Ehsan Aryan, PhD Assistant Professor of Medical Bacteriology Department of Medical Bacteriology & Virology Faculty of Medicine Mashad University of Medical Sciences

Viewing the Microbial World

- How tiny are microbes?
- To express the sizes of microbes, metric system is used
- µm (µ) → bacteria, protozoa
- nm (m μ) \rightarrow viruses
- Most viruses causing human diseases: about 10-300 nm

Relative sizes of microorganisms

Increasing size & complexity: Viruses → Bacteria → Fungi → Parasites

Microscopes

- Human eye, telescope, magnifying glass, microscope

- Resolving power or resolution

- Magnifying power

Effect of Wavelength on Resolution

TABLE 2-2 Characteristics of Various Types of Microscopes

ТҮРЕ	RESOLVING POWER	USEFUL MAGNIFICATION	CHARACTERISTICS	
Brightfield	0.2000 µm	×1,000	 Used to observe morphology of microorganisms such as bacteria, protozoa, fungi, and algae in living (unstained) and nonliving (stained) state Cannot observe microbes less than 0.2 μm in diameter or thickness, such as spirochetes and viruses 	
Darkfield	0.2000 µm	×1,000	Unstained organisms are observed against a dark background Useful for examining thin spirochetes Slightly more difficult to operate than brightfield	
Phase-contrast	0.2000 µm	×1,000	Can be used to observe unstained living microorganisms	
Fluorescence	0.2000 µm	×1,000	Fluorescent dye attached to organism Primarily an immunodiagnostic technique (immunofluorescence) Used to detect microbes in cells, tissues, and clinical specimens	
Transmission electron microscope (TEM)	0.0002 µ m (0.2 nm)	×200,000	Specimen is viewed on a screen Excellent resolution Allows examination of cellular and viral ultrastructure Specimen is nonliving Reveals internal features of thin specimens	
Scanning electron microscope (SEM)	0.0200 µ m (20 nm)	×10,000	Specimen is viewed on a screen Gives the illusion of depth (three-dimensions) Useful for examining surface features of cells and viruses Specimen is nonliving Resolution is less than that of TEM	

Figure 2.1 Transparent living microorganisms, such as the syphilis spirochaete, can be seen much more easily when observed in a dark field.

Figure 2.2 The insertion of a star diaphragm into the filter slot of the condenser will produce a dark field suitable for low magnifications.

TABLE 2-2 Characteristics of Various Types of Microscopes

ТҮРЕ	RESOLVING POWER	USEFUL MAGNIFICATION	CHARACTERISTICS	
Brightfield	0.2000 µm	×1,000	 Used to observe morphology of microorganisms such as bacteria, protozoa, fungi, and algae in living (unstained) and nonliving (stained) state Cannot observe microbes less than 0.2 μm in diameter or thickness, such as spirochetes and viruses 	
Darkfield	0.2000 µm	×1,000	Unstained organisms are observed against a dark background Useful for examining thin spirochetes Slightly more difficult to operate than brightfield	
Phase-contrast	0.2000 µm	×1,000	Can be used to observe unstained living microorganisms	
Fluorescence	0.2000 µm	×1,000	Fluorescent dye attached to organism Primarily an immunodiagnostic technique (immunofluorescence) Used to detect microbes in cells, tissues, and clinical specimens	
Transmission electron microscope (TEM)	0.0002 µ m (0.2 nm)	×200,000	Specimen is viewed on a screen Excellent resolution Allows examination of cellular and viral ultrastructure Specimen is nonliving Reveals internal features of thin specimens	
Scanning electron microscope (SEM)	0.0200 µ m (20 nm)	×10,000	Specimen is viewed on a screen Gives the illusion of depth (three-dimensions) Useful for examining surface features of cells and viruses Specimen is nonliving Resolution is less than that of TEM	

Classification of Bacteria:

- as prokaryotes
- by size and shape
- by Gram staining characteristics
- by genus and species

Classification as Prokaryotes

Prokaryotes

1- Bacteria (formerly Eubacteria)

2- Cyanobacteria

3- Archaea (formerly Archeobacteria)

Classification by size and Shape

- from Spirochetes (up to 250 µm long)

- to Mycoplasma (0.15 µm in diameter)

Classification by Gram Staining Characteristics

- Hans Christian Gram (1880s)
- Crystal violet \rightarrow W \rightarrow lugol's solution (3% I₂/KI mordant) \rightarrow W \rightarrow alcohol-acetone mixture \rightarrow W \rightarrow safranin or fuschin (counterstain)
- Gram-positive bacteria -> blue or purple
- Gram-negative bacteria -> red or pink
- Gram-variable bacteria -> mixture of blue and pink

Fig. 3(b). Cell wall location: The thick peptidoglycan layer is outermost in Gram-positive bacteria. This layer is much thinner in Gram negatives and is trapped between the outer and inner membranes.

