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Preface 

As a continuation of Univariate Discrete Distributions, second edition, 
this book is the first of two volumes to discuss continuous univariate distri- 
butions. The second edition of Continuous Univariate Distributions differs 
from the first, published in 1970, in two important aspects: (1) Professor 
N. Balakrishnan has joined the two original authors as a coauthor. (2) 
Because of substantial advances in theory, methodology, and application of 
continuous distributions, especially gamma, Weibull, and inverse Gaussian 
during the last two decades, we have decided to move the chapter on extreme 
value distributions to the next volume. The chapter on gamma distributions 
has been split into two chapters, one dealing only with chi-squared distribu- 
tions. Even so, as in the revision of the volume on Discrete Distributions, the 
ireat amount of additional information accruing since the first edition has led 
to a substantial increase in length. 

In accordance with the principle stated in the original General Preface, we 
continue to aim at "excluding theoretical minutiae of no apparent practical 
importance," although we do include material on characterizations that some 
may regard as being of doubtful practical value. The more general Chapter 
12 has been expanded relatively less than the other chapters that deal with 
specific distributions. 

Even with omission of the extreme value distribution chapter, the great 
amount of new information available has forced us to be very selective for 
inclusion in the new work. One of our main preoccupations has been to assist 
the struggle against fragmentation, the necessity for which has been elegantly 
expressed by Professor A. P. Dawid, new editor of Biometrika [Biometrika, 
80, 1 (199311. We realize that some authors may be affronted at omission of 
their work, but we hope that it will not be regarded as unfriendly action, or at 
"best" a consequence of ignorance. These volumes are intended to be useful 
to readers, rather than an "honor roll" of contributors. 

We acknowledge with thanks the invaluable assistance of Mrs. Lisa Brooks 
(University of North Carolina), Mrs. Cyndi Patterson (Bowling Green State 
University), and Mrs. Debbie Iscoe (Hamilton, Canada) in their skillful 
typing of the manuscript. We also thank the Librarians of the University of 
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North Carolina, Bowling Green State University, McMaster University, Uni- 
versity of Waterloo, and the University of Maryland for their help in library 
research. Samuel Kotz's contribution to this volume was, to a large extent, 
executed as a Distinguished Visiting Lukacs Professor in the Department of 
Mathematics and Statistics at Bowling Green State University (Bowling 
Green, Ohio) during September-December 1992. Likewise N. Balakrishnan's 
work for this volume was carried out mostly in the Department of Statistics 
and Actuarial Science at the University of Waterloo where he was on 
research leave during July 1992-June 1993. 

Special thanks are also due to Mrs. Kate Roach and Mr. Ed Cantillon at 
John Wiley & Sons in New York for their sincere efforts in the fine 
production of this volume. We also thank Ms. Dana Andrus for all her efforts 
in copy-editing the long manuscript. 

Thanks are offered to the Institute of Mathematical Statistics, the Ameri- 
can Statistical Association, the Biometrika Trustees, the Institute of Electri- 
cal and Electronics Engineerings, the Association for Computing Machinery, 
Marcel Dekker, Inc., the Royal Statistical Society, the American Society for 
Quality Control, the Australian Statistical Society, Gordon and Breach 
Science Publishers, Blackwell Publishers, and the editors of Biometrical 
Journal, SankhyZ and Tamkang Journal of Mathematics, for their kind per- 
mission to reproduce previously published tables and figures. 

Authors of this kind of informational survey-designed primarily for 
nonspecialists-encounter the problem of having to explain results that may 
be obvious for a specialist but are not part and parcel of the common 
knowledge, and still have enough space for information that would be new 
and valuable for experts. There is a danger of "high vulgarization" (over 
simplification) on the one hand and an overemphasis on obscure "learned" 
points-which many readers will not need-on the other hand. We have 
tried to avoid these pitfalls, to the best of our ability. 

It is our sincere hope that these volumes will provide useful facts-coher- 
ently stated-for a "lay reader," and also arouse perceptions and memories 
among well-informed readers, stimulating introspection and further research. 
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C H A P T E R  1 2  

Continuous Distributions (General) 

1 INTRODUCTION 

Chapters 1 and 2 (of Volume 1) contain some general results and methods 
that are also useful in our discussion of continuous distributions. In this 
chapter we will supplement this information with techniques that are relevant 
to continuous distributions. As in Chapter 2, some general systems of 
(continuous) distributions will be described. 

Continuous distributions are generally amenable to more elegant mathe- 
matical treatment than are discrete distributions. This makes them especially 
useful as approximations to discrete distributions. Continuous distributions 
are used in this way in most applications, both in the construction of models 
and in applying statistical techniques. Continuous distributions have been 
used in approximating discrete distributions of discrete statistics in Volume 1. 
The fact that most uses of continuous distributions in model building are as 
approximations to discrete distributions may be less widely appreciated but is 
no less true. Very rarely is it more reasonable, in an absolute sense, to 
represent an observed value by a continuous, rather than a discrete, random 
variable. Rather this representation is a convenient approximation, facilitat- 
ing mathematical and statistical analysis. 

An essential property of a continuous random variable is that there is zero 
probability that it takes any specified numerical value, but in general a 
nonzero probability, calculable as a definite integral of a probability density 
function (see Section 1.4) that it takes a value in specified (finite or infinite) 
intervals. When an observed value is represented by a continuous random 
variable, the recorded value is, of necessity "discretized." For example, if 
measurements are made to the nearest 0.01 units, then all values actually in 
the i n t e ~ a l  (8.665, 8.675) will be recorded as 8.67. The data are therefore 
grouped. Adjustments in the estimation of population moments, to correct 
(on average) for this effect, were proposed by Sheppard (1896). These may be 
summarized for the case of equal group widths h (with denoting the 
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r th original moment and rth grouped moment, respectively): 

The general formula is [Sheppard (1896); Wold (1934)l 

where B, is the jth Bernoulli number (see Chapter 1, Section A9). 
These results depend on the assumption that if the centers of groups are 

then a has a uniform distribution (Chapter 26) between - $h and + $h [see 
also Haitovsky (1983)l. Effects of invalidity of this assumption have been 
evaluated by Tricker (1984), who showed that the characteristic function 
(Chapter 1, Section B8) of ,X (the grouped variable corresponding to a 
random variable X) is 

where i = and rp,(t) is the characteristic function of X. 
In the same paper, effects of rounding when the distribution of X is 

normal (Chapter 13), Laplace (Chapter 24), or gamma (Chapter 17) are 
evaluated numerically for selected cases. For a given group width h,  the 
magnitude of the correction for grouping tends to increase with the magni- 
tude of the skewness, as measured by I fi I ;  it is quite small for symmetrical 
distributions. 

Some concepts that have great value for discrete distributions are 
much less valuable in the discussion of continuous distributions. Probability- 
generating functions, in particular, are little used in this part of the book. 
Factorial moments also rarely offer the advantages of conciseness and sim- 
plicity that they do for discrete distributions, although they can be calculated. 
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On the other hand, standardization (use of the transformed variable 

to produce a distribution with zero mean and unit standard deviation) is 
much more useful for continuous distributions. In particular, the shape of a 
distribution can be conveniently summarized by giving standardized values of 
a number of quantizes (i.e., values of the variable for which the cumulative 
distribution function has specified values). Care should be taken to distin- 
guish between standardized and standard forms of distributions. The latter 
are usually convenient ways of writing the mathematical formulas for proba- 
bility density functions. They may happen to be standardized, but this is not 

r essential. 
MacGillivray (1992) has introduced the skewness function 

Note that F-'($) = median (XI  and yx(f) is Galton's measure of skewness: 

(Upper quartile - Median) - (Median - Lower quartile) 

Interquartile distance 

MacGillivray proposes 

as "a measure of overall asymmetry for the central 100(1 - 2a)% of the 
distribution." 

At this point we introduce indices that are applied more commonly to 
continuous than to discrete distributions: 

1. Gini's mean differences, y(X), for the distribution of X is the expected 
value, E[ IX, - X,I] of the absolute value of the difference between two 
independent variables XI, X2, each distributed as X. 

If XI,. . . , Xn are i.i.d., then the statistic 

is an unbiased estimator of 

y (X)  = E[IX, - X2I]. 
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2. The Lorenz curve, for a positive random variable X, is defined as the 
graph of the ratio 

against Fx(x). If X represents annual income, L(p) is the proportion 
of total income that accrues to individuals having the loop% lowest 
incomes. 

It is easy to see that 

A typical Lorenz curve is shown in Figure 12.1. If all individuals earn the . 
same income, L(p) = p. The area between the line L(p) = p and the 
Lorenz curve may be regarded as a measure of inequality of income, or more 
generally, of variability in the distribution of X. There is extensive discussion 
of Lorenz curves in Gail and Gastwirth (1978), and a concise account of their 
properties in Dagum (1985). 

Gastwirth (1971) has given the following definition of the Lorenz function 
L(p): 

L ( p )  = (E[x]) - l j p ~ ; l ( t )  dt, 
0 

where 

F g l ( t )  = inf {x : F,(t) 2 t}. 
X 

This equation is equivalent to (12.7) for continuous distributions, but it also 
applies to discrete distributions. 

Lorenz ordering is sometimes used to compare the amounts of inequality 
in two or more distributions. It is based on comparisons of the values of L(p) 
for the distributions. If their difference is of the same sign for all p, the 
distributions are Lorenz ordered appropriately. If the sign changes, Lorenz 
ordering does not apply. There is a useful description of Lorenz ordering in 
Arnold (1987); see also Chapter 33. 

The area between the line L(p) = p and the actual Lorenz curve is called 
the area of concentration. The Gini concentration index C(X) is twice this 
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Figure 12.1 Lorenz Curve 

area. It is related to Gini's mean difference, defined as in (12.5): 

C ( X )  = 2/1{p - L ( p ) )  dp,= 1 - Z / ' L ( ~ )  dp. 
0 0 

Now 

with XI, X2 independently distributed as X. Since Xl and X2 are continu- 
ous and independent, 

Pr[X, < X2] = Pr[Xl > X2] = 3; 
thus 
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and 

y ( X )  = EIIXl - X21] =E[XlIXl > X2] -E[XlIXl <X2],  

we have 

Hence 

The ratio y(X)/E[X] = EIIXl - X,I]/E[X] is analogous to the coefficient 
of variation. Tziafetas (1989) obtains the alternative form: 

Order statistics are of much greater use, and simpler in theoretical 
analysis, for continuous than for discrete distributions. The next section will 
be devoted to a general discussion of order statistics for continuous variables, 
with particular reference to their use in statistical analysis. 

2 ORDER STATISTICS 

If XI, X,, . . . , X,, are random variables, and Xi I X; I . . - < X,!, are the 
same variables arranged in ascending order of magnitude [so that Xi = 

min(Xl, X,,. .., X,), Xi  = max(Xl, X,, . . . , X,,)], then Xi, Xi , .  . . , Xi are 
called the order statistics corresponding to XI, X,, . . . , X,, (see also Chapter 
1, Section B10). If it is necessary to indicate the total number of variables 
explicitly, the symbols Xi: ,,, . . . , Xi :,, will be used. 

If the differences (Xi - X,) are continuous random variables, then the 
events {Xi = Xi) all have zero probability. Being finite in number, they can be 
neglected in probability calculations. We will suppose, from now on, that this 
is the case, so we can assume that Xi < X; . . . < X,!,, without altering any 
probabilities that relate to the joint distribution of Xi, Xi, . . . , Xi. 
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The cumulative distribution function of XA is defined by 

If XI, X,, . . . , Xn are mutually independent, then 

n 

Pr[X; s x ]  = n p r [ x j  s x],  
j -  1 

and the probability density function of XA is equal to 
i 

If all Xi's have identical distributions with PdXj s x] = ~ ( x ) ,  and 
dF(x)/dx = p(x), then the probability density function of XA is 

Probability density \ 

Similarly (again assuming that all Xi's are independent and identically 
distributed) the probability density function of Xi is 

Cumulative distribution function of Xj 
function of XA ) " Cumulative distribution 

More generally, in this case, with 1 s a, < a, < . - < a, s n (and setting 
a. = 0, a,+, = n, F(xao) = 0, F(X,.+~) = I), the joint probability density 
function of XiI, X&. . . , XAS is (in an obvious notation) 

. (12.12) 

In particular, the joint probability density function of Xi and X; is 

function of Xj r 
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From this joint distribution it is possible to evaluate the cumulative distribu- 
tion function of the range (W = Xi - Xi). The formulas 

and 

are of interest. 
If n = 2m + 1 is odd (i.e., m is an integer), then X,#,,+, represents the 

(sample) median of X,, X2, . . . , X,,. Its probability density function is 

Generally the loop% sample percentile is represented by Xi,,+,,, and is 
defined only if (n + l )p  is an integer. The median corresponds to p = 4; we 
have the lower and upper quartile for p = $, :, respectively. 

Often under certain conditions of regularity, it is possible to obtain useful 
approximations to the moments of order statistics in terms of the common 
probability density function of the X's. This approach makes use of the fact 
that the statistics Y, = F(Xl), Y2 = F(X2), . . . , Y,  = F(Xn) are indepen- 
dently distributed with common rectangular distribution (see Chapter 26) 
over the range 0 to 1. The corresponding order statistics Yi, Y;, . . . , Y,' have 
the joint probability density function 

The joint probability density function of any subset Y,:, . . . , Y,: (I I a, < 
a, < - < a, < n) is [using (12.14)l 

with a,, = 0, as + , = n + 1; yao = 0; yas + , = 1, and where YL,, . . . , YLs is denoted 
by {Y:).  The moments and product moments of the Y"s are given by the 
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formula 

We now expand X:, as a function of r ,  about the value E [ r ]  = r/(n + 1); 
thus 

So we can take expected values of each side of (12.13) (using the method of 
statistical differentials, described in Chapter 1). Note that since 

and 

where 6; satisfies the equation 

r ': p(x)  dx. 
- n + l  = Lrn 

Similarly d 2 ~ - ' / d y  = - [p(~)l-~[dp(x)/dy I = - [p(x)l-3[dp(~)/dx 1, and 
SO on. 

David and Johnson (1954) found it convenient to arrange the series so 
obtained in descending powers of (n + 2). Some of their results follow. [In 
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these formulas, p, = s / ( n  + 1);  q, = 1 - ps; (F-'): = dF-'/dyly ,,; 
(F-'Y: = d2F-'/d Y J y  - r / ( n +  11, etc.1 
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By inserting the values of t:, (F-'>:, (F-'Y:, and so on, appropriate to the 
particular distribution, approximate formulas can be obtained that corre- 
spond to any absolutely continuous common distribution of the original 
independent variables. These formulas generally tend to be more accurate 
for large n, and for larger min(pr,qr) [with Cov(Xi, Xi) for larger 
min(pr, ps, q,, q,)]. David (1981) and Arnold and Balakrishnan (1989) pro- 
vide detailed discussions on bounds and approximations for moments of 
order statistics. 

If the distribution of X is such that Pr[X < x]  is a function of only 
( X  - 8)/4 so that 8 and 4 (> 0) are location and scale parameters, then 
it is easy to see that Z = ( X  - 8)/4 has a distribution that does not de- 
pend on 8 or 4. Denoting the order statistics corresponding to inde- 
pendent random variables Z,, Z,, . . . , Z,, each distributed as Z, by 
Z;:,, Z;:,,. . . , ZA:n it is easy to see that 

and further that 

Hence it is possible to obtain best linear unbiased estimators of 8 and 4, 
based on the order statistics Xi: ,, Xi: ,, . . . , XL: ,,, by minimizing the quadratic 
form: 

where the matrix (c,,) is the inverse of the matrix of variances and covari- 
ances of the 2:: ,'s [Lloyd (1952)l. 

In later chapters a number of results obtained by this method will be 
presented. The method is of particular value when not all the X,,,'s are 
used. For example, when data are censored (as described in Chapter 1, 
Section BlO), not all the order statistics are available. Even if they were 
available, we would want to use only a limited number based on robustness 
considerations. It is useful, in such cases, to know which sets of a fixed 
number of order statistics will minimize the variance of the best linear 
unbiased estimator of 8 or 4 (or perhaps some function of these parameters). 
Exact calculation is usually tedious, but approximate calculation, using only 
the first terms of formulas (12.23a), (12.23b) is less troublesome. 

In using these results, it is desirable to bear in mind that (1) there may be 
nonlinear estimators that are (in some sense) more accurate, (2) "best" is 
defined in terms of variance which is not always appropriate, and (9 the 
constraint of unbiasedness may exclude some good estimittors. Hodver ,  it 
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does appear that the best linear unbiased estimators of location and scale 
parameters, based on order statistics, usually offer accuracy close to the 
utmost attainable from the data. 

Bennett (1952) developed a general method for determining "asymptoti- 
cally efficient linear unbiased estimators." These are estimators of the form 

where J ( . )  is a "well-behaved" function; that is, the limiting distribution of 
&(L, - 8) is normal with expected value zero. Bennett's thesis is not easily 
available. The following results are quoted from Chernoff, Gastwirth, and 
Johns (1967) who have also demonstrated the asymptotic normality (as 
n + oo) of these estimators. 

Relatively simple formulas for J(.) are available for the special case when 
the parameters 8,, 8, are location and scale parameters so that (for each 
unordered X )  

The corresponding density function is 8;lg1[(x - 8,)/8,], and the Fisher 
information matrix is 

where 

[Note that I,, = I,, provided that g"(y) exists and that lim,, ,, ygl(y) = 0.1 
Then for estimating 8, with 8, known, we can use 
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To make the estimator unbiased, ~ ~ ' 1 ~ ~ 8 ,  must be subtracted. For estimating 
8, with 8, known, we can use 

To make the estimator unbiased, ~ ~ ' 1 ~ ~ 8 ~  must be subtracted. 
If neither 13, nor 8, is known, then for estimating el, 

and for estimating 8,, 

where 

is the inverse of the matrix I. These estimators are unbiased. Chernoff, 
Gastwirth, and Johns (1967) also obtain formulas to use when the data are 
censored. Balakrishnan and Cohen (1991) discuss this, and related methods 
of estimation, in considerable detail. 

The limiting distributions of order statistics as n tends to infinity have been 
studied by a number of writers. It is not difficult to establish that if r - nw 
tends to zero as n tends to infinity, the limiting distribution of n(X;,. - X,) 
(where Pr[X I X,] = w )  is normal with expected value zero and standard 
deviation d m / p ( ~ , ) .  However, other limiting distributions are pos- 
sible. Wu (1966) has shown that a lognormal limiting distribution may be 
obtained. 

Books by Galambos (1987), Resnick (1987), and Leadbetter, Lindgren, and 
RootzCn (1983) include discussions of asymptotic results for extreme order 
statistics, while those by Shorack and Wellner (1986) and Serfling (1980) have 
dealt with central order statistics and linear functions of order statistics. 
Reiss (1989) has discussed convergence results for all order statistics. Re- 
cently Arnold, Balakrishnan, and Nagaraja (1992) have presented a useful 
summary of many of these developments on the asymptotic theory of order 
statistics. 

Chan (1967) has shown that the distribution function is characterized by 
either of the sets of values (E[X;:,]) or {E[XL:,]) (for all n) provided that 
the expected value of the distribution is finite. Many characterization results 
involving order statistics are reviewed in Galambos and Kotz (1978) and 
Arnold, Balakrishnan, and Nagaraja (1992). 
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3 CALCULUS OF PROBABILITY DENSITY FUNCTIONS 

The reader may have noted that many of the results of the preceding section 
were expressed in terms of probability density functions. Although these are 
only auxiliary quantities-actual probabilities being the items of real impor- 
tance-they are convenient in the analysis of continuous distributions. In this 
section we briefly describe techniques for working with probability density 
functions that will be employed in later chapters. More detailed discussions, 
and proofs, can be found in textbooks; see, for example, Mood, Graybill, and 
Boes (1974), Bickel and Doksum (19771, Hogg and Craig (1978), Dudewicz 
and Mishra (1988), and Casella and Berger (1990). 

If XI, X2, . . . , X, are independent random variables with probability 
density functions pxl(x,), px$x2), . . . , p,$x,), then the joint probability den- 
sity function may be taken as 

If the variables are not independent, conditional probability density functions 
must be used. Then in place of (12.29) we have 

Of course (12.30) includes (12.29), since, if XI,. . . , X, are a mutually 
independent set of variables, then 

If p(xl,.  . . , x,) is known, then the joint probability density function of any 
subset of n random variables can be obtained by repeated use of the formula 

To find the joint distribution of n functions of XI , .  . . , Xn (statistics) when 
Tl = Tl(Xl, . . . , X,), . . . , T, = T,(X,, . . . , X,) and the transformation from 
(XI,. . . , X,) to (TI, . . . , T,) is one to one, then the formula 

*In the remainder of this and succeeding sections of this chapter, subscripts following p will 
often be omitted for convenience. In succeeding chapters the subscripts will usually appear. 
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may be used [t,, . . . , t, and x,, . . . , x, are related in the same way as 
TI,. . . , T, and X,,. . . , X,; xj(t) means that xj is expressed in terms of 
t,, .. ., t, and a(x,,. . ., x,)/a(t,,. . ., t,) is the Jacobian of (x,,. . ., x,) with 
respect to (t,, . . . , t ,)  in that it is a determinant of n rows and n columns 
with the element in the ith row and the jth column equal to ax,/at,]. 

If the transformation is not one to one, the simple formula (12.32) cannot 
be used. In special cases, however, straightforward modifications of (12.32) 
can be employed. For example, if k different sets of values of the x's 
produce the same set of values of the t's, it may be possible to split up the 
transformation into k separate transformations. Then (12.32) is applied to 
each, and the results added together. 

Having obtained the joint distribution of TI, T,, . . . , T,, the joint distribu- 
tion of any subset thereof can be obtained by using (12.21) repeatedly. The 
conditional distribution of X,, given X,, . . . , X, is sometimes called the 
array distribution of X, (given X,, . . . , X,). The expected value of this 
conditional distribution (a function of X,, . . . , X,) is called the regression of 
X, on X,, . . . , X,. The variance is called the array variance (of X,, given 
X,, . . . , X,); if it does not depend on X,, . . . , X,, the variation is said to be 
homoscedastic. 

4 SYSTEMS OF DISTRIBUTIONS 

Some families of distributions have been constructed to provide approxima- 
tions to as wide a variety of observed distributions as possible. Such families 

' are often called systems of distributions, or, more often, systems of frequency 
curves. Although theoretical arguments may indicate the relevance of a 
particular system, their value should be judged primarily on practical, ad hoc 
considerations. Particular requirements are ease of computation and facility 
of algebraic manipulation. Such requirements make it desirable to use as few 
parameters as is possible in defining an individual member of the system. 
How few we may use, without prejudicing the variety of distributions in- 
cluded, is a major criterion in judging the utility of systems of distributions. 

For most practical purposes it is sufficient to use four parameters. There is 
no doubt that at least three parameters are needed; for some purposes this is 
enough. Inclusion of a fourth parameter does produce noticeable improve- 
ment, but it is doubtful whether the improvement obtained by including a 
fifth or sixth parameter is commensurate with the extra labor involved. Here 
we will describe some systems of frequency curves. Among these systems 
there should be at least one that suffices for practical needs and possibilities 
in most situations. 

4.1 Pearson System 

1 Between 1890 and 1895 Pearson (1895) designed a system whereby for every 
member the probability density function p(x) satisfies a differential equation 
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of form 
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The shape of the distribution depends on the values of the parameters a, c,, 
c,, and c,. If -a is not a root of the equation 

p is .finite when x = -a and dp/& is zero when x = -a. The slope 
( d p / d x )  is also zero when p = 0. But, if x # -a and p # 0, then 
dp(x) /dx  # 0. Since the conditions p ( x )  2 0 and 

must be satisfied, it follows from (12.33) that p ( x )  must tend to zero as x 
tends to infinity, and likewise must dp/dx.  This may not be true of formal 
solutions of (12.33). In such cases the condition p ( x )  2 0 is not satisfied, and 
it is necessary to restrict the range of values of x to those for which p ( x )  > 0 
and to assign the value p ( x )  = 0 when x is outside this range. 

The shape of the curve representing the probability density function varies 
considerably with a, c,, c,, and c,. Pearson classified the different shapes 
into a number of types. We will give a resum6 of his classification. We follow 
his system of numbering because it is well-established, but it does not have a 
clear systematic basis. 

The form of solution of (12.33) evidently depends on the nature of the 
roots of the equation 

and the various types correspond to these different forms of solution. We first 
note that if c1 = c, = 0, equation (12.33) becomes 

whence 
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where K is a constant, chosen to make 

It is clear that c, must be positive and that K = K. As a result the 
corresponding distribution is normal with expected value - a and standard 
deviation &. The next chapter is devoted to this distribution. 

The normal curve is not assigned to particular type. It is in fact a limiting 
distribution of all types. From now on we will suppose that the origin of the 
scale of X has been chosen so that E [ X ]  = 0. 

Type I corresponds to both roots of (12.33) being real, and of opposite 
signs. Denoting the roots by a,, a,, with 

we have 

c0 + cIx + c2x2 = -c2(x - al)(a2 - x).  

Equation (12.33) can be written 

the solution of which is 

with 

For both x - a, and a, - x to be positive, we must have a, < x < a,, so we 
limit the range of variation to these values of x. Equation (12.35) can 
represent a proper probability density function provided m, > -1 and 
m, > - 1. This is a general form of beta distribution, which will be discussed 
further in Chapter 25. Here we briefly note a few points relating to the 
function p(x). 

The limiting value of p(x) ,  as x tends to a, is zero or infinite depending 
on whether mj is positive or negative (for j = 1,2). If m ,  and m, have the 
same sign, p(x) has a single mode or antimode (according as the m's are 
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positive or negative, respectively). Type I distributions can be subdivided 
according to the appearance of the graph of p(x) against x. Thus we have 

Type I(U): if m, < 0 and m2 < 0. 
Type I(J): if m, < 0 and m2 > 0, or if m, > 0 and m2 < 0. 

If mj is zero, then p(x) tends to a nonzero limit as x tends to a j  ( j  = 1 
or 2). 

The symmetrical form of (12.351, with m, = m2, is called a Type ZZ 
distribution. If the common value is negative, the distribution is U-shaped, 
which is sometimes described as Type II(U). Type 111 corresponds to the case 
c2 = 0 (and c, # 0). In this case (12.33) becomes 

whence 

with m = c;'(c,c;' - a). If c, > 0, we take the range of x as x > -c,/c,; 
if c, < 0, the range is taken to be x < -co/c,. Type I11 distributions are 
gamma distributions and are discussed further in Chapter 17. 

Type IV distributions correspond to the case in which the equation 

does not have real roots. Then we use the identity 

c, + c,x + c,x2 = co + c2(x + c , ) ~ ,  

with C, = c, - $c?c;', C, = ;c,c;'. We write (12.33) as 

d log p ( x )  - ( x  + C,) - ( a  - C,) - - 
dx co + c2(x + 

From this it follows that 
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(Note that since c, + clx + c2x2 = 0 has no real roots, c: < 4coc2, and so 
1 2  c,C, = c0c2 - zcl is positive.) 

Since no common statistical distributions are of Type IV form, it will not 
be discussed in a later chapter, but we devote a little space here to this type. 
Formula (12.37) leads to intractable mathematics if one attempts to calculate 
values of the cumulative distribution function. As we will see later, it is 
possible to express the parameters a ,  c,, el, and c2 in terms of the first four 
moments of the distribution, so it is possible to fit by equating actual and 
fitted moments. Fitting Type IV by maximum likelihood is very difficult (with 
unknown accuracy in finite-sized samples) and rarely attempted. 

The tables in Pearson and Hartley (1972) give standardized quantiles 
(percentiles) of Pearson system distributions to four decimal places for 
,/PI = 0.0(0.1)2.0 and for P2 increasing by intervals of 0.2. With some interpo- 
lation these tables can provide approximate values of the cumulative distribu- 
tion function, without the need to evaluate K (for Type IV). To evaluate K 
for Type IV, special tables must be used or a special quadrature of K-'p(x) 
[according to (12.37)] carried out. 

Amos and Daniel (1971) and Bouver and Bargmann (1974) provide more 
extensive tables of quantiles, to four and five decimal places, respectively. 
Also Bouver (1973) gives values of the cdf for Type IV distributions, to nine 
decimal places. 

Bowman and Shenton (1979a, b) obtained rational fraction approximations 
to percentile points of standardized Pearson distributions. Davis and Stephens 
(1983) utilized these approximations to construct a computer algorithm to 
determine approximate 0.01, 0.025, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 
0.975, and 0.99 percentiles, for 0 I Iv'P1l s 2 and values of P2 (between 1.5 
and 15.8) depending on ,/PI and the percentile being evaluated. 

On account of the technical difficulties associated with the use of Type IV 
distributions, efforts have been made to find other distributions with simpler 
mathematical forms and with circumstances close enough to Type IV distri- 
butions to replace them. More information on this point will be given later in 
this chapter. 

Approximations for the cdfs of Type IV distributions, especially aimed at 
accuracy in the tails of the distributions, have been developed by Woodward 
(1976) and Skates (1993). Woodward (1976), taking the pdf in the form 

obtained the approximation 



Skates (1993), using techniques for approximating integrals developed by 
Reid and Skates (1986) and Barndorff-Nielsen (1990), formulated the pdf as 

Xexp [ vptan-I (( x + p  is) - /?)Ip (12.391 

which can be obtained from (12.37)' by putting 

He derived a sequence of "secant approximations," whose initial approxima- 
tion is 

with 

1 + ( x  + p12 
r 2  = log( ) - p t a n x  + ) - tan-' pJ, 

l + P  

and also an approximation based on Barndorff-Nielsen's (1990) analysis, 
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Type V corresponds to the case where c, + c,x + c2x2 is a perfect square 
(ct = 4c0c2). Equation (12.33) can be rewritten 

whence 

If (a - Cl)/c2 < 0, then x > -C,; if (a - Cl)/c2 > 0, then x < -C,. [The 
inverse Gaussian distribution (Chapter 15) belongs to this family.] If a = C, 
and Ic,J < 1, then we have the special case 

which is sometimes called Type VIII and Type IX provided that c2 > 0 or 
c2 < 0. From (12.42) it can be seen that (X + el)- '  has a m e  I11 distribu- 
tion. 

Type VI corresponds to the case when the roots of c, + c,x + c2x2 = 0 
are real and of the same sign. If they are both negative (e.g., a, < a, < 01, 
then an analysis similar to that leading to equation (12.35) can be carried out, 
with the result written in the form 

Since the expected value is greater than a,, it is clear that the range of 
variation of x must be x > a,. [Formula (12.43) can represent a proper 
probability density function provided that m, < - 1 and m, + m2 < 0.1 

Finally, Type VII corresponds to the case where c, = a = 0, c, > 0, and 
c, > 0. In this case equation (12.33) becomes 

whence 

A particularly important distribution belonging to this family is the (central) 
t distribution, which'will be discussed further in Chapter 28. Distribution 



(12.44) can be obtained by a simple multiplicative transformation from a t 
distribution with "degrees of freedom" (possibly fractional) equal to c;' - 1. 

The parameters a, c,, c,, and c, in (12.33) can be expressed in terms of 
the moments of the distribution. Equation (12.33) may be written (after 
multiplying both sides by xr)  

Integrating both sides of (12.45) between - w and + m, and assuming that 
xrp(x) + 0 as x -, kw for r I 5, we obtain the equation 

Putting r = 0,1,2,3 in (12.46), and noting that & = 1 and (in the present 
context) pt-I = 0, we obtain four simultaneous linear equations for a,  c,, c,, 
and c, with coefficients which are functions of pt1, CL;, CL;, and A. The 
expected value of the variable can always be arranged (as we have done 
above) to be zero. If this be done, then CL; = 0 and ptr = pr for r 2 2. The 
formulas for a, c,, c,, and c, are then 

From the definitions of the various types of distributions, it is clear that 
equations (12.47) yield 

Type I: K = $c:(c,c,)-' = ~P,(P,  + 3I2(4P2 - 3~1)-'(2P2 - 3P1 - 
6)-' < 0. 

Type 11: PI = 0, P, < 3. 
Type 111: 28, - 3p1 - 6 = 0. 
Type IV: 0 < K < 1. 
Type V: K = 1. 
Type VI: K > 1. 
Type VII: P, = 0, P, > 3. 

The division of the (PI, P,) plane among the various types is shown in 
Figure 12.2. (Note that it is impossible to have P, - 8, - 1 < 0.) 
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PI 

Figure 12.2 A Chart Relating the Type of Pearson Frequency Curve to the Values of P I ,  p2 

The upside-down presentation of this figure is in accordance with well- 
established convention. Note that only Types I, VI, and IV correspond to 
areas in the (PI, P2) diagram. The remaining types correspond to lines and 
are sometimes called transition types. Other forms of diagrams have been 
proposed by Boetti (1964) and Craig (1936). The latter uses (2P2 - 3Pl - 
6)/(P2 + 3) in place of p2 for one axis. 

Examples of fitting Pearson curves to numerical data are given in Eiderton 
and Johnson (1969). Computer programs for producing values of random 
variables having Pearson type distributions have been described by Cooper 
et al. (1965). We conclude this subsection by noting a few general properties 
of Pearson type distributions. 

Glanzel (1991) has shown that if E[x2]  is finite, and E[XIX 2 XI and 
E[X21x  2 x ]  are differentiable functions of x, the distribution of X belongs 

3 0  the Pearson system if 
t 

i E[X21X 2 X ]  = Ll(x)EIXIX 2 X ]  + L 2 ( x )  
1 
1 
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density function. If p(x) is a probability density function with cumulants 
K ~ ,  K ~ ,  . . . , then the function 

will have cumulants K~ + K~ + E ~ ,  . . . . It is necessary to explain the 
meaning of (12.51) rather carefully. The operator 

is to be understood in the sense described in Chapter 1. That is, the 
exponential must be formally expanded as 

and then applied to p(x). [As in Chapter 1, Section A4, D is the differentia- 
tion operator and 0jp(x)  = dip(x)/dui.] It should be clearly understood 
that g(x) may not satisfy the condition g(x) 2 0 for all x. Note that the 
cumulants of g(x) are defined as coefficients of tr/r! in the expansion of 

whether or not g(x) 2 0. 
Despite this limitation it is often possible to obtain useful approximate 

representation of a distribution with known moments (and known cumulants) 
in terms of a known pdf p(x). By far the most commonly used initial family 
of distributions is the normal distribution. The representations arising from 
this choice of initial distribution are called Gram-Charlier series. From (12.51) 
we find (formally) 
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For the approximation to the cumulative distribution function, we have 

In many cases [including the case when p ( x )  is a normal probability density 
function] 

where q ( x )  is a polynomial of degree j in x. Then (12.52) can be written in 
the form 

with a corresponding form for (12.53). 
If the expected values and standard deviations of p ( x )  and g ( x )  have 

been made to agree, then = e2 = 0, and (12.52)' becomes 

and also 

assuming that 6 ( x ) p ( x )  + 0 at the extremes of the range of variation of x. 
A common way of ensuring this agreement in the expected value and the 
standard deviation is to use standardized variables and to choose p ( x )  so 
that the corresponding distribution is standardized. If desired, the actual 
expected value and standard deviation can be restored by an appropriate 
linear transformation. 

Suppose that we use a standardized variable. In taking p ( x )  = 

( f i ) - ' e - X 2 / 2  (normal), we have ( - l ) j p i ( x )  as the Hermite polynomial 
H j ( x )  described in Chapter 1. Then, since K ,  = 0 when r is greater than 2  for 

i the normal distribution, E,, E,, . . . , are equal to the corresponding cumulants 
' o f  the distribution that we want to approximate. Further, since this function 
! 
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is standardized, we have 
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E 3  = a 3  = a, 
E 4  = a4 - 3 = p2 - 3, 

where the shape factors refer to this distribution. Thus we have 

and by integrating both sides of (12.561, we obtain 

where 

Equations (12.56) and (12.57) are known as Gram-Charlier expansions 
(1905); some earlier writers refer to them as Bruns-Charlier expansions 
(1906). In these expansions the terms occur in sequence determined by the 
successive derivatives of $4~) .  This is not necessarily in decreasing order of 
importance, and a different ordering is sometimes used. The ordering is 
based on the fact that for a sum of n independent, identically distributed 
standardized random variables, the r th cumulant is proportional to nl-'I2 
(r 2 2). This means that, in our notation, E ,  a nl-'I2. Collecting terms of 
equal order in n-1/2, and rearranging in ascending order, gives an Edge- 
worth expansion [Edgeworth (1896, 1907)l whose leading terms are 
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Figure 12.3 PI,P2 Plane Showing Regions of Unimodal Curves and Regions of Curves 
Composed Entirely of Nonnegative Ordinates 

from which we obtain 

As we noted at the beginning of this subsection, the mathematical expres- 
sion obtained by applying a cumulant modifying function will not, in general, 
represent a proper probability density function because there are many 
intervals throughout which it is negative. This is also true when only a finite 
number of terms of the expansion is used. Figure 12.3 presents the results of 
an investigation by Barton and Dennis (1952) and shows the regions in the 
(p,, pz) plane where the expressions (12.56) and (12.59) are never negative. 
The shaded region should be excluded from the Edgeworth u~imodal region, 
as was shown by Draper and Tierney (1972). [See also Balitskaya and 
Zolotuhina (19881.1 

Figure 12.3 also shows the region where the curves corresponding to 
: (12.56) and (12.59) are unimodal. Multimodality in expansions like (12.56) or 
; (12.59), fitted to empirical data, often indicates an unnecessary fidelity to 
i more or less accidental features of the data, in the form of "humps" in the 

i 



30 CONTINUOUS DISTRIBUTIONS (GENERAL) 

tails. This kind of phenomenon is more likely to be encountered as more 
terms are used in the expansion. 

In most applications only the first four moments are used, and the 
following terminating expressions are used: 

( Gram-Charlier) , (12.60) 

1 + - p,(x6 - 1 5x4 + 45x2 - 1 5 )  4 ( x )  (Edgeworth). 
72 1 (12.61) 

Note that the Edgeworth has no general theoretical superiority over the 
Gram-Charlier expansion-it depends on a particular assumption about the 
orders of magnitude of successive cumulants which may, or may not, be a 
good approximation to actual conditions. 

Although the expansions (12.60) and (12.61) terminate, and so the general 
theory at the beginning of this paragraph does not apply, it can be seen, from 
the orthogonality (with normal weight function) of Hermite polynomials that 
they are functions with the correct values for the first four moments, and that 
they also satisfy the condition /"_g(x) h = 1. Since 

1 m 

- 1 ~xlxje-"'/~ dr = 0 for j odd, 
4% - O D  

and for j even 

1 
m 1 ~ l ~ j ~ - x ~ / 2  = \l.f /mxj+le-"/2dr z j-m p 0 

1 m 

j - m  
x x e 2  h = 2 ( j) ! ( j even), 
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it follows that for the Gram-Charlier (finite term) distribution as given by 
(12.45) the mean deviation is 

This is also the ratio of mean deviation to standard deviation for this 
Gram-Charlier expansion, with general values for the expected value and 
variance. Note that for p2 > 27 the mean deviation is negative. This is 
because the probability density function is negative for some values of x. 

However, for 1 < p2 < 7, 

Mean deviation 

Standard deviation 

Similar results can be obtained for the Edgeworth expansion (12.61). For this, 
Bhattacharjee (1965) and Singh (1967) have obtained the distributions of 
extreme values and ranges, and they have given numerical values for ex- 
pected values and variances in random samples of size up to 12. Subrahma- 
niam (1966) has obtained the distributions of linear functions of independent 
sample values, and of sample variance for random samples for this distribu- 
tion. 

It is possible to derive expansions of Gram-Charlier form by arguments 
similar to those used in deriving certain central limit theorems (Chapter 13). 
CramCr (1928) gives a general discussion; Longuet-Higgins (1964) gives an 
analysis from a physicist's point of view. 

Some theoretical results of Bol'shev (1963) are relevant here. Starting 
from the normalizing transformation 

one can expand the argument Pr[S I XI about 4(x), as a power series in 
Pr[S r x] - Mx). If this difference, in turn, be expanded as a power series 
in x, then (12.62) gives a power series (in x) expression for y(x). [See also 
equation (12.21) et seq. of this chapter.) 

In the particular case where S = Sn is the standardized sum of n indepen- 
dent identically distributed variables XI, X,, . . . , Xn with finite expected 
value 5 and standard deviation a, respectively (and finite 'cumulants of all 
orders) [i.e., Sn = (na2)-'/2Cy,l(Xj - 511, there is an expansion 

Pr[Sn I x ]  - @(x)  = Q(x) ,  (12.63) 

where Q(x) is a polynomial with coefficient depending on the common 
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moment ratios of each Xi. Inserting (12.62) in (12.63), we obtain 

with 

Bol'shev shows that of all functions u(x, n) satisfying the conditions that 
(1) dr-2u/dxr-2 exists and is continuous with respect to n on the line n = 0 
and (2) au/ilx exists in a domain 

the only one for which 

~ r [ u ( x ,  n) I u,] = $4~4,) + ~ ( n - ( ' - ~ ) / ~ )  

is the function given by (12.64). Bol'shev has applied this result in a number 
of special cases. 

It will be appreciated that it is not essential that p(x) in (12.52Y must be a 
normal probability density function. In particular, if p(x) is a standard 
gamma probability density function, expansions in terms of Laguerre polyno- 
mials are obtained. Such expansions have been discussed by Khamis (1958) 
and applied to approximate the distribution of noncentral F (Chapter 30) by 
Tiku (1965). If p(x) is a standard beta distribution, expansions in terms of 
Jacobi polynomials are obtained, but these have not been much used. 

Woods and Posten (1968) have made a systematic study of the use of 
Fourier series expansions in calculating cumulative distribution functions. 
Their methods are based on the following theorem: If X is a random variable 
with FX(x) = 0, 1 for x < 0, x > 1, respectively, then for 0 I x s 1, 

where 

and 
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(The function of which the expected value is to be taken is the jth Chebyshev 
polynomial T&x); see Chapter 1, Section Al.) 

Woods and posten also use a generalized form of this theorem which 
expresses FX(x) in terms, of any conveniently chosen "distribution function" 
G(x), with G(x) = 0, 1 for x < 0, x > 1, respectively. For 0 I x I 1, 

w 

Fx(x) = G ( x )  - d, sin je, (12.66) 
j=l 

with 

Appropriate choice of G(x)-usually close to Fx(x)-can increase the rate 
of convergence of the infinite series, though the d's are not so easily 
computed as the b's. There are similar results for the case when Fx(x) = 0, 
1 for x < - 1, x > 1. 

Computer programs based on these theorems are given in Woods and 
Posten (1968) for evaluating the cumulative distribution and percentage 
points of the beta, F and chi-square distributions (Chapters 25, 27, and 18, 
respectively) and of the noncentral forms of these distributions (Chapters 30 
and 29). In Chapter 25 (Section 6) some further details are given in regard to 
the application of these series to the beta distributions. 

A book by Hall (1992) contains an excellent exposition of Edgeworth 
expansions and their properties. It includes the use of tilted Edgeworth 
expansions, designed for use when greater accuracy is required in certain 
parts (e.g., in upper or lower tails) of the distribution. 

4 3  Transformed Distributions 

If the distribution of a random variable X is such that a simple explicit 
function f ( X )  has a well-known distribution, it becomes possible to use the 
results of research on the latter-including published tables-in studying the 
former distribution. The best known of such distributions is the lognonnal 
distribution (Chapter 14) where log(X - 6) has a normal distribution. Other 
well-known families of distributions correspond to cases in which ( X  - 6)" or 
e - ( X - 5 )  have exponential distributions [Type I1 (or Weibull) and Type I11 
extreme value distributions, respectively; see Chapters 21 and 221. 

Edgeworth (1916, 1917) considered the possibility of polynomial transfor- 
mations to normality. To make sure the transformation is monotonic, it is 
necessary to impose restrictions on the coefficients in the polynomial. This ! 

, analysis is rather complicated and this kind of transformation is not often 
I used at present. 



34 CONTINUOUS DISTRIBUTIONS (GENERAL) 

Plotting on probability paper* will indicate the form of the transforma- 
tion. One of the earliest papers on this method is Kameda (1928). Further 
references include Flapper (1967) and Chambers and Fowlkes (1966). Sets of 
"model plots" of quantiles of various distributions against those of the unit 
normal distribution contained in the latter reference can be helpful in 
deciding on suitable transformations. 

By analogy with the Pearson system of distributions, it would be conve- 
nient if a simple transformation to a normally distributed variable could be 
found such that, for any possible pair of values a, /3, there is just one 
member of the corresponding family of distributions. No such single simple 
transformation is available, but Johnson (1949, 1954) and Tadikamalla and 
Johnson (1982, 1989) have described sets of three such transformations 
which, when combined, do provide one distribution corresponding to each 
pair of values fi and p,. We now describe the sets presented in 1949 in 
some detail. 

One of the three transformations is simply 

which corresponds to the family of lognormal distributions. The others are 

The distribution of Z is, in each case, unit normal. The symbols y, 6, 5, and 
A represent parameters. The value of A must be positive, and we convention- 
ally make the sign of S positive also. 

The range of variation of X in (12.6%) is bounded and the corresponding 
family of distributions is denoted by S,; in (12.67~) the range is unbounded, 
and the symbol S, is used. For lognormal distributions the range is bounded 
below (if 6 < 0, it would be bounded above). 

It is clear that the shapes of the distribution of X depends only on the 
parameters y and 6 (6 only, for lognormal). Writing Y = ( X  - t)/A, we 
have 

Z = y' + S log Y, for lognormal ( y' = y - 6 log A), (12.68a) 

*Probability paper is graph paper designed so that a plot of the cumulative frequency against the 
variable value would give a linear relation for a specified distribution-often the normal 
distribution. 
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and Y must have a distribution of the same shape as X. The moments of Y 
in (12.68a) are given in Chapter 14. 

For S,, from (12.68b), 

Although it is possible to give explicit expressions for ptr(Y) (not involving 
integral signs) [see Johnson (1949), equations (56) and (57)], they are very 
complicated. 

It is interesting to note that for S, distributions, 

For S,, however, we obtain from (12.68a), 

and this can be evaluated in a straightforward manner, yielding the following 
values for the expected value, and lower central moments of Y: 

ptl(Y) = w1l2 sinh R ,  (12.71a) 

p2(Y)  = ;(w - l)(wcosh2fl + I ) ,  (12.71b) 

p3(Y) = - f ~ l / ~ ( w  - ~ ) ~ { o ( w  + 2)sinh3R + 3 sinh 0 )  , (12.71~) 

xcosh2fl + 3(2w + l)}, (12.71d) 

where o = exp(aW2), R = y/S. Note that w > 1 and that p,, so a,(= '&) 
has the opposite sign to y. For y = 0, the shape factors (for both X and Y) 
are 

As y increases both p1 and P2 increase, and the (PI, P2) point approaches 
the point with coordinates [(o - 1Xo + 2)2, o4 + 2w3 + 3w2 - 31 as y -+ m. 

The latter point is on the "lognormal line" (see Chapter 14). It corresponds 
to a lognormal distribution defined by (12.67a). 
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Systems SU 
Abac giving 6 and Q = y/b 

in terms of p1 and p2 

Figure 12.4 Abac for Su 

The variation of (PI, P,) with y and 6 is shown diagrammatically in Figure 
12.4. This figure can be used to obtain approximate values of y and 8, for 
given p1 and p, (note that the sign of y must be opposite to that of a; see 
above). More accurate values can be obtained using tables in Johnson (19651, 
possibly combined with methods of iterative calculation described in that 
reference. Methods of fitting based on order statistics have been described by 
Mage (19821, Slifker and Shapiro (1980), and Wheeler (1980). Siekierski 
(1992) contains a useful comparative study of methods of fitting. 

It can be seen from Figure 12.4 (and proved analytically) that for any 
(P1,P2) point "below" the lognormal, line, there is an appropriate SU 
distribution. Similarly for any possible point "above" the lognormal line there 
is an appropriate S, distribution. In fact the lognormal, S, and S, families 
(or systems) cover the whole possible (PI, P,) plane uniquely-namely there 
is just one appropriate distribution corresponding to each (PI, P,) point. The 
normal distribution, corresponding to the point (0,3), has to be considered as 
the limiting form of all three families as 6 + m. 

Some typical probability density functions belonging to the S, and Su 
families are shown in Figures 12.5~-f (S,) and 12 .6~-c  (S,) [taken from 
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System Sn 
y = 0; 6 = 0.5 
= 0.00; P2 = 1.63 

System SB 
y = O ; b =  l l f l  

P1 = 0.00; $2 = 1.87 

System SU 
y = 0.533; 6 = 0.5 

= 0.42; P2 = 2.13 
1/2[1+ C l - ~ d ) ] =  0.85 

3.0 

System SB 
y = l ; 6 = 1  

= 0.53; $2 = 2.91 

System SB 
y = 0 ; 6 =  2 

System SB 
y = 1 ; 6 = 2  

P1 = 0.08; P2 = 2.77 
3.5 - 

I 
0 Y 1  

( 1 )  

Figure 12.5 System SB Density Functions 
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System SU 
y = 1 ; 8 = 2  
= 0; p2 = 4.51 

I 

System SU 
y = 1 ; 8 = 2  

P1 = 0.76; P2 = 5.59 

System SU 
y =  l ; 8 =  1 

pl = 28.8; p2 = 93.4 

-5 -4 -3 -2 -1 0 1 Y 
(c) 

Figure 12.6 System SU Density Functions 

Johnson (1949)l. All S, curves are unimodal; S, curves may be unimodal, or 
they may have two modes, with an antimode between them. The latter case 
occurs if 

There are transition cases in which one mode and the antimode coalesce into 
a point of inflection (see Figures 12.5a, c). If y = 0 and S = 1/ \/Z (Figure 
12.5b), a flat-topped distribution is obtained. 

For all S, and S, (and also lognormal) distributions there is "high 
contact" at the extremities of the range of variation. That is to say, not only 
does the probability density function tend to zero as the extremity is ap- 
proached, but so do all derivatives. (This applies as Y 4 f w, as well as when 
the extremities are finite.) This property is not shared by all Pearson system 
distributions. 

Numerical comparisons of the cumulative distribution functions of the 
Pearson Type IV and S, distributions corresponding to the same pair of 
values of p, and p, indicate remarkably close agreement. Distributions of 
either system may often be used in place of their counterpart in the other 
system with low risk of errors of practical importance being incurred. Agree- 
ment is poorest in the lower tails for large p, and/or p,. Rieck and 
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Nedelman (1991) introduce a sort of reverse S, system, wherein X is 
distributed as a linear function of sinh-'((2 - y)/S), with Z having a unit 
normal distribution. Thus 

Analogous sets of three transformations, with Z [in equations (12.68)l 
having (1) a standard Laplace distribution (SL, Sh, SL) or (2) a standard 
logistic distribution (L,, L,, L,) have been described by Johnson (1954) and 
Tadikamalla and Johnson (1982), respectively. These two sets possess similar 
properties to S,, S,, S,. Among these properties are the following: 

1. They cover the (P1,P,) plane uniquely with Sh(L,) "above" and 
S;(L,) "below" the dividing log-Laplace (log-logistic) line. 

2. The Sh and L, curves are bimodal for (PI, P,) "above" a line in the 
SL(L,) area, while all the S, and L, curves are unimodal. 

Transformations of a standard uniform variable U whose pdf is 

(see Chapter 26) have the useful feature that it is very easy to simulate 
observed values. 

1 Tukey lambda distributions [Hastings et al. (1947); Tukey (196211 are 
! 

t defined by the transformation 

with the transitional A = 0 transformation 

Transformations (12.74a) and (12.74b) are each monotonic increasing, so if 
A # 0, 

auA - ( 1  - u)" 
X = 

A 7 

then 
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since F"(u) = u, 0 4 u 4 1. Also Fx(X) has a standard uniform distribu- 
tion, so the transformations (12.74a) and (12.74b) can be regarded as expres- 
sions for X corresponding to a specified value F of FX(x). Expressed 
differently, 

and 

Originally attention was mainly directed at the symmetrical Tukey lambda 
distributions a = 1, defined by 

and 

U x = log(--) (corresponding to A -, 0). (12.75b) 
1 - U 

The lower quartile, median and upper quartile for (12.74a) are obtained by 
putting U = $, i, and a, which yields 

( a  - 3*)(4*~)- ' ,  ( a  - 1 ) ( 2 )  and (3* - 1) (4*~) - ' ,  

respectively. The value of Galton's skewness index 

Lower quartile + Upper quartile - 2(Median) 

Upper quartile - Lower quartile 

is given by 

For (12.74a) the rth moment about zero of X is 
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In particular, the expected value and variance are 

and 

Joiner and Rosenblatt (1971) provide a detailed analysis for the syrnmetri- 
cal distributions (12.75a). They point out that although explicit formulas for 
the pdf of X are not generally available, the values A = 1 and A = 2 both 
correspond to uniform distributions for X [over range ( - 1, I), (- 3, i), 
respectively]. Also, for appropriate values of A, very good approximations to 
normal and t distributions (Chapter 13) can be obtained. They suggest that 
A = 0.135 for normal approximation. (Of course location and scale parame- 
ters can be introduced to give any required expected value and standard 
deviation.) The least possible value of P2 is 1.75 (approx.). For any value 
greater than this, there are two possible values of A. Thus for P2 = 3 (as for 
a normal distribution) the values of A are 0.135 (as suggested above) and aho 
5.2. The two corresponding pdf s (standardized to have expected value zero 
and standard deviation 1) are shown in Figure 12.7 [taken from Joiner and 
Rosenblatt (1971)l. The pdf's of X are slightly U-shaped for 1 < A < 2; they 
are unimodal for A < 1 or A > 2. 

Figure 12.7 Probability Density Functions for Standardized Lambda Distributions, Each Hav- 
ing p, = 3.00 (and PI = 0) 
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Ramberg (1975) deals with distributions defined by a slight modification of 
(12.74a1, namely 

He shows that the (P,,P,) points cover the whole plane except those 
"above" a line joining the uniform (0,1.8) and exponential (4,9) points [in the 
Pearson m e  I (beta) area]. He gives tables of values of A,, A,, and A, 
producing specified values for PI and p2 for a standardized variable. 

Skew distributions for X can be obtained in other ways than by putting 
a # 1 in (12.74a). Johnson and Kotz (1973) replace U in (12.75a) by T, where 
T has a standard beta (8,4) distribution. The resulting pdf of X is 

where t(x) satisfies the equation 

In general there is no explicit formula for p,(x), as we have already noted. 
The rth moment about zero is 

Clearly p,(x) -, 0 or w at the extremes of the range of variation of X, 
according as p,(t) -, 0 or w, for A > 1. 

We now consider the variation in shape of the distribution of X with 
changes in A, the parameters 8 and 4 having fixed values. Since X - (1 - 
X )  = 2 X  - 1 = x2 - (1 - X),, we see that the values of ,/PI and P, must 
be the same for A = 1 and A = 2. In each one of these two cases we have a 
beta distribution with the same parameters, though different range, as that of 
the original variables. By virtue of the continuity of the function involved, P, 
must take a maximum or minimum value for some value of A between 1 and 
2. It is in fact a minimum when 8 = 4 ,  but can be a maximum when 8 # 4 ,  
and occurs for a value of A in a remarkably narrow range about A = 1.45; see 
Table 12.1 for a few examples. By considering neighboring loci of (d&, P2) 
for varying A, with slightly different values of 8 and 4 it can be seen that at 
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Table 12.1 Values of A Giving Maximum or Minimum fJ, 

0 4 A JPI P 2  0 4 A JPI P2 
0.5 0.5 1.44 0 1.469" 2 2 1.46 0 2.086" 
0.5 1.0 1.47 0.662 2.134" 2 5 1.48 0.661 2.944 
0.5 2.0 1.44 1.318 3.987 2 10 1.46 1.035 4.090 
0.5 5.0 1.43 2.109 8.171 2 15 1.44 1.195 4.752 
0.5 10.0 1.41 2.549 11.69 5 5 1.48 0 2.489" 
1 1 1.45 0 1.753 5 10 1.51 0.380 2.836 
1 2 1.44 0.604 2.401 5 15 1.48 0.551 3.155 
1 5 1.45 1.299 4.549 10 10 1.49 0 2.705" 
1 10 1.43 1.688 6.573 10 15 1.48 0.179 2.804" 

"Minimum. 

least for some values of JP, and P,, there will be more than one set of values 
(8,+, A) giving these values for the shape parameters. 

This might be expected, since there are three parameters available to give 
two specified values Jp, and p,. Another way of looking at the situation is to 
consider what happens when A is fixed, but 8 and 4 vary. It is known that for 
A = 1, the region between the boundary P, - ( 4 ~ ~ ) '  - 1 = 0, and the Type 
I11 line 2p2 - ~(JP,) '  - 6 = 0 is covered. For A > 0, generally, the region 
covered is that between the line p, - (Jp1I2 - 1 = 0, and the line [Johnson 
and Kotz (1972)l corresponding to (Type I11 variable)! The latter is ap- 
proached as + -, 03, with 8 remaining constant. 

From (12.79) we see that dp,(x)/dx = 0 if 

where y = t(x){l - t(x))-'. If 8 = + = 1, we find that g(y) = y. Then the 
only possible modal values are y = 0, 1, or [i.e., t(x) = 0, 3 or 1 corre- 
sponding to x = -A, 0, or A]. 

For A < 1 < min(8,+), g(y) increases from 0 to 03 as y increases from 
(8 - I)/(+ - A) to (8 - A)/(+ - I), while yh1 decreases as u increases. 
Equation (12.82) thus has just one root, since for y outside this range g(y) is 
negative, and so the distribution of X is unimodal. 

A similar situation, in reverse, holds if 1 < A < min(8,dj). If + < min(1, A) 
and 8 > max(1, A), then g(y) is always negative for u > 0, and (12.82) has no 
solution. In this case, since 8 > 1 and 4 < 1, p,(x) -, 0 as y -, - 1 and 
+ 03 as y + 1. The density function of X is J-shaped, as is that of T. 
Related results hold similarly if + > max(1, A) and .8 < min(1, A). For + > 1 
and 8 > 1, p,(y) = 0 at t = 0 or 1; hence, the slope of p,(x) is also zero at 
these points. 
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An interesting special case corresponds to A = 0 + 4 - 1. Then (12.82) 
becomes 

In the symmetrical case 8 = 4 ,  (12.82) is satisfied by y"-' = 1, whence t = 4 
and the corresponding modal value for X is 0, as is to be expected. The 
distribution can, however, be bimodal, with antimode at 0. This is so, for 
example, if A > 1 and 0 = 4 < +(A' - A + 2). Moments of order statistics 
are easily obtained. Joiner and Rosenblatt (1971) give formulas for the rth 
moment of Xi' and for the expected value and variance of the range in 
random samples of size n. 

Other systems that include asymmetric distributions are 

[Schmeiser and Deutsch (1977), quoted by Butterworth (198711, 

[Ramberg and Schmeiser (1974); Ramberg et al. (197911. As in all cases, 
location and scale parameters can be introduced to give desired values for 
expectation and variance. Transformation (12.84) has the attractive feature 
that it has a simple explicit inverse. 

Lam, Bowman, and Shenton (1980) discuss (12.85). They note, as did 
Joiner and Rosenblatt (1971) for the symmetrical distribution, that the 
equations for A, and A, obtained by requiring ,/PI and P, to have specified 
values may not have unique solutions. Figure 12.8, taken from Lam, Bowman, 
and Shenton (1980), indicates loci of constant ,/PI and of constant P, as 
functions of A, and A,/A,. This paper also includes comparisons of I%, 5%, 
95%, and 99% points for standardized curves of various systems with com- 
mon values ,/PI, PI, indicating quite close agreement. Similar more extensive 
comparisons are available in several other papers [e.g., Pearson, Johnson, 
and Burr (197911. The closeness of results is often due to the fact that the 
different systems can have similar features of smoothness that increase 
comparability beyond that to be expected from just equality of first four 
moments. Mallows (1956) provides an interesting study of these possibilities 
(see also Chapter 33). 

Another system of this kind, ascribed to H. A. Thomas by Hosking (1986), 
quoting Houghton (1978), is defined by the relation 
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Essentially X = +(I - U ) - S  - 8(1 - u ) ~  + k with 4 = y/6, 8 = a/P; k = 
t + e - 4 .  

If a, p ,  7, and 6 are each positive, X is already a monotonic increasing 
function of U. Since (12.86) is unchanged if a and y, and p and -6 are 
interchanged, it can be assumed, without loss of generality, that /3 + 6 2 0. 
The following further conditions ensure uniqueness of the relation between 
X and U [i.e., equation (12.86) has only one solution]: 

1. Either p + 6 > 0, or p = y = 6 = 0. 
2. If a = 0, then p = 0. 
3. If y = 0, then 6 = 0. 
4. y 2 0. 
5. a + y 2 0 .  

These distributions have been used in hydrology to model flood and stream 
flow data. They are called Wakeby distributions. 

The range of variation of X is from 6 up to infinity if 6 2 0 and y > 0. 
If either 6 < 0 or y = 0, the range is finite, from 6 to 6 + a/@ - y/6 
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(= 6 + 8 - 4). The pdf p(x) of X is related to the cdf F(x) by the formula 

with 

A x - - + 6 ,  

If 6 < 0 so that the range is from 6 to w = 6 + 6 - 4, then as x -, w ,  

Pdf s of some Wakeby distributions are shown in Figures 12.9, for parame- 
ter values shown below (6 = 0 in all cases): 

Pdf 
Number or fl y 6 I Number Pdf or B y 6 

The fact that the distributions have three disposable shape parameters (plus 
location and scale parameters) gives the system considerable flexibility. See 
also generalized Pareto distributions (Chapter 20, Section 8). 
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Figure 12.9 Wakeby Probability Density Functions 

Hoaglin (1984) describes the Tukey g- and h-system obtained by the 
transformations 

where Z is a unit normal variable. This system covers a large part of the 
(PI, P2) diagram, excluding some symmetrical U-shaped distributions. 

Combining the Pearson and Tukey lines of approach, Voit (1992) defines a 
system of S-distributions by the differential equation 



ORDER STATISTICS 93 

(1983) have discussed the distribution of the kurtosis statistic b, based on 
normal samples. Owen (1980) has presented a valuable table giving formulas 
for various integrals related to the normal distribution. Some additions to this 
table have been made by Chou (1981). 

Recently, for the U.S. population of men and women aged 17-84 years, 
Brainard and Burmaster (1992) showed that the normal distribution fits the 
marginal histograms of height (in cells representing 1-in. intervals) for both 
genders. Further, they demonstrated that the bivariate histogram for men is 
fit well by the bivariate normal distribution between the height and the 
natural logarithm of weight (in cells representing 10-lb intervals). 

4 ORDER STATISTICS 

Let Xi 5 Xi I - . s XA be the order statistics obtained from a random 
sample of size n from the standard normal distribution (13.4). Then the 
density of Xi (1 I r I n) is 

and the joint density of X,! and X,' (1 I r < s 5 n) is 

n ! 
= 

( r -  l)!(s - r  - l)!(n - s ) !  
{@(x)lr-l{@(y) - @ ( x ) } ~ - ~ - ~  

From (13.19) and (13.20), the single and the product moments of order 
statistics may be derived. Derivations of these quantities explicitly in terms of 
some elementary functions have been attempted by numerous authors, in- 
cluding Jones (19481, Godwin (1949a), Ruben (1954, 19561, Watanabe et al. 
(1957, 1958), Bose and Gupta (1959), and David (1963). These authors 
have been successful in their attempts at least for small sample sizes. By 
adopting a differential equation approach and using the characterizing 
differential equation (of the standard normal density function) z(')(x) = 

dZ(x)/& = -xZ(x), Bose and Gupta (1959) have shown, for example, that 
when n = 2, 
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There are three parameters a, g, and h in (12.90). A fourth (location) 
parameter .$ is introduced by the condition 

a is a scale parameter; g and h determine the shape. This system includes a 
few standard distributions-notably logistic distributions (g  = 1, h = 2)-and 
gives good approximations to many others. It is especially well suited for 
computational work. 

The condition p(x) 2 0 requires that g < h [if g = h, we have p(x) = 0 
for all x] and a # 0. Voit (1992) notes that the distribution of X is 
symmetric about zero if 

{F(x) jg  - ( F ( x ) ) ~  = ( 1  - F ( x ) ) ~  - ( 1  - F ( x ) j h  for all x, 

( F ( x ) ) ~  - ( 1  - F ( x ) j g  = ( F ( x ) ) ~  - (1 - F ( x ) j h  for all F ( x )  

in [O, 11, which leads to g = 1, h = 2 (logistic). [Equation clearly holds if 
F(x) = 3 at the median of X but not, in general, for other values of x.] 

At a mode, with dp(x)/dx = 0, we have 

So, if p(x) # 0, 

Since {F(x)}~-~  is a monotonic function of F(x), there is a single mode, at 
F-'((g/h) l/(h -g ) ) .  

Pdf s of three S-distributions are shown in Figure 12.10, taken from Voit 
(1992). 

Power transformations have generally been the subject of several studies. 
We will encounter some special cases in later chapters including power 
transformations of gamma and Pareto variables (generalized gamma and 
generalized Pareto) in Chapters 17 and 20, respectively. For power transfor- 
mations to normality, Box and Cox (1964) is a standard reference, though 
there are several others. They discussed transformations of the form 
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pdr) 

0.5 T 

0 5 10 15 20 

X 

Figure 12.10 Densities of Three S-Distributions. From left to right: g = 0.25, h = 0.5; g = 0.75, 
h = 1.5; g = 1.2, h = 5. In all three cases a = 1 and F(0) = 0.01. 

(The A = 0 of course leads to lognormal distributions; see Chapter 14.) This 
approach is limited to variables X that have support excluding negative 
values. In particular, X cannot have a normal distribution. Attempts at 
overcoming this constraint include papers by Moore (1957) and Goto, Inoue, 
and Tsuchiya (1983, 1987). 

Moore (1957) approached the problem by seeking to find numbers r, m, 
and c such that 

is approximately normal, with a very small probability that Z is negative (i.e., 
m/c is large). 

Goto, Matsubara, and Tsuchiya (1983) define a power-normal distribution 
having pdf, 

where 

@ ( u )  = (&)-')!- exp(- i t 2 )  dt; 
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4.4 Bessel Function Distributions 

McKay (1932) described a system of distributions that would provide (at 
least) one distribution corresponding to any pair of values (PI, P,) for which 
(pz - 3)/pl > 1.5 (i.e., "below" the Type 111 line). In fact for the narrow 
strip 

there are three possible distributions of this system corresponding to a single 
(PI, P2) point. Although most of the formulas presented below were derived 
by McKay, we will first mention a possible genesis of the system constructed 
by Bhattacharyya (1942). The distributions can in fact be obtained as distribu- 
tions of X,U: f X,U; where XI, X2 are mutually independent random 
variables, each distributed as X 2  with v degrees of freedom (see Chapter 18). 

The distribution of Y = X,U: + x2u; is the first of McKay's forms. It has 
probability density function 

with 

The distribution of Z = X,U: - X2u; is the second of McKay's forms. It has 
probability density function 

with 

In (12.95) and (12.961, I,(-) and Km(-) are modified Bessel functions (of 
the first and second kind, respectively) of order m (see Chapter 1, Section 3). 
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when n = 3, 

NORMAL DISTRIBUTIONS 

when n = 4, 

6 
E [ X i ]  = - E [ X ; ]  = - tan-' a ,  

TG 

and when n = 5, 

15 5 
E [ X ; ]  = - E [ X ; ]  = - tan-' fi - - 

TG 2 6  ' 

This method, however, fails to give explicit expressions in terms of elemen- 
tary functions for expected values of order statistics in samples of size 6 or 
more. It is of interest to mention that Ruben (1954), who has shown that the 
single moments of order statistics can be expressed as linear functions of the 
contents of certain hyperspherical simplices, noted that for dimension greater 
than three these contents cannot be expressed in terms of elementary 
functions. This possibly explains why the method of Bose and Gupta fails at 
sample size 6. Renner (1976) has discussed the evaluation of expected values 
by means of power series for sample sizes six and seven. 

Similar explicit formulas may be derived for the product moments of order 
statistics from small sample sizes. First, it is clear that when n = 2, 

Following the differential equation approach, it can be shown that when 
n = 3, 
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For both kinds of distributions (12.95) and (12.96) the moment-generating 
function is 

(with of course appropriate values of b and c, depending on which kind of 
distribution is being considered). 

It follows that the rth cumulant is 

(This can be established directly from Bhattacharyya's approach.) In particu- 
lar 

,/PI has the opposite sign to c. From the last two equations of (12.98) it can 
be shown that 

Regarded as a cubic equation in c2, (12.99) has a single positive root for 

and three positive roots for (p2 - 3)//?, > 1.5. [The three positive roots are 
given by McKay (1932) to 5 significant figures for (P2 - 3)/P1 = 

1.502(0.002)1.576.] For the region between the line 

(termed the Bessel line by McKay) and the axis of P2 there is a unique 
"Bessel distribution" corresponding to any given (PI, P2) point. Figure 12.11 
[taken from Bhattacharyya (1942)] shows how the values of m and c2 vary 
over this region, which was called the K-region by McKay [because only 
distributions of form (12.96) can be used here]. This diagram also shows how 
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Figure 12.11 Bessel Distribution Regions in (P, ,  P,) Plane 

narrow is the K and I region, where there are two distributions of form 
(12.95) and one of form (12.96) for each pair of values (P,, P,). 

It would seem that the K-form (12.96) is likely to be more generally useful 
than the I-form (12.95). Indeed, it has been suggested that (12.96) would lead 
to less troublesome computation than the Pearson Type IV distributions that 
have the same (PI, P,) values. However, the I-form (12.95) has been used 
[Bose (193811 for graduating an observed frequency distribution. Also the 
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family of I-distributions include the noncentral X2 distributions [see Laha 
(1953) and Chapter 291 and the distribution of the Mahalanobis D2-statistic. 
A generalization of the K-form, with probability density function propor- 
tional to lzlrn~,(lz/bl), mr # m, has been studied by Sastry (1948). 

McNolty (1967) has described the application of Bessel function Z-distri- 
butions to the distributions of signal or noise in output processed by a radar 
receiver under various sets of conditions. This paper contains interesting 
accounts of how the Bessel distribution might be expected to arise in each 
case. McLeish (1982) suggests the family of symmetrical distributions (of T )  
generated by T = G1l2Z, where G has a gamma (a ,  2) distribution (see 
Chapter 17) and Z is a unit normal variable, independent of G, as "robust 
alternatives" to the normal distribution, in the sense of possessing robust 
maximum likelihood estimators. The resulting distribution has pdf, 

If a is an integer, we have 

Location and scale parameters may be introduced in the usual way. McLeish 
(1982) notes that this distribution was defined by Pearson, Jeffery, and 
Elderton (1929) and studied in Pearson, Stouffer, and David (1932), and that 
a more general family with pdf, 

is "closely" related to McKay's Bessel-function distributions. 

4.5 Miscellaneous 

Burr (1942) has suggested a number of forms of cumulative distribution 
function that might be useful for purposes of graduation. In choosing one of 
these forms of distribution, the principal aim is to facilitate the mathematical 

: analysis to which it is to be subjected, while attaining a reasonable approxi- 
mation. 

L The forms for the cumulative distribution function (F,(y) )  listed by Burr 

j, are shown below (the first corresponds to a uniform distribution and is 
i. 
F 
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included because it is in the original list): 

(I) y for 0 < y < 1. 
(II) (e-Y + 

(111) (y-" + l)-k for 0 < y. 
(IV) [((c - y)/y)l/C + l I d k  for 0 < y < c. 
(V) (ce-'"" + l)-k for -7r/2 < y < ~ / 2 .  

(VI) ( ~ e - ~  sinh + l)-k. 
(MI) 2-k(l + tanh y)k. 

(VIII) [(2/r)tan-' eYIk. 
(1x1 1 - 2/{c[(l + ey)k - 11 + 2). 
(XI (1 - e-y21k for O < y .  

(XI) [y - (1/2.rr)sin27rylk for 0 < y < 1. 
(XI11 1 - (1 + for 0 < y. 

Here k and c are positive parameters. Setting y = ( x  - [)/A, we can 
introduce two extra parameters. 

Burr (1942) devoted special attention to the family (XII) of distributions. 
The probability density function of Z = Yc is 

and the r th moment of X is 

Burr gives, for c = 1(1)10 and k = 1(1)11, tables of mean and standard 
deviation to 5 decimal places, and of fi and p, to 3 decimal places or 4 
significant figures. In Burr (1968) and Burr and Cislak (1968) there is further 
discussion of properties of this family, with special reference to the distribu- 
tions of sample median and range. There is a thorough analysis of Type XI1 
distributions in Rodriguez (1977). [See also VodH (1982).] Wingo (1993) has 
discussed the maximum likelihood estimation of the parameters of 5 p e  XI1 
distributions based on progressively censored samples. 

It should be noticed that it is possible to relate some of the above forms of 
distribution by simple transformations. Thus (111) can be obtained from (11) 
by replacing y by c log y. Fry (1993) has recently provided a detailed survey 
of the univariate and multivariate Burr distributions. 

Mielke's (1973) kappa distributions have cdf s of form 
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I Fattorini and Lemmi (1979) describe applications and provide graphs of some 

1 pdfs. Ferreri (1964) has described a system of distributions with probability 
f density functions of form 

where 

This distribution depends on four parameters a, b, c, and 6. The rth 
absolute moment about 6 (the mean) is 

For c = 1, p, < 3; for c = - 1, p2 > 3. As a increases, the distribution 
approaches normality. 

Among other systems of distributions we note those described by Toranzos 
(1952) and Laha (1961). Toranzos describes a class of bell-shaped frequency 
distributions with probability density functions of form 

(Constant) . xc exp[- ;(a + ~ x ) ' ]  , x > 0. (12.106) 

Laha considers distributions for which there is a standard form having 
characteristic function (1 + Itla)-' for some value of CY in range 0 < CY s 2. 
This distribution, known as the Linnik distribution, is discussed in Chapter 
24. 

There are some very broad classes of distributions, including most of the 
common distributions. We will not devote much attention to these, as we are 
concerned more with properties of specific distributions than with broad 
classification. The exponential-type class includes all density functions that 
can be written in the form 

where A(.),  B(.), C ( . ) ,  and D ( - )  are arbitrary functions. This class was 
recognized nearly simultaneously by Darmois (1935) and Koopman (1936) (as 
the form taken by the density function if a single sufficient statistic for 0 

i exists, given values of n independent identically distributed random vari- 
' ables). It is often called the Darmois-Koopman (or Koopman-Darmois) class. 

A subclass of these distributions, still very broad, is thoroughly discussed in ] Morris (1983). 
1 
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An even broader class is that of the Pblya-type distributions, introduced 
by Karlin (1957). A frequency function A(x) is said to be a P6lya-type fre- 
quency function if for every positive integer n and every pair of sets of in- 
creasing numbers x, < x, < . . . < x,, y, < y, < . . . < y, the determinant 
IIA(xi - yk)ll r 0. A characterization of P6lya-type frequency functions by 
means of the structure of their characteristic functions was given by Lukacs 
(1968). 

Mathai and Saxena (1966) have pointed out that the formula for the 
density function 

(with x > 0, c > 0, (Y - c/d > 0, p - c/d > 0) and the limiting form ob- 
tained by letting a tend to infinity, and a to zero in such a way that a" tends 
to a': 

can be made to represent a considerable variety of commonly used distribu- 
tions by appropriate choice of values for the parameters; the confluent 
hypergeometric functions ,F1 and ,Fl are defined in Chapter 1, Sections A6 
and A7, respectively. 

The class of stable distributions has very considerable importance in 
probability theory, though statistical applications appear to be rather limited. 
Nevertheless, Mandelbrot (1963) and Fama (1965) have applied stable laws to 
stock market data, though this application was criticized by Nicklin and 
Paulson (1975). See also Fielitz and Smith (1972), and, more recently, 
Akgiray, Booth, and b i s t l  (1989). Holtsmark (1919) applied them to model- 
ing electrical fields; see also DuMouchel (1973). Informally speaking, a 
location scale family is stable if the convolution of two distributions belonging 
to the family also belongs to the family. More formally if the pdf of Xi is 

and Xl and X, are independent, then the pdf of (XI + X,) is of form 
f[(x - e)/u]/u for some 8 and a. 

