 170� 8.4 4.8 300 800 300 600 300 900 300 1.757

RAD 170� 8.6 5.4 300 900 300 600 300 1080 300 1.952

Frame III LRFD 165� 7.8 4.4 200 600 200 630 300 400 2.640

PAD 130� 6.6 3.4 200 600 200 630 300 400 1.879

RAD 155� 7.4 3.8 200 600 200 630 300 400 2.325
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satisfied, the same procedures are further used to check Equation (19.5b) in RAD and Equation (19.8b) in

PAD for load case II.

Due to asymmetry of frame II, structural analysis and structural safety check of load case II should

consider left and right winds.

The comparison of steel consumptions of different designs for the frames is also illustrated in Figure 19.10.

19.3.1.3 Reliability calibration

To further study the difference among RAD, PAD and LRFD, the structural system reliability of the above

designs is calibrated. The reliability indices and failure probabilities are listed in Table 19.12. Two values of

those in frame II under load case II correspond to the wind loads from left and right sides, respectively.

By reliability calibration, it can be seen that the design of low-rise steel portal frames is controlled by

vertical loads (load case I) rather than horizontal loads (load case II). In load case I, the system reliability of

the frames designed with LRFD can reach about 4.6 and is greater than the target one. The system reliability

index of the frames by PAD is about 2.7, which is expected to be relatively low. For the frames designed with

RAD, the system reliability index is about 3.7, which is consistent with the target one.
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Figure 19.10 Steel consumption of LRFD, RAD and PAD for the portal frames

Table 19.12 Structural system reliability of the example portal frames by LRFD, PAD and RAD

Load case I Load case II

Design method b Pf b Pf

Frame I LRFD 4.5941 0:2173� 10�5 7.7788 0:3662� 10�14

PAD 2.5356 0:5613� 10�2 5.5898 0:1137� 10�7

RAD 3.5500 0:1928� 10�3 5.9339 0:1480� 10�8

Frame II LRFD 4.9795 0:3187� 10�6 7.9186 0:1201� 10�14

8.1890 0:1317� 10�15

PAD 2.8938 0:1903� 10�2 6.8842 0:2907� 10�11

7.1897 0:3246� 10�12

RAD 3.9914 0:3284� 10�4 7.2965 0:1477� 10�12

7.4158 0:6045� 10�13

Frame III LRFD 4.4110 0:5144� 10�5 7.3979 0:6918� 10�13

PAD 2.8339 0:2299� 10�2 6.1091 0:5009� 10�9

RAD 3.9389 0:4094� 10�4 6.8728 0:3148� 10�11

COMPARISON OF DIFFERENT DESIGN METHODS 339



19.3.2 For Multi-Storey Steel Frames

19.3.2.1 Introduction of the frames studied

Four two-storey two-span steel frames (Zhou, 2000) are given in Figure 19.11, which are an asymmetric

frame with hinge base (U-P), a symmetric frame with hinge base (S-P), an asymmetric frame with clamp

base (U-F) and a symmetric frame with clamp base (S-F). The sectional sizes of the four frames are given in

Table 19.13 and the statistics for structural reliability evaluation are listed in Table 19.14. The nominal value

of steel yielding strength is 248 MPa and the elastic modulus is 206 GPa. The loads given in Figure 19.11 are

the sum of nominal dead and live loads.

19.3.2.2 Structural reliability evaluation

It is assumed in structural reliability evaluation that

(1) all members are bending about the strong axis;

(2) out-of-plane restrain of all members is sufficient;

(3) the dead to live load ratio is 1.0.

(a)
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Figure 19.11 Multi-storey steel frames: (a) asymmetric frame; (b) symmetric frame
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The four steel frames are designed with AISC (1994) and load case I with combination of 1.2D + 1.6L

governs the design results. The reliability of each member, based on the load combination of 1.2D +

1.6L, is listed in Table 19.15. At the same time, the system reliability of these four frames is evaluated

with the semi-analytical simulation method presented in Chapter 17 and the statistics given in Table

19.14, the results of which are given in Table 19.16. A comparison of member and system reliability is

listed in Table 19.17.