2 The gram stain procedure.

Gram-positive vs Gram-negative Bacteria

(Structural differences)

Bacteria that Resist Gram's Stain

- Mycobacteria -> Zhiel-Neelsen -> acid-fast

- Mycoplasma

Classification by Genus and Species

- Taxonomy: classification, nomenclature, and identification

 Taxon: Kingdom (Domain), Division (Phylum), Class, Order, family, genus, species

- Binomial system of nomenclature (Carolus Linnaeus – 18th century)

TABLE 3-3 Comparison of Human and Bacterial Classification

	HUMAN BEING	<i>ESCHERICHIA COLI</i> (A MEDICALLY IMPORTANT GRAM-NEGATIVE BACILLUS) ^a	STAPHYLOCOCCUS AUREUS (A MEDICALLY IMPORTANT GRAM-POSITIVE COCCUS) ^a
Kingdom (Domain)	Animalia (<i>Eucarya</i>)	Procaryotae (Bacteria)	Procaryotae (Bacteria)
Phylum	Chordata	Proteobacteria	Firmicutes
Class	Mammalia	Gammaproteobacteria	Bacilli
Order	Primates	Enterobacteriales	Bacillales
Family	Hominidae	Enterobacteriaceae	Staphylococcaceae
Genus	Ното	Escherichia	Staphylococcus
Species (a species has two names; the first name is the genus, and the second name is the specific epithet)	Homo sapiens	Escherichia coli	Staphylococcus aureus

"Based on Bergey's Manual of Systematic Bacteriology, vol. 1, 2nd ed. New York: Springer-Verlag, 2001. A bacillus is a rod-shaped bacterium. A coccus is a spherical-shaped bacterium.

The Three-Domain System Devised by Carl R. Woese (late 1970s)

and the second second

How classifying bacteria?

Bacteria vary in their:

Size Structure

Shape

Chemical activities (metabolism)

Type of required nutritions

Form of energy they use

Physical condition they are capable of growth

Reaction to certain dyes

Genetics

How Do Scientists Determine How Closely Related One Organism Is to Another?

- The most widely technique
 rRNA sequencing
- The gene code for SSUrRNA (small subunit rRNA)
- 16S rDNA (1500 nt) or 18S rDNA (2000 nt)
- The less similar the sequences, the less related are the organisms

Figure The bacterial ribosome. Each subunit comprises rRNA and proteins. The nucleotide sequence of small subunit (16S) rRNA is widely used in determining the phylogenetic (evolutionary) relationship between bacteria (see Chapter 7)

TableComparison of procaryotic and eucaryotic ribosome					
0	Procaryotic	Eucaryotic			
Overall size	705	80S			
Large subunit size	50S	60S			
Large subunit RNA	23S & 5S	28S, 5.8S & 5S			
Small subunit size	305	40S			
Small subunit RNA	16S	185			

How naming bacteria ?

✓ As in animal & plants → Latin binomial

Species

Escherichia coli

Genus

Escherichia coli \longrightarrow E. coliStaphylococcus aureus \longrightarrow S. aureusStreptococcus pneumoniae \longrightarrow S. pneumoniaeHelicobacter pylori \longrightarrow H. pylori

***** Family & Order names:

✓ Do not print italic

✓ Capital initial letters

✓ Standardized endings

Family — "– aceae" **Enterobacteriaceae**

Order - - ales" Actinomycetales

Terms & Definition

- ✓ Infection
- ✓ Disease

✓ Subclinical (asymptomatic or non-apparent) infection

 ✓ Clinical infection → Symptoms → Signs →
 ✓ Colonization ← Escherichia coli in the bowels Staphylococcus epidermidis on the skin
 ✓ Carrier → Staphylococcus aureus in

upper respiratory tract

Terms & Definition

★ Pathogen → invasive agent, virulent agent

★ Virulence

★ Pathogenicity

★ Opportunistic pathogen <</p>

Non-pathogenic in immunocompetents Life-threatening infection in immunocopromised patients

Terms & Definition

★ Bacteraemia

★ Septicaemia (sepsis, septic shock)

Cloud Gate sculpture by Anish Kapoor, Millennium Park, Chicago, Illinois