Ah alternative definition [Monrad and Stout (1988)l is that if X, XI,. . . , X, 
are i.i.d. and there exist constants a, > 0 and b, such that CjnEIXj/an - b, 
has the same distribution as X, the common distribution is stable (excluding 
the case of degenerate one-point distributions). 
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All stable distributions have characteristic functions (Chapter 1, Section 
B8) of form 

qx( t )  = exp[ipt - cltla{l + i p  sgn(t)w(ltl, a ) ) ] ,  (12.110) 

where 

and i = \r-1 (0 < a I 2; - 1 I p I 1). p is a location parameter and c is 
a scale parameter. If c = 0, the distribution is degenerate. The shape of the 
pdf is determined by the parameters a and p. The latter is a skewness 
parameter. If p = 0, the distribution is symmetric. When p = 0, 

a = 2 gives normal distributions (Chapter 13) for any value of P, 
a = 1 gives Cauchy distributions (Chapter 16), 
a = gives distributions with the same shape as (jyZ with 1 degree of 

freedom)-', a special case of Pearson Type I11 (Section 4.2). 

For other values of a (and/or p # 0) we do not have simple expressions 
for the pdfs. There are a few special cases [Zolotarev (195411: 

1 
a = -  

3 ' p = 1 (the Macdonald distribution) 

2 
a = -  

3 ' 
p = O o r l  

3 (in terms of Whittaker functions) 
a = -  

2 ' 
p = 1 

[Kropac (1982) has a discussion of distributions involving Macdonald func- 
tions.] 

There are explicit formulas for the pdfs of standardized stable distribu- 
tions as convergent series, although they are rather complicated. For 0 < 
CY < 1, 

1 " (-  l)j-lI'(ja + 1) sin[j{iaa - tan-'(p tan i.rra)] 
P A X )  = - C 

.rrx j=l  j! xja(l + p2 tanZ ~ a n ) " z  

(12.111a) 
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For 1 < a I; 2, 

Chernin and Ibragimov (1959) have shown that all stable pdf s are unimodal. 
Figures 12.12~-c show pdfs of stable distributions for a = 0.5, 1.0, and 

1.5 each for various values of p, taken from Holt and Crow (1973), which 
further contains figures and tables of the pdf to 4 decimal places, for 

the values of M, M* were chosen to allow for easy interpolation out to value 
0.0001 for the pdf. 

Tables of the cdf [to four decimal places, when x = 

0.05(0.05)1.00(0.1)2.0(0.2)4.0(0.4~6.0(1)8,10,15,20] and percentile points [to 3 
decimal places, with p = 0.52(0.02)0.94(0.01)0.97(0.005)0.995,0.9975] for 
symmetric stable distributions (/3 = 0) with a = 1.0(0.1)1.9,1.95,2.0 had al- 
ready been given by Fama and Roll (1968). Soon after Holt and Crow (1973), 
additional tables of the cdfs of standardized symmetric distributions were 
given by Worsdale (1975). Included were values for a = 0.6(0.1)2.0 with 
x = 0(0.05)3.00, and also with log,, x = 0.40(0.05)2.50. Values were given to 
five decimal places, though there is a warning of possible round-off error in 
the fourth place. 

Tables calculated by Worsdales's method, for a = 1.0(0.1)1.9,1.95,2.0 and 
x = 0.00(0.05)1.00(0.1)2.0~0.2)4.0(0.4)6.0,7,8,10,15,20 are presented in Pan- 
ton (1992). There has been some reluctance to include tables for smaller 
values of a ,  presumably associated with the somewhat unusual shapes of the 
corresponding distributions, already becoming apparent in Figure 12.12~ 
(where a = 0.5). 

Properties of symmetric stable distributions have been studied by Gawron- 
ski (1984) and Nagaer and Shkol'nik (1989). Gawronski (1984) showed that all 
stable densities are "bell-shaped2'-that is, px(x) is infinitely differentiable 
(for x real), and dkp,(x)/dxk has exactly k zeros (all simple) on the support 
of the distribution varying with a and chosen so as to make interpolation 
feasible. An unusual feature is that for a # 1, the heavier tail is in the 
negative direction (negative skewness in the ordinary sense) for fl  > 0, and 
conversely for P < 0; the situation is reversed for a = 1. (See Figure 12.12b). 

de Haan and Resnick (1980) presented a simple asymptotic estimate for 
the index of a stable distribution. Saniga, Pfaffenberger, and Hayya (1975) 
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(a)  when a = 0.5 
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(c )  when a = 1.5 

Figure 12.12 Stable Probability Density Functions. In ( b )  note the reversal of location of 
heavier tail from that for a + 1. 
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discussed small-sample properties of the maximum likelihood estimator of 
the index a by means of Monte Carlo simulations. These authors also 
examined the power of various goodness-of-fit tests for stable versus normal 
and normal versus stable distributions. 

Barndofi-Nielsen (1978) observed that from observational data, plots of 
log (frequency) against value of the variable will often show approximately 
hyperbolic formula. This implied that the pdf would be of form 

(241+~, ( [ ) )  -' exp()l(l + a 2 ) ( l  + x2)  - ax)],  (12.112) 

where [ < 0 and K,([) is the Bessel function (Chapter 1, Section A5). 
Location and scale parameters, 8 and a, respectively, can be introduced, 
making four parameters in all. Equation (12.112) defines the hyperbolic 
system of distributions. Barndorff-Nielsen and Blaesild (1983) give a succinct 
account of this system. The expected value for (12.112) is 

and the variance is 

Sargan pdfs [Goldfield and Quandt (1981), ascribed to D. Sargan] are of 
form 

This is a p-order Sargan density. The distributions are symmetrical about 
zero. Goldfield and Quandt (1981) recommend (12.114) as a viable alterna- 
tive to normal distributions in econometric modeling. For p = 0 we have 
Laplace distributions (Chapter 24). Missiakoulis (1983) notes that the pdf of 
the arithmetic mean of p + 1 independent Laplace variables is a p-order 
Sargan density, and he discusses the choice of order when fitting a Sargan 
distribution. Tse (1987) also considers this question and indicates a prefer- 
ence for higher orders than those recommended by Missiakoulis (1983). 
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Azzalini (1985) noted that if X and Y are independent random variables, 
each having a pdf symmetric about zero, then for any A, 

Hence 2py(y)Fx(Ay) is a pdf. Taking X and Y each to be unit normal 
variables, we obtain Azzalini's "skew-normal" class of distributions, with 
pdf s, 

These distributions have a single parameter A. (A = 0 gives a unit normal 
distribution.) Location and scale parameters can be added, in the usual way. 
It is interesting to note that if X has pdf (12.115), then x2 is distributed as 
X 2  with one degree of freedom (for all values of A). 

To increase coverage of the (PI, P2) plane Azzalini (1985) introduced a 
further parameter, 6, and defined densities 

: Henze (1986) showed that if XI and X2 are independent standard normal 
a variables (N(0, I)), then 

has pdf (12.115). Also, extending Azzalini's original approach, he showed that 
the distribution of X2, conditional on XI < AX, + 5 has pdf (12.116). 

Mallows (1983) constructed a system of distributions that would cover the 
whole (PI, P2) plane in a smooth manner, without the sharp transitions of 
the Pearson and Johnson systems. The system is defined as distributions of 
the random variable 

where 6, A, $, w, 9, and cr are parameters, Y, and Z ,  are mutually 
independent, Y, is a continuous variable with pdf 
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with R(o) = (1 - @(w)}/{+(w)} (Mills's ratio; see Chapter 13). Z, is a 
two-point Bernoulli variable with 

[ E [ Z ; ]  = 0, Var(Z,) = 1, p3(Z,) = (a(1 - a))-2(1 - 2a), and p4(Za) = 

{a(l - a)}- - 3.1 
Although there are six parameters in (12.117), the scale factor ( A )  is 

redundant. Mallows suggested fitting by the first four moments, introducing 
the relationship 

From (12.118) the value of 

and hence of w, is determined. Then 0 is determined from 

Finally, the values 

and 

a = '[I 2 - (PI( x ) ( p 2 ( x ) ) - l  + 406)l/~] (12.122) 

are calculated. 
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The standard slash distribution is the distribution of the ratio of a unit 
normal variable to an independent standard uniform (0,l) variable. Its pdf is 

where +(XI = (d%)-' exp( - fx2). Equation (12.123) is mainly of use in 
simulation studies. General slash distributions can be obtained by replacing 
the unit normal variable by a general normal N(6, u2)  random variable. 
Properties of this family of distributions have been discussed by Rogers and 
Tukey (1972) and Mosteller and Tukey (1977). Their applications to robust- 
ness studies through Monte Carlo simulations have been well illustrated by 
Andrews et al. (1972) and Gross (1973). The maximum likelihood estimation 
of location and scale parameters for this family has been described by 
Kafadar (1973). 

Albert, Delampady, and Polasek (1991) have proposed the use of an 
j extended-power family of distributions in robustness studies. These are sym- 

metric distributions with pdf, 

0 
p,(x) = ~ 0 ' 1 ~  exp - -CA-'  1 + -(x - 5 )  [ : {i c - 1  

where K depends on c and A but not on 8. For A = 0, 

0 
p,(x) = ~ 0 ' 1 ~  exp "1 (12.124b) 

is suggested. This is a Cauchy distribution (Chapter 16), since the right hand 
side of (12.124b) can be written as 

8 
K01/2(l + -(x - 6)  

c - 1  2} -=I2 

5 CORNISH-FISHER EXPANSIONS 

If any distribution is fitted by making the first s moments of the fitted and 
actual distributions agree, it is, in principle, possible to calculate quantiles of 
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the fitted distribution and to regard these as approximations to the corre- 
sponding quantiles of the actual distribution. In fact the fitted quantiles are 
functions of the s fitted moments. So we have estimators of the actual 
quantiles which are functions of these s moments. 

Usually these functions are very complicated and not easily expressible in 
explicit form. However, in the case of the Gram-Charlier and Edgeworth 
expansions, described in Section 4.2, it is possible to obtain explicit expan- 
sions for standardized quantiles as functions of corresponding quantiles of 
the unit normal distributions. In these expansions the terms are polynomial 
functions of the appropriate unit normal quantile, with coefficients that are 
functions of the moment-ratios of the distribution. We now outline the 
method of derivation of these expansions, using an argument propounded by 
Cornish and Fisher (1937). [The argument has been reformulated in Fisher 
and Cornish (1960) and extended by Finney (1963).] 

From (12.51) we have formally 

and if p(x) = +(x) = ( G ) - ' e - x 2 / 2 ,  then DJp(x) = (- l)jHi(x)4(x). Now 
suppose that Xa and Ua are defined by 

g ( x )  a!x = a = j-&4(x) &- I-: m 

Using the expansion (12.125) 

We now expand the right-hand side as 
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Inserting this in (12.126) gives the identity 

Expanding the left-hand side and dividing both sides by +(Xa)  gives an 
identity, of polynomial form, between ( X ,  - U,) and Xa. By straightforward, 
though tedious, algebra it is possible to rearrange (12.118) to obtain either U, 
as a function of Xa [i.e., Ua = U(X,)] or Xa as a function of Ua [i.e., 
x, = X(U,)l. 

Cornish and Fisher (1937) gave detailed formulas for U(X,)  and X(Ua), 
and they extended these in Fisher and Cornish (1960). They collected terms 
according to Edgeworth's system (see Section 4.3). Based on their formula we 
have (to order n-' if K ,  is of order nl-'/' with the distribution standard- 
ized) 
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Also 

The formulas given in the 1937 and 1960 papers include terms adjusting the 
mean and variance. In formulas (12.129) and (12.130), however, it has been 
assumed that the distribution to be fitted has been standardized, so no 
correction is needed. 

Numerical values of the coefficients in formula (12.129) of Fisher and 
Cornish (1960) are given to 5 decimal places for a = 0.5, 0.75, 0.9, 0.95, 
0.975, 0.99, 0.995, 0.999, and 0.9995. This paper also gives the values of the 
first seven Hermite polynomials, to 12 decimal places, for the same values of 
a. It is especially to be noted that the functional forms U(.) and X(.) do not 
depend on the value of a. The function U(X) may be regarded as a 
normalizing transformation of the random variable X. The function X(.) 
expresses the quantiles of the (standardized) distribution of X as a function 
of corresponding quantiles of the unit normal distribution. 

In practice only a finite number of terms of the expansions U(.) or X(.) 
are used. It is important to recognize that the results obtained are not 
equivalent to those obtained by retaining a similar number (or indeed any 
specified number) of terms in the Gram-Charlier expansions. They may be (in 
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favorable cases) good approximations to the quantiles of the "distributions" 
represented by the complete expansions. 

Even though the Cornish-Fisher expansions are directly related to the 
Edgeworth form of distribution, there is a difference in the way these two are 
used. It is unusual to use moments higher than the fourth in fitting an 
Edgeworth (or Gram-Charlier) expansion. This is partly because the possibil- 
ity of negative values (and multimodality) becomes more serious as further 
terms are added and partly because, with observed data, estimation of higher 
moments is often of low accuracy. Cornish-Fisher expansions, on the other 
hand, are more usually applied to theoretically determined distributions (with 
known moments), and it is quite usual to use moments of order as high as six, 
or even greater. 

As Finney (1963) has pointed out, it would be possible to obtain analogues 
of Cornish-Fisher expansions by operating on Laguerre series (or other) 
forms of distribution in the same way as described (for Edgeworth series) at 
the beginning of this section. Use of Cornish-Fisher expansions to calculate 
percentiles of Pearson distributions has been reported by Bowman and 
Shenton (1979a, b) and Davenport and Herring (1979). Modifications of the 
expansion have been described by McCune (1977). Lee and Lin (1992) 
present a computer program for extending the Cornish-Fisher expansion to 
terms of order n-9. (It can be adjusted to give any required order, provided 
the computer has sufficient capacity.) They note that the expansion is I 
ultimately divergent and suggests, as a practical stopping rule, that the odd 
order and even order series of terms be considered separately, and that the 
summation be terminated immediately before either series increases in 
absolute value. 

6 NOTE ON CHARACTERIZATIONS 

Characterizations of specific distributions will be described at appropriate 
places in the text. However, the two following types of characterization, 
which apply to all distributions in this volume, will not usually be mentioned 
individually, since this would lead to tautological repetition. 

If X,, . . . , X,, are i.i.d., their common distribution is determined by 

1. that of their sum, or, a fortiori their arithmetic mean (X), or 
2. that of any one order statistic X,!:,, (the rth smallest of the X's). 

In case 1, which applies to all distributions (continuous or discrete), the 
common characteristic function is equal to the (l/n)th power of that of the 
sum and thus determines the common distribution. In case 2 for absolutely 
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continuous distributions, the cdf of X::, is 

where F(x)  is the common cdf of X,, . . . , X,, and I,(a, b )  is the incomplete 
beta function ratio (Chapter 1, Section 5). The right-hand side of (12.131) is a 
monotonic-increasing function of F(x)  and so determines F(x), given 
F,:,,(x). [See Johnson and Kotz (1990).] 
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C H A P T E R  1 3  

Normal Distributions 

1 DEFINITION AND TABLES 

A random variable X is normally distributed if it has the probability density 
function: 

The probability density function of U = ( X  - ,$)/a is 

which does not depend on the parameters 6, a. This is called the standard 
form of normal distribution. (It is also the standardized form.) The random 
variable U is called a standard, or unit, normal variable. 

Since 

such probabilities can be evaluated from tables of the cumulative distribution 
function of U,  which is 

The notation @(.) is widely used, so it will be used in this book. Further it is 
convenient to have a systematic notation for the quantiles of the distribution 
of U. We use the system defined by 
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so that U, -, is the upper 100a% point, and U, ( = - Ul-,) is the lower 
100a% point of the distribution. 

There are other forms of notation that are much less frequently encoun- 
tered in statistical work. The parameter in (13.1) is sometimes replaced by 
the precGion modulus 

Other functions are 

(erf is the error function, or Cramp function, and erfc the error function 
complement). Other names for the distribution are second law of Laplace, 
Laplace, Gaussian, Laplace-Gauss, de Moivre; @ ( a )  is also called the 
Laplace-Gauss integral, or simply the probability integral, and erff.) is also 
known by this last name and is sometimes called the error integral. 

Tables relating to the unit normal distribution are a necessary ingredient 
of any textbook in statistical theory or its applications. This is because for 
many decades the normal distribution held a central position in statistics. As 
pointed out, tables of the unit normal distribution suffice for calculations 
relating to all normal distributions. Some care is necessary in using these 
tables; for example, putting 

it is necessary to remember the multiplier u-' in 

But no real difficulties are presented by the extended use of tables of the unit 
normal distribution. [The symbols cp(x), +(XI are often used in place of 
Z(x1.1 

In most of the tables only positive values of the variable are given. This is 
all that is necessary, since 

Z ( x )  = Z( -x) and @(x)  = 1 - @( -x). (13.8) 

Here we give a list of only the more easily available tables. Fuller lists are 
given in the National Bureau of Standards (1952) (up to 1952) and Green- 
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wood and Hartley (1962) (up to 1958). The functions most often tabulated 
are @(x), Z(x) ,  and U,, but there are many variants for special uses. 

Pearson and Hartley (1948) give tables based on values originally com- 
puted by Sheppard (1903, 1907). These contain 

1. @ ( X I  and Z ( x )  to 7 decimal places for x = 0.00(0.01)4.50; and to 10 
decimal places for x = 4.50(0.01)6.00. 

2. Ua to 4 decimal places for a = 0.501(0.001)0.980(0.0001)0.9999. 
3. Z(Ua) to 5 decimal places for a = 0.500(0.001)0.999. 

Pearson and Hartley (1970) have also provided these tables. 
Fisher and Yates (1963) give U, to 6 decimal places for a = 

0.505(0.005)0.995, and to 5 decimal places for 1 - a = 0.0'1 [ r  = 2(1)8]. 
These tables include values of "probits"-(5 + U,)-to 4 decimal places for 
a = 0.001(0.001)0.980(0.0001)0.9999 and of Z(u)  to 4 decimal places for 
u = 0.00(0.01)3.00(0.1)3.9. 

Owen (1962) gives Z ( x )  and @(x)  to 6 decimal places, z(')(x), z(*)(x), 
zc3)(x), and (1 - @ ( x ) ] / Z ( x )  to 5 decimal places, and @(x) /Z (x )  to 4 
decimal places, for x = 0.00(0.01)3.99; also (1 - @(x)] to 5 significance 
figures for x = 3.0(0.1)6.0(0.2)10.0(1)20(10)100(25)200(50)500, and U, and 
Z(Ua) to 5 decimal places for a = 0.500(0.001)0.900(0.005)0.990. 

Kelley (1948) gives U, to 8 decimal places for a = 0.5000(0.0001)0.9999. 
Hald (1952) gives Z ( x )  and @(x)  to 4 significant figures for 

and probits (5 + Ua) to 3 decimal places for 

We next describe some tables containing larger number of decimal places, 
useful for special calculations. 

In Zelen and Severo (1964) there are tables of Z(x) ,  @(x)  and z(')(x) to 
15 decimal places, z ( ~ ) ( x )  to 10, and Z(')(x) ( r  = 3,4,5,6) to 8 decimal 
places for x = 0.00(0.02)3.00. For the values x = 3.00(0.05)5.00, @(x) is 
given to 10 decimal places, Z ( x )  to 10 significant figures, and z(')(x) 
( r  = 2,. . . ,6) to 8 significant figures. A further table gives ZCr) (x )  ( r  = 

7,. . . ,12) to 8 significant figures for x = 0.0(0.1)5.0. There are also tables 
[based on Kelley (1948)l of Ua and Z(Ua) to 5 decimal places for a = 

0.500(0.001)0.99, and of Ua to 5 decimal places for a = 0.9750(0.0001)0.9999. 
In the National Bureau of Standards tables (1953) there are given tables of 

Z ( x )  and 2@(x) - 1 [= erf(x/ a)] to 15 decimal places for x = 

0(0.0001)1.0000(0.001)7.800; and also of 2[1 - @(x)] to 7 significant figures 
for x = 6.00(0.01)10.00. 
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Table 13.1 Percentile Points of Normal Distribution, 
as Standardized Deviates (Values of U,) 

a 'a 

present. The probable error of distribution (1) is, of course, 
U0.75u. 

0.995 
0.9975 
0.999 

There are many other publications containing various forms of tables of 
the normal distribution. Further tables of special functions associated with 
the normal distribution are used in connection with probit analysis. There is 
no need for extensive tables of the normal distribution to be given here. We 
confine ourselves, in Table 13.1, to a few commonly used values of Ua. 

Tables of random unit normal deviates (representing values of a random 
variable having a unit normal distribution) have been constructed from tables 
of random numbers (representing values of a random variable having a 
discrete rectangular distribution over the integers 0-9). In 1948 Wold (1948) 
published a set of 25,000 random unit normal deviates (to 3 decimal places), 
based on Kendall and Babington Smith's (1942) tables of random numbers. A 
set of 10,400 random unit normal deviates (also to 3 decimal places), based 
on Tippett's (1927) table of random numbers, was published by Sengupta and 
Bhattacharya (1958). These replaced an earlier set of tables, first appearing 
in 1936 [Mahalanobis et al. (193411 which were found to contain a number of 
errors. 

A set of 100,000 random unit normal deviates, to 3 decimal places, based 
on the first half-million random numbers produced in 1947, was published by 
RAND (1955). In Buslenko et al. (1966) there is a table of 1000 random unit 
normal deviates, to 4 decimal places. These were calculated from the values 
of five independent random variables R,, . . . , R, each randomly distributed 

2.575829 
2.807034 
3.090232 

"The value of Uo,, (= 0.6745), the upper quartile of the unit 
normal distribution, is occasionally called the probable error of 
the distribution, though this nomenclature is seldom used at 
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over the range 0 to 1 (see Chapter 26), using the formulas 

U = X - O.Ol(3X - x 3 ) ,  

where 

[This formula was suggested by Bol'shev (1959). Note that f i ( 2 ~ ~  - 1) has a 
standardized rectangular distribution.] 

2 HISTORICAL REMARKS 

Because of the importance of the normal distribution, considerable attention 
has been paid to its historical development. The earliest workers regarded 
the distribution only as a convenient approximation to the binomial distribu- 
tion. At the beginning of the nineteenth century appreciation of its broader 
theoretical importance spread with the work of Laplace and Gauss. The 
normal distribution became widely and uncritically accepted as the basis of 
much practical statistical work, particularly in astronomy. Around the begin- 
ning of the present century, a more critical spirit developed with more 
attention being paid to systems of "skew (nonnormal) frequency curves" (see 
Chapter 12). This critical spirit has persisted, but it is offset by developments 
in both theory and practice. The normal distribution has a unique position in 
probability theory, and it can be used as an approximation to other distribu- 
tions. In practice, "normal theory" can frequently be applied, with small risk 
of serious error, when substantially nonnormal distributions correspond more 
closely to observed values. This allows us to take advantage of the elegant 
nature and extensive supporting numerical tables of normal theory. 

The earliest published derivation of the normal distribution (as an approx- 
imation to a binomial distribution) seems to be that in a pamphlet of 
de Moivre dated 12 November 1733. This pamphlet was in Latin; in 1738 
de Moivre published an English translation, with some additions. [See also 
Archibald (1926) and Daw (1966).] 

In 1774 Laplace obtained the normal distribution as an approximation to 
hypergeometric distribution, and four years later he advocated tabulation of 
the probability integral [@(XI, in our notation]. The work of Gauss in 1809 
and 1816 established techniques based on the normal distribution, which 
became standard methods used during the nineteenth century. 

Most theoretical arguments for the use of the normal distribution are 
based on forms of central limit theorems. These theorems state conditions 
under which the distribution of standardized sums of random variables tends 



86 NORMAL DISTRIBUTIONS 

to a unit normal distribution as the number of variables in the sum increases, 
that is, with conditions sufficient to ensure an asymptotic unit normal 
distribution. Gauss's (1816) derivation of the normal distribution, as the 
resultant of a large number of additive independent errors, may be regarded 
as one of the earliest results of this kind. 

Formal rigorous mathematical discussion of central limit theorems (for 
independent random variables) may be said to start with the work of 
Lyapunov (1900). A useful theorem associated with his name states that if 
XI, X2, . . . , X,, are independent, identically distributed random variables 
with finite mean and standard deviation then the distribution of the standard- 
ized sum 

tends to the unit normal distribution as n tends to infinity. Lyapunov also 
obtained an upper bound for the magnitude of the difference between the 
cumulative distribution functions of the standardized sum and the unit 
normal. This upper bound was of the form Cn-'I2 log n, where C is a 
constant depending on the variances and third moments of the Xi's. It has 
subsequently been considerably improved by Cram& (1928), Berry (1941), 
Esseen (19421, Zahl (19661, and Zolotarev (1967). For the case when the 
variables {Xi} are identically distributed the upper bound obtained by 
Zolotarev (1967) is 

where 

This result was an improvement on an earlier result of Wallace (1959) 
[correcting a result of Berry (1941)l. Zahl (1966) has shown that the upper 
bound 

can be obtained, provided v3 /a3  2 3/ a = 2.22. 
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It can be shown by consideration of particular cases that the upper bound 
must be at least 

with 

Zolotarev (1967) has shown that if the variance and absolute third central 
moment of Xj are ai2, u,~,  respectively ( j  = 1,2,. . . , n), then an upper bound 
for the magnitude of the difference between cumulative distribution func- 
tions is 

For the general case of independent (but not necessarily identically 
distributed) variables, Lindeberg (1922) showed that putting Var(Xi) = ui2 
and 

for all t > 0, the distribution of the standardized sum 

tends to the unit normal distribution as n tends to infinity. The necessity of 
Lindeberg's condition was established by Feller (1935). Since then attention 
has moved to consideration of conditions under which a limiting normal 
distribution applies to sums of nonindependent random variables. An ac- 
count of some such conditions can be found in a book by L o b e  (1963). 

A comprehensive account of the central limit theorem and related prob- 
lems (up to the early 1950s) has been given by Gnedenko and Kolmogorov 
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(1954). Multidimensional extensions of central limit theorems have been 
investigated by Bergstrom (1943, Esseen (1958), Sadikova (1966), and Sazanov 
(1967) among others. 

Porter (1989, while discussing the historical details of the concepts of 
variation and error in Quetelet's statistics, has brought out the vital role that 
the normal distribution plays in the mathematics of society. Wilf (1988) has 
commented briefly on the general quest for normality. Read (1985) has 
provided a fine review of the various important developments on the normal 
distribution. Stigler (1982) has proposed a new standard for the normal 
distribution. 

As one would expect, there has been a phenomenal development on 
various aspects of the normal distribution. Consequently several books and 
monographs have appeared dealing specifically with inference, characteriza- 
tions, tolerance limits, prediction, goodness-of-fit, and so on. It is therefore 
neither feasible nor necessary to discuss all these developments in detail. 
Fortunately there is a handbook prepared by Patel and Read (1981) available 
on the distribution; the second edition of this book is currently under 
preparation. We are hopeful and confident that this volume will provide a 
comprehensive treatment to the distribution, and hence we have concen- 
trated on adding only those results that are primarily of distributional nature . 
(rather than specific inferential aspect). We refer the readers to the above- 
mentioned handbook and other books/monographs (listed for specific topics) 
for an elaborate discussion. 

3 MOMENTS AND OTHER PROPERTIES 

If U has the unit normal distribution, then, since the distribution is symmet- 
rical about U = 0, 

and so 

If r is odd, 
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If r is even, 

Hence 

This, as pointed out in Section 1, reveals that the unit normal is also the 
standardized normal distribution. If X has the genera1 normal distribution 
(13.0, then 

where U is a unit normal variable. 
Some normal probability density functions are shown in Figure 13.1. The 

nine curves shown correspond to all possible combinations of 6 = - 1, 0, 1 
and a = +,I ,  2. The curve in the center represents the unit normal distribu- 
tion (6 = 0, a = 1). The distribution is symmetrical about X = 6; the proba- 
bility density function has points of inflexion at X = 6 * a. The distribution 
is unimodal with mode at X = 6 (which is also the median of the distribu- 
tion). The modal value of the probability density function is (fi)-' = 

0.3979. 
The moment generating function of X (= 6 + a U )  is 

: and the characteristic function is ei'5-(t2u2/2).  For all r > 2, the cumulants K ,  
I are zero. This property characterizes normal distributions. 



Expected Value (t) 
m 
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The mean deviation of X is u r n  = 0.798~. For all normal distribu- 
tions 

Mean deviation 

Standard deviation 
= = 0.798. (13.14) 

The information-generating function of X is 

The entropy is 

It is of some interest to note that the probability density function (13.1) 
can be expressed in the numerical form 

The derivatives of the function Z ( . )  are also of some interest. They are used, 
for example, in the Gram-Charlier expansion (see Chapter 12). We have 
already discussed them in Chapter 1, and Section 1 of Chapter 12 contains 
some references to tables of their numerical values. 

If XI, X,, . . . , Xn are independent, normally distributed random variables, 
then any linear function of these variables is also normally distributed. It is of 
interest to note that if XI and X2 are independent, and each is normally 
distributed with zero expected value, then x,x,(x: + X:)-'/' is also 
normally distributed. If further var(Xl) = var(X2), then (x: - x:)/(X; + 
x i )  is also normally distributed [Shepp (1964)l. 

If XI, X2, . . . , Xn are independent random variables each distributed as 
(13.1), then by applying the transformation 

= Z + (I  . ~)-'/'u,u+ (2 - ~ ) - ' / ' u ~ u  + . - - + [(n - I.)~]-~"u,u, 
- (1  . 2 ) - 1 / 2 ~ 2 u +  (2 . 3)-'l2u3u + - .  . + [(n - l )n]  -'/'u,u, 

- 2(2 3 ) - 1 / 2 ~ 3 u +  . - + [(n - l )n ]  - 1 / 2 ~ n u ,  

- (n - 1) [(n - l )n ]  - ' / 2 ~ n u ,  

(13.18) 

i it can be shown that 

i 1. f (= n-lZy=lXj) has a normal distribution with expected value 5 and 
standard deviation a/ 6. 
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2, Each U, ( j  = 2,. . . , n) is a unit normal variable. 
3, x ,  U,, . . . , U, are a mutually independent set of variables, and hence 
4. Ci",l(Xj - zl2 = u2Cy=2142 is distributed as u 2  with (n - 1) 

degrees of freedom). 

This last result was obtained by Helmert in 1875-76. The transformation 
(13.18) is called Helmert 's transformation. 

Since any function 

g(xl - x , .  . . , x,, - Z) 

of the deviations {Xi - X} alone is a function of {U,) alone, we further note 
that by (13.18) and by property 3, 

5. X and any function g(X, - x ,  . . . , Xn - X) are mutually independent. 

This result is helpful in calculating moments and distributions of statistics 
such as z [ ~ a n ~ e ( ~ , ,  ..., X ~ ) ] - ~ ; X [ ~ - ~ C ~ _ , ~ X ~   XI]-^. It can also be 
shown that 

6. Ci"_,(Xj - 8), and any function of the ratios 

are mutually independent. 

Zehna (1991) has recently given a simple proof for the result that 3 and 
S2  are statistically independent. Bondesson (1981) discussed a normal sample 
with given sample mean and variance. Szekely (1985) established the multi- 
plicative infinite divisibility of a standard normal distribution, while Chernoff 
(1981) presented an inequality involving the normal distribution function. 
Berg (1988) showed that the distribution of the cube (or, indeed, any odd 
power) of a normal random variable is not determined by its moments. 

Hawkins (1975) has made a comment on the computation of noncentral t 
and normal integrals. Hawkins and Wixley (1986) have made some observa- 
tions on the transformation of chi-squared variables to the normal distribu- 
tion (see also Chapter 18). Aroian, Taneja, and Cornwell (1978) have derived 
the mathematical forms of the distribution of the product of two normal 
variables, while Cornwell, Aroian, and Taneja (1977) have discussed the 
numerical evaluation of that distribution. Hayya, Armstrong, and Gressis 
(1975) have considered the distribution of the ratio of two normal variables. 
Karhunen and Narula (1989) have similarly derived the distribution of the 
ratio of the absolute values of two normal variables. Anscombe and Glynn 
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and when n = 4, 

A general approach, given by Godwin (1949a), is to express the product 
moments in terms of integrals of the form 

where Q(xl, . . . , x,) is a quadratic form in the xi's. For n = 1,2,3, J,, can be 
expressed explicitly in terms of elementary functions as follows: 

i n -  
n = 1, Q(xl)  = allx:, J1 = -, 

2a11 

where 

+ tan-' 
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The values of means of order statistics have been tabulated to five decimal 
places by Harter (1961a) for n  = 2(1)100(25)250(50)400, and also by Harter 
(1970) for some more choices of n. The mean and variance of the ith 
quasi-range have been tabulated by Harter (1959) for n  up to 100. Tippett 
(1925) has computed the expected value of the sample range for n  I 1000, 
while Harter (1960) presented tables of the mean, variance, and the coeffi- 
cients of skewness and kurtosis for n I 100. Teichroew (1956) has presented 
tables of means and product moments of order statistics for sample sizes up 
to 20. By making use of Teichroew's tables, Sarhan and Greenberg (1962) 
have tabulated the variances and covariances of order statistics (to 10 
decimal places) for n  I 20. These tables have been extended by Tietjen et al. 
(1977) for sample sizes up to 50. The values of the mean and standard 
deviation of order statistics prepared by Yamauti (1972) for sample sizes up 
to 50 are contained in the tables of Tietjen et al. (1977). For the largest order 
statistic Xi, Ruben (1954) has tabulated the first ten moments for n  1 5 0  
and Borenius (1965) has presented the first two moments for n  1 120. 
Parrish (1992a, b) has presented tables of means, variances and covariances 
of order statistics (up to 25 decimal places) for some selected sample sizes up 
to 50. Miyakawa, Tamiya, and Kotani (1985a) have discussed the numerical 
evaluation of moments of order statistics through an orthogonal inverse 
expansion. 0ztiirk and Aly (1991) have proposed some simple approxima- 
tions for the moments of order statistics. 

Royston (1982) has given an algorithm for computing the expected values 
of normal order statistics. This algorithm will compute and present the exact 
values for sample sizes up to 1000 and will also present an approximate value 
for the quantity for larger sample sizes [see Koeniger (1983) for an additional 
remark on this algorithm]. Balakrishnan (1984) has presented an algorithm, 
based on an orthogonal inverse expansion, to approximate the sum of squares 
of normal scores, namely S = Cy=l{~[X,1]}2. This quantity arises often in 
nonparametric statistics. Dansie (1986) described the normal order statistics 
as permutation probability models, while Nelson (1983) discussed the useful- 
ness of normal scores as a transformation. 

For the standard normal distribution, an interesting property satisfied by 
order statistics is that 

~ E [ x , ' x ~ ]  = x Cov(X, ' ,Xj)=l,  i n .  (13.22) 
j=  1 j =  1 
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That is, every row (or column) of the product-moment matrix or the 
variance-covariance matrix adds up to 1. This follows easily from the fact that 
x and Xi' - x are statistically independent. Some relationships between 
moments of order statistics have also been established by various authors, 
and almost all of them have been derived by exploiting the characterizing 
differential equation Z(')(x) = -xZ(x). For example, Govindarajulu (1963) 
has shown that for 1 s i I n, 

n- i  
n - 1 1 

E[x;"] = 1 + n ( i  - ) ( - I ) ' ( ~  ' ) G ~ [ ~ ~ , i + j ~ ~ : i + j l .  (13.23) 
1 j=,, 

If we set i = n in (13.23), we obtain the relation 

The results in (13.22), (13.23), and (13.24) have been used for checking the 
computation of the product moments. Furthermore Davis and Stephens 
(1977, 1978) have applied (13.22) and (13.24) to improve the David-Johnson 
approximation of the variance-covariance matrix (see Chapter 12). Reference 

j may also be made to Shea and Scallon (1988) for further remarks in this 
j regard. 
i By noting that the condition z(')(x) = -xZ(x) is satisfied by both the 

standard normal and the half-normal (see Section 10) distributions, Joshi and 1 Balakrishnan (1981) established the following results satisfied by order statis- 
i 

tics from both these distributions: 

n n 

E[X,'X~] = 1 + CE[X, ' -~X~]  for 1 5 i I n, (13.25) 
j=i  j = i  

x E[x,'x,!] = 1 + nEIX; , l ]EIX~-l ,n- l ]  for 1 I i I n, (13.27) 
j=  1 

and 

n 

Cov(X,l, Xi) = 1 - ( n  - i + ~)E[x;,,]{E[x,~] - E[x,'-,I] 
j -  1 

for 1 5 i I; n. (13.28) 
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Joshi and Balakrishnan (1981) have used these relations to derive a conve- 
nient expression for the variance of the selection differential or reach 
statistic, defined as A, = zk - f ,  where xk is the average of the k largest 
order statistics, XA-,+,, . . . , XA. For example, Joshi and Balakrishnan (1981) 
have shown that 

Consequently the mean and variance of xk (and hence of A,) can be 
determined from the first two raw moments of X,! alone. These quantities 
have been tabulated for sample sizes up to 50 by Joshi and Balakrishnan 
(1981). Some properties of f, have also been discussed by Schaeffer, van 
Vleck, and Velasco (1970) and Burrows (1972, 1975). In particular, they 
observed that k var(X,) remains almost constant for the selected fraction 
k / n .  While Schaeffer, van Vleck, and Velasco (1970) tabulated the values of 
k ~ a r ( X , )  for n  5 20 and all choices of k, Burrows (1972, 1975) provided 
approximations to E[X,]  and k var(F,) for large values of n. But, Joshi and 

' 

Balakrishnan (1981) have pointed out that Burrows' approximation for 
k  ~ a r ( X , )  is not satisfactory for small values of k even when n  is 50, and 
that the approximation improves when k increases. The statistic A, is 
related to Murphy's test statistic for outliers; for details, see Hawkins (1980) 
and Barnett and Lewis (1994). 

The cumulative distribution function of the extreme XL was tabulated by 
Tippett (1925) for n  = 3,5,10,20,30,50,100(100)1000. Percentage points for 
n  1 3 0  were given by Pearson and Hartley (19701, and the cumulative 
distribution function of XA was tabulated by Pearson and Hartley (1972), to 7 
decimal places, for n  = 3(1)25(5)60, 100(100)1000 and for x in steps of 0.1. 
Gupta (1961) and Govindarajulu and Hubacker (1964) have presented per- 
centage points of all order statistics for n  < 10 and n  1 30, respectively. 
Eisenhart, Deming, and Martin (1963) have tabulated percentage points of 
the sample median. Pearson and Hartley (1942, 1970) have provided tables 
for the distribution function of the sample range XA - Xi. Harter and 
Clemm (1959) have given extensive tables of the cumulative distribution 
function (to 8 decimal places) and also of the percentage points (to 6 decimal 
places) of the range for n = 2(1)20(2)40(10)100 and the argument in steps of 
0.01, and 23 different percentage points for each n, respectively. Besides 
reproducing these tables, Harter (1970) has presented tables of the probabil- 
ity density function of the sample range (to 8 decimal places) for n  up to 16 
and the argument in steps of 0.01. The cumulative distribution function of 
the ith quasi-range, X;-,+, - Xi', is presented by Harter (1970) to 8 decimal 
places for n  = 2(1)20(2)40(10)100, i = 1,2,. . . ,9, and the argument in steps 
of 0.05. Harter (1970) has also presented tables of corresponding percentage 
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points to 6 decimal places. Currie (1980) has discussed the distribution of the 
studentized range. An algorithm for calculating the probability integral of the 
sample range has been presented by Barnard (1978); see El Lozy (1982) for 
some additional remarks on this computational algorithm. 

David, Kennedy, and Knight (1977) have provided tables of means, vari- 
ances, and covariances of order statistics arising from a standard normal 
sample with one outlier. These values are presented for all n up to 20, for 
the two cases: (1) location-outlier, the outlier being N(A, 1) for A = 0(0.5)3, 
4; and (2) scale-outlier, the outlier being N(O,T') for T = 0.5,2,3,4. These 
tables have since been used in many robustness studies because they can be 
utilized to determine exactly the bias and the mean square error of any linear 
estimator when there is a single outlier present in the sample. 

In addition to the numerous tables listed here, there are also several 
tables pertaining tests for outliers. The recently published third edition of 
Barnett and Lewis (1994) provides a complete list of all the available tables. 

5 RECORD VALUES 

Let Xu(,,, Xu(,,, . . . be the upper record values arising from a sequence {Xi) 
of i.i.d. standard normal variables. That is, with To = 0 and 

denoting the upper record times, the record value sequence {Xu(,$=, is 
defined by Xu(,, = XT n - , ,  n = 1,2,. . . . Then the density of Xu(,, is 

and the joint density of Xu(,, and Xu(,, is given by 

x ( -log(l - @( y)) + log(1 - ~ ( x ) ) } " - ~ - '  Z ( Y ) ,  

- m < x < y < m , l s m < n .  (13.31) 

From (13.30) and (13.31), Houchens (1984) and Balakrishnan and Chan 
(1994) have determined (by numerical methods) the values of E[Xu(,,], 
Var(X,(,,), and Cov(Xu(,,, Xu(,,). By making use of these values, these 
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authors have also derived the best linear unbiased estimators of 5 and a 
based on the first n upper record values. Balakrishnan and Chan (1994) have 
also discussed the prediction of a future record and a test for spuriosity of a 
current record value. They have also established that 

and consequently that 

Suppose that XLt12, XL(,,, . . . , denote the lower record values arising from 
a sequence {Xi} of 1.i.d. standard normal variables; that is, with T,* = 1 and 

denoting the lower record times, the lower record value sequence {XL(,$=, 
is defined by XL(,). = XT2-,, n = 1,2,. . . . Then, due to the symmetry of the 
standard normal distribution, it may be easily observed that 

With this property, moments of the lower record values (and inference based 
on the lower record values) can be easily obtained from the corresponding 
results for the upper record values. 

6 CHARACTERIZATIONS 

We first summarize normal characterizations presented in the first edition of 
this book [Johnson and Kotz (197011. In all cases X,, . . . , X,, are i.i.d. random 
variables, unless explicitly stated otherwise. 

1. X = n-'Cj",,Xj has a normal distribution. [See Chapter 12, Section 6. 
Janson (1988) expresses this in the form dk4,(t)/dt I,_, = 0 for a11 
k > 2, where 4,(t) is the characteristic function of the common 
distribution of the X's.] 

A more sophisticated characterization based on properties of is 
due to Fieger (1971). If the distribution of the X's belongs to a location 
family, with Fx(x) = g(x - 8), if EIJXiI] is finite, and if X is the best 
translation invariant estimator of 8 for any convex loss function 
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W(6*, 6) = W(l6* - 61) with W(u) 2 W(0) for all u, then the common 
distribution is normal. 

2. X and g({Xi - Xi), i + j) mutually independent, given one of three 
conditions: 
a. g ( - )  = C;=,(Xj - X)2 (= nS). [Lukacs (1942); weakened to z and 

S which have joint pdf of form h ( 2 ,  s)s"-~, with ah/ax and 
ah/aS existing, by Kaplansky (1943).] 

b. g(.) is a k-statistic [i.e., g(.) is a polynomial in the X's and 
E[g(.)] = K,,  which is the rth cumulant of the common distribution 
of the X's for some integer r > 21. [Basu and Laha (1954); Lukacs 
(1955). See also Geary (1936) and Kawata and Sakamoto (1949).] 

c. g(- )  = 0 if and only if Xj z for all j; and 

[Paskevich (1958), Rao (19581, Zinger (195811. 
3. Conditions on conditional expected values: 

a. E [ ~ ( ( x ,  - Xi), i # j] = E[X] (for n > 2) [Kagan, Linnik, and Rao 
(1965, 1973)l. Note that for n = 3, this condition is satisfied by any 
symmetric distribution with finite expected value. Rao (1967) ex- 
tended this condition to 

E[X~IX, - = ~ ( 8 1  for all i # j. 

b. The common distribution has zero mean and finite variance, and 
there exist (n - 1) linearly independent statistics E;. = Cy=lajiXi 
( j =  1, ..., n - 1)such that 

E E;. biXi = 0 for a j = 1 , n  - 1 (13.34) [ i 1 
and some (bi) ({aj1, . . . , ajn) not all zero). Kagan, Linnik, and Rae 
(1973, p. 156) improve this result by requiring only j = 1 in (13.34) 
and not finite variance, but restricted to n 2 3. [Cacoullos (1967b)l. 

c. C;_lajbj = 0, where a j  # 0 ( j  = 1,. . . , n), (bj) are not all zero, and 

[Cacoullos (1967a)l. 
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4. Conditions based on identity of distributions: 
a. C7=,ajX, (a, # 0, j = 1,. . . , n) and each Xi (i = 1,. . . , n) for some 

(a,) [Shimizu (1962), referring to Linnik (1952)l. 
b. C,", ,ajXj and C;= ,b,Xj, where ajbj # 0 (for all j), and {b,) is not 

just a rearrangement of (a,), provided the common distribution has 
finite moments of all order [Marcinkiewicz (1939)l. [Linnik (1952) 
showed that this result is not valid if some moments are infinite.] 

c. (n = 2) of X, and (XI + X2)/ fi [Pblya (1923), referred to by Bryc 
(199011. 

5. Characterizations based on order statistics [Govindarajulu (196611: 
a. Provided the common distribution has a finite variance, the condi- 

tion 

ensure that the common distribution is either normal (with variance 
u 2 )  or truncated (from above) normal. 

b. If the expected value of the common distribution is zero, the 
condition 

ensures that the common distribution is normal. [Note that if it be 
assumed that the common distribution has zero probability for 
negative values, condition (13.35) ensures that it is half-normal (see 
Section lo).] 

6. Conditions based on distributions of specific statistics: 
a. Ci", , X; and {xi2/(C7= ,X;)) (i = 1, . . . , n) are mutually indepen- 

dent [Tamhankar (1967)l. 
b. The distribution of Cj"=,(X, + aj)2 depends on the pnv~af~ltAters (aj} 

only through C7,,a; [Kagan and Shalayevskii (196711. 
c. Provided that ajb, + 0 ( j  = 1,. . . , n), C7,,ajX, and C7,,bjXj are 

mutually independent for some {a,, b,). [Darrnois (1950, Skitovich 
(1953). The result is known as the Damtois-Skitouich theorem. An- 
other proof was given by TranquilIi (1968).1 

This condition and the following one do not require assumption 
of finite variance-or indeed, identity of distributions of XI,. . . , X,, 
-though mutual independence is still a necessary property. 

d. Extending condition 1 to cases of not necessarily identically dis- 
tributed variables, if (XI + X2) has a normal distribution, so do each 



CHARACTERIZATIONS 103 

of XI and X,. [CramCr (1936), extended to n > 2 random variables 
by Lukacs (1956).1 

e. If each Xj is distributed symmetrically about zero, the condition that 
the statistics 

are mutually independent and distributed as t with j - 1 degrees of 
freedom ( j  = 2,. . . , n) is necessary and sufficient to ensure that 
each Xj has the same normal distribution [Kotlarski (196611. 

Books by Kagan, Linnik, and Rao (1973) and Mathai and Pederzoli (19771, 
as well as a survey by Kotz (1974), provide a useful, and reasonably adequate, 
basis for more mathematically inclined readers desiring to understand deriva- 
tions of the above results. Ghurye and Olkin (1973) include a clear exposition 
of the work of P6lya (1923) and Linnik (1953), and they illustrate the 
application of Linnik's results. 

In the two decades following publication of the first edition of this book, 
there has been substantial growth in literature on characterizations, in which 
characterization of normal distributions has played a prominent part. In fact, 
to some extent, characterization of normal distributions has become a branch 
of mathematics, with emphasis on functional equations and characteristic 
functions but with only limited impact on applied statistics. We are unable to 
provide a comprehensive, or even fully representative, account due in part to 
space restriction but also to our feeling that a sizable proportion of the more 
recent results are of little value in applied work. Exploitation of earlier 
results has not occurred to the extent that one might have expected, or hoped 
for. This is true even for results of type 2 above (p. 101). 

A possible exception is the following characterization initially due to 
Csorgo and Seshadri (1971) and Csorgo, Seshadri, and Yalovsky (1975). It 
was used to develop tests of normality. An early version is as follows: Given 
XI,. . . , X, (n = 2k + 3, k 2 2) which are i.i.d. with expected value ( and 
variance u2,  and 
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and given 

and the statistics 

which have the joint distribution of order statistics for k mutually indepen- 
dent standard uniform variables, then the common distribution of X,, . . . , X, 
is normal. 

A parallel result, applicable for n = 2k, if E[Xj] = 6 is known, and it can 
be assumed that the common distribution is symmetrical, is that if the 
statistics 

where Y,' = (X,,-, - o2 + (X2, - O2 (g = 1,. . . , k) have the joint distri- 
bution of order statistics for k - 1 mutually independent standard uniform 
variables, the common distribution of the X's is normal. Further extensions 
have been obtained in later work. 

A typical result of this class due to Pakshirajan and Mohan (19711, which 
states that if X,, X2, and X, are mutually independent random variables 
each symmetric about zero, with cdf continuous at 0 (i.e., Pr[Xj = 01 = O), 
then the joint characteristic function of the ratios X1/X3 and X2/X3 is 
exp(- dm) if and only if the X's have a common normal distribution 
with zero expected value. However, as noted in the first edition (p. 53), the 
distribution of the ratio X1/X2 of two i.i.d. variables does not characterize a 
normal distribution [Fox (196511. 

Bryc (1990) has extended P61ya7s (1923) result (4c above) as follows: If X, 
and X2 are i.i.d. random variables with finite variance such that, for some a 
and /3 ( > O), ( a  + @XI) and (X, + X,) have identical distributions, then X, 
has a normal distribution. 

A further generalization [Wesolowski (1990)l is this: If XI,. . . , X, (n 2 2) 
are square integrable random variables and {a,, . . . , a,) are real numbers 
with a, # - 1, 0, or 1 and XI and C~,,ajXj have identical distributions, 
then XI has a normal distribution [compare 3a; Shimizu (1962) requires a 
similar condition for each X,]. Arnold and Isaacson (1978) give a simpler 
proof. See also Lukacs and Laha (1964), who relaxed the condition of square 
integrability. 
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Kagan, Linnik, and Rao (1973) contains some extensions and refinements 
of results already mentioned. These include 

1. If X,, . . . , Xn are i.i.d. and 

2 

i a jx j  (f'af- 1) and 
j-  1 j = l  j = 1  

are mutually independent, the X's are normally distributed (pp. 
105-106) (cf. 2a). 

2. If XI,. . . , Xn (n 2 3) are mutually independent, with E[Xi] = 0, if 

are linearly independent, and if 

then the X's each have a normal distribution (p. 419). 
3. If X,, . . . , Xn are mutually independent and {aj}, {bj} are nonzero real 

numbers satisfying the conditions 

a j , b j # O  foral l j ,  

then each Xj has a normal (possibly degenerate) distribution provided 
that the conditional distribution of E;, ,ajXj and C;,,bjXj is symmet- 
ric. 

We also note the following: 

4. If X, and X2 are i.i.d., they are unit normally distributed if and only if, 
for some a,, a, # 0 each of (a,X, + a2X2)2/(a: + a;) and (a,X, - 
a , ~ , ) ~ / ( a $  + a;) has a X 2  distribution with 1 degree of. freedom 
[Geisser (1973, pp. 492-494)l. 

5. Kelker and Matthes (1970) considered location-scale families. These 
are families with cdf of form 

where 8, c7 are the location and scale parameters, respectively. 
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According to Kelker and Matthes, "Within the location and scale parame- 
ter families (X, S) is a sufficient statistic [for (8, a)] if and only if the family is 
the normal distribution family." This is indeed correct, but Bondesson (1977) 
has pointed out that their proof required Fx(x) to represent a continuous 
distribution. He amended the proof to avoid this assumption. Kelker and 
Matthes (1970) also showed that 

6. If X,, . . . , Xn are independent and nondegenerate random variables 
with location family cdfs Fxfx) = gi(x - 8) (i = 1,. . . , n), then a nec- 
essary and sufficient condition for C~,,bjXi (b,, . . . , b, # 0) to be a 
sufficient statistic for 8 is that X, have a normal distribution with 
variance proportional to b;'. 

7. If XI, . . . , Xn (n = 4) are i.i.d. and (X, - X,)/S is independent of 
(X, S), then the common distribution of the X's is normal. 

Braverman (1985) has obtained characterizations in terms of unconditional 
expected values. These include the following characterizations: 

1. If XI, X,, and X, are i.i.d. random variables with finite moments of 
odd order, and there are constants C, such that 

for ail a = (a,, a,, a,) and all odd p ,  then each of the three variables 
has a normal distribution. 

This result is not true for even integers p. 
2. If X, and X, are i.i.d., with a symmetric common distribution, with 

E [ e x p ( ~  IX; I ')I < m for some A > 0 

and 

E [ ( x , I ~ ]  # 0 for all s 

real or complex, with Re s > 0, and 

for suitable C, then the common distribution is normal. 
Braverman (1989) has also shown that 

3. If XI and X, are i.i.d. (not necessarily symmetric) and there are two 
odd numbers, p ,  and p,, such that 
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for all real a,, a, and suitable Cj, then the common distribution of the 
X's is normal. 

Next we present a few notes on "stability" (or "robustness") of characteri- 
zations-namely, how far small departures from exact characterization con- 
ditions can affect size of departure from the characterized form. 

Defining the distance between two cdfs as 

Meshalkin (1968) described the two distributions as &-coincident if 
S(G(x), F(x)) E ,  and termed a random variable X, with cdf Fx(x), &-nor- 
mal if 

E 

for some pair (6, o). 
Sapogov (1956) showed that if XI and X, are independent, with 

FxXO) = $ 7  

g ( ~ ) = ( - 2 1 0 ~ & ) ~ / ~ + 1 ,  O < & < l ,  

then, if X, + X, is &-normal, XI is /3(&)-normal with 

P ( E )  = Cur3(  -log &)-I/,, 

where C is some constant (not depending on E ) ,  because 
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Using the concept of &-independence of XI and X2, defined by 

for all (aj, bj, cj), Nye (1966) showed that 

1. if XI and X2 are mutually independent, and (XI + X2) and (X, - X2) 
are &-independent, XI and X2 are both PI(&)-normal, 

2. if XI, . . . , Xn are i.i.d. random variables and jG; and S2 are F-indepen- 
dent, then the common distribution of the Xi's is p2(&)-normal. 

Both PI(&) and P2(&) were of order (-log &)-'I2, and so was P(E). 
Meshalkin (1968) obtained an improved order of magnitude in the follow- 

ing results: If XI and X2 are i.i.d., with expected value zero and variance 1, 
and E [ I X , I ~ ]  is bounded, then (1') &-independence of (XI + X2) and (XI - 
X2) implies ~,e'/~-normality of the common distribution, and (2') 6-coinci- 
dence of the distribution functions of (XI + X2)/ a and Xi implies 
p,~'/~-normality of X, and X2. The multipliers P, and P, depend on the 
bound of E[Ix,I~], but not on E .  

Yanushkyavichyus (1989) in his doctoral dissertation at Vilnius University 
provided the following stability theorem, improving on the above results: Let 
XI, .  . . , X,, be independent identically distributed random variables. If X 
and S2, defined by the formulas, 

[i.e., there exists a normal r.v. N, such that (13.41) is valid, where C is an 
absolute constant]. 



Yanushkyavichyus (1989) also improved on Nye (1966) and Meshalkin's 
result by showing that if X, and X, are independent identically distributed 
random variables and if S = XI + X2 and T = XI - X, are (6, E)-indepen- 
dent, then there exists a normal r.v. N, such that 

Note that the loss of order from E to ell3 with a logarithm factor is due to 
passage from the functional equations, in terms of distribution functions 
F(s,D,(x, y) = FS(x)FD(y) + r(x, y), (Ir(x, y)l s E, for all (x, y) E R') to a 
functional equation in terms of characteristic functions. Yanushkyavichyus's 
results do not involve any restrictions on moments or on possible degeneracy 
of the r.v. under consideration. 

Stability in regression models was studied by Lukacs (1942) and 
Yanushkyavichyus (1989), among others. Yanushkyavichyus's result is as 
follows: Let p be a distance defined on the space of random variables. A r.v. 
X (with a finite expectation E[XI) has (p ,  &)-regression on r.v. Y if 

Yanushkyavichyus (1989) selects p IZ,, Z2 1 = E (Z1 - Z21 and proves the 
following theorem: If X,, X, are i.i.d. random variables with E[Xj] = 0, 
E[Xj?] = a2, E[Ix~J~+']  I M < w for some 6 > 0 and L, = alXl + a2X2 
has (p,~)-regression on L, = b,X, + b2X2 (and a,b, + a,b, # 0; Jb,l, 
lbll < I), then there is a normal distribution [G(x)l with parameter (0, a2) 
such that 

sup I ~ ( x )  - G ( x )  ( 5 c ~ T ,  
X 

where F(x) = Pr[Xj I X I  and C depends on M and (a,, a,, b,, b,) only. 
Numerous other characterizations of normal are available in the literature. 

Gabovich (1974) has discussed the stability of certain characterization results. 
Khatri (1975a, b) has characterized the normal distribution by the constancy 
of regression; see Gyires (1975). Sampson (1975) has characterized the 
general exponential family of distributions by moment generating functions. 
Ruben (1974, 1975) has presented some characterizations through the distri- 
bution of the sample variance (see also Chapter 18). A characterization of 
normal distribution, through the general linear model, has been given by 
Ruben (1976). Parthasarathy (1976) characterized the normal law through the 
local independence of some statistics. Several weak sense analogues of 
characteristic properties were given by Kagan (1976). Zinger (1977) presented 
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a characterization through identically distributed linear statistics. Many of 
these characterizations have been reviewed in the book on this topic by 
Mathai and Pederzoli (1977). 

Some characterization results were also developed based on some proper- 
ties of estimators. For example, Klebanov and Melamed (1976) provided a 
characterization through properties of Bayesian estimators. Klebanov and 
Melamed (1978) also characterized the normal distribution through proper- 
ties of Fisher information amount. Fieger (1976) characterized the distribu- 
tion based on a homogeneous Pitman estimator. Bondesson (1976), by 
starting with the question when the sample mean is BLUE, established a 
characterization result. Bondesson (1974, 1975, 1978) also proved some 
characterizations of the normal law through properties of distributions of 
some statistics. In particular, in the 1978 paper Bondesson has shown that 
the sample variance, when properly normalized, is distributed as chi-square 
only for the normal distribution (also see Chapter 18). In an interesting note, 
Goel and DeGroot (1980) established that only normal distributions have 
linear posterior expectations in linear regression. Ahmad (1978) and 
Wesolowski (1987) have provided further characterizations based on regres- 
sion. Bischoff, Cremers, and Fieger (1987) used the sufficiency of the least- 
squares estimation for characterization. Eberl (1986) has characterized the ' 

normal distribution in translation classes through properties of Bayes estima- 
tors. Stadje (1988) provided a characterization through maximum likelihood 
estimation. Klebanov and Neupokoeva (1990) recently proved an interesting 
characterization by a property of the expected values of order statistics. A 
characterization of the normal law in the Gauss-Markov model has been 
given by Stepniak (1991). 

Fieger (1977) discussed transformations that characterize the normal dis- 
tribution. Arnold and Isaacson (1978) presented some characterizations 
through the distribution of linear forms (assuming finite variance). Prakasa 
Rao (1979) used some identities for characterizations. Lukacs (1976, 1977, 
1980) presented stability theorems for many characterizations. Some more 
assorted characterization results for the normal distribution are due to 
Talwalker (1980), Lajko (1980), Joshi (1982), Borovkov and Utev (1983), 
Ramasubramanian (1989, Viskov (1985), Ahsanullah and Hamedani (1988), 
and Ahsanullah (1990). Letac (1981) proved some interesting characteriza- 
tions via the concepts of isotropy and sphericity. Findeisen (1982) has 
discussed Gauss's characterization of the normal distribution. Hombas (1985) 
has characterized the normal density function as the solution of a differential 
equation. Ahsanullah (1989) has used properties of linear statistics as well as 
chi-squared in order to characterize the normal distribution. It is important 
to mention that the finiteness of the variance is a critical assumption in many 
of the above mentioned characterization results; see Lancaster (1987) for 
some comments in this regard. Quite recently, Cacoullos, Papathanasiou, and 
Utev (1993) discussed a characterization of the normal distribution and also 
presented a proof of the central limit theorem connected with it. 
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7 APPROXIMATIONS AND ALGORITHMS 

The most common use of the normal distribution is as an approximation 
where either normality is ascribed to a distribution in the construction of a 
model or a known distribution is replaced by a normal distribution with the 
same expected value and standard deviation. Examples of such replacement 
are the Fisher and Wilson-Hilferty approximations to the X2-distribution 
(Chapter 18), the normal approximation to the (central) t-distribution 
(Chapter 28), and the use of normal distribution to approximate the distribu- 
tion of the arithmetic mean of a number (often not very large, around 8 or 
more) of independent and identically distributed random variables. But now 
we are concerned with approximations to the normal distribution. It is 
possible to regard the distributions that are approximated by the normal 
distribution as being, themselves, approximations to normal distributions. 
However, they are usually more complex than the normal distribution, and 
we would like to study approximations that are simpler than the normal 
distribution. 

From the point of view of replacement of a normal distribution by another 
distribution we note that: 

1. A lognormal distribution can give a good representation of a normal 
distribution that has a small absolute value (say, less than 0.25) of the 
coefficient of variation. 

2. A particular form of logistic distribution is very close to a normal 
distribution (see Chapter 23). 

3. A form of the Weibull distribution with the shape parameter = 3.25 
is almost identical with the unit normal distribution (see Chapter 21). 

4. Raab and Green (1961) have suggested that the distribution with 
probability density function 

can be used to replace a normal distribution. The correspondence is 
not very precise (see Table 13.2 comparing standardized percentile 
deviates of the two distributions) but will sometimes give useful 
analytical results. The replacement would only be used if substantial 
simplification in analysis were effected thereby. 

The expected value and standard deviation of a random variable 
with distribution (13.42) are zero and ($.rr2 - 2)'" = 1.14. The stan- 
dardized range of the distribution (-.rr,.rr) is thus from -2.77 to 
+2.77 standard deviations, and obviously the replacement gives a 
poor fit in the tails. 

5. Bell (1962) has described even simpler approximations, using triangu- 
lar distributions (Chapter 26). He pointed out that such approxima- 
tions can be regarded as the second stage in a series of approximations 
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Table 13.2 Standardized Percentile Points of Distribution (13.42) 
and the Normal Distribution 

Cumulative Standardized Value 

Probabilitv Normal Distribution (13.42) 

by distributions of means of increasing numbers of independent rect- 
angularly distributed variables (see the method of construction .of 
"random normal deviates" used by Buslenko et al. (1966) described in 
Section 1). 

Chew (1968) includes 2, 4, and 5 in a list of five possible replace- 
ments for normal distributions. The two other distributions he sug- 
gests are uniform (Chapter 26) and Laplace (Chapter 24). These also 
will be very crude approximations. 

6. Hoyt (1968) has suggested using the distribution of the sum of three 
mutually independent random variables each uniformly distributed 
over the interval - 1 to + 1 as an approximation to the unit normal 
distribution. The density function is 

:(3 - x 2 )  for 1x1 I 1, 

&(3 - 1 x 1 ) ~  for 1 I 1x1 13. 

This gives an error not exceeding 0.01 in the cumulative distribution 
function. 

7. Steffensen (1937) has suggested the use of the distribution of a 
multiple of a chi random variable (i.e., cx,), with v sufficiently large. 
He called this a "semi-normal" distribution. 

8. A different kind of approximation has been developed in connection 
with calculation of the functions W e ) ,  Z ( - )  in computers. These 
approximations usually employ polynomial expressions. They give quite 
high accuracy, sometimes only within definite limits on the values of 
the variable. Outside these limits they may give quite poor approxima- 
tion. 
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Zelen and Severo (1964) quote, among other things, the fpllowing 
formulas, which are based on formulas given by Hastings (1955): 

with t = (1 + 0.33267~)-', a, = 0.4361836, a, = -0.1201676, and 
a, = 0.9372980. The error in @(x), for x 2 0, is less than 1 X 

with a, = 0.196854, a, = 0.115194, a, = 0.000344, and a, = 0.019527. 
The error in Mx), for x 2 0, is less than 2.5 X 

~ ( x )  (a, + a2x2 + a4x4 + a6x6)-l, (13.45) 

with a, = 2.490895, a, = 1.466003, a, = -0.024393, and a, = 

0.178257. The error in Z(x) is less than 2.7 X lo-,. 
Very accurate results can be obtained with the formula [Hart 

(1966)l 

with 

For x > 2, Schucany and Gray (1968) have constructed the simpler 
formula 
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which is even better than (13.46) for x > 3. [The proportionate error 
of (13.46) for 5 I x ,c 10 is about 0.5 X lo-'; that of (13.47) decreases 
from 0.39 x lo-' for x = 5 to 0.42 x for x = 10.1 

By use of rather elaborate formulas, quite remarkable accuracy can 
be attained. Strecock (1968) gives formulas for values of erf(x) [see 
(13.5)] and of the inverse function [inverf( y) where erf(inverf( y)) = y], 
correct to 22 decimal places for Ix 1 (or l inverf( y ) 1) less than 7.85. 

9. Burr (1967) has considered approximations to @(x) of form 

He suggests taking a = 0.644693, f i  = 0.161984, c = 4.874, and k = 
- 6.158. An even better approximation is obtained by using 

which is a symmetrical function of x. The discrepancy IH(x) - @(x)l 
reaches its maximum value of about 0.00046 when x A f 0.6. 

10. McGillivray and Kaller (1966) have considered the discrepancy be- 
tween @(XI and @(XI + a,,Z(x)H,,-,(x), where Hz, - , (x )  is the 
Hermite polynomial of order 2r - 1 and a,, is a constant chosen so 
that 1 -k a,,H,,(x) cannot be negative. This means that a,, must be 
between zero and 

A,, = I inf H,,(x) 1 ' .  
X 

The second function @(x) + a,,Z(x)H,,-,(x) is the cumulative dis- 
tribution function of a symmetrical distribution having the first r even 
central moments (and of course all odd moments), the same as those 
for a unit normal distribution. The discrepancy cannot exceed 

The values of this quantity, for r = 2, 3, and 4 are 0.10, 0.03, and 
0.005, respectively. [Of course other distributions with the same (zero) 
odd central moments and first r even central moments might have 
greater discrepancies, but these results do give a useful idea of the 
accuracy obtained by equating moments.] 
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11. Riffenburgh (1967) has suggested that a symmetrical truncated unit 
normal distribution be approximated by the density function 

where -c, c are the points of truncation. Use of this approximation is 
recommended only when c exceeds 1 (preferably c 2 1.5). Tables of 
the variance (to 3 decimal places) of the approximate distribution are 
given by Riffenburgh (1967) for c = 0.8(0.1)1.2(0.05)4.00, and also of 
Pr[X s x]  - 3 (to 4 decimal places) for c = 1.2(0.1)3.0 and x at 
intervals of 0.05. (Riffenburgh has also developed test procedures 
based on this distribution.) 

We now discuss some bound on the value of @(x). Various inequalities 
for Mills's ratio can also be interpreted as bounds for @(x) or Z(x). Using a 
simple geometrical argument (based on the joint distribution of two indepen- 
dent unit normal variables) it can be shown that 

[e.g., see D'Ortenzio (19631. By2 a refinement of the argument, on the 
left-hand side of (13.48), (1 - e-" 12) can be replaced by 

and on the right-hand side, (1 - e-"') can be replaced by 

I 
t 1 - e-x2 - ( 1  - 2T-1)2e-x2. 
k 

i The approximation 
i 

was obtained by P6lya (1945). This has a maximum error of 0.003, when 
x = 1.6. Cadwell (1951) modified (13.49) to 

[ (  ( 
1/2 @(x)  ' f 1 + 1 - exp - 2 ~ - ' x 2  - S T - ~ ( T  - 3)x4)) 1 .  (13.50) 
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Over the range 0 < x < 3.5, the maximum error of (13.50) is 0.0007, when 
x = 2.5. Formula (13.50) should not be used for large values of x. Cadwell 
suggested, on empirical grounds, the addition of the terms 

to the exponent in (13.50). This reduces the maximum error to 0.00005. 
Carta (1975) developed approximations, similar to that of Hastings in 

(13.441, of the form 

@(x) ; 1 - $(a, + 02x + . -  +anxn-1)-2', for x L 0. (13.51) 

Note the added flexibility of a variable first coefficient, as opposed to the 
fixed value of 1 in (13.44). For different choices of n and q, Carta (1975) has 
presented the coefficients a,'s that yield the minimum absolute error. For 
example, from Carta's table, we have the coefficients corresponding to n = 6 
and q = 4 as 

The absolute error for this approximation (for all x 2 0) is less than 1.2 X 
lop6. Note that in this case (and also for some other choices of n, q), the 
leading coefficient is very nearly 1 [as in (13.44)l. Carta also has presented 
similar approximations for x restricted in the intervals [O, 3.091, [O, 4.001, and 
[0,5.20]. 

Badhe (1976) presented the following approximation which is easily imple- 
mentable on a hand calculator: 

where Y = x2  + 10 and 

Badhe (1976) has pointed out that the approximation in (13.52) is good when 
x > 4, but certainly not suitable when x I 2. For the case where x I 2, 
Badhe has presented a seventh degree polynomial approximation (obtained 
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by Chebyshev economization) given by 

where 

The maximum absolute error for this approximation, for x E [O, 21, is 0.2 x 
lo+. 

By making use of the Hermite expansion 

where Hn(x) is the nth Hermite polynomial, and the known recurrence 
relation 

Hn+,(x) = xHn(x) - nHn-,(x) for n = 1,2,. . . , 

with H,,(x) = 1 and Hl(x) = x, Kerridge and Cook (1976) suggested using 
the series 

for computing @(x) on a computer. In (13.551, Bn(x) = xnH,(x)/n!, which is 
easily computed using the recurrence relation 
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Beasley and Springer (1977) have provided an algorithm for computing the 
percentage point x,, for a specified value of p, such that 

p = /::Z(t) dt. 

Their Fortran subroutine replaces p by q = p - and then compares (ql 
with 0.42; if (ql 5 0.42, x, is determined by a rational approximation 

9A(q2) 
Xp = - 

B(q2) ' 
(13.56) 

where A and B are polynomials of degrees 3 and 4, respectively, while if 
Iql > 0.42 an auxiliary variable, r = (ln(4 - Iql))l/z is first formed and then 

x, as 

C ( r >  x p = * -  
D ( r )  ' 

(13.57) 

where C and D are polynomials of degrees 3 and 2, respectively, the sign 
being taken that of q. See also an earlier algorithm given by Odeh and Evans 
(1974). 

Page (1977) considered simple approximations of the form 

e2y 
@(x)  A - 

1 + e 2 y  ' 
(13.58) 

where y = a,x(l + a2x2), and determined a, = 0.7988 and a, = 0 04417 to 
provide an approximation with maximum error 0.14 X Pagc lids also 
presented a similar simple approximation for the percentage point that gives 
two decimal accuracy. 

Derenzo (1977) provided an approximation to the unit normal cdf as 

(83x + 351)x + 562 
@(x) = 1 - - exp - 

2 ( (703,~) + 165 1 , x > 0, (13.59) 

with a maximum absolute error of 0.042% for x E (0,551. Another approxi- 
mation that Derenzo presented is 

with a maximum absolute error of 0.040% for x 2 5.5. Derenzo (1977) also 
provided an approximation for the percentage point x, (for a given p )  as 



APPROXIMATIONS AND ALGORITHMS 119 

where y = -log(l - p/2), with a maximum absolute error of 1.3 X for 
x E (0,5.2). For x E [5.2,22.6), Derenzo has given the approximation 

with a maximum absolute error of 4 X 
Some more simple (but not necessarily more accurate for all x) approxi- 

mations for the cumulative distribution function @(x) have been given 
by Parsonson (1978), Easingwood (19791, Heard (1979), Martynov (1981), 
Monahan (198 I), Allasia and Giordano (19821, Hawkes (19821, Fearn (19831, 
Edgeman (1988), and Abernathy (1988). Pugh (1989) has made a survey of 
many of the algorithms available for computing the cdf @(x). 

Moran (1980), by slightly modifying a formula of Strecock (1968) given for 
the error function, came up with the approximation 

Compared to the 38-term approximation given by Strecock, this approxima- 
tion is simpler to use and is also accurate to nine decimal places for 1x1 r 7. 

Shore (19821, by using a "betalike" cumulative distribution G(x) [with 
G(- m) = 0, G(oo) = 1, G(0) = i, and 

where k l  > 01 to approximate @(x), derived the following three approxima- 
tions for the percentage point x,: 

where a and b should satisfy 
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or its approximate simpler form b = 1.3086 - 2.3735~ (which is easier to use 
when a value of a is sought that gives the best fit for any desired range of x). 

The approximation in (13.64) is the most accurate of the three with a 
maximum absolute difference of 0.0073 (0.5%) for 0 s x I 2.3. It is interest- 
ing to note that for b = 0, we have a = 0.5513 = 6 / ~ ,  in which case the 
simple approximation in (13.66) becomes the logistic approximation (with 
location parameter 0 and shape parameter 6/.rr); see Chapter 23. For 
-0.5 s x s 2.2, the best approximation of (13.66) is with a = 0.495 and 
b = 0.1337; for x > 2.2, the best approximation is obtained with a = 0.4506 
and b = 0.2252. 

Shore (1982) has also obtained a good approximation for the standard 
normal pdf as 

This approximation immediately yields an approximation for the Mills's ratio 
(hazard rate-see Chapter 33, Section 2)  as 

Shore has also discussed the accuracy of this approximation. 
Shah (1985) suggested the following approximation for @ ( x )  - i, x 2 0: 

Even though this approximation is simple to use, it is clear from (13.69) that 
it is not designed to approximate right tail areas for x r 2.6. For this reason 
Norton (1989) proposed the approximations for 1 - @ ( x )  as 

A number of comments and criticisms have been made on these approxima- 
tions given by Norton; see Hoaglin (1989), Pratt (1989), Cox (1989), Shore 
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(1990), Sharp (1990), Revfeim (1990), and McConnell (1990), and also the 
replies to these comments by Norton (1990a, b). 

Schonfelder (1978) discussed further on Chebyshev expansions for the 
error and related functions, including @(x). Hamaker (1978) presented 
simple approximations for the cdf @(x) as well as for the percentage point 
x,. Lin (1988) discussed alternatives to Hamaker's approximations. Schmeiser 
(1979) gave easy approximations for the percentage point x, that could be 
used on hand calculators. Bailey (1981) proposed alternatives to Hastings's 
approximation to x,. Lew (1981) presented an approximation to @(x) with 
simple coefficients. Wichura (1988) and Guirguis (1991) have discussed ap- 
proximations to the percentage point x,. While Heffernan (1988) gave a 
simple formula for the cdf @(x), Lin (1989) presented approximations for the 
normal tail probability as well as its inverse which are easy to use even on a 
hand calculator. Lin (1990) has also proposed a simpler logistic approxima- 
tion to @(x) and to x, [also see the comment after (13.6611. Even though all 
these approximations are quick and easy to use, their relative accuracies may 
vary dramatically, and therefore their use should be adjudged for the particu- 
lar situation one intends to use. The modern personal computer with its great 
power and memory does make some of the work (if not all) unnecessary, as 
the following remarks indicate. 

Fleming (1989) has advocated the use of numerical integration for approx- 
imating @(XI, for it can be easily demonstrated using a spreadsheet program 
and a personal computer. For example, @(XI can be computed using Lotus 

! 1-2-3 by approximating the area under the standard normal pdf Z(x). 
"leming (1989) has noted that a rectangular integration gives results accurate 

to four decimal places for 0 g x 5 3, with the interval width being taken as 
0.01. As he has pointed out, other methods of integration (like the trape- 
zoidal rule, Simpson's rule, Newton's three-eighths rule) are also easily 
adaptable and will be even more accurate in evaluating @(x). When a 
powerful personal computer with a spreadsheet program is available, it 
should be put to use rather than relying on simple-to-use approximations. 