The results in Tables 19.15–19.17 show that the system reliability of a steel frame is always greater than

the reliability of the critical member in the frame because the steel frame is generally redundant and the force

redistribution effect is considered in the system reliability evaluation but ignored in the member reliability

Table 19.13 Cross section of the multi-storey steel frames

Frame

Component U-P U-F S-P S-F

C1 W12� 19 W12� 14 W14� 53 W14� 53

C2 W14� 159 W14� 145 W14� 99 W14� 74

C3 W14� 145 W14� 145 W14� 53 W14� 53

C4 W6� 9 W6� 9 W14� 43 W14� 53

C5 W14� 145 W14� 145 W14� 26 W12� 22

C6 W14� 145 W14� 145 W14� 43 W14� 53

B1 W30� 116 W33� 118 W36� 135 W33� 130

B2 W36� 182 W36� 182 W36� 135 W33� 130

B3 W24� 55 W24� 55 W27� 84 W24� 76

B4 W30� 116 W30� 108 W27� 84 W24� 76

Table 19.14 Statistics of the multi-storey steel frames

Mean/standard Coefficient of Distribution

deviation variation type

Dead load 1.00 0.08 Normal

Live load 1.00 0.25 Extreme, type I

Yield strength 1.05 0.10 Log-normal

Table 19.15 Reliability of each member in the multi-storey steel frames

Frame

U-P U-F S-P S-F

Component b Pf b Pf b Pf b Pf

C1 4.28 9:4� 10�6 4.15 1:7� 10�5 3.31 4:6� 10�4 3.33 4:3� 10�4

C2 3.21 6:6� 10�4 3.33 4:4� 10�4 3.67 1:2� 10�4 3.26 5:6� 10�4

C3 4.09 2:1� 10�5 4.00 3:2� 10�5 3.28 5:2� 10�4 3.33 4:4� 10�4

C4 5.36 4:1� 10�8 5.48 2:2� 10�8 2.97 1:5� 10�3 2.63 4:3� 10�3

C5 3.00 1:4� 10�3 3.14 8:4� 10�4 3.83 6:5� 10�5 3.20 6:8� 10�4

C6 3.07 1:1� 10�3 3.28 5:3� 10�4 2.98 1:5� 10�3 2.63 4:3� 10�3

B1 2.59 4:8� 10�3 2.81 2:5� 10�3 2.77 2:9� 10�3 2.53 5:8� 10�3

B2 2.60 4:7� 10�3 2.53 5:7� 10�3 2.77 2:9� 10�3 2.53 5:8� 10�3

B3 2.71 3:4� 10�3 2.62 4:4� 10�3 3.11 9:3� 10�4 2.41 8:0� 10�3

B4 2.96 1:5� 10�3 2.51 6:0� 10�3 3.11 9:3� 10�4 2.41 8:0� 10�3
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calculation. In addition, the ratio of the failure probability of the critical member against the structural

system, Pfm=Pfs, relates to the redundancy of steel frames and those values of Pfm=Pfs for the two clamped

frames are greater than those of the two hinged ones. In other words, the higher the structural redundancy, the

more evident the effect of force redistribution on the structural system reliability.

The member reliability is not uniformly distributed in frame, as illustrated in Table 19.15, and ranges

from 2.41 to 5.48, which indicates that the structural design with only member by member checking cannot

retain certain system reliability. However, the structural design based on the limit state of the structural

system can provide the structure a definite reliability at system level, as shown in Table 19.16.

19.3.2.3 Effect of dead/live load ratios

The member and system reliabilities of the frames above are obtained under the condition that the dead/live

load ratio be 1.0. In this subsection, the dead/live load ratios 0.75 and 1.25 are used to analyse the effect of

this load ratio on the reliability results of the U-P frame. The member reliability and system reliability results

of the U-P frame are given in Tables 19.18 and 19.19, respectively. The ratio Pfm=Pfs is listed in Table 19.20.

As the variance of live load is generally greater than that of dead load, member and system reliability

increases with the dead/live load ratio, which can be seen from Tables 19.18 and 19.19. From Table 19.20, it

can be found that the system reliability is more sensitive to the dead/live load ratio.