A mechanical method of drawing a normal probability density curve has 
been described by Edwards (1963). N o m l  probability paper is graph paper 
with a natural scale in the horizontal (abscissa) direction, while the distances 
on the vertical (ordinate) scale are proportional to the corresponding normal 
deviates. The vertical scale is usually marked in percentages. Thus 50% 
correspond to the horizontal axis, 25% and 75% are at distances 0.6745 
below and above this line, 5% and 95% are at distances 1.9600 below and 
above this line, and so on (see Figure 13.2). Barnett (1976) has discussed 
convenient probability plotting positions, while Nelson (1976) has elaborated 
the construction of normal probability paper. Recently Nelson (1989) put 
forward a stabilized normal probability plotting technique; Rouncefield 
(1990), among many others, explained how one could use the normal proba- 
bility paper to assess the validity of the assumption of normal distribution for 
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If X has the distribution (13.1) and Pr[X I X I  is plotted (as the ordinate) 
against x (as the abscissa), then a straight line is obtained. The slope of this 
line is u-' and its intercept on the horizontal axis is at x = 6. If observed 
frequencies of the events (X 5 x) are used in place of the actual probabili- 
ties, an approximately straight-line plot may be expected. A straight line 
fitted to these observed points gives estimates of a and 5. Such graphical 
methods of estimation can give good practical accuracy, 

If the horizontal scale is logarithmic, we have lognormal probability paper 
(see Chapter 14). Half-nomzal probability paper is simply normal probability 
paper with negative abscissas omitted. It is used in connection with analysis 
of variance techniques developed by Daniel (1959). 



ESTIMATION 123 

8 ESTIMATION 

The theory of estimation of 6 and u has been fully worked out. To facilitate 
comprehension, this section is divided into four subsections. Subsections 8.1 
through 8.3 describe techniques primarily appropriate to a complete sample 
(though some apply also to censored data) corresponding to values of n 
independent random variables each having distribution (13.1). Subsection 8.4 
describes techniques suitable when the data have been censored by omission 
of certain order statistics. (Truncated normal distributions will be discussed 
in Section 10.) Subsection 8.5 lists various books/monographs available on 
specific topics relating to inference for the normal distribution. 

The variety of applicable methods can be bewildering. To judge rapidly 
between them, it is necessary to bear in mind accuracy, sensitivity to varia- 
tions from normality, and ease of calculation. The relative importance of 
these factors varies with circumstance, but they should always be taken into 
account. As mentioned earlier in Section 2, there are numerous volumes 
available on specific topics relating to inference for the normal distribution 
(as listed in Section 8.5). This is understandable of course, due to the volume 
of literature. Because of the availability of all these volumes and the upcom- 
ing revised edition of "Handbook of the Normal Distribution" by Pate1 and 

i Read, we only present briefly the recent developments, referring the readers 
1 to appropriate volumes for a comprehensive treatment of the topic of 

interest. 

8.1 Estimation of 6 
The arithmetic mean f = n-'C7,,Xj and the mean square deviation s2 = 

n-lCin_l(q - XI2 are jointly sufficient for 6 and u,  and X is sufficient for 6 
alone. For most practical purposes X is the best estimator for 6, whether or 
not u is known. It is the maximum likelihood estimator and is unbiased. 

The only circumstances under which this estimator would not be used are 
(1) when not all observations are available (as will be discussed more fully in 
Section 8.4), or (2) when the accuracy of some values (e.g., outlying values) is 
doubtful. In either case estimation may be based on a central block of order 
statistics. As an extreme case (when n is odd), a single order statistic, the 
median, may be used to estimate 6. This is an unbiased estimator of 6, and 
has standard deviation approximately equal to 

compared with 
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The efficiency of the median, relative to z, is thus approximately 

Alternatively, the j th Winsorized mean 

may be used ( j  < [(n - 1)/21). It can be seen that i(j) is obtained by 
replacing each of Xi, Xi, . . . , Xi' by Xi'+ and Xi -,+ l , .  . . , XA by XL -,. This 
is also an unbiased estimator of 6. It is interesting to note that Chernoff, 
Gastwirth, and Johns (1967) obtain a formula of the type (13.73), if only 

. , Xi-, are available, with the multipliers (j) of Xi'+, and Xi-j 
replaced by 

where E = j/(n + 11, and n-' replaced by (n - 2 j  + 2a)-'. In fact a is 
slightly less than j. 

Rather than replace the values of extreme observations by more central 
values, we can simply omit them. The resulting unbiased estimator of 6 is the 
jth trimmed mean 

n- j  

i:,) = ( n  - 2j)- '  X;. (13.74) 
i = ~ + l  

Some relative efficiencies of f:,,, compared with x, are shown in Table 13.3. 
(For efficiencies of &,,, see Table 13.9.) 

Table 13.3 Efficiency of Trimmed Means, Relative to X 
Relative Efficiency 

IZ j of &, (%I 
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It is apparent that the Winsorized mean &j) is more efficient than cj,. In 
fact, compared with the best linear unbiased estimator using the same order 
statistics, its efficiency never falls below 99.9% for n 1 20 [Sarhan and 
Greenberg (1962)l. Meeden (1976) has pointed out a special property of 
linear estimates of 5, while Mehran (1975) has derived relationships between 
the UMVUEs of the mean and median of a function of a normal distribution. 

Knowledge of u is of no help in calculating point estimators of 5. It is, 
however, used in calculating the standard deviations of such estimators and 
in constructing confidence intervals for 5. If u is known, 100(1 - a)% 
confidence limits for 5 are 

Although the similar formulas 

do not give exact limits (since &,,, tij) do not have normal distributions), they 
give limits that are useful provided that n is not too small (e.g., n 2 15). 

If u is not known, the above formulas cannot be used. It is natural to 
replace u by an estimator of a. If the sample size is large and a good 
(efficient) estimator of u is used, this can be done with little serious effect on 
the confidence coefficient. The "estimator" of u most often employed is 

although this is not an unbiased estimator of u. If this estimator is used, then 
U, in (13.75) should be replaced by tn - ,, , -,/, , the upper 50a% point of 
the t distribution with (n - 1) degrees of freedom (see Chapter 28). The 
effect of replacement of u by (1 - n-1)-1/2~ in formulas (13.76) is not so 

1 clear, but there should be comparable increase in the multiplying factor 
'1-~/2. 

It can be shown (see Section 3) that 3 and any function of the deviations 
(Xi - X), only, are mutually independent. This facilitates computation of 
percentage points of distributions of statistics of form 
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say, with various functions f (Xl  - X, . . . , Xn - Z )  in the denominator, 
subject to the restrictions that f(.) is positive with probability one and that 

for any a 2 0.  For example, we might have 

f ( x 1  - 8,. . . , x,, - l) = range 

f  (x ,  - 2,. . . , X, - x) = mean deviation 

Indeed, any of the estimators of cr to be described in Section 8.2 might be 
used as f  ( - 1. 

Under the conditions stated, the distribution of a- ' f (X1  - X, . . . , 
Xn - X )  does not depend on cr. The distribution of qf) therefore does not 
depend on 6 or a. As a result it is possible, in principle, to construct tables of 
percentage points qf,, , of this distribution, defined by f( . ) and a alone. The 
relation 

can be arranged to show that the limits 

form a 100(1 - a, - a,)% confidence interval for 6. 
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To calculate such limits it is necessary to have tables of percentage points 
of the distribution of qf,, among which the following are available: 

For f(.) = (1 - n-1)-1/2~, as described in Chapter 28 (tables of distribu- 
tion). 

For f (. ) = W [in Lord (1947)l. 
For f(.) = M [in Herrey (196511. 

If such tables are not available, approximations may be used, for example, 
the approximations to the distributions of M and W to be described in 
Section 8.2; alternatively, they may be determined through Monte Carlo 

i 
1 

simulations. 

8.2 Estimation of a 

The maximum likelihood estimator of a (8 not being known) is 

If 5 is known, the maximum likelihood estimator is 

It is, however, very unusual to know 8 exactly, and we will not discuss this 
estimator further, except to note that neither (13.78) nor (13.79) is an 
unbiased estimator of a. In fact 

and 

To obtain an unbiased estimator of u, we must multiply S by a,. A few 
values of a, are shown in Table 13.4. Values of ah = a,-, such that 
a',E[{(n - l)-'C(xj - 8)2)'/2] = a ,  are also shown. 
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Table 13.4 Multipliers a,, a; Such That E[a,S] = 

o = ~ [ a ' , f i ~  

n an a; 

2 1.77245 1.25331 
3 1.38198 1.12838 
4 1.25331 1.08540 
5 1.18942 1.06385 
6 1.15124 1.05094 
7 1.12587 1.04235 
8 1.10778 1.03624 
9 1.09424 1.03166 
10 1.08372 1.02811 

For n greater than 10, the formulas 

give quite good approximations. 

is an unbiased estimator of u2. Jarrett (1968) has given an interesting 
historical account of tables of these multiplying factors. [See also Cureton 
(1968) and Bolch (19681.1 Note that the value of a minimizing the mean 
square error of a s 2  as an estimator of u2 is (n-' + I)-'. The value of b 
minimizing the mean square error of bS as an estimator of u is a',,, 
[Markowitz (1968)l. Iliescu and Voda (1974) have discussed the estimation of 
u in detail. 

The variance of the unbiased estimator, anS, of u is 

The variance of V is 

Unbiased estimator of u can also be obtained by multiplying the mean 
deviation (MI and the range (W) by appropriate factors (depending of 
course on n). The resulting unbiased estimators b,M, cnW are identical with 
anS for n = 2, and have greater variances than anS for n > 2. Values of bn 
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can be calculated from the simple formula b, = J ( r r / ~ ) n ( n  - I ) - ' .  Val- 
ues of c, for n = 2(1)20 are given in Pearson and Hartley (1948). 

Relative efficiencies (inverse ratio of variances) of b,M, c,W and other 
unbiased estimators of u compared with a,$, are shown in Table 13.7 on 
page 136. From this table it can be seen that the estimator based on range is 
(slightly) more efficient than that based on mean deviation for n = 4,5, but 
less efficient for n 2 6. (For n = 2,3 the two estimators give identical 
estimators of u.) 

The formula for b,, quoted above, follows from 

The variance of M is 

2 u 2  1 
Var(M) = - (1 - $) {le + 4- - n + sin-' - 

nrr n - 1  

For n r 5, a very good approximation (error no more than about 0.00001) is 

u2 Var(M) A n-'(1 - 2rr-')(I - 0.12n-'). (13.86) 

Approximate formulas for the moment ratios of M are 

&(M) A 1.05n-', 

Godwin and Hartley (1945) calculated a table of the probability integral of 
the distribution of M, giving Pr[M I mu]  to 5 decimal places for m = 
0.00(0.02)3.00 and n = 2(1)10, and also multipliers Ma for percentile points 

; such that 

Pr[M I Maul = a 

to 3 decimal places, for n = 2(1)10 and a = 0.001, 0.005, 0.01, 0.025, 0.05, 
0.1, 0.9, 0.95, 0.975, 0.99, 0.995, and 0.999. For n = 10 there are also given 
approximate values calculated from the formula 

Although the upper and lower 2.5%, 5% and 10% values are not too 
inaccurate, approximation is poor for the more extreme values. A better 
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approximation was obtained by Cadwell (1953), by regarding ( ~ / a ) ' . ~  as 
having (approximately) a cX: distribution with 

logc = -log2 - 1.8 log - + - - l o g r  [ ( ;) (I) 

The approximation was obtained by first finding values of A,  c, and v to 
make ( M / a ) h n d  cX; have the same first three moments. The values of 
course depend on n; they are shown in Table 13.5 [based on Cadwell (1953)l. 
This table also gives the results of similar calculations for the range W. It can 
be seen that for M, the values of A do not vary much, once n exceeds 5, say. . 
An "average" value of 1.8 was chosen; the values of v and c were then 
adjusted to make the first two moments of (M/a)'.' and cX: agree. It might 

Table 13.5 Values of v, A, and log c Such That First Three Moments of (T/ o)" 
and cXf, Agree 

T = Range T = Mean Deviation 

n v A log10 c v A log,, c 
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be thought that A = 1.7 would have been a better choice, but the chosen 
value of A (= 1.8) does give closer approximation for smaller values of n, 
without affecting the accuracy too severely for larger values of n. 

In the same paper Cadwell discussed approximations to the distributions 
of the arithmetic mean of a number (k) of (independent) (M/u)'s or 
(W/u)'s. He also considered the distributions of the ratios 

maxj(Mj) 
and maxj(Y) 

minj(Mj) mini(?.) ' 

which are analogous to the ratios of maximum to minimum of a number of 
independent mean square deviations (s:, s:, . . . , s:), each based on the 
same number of observed values. Cadwell gives tables of approximate upper 
5% and 1% points of these statistics for n = 3(1)10 and k = 2(1)12 (for the 
5% points, n = 12,15,20,30,60 are also included for the mean deviation 
ratio, and n = 12,15,20 for the range ratio). Similar tables for the statistics 

max , (sf) 
min, (sf) 

are given by Pearson and Hartley (1948). They also provide some useful 
tables of values connected with the distribution of (M/u), including the 
expected value, variance, ply and p, for n = 2(1)20, 30, 60, and the upper 

. and lower 0.1, 0.5, 2.5, 5, and 10 percentage points for n = 2(1)10. 
Among the few simple exact results concerning the distribution of range, 

we note the following: 

For n = 2, E[W] = 2u/ 6; Var(W) = 2u2(1 - 2 ~ - ' ) .  
For n = 3, E[W] = 3u/ &; Var(W) = u2[2 - (9 - 3 f i ) ~ - ' ] .  
For n = 4, E[W] = (3u/ &XI + 2 ~ - '  sin-'(+)). 

Godwin (1949a) gives a number of other exact values of first and second 
moments. 

Subsequently, quite extensive tables of the distribution and moments of 
(W/u) have become available. A historical survey (up to 1960) of these tables 
has been given by Harter (19601, who also provided tables of percentage 
point multipliers, W,, to 6 decimal places for n = 2(1)20(2)40(10)100 and 
a = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95, 0.975, 
0.99, 0.995, 0.999, 0.9995, and 0.9999. There are also tables of the expected 
value, variance, and P1 and p, of (W/u) to 8 (or more) significant figures for 
n = 2(1)100 in Harter (1960). Pearson and Hartley (1948) give tables of 
Pr[W I wul to 4 decimal places for n = 2(1)20 and w = 0.00(0.05)7.25. They 
also give the upper and lower 0.1, 0.5, 2.5, 5, and 10 percentage points of the 
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distribution of (W/a) to 2 decimal places, and expected value and variance 
(5 decimal places), PI (4 decimal places), and P2 (3 decimal places) for 
n = 2(1)20, 30, and 60. More elaborate tables are also available in this 
context, and some numerical algorithms have also been developed; see 
Section 4 for details. 

From Table 13.5 it can be seen that a single value of A might not be found 
such that (W/U)~ is well approximated by a distribution of cX; (for suitably 
chosen c and v) for a range of values of n 1 20. Pearson (1952) and Cox 
(1949) have investigated this kind of approximation in some detail. From 
their investigations it appears that for smaller values of n (e.g., n s 8), an 
approximation of the form ex, is preferable (indeed, it is exact for n = 2); an 
approximation of the form cX: is better for larger values of n. 

Using tables of percentage points of (M/a), (W/u), and X 2  (see Chapter 
18), it is possible to construct confidence intervals for c+ by rewriting the 
equation 

in the form 

which shows that (T/TIwa2, T/Ta,) is a 100(1 - a, - a,)% confidence inter- 
val for a. Here T can be replaced by M, W ,  or G s ,  and T, by 
(M/u),, (W/u),, or 6 x n  - ,, respectively. 

The maximum likelihood estimator S of cr (like its unbiased counterpart 
a,S) is not a linear function of the observed values of XI, X,,  . . . , X,. It is, 
however, possible to construct a best linear unbiased estimator of a ,  using the 
order statistics Xi, Xi, .  . . , Xk. Such estimators (using all the sample values) 
are of form 

Values of aj have been calculated for n = 2(1)20; they have been published 
in Sarhan and Greenberg (1962). Balakrishnan (1990) has presented similar 
tables for n = 21(1)30(5)40. The efficiency of D relative to a,S is always 
greater than 98%. Although this is very satisfactory, these estimators are not 
used often because it is just as easy to calculate a,S if all values are to be 
used, and this does not require such extensive auxiliary tables. If a linear 
estimator is desired (e.g., to reduce effects of inaccurate outlying observa- 
tions), there are other linear estimators, nearly as efficient as D, but with 
simpler formulas for the coefficients. 



ESTIMATION 

We take especial note of Gini's mean difference 

We have 

; The statistic ;GG is an unbiased estimator of u. The first three lines of 
d Table 13.7 [taken from Nair (194911 show the efficiencies of M @ ,  ;\/;;G 
1 and D, the best linear unbiased estimator of a ,  for n = 2(1)10. It can be 

seen that +\/;;G is very nearly as efficient as D. As n tends to infinity, the 
efficiency of ~ G G ,  relative to a,S, tends to 

The asymptotically efficient estimator obtained by the method of Chernoff, 
Gastwirth, and Johns (1967) (see Section 2 of Chapter 12) is obtained by 
putting aj in (13.90) equal to U,,( ,+, ,  for all j .  

We also mention an estimator of u suggested by Gupta (1952) as an 
approximation to D. This is obtained by replacing the coefficients a j  in 
(13.90) by 

a; = 
E[U,'-,+I] 

(13.92) 
l { ~ [ q ] } 2  ' 

where U; s Ui s . . I U,' are order statistics corresponding to n indepen- 
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dent unit normal variables so that the estimator is 

For large n this estimator is very nearly the same as the asymptotically 
efficient estimator just described. Shapiro and Wilk (1965) described estima- 
tors similar to D', except that the ratio of a', to the remaining at's is 
modified. 

In view of the accuracy attainable with ~ G G ,  it does not seem necessary 
to consider the use of D'. However, we note an estimator proposed by Mead 
(1966) which is based on the same general idea as Gupta's estimator and may 
be convenient to apply in special circumstances (e.g., using certain kinds of 
rapid measuring apparatus). Suppose that the number of observations (n) is a 
multiple of m, say, km. The data are then sorted into k groups so that the m 
least values are in the first group, the next m least values in the second 
group, and so on; the last group consists of the m greatest values. If the unit 
normal distribution is truncated between ui-, and ui (> ui-,), then (see 
Section 10.1) the expected value of the truncated distribution is 

Mead's estimator is then 

C;=lh(i,[Mean of the ith group] 

Cf= 1~:i) 
9 

with 

(Note that @(ui) - @(ui-,) = k-' for all i.) Denoting the mean of the ith 
group by x, the estimators are as follows: for k = 2, 0.62666 (v2 - c);_for 
k = 3, 0.45838 (v3 - v ). for k = 4, 0.36927 (Ye- F,) + 0.09431 (Y3 - Y,); - 1 '  - 
for k = 5, 0.31213 (Y2- YL) + 0.11860 (Ye_ Y&; and for k = 6, 0.27177 
(G - + 0.12373 (Y, - Y2) + 0.03844 (Y, - Y3). Mead obtained these 
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values for the asymptotic efficiency of this estimator (n large) relative to anS: 

Asymptotic 87.6 93.3 95.6 96.8 97.8 
Efficiency (%) 

Yet another class of linear estimators has been studied by Oderfeld and 
Pleszczyhska (1961) and Pleszczyfiska (1965). These are linear functions of 
the order statistics Yi, . . . , Y,' corresponding to the random variables I;. = 

IXj - XI. These authors estimated the values of the coefficients in 

on an empirical basis, using result of sampling experiments. In the first paper 
the only value used for n was 5, and the suggested estimator was 

In the second paper the smallest absolute deviate was omitted (i.e., a, taken 
equal to zero). Coefficients (aj) were estimated for n = 3(1)10. In all cases 
the largest coefficient was a,, indicating the relative importance of extreme 
observations in estimating a. These estimators appear (from empirical evi- 
dence) to have quite high (over 95%) efficiencies relative to anS, though they 
are no higher than, for example, estimators based on Gini's mean difference. 

For n s 10 (at least) there are even simple unbiased estimators of u that 
are not much less efficient than ;\T;;G or D. These are based on the 
thickened ranges 

[Jones (1946)l. Values of the multiplying factor to be applied to J(2, to make 
it an unbiased estimator of u are shown in Table 13.6 [taken from Jones 
(1946)l. Relative efficiencies of these estimators (compared with anS) are 
also shown in Table 13.7. It can be seen that if J(,, (= W )  be used for n I 5 
and J(,, for 6 I n I 10, the relative efficiency never falls below 98%. 

For large n Prescott (1968) has given the approximate formulas 
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n Factor 

where p = r / n  is not too small. For n  large the maximum efficiency (96.65%) 
is attained with p = 0.225. Prescott suggests using p = :, since the efficiency 
is still over 90% and the easily remembered quantity 

is very nearly an unbiased estimator of a. 
Dixon (1960) has considered estimators of the form 

k ' C  qj) = k ' C  (X;+,+l - Xi'), (13.96) 
j j 

where the summation C j  is over some set of values of j. The statistic F,, is 

Table 13.7 Relative Efficiencies of Unbiased Estimators of u 

Estimator n 

Based on 2 3 4 5 6 7 8 9 10 
- -- 

Meandeviation 100.0 99.19 96.39 94.60 93.39 92.54 91.90 91.4 91.0 
Gini mean 100.0 99.19 98.75 98.50 98.34 98.24 98.16 98.1 98.1 

difference 
Best linear 100.0 99.19 98.92 98.84 98.83 98.86 98.90 98.9 99.0 
Range 100.0 99.19 97.52 95.48 93.30 91.12 89.00 86.9 85.0 

(J(,, = W )  
- 91.25 93.84 95.71 96.67 96.97 96.8 96.4 
- - - 90.25 91.78 93.56 95.0 95.9 
- - - - - 89.76 90.7 92.2 
- - - - - - - 89.4 
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Table 13.8 Unbiased Estimators of a 

Efficiency (%) 
n Estimator Relative to a,S 

sometimes called the jth quasi-range, occasionally the jth subrange. Evi- 
dently 

r 

J(r, = Tj, (and TI, = W). (13.97) 
j =  1 

Dixon found that for n I 10 the most efficient estimators of form (13.96) 
are those based on the range (W = W(,,), or thickened range J(,, just 
described. For n = 11 - 20 he obtained the most efficient unbiased estima- 
tors [in the class (13.96)] given in Table 13.8. The efficiencies compare quite 
well with those of D, though they are not generally as high as those of Gini's 
mean difference. 

Note that those unbiased linear estimators which are optimal (in various 
restricted classes) give large relative weight to the extreme observations. 
[Even S, which appears to be symmetrical, can be regarded (very roughly) as 
using weights proportional to the absolute magnitude of deviation from the 
sample mean.] Although we have obtained high efficiencies with these 
estimators, the calculations are all based on the complete validity of the 
normal distribution as applied to the data. Distributions of extreme order 
statistics are likely to be especially sensitive to departures from normality, 
and it is sometimes more important to guard against this possibility than to 
squeeze the last drop of formal "efficiency" from the data. 

The simplest method of this kind uses only a single pair of symmetrically 
placed order statistics, in the form of a quasi-range, giving an estimator 
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For n large it is best to take r A 0.069n. The efficiency (relative to a,S) of 
the corresponding unbiased estimator of a is about 65% [Pearson (1920)l. 
[For estimating 5 by a statistic of form 

the best choice is r a 0.270n, and the efficiency is about 67%.1 
KulldoriT (1963, 1964) has studied the construction of estimators of this 

kind in some detail. He found that if estimators of form 

were considered, quite good results could be obtained by taking Pri propor- 
tional to i, giving estimators of form 

For k = 2 Kulldorff found that the best values of r, and r, [subject to an 
estimator of form (13.99) being used] to take are 0.023% and 0.1279n, 
respectively, with y = 0.1174; for k = 3 optimal values are r ,  = 0.0115n, 
r ,  = 0.0567n, and r ,  = 0.1704n, with y = 0.0603. The corresponding relative 
efficiencies are approximately 82% for k = 2 and 89% for k = 3. Note that 
these results apply to "large" samples (large values of n) and cannot be 
expected to apply when n I 20, as in the discussion of other estimators. 

Using the large-sample approximations, Eisenberger and Posner (1965) 
have constructed "best linear unbiased estimators" of mean and standard 
deviation using only a fixed number (k) of quantiles, and excluding quantiles 
more extreme than 1 and 99%, or 2.5 and 97.5%, for k = 2(2)20. They also 
give (for the same values of k) pairs of linear estimators minimizing 

(Variance of estimator of mean) 

+ A(Variance of estimator of standard deviation) 

for A = 1, 2, and 3. Formulas appropriate for censored samples (described in 
Section 8.4) can also be used for complete samples if certain observed values 
must be ignored. 

Ogawa (1976) has commented on the optimal spacing of the systematic 
statistics for the estimation of normal parameters. Ogawa (1977) later pre- 
sented optimal spacings for the simultaneous estimation of 5 and a based on 
selected two sample quantiles. Cheng (1980) discussed the asymptotic best 
linear unbiased estimator of 6 from a censored sample. Fattorini (1978) gave 
percentile estimators for 5 and a, while Cheng and Ling (1983) discussed the 
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best linear unbiased estimators based on incomplete samples. Miyakawa, 
Tamiya, and Kotani (1985b) addressed the question of whether optimal 
spacings (in the case of small samples) for the estimation of 6 and a should 
be symmetric. Balakrishnan and Cohen (1991) have presented a detailed 
account of the optimal linear estimation problem. 

For the linear estimators based on order statistics (apart from those based 
on W alone) there are no easily available tables of percentage points. Such 
tables would be needed to construct confidence intervals for u by rearrang- 
ing the relation 

in the form 

[see (13.89)J. Even for those cases where such tables are available (M and W) 
only symmetrical intervals (with a, = a,) are practically useful. Except in 
connection with intervals based on S, no attempt has been made to construct 
shortest confidence intervals for a. Nair (1947) suggested calculation of 
upper and lower 1% and 5% points of the distribution of the second 
thickened range J(,,, but such tables have not been published. In many cases 
an approximation using a distribution of the form of that of a multiple of a 
chi random variable (ex,) (Chapter 18) may give results that are not seriously 
inaccurate for practical purposes. 

8 3  Estimation of Functions of and a 

Certain functions of both ( and u are sometimes the primary target of 
statistical estimation. Among these we particularly note the 100a% per- 
centile point (( + Uau) and the proportion (of population) less than a fixed 
number x ,  

These quantities may be estimated by general methods, not using the special 
form of distribution. However, when the validity of the assumption of 
normality has been clearly established, it is to be expected that more accurate 
estimates can be obtained by using this knowledge of the form of distribution. 

Evidently, if t, St are any unbiased estimators of 6, u ,  respectively, then 
( p  + Ua6') is an unbiased estimator of ( + Uau. If X is used as the 
estimator of ( and if Sf is any of the unbiased estimators of u described in 
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Section 8.2, then, since 3 and B' are independent, 

Combination of X with the best linear unbiased estimator of u (or one of 
the other, nearly as efficient, linear estimators of (T) will give a good linear 
estimator of 6 + Uau. 

If anS is used as an estimator of u ,  the distribution of the estimator 
( X  + UaanS) may be evaluated in the following way: 

where tk-,(A) denotes a noncentral t  variable (see Chapter 31) with n - 1 
degrees of freedom and a noncentrality parameter A. 

If other estimators of u are used, approximate results of similar form can 
be obtained by approximating the distribution of B' by that of cx,, with 
suitable values of c and v. It will usually be troublesome to assess the 
accuracy of these approximations. If effects of unreliable outlying observa- 

c tions are to be specially avoided, then estimators of 6 and u not using such 
observations may be used. However, if the reason for this precaution is that 
lack of normality is suspected, it is doubtful that 8 + Uau should be esti- 
mated at all. 

Coming now to the estimation of quantities like 

it is clear that the maximum likelihood estimator is obtained by replacing 6 
by X, and u by S. The resulting estimator is, in general, biased. (It is 
unbiased if it so happens that x = 6.) 
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To obtain the minimum variance unbiased estimator, the Blackwell-Rao 
theorem may be used. The estimator 

is an unbiased estimator of Pr[X 5 x ]  and X and S are jointly complete 
sufficient statistics for 6 and a. Hence the minimum variance unbiased 
estimator of Pr[X 5 x ]  is 

x -  x - X -  
= Pr [ s  - - s  < --+, s]. 

Since the conditional distribution of (X, - %)/s is independent of bothzand 
S, it is the same as the unconditional distribution of (XI - X)/S. Making an 
orthogonal transformation with one new variable d-(xl - x), and 
one equal to &x, it can be seen that (Xi - X)/S is distributed symmetrically 
about zero as the signed square root of (n - 1) times a beta variable with 
parameters $, - 1 (see Chapter 25). Hence the minimum variance unbiased 
estimator of Pr[X 5 x ]  is 

(Numerical evaluation can be effected using tables of the incomplete beta 
function, as described in Chapter 25.) 

At this point we note that if X,,, is independent of, and has the same 
distribution as each Xj, (Xn+, - X)/S is distributed as [(n + l)/(n - I)]'/' 
times t with n - 1 degrees of freedom. Hence the interval 

contains on average a proportion 1 - a, - a, of the population values. It is 
; thus a form of tolerance interval for the normal distribution. Unlike the 

tolerance intervals described in Chapter 12, the construction of this interval 
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makes use of knowledge of the form of population distribution. It cannot be 
used for other populations without the possibility of introducing bias. 

Wald and Wolfowitz (1946) have shown that a good approximation to 
tolerance limits, such that there is a probability equal to 1 - a that the limits 
include at least a specified proportion y of the population, is 

Xn-l,o 

where A, satisfies the equation 

@(n-'I2 + A,) - @(n-'12 - hy)  = y. 

The construction of exact one-sided tolerance limits can be simply ef- 
fected, using the noncentral t distribution (see Chapter 31). We note that the 
population proportion less than (2 + kS) is 

and this is at least y if 

Z + k ~ - t  
L U,. 

a 

This inequality can be rearranged in the form 

The statistic on the left-hand side of (13.106) has a noncentral t distribution 
with (n - 1) degrees of freedom and noncentrality parameter (- 6 ~ ~ ) .  In 
order that the probability that at least a proportion y of the population is 
less than (X + kS), should be equal to (1 - a), we make (-kd=) equal 
to the lower 100a% point of the noncentral t distribution, i.e. 

Nelson (1977) has discussed tolerance factors for the normal distribution. 
Odeh and Owen (1980) have presented elaborate tables of normal tolerance 
limits. Gerisch, Struck, and Wilke (1987) determined one-sided tolerance 
limit factors in the case of censored samples through Monte Carlo simula- 
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tions. Mee (1988) discussed the estimation of the percentage of a normal 
distribution lying outside a specified interval. Eberhardt, Mee, and Reeve 
(1989) determined factors for exact two-sided tolerance limits for the normal 
distribution. 

Sometimes it is desired to estimate the mean square error (6 - + a 2 ,  
where 5, is a specified number. The mean square 

d is an unbiased estimator of this quan ty. It is distributed as 

I Noncentral X 2  with \ 

n degrees of freedom and "-" noncentrality parameter 
, n ( t  - t0)2/0.2 I 

(see Chapter 29) and has variance 

A natural estimate of the coefficient of variation (a/() is the ratio a,S/%, 
or more generally a',s/X, with a', being suitably chosen. Since the expected 
value of s/X is infinite, it is not possible to obtain an unbiased estimator of 
this form. We can, however, construct an approximate confidence interval for 
a/[. We will suppose that ~ r [ z  < 01 can be neglected (i.e., a/( sufficiently 
small-less than a, say). Then, since F/s is distributed as (n - 1)-'I2 times 
noncentral t with n - 1 degrees of freedom and noncentrality parameter 
&[/a, it follows that (in the notation of Chapter 31) 
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where g,(z) is the solution (for g )  of the equation 

(assuming that x is not too small). Assuming now that 6 > 0, (13.108) can be 
rewritten 

It is necessary to use tables of the noncentral t distribution (see Chapter 31, 
Section 7) to calculate even these approximate limits. 

More easily calculable, but rather rough, approximate limits are obtained 
from the formula i 

4 
 aver limit = V[I - n - ' / ' ~ ~ ~ d P ]  -I, z 

(13.110) 
I 

Upper limit = v [I - n-'"U 1 -al d p ]  -', 

where V = S/Y. These are based on the assumption that (S - a) is 
approximately normally distributed with expected value ( a  - k t )  and vari- 
ance n-'u2(1 + i k 2 )  SO that (since 6 x=- a )  

that is, d n / ( l  + f VZ) (I - V ~ / U )  has approximately a unit normal distri- 
bution. A similar argument indicates that if XI, X2 are independent normal 
random variables and E[Xj] = l,, Var(Xj) = ai2 ( j  = 1,2) with 4, x=- a,, 
then putting Xl/X2 = R, the distribution of 

is approximately unit normal. 
Koopmans, Owen, and Rosenblatt (1964) have pointed a r t  that if the 

distribution of each of the independent variables is lognormal (see Chapter 
14), then construction of exact confidence intervals for the coefficient of 
variation is straightforward. Since it is possible to approximate a normal 
distribution quite closely by a lognormal distribution (see Chapter 14, Section 
3), it is likely that the same formulas will give good results for normal 
variables (though they will not of course give exactly specified values for 
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confidence coefficients). The (approximate) confidence limits, in terms of the 
original variables XI,. . . , Xn obtained by this method, are 

- 2  q= l(log xj - log x) 
2 ] - 1]1" (13.111) 

Xn-1,t-a, 

and 

where Fx= n-lE;=l log X,. 
The cumulative distribution function of the rth quasi-range for random 

samples from a unit normal distribution is [Jones et al. (196911 

r n(2r-i+l) r-i n-2r+i-1 c c ( -  1)n-2r+i-l-j+k P ,  W > 0, 
= r !  - i )  = k = O  

where 

and 6, = 0, 1 for h < 0, 2 0, respectively; the Y's are standardized multi- 
normal variables (Chapter 35) with all correlations equal to 3. 

Estimates for the reliability function of the normal distribution has been 
considered by Hurt (1980). Sinha (1985) has discussed Bayes's estimations of 
the reliability function. 

Owen and Hua (1977) have presented tables of confidence limits on the 
tail area of the normal distribution. Fertig and Mann (1977) have discussed 
one-sided prediction intervals for at least p out of m future observations. 
Nelson and Schmee (1981) have given prediction limits for the last failure 
time of a normal sample from early failures. Lingappaiah (1983) has dis- 
cussed prediction problems in normal samples. Along the lines of Fertig and 
Mann (1977), Chou and Owen (1986) have studied one-sided simultaneous 
lower prediction intervals for 1 future samples from a normal distribution. 
Whitmore (1986) has made some interesting comments on the prediction 
limits for a single normal observation. Odeh (1989a) has developed simulta- 
neous two-sided prediction intervals to contain at least 1 out of k future 
means. Similarly Odeh (1989b) has also discussed simultaneous one-sided 
prediction intervals to contain all of k future means. 
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8.4 Estimation from Censored Data 

We will consider situations in which the r1 least, and r ,  greatest, observa- 
tions are censored (i.e., not recorded) leaving only X:] + ,, . . . , Xi -r2.  Best 
linear unbiased estimators, based on these order statistics, are particularly 
useful in these circumstances, since the maximum likelihood estimators of 6 
and u are much more difficult to calculate than they are for complete 
samples. We will, first, discuss maximum likelihood estimators and then 
possible approximations. 

The joint probability density function of X,!] + ,, . . . , Xi -r2 is 

The maximum likelihood estimators [,A6 of 6, u,  respectively satisfy the 
following equations [using the notation U,' = (Xi' - {)/&I: 

From equations (13.115) below it can be seen that in (13.113) the censored 
"observations" are replaced by the expected value of the appropriate tail of 
the normal distribution truncated at Xil+, or XL-r2, as the case may be, and 
that in (13.114) the squared standardized deviates of these "observations" 
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are replaced by the corresponding expected values for the tails. With this in 
mind, we obtain approximate solutions of equations (13.113) and (13.114) by 
replacing (X:, +, - &/& and (Xi - rZ  - i ) /& by Ual and U, -a2, respectively 
(except in the summations) with aj = (rj + l)/(n + 1) for j = 1,2. By intro- 
ducing the following notation for the moments of the tails (of singly trun- 
cated normal distributions, Section lo), 

we obtain the approximate equations 

with X' = (n - r1 - r,)-'C~:~+,Xj. Values of and p12,af can be 
obtained from tables mentioned in Section 1 [also in Harter and Moore 
(196611. 

Having obtained first approximations to i and 6 from (13.116) and 
(13.117), these can be used to calculate new values of GL:; + ,  now using 
(X:,+, - El/& and (XA-, - [)/& in place of U and Ulxai, respectively. 
Then (13.113) and (13.114) give new approximGions to 6, o, and so on. 
Cohen (1957) has given a chart that may be used in the solution of (13.113) 
and (13.114). 

Approximations (for large values of n) to the variances and covariance of 
and & are the same as for the corresponding truncated distributions, with 

truncation points corresponding to aj = rj/n ( j  = 1,2). Some numerical 
values are given in Section 10. Detailed discussions of these developments 
and corresponding tables and graphs may be found in the volumes of Harter 
(1970), Nelson (1982), Schneider (1986), Cohen and Whitten (19881, Cohen 
(1991), and Balakrishnan and Cohen (1991). Although solution of the maxi- 
mum likelihood equations is practicable if the techniques described above or 
variants thereof are used, it is often convenient to use simpler estimating 
formulas. 
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Making the further approximation r,/n @(Uaj) ( j  = 1,2), equations 
(13.116) and (13.117) can be written 

Tiku (1967) has suggested that the approximate formulas 

be used to simplify equations (13.113) and (13.114). (The values of a,, b,, a,, 
and b, are chosen to give good fits over the range Ual I x I Ul-a2.) This 
leads to the following equations for the estimators of 6 and a (denoted here 
by 6,B'): 

6 = K + LB', 

i 

d 
with 

and 

(the quadratic in G' has only one positive root). 
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For symmetrical censoring (a, = a, = a), we have a, = a, = a,  say, and 
b, = -b, = b, leading to 

and 

n- r  

- In-' X + a + )  - ( 1  - 2 a  + Zab)K2 = 0. 
j = r + l  I 

Note that is of similar form to the Winsorized mean (13.73). Tiku gives 
tables to assist in obtaining good values for a and b. These simplified 
estimators, referred to as the modified maximum likelihood estimators, have 
been utilized to develop several robust inference procedures (robust to 
departures from normality); see Tiku, Tan, and Balakrishnan (1986). 

For symmetrical censoring, the Winsorized mean (13.73) described in 
Section 8.1 is a natural choice as estimator of 6. For a moderate degree of 
asymmetry in censoring (i.e., (r ,  - r,( small), it may be worthwhile to set 
aside the excess observations and use the Winsorized mean of the largest 
available symmetrically censored set of sample values. Table 13.9 [from 

Table 13.9 Efficiency (%) of Winsorized Mean Based on X; +,, . . . , XL 
Relative to the Best Linear Unbiased Estimator of 4 Based on Xj, X; +,, . . . , Xi - 

1 2 3 4 5 6 
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Dixon (1960)l gives the efficiency of the Winsorized mean 

4,) = n - ' ( ( j  + l ) T + ,  + q+2 + - .  +XL-j-l + ( j  + I)X;-,] 

relative to the best linear unbiased estimator of 6 based on 
Xi', Xi'+ ,, . . . , XA - j .  It can be seen that the loss in efficiency from ignoring the 
value Xi' is trifling. 

Even if one of r ,  and r ,  is zero, the Winsorized mean can still be used 
with little loss of efficiency. Even this can be reduced by using a modified 
Winsorized mean of form (for r ,  = 0, r, = r)  

with a chosen to make this an unbiased estimator of 6. Minimum values of 
the efficiency of this estimator (relative to the best linear unbiased estimator) 
are shown below: 

Minimum 
Relative 

r Efficiency 

Values of a are given in Dixon (1960, table II), but they can easily be 
calculated from tables of expected values of ordered normal variables (see 
Section 4). 

Estimation of u is more seriously, and adversely, affected by omission of 
extreme values, than is estimation of 6. However, there is the compensating 
feature that the estimates are generally less sensitive to departures from 
exact normality of distribution (as already noted in Section 8.2). Rhie1(1986), 
for example, has examined the effect of nonnormality on the use of the 
sample range in estimating the population standard deviation a. The sim- 
plest estimators of u that may be used when analyzing censored samples are 
those based on the quasi-ranges 
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Dixon found that for symmetrical censoring with r ,  = r ,  = r I 6, and 
n s 20, estimators based on 

1. q,,,, + W(?+,, for r = 1, 11 ~n I 15, and r =  2, 161n s 19, 
2. ~ , + , , + ~ , + , , f o r r = 1 , 1 6 1 n s 2 0 , a n d r = 2 , n = 2 0 ,  
3. q,+,, for all other r I 6, n I 20, 

have efficiencies relative to the best linear unbiased estimators of a of at 
least 96.5%. A similar situation exists when Ir, - r,l = 1. Dixon also gives 
simple formulas for linear unbiased estimators for single censoring with 
r ,  = 0, r ,  I 6, n I 20, that have a minimum efficiency of 93.7% relative to 
the best linear unbiased estimators. 

Selvin (1976) has discussed a graphical estimate of f based on censored 
samples. Custer and Pam (1976) have provided correction for bias in the 
maximum likelihood estimator of a in a right-censored sample. Persson and 
Rootzen (1977) have proposed some simple and highly efficient estimators for 
f and a when the available sample is Type-I censored. Healy (1978) has 
given a mean difference estimator of u in the case of symmetrically censored 
samples; see Prescott (1979) for a similar estimator of a in the case of 
asymmetrically censored samples. A linear estimator of u has also been 

I provided by Healy (1982) for symmetrically censored samples. Schneider 
1 (1984) presented some simple and very efficient estimators for both f and a 
i for censored samples; also see Schneider (1986) for a detailed discussion on 

E various estimators of 5 and u under censored sampling. Wolynetz (1979) has 
developed an algorithm for determining the maximum likelihood estimates of 1 f and u from truncated and censored data. Hill (1987) and Swan (1977) have 

\ discussed algorithms for the maximum likelihood estimation from grouped 

1 and censored data. Schader and Schmid (1984) compared some algorithms 
"available for the computation of the maximum likelihood estimates of f and 
/ u from a grouped sample. Schader and Schmid (1988) have also discussed 

small-sample properties of these maximum likelihood estimates from a 1 grouped data. 
Sobel and Tong (1976) have described the estimation of a normal per- [ centile by grouping. Kabe (1976) has constructed confidence bands for the 

1 quantiles. Dyer, Keating, and Hensley (1977) have compared different point 
estimators of normal percentiles. Durrant (1978) has presented a nomogram 
for confidence limits on quantiles of the normal distribution. In continuation / of the work of Dyer, Keating, and Hensley (19771, a further look at the 
comparison of different point estimators of normal percentiles has been given 
by Dyer and Keating (1979). Hassanein, Saleh, and Brown (1986) have 
tabulated the best linear unbiased estimators of normal quantiles for sample 
sizes up to 20. Oppenlander, Schmee, and Hahn (1988) have proposed some 
simple robust estimators of normal tail percentiles and then examined their 
performance. 
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ating pseudorandom normal observations; see Kinderman and Ramage (1976). 
In this method the normal density is represented as a mixture of densities 
over which a variety of acceptance-rejection methods due to Marsaglia 
(1964), Marsaglia and Bray (1964), and Marsaglia, MacLaren, and Bray 
(1964) are applied. 

Suppose that the pdf p(x) is bounded above by a function cq(x), where 
c > 0 and q(x) is a density function for all x. Generally q(x) is taken to be 
an easily computable function. The "rejection method" generates pseudoran- 
dom numbers from p(x) as follows: 

1. Provides a pair of independent uniform (0,l) random numbers, u1 and 
112. 

2. Provides a random number from q ( x )  using u,, say, x,. 
3. Accepts x, as a pseudorandom observation from p(x) if 

4. If x, is rejected, returns to step (1). 

The constant c is to be selected as the smallest number such that 
p(x) l cq(x) for all x. For example, with p(x) being the standard normal 
density function and q(x) being the Laplace density function (Chapter 24) 

x, may be generated (by inverse cdf method) as 

The inequality in step 3 becomes in this case 

xqL log u2 2 c1 + alx,l - -, 
2 

(13.129) 

where c, = $ log{2/(?rc2a2)). If we consider the Laplace distribution with 
mean 0 and variance 1, then a2 = 2, and in this case we have c = e /  r/;; and 
c, = - 1. Consequently (13.129) reduces to 
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9.4 Ahrens-Dieter Method 

From the Box-Muller transformation in (13.122) or (13.126), observe that the 
variables 

x2 
C =  - and S=X:+X,Z 

Xl 

are independently distributed as Cauchy and exponential with mean 2, 
respectively. Thence the inverse of this transformation yields 

X , = / x  1 + c2 and X 2 = C / z .  (13.132) 

The snag in using this transformation is that the signs of the square roots are 
undetermined. However, as Ahrens and Dieter (1988) have pointed out, 
these signs must be positive and negative independently and with equal 
probability i. So XI may receive a random sign, and sign(X2) becomes 
sign(C). Thus the pseudorandom standard normal observations XI and X2 
may be generated from (13.132) by using directly the Cauchy generator (see 
Chapter 16) and the exponential generator (see Chapter 19) with S = E + E. 
For this algorithm Ahrens and Dieter (1988) have pointed out that (for 
generating a pair of pseudorandom standard normal observations) 1.023195 
is the average consumption of uniform (0,l) random variables (with 1.039921 
uniform variables for the exponential algorithm and 1.006469 for the Cauchy 
algorithm). 

Several other simulational algorithms are also available for generating 
normal observations. Kinderman, Monahan, and Ramage (1979, Marsaglia, 
Ananthanarayanan, and Paul (19761, Atkinson and Pearce (19761, Sakasegawa 
(1978), Best (19791, and Deak (1980, 1981) have all presented simple and 
economical methods of generating normal observations. Gates (1978) pre- 
sented a modified Butler algorithm for this purpose. Burford and Willis 
(1978) carried out a comparative study of unit normal variables generated by 
the Box-Muller algorithm using alternative standard uniform generators. 
Kronmal, Peterson, and Hutchinson (1979) discussed the generation of 
normal random variables using the uniform alias-rejection mixture method. 
Schuster (1983) made some comments on the method of generating normal 
variates by summing three uniforms. Dagpunar (1988) has presented a 
method of generating random variates from the tail of a normal distribution. 
Dagpunar (1987) has also given a nomogram to enable the manual sampling 

I 
: of random variates from a normal distribution. 
i Generating a normal sample with given sample mean and variance has ' been considered by Pullin (19791, Marsaglia (1980), and Jones (1985). 1 
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10 RELATED DISTRIBUTIONS 

In Section 8 we provided references for the distributions of arithmetic mean, 
median, variance, range, mean deviation, and so on, in "random samples 
from normal populations." Many chapters of this volume discuss other 
distributions related to the normal distribution. In the present section we will 
confine ourselves to discussion of truncated normal distributions and mix- 
tures of normal distributions, together with some brief references to some 
other distributions related to the normal. 

10.1 Truncated Normal Distributions 

A random variable X has a doubly truncated normal distribution if its 
probability density function is 

The lower and upper truncation points are A, B, respectively; the degrees of 
truncation are @((A - ,$)/a) (from below) and 1 - @((B - ()/a) (from 
above). If A is replaced by - oc, or B by oc, the distribution is singly truncated 
from above, or below, respectively. More elaborate forms of truncation (e.g., 
omission of a number of intervals of .X) will not be considered here. 

Some typical doubly and singly truncated normal probability density func- 
tions are shown in Figure 13.3. These are classified according to the degrees 
of truncation. It can be seen that when the truncations are large, the 
distribution bears little resemblance to a normal distribution. It is indeed 
more like a rectangular or trapezoidal distribution (Chapter 26). The case 
A = &, B = oc produces a half-normal distribution. This is actually the 
distribution of 5 + a ( U (  where U is a unit normal variable. We will discuss, 
in detail, only doubly truncated normal distributions. Treatment of singly 
truncated normal distributions follows on similar lines. 

The expected value of X [from (13.133)J is given by 



2'0 = (v) * 
MOIW moq uo!imuniL jo aaiaaa 
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and the variance of X by 

Var( X) 

( ( A  - S)/u)Z((A - 5) /u )  - ( ( B  - 5) /@)Z((B - 
= [I + 

@((B - 5 ) / 4  - @((A - 5 ) / 4  

Note that if A - 5 = - (B - 5) = -Su, then 

The mean deviation of X is 

x o-  [ (B;  ') - 
where 

Some values of E [ X ] ,  4- and the ratio of the mean deviation to the 
standard deviation are given in Table 13.10. 

The moments of the truncated distribution can also be expressed in terms 
of the Hh functions [Fisher (1930)l defined by 

Sugiura and Gomi (1985) have given Pearson diagrams (of the coefficients 
of skewness and kurtosis) for the truncated normal distributions. Nakamura 
(1980) has discussed the moments of positively truncated normal distribution. 
Hall (1979) has also derived inverse moments for a class of truncated normal 
distributions.. 
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Table 13.10 Expected Value, Standard Deviation, and 
(Mean Deviation) / (Standard Deviation) for Truncated Normal Distributions 

Degrees of Truncation 

A - 6  (Mean 
(Expected (Standard Deviation)/ 

(Below) (Above) Value)] Deviation) (Standard 
x a-' X u-' Deviation) 

The values of A and B are usually known, at least fairly closely. If A and 
B are known, the maximum likelihood estimation of 6 and u is equivalent to 
estimation by equating first and second sample and population moments. The 
equations satisfied by the estimators 5̂  and 6 are similar in form to those for 
censored samples, with X + X - replaced by A, B, respectively, and 
with the multipliers r,n-', r,n- replaced by the degrees of truncation 
@((A - ()/a), 1 - @((B - &)/u), respectively. 

Harter and Moore (1966) have given a table of asymptotic variances of, 
and correlation between, 6 and c? (for large n). Table 13.11 is based on their 
figures and includes the asymptotic variance of the maximum likelihood 
estimator of 6 when u is known and of u when 6 is known. If @((A - t ) /u)  
is greater than [I - @((B - ,$)/a)], the variable X can be replaced by -X, 
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Table W.11 Asymptotic Values oP n x Wariance) / oa for Maximum Likelihood Estimators 

Proportions Censored 6 and LT Unknown u h o w n  [Known 

Variance Correlation Variance Variance 
of between of of 

6 by -6,  A by - B  and B by -A, then W - B  + ( ) / u )  will be less than 
[l - @{{-A + [)/a)], and the tables may be applied. 

The tables by Harter and Moore (1966) give 6 decimal: places. Earlier 
tables by Gupta (1952) give the first three columns to 5 decimal places for 
singly truncated distributions (A = -m and so @((A - ()/a) = O), for 
@((B  - 6 ) / 0 )  = 0.05(0.05)0.9510.01$0.99. The values given in these tables 
aIso give the asymptotic variances for estimators of ( and u from singly and 
doubIy censored sets of independent identically distributed normal variables. 
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They are, however, only asymptotic values, and some care is needed in using 
them when the sample size n is not large (e.g., less than 50). 

Sampling experiments [Harter and Moore (196611 with n = 10 and n = 20 
have indicated that there is a negative bias in both and 6 that increases 
with the degree of truncation. For a moderate degree of truncation (or 
censoring) knowledge of either parameter does not result in much reduction 
of variance of the estimator of other parameter. Occasionally, the points of 
truncation (A and B) are not known and must be estimated from the data, as 
well as 6 and u. With sufficiently large samples it will probably be good 
enough to take A equal to a value slightly less than the least observed value, 
and B slightly larger than the greatest observed value, but sometimes more 
elaborate methods may be needed. 

The maximum likelihood estimation of the four parameters A, B, 6, and 
u has been described by Cohen (1950a). An estimation using the first four 
moments has been described by Shah and Jaiswal(1966). There are marked 
similarities between the equations obtained by the two methods. Cohen gives 
tables of auxiliary quantities useful in solving the maximum likelihood equa- 
tions. These tables have been extended by Lifsey (1965). 

Cohen (1950b) also has described how the parameters 6 and a can be 
estimated when there is a single truncation (i.e., A = -a or B = w), using 

I 

i the first three sample moments. As the point of truncation is supposed 
I known, it is not really necessary to use the third moment. However, by 

introducing the third moment, simple explicit formulas are obtained. Suppos- 
ing that B = w  (i.e., left truncation only), the estimators of 6 and u2 are 

A - (2mf - m;)-'(2m;m; - mi), 
(13.139) 

(2mf - m;)-'(rn;mi - m?), 

respectively, where m',, is the rth sample moment about the point of trunca- 
tion A. Cohen found that the asymptotic efficiency of these estimators 
(relative to maximum likelihood estimators) is never less than 77% for 6, 
72% for u2. For very small or very large degrees of truncation the efficiencies 
are greater. 

The use of the third moment may be expected to introduce unnecessary 
inaccuracies. Pearson and Lee (1908) gave formulas from which estimators 
can be obtained, equating only first and second sample and population 
moments; the estimators are also maximum likelihood estimators. The equa- 
tions for the estimators l ,  2 are (again assuming B = w) 
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where 8 = (A - $)/& (= estimate of lower truncation point as a standard- 
ized deviate) and X = n-'C7=,Xj. Using (13.140), (13.141) can be solved for 
8, and then & is calculated from (13.140). 

Cohen and Woodward (1953) give tables of the functions 

[to 8 significant figures for S = -4.0(0.1)3.0 to aid in the solution of (13.140) 
and (13.141)]. Since (13.141) can be written in the form 

inverse interpolation suffices to determine 8, and then the table of Y(6) is 
used to calculate (3. 

Crain (1979) has discussed further the estimation of parameters of a 
' 

truncated normal distribution. Chiu and Leung (1981) have presented a 
graphical method of estimating the parameters, and Mittal and Dahiya (1987) 
and Hegde and Dahiya (1989) have provided further discussions on the 
estimation of parameters from a doubly truncated normal distribution. De- 
tailed discussions on the estimation of parameters from truncated normal 
distributions may be found in the volumes by Harter (1970), Schneider 
(19861, Cohen and Whitten (1988), Cohen (1991), and Balakrishnan and 
Cohen (1991). 

DePriest (1983) has used the singly truncated normal distribution to 
analyze satellite data. Levedahl (1989) has found an application for the 
truncated normal distribution in evaluating the effect of commodity dona- 
tion programs. Ord and Bagchi (1983) have suggested the truncated 
normal-gamma mixture as a distribution for lead time demand. 

Distributions of functions of truncated normal variables cannot usually be 
expressed in mathematically elegant forms. In Francis (1946) there are some 
tables (calculated by Campbell) of the distribution of the sums of n indepen- 
dent identically distributed truncated normal variables. The tables are not 
extensive, but they do give a useful idea of the effects of truncation on the 
distribution of arithmetic means, even for nonnormal distributions. Values of 
the cumulative distribution, to 4 decimal places, are given for values of the 
argument at intervals of 0.1, and for n = 2 and 4. 

As an example of special problems that can sometimes arise, we mention 
the derivation of the distribution of the sum of two independent random 
variables, one normal and the other truncated normal. This has been dis- 
cussed in Weinstein (1964). 
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10.2 Mixtures 

Compound normal distributions are formed by ascribing a distribution to one, 
or both, of the parameters (, a in (13.1). There are two distinct kinds of 
distributions: those obtained by treating & and/or u as continuous random 
variables are of methodological and theoretical interest, while when (6, a )  
takes only a finite (usually small) number of possible values, the fitting of 
corresponding distributions is usually regarded as the "dissection" of a 
heterogeneous population into more homogeneous "parts." 

Using the notation introduced in Chapter 8, we remark that the distribu- 
tion* 

I 

! is also a normal distribution, with expected value p and standard deviation 

1 d m .  This can be demonstrated by direct integration, or simply by 
regarding the compound distribution as that of ( p  + Urur) + Uu, where 
U, Ur are independent unit normal variables. 

It can also be shown that 

is equivalent to a Pearson Type VII distribution (Chapter 12, Section 4.1). In 
fact 

1 (It may be noted that the distribution ascribed to u P 2  is of a kind sometimes 

i called jiducial, which is obtained by formal inversion of the statement "V is 
distributed as X2u2" to become is distributed as V-lX;.") 

f Teichroew (1957) has studied the distribution 
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The distribution has a complicated form, although its characteristic function 
is simply (1 + ~ t ~ ) - ' / ~ .  

The distribution 

Normal(6, a )  A Rectangular 
5 

has been studied by Bhattacharjee et al. (1963). Clow, Hansen, and McNolty 
(1974) have considered this distribution as the distribution for the pulse- 
plus-stationary Gaussian noise (under a constant amplitude). 

Coming now to mixtures of a finite number (k) of normal components, a 
general form for the probability density function is 

The quantities w,, o,, . . . , o, (0 < w,; C;=,w, = 1) are called the weights of 
the component normal distributions. We will consider in detail only the case 
k = 2. With increasing number of components the general case rapidly 
becomes extremely complicated, though simplifications (e.g., supposing all 
at's to be equal) can sometimes be used to render the analysis more 
manageable. 

With k = 2, and 6, and 6, sufficiently different, it is possible for (13.143) 
to represent bimodal distributions [Helguero (1904); Prasad (1955); 
Teichroew (1957)l. A systematic study of conditions under which this is so has 
been made by Eisenberger (1964) [see also Wessels (1964)l. He summarizes 
his results as follows: 

the distribution cannot be bimodal (in particular, if 5, = 5,). 
2. If 

there are values of o, and w, (= 1 - o , )  for which the distribution is 
bimodal. 

3. For any set of values 5,, 5,, a,, and u2 there are values of w ,  and w, 
for which the distribution is unimodal. (This is fairly evident, on 
considering that if w, = 0 or w, = 1, a normal distribution, which is 
unimodal, is obtained.) 
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Tables of moments of (13.143) with k = 2 [(standard deviation) a-', a, 
and (a, - 3) to 3 decimal places for w2/wl = 0.1, 0.9, and 1.0; u2/al = 

1.0(0.5)3.0 and (5, - (,)/al = 0.0(0.5)3.0] have been given by Linders (1930). 
If w, is nearly 1, and so ot (for t > 1) is small, the mixture distribution 
(13.143) is sometimes called a contaminated normal distribution [Tukey 
(1949)l. It has been used as a model to assess tests for rejection of outlying 
observations obtained in samples from a supposedly normal distribution, and 
also in robustness studies for various inference procedures. 

In the general case (13.143), the rth moment of X about zero is 

where U is a unit normal variable (remember that E[Uj] = 0 if j is odd). 
Suppose that k is equal to 2, and that we want to estimate the 5 

parameters o, (= 1 - o,), t,, 5,, ul, and a, by the method of moments. 
Five moments will be needed. From the equations 

we try to find values for o,, 5,, 5,, a,, and a,. 
This problem was considered by Pearson in 1894. Subsequently a number 

of improvements have been effected [e.g., Charlier and Wicksell (1924); 
Helguero (190511. Papers by Molenaar (1968) and Cohen (1967) give a useful 
account of this work. The following summary is based on information in these 
papers. 

Putting Oj = tj - (j = 1,2) the central moments p,, p,, p,, and p, 
are obtained from (13.145) by replacing 5, by 8, (t = 1,2). From the resulting 
equations can be derived an equation of ninth degree for 4 = 8,8,: 
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i where 
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with 

In application, values of p, are replaced by sample values of these moments. 
Since equation (13.146) might have as many as nine roots, there may be 

difficulty in choosing the "right" root. Since CL; lies between 5, and 5,, it 
follows (unless 5, = 5,) that 8, and 8, are of opposite signs, and so 
4 = 8,8, < 0. Hence only negative roots of (13.146) need be considered. For 
ease of computation the following method appears to be convenient. 

If the value of 4' = 8, + 8, is known then 4 is a negative root of the 
cubic equation 

and this equation has only one such root. Using +', and the value of 4 
obtained from (13.147), values of 8, and 8, can be determined, and from 
these t, ,  5, are estimated as 

(X being the sample mean), and o, as 
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Finally, we have 

Using the parameter values so obtained, a value for p, can be calculated 
such as ~ ~ ( 4 ' ) .  By inverse interpolation from a series of such values of 
p5(4'), a value for # (and hence a set of values for all five parameters) can 
be estimated. [This does not exclude the possibility that more than one value 
of 4' may make p5(4') equal to the sample value, so it may still be necessary 
to distinguish among such values. Pearson (1894) suggested that the value 
giving closest agreement between sample and population sixth moments be 
chosen. It is easy, however, to think of other criteria, e.g., choosing the value 
giving the least value of X 2  or some other goodness-of-fit criterion.] 

In view of the likely inaccuracy in estimating the sixth central moment, it 
seems preferable to use the first and third absolute central moments, v, 
(mean deviation) and v3, together with the variance p,. From the equations 

we obtain a, ,  a, as roots of the equation 

Sometimes simpler procedures can give adequate results. If the difference 
between the means (5, - 5,1 is large enough, then the left-hand and right- 
hand tails of the distribution come almost entirely from single (and different) 
components of the mixture. Figure 13.4 typifies such a situation, with 5, < 5, 
(and a, > a,). In such cases a truncated normal distribution may be fitted to 
each tail separately (as described, for single truncation, in Section 1). This 
gives estimates of el, t 2 ,  a,, and a,. Finally, w ,  is determined from the 
equation 
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Figure 13.4 Data in the Region Below A Used for Estimation of the Component with Expected 
Value t,, and Data above B Used for Estimation of the Component with Expected Value t2 

A major difficulty in this method is the choice of points of truncation. Some 
check is possible by moving the points inward, toward the bulk of the 
distribution, so long as the estimators of tj and o;. remain "reasonably" 
consistent. A number of graphical methods of estimation have been devel- 
oped [e.g., Harding (1949), Molenaar (19651, Taylor (19651, and Wiechsel- 
berger (1961)l. Rivest (1981) has discussed the sum of two contaminated 
normals. 

If 5, = 5,, then the distribution is symmetrical for any value of w,. A 
symmetrical distribution is also obtained (even with 5, # 5,) if ul = a, and 
w ,  = $. This can be distinguished from the symmetrical distribution obtained 
with = 5, (and a, # a,), since in the former case K~ < 0 while in the 
latter case K~ > 0. Moment estimators for the case 5, = 5, have been 
discussed in detail by Agard (1961). A maximum likelihood estimation 
procedure, for the case ul = a,, was described by Molenaar (1969, who also 
constructed a computer program for this procedure. 

Since 1970 extensive work has gone on with regard to the inference, 
modeling, and application aspects of the mixture-normal distributions. Books 
by Titterington, Smith, and Makov (1985) and McLachlan and Basford (1987) 
provide elaborate discussions on all these developments. 

103 Other Related Distributions 

If X, and X, are independent unit normal variables, and F = (Xl/X,)2, 
then F is distributed as F,,, (see Chapter 27). Equivalently, t = X,/X, is 
distributed as t, (see Chapter 281, and so has a Cauchy distribution (see 
Chapter 16). 

Among statistics used in testing normality are the following: 

1. The sample skewness, 
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2. The sample kurtosis, 

[Considerable attention has been devoted to obtaining formulas for the 
higher moments (up to eight) of these two statistics. See Fisher (1930), 
Geary (1933, 1947), Geary and Worlledge (1947), Hsu and Lawley 
(1940), and Wilkinson (1961). Tables of approximate percentiles are 
available in Pearson (1965).] 

3. The ratio (sample mean deviation)/(sample standard deviation) [Geary 
(1935, 1936)l. 

4. The ratio (best linear unbiased estimator of a )  X (sample variance)-' 
[Shapiro and Wilk (19691. 

5. Ratios of symmetrical differences between order statistics, 

[David and Johnson (1954)l. 
6. The ratio (sample range)/(sample standard deviation) [Pearson, 

Hartley, and David (1954); Pearson and Stephens (1964)l. 

As mentioned earlier in Section 8, a complete account of the goodness-of-fit 
tests for the normal distribution (along with detailed tables of percentage 
points, approximations for large samples, comparative power studies, etc.) 
can be had from the books by Shapiro (1986) and D'Agostino and Stephens 
(1986). In the construction of tests for outlying observations, distributions of 
the following statistics have been studied: 

1. (X: - X)/a, ( X  - Xi)/cr and the same statistics with a replaced by 
the sample standard deviation [David (1956); Nair (1947); Sarhan 
(1954); Pearson and Chandra Sekar (1936)j. 

2. Ratios of order statistics of form 

x;-x; x;-x;-r-l 
for r = 2,3,4,. . . 

X;+l -Xi ' x; -XApr 

[Dixon (1950)l. 

Since 1970 the literature on outliers and related issues has expanded signifi- 
cantly. This is clearly evident from the third edition of Barnett and Lewis 

1 (1994). Many new tests have been proposed, their performance have been 
1 
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Figure 13.5 Folded Normal Distribution 

evaluated, comparative studies have been carried out, and several tables have 
been constructed to facilitate the users. All these developments have been 
discussed in great detail in Barnett and Lewis (1994). 

If X has a normal distribution as in (13.2), then 1x1 is said to have a 
folded normal distribution. As the name suggests, the distribution can be 
regarded as being formed by folding the part corresponding to negative X 
about the vertical axis (see Figure 13.5) and then adding it to the positive 
part. 

The folded normal distribution is identical with the distribution of 

I Noncentral ,y with 
u x one degree of freedom and 

noncentrality parameter (5/u)* I y 

and, as such, will be described in Chapter 29. If the folding is about the 
mean, then 6 = 0 and a central ,y is obtained. This is also the half-normal 
distribution referred to earlier in this chapter (Section 10.1). Leone, Nelson 
and Nottingham (1961) and Nelson (1980) have discussed various properties 
and applications of the folded normal distribution. Sinha (1983) has derived 
Bayesian estimates for the parameters of this distribution. 

In Chapter 12 we discussed Johnson's system of distributions (as three 
different transformations of normal random variables). Shenton and Bowman 
(1975) have used the Srdistributions to examine the sample skewness and 
kurtosis statistics. Hill (1976) has given an algorithm for normal-Johnson and 
Johnson-normal transformations. Olsson (1979) has explained the fitting of 
Johnson's S, and S, systems of curves using the maximum likelihood 
method. Hill and Wheeler (1981) have commented on the algorithm of Hill 
(1976) and also on the fitting of Johnson curves by the method of moments; 
also see Dodgson and Hill (1983). The logistic-nonnal distribution, in particu- 
lar, has received considerable attention from many authors. Aitchison and 
Shen (1980) have discussed some properties and uses of this distribution, 
while Lenk (1988) used this distribution for Bayesian and nonparametric 
predictive densities. Titterington (1989) has provided a review of the logistic- 
normal distribution. Crouch apd Spiegelman (1990) recently considered inte- 
grals of the form l"_f(t)e-' dt and applied them to the study of logistic- 
normal models. 
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Azzalini's (1985) skewed-normal distributions was described in Chapter 12. 
This family of distributions, including the normal (when A = 0) and the 
half-normal (when A = w), has been discussed further by Azzalini (1986). 
Henze (1986) has provided a probabilistic representation of this family of 
distributions. Kotz and Johnson (1988) have provided a brief review of this 
distribution, while Liseo (1990) has recently discussed inferential aspects of 
this distribution from a Bayesian viewpoint. 

A robust alternative to the normal distribution proposed by McLeish 
(1982) has already been pointed out in Chapter 12. Tardiff (1980) and Canal 
(1981) have discussed a generalized normal distribution, while Vianelli (1983) 
has defined families of normal and lognormal distributions of order r .  Goto 
and Hatanaka (1985) have studied power-normal transformations. The 
Sargan distribution was introduced in Chapter 12. Kafael and Schmidt (1985) 
have examined the adequacy of the Sargan distribution as an approximation 
to the normal distribution. 

When X has a N(5, u2)  distribution, then it is easily seen that Y = 1/X 
has the density function 

Robert (1991), in generalizing the density in (13.1531, has proposed the family 
of generalized inverse normal distributions with density 

PY(Y I f f ,  5, u )  = 
K(a95 'u )  e-((l/~)-6)2/(2~2), a > 1, u > 0, (13.154) 

IYI"  
where K(a, 6, u )  is the normalizing constant. The distribution is always 
bimodal, with modes at 

Y l  = - and y, = 
. 

2 a u 2  2 a u 2  

The constant K(a, 5, u )  can be expressed explicitly in terms of confluent 
hypergeometric functions. The kth moment exists only if a > k + 1. For 
example, when a > 2, the mean of the distribution is given by 

Kanji (1985) and Jones and McLachlan (1990) have considered Laplace-nor- 
ma1 mixture distribution with density function 

and applied the distribution to fit wind shear data. 
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A random variable X is said to have a circular normal distribution if its 
I probability density function is [Kotz and Johnson (1982)l 

where Io(k) = qz,(k/2)2i/( j!)2 is the modified Bessel function of first kind 
and order 0. The parameters of the distribution are 0 and k; as k increases, 
the distribution becomes more and more concentrated around the pole 
x = 0. Sometimes a bivariate normal distribution with equal marginal stan- 
dard deviations is also referred as a circular normal dkjribution; see Dyer 
(1974). In fact Dyer considered a truncated form of that distribution, dis- 
cussed an estimation method for the parameters, and illustrated the method 
with ballistic applications. 

A random variable X is said to have a lineo-normal distribution if its cdf is 
given by 

! [Kotz and Johnson (1985a)l. The distribution is symmetric about 0 and has 
variance 2u2/3. This distribution is a member of the modijied normal 

1 1 distributions constructed by Romanowski. The cdf of this family is [Kotz and 

I 
Johnson (1985~11 

i Formula (13.158) is in fact a compound (or mixture) distribution obtained by 
b ascribing the power function distribution with density (a + l)ta, 0 I t I 1 

i and a 2 - 1, to the distribution N(0, u2)/u2. This distribution is also 
symmetric about 0, has variance u2(a + l)/(a + 2) and kurtosis 3(a + 1 2)2/{(a + 1Xa + 3)). The lineo-normal distribution in (13.157) is a special 

i case of (13.158) with a = 1. When a = 0, the distribution in (13.158) is 
I: referred to as equi-normal distribution. When a = ;, (13.158) is called as a 
i 
1 radico-normal distribution. When a = 2, (13.158) is called as a quadri-normal 

distribution. 
The lagged normal density function is the convolution of a normal density 

function and a descending exponential function, and is given by 

where p,(x) is the density function of N(5, u 2 )  and p2(x) is the exponential 
density A em(-Ax), x 2 0. The mean and variance of the density (13.159) 
are simply 5 + 1 /A and u 2  + l/h2, respectively. A generalized lagged normal 
density function may similarly be defined by convoluting the normal density 
function with two or more exponentials. Realizing that the convolution of two 
or more exponentials is the generalized Erlangian distribution, the general- 
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ized lagged normal density function simply becomes the convolution of a 
normal density function and a generalized Erlangian density function. Davis 
and Kutner (1976) have applied this generalized lagged normal density 
function to fit indicator-dilution curves. 

The alpha distribution has its cdf as 

and pdf as 

The distribution has its mode at p(\ICU2 + 8 - a)/4, and it moves to the left 
(right) as a@) increases. This distribution has been applied to tool wear 
problems and has also been suggested for use in modeling lifetimes under 
accelerated test condition. Salvia (1985) has provided a characterization of 
the distribution, some other inferential results, and further pointed out the 
reliability application of the distribution. Note the similarity between (13.161) 
and the inverse normal density function (13.153). The similarity is due to the 
fact that (13.161) is nothing but the density function of X = 1/Y when Y has 
a N((,u2), truncated to the left of 0, distribution (with a = (/a and 
p = l/u). 

A random variable X is said to have a two-piece normal distribution with 
parameters (, a, and u2 if it has its pdf, 

where A = a ( u ,  + a,)-'/ 6. John (1982) investigated the fitting of this 
distribution by the method of moments as well as the maximum likelihood 
method, and he discussed a number of properties of the distribution. In 
addition John has suggested a test of normality against a two-piece normal 
alternative. The distribution was originally introduced by Gibbons and 
Mylroie (1973) by joining two half-normal distributions; they then applied it 
to fit impurity profiles data in ion-implantation research. Kimber (1985) has 
examined this distribution further, and discussed methods of estimation and 
testing. Kimber has also considered the truncated two-piece normal distribu- 
tion and derived maximum likelihood estimates of its three parameters. 
Kimber and Jeynes (1985) have applied the truncated two-piece normal 

I distribution to an analysis of the depth measurements of arsenic implants in 
1 ; silicon. 
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Lognormal Distributions 

1 INTRODUCTION 

The idea of a transformation such that the transformed variable is normally 
distributed was encountered in Chapter 12. In Section 4.3 of that chapter 
some specific transformations were introduced. Of these the most commonly 
used, and the only one of sufficient importance to merit a separate chapter, is 
the simple logarithmic transformation. 

If there is a number 8 such that Z = log(X - 8) is normally distributed, 
the distribution of X is said to be lognormal. For this to be the case, it is 
clearly necessary that X take any value exceeding 8 but have zero probability 
of taking any value less than 8. The term "lognormal" can also be applied to 
the distribution of X if log(8 - X )  is normally distributed, X having zero 
probability of exceeding 8. However, since replacement of X by -X (and 8 
by - 8) reduces this situation to the first, we will consider only the first case. 

The distribution of X can be defined by the equation 

where U is a unit normal variable and y, 6 and 8 are parameters. From 
(14.1) it follows that the probability density function of X is 

(We take 6 > 0, without loss of generality, since - U has the same distribu- 
tion as U.) An alternative notation replaces y and 6 by the expected value 5 
and standard deviation a of Z = log(X - 8). The two sets of parameters are 

, related by the equations 



208 

so that (14.1) becomes 

LOGNORMAL DISTRIBUTIONS 

and (14.2) becomes 

The lognormal distribution is sometimes called the antilognormal distribu- 
tion. This name has some logical basis in that it is not the distribution of the 
logarithm of a normal variable (this is not even always real) but of an 
exponential-that is, antilogarithmic-function of such a variable. However, 
"lognormal" is most commonly used, and we will follow this practice. The 
minor variants logarithmic- or logarithmico-normal have been used, as have 
the names of pioneers in its development, notably Galton (1879) and 
McAlister (1879), Kapteyn (1903), van Uven (1917a), and Gibrat (1930) (see 
Section 2). When applied to economic data, particularly production func- 
tions, it is sometimes called the Cobb-Douglas distribution [e.g., Dhrymes 
(196211. 

It can be seen that a change in the value of the parameter 8 affects only 
the location of the distribution. It does not affect the variance or the shape 
(or any property depending only on differences between values of the 
variable and its expected value). It is convenient to assign 8 a particular value 
for ease of algebra, with the understanding that many of the results so 
obtained can be transferred to the more general distribution. In many 
applications 8 is "known" to be zero (so that Pr[X I 01 = 0 or X is a 
"positive random variable"). This important case has been given the name 
two-parameter lognormal distribution (parameters y, S or 5, a) .  For this 
distribution (14.1) becomes 

and (14.1)' becomes 

log X - 5 
U = 

a 

The general case (with 8 not necessarily zero) can be called the three- 
parameter lognormal distribution (parameters y, 6 ,  8 or 5, a ,  8). 
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A so-called four parameter lognormal distribution has been defined by 

Since (14.5) can be rewritten 

with y' = y - S log A, it is really only a three-parameter lognormal that is 
defined by (14.1). 

2 HISTORICAL REMARKS 

Galton (1879) pointed out that, if XI, X,, . . . , Xn are independent positive 
random variables and 

then 

n 

log Tn = C log X,, 
j=  1 

and if the independent random variables log Xi's are such that a central limit 
type of result applies, then the standardized distribution of log Tn would tend 
to a unit normal distribution as n tends to infinity. The limiting distribution 
of Tn would then be (two-parameter) lognormal. In an accompanying paper 
McAlister (1879) obtained expressions for the mean, median, mode, variance, 
and certain percentiles of the distribution. 

Subsequent to this, little material was published relating to the lognornfal 
distribution until 1903 when Kapteyn again considered its genesis on the lines 
described above. [Fechner (1897) mentioned the use of the distribution in the 
description of psychophysical phenomena but gave little emphasis to this 
topic.] Kapteyn and van Uven (1916) gave a graphical method (based on the 
use of sample quantiles) for estimating parameters, and in the following years 
there was a considerable increase in published information on the lognormal 
and related distributions. Wicksell (1917) obtained formulas for the higher 
moments (in a study of the distribution of ages at first marriage), while van 
Uven (1917a, b) considered transformations to normality from a more general 
point of view; Nydell (1919) obtained approximate formulas for the standard 
deviations of estimators obtained by the method of moments. Estimation 
from percentile points was described by Davies (1925, 1929) and tables to 
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facilitate estimation from sample moments were published by Yuan (1933). 
Unbiased estimators based on sample moments were constructed by Finney 
(1941). 

From 1930 onward fields of application of the lognormal distribution have 
increased steadily. Gibrat (1930, 1931) found the distribution usefully repre- 
senting the distribution of size for varied kinds of 'natural' economic units. 
Gibrat's "law of proportional effect" can be expressed as 

where Xo, XI, X,, . . . , Xn is a sequence of random variables and {Zj) is a set 
of mutually independent random variables, statistically independent of {X,). 

Formula (14.6) leads to 

For Z, small compared to 1, we have 

n 

log xn = log xo + C z,. 
j =  1 

Using a multiplicative analogue to the additive central limit theorem, we 
arrive at the conclusion that X,, is asymptotically lognormally distributed 
with two parameters. Variations and extensions of Gibrat's argument have 
appeared in the literature. Kalecki (1945) assumed that the regression of 
log(1 + Z j )  on log Xi-, is linear, with 

log(1 + Z,) = -aj log Xi-, + with ~ [ q ]  = 0, 

leading to 

Soon after Gibrat's work, Gaddum (1933) and Bliss (1934) found that 
distributions of critical dose (dose just causing reaction) for a number of 
drugs could be represented with adequate accuracy by a (two-parameter) 
lognormal distribution. On the basis of these observations, a highly developed 
method of statistical analysis of "quantal" (all-or-none) response data has 
been elaborated. (The term "probit analysis" has been given to such analy- 
ses, although "probit" is often understood to apply to a special transformed 
value, @-'(@) + 5, where @ is an observed proportion.) 

Lognormal distributions have also been found to be applicable to distribu- 
tions of particle size in naturally occurring aggregates [Hatch (1933), Hatch 
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and Choute (1929), and Krumbein (19361, with Bol'shev, Prohorov, and 
Rudinov (1963), Herdan (1960), Kalinske (1946), Kolmogorov (19411, Kottler 
(1950), and Wise (1952) among many others]. It is possible to give a general 
theoretical basis for this application on lines similar to those of Gibrat's 
arguments. Consider a quantity A, subjected to a large number of successive 
independent subdivisions, the jth resulting in a proportion Xj of the quantity 
surviving, so that after n divisions the surviving quantity is AX,X2 . . . X,. If 
X I , .  . . , X, are each uniformly distributed (see Chapter 26) over the interval 
0 to 1, then the distribution of this quantity will be approximately lognormal. 
[See Halmos (1944) and Herdan (1960) for more complete accounts of this 
argument.] 

Further applications, in agricultural, entomological, and even literary 
research were described by Cochran (19381, Williams (1937, 1940), Grundy 
(1951), Herdan (1958, 19661, and Pearce (1945). Koch (1966, 1969) discussed 
mechanisms that might generate lognormal distributions in a variety of 
biological and pharmacological situations. 

This broadening of areas of practical usefulness of the distribution was 
followed by (and presumably associated with) renewed interest in estimation 
of its parameters. (Section 4 of this chapter contains technical accounts of 
estimation procedures.) Even in 1957 there were so many doubtful points in 
this regard that Aitchison and Brown (1957) devoted a substantial part of 
their book to discussion of problems of estimation, on account of "unre- 
solved difficulties." Many of these difficulties, especially those concerning 
maximum likelihood estimation, have now been solved, or at least clarified. A 
recent paper [Nakamura (19901 contains a description of construction of an 
adequate theoretical framework. Wu (1966) has shown that lognormal distri- 
butions can arise as limiting distributions of order statistics when order and 
sample size increase in certain relationships. 

The book by Aitchison and Brown (1957) was very useful to us when 
organizing material for this chapter in the first edition. It can still be 
recommended for supplementary reading together with a more recent com- 
pendium on lognormal distributions, edited by Crow and Shimizu (19881, 
containing contributions from several experts. In revising the present chapter, 
we have tended to include topics which are less thoroughly covered in this 
compendium. 

3 MOMENTS AND OTHER PROPERTIES 

Most of the following discussion will be in terms of the two-parameter 
distribution, using (14.4) rather than (14.3). The rth moment of X about zero 
is 
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The expected value of X is 

pfl = exp(b + +a2) = e5w'/2, (14.8a) 

where w = exp(u2), and the variance is 

The rth central moment of X [Wartmann (195611 is 

In particular 

p3 = w~/ ' (w  - + 21e35, (14.8d) 

p4 = w2(w - + 2w3 + 3w2 - 3)e41. (14.8e) 

The shape factors are 

and 

Neither of these depends on 5. Note that a, > 0 and a, > 3-that is, the 
distributions are positively skewed and are leptokurtic. 

Equations (14.9a) and (14.9b) may be regarded as parametric equations of 
a curve in the (PI, P2) plane. This curve is called the lognormal line and is 
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shown in Figure 12.1 of Chapter 12, where it separates the regions for 
Johnson S, and S, distributions. The coefficient of variation is (w - 1)'12. It 
also does not depend on 4'. The distribution of X is unimodal; the mode is at 

Mode ( X )  = a-let.  (14.10) 

From (14.4) it is clear that the value x,, such that Pr[X I x,] = a ,  is 
related to the corresponding percentile u, of the unit normal distribution by 
the formula: 

X, = exp(5 + uau) .  (14.11a) 
In particular 

Median (X) = x,, = et (since u,, = 0). (14.11b) 

Comparison of (14.8a), (14.10), and (14.11b) shows that 

E [ X ]  > Median ( X )  > Mode ( X )  (14.12a) 
and 

Mode (X)  Median ( X )  

E[ X I  
(14.12b) 

The Theil coefficient is 

Since the coefficient of variation is (w - the asymmetry index is 
(from (14.9a)) 

Jp, 
= w + 2 = (Coefficient of variation12 + 3. (14.14) 

Coefficient of variation 
In hydrological literature special attention has been devoted to relations 
between pi ,  Median (X)  and fi [Burges, Lettenmeier, and Bates (1975); 

i 
; Charbeneau (1978); Burges and Hoshi (197811. 

The standardized IOOa% deuiate is, for example, 
t 

[compare (14.11a), (14.8a) and (14.8b)l. Some values of x', are shown in 
Table 14.1. 

Slifker and Shapiro (1980) have noted that for lognormal distributions 

(g(3ua) - g(ua)) - (g(-ua) - g(-3ua)) 
= 1 for all a ,  (14.16) 

Ig(ua) - g(-ua)12 



Table 14.1 Standardized 100a% Points (xh) of Lognormal Distributions (o = 6-'1 

CY (Upper Tail) 99.95 99.9 99.75 99.5 99 97.5 95 90 75 50 
u (Lower Tail) 0.05 0.1 0.25 0.5 1 2.5 5 10 . 25 (Median) 
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and they have suggested using this as a basis for deciding whether a 
lognormal distribution is appropriate. 

From Table 14.1 we see that as a tends to zero (or 6 to infinity), the 
standardized lognormal distribution tends to a unit normal distribution, and 
X &  + u,. For a small, 

It is to be expected that 

1. x& will change relatively slowly with u (for u small) if ui = 1 (i.e., 
a = 0.84 or 0.16), 

2. the standardized inter-100a% distance, 

will change relatively slowly if u: = 9/2 (i.e., a = 0.983 or 0.017). These 
features also are indicated in Table 14.1. It is also clear from this table that 
as a increases the lognormal distribution rapidly becomes markedly nonnor- 
mal. Table 14.2, which gives values of a, and a,, also indicates how rapidly 
the skewness and kurtosis increase with a. It is for this reason that only 
relatively small values of u are used in Table 14.1. 

It can be seen in Table 14.1 that for larger u ,  there is a high probability 
density below the expected value, leading to small numerical standardized 
deviations. Conversely there is a long positive tail with large standardized 
deviations for upper percentiles. Figure 14.1 shows some typical probability 
density functions (standardized in each case so that the expected value is 
zero and the standard deviation is 1). 

Table 14.2 Values of a, and a, for Distribution (14.2)' 

u f f3  f f4  

0.1 0.30 3.16 
0.2 0.61 3.68 
0.3 0.95 4.64 
0.4 1.32 6.26 
0.5 1.75 8.90 
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Figure 14.1 Standardized Lagnormal Dis- ( 

tribution - j - 2 - 1  o I 2 I X  

Wise (1952) has shown that the probability density function of the two- 
parameter distribution has two points of inflection at 

Just as the sum of two independent normal variables is also normally 
distributed, so the product of two independent (two-parameter) lognormally 
distributed variables is also lognormally distributed. If 

are independent unit normal variables, then 

and so 

is a unit normal variable. In particular, if XI, X2, . . . , X,, is a random sample 
from the distribution (14.2)' (with 6 = 0) so that log X, is distributed nor- 
mally with expected value 5 and variance u2,  then n-'C;,l log X, = 

log(G(x)), where G(x) is the sample geometric mean of X,, . . . , X,, is 
distributed normally with expected value 5 and variance u2/n. The sample 
geometric mean G(x) therefore has a lognormal distribution with parameters 
5, n- 'a2 [in (14.2Y1, or y = - 6 5 / u ,  6 = 6 / u .  

We introduce the notation A([, u 2 )  to denote a distribution defined by 
(14.4) so that X,X2 has the distribution A(5, + 5,, a: + a;) if Xj has 
the distribution A([,, q2) (for any j )  and XI, X2 are mutually independent. 
Then the distribution of a,Xj, where a j  is any positive constant, is 
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A(ij + log aj, a;.2). Clearly, if XI, X2, . . . , Xk are a mutually independent set, 
k 2 then n,k, ,ajXj is distributed as A(C~=l{{j + log ail, Cj,,a;. ). 

Distributions of sums of independent random variables, each having 
lognormal distribution, have received special attention in the literature. 
These distributions are of importance in many areas of telecommunication, 
statistical detection problems, multihop scatter systems, and so on. 

Fenton (1960) approximates the distribution of sum by a lognormal distri- 
bution with the same first two moments. Barakat (1976) considers the sum 
S = C;,Xi of N i.i.d. Xi's distributed as A(J,u2). He expresses the 
characteristic function of each X, in the form 

m 
e-yZ/2u2 imt(eY-y -1) i ty  d e e Y .  

He then uses the expansion 

to obtain the characteristic function in the'form 

Values of the coefficients a,(s) are given in Barakat's Table 1; the hn(x) are 
"quasi-Hermite" polynomials. The pdf is obtained by inverting (14.19) using 
quadrature. 

The somewhat less ambitious target of obtaining the distribution of the 
sum of two independent lognormal variables was considered by Naus (1969). 
He obtained the moment-generating function of the distribution of the sum 
of two independent NO, u 2 )  variables. Schwartz and Yeh (1982) consider the 
same problem when the two lognormal variables are not necessarily identi- 
cally distributed. 

The following (condensed) analysis of the problem indicates the difficulties 
involved: Suppose that Xj is distributed A({,, a;.2) ( j  = 1,2) and that X, and 
X, are mutually independent. The joint pdf of X ,  and X2 is 
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Changing to variables Y, = X, + X2, Y2 = X,, we have the Jacobian 

and the joint pdf of Y, and Y2 is 

Hence 

Setting y2 = y,t, we obtain 

The integral in (14.20) may be evaluated by quadrature. 
The preceding discussion has been limited to variables with two-parameter 

lognormal distributions. The extra parameter, 8 in (14.2) or (14.2)' moves 
("translates") the whole distribution by an amount 6 in the direction of 
increasing X. Many properties-particularly variance and shape-remain 
unchanged, but the reproductive property does not hold if 8 + 0 for either 
X ,  or X2. 
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5.0 c 

0  1 2 3 4 5 6 7 8 9 1 0  
TIME 

Fipre 14.2 Hazard Rate of the Lognormal Distribution, with E[logT] = 0; u = S.D.(log T )  = 

0.3,0.5,0.7 

The information-generating function corresponding to (14.2) is 

The entropy is 

A recent reference for the characteristic function of A([, u2)  is Leipnik 
(1991). The distribution is not determined by its moments. A result of 
Bondesson (1979) is that any distribution with pdf of form 

with g(.) completely monotone on (0, w), satisfying some mild regularity 
conditions is infinitely divisible (see Chapter 1). This result enables us to 
deduce that lognormal distributions are infinitely divisible. 

Sweet (1990) has studied the hazard rate of lognormal distributions. 
Figure 14.2, taken from that paper, exhibits some of his results for A([, 0'). 
From this figure it can be seen that h(0) = 0 and that h(t) runs to a 
maximum and thereafter decreases slowly to zero. The value t, of t that 
maximizes h( t ) is 



220 LOGNORMAL DISTRIBUTIONS 

where (zM + a)- '  = (1 - @(zM))/&(zM) = R(zM), which is Mills's ratio 
(see Chapter 13). 

From (14.23), -a < z ,  < - u  + a-', and hence 

As u -, m, tM + exp(f. - u2), and so for large a ,  

As, u -, 0, t, + ex& - u2 + I), and so for small u ,  

maxh(t) = (u2 exp(f.- u2 + 1))-l.  
I 

4 ESTIMATION 

4.1 0 Known 

If the value of the parameter 8 is known (it is often possible to take 8 equal 
to zero), then estimation of the parameters 5 and u (or y and 6) presents 
few difficulties beyond those already discussed in connection with the normal 
distribution. In fact, by using values of Zi = log(X, - 8), the problem is 
reduced to that of estimation of parameters of a normal distribution. Many 
specialized problems, such as those relating to truncated distributions or 
censored samples, or the use of order statistics, may be reduced to corre- 
sponding problems (already discussed in Chapter 13) for the normal distribu- 
tion. Maximum likelihood estimation is exactly equivalent to maximum likeli- 
hood estimation for normal distributions, so that the maximum likelihood 
estimators 5: 6 for f .  and u ,  respectively, are 

where 2 = n - 'Ck 'Zj (assuming of course that XI, X2, . . . , X,, are indepen- 
dent random variables each having the same lognormal distribution with 8 
known). 

There are a few situations where techniques appropriate to normal distri- 
butions cannot be applied directly. One is the construction of best linear 
unbiased estimators, using order statistics of the original variables Xi. An- 
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other is that where the original values {X i )  are not available, but the data are 
in groups of equal width. While the results can immediately be written down 
in the form of grouped observations from a normal distribution, the groups 
appropriate to the transformed variables will not be of equal width. In such 
circumstances methods of the kind described in Chapter 12, Section 2, might 
be applied. 

Sometimes it may be desired to estimate not l yr u but rather the 
expected value em([ + u2/2) and the variance eu2(eu - l)e2' of the vari- 
able X. Since 2 and s2 = (n - l)-lC\(Zj - 2)' are jointly complete and 
sufficient statistics for [ and u ,  if s i=is  known the UMVU estimator of 
ear, = exp(a[ + bu2)  is 

If a function f(Z, s 2 )  has expected value h(l, a ) ,  it is the minimum variance 
unbiased estimator of h(5, a).  Finney (1941) obtained such estimators of the 
expected value and variance in the form of infinite series 

respectively, where 

Unfortunately, the series in (14.29) converges slowly (except for very small 
values of t). Finney recommends using the approximation 

which (he states) should be safe for n > 50 in (14.28a) and n > 100 in 
(14.28b) provided that the coefficient of variation [(euZ - I) ' /~]  is less than 1 
(corresponding to a < 0.83). 

Finney showed that [with o = exp(u2)1 
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Value of a2 

---- Efficiency of X 
Efficiency of S: 

Figure 14.3 The Efficiency of and of S; in Large Samples 

By comparison, for the unbiased estimators of the expected value and 
variance, X and S$ = (n - ~)-'C;=,(X~ - X)2, respectively, 

Figure 14.3 [taken from Finney (1941)l shows approximate values of the 
"efficiency" ratios 100 X v a r ( ~ ) / v a r ( X )  and 100 X var(v)/var(s:) as a 
function of u2.  It will be noted that while X is reasonably efficient compared 
with M, considerable reduction in variance is achieved by using V in place of 
s;. [See also Oldham (1965).] Peters (1963) has constructed best quadratic 4 

E 
estimators of log d, = r [  + r2u2/2, using order statistics based on log X,'s. 1 

Confidence limits for 6 and/or a can of course be constructed from the I 
t 

transformed values Z,, Z,, . . . , Z, using techniques in Chapter 13. In partic- 
ular (when 0 = O), since the coefficient of variation of X is (eu2 - 1)'12, 
confidence limits (with confidence coefficient 100a%) for this quantity are a 

(exp[(n - ~ ) s ~ / x ~ - , , , - , ~ ~ I  - 1)'12 and (exp[(n - ~ ) S ~ / X ~ , , , ~ ~ ]  - 1)'12, 
1 

where x:,, denotes the l 0 0 ~ %  point of the X 2  distribution with v degrees of 
freedom, to be described in Chapter 18. [See Koopmans, Owen, and 
Rosenblatt (1964).] Similar arguments could be used to construct confidence 
limits for any other monotonic function of a, such as fi and p2. 

4.2 8 Unknown 

Estimation problems present considerable difficulty when 0 is not known. As 
might be expected, estimation of 0 is particularly inaccurate. This parameter 
is a "threshold value," below which the cumulative distribution function is 
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Table 14.3 Percentile Points of Standardized Lognormal Distributions 

Lower 

u e 10% 25 % Median 

zero and above which it is positive. Such values are often-one might say 
"usually" dificult to estimate. 

However, estimation of parameters is often not as important as estimation 
of probabilities-in particular, of cumulative distribution functions. 
Table 14.3 shows the median and upper and lower 10% and 25% points of 
lognormal distributions with widely differing values of 0, but with [ and a so 
chosen that each distribution is standardized (i.e., has zero expected value 
and unit standard deviation; see also Table 14.1). 

There can be considerable variation in 0 with little effect on the per- 
centiles and little effect on values of the cumulative distribution functions for 
fixed values of X. Insensitivity to variation in 0 is most marked for large 
negative values of 0. These observations and Table 14.3 should correct any 
feeling of depression caused by the inaccuracy of estimation of 0. Of course 
there can be situations where the accuracy of estimation of 0 itself is a 
primary consideration. In these cases special techniques, both of experimen- 
tation and analysis, may be needed. These will be briefly described at the end 
of this section. 

Maximum likelihood estimation of 0, 5, and a might be expected, to be 
attained by the following tedious, but straightforward, procedure. Since for 
given 9 ,  the likelihood function is maximized by taking 

n 

i= i(0) = n-I z  log(^, - B), (14.33a) 
j=  1 

[cf. (14.26a), (14.26b)], 
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one might take a sequence of values of 8, calculate the maximized likelihood 
corresponding to each, and then try to estimate numerically the value 8 of 8 
by maximizing the maximized likelihood. However, Hill (1963) has shown that 
as 8 tends to min(Xl, X2, . . . , X,),* the maximized likelihood tends to 
infinity. Formally this would seem to indicate that we should accept the 
"estimates": 6 = min(Xl, X2, . . . , X,,), [ = -.m, B = m. Hill resolved this 
difficulty by introducing a prior joint distribution for 8, 5, and a, and then 
using Bayes's theorem. This leads to the conclusion that ~ l u t i o n s  of the 
formal maximum likelihood equations should be used, with 8 satisfying 

where ZJ = [log(X, - 6) - &fbl/B(B") and &6), B(B") satisfy (14.33), with 8 
replaced by 8: 

Formal calculation of limiting variances gives 

Formulas equivalent to these have been given by Cohen (1951) and Hill 
(1963), but (14.353 is unlikely to be valid [see Hill (1963) and below]. 

We may note that Harter and Moore (1966) carried out a sampling 
experiment, with = 4, u = 2, and 8 = 10. Their results can be represented 
approximately, for sample size n in the range 50 to 200 by 

(note the factor n2 in the last formula). If 8 is known, their results give 
n ~ a r ( h  = 4.1-not much less than if 8 is not known-but n Var(B) is now 
only about 2.1. 

Tiku (1968) has suggested an approximate linearization of the maximum 
likelihood equations based on the approximate formula 

z ( x ) [ l  - <P(x)] -' = (Y + p x  (14.36) 

*It is clear that we must take 0 s min(Xl, X,, . . . , X,). 
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for Mills's ratio. Appropriate values of a and P depend on the range of 
values of x.  (See discussion of a similar technique in Chapter 13, Section 8.4.) 

Over the last 20 years there has been further consideration of maximum 
likelihood estimation for the three-parameter lognormal and its difficulties. 
We are inclined to agree with the opinion expressed by Griffiths (1980), that 
"the method of maximum likelihood has been wrongly discredited because of 
supposed computational difficulties and theoretical uncertainties." 

Calitz (1973) suggests using Cohen's (1951) method to solve the maximum 
likelihood equations. He solves (14.34) numerically using the Newton- 
Raphson method, which will converge provided the initial value of 8 is 
chosen so that a log L(8)/d8 < 0. Using the value 8 = max(0.6X(,,, 
X(,, - 0.11, where X(,, is the least of the observed values of X, provided 
satisfactory results. Lambert's (1964) failure to solve this problem-which 
triggered many denunciations of the maximum likelihood method-was due 
to his choice of method of iteration. He tried to iterate on all three maximum 
likelihood equations simultaneously. 

Wingo (1976) proposed using penalty functions, maximizing the function 

with f(8), B(8) given by (14.33), subject to constraints of form 

e + ~ > o ,  
8 < min(X,, . . . , X,,). 

The constant c is chosen to be a large positive number (although its value 
can be problem dependent). Hawkins (1991) points out that a necessary 
condition for the maximum likelihood equations to "degenerate" so that they 
cannot be solved is that 

where Si = C~=,[{log(Xj + a))'/n] (i = 1,2) be a decreasing function of a. 
Noting that all data are in fact subject to grouping (and so are, in realiq, 

discrete), Giesbrecht and Kempthorne (1976) have shown that the problem of 
an unbounded likelihood function can be removed by taking a suitable 
discretized model. Griffiths (1980) utilizes the discretization procedure to 
obtain a confidence interval for the threshold parameter 8. Provided that the 
group width is sufficiently small, the likelihood will be practically of the same 
form for both the (approximate) continuous and (correct) discrete models, 
except in the neighborhood of the singularity in the continuous model. 
Griffiths (1980) also discusses construction of approximate confidence inter- 
vals for 8. 

Dahiya and Guttman (1982) construct a "shortest prediction interval" of 
level 1 - a for a two-parameter lognormal variable. [This is not an estimated 
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interval, it is simply the interval (a, b) such that b - a is minimized subject to 
Pr[a < X < b] = 1 - a.] Clearly we must have a = exp(f + A u )  and b = 

exp(f + Bu), with 

(to provide level 1 - a). Subject to (14.38) we have to minimize b - a, or 
equivalently 

From (14.38), 4(B)(aB/aA) - +(A) = 0, whence 

To minimize (14.391, we equate 

to zero. 
Inserting the value of aB/aA from (14.40a), we obtain 

whence Bu - A2/2 = A u  - ~ ' / 2 ;  that is, 

The values of A and B are easily determined from (14.38) and (14.40, but 
Dahiya and Guttman (1982) provide tables to facilitate the process. These 
authors also consider construction of shortest conjidence intervals for the 
median (el). [Of course, if it is known that 8 = 0, confidence ijir,  rvals for f 
(= E[log XI) are easily constructed using normal theory results (see Chapter 
131.1 

Since 

n 

log x = n-' log xi 
i = l  

and 
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are sufficient for the parameters of A([, u2), a minimum variance unbiased 
estimator of 

CL; = log E [ X ]  = 5 + +a2 

is 

g1 = log X + is2; 

a minimum variance unbiased estimator of the variance of Fl, 

(since log X and S2 are independent) is [Land (1972)l 

Among other proposed modifications of maximum likelihood estimation 
we note the suggestions of Cohen and Whitten (1980) based on introduction 
of order statistics: They propose replacing the maximum likelihood equation 
a log ~ / a e  = o by 

where X: is the r th order statistic among XI, .  . . , X, and U: is the rth order 
statistic among n mutually independent unit normal variables, or by 

Other modifications include: the equation is replaced by 

z;= l(xi - 8)' 
Var(X) = S2 with s2 = 

n - 1 

The actual estimating equations for 0 are 

and 
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Nevertheless, uncertainties and difficulties in the use of (14.33) and (14.34) 
lead us to consider methods other than maximum likelihood. 

If the first three sample moments are equated to the corresponding 
population values, we obtain the formulas 

whence 

From (14.46), G and then 6 can be determined. From (14.45b), 

and finally 6 can be determined from (14.45a). 
Yuan (1933) provided a table of values of the right-hand side of (14.46) to 

aid in the solution of that equation. Aitchison and Brown (1957) give a table 
for 62 directly to four decimal places for = 0.0(0.2)10.0(1)24. Without 
using such tables, an iterative method using equation (14.46) in the form 

is quite easy to apply, or the explicit solution 

can be used. 
This method is easy to apply but liable to be inaccurate because of 

sampling variation in b,.  [However, Sinha (1981) found it to be quite 
reliable.] Even when 0 is known, estimation of population variance by sample 
variance is relatively inaccurate (see Figure 14.3). Approximate formulas for 
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the variances of the estimators were obtained by Nydell(1919). They are 

where u = w - 1 = euZ - 1 = (square of coefficient of variation). 
A modification of the method of moments is to estimate 8 by this method 

and then use Finney's estimators M, V [see (14.28a) and (14.28b)l of ex- 
pected value and variance, applied to the variables {Xi - g). 

Alternatively, if one is prepared to accept some loss in efficiency, it might 
be possible to use a relatively simple method of calculating estimates. Certain 
special forms of the method of percentile points give very simple formulas for 
the estimators. Using the relationship [see (14.1) and (14.11a)l 

the following formula can be obtained: 

If estimated values of the x , ' s  are inserted in (14.48), the solution of the 
resulting equation for 6 must be effected by trial and error. However, if we 
choose a, = 3 (corresponding to the median) and a, = 1 - a,, then (noting 
that u,/, = 0, and u,-,~ = -ual) the equations are (asterisk denoting 
"estimated value"): 

= e* + e-~'/'* exp (14.49~) 

whence 

and 
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so that no solution by trial and error is needed. Aitchison and Brown (1957) 
suggest taking a, = 0.95, but it is likely that any value between 0.90 and 0.95 
will give about the same accuracy. Lambert (1970) suggested using values of 
the parameters obtained by this method as a starting point for an iterative 
formal solution of the maximum likelihood equations. He used the value 
a, = 61/64 = 0.953. 

It is possible for (14.50) to give a negative value of a*, but this happens 
only if 

which is very unlikely to be the case if the distribution has substantial positive 
skewness. 

If the sample median ill, is replaced by the sample arithmetic mean X 
and equation (14.49b) by 

then from (14.49a), (14.49~1, and (14.49d), 

From this equation S* can be found numerically. Aitchison and Brown 
(1957) give graphs of the function on the right-hand side of (14.51), for 
a, = 0.95, 0.90, and 0.80, which helps to give an initial value for the solution. 
This method of estimation is called Kemsley 's method (1952). It can also give 
a negative value for S*, though this is unlikely to occur. 

A method suggested by Boswell, Ord, and Patil (1979) is easy to apply: 
Consider the lOOath lower, 50th and 100ath upper percentiles of the normal 
variable Z = log(X - 8). These are 5 - zu,  5, and 5 + zu ,  respectively, 
where a = @(-Z) = 1 - @(z). The corresponding (unknown) percentiles of 
X will be x(,, = exp(f - zcr) + 8, x(,) = exp(f) + 8, and x(,, = exp(5 + zu)  
+ 8. Solving for 8, from these three equations we obtain 

Estimating x(,,, x(,,, and x(,, from the corresponding percentiles of lognor- 
mal data we obtain an estimator of 8. 

Boswell, Ord, and Patil (1979) recommended choosing z in the range of 
1.5 to 2. Aitchison and Brown (1957) made an experimental comparison of 
results of using the method of moments (14.461, the method of quantiles 
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(14.50), and Kemsley's method (14.51) to estimate 8. They came to the 
conclusion that (14.50) with a, = 0.95 is slightly better than (14.51) and that 
both are considerably better than the method of moments. 

Other methods of estimating 8 have been suggested. Cohen's method 
(1951) is based on the idea that in a large sample at least one observed value 
of X should be not much greater than the threshold value 8. The least 
sample value kmin is equated to the formula for the 100(n + I)-'% point of 
the distribution, giving the relationship 

kmin = e* + e-Y* 1% exp --- [ "'2:+ l' I 

This is then combined with the first two maximum likelihood equations 
(14.33). 

There are natural modifications of this method, to allow for cases when 
there are several equal (or indistinguishable, as in grouped data) minimum 
values. Using a variant of this methop, an initial value of 8 (for use in some 
iterative process) may be chosen as X,, minus some arbitrary (usually rather 
small) value. 

Cohen, Whitten, and Ding's (1985) mod$ed moment estimation method 
uses the equations (in an obvious notation) 

- Equation (14.544 is obtained from (14.53) by replacing u,/(,+,, - 
@-'((n + I)-') by E[U,,,]. Table 14.4 gives values of -u,/(,+,, and 
- E[U,, ,I. [More detailed tables of E[U,, ,I are available in Harter (1961); 
see also Tippett (1925) and Chapter 13, Section 4.1 

Table 14.4 Valuesof -u,,(,+,, and -E(U,,,) 
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The explicit form of the estimating equations is 

The above three equations give 

From (14.55), o*  (and so a* = dw) can be determined numerically. 
Cohen, Whitten, and Ding (1985) and Cohen and Whitten (1988) provide 
graphs of f(w*) as a function of cr* for n = 10, 15, 20, 30, 50, 100, and 400. 

A pioneering paper by Cheng and Amin (1982) introduced a new method 
of estimation-maximum product-of-spacings (MPS). This overcomes diffi- 
culties involved in maximum likelihood estimation for the three-parameter 
lognormal distribution. The authors claim that Giesbrecht and Kempthorne's 
(1976) grouping and discretization method does not appear to identify the 
essential difficulty. "Whether it is possible in practice or not, it is still 
legitimate to hypothesize a situation where the observations are truly contin- 
uously distributed, when discretization is merely an approximation to the 
actual situation." The authors contend that in maximum likelihood estima- 
tion for a continuous density px(x(4), one maximizes, approximately 

replacing the probabilities on the right-hand side by the first-order approxi- 
mations 

The quantities 

D~ = Y;. - Y;.-, = px(xJ+)  dw, i = 1,2 , .  . . , n + 1, (14.57) jx:, 

where XA = -GO < Xi < Xi < . . . < XA < XA +, = GO constitute an ordered 
random sample of size n, are called spacings of (Y). The MPS method 



/ chooses 4 that maximizes 

Under certain assumptions on p,(xl+) the MPS estimators are consistent. 
For the three-parameter lognormal distribution, if the true parameter 4 = 

(5, a ,  8) lies in any set in {&: - w < 8 , l  < w, 0 < u < w), then the estimators 
are consistent as n + w, which is a stronger result than is available for 
maximum likelihood estimators. 

For the lognormal model we have to maximize 

where Zi = a-'{log(Xi - 8) - 51, Zo = - w, Zn+,  = +m. Instead of direct 
maximization Cheng and Arnin (1982) obtained the restricted maximum of 
h(.) with respect to 5 and u for a sequence of values of 8, and then - 
maximized with respect to 8. They used la+, = Z, = n-'C;= lZ,i and a, +, 
= {n-'C(zai - z)2)1/2 ,  with Zai = u;~{Io~(x, - 8) - la), in an iterative 
procedure, and reported fast convergence, usually in three or four iterations, 
using the stopping rule 

Evans and Shaban (1974) discuss estimation of parameters of the form 

where a and b are arbitrary constants. Other papers on this subject by 
Neyman and Scott (1960), Mehran (19731, Bradu and Mundlak (1970), Like; 
(1980), Shimizu and Iwase (1981), and Shimizu (1983) are summarized in 
Crow and Shimizu (1988). 

Zellner (1971), Sinha (1979), and Rukhin (1986) studied Bayesian estima- 
tion of parameters of the two-parameter lognormal distribution. The first two 
authors utilized improper priors p(l ,  a )  a l/uc, c > 0. Rukhin utilizes 
generalized prior density which is also "uniform" in 4'. Wang, Ma, and Shi 
(1992) discuss, among other things, Bayesian estimation of the mean 8 = 

exp(5 + u2/2) of lognormal distribution A([, u2). Using g(5, a) a u-' as a 
t joint noninformative prior on (5, a) ,  they derive the marginal posterior for 8 
b 
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in the form 

o < e + ~ ,  

where = (l/n)C log Xi and s i  = C(log Xi - ZI2/(n - 1) [which is 
Zellner's (1971) result]. 

For censored samples Xi I . . . I Xi ( r  < n) with u known and using 
prior normal distribution N(Ao, I):) on 5, they obtain 

n-r 5 - log x; 
h( i lX:)=[@( )] 

where 

The integral I has no closed form solution and must be numerically evalu- 
ated. These authors use two-parameter lognormal distributions A(li, a;) for 
independent variables Xi (i = 1,2) with independent "noninformative prior" 
distributions for li's and ui's in analysis of environmental data. 

The reliability function for two parameter lognormal distributions is given 
by 

The Bayesian estimator based on a sample of observations X,, X2, . . . , Xn is 
given by [cf. Padgett and Wei (197711: 

- (log t - m') 
RB(t) = 1 - Pr[t2at < 

8' 41 + 1/(7-l + n)  

where t,,, is a random variable with t-distribution with 2a'  degrees of 
freedom, provided that (5, u 2 )  has the "normal-gamma prior" [i.e., prior 
( 5 1 ~ )  is N(m,?a2) and prior is G(cr,P), with density g(v) = 
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{pa/r(a))~a-le-Pv, v 2 01. The joint prior is 

p(5, a )  a ul-a  exp 
(5  - m12 

2 r u 2  

Here 

where Y;, = log Xi - N(5, u2)  and a' = a + n/2. As a -, 0, P -, 0, and 
T-I  + 0, corresponding to Jeffreys's "vague" prior, we have 

pr[t2at < 6 . log t - m1 

41 + + n)  I 
Sinha (1989) obtains a very similar result directly assuming the joint prior: 
~ ( 5 ,  u )  a 1/u. 

Comparison with the maximum likelihood estimator 

log t - 5̂  
= 1 - I[ ] 

and with the minimum variance unbiased estimator 

where IJa, b)  is the incomplete beta function ratio and w = $ + 
6[(log t - jji;)/{2~dn-l)], t > 0, with X = C;- ',,Xi/n and S 2 = C;= JXi - 
X)2/(n - I), shows, as might be expected, that the Bayes's estimator has the 
smallest variance when the assumed priors are actually the true priors. The 

1 estimator is, however, slightly biased. 
i 
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4.3 Graphical Estimation 

Wise (1952) has put forward the following interesting suggestion for a 
graphical method of estimating the parameters. It is particularly useful when 
the "rate of increase" of probability (i.e., probability density) is observed 
rather than actual frequencies, though it can also be used in the latter case, 
with sufficiently extensive data. He starts by observing that the tangents at 
the two points of inflexion of the probability density function remain close to 
the curve for a considerable length, and so should be estimable graphically 
with fair accuracy. The modulus of the ratio of the slopes (lower/upper) is 

exp 2 sinh-' +a + a 1 + 'a2 . I I 
Wise (1966a) provides tables of the logarithm of this quantity to four decimal 
places for a = 0(0.01)0.80, to aid in estimating a from the observed slopes of 
the inflection tangents. The initial point 6 is estimated from the values x,, x, 
of x at the points where these tangents cut the horizontal axis (see Figure 
14.4). If x, < x,, then 8 is estimated from the formula 

1 
%(xl  + x,) - 5(x2 - X ~ ) L - ~ ,  (14.62) 

where 

L = [I  + 4 tan,(, J-)] [ t a n h ( u \ / v )  + 41 

Time 

Figure 14.4 Geometrical Method of Estimating Lognormal Parameters 
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with 

Wise (1966a) also provides values of L to four decimal places for a = 
0.(0.01)0.80. 

Finally 6 is estimated from the formula 

5 = z  2~ 2 + + IO~[( .X,  - O)(X, - e ) ]  . (14.63) 

Sequential estimation and testing have been discussed by Zacks (1966) and 
Tomlinson (1957). 

Issues of testing normality versus lognormality has received attention in 
the literature for the last 20 years. See Kotz (19731, Klimko, Rademaker, and 
Antle (1975), and more recently Al-Khalidi and Hwang (1991). 

5 TABLES AND GRAPHS 

Aitchison and Brown (1957) give values of the coefficient of variation, a,, 
(a, - 3), the ratios [from (14.12b)l of mean to median and mean to 
mode (e3"'/'), and the probability that X does not exceed E[X] for 

(When u = 0, values appropriate to the unit normal distribution are shown.) 
All values [except for coefficient of variation and (a, - 3) when a = 0.051 
are given to four significant figures. 

Tables of percentile points of (two-parameter) lognormal distributions 
have been published by Moshman (1953): Upper and lower lo%, 5%, 2.5%, 
1%, and 0.5% values to 4 decimal places, for a, = 0(0.05)3.00; and by 
Broadbent (1956): ratios of upper and lower 5% and 1% values to the 
expected value, to 4 decimal places, for coefficient of variation [(ern' - 1)'/'] 
equal to 0(0.001)0.150. (Note that this corresponds to 0 I a 5 0.15 approxi- 
mately.) 

Tables of random lognormal deviates have been published by Hyrenius 
and Gustafsson (1962). These were derived from tables of random normal 
deviates (see Chapter 13) and are given to 2 decimal places for distributions 
with skewness a: = 0.2, 0.5, 1.0, and 2.0 (corresponding approximately to 
a = 0.006, 0.16, 0.31, and 0.55). 

Graph paper with the horizontal (abscissa) scale logarithmic and the 
vertical (ordinate) scale normal [marked with proportion P at a distance 
from the origin equal to x where P = cP(x)] is called lognomal probability 

' paper. If X has a two-parameter lognormal distribution, plotting P = ' 
Pr[X r x] as ordinate against x as abscissa will give a straight-line plot. The 
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slope of the line is 6 (= a-I); it meets the horizontal axis at - y / 6  (= 5). 
From sample plots these parameters may be estimated by observing the slope 
of a fitted line and its intersection with the horizontal axis. If a third 
parameter ( 8 )  is needed, the plotted points tend to curve up, away from a 
straight line, as x decreases. It is possible, with some patience, to obtain a 
graphical estimate of 8 by trial and error [as suggested by Gibrat (1930)1, 
changing the value of 8 until a plot using ( x  - 8) in place of x can be most 
closely fitted by a straight line. For a subjective method of this kind, it is not 
possible to obtain even an approximate formula for the standard deviation of 
the estimator of 8. However, the method seems to give quite useful results 
and can certainly be used to obtain initial values for use in iterative pro- 
cesses. 

Graph paper of the kind described above is useful in probit analysis of 
quanta1 response data. Moments, product moments, and percentage points of 
various order statistics for standard lognormal distribution A(0,l) have been 
computed and tabulated for all samples of size 20 or less by Gupta, 
McDonald, and Galarneau (1974). 

6 APPLICATIONS 

Section 2 of this chapter indicates several fields in which lognormal distribu- 
tions have been found applicable, and the references in the present section 
contain further examples. Application of the distribution is not only based on 
empirical observation but can, in some cases, be supported by theoretical 
argument-for example, in the distribution of particle sizes in natural aggre- 
gates (see Section 2), and in the closely related distribution of dust concen- 
tration in industrial atmospheres [Kolmogorov (1941); Tomlinson (1957); 
Oldham (1965)l. Geological applications have been described by Ahrens 
(1954-57), Chayes (1954), Miller and Goldberg (1955), and Prohorov (1963). 
ThCbault (1961) gives a number of examples of such applications and in- 
cludes some further references. 

The three-parameter lognormal distribution was introduced to geology by 
Krige (1960) for modeling gold and uranium grades, and it is now widely 
regarded as the "natural" parametric model for low-concentration deposits. 
The lognormal model for minerals present in low concentrations has been 
experimentally verified for many minerals [Krige (1971); Harbaugh and 
Ducastaing (1981)l. Its use for gold deposits was pioneered by Sichel (1947). 
Further applications, mentioned by Oldham (19651, include duration of 
sickness absence and physicians' consultation time. Wise (1966) has described 
application to dye-dilution curves representing concentration of indicator as 
a function of time. Hermanson and Johnson (1967) found that it gives a good 
representation of flood flows, although extreme value distributions (see 
Chapter 22) are more generally associated with this field. Medical applica- 
tions are summarized by Royston (1992), who mentions, in particular, model- 
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ing the weights of children [Rona and Altman (197711 and construction of 
age-specific reference ranges for clinical variables [Royston (19901. Royston 
(1992) fits lognormal distributions to observations of antibody concentration 
in pg/ml of type I11 group B streptococcus (BGS). 

Leipnik (1991) mentions applications of sums of independent lognormal 
variables in telecommunication and studies of effects of the atmosphere on 
radar signals. Molecular particles are modeled in radar noise theory as 
having normal velocity distribution, while dust particles of a given type are 
assigned lognormal distributions. 

The lognormal distribution has also been found to be a serious competitor 
to the Weibull distribution (Chapter 21) in representing lifetime distributions 
(for manufactured products). Among our references, Adams (1962), Epstein 
(1947, 1948), Feinlieb (1960), Goldthwaite (1961), Gupta (1962), and Nowick 
and Berry (1961) refer to this topic. Other applications in quality control are 
described by Ferrell(1958), Morrison (1958), and Rohn (1959). Aitchison and 

, Brown (1957) cite various applications such as the number of persons in a 
I 

census occupation class and the distribution of incomes in econometrics, the 

/ distribution of stars in the universe, and the distribution of the radical 
component of Chinese characters. 

The 1974 distribution of wealth in the United Kingdom was studied by 
Chester (1979) who fitted a two-parameter lognormal distribution to data 
reported in the Inland Revenue Statistics (1977). Theoretical grounds for this 
application of lognormal distributions are developed by Sargan (1957) and 
Pestieau and Possen (1979) [see hso  Gibrat (1930, 1931)l. 

The two-parameter distributidn is, in at least one important respect, a 
more realistic representation of distributions of characters like weight, height, 
and density than is the normal distribution. These quantities cannot take 
negative values, but a normal distribution ascribes positive probability to such 
events, while the two-parameter lognormal distribution does not. Further- 
more, by taking u small enough, it is possible to construct a lognormal 
distribution closely resembling any normal distribution. Hence, even if a 
normal distribution is felt to be really appropriate, it might be replaced by a 
suitable lognormal distribution. Such a replacement is convenient when 
obtaining confidence limits for the coefficient of variation. Koopmans, Owen, 
and Rosenblatt (1964) pointed out that if the normal distribution is replaced 
by a lognormal distribution, then confidence limits for the coefficient of 
variation are easily constructed (as described in Section 4 of this chapter). 
Wise (1966) has pointed out marked similarities in shape between appropri- 
ately chosen lognormal distributions and inverse Gaussian (Chapter 15) and 
gamma (Chapter 17) distributions. 

The lognormal distribution is also applied, in effect, when certain approxi- 
mations to the distribution of Fisher's z = 3 log F are used (see Chapter 27). 
It is well known that the distribution of z is much closer to normality than is 
that of F [e.g., Aroian (193911. Logarithmic transformations are also often 
used in attempts to "equalize variances" [Curtiss (1943); Pearce (1945)l. If 
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the standard deviation of a character is expected to vary (e.g., from locality to 
locality) in such a -way that the coefficient of variation remains roughly 
constant (i.e., with standard deviation roughly proportional to expected 
value), then application of the method of statistical differentials (as described 
in Chapter 1) indicates that by use of logarithms of observed values, the 
dependence of standard deviation on expected value should be substantially 
reduced. Very often the transformed variables also have a distribution more 
nearly normal than that of the original variables. 

Ratnaparkhi and Park (1986)-starting from Yang's (1978) deterministic 
model for the rate of change in the residual strength with respect to the 
number of fatigue cycles 

where X(n) is the residual strength at cycle n, f(n) is a nonnegative function 
of n, and c is a physical parameter-proposed using a lognormal distribution 
for X(O), the initial (or "ultimate") strength. They deduced from this that the 
random variable N (the fatigue failure cycle) has a three-parameter lognor- 
mal distribution. 

The relationship between leaving a company and employees tenure has 
been described by two-parameter lognormal distributions with great success 
[Young (1971); McClean (1976)l. It was found that the lognormal model 
accurately defines the leaving behavior for any "entry cohort" (defined as a 
group of people of about the same quality, performing roughly the same work 
and joining the company at about the same time). Agrafiotis (1985) estimated 
the early leavers for each entry cohort of a company based on the lognormal 
hypothesis by fitting an appropriate unweighted least-squares regression. 

O'Neill and Wells (1972) point out that recent work in analyzing automo- 
bile insurance losses has shown that the lognormal distribution can be 
effectively used to fit the distribution for individual insurance claim pay- 
ments. Many applications in biochemistry, including mechanisms generating 
the lognormal distribution can be found in Masuyama (1984) and its refer- 
ences. 

Recently, for the U.S. population of men and women aged 17-84 years, 
Brainard and Burmaster (1992) showed that the lognormal distribution fits 
the marginal histograms of weight (in cells representing 10-lb intervals) for 
both genders. 

7 CENSORING, TRUNCATED LOGNORMAL 
AND RELATED DISTRIBUTIONS 

As pointed out in Section 4, estimation for the two-parameter lognormal 
distribution, and the three-parameter distribution with known value for 8, 
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presents no special difficulties beyond those already encountered with normal 
distributions in Chapter 13. The same is true for censored samples from 
truncated forms of these distributions [see, e.g., Gajjar and Khatri (1969)l. 

If log X has a normal distribution with expected value 5 and standard 
deviation a ,  truncated from below at log Xo, then the rth moment of X 
about zero is 

1 - @(Uo - r u )  
( r th  moment if not truncated) , (14.65) 

1 - @(Uo) 

with Uo = (log X,, - [ ) / a  [Quensel (19491. For the three-parameter distri- 
bution, with 8 not known, when censoring or truncation has been applied, 
estimation presents considerable difficulty. 

Tiku (1968) has used his approximate linearization formula (described in 
Section 4) to simplify the maximum likelihood equations for the truncated 
lognormal; Tallis and Young (1962) have considered estimation from grouped 
data. 

Thompson (1951) gives details of fitting a "truncated lognormal distribu- 
tion" that is a mixed distribution defined by 

Tables are provided to assist estimation by moments. 
Harter and Moore (1966) gave the results of some sampling experiments in 

which values of parameters were estimated for lognormal distributions cen- 
sored by omission of proportions q, at the lower and 9, at the upper limits of 
the range of variation, with q, = 0 or 0.01 and q2 = 0 or 0.5. (The case 
q, = q, = 0 corresponds to a complete, untruncated lognormal distribution. 
These results have already been noted in Section 4.) 

Taking 5 = 4, u = 2, and 6 = 10, Table 14.5 shows the values that were 
obtained for the variances of estimators determined by solving the maximum 
likelihood equations. Although the results are applicable to a censored 
sample from lognormal distribution they should give a useful indication of 
the accuracy to be expected with truncated lognormal distributions. The 
substantial increase in ~ a r ( &  with even a small amount of censoring (q, = 

0.01) at the lower limits is notable. It would seem reasonable to suppose that 
variances and covariances are approximately inversely proportional to sample 
size, if estimates are needed for sample sizes larger than 100. The arithmetic 
means of the estimators were also calculated. They indicated a positive bias 
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Table 14.5 Variances and Covariances of Maximum Likelihood Estimators 
for Censored Three-Parameter Lognormal Distribution 

-- 

0.00 0.5 0.0600 0.0961 0.2109 0.0628 0.0146 0.0296 
0.01 0.0 0.0428 0.0351 0.2861 0.0064 0.0126 - 0.0047 
0.01 0.5 0.0628 0.1244 0.3011 0.0199 0.0239 0.0375 
0.00" 0.0" 0.0416 0.0312 0.1733 0.0232 -0.0015 -0.0032 

Note: In the sampling experiment with sample size of 100, C = 4, u = 2, and 0 = 10 (the value of 
0 was not used in the analysis). 
"No censoring. 

in 6 of about 0.8-0.9 when ql = 0.01 (whether or not q2 = 0) and a positive 
bias of about 0.3 when q, = 0.5 with ql = 0. There was also a positive bias of 
about 0.5 in 6 when q1 = 0.01 and q2 = 0.5. 

It is of interest to compare the figures in Table 14.5 with corresponding 
values in Table 14.6, where the value 10 of 8 was supposed known and used 
in the analysis. The variance of 6 is considerably reduced (by comparison 
with Table 1 4 3 ,  but that of is not greatly changed. The effect of varying q, 
is much smaller. 

Progressively censored sampling of three-parameter lognormal distribu- 
tions has been studied by Gajjar and Khatri (1969) and Cohen (1976). Let N 
designate the total sample size of items subject to a life or fatigue testing and 
n the number that fail (resulting in completely determined life spans). 
Suppose that censoring (i.e., removal) occurs in k stages at times q > >-,, 
j = 1,2,. . . , k, and that r, surviving items are removed (censored) from 
further observation at the jth stage. Thus N = n + Cf=,ri.  

Cohen (1976) discusses Type I censoring, with T,'s fixed, and the number 
of survivors at these times are represented by random variables. For k-stage 
Type I progressively censored sampling the likelihood function, in an obvious 
notation, is 

Table 14.6 Maximum Likelihood Estimators for Censored Three-Parameter 
Lognormal Distribution Where Value of 8 Is Supposed Known 

"No censoring. 
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For the lognormal distribution (14.2)' the local maximum likelihood estimat- 
ing equations are 

1 where Zi = Z(T;') = m(T*)/[l - @(T*)], with 

Cohen suggests selecting trial values Oi for 6, solving the first two equa- 
tions with 8 = 6, for f;. and ui, using standard Newton-Raphson procedure, 
and then substituting these values into the third equation. If the third 
equation is not satisfied for any value of 6 in the permissible interval 
6 s R,,, he recommends application of a modified maximum likelihood 
method (which has proved satisfactory in many applications) in which the 
third equation is replaced by 

6 = X: - exp ( + a@-' [ ( ( N ~ 1 ) l 1 7  

where a(,$,) = r/(N + I), and X: is the r th order statistic among the X's 
for some r > 1. 

The discretized form of the (truncated) lognormal distribution has been 
found to offer a competitive alternative to logarithmic series distributions in 
some practical situations (see Chapter 7). Quensel (1945) has described the 
logarithmic Gram-Charlier distribution in which log X has a Gram-Charlier 
distribution. 

Kumazawa and Numakunai (1981) introduced a hybrid lognomal distribu- 
tion H(a, p ,  y) defined by the cdf, 

For cu = 0, the equation (14.68) represents a normal distribution with 
parametrs -yp-', p-', and for p = 0 it gives the lognormal distribution 
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Figure 14.5 Frequency Curves of the Normal, Lognormal, and Hybrid Lognormal Distribution, 
N(0, I), A(0,1), and H(1,1,0), Respectively 

A(-ya-l, a -2 )  [or N(1og xl -ya-', a-*)I. Thus (14.68) can be viewed as 
the cdf of a hybrid normal-lognormal distribution. Figure 14.5 provides 
comparison of the three curves for standard values of these parameters. 

For small x << 1 the curve of H(l,l,O) approaches that of A(0, I), and for 
x > 1.5 it decreases faster than both A(0,l) and N(0,l). Data of occupa- 
tional radiation exposures, as reported in the late 1970s by the U.S. Nuclear 
Regulatory Commission, are shown to be far better fitted by the hybrid 
lognormal distribution than by lognormal or normal. 

Based on the relation 

where p = log(P/a) - (y/cu), u 2  = l /a 2,  and p = P/a, Kumazawa and 
Numakunai (1981) designed hybrid lognormal probability paper that provides 
a quick method of judging whether given data can be fitted by a hybrid 
lognormal distribution. 

The S, and S, systems of distributions [Johnson (1949)], discussed in 
Chapter 12, are related to the lognormal distribution in that the lognormal 
distribution is a limiting form of either system and in that the "lognormal 
line" is the border between the regions in the (PI, P2) plane corresponding to 
the two systems. 
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The distribution corresponding to the S, transformation, defined by 

which has four parameters y ,  6, 6, and A, was considered by van Uven as 
early as 1917. It has been termed the four-parameter lognormal distribution 
by Aitchison and Brown (1957). This name is not so well recognized as the 
two-parameter or three-parameter lognormal nomenclature. In view of the 
existence of other four-parameter transformations (e.g., (14.5)1, the useful- 
ness of this name is doubtful. 

Lambert (1970) uses the form of pdf, 

which is a reparametrization of JohnSon's S,, distribution (Chapter 12, 
Section 4.3). The random variable log[(X - r)/(8 - X)] has the N(cL, p )  
distribution. Johnson (1949) carried out estimation of 8 and 7 using quantiles 
and a method based on quantiles and points of the range. (See also Chapter 
12.) 

Estimation becomes a difficult problem when all four parameters must be 
estimated from observations. Lambert (1970) tackles maximum likelihood 
estimation of the parameters. The difficulties associated with the behavior of 
the likelihood function at 7 = min Xi or 8 = max Xi are overcome by 
assuming that observations are multiples of some unit 6 (i.e., a recorded 
observation may differ from its true value by up to 6/2). The likelihood 
equation is 

1 o if either Xl r 7 or Xn 2 8. 

(The parameter space is defined by -a < p < CQ; 0 < P < w; - m < 7 < XI; 
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Xn < 6 < m.) At any maximum of L, the following equations are satisfied: 

= - c (l0g(xi - 7) - 10g(e - x i )  - p}, 
P 

Solving the first two equations for p and P yields 

Then 

If the values S and 8" that maximize L;*(T, 8) are found, then the set 
(fi, &,4,& will be the solution of equations (14.721, and as long as 7̂  < 
X ,  - 6/2 and 6 > Xn + 6/2, these may be taken as the maximum likelihood 
estimates. 

To locate the greatest value of the likelihood, Lambert (1970) recommends 
that "the function log LT*(r, 6) be plotted over a range of values of r and 8. 
Examination of such a plot enables one either to locate a region in which the 
greatest value of log L;*(r, 0) lies or to observe in which direction to shift to 
find this value; in this case the function was recalculated over a suitable new 
region. Once a region containing the greatest value is found, changing the 
intervals in 7 and 6 at which log LT* is calculated enables one to locate the 
greatest value with any desired accuracy and so to obtain 4 and 6.'' Lambert 
concludes that "although techniques have been developed for estimating, 
from the likelihood, the parameters of the four-parameter lognormal distri- 
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bution, and these appear to provide satisfactory estimates with artificial 
samples, the method has not so far yielded useful estimates." 

We are unaware of any further development along these lines in estimat- 
ing the Johnson four-parameter lognormal distribution using maximum likeli- 
hood method. Wasilewski (1988) studied mixtures of several two parameter 
lognormal distributions A(li, u2 )  (i = 1,. . . , k), with pdf 

1 k - (log x - li12 
=- E Pi e m (  z U 2  , x > 0, (14.73) 
GVX j = *  

i 
wherep ,>o ,Cf - ,p i=  1 ,andO < l ,  < ... < l k .  

The rth moment about zero of (14.73) is 

Wasilewski (1988) discusses estimation of the parameters ( a ,  & , p )  by the 
method of moments, equating for r = - k, - k + 1,. . . , k - 1, k the values 
of E[Xr] to the observed values 

8 CONVOLUTION OF NORMAL AND LOGNORMAL DISTRIBUTIONS 

Hawkins (1991) investigated, in detail, convolutions of normal and lognormal 
distributions. His work was motivated by application of lognormal distribu- 
tions-namely, in measuring lognormally distributed quantities with instru- 
ments that give quick and inexpensive readings but have substantial random 
measurement errors. If log(Z + a )  is distributed as N(5, u2)  and X is a 
measurement of Z with an unbiased normally distributed error Y [Y - 
N(0, r2)] independent of Z so that X = Z + Y and XI2 - N(Z, T ~ ) ,  then 

log z - 5 x - z + a  2 
= m z e x p [ - ( (  ~ T U T  o ) ' + (  ) ) I d 2  
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(using the transformation t = log z). The parameters a and T are the 
location and scale parameters of the convolution. 

The canonical form ( a  = 0, T = 1) is 

The moments of (14.74Y are easily calculated from the relation 

where U denotes a unit normal variable. In particular, 

Compare these equations with (14.8a) and (14.8b). The sequence of moments 
of X increases even more rapidly than that of Z, and (similarly to the 
lognormal distribution) the distribution of X is also not determined by its 
moments. Any normal distribution N(f. ,  S2), say, can be obtained as a 
degenerate limiting case of the convolution, letting a -+ 00, a -+ 0, and 
keeping the mean and the variance equal to 6 and s2 ,  respectively. 

Unlike the three-parameter lognormal distribution, the likelihood of the 
lognormal-normal convolution has no singularities, and the distribution is 
infinitely differentiable with respect to all its parameters. However, it is still 
possible that data may conform better to a normal than to a lognormal- 
normal distribution. Hawkins (1991) finds that his nondegeneracy test (see 
Section 4) is equally applicable in the lognormal-normal case with Zi re- 
placed by Xi. 

Moment estimation is straightforward. Let X = CXi/n and S 2 = C(Xi - 
X)2/n, and let M3 = C(Xi - X)3/n and B, = M:/S~, then utilizing equa- 
tion (14.46)' or its explicit solution when estimating moments of the three- 
parameter lognormal, we have 

6 = log Li, 
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However, Hawkins (1991) finds that this modified method of moments in the 
case of lognormal-normal distribution is by far less effective than the conven- 
tional one. Moment estimators turn out to be highly biased, but still they may 
provide a useful starting point for maximum likelihood estimation. This 
approach is a very time-consuming routine operation for the lognormal- 
normal distribution, since it involves numerous evaluations of the density and 
its derivatives for each value in the sample. Especially undesirable are 
situations where the initial a is large and the initial a close to zero (cases 
close to degeneracy). Hawkins recommends a hybrid algorithm behaving like 
steepest descent method in the initial steps and like Newton's method close 
to the optimum. 
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C H A P T E R  1 5  

Inverse Gaussian 
(Wald) Distributions 

1 INTRODUCTION 

The name "inverse Gaussian" was first applied to a certain class of distribu- 
tions by Tweedie (1947), who noted the inverse relationship between the 
cumulant generating functions of these distributions and those of Gaussian 
distributions. The same class of distributions was derived by Wald (1947) as 
an asymptotic form of distribution of average sample number in sequential 
analysis. The name "Wald distribution" is also used for members of this 
class. Wasan (1968b) calls these distributions first passage time distributions of 
Brownian motion with positive drift and uses the abbreviation T.B.M.P. 
distribution. 

Inverse Gaussian distributions have attracted considerable attention dur- 
ing the last 20 years. A major influence was the Ph.D. dissertation of R. S. 
Chhikara, under J. L. Folks at Oklahoma State University, in 1972. This work 
was followed by several joint publications by Chhikara and Folks culminating 
in a review paper [Folks and Chhikara (1978)l. This paper attracted many 
discussants-including probabilists and both theoretical and applied statisti- 
cians-and continuing interest in the topic, resulting eventually in a book 
devoted to inverse Gaussian distributions [Chhikara and Folks (198911. In the 
early 1980s B. Jgrgensen's M.Sc. thesis, under the direction of 0. 
Barndorff-Nielsen, appeared as J~rgensen (1982). Tables of percentile points 
of inverse Gaussian distributions became available in a CRC Handbook 
(1988). Books by A. C. Cohen and B. J. Whitten (1989) and N. Balakrishnan 
and A. C. Cohen (1991) contain a chapter devoted to estimation of parame- 
ters in a three-parameter inverse Gaussian distributions. 

In view of this partial consolidation of recent research on inverse Gaussian 
distributions, and to keep the length of this chapter with reasonable limits, 
we include here mostly results that are not emphasized in the above refer- 
ences and concentrate on post-1988 results as much as possible. Readers are 
advised to consult Chhikara and Folks (1989) and Jgrgensen (1982) for 
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additional details. The bibliography of this chapter is, however, more com- 
prehensive and contains some references that are not explicitly mentioned in 
the text but might be viewed as important contributions in regard to particu- 
lar aspects of the distributions. 

2 GENESIS 

Suppose that a particle moving along a line tends to move with a uniform 
velocity v. Suppose also that the particle is subject to linear Brownian 
motion, which causes it to take a variable amount of time to cover a fixed 
distance d. It can be shown that the time X required to cover the distance is 
a random variable with probability density function 

where p is a diffusion constant [Schrodinger (1915)l. Several heuristic and 
some more or less rigorous derivations of this result have been published 
[Huff (1974); Whitmore and Seshadri (1987, and references therein)]. 

Alternatively, when the time x  is fixed, the distance D over which the 
particle travels is a random variable with the normal distribution 

While examining the cumulant generating functions of (15.1) and (15.21, 
Tweedie (1956) noticed the inverse relationship between these functions and 
suggested the name "inverse Gaussian" for the distribution (151). 

Distributions of this kind were derived by Wald (1947) as a limiting form 
of distribution of sample size in certain sequential probability ratio tests. In a 
more general form, the distribution can be obtained as a solution to the 
following problem: Given that Z,, Z2, . . . are independent random variables, 
each having the same distribution with finite expected value E[Z] > 0 and 
nonzero variance V(Z), what is the limiting distribution of the random 
variable N, defined by 

Note that zKIZi  is the first of the sums Z,, Z, + Z,, Z, + Z, + Z,, . . . , to 
be not less than K, with K > 0. 

It can be shown that E[N] = K/E[Z] and that 

lim pr[N s x E ( N ) ]  
E ( N ) - m  
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is given by the integral up to x of 

with 

This is the standard form of probability density function of the Wald 
dhtribution. It is a special inverse Gaussian distribution. 

L 
I 

3 DEFINITION 

On substituting v = dlp and P = d2/A into (15.1), we obtain the standard 
("canonical") form of the two-~arameter inverse Gaussian distrihutinn. 

We will denote this distribution by IG(p, A). As we will see below, p is the 
expected value and p 3 / ~  is the variance of IG(p, A); p/A is the square of 
the coefficient of variation. 

Alternatively, the distribution can be written in any of the three following 
equivalent forms [Tweedie (1957a)l: 
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Figure 15.1 Inverse Gaussian Density Functions, E [ X ]  = p = 1 

In these equations 4 = A/p, a = , / (~cL);  A, p ,  4, and a are all positive. The 
Wald distribution (15.3) is obtained by taking p = 1 (and A = 4); in our 
notation it is IG(1,4). Our distinction between standard Wald (one-parame- 
ter) and standard inverse Gaussian (two parameters) is arbitrary, but we find 
it to be convenient. 

Note that if X is distributed as IG(P, A), then a x  (a > 0) is distributed as 
IG(ap, ah). Some graphs of px(xlp, A) are shown in Figure 15.1. The cdf 
corresponding to (15.4a) is 

where @(-) is the standard normal distribution function [Shuster (1968); 
Chhikara and Folks (197711. 

4 MOMENTS 

From (15.4a) we obtain the cumulant generating function 
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The corresponding characteristic function is 

[;( ( 2ift)1/2)] e x p-  1 -  1 --  

The cumulant generating functions corresponding to (15.4b1, (15.4c), and 
(15.4e) are 

respectively. 
The first four cumulants corresponding to (15.5a) are 

Generally, for integer r 2 2, 

[Tweedie (1957a)l. The first two moment-ratios are 



264 INVERSE GAUSSIAN (WALD) DISTRIBUTIONS 

In the Pearson (PI, p2) plane the inverse Gaussian points fall on the straight 
line p2 = 3 + 5P1/3 which lies between the gamma (Type 111) and lognormal 
lines. 

The first three negative moments about zero of IG(p, A) are 

Note that for the Wald distribution, K, = 1 whatever the value of 4 ,  and that 

From (15.4b) the density function of Y = X-' is 

It folIows that 

In particular for the standard Wald distribution ( p  = I), we have the 
remarkable relation between negative and positive moments 

For the standard Wald distribution, the mean deviation is 

For 4 large (whatever be the value of p )  

Mean deviation 

Standard deviation 
= 4 f i e 2 + 0 ( - 2 6 )  

= 4 f i e 2 + [ ( ~ ) - 1 e - 2 @ ' ( 2 & ) - 1 { 1  - ( 2 6 ) - ' ) ]  

Since taking p = 0 (to make E [ X ]  = 0) also makes Var(X) = 0, a standard- 
ized form of the distribution has to be obtained circuitously. By taking the 
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variable 

so that E[Yl = p + 5; Var(Y) = p3/A; d m  = 3 4 m -  and then tak- 
ing p = -6, A = - t3,  we have 

The cdf of Y is 

The distribution of Y is a three-parameter inverse Gaussian IG(p, A, 6). 
Its pdf is given in (15.45). 

A one-parameter inverse Gaussian [different from Wald (15.311, obtained 
by taking A = p2 in (15.4a1, has been discussed by Vod5 (1973). [See also 
Iliescu and Vod5 (1977, 1981).] Its pdf is 

In our notation it is an IG(P, P') distribution. 
Yet another one-parameter inverse Gaussian distribution is obtained as a 

limiting form of IG(p, A) as p + m. The pdf is 

The expected value and variance (and indeed E[Xa1 for a r $1 are infinite. 
This is the distribution of first passage time of drift-free Brownian motion, 

which is the one-sided stable law (see Chapter 12) with exponent 4. Letac 
and Seshadri (1989) point out that this distribution is also a member of a 
natural exponential family. 

In the discussion following Folks and Chhikara (1978), Whitmore (1978) 
[see also Whitmore (197911 introduced a class of modified inverse Gaussian 
distributions, which he termed defective inverse Gaussian distributions. They 
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have densities of form 

( a  - S X ) ~  
p , ( x )  = 0 ~ ( 2 ~ x ~ v ) - ' / ~ e x p { -  2vx ) for 0 < x < w, 6 < 0, 

together with a nonzero probability 

( -YS).  P r [ X =  w] = 1 - exp - 

Note the reparametrization p = a /  161, A = a2/v. 
The genesis of distribution (15.16) is as follows: bnsider  a Wiener process 

(W(t); t 2 0) with W(0) = 0, having drift and volatility parameters 6 (< 0) 
and v, respectively-namely for any interval of time (t,, t,), W(t,) - W(t , )  is 
normally distributed with expected value S(t2 - t,) and variance v(t2 - t,). 
There is an absorbing barrier at a (> 0). The probability of eventual 
absorption is exp(2aS/v), and the distribution of first passage time, condi- . 
tional on absorption occurring in finite time is IG(a/ IS I, a2/v). 

Over part of the parameter space (for a2(61/v 2 10, S < 0) the inverse 
Gaussian distribution is approximately lognormal (see Chapter 14). However, 
when a21S 1 /v is small, the two distributions differ. 

5 PROPERTIES 

As 4 tends to infinity (with p fixed) the standardized distribution tends to a 
unit normal distribution (see Figure 15.1). More precisely, there is the 
following relation between corresponding quantiles of the standard Wald 
distribution Xp(4) and the normal distribution Up, obtained by Sigangirov 
(1962): 

where 
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For small 4 ( 4  < ~,2/16), 

As p tends to infinity (A remaining fixed), the distribution of Y = X - I  tends 
to the gamma distribution: 

[Wasan and Roy (196711. 
krapivin (1965) notes the following equations, satisfied by the Wald 

1 probability density function px(x) [as given in (15.3)l: 
i 

This enables one to calculate the expected value of a Wald distribution from 
tables of WJx) .  From (15.4e) with p = 1 and h = 4 ,  we have the cdf 

For x large 

If XI,. . . , X,, are independent IG(P~, A,) variables (i = 1,. . . , n), then the 
distribution of 

is IG(p, A) with 

It is thus a one-parameter inverse Gaussian distribution of the type described 
by VodI (1973) with pdf given in (15.14). 



If pi = p and A, = A for all i = 1,. . . , n, we have 

distributed as IG(nA/p, n2h2/p2), whence 

X is distributed as IG(p ,  nA) (15.21) 

[since aX has an IG(ap, ah) distribution if X has an IG(p, A) distribution; 
see Section 3, following (15.4d)l. Property (15.21) is termed a reproducibility 
property. 

The inverse Gaussian distribution may be characterized by the fact that if 
X,, X,, . . . , Xn are mutually independent IG(p, A) variables, then % = 

(Cy= '=,Xi)/n and V = n- 'Cy= JX; ' - X- ') are statistically independent 
[Tweedie (1957a)l. The converse is also true; that is, if the expected values of 
X, x 2 ,  1/X, and (l/Cy='=,Xi) exist and are different from zero, and if X and 
n-'Cy='=,(X;' - X-') are independently distributed, then the distribution of 
each variate Xi is inverse Gaussian [Khatri (1962)l. 

Letac and Seshadri (1985) have provided a short proof of this characteriza- 
tion, replacing the hypothesis on moments by the assumption that X is 
positive. Seshadri (1983) extended Khatri's result by imposing constancy of 
expected values of suitable statistics, conditional on X. One of his results is 
as follows: If XI, X2, . . . , X, are independent and identically distributed, and 
E[Xi], E[x:], E[X~:'] for all i = 1 , .  . . , n, E[(Cy=lXi)-l] all exist and are 
nonzero, and if E [ C ~ = ~ ~ ~ X ; '  - n(Cy=laiXCy=,Xi)-l IC~llXil (Cy=',,ai > 0) 
does not depend on Cy=,Xi, then the common distribution of the Xi's is 
inverse Gaussian. Taking ai  = 1 (i = 1,. . . , n), we obtain Khatri's result. 

Letac, Seshadri, and Whitmore (1985) have shown that if X,, X2, . . . , X,, 
are mutually independent IG(p, A) variables, then 

and x 

are mutually independent and Q - Q, is distributed as X 2  with n - 1 
degrees of freedom. 

The distribution is unimodal and its shape depends only on the value of 
4 = A/p [see Figure 15.11. The location of the mode is 
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Shuster (1968) has pointed out that if X has distribution (15.4a), then 
A(X - p ) 2 ( p 2 ~ ) - 1  has a X2 distribution with one degree of freedom 
(Chapter 18). Some further details are given by Wasan (1968a, b). 

Folks and Chhikara (1978) suggest the algebraic formulas 

where Xi, = n; 'Cya Xi, and X.. = (Cf= , n i ) - ' ~ f =  These are ana- 
logues, for IG parent populations, to the standard decompositions of sums of 
squares, used in analysis of variance for data in one-way classification by 
groups for normal parent populations. 

They show that for the analogue of a standardized normal variable 

U 2 is distributed as X 2  with one degree of freedom but U is not normally 
distributed. 

More recently there has been some attention in the literature to the 
"length biased" pdf of IG(p, A), which is generally defined as 

For the length-biased inverse Gaussian-denoted LBIG(p, A)-we have 

We note that if X is distributed as IG(p, A), then p2/x is distributed as 
LBIG(p, A); conversely, if Y is distributed as LBIG(p, A), then p2/y is 
distributed as IG(p, A). 

If Y,, Y2, . . . , Y, are mutually independent LBIG(p, A) variables, then 
their harmonic mean 
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is distributed as 

with XI,. . . , Xn each distributed as IG(p, A). Since X is distributed as 
IG(p,nA), is distributed as LBIG(p, nA). 

Whitmore and Yalovsky (1978) approximate the IG(P, A) distribution by 
ascribing a standard normal distribution to 

Sibuya (1992) has examined six rough approximations for the quantile 
function of the inverse Gaussian distribution. Among these approximations, 
four are based on fitting approximate normal, log-normal, gamma, and 
Birnbaum-Saunders distributions. The other two approximations make use 
of the specific features of the inverse Gaussian distribution. Through numeri- 
cal comparisons, Sibuya has noted that no single approximation is uniformly 
better than the others and that approximating the upper tail of the distribu- 
tion with a large coefficient of variation becomes particularly difficult. Conse- 
quently, these approximations may be used as starting value for the Newton 
method to numerically solving the equation equating the distribution function 
to a specified p-value. 

6 ESTIMATION OF PARAMETERS 

The statistic (Cy='=,X,, C~,,X,:') is minimal sufficient for the IG(p, A) distri- 
bution. Maximum likelihood estimators (MLEs) have been obtained [Twee- 
die (1957a)l for the following general case: let XI,.  . . , Xn be a series of 
observations on n distinct inverse Gaussian distributions IG(p, A,) (i = 

1,. . . , n). Also let A, = wiAo, where A, is unknown but wi is a known positive 
value. The MLE's of p and A, satisfy the equations 
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When the wi's are all equal to unity, (15.27a) and (15.2%) become 

It is apparent that in this case X is a sufficient statistic for p. Tee 
distribution of x is IGG, d o ) .  Tweedie (1957a) has shown that x and A, 
are independent. An elementary proof of this basic property is given by 
Schwarz and Samanta (1991). It can be shown that 

v(= Â;') is distributed as X with n - 1 degrees of freedom). 

(15.29) 

Combining (15.27b) and (15.291, the following relation is obtained: 

n x wi(x,: ' - X-') is distributed as 
i = l  

A,' X ( x 2  with n - 1 degrees of freedom). (15.30) 

Confidence intervals for A, may be constructed using (15.30) [Tweedie 
(1957a)l. We also note that 

is an unbiased estimator of l/A,. It is in fact the uniform minimum variance 
unbiased estimator [Roy and Wasan (196811. Note that the distribution of this 
estimator is the same form as that of the usual unbiased estimator of variance 
of a normal distribution [Tweedie (1957a)l. 

An approximately unbiased estimator of l / A ,  is s2/X3, where 

It is a consistent estimator and has asymptotic efficiency of 4 / ( 4  + 3). Some 
further notes on estimators of the cumulants will be found in Section 9. 

If the value of p is known, we may, by a suitable choice of scale, take it to 
be equal to 1. We are then in the situation of having to estimate the single 
parameter 4, of a standard Wald distribution. 

If XI, X,, . . . , X, are independent random variables, each having distribu- 
tion (15.3), then the maximum likelihood estimator 4 of 4 satisfies the 
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equation 

whence 

For n large 

We note that if (b be estimated by equating observed and expected values 
of m, = n-'C:='=,(Xi - X)', the resultant estimator is 

6 = m;'. 

For n large 

The asymptotic efficiency of 6 ,  relative to 4, as an estimator of 4 is 

From (15.10) it follows that 

that is, $-' is an unbiased estimator of 4-' and m, is also an unbiased 
estimator 4-'. Further 

It is of interest to compare these results with those when p is unknown. The 
maximum likelihood estimators are then 
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Evidently 

Var(fi) = p24-In-'. (15.37a) 

Also 

n ~ a r ( 6 )  = 242  + 4 ,  (15.37b) 

The increase in variance of 6 ,  arising from ignorance of the value of p ,  
should be noted. 

Moment estimators are 

6 = 
nX2 

= (sample coefficient of variation) -2. (15.38b) 
c;=l(xi - X) 

Note that 4-'12 is the coefficient of variation. The variance of f i  is of 
, course the same as that of fi and 

n ~ a r ( 6 )  = 104~  + 194 [cf. (15.34)]. (15.39) 

More recently moment and maximum likelihood estimation have been dis- 
cussed by Padgett and Wei (1979) and maximum likelihood estimation by 
Cheng and Amin (1981), with special attention to consistency and asymptotic 
efficiency. The two methods of estimation have been compared by Jones and 
Cheng (1984) who find maximum likelihood to be clearly superior. Modified 
maximum likelihood and moment estimation, in which the equation obtained 
by equating expected and observed values of the first (least) order statistic 
replaces the maximum likelihood equation equating d log (likelihood)/&$ to 
zero, or the moment equation between sample and population values of the 
third moment about zero, are discussed by Chan, Cohen, and Whitten (1984). 
Cohen and Whitten [(1985), (1988)l and Balakrishnan and Cohen (1991) 
provide tables to assist in computation of the solution of the newly intro- 
duced equation for 6 in terms of p and A (for the three-parameter case 
discussed in Section 4). 

A uniform minimum variance unbiased estimator of the variance ( r r2  = 

p3/,\) of IG(p, A) was derived by Korwar (1989) as 

where 
m aIilb[il Z~ 

2 4 ( a ,  b ; c ;  2) = x T j r  
j = o  
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is the Gaussian hypergeometric function discussed in Chapter 1, and V is 
defined in (15.28b). 

Hsieh and Korwar (1990) have shown that 

has mean square error never greater than that of G2, as an estimator of u2. 
The maximum likelihood estimator of a2 is a 3 / n ;  the mean square error 
of m 3 / ( n  + 1) is never greater than that of m 3 / n .  

In further work Hsieh, Korwar, and Rukhin (1990) have shown that the 
mean square error of X, the maximum likelihood estimator of p ,  is never 
less than that of an estimator of form 

for suitably chosen (positive) values of E and a. In fact, for any given a (> O), 
this will be true for 

where 

with Y distributed as ( n  - I)-' x (X2 with n - 1 degrees of freedom) and 
y = p/(nA). To obtain an "optimal" choice for the values of E and a,  it is 
suggested to use E = :, and the following table, with 9 = $/(nh^), for a: 

A uniform minimum variance unbiased estimator of the squared coefficient 
of variation (p/A) is 

Seshadri (1989) derives the distribution of T in terms of modified Bessel 
function of the third kind. Despite the complicated form of the distribution 
the variance of T is quite a simple expression. Since and V are mutually 
independent and 3 has a N(p, n-'p3/h) distribution, while V has a 
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and 

For large n, ~ Z ( T  - PA-') has an approximately normal distribution 
with zero expected value and variance [2 + (p/A)](p/~)~. 

i Seto and Iwase (1985) obtained a complicated formula for an UMVU 
1 estimator of the mode of an IG(P, A)  distribution. For n = 3 this estimator is 
I 

where 

Estimation of the parameters of the three-parameter IG(p, A, 5) distribu- 
tion with pdf 

has been discussed by Padgett and Wei (1979), Cheng and Arnin (1981), 
Jones and Cheng (19841, Chan, Cohen, and Whitten (19841, Cohen and 
Whitten (1985, 19881, and Balakrishnan and Cohen (1991). Putting A = 

$/a2, (15.45) can be written as 
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Recent books by Cohen and Whitten (1988) and Balakrishnan and Cohen 
(1991) discuss estimation problems for distribution (15.45) in great detail. We 
do not present these in full here. It should, however, be noted that MLEs are 
not available if the sample third central moment is negative. 

For the special case when the value of a = E[X]/Var(X) is known-the 
corresponding distribution being IG(p, up2)--procedures for statistical in- 
ference on p have been constructed by Iwase (1987) and Joshi and Shah 
(1991). Iwase (1987) showed that the uniform minimum variance unbiased 
estimator of p ,  based on n independent IG(p, cP2) variables XI,. . . , X, is 

where T = (n-'C~~lXt:l)-l is the harmonic mean of the X's, and 

Ce a[Jl(a - c + 1)"' 
$(a, c; x)  = x O - ~  x ( -  1)' x - j  (15.48) 

j = o  j !  

is the confluent hypergeometric function. (See Chapter 1, Section A7.) 
The maximum likelihood estimator of p is 

Iwase (1987) showed that 

as n + oo. Joshi and Shah (1991) consider (from a Bayesian viewpoint) 
another special case, namely IG(p, ~ - ~ p ) ,  where c = E[X]/~- is 
the coefficient of variation of X, and the value of c is known. 

Bayesian analysis for the general IG(p, A) distribution has been consid- 
ered by Betro and Rotondi (1991) and by Banerjee and Bhattacharyya (1979). 
Joshi and Shah (1991) consider Bayesian estimation of the expected value p 

! 
8 

of IG(p, ~ - ~ p ) ,  where the value of c (the coefficient of variation) is known. 

7 TRUNCATED DISTRIBUTIONS-ESTIMATION OF PARAMETERS 

It is frequently desirable to estimate the parameters of a truncated inverse 
Gaussian distribution. Estimators of the parameters and their asymptotic 
variances have been obtained [Patel (196511 for both the singly and doubly 
truncated cases. 
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7.1 Doubly Truncated Distribution 

The density function of the doubly truncated distribution may be written as 

1 where 

The values of x, and x2 denote the lower and upper points of truncation, 
respectively, of the distribution of X (0 < x, < x,); the parameters p and A 
are positive. 

A recurrence relation for the moments may be obtained by differentiating 
(15.51) partially with respect to x and multiplying both sides by xr  to give, 
after integration by parts: 

a& - A d - ,  - 2(x;pI - x;p2) = (23 - 3)/.&-', (15.52) 

where 

a = A / ~ , ,  
pi = px(xilp, A; x,, x,) for i = 1,2, 
p', = j,:ZxrpX(xIp, A; xl, x,) ah for r = 0, * 1, f 2,. . . . 

p ,  and p, are of course values of the density at the truncation points xl and 
X2. 

If the population moments (prr) are replaced by the sample moments (m:) 
in the recurrence relation (15.52), the following set of equations results: 

where 

@I is a vector of estimators of functions of the parameters.) Provided that M 
is nonsingular, (15.53) may be solved as 
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from which f i  may be derived as \ /~/a^ . 
The asymptotic variances and covariances of the estimators 6) of the 

parameters may be obtained in matrix form by using a differential method 
[Patel (1965)l. The elements of this symmetric matrix are as follows: 

where P, = ( 2 x 1 ~ ~  - x;p2). 
Two other useful general relations are 

7.2 Truncation of the Lower Tail Only 

If the truncation point is at x, where x, > 0, then the estimators f;, of the 
parameters are 

where M, is a matrix of order 3 (obtained by deleting the last row and 
column of M and putting x, = x,). The vectors h, and c, are obtained from 
h and c, respectively, by deleting the last element and putting p, = p,. 

The asymptotic variance of A^ can be obtained from (15.55e) and that of f i  
and the covariance between i  and f i  from (15.56) and (15.571, respectively. 



7.3 Truncation of the Upper Tail Only 

This case may be dealt with in a similar manner. The general relations (15.53) 
of the first case are again applicable with x, = 0, x, = x,, p, =p,, and 
omitting the last row and column of M. The asymptotic variances and 
covariances of the estimators are obtained in the same way as in the second 
case. 

8 CONDITIONAL EXPECTATIONS OF THE ESTIMATORS 
OF THE CUMULANTS 

We now return to study the untruncated distribution. The section is of less 
general interest than Section 7, but contains some useful results. It may be 
shown that, given the arithmetic mean X, the conditional expectation of any 
unbiased estimator z, of the r  th cumulant must be 

1 du 
x exp ( - I ~ u 2 )  

( r  - 2 ) !  ' 

where G = hn/T. Since the distribution of T has the same form as (15.4~) 
with 4 replaced by 4n, then the probability density function of G is 

where 8 = 4n. The moments of G may be obtained using the formulas 
developed for the inverse Gaussian variate X [see (15.7) and (15.10)J. 

The first few moments of G are 



It can be shown [Tweedie (1957b)l that conditional expectations of unbiased 
estimators of the cumulants, calculated from (15.59) are 

where 

J has a maximum value of 1 and decreases monotonically to 0 as G increases 
to m. 

An asymptotic series expansion of (15.63) yields 

[Tweedie (1957b)l. A relatively large number of significant figures is required 
in J in order to yield accurate results when evaluating (15.62) numerically. 

Tables of J and e ~ / ~ / , " e - ~ " ' / ~  du (= I )  were compiled [National Bureau 
of Standards (1942)l. Tweedie (195%) gives tables of I and J for G = 1(1)10. 
Tweedie also gives "a useful expansion for moderately large values of G" in 
the form of the continued fraction 

where the sequence of positive integers in the partial numerators is 1; 3, 2; 5, 
4; 7, 6; 9, 8; and so on. For large values of G, asymptotic expansions of 
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mite polynomials may be used, giving 

In using (15.651, or by applying the asymptotic series expansion (15.64a) 
I to (15.62), the expected values of the estimators of the cumulants 
)me 

:edie (1957b)J. Experimental data involving the inverse Gaussian distribu- 
exhibit a high correlation between changes in sample means and changes 
mple variances in different sets of data. This fact can be accounted for 
lretically by the relationship between the first and second cumulants 
= k:/A, as can be seen from (15.6)]. The regression function of the 
ple variance s2 on the sample mean X is 

ELATED DISTRIBUTIONS 

Reciprocal of an Inverse Gaussian Variate 

etimes it may be convenient to use the reciprocal of a variate X having 
nverse Gaussian distribution. [In terms of the moving particle (see 
ion 2) this corresponds to average velocity.] The probability density 
tion of Y (= 1/X) is (see also Section 3) 
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This distribution is called the random walk distribution [Wise (1966); Wasan 
(1968b)l. 

The positive moments about zero for Y are the same as the negative 
moments about zero for the inverse Gaussian variate X and are given by 
(15.9) and (15.10). The cumulant generating function of Y is 

The first two cumulants are 

The bias of Y as an estimator of pV1 is A-'. The mean square error in using 
Y as an estimator of 1/p is 

The mode of the density function of Y is located at 

Mode(Y) = [(1 + $1 - . (15.72) 
F 

Wise (1966) has shown that the density function has two points of inflection, 
at values of y, satisfying the equation 

where 

Figure 15.2 presents plots of the density function of Y for different values of i 

A [reproduced from Tweedie (1957a)l. 
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Figure 15.2 Density Functions of Reciprocals of Inverse Gaussian Variables ( p  = 1). Note that 
lim,,, E [ Y ]  = 1. 

9.2 Birnbaum-Saunders Distribution 

Birnbaum and Saunders (1969a) have proposed the distribution with pdf, 

to represent the distribution of lifetimes of components under specified 
condition of wear (a "fatigue life" distribution). Desmond (1986) has pointed 
out that formula (15.73) can be rewritten as 
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Comparison with equations (15.4a) and (15.68) shows that the 
Birnbaum-Saunders distribution is a mixture, in equal proportions, of an 
IG@, (u-~P)  distribution and a reciprocal IG(P, u -~P- ' )  distribution. 
Desmond (1985) provided a more general derivation of this distribution 
based on a biological model. In his derivation, Desmond has strengthened 
the physical justification for the use of this distribution by relaxing some of 
the assumptions made by Birnbaum and Saunders (1969a). Birnbaum and 
Saunders (1969b) derived the maximum likelihood estimators for the parame- 
ters a and p. They also presented a mean mean estimator for P. Ahmad 
(1988) discussed a jackknife estimator for P based on the mean mean 
estimator. Tests of hypotheses and interval estimation of parameters, based 
on the maximum likelihood estimates, have been developed by Engelhardt, 
Bain, and Wright (1981). Rieck and Nedelman (1991) discussed a log-linear 
model for this distribution, which is applicable in accelerated life-testing. 
Estimation of parameters based on symmetrically ripe-I1 censored samples 
has been considered by Rieck (1994). Bhattacharyya and Fries (1982) have 
also studied reciprocal inverse Gaussian distributions. They emphasize the 
exponential family structure of the distributions. More details on the 
Birnbaum-Saunders distribution may be found in Chapter 33, Section 2. 

9.3 Generalized Inverse Gaussian Distributions 

An important generalization of inverse Gaussian distributions, introduced by 
Good (1953) and studied by Wise (1971, 1975), has attracted considerable 
attention, exemplified especially by an exhaustive and interesting monograph 
by J~rgensen (1982). He uses parameters JI, X, and 8, and defines the pdf of 
a generalized inverse Gaussian distribution [GIG($, ~ , 8 ) 1  as 

where KO(.) is a modified Bessel function of the third kind. If 8 = - 3 we i 
have an IG(d(JI/,y), X) pdf. Other special cases are 1 

3 

f 

8 = $ - reciprocal IG( ) distribution, i 
,y = 0,8 > 0 - gamma distribution (Chapter 17), 1 
JI = 0,8 < 0 - reciprocal gamma distribution (Chapter 17) 
8 = 0 - hyperbolic distribution of Barndorff-Nielsen, Blaesild, and Hal- 

green (1978) and Rukhin (1974) (Chapter 12). 

J~rgensen (1982) also uses an alternative form for (15.74), more symmetrical 
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in appearance, obtained by putting o = ,/($x) and q = ,/(x/$). This gives 

If ,y = 0 or $ = 0 so that w = 0, equation (15.4a) for IG(p, A) corre- 
sponds to (15.74)', with 8 = - $, o = A/p, and q = p (and K-1,2(u) 
- - 4-). Jgrgensen (1982) also reports an approximation based on 
supposing that 

has a standard normal [N(O, l)] distribution and suggests that even better 
approximation might be secured by taking log X to have an approximate 
normal distribution (i.e., by approximating the GIG distribution by a lognor- 
mal distribution). He also shows that GIG distributions can be regarded as 
limiting cases of generalized hyperbolic distributions. 

Barndorff-Nielsen, Blaesild, and Halgreen (1978) have shown that GIG 
distribution with 8 < 0 can arise as first passage times of a time-homoge- 
neous diffusion process. The well-known analogy between analysis of data 
based on normal and IG parent distributions (see Section 6)-wherein the 
maximum likelihood estimators of p and A for IG(p, A) are 

- 1 
= (z - z-1) (see (15.27a), (15.27b)), 

with ji having an IG(p, nA) distribution and nA/i having a distribu- 
tion-does not extend to GIG distributions. However, the set 

is minimally sufficient for GIG distributions. Embrechts (1983) has shown 
that the GIG distribution belongs to a class of subexponential distributions. 

9.4 Mixtures of IG(p, A) with Its Complementary Reciprocal 

If Xl is distributed as IG(p, a-2)  and x;' is distributed as IG(p ~ - ~ p * ) ,  
we call X2 the complementary reciprocal of X,. J~rgensen, Seshadri, and 
Whitmore (1991) introduced a mixture of the distributions of X, and X2 in 
proportions 1 - p and p, respectively (0 < p < 1). They denote this distribu- 
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tion by M-IG(p, a-,, p). The pdf of this distribution is 

We have 

Introducing y = p(1 - p)/p, (15.77) can be written as 

If y is known, this is a two parameter exponential family. The cdf is 

For both IG(p, and M-IHp, a-,, p), the statistic ( X  - p ) 2 / ( p 2 ~ )  has 
a x: distribution; (see page 269). 

A M-IG(p, u - ~ ,  p)  random variable X can be represented as 

where Xl and Y are mutually independent, XI has an I H p ,  u - ~ )  distribu- 
tion, and Pr[Y = 01 = 1 - p, while Y is distributed as p2u2X? if Y # 0. Thus 
M-IG(p, p) is a convolution of an inverse Gaussian and a compound 
Bernoulli distribution. 

Also if X is distributed as M-IG(p, a-2, p),  then 

cX is distributed as M-IG(p, cup,, p )  

and 

X-' is distributed as M - I G ( ~  -', 1 - p).  

Thus the M-IG family is "closed under reciprocation." 
Figure 15.3 from Jorgensen, Seshadri, and Whitmore (1991) provides 

graphs of some M-IG(1,1, p) pdf s, and Figure 15.4 plots graphs of M-IG 
distribution with common expected value 1, y = 1 [i.e., p = p/ (1 - p)], 
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Figure 15.3 Density Functions of M-IG(l,l, p )  for p = 0, 0.2, 0.4, 0.6, 0.8, and 1. From 
Jergensen, Seshadri, and Whitmore (1991). 

p = 0.1(0.2)0.9,0.95, and u chosen so that the variance is 1 [i.e., (1 - p)p3u2 
+ (3  - p)p5u4 = 11. The Birnbaum-Saunders distribution is a particular case 
of the M-IG(p7 v2, p). 

Abd-El-Hakim and Ahmad (1992) have recently considered a mixture of 
two inverse Gaussian distributions and discussed its modal properties. 

9.5 Other Related Distributions 

Al-Hussaini and Abd-El-Hakim (1990) studied estimation of parameters of a 
inverse Gaussian-Weibull mixture of the form 

They derived equations for both maximum likelihood and weighted maximum 
likelihood estimators. In an earlier paper (1989) the same authors proposed 

a this mixture as a failure model and investigated its failure rate function. 
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X 

Figure 15.4 Density Functions of M - ~ a p ,  a') Having Mean Value m = 1, y = 1, and p = 0.1, 
0.3, 0.5, 0.7, 0.9, and 0.95. From Jorgensen, Seshadri, and Whitmore (1991). 

Holla (1966) has described a (discrete) compound Poisson distribution: 

Poisson(8) A Inverse Gaussian (see Chapter 9) 
0 

Robert (1991) proposes another form of generalized inverse normal as a 
generalization of the distribution of 1/X, when X is distributed as N(0, u2). 
The pdf of Z = 1/X is 

Robert's family TN(a, 7, p )  is defined by 
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where K is a normalizing constant expressed in terms of a confluent hyperge- 
ometric function. The distribution is bimodal with modes at 

and 

For a = p = 2 (T = 1) the distribution is indistinguishable from a distri- 
bution with positive support. The case a = 2 corresponds to the original 
inverse normal transformation. The kth moment is defined only if a > k + 1. 
This distribution generates a conjugate prior family for the parameters of 
N(8, u2e2) distribution. 

10 TABLES 

Tables of the cumulative distribution function corresponding to (15.4a) have 
been constructed by Wasan and Roy (1967). They give values of Pr[X I XI to 
four decimal places for p = 5 and 

For A < 0.25 they suggest using a reciprocal gamma approximation, and for 
A > 32, a normal approximation (see section 5). If it is desired to evaluate 
Pr[X 5 x ]  for a value of p different from 5, then one can evaluate 

since Y has distribution (15.4a) with p equal to 5, and A equal to 5 X 
(original A)/p. The intervals of x in the tables vary between 0.005 and 0.5. 
They were chosen so that the differences between successive tabulated values 
of Pr[X 5 XI rarely exceed 0.005. 

Tables of the standard Wald probability density function (15.3) and 
cumulative distribution function (15.16) have been published by Krapivin 
(1965). They contain values of each function to six significant figures for 

and for various values of x.  The coverage of x decreases with the increase in 
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the values of 4. For example, when 4 = 0.01, one has 

and when 4 = 2.0, x = 0(0.01)2(0.05)7(0.2)12.0. These tables also contain 
the modal values to six significant figures for 

Chan, Cohen, and Whitten (1983) give tables of FJx) to 6 decimal places for 
x = -3.0(0.1)5.9 with a, = 0.0(0.1)1.2 and x = - 1.5(0.1)7.4 with a, = 

1.3(0.1)2.5. Extensive tables of percentage points of the IG(A, A ~ )  distribution 
indexed by parameter A for 

and for cumulative probability 0.001,0.005,0.01(0.01)0.99,0.995,0.999, are 
presented to eight significant figures in a CRC Handbook (1989) (J. A. 
Koziol, editor). 

11 APPLICATIONS 

Inverse Gaussian distributions have been used to explain the motion of 
particles influenced by Brownian motion [Wasan (1968b)l. In particular, they 
have been used to study the motion of particles in a colloidal suspension 
under an electric field [Tweedie (1947)l. 

It has been suggested [Tweedie (1957a)l that because of the statistical 
independence between X and l/h^, an analogue of the analysis of variance 
for nested classifications can be performed. This analogue uses the tables of 
x2 and F developed for the analysis of variance where the measure of 
dispersion is given by (15.22b). 

The main, and the most familiar, applications of Wald distributions are in 
sequential analysis [e.g., Wald (1947); Bartlett (195611. Some authors have I 

used this distribution in various physical applications connected with diffi- 
sion processes with boundary conditions. It appears in the calculation of the 
distribution of time of first hitting the boundary in a random walk. 

In Russian literature on electronics and radiotechnique, the Wald distri- d 

bution is often used, and several studies on this distribution have been 
published in these journals [e.g., Basharinov, Fleishman, and Samochina 
(1959); Sigangirov (1962)l. [The Krapivin (1965) extensive tables described 
above have also been published by the Soviet Institute of Radiotechnique 
and Electronics.] 
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Marcus (1975) has suggested that an inverse Gaussian distribution might 
be used in place of a lognormal distribution when a longtailed distribution is 
expected to be appropriate-for example, in distribution of particle size in 
aggregates [see Bardsley (1980) for a related application in meteorology and 
also Lawrence (1984) in business applications]. If distributions of sums of 
independent random variables (convolutions) are to be studied, it may be 
useful to remember that if the mutually independent random variables XI 
(i = 1,. . . , n) are distributed as IG(p,, cp?), respectively, then (XI + X2 
+ - . +X,) has an IG(Cy, ,p,, c(C;= 1p,)2) distribution (see page 267). 

In recent years the inverse Gaussian distribution has played versatile roles 
in models of stochastic processes including the theory of generalized linear 
models [McCullagh and Nelder (1983)], reliability and lifetime data analysis 
[Padgett and Tsai (1986)], accelerated life testing [Bhattacharyya and Fries 
(198211, and repair time distributions, especially in cases of preponderance of 
early failures [Chhikara and Folks (1977)l. In industrial quality control 
Edgeman (1989a, b) has developed control charts and sampling plans based 
on inverse Gaussian process distributions. 

More recently Dhulesia, Bernicet, and Deheuvels (1991) have provided 
theoretical justification, based on the properties of Brownian motion with 
drift, for preferring inverse Gaussian to lognormal or gamma distributions to 
describe distributions of slug lengths in pipelines, and verified this conclusion 
by fitting data. (The fit often breaks down for very short slug lengths, which 
are likely to be produced by special physical phenomena.) 

Hougaard (1984) and Feaganes and Suchindran (1991) advocates the use 
of the inverse Gaussian distribution for distribution of "frailty" [a concept 
recently developed in survival analysis; e.g., see Hougaard (198411. Frailty 
occurs in models of heterogeneity. Ordinary life table analyses implicitly 
assume that population is homogeneous. If z is frailty, then the hazard rate 
(or death rate) at age t for a person with frailty z is assumed to be of the 
multiplicative form 

e ( t ;  z )  = zO(t), 

where B(t) is independent of z and describes the age effect. 
An advantage of using inverse Gaussian to represent the distribution of 

frailty is its closure property. If frailty in the population is distributed as an 
inverse Gaussian at the formation of the cohort (e.g., birth), then frailty will 
still have an inverse Gaussian distribution among survivors at any time after 
the formation of the cohort. In fact, if the frailty is distributed as IG(p, A), 
then the distribution of z given T 2 t is IG(p,, A), where p t  = 
p{l - 2Aj~-~j$I(u) d ~ ) - ' / ~ .  

Another advantage is that the coefficient of variation for this conditional 
distribution of heterogeneity decreases with age (unlike the case of the 
arnma distribution where it remains constant); that is to say, the survivors 
ecome more identical with the passage of time. 
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C H A P T E R  1 6  

Cauchy Distribution 

1 HISTORICAL REMARKS 

The density function .rr-'(1 + x2)-', that is commonly referred to as the 
Cauchy density, or rather curves proportional to (x2 + a2)-'-have been 
studied in the mathematical world for over three centuries. An excellent 
historical account of the distribution has been prepared by Stigler (1974). As 
he points out, the curve seems to have appeared first in the works of Pierre 
de Fermat in the midseventeenth century and was subsequently studied by 
many including Sir Isaac Newton, Gottfried Leibniz, Christian Huygens, . 
Guido Grandi, and Maria Agnesi; interestingly the curve had acquired the 
name the "Witch of Agnesi" derived from the name of the last-mentioned 
Italian mathematician who lived from 1718 to 1799. She had discussed the 
properties of the Cauchy curve and referred to it as la Versiera (Italian for 
"witch7'), following the term introduced by Grandi (1718). Grandi's construc- 
tion and interpretation of the Cauchy density is very simply the locus of 
points C in Fig. 16.1 as K goes from - ao to GO with the angle at C remaining 
a right angle. 

SimCon Denis Poisson (1824) was the first to notice that the distribution 
with density .rr-'(l + x2)-l has some peculiar properties and could provide 
counterexamples to some generally accepted results and concepts in statis- 
tics. For example, by presenting the characteristic function of the Cauchy 
distribution, Poisson showed that a proof given by Laplace for the large-sam- 
ple justification for Legendre's principle of least squares through the central 
limit theorem breaks down as the second term in Laplace's expansion of the 
characteristic function would not be negligible for large n (the sample size). 
As Eisenhart (1971) indicated, it is this simple form of the characteristic 
function that may have led Poisson to consider this heavy-tailed density 
function. But this distribution, known as the "Cauchy distribution," became 
associated with Augustin Louis Cauchy (1853) when he, in response to an 
article by I. J. BienaymC (1853) criticizing a method of interpolation sug- 
gested earlier by Cauchy, considered the density function and showed that 
Legendre's least-squares does not provide the "most probable results'' in this 
case as it does in the case of normally distributed errors. More elaborate 
historical details in this regard are in Stigler (1974)., 
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Figure 16.1 Grandi's 1718 Construction of the "Cauchy" Density. 

2 DEFINITION AND PROPERTIES 

The special form of the Pearson Type VII distribution, with probabilitjr 
density function 

is called the Cauchy distribution [Cauchy (1853) eq. (251, p. 2061. The 
cumulative distribution function is 

The parameters 8 and A are location and scale parameters, respectively. 
The distribution is symmetrical about x = 8. The median is 8; the upper and 
lower quartiles are 8 f A. The probability density function has points of 
inflexion at 8 f A / f i .  It may be noted that the values of the cumulative 
distribution at the points of inflexion are 0.273 and 0.727, as compared with 
the corresponding values 0.159 and 0.841 for the normal distribution. 

If X has pdf (16.0, then the probability density function of Y = A + EX 
is of the same form as that of X, with 8 replaced by A + B8 and A replaced 
by IBlA. The distribution does not possess finite moments of order greater 
than or equal to 1, and so does not possess a finite expected value or 
standard deviation. (However, 8 and A are location and scale parameters, 
respectively, and may be regarded as being analogous to mean and standard 
deviation.) Goria (1978) derived expressions for the fractional absolute mo- 
ments of a Cauchy variable. The most notable difference between the normal 
and Cauchy distributions is in the longer and flatter tails of the latter. These 
differences are illustrated in Tables 16.1 and 16.2. 

It should be mentioned here that Balanda (1987) carried out a kurtosis 
comparison of the Cauchy and Laplace distributions. Although the coefficient 
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Table 16.1 Comparison of Cauchy and Normal Distributions 

P d X  5 X I  Pr[X 5 x ]  

x Cauchy Normal x Cauchy Normal 

0.0 0.5000 0.5000 2.2 0.8642 0.9311 
0.2 0.5628 0.5537 2.4 0.8743 0.9472 
0.4 0.6211 0.6063 2.6 0.8831 0.9602 
0.6 0.6720 0.6571 2.8 0.8908 0.9705 
0.8 0.7148 0.7053 3.0 0.8976 0.9785 
1.0 0.7500 0.7500 3.2 0.9036 0.9845 
1.2 0.7789 0.7919 3.4 0.9089 0.9891 
1.4 0.8026 0.8275 3.6 0.9138 0.9924 
1.6 0.8222 0.8597 3.8 0.9181 0.9948 
1.8 0.8386 0.8876 4.0 0.9220 0.9965 
2.0 0.8524 0.9113 

Note: The Cauchy distribution is in standard form (16.3); the normal distribution has expected 
value zero and standard deviation (0.67445)-I = 1.4827. The two distributions have the same 
median ( x  = 0) and upper and lower quartiles ( x  = f 1). Since both distributions are symmetri- 
cal about x = 0, there is no need to tabulate negative values of x .  

of kurtosis p, is infinite for Cauchy and 6 for the double exponential, 
Balanda noted that this moment-based comparison is inadequate, since it 
fails to recognize the dominant features of the two distributions: the Cauchy's 
long tail and the double exponential's dramatic peak (see Chapter 24). For 
example, Horn (1983) classified the double exponential as being more peaked 
than the Cauchy distribution, while Rosenberger and Gasko (1983) classified 
the Cauchy as having heavier tails than the double exponential distribution. 
Since the moment-based orderings are not helpful because none of the 
Cauchy's moments are finite as mentioned earlier, Balanda made a kurtosis 
comparison using kurtosis orderings following the lines of van Zwet (1964) 
(see Chapter 33). 

Table 16.2 Percentage Points 
of Standard Cauchy Distribution 
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There is no standardized form of the Cauchy distribution, as it is not 
possible to standardize without using (finite) values of mean and standard 
deviation, which do not exist in this case. However, a standard form is 
obtained by putting 8 = 0, A = 1. The standard pdf is 

F 1 ( 1  + x2)  -' (16.3) 

and the standard cdf is 

1 
- + .rr-I tan-'x. 
2 

(16.4) 

(Note that this is the t-distribution with 1 degree of freedom; see Chapter 28.) 
Values of (16.4) are shown in Table 16.1. Percentage points [values X, such 
that Pr[X s X,] = a] are shown in Table 16.2. 

The characteristic function corresponding to (16.1) is 

E[eirX] = exp[it8 - ItlA]. (16.5) 

If XI, X2, . . . , Xn are independent random variables with pdf s 

2 -1 
x - ej 

pxjx)  = (.rrAj)-l[1 + ( _ )  ] , 4 > 0; j = 1,2,. . . , n, (16.6) 

then the characteristic function of Sn = Z7=,Xj is 

exp it Oj - It1 A j  . 
j= 1 I j- 1 I 

Hence Sn has a Cauchy probability density function, as in (16.1), with 
A = Ci",,Aj; 8 = C7,18j. More generally, Cy,lajXj has a Cauchy probability 
density function, as in (16.1) with A = C7,, laj(Aj; 8 = Z,", ,ajfIj. In particu- 

A - A  - ... 
1 -  2 -  = A n  =A, 

8, = 0, = ... = O n  = 8, 

a1 = a 2  = ... = an = n-1 

see that the arithmetic mean n-'Z~,,Xj of n independent random 
iables each having probability density function (16.1) has the same Cauchy 

stribution as each of the Xj7s. It should be pointed out here that Dwass 
1989, Nelsen (19851, and Blyth (1986) derived the distribution of a sum of 
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independent Cauchy random variables using the convolution formula (instead 
of the more advanced characteristic function approach described above). 

Thus the Cauchy distribution is a "stable" distribution and is also 
"infinitely divisible." Puglisi (1966) has shown that a variable with a 
Cauchy distribution can be represented as the sum of two independent 
random variables, each having infinitely divisible, but not stable, distributions. 
DuguC (1941) presented a decomposition of Cauchy using Raikov theorem. 
Bondesson (1987) has shown that the half-Cauchy (or folded-Cauchy) distri- 
bution is infinitely divisible. Similarly Rohatgi, Steutel, and SzCkely (1990) 
have proved that the product and quotient of two i.i.d. standard Cauchy 
random variables, with density as in (16.3), are infinitely divisible too. 
Springer and Thompson (1966) have obtained explicit formulas for the 
probability density function of the product of n (1 10) independent and 
identically distributed Cauchy variables (each with 0 = 0, A = 1). 

If XI and X2 are independent, and each has a standard Cauchy distribu- 
tion, then (blXl + b,X2) has a Cauchy distribution and is in fact distributed 
as (Ibll + Ib21)X,. Pitman and Williams (1967) have extended this result, 
obtaining [in a form suggested by Williams (1969)l: 

"Suppose that the sets of numbers (wj)  and (a j )  are such that wj 2 0, Cy-!wj = 1, 
and (a j )  possesses no limit point. Then, if X has a standard Cauchy distribution, 
so does 

Similarly, when X has a standard Cauchy distribution, Kotlarski (1977) has 
shown that for n = 2,3,. . . , the random variables 

all have the same standard Cauchy distribution. 
Gupta and Govindarajulu (1975) derived the distribution of the quotient 

of two independent Hotelling's T~-variates in terms of a hypergeometric 
function of the second kind, which includes the distribution of the quotient of 
two independent Cauchy variates as a special case. Eicker (1985) proved that 
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sums of independent squared Cauchy variables grow quadratically, that is, 

for any positive o(1) sequence; see Bose (1987) for some further remarks in 
this direction. Zhang (1990) has discussed the distribution of the squared sum 
of independent Cauchy variables. Salama (1983) has discussed additional 
problems associated with the Cauchy distribution. 

3 ORDER STATISTICS 

If XI, X,, . . . , Xn are independent random variables each with standard 
Cauchy density function (16.3), and Xi I Xi I . . . Xi are the correspond- 
ing order statistics, then the density function of Xi (1 I r I n) is 

and the joint density function of X: and Xi (1 I r < s I n) is 

n-s 

tan-' y - - tan-' x 
,rr 

E Since the standard Cauchy random variable does not possess finite moments 
I of order r 1, an application of Sen's (1959) theorem immediately reveals 
/ that expected values of Xi and XA, and the variances of Xi, Xi, XA-, and 

XA are infinite; interested readers may also refer to Stoops and Barr (1971) 
1 for some insight into this existence-of-moments problem. 
i By employing numerical integration methods, Barnett (1966b) computed 

from (16.7) and (16.8) values of means, variances, and covariances of order 
statistics for sample size n = 5(1)16(2)20. Explicit expressions (involving 
infinite series) can be derived for the shgle and the product moments of 
order statistics as shown recently by Vaughan (1993). For example, one may 
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write from (16.7) that 
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n !  7r/2 r - 1  n- r  - - 
( r  - l ) ! ( n  - /-,,2(2 + Y )  (5  - Y )  tan y d y  

where I,  and I, are integrals over the ranges [O, r / 2 1  and [ - r / 2 , O ]  with the 
same'integrand. Using Gradshteyn and Ryzhik's (1965) integral formula that 
for Iyl < r and for any a 2 1, 

where BZi is the Bernoulli number given by 

BO = 1, 

BZi = ( - l ) i - 1 ( 2 i )  ! 5 ( 2 i ) / ( 2 2 i 1 r 2 i ) ,  i  2 1, 

with [ (2 i )  = C7=, j-" [see Gradshteyn and Ryzhik (1965)1, we get 

Similarly we find 

Substitution of the expressions of I, and I, in (16.10) and (16.11), respec- 
tively, into (16.9) yields 

n- r  m ( - l ) i ~ 2 i r 2 i  ' ( r  - 1 + j  + 2 i ) ( 2 i ) !  
. (16.12) 

j = O  i = O  
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Similar explicit expressions for the second moment and the product moment 
have been derived by Vaughan (1993). 

For large n, of course, one may use David and Johnson's (1954) approxi- 
mation to derive approximate expressions for the means, variances and 
covariances of order statistics as 

I 

i 

f 
and 

Writing, for example, 

ta BZi(1 - u)2i-1 
X(U)  = F i l ( u )  = cot(o(1 - u)) = x (-1)i22ir2i-1 

i=o (2i) ! 

Hall (1978) has derived an asymptotic formula for mean of Xi-, (for 
11r1n-2)as  

the error term EN is always negative and is bounded by 

where b = supi2 N+lJb2il. By using inequalities for B2i [see Abramowitz and 
Stegun (1965, p. 20811, Hall has also shown that 

L L 
- < - b  - < 2' - o ( l  - 21,-2i) 

for i 2 1, 
r 

so that b2, + -2/o as i -, m, and the error IbZi + 2/rl  is less than 

i, 4 X if i > 10. Approximate expressions for the second single moment 
8 

t 
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and the product moment similar to that in (16.17) have also been derived by 
Hall (1978). Mention should also be made of Joshi (1969), who has modified 
the orthogonal inverse expansion method of Sugiura (1962) to derive bounds 
and approximations for moments of order statistics from the Cauchy distribu- 
tion. 

The asymptotic distribution of the largest order statistic XL can be 
obtained from the general formulas of Frtchet (1927), Fisher and Tippett 
(1928), and von Mises (1936) [see Galambos (1987)l. The Cauchy distribution 
belongs to the class for which 

lim {l - F , ( X ) ) X ~  = A  > 0. (16.18) 
X-m 

The asymptotic distribution of the extremal quotient (= X;/ IX; I) has been 
discussed by Gumbel and Keeney (1950). 

4 METHODS OF INFERENCE 

It is not possible to use the method of moments to estimate 0 and A by 
equating sample and population first and second moments. (It may be 
remembered, incidentally, that it was shown in Section 2 of this chapter that 
the arithmetic mean, n-IC;,,Xj = z, has the same distribution as any one 
of the X's. Thus X is no more informative than any single one of the Xis, 
although one might feel it could be a useful estimator of 0.) It is possible to 
derive methods of estimation using moments of fractional order, but these 
are not used here. 

4.1 Methods Based on order Statistics 

The simple form of cumulative distribution function (16.2) makes it possible 
to obtain simple estimators by equating population percentage points (quan- 
tiles) and sample estimators thereof. The loop% quantile X, of the distribu- 
tion satisfies the equation 

a convenient estimator from the sample is the ~th-order  statistic, X:, with 
r = (n + 1)p. We will denote this estimator by X,. The value of X, depends 
on 8 and A. 

If p, and p,  are distinct numbers between 0 and 1, then the equations 
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lead to the estimators 

6 = ($,, cot ?rp2 - zp2 cot rp1)(cot r p 2  - cot ?rpl)-l. (16.20) 

[Note that tan[?r(p - = -cot ?rp as in (16.131.3 
In the symmetrical case with p, = p > 1/2 > 1 - p = p2, 

If the available observations can be represented by values of n indepen- 
dent random variables, XL, X,, . . . , X,, each with probability density func- 
tion of form (16.1), and X,, XI-, are appropriate order statistics [so that 
~ ( 2 , )  G X,, E(lk',_,) A XI-,I, then 

The estimators A and 6 are uncorrelated; is an unbiased estimator of 8. 
The approximate variance [by (16.24)] of 6 is minimized by taking p = 

55.65%; the corresponding value of the right-hand side of (16.24) is 2.33h2. 
The CramBr-Rao lower bound for the variance of an unbiased estimator of 8 
is 2h2/n, so the asymptotic efficiency of 6 is 86%. (The quoted lower bound 
applies whether A is known or not.) Putting r = n/2 in (16.14), we see that 
the variance of the median is approximately $r2h2/n = 2.47h2/n. The me- 
dian is an unbiased estimator of 9 with asymptotic efficiency 81%. 

Rothenberg, Fisher, and Tilanus (1964) obtained an approximation to the 
variance of the symmetrical censored arithmetic mean, 8;, say, where the 
censoring causes omission of the ipn  (approx.) lowest and ipn  (approx.) 
highest observed values in a random sample of size n. The formula they 
obtained is 

The statistic 8 is an unbiased estimator of 8. By taking p 0.76 the 
right-hand side of (16.25) attains its minimum value 2.28h2. The asymptotic 
efficiency of the estimator 8; is then 88%. [See also Bloch (19661.1 
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This "optimum" 8 uses the values of only the central 24% of the 
observations, while the "best" pair of order statistics to use in 6 are 
separated by only the central 11% of observations. For the normal distribu- 
tion (see Chapter 13, Section 8) considerably larger central groups of obser- 
vations give "optimum" results. This reflects the greater variability in the 
"tails" of the Cauchy distribution. 

Bloch (1966) discussed the asymptotic best linear unbiased estimation of 8 
based on k optimally selected quantiles, by following the method of Ogawa 
(1951). Let XA, s XA2 I s XAL be the k-order statistics of interest, and 
let Xel, Xe2,. . . , Xet be the corresponding population quantiles, that is, 
F(Xei) = ti for i = 1,2,. . . , k. It is then known from Ogawa (1951) that the 
asymptotic relative efficiency of the BLUE of 8 is 

where 

- 1. The optimal value of with pi = px(XSi), PO = P ~ + I  = 0,50 = 0, & + I  - 
5 = ( t l , .  . . , t k )  may be obtained by minimizing K ,  in (16.27) with respect to 
t l , .  . . , tk. The corresponding ABLUE is then given by 

We note here that Kariya, Sinha, and Subramanyam (1981) derived nearly 
efficient estimators for 8 based on 3 or 5 optimally determined order 
statistics. Chan (1970) discussed the asymptotic best linear unbiased estima- 
tion of the parameters 8 and A based on k optimally selected order statistics, 
when one or both parameters are unknown. For example, by assuming the 
spacing to be symmetric, he determined the optimal spacings for the estima- 
tion of 8 when A is known. Chan also showed that the asymptotic best linear 
unbiased estimates of 8 and A, when both are unknown, determined by the 
spacings ti = i/(k + I), i = 1,2,. . . , k, have joint asymptotic relative effi- 
ciency of at least 65% for all k > 2. 

Balmer, Boulton, and Sack (1974) showed however that in the case of the 
estimation of 8, when A is known, optimal k-spacings (corresponding to the 
maximum asymptotic relative efficiency) are asymmetric when k = 4m - 1, 
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which is in contrast to Chan's assumption of symmetric spacing. By combin- 
ing a dynamic programming procedure and Newton-Raphson iteration meth- 
ods, they determined accurately the optimal spacings for k = 3, 7, and 11. 
They also proved that the spacings ti = i/(k + 11, i = 1,2,. . . , k, is in fact 
the optimal spacing for the joint estimation of 0 and A; see also Chan, Chan 
and Mead (1973) and Cane (1974). Furthermore the joint asymptotic relative 
efficiency of the ABLUEs 8** and A**, based on the aforementioned k 
optimal spacings, is given by 

and 0** and A** are given by 

k k 

0** = aiXLi and A** = biXLi, (16.31) 
i = l  i- 1 

where 

[For details, see Sarhan and Greenberg (1962).1 Tests of hypotheses concern- 
ing 0 = 0, and (0, A) = (O,, A,) have been considered by Chan and Cheng 
(1971) and Saleh, Hassanein, and Brown (1989, respectively, based on these 
k-optimal ABLUEs. 

Among estimators of form C7,,ajX,! (i.e., linear functions of order statis- 
tics) the following values of give asymptotically optimum estimators: 

For 0, 

sin 47r( j(n + 1) -' - f ) 
(Y. = 

I t a n a ( j ( n  + I)-' - i) ' 

For A, 

[See Chernoff, Gastwirth and Johns (1967).1 Barnett (1966b) determined the 
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BLUE of 8 given by 

and its variance given by 

where lT = (1,1,. . . ,1) and C is the variance-covariance matrix of n - 4 
central order statistics. He has tabulated the coefficients c,  in (16.32) and 
Var(B*) in (16.33) for sample sizes up to 20. Weiss and Howlader (1988) 
extended Barnett's work by tabulating the BLUES of 8 and A for sample 
sizes up to 20 (since 8* and A* are uncorrelated due to the symmetry of the 
Cauchy distribution, they had to present tables only for A*). Weiss and 
Howlader (1988) also presented a simple linear estimator for A to be 

where r = n - 4 for even n ( I ,  = {3,4,. . . , n - 2)) and r = n - 5 for odd n 
( I ,  = {3,4,. . . , (n  - 1)/2, (n + 3)/2,. . . , n - 2)) and Gi = (i - 2 + $)/ 
(n - 1) for i < n/2 with Gn-i+ ,  = 1 - Gi.  They show that the estima- 
tor in (16.34) has almost minimum mean squared error even for small 
samples. Some simplified linear estimators for 8 and A based on 
quasi-midranges and quasi-ranges, respectively, were proposed earlier by 
Raghunandanan and Srinivasan (1972) for the complete sample case as well 
as in the case of symmetrically Type-I1 censored samples [also see Haq 
(19701. 

4.2 Maximum Likelihood Inference 

Based on n observations x , ,  x,, . . . , x ,  from the Cauchy density in (16.11, we 
have the likelihood equations for 8 and A to be 

and 

For the problem of estimating 8 when A is known, the likelihood function 
is occasionally multimodal. In fact, for a sufficiently small A, it will have n 
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local maxima-one close to each of the n observations [see Edwards (1972)l. 
In general, the MLE of 8 when A is fixed is a root of a polynomial of degree 
2n - 1 [refer also to Reeds (1985)l. Barnett (1966a) discussed a numerical 
method of finding a global maximum of 8. For this global optimization 
problem, given an easily derived upper bound on the second derivative of the 
negative of the log-likelihood function, Wingo (1983) prescribed the usage of 
Brent's (1973) univariate numerical global optimization method to locate the 
absolute maximum among several relative maxima, instead of performing an 
exhaustive search over the entire real line. In this case, even though the 
likelihood equation for 8 has multiple roots, Bai and Fu (1987) proved that 
the maximum likelihood estimator 6 (the global maximum) converges to 8 
exponentially and is an asymptotically efficient estimator in the Bahadur 
sense. Haas, Bain, and Antle (1970) developed numerical methods for solving 
the likelihood equations in (16.35) and (16.36). Hinkley (1978) conducted 
large-scale simulations (based on 40,000 samples of size 20 and 20,000 
samples of size 40) and very rarely observed the Newton-Raphson procedure 
to fail to converge. Copas (1975) and Gabrielsen (1982) showed that the joint 
likelihood function for 8 and A is unimodal. Hence the two-parameter 

/ situation is easier to handle than just the location-parameter case in that 
even simple schemes, such as the steepest ascent, will enable to determine 
the MLEs of 8 and A. 

For a sample of size 2, Haas, Bain, and Antle (1970) showed that the MLE 

t of (8, A) is not unique and that all MLEs (6, i) for observations x, and x, 
with x, < x, are given by 

A 

x, 1 8 1 x, and 

For an arbitrary sample size, Copas (1975) showed that the only time the 
MLE of (0, A )  is not unique is when half the observations are at a point x, 
and the other half at a point x,, when the MLE (6, i) is again given by 
(16.37). When otherwise half or more of the observations are at a point x,, 
the maximum of the likelihood function occurs at 6 = x ,  and i = 0, a 
singular point for the likelihood equations in (16.35) and (16.36). However, in 
all other cases, the MLE of (8, A) is the unique root of the likelihood 
equations in (16.35) and (16.36). Curiously enough, Ferguson (1978) showed 
that closed-form expressions exist for the MLE (6, for samples of size 3 
and 4. 

Based on a sample of size 3 denoted by x,, x, and x, with x, < x, < x,, 
Ferguson (1978) presented the MLEs of 8 and A as 
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Observe that 6 in (16.38) is a weighted average of the three observations with 
weights proportional to the squares of tke diff~ences of the other two. A 
direct substitution of the expressions of 8 and A in (16.38) and (16.39) into 
formulas (16.35) and (16.36) will readily reveal that these estimates are in fact 
the MLEs (due to the uniqueness of the MLE established by Copas). 

Based on a sample of size 4 denoted by x,, x2, x,, and x4 with 
x, < x2 < x3 < x4, Ferguson (1978) similarly presented the MLEs of 8 and A 
as 

Observe that 6 in (16.40) is a weighted average of the two middle-order 
statistics with weights proportional toAthe distance of the opposite outlier 
from its neighbor, if we write 8 = a x 2  + (1 - a)x,, where a = 

(x4 - x3)/{(x4 x,) + JxZ - x,)). Once again, a direct substitution of the 
expressions of 8 and A in (16.40) and (16.41) into formulas (16.35) and 
(16.36) will readily zeveal that (8", i) is in fact the MLE. 

The fact that 8 is a weighted average of the sample values can be 
established easily for any sample size n. To do this, let us first rewrite the 
likelihood equations in (16.35) and (16.36) as 

Upon dividing (16.43) by (16.42), we see immediately that 6 is a weighted 
average of the sample observations xi (a result we have seen already 
explicitly for n = 3 and 4). 

An interesting property of 0 in (16.38) and (16.40) is that outlying 
observations have a negative effect. To be precise, changes in the values of 
observations in the lower and upper extreme values have the effect of 
pushing the estimate in the opposite direction. As Ferguson pointed out, this 
occurs even for equally spaced observations in a sample of size 3. To see this 
effect, let x, = - 1, x2 = 0 and x, > 0 in (16.38) so that 

At x, = 1, we have 8"(x3) = 0 as it should be, due to the symmetry, but for 
x, > 1 we see that &x,) < 0. In fact (d/dr3)8"(x3) < 0 for all x, > (6 - 
1)/2 = 0.366.. . . This interesting property had been noticed earlier by 
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i Barnett (1966b), Bloch (1966), Chan (1970) and Balmer, Boulton, and Sack 
I (1974) in the best linear unbiased estimator of 8. 
i Quite recently McCullagh (1992a, b, c; 1993) established some remarkable 

/ results on properties of the MLEs. First of all, he considers n i.i.d. variables 

e from a Cauchy population with density function 

in which x is a real number and q = I9 + ih is the Cauchy parameter 
represented as a complex number. The parameter space here should be 
taken as the complex plane in which complex conjugate pairs of points are 
identified; this set is isomorphic to the upper half-plane. He then proved that 
for any function h(.) analytic on the upper half-plane, h(6) is unbiased for 
h(q) provided that the expectation exists. For example, it immediately 
implies that E(5) = q for n r 3, E ( + ~ )  = q k  for integer k 5; n - 2, 
E(log 4) = log 17 for n r 3, and so on. Furthermore the Cauchy family has 
the property (as mentioned earlier in Section 2) that if X -, Cauchy(q), then 

for all real numbers a ,  b, c, and d with ad  - bc # 0. That is, the Cauchy 
family of distributions is closed under the action of the real Mobius group G, 
and the parameter is equivariant. Let T = TI + iT2 be the MLE of q = I9 + 
iA based on sample observations xi, i = 1,. . . , n. It then immediately follows 
from (16.45) that 

That is, if the components of x are transformed by h E G, the MLE derived 
from h\: will be the same as the transformation h applied to the MLE based 
on x. In other words, T is equivariant under G. Upon exploiting this 
equivariance feature, McCullagh proved that the joint density of T has the 

1 
P ( ~ I ,  t2; = =P"(X), (16.47) 

here ,y = It - q 12/(4t2h). He derived explicit expressions for p,(,y) and 
X) and also the asymptotic large-sample limit. Note that in this derivation 
the distribution of T, explicit closed-form expression of T is not required 

though the closed form expressions of the MLEs given earlier for n = 3 
d 4 offer no help in obtaining the joint density function. It is the form of 

density in (16.47) that is used by McCullagh to establish the remarkable 
rty that E[h(T)] = h(q) if h(-)  is harmonic and the expectation is 
. A9 an immediate consequence, of course, we have the result that both 
ponents of the MLE are unbiased for n r 3. 



314 CAUCHY DISTRIBUTION 

Further, by using the explicit expressions of 

McCullagh derived fairly simple forms for the marginal densities of Tl = 6 
and T2 = i for sample sizes 3 and 4. For example, when n = 3, 

where E = 4t;/{3(1 + t;)2). Interestingly the density of T, given above is 
approximately the positive half of a Student's t-distribution on two degrees of 
freedom (see Chapter 28), since the second factor is bounded between 0.83 
and 1.0 as E is between 0 and 5 .  

4.3 Conditional Inference 

Suppose that XI, X2, . . . , X,, are i.i.d. random variables from Cauchy popu- 
lation with density as in (16.1). Fisher (1934) observed that the configuration 
statistic A with components ai = (Xi - &/i is ancillary in the sense that the 
distribution of A does not depend on the parameter (8, A) as is evident from 
the invariance of A under location and scale transformations. Here 6 and 
need not be the maximum likelihood estimators. In fact, any pair of equivari- 
ant estimators for (8, A) will suffice. The basic philosophy behind this method 
of inference [Fisher (1934)l is that the precision with which the parameters 8 
and A are estimated depends on the configuration observed, some configura- 
tions being more informative than others; as a result the appropriate 
distribution thatAshould be used for inferential purposes is the conditional 
distribution of (8, i) given the observed value of the configuration ancillary. 

Lawless (1972) discussed conditional confidence interval estimation proce- 
dures for 8 and A. He discussed three cases separately: (1) 8 unknown, A 
known; (2) 8 known, A unknown; and (3) both 8 and A unknown. After 
discussing the computational aspects of using this conditional inference 
approach, he made some numerical comparisons of the conditional confi- 
dence interval procedures and the unconditional confidence interval proce- 
dures. We will describe this method of inference by considering case (3). 
First, we have the conditional joint density function of 6 and i, given A = a, 
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where C = C(a,, . . . >a,-,) is the nomalizing constant. It is clear that z, = 

(6 - 8)/A and 2, = A / A  are pivotal quantities, with joint conditional density 

From (16.49) it is of interest to consider the joint conditional density of 
2, = z,/z, and z,, which is given by 

To make inferences about 8 when A is unknown, 2, should be integrated out 
of (16.50) to obtain the marginal distribution of 2, = (6  - 8)/& conditional 
on the observed a,, . . . , a,-,. Similarly, to make inferences about A when 8 
is unknown, z3 should be integrated out of (16.50) to obtain the marginal 
distribution of 2, = ;/A, conditional on the observed a,, . . . , a,-,. Comput- 
ing probabilities for the marginal distributions of 2, and z, is too compli- 
cated and quite time-consuming. So Lawless (1972) suggested either looking 
at a plot of contours of (16.50) or at plots of the conditional densities 
p(z31z2) and p(z,lz,) for a few selected values of the conditioning variable. 
Recently McCullagh (1992a, b) gave a nice discussion on the choice of 
ancillary in reference to the Cauchy case. He specifically showed that the 
configuration ancillary is not unique and that the choice of ancillary has some 
effect on conditional probability calculations. For moderate deviations he 
showed that the choice of ancillary has very little effect on probability 
calculations with the asymptotic effect being at most of order OP(n-'). In 
case of large deviations, the relative or logarithmic difference between the 
two conditional densities is Op(n1/2) and unbounded in probability as ri + m. 

McCullagh (1992b) showed that there exist moderate deviation approxima- 
tions with absolute error O(n-') that are independent of the choice of 
ancillary, given that (7j, A) is sufficient. 

4.4 Bayesian Inference 

Starting with the "vague prior" 

and combining it with the likelihood function based on the sample x , ,  . . . , x,,  
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we obtain the joint posterior density of 8 and A as 

Then, the Bayesian estimators of 8 and A, under the squared-error loss 
function, are the posterior means given by 

Note that these estimators, unlike in the case of a location parameter 8 
alone, do not minimize the squared-error loss among equivariant estimates. 
One needs to start with the prior density d8 dA/A3 in order to derive such 
estimates. 

In deriving a best invariant test for the normal distribution against a 
Cauchy alternative, Franck (1981) evaluated integrals similar to those in 
(16.53) and (16.54). Spiegelhalter (1985) obtained closed-form expressions for 
the Bayesian estimators of 8 and A which, for odd values of n larger than 3, 
are 

A 1 CCi < j ~ i j ( ~ i  + xj)log dij e, = - , (16.55) 
2 LCi < jwij log dij 

where 

Refer to Spiegelhalter (1985) for similar expressions for the Bayesian estima- 
tors of 8 and A for even values of n. 

Howlader and Weiss (1988a) pointed out that the exact formulas given 
above are difficult to compute and require great computational precision as 
these estimates are very unstable and often blow up in values. Through an 
empirical Monte Carlo study that they carried out, they also observed that 
the exact method often grossly overestimated A, especially for small values of 
n. It is for this reason that Howlader and Weiss (1988a) derived some 
approximate Bayesian estimators by using a method of approximating ratios 



of integrals [e.g., (16.53) and (16.5411 due to Lindley (1980). They then 
showed that these approximate Bayesian estimators perform very well in 
comparison to the MLEs. It should be mentioned here that Lindley's (1980) 
expansion, a method similar to the one employed by Hinkley (1978) in 
correcting for the bias of the MLE and the method of Efron (1975) on 
second-order efficiency, has been compared by Howlader and Weiss (1987) to 
another method of approximating ratios of integrals due to Tierney and 
Kadane (1986). In comparing the performance of the two methods under the 
Cauchy model, Howlader and Weiss (1987) observed that the former (even 
though is computationally more tedious) remains quite stable even for small 
sample sizes (unlike the latter). It is of interest to add here that the Bayesian 
estimation of the reliability function R,(t) of the Cauchy density in (16.1) 
has been discussed by Howlader and Weiss (1988b). 

4.5 Other Developments in Inference 

Efron and Hinkley (1978), when making an excellent assessment of the 
normal approximations to the distribution of the maximum likelihood estima- 
tor in one-parameter families (with the variance approximation by either the 
expected total Fisher information or the observed information), used Cauchy 
distribution as an example. Barnard (19741, in response to an article by 
Bailey (1973), pointed out that in the problem of data reduction one's 
interest is typically to reduce a number of independent observations whose 
distribution involves an unknown parameter 8 to an equivalent single obser- 
vation (ESO), whose distribution also involves 8, in such a way that the 
information about 8 in the set of observations is exactly (or at least nearly) 
equivalent to that in the ESO. When 8 is the location parameter, it so 
happens that the form of the distribution of the ESO is the same (apart from 
a scaling factor) as that of the original observations in the case of normal and 
uniform distributions. However, Barnard (1974) mentioned that this property 
is rather exceptional and cited the Cauchy distribution in which case for 
n = 2 the distribution differs from Cauchy in being bimodal. 

Higgins and Tichenor (1977) proposed "window estimates" for 8 and A, 
and also established the consistency and asymptotic normality of these 
estimates. They further showed that the asymptotic distribution of these 
window estimates is the same as that of the MLEs. Through an empirical 
comparative study, Higgins and Tichenor (1978) showed that the window 
estimate of 8 is nearly optimal for n 2 40 and is as efficient as many other 
estimates for n 2 20; further they displayed that the window estimate of A is 
nearly optimal even for samples of size 10. 

Kadiyala and Murthy (1977) considered the problem of estimation of a 
linear regression with Cauchy disturbances. They compared the performance 
of the ML method and the minimum sum of absolute errors method for this 

; specific estimation problem. 
1 Koutrouvelis (1982) discussed a method of estimation of 8 and A using the 

empirical characteristic function. Interestingly enough, the determination of 
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optimum values at which the empirical characteristic function needs to be 
evaluated for this method of estimation reduces to the determination of the 
asymptotically optimum quantiles for the parameter estimation of an expo- 
nential distribution by linear functions of order statistics; the latter has a 
known solution by Ogawa (1960) (also see Chapter 19). These estimators are 
shown to be asymptotically independent and normally distributed, achieving 
high asymptotic efficiencies. Feuerverger and McDunnough (1981a, b) also 
considered this empirical characteristic function approach but restricted it to 
the determination of the optimum uniform spacing between the points. 

Beckman and Johnson (1987) discussed the fitting of the Cauchy distribu- 
tion (Student t-distribution, more generally) to grouped experimental data by 
means of a grouped MLE approach. A final mention has to be made to the 
asymptotically optimal tests proposed by Philippou (1988) based on the 
concept of contiguity. 

5 GENESIS AND APPLICATIONS 

The standard Cauchy distribution with 8 = 0, A = 1, as in (16.3), is the 
distribution of central t with one degree of freedom (Chapter 28). It is thus 
the distribution of the ratio U/V, where U and V are independent unit 
normal variables. An interesting application of this distributional result was 
illustrated by Stigler (1989); he used this result to derive an explicit expres- 
sion for bivariate normal orthant probabilities, namely Pr[Z, I 0, Z2 I 01, 
where ( Z , ,  z , ) ~  has a standard bivariate normal distribution with correlation 
coefficient p, as follows. Define V = (Z2 - pZl)/ d m ;  then V is stan- 
dard normal and independent of 2, (since the covariance is 0). Noting now 
that Z, 5 0 is equivalent to V I -cZ,, where c = p/ d q ,  we have 

Pr[Z, 1 0, Z2 5 01 = Pr[Z, 1 0, V I -cZ,] 

= P~[z ,  I 0, V I c l ~ , l ] .  

Now by the symmetry of the distribution of Z, (and since Pr[Z, = 01 = 0) 

from the fact that V/ IZ,l has a standard Cauchy distribution. 
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However, it should be mentioned that the common distribution of U and 
V need not be normal. For example, the ratio U/V has a Cauchy distribu- 
tion if 

[Laha (1959b)l. Other examples have been given by Laha (1959a1, Mauldon 
(1956), Fox (1965), Steck (1958), Kotlarski (1960), and Roslonek (1970). Note 
that since U and V have identical distributions, V/U and U/V must have 
identical distributions. Hence, if X has the probability density function 
(16.3), so does X-'. 

Since, provided b, and b, are not both zero, 

it follows that if X has a Cauchy distribution, so does (b,X + b2)-'. This 
result was obtained in this way by Savage (1966), and by direct calculation by 
Menon (1966). [Note that if U and V are independent standard normal 
variables, so are (blU - b2v)(b; + b:)-'l2 and (b2U + b,~)(b:  + b;)-'l2 
(see Chapter 13, Section 3).] When X and Y are independent normal 
variables with means p l  and p2 and variances a: and a;, respectively, then 
Kamerud (1978) derived the density function of the random variable X/Y 
which, for the special case when p1 = p2 = 0 and a, = u2 = 1, reduces to 
the standard Cauchy density. 

Arnold and Brockett (1992) proved by simple arguments that, when 
U = (U,, . . . , U,JT has a spherically symmetric distribution, then for i # j, 
U,/U, has a standard Cauchy distribution [see also DeSilva (1979)l. More 
generally, Arnold and Brockett (1992) also established that when V = 
(V,, . . . , VJT has an elliptically symmetric distribution, then for i # j, K/c 
has a general Cauchy distribution. 

The Cauchy distribution is obtained as the limiting distribution of 
n-'Cy, ,x,: ' as n + w, where XI, X,, . . . are independent identically dis- 
tributed random variables with common density function px(x) satisfying the 
conditions [Pitman and Williams (1967)l 

1. ~ ~ ( 0 )  > 0, 
2. px(x) continuous at x = 0, 
3. px(x) possesses left-hand and right-hand derivatives at x = 0. 

Since the reciprocal of a Cauchy variable also has a Cauchy distribution, it 
follows that the limiting distribution of the harmonic mean, under these 
conditions, is Cauchy. Shapiro (1978) discussed the rate of convergence of 
distribution functions of sums of reciprocals of random variables to the 

r, 
1 
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Figure 16.2 Geometric Description. 

Cauchy distributions; the limit distributions in this case have also been 
discussed by Shapiro (1988). 

The Cauchy distribution also arises in describing the distribution of the 
point of intersection P of a fixed straight line with another variable straight 
line, randomly oriented in two dimensions through a fixed point A. The 
distance OP of the point of intersection from the pivot (0) of the perpendicu- 
lar from A to the fixed line has a Cauchy distribution with 8 = 0. The 
situation is represented diagrammatically in Figure 16.2. The angle LOAP 
has a uniform (rectangular) distribution (Chapter 26) between - a / 2  (corre- 
sponding to OP = - w) and a / 2  (corresponding to OP = + m). 

On the basis of this kind of model, the Cauchy distribution may be used to 
describe the distribution of points of impact of particles from a point-source 
A with a fixed straight line. It may be noted that if the space is of s + 1 
dimensions instead of two dimensions, then the distance r, say, of the point 
of intersection with a fixed hyperplane from the foot of the perperrdrcular 
from A to the hyperplane is distributed as a multiple of central t with s 
degrees of freedom (Chapter 28). 

Spitzer (1958) has shown that if (R(t), 8(t)) are the polar coordinates of a 
random point under standard Brownian motion at time t (with R(0) > 01, 
then the distribution of {A8(t)}(i log t)-' tends to a Cauchy distribution as t 
tends to infinity, where {A8(t)} denotes the total algebraic angle turned 
through up to time t [so that {A8(t)} = [8(t) - 8(0)] mod2al. Berrnan 
(1967) established that if T is the first time that R(T) = rl, then 
(A8(~)}Ilog(r~/R(O))l-~ has a Cauchy distribution with 8 = 0, A = 

llodrl/R(0))l. 
Mukherjea, Nakassis, and Miyashita (1986) established an interesting 

property regarding the identification of Cauchy parameters by the distribu- 
tion of the maximum random variable. Specifically, consider two sets of 
Cauchy distributions with cdf s given by 
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for -m < x < m. Suppose that 

They then proved in this case that the a's are simply a rearrangement of the 
b's. 

6 CHARACTERIZATIONS 

Menon (1962, 1966), gave several characterizations of the Cauchy distribu- 
tion. Among them is the following (from (1966)): 

If XI, X,, . . . , Xn are independent, identically distributed random variables, then 
the common distribution is a Cauchy distribution if and only if, for any set of real 
numbers (bj # 0, aj} ( j  = 1,2,. . . , n) there exist real numbers B ( #  0) and A such 
that Eyj",l(aj + bjXj)-' has the same distribution as A(B + XI)-'. 

I 

! Obretenov (1961) has given the following characterization: 

If X and Y are independent and have the same distribution, then a necessary and 
sufficient set of conditions for this to be a Cauchy distribution is (i) the characteris- 
tic function d(t) = ~ ( e " ~ )  = ~(e'") has a finite non-zero righthand derivative at 
t = 0, i.e., di(O) = A # 0, and (ii) for any pair of positive real numbers a, b there is 
a positive real number c (depending on a and b) such that aX + bY has the same 
distribution as cX (or cY). 

Note that the normal distribution satisfies condition (ii), but not condition 
(i), when a and b are chosen so that E(aX + by)  = 0. A further remarkable 
characterization, due to Williams (1969), is: "If (1 + aXXa - x)-' has the 
same distribution as X, and T-' tan-' a is not a rational number, then X 
has a standard Cauchy distribution." A related characterization, also due to 
Williams (1969), is "If (e2 + h2X28 - x)-' has the same distribution as X 
and T-' tan-'(B/A) is not a rational number, then X has a Cauchy distribu- 
tion with parameters 8, A." 

As mentioned earlier in Section 5, it is known that if X and Y are 
independent standard normal variables, then X/Y has a standard Cauchy 
distribution. But the converse is not true [refer to Letac (1981) for some 
additional insight]. In an attempt to provide an additional condition that will 
guarantee the normality of X and Y, Ahsanullah and Hamedani (1988) prove 
the result that "if (Min(X, Y)I2 and X/Y are distributed as chi-square with 1 
degree of freedom and standard Cauchy, respectively, where X and Y are 
i.i.d. random variables from an absolutely continuous distribution, then X 
and Y are distributed as standard normal." 

Knight (1976) proved the characterization result that a random variable X 
is of Cauchy type iff ( a x  + b)/(cX + d )  has a distribution with the same 
shape as X for every a, b, c, d,  with ad - bc # 0. This result was extended 
by Knight and Meyer (1976) to the standard Cauchy distribution in the 
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Euclidean space R". Dunau and Senateur (1987) provided a simple proof for 
this characterization result. 

Kotlarski (1979) showed that if X has a standard Cauchy distribution, 
then so does 2 X / ( l  - x 2 ) .  By making use of some characterization results 
for the uniform distribution and the fact that X = tan'U, where U is a 
uniform random variable on the interval [0, v ) ,  has a standard Cauchy 
distribution, Arnold (1979) established some characterization results for the 
Cauchy distribution. Specifically, he proved that if X and Y are independent 
absolutely continuous random variables, then any one of 

1. Y and ( X  + Y ) / ( 1  - XY) are independent, 
2. X and (X + Y ) / ( l  - XY) are identically distributed, 
3. X and 2 X / ( 1  - X 2 )  are identically distributed, 

imply that X has a standard Cauchy distribution. Norton (1983) then proved 
the following characterization result: For X and Y i.i.d. symmetric random 
variables, X has a standard Cauchy distribution iff 

4. X and x2/(1 + X 2 )  are distributed as 2 X / ( 1  - x 2 )  and 1/(1 + X2), 
respectively, or 

5. X and x 2 / ( 1  + x2)  are distributed as ( X  + Y ) / ( I  - XY and 
1/(1  + X 2) ,  respectively. 

It should be noted that Norton's characterization based on condition 4 or 5 
requires one further condition than Arnold's characterization based on 
condition 3 or 2, respectively. But the latter is under the stronger assumption 
that the random variables X and Y are both absolutely continuous. 

Kamps (1991) showed that a recurrence relation satisfied by the single 
moments of order statistics established by Barnett (1966b) given by 

n 
[ ( x ~ ) ~ ]  = - { [ X n 1  - [ X l n ]  - I ,  3 5 r r n - 2, 

v 

is in fact a characterization of the Cauchy distribution. He also proved that a 
generalization of Barnett's relation to the case of a doubly truncated Cauchy 
distribution with density function 

1 
' 

(tan-' b - tan-' a ) ( l  + x 2 )  ' 
a < x < b ,  (16.58) 

established by Khan, Yaqub, and Parvez (1983) characterizes this doubly 
truncated Cauchy distribution. 

Bell and Sarma (1985) and Glanzel (1987) have given some additional 
characterizations, with the last author basing one on truncated moments. 
Further characterization results are presented by Kagan, Linnik, and Rao 
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7 GENERATION ALGORITHMS 

A convenient method of sampling from a Cauchy distribution is based on the 
inversion of the distribution function F(x); that is, if U is a uniform (0,l) 
variate, then t a n ( ~ ( U  - 3)) is distributed as standard Cauchy. This method 
of course uses the tan function and needs one uniform (0,l) deviate per 
observation from the Cauchy distribution. Even though this method can be 
programmed easily in high-level languages, it may be relatively slow. Some 
efficient generation algorithms have been proposed for the Cauchy case; 
three of these are discussed below. 

7.1   on ah an's (1979) Algorithm 

Let Y,, Y,, . . . be i.i.d. random variables from an arbitrary distribution func- 
tion F (usually chosen to be standard uniform). Let Z, = 1 and Z,, Z,, . . .be 
independent Bernoulli variates with Pr[Zi = 11 = ai/ai-, = p i  for i > 1 and 
given constants 1 = a, 2 a, 1 a, 2 . . . 2 0. Further let En be the event 
that max(Y,,. . . , Y,) = Y, and Z, = Z, = . - = Z, = 1. Then the algo- 
rithm in its generality involves the following steps: 

1. Generate X with distribution function P (chosen to be a simple 
distribution, for convenience, like uniform), and let Yo = G(X). G is an 
appropriately chosen function, with the only condition on it being that 
it maps the support of P onto the support of F. 

2. Continue to generate Y,, Y,, . . . , Z,, Z,, . . . if max(Y,, Y,, . . . , Y,) I Yo 
and Z, = 2, = ... = Z, = 1. 

3. If Y, + , > Yo or Z, + , = 0, stop. 
i 
i 4. If n is even, deliver X, else go to step 1. 

i Then 

Let h(w) = C~=,a,wn with 1 = a, 2 a, 2 . - .  2 0. Convergence is implied 
for w E [ -  1, l )  by a, + 0. Summing (16.60) over even n beginning with 0, 
we get the distribution function of X as 

The denominator of (16.61) is the probability that X will be "delivered," p,, 
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say; the expected number of Y's needed to produce a single X, ENF, is 

lX--h(F(G(y))) ~ P ( Y )  
EINF1 = JTmh( -F(G( y)) )  dP(y) ;  

the expected number of samples from the distribution P ,  EN,, is the recipro- 
cal of the probability that X will be delivered. 

For the Cauchy case, we have 

Algorithm 

0. Generate u. 
1. X +- 2u - 1; n + 0; yo +- G(X). 
2. Generate u,, yn+, + u,. 
3. If Y",, > Pn+,Yo; go to 5. 
4. n +- n + 1; go to 2. 

5. u + (Y",, - P,+,YO)/(~ - pn+lyO). 
6. If n is odd, go to 1. 
7. u t 2u; if u < 1, deliver X. 
8. Otherwise, u +- u - 1, and deliver X +- 1/X. 

Monahan (1979) determined that p, = ~ / 4  and ENF = 1.88. This method 
hence requires $ fewer uniform deviates than the synthetic tangent algo- 
rithm's [Kinderman, Monahan, and Ramage (197711 8 / ~  = 2.56. 

7.2 Kronmal and Peterson's (1981) Acceptance-Complement Method 

This method is a variant of the commonly used acceptance-rejection method 
for generating random variables [Knuth (1968)l that avoids rejection. In 
general, to generate random variables from the density p(x) defined on 
-w I a I x I b I w, the method is as follows: 

1. Choose a decomposition of the density f(.) into subdensities g,(-) and 
g2(-) such that p(.) = gl(.) + g2(-), with the mass of the subdensity 
g2(-) being q = J,bg,(x) dx. 

2. Choose a dominating density h*( - )  2 g,(. ). 
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Then: 

3. a. Generate X - h*(-1. 
b. Generate U - uniform (0, I ) ,  independent of X.  

4. a. If U 5 g l ( X ) / h * ( X ) ,  then accept X. 
b. Otherwise, generate Y, independent of ( X ,  U )  from the density 

g2( . ) /q ,  and return Y.  

It may then be easily verified that 

Pr[X a t ,  acceptance in step 4a] = / r g l ( x )  d r ,  
a 

t 
Pr[Y r t ,  nonacceptance in step 4a] = / g 2 ( y )  dy 

a 

with the consequence that 

Pr[random variable returned r t  ] = / b ( x )  d r ,  
a 

I as desired. Now, for generating standard Cauchy random variables, Kronmal 
and Peterson (1981) observe that if X is distributed as a truncated Cauchy 

1 with density 

then the random variable Z defined by 

1  
Z = X with probability - 

2 
1 - - 1  

= with probability - 
X 2 

(16.64) 

will have a standard Cauchy distribution. Hence generation of X from 
(16.63) can be used in conjunction with the transformation in (16.64) to 
generate Cauchy random variables. Kronmal and Peterson use the decompo- 
sition 
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with the dominating density 

With this choice (as well as some other choices), they found this algorithm to 
be much more time efficient than the inverse distribution function method as 
well as the synthetic tangent method. 

7.3 Ahrens and Dieter's (1988) Algorithm 

This simple and efficient table-free method is based on the "exact approxi- 
mation" method by Marsaglia (1984). The idea of an exact approximation is 
as follows: Let x(t) be a monotonic differentiable function in t E [O, 11. Then 
the transformed random variable X t x(T) has the desired density p(x) if 
the density of the T-variates is g(t) = p(x(t))(xr(t)(. As mentioned in the 
beginning of this section, the inversion method is based on the transforma- 
tion x(t) =, FW1(t) resulting in g(t) = 1 Vt E [O, 11. Now, if x(t) is only an 
easy-to-calculate approximation to F-'(t), g(t) may still be close to 1, and 
then the approximation can be made exact in a statistical sense in the 
following way. Supposing that tlt E [O, 11, g(t) is such that p < g(t) < r, 
where p < 1 < r, and that the function x(t) is chosen so that h = r - p is 
small. Then generate a U + uniform (0,l) deviate, and if U s p return 
X +- x(U/p). Otherwise, use a new pair U, U' of uniform (0,l) deviates for 
an acceptance-rejection procedure: Return X + x(U) if U' s (g(U) - p)/h 
or else try again with another (U, U'). 

For the standard Cauchy distribution, Ahrens and Dieter (1988) suggested 

and found that the choice of a = 0.638063 and b = 0.595949 brought the 
function 

even closer to 1 in (- $, 3). 
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Then the exact approximate algorithm is as follows: 

0. Constants: 

1. Generate U. Set T + U - f and S + W - T ~ .  If S I 0, go to 3. 
2. Return X + T(A/S + B).  
3. Generate U. Set T + U - 4, s + - T2, and X + T(a/s + b). 
4. Generate U'. If s2((1 + X 2 X ~ U '  + P )  - q )  + s > 3, go to 3. 
5. Return X. 

Ahrens and Dieter (1988) have shown that p = 0.997738 and h = 0.004366, 
and that the overall consumption of uniform variables is N = p + 2h = 

1.006429 per pseudorandom observation from the standard Cauchy distribu- 
tion. 

8 RELATED DISTRIBUTIONS 

We have already noted, in Section 2, that the Cauchy distribution is a central 
t distribution (Chapter 28) with one degree of freedom. It is related to other 
distributions in the same way as the t-distributions. Rider (1957) has studied 
the properties of a system that he has named the generalized Cauchy 
distributions. The probability density function of a random variable X with 
such a distribution is of the form: 

hk > 1. (16.69) 

For k = 2 and 8 = 0, X is distributed as A(2h - I ) - ' /~  times a central t 
variable with (2h - 1) degrees of freedom, and for k = 2, h = 1, X is 
distributed according to (16.1). 

Symmetrically truncated Cauchy distributions, with density function (in 
standard form) 

have been discussed in Derman (1964). The distribution is symmetrical about 



zero and has variance 
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A - tan-' A 

tan-' A ' 
so the variance of the arithmetic mean of n independent variables having this 
distribution is 

while for large n the variance of the median is approximately 

Formula (16.71) is larger than (16.72) for A > 3.41, so the median is asymp- 
totically more efficient, as an estimator of the center of a symmetrically 
truncated Cauchy distribution, provided not more than 4 - rrr-'tan-'(3.41) 
= 0.0908 of the distribution is truncated at either end. 

The standard half-Cauchy distribution has density function 

2 ~ - ' ( 1  + x2) - I ,  0 < x. (16.73) 

The analogy with the half-normal distribution (Chapter 13, Section 7.1) is 
clear. Mijnheer (1968) has carried out sampling experiments to investigate 
methods of estimating parameters of the general half-Cauchy distribution in 
which extreme observations are rejected. 

The folded-Cauchy distribution [obtained by folding the distribution (16.1) 
about x = 01 has density function 

x [ I + -  x2;"], x.0. 

For 8 s A /  a, the mode is at x = 0; for 0 > A /  fi it is at 

The wrapped-up Cauchy distribution is obtained by wrapping a Cauchy 
distribution around a circle and adding up the probability densities coincid- 
ing at each point. With mean angle 8 and mean vector length p, the density 



BIBLIOGRAPHY 329 

function of a wrapped-up Cauchy random variable T is given by 

where 8 represents a location parameter and p a scale parameter with 
0 I p < 1. Thus this is a location-scale family of distributiosn. When p = 0, 
(16.76) is simply the uniform distribution on the circle, and as p + 1 (16.76) 
approaches a point mass distribution at 8. In general, the wrapped-up 
Cauchy distribution is unimodal and symmetric about 8. This distribution 
serves as an alternative to the Fisher-von Mises distribution for modeling 
symmetric data on the circle. For further discussion, one may refer to Mardia 
(1972) and Batschelet (1981). Kent and Tyler (1988) discussed the maximum 
likelihood estimation of the parameters 8 and p. They showed that for 
n 2 3, the MLEs exist and are unique and can be computed from the 
likelihood equations by means of a simple algorithm. Thus they noted that 
the two-parameter wrapped-up Cauchy distribution behaves just like the 
two-parameter Cauchy distribution as far as the maximum likelihood estima- 
tion of parameters is concerned. Reference should also be made to Best and 
Fisher (1979) who have used the wrapped-up Cauchy density as an envelope 
to present an acceptance-rejection method of simulation from the von Mises 
distribution. 
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C H A P T E R  1 7  

Gamma Distributions 

1 DEFINITION 

A random variable X has a gamma distribution if its probability density 
function is of form 

This distribution-denoted gamma (a ,  P,  y)-is Type I11 of Pearson's system 
(Chapter 12, Section 4). It depends on three parameters a ,  P, and y. If 
y = 0, the distribution is termed a two-parameter gamma distribution, de- 
noted gamma (a ,  p); see equation (17.23). 

The standard form of distribution is obtained by setting P = 1 and y = 0. 
This gives 

If a = 1, we have an exponential distribution (see Chapter 19). If a is a 
positive integer, we have an Erlang distribution. 

The distributions of Y = -X, namely 

and 
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are also gamma distributions. But such distributions rarely need to be 
considered, and we will not discuss them further here. 

The probability integral of distribution (17.2) is 

This is an incomplete gamma function ratio. The quantity 

is sometimes called an incomplete gamma function, but this name is also quite 
commonly applied to the ratio (17.3) (Chapter 1, Section 3). 

This ratio depends on x and a ,  and it would be natural to use a notation 
representing it as a function of these variables. However, Pearson (1922) 
found it more convenient to use u = xa-'I2 in place of x for tabulation 
purposes, and he defined the incomplete gamma function as 

The main importance of the (standard) gamma distribution in statistical 
theory is the fact that if U,, U2, . . . , Uu are independent unit normal variables, 
the distribution of C;= ,q2  is of form (17.1) with a = v/2, P = 2, and y = 0. 
This particular form of gamma distribution is called a chi-square distribution 
with v degrees of freedom. The corresponding random variable is often 
denoted by X:, and we will follow this practice. It is clear that aC;, ,q2 has a 
standard gamma distribution with a = v/2. Expressed symbolically: 

Although in the definition above v must be an integer, the distribution (17.6) 
is also called a "x2 distribution with v degrees of freedom" if v is any 
positive number. This distribution is discussed in detail in Chapter 18. 

2 MOMENTS AND OTHER PROPERTIES 

The moment generating function of the standard gamma distribution (17.2) is 

m 

e[e tx ]  = { T ( ~ ) ) - ' /  x a ' e x p [ - ( 1  - t ) x ]  dr = (1  - t)-", t < I. 
0 

(17.7) 

The characteristic function is (1 - it)-". 
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Since distributions of form (17.1) can be obtained from those of form 
(17.2) by the linear transformation X = (X' - y)/P, there is no difficulty in 
deriving formulas for moments, generating functions, and so on, for (17.1) 
from those for (17.2). 

The formula for the rth moment about zero of distribution (17.2) is 

From (17.8) cumulants can be obtained. These are very simple: 

Hence for distribution (17.2) 

The mean deviation of distribution (17.2) is 

The standard distribution (17.2) has a single mode at x = a - 1 if a 2 1. 
[Distribution (17.1) has a mode at x = y + P(a - I).] If a < 1, pX(x) tends 
to infinity as x tends to zero; if a = 1 (the standard exponential distribution), 
limx + ,, pJx) = 1. 

There are points of inflexion, equidistant from the mode, at 

(provided that the values are real and positive). The standardized variable 

is referred to as the frequency factor by hydrologists in flood frequency 
analysis [see, e.g., Phien (1991) or Chow (196911. 
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j 
Vodg (1974) studies a reparametrized version of the gamma distribution , 

(17.1), with y = 0, whose pdf is 1 

4 

Some typical probability density functions are shown in Figures 17.1 and 17.2. 
I 

Figure 17.2 shows three different gamma distributions (17.11, each having the - 
same expected value (zero) and standard deviation (unity). 

a = 1; 14x1 = em[-(x + 111 (x > - 1) Mode at - 1 
8 

a = 4 ;  p ( x ) = - ( ~ + 2 ) ~ e x p [ - 2 ( ~ + 2 ) 1  ( x > - 2 )  Modeat-; 
3 
2187 

a = 9 ;  p (x )=  -(x+3) 'exp[-3(~+3)] ( x >  -3) Modeat - +  
4480 

It can be seen from Figure 17.1 that, as a increases, the shape of the curve 
becomes similar to the normal probability density curve. In fact the standard- 
ized gamma distribution tends to the unit normal distribution as the value of 
the parameter a tends to infinity: 

for all real values of u, where N u )  = (2~)-'/~/!!, exp(- i t 2 )  dt. 
A similar result holds for the general distribution (17.11, namely 

It can be checked from (17.10) and (17.11) that a, + 0, a, + 3 (the values 
for the normal distribution) as a, v, respectively, tend to infinity. 

One of the most important properties of the distribution is the reproduc- 
tive property: If XI, X, are independent random variables each having a 
distribution of form (17.1), with possibly different values a', a" of a ,  but with 
common values of p and y, then (X, + X,) also has a distribution of this 
form, with the same value off?, double the value of y, and with a = a'+ a'! 
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8- 1 8-2 8= 4 

Figure 17.1 Gamma Density Functions 

For distribution (17.2) Gini's concentration ratio is 

The Lorenz concentration ratio is 
i 
I L = 2Bo,(a, a + 1)' 
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\ -, , - unit normal 
distribution 

Figure 17.2 Standardized Type 111 Density Functions 

ff = 1; P ( X )  = exp[ - (x  + I)] ( X  > - 1) Mode at - 1 
ff = 4; P ( X )  = ( 8 / 3 X x  + 2)3 exp[ -2 (x  + 2)] ( x  > - 2)  Mode at - 1 / 2  

= 9; P ( X )  = (2187/4480Xx + 318 exp[-3(x + 3)]  ( x  > - 3 )  ~~d~ at - 1 / 3  

where BJa,  b) = j,Py "-'(l - ylb-' dy is the incomplete beta function. The 
Pietra ratio is 

aae-a 
= {II(. + 2 ) )  ,F1(2, a + 2; a ) .  

The Theil entropy measure of inequality is 

[*(a) = d log r(a)/da] [Salem and Mount (1974); McDonald and Jensen 
(1979)l. Saunders and Moran (1978) show that the E-quantile of the gamma 
distribution (17.1), denoted by yela, where 

has the property that when 1 > E ,  > E, > 0, the ratio ya = yE21a/yE,,a is a 
decreasing function of a and thus the equation 

Ya = b 
has a unique solution, 4(b) for any b E (1, m). Moreover ya -, 1 as a + m. 

The reproductive property is utilized, among other things, for deter- 
mination of gamma priors in Bayesian reliability analysis [see Waller and 
Waterman (1978)l. Also ye,,, - ye,,a increases with a ,  implying that the 
gamma distributions are "ordered in dispersion" (see Chapter 33). 
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3 GENESIS AND APPLICATIONS 

Lancaster (1966) quotes from Laplace (1836) in which the latter obtains a 
gamma distribution as the posterior distribution of the "precision constant" 
(h = (Chapter 13, Section 1) given the values of n independent 
normal variables with zero mean and standard deviation u (assuming a 
"uniform" prior distribution for h). Lancaster (1966) also states that 
Bienaym6 (1838) obtained the (continuous) X2 distribution as the limiting 
distribution of the (discrete) random variable C f - l ( ~  - npi)2(npi)-1, where 
(N,, . . . , N,) have a joint multinomial distribution with parameters 
12, PI, P2,. a ,  Pk. 

The gamma distribution appears naturally in the theory associated with 
normally distributed random variables, as the distribution of the sum of 
squares of independent unit normal variables. (See Chapter 18.) The use of 
the gamma distribution to approximate the distribution of quadratic forms 
(particularly positive definite quadratic forms) in multinormally distributed 
variables is well established and widespread. One of the earliest examples 
was its use, in 1938, to approximate the distribution of the denominator in a 
test criterion for difference between expected values of two normal popula- 
tions with possibly different variances [Welch (193811. It has been used in this 
way many times since. The use of gamma distributions to represent distribu- 
tions of range and quasi-ranges in random samples for a normal population 
has been discussed in Chapter 13. In most applications the two-parameter 
form (y = O), 

is used (this is equivalent to approximating by the distribution of 
However, the three-parameter form has also been used with good effect [e.g., 
see Pearson (196311. 

The gamma distribution may be used in place of the normal distribution as 
"parent" distribution in expansions of Gram-Charlier type (Chapter 12, 
Section 4.2). Series with Laguerre polynomial multipliers rather than Her- 
mite polynomial multipliers are obtained in this situation. Formulas for use 
with such expansions and their properties have been described by Khamis 
(1960). These Laguerre series have been used by Barton (1953) and Tiku 
(1964a, b) to approximate the distributions of "smooth test" (for goodness-of- 
fit) statistics and noncentral F (Chapter 30). 

In applied work, gamma distributions give useful representations of many 
physical situations. They have been used to make realistic adjustments to 
exponential distributions in representing lifetimes. The "reproductive" prop- 
erty (mentioned in Section 1) leads to the appearance of gamma distributions 
in the theory of random counters and other topics associated with random 
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processes in time, in particular in meteorological precipitation processes 
[Kotz and Neumann (1963); Das (19591. Some other applications from 
diverse fields are described in papers cited in references. Among the latter 1 
papers Salem and Mount (1974) provide a comparison of the gamma and 
lognormal distributions and demonstrate that the gamma distributions pro- 1 
vides a better fit for personal income data in the United States for the years 1 

I 
1960 to 1969. 

Dennis and Patil (1984) discuss applications of gamma distribution in 1 
statistical ecology (standard model for sampling dispersion). Among more : 

recent applications we note Costantino and Desharnais's (1981) empirical fit 
of the steady-state abundances of laboratory flour beetle (Tribolium) popula- 
tions. Dennis and Patil (1984) generalize this result and show that a gamma 
distribution is an approximate stationary distribution for the abundance of a 
population fluctuating around a stable equilibrium. Starting from the stochas- 
tic model of population growth 

where n is population density at time t, g(u) is the specific growth rate, z(t) 
is a Gaussian process (noise) with variability a2, and h(n) is a function 
specifying the density dependence on the effects of the noise, Dennis and 
Patil (1984) approximate Wright's formula for the equilibrium pdf by a 
gamma distribution emphasizing its right-skewness in the distribution of 
single-species abundances at equilibrium and its positive range. Then, modi- 
fying their deterministic model from du/dt = ng(u) to du/dt = n[g(u) - 
p(u)], where p(u) is a specific rate describing the effects of predation, 
harvesting and other forces, Dennis and Patil (1984) arrive at a weighted 
gamma distribution for the equilibrium pdf. 

Gamma distributions share with lognormal distributions (Chapter 14) the 
ability to mimic closely a normal distribution (by choosing a large enough) 
while representing an essentially positive random variable (by choosing 
y r 0). 

4 TABLES AND COMPUTATIONAL ALGORITHMS 

In 1922 there appeared a comprehensive Tables of the Incomplete r-Function, 
edited by Pearson (1922). This contains values of Z(u,p) [see (17.5) with 
a = p + 11 to seven decimal places for p = - 1(0.05)0(0.1)5(0.2)50 and u at 
intervals of 0.1. These are supplemented by a table of values of 

for p = - 1(0.05)0(0.1)10 and u = 0.1(0.1)1.5. This function was chosen to 
make interpolation easier, particularly for low values of p (Section 5). 
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Harter (1964) published tables of Z(u,p) to nine decimal places for 
p = -0.5(0.5)74(1)164 and u at intervals of 0.1. In this work he covers a 
greater range of values of p and has two extra decimal places, although 
Pearson (1922) has p at finer intervals. Harter (1969) published further tables 
of Type 111 distributions, giving the 0.01, 0.05, 0.1, 0.5, 1, 2, 2.5, 4, 5, 10(10)90, 
95, 96, 97.5, 98,99, 99.5, 99.9, 99.95, and 99.99 percentage points to 5 decimal 
places for 6 = 0.0(0.1)4.8(0.2)9.0. Harter (1971) extends his 1969 tables 
and provides percentage points of the one-parameter gamma distribution 
(Pearson Type 111) corresponding to cumulative probabilities 0.002 and 0.998 
as well as 0.429624 and 0.570376. The first pair is used for determination of 
the magnitude of an event (flood) corresponding to 500-year return period, 
while the second corresponds to a return period of 32,762 years (the so-called 
mean annual flood according to the guidelines of the U.S. Department of 
Housing and Urban Development). These are the most important direct 
tables of Z(u, p). 

Pearson (1922) gave the more general formula for distribution (17.1): 

ya+j  

Pr[X I, x ]  = e -y  for y = ( x  - y)/P > 0. (17.24) 
j = o  

I'(a + j + 1) 

Salvosa (1929, 1930) published tables of the probability integral, probability 
density function and its first six derivatives for distribution (17.1), with P and 
y so chosen that X is standardized (i.e., f? = a3/2; y = -2/a,). Values are 
given to six decimal places for a, (= 2a-'I2) = O.l(O.1)l.l at intervals of 
0.01 for x .  Cohen, Helm, and Sugg (1969) have calculated tables of the 
probability integral to nine decimal places for a, = 0.1(0.1)2.0(0.2)3.0(0.5)6.0 
at intervals of 0.01 for x. BobCe and Morin (1973) provide tables of percent- 
age points of order statistics for gamma distributions. 

Thom (1968) has given tables to four decimal places of the distribution 
function T,(a)/I'(a): 

1. for  a = 0.5(0.5)15.0(1)36 a n d  x = 0.0001, 0.001, 
0.004(0.002)0.020(0.02)0.80(0.1)2.0(0.2)3.0(0.5)-the tabulation is con- 
tinued for increasing x until the value of the tabulated function 
exceeds 0.9900; 

2. values of x satisfying the equation 

for a = 0.5(0.5)15.0(1)36 and E = 0.01,0.05(0.05)0.95,0.99. Burgin 
(1975) provides some interesting numerical computations of the gamma 
and associated functions. He cites the following representation for the 
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incomplete gamma function ratio: 
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Lau (1980) uses a series expansion similar to Wilk, Gnanadesikan, and 
Huyett (1962a) to calculate the incomplete gamma function ratio. Moore 
(1982) finds this series expansion not always satisfactory. Bhattacharjee 
(1970) provides an alternative algorithm. Phien (1991) presents an algorithm 
for computing the quantile y,,,. Newton's method seems to be appropriate to 
solving the equation 

Efficient computation requires a powerful algorithm for computing the in- 
complete gamma function ratio and a good initial value yo.  Phien used 
Moore's algorithm (1982) for calculation of the incomplete gamma function 
ratio and the approximate value provided by Hoshi and Burges (1981) is used 
for the initial value yo. 

Moore's algorithm is highly accurate. In the experiment conducted by 
Phien (1991) Moore algorithm's value agreed with those values tabulated by 
E. S. Pearson (1963) up to the sixth decimal place. 

5 APPROXIMATION AND GENERATION OF GAMMA RANDOM 
VARIABLES 

The best-known approximations for probability integrals of gamma distribu- 
tions have been developed in connection with the X 2  distribution. Modifica- 
tions to apply to general gamma distributions are direct, using the linear 
transformation y = 2(x  - y)/P.  The reader should consult Section 5 of 
Chapter 18. 

From (17.25) it may be observed that for u small, U-(P+')I(U, p )  is very 
approximately, a linear function of u. It is for this reason that the values 

tabulated by Pearson (1922) lead to relatively easy interpolation. Gray, 
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Thompson, and McWilliams (1969) have obtained the relatively simple ap- 
proximation: 

which gives good results when x is sufficiently large. 
If Y has the standard uniform distribution (Chapter 26, Section 1) 

then (- 2log Y) is distributed as X2 with 2 degrees of freedom. If 
Y,, Y,, . . . , Y, each have distribution (17.27) and are independent then 
C;, - 2 log 5 )  is distributed as X Z s ;  that is, it has a gamma distribution with 
a = S, p = 2, and y = 0. Using this relation, it is possible to generate gamma 
distributed variables from tables of random numbers. Extension to cases 
when a is not an integer can be effected by methods of the kind described by 

I Bhnkovi (1964). 
c If X has distribution (17.21, then the moment generating function of log X 

is 

i Hence the rth cumulant of log X is 
1 

Note that for a large 

which may be compared with 

The distribution of log X is more nearly normal than the distribution of X. 
Although this approximation is not generally used directly, it is often very 
useful when approximating the distributions of functions of independent 
gamma variables. 

For example, suppose that X,, X,, . . . , Xk are independent variables, 
each distributed as x2 with v degrees of freedom. Then the distribution of 



may be approximated by noting that 

log R, = max(1og XI, .  . . , log X,) - min(1og XI , .  . . , log X,) 

is approximately distributed as the range of k independent normal variables 
each having the same expected value, and standard deviation 

[See also (17.107).] 
Gray and Schucany (1968) and Gray and Lewis (1971) apply the method of 

H- and B,-transforms (see Chapter 12, Section 4) to approximate the tail 
probabilities of chi-squared (and hence of gamma) distributions. Alfers and 
Dinges (1984) sought an approximate normalizing transformation. They ob- 
tained a polynomial expression. 

A recent survey of approximations for gamma distribution quantiles is ; 
contained in a paper by Phien (1991). He notes that for a variable X with pdf 4 

4 given by (17.2), the standardized variable is W = ( X  - a)/,/a (for which 
E[ W] = 0, Var(W) = 1, and \Im = 2/,/a). The Wilson-Hilferty chi- ; 
squared approximation (see Chapter 18, Section 5)  gives 

where @(z,) = E .  When a is small (skewness is large), the values of WE given 
by (17.33) are too low. 4 

Kirby (1972) modifies (17.33) and obtains the following approximation: 

W, = A(U - B ) ,  (17.34) 

where A = max(,/a, 0.40), B = 1 + 0.0144 [max(O, 2a-'I2 - 2.25)12, and 

with 

Kirby (1972) provides tables to assist in the calculation of A, B, and D. 
Kirby's approximation was in turn modified by Hoshi and Burges (1981) who 
express A, B, B -Ada, and D as polynomials of degree 5 in a-'I2. Phien 
(1991) reproduces the values given by Hoshi and Burges (1981). Harter (1969) 
provided tables of exact values of We, to which BobCe (1979) fitted polynomi- 
als in cr-'12 of degree four. For ,/PI = 2/,/a < 4 (i.e., a > $1 BobCe's 
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approximation is superior to those of Hoshi and Burges (1981) and Kirby 
(1979), but it is not satisfactory for smaller values of a. 

Tadikamalla and Ramberg (1979, Wheeler (1979, and Tadikamalla (1977) 
approximate the gamma distribution (17.2) by a four-parameter Burr distri- 
bution (see Chapter 12, Section 4.5) by equating the first four moments-ex- 
pected value, variance, skewness, and kurtosis. 

For the Burr distribution with cdf, 

the loop% points of the largest and smallest order statistics from a random 
sample of size n are 

respectively. These equations give good approximations to the corresponding 
value for the appropriate gamma distributions. Tables are available from 
Tadikamalla (1977) to facilitate calculation of appropriate values for a, b, k, 
and c. 

Values of c and k for given values of a are given in Tadikamalla and 
Ramberg (1975) and Wheeler (1975). These two papers were published in the 
same issue of the same journal, and yet they do not cross-reference each 
other. (Fortunately the values of c and k given in the two papers agree.) 

Many papers on generation of gamma random variables have been written 
in the years 1964 to 1990. It is impossible to survey them in detail. We draw 
attention to Ahrens and Dieter (1974, "GO algorithm"), Fishman (1976), 
Johnk (19641, Odell and Newrnan (1972), Wallace (1974), and Whittaker 
(1974)-a11 are based on the general von Neumann rejection method. Cheng 
and Feast (1979, 1980) use the ratio of uniform random variables on the lines 
suggested by Kinderman and Monahan (1977). 

Bowman and Beauchamp (1975) warn of pitfalls with some gamma distri- 
bution simulation routines. They note that an algorithm given by Phillips and 
Beightler (1972) does not actually generate random variables with gamma 
distributions, but rather with Weibull distributions (see Chapter 21). 

6 CHARACTERIZATIONS 

If Xl and X, are independent standard gamma random variables [i.e., 
having distributions of form (17.2), possibly with different values of a ;  a,, a,, 
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say], then the random variables 
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X, + X2 and 
1 

Xl + x2 

are mutually independent. [Their distributions are, respectively, a standard 
gamma with a = a1 + a2 and a standard beta (Chapter 25) with parameters 
ffl, ff2.1 

Lukacs (1965) showed that this property characterizes the gamma distribu- 
tion in that, if XI and X2 are independent positive random variables, and 
XI + X2 and Xl/(Xl + X2) are mutually independent, then X, and X2 
must each have gamma distributions of form (17.1) with y = 0, common P,  
but possibly different values of a. If it be assumed that XI and X2 have 
finite second moments and identical distributions, it is sufficient to require 
that the regression function 

a , , ~ ;  + 2a12XlX2 + a, ,~:  
Xl + X2 7 a,, + a22 # 2~12,  1 

be independent of XI + X2 to ensure that the common distribution is a 
gamma distribution [Laha (1964)l. 

Marsaglia (1974) extended Lukacs's result by removing the condition that 
Xl and X, should be positive. He shows that "If Xl and X2 are independent 
nondegenerate random variables, then X1 + X2 is independent nf X1/X2 if 
and only if there is a constant c such that cX, and cX2 have standard gamma 
distributions." Marsaglia (1989) provides a simpler proof of this result. He 
uses a method of deriving Lukacs's (1965) result, which was developed by 
Findeisen (19781, without use of characteristic functions (although a dis- 
claimer, suggested by the referees of the Findeison paper, claims that 
characteristic functions are implicit in the argument). Marsaglia (1989) also 
remarks that the "XI + X2, Xl/X2" characterization has been used in devel- 
oping computer methods for generating random points on surfaces by projec- 
tions of points with independent (not necessarily positive) components. 

Earlier Marsaglia (1974) had obtained the following rc.'. It "Let 
X,, X2, . . . , X,, ( n  r 2) be independent random variables. Then :ctor 

where S,, = C7=,Xj, is independent of S,, if and only if there is constant c 
such that cX,, cX2, . . . , cX,, are gamma." Wang and Chang (1977) used this 
result to develop several sensitive nonparametric tests of exponentiality. 
Many multivariate generalizations of these results are surveyed in Wang 
(1981). 
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On the one hand, the distribution of Xl/X2 is not sufficient to establish 
that each IX,J has a gamma distribution. If Xj is distributed as standard 
gamma (a,), ( j  = 1,2) and X, and X2 are mutually independent then the 
probability density function of G = X1/X2 is 

which is a Pearson Type VI distribution (see Chapter 12 and also Chapter 
25). However, it is possible for XI and X2 to be independent, identically 
distributed positive random variables, and for G = Xl/X2 to have distribu- 
tion (17.36), without each Xi having a gamma distribution [Laha (1954); 
Mauldon (1956); Kotlarski (1962, 196511. However, Kotlarski (1967) showed 
that the joint distribution of ratios X1/X3, X2/X3 (in a similar situation) 
does characterize the distribution (up to a constant multiplier). 

It follows that any result depending only on the distribution (17.36) of the 
ratio Xl/X2 cannot characterize the distribution of each X,. In particular, it 
cah be shown that if X, and X2 are independent and identically distributed 
as in (17.21, then 

has a t,, distribution (as defined in Chapter 28), although this property is not 
sufficient to establish the form of the common distribution of XI and X2 

. (given they are positive, independent, and identically distributed). 
However, if X3 is a third random variable (with the same properties 

relative to X, and X2), then the joint distribution of 

is sufficient to establish that common distribution is a gamma distribution 
with y = 0. [Kotlarski (1967).] 

Khatri and Rao (1968) have obtained the following characterizations of 
the gamma distribution, based on constancy of various regression functions: 

1. If X,, X2, . . . , Xn (n 2 3) are independent positive random variables 
and 
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with the (n - 1) x n matrix (bji) ( j  = 2,. . . , n, i = 1,2,. . . , n) nonsin- 
gular, then the constancy of 

ensures that the X's must have a common gamma distribution (unless 
they have zero variances). 

Setting b,, = b12 = . . - = b,, = 1 and bj, j-, = - 1, bj,, = 1, with 
all other b's zero, the condition becomes the constancy of 

2. In the conditions of 1, if E[xJ:'1 + 0 ( j  = 1,2,. . . , n) and 

with the b's satisfying the same conditions as in 1, then the constancy of 

ensures that each Xj has a gamma distribution (not necessarily the 
same for all j), unless they have zero variances. Choosing special values 
of b's as in 1, we obtain the condition that EIC~-,XJ:'lX, - 
XI,. . . , Xn - XI] should be constant. 

3. Under the same conditions as in 1, if E[X, log X,] is finite, then the 
constancy of 

with C7,1ajbj = 0, Ib,l > max(lb,l, Ib,l,. . . , lb,-,I), and ajbj/anbn < 
0 for all j = 1,2, . . . , n - 1 ensures that XI has a gamma distribution 
(unless it has zero variance). 

As a special case, setting a, = a, = . . = a, = 1, b, = n - 1, b1 
- = b, = . - . - bn-, = - 1, we obtain the condition as the constancy of 
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4. If XI,. . . , X,, are independent, positive, and identically distributed 
random variables, and if E[XL11 # 0 (i = 1,2,. . . , n) and 

is constant with the same conditions on the a's and b's as in 3, the 
common distribution of the X's is a gamma distribution (unless it has a 
zero variance). 

Giving the a's and b's the same special values as in 3, we obtain the 
condition of constancy of 

where = n - ' Q = , q .  

Khatri and Rao (1968) have also obtained a number of further conditions 
characterizing gamma distributions. Hall and Simons (1969) have shown that 
if X and Y are mutually independent and nondegenerate, and if 

E[X'(X + Y)-'~X + Y] and E[Y'(X + Y)-'~X + Y] 

do not depend on X + Y, then either X and Y or -X and -Y have 
i two-parameter gamma distributions with a common value of the scale param- 
i eter p. 
F 

C The following characterization based on conditional expectation was sug- 
gested by Wang (1972): "If $ = (bjk) be a n X n real matrix satisfying E 

n x bjj = 1 and x bjk = c # 0, 
j -  1 i, k 

X = (XI, X,, . . . , X,)' is a n x 1 random vector, Q* = X'BX, and L = C'X, 
where C = (c,, c,, . . . , c,)' is an n X 1 real vector such that C;=,cj = 1 and 
cj = ck # 0 for some j, k, then provided the distribution F of Xi 
(i = 1,2,.  . . , n )  is nondegenerate, the conditional expectation E[Q*IL] is 
zero almost everywhere if and only if each Xi has a gamma distribution." If 
N is a random variable defined by 

and 
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where X,, X,, . . . , Xn are independent random variables each having distri- 
bution (17.1) with a an integer and with y = 0 (Erlang distribution), then N 
has the generalized Poisson distribution (Chapter 9, Section 3) 

Nabeya (1950) showed that for a = 1, the converse is true. That is to say, 
it is a characterization of the common distribution of XI, .  . . , Xn (exponential 
in this case) given that they are positive, independent, identically distributed, 
and continuous. Goodman (1952) extended the result to apply to any positive 
integer value of a I 2, thus providing a characterization of a gamma distri- 
bution. 

Under conditions (4), Linnik, ~ u k h i n ,  and ~tzelic (1970) characterize the 
gamma distribution by the property 

E(Pk(?, . . . , $1 ISn) does not depend on Sn = Xj, 
j =  1 

where P, is a polynomial of degree k, n 2 2, and n > k. Some conditions on 
the behavior of the cdf of the positive i.i.d. Xi and its derivative in an interval 
[O, E ]  were required to prove the validity of this result. 

If XI, X,, . . . , Xn are independent gamma variables with the same scale 
parameter pi, and S(Xl, X,, . . . , Xn) is a statistic invariant under the scale 
transformation X -, cX (for all c # O), then U = Cy,,Xj and S = 

S(Xl, X,, . . . , X,), are independent [Wang (1981)l. However, whether the 
gamma distribution can be characterized by the independence of U and S 
seems still to be an open problem. 

The following characterization has been proved by Wang (1981): Let 
XI,. . . , Xn (n > 2) be nondegenerate i.i.d. positive random variables and I, 
and I ,  be arbitrary nonempty subsets of (1,2,. . . , n )  of size k I n/2. Define 
Tl = n,, ,,X, and T, = njo ,*Xi. If 

then the Xi's have a (two-parameter) gamma distribution (17.23). 
Characterization of gamma distributions by the negative binomial has 

been provided by Engel and Zijlstra (1980): 

Let events A occur independently and at random so that the number of events 
occurring in a given interval is a Poisson random variable with rate 8. The waiting 
time between events has a negative exponential distribution with mean 8- ' ,  and 
the total time T between r + 1 events has a gamma ( r ,  8-'1 distribution. 
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? P Consider now a second process independent of the first in which events B occur at 
K 

:$ an average rate p. If we start from a specified instant and count the number NB of 
8 B events occurring before the rth A event, the distribution of N, is negative 

f binomial with parameters r and p = a / (a  + p). 

Engel and Zijlstra (1980) have shown that T has a gamma ( r ,  a )  distribution 
if and only if NB has a negative binomial distribution. 

Letac (1985) characterizes the gamma distributions as follows: Given two 
positive independent random variables X and Y, if the distribution of Y is 
defined by its moments 

a+s  

E[Ys] = (1 + 3) for s > 0 

and a fixed given positive a ,  then X exp{( -X/a)Y) and X have the same 
distribution if and only if the distribution of X is gamma with shape 
parameter a [as in (17.2)l. Motivation for this characterization is that (W)"" 
and Uu have the same distribution provided U and V are independent 
uniform [O,l] variables. 

She (1988) has proved several theorems dealing with characterizations of 
the gamma distribution based on regression properties; see also Wesolowski 
(1990) for a characterization result based on constant regression, and Yeo 
and Milne (1991) for a characterization based on a mixture-type distribution. 

7 ESTIMATION 

Estimation of parameters of gamma distribution has also received extensive 
attention in the literature in the last two decades. The contributions of 
Bowman and Shenton and of A. C. Cohen and his coworkers should be 
particularly mentioned. Bowman and Shenton's (1988) monograph provides 
detailed analysis of maximum likelihood estimators for two-parameter gamma 
distributions with emphasis on the shape parameter and presents valuable 
information on distributions and moments of these estimators, including their 
joint distributions. Careful discussion of estimation problems associated with 
the three-parameter gamma density is also presented. The major emphasis of 
the monograph is on the distribution of sample standard deviation, skewness 
and kurtosis in random samples from a Gaussian density. The authors also 
deal with the moments of the moment estimators. The list of references in 
the monograph covers the development of the authors' work on this area 
from 1968 onwards. 

C. Cohen's contributions to estimation of parameters of the gamma 
ution are covered in the monographs by Cohen and Whitten (1988) 
alakrishnan and Cohen (1991) with an emphasis on modified moment 

timators and censored samples. As in Chapters 14 and 15 we will concen- 
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trate on results not available in monographic literature and especially those 
discussed in less easily available sources. 

7.1 Three Parameters Unknown 

We will first consider estimation for the three parameter distribution (17.11, 
although in maIly cases it is possible to assume y  is zero, and estimate only a 
and /3 in (17.1). Given values of n independent random variables 
X I ,  X,, . . . , X,, each distributed as in (17.0, the equations satisfied by the 
maximum likelihood estimators 2, 6 ,  and f of a ,  P, and y, respectively, are 

n 

(X, - f )  - n 2 6  = 0, (17.37b) 
j=l 

From (17.37~) it can be seen that if 2 is less than 1, then some Xj9s must be 1 
less than f .  This is anomalous, since for x < y  the probability density / 
function (17.1) is zero. It is also clear that equations (17.37) will give rather 
unstable results if 6 is near to 1, even though it exceeds 1. It is best, 
therefore, not to use these equations unless it is expected that 2 is at least 
2.5, say. 

It is possible to solve equations (17.37) by iterative methods. A convenient 
(but not the only) method is to use (17.37a) to determine a new value for b, 
given 2 and f .  Then (17.37%) for a new 9,  given ai and B, and (17.37~) for a 
new 2, given f i  and q. 

The asymptotic variance-covariance matrix of 6 6 ,  6 6 ,  and 6f is the 
inverse of the matrix 

The determinant of this matrix is 
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Hence 

Using the approximation 

$'(a)  + a - l  + la--' + l a - 3  
r 2 6 3 (17.39) 
I 

we obtain the simple formulas, 

giving the orders of magnitude of the variances when a is large. Fisher (1922) 
obtained the more precise approximation: 

Var(6) = 6 n - ' [ ( a  - 113 + ; (a  - 1)]  (17.40) 

by using more terms in the expansion (17.39). 
If the method of moments is used to estimate a, p, and y ,  the following 

simple formulas are obtained: 

&p2 = m, ,  

2&p3 = m 3 ,  

where 



358 GAMMA DISTRIBUTIONS 

are the sample mean, second, and third central moments. (Since this method 
would be used only when n is rather large, there is no need to attempt to 
make the estimators unbiased; it is also not clear whether this would improve 
the accuracy of estimation.) Note that (17.41a) and (17.37bY are identical. 
From equations (17.41) the following formulas for the moment estimators 
&, 6, and 7 are obtained: 

Although these are simple formulas, the estimators are often, unfortunatel~, 
considerably less accurate than the maximum likelihood estimators &, P, 
and 9. 

It can be shown that if n and a are large 

[Fisher (1922)l. Comparing (17.40) and (17.43), it can be seen that the ratio of 
approximate values Var(&)/Var(&) is substantially less than 1 unless a is 
rather large. The ratio 

increases with a and reaches the value 0.8 at a = 39.1. 
On the other hand, we have already noted that when a is less than 2.5, the 

maximum likelihood estimators are of doubtful utility. It then becomes 
necessary to consider yet other methods of estimation. When a is less than 1, 
the distribution is shaped like a reversed J, with the probability density 
function tending to infinity as x tends to y (see Figure 17.1). If n is large (as 
it usually is if a three-parameter distribution is being fitted), it is reasonable 
to estimate y as the smallest observed value among XI, X,, . . . , X,, or a 
value slightly smaller than this. Estimation of a and P then proceeds as for 
the two-parameter case, to be described later. Using the value of a so 
estimated, a new value for y can be estimated, and so on. 

As in the case of the lognormal and inverse Gaussian distributions 
(Chapters 14 and 151, Cohen and Whitten (1988) advocate the use of 
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modified moment estimators 

Tables and graphs to facilitate solution of (17.44~) are given by Cohen and 
Whitten (1986, 1988), Bai, Jakeman, and Taylor (1990). Note that (17.37b) 
and (17.37~) can be written as 

respectively. Assuming a value for 9, &(?), and @(?) can be computed, the 
corresponding likelihood L(?) calculated. The value of ? maximizing L(?) is 
then found numerically. [See Bai, Jakeman, and Taylor (1990).] 

Cheng and Arnin (1983) applied their maximum product of spacings (MPS) 
f 

I estimator method (see Chapters 12, 14, and 15) to provide consistent estima- 

1 tors of a ,  p,  and y. This method yields the following first-order equations: 

a log G -- = -log P - log +(a) 
aff 

n + l  /xi' - y)a-l  - ( x -  
+ xi-1 e log( x - y ) & 

a-1 - = 0, (17.46~) 
i = l  (n+l ) l$ -Xx-y)  e ( X - y ) / P &  

where X; I Xi I . . . I X; are the order statistics corresponding to 
XI,. . . , x,,. 
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7.2 Some Parameters Unknown 

We now consider estimation when the value of one of the three parameters 
a, p, and y is known. The commonest situation is when the value of y is 
known (usually it is zero). Occasionally a is known (at least approximately) 
but not p or y. Inadmissibility of standard estimators of gamma parameters 
in the case when y = 0 has received attention in the literature. 

Let XI, X,, . . . , Xk be independent random variables with two-parameter 
gamma distributions with parameters ai ,  pi (i = 1,. . . , k)  where the values 
of the ai9s are known but the pi's (> 0) are unknown. Berger (1980) 
considered weighted quadratic losses Cf=lp;m(~ip;' - 1)2 for m = 
0,2,1, - 1, and showed that the standard estimator of (PI, p2,  . . . , pk), namely 
(Xl/(al + I), . . . , Xk/(ak + 1)) is inadmissible for k r 2 except when m = 

0, in which case it is inadmissible for k 2 3. Ghosh and Parsian (1980) also 
discussed this problem for the same weighted quadratic losses. Gupta (1984) 
has shown that inadmissibility also holds for the loss function 

The vector of natural estimators (Xl/al,.  . . , Xk/ffk) is an inadmissible 
estimator of (PI,.  . . , pk) for k 2 3. It would seem, however, that the critical 
dimension for inadmissibility is typically 2; three dimensions are required 
only in special cases. The problem whether the natural estimator is admissi- 
ble for k = 2 is an open question. Zubrzycki (1966) has considered the case 
when p is known to exceed some positive number p,. He has shown that with 
a loss function (p* - p>,/p2, where p* denotes an estimator of P,  and given 
a single observed value of X, estimators 

with 

have minimax risk [equal to ( a  + I)-'] and are admissible in the class of 
estimators linear in X. 

If y is known, the maximum likelihood estimators of a and p might be 
denoted B(y), &y)A to indicate their dependence on y. We will, however, 
simply use B and p; no confusion between this use and that in Section 7.1 
should arise. 

If y is known to be zero, the probability density function is of form 
(17.23). If XI, X,, . . . , X,, are independent random variables each having 



ESTIMATION 361 

distribution (17.23), then equations for the maximum likelihood estimators 
&,p" are 

n 

n-' C log Xj = log p" + $(&), (17.48a) 
j=  1 

From (17.48b), 6 = x/&. Inserting this in (17.48a), we obtain the following 
equation for 6: 

n 

n-' C log Xj - log x = $(&) - log &; (17.48~) 
j=1 

that is, 

Arithmetic mean (XI ,  X, , . . . , X,) 
R, = log I = log & - $(&). 

Geometric mean (XI ,  X, , . . . , X,) 

(Note that R, 2 0.) 
It isAreadily seen that the estimator 6, of a the shape parameter, and the 

r!tio p/p are distributed independently of P. In particular, the variance of 
p/p does not depend on the parent population value of P. The value of & 
can be determined by inverse interpolation in a table of the function 
[log a - $(a)]. Such a table has been published by Masuyama and Kuroiwa 
(1952). Chapman (1956) has published a table giving the results of such 
inverse interpolation (i.e., values of 6) corresponding to a few values of the 
ratio of arithmetic to geometric mean. (He reported that a more complete 
table was available from the Laboratory of Statistical Research, University of 

and Durand (1960) pointed out that the function a[log a - 
$(a)] progresses much more smoothly than does [log a - $(a)] and so is 
more convenient for interpolation. They gave a table of values of a[log a - 
$(a)] as a function of a to eight decimal places for argument values 
0.00(0.01)1.40, and to seven decimal places for argument values 1.4(0.2)18.0. 
This method eliminates the necessity of inverse interpolation and assures 
high accuracy using linear interpolation. Bain and Engelhardt (1975) show 
that 2na log R, is approximately distributed as cX: for appropriate values of 

ding on n and a). For a 2 2 we have 2na log Rn approxi- 
ted as x,2-,. [See also (17.107).] 



n= 
Arithmetic mean - Geometric mean ' 

except when 6 is less than about 2. They give a table of solutions of equation 
(17.484 to five decimal places for 

For H > 1.001, linear interpolation gives four decimal place accuracy for 6. 
If 6 is large enough, the approximation $(a) = log(a - may be used. 

Then from (17.48~) we have 

Arithmetic mean 6 
= -. 

Geometric mean ' 6 - i ' 

that is, 

Arithmetic mean 
2 .i. = ; H .  (17.49) 

2(Arithmetic mean - Geometric mean) 

For a better approximation 1/12 (= 0.083) should be subtracted from the 
right-hand side. 

Thom (1968) suggests the approximation 

Thom further suggests adding the correction [(ST - 1x24 - 966,)-' + 
0.00921 if &, > 0.9, and gives a table of corrections for 6, < 0.9. It is stated 
that with these corrections the value of &, should be correct to three decimal 
places. 

Asymptotic formulas (as n -, 00) for the variances of 6 6  and fib,  and 
the correlation between these statistics, are 
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Masuyama and Kuroiwa (1952) give tables with values of a{a$'(a) - I)-' 
and $'(a){a$'(a) - I}-'. If the approximation $'(a) = ( a  - $1-', useful 
for a large, is used, we have 

Bowman and Shenton (1968) investigated the approximate solutions [due to 
Greenwood and Durand (196011 

The error of (17.53a) does not exceed 0.0088% and that of (17.53b) does not 
exceed 0.0054%. 

If a is known but not /3 or 7 ,  maximum likelihood estimators $ = $(a), 
f = +(a) satisfy equations (17.37bY and (17.37~)' with & replaced by a. From 
(17.37bY7 

and hence (17.37bY can be written as an equation for P,  

, Alternatively, using the first two sample moments, we have for moment 
I estimators @ = @(a) and = ?(a), 

i f = B - a @ ,  
b 

I ab2 = m, [cf. (17.41a) and (17.41b)], 
I 

whence 
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In this case ( a  known) for n large, 

~ a r ( b )  = p n - ' ,  

Var(9) = i p 2 a ( a  - 2)n-', (17.55) 

~ o r r ( b , + )  = - ( a  + 1) 
a + 3 

while 

: 
The advantage of the maximum likelihood estimators is not so great in this 
case as when all three parameters have to be estimated. 

Glaser (1976a) observes that the distribution of R, is the same as that of 
IIYL:~, where the v's are independently distributed beta random variables 
with parameters a and i / n  (i = 1,. . . , n - 1). Various methods for calcula- 
tion of the distribution of R, and its lower critical values are available in the 
literature. 

Provost (1988) provides expression for the jth moment of R, and provides 
an expression for its probability density function by inverting the Mellin 
transform. In their seminal paper and book Bowman and Shenton (1983, 
1988) provide an approximation to the distribution of R,, along with a new 
approximation to the inverse function 6 = 4-'(R,), namely 

This can be used when R, is not too small; if R, is small, the formula 

6 - (R, + log R,)-' (17.57b) 

is suggested. They also suggest using Thom's formula (17.50) as a starting 
value for an iterative procedure, calculating the mth iterate, 6, from the 
formula 

They observe that about ten iterations suffices for reasonable accuracy. 
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Bowman and Shenton (1983) also obtain the formula 

Ks(Rn) = ( - l)S{nl-s$(~-l)(a) - +(s-') (nu) ]  (17.59) 

for the sth cumulant of R,. As n -, w, 

n - 1  
' I  R n  % 7 

(17.60a) 

n - 1  
P2(Rn) - 2nZa"' (17.60b) 

(17.60~) 

12 
~ 4 ( R n )  " 3 +  - (17.60d) n - 1 '  

These values suggest that for n large R, is approximately distributed as 
X:-,/(2na). For n large 

n a  2 n - 1  7(n2 - 9) 
E [ & ]  - - + + 

n - 3 3(n - 3) 9(n - 3)na  54(n2 - 9)nZa2 

(n2 - 1)(26n3 + 33n2 - 324n - 707) + . . . , (17.61a) 
810(n2 - 9)(n + 5)n3a3 

2n2a2 2n(n + 1 ) a  - 
( n  - 312(n - 5) 3(n - 312(n - 5) 

(17.61b) 

(17.61~) 

- ... ) 
[~owrnan and Shenton (1988)l. (17.61d) 

an and Shenton (1982) give tables of coefficients of series expansions 
e expected value, variance and third and fourth central moments 
and 6 (terms up to n-6) for a = 0.2(0.1)3(0.2)5(0.5)15 and n = 
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Choi and Wette (1969) present results of sampling investigations. As an 
example, with a = 2 and P = 1 they obtain the average values (arithmetic 
means of 100 repetitions) shown below: 

The positive bias in & is to be expected from the expansion (17.61a). Note 
that the next term in the expansion is 

where 

The expansion is asymptotic in nature, so only limited accuracy can be 
expected from it's use. It is more accurate than an expansion simply in 
descending powers of n. 

Anderson and Ray (1975)' noting that the bias in & can be considerable 
when n is small, suggest using the following, less biased estimator based on 
(17.61a): 

For estimating 8 = P-', these authors suggest pp1f(&*), where 

Shenton and Bowman (1973) introduce the "almost unbiased" estimators 
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Dahiya and Gurland (1978) develop generalized minimum chi-squared esti- 
mators of a and p. Stacy (1973) proposed "quasimaximum likelihood" 
estimators for l/a and p,  

where Zi = x i / n X  ( i  = 1,. . , , n) .  
These estimators arise from the maximum likelihood estimators for Stacy 

and Mihram's (1965) generalized gamma distribution (see Section 8). The 
estimators are unbiased and 

The asymptotic efficiencies are for (l/aY 

and for 6 

Grouped data can be tested by standard methods. Rosaiah, Kantam, and 
Narasimham (1991) give a detailed analysis for fitting a two-parameter 
gamma distribution. They provide tables for optimum group length d,  in the 
sense of (1) minimum asymptotic generalized variance or (2) minimum sum of 
asymptotic variances, for a = 2(1)5 and number of groups, k = 2(1)10 for the 
cases when neither a nor p are known or when only a or only p is known. 
The group boundaries are 0, dp,  2dp, . . . , (k - I)  dp,  m. Since it is necessary 
to know both a and P to use the tables, they can be regarded as only 
providing a basis for intelligent selection of group length. Tables are also 
provided for use when group lengths may vary. 
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7.3 Estimation of Shape Parameter (p and y Known) 

Bowman and Shenton (1970) carried out an extensive study of the distribu- 
tional properties of two different estimators of the shape parameters, a ,  of 
the gamma distribution (17.2). These were as follows: 

1. The maximum likelihood estimator (MLE) 6. 
2. Thom's (1968) estimator BT [see (17.50)l. 

We recall that 6 is the solution of the equation 

while 

which is applicable when &, is not too small. 
3. The moment estimator 

The estimator (17.68) is much easier to compute than either 6 or 6,. All 
three estimators are unaffected by the value of the scale parameter (P ) .  
Dusenberry and Bowman (1977) compare these three estimators. In regard to 
6, they apply the techniques of David and Johnson (1951) to calculate the cdf 
of & by noting that 

It is not difficult to determine the moments of (X2 - as2). These are then 
used to approximate the required probability. Dusenberry and Bowman 
(1977) use the Cornish-Fisher expansion to evaluate percentage points of the 
distribution of &. They plot values of Pr[& < a] for 

Figure 17.3 is the plot for a = 2.0. 
The estimator BT is quite close to B. Although 6, has a slight systematic 

bias, this is offset by a somewhat lower variance and greater ease of 
calculation. The moment estimator & is much easier to compute than either 
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a .  

Figure 17.3 Pr[G < a ]  for CY = 2.0. 

a or d,  but has a greater bias and variance than either of these two 
estimators. As measured by #IlP, and P,, the distribution of & is closer to 
normality than that of either d or 8, for nearly all the values of a and n 
considered by Dusenberry and Bowman (1977). 

Blischke (1971) constructed a BAN (best asymptotically normal) estimator 
of a, when p is known, as 

Since & is a consistent estimator of a and 

E log - = *(a), [ (31 
the estimator d' is asymptotically unbiased. 

Results from 50 simulated samples of sizes n = 11, 31, and 51 are set out 
in Table 17.1, comparing values of 6 and &'. Note that d has a positive bias, 
except for the case where a = 2.00 and n = 31. Huque and Katti (1976) and 
Bar-Lev and Reiser (1983) discuss maximum conditional likelihood estima- 
tion of a. There is little to choose between the two estimators. Note the 

, generally positive bias of the maximum likelihood estimator. 
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Table 17.1 Results of Simulation for i and f 

BAN Estimator (a*') ML Estimator (2) 
Arithmetic Sample Arithmetic Sample 

a! n Mean Variance Mean Variance 

0.25 11 0.234" 0.00565" 0.269 0.0067 
31 0.243 0.00214 0.258 0.0020 
5 1 0.238 0.00088 0.252 0.0010 

0.50 11 0.530 0.0271 0.543 0.0219 
3 1 0.476 0.0059 0.498 0.0052 
51 0.494 0.0025 0.506 0.0045 

0.75 11 0.760 0.0480 0.773 0.0339 
31 0.743 0.0101 0.765 0.0135 
5 1 0.745 0.0063 0.747 0.0069 

1.25 11 1.228 0.0678 1.301 0.0879 
3 1 1.195 0.0204 1.257 0.0221 
51 1.253 0.0171 1.260 0.0172 

1.50 11 1.533 0.0958 1.537 0.1010 
3 1 1.487 0.0362 1.508 0.0355 
5 1 1.529 0.0233 1.525 00199 

2.00 11 2.063 0.121 2.036 0 iL70 
3 1 1.965 0.067 1.996 0.0514 
5 1 1.979 0.031 2.004 0.0321 

'Based on 48 values; in two cases negative estimates were obtained. 

7.4 Order Statistics and Estimators Based on Order Statistics 

A considerable amount of work has been done in evaluating the lower 
moments of order statistics Xi 5 Xi 5 . . 5 X; corresponding to sets of 
independent random variables XI,. . . , Xn having a common standard gamma 
distribution of form (17.2). Since y and are purely location and scale 
parameters, the results are easily extended to the general form (17.1). 
[Moments of order statistics of the exponential distribution (a = 1) are 
discussed in some detail in Chapter 19, Section 6.1 Tables of moments of 
order statistics from random samples of size n from the standard gamma 
distribution (17.2) are summarized in Table 17.2. 

We next note that Kabe (1966) has obtained a convenient formula for the 
characteristic function of any linear function Cy=lajX,! of the order statistics. 
The characteristic function is 
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Applying the transformation 

so that 0 < wj < 1 for j = 1,2,. . . , (n - 11, and w, > 0, we obtain the 
formula 

"!['(a)] -" /'/' o o . . . /l/m(fi wr-l)exp(-wnD(w)l dwn dwn-, . . . dw, 
0 1 j=l  

where 

Table 17.2 Details of Available Tables on Moments of Gamma Order Statistics 

Serial 
Shape Number ( j )  

Values Parameter Order of of Order Number 
Reference of n a Moments Statistics FiguresC 

Gupta (1961)" 1(1)10 ( 11(1)15 

Breiter and 1(1)16 
Krishnaiah (1968) 

Harter (1970) 1(1)40 

Prescott (1974) 2(1)10 

Walter and Stitt 1(1)25 
(1988) 1(1)5 

10(5)25 

Balasooriya and 1(1)10 
Hapuarachchi (1991)b (940 

"The values of BS (1992) occasionally differ from those of Gupta (1961) by more than 0.00001. 
b ~ h e  last of these references also includes covariances for n = 15(5)25, a = 2(1)5, extending 
Prescott (1974) which includes covariances for n = 2(1)10 and the same values of a. More 
extensive tables of expected values of order statistics for n = 15(1)40, cr = 5(1)8, and covariances 
for n = 2(1)25 and a = 2(1)8 are available on request from Balasooriya and Hapuarachchi 
(Memorial University of Newfoundland, St. John's). 
's.f. = significant figures; d.p. = decimal places. 
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The multiple integral can be expanded as a series of beta functions. Although 
we will not use it here directly, equation (17.71) is very convenient as a 
starting point for studying the distributions of linear functions of order 
statistics from gamma distributions. 

The distribution of X:, the rth smallest among n independent random 
variables each having distribution (17.21, has the probability density function 

In general, this expression does not lend itself to simple analytic treatment. 
However, if a is a positive integer, 

ry(a) a-1 
-- 

1 
- - l Y t a - l e - t d t  = 1 - e-y [cf. (17.24a)I 

r ( 4  r ( a )  0 j = o  

and so (17.72) becomes 

In this case it is possible to express all moments (of integer order) of X: and 
all product moments (of integer orders) of order statistics as finite sums of 
terms involving factorials, although these expression will usually be cumber- 
some. 

Johnson (1952) has obtained an approximation to the distribution of range 
(XA - X;) for random samples from (17.2). Tiku and Malik (1972) provide P1 
and p, values of the rth-order statistic Xi for the gamma distribution and 
compare them with approximate values obtained by equating the first three 
moments of xj with those of (X: + a)/g.  Numerical comparisons are 
presented in Table 17.3. The agreement is excellent except for a = 0.01. It is, 
however, doubtful whether any method of approximation based on moments 
can provide accurate values for the extreme lower tail, as the classical paper 
of E. S. Pearson (1963) indicated. 

Lingappaiah (1974) obtained the joint density of Xi and X,' (s > r), from 
the standard gamma distribution (17.0, and he derives from it that of the 
difference U,,, = Xi - X:. More recently Lingappaiah (1990) has obtained 
the distribution of U,,, in the presence of a single outlier-when n - 1 
observations are from a standard gamma a distribution but one observation 
is from a gamma a + 6 distribution. Typical values of Pr[Ur,, > u ]  under 
these conditions are shown in Table 17.4. 
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Table 17.3 Comparison of the Percentage Points of rth-Order Statistics 
from Standard Gamma Distribution with values from Tiku and Malik's 
(1972) Approximation (with a = 2, sample size n = 6)  

Upper Percentage Points 
50 75 90 

Exact 1.135 1.536 1.963 
' " 2(Approximate 1.135 1.535 1.962 

Exact 2.376 3.036 3.744 
' = 4(Approximate 2.370 3.040 3.754 

Lower Percentage Points 
25 10 05 

Exact 0.807 0.570 0.453 
' " '( Approximate 0.808 0.571 0.453 

Exact 1.829 1.423 1.214 
' = (Approximate 1.821 1.423 1.224 

As is to be expected, in Table 17.4 Pr[U,,, > u ]  increases with 6. Note that 
the values depend only on a u ,  so a single table (with a = 1) might suffice. 
Lingappaiah (1991) also provides tables (to 5 d.p.) with negative moments 
E[x:-'1 of the standard gamma a distribution for n = 2(1)5 with i = -(a - 
I), - (a - 2), . . . , - 1. As far as we know, the most general recurrence 
relationship in the literature for moments of order statistics from gamma a 
samples are those in Thomas and Moothathu (1991). 

These formulas relate values of (descending) factorial moments 

of the greatest X in a random sample of size n from the standard gamma 
distribution (17.1). The recurrence formula is 

n 2 2; k r max[l - a , n ( l  - a ) ] ,  (17.74) 

Table 17.4 Values of PrIU,,, > u ]  for n = 5, r = 1, s = 2 

(Y = 0.5 a = 1.0 

u 0.25 0.5 0.75 1 .O 0.25 0.5 0.75 1.0 

Note: Included are four observations from gamma a, one from gamma a + 6. 
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where 

A,,, = 1, 

Ar,, = -r-'(k - r + 1 + ( n  - r ) ( a  - l ))Ar-, , , ,  

= r-l(n - r )  Ar-l,r.  

If a is an integer, expected values and moments of the other orde 
statistics can be evaluated using Joshi's (1979) formula: 

with CL)~; = ~ ~ [ x r i  1 40) - 4) = 
kZn ; p k  : n  - 1; pozn 0 for i 2 1. Prescott (1974) show 

that 

where t = n - s + c + 1, q = b + s - r - c, and summation is over 0 
b ~ r - 1 ,  O s c ~ r - s - 1 ,  O I U I ( C Y - l ) ( t - I ) ,  O I U  
( a - l ) ( q - l ) , O s j < u + a , a n d  

n! 
C = 

( r  - l)!(s - r - l)!(n - s)! ' 

and where ag(h, i )  is the coefficient of zg  in the expansion of {ZF:,'(zj/j!) 
Gupta (1962) obtained recurrence formulas for the crude moments prl 

= E[ XL~: .I of the k th-order statistic (XA : These are 

where aj(a,, p )  is as defined in (17.76); see Balakrishnan and Cohen (199 
Prescott (1974) provided a table of variances and covariances of all ord 

statistics for n = 2(1)10 with a = 2(1)5 to four decimal places. (He used 
log-gamma computer routine, accurate to about ten decimal places, to avc 
errors occurring in tables prepared by Gupta (1962)-which have be 
ascribed to the way in which ratios of gamma functions were calculated.) 
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Using Gupta's tables (1962), it is possible to construct best linear unbiased 
estimators of the parameter j3 if a and y are known. Coefficients of such 
estimators have been given by Musson (1965). Coefficients for best linear 
unbiased estimators, not using all of the sample values have been given by 

1. Karns (1963) using only one-order statistic, 
2. Bruce (1964) using the least M values out of n, 
3. Hill (1965) using only the least number of order statistics Cfrom a 

complete or censored sample) to give a specified efficiency relative to 
the best linear unbiased estimator using all available order statistics, 

4. Sarndal (1964) using the best k-order statistics. (Sarndal also considers 
estimation of j3 and y, a being known.) 

I 

Returning now to situations where it is necessary to estimate all three 
parameters a ,  p, and y, we consider maximum likelihood estimation when 
the least r, and greatest r, of the X's have been censored. The maximum 
likelihood equations are [introducing 2j = (Xi' - ?)/@ for convenience] 

n - r 2  ( )  ( 6 )  
r~ ,~+1(6)  n -r2 C log 2j - n$'(&) + r2 + r, = 0, 

j = r , + l  r ( 6 )  - rfn-,J&) Gr1+1(&) 

n - r 2  

C log 2j - n$'lai 
j = r , + l  

The equations simplify if either r, = 0 or r, = 0. For the case r, = 0 
(censoring from above) a method of solving the equations is given by Harter 
and Moore (1965); also see Balakrishnan and Cohen (1991). 

Estimation is simplified if the value of y is known. Without loss of 
generality it may be arranged (if y is known) to make y = 0 (by adding, if 
necessary, a suitable constant to each observed value). For this case, with 
data censored from above (r, = O), Wilk, Gnanadesikan, and Huyett 
(1962a, b) have provided tables which considerably facilitate solution of the 



376 GAMMA DISTRIBUTIONS 

maximum likelihood equations. They express these equations in terms of 

that is, the ratios of the geometric and arithmetic means of the available 
obseyed values to their maximum. The maximum likelihood equations for 6 
and p are 

a log ~ ( i )  
( n  - r,)log P = n [ $I(&) - log (xi-r2)] T - r2 d i  , (17.81a) 

where 

Note that r, a!d n enter the equations only in terms of the ratio r,/n, 
and and P only as the ratio XA-,,/P. AWilk, Gnanadesikan, and 
Huyett (1962b) provide tables, giving i and &P/XA-r2 to three decimal 
places for 

P = 0.04(0.04) 1.00, and S = 0.08(0.04) 1.00. 

The values for n/r2 = 1 of course correspond to uncensored samples. A 
special table, which we have already mentioned in Section 7.2, is provided for 
this case. Wilk, Gnanadesikan, and Lauh (1966) discuss generalizations and 
modifications of these techniques for estimation of an unknown common 
scale parameter based on order statistics from a sample of gamma random 
variables with known shape parameters not necessarily all equal. 

If a is known, it is possible to use "gamma probability paper," as 
described by Wilk, Gnanadesikan, and Huyett (1962a) to estimate P and y 
graphically. This entails plotting the observed order statistics against the 
corresponding expected values for the standard distribution (17.2) (which of 
course depends on a )  or, if these are not available, the values tj satisfying 
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the equations 

In the case of progressively censored sampling, Cohen and Norgaard (1977) 
and Cohen and Whitten (1988) suggest the following procedure for solving 
the maximum likelihood equations (in the case when a > 1): Let n denote 
the total sample size and D, the number of failing items, for which there are 
completely determined life spans. Suppose that censoring occurs in k stages 
at times TI < T, < . . < T, and that Cj surviving items are selected 
randomly and withdrawn (censored) from further observation at time I;.. 
Then 

The sample data consist of the ordered life span observations (Xi) (i = 

1,2,. . . , D), the censoring times {I;.} and the numbers of censored items {Cj}  
( j  = 1,2,. . . , k). The likelihood function is 

where K is a constant, and p,(.) and F,(.) are the pdf and cdf of the 
lifetime distribution, respectively. 

For the three-parameter gamma lifetime distribution (17.1), we have 

D 

log L = -DlogI'(a) - na log@ - /3-' (Xi - y )  
i = l  

where 
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The corresponding maximum likelihood equations are 

aiog L D D k cj a4 - = - - 
P 

( a -  1) z ( X i -  y)-l  - -- = 0 (17.88~) 
a~ i = l  j = l  1 - 5 ay 

[cf. (17.37a)-(17.37~) for the case of uncensored samples]. 
Evaluation of the partial derivatives of 4 with respect to a ,  P, and y and 

computational details are given in Cohen and Whitten (1988). They caution 
that convergence problems may arise in iterative solution of equations (17.88) 
unless a x-= 1 (in our opinion, a 2 2.5). Cohen and Norgaard (1977) assert 
that for a 2 4, the formulas can be used "without any hesitation." 

When a is less than 1, the likelihood function tends to infinity as y -, Xi. 
Cohen and Norgaard (1977) suggest setting an initial value 9 =Xi - $q, 
where q is "the precision with which observations are made," and then 
proceeding iteratively. They also provide c~mputational~details for calcula- 
tion of the asymptotic variance-covariance matrix of &, P,  and 9.  

The maximum likelihood estimator & is the solution of 

A median estimator a *  is the solution of 

Harner, Shyu, and Trutzer (1991) carried out simulation studies of robustness 
of these estimators with respect to contamination of a gamma (a,  1) distribu- 
tion by a gamma (a,, 1) distribution. They took sample sizes n = 25,75, with 
a = 1,2,5 and a, = 0.1,1,5,10; the proportions of contaminant [gamma 
(a,, 111 were p = 0,0.01,0.05, and 0.1. They concluded the following: 

1. The moment estimator (&) "greatly overestimates" the value of a. 

2. The maximum likelihood estimator (&) "is competitive except when 
a, = 0.1." 

3. The median estimator (a*) is "fairly stable over all combinations of the 
simulation parameters," with positive bias for small a ,  decreasing to 
"negligible amounts" as a or n increase. 
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Harner, Shyu, and Trutzer (1991) also consider trimmed mean estimators 
e2) satisfying the equation 

where Xi is the ith order statistic among XI,. . . , X,, k, = [B,n + + 1 
and k, = n - [e2n] - 1. Simulations were carried out for the same values of 
the parameters as for &, 8, and a*, with 

(e l ,  0,) = (0.025,0.075) and (0.0,o.l). 

The trimmed means gave good results with (el, 8,) = (0.025,0.075), and it 
was suggested that a trimmed mean, omitting the first few order statistics, 
might be used in place of the maximum likelihood estimator if a is thought 
to be small (giving rise to observations near zero). 

8 RELATED DISTRIBUTIONS 

If Y has the standard uniform (rectangular) distribution 

then Z = -log Y has the exponential distribution 

which is a special form of gamma distribution. If Y,, Y,, . . . , Yk are indepen- 
dent random variables, each distributed as Y, and Zj = -log? ( j  = 

1,. . . , k), then Z(,, = Cik,,Zj has a gamma distribution with parameters 
a = k, j3 = 1, y = 0. [2Z(,, is distributed as Xzk; see Chapter 18.1 Relation- 
ships between gamma and beta distributions are described in Chapter 25 (see 
also Section 6 of this chapter). 

Apart from noting these interesting relationships, we will devote this 
section to an account of classes of distributions that are related to gamma 
distributions, in particular 

1. truncated gamma distributions, 
2. compound gamma distributions, 
3. transformed gamma distributions especially the generalized gamma 

distributions (which are assigned a special section of their own), 
4. distributions of mixtures, sums, and products of gamma variables. 
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8.1 Truncated Gamma Distributions 

The most common form of truncation of gamma distributions, when used in 
life-testing situations, is truncation from above. This is omission of values 
exceeding a fixed number r ,  which is usually (though not always) known. If r 
is not known, and the distribution before truncation is of the general form 
(17.1), there are four parameters (a,  P, y, r) to estimate, and technical 
problems become formidable. However, it is not difficult to construct fairly 
simple (but quite likely not very accurate) formulas for estimating these 
parameters. 

Fortunately it is often possible to assume that y is zero in these situations 
[see Parr and Webster (1965) for examples], and we will restrict ourselves to 
this case. We will suppose that we have observations that can be regarded as 
observed values of independent random variables X,, X,, . . . , X,,, each hav- 
ing the probability density function 

This may be denoted as a gamma (a,  817) distribution. Estimation of the 
parameters a and /3 has been discussed by Chapman (19561, Cohen (1950, 
1950, Das (1955), Des Raj (19531, and Iyer and Singh (1963). 

The moments of distribution (17.95) are conveniently expressed in terms 
of incomplete gamma functions: 

Gross (1971) notes that this is an increasing function of both a and fi and, 
further, that is an increasing function of a for r > 0. 

The preceding results imply that 

P7 
Osp'  c-  for all a > 0, 

' - p + 1  

d + s  rS - 5 (/3 + r )  for all a > 0. (17.98) 
14 P + r + s  

Nath (1975) obtained the minimum variance unbiased estimator of the 
reliability function (R(t) = Pr[X > t ] )  for the gamma (a ,  PIT) distribution 
with integer a. In his analysis he showed that the sum of n independent 
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gamma(a, P 17) variables, Y,  = X, + . . +Xn has cdf 

for kyr < y < (ky + 1)r ;  k = 0,1, .  . . , n  - 1, (17.99) 

with 

1 r!s(r) ! n a  - 1 s(r) 

0 n a  - 1, - = C* ( Y - r r  n;:/(rj) !n;=-/( j!)rj ( r ) (=) , 

where s(r) = Cg:djrj; the multinomial summation C* is over all nonnegative 
r = ( r , ,  . . . , r, - ,) satisfying Cgldrj = r. 

The formula for the MVU estimator of R(t) appears to be extremely 
cumbersome, although Nath (1975) claims that "it is not so in practical 
application, particularly when the sample size is small." 

As 7 + m, the distribution of Y,  tends to gamma (na, P), as is to be 
expected. The MVU estimator of R(t) tends to the incomplete beta function 
ratio I,,,Ja, (n - l)a), corresponding to Basu's (1964) MVU estimator of 
R(t), with corrected factorial term. [See also Wani and Kabe (1971), and for 
exponential distributions, Pugh (19631.1 

8.2 Compound Gamma Distributions 

Starting from (17.1), compound gamma distributions can be constructed by 
assigning joint distributions to a ,  P, and y. The great majority of such 
distributions used in applied work start from (17.2) (i.e., with y = 0) and 
assign a distribution to one of a and P (usually P). 

If p-' itself be supposed to have a gamma (6, b-') distribution with 

bsX6-1 -xb e 
P@-'(x) = 

r ( 6 )  
, OIX, (17.101) 

the resulting compound distribution has probability density function 
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This belongs to Type VI of Pearson's system (Chapter 12, Section 4). It can 
be expressed formally as 

Gamma ( a ,  p ,  0) Gamma (8 ,  b-',O) = Type VI. 
B-' 

See Dubey (1970) for further details and extensions. 
The noncentral X 2  distribution (Chapter 29) is a mixture of gamma 

distributions, each with p equal to 2 and a distributed as v + 2j, where j is a 
Poisson +A variable. Formally 

Gamma ( a ,  2,O) Poisson(;~) = x ~ ~ ( h ) ,  
(a - v ) / 2  

or equivalently 

Xi Poisson ($A) = X:2( A). 
(a  - v ) / 2  

Bhattacharya (1966) has considered the distribution 

Gamma (a ,p ,O)  A Gamma (a1,p',O). 
P 

This distribution is considerably more complicated than when p-' has a 
gamma distribution. The probability density function is 

where ~ , , - , ( 2 m )  is the modified Bessel function of the third kind, of 
order a' - a [see Abramowitz and Stegun (1965)l. 

03 Transformed Gamma W\st.but'\ons 

Olshen (1937) published an account of a systematic investigation into the 
distribution of log X when X has a standard gamma distribution (17.2). The 
moment-generating function of log X is 
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and the cumulant generating function is 

Hence 

log r ( a  + t )  - log r ( a ) .  

 log X )  = *('-')(a). 

Introducing the approximation 

we see that the shape factors of log X are approximately 

By comparison with a,(X) and a4(X) [see (17.1111, it can be seen that these 
are closer to the "normal values" 0 and 3 than are the moment ratios of the 
original distribution of X. The approximation "log X is normally distributed 
with expected value +(a) and variance +'(a)" is likely to be fairly accurate 
for a sufficiently large. The accuracy of this approximation has been studied 
by Bartlett and Kendall (1946). 

If the approximation is accepted, it provides an approximation to the 
distribution of 

where the X,'s are independent chi squared random variables with v degrees 
of freedom. For 

1 
log R, = max(1og XI , .  . . , log X,) - min(1og XI , .  . . , log X,) 

I 

I 
k 

= range(1og XI,  . . . , log X,) 

[ is approximately distributed as 

I 

F 4- X (range of n independent unit normal variables). 

i 
The log-gamma distribution is defined as the distribution of a random 

variable Y when -log Y has a gamma (a ,  P )  distribution. The pdf is 
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[See Consul and Jain (1970.1 The rth moment about zero is 

In particular, 

Generalized gamma dktributions with ZC distributed as gamma (a, P, y )  will 
be described in Section 8.7. 

8.4 Convolutions of Gamma Distributions 

The distribution of Y = C;='=,Xi with Xi - gamma (ai, pi) has received 
special attention in recent literature. The most recent result is due to Sim 
(1992) who shows that Y has pdf 

where a = C;=lai, 
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for r = 0,1,2 and 

Sim (1992) claims that this result is easily obtained by mathematical induc- 
tion. Moschopoulos (1985) gives the alternative expression 

where 

His derivation is based on inversion of the moment generating function 
ni.,,(l - pit)-*'. Further expressions have been given by Mathai (1982), for 
cases when (1) all ai9s are equal and (2) all ai's are integers. 

Ratios of independent gamma (ai, pi)  variables (i = 1,2) are distributed 
as Pearson Type VI [see also F distributions (Chapter 2711. Distributions of 
products (and ratios) of gamma variables have been discussed in Malik (1967, 
1968a), Lee, Holland, and Flueck (1979), and Springer (1979). 

As an example, here is a derivation of the distribution of Y = X1X2, 
where XI and X2 are mutually independent random variables and X, has a 
gamma (aj, 1) distribution ( j  = 1,2). The joint density of X, and X2 is 

Making the one-to-one transformation 

y = x1x2, z = x1 or inversely x, = z,  x, = y/z 

with Jacobian 
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the joint density of Y = XlX2 and Z = X1 is 

Hence, the density function of Y = X1X2 is 

where K,(h) is the modified Bessel function of the third kind [see Abramowitz 
and Stegun (196511. 

Kotz and Srinivasan (1969) have obtained this result by the use of Mellin 
transforms. 

The distribution of the ratio X1/X2 will be discussed in Chapter 27. The 
book by Springer (1979) contains many examples of distributions of products 
and sums of gamma (and beta) variables. 

8.5 Mixtures of Gamma Distributions 

A k-component mixture, in proportions p1 : p, : 

gamma (a ,  p )  distributions has pdf, 

Kanno (1982) has described an iterative procedure for fitting a two-compo- 
nent distribution of type (17.111). He emphasizes that the choice of initial 
values for (a,, a,; p,, p2; p,) substantially affects the convergence of the 
procedure. 

8.6 Reflected Gamma Distributions 

Borghi (1965) introduced a "reflected version of the gamma distribution" 
derived by reflecting the three-parameter distribution (17.1) about y, It has 
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The standard form has y = 0, P = 1 [cf. (17.2)1 with pdf, 

Kantam and Narasimham (1991) have given tables of the BLUES of p and 
y (when a is known) for a  = 2(1)5 and sample size n = 2(1)10 for complete 
and censored (symmetric- and right-) samples. They also studied the proper- 
ties of the quasi-midrange [;(xi + X;-i+l)l, the sample median, trimmed 
mean, and Winsorized mean as alternative estimators for y, and the mean 
deviation from the median, and the quasi-range (XA-,,, - Xi) as bases for 
alternative estimators for p. Among their conclusions they note that although 
the median is a good alternative to the BLUE of y when a  = 1 [the double 
exponential, or Laplace, distribution (see Chapter 2411, this is not the case for 
larger values of a. 

Harvey (1967) has considered a more general form of reflected distribu- 
tion, with pdf 

where 

- 1 

K = ( 2 i m ( a  + k ) e - t / b  dr )  

An attractive feature of this class of distributions, as compared with that of 
Borghi, is that the density is not, in general, zero at the point of symmetry 
(7). 

If a, b, and a  are known, the maximum likelihood estimator f satisfies the 
equation 

(a- 1) "(a + ' x i - " )  ) 
n 

b 
sgn(Xi - T )  = sgn(Xi - f). (17.115) 

i = l  i=  1 
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Wesolowski (1993) presented a characterization for the reflected general- 
ized gamma distribution. His result is that, for two i.i.d. random variables X 
and Y, symmetric distribution of X/Y is independent of lXIY + (YIY (y > 0) 
if and only if the random variables have the reflected generalized gamma 
distribution. 

8.7 Generalized Gamma Distributions 

Generalized gamma distributions were discussed by Amoroso (1929, who 
fitted such a distribution to an observed distribution of income rates. Be- 
tween 1925 and 1962, however, there appeared to be little interest in this 
family of distributions. An interesting physical model generating generalized 
gamma distributions was described by Lienhard and Meyer (1967). 

If it be supposed that ( ( 2  - y)/pIc = X (with c > 0) has the standard 
gamma distribution (17.2), then the probability density function of Z is 

This was defined (with y = 0) by Stacy (1962) as the family of generalized 
gamma distributions [see also Cohen (1969)l. It includes Weibull distributions 
( a  = I), half-normal distributions ( a  = 3, c = 2, y = O), and of course 
ordinary gamma distributions (c = 1). In addition the lognormal distribution 
is a limiting special case when a + w. If y = 0, the cdf can be expressed as 

F,(z ;  p ,  a ,  c)  = G [( f 1'; a ] ,  

where G(a, a )  is the incomplete gamma function ratio T,(a)/r(a). 
Since ( ( 2  - y)/P)" has a standard gamma distribution, it is clear that 

[from (17.8)] 

The moments and shape factors of Z can be deduced from (17.118). We may 
note, in particular, that if c = 2, then ( Z  - y)2 has a gamma distribution, 
and that if c = 2, y = 0, p = 2, and a = iv ,  then Z is distributed as x,. 
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If y = 0, the incomplete r th moment (up to 5) of Z is 

where ,F,(; ly ) is the confluent hypergeometric function, which is a special 

a1,. . . , ap 
case of the generalized hypergeometric function F x (see Chap- .( b l ,  ..., bq 1 ) 
ter 1). 

The generalized gamma distribution has two shape parameters, a and c. 
Taguchi (1980) suggested an alternative parametrization, introducing param- 
eters h = a-', d = c a  in place of a and c. He refers to d and h as skewness 
and "sharpness" parameters, respectively, and suggests that they be esti- 
mated using a generalized concentration curve (closely related to the Gini 
concentration coefficient). 

If y = 0, we have 

log Z = c-'(log x + log p ) ,  (17.120) 

with X having a standard gamma (a )  distribution. Hence the shape factors 
(a, and a,) of log Z are the same as those of log X, and they depend only on 
a, not on c. The distribution is bell-shaped for c a  > 1 and reverse J-shaped 
otherwise. If the values of c and y are known, problems of estimation can be 
reduced to similar problems for ordinary gamma distributions by using the 
transformed variable ( Z  - y)'. 

The two parameters c and a define the shape of the distribution (17.116). 
These distributions cover an area in the (PI, P,) plane. Note that, as for the 
Weibull distribution, there is a value c = c(a) for which PI = 0. For c < c(a), 
fi > 0; for c > c(a), fi < 0. 

Roy (1984) presented a characterization of the generalized gamma distri- 
bution based on a conditional distribution along the lines of Patil and 
Seshadri (1964). Mees and Gerard (1984) applied the generalized gamma 
distribution to model the distributional shape of seed germination curves, 
and also discussed the estimation of the three parameters as well as the 
germination capacity through the maximum likelihood estimation method. 

Johnson and Kotz (1972) studied power transformations of gamma (a ,  p )  
variables, which generate the (Stacy) generalized gamma distributions. They 
provide a diagram (Figure 17.4) showing regions of the (a, P,) plane 
corresponding to distributions of [gamma ( a ) ] ~ a r i a b l e s  [i.e., (Stacy) general- 
ized gamma distributions with c = A-']. (As A + 0, and so c -, a, the 
distribution tends to that of the logarithm of a gamma variable.) 
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Figure 17.4 Region of Existence of (Gamma)A Distributions, Shaded; Region Where Two 
Distributions Exist, Cross-hatched. 

In the figure the region is bounded by the lines A = 0+, the power-func- 
tion line [p,(z) = Oze-' (0 < z < 1, 0 > O)] the log Type I11 line, and 
A = -0.54. There are two distributions for each point between the A = 
-0.54 and A = 0 lines. This area is cross-hatched. Cammilleri (1971) calls 
the generalized gamma with y = 0, x > 0 the generalized seminormal density. 
He studies the distribution of the product XY, where X and Y are two 
independent random variables having generalized seminormal distributions 
with distinct values of the parameters a and j3 but the same parameter c. 

Pakes and Khattree (1992) show that the distribution of Z is determined 
by the moments only if c > 3. (Compare with a related result for the 
lognormal distribution in Section 3 of Chapter 14.) Indeed, if c < 3, any 
distribution with pdf 

has the same moments for - 1 I E < 1, including E = 0. 
Roberts (1971) shows that a necessary and sufficient condition for I WI"" 

(c # 0) to have a gamma (a, j3) distribution is that the pdf is of form 
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If y = 0, the incomplete rth moment (up to 5) of Z is 

where ,F,(; l y  ) is the confluent hypergeometric function, which is a special . , 

case of the generalized hypergeometric function F, ('I1. ,,, . ' , ' , , 2 lx) (see Chap- 

ter 1). 
The generalized gamma distribution has two shape parameters, a and c. 

Taguchi (1980) suggested an alternative parametrization, introducing param- 
eters h = a-', d = ca  in place of a and c. He refers to d and h as skewness 
and "sharpness" parameters, respectively, and suggests that they be esti- 
mated using a generalized concentration curve (closely related to the Gini 
concentration coefficient). 

If y = 0, we have 

log Z = c -'(log X + log P )  , (17.120) 

with X having a standard gamma (a )  distribution. Hence the shape factors 
(a, and a,) of log Z are the same as those of log X, and they depend only on 
a ,  not on c. The distribution is bell-shaped for c a  > 1 and reverse J-shaped 
otherwise. If the values of c and y are known, problems of estimation can be 
reduced to similar problems for ordinary gamma distributions by using the 
transformed variable ( Z  - y)c. 

The two parameters c and a define the shape of the distribution (17.116). 
These distributions cover an area in the (PI, p2) plane. Note that, as for the 
Weibull distribution, there is a value c = c(a) for which p1 = 0. For c < c(a), 

> 0; for c > c(a), fi < 0. 
Roy (1984) presented a characterization of the generalized gamma distri- 

bution based on a conditional distribution along the lines of Patil and 
Seshadri (1964). Mees and Gerard (1984) applied the generalized gamma 
distribution to model the distributional shape of seed germination curves, 
and also discussed the estimation of the three parameters as well as the 
germination capacity through the maximum likelihood estimation method. 

Johnson and Kotz (1972) studied power transformations of gamma (a ,  p)  
variables, which generate the (Stacy) generalized gamma distributions. They 
provide a diagram (Figure 17.4) showing regions of the (a, P2) plane 
corresponding to distributions of [gamma (a)l%ariables [i.e., (Stacy) general- 
ized gamma distributions with c = A-']. (As A -, 0, and so c + m, the 
distribution tends to that of the logarithm of a gamma variable.) 
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the joint density of Y = XlX2 and Z = X, is 

Hence, the density function of Y = X,X2 is 

where K,(h) is the modified Bessel function of the third kind [see Abramowitz 
and Stegun (1965)l. 

Kotz and Srinivasan (1969) have obtained this result by the use of Mellin 
transforms. 

The distribution of the ratio X,/X2 will be discussed in Chapter 27. The 
book by Springer (1979) contains many examples of distributions of products 
and sums of gamma (and beta) variables. 

8.5 Mixtures of Gamma Distributions 

A k-component mixture, in proportions p1 : p 2  : 

gamma (a, p )  distributions has pdf, 

Kanno (1982) has described an iterative procedure for fitting a two-compo- 
nent distribution of type (17.111). He emphasizes that the choice of initial 
values for (a,, a,; PI, P2; p,) substantially affects the convergence of the 
procedure. 

8.6 Reflected Gamma Distributions 

Borghi (1965) introduced a "reflected version of the gamma distribution" 
derived by reflecting the three-parameter distribution (17.1) about y. It has 
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The standard form has y = 0, P = 1 [cf. (17.211 with pdf, 

Kantam and Narasimham (1991) have given tables of the BLUES of /3 and 
y (when a is known) for a = 2015 and sample size n = 2(1)10 for complete 
and censored (symmetric- and right-) samples. They also studied the proper- 
ties of the quasi-midrange [$(xi' + XA-,+,)], the sample median, trimmed 
mean, and Winsorized mean as alternative estimators for y, and the mean 
deviation from the median, and the quasi-range (X,#-,+, - X,') as bases for 
alternative estimators for p. Among their conclusions they note that although 
the median is a good alternative to the BLUE of y when a = 1 [the double 
exponential, or Laplace, distribution (see Chapter 2411, this is not the case for 
larger values of a. 

Harvey (1967) has considered a more general form of reflected distribu- 
tion, with pdf 

where 

- 1 

K = (2[(a + i)e-t/b d r )  

An attractive feature of this class of distributions, as compared with that of 
Borghi, is that the density is not, in general, zero at the point of symmetry 
(7). 

If a, b, and a are known, the maximum likelihood estimator 7 satisfies the 
equation 
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Wesolowski (1993) presented a characterization for the reflected general- 
ized gamma distribution. His result is that, for two i.i.d. random variables X 
and Y, symmetric distribution of X/Y is independent of 1x1 + 1 YI ( y > 0) 
if and only if the random variables have the reflected generalized gamma 
distribution. 

8.7 Generalized Gamma Distributions 

Generalized gamma distributions were discussed by Arnoroso (1929, who 
fitted such a distribution to an observed distribution of income rates. Be- 
tween 1925 and 1962, however, there appeared to be little interest in this 
family of distributions. An interesting physical model generating generalized 
gamma distributions was described by Lienhard and Meyer (1967). 

If it be supposed that { ( Z  - y)/plC = X (with c > 0) has the standard 
gamma distribution (17.2), then the probability density function of Z is 

This was defined (with y = 0) by Stacy (1962) as the family of generalized 
gamma distributions [see also Cohen (1969)l. It includes Weibull distributions 
( a  = I), half-normal distributions ( a  = $, c  = 2, y = O), and of course 
ordinary gamma distributions (c = 1). In addition the lognormal distribution 
is a limiting special case when a 4 m. If y = 0, the cdf can be expressed as 

F,(z; p ,  ff, C )  = G [(f  1'; a ] ,  

where G(a, a )  is the incomplete gamma function ratio T,(a)/r(a). 
Since { ( Z  - y)/plC has a standard gamma distribution, it is clear that 

[from (17.811 

The moments and shape factors of Z can be deduced from (17.118). We may 
note, in particular, that if c = 2, then ( Z  - yI2 has a gamma distribution, 
and that if c  = 2, y = 0, p = 2, and a = iv, then Z is distributed as x,. 
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If y = 0, the incomplete rth moment (up to 3) of Z is 

where ,F,(;  ly) is the confluent hypergeometric function, which is a special 

al....,ap 
case of the generalized hypergeometric function F x (see Chap- . .( b, ,  ..., .* 1 ) 
ter 1). 

The generalized gamma distribution has two shape parameters, a and c. 
Taguchi (1980) suggested an alternative parametrization, introducing param- 
eters h = a-', d = c a  in place of a and c. He refers to d and h as skewness 
and "sharpness" parameters, respectively, and suggests that they be esti- 
mated using a generalized concentration curve (closely related to the Gini 
concentration coefficient). 

If y = 0, we have 

log Z = c -'(log X + log p) ,  (17.120) 

with X having a standard gamma (a )  distribution. Hence the shape factors 
(a, and a,) of log Z are the same as those of log X,  and they depend only on 
a ,  not on c. The distribution is bell-shaped for c a  > 1 and reverse J-shaped 
otherwise. If the values of c and y are known, problems of estimation can be 
reduced to similar problems for ordinary gamma distributions by using the 
transformed variable ( Z  - yY. 

The two parameters c and a define the shape of the distribution (17.116). 
These distributions cover an area in the (PI, P,) plane. Note that, as for the 
Weibull distribution, there is a value c = c(a) for which PI = 0. For c < c(a), 
fi > 0; for c > c(a), fi < 0. 

Roy (1984) presented a characterization of the generalized gamma distri- 
bution based on a conditional distribution along the lines of Patil and 
Seshadri (1964). Mees and Gerard (1984) applied the generalized gamma 
distribution to model the distributional shape of seed germination curves, 
and also discussed the estimation of the three parameters as well as the 
germination capacity through the maximum likelihood estimation method. 

Johnson and Kotz (1972) studied power transformations of gamma (a ,  p )  
variables, which generate the (Stacy) generalized gamma distributions. They 
provide a diagram (Figure 17.4) showing regions of the (a, p2) plane 
corresponding to distributions of [gamma (a)lhariables [i.e., (Stacy) general- 
ized gamma distributions with c = A-']. (As A -, 0, and so c -, 00, the 
distribution tends to that of the logarithm of a gamma variable.) 
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Figure 17.4 Region of Existence of (Gamma)" Distributions, Shaded; Region Where Two 
Distributions Exist, Cross-hatched. 

In the figure the region is bounded by the lines A = 0+, the power-func- 
tion line [p,(z) = Oze-' (0 < z < 1, 8 > O)] the log Type I11 line, and 
A = -0.54. There are two distributions for each point between the A = 

-0.54 and A = 0 lines. This area is cross-hatched. Cammilleri (1971) calls 
the generalized gamma with y = 0, x > 0 the generalized seminormal density. 
He studies the distribution of the product XY, where X and Y are two 
independent random variables having generalized seminormal distributions 
with distinct values of the parameters a and p but the same parameter c. 

Pakes and Khattree (1992) show that the distribution of Z is determined 
by the moments only if c > $. (Compare with a related result for the 
lognormal distribution in Section 3 of Chapter 14.) Indeed, if c < i, any 
distribution with pdf 

has the same moments for - 1 s E < 1, including E = 0. 
Roberts (1971) shows that a necessary and sufficient condition for I WI"" 

(c .i. 0) to have a gamma (a ,  p) distribution is that the pdf is of form 
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with 

h(w) + h(- w) = l c l { ~ ~ I ? ( a ) } - '  for all w. 

[Roberts and Geisser (1966) had previously obtained this result for c = 2.1 
Jakuszenkowa (1973) further extended this result, obtaining a characteriza- 
tion in terms of the joint distribution of variables 

- i = l ,  ..., n,  

where Z,, Z,, . . . , Z,, are mutually independent positive random variables. 
Lefante and Turner (1985) calculated an "average likelihood" for distribu- 

tion (17.116) with y = 0 by integrating the likelihood (based on sample values 
Z1, z 2 , .  . . , Zn): 

with respect to p-c (from zero to infinity), obtaining the value 

They describe the use of this statistic in a form of Bayesian estimation. 
The essential difficulty in estimation for generalized gamma distributions 

with y = 0 is estimation of c. In fact, if c is known, one can apply the 
transformation X = Z c and use the methods appropriate to gamma distribu- 
tions. 

Maximum likelihood estimation of c, a ,  and P (assuming y to be known) 
was described by Parr and Webster (1965). Taking y = 0, the maximum 
likelihood equations are [Hager and Bain (1970)l: 

n n (: ) -- 2 (;)'log(;) = 0, (17.124b) - + & C  log 7; 
c^ i = 1  i =  I 

Equation (17.124a) yields 

this expression for $ into (17.124b) we have 
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Substituting into (17.124~) yields an equation in the single unknown ĉ , and a 

then the problem is to solve H(t)  = 0 for ĉ , where 

c;-, log Zi 
H ( t )  = -$(&) + t + logna?, (17.126) 

n 

and & is given by (17.125). 
Extensive investigation of H(2) conducted by Hager (1970) in his doctoral 

dissertation indicated that it is not always possible to determine if H(c^) = 0 
has a root. The complication is that as c^ + 0, 2 becomes quite large. There 
are conflicting reports in the literature as to the possibility of solving the 
equation H(c^) = 0. Hager and Bain (1970) and Lawless (1980) report persis- 
tent divergence of their iterative numerical methods. Their experience led 
them to conclude that MLE may not exist unless n > 400, say. Stacy (1973), 
on the other hand, reports on multiple distinct solutions to H(2)  = 0 for 
sample sizes as small as 20. It has been found that the Newton-Raphson 
method does not work well and that the existence of solutions to the 
log-likelihood equations is sometimes in doubt. When maximum likelihood 
estimates could be found, the asymptotic normal distribution of a? was not in 
effect even for samples of size 400 when sampling with a values of 1 and 2. 

Lawless's (1980) method maximizes the likelihood function over a subset 
of the parameters with the remaining parameters temporarily held fixed at 
some initial values. This is then followed by a heuristic interpolation scheme 
that refines further values of the fixed parameter. This approach guarantees 
only a local maximum of the likelihood function and is not very efficient 
computationally. 

Wingo (198%) recommends the root isolation method developed by Jones, 
Waller, and Feldman (1978) which assures globally optimal maximum likeli- 
hood estimators of generalized gamma distribution parameters. See also 
Wingo (1987a) for additional justification of the method. 

w ohe en and Whitten (1988) recommend the reparametrization 6 = PC, 
which results in the three equations: 

n n & ~ y = ' = , ~ f  log Zi 
C Z! - = 0, (17.127b) 

i - 1  (n/c^) + a?Cy='=l log Zi 

They suggest, for example, starting with a first approximation c,, for ĉ , 
substituting it into (17.127b) and solving this equation for & - a , ,  substituting 
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and c, into (17.127a) and solving for 8  ̂- 8,, and then substituting the 
ree approximation into (17.127~). The cycle is to be repeated until a pair ai 
d ci of successive approximations are sufficiently close to each other, and 
:n interpolating for the final estimates. They do not address directly the 
lvergence problem. 
We note two possible pararnetrizations of the three-parameter generalized 
nma distribution (with y = 0): the form 

b 
P,(z; a ,  d ,  b) = 

zd-le-(z/a)b 

adr(d/b)  , a, d ,  b > 0; z 2 0, 

inally suggested by Stacy (19621, and another obtained by introducing 
d/b allowing the power parameter to be negative 

u z ( z ;  a,  k, b) = 
lb l 

r ( k ) a b k  
rbk-'e-(z/a)b, a, k > 0, b + 0; z 2 0. 

second form was suggested by Stacy and Mihram (1965) and is commonly 
in practice. Straightforward moment estimation of parameters based on 
ents of log Z was proposed by Stacy and Mihram (1965) (see pages 
396). 

ation in Four-parameter Generalized Gamma Distribution 
:r (1966) studied maximum likelihood estimation of all four parameters 
y, and c. He gives tables of asymptotic variances and covariances and 
les an extract from these tables in Harter (1967), which also contains 
sults of a number of applications of the method of maximum likelihood 
rnplete samples of size 40, and also to such samples censored by 
ion of the greatest 10, 20, or 30 observed values [also see Harter 
I. From the evidence of some sampling experiments, it appears that 

naximum likelihood estimates have a definite bias in samples of this 
ize, 
stimators of a and c have high negative correlations. 

generalized gamma distribution is not recommended as a model for 
s of sample data, unless the sample size is large enough to group the 

a frequency table. Cohen and Whitten (1988) suggest a minimum 
size of 100 observations-even more if a four-parameter model is 
2d. 

recommend a modified moment estimation procedure, equating 
and population values for the first three moments but equating the 
le first-order statistic to (n + I)-', in place of equating fourth sample 
~ulation moments (which can involve large sampling errors). First, 
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assuming a trial value c, for c, solve the fourth equation for the moment-ratio 
CY, (= fi) and proceed iteratively until a final value < say, is obtained 
producing close agreement with the sample value of a,. Using this value for 
c, the estimators for a ,  p, and y are calculated from the remaining equa- 

Cohen and Whitten (1988) provide extensive tables of a, as a function of 
c and a for c = 0.2,0.5(0.5)3.5, and also of the corresponding cdf for 
c = 0.5(0.5)3.5. Rao, Kantam, and Narasimham (1991) has derived Lloyd-type 
(1952) BLUE of the location y and scale P parameters of the four-parameter 
generalized gamma distribution. They give coefficients of BLUEs based on 

i order statistics (Z:l+ ,, . . . , ZA-,2)--that is, excluding the r, least and the r, 
greatest-for c = 0.25,0.5,2,4, a = 2(1)4, and n = 3(1)10, together with 
their variances. This paper also includes analyses (for three-parameter gener- 
alized gamma) for (1) Gupta-type BLUEs, yg and Pz,  of y and P, respec- 
tively, in which the order statistics are treated as if they were uncorrelated 
and had a common variance (see Chapter 131, (2) "trimmed-type" estimators 

C*(z: - z:l+l) 
P; = z*E*[z~ - z:,+,~P = 11 ' 

(17.129) 

(3) Winsorized-type estimators 

rlZ:,+, + C*Z: + I - ,Z~-~ ,  - nZ:l+, 
, (17.130) '*, = E*[~,z;+, + E*Z: + r2Zh-r2 - nZ;+,lP = 1] 

and (4) median-type estimators 

if n is odd, 
~ * [ ~ i . + 1 ) / 2  - Z:l+lIP = 11 

(17.131) 
'{n + 2)/2 + 2: /2 - + 1 

if n is even. 
E* [~{.+2)/2 + ZA/2 - 22:,+1 18 = 1) 

In each of equations (17.129)-(17.131) the expected values (E*) are calcu- 
lated on the basis P = 1; in (17.29) and (17.130), C* denotes summation from 
i = r, + 1 to i = n - r,. Rao, Kantam, and Narasimham (1991) report that 
in all patterns of censoring Gupta-type BLUEs (yg and pE) perform well, 
with minimum relative efficiencies of 84% for c = 2 and 87% for c = 4. In 
decreasing order of preference for the other estimators of p we have 
P&, P;,P&, but for 0.25 I c I 1, /?; is preferable to P*,. 

Some investigations have been aimed at estimation of reliability-that is, 
the survival function Pr[Z > z ]  = 1 - F,(z). Since this is just a particular 
function of the parameters, one would expect difficulties to arise when there 
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are difficulties in estimation of a ,  P, and y. So it is not surprising that Hager, 
Bain, and Antle (1971) and Hager and Bain (1970) found that no MLE of 
reliability may exist for small sample sizes or when c is small. 

Log (Generalized) Gamma Distribution Estimation 
Stacy and Mihram (1965) were first to propose a method estimation based on 
the moments of log 2. [Of course if the known value of y is not zero, 
log(Z - y) would be used.] The moment-generating function of T = 

log(Z//3) is 

r(a + :) 
(cf. Section 2). 

r ( a >  

Hence the cumulant generating function of T is 

so that 

The equations 

can be written in the form 

P 3 - -  - @"(a) 

~ " z / '  [ * I (  a) ]  3 / 2  

Replacing population moments in (17.133) by sample moments and solving 
successively for a, C, and p gives the required moment estimators. 
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C H A P T E R  1 8  

Chi-Square Distributions, 
Including Chi and Rayleigh 

1 HISTORICAL REMARKS 

As we noted in Chapter 17, the standard chi-square distribution with v degrees 
of freedom is in fact a gamma distribution with shape parameter v/2 and 
scale parameter 2. As a result many properties and results discussed for the 
gamma distribution in Chapter 17 will continue to hold (with suitable 
changes) for the chi-square distribution. In this chapter, however, we present 
specific developments that have taken place on the chi-square distribution 
and related issues. It is important to mention here the book by Lancaster 
(1969) which, even though it is more than 20 years old, gives a fine account of 
this distribution and will still serve as a good basic reference source. 

Lancaster (1966) noted that BienayrnC (1838) obtained the chi-square 
distribution as the limiting distribution of the random variable 
C~=,(N, - npi)'/(npi), where N,, N2, . . . , N, have a joint multinomial distri- 
bution with parameters n, p,, p,, . . . , p, (see Chapter 11 of the first edition). 
It is also well-known that if U,, U2, . . . , U,, are independent standard normal 
variables, then C~,,IY.~ has a chi-square distribution with v degrees of 
freedom (here v has to be an integer by definition, but the distribution is 
defined for any real v > 0 as can be seen in the next section). Lancaster 
(1966) also pointed out that the result, that if V,, V,, . . . , V;, are independent 
chi-square random variables each with two degrees of freedom (i.e., they are 
exponential random variables), then Eik_,V;. is distributed as chi-square with 
2k degrees of freedom, was demonstrated by Ellis (1844). The general 
reproductive property of chi-square distributions was proved by Bienaym6 
(1852) and also by Helmert (1875) using a different method. Helmert (1876a, b) 
also established the result that if XI, X,, . . . , X,are independent normal 
N(/L, u2) variables then C;=,(X, - X)'/u2 (with X being the sample mean) 
is distributed as a chi-square variable with n - 1 degrees of freedom and that 
this variable is statistically independent of z. Because of this historical fact 

415 
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Kruskal(1946) recommended calling the joint distribution of the two random 
variables Helmert's distribution; this recommendation was also supported by 
Lancaster (1966). 

Kendall(1971), through his investigations, concluded that AbbC (1863) was 
the first to deduce the chi-square law; interested readers may also refer to 
Sheynin (1966, 1971, 1988), Matsunawa (1980, and Plackett (1983) for 
additional illuminating details on the history of the chi-square distribution. In 
1860 Maxwell derived the chi-square distribution for the case v = 3; during 
the years 1878 to 1881, Boltzmann used the chi-square distribution first with 
v = 2 and then with v = 3 (in 1878) and published a general formula later in 
1881. The formula provided by Bolfzmann (1878) for the case v = 3, how- 
ever, contained an error. Quite interestingly, Sheynin (1988) (following a clue 
from Bol'shev) discovered that Gauss (1816), in one of his papers in geodetics 
(the branch of applied mathematics that determines the shape and area of 
large tracts of land, the exact position of geographical points, and the 
curvature, shape, and dimensions of the earth), presented a derivation of the 
asymptotic distribution of the chi-square (as v + w) which (in modem day 
notation) is the well-known normal distribution with mean v and standard 
deviation 6. Sheynin (1971, 1988) also pointed out that Herschel came 
close to deriving chi-square for v = 2 in the year 1869 [as was discovered 
earlier by Kruskal (194611. 

The chi-square distribution also appeared in Pearson (1900) as the approx- 
imate distribution for the chi-square statistics used for various tests in 
contingency tables (of course the exact distribution of this statistic is discrete). 
The use of chi-square distribution to approximate the distribution of quadratic 
forms (particularly positive definite ones) in multinormally distributed vari- 
ables is well established and widespread. One of the earliest ones in this 
direction is the work of Welch (1938) who used a chi-square approximation 
for the distribution of the denominator in a test criterion for difference in 
means of two normal populations with possibly different variances. Interested 
readers may refer to the commentaries of Lancaster (1982), Koch and 
Bhapkar (19821, and Koch and Stokes (1982) to see many other situations 
where the chi-square distribution plays a vital role. 

2 DEFINITION 

Let us denote a chi-square random variable with v degrees of freedom by X:. 
Then the probability density function of X; is 

where r(.) is the complete gamma function. As mentioned in the last 
section, this is precisely the density function of Cr,lU,2 when U,'s are 
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independent standard normal variables. Although in this derivation of the 
density, v must be an integer, the distribution in (18.1) is referred to as a X 2  

distribution with v degrees of freedom for any positive v .  
From (18.1) we find 

which immediately reveals that for v I 2 the mode of the distribution is at 0 
while for v > 2 the mode is at v - 2. For any v > 0, we can also find the 
cumulative distribution function from (1 )  to be 

where Tx(cu) denotes the incomplete gamma function defined by 

a )  = J e t  t ,  x > 0. (18.4) 
0 

Of course, for even values of v ,  by repeated integration it can be shown from 
(18.3) that 1 - Fx;(x) is equal to the probability that a Poisson random 
variable with mean x / 2  does not exceed ( v / 2 )  - 1. For the purpose of 
illustration, plots of pxvz(x) are presented in Figure 18.1 for v = 1(1)8. Gulli 
(1989) recently made an analogy between the X: density function in (18.1) 
and the impulse response of a fractional system. 

The distribution of the positive square root of a variable having a chi-square 
distribution with v degrees of freedom is called a chi-distribution with v 
degrees of freedom, and the corresponding variable denoted by x,. From 
(18.1) we then obtain the pdf of ,yv as 

This includes as special cases the half-normal ( v  = I), Rayleigh ( v  = 21, and 
Maxwell-Boltzmann ( v  = 3)  density functions. From (18.51, we immediately 
find that for v I 1 the mode of the distribution is at 0, while for v > 1 the 
mode is at d x .  One can also find the cumulative distribution of ,yv easily 
from (18.3) to be 

For the purpose of illustration, plots of pxy(y) are presented in Figure 18.2 
for v = 1(1)8. 





Y Y 

Fipre 18.2 plots of Chi Density in (18.5) 
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3 MOMENTS AND OTHER PROPERTIES 

From (18.1) we find the moment-generating function of X: to be 

E [ ~ ~ x : ]  = 
1 

-x(1- 2t)/Zx(u/2)- 1 dy 

1 
= ( 1 - 2 t ) - Y / 2 ,  t < - ,  (18.7) 

2 

and, similarly, the characteristic function to be (1 - 2it)-"I2. From (18.71, 
one may obtain the raw moments of X,2. Instead, one can derive the rth raw 
moment of X: directly from (18.1) to be 

From (18.7) we also find the cumulant generating function of X: to be 
-(v/2)log(l - 2t), from which we find the rth cumulant to be 

Thus for the X: distribution we find that 

and the mean deviation to be 

It can be seen from the plots of the X: density function in Figure 18.1 that as 
v increases, the shape of the curve becomes similar to that of the normal 
density curve. As a matter of fact, the X: distribution (after standardization) 
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tends to the unit normal distribution; that is, 

x; - v 
lim Pr - I X  = @ ( x ) ,  
+ -  [ h; ] 

where a(.) denotes the cumulative distribution function of a unit normal 
variable. It can also be checked from (18.10) that d m  + 0 and /32(X:) 
-, 3 (the values for the unit normal distribution) as v + w. 

One of the important properties of the chi-square distribution is its 
reproductive property (described for the gamma distribution in Chapter 17): If 
X, and X2 are independently distributed as X;, and respectively, then 
XI + X, is distributed as Xt +,Z. 

Causey (1986) derived a formula for he expected absolute departure of X; 
variable from its median, that is, ~isp(X;) = E[I~;  - Median (X:)ll. Since 
for any continuous random variable J, the measure E[ IX - c 1 I (as a func- 
tion of c) is minimum when c = Median (X), this measure can be regarded 
as a measure of dispersion of the variable X. For the X; distribution, for 
example, Causey reported the values of the median and this measure of 
dispersion as 

The moments of a X, random variable can be derived easily from (18.8). 
For example, the r th raw moment is given by 

Specifically, we have 

E[xul = fi 
r [ ( v  + 1)/21 

and Var(x,) = v - 2 
r (  v/2) 

Johnson and Welch (1939) gave formulas for computing the first six cumu- 
lants of x,; they also presented a series expansion for E[x,] in (18.14) as: 
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They also presented the following recurrence relations for the cumulants 
K,(x,) (with K~(X,) = E[x,I): 

KS(X.) = K1(xr)[-2~4(xu) + 3 0  - 2 ~ 2 ( ~ ~ ) ) ' ]  , 

and 

Deutler (1984) pointed out correctly that the terms in the formula for K,(x,) 1 
are each of the same order and hence a dangerous numerical cancellation 1 
results for large v, since the x,-distribution tends to normal for large v and ? 
as a result K,(x,/ 6) -+ 0 for r 2 3 as v + w. Therefore by making use of 
Luke's (1969) series expression for the ratio of two gamma functions, Deutler 
(1984) derived series expansions for the cumulants K,(x,) similar to the one 
in (18.15) for E[x,]. For example, 

These series expressions demonstrate how quickly K,(x,/ 16) -+ 0 for r 2 3 
as v increases, giving a rough criterion for the convergence rate of 
(x,/ G)  - 1 to standard normality. Keiding, Jensen, and Ranek (1972), 
among others, studied properties of the X, distribution and observed that it 
quickly approaches normal distribution as v gets large. 

4 TABLES AND NOMOGRAMS 

One of the earliest tables of probability integrals of chi-square distributions 
was published in 1902. It contained values of prLX? > x ]  to six decimal places 
for u = 2(1)29 and x = 1(1)30(10)70, and was prepared by Elderton (1902). 
In 1922 Pearson edited a comprehensive Tables of the Incomplete r-Function. 
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These tables contained values of the function I(u, p )  defined by (also see 
Chapter 17) 

to seven decimal places for p = - 1(0.05)0(0.1)5(0.2)50 and u at intervals of 
0.1. These values were also supplemented by a table of values of 

log I ( u , P )  - ( P  + l)logu (18.17) 

for p = - 1(0.05)0(0.1)10 and u = 0.1(0.1)1.5. This function was chosen to 
make interpolation easier, particularly for low values of p. Harter (1964a, b) 
published tables of I(u, p)  to nine decimal places for p = -0.5(0.5)74(1)164 
and u at intervals of 0.1 thus covering a greater range of values of p than 
that considered by Pears 6 n (1922), although not at such fine intervals, and 
also with a higher accuracy) and a table of percentage points of the X: 
distribution. As mentioned earlier in Section 2, special values of the survival 
function (or the cumulative distribution function) of a chi-square distribution 
can be obtained from tables of the cumulative Poisson distribution using the 
formulas (for integral values of v) 

and 

Khamis and Rudert (1965) published extensive tables of pr[Xgv 2 x ]  to ten 
decimal places for 

The varied intervals for x were chosen to make interpolation easier just as 
Pearson (1922) used equal intervals for u = x/(2&) for the same reason. 
Thompson (1941) and Pearson and Hartley (1954) presented tables of lower E 

percentage points of X:, viz., X:,, such that 
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to six significant figures for v = 1(1)30(10)100 and E = 0.005,0.01,0.025, 
0.05,0.10,0.25,0.50,0.75,0.90,0.95,0.975,0.99,0.995. Pearson and Hartley 
(1954) also presented values for E = 0.999. Vanderbeck and Cooke (1961) 
used the same values of E, with the addition of the value 0.80, and tabulated 
x:,, to four decimal places or significant digits, whichever turned out to be 
more accurate (except for v = l), for v = 1(1)300; an approximation was 
used by them when v > 30. The less easily accessible tables prepared by 
these authors give values of 1 - Fx;(x) for x = 0.1(0.1)3.2 with v = 
0.05(0.05)0.2(0.1)6.0, and for x = 3.2(0.2)7.0(0.5)10(1)35 with v = 
0.1(0.1)0.4(0.2)6.0. The noninteger choices of v in these tables is a valuable 
feature. To facilitate interpolation for small values of x, tables of 
FxZ(x)/(x/2Y"2 were also presented for x = 0.05(0.05)0.2(0.1)1.0 with 
v = 0.05(0.05)0.2(0.1)6.0. For large values of x, another table presented 
values of 1 - Fx;(x) for 6 - & = - 4.0(0.1)4.8 with = 

0.02(0.02)0.22(0.01>0.25. 
Hald and Sinkbaek (1950) presented tables of X:,, to three decimal places 

or significant digits, whichever turned out to be more accurate, for v = 1(1)100 
and E = 0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95, 
0.975,0.99,0.995,0.999,0.9995. Harter (1964a) presented tables of to six 
significant figures for v = 1(1)150(2)330 and the above choices of E and also 

' 

E = 0.0001 and 0.9999. Part of these tables corresponding to v = 1(1)100 was 
published by Harter (1964b). As pointed out by Bol'shev in his review of 
these tables, the correct values for X&,0.6, X;4,0.8, and X&,0,4 are 62.1348, 
83.9965, and 76.1879, respectively. Russell and La1 (1969) tabulated values of 
1 - FXY2(x) to five decimal places for v = 1(1)50 and x = 
O.OOl(O.OOl)O.Ol(O.Ol~O.l(O.l~lO.O. Slustskii (1950) compiled the first compre- 
hensive tables of the X: distribution in the Soviet Union. 

A nomogram produced by Boyd (1965) connects values of P = PrlX; 2 Xi] 
with those of v and by means of a straight-edge. Boyd's nomogram is 
presented here in Figure 18.3. Stammberger (1967) produced another nomo- 
gram for the X: distribution. Krauth and Steinebach (1976) produced ex- 
tended tables of percentage points of the chi-square distribution with at most 
ten degrees of freedom. Specifically they tabulated the percentage points 
corresponding to 

Gilbert (1977) provided a simple formula for interpolating tables of x:. He 
implemented an approximation of the form 

x;,, = a, + a,v + a2v2 + a, log v, (18.21) 
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where the coefficients ai depend only on E (or the significance level 1 - E). 
By employing Dwyer's (1951) method of pivotal condensation to solve the 
normal equations obtained from (18.21) for v = 1(1)30 and the tabled values 
of X:,,, for E = 0.95, 0.99 and 0.999, Gilbert determined the following values 
for the coefficients ai: 

SIGNIFICANCE LEVEL, 1 - E 

0.001 

2.518232 5.174627 9.205913 
1.282189 1.402766 1.542498 

- 0.00211427 - 0.00303260 - 0.0041 1568 
1.371169 1.858993 2.314035 

Gilbert has discussed the maximum error incurred while using the interpola- 
tion formula in (18.21); he has shown that this interpolation method provides 
quite reasonable values (often correct to two decimal places or more) for v 
small and even nonintegral for the values of E considered. 

5 APPROXIMATIONS AND COMPUTATIONAL ALGORITHMS 

As mentioned earlier in Section 3, the standardized X: distribution tends to 
the unit normal distribution as v -, 00 [see (18.12)J. The simple approxima- 
tion obtained from (18.12) given by 

however, is not very accurate unless v is rather large. Better approximations 
may be obtained by using the asymptotic normality of various functions of x:, 
even though only approximate standardization is effected. Among the best- 
known simple approximations are Fisher's (1922) approximation given by 

and the Wilson-Hilferty (1931) approximation given by 

Of these two approximations the second one is definitely more accurate, but 
both the approximations are better than the one in (18.22). From the 
approximations in (18.23) and (18.24), one may obtain approximations to the 
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percentage point X:, , as 

i respectively; here U, denotes @-I(&), the lower e percentage point of the 
standard normal distribution. It should be mentioned that the addition of 
(u: - 1)/6 to (18.25) will make it very nearly equal to the usually better 
approximation in (18.26), unless v is small or E is close to 0 or 1. This point is 
illustrated by the values in Table 18.1. 

Table 18.1 Comparison of Approximations to X 2  Percentile Points 

Approximation Difference 
* (18.25) (18.26) (18.26)-(18.25) i(U: - 1) E V XV,E  

0.01 5 0.5543 0.2269 0.5031 0.2762 
10 2.5582 2.0656 2.5122 0.4466 0.7353 
25 11.5240 10.9215 ' 11.4927 0.5712 
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1 

Vanderbeck and Cooke (1961) used the Cornish-Fisher expansion to give 1 

[also see Goldberg and Levine (1946); Peiser (194311. They also presented a 
table comparing exact values of X:,, with those given by (18.27) for v = 
10(10)100 and E = 0.005, 0.010, 0.025, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 
0.95,0.975,0.99,0.995. For v r 60 the difference was only occasionally greater 
than 0.0001. In fact, even when v = 30, the difference exceeded 0.0001 only 
for E outside the range 0.1-0.9. 

A power series expression for F,;(x) can be derived in the following way: 

The above series converges to all x > 0, and the true value will lie between 
Cyl0 and CT=+o1. The series expression in (18.28) may be used as a basis for 
evaluating Fx$x) approximately when x is small (e.g., x < v). Pearson and 
Hartley (1954) suggested an iterative procedure for calculating X:, , based on 
(18.28). Since FxZ(X:,,) = E ,  (18.28) can be written in the form 

By inserting a trial value of x:,, on the right-hand side of (18.29), a new 
value can be obtained. The first term of the series could be used for the 
initial value, while one additional term could be included at each successive 
iteration. Harter (1964a, b) used this iterative method in the construction of 
his tables. 
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Gray, Thompson, and McWilliams (1969) used an approximation for the 
incomplete gamma integral, together with Stirling's approximation, to get 

This approximation gives an accuracy of three decimal places when 1 - Fx;(x) 
is of order 0.1, even for v as small as 2. 

Wallace (1959) derived definite bounds for the survival function of the X: 
distribution and for the corresponding equivalent standard normal deviate. 
He showed that 

where 

w ( x )  = x- v- v l o g  - , ( (Zj)"' 

From Stirling's formula it is easily noted that d, is very nearly equal to 1. 
Defining the equivalent normal deviate by the equation 

Wallace also proved that 

with the lower limit being valid for v > 0.37 and the max can be replaced by 
0.6fi. While the bounds in (18.33) are less precise than the Wilson-Hilferty 
approximation in (18.24) for most of the distribution, the upper bound in 
(18.33) gives useful approximation in the extreme upper tail. Hill (1969) 
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I 
presented an expansion of u(x) in terms of w(x) as 

which gives @(u(x)) to five decimal places for v > 20 (in fact, to eight 
decimal places if terms up to order v-4 are retained). Cornish (1969) 
reported high accuracy for Hill's expansion in (18.34). Hill also presented a 
Cornish-Fisher type expansion for the chi-square percentiles as 

where c, = \/(v/2) - (1/3) and U, is the lower E percentage point of the 
standard normal distribution (as before). The approximation in (18.35) is 
much more accurate than Vanderbeck and Cooke's (1961) Cornish-Fisher 
expansion in (18.27) for E values close to 0 or 1. 

In his algorithm for the computation of x2-quantiles, Goldstein (1973) 
used the extended formula 
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to which the following polynomial was fitted: 

where x = U, is the lower E percentage point of the standard normal 
distribution. Goldstein's approximation in (18.36) seems to be quite good 
even for extreme significance limits. The polynomial fit in (18.37) is slightly 
better than (18.361, but is unwieldy and is useful primarily for computer 
implementation. 

Severo and Zelen (1960) considered the approximation to the normal 
distribution function @(x + h )  as given by the Taylor series expansion about 
x ,  and the following terms of the Gram-Charlier series 

where @ ( k ) ( ~ )  is the kth derivative of @(x) and y, and y2 are the measures 
of skewness and kurtosis, respectively, given by 

dm 4 64 

Y 1 =  ZJT and y 2 =  -- - - 
9v 81v2' 
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to propose a modification to the Wilson-Hilferty formula in (18.26) as 

where 

In obtaining the correction factor h, in (18.391, Severo and Zelen (1960) used 
only the first term in the above expression of y,. By using both terms of y,  
and proceeding similarly, Zar (1978) proposed a modified Severo-Zelen 
approximation as 

where 

Another simple approximation to the percentage points of the X: distribu- 
tion is the time-honored Haldane's (1937) approximation given by 

Aroian (1943) used the coefficient of skewness (= w) of the A: distribu- 
tion to determine empirically a relationship 

reporting values of b, and b2 for various choices of E.  

Hoaglin (1977), upon examining the tables of percentage points for v = 3 
to 30, gave an approximation for the right-tail of the X2 distribution to be 
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which he called the "additive" fit. A better approximation, which he called 
the "extended" fit, is 

= (1.068076 + 2.131614- loglo(l - c )  X", E 

and a "simplified" fit was given as 

Similarly, for the left-tail, Hoaglin provided the "additive" fit to be 

the "extended fit" to be 

and a "simplified fit" to be 

A very interesting comparative study of all these approximation formulas 
was carried out by Zar (1978) at a number of different significance levels. He 
also included in this study an improved approximation derived from Severo 
and Zelen's approximation in (18.38) and its modification in (18.40) given by 

where K = H = ch, = vh, or K = H' = c& = vh',, whichever provides the 
better approximation, where h, and h',, are as given in (18.39) and (18.411, 
respectively. The values of c, and H or H' that were found empirically to 
yield the most accurate approximation using (18.50) have been tabulated by 
Zar (1978). 

Zar (1978) assessed the accuracy of all the above described approximation 
formulas by determining the minimum value of v necessary to achieve a 
specified absolute relative error for various values of c .  These are reported in 
Table 18.2. The relative error defined by (Approximate value - Actual 



Table 18.2 Accuracy of Several Chi-squared Approximation Formulas 

1 - E  = 0.999 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005 0.001 

IRE1 = 1% 
F - 123 97 65 42 21 7 17 10 4 18 33 54 69 107 
WH 2 5 1 7 1 4  9 6 4 4  3 1 2  2 2 1 1  6 
EWH 6 5 4 3 3 2 1  1 2 2  2 2 2 2 2 
PWH 1 3 2 2 2 2 2  2 1 2  2 1 2 2  2 
SZ 1 2 9 8 6 5 4 3  3 2 3  4 4 4 4  4 
MSZ 12 8 7 6 5 5 4  3 3 4  4 3 1 1  5 
ESZ 9 7 6 6 5 4 2  1 2 2  1 1  1 1  1 
A 21 15 14 10 8 5 5 4 3 1  2 3 4 4  6 
H 19 14 12 8 6 4 3 3 2 2  2 1 1 2  4 
CF 8 7 7 6 5 4 2  2 2 1  1 2 2 2  3 
ESZ & CF 6 4 4 3 3  2 1 

(17) (16) (14) (14) (9) (6) (9) 

IRE1 = 0.5% 
F - - 119 75 35 17 34 19 10 42 74 118 - - 
WH 36 24 19 12 8 4 6 4 2 4  4 3 2 5 1 2  
EWH 7 5 5 4 3 2 2  2 2 2  2 2 2 2  3 
PWH 4 3 3 3 2 2 2  2 1 2  2 1 2 2  3 
SZ 17 12 10 7 6 5 4 4 2 4  5 5 6 5  5 
MSZ 1 5 1 0 8 7 6 5 5  4 3 5  5 5 3 3  7 
ESZ 9 8 7 6 6 5 3  1 2 2  1 1 1 3  1 
A 26 19 17 13 10 6 6 5 3 1  3 4 6 7 9 
H 25 18 15 11 8 5 4 4 3 2  2 1 3 4  6 
CF 9 9 8 7 6 4 2  3 2 3  2 2 3 3  3 
ESZ & CF 7 4 4 3 3  2 2 



IRE1 = 0.1% 
F 
WH 
EWH 
PWH 
sz 
MSZ 
ESZ 
A 
H 
CF 
ESZ & CF 

IRE1 = 0.05% 
F 
WH 
EWH 
PWH 
sz 
MSZ 
ESZ 
A 
H 
CF 
ESZ & CF 

Note: Shown is the minimum v necessary to achieve the indicated accuracy (RE = relative error). F = Fisher (18.25); WH = Wilson- 
Hilferty (18.26); EWH = extended Wilson-Hiiferty (18.36); PWH = polynomial extension of Wilson-Hilferty (18.37); SZ = Severo-Zelen 
(18.38); MSZ = modified Severo-Zelen (18.40); ESZ = empirically modified Severo-Zelen (18.50); A = Aroian (18.93); H = Haldane 
(18.42); CF = Cornish-Fisher (18.27); ESZ & CF = mean of ESZ and CF, use for v up to that in parentheses, with CF alone used for 
higher v. The - indicates that the indicated accuracy was not reached for v up to 140. 
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Degrees of freedom 

Figure 18.4 The Accuracy of Several Formulas for Approximating X Z  at the 5% Significance 
Level ( E  = 0.95). Fisher (18.25), Wilson and Hilferty (18.26); extended Wilson-Hilferty (18.36), 
Severo and Zelen (18.38), Cornish-Fisher expansion (18.27), empirically modified Severo-Zelen 
formula (18.50). On this plot, Haldane's approximation (18.42) would appear very near the 
Cornish-Fisher approximation, the modified Severo-Zelen (18.40) would appear very near the 
Severo-Zelen, and the Aroian (18.43) would lie between the Wilson-Hilferty and the Cornish- 
Fisher. Relative error = (Approximation - Actual value)/(Actual value) 

value)/(Actual value) is presented in Figure 18.4, for example, for the 
various approximation formulas at the 5% significance level (i.e., E = 0.95). It 
is clear from Table 18.2 and Figure 18.4 that Fisher's approximation in 
(18.25) is the poorest. The Wilson-Hilferty approximation in (18.26) is im- 
pressively good, especially for E no more extreme than 0.05 or 0.995. The 
Severo-Zelen approximation in (18.38) and its modification in (18.40) do not 
differ much from the Wilson-Hilferty, except when E is more extreme than 
0.10 or 0.99, at which they become better. The extended Wilson-Hilferty 
formula in (18.36) is even better, and the polynomial fit in (18.37) improves a 
bit on that. Hence these two approximations are quite appropriate for 
computer implementation. The direct approximations of Gilbert in (18.21) 
and of Hoaglin in (18.44)-(18.49) do not provide asymptotically improving 
approximations to X:,, as v increases as do the other procedures. This is to 
be expected after all, since these approximations were developed based on 
tabulated values for v up to 30. Further these approximations as well as that 
of Aroian in (18.43) are not decided improvements over the Wilson-Hilferty 
approximation in (18.26) and hence are not as good as the Cornish-Fisher 
approximation in (18.27) or the modified Severo-Zelen approximation in 
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(18.50). The Haldane approximation in (18.42), as simple as it may be, 
provides good results and generally just a little inferior to the approximations 
secured by the Cornish-Fisher formula in (18.27) for E in the range 0.025 to 
0.999, but it does become poor at extreme levels of significance. In conclu- 
sion, the Wilson-Hilferty approximation in (18.26) will perform quite satisfac- 
torily for many routine uses, except when v is very small. Should more 
accuracy be required, the Cornish-Fisher approximation in (18.27) could be 
used. For computer implementation, the extended Wilson-Hilferty approxi- 
mations in (18.36) or (18.37) could be used. One may instead use the 
algorithm of Best and Roberts (1975) that is described below in order to 
achieve greater accuracy. Interestingly Zar (1978) also noted that the average 
of the Cornish-Fisher approximation in (18.27) and the formula in (18.50) 
provided better approximations than either of them in many cases as one 
tended to overestimate and the other tended to underestimate. 

Similar comparative studies have also been carried out by Sahai and 
, Thompson (1974), Ling (1977, 19781, and on a very minor scale by Liddell 
i (1983). In the former the authors concluded that for v 2 40 the four-term 
1 Cornish-Fisher expansion considered by Peiser (1943) [see (18.2711 is accurate 
i enough with an error less than 0.1%; however, for small v and values of e 

' L quite close to 1, one may need to use additionally seventh and eighth terms in 
the approximation in (18.27) which are given by 

! and 

respectively. 

1 Ling (1977, 1978), on the other hand, compared the asymptotic-the 
Fisher and Wilson-Hilferty approximations of I;,;(x) in (18.221, (18.23), and 
(18.24), respectively-with the approximation due to Peizer and Pratt (1968) 
given by 
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Table 18.3 Maximum Absolute Error in Approximations 
of F,:(x) in (18.221, (18.231, (18.24), and (18.51) 

v (18.22) (18.23) (18.51) (18.24) 

Ling determined the maximum absolute error in these approximations of 
Fx;(x) in the interval (0.0001,0.9999) with x in increments of 0.001 for 
integral values of v between 5 and 240. These values are presented in Table 
18.3 from which it is quite evident that the Peizer-Pratt approximation in 
(18.51) is even better than the good Wilson-Hilferty approximation in (18.24) 
in the range studied and probably beyond. 

El Lozy (19821, through a similar study, determined that Hill's modified 
Cornish-Fisher expansion in (18.35) performs better than the Peizer-Pratt 
approximation in (18.511, but that this greater accuracy is achieved at the cost 
of involving considerably more mathematical operations. One may also refer 
to Narula and Li (1977) to get an idea about the computational effort 
involved (in terms of number of arithmetic and special function operations) 
in the different methods of approximating the distribution function F,;(x) 
and of approximating the percentage points X:, ,. 

Best and Roberts (1975) provided an algorithm (along with a Function 
Subprogram in Fortran) for computing quite accurately the percentage points 
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of the X: distribution. This algorithm is both more general and more 
accurate than an algorithm given earlier by Goldstein (1973). In this method, 
for a given value of E, X:,, is found from the Taylor series expansion [Hill 
and Davis (1968)l given by 

where Xi is a suitable starting approximation, 

= 1, 

For many choices of v and E ,  the Wilson-Hilferty approximation in (18.26) is 

e used for Xi (say, xil). However, better starting approximations than this one 
are used for the three limiting cases E --, 0, E + 1, and v --, 0: 

i 
i 1. E -+ 0 (small X:,,): Xi2 = { ~ v 2 ( ~ / ' ) - ~ r ( v / 2 ) ) ~ / ~ .  

2. E -+ 1 (large X:,,): Xi3 = - 2{log(l - E )  - [(v/2) - l l log(~ i~ /2)  + 
log r(v/2)1. 

3. v + 0: For the special case v 1 0.32, E is expressed in terms of 
Hastings's (1955) approximation to the exponential integral, and in this 
case X& is determined by Newton-Raphson iteration. 

In this vein, it should be added here that Shea (1988) has presented an 
algorithm (along with a Function Subprogram in Fortran 77) for computing 
accurately the incomplete gamma integral and hence the cumulative distribu- 
tion function of x:. This algorithm performs more effectively than the 
ones given earlier by Hill and Pike (19671, Bhattacharjee (1970), 
El Lozy (1976), Gautschi (1979a,b), and Lau (1980) [also see Rice and 
Gaines Das (1985)l. 

Further discussions have been made by Acock and Stavig (1976), Gander 
(19771, Fettis (1979), Watts (19791, BukaE and Burstein (19801, Cheng and Fu 
(1983), Chernick and Murthy (1983), and Haines (1988) regarding some other 
approximations for the percentage points of X: distribution. Similarly 
Dunlap and Duffy (1979, Weintraub (1979), Sletten (19801, Craig (19841, 
Kniisel (1986), and Terrell (1987) have all discussed the computation of 
the distribution function of X: distribution. Interestingly, for even integral 
values of v, Terrell (1987) noted that the following continued fraction 
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approximation 

converges significantly faster than the Poisson series expression in (18.18) for 
the left-tail of the distribution. Lin (1988) presented a very simple approxima- 
tion to the cumulative distribution (for large v) as 

where z = 6 - &, a,  = -0.9911, b ,  = 0.8055, a, = -0.6763, and b, = 
- 1.2451. As Lin (1988) noted, a simple approximation for X:,, can also be 
secured from (18.54) by equating the right-hand side to E ,  taking logs, and 
then solving for z from a quadratic equation. 

Tables to facilitate the construction of shortest confidence intervals for a 
parameter 8 based on a pivotal quantity Q having X: distribution have been 
prepared by many authors including Tate and Klett (1959), Guenther (19691, 
and Akhlagi and Parsian (1986). These tables give the values of a and b such 
that Pr[a I Q I bl = 1 - a which yields the shortest confidence interval for 
the parameter 8, for various choices of v and a. 

It must be remarked here that the Wilson-Hilferty approximation in 
(18.24) or (18.26) is essentially based on the fact that the cube root transfor- 
mation of chi-square brings it close to normality. Hawkins and Wixley (1986) 
showed that the fourth root transformation transforms the chi-squared distri- 
bution to very near normality for all degrees of freedom. The fourth root 
transformation turns out to be also superior than the cube root transforma- 
tion for small degrees of freedom like v = 1 and 2. The fourth root transfor- 
mation also provides very close approximations to the tail percentage points. 
However, for large degrees of freedom, the cube root transformation turns 
out to be better, but both transformations are very accurate as measured by 
the moments and percentage points and even more so by the coverage 
probabilities. These points are well illustrated in Table 18.4 which shows, for 
each selected value of v the coefficients of skewness and kurtosis, and the 
actual left- and right-tail areas at a nominal two-sided 90% of both the fourth 
root and the cube root transformations, fitted by the method of moments to 
the transformed variable. 

Mention should also be made here to the work of Hernandez and Johnson 
(1980) and Taylor (1985) who used the Kullback-Leibler information to 
determine optimal values of A (power of the transform) for certain choices of 
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Table 18.4 Comparisons of the Cube Root and the Fourth Root Transformations 

Skewness Kurtosis True cdf at Nominal 5% Levels 

3rd 4th 3rd 4th 3rd 4th 3rd 4th 
v Root Root Root Root Root Root Root Root 

1 0.41 0.08 2.68 2.48 2.19 4.90 93.75 94.88 
2 0.17 -0.08 2.73 2.75 4.52 5.52 94.52 95.40 
3 0.09 -0.12 2.81 2.87 4.81 5.50 94.74 95.45 

10 0.01 -0.10 2.98 2.99 4.98 5.31 94.96 95.32 
50 0.00 -0.05 2.99 3.00 5.00 5.14 95.00 95.15 

100 0.00 -0.04 3.00 3.00 5.00 5.10 95.00 95.10 

v. For example, 

It is clear from these values, once again, that the fourth root transformation 
will be more accurate than the cube root transformation for small values of 
v, while the latter becomes superior for large values of v. 

Nelson (1987) in fact suggested applying the cube root transformation of 
the chi-square values and then using the 2 u  limits on an Z chart, instead of a 
control chart for chi-square values directly (since the latter will look peculiar, 
even when the process is in control, due to the fact that the X2 distribution is 
skewed to the right). 

6 CHARACTERIZATIONS 

First of all, it should be mentioned here that all the characterization results 
presented for the gamma distribution in Chapter 17 can simply be stated as 
characterization results for the chi-square distribution (with minor changes, 
of course). Hence we will not repeat those results once again; we present 
here some key characterization results for the chi-square that are based on 
quadratic forms of normal variables (as one would expect). 

Let Vl, V2, . . . , V,  be a random sample of size n from a normal N(0, u2)  
population, and Q a quadratic form in these variables, with symmetric matrix 
A of rank r, 0 < r ~r; n. Then the variable Q/u2 is distributed as X; if and 
only if = A .  Further suppose that Q* is another quadratic form in 6's 
with real symmetric matrix B. Then the variables Q and Q* are stochasti- 
cally independent if and only if AB = 0. ' Next, we note the celebrated Cochran's (1934) theorem which character- 

i 
izes a ,y2 distribution based on its decomposition: "Let Cy-'_,K2 = ~ j k _ ~ ~ ~ ,  
where Q, is a quadratic form in V,, V2,. . . , V,  (a random sample from 

C 
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N(0, u2)) with associated matrix Aj of rank rj, j = 1,2,. . . , k. Then, the 
random variables Qj/u2, j = 1,2,. . . , k, are mutually independent with 
Qj/u2 distributed as X: if and only if Cik,,r, = n. 7% 

Dykstra and Hewett (1972) presented two interesting examples of abso- 
lutely continuous bivariate distributions which shed further light in this 
regard. One example simply illustrates the fact that the sum of two random 
variables can be distributed as X 2  with one of the variables also distributed 
as X2 and the other variable positive but not necessarily distributed as X2. 

Their other example illustrates the fact that the sum of two variables can be 
distributed as x2, with each variable also distributed as X2 and their degrees 
of freedom adding up properly, but still the two variables need not be 
independent. 

Ruben (1974, 1975) characterized the normal distribution through the 
sample variance; the relevance of these results to this chapter comes from the 
chi-square distribution of the sample variance. Ruben's (1975) characteriza- 
tion is as follows: "Let XI, X2, . . . , be i.i.d. random variables. Define 
Q, = C;='=,(Xi - XJ2, where Zn = C;-lXi/n. Let p and q be distinct inte- 
gers r 2. Then constants A, and A, exist such that Qp and Q, are 
distributed as hPX,2-, and hqX;- ,, respectively, if and only if X, is normally 
distributed." A simpler proof for this characterization result was provided by 
Bondesson (1977). 

Khatri (1963, 1978), Shanbhag (1968), and Good (1969) all presented 
necessary and sufficient conditions for a quadratic form in multinormal 
random variables to be distributed as chi-square. Let X - MVN(C), 81, 
where B is nonnegative definite and can be written as Z = BBT, B being an 
n x s matrix of rank s = rank(B). Then the quadratic form Q = X ~ A X  is 
distributed as chi-square if and only if (1) ZAXAZ = ZAB [Khatri (1963)], 
(2) ( A B ) ~  = ( A B ) ~  or trace(AB) = t r a c e ( ( ~ B ) ~ )  = rank(8AX) [Shanbhag 
(196811, (3) the eigenvalues of AX are zeros and ones only or trace(AX) = 

t r a c e ( ( ~ B ) ~ )  = . . = trace((A8)") [Good (196911. [Refer to Khatri (1978) 
for some comments on all these results.] 

In trying to interpret what is so unique about the sum of squares in the 
definition of "a chi-square distribution with n degrees of freedom as the 
probability distribution of the sum of squares of n independent standard 
normal variates," Mitra (1974) presented an interesting uniqueness result 
concerning the sum of squares. Let V,, V2, . . . , V,  be i.i.d. normal variables 
with mean 0 and an unknown variance 13 E Q, where the parameter space R 
is sufficiently rich so that C;=,K2 is a complete sufficient statistic for 8. Then, 
if g(V) is a statistic such that g(V)/8 is distributed as X: for every 8 E R, 
Mitra proved that g(V) = C;=,K2 a.e. It should be mentioned here that the 
degrees of freedom being n is very crucial in this result, for there is no 
dearth of examples of statistics distributed as X 2  with less than n degrees of 
freedom that are not even second degree functions in q's. Mitra (1974) also 
conjectured that the result may be true when the parameter space R is a set 
of finite cardinality. 
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Hussain (1986) has shown that a X 2  random variable with even degrees of 
freedom can be decomposed and expressed as a sum of two identically 
distributed random variables each with a mixed chi-square distribution. More 
specifically, if X - xZn, then there exists a representation X = U + V with 
U and V being identically distributed, each as a mixture of X 2  distributions 
with degrees of freedom 2 j - 1, j = 1,2,. . . , n; further the random variables 
U and V are negatively correlated with the coefficient of correlation p,, = 

-(n - l)/(n + 1). For the special case n = 1, we have X - XZ and p,, = 0 
which is also evident from the fact that U and V are independent random 
variables each having X ;  distribution in this case (due to Cochran's theorem 
stated in the beginning of this section). 

7 SIMULATIONAL ALGORITHMS 

First of all, it should be mentioned that a pseudorandom observation from a 
chi-square distribution with integer v can be generated as the sum of squares 
of v standard normal observations (generated by one of the efficient algo- 
rithms discussed in Chapter 13). This naturally can be quite time-consuming 
even for moderately large v. One could also use an accurate approximation 
of Fx:'(.) (discussed earlier in Section 5 )  along with an efficient standard 
uniform random generator to produce an observation from X: distribution 
via the usual inverse cumulative distribution function method. 

On the other hand, one could use one of the many algorithms for 
generating gamma observations discussed earlier in Chapter 17 to produce a 
X; observation by appropriately scaling the simulated gamma deviate (with 
shape parameter a = v/2 and /3 = 2). Of course this requires the gamma 
algorithm to be able to cover an extended range (a 2 1/2) instead of the 
usual lower bound of 1 (since v 2 1). For example, the gamma simulational 
algorithms due to Best (1978) and Kinderman and Monahan (1980) are valid 
only for a > 1. But the algorithm given by Cheng and Feast (1980) meets the 
minimum requirement of a 2 1/2 and hence may be utilized for the purpose 
of simulating pseudo-random observations from X? distribution. 

If one requires to simulate random observations from xu distribution, one 
could do this by first simulating random observations from X; distribution 
and then taking the positive square roots of these observations. One could 
also simulate random observations from xu distribution directly by using the 
algorithm of Monahan (1987), which is essentially a ratio of uniforms algo- 
rithm [Kinderman and Monahan (1977)l. Of course Monahan's algorithm can 
be used to generate observations from X: distribution (by taking squares of 
the simulated xu observations) or to generate random observations from the 
gamma distribution with shape parameter a = v/2 (by taking squares of the 
simulated X, observations and then dividing by 2). Monahan (1987) also 
carried out a time-comparative study of his algorithm against that of Cheng 
and Feast (1980). The time-comparisons of these two algorithms, as reported 
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Table 18.5 A Time-Comparative Study of Two Algorithms 

v = = l  v = 5 v = 9 Varied #la Varied #2b 

Gamma Distribution 

Chi-square Distribution 

Chi Distribution 

Note: Time is given in milliseconds for the average of five replications of 10,000 samples, except 
50,000 for variable v. 
"Varied #1 covered the range (1,111. 
b~aried #2 covered (1,101). 

. by Monahan (1987), are presented in Table 18.5. These comparisons reveal 
clearly that Monahan's algorithm is the faster of the two, although the time 
improvements are not dramatic. 

8 DISTRIBUTIONS OF LINEAR COMBINATIONS 

In this section, we present some important developments regarding the 
derivation (or computations) of distributions of linear combinations of inde- 
pendent X 2  variables. More detailed treatment of this topic may be found in 
general sources on distributions of quadratic forms in normal variables. Let 
us consider specifically the distribution 

k 

where ci's are known constants. (Without loss of generality we can take 
c, > c, > . . . > c,.) Two efficient methods of determining percentage points 
of Qk are those given by Imhof (1961) and Johnson and Kotz (1968); the 
former inverts numerically the characteristic function of the distribution of 
Qk to get Pr[Qk < r ]  for specified t, while the latter gets the distribution 
based on Laguerre series. Exact significance points of Q,, for selected 
nonnegative values of ci and with all vi = 1, were first published by Grad and 
Solomon (1955) and Solomon (1960) for k = 2 and 3, by Johnson and Kotz 
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(1968) for k = 4 and 5, and by Solomon and Stephens (1977) for k = 6, 8, 
and 10. 

Davis (1977) showed that the distribution of Q, in (18.59, with ci 
nonnegative and any specified values of vi, is derivable from a kth-order 
linear differential equation. The computation of percentage points of Q, by 
analytic continuation of the series solution at the origin becomes feasible by 
this method for a useful range of parameter values. This method thus avoids 
the slow convergence of the power series for large values of t (since the 
power series is about t = 0 and is effective only for small values of t ) .  

For the case when all vi's are equal to 1, Jensen and Solomon (1972) 
proposed a Wilson-Hilferty type approximation by taking Z = (Q,/E[Q,])~ 
to be approximately a normal distribution with mean and variance depending 
on the first three cumulants of Q,. Proceeding similarly, Solomon and 
Stephens (1977) proposed two more approximations, one by fitting a Pearson 
curve with the same first four moments as Q,, and the other by fitting 
Q, =A(~:)' where A, p, and r are determined by the first three moments 
of Q,. To evaluate the performance of these approximations, they carried 
out a study comparing the exact (E) values taken from Solomon's (1960) and 
Johnson and Kotz's (1968) tables, Imhof s (I) approximate value, the Jensen- 
Solomon (J) approximate value, the four-moment Pearson (PI approximate 
value, and the three-moment X2 (S) approximate value, of the a percentage 
points for different choices of ti's. These values are presented in Table 18.6. 

From Table 18.6 it is clear that the Imhof method gives quite accurate 
values (to be expected since the method is essentially exact) at all levels of a. 
All three approximations P, J, and S give excellent accuracy in the upper tail, 
while S performs better than the other two in the lower tail. However, all 
(except Imhof s) approximations become relatively less accurate in the lower 
tails as the coefficients of skewness and kurtosis of Q, increase. 

For the positive definite case (c,  > O), Oman and Zacks (1981) used 
Robbins and Pitman's (1949) method of mixtures to derive a very good 
approximation for the distribution function of Q, for any specified values of 
ti's and vi's. For example, for a > 1 using this mixture method, it is 
well-known that [Neuts and Zacks (1968)l the distribution of ax: can be 
represented as a negative binomial mixture of central chi-squared distribu- 
tions: 

where J - NB(+, p )  with its probability mass function 



Table 18.6 Comparison of Exact Percentage Points and Approximations for Q, 

a 

k c-Values [ K r S z ]  Method 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
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with $ = (a - l)/a and 1 = v/2. As a result one can write 

Using this method, Oman and Zacks (1981) obtained the mixture representa- 
tion for the distribution function of Qk as 

where v = v, + v2 + . +vk  and J = J, + J, + +J,, and the probabil- 
ity mass function of J can be obtained as a k-fold convolution of the 
corresponding mass functions of NB(i,bi, pi), which incidentally is not nega- 
tive binomial since the +i's are not equal. These authors have also suggested 
an approximation for the distribution of J in order to reduce the amount of 
computation required for (18.59). The formula in (18.59) provides quite an 
accurate approximation for the percentage points of Q, both in lower and 
upper tails, as is illustrated in Table 18.7 for some selected choices of k, ci2s, 
and vi's. 

It is of interest to add here that for the special case when all V,'S are 1, 
Buckley and Eagleson (1988) [based on earlier work of Hall (1983)l derived 
an approximation for the distribution function of Q,, and they also derived 
an explicit upper bound for the error involved in this approximation. Wood 
(1989) proposed a three-parameter F approximation to the distribution of Q, 
and showed that this approximation has clear superiority in the lower tail 
over both the Buckley and Eagleson approximation as well as the classical 
Satterthwaite (1946) approximation; but, the S approximation of Solomon 
and Stephens (mentioned earlier) seems to have an overall edge over Wood's 
F-approximation. 

Generalizing the method of mixtures due to Robbins and Pitman (1949), 
Ruben (1962) considered a linear combination of noncentral chi-squares 
(with noncentrality parameters 6:) as 

and presented an infinite series expression for its distribution function as 

where v = v, + v2 + - - - + vk and /3 is an arbitrary positive constant; Ruben 
has also shown that (18.61) converges uniformly on every finite interval of 
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Table 18.7 Percentage Points Using Imhof s Method (I), Solomon and Stephens's 
Method (S), and Mixture Approximation (MI 

cl(vl), . . . , a 

ck(vk) Method N 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

x > 0. If (18.61) is actually a mixture representation, that is, a, 2 0 and 
Cy=,aj = 1, then the truncated series (up to J - 1) will necessarily lie 
between 0 and 1, and the truncation error will be bounded above by 
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If some a,'s are negative, the truncation error will not necessarily satisfy 
(18.62). 

Based on Ruben's formulas, Sheil and O'Muircheartaigh (1977) and 
Farebrother (1984a, b, c) have provided algorithms for determining the distri- 
bution of a linear combination of chi-square (not necessarily central) random 
variables. Following the lines of Imhof, Davies (1980) presented an algorithm 
for computing the distribution of a variable 

where Xo is an independent standard normal variable, by employing the 
method of numerical inversion of the characteristic function developed 
earlier by Davies (1973). 

Field (1993) has recently used a uniform saddlepoint approximation to 
obtain extreme tail areas for a linear combination of independent chi-square 
variables. This approximation uses a transformation of the tail area coming 
out of the Fourier inversion of the characteristic function which yields a 
quadratic in the exponent. The Jacobian of the transformation, when ex- 
panded in a Taylor series, leads to this approximation. Field has displayed 
that the approximation is quite accurate in extreme tails. 

Finally, mention should be made of the works of Charnet and Rathie 
(1985), Shirahata (1988), and Provost (1986), with the last author deriving the 
exact distribution of the ratio of a linear combination of X 2  variables over 
the root of a product of X 2  variables. Gordon and Ramig (1983) discussed 
the distribution of the sum of correlated X 2  variables (components of a 
multivariate chi-square distribution), while Hanumara and Barry (1978) dis- 
cussed the distribution of a difference between independent X 2  variables. 

9 RELATED DISTRIBUTIONS 

As mentioned earlier in Section 1 and also in Chapter 17, X: distributions 
are special gamma distributions. In fact X: is distributed as gamma with 
shape parameter a = v/2 and scale parameter P = 2. As pointed out in 
Sections 2 and 4, the chi-square distribution is also related to the Poisson 
distribution. Specifically, for even values of v, the survival function of a X: 
distribution at x is same as the cumulative distribution function of a Poisson 
random variable (with mean x/2) at (v/2) - 1. It has also been seen earlier 
in Chapter 15 that chi-square distributions arise naturally in the decomposi- 
tion of inverse Gaussian variates. 

Just as the sum of squares of v independent standard normal variables has 
a X: distribution, the sum of squares of v independent N(p, ,  l), j = 
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1,2,. . . , v, variables has a noncentral chi-square distribution with v degrees of 
freedom and noncentrality parameter cS2 = C;=lCL;. Han (1975) has expressed 
the cdf of a noncentral chi-square distribution with odd'degrees of freedom 
as functions of the cdf and pdf of the standard normal distribution. For more 
details and a discussion on this noncentral X: distribution, refer to Chapter 
29. One may also similarly define noncentral chi distributions. 

Dion and Fridshal (1982) published an interesting conjecture that relates 
the quantiles of two independent X 2  random variables with the quantiles of 

2 an appropriate F distribution. Specifically, let x:, (, +,!/, and x,,, (I -.y)/2 

denote the lower (1 + y)/2 and (1 - y)/2 percentage points of X: distribu- 
tion, that is, ~r[,y: I x:,(~+,,/~ 1 = (1 + y)/2 and Pr[x: I X:,(~-,),~I = (1 - 

2 y)/2, for any y E [O, 1). Similarly, let X:,(l+yM2 and xvy1-,)/, denote the 
lower (1 + y)/2 and (1 - y)/2 percentage points of X$ distribution. Finally, 
let Fvt, V ,  ( I  + ,,)I? and Fvf, ",(I - ~ ) / 2  denote the lower (1 + y)/2 and (1 - y)/2 
percentage points of the F-distribution with (v', v) degrees of freedom. Then 
Dion and Fridshal (1982) conjectured the quantile inequalities 

Burk et al. (1984) proved the above conjecture for the case of equal degrees 
of freedom (i.e., v = v'). In this case they also proved that (18.63)' holds for a 
broader class of distributions than X2 and gave sufficient conditions on the 
density functions in order for (18.63)' to hold. It is also of interest to mention 
here that Burk et al., through numerical studies, showed that the conjecture 
in (18.63)' is false in some small interval 0 I y < yo but holds in the interval 
Yo I Y < 1. 

Ghosh (1973) proved some monotonicity theorems for x2 and related 
F-distributions. He then remarked that the adequacy of interpolation formu- 
lae for X:,, (discussed in Section 5) and F,,,,,,, can be judged by using his 
theorems regarding increasing or decreasing property of these quantities. 
Following this work, Sarkar (1983) proved that X:,, have the log-concave 
property in v > 0 for fixed E E (0,l). He also proved that F,,,, ,,, have the 
log-concave (log-convex) property in v' > 0 (v > 0) for fixed v > 0 (v' > 0) 
and E E (0,l). Incidentally he also established that x:,, possess the total 
positivity of order 2 property in (v, E), and similarly the related F,,, ,,,, possess 
the same property in both (v, E )  and (v', E). Sarkar (1980) has also derived 
similar results for the distribution functions of X: (central as well as noncen- 
tral) and F,,, ,,. 

The distribution of the product (W) of two independent variables, dis- 
tributed as X:l and X:2 respectively, can be obtained from (17.110.b) as the 
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distribution of 4Y with a, = v,/2 and a, = v2/2. The resulting density of 
W X:lX:2 is given by 

where K,(h) is the modified Bessel function of the third kind. 
The probability distribution of the distance from the origin to a point 

(Y,, Y,, . . . , YN) in N-dimensional Euclidean space, where the x's are normal 
variables gives rise to the generalized Rayleigh dktribution. Specifically, when 
x's are i.i.d. N(0, u2) variables, the probability density function of 
X = 4- is given by 

This generalized form of the Rayleigh distribution is also referred in litera- 
ture as the "chi distribution with N degrees of freedom and scale parameter 
u." The density function in (18.5) thus corresponds to the standard chi 
distribution ( a  = 1) with v degrees of freedom. The density function in 
(18.65) is unimodal and the mode is easily seen to be at m u .  The kth 
moment of X is given by 

From the expression of the raw moment in (18.66), one may easily obtain the 
mean, variance, and the coefficients of skewness and kurtosis of the distribu- 
tion in (18.65) for any specified value of N, the degrees of freedom. It is also 
clear from the form of the density function in (18.65) that for a fixed value of 
N, the distribution belongs to the one-parameter exponential family of 
distributions; further, based on a sample of size n, namely XI, X,, . . . , X,, a 
sufficient statistic for a is Cy=,X;. The likelihood function based on this 
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sample is 

which immediately yields the maximum likelihood estimator of u to be 

The special case of N = 2 in (18.65) is the Rayleigh density function, 
which has been studied quite extensively in the statistical and engineering 
literature. Due to its importance and also the great deal of attention it has 
received over the years, specific developments with regard to the Rayleigh 
distribution are described in some length in Section 10 of this chapter. 

It should also be mentioned here that the function in (18.65), for the 
special case of N = 1, reduces to 

which is the density function of a half-normal or folded normal random 
variable. This distribution is discussed in Chapter 13. Furthermore, for the 
special case of N = 3, (18.65) reduces to 

which is the density function known in the statistics and physics literatures as 
, "Maxwell-Boltzmann density function." This distribution arises as the distri- 

bution of the magnitude of the velocity of a randomly chosen molecule of a 
gas in a closed container under the assumption that the gas is not flowing and 
that the pressure in the gas is the same in all directions. Classical estimation 
and tests of hypotheses for the parameter u have been discussed by Iliescu 
and Vodg (1974). n a g i  and Bhattacharya (1989) have developed a Bayesian 
estimator of the average velocity and of the distribution function, under the 
squared error loss function. 

I It should be mentioned here that for the chi distribution in (18.69, with N 
i being assumed to be known, estimation of the parameter u has been 
b 
i considered by several authors. For example, Stacy and Mihram (1965) dis- 
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cussed the estimation based on a complete sample while Dyer (1973) consid- 
ered the BLU estimation of a based on k optimally selected quantiles for 
various choices of N. By considering the two-parameter form of the chi 
distribution with probability density function 

Harter (1970) dealt with the maximum likelihood estimation of the parame- f 
ters p and a based on complete and M e  I1 censored samples. For this 1 
two-parameter chi distribution with N degrees of freedom, Hassanein, Saleh, E 

and Brown (1989) worked out the asymptotic best linear unbiased estimators 1 
of p and a based on k optimally selected sample quantiles and presented 
the necessary tables of optimum spacings and the corresponding coefficients 
and the variances and covariance of these estimates for N = 3(1)30 and , 
k = 2(1)6. Ali, Umbach, and Saleh (1992) recently carried out a similar study 
on the asymptotic linear estimation of life functions such as the quantile, 
survival and hazard functions. 

Azzalini (1985) considered a random variable Z with density function 

where 4(.) and @(-) are standard normal density and distribution functions, 
respectively. He called Z as a skew-nomal random variable with parameter A .  
This density is related to the chi density in (18.5) as it can be shown that 
(18.70), in the limiting case of A -+ w, tends to the half-normal density 
function which, as mentioned earlier, is a chi distribution with v = 1 degree 
of freedom. 

Chi-bar-square distributions are simply mixtures of chi-square distributions, 
mixed over their degrees of freedom. They often arise when testing hypothe- 
ses that involve inequality constraints [Barlow et al. (197211. Suppose that (P,} 
is a sequence of probability distributions, each of which has support con- 
tained in the nonnegative integers and has nonzero finite mean p, and finite 
variance a:. Then Y,, the random variable having the chi-bar-square distri- 
bution associated with P,, has its survival function to be 
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where p,, , = P,(j). It may then be easily verified that 

and consequently 

Recently Dykstra (1991) has determined necessary and sufficient 
conditions on the distributions {P,};=, that will ensure that 2, = 

(Y, - p,,)/(u~ + 2pn)lI2 converges in distribution to the standard normal. 
Specifically, he has shown that the asymptotic normality occurs for the 
chi-bar-square distribution if either the ratio of the mean to the variance of 
the mixing distribution goes to a, or the weighting distribution itself is 
asymptotically normal; these are the only ways for asymptotic normality to 
hold, other than a combination of the two phenomena. As an example, if we 
consider the earlier described (see also Chapter 29) noncentral chi-square 
random variable X,2(62), with v degrees of freedom and a2  as noncentrality 
parameter, then we can write 

where p,(A) is the probability that a Poisson (A) random variable takes on the 
value i (see Chapter 4). The weight distribution in (18.71) for this distribution 
will be that of 2 X  + v when X has a Poisson (a2/2) distribution. Of course 
this weighting distribution has mean S2 + v and variance 2a2; also 2 X  + v is 
asymptotically normal as a2  -+ w. Hence we have the asymptotic normality of 
a noncentral chi-square distribution in the case when v is fixed and a2 -+ w. 

This result will continue to hold even when v is allowed to vary. 
By considering the one-parameter exponential family of distributions with 

pdf [Barndorff-Nielsen (197811 

Rahman and Gupta (1993) called the subfamily, having -2a(X)b(O) to be 
i distributed as chi-square with appropriate degrees of freedom, as the family 
: of transformed chi-square distributions. They show that a necessary and 
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sufficient condition for belonging to this subfamily is 

where k is positive and free from 6. It may be easily verified that distribu- 
tions like the normal, log-normal, gamma, exponential, Rayleigh, Pareto, 
Weibull, Erlang, inverse Gaussian, and Maxwell all (discussed in this volume) 
belong to this transformed chi-square family. Rahman and Gupta (1993) have 
also discussed some inference problems with regard to this family of distribu- 
tions.' 

10 SPECIFIC DEVELOPMENTS IN THE RAYLEIGH DISTRIBUTION 1 
3 

10.1 Historical Remarks i 

The Rayleigh distribution was originally derived by Lord Rayleigh (J. W. 
Strutt) (1880, 1919) in connection with a problem in the field of acoustics. 

' 

Miller (1964) derived the Rayleigh distribution as the probability distribution 
of the distance from the origin to a point (Y,, Y,, . . . , Y,) in N-dimensional 
Euclidean space, where the Y.'s are independent and identically distributed 
N(0,u2) variables. Siddiqui (1962) showed that the Rayleigh amplitude 
distribution (the distribution of the power or amplitude of electronic waves 
received through a scattering medium) is the asymptotic distribution of a 
two-dimensional random walk. Polovko (1968) noted that some types of 
electrovacuum devices have the feature that they age rapidly with time even 
though they may have no manufacturing defects. The Rayleil; i .  listribution is 
quite appropriate for modeling the lifetimes of such units a !t possesses a 
linearly increasing hazard rate [see (18.79)]. Quoting the early works of Hertz 
(1909) and Skellam (19521, Cliff and Ord (1975) point out the remarkable 
property that the Rayleigh distribution arises as the distribution of the 
distance between an individual and its nearest neighbor when the spatial 
pattern is generated by a Poisson process. Hirano (1986) has presented a 
brief account of the history and properties of this distribution. 

10.2 Basic Properties 

A Rayleigh random variable X has probability density function [with N = 2 
from (18.65)] 
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cumulative distribution function 

F x ( x )  = 1 - e-X2/(2u2), 0 I x < w, a > 0, (18.77) 

survival or reliability function 

and hazard function 

The mean residual life or the life expectancy of a Rayleigh component is 
obtained from (18.78) as 

Raja Rao and Talwalker (1989) derived lower and upper bounds for this 
function ex. 

As mentioned earlier, it is the linearly increasing hazard or failure rate in 
(18.79) that makes the Rayleigh distribution a possible model for the life- 

. times of components that age rapidly with time. From (18.78) we observe that 
for small enough values of x the reliability of a component having the 
Rayleigh distribution decreases with time more slowly than the reliability of a 
component having an exponential distribution (whose hazard rate is constant); 
see Chapter 19. However, for larger values of x the reliability of the Rayleigh 
component decreases with time more rapidly than in the case of an exponen- 
tial component [see Kodlin (196711. 

It should be mentioned here that the Rayleigh survival function in (18.78) 
has been generalized by Bradley, Bradley, and Naftel (1984) who have 
studied a survival function of the form 

~ ( t )  = exp(-C(l - e-PI)" - a 0 t  - a,t2)  

which is appropriately referred to as the generalized Gompertz-Rayleigh 
model. This general model includes the Makeham-Gompertz model studied 

"earlier by Bailey, Homer, and Summe (1977) and Bailey (1978) as a special 
case. 

Plots of the density function px(x) are presented for a = 0.5(0.5)3.0 in 
Figure 18.5 and for a = 4.0(1.0)8.0 in Figure 18.6. The case when a = 1 is 
referred to as the standard Rayleigh density function. 
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Figure 18.5 Rayleigh Densities for a = 0.5(0.5)3.0 

From (18.76) and (18.771, it is readily noted that the mode of the 
distribution is at u [also see the comment after (18.65)l and that the pth 
percentile of the distribution is 

Further, the coefficient of variation of this distribution is d- and the 
median of the distribution is am& 1.17741~. Furthermore we obtain 
immediately from (18.66) the rth raw moment of X to be 
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7 

O 2 lo  12 Figure 18.6 Rayleigh Densities for a = 4.0(1.0)8.0 
X 

Equation (18.81) yields specifically the mean, variance and the coefficients of 
skewness and kurtosis of X to be 

Mean = E[Xl = u r n  1.25331~~ 
Variance = Var(X) = u2(4 - a) /2  A 0.42920u2, 

Skewness = d m =  2(a - 3)&/(4 - a)'/' = 0.63111, 

Kurtosis = p,(X) = (32 - 3a2)/(4 - a I2  A 3.24509. 

10.3 Order Statistics and Properties 

Let XI, X,, . . . , X,, be random variables each having the Rayleigh distribu- 
tion in (18.76). Let Xi I Xh I . . . I XA denote the order statistics ob- 
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tained by arranging the above sample in increasing order of magnitude. Then 
Lieblein (1955) has shown that for 1 I. r I. n ,  

n !  ,.-I  ( - l ) r - ~ + ( ~  ; l )  
= .,/T C (18.82) 2 ( r  - 1 - r ) !  = ( n  - i ) 3 / 2  

and 

n !  r - 1  ( - 1 )  
= 2u2 C 

( r  - l ) ! ( n  - r ) !  i = o  
(18.83) 

Similarly Dyer and Whisenand (1973a) have shown that for 1 I; r < s I n, 

n!  
E[XiX,']  = jmjy{l  - e - ~ 2 / ( 2 ~ 2 )  r - l  

( r  - 1  - r  - 1 - s ) !  0 0 
1 

n !  s - r - 1  r - 1  
= g 2  ~ ( - ~ ) i + j ( s - r - l ) ( r ; l )  

( r  - l ) ! ( s  - r  - l ) ! ( n  - s ) !  i - o  j z o  1 

x H ( s - r - i + j , n - s + i + l ) ,  

where the function H(a, b )  is defined as 
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Integration by parts immediately yields 

where Erf(.) denotes the error function (see Chapter 13). Now upon using 
the integral formulas 

[see Ng and Geller (196911, we obtain 

As pointed out by Dyer and Whisenand (1973a), formula (18.84) can effec- 
tively be used along with formula (18.86) in computing the product moments 
of order statistics. It should be mentioned here that an alternate formula for 
the product moments in terms of the incomplete beta function was derived by 
Lieblein (1955); reference may also be made to Shoukri (1982). 

10.4 Inference 

Let XI, X,, . . . , X, be a random sample from the Rayleigh population with 
probability density function as in (18.76). Let Xi s . - . s Xi be the corre- 
sponding order statistics. In this section we present the various results on 
inference for the parameter a. 

Best Linear Unbiased Estimation 
Suppose that X:,, 5 X:,, I . . - r XL-, is the available Type I1 censored 
sample, where the smallest r and the largest s observations were not 
observed due to experimental restrictions. Then, by using the generalized 
least-squares approach originally due to Aitken (1934) and Lloyd (1952), one 
may obtain the best linear unbiased estimator (BLUE) of the scale parameter 
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a of the Rayleigh distribution in (18.77) as 

where 

and 

Further the variance of the BLUE in (18.87) is 

For details, one may refer to David (1981) and Balakrishnan and Cohen 
(1991). Dyer and Whisenand (1973a) have computed the coefficients a; and 
Var(a*) for n up to 15 and all possible choices of r and s (i.e., r + s I n - 1). 
Balakrishnan and Ambagaspitiya (1993) have recently tabulated the coeffi- 
cients ai and values of Var(u*)/u2 for n up to 30 for the case of right- 
censored samples ( r  = 0). These values are presented in Table 18.8 for 
sample sizes up to 10 with r = 0; the efficiency of a *  based on censored 
samples relative to the complete sample are also reported. More elaborate 
tables have also been presented by Adatia (1994). 

It should be mentioned here that Hirai (1972) has used Downton's (1966) 
general approach to derive quadratic coefficients estimators for the two- 
parameter Rayleigh distribution. This method, applicable only for complete 
samples, is shown to yield highly efficient estimators even in the case of small 
sample sizes [also see Hirai (197611. 

Asymptotic Best Linear Unbiased Estimation 
The asymptotic best linear unbiased estimate (ABLUE) of u based on k 
optimally selected order statistics has been discussed by Dyer and Whisenand 
(1973b), Dyer (1973), and Cheng (1980). By following the steps of Ogawa 
(1951) [also see Balakrishnan and Cohen (1991)1, these authors have shown 
that the ABLUE of u based on the spacing {A,, A,, . . . , A,) is 
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where 

5i={-210g(l -~i) )1 '2  and f i = t i ( l - A , ) ,  i = l , 2  ,..., k,  

with 

(Note that the Ai's do not depend on n.) Further the asymptotic variance of 
the ABLUE in (18.89) is 

From (18.90) it is readily seen that the spacing which maximizes K ,  is the 
optimal spacing. These optimal spacings have been numerically determined 
by Dyer and Whisenand (1973b), Dyer (19731, and Cheng (1980). It should be 
mentioned here that Cheng has shown that the optimal spacing {A,) satisfies 
the relation 

where {AT) is the optimal spacing for the ABLUE p** (when a is known) for 
the extreme-value distribution of the largest values determined earlier by 
Chan and Kabir (1969). An optimal t-test [based on a** in (18.8911 has also 
been proposed by Cheng (1980) for testing hypotheses regarding a. In Table 
18.9, the values of the optimal A,, the corresponding coefficients bi, and K2 
are presented for k up to 10; Adatia (1994) has recently prepared tables of 
optimal BLUE based on k selected order statistics for sample sizes n = 

20(1)40 and k = 2(1)4. 
It is also of interest to mention here that D'Agostino and Lee (1975) have 

used the technique of Chernoff, Gastwirth and Johns (1967) to derive the 
ABLUE of a based on Type I1 censored samples. They show that this 
estimator, in addition to having a simple closed form, possesses good effi- 
ciency even for samples as small as 5. 



Table 18.8 Coefficients ai of the BLUE of u and Efficiency Relative to the BLUE Based on Complete Sample for n = 2(1)10, 
r = 0. and s = O(l)n - 2 
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Table 18.9 Optimum Spacings {A~), Corresponding Coefficients bi, 
and the Value of K, for the ABLUE a** (Complete Samples) 

k =  2 3 4 5 6 7 8 9 10 

Maximum Likelihood Estimation 
Based on a complete sample X,, X2 ,  . . . , X, of size n from the Rayleigh 
population with pdf as in (18.76), the likelihood function is [see (18.6711 

from which we immediately obtain the maximum likelihood estimator (MLE) 
of u as [see (18.68)] 

Of course from (18.81) we can also propose a simple moment estimator for a 
as x m .  As Cohen and Whitten (1988) and Balakrishnan and Cohen 
(1991) point out, since X: -- a2*: (i = 1,. . . , n),  2 n k 2 / u 2  has a chi-square 
distribution with 2n degrees of freedom. By making use of this exact 
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distributional result, we can construct a 100(1 - a)% confidence interval for 
u as 

2 where X&, and x,,, , -( :, are respectively the lower and upper $ percentage 
points of the chi-square distribution with 2n degrees of freedom. Further, 
since the Rayleigh density in (18.76) belongs to the general exponential 
family of distributions, it immediately fqllows from (18.91) that C;,X? is 
both complete and sufficient, and that the MLE of u2 given by C ; = , ~ ? / ( 2 n )  
is unbiased and also the uniformly minimum variance unbiased estimator 
(UMVUE) of u2. Now upon using the fact that 2 d 2 / u 2  - Xzn and the 
asymptotic expansion r ( x  + a ) / T ( x )  = x a  [ I  + (a 2  + a) / (2x ) ] ,  as done by 
Sinha and Howlader (1983), the MLE 6 in (18.92) can be shown to be 
asymptotically unbiased for a. This fact can alternatively be verified by using 
Kendall, Stuart, and Ord's (1991) series expression for the mean of the chi 
distribution; for example, refer to Balakrishnan and Cohen (1991, p. 143). 

Furthermore it is easily observed that the MLE of the reliability function 
Rx( t )  in (18.78) is given by 

f i x ( t )  = exp(z). I xi" 

Also, following Basu (19641, we have the UMVUE of R x ( t )  as 

f o r t  2 CX?.  
i = l  

It is of interest to note here that 

t 2  

lim f i x ( t )  = lim 
n - + m  n - r m  

Hence the UMVUE of the reliability function R x ( t )  tends asymptotically to 
the MLE. 

Suppose that the available sample is singly right censored at time T .  That 
is, out of a total of N items placed on test n are completely observed (I T )  
and c are censored (> T )  so that N = n + c. Note that T is a fixed constant 
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in the case of Type I censoring and that T = XA in the case of m e  I1 
censoring. For samples of this type the MLE of u may be explicitly derived 
to be [Cohen and Whitten (198811 

Suppose that the independent sample Xi, i = 1,2,. . . , n, arises from a 
singly right-truncated Rayleigh distribution (truncated at x = T). That is, the 
sample consists of n random observations each of which is in the time 
interval [0, TI. Then, by introducing the unknown parameter To = T/u, 
Cohen and Whitten (1988) have shown that the MLE of To satisfies the 
equation 

where 

4(.) is the pdf of the standard normal distribution. To facilitate the calcula- 
tion of fo and hence ~f 6 (= T/?~), Cohen and Whitten (1988) presented 
tables and a graph of the function Jz(z) [see also Balakrishnan and Cohen 
(1991, p. 142)l. A graph of the function JZ(z) is presented here in Figure 
18.7. To use this method of estimation in a practical situation, we first need 

Figure 18.7 Graph of the Function J,(z) in (18.96) for the Determination of the MLE of a in 
the Singly Right-Truncated Rayleigh Distribution 
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to find the value of in (18.95) from the observed data, read the 
corresponding value of To from Figure 18.7, and then determine the MLE of 
a as 3 = ~ / f ~ .  

It should be mentioned here that by considering a doubly Type I1 
censored sample X:+ I Xi+ , 5 - . . 5 XL - s  from (18.76) (with r smallest 
and s largest observations censored from a sample of size n), Lee, Kapadia, 
and Brock (1980) derived the modified maximum likelihood estimator of the 
parameter u. Specifically, by considering the likelihood function 

n !  n - s  
L = r ! S ! I T n - r - S  { +  - F - ~ )  i = r + l  p i  (18.97) 

and the likelihood equation for a given by 

d log L 
-- - - A k ( n  - r  - S )  + rzr+l p ( z r + l )  

d u  u F ( z r + l )  

where zi = X,' /u  are the standardized order statistics and p ( z )  and F ( z )  are 
the standard pdf and cdf given by 

p ( z )  = ze-z2 /2  for z > 0 ,  

F ( z )  = 1 - e-"l2 for z > 0 ,  

Lee, Kapadia, and Brock (1980) derived a modified maximum likelihood 
estimator for a by approximating the likelihood equation in (18.98). Upon 
using the linear approximation 

where a and /? are such that 

P = 
g(h2) - g(h1) 

and a = g ( h l )  - hip, (18.100) 
h2 - hl 

with h,  and h,  being chosen so that 

1 r  n - r  
h 2 = ~ - l ( f  + /n(n)(T)), 
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Lee, Kapadia, and Brock (1980) derived the modified maximum likelihood 
estimator for a to be 

where 

These results have been reported by Tiku, Tan, and Balakrishnan (1986) 
(with an algebraic error). It is of interest to mention here that Lee, Kapadia, 
and Brock (1980) also suggested an estimator based on linear approximation 
twice in order to achieve greater accuracy in the approximation in case of 
small sample sizes. 

Based on a complete sample XI, X2, . . . , Xn from a two-parameter 
Rayleigh population with pdf, 

we have the likelihood function as 

from which the likelihood equations for u and p are immediately obtained as 

and 

Upon writing (18.104) as 

1 " $ 2 =  - C (Xi - i ) '  
2n i = 1  
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and then eliminating a2 from (18.105), we obtain the likelihood equation for 
P as 

As mentioned by Balakrishnan and Cohen (1991, pp. 140-141), one may 
solve for fi iteratively from (18.107) and then determine 6 from (18.106). 

From (18.81) we can also employ the estimating equations E[X] = X (the 
sample mean) and Var(X) = s 2  (the sample variance) and derive simple 
moment estimators for a and p as 6 = sd- and ,ii = 2 - 6@. 
Alternatively, we can employ the estimating equations E[X;] = Xi and 
E[X] = X and derive the following modified moment estimators [see 
Balakrishnan and Cohen (1991) for more details] for a and p as 

\ 
jj? - x; 

G =  ,hp-,l* and ,ii = 13 - 6 

Bayesian Estimation 
Let us consider the one-parameter Rayleigh distribution with pdf as in 
(18.76). In situations where very little is known about the parameter a of 
interest, it is customary to use Jeffreys's (1961) noninformative (or vague) 
prior 

[since Z(a) = E{ - (d2/da2)log px(x(a)l = l/a2 is the Fisher's information 
based on a single observation] due to its invariance under parametric trans- 
formations [see Box and Tiao (1973)l. Combining the likelihood function in 
(18.91) with the vague prior in (18.109), we obtain the posterior density of u 
as 

In estimating a parameter, the squared-error loss function can be used when 
decisions become gradually more damaging for larger error. Under this 
squared-error loss function, as shown by Sinha and Howlader (1983), the 

: Bayesian estimator of a is the mean of the posterior density in (18.110) and 
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is given by 

&, = E[ulX] = (18.111) 

Note that the Bayesian estimator 6, in (18.111) tends to the MLE 3 in 
(18.92) as n -, m. 

Similarly the posterior density of u 2  is 

~ ( u ~ I x )  = (18.112) 

from which the Bayesian estimator of u2,  under the squared-error loss 
function, may be obtained as 

1 
(&2), = - 

2n - 2 
(18.113) 

For large n, the Bayesian estimator of u2 in (18.113) becomes Z ~ = , ~ ~ / ( 2 n ) ,  
which is the MLE of u2. 

Next, upon substituting a2 = t2/{-21og(RX(t))) in (18.1121, we obtain 
the posterior density of the reliability function R,(t) as 

4 
from which the Bayesian estimator of R,(t), under the squared-error loss 
function, is obtained as 

f 

r - 
It is easy to note that the Bayesian estimator (Rx(t)) in (18.115) tends to the 
MLE Rx(t) = exp( -nt 2 / ~ ; =  '=,x?). 
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Proceeding in a similar manner, Sinha and Howlader (1983) obtained the 
posterior density of the hazard function hx(t) in (18.79) to be 

and the Bayesian estimator of hx(t), under the squared-error loss function, 
to be 

which is exactly the same as the MLE of hx(t). 
Sinha and Howlader (1983) also developed Bayesian intervals for the 

parameter a. Since C;=lXi"/a2 has a chi-square distribution with 2n de- 
I grees of freedom, the interval in (18.93) simply becomes the 100(1 - a)% 

equal-tail credible interval for a [Edwards, Lindman, and Savage (1963)l. 
After observing that the posterior density of a in (18.110) is unimodal, the 
highest posterior density interval (HL, Hu) of a satisfies the following two 
equations simultaneously: 

Similarly, by noting from the posterior density of Rx(t) in (18.114) that 
- 2C;= ',,xi2 log(~,(t ))/t has a chi-square distribution with 2n degrees of 
freedom, the highest posterior density interval (HL(t), Hu(t)) of the reliabil- 
ity Rx(t) satisfies the following two equations simultaneously: 

Mention has to be made of the work of Ariyawansa and Templeton (1984) 
who considered the problem of statistical inference on the parameter a 
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based on a doubly Type I1 censored sample using Fraser's (1968) structural 
inference approach. Mention should also be made to Biihler (1983), Corotis, 
Sigl, and Klein (1978), and Barros and Estevan (1983) who have implemented 
methods of estimation and fitted Rayleigh distributions in some practical 
situations. While the first paper introduced the Rayleigh distribution in the 
analysis of blurred photographs due to camera shake, the last two papers 
make use of the Rayleigh distribution in the evaluation of wind power from 
short wind records. 

10.5 Prediction 

When X has a one-parameter Rayleigh distribution with density as in 
(18.761, then it is easy to see that x2 has a one-parameter exponential 
distribution (since X2 - uZXi). Due to this fact, some of the known results 
on the prediction limits and prediction intervals in the one-parameter expo- 
nential distribution can be suitably adopted for the Rayleigh distribution. 
Specifically the prediction problems that are of interest are of the following 
types [Aitchison and Dunsmore (19791: 

1. After observing the first r failure times out of n items placed on a 
lifetest, one wants to construct a prediction interval for Xi, the sth 
failure time, for r < s s n. 

2. After observing a sample size n (or even a Type I1 censored sample), 
one may be interested in constructing a prediction interval for failure 
times from a "future sample" of items to be placed on a life test. 

Balakrishnan and Arnbagaspitiya (1993) and Raqab (1992) discussed the 
prediction problems for the Rayleigh distribution in great detail. While the 
former discusses prediction based on the BLUE discussed in Section 10.4.1, 
the latter discusses predictors based on maximum likelihood method, condi- 
tional median approach, and linear method; it also compares these various 
predictors through Monte Carlo simulations. 

Howlader (1985) constructed prediction intervals for problem (2) from the 
Bayesian viewpoint. Given the data X, with the posterior density of u as in 
(18.110), we have the conditional joint density of a future independent 
observation y and u as 

= f ( y l a ) n ( ~ l x )  since y is independent of X 
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Integrating out u in (18.122), we obtain the predictive density of y to be 

from which it is easy to see that y2 has a beta distribution of the second kind. 
Under the squared-error loss function, the Bayesian predictive estimator of y 
is simply 

From (18.931, Howlader (1985) also derived the 100(1 - a)% highest poste- 
rior density prediction interval (c,, c2) for y to be the simultaneous solution 
of 

It should also be added here that Howlader (1985) further discussed the 
prediction of the kth order statistic y; from a future sample of m observa- 
tions. Sinha (1990) developed Bayesian prediction limits for a future indepen- 
dent observation y under the asymptotically locally invariant prior due to 
Hartigan (1964) which assigns a prior distribution for u as g(u) and satisfies 
the equation 

d 
- log g ( u )  = - E(IlI2) 
d u  w 2 )  ' 

where Zi = (di/dui)log f(xlu) if E(I1) = 0 and E(If )  + E(Z2) = 0; for the 
case of the Rayleigh distribution in (18.76), it yields the prior g(u) a l/u3. 

10.6 Record Values and Related Issues 

Distributions and Moments 
Let Xu(,,, Xu(,,, . . . be the upper record values arising from a sequence {Xi) 
of independent and identically distributed Rayleigh random variables with 
pdf and cdf as in (18.76) and (18.77), respectively. Balakrishnan and Chan 
(1993) have studied the properties of record values and also discussed some : related issues. Let us denote E[x&,,] by a?), E[Xu(,)Xu(n)] by a,,,, 

I 
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VadXu(n)) by Cn,n, and COV(X,(~,, Xu(,,) by C,,,. Then for n 2 1 and 
k r 0 we obtain 

1 m 

a(*) = -/ xk{-Iog(1 - ~ , ( x ) ) ] ~ ~ ' ~ , ( x )  dr 
" r ( n )  o 

1 x2  n - 1 
X x e - ~ 2 / ( 2 ~ 2 )  

u2 

- - (18.128) 

Similarly we obtain for 1 s m < n, 

From (18.128) and (18.129), for example, we get i 

These results can be used to develop some inference procedures based on 
record values, as demonstrated by Balakrishnan and Chan (1993). 
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Estimation 
Suppose the first n upper record values from the Rayleigh population are 
available. Then, by proceeding along the lines in Section 10.4 and denoting 

1 T 1 
a = ( a ,  a 2  ) and = ((xi, j ) ) :  

u u 

we derive the best linear unbiased estimator (BLUE) of the scale parameter 
u of the Rayleigh distribution as 

and its variance as 

By noting that is of the specific form piqj (for i s j),  and that 
therefore the matrix Z is invertible and its inverse a simple tridiagonal 
matrix, Balakrishnan and Chan (1993) have simplified the expression in 
(18.133) in order to derive the BLUE as 

and its variance to be 

Based on the first n upper record values, the likelihood function is then given 
by 
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Equation (18.137) yields the maximum likelihood estimator of u as 

and its variance is given by 

Since limn ,, n-'I2[I'(n + ;)/r(n)] = 1 [e.g., Abramowitz and Stegun (1973, 
p. 25?)], it is quite clear from (18.135) and (18.138) that the BLUE and the 
MLE are asymptotically identical. 

Prediction 
Suppose the first m upper records Xu(,,, . . . , Xu(,, have been observed. 
Then the BLU predicted value of the nth record Xu(,,, n r m + 1, is given 
by 

We can also construct a prediction interval for Xu(,, by considering the 
pivotal quantity 

Since x2/(2u2)  - ,y,2/2 is distributed as a standard exponential random 
variable, we can show that x&,,/x&,, is distributed as a beta(m, n - m) 
variate [see Chapter 25 and Dunsmore (1983)l. Using this property, the 
100(1 - a)% prediction interval for Xu(,, has been derived by Balakrishnan 
and Chan (1993) to be 

where b,(m, n - m) is the lower a percentage point of the beta(m, n - m) 
distribution. Balakrishnan and Chan (1993) have extended all these results to 
the case where the upper record values arise from a sequence of i.i.d. 
variables from a two-parameter Rayleigh distribution with density function 
as in (18.102). For more details on related work, interested readers should 
refer to Ahsanullah (19881, Arnold and Balakrishnan (19891, and Arnold, 
Balakrishnan, and Nagaraja (1992). 
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10.7 Related Distributions 

As indicated earlier in Section 9, the Rayleigh distribution is simply the chi 
distribution with two degrees of freedom and scale parameter a. The inverse 
Rayleigh distribution with probability density function 

has been considered by Iliescu and VodI (1973) and VodI (1972). Similarly 
the log-Rayleigh distribution has been discussed by Shepherd (1975). 

It is of interest to point out here that Vod5 (1976a) considered a distribu- 
tion with probability density function 

and termed it the "generalized Rayleigh distribution." The Rayleigh density 
in (18.76) is obtained as a special case of (18.143) when k = 0. One should 
bear in mind that while the chi distribution in (18.65) is defined for positive 
integral values of the parameter N, the generalized Rayleigh distribution in 
(18.143) is defined for nonnegative real values of the parameter k. Vod5 
(1976a) has discussed some properties of this generalized distribution and 
also studied the maximum likelihood estimate and the best linear estimate of 
the parameter 0 under complete and censored samples [also see Vodi 
(1977)l. Further Vodi (1975,1976a) considered the left-truncated form of the 
distribution in (18.143) given by 

where x, is the truncation point, and discussed the maximum likelihood 
estimation of the parameter 0. VodI (1976b) also considered a two-compo- 
nent mixture of generalized Rayleigh distributions of the form .rrp,(x; k, 0,) 
+ (1 - .rr)px(x; k, 0,) and discussed the method of moments estimation of 
the parameters el, 0,, and a. This work is an extension of the work by 
Krysicki (1963) who had earlier discussed the problem of estimation for a 
two-component mixture of Rayleigh distributions. 

The Rayleigh density function in (18.76) is also a special case of the 
Weibull distribution with density function 

c - 1  - x c / u c  px(x)=,x e , O ~ x < a ~ , c > O , u > O .  

This distribution is discussed at great length in Chapter 21. 
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Many suggestions have been made regarding the use of a distribution with 
its hazard function being a lower-order polynomial in the fields of life testing 
and reliability; for example, see Bain (19741, Gross and Clark (1975), and 
Lawless (1982). The linear-exponential distribution with density 

and its hazard function varying as a linear function is one such distribution. 
This distribution and its applications have been discussed in detail by 
Broadbent (1958), Carbone, Kellerhouse and Gehan (19671, Gehan and 
Siddiqui (19731, and Balakrishnan and Malik (1986). 

Balakrishnan and Kocherlakota (1985) considered the double Rayleigh 
distribution with probability density function 

[the two-parameter Rayleigh distribution in (18.102) is simply the density 
function in (18.145) folded at x = p ,  and hence the distribution in (18.145) is 
appropriately termed as the double Rayleigh]. They studied the order statis- 
tics from this distribution and constructed the best linear unbiased estimators 
of the parameters p and a. Balakrishnan and Kocherlakota also carried out 
a similar work on a more general double Weibull distribution. 

Another interesting distribution to which Rayleigh is related is the Rice 
distribution. In the data transmission theory the Rice distribution function 
plays a fundamental role in topics concerned with normally derived processes 
as the first-order statistics of the envelope of additive narrowband signal and 
normal noise processes [e.g., see Rice (1944, 1945, 1948); Middls : o i l  (1960); 
Levin (1973); and Dozio, Taute, and Hein (199111. The Rice density function 
of kind (p ,  u )  is the two-parameter density function given by 

where H is the Heaviside unit step and I, is the modified Bessel function of 
the first kind and order zero [Watson (1944)l. It is clear that (18.146) reduces 
to the Rayleigh density in (18.76) in the particular case when p = 0. In the 
context of statistical properties of additive narrowband signal and normal 
noise processes, u 2  in (18.146) represents the mean-squared value of the 
cosine and sine components of the real stationary normal narrowband noise 
process, while p in (18.146) represents the amplitude of the narrowband 
signal ensemble. When p / u  is small, the Rice density function in (18.146) is 
very close to the Rayleigh density function, and when x is far out on the tail 
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of the curve or when p is large, the Rice density function in (18.146) behaves 
like a normal density with mean p and variance u2 [see Dozio, Taute and 
Hein (1991)l. 

Barnett, Clough, and Kedem (1993) have considered the fitting of Rayleigh 
and left-truncated Rayleigh distributions to model high peak distributions 
while studying the phenomenon of acoustic emission. It was Ono (1976) who 
earlier studied the peak distribution of continuous and burst-type acoustic 
emission signals and displayed that the Rayleigh distribution serves as an 
adequate model for the peak magnitude observed in continuous-type acoustic 
emission regardless of bandwidth. 
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C H A P T E R  1 9  

Exponential Distributions 

1 DEFINITION 

The random variable X has an exponential (or negative exponential) dhtribu- 4 
tion if it has a probability density function of form j 

Figure 19.1 gives a graphical representation of this function, with 8 > 0. This 1 
is a special case of the gamma distribution, the subject of Chapter 17. The I 
exponential distribution has a separate chapter because of its considerable 
importance and widespread use in statistical procedures. i 

Very often it is reasonable to take 8 = 0. The special case of (19.1) so 
obtained is called the one-parameter exponential distribution. If 8 = 0 and 
cr = 1, the distribution is called the standard exponential distribution. The 
pdf is 

The mathematics associated with the exponential distribution is often of a 
simple nature, and so it is possible to obtain explicit formulas in terms of 
elementary functions, without troublesome quadratures. For this reason 
models constructed from exponential variables are sometimes used as an 
approximate representation of other models that are more appropriate for a 
particular application. 

2 GENESIS 

There are many situations in which one would expect an exponential distribu- 
tion to give a useful description of observed variation. One of the most widely 
quoted is that of events recurring "at random in time." In particular, suppose 
that the future lifetime of an individual has the same distribution, no matter 
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Figure 19.1 Exponential Density Function 

how old it is at present. This can be written formally ( X  representing 
lifetime) 

P ~ [ X  s x, + x ( X  > x,] = Pr[X I x ]  for all x, > 0, x > 0. 

X must be a continuous positive random variable. If it has a probability 
density function px(x), then the conditional probability density function, 
given that X is greater than x,, is 

Since the conditional distribution of the future lifetime ( X  - x,) is the same 
as the (unconditional) distribution of X, we have, say, 

It follows that if Fx(xo) + 1, p, > 0 and Fx(x) satisfy the differential 
equation 

whence 1 - Fx(x) a ePPox. Introducing the condition lim, ,, Fx(x) = 0, we 
find that 
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that is, 

This shows that the probability density function of X is of form (19.1) with 
8 = 0, a = p,'. 

There are other situations in which exponential distributions appear to be 
the most natural. Many of these do, however, have as an essential feature the 
random recurrence (often in time) of an event. 

In applying the Monte Carlo method it is often required to transform 
random variables from a standard rectangular distribution to exponential 
random variables. An ingenious method was suggested at an early date by 
von Neumann (1951). Let {Xi; i = 0,1,. . . I  be a sequence of independent 
random variables from the standard rectangular distribution, and define a 
random variable N taking positive integer values through {Xi] by the inequal- 
ities 

We "accept" the sequence {Xi] if N is odd, otherwise we "reject" it and 
repeat the process until N turns out odd. Let T be the number of sequences 
rejected before an odd N appears (T = 0,1,. . . ) and X, be the value of the 
first variable in the accepted sequence. Then Y = T + Xo is an exponential 
random variable with the standard density e-". 

A rather more convenient method was suggested by Marsaglia (1961). Let 
N be a nonnegative random integer with the geometric distribution [Chapter 
5, Section 2, equation (5.8)] 

and let M be a positive random integer with the zero-truncated Poisson 
distribution [Chapter 4, Section 10, equation (4.7311 

Finally let (Xi; i = 1,2,. . .) be a sequence of independent random variables 
each having a standard rectangular distribution (Chapter 26). Then 

has the standard exponential distribution. 
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Sibuya (1962) gave a statistical interpretation of the procedure, recom- 
mended that the value of the parameter A be taken as 0.5 or log2, and 
extended the technique to the chi-square distribution. BBnkiivi (1964) investi- 
gated a similar technique. A table of 10,000 exponential random numbers is 
given by Barnett (1965). 

3 SOME REMARKS ON HISTORY 

Over the last 40 years the study of estimators based on samples from an 
exponential population has been closely associated with the study of order 
statistics. Lloyd (1952) described a method for obtaining the best linear 
unbiased estimators (BLUEs) of the parameters of a distribution, using order 
statistics. Epstein and Sobel (1953) presented the maximum likelihood esti- 
mator of the scale parameter a ,  of the one-parameter exponential distribu- 
tion in the case of censoring from the right. Epstein and Sobel (1954) 
extended the foregoing analysis to the two-parameter exponential distribu- 
tion. Sarhan (1954) employed the method derived by Lloyd to obtain the 
BLUEs of a and 6 for the two-parameter exponential distribution in the 
case of no censoring. Sarhan (1955) extended his results to censoring. Sarhan 
noted that in the special case of the one-parameter exponential distribution, 
his results agreed with those of Epstein and Sobel, and therefore his 
estimator of a was not only the best linear unbiased estimator but also the 
maximum likelihood estimator of a. Epstein (1960) extended his own results 
to estimators of a and 8 for the one- and two-parameter exponential 
distributions in the cases of censoring from the right and/or left. For the 
two-parameter exponential distribution his maximum likelihood estimators 
coincided with the BLUEs of Sarhan (1960), but for the one-parameter 
exponential distribution there was agreement only in the case of censoring 
from the right. Many other contributions by Epstein and Sobel are included 
in the references. 

In the light of the applicability of order statistics to the exponential 
distribution it became quite natural to attempt estimation of the parameter 
by use of the sample quasi-ranges. Rider (1959) derived the probability 
density function and the cumulants of the quasi-range of the standardized 
exponential distribution and Fukuta (1960) derived "best" linear estimators 
of a and 8 by two sample quasi-ranges. The next step would quite reasonably 
be that of determining the two order statistics that would supply the best 
linear unbiased estimator of a and 8 for the two-parameter distribution; this 
was in fact done numerically by Sarhan, Greenberg, and Ogawa (1963). They 
employed the method of Lloyd to obtain the best linear estimators of a and 
6 based on the two-order statistics Xk and X;:,, and then compared 
numerically the relative efficiencies of the estimators for various pairs 
of values (1, m). Harter (1960, using a similar approach to that of Sarhan 
and his coworkers, presented the best linear estimators of a for the one- 
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parameter distribution based on one- and two-order statistics. Harter men- 
tioned in this paper that he was not aware of any analytical process by which 
the optimum pair of order statistics Xi:, and Xk:, can be determined. 
Siddiqui (1963) presented an analytical method based on the Euler-Mac- 
laurin formula for obtaining the optimum pair of BLUE order statistics. 
Since 1963 a considerable number of additional, more refined, results have 
been obtained. Some of these results are presented in Section 7. 

4 MOMENTS AND GENERATING FUNCTIONS 

The moment generating function of a random variable X with probability 
density function (19.1) is 

- > . . 
E[etX] = (1 - ut)- 'ete (=  (1  - u t ) - l  if 0 = 0). (19.4) 

The characteristic function is (1 - iut)-lei''. 
The central moment generating function is 

The cumulant generating function is log E[etX] = t0 - log0 - ut). Hence 
the cumulants are 

Setting r = 2,3,4, we find that 

Note that if 0 = 0 and u = 1, then E[X] = 1 = Var(X). 
The first two moment ratios are 

The mean deviation is 
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Note that 

Mean deviation 2 
= - -  - 0.736. 

Standard deviation e 

The median of the distribution is I9 + u log, 2. The mode of this distribution 
is at the lowest value I9 of the range of variation. 

The information generating function [(u - 1)-th frequency moment] is 
a'-"u-'. The entropy is 1 + log u. The hazard rate (u-') is constant. This is 
an important property of exponential distributions. 

5 APPLICATIONS 

As has already been mentioned in Section 1, the exponential distribution is 
applied in a very wide variety of statistical procedures. Currently among the 
most prominent applications are in the field of life-testing. The lifetime (or 
life characteristic, as it is often called) can be usefully represented by an 
exponential random variable, with (usually) a relatively simple associated 
theory. Sometimes the representation is not adequate; in such cases a 
modification of the exponential distribution [often a Weibull distribution 
(Chapter 21) is used]. 

Another application is producing usable approximate solutions to difficult 
distributional problems. An ingenious application of the exponential distribu- 
tion to approximate a sequential procedure is due to Ray (1957). He wished 
to calculate the distribution of the smallest n for which Cy= ,q2 < K,, where 
U,, U,, . . . are independent unit normal variables and K,, K,, . . . are speci- 
fied positive constants. By replacing this by the distribution of the smallest 
even n, he obtained a problem in which the sums C ~ = ' , , U , ~  are replaced by 
sums of independent exponential variables (actually X2's with two degrees of 
freedom each). 

Vardeman and Ray (1985) investigated the average sum lengths for 
CUSUM schemes when observations are exponentially distributed. 'They 
show that in this case the Page (1954) integral equation whose solution gives 
average sum lengths for one-sided CUSUM schemes can be solved without 
resorting to approximation. They provide tables of average run lengths for 
the exponential case. 

6 ORDER STATISTICS 

Let Xi I X; I - . . s XL be the order statistics obtained from a sample of 
size n from the standard exponential distribution in (19.2). Then, the joint 
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density of all n order statistics is 

By making the transformation 

we obtain from (19.8) the joint density function of Y,, Y2, . . . , Y, to be 

That is, the x's (termed normalized spacings) are independent and identically 
distributed standard exponential random variables. This result is originally 
due to Sukhatme (1937). Also from (19.91, 

From (19.11) it is clear that the exponential order statistics form an additive 
Markov chain as shown originally by RCnyi (1953). 

The additive Markov chain representation in (19.11) makes it possible to 
write down explicit expressions for the single and product moments of Xi. 
For example, we have 

= Var(X,') for 1 I i < k I n .  (19.14) 

This special structure of the variance-covariance matrix of exponential order 
statistics makes it possible to derive the best linear unbiased estimators of the 
parameters in an explicit form (see Section 7). 

Interestingly the result that the normalized spacings x's defined in (19.9) 
are i.i.d. standard exponential random variables has been generalized by 
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Viveros and Balakrishnan (1994) to the case of a Type I1 progressively 
censored sample. To be precise, let m be the number of failures observed 
before termination of a life test of n individuals and Xi r; Xi I. . - < Xk 
be the observed ordered life lengths. Let Ri designate the number of units 
removed at the time of the ith failure (Type I1 censoring), 

with 

The resulting data are referred to as a Type I1 progressively censored sam- 
ple [e.g., see Nelson (1982); Lawless (1982); Cohen and Whitten (1988); 
Balakrishnan and Cohen (1991); Cohen (199111. Defining the ith normalized 
spacing between Xi, Xi, . . . , Xk as 

Viveros and Balakrishnan (1994) have proved that q's are i.i.d. exponential 
random variables. Sukhatme's result, presented earlier, is a particular case of 
this general result corresponding to R, = R, = . . . = R, = 0. In this gen- 
eral case an additive Markov chain representation for Xi' similar to the one 
in (19.11) is possible; it can then be used in writing down explicit expressions 
for the means, variances, and covariances of Xi that are similar to those in 
(19.12)-(19.14). The special structure of the variance-covariance matrix of 
exponential order statistics observed earlier in (19.13)-(19.14) occurs in this 
general case of Type I1 progressively censored sample and enables the best 
linear unbiased estimators of the parameters to be derived in an explicit form 
(as described in Section 7c). 

Due to the close relationship between the geometric and the exponential 
distributions, there also exists a close relationship between the dependence 
structure of order statistics from the geometric distribution and those from 
the exponential distribution. Steutel and Thiemann (1989) showed some of 
these similarities. For example, by introducing a second subscript to denote 
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sample size, (19.11) can be written as 

i I;. I 

x;, c ' C xi:n-j+l, 
j = l ( n - j + l )  j=l  

where the Xi:n-j+l's are independent. Steutel and Thiemann (1989) estab- 
lished the following parallel relationship for the geometric order statistics: 

where Z;:, denotes the ith order statistic from a random sample of size n 
from a geometric (p)  distribution, the q's are independent exponential (u) 
random variables with u = l/[-log(1 - p)], [ Y ]  denotes the integer part of 
Y, and ( Y )  denotes the fractional part of Y. Further, all the random 
variables on the right-hand side of (19.17) are independent. 

Arnold and Villasefior (1989) and Arnold and Nagaraja (1991) discussed 
the Lorenz order relationships among order statistics from exponential 
samples. The Lorenz curve associated with X is 

(see Chapter 12, Section 1). Given two nonnegative random variables X and 
Y (with finite positive mean), we say X exhibits less inequality (or variability) 
than Y in the Lorenz sense, and write X <, Y, if Lx(u) 2 Ly(u) for all 
u E [0, 11; if the inequality is an equality, we write X =, Y. If Lx(u) and 
Ly(u) cross, X and Y are not comparable in the Lorenz sense. Arnold and 
Nagaraja (1991) proved that for i I j, 

Xi:, <,X;:, iff ( n  - i + l)E[X,',,] I ( m  - j + ~)E[x,!:,]. (19.19) 

As direct consequences of this result, they established for the exponential 
order statistics that 

1' Xi':n+l <LXi):n, 
2. Xi'+l:n+~ <~Xi):n, 
3. Xi)+l:n <LX,!:n iff E[Xi),,] I 1; otherwise, Xi:, and Xi)+, : n  are not 

Lorenz ordered. 

These authors have also discussed the Lorenz ordering of linear functions of 
exponential order statistics. 
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By making use of the underlying differential equation of a standard 
exponential distribution, given by p,(x) = 1 - FX(x), Joshi (1978, 1982) 
derived the following recurrence relations: 

and 

and 

These recurrence relations can be used in a simple recursive manner in order 
to compute all the single and product moments (in particular, the means, 
variances, and covariances) of all order statistics. Balakrishnan and Gupta 
(1992) extended these results and derived relations that will enable one to 
find the moments and cross-moments (of order up to 4) of order statistics. 
They then used these results to determine the mean, variance, and the 
coefficients of skewness and kurtosis of a general linear function of exponen- 
tial order statistics and approximate its distribution. Through this approach 
Balakrishnan and Gupta (1992) justify a chi-square approximation for the 
distribution of the best linear unbiased estimator of the mean lifetime based 
on doubly Type I1 censored samples (see Section 7). Interestingly the 
relations in (19.20a)-(19.20d), under certain conditions, can also be shown to 
be characterizations of the exponential distribution [Lin (1988, 198911 (see 
Section 8). Balakrishnan and Malik (1986) derived similar recurrence rela- 
tions for the single and product moments of order statistics from a linear- 
exponential distribution with increasing hazard rate. Sen and Bhattacharyya 
(1994) have discussed inferential issues relating to this distribution. 

By making use of the facts that X = -log U has a standard exponential 
distribution, when U has a uniform (0,l) distribution (see Chapter 26), and 
that -log U is a monotonic decreasing function of U, we have 
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and hence 

where x's are the normalized exponential spacings defined in (19.9). Since 
x's are i.i.d. exponential, as seen earlier, it immediately follows from (19.21) 
that 

are i.i.d. uniform (0,l) random variables. This result was derived originally by ] 
Malmquist (1950) and is now used effectively to simulate order statistics from 1 
uniform distribution without resorting to any ordering. d 

Joshi (1978, 1982) also considered order statistics from a right-truncated 
exponential population with density 

\ 0, otherwise, 

where P1 = - log(1 - P )  and 1 - P (0 < P < 1) is the proportion of trunca- 
tion on the right of the standard exponential distribution. By making use of 
the underlying differential equation given by 

and proceeding along the lines used to prove relations (19.20a)-(19.20d1, 
Joshi (1978, 1982) established the following recurrence relations: 
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n 2 2, (19.24d) 

1 
EIX; :nXf+ l :n ]  = E [ X ; ~ , ]  + - 

n - i  

l a i < j a n -  1 ; j - i 2 2 ,  (19.24f) 

and 

E[x , l , .X i : . ]  = E I X , l , n X ~ - l : , ]  + E [ X ; , , ]  

Saleh, Scott, and Junkins (1975) derived exact (but somewhat cumbersome) 
explicit expressions for the first two single moments and the product 
moments of order statistics in this right-truncated exponential case. 
Balakrishnan and Gupta (1992) extended the results of Joshi and established 
recurrence relations that will enable one to find the moments and cross- 
moments (of order up to four) of order statistics. 
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By considering the doubly truncated exponential distribution with density 

1 

io- 

e-', Q l s x s P l ,  
PX(X) = P - Q (19.25) 

otherwise, 

where Q and 1 - P (0 < Q < P < 1) are the proportiopq of truncation on 
the left and right of the standard exponential distributioq, respectively, and 
Ql = -1 og(1 - Q) and Pl = -log(l - PI, Joshi (19793 and Balakrishnan 
and Joshi (1984) derived several recurrence relations satisfied by the single 
and the product moments of order statistics. Khan, Yaqub, and Parvez (1983) 
tabulated these quantities for some value of P ,  Q, and n. Distributions of 
some systematic statistics like the sample range and quasi-range were derived 
in this case by Joshi and Balakrishnan (1984). 

7 ESTIMATION 

Before 1959 a considerable amount of work had been done on inference 
procedures for the exponential distribution with both censored and uncen- 
sored data. (See numerous references at the end of this chapter.) It was 
realized, in the 1960s and 1970s, that although the exponential distribution 
can be handled rather easily, the consequent analysis is often poorly robust 
[e.g., see Zelen and Dannemiller (19601. Nevertheless, the study of proper- 
ties of this distribution, and especially construction of estimation and testing 
procedures has continued steadily, during the last 30 years, with some 
emphasis on Bayesian analysis and order statistics methodology, and an 
explosion of results on characterizations. To keep this chapter within reason- 
able bounds, it was necessary to be very selective in our citations and 
descriptions of results. We first discuss classical estimators. 

7.1 Classical Estimation 

If XI, X,, . . . , Xn are independent random variables each having the proba- 
bility density function (19.0, then the maximum likelihood estimators of 8 
and a are 

8" = min(Xl, X,, . . . , X,), 

n (19.26) 
6 = n - l  (xi - 0) = X -  0. 

i= 1 

If 8 is known, the maximum likelihood estimator of a is (X - 8). Even with 
a known, 8" above is still the maximum likelihood estimator of 8. 
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The probability density function of 6 is 

which is of the same form as (19.1) but with u replaced by u/n. The variance 
of 6 is therefore u2/n2, and its expected value is 8 + u/n. It is interesting to 
note that the variance is proportional to n-2 and not to n-'. 

The expected value of 6 [= X - g] is a ( l  - n-'), and its variance is 

The expected value of (x - 8) is u and its variance is u2n-'. 
A function of special interest in some applications is the value of the 

probability that X exceeds a value x,; the reliability function R(x,). If 8 = 0 
so that (19.1) becomes 

then 

Inserting the maximum likelihood estimator, 6 = n-'C;=,Xi in place of a ,  
would give the estimator exp(-xon/Cr='=,Xi). This is the maximum likelihood 
estimator of the reliability R(x,). It is biased, but a minimum variance 
unbiased estimator can be obtained by using the Blackwell-Rao theorem. 

The statistic 

is an unbiased estimator of exp(-x,/u). Since C;=,Xi is a complete suffi- 
cient statistic for u [and so also for exp(-x,/~)], the required minimum 
variance unbiased estimator is 

The ratio X,/C;='=,Xi has a beta distribution with parameters 1, n - 1, and 



is independent of Cy=lXi (Chapter 17, Section 6). Hence 1 

which is the required minimum variance unbiased estimator. This formula 
was obtained by Pugh (1963). (Pugh claims this is the "best" estimator but 
does not compare its mean square error with that of competing estimators.) 

S The sampling distribution of the maximum likelihood estimator of parameter ; 
a in (19.28), based on a "time-censored" sample, was derived by Bartholomew 9 

(1963). 
Moment estimators (8c, 6 )  of (6, v) can be obtained by equating sample . 

and population values of the mean and variance. They are 

- g = x - ~  (19.31a) 

6 = sample standard deviation. (19.31b) 

Cohen and Helm (1973) discuss modified moment estimators obtained by 
replacing (19.31b) by an equation that puts the first-order statistic Xi equal 
to its expected value. This gives 

which leads to 

and 

They show that these are minimum variance unbiased estimators (and 
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a fortiori BLUES). Also 

so that ~orr(B;E, 6*)  = l/&. Further, since 6 *  is distributed as 
$(n - l)-lXGn-l), a 100(1 - a)% confidence interval for u is (in the obvious 
notation) 

2(n - 1) 2(n - 1) 
* 2 

- 1), 1 - f X2(n - I), f 

7.2 Grouped Data 

In a monograph KulldorfT (1961) discussed a general theory of estimation 
based on grouped or partially grouped samples. By grouped we mean that in 
disjoint intervals of the distribution range, only the numbers of observed 
values that have fallen in the intervals are available, and not the individual 
sample values. The distribution of the observed numbers is a multinomial 
distribution with probabilities that are functions of the parameter. If individ- 
ual observations are available in some intervals, the sample is partially 
grouped. 

Kulldorff devoted a large part of his book to the estimation of the 
exponential distribution because of its simplicity. The cases studied included 
completely or partially grouped data, 8 unknown, a unknown, both 8 and u 
unknown, a finite number of intervals, an infinite number of intervals, 
intervals of equal length, and intervals of unequal length. Here we describe 
only the maximum likelihood estimator of a when 8 is known, the intervals 
are not of equal length, and the number of intervals is finite. 

Let 0 = x, < x, < . . - < xk-, < oo be the dividing points and N,, . . . , Nk, 
(Cf=,N, = n) the numbers of observed values in the respective intervals. 
Then the maximum likelihood estimator & is the unique solution of 
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which exists if and only if Nl < n and N, < n. For large n, 3 
! 

For a given k, the dividing points that minimize the asymptotic variance i 
are 1 

X i  
k-l 

- =  C s,, 
a j = k - i  

where 

For example, 

The simplicity of mathematical analysis for the exponential distribution 
permits us to construct convenient Bayesian estimators of parameters of 
(19.1). Some initial results in this area (for censored samples) are presented 
in Varde (1969), who also compared their performance with more natural (at 
least in this case) and efficient maximum likelihood and minimum variance 
unbiased estimators. 

7.3 Estimators Using Selected Quantiles 

In life-test analysis it is often supported that lifetime can be represented by a 
random variable with probability density function 

If a number n of items are observed with lifetimes commencing simultane- 
ously, then, as each life concludes, observations of lifetime become available 
sequentially, starting with the shortest lifetime Xi of the n items, followed by 
the 2nd, 3rd.. . shortest lifetimes X;, Xi,. . . , respectively. Clearly it will be 
advantageous if useful inferences can be made at a relatively early stage, 
without waiting for completion of the longer lifetimes. This means that 
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inference must be based on observed values of the k, say, shortest lifetimes, 
or in more general terms, the first k-order statistics (see Section 6). On 
account of the practical importance of these analyses, statistical techniques 
have been worked out in considerable detail. Here we will describe only 
methods of estimation, but a considerable range of test procedures is also 
available. 

From (19.8) we find that if 

v , = x ; - x i ,  v , = x ; - x ;  ,..., v,=x,:-x;-,, 
then 

1. Xi, V,, V,, . . . , V,  are mutually independent, 
2. the distribution of Xi is exponential (19.1) with 8 = 0, u = n-', 
3. the distribution of I.;. is exponential (19.1) with 8 = 0, 

a = ( n - j +  I)-', j = 2  ,..., n. 

Since X,' = Xi + V, + . + ( j  r 21, it follows that all linear functions of 
the order statistics can be expressed as linear functions of the independent 
random variables Xi, V,, . . . , V,. This form of representation [suggested by 
Sukhatme (1937) and RCnyi (1953); see also Epstein and Sobel (1954) for a 
similar result] is very helpful in solving distribution problems associated with 
methods described in the remainder of this section. A similar kind of 
representation can be applied to gamma distributions, though the results are 
not so simple. 

It is necessary to distinguish between censoring (often refered as Type II 
censoring), in which the order statistics that will be used (e.g., the r smallest 
values) are decided in advance, and truncation (or Type I censoring) in which 
the range of values that will be used (e.g., all observations less than To) is 
decided in advance (regardless of how many observations fall within the 
specific limits). Truncation (or Type I censoring) by omission of all observa- 
tions less than a fixed value To (> 0) has the effect that observed values may 
be represented by a random variable with probability density function 

which is again of form (19.1) [with To (known) replacing 81, and so presents 
no special difficulties. However, if (as is more commonly the case) truncation 
is by omission of all values greater than To (> O), then the corresponding 
probability density function is 

, O < x < T o , u > O .  
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If m observations are obtained, they can be represented by independent 
random variables XI, X,, . . . , X,, each with distribution (19.38). The maxi- 
mum likelihood equation for an estimator &To of a is 

This equation may be solved by an iterative process. In this work the table of 
Barton, David, and Merrington (1963) is useful. 

Wright, Engelhardt, and Bain (1978) and Piegorsch (1987) studied infer- 
ence on 8 and a for distribution (19.1) under Type I censoring. Wright, 
Engelhardt, and Bain (1978) presented procedures based on the conditional 
distribution of "failure" times, given the number D of failures occurring 
before the censoring time 7. They distinguished between testing with and 
without replacement. In the first case Xi and D are sufficient statistics, and 
in the second D and S = Cf=,X,! are sufficient. 

Assuming testing without replacement, they utilized the facts that given 
D = d, the conditional distribution of [(X - Xi)/(X - @ ) I d  is uniform on 
(0, I), and that for fixed 8, D is sufficient and complete for a ,  while for fixed 
a, X; is sufficient and complete for 8. 

Assuming testing without replacement leads to a rather complicated 
conditional density for Xi, given D and S. However, Wright, Engelhardt, and 
Bain (1978) provide a table of exact percentage points of Xi for small and 
moderate D and an approximation for large D. [In the case where 8 = 0, 
Bartholomew (1963) developed confidence intervals based on the maximum 
likelihood estimator 

where T is the termination time, (provided that D > 011. 
Piegorsch (1987) uses somewhat simpler methods, based on the approxi- 

mate distribution of the likelihood ratio (LR) test statistic and some other 
approximations reviewed in Lawless (1982, Sec. 3.5.2). He discusses small 
sample performance of these procedures, based on Monte Carlo evaluation. 
He introduces the sets 

A = (i: min(t,, 7) = ti, i = 1,. . . , n )  

and 
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and proposes estimators 

and 

and observed lifetimes ti and fixed censoring time at 7. 

The LR statistic for testing a = a, is 

The asymptotic distribution of this statistic is X 2  with one degree of freedom 
if 8 = 8,. To construct approximate 100(1 - a)% confidence limits for 8, 
Piegorsch (1987) suggests solving the equations 

This equation always has two solutions, one for 8/a < 1 and the other for 
8 /u  > 1. These solutions L, and Uu are then used to construct an asymp- 
totic 100(1 - a)% confidence interval on a of the form 

A similar approach yields asymptotic 100(1 - a)% confidence limits for 8. 
For smaller sample sizes (n s lo), the conditional inference on a given by 
Wright, Engelhardt, and Bain (1978) may be preferred. However, Piegorsch's 
method for 8 performs well even for n = 5 with an F-based approximation 
providing errors closer to nominal than the LR-based values particularly at 
a = 0.05. 

Joint regions for ( a ,  8) can be constructed using Bonferroni's approach, 
with a rectangular region corresponding to the cross-product of univariate 
1 - q confidence intervals on 8 and a (the elliptic procedure using the 
asymptotic normality of the MLEs breaks down, yielding a hyperbolic rather 
than an elliptic region). Ranking and subset selection procedures for expo- 
nential population with Type I (and Type 11) censored data are discussed in 
Berger and Kim (1985). 

We will now restrict ourselves to Type I1 censored samples only. We will 
give details only for the case where 8 = 0 [so that the probability density 
function is as in (19.28)J and where censoring results in omission of the 
largest n - k values (i.e., observation of the k smallest values, where k is 
specified prior to obtaining the observations). The joint probability density 
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function of the k (> 1) smallest observations in a random sample of size n is 

0 I x ,  5 x 2  5 . . a  I x,.  (19.44) 1 

The maximum likelihood estimator of u is 

This statistic is distributed as (+u/k) X (X2 with 2k degrees of freedom). 
The expected value of YL is therefore a ,  and its variance is u2/k. The limits 

2 kYL 2 kYL 
2 and 7 

X2k,l- ;a  X2k, +a 

define a confidence interval for cr with confidence coefficient 100(1 - a)%. 
A wide variety of estimators of u and 8 based on order statistics is 

available. Many references at the end of this chapter contain discussions of 
such estimators. Among the problems discussed are estimation 

1. by linear functions of a limited number (usually not more than about 
five) of order statistics-this includes both the choice of coefficients in 
the linear function, and of the order statistics to be used; 

2. when only the k largest values are observed; 
3. when predetermined numbers of both the smallest and largest values 

are omitted; 
4. conversely, when only these values are known-that is, the middle 

group of observations is omitted. 

In all cases formulas have been obtained appropriate to estimation of a ,  
knowing 8; of 0, knowing u ;  and of both 8 and a, neither being known. We 
now discuss some of the more useful of these formulas. 

The variance-covariance matrix of the order statistics Xi 5 Xi  5 . - . - < 
XA has elements 

r 

Var(X:) = u 2  ( n  - j + I)-' = Cov(X:, Xi) ,  r < s .  (19.46) 
j =  1 
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Also 

From these relationships it is straightforward to construct best linear unbi- 
ased estimators based on k-selected order statistics Xi1,  X i2 , .  . . , Xik with 

n,  < n ,  < < n,.  

It will be convenient to use the notation 

with no = 0, and W ~ , / W ~ ~ ,  w , , ,+ , /w, , ,+ ,  each defined to be zero. 
If 8 is known, the best linear unbiased estimator of a is 

The variance of 6 is U ~ ( C ~ = ~ W , ~ ~ W ~ ' ) - ' .  Some special cases are 

1. n, = i ,  k = n (complete sample): 

2. ni = rl + i ,  k = n - r1 - r, (censoring r1  smallest and r ,  largest 
values): 
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(1963)l. Epstein (1962) has noted that the efficiency of the unbiased 
estimator based on X: - 8 is never less than 96% if r/n I 3, or 90% 
if r/n I 4 .  

5. k = 2 (estimation from two order statistics XL,, XA2). The variance of 
C? is a minimum when n, is the nearest integer to 0.6386(n + t )  and n, 
is the nearest integer to 0.9266(n + 3) [Siddiqui (1963)l. 

For small samples Sarhan and Greenberg (1958) give the following optimal 
choices: 

Sample Size (n) ( 2-4 5-7 8-11 12-15 16-18 19-21 

If 8 is not known, the optimal choices are different. Sarhan and Greenberg 
(1958) give the following optimal choices for n, and n, (with k = 2): 

Sample Size (n) 1 2-6 7-10 11-15 16-20 2 1 

The best (in fact only) linear unbiased estimator of a, using only Xi, and 
XL2 is 

- 1 

( 2 - 1 )  C ( n  - j )  (19.53) 

and its variance is 
I 

me ~p~~~~~ vahe of n I is always 1, whatever the values of n and n2. 
Kulldorff (1962) considered the problem of choosing n,, n,, . . . , n, to 

minimize Var(6) or v ar(h for k sred. He tabulated the opf~mal n ; 8 a d  
CQePF\dlents ~ Q X  small values 0% k and n. Eathex, Sathan and Gxeenbexg 
(1958) treated the asymptotic (la~ge n) case (for 0 known) giving the optimal 
percentiles n,/n, n2/n,. . . , n,/n, for k fixed. These tables are reproduced 
by Ogawa (1962). Saleh and Ali (1966) and Saleh (1966) proved the unique- 
ness of the optimal selection and extended the results to censored cases. 

The table of Zabransky, Sibuya, and Saleh (1966) is most exhaustive and 
covers uncensored and censored samples, finite and asymptotic cases for a 
wide range. Sibuya (1969) gave the algorithms for computing their tables, and 
unified previous results in simpler form. 
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518 EXPONENTIAL DISTRIBUTIONS 

Epstein (1962) gave a number of useful results. He pointed out that 
X: - 8 is approximately distributed as $(u/r) x (x2  with 21. degrees of 
freedom). Approximate confidence intervals for u can be constructed on this 
basis. Epstein also gave formulas for the minimum variance unbiased estima- 
tors of 8 and u for the two-parameter distribution (19.1), based on 
Xi, Xi , .  . . , XL. These are 

a *  is distributed as i u ( k  - I)-' X [ x 2  with 2(k - 1) degrees of freedoml. 
100(1 - a)% confidence limits for u are 

2(k - l ) u *  2(k - l )u*  
2 and 

x2(k- l ) , l - f  X2(k- 1). f 

100(1 - a)% confidence limits for 8 are 

Xi - F2,xk-l) ,1-n~*n-1 and Xi (19.56) 

(using the notation of Chapter 27, Section 1). 
If only XLI + ,, . . . , XL-k, are to be used, the minimum variance unbiased 

estimators are 

U* is distributed as iu (n  - k1 - k, - I)-' X [ x 2  with 2(n - kl  - k2 - 1) 
degrees of freedoml and 

The minimum variance unbiased estimator (MVUE) of the reliability func- 
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tion based on Xi,. . . , XL is 

[T, , , is defined in (19.45)]. 
The mean square error of d ( t )  is 

where 

1 u r - l  -u  
y(u; r )  = - 

r ( r )  
e ,  

[Basu (1964)l. Based on past data, one may have a prior (guessed) value of a ,  
a,, say, that can be utilized for statistical inference. The so-called shrinkage 
estimators arising in this situation perform better than the MVUE if the value 
a, is close to a. A preliminary test can be conducted to check the closeness 
of a, to a. Chiou (1987) proposes incorporating a preliminary test on a ,  
using an estimator of type 

e x - )  
i fHo:u=uoisnotre jected,  

R P T ( ~ )  = (19.60) 

(@I)  otherwise. 

Since 2Tk,,/a has a X 2  distribution with 2k degrees of freedom, H, is not 
rejected if 

where C, (C,) are the ; lower (upper) percentage points of xik.  Thus 

(m otherwise. 
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Chiou (1987) provides optimal critical values for the preliminary test and 
their corresponding level of significance, based on the minimax regret crite- 
rion. 

Alternatively, Chiou (1992) proposes the "shrinkage estimator" 

(m otherwise, 

where o is a shrinkage coefficient suitably specified. Chiou provides a table 
of optimum values of shrinkage coefficient w for t/uo = 0.25(0.25)2.0 and 
k = 4(2)10 as well as critical values C, and C, for the preliminary test. 

Zacks and Even (1966) compared the performance of MVUE and the 
maximum likelihood estimator in terms of mean square error for small 
samples. The MLE is more efficient than MVUE over the interval 0.5 < 
t/u < 3.5. Over the "effective intervals where uo/u is in the vicinity of 1 
[(0.7, 1.4) for r = 4 and t/uo = 2 as an example], Chiou's (1992) shrinkage 
estimators are more efficient, but none of the estimators for R(t) investigated 
so far is uniformly better than others over the whole possible range of u/uo." 

Cohen and Whitten (1988) discuss estimation of parameters in the case of 
progressively censored samples. Censoring is progressively carried out in k 
stages at times < 7, < . - . < rj < . . < rk. At jth stage of censoring, 
Cj sample specimens, selected randomly from the survivors at time rj, are 
removed. In addition we have n full-term observations and our sample 
consists of (X,, X,, . . . , Xn) plus k partial term observations {Cjrjj ( j  2 
1,. . . , k). Thus N = n + r, where r = C:cj (Cj 2 1 corresponds to censor- 
ing and Cj = 0 to noncensoring), and the sum total (ST) term of all N 
observations in the sample is 

The modified maximum likelihood estimators (MMLEs) of u and 8 in the 
case of progressive censoring, obtained by solving 

aIn L --  - 0 and E[Xi] =Xi 
au 

are given by 
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Explicitly 

(For the uncensored case Cj = 0, n = N, and ST = d?.) 
Estimation of parameters from general location-scale families (of which 

the two-parameter exponential distribution is a member) under progressive 
censored sampling was studied by Viveros and Balakrishnan (1994). They 
follow the classical arguments for conditional inference for location and scale 
parameters as expounded, for example, in Lawless (1982). 

A modified hybrid censoring model was investigated by Zacks (1986). Let 
r0 be the fixed time at which the (Type I) censoring occurs. Let Xi:, denote 
the kth-order statistic of a sample of n i.i.d. random variables from the 
one-parameter exponential distribution (19.28). 

Let X,* = rnin(XL:,,r,). The recorded random variable is the time- 
censored kth-order statistic. Let X&, . . . , Xt*, denote m i.i.d. random 
variables distributed as X,*. Zacks (1986) shows the existence and uniqueness 
of a MLE of u based on the sample X:,, = (X,*,,. . . , X&). 

He also investigates the properties of the moment estimator (ME) that is 
the root of the equation in u 

where B(j; n; p )  is the cdf of the binomial distribution with parameters 
(n, P ) .  

Numerical comparisons show that in the case of MLE "censoring has a 
dramatic effect on the possibility of estimating u efficiently. The efficiency of 
the MLE drops to almost zero when u is in the neighborhood of r,." The 
asymptotic relative efficiency of ME relative to MLE is an increasing function 
of r,/u = q. When q = 1, the ARE of the ME is about 62%, whereas at 
q = 3 it is 99%. On the other hand, under censoring, the MLE is consider- 
ably more efficient than the ME when 77 is close to 1. 

7.4 Estimation of Quantiles 

Robertson (1977), in an important paper, develops estimation procedures for 
quantiles of the exponential distribution (19.28) such that mean square errors 
in the predicted distribution function is minimized. For complete random 
samples of size n, a particular quantile, represented as Ku, has estimators of 
the form K*T. The optimal estimator of K u  (with squared error loss) is in 
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fact K,X, where 

Its mean square error is 

For a linear estimator Ey='=,aiXi, the mean square error is 

where u = 1 for convenience, yielding minimizing values 

a .  = 
[expIK/(n + 1)) - 11 

for all i 
2 - exp(K(n + 1)) 

For n < (K/log2) - 1, this estimator will break down, and the optimum 
choice will be KO = w. [Indeed one cannot reasonably expect to estimate the 
99% point (K  = 4.605) using a sample of size 5 [( < (K/log 2) - I).] Compar- 
ison of K,X with KZ (the natural K )  and K 2 X  [chosen to make exp( -K,X) 
an unbiased estimator of em(-Kc+)] has been carried out by Robertson 
(1977). For small n or large K (extreme percentiles) there are considerable 
differences among the three estimators. 

To estimate K u  by means of a single order statistic the estimator is of the 
form K3X:, where the optimal choice for large n turns out to be r = a n  with 
a = 0.79681213 (the positive root of equation ePza = 1 - a )  and 

For large n, K3X: has efficiency approximately 65% [= 4a( l  - a)%] rela- 
tive to K,X,  the optimal estimator based on the complete sample. 

7.5 Bayesian Estimation 

One-Parameter Exponential Distributions 
In Bayesian estimation prior distributions are often assigned to the hazard 
rate ( A  = a-'1 rather than to the expected value (a). We therefore use the 
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If the prior on A is uniform over (0, M), then the posterior density ofA, 
given a random sample X,, X,, . . . , Xn is 

For large M this is approximately a gamma (n + 1, {Cy=lXi}-') distribution 
with pdf 

If this posterior pdf is used as a new prior, and a random sample 
Y,, Y,, . . . , Y, obtained, the new posterior is of the same form as (19.71), with 
n increased to (n + m) and Cy=,Xi increased by Cim_,?. Thus the gamma 
prior is a "natural conjugate" prior for A [see Barlow and Proschan (1979)l. 

Waller et al. (1977) develop an interesting and potentially fruitful ap- 
proach to determination of the parameters of a gamma (a,  p) prior on A in 
the pdf (19.28)", based on values of 

decided upon by a researcher. Extensive tables and graphs are provided 
giving values of a and /3 for selected values A, and p, for which 

Pr[A < A,] = p,. (19.72) 

By overlapping transparencies of graphs for (A,, p,) and (A,, p,), appro- 
priate values of a and p can be determined. If (19.72) is satisfied then A,/p 
is constant for given a. For small values of a ,  Waller et al. (1977) recom- 
mended the approximation A - ppl/". 

For situations where only the first k "failures" are observed, with k 
specified in advance (Type I1 censoring), the MLE of A is 

with T, = C~=,X,' + (n - k)Xi. With a gamma (a, b-') prior on A, we 
arrive at a posterior gamma (a + k,(b + T,)-') distribution of A. Similar 
results are obtained for truncated sampling (Type I censoring), and also for 
inverse binomial sampling (when a failed or truncated unit is replaced). 
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If A - '  (= u )  is ascribed a "uniform7' distribution, the posterior distribu- 
tion for u would have pdf 

which is called the inverted gamma distribution. 
Since an inverted gamma prior on u also results in an inverted gamma 

posterior distribution for a ,  it is a natural conjugate in this situation. This is 
not surprising since, if A has a gamma distribution, u (= A-') has an 
inverted gamma distribution. 

Bayesian estimation of the reliability function 

R(t )  = Pr[X > t ]  = exp - - ( 1) 
has been studied by Sinha and Guttman (1976). Assuming a so-called vague 
Jeffreys's prior density (proportional to u-') on u ,  and using only the first k 
order statistics, they show that the posterior density of R(t) is 

where S, = Tk/t7 which can be regarded as the "cumulative life per unit 
time" up to time t .  The posterior density for u in this situation is 

See also Shoukri (1983) for further discussions. 
VillCn-Altamizano (1990) used a gamma ( p ,  a-') prior for A (= a-'), 

obtaining the posterior density of R(1) = exp(-a-') given the results (y., Z j )  
( j  = 1, . . . , n) from a randomly censored sample of size n with lifetimes {Xi) 
and censoring times {YJ, where 
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and 

in the form 

where W = C;= and I = C;=, Ij. 
The posterior expected value is 

This is the Bayesian estimator (optimal for quadratic loss). The mode of the 
posterior distribution is 

l o  otherwise. 

fio-Parameter Exponential Distributions 
For the two-parameter distribution 

Sinha and Guttman (1976) ascribed a joint prior to 8 and u that is 
proportional to (a > O), and obtained the following results for Type I 
censoring using the first k order statistics in a random sample of size n. The 
posterior expected values (Bayes estimators) of 8 and u are 
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where 
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For the reliability function 

R ( t )  = exp - - ( 
we have 

This estimator was found to be reasonably robust with respect to a.  The 
posterior distribution of R ( t )  is quite complicated [see also Pierce (1973)l. 
Trader (1985) used a truncated normal prior. 

7.6 Miscelianeous 

Maximum probability estimation (MPE) is a method of estimation proposed 
by Weiss and Wolfowitz (1967) [see also Weiss (19891. The essential idea is 
to seek an interval of predetermined length 1, say, that maximizes the integral 
of the likelihood function over the interval. In the case of the two-parameter 
exponential distribution (19.1), the analysis for estimation of 8  takes an 
especially simple form. Given a random sample of size n with values 
X I , .  . . , X,, the likelihood function is 

exp(- z y = ~ ( ~ i  - e ,  
(+ > 0, 8  I min Xi = X ; ,  

L ( X ( 8 ,  a )  = u 

9 > x;. 
( 19.83) 
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Since L = 0 for 8 > X; and L is an increasing function of 8 for 8 I X;, 
the MPE interval of length 1 is 

(whatever the value of a) .  Blyth (1982) followed this analysis by considering 
choice of attractive values for 1, if (Xi - f l )  is used as a point estimator of 8. 
He found that 

1. for minimum mean square error, f l  = n-'a, 
2. for minimum absolute error, fl = n-'a log 2. 

Introducing a quadratic loss function, Arnold (1970), and independently 
Zidek (1973) and Brewster (1974), derived optimal estimators of a for cases 
where 8 is unknown. The MLE of a ,  & = X - Xi, is also the best affine 
equivariant estimator (BAEE) of a. However, the estimator is inadmissible 
for a wide class of loss functions satisfying conditions of differentiability and 
bowl-shapedness. Modified estimators, aimed at reducing this drawback, 
were suggested by the above authors. 

Estimators of the ratio (6 = a2/al) of scale parameters of two distribu- 
tions T,, a2 of form (19.1) with values (5, ( j  = 1,2) for the parameters 
(u, O), respectively, were investigated by Mad1 and Tsui (1990). Suppose that 
there are two independent ordered random sample values 

Xi, I Xi2 5 . . - - < Xin1 from T, 

and 

X;l I X;, s . . - - < X.&,Z from w2. 

With loss function W(S, a*) whence 6* is an estimator of 6, the statistics 

are sufficient for the four parameters a,, a,, el, and 8,. Assuming that 
W(6, S*) = W(S*/S), the BAEE estimator is 
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where co minimizes /,"t " I - ~  ~ ( c t X 1  + nlt/n,)-(nl+"z-2) dt and c, minimizes 
/ F t n l - l ~ ( ~ t X 1  + n,t/n,)-("1+"2-') dt provided that 

1. W is differentiable, 
2. W( y ) is bowl-shaped [i.e., W( y ) decreases with y for y I yo, increases 

for y > yo], attaining its minimum value at y = 1, 
3. if a, = a2 = 1, then 