Table 19.16 Structural system reliability of the multi-storey steel frames

U-P U-F S-P S-F

b Pf b Pf b Pf b Pf

3.2047 6:7599� 10�4 3.4121 3:2232� 10�4 3.3794 3:6322� 10�4 3.3026 4:7896� 10�4

Table 19.17 Comparison of structural system reliability with member reliability for the multi-storey steel frames

U-P U-F S-P S-F

Critical component(s) B1 B4 B1 and B2 B3 and B4

Failure probability of member Pfm 4:8� 10�3 6:0� 10�3 2:9� 10�3 8:0� 10�3

Failure probability of system Pfs 6:76� 10�4 3:22� 10�4 3:63� 10�4 4:79� 10�4

Pfm=Pfs 7 19 8 17

Table 19.18 Variation of member reliabilities of the U-P frame with dead/live load ratio

Dead/live load ratio

0.75 1.0 1.25

Component b Pf b Pf b Pf

C1 4.08 2:2� 10�5 4.28 9:4� 10�6 4.46 4:1� 10�6

C2 3.08 1:0� 10�3 3.21 6:6� 10�4 3.33 4:4� 10�4

C3 3.92 4:5� 10�5 4.09 2:1� 10�5 4.26 1:0� 10�5

C4 5.13 1:5� 10�7 5.36 4:1� 10�8 5.58 1:2� 10�8

C5 2.89 1:9� 10�3 3.00 1:4� 10�3 3.09 1:0� 10�3

C6 2.96 1:5� 10�3 3.07 1:1� 10�3 3.17 7:8� 10�4

B1 2.52 5:8� 10�3 2.59 4:8� 10�3 2.66 4:0� 10�3

B2 2.53 5:6� 10�3 2.60 4:7� 10�3 2.67 3:8� 10�3

B3 2.63 4:3� 10�3 2.71 3:4� 10�3 2.79 2:7� 10�3

B4 2.86 2:1� 10�3 2.96 1:5� 10�3 3.05 1:2� 10�3
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19.3.2.4 Comparison of different design approaches

Select the U-P frame as an example to compare the results by different design approaches, RAD, PAD and

LRFD, as above for steel portal frames. The design formula for load case I in PAD, adopting the load and

resistance factors as in AISC LRFD, can be

0:90Rn � 1:20Gn þ 1:60Ln for Q235 and Q345 steel; ð19:9Þ

where Rn is the nominal value of the structural resistance under load case I determined by advanced analysis,

and Gn and Ln are, respectively, the nominal values of the dead load and live load.

Assume that Q345 steel is used for the U-P frame and a comparison of the steel consumption is given in

Table 19.21, for design results by RAD, PAD and LRFD.

Table 19.19 Variation of system reliability of the U-P frames with dead/live load ratio

Dead/live load ratio 0.75 1.0 1.25

b Pf b Pf b Pf

Reliability index and 2.9681 1:4981� 10�3 3.2047 6:7599� 10�4 3.4264 3:0588� 10�4

failure probability

Table 19.20 Comparison of system reliability with reliability of the critical member in the U-P frame

Dead/live load ratio 0.75 1.0 1.25

Critical member B1 B1 B1

Failure probability of critical member Pfm 5:8� 10�3 4:8� 10�3 4:0� 10�3

System reliability Pfs 1:50� 10�3 6:76� 10�4 3:06� 10�4

Pfm=Pfs 4 7 13

Table 19.21 Sectional sizes and steel consumption of the U-P frame

Design method

LRFD PAD RAD

C1 W12� 19 W12� 14 W12� 16

C2 W14� 132 W14� 99 W14� 109

C3 W14� 109 W14� 82 W14� 99

C4 W10� 12 W10� 12 W10� 12

C5 W14� 109 W14� 99 W14� 109

C6 W14� 109 W14� 99 W14� 109

B1 W27� 84 W27� 84 W27� 84

B2 W36� 135 W30� 108 W30� 108

B3 W18� 40 W18� 40 W18� 40

B4 W27� 94 W27� 84 W27� 94

Steel consumption (� 103 kg) 9.59 8.51 9.12

Table 19.22 Structural system reliability calibration of the U-P frame

Design method b Pf

LRFD 4.4591 4:1148� 10�6

PAD 3.2033 6:7923� 10�4

RAD 3.8427 6:0856� 10�5
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In the above three approaches, the frame is designed by checking member by member in LRFD. In RAD

and PAD, the limit load-bearing capacity of the frame is first obtained with advanced analysis, and then it is

used to check the design requirement, Equation (19.6b) in RAD or Equation (19.9) in PAD.

Reliability of the frames designed by the three different approaches is calibrated, as given in Table 19.22.

It is noted that the system reliability index of the frame designed with LRFD is about 4.46, which is higher

than the target one. However, the system reliability index of the frame by PAD is about 3.2, which is

expected to be relatively low. For the frame designed with RAD, the system reliability index is about 3.8427,

which is consistent with the target one.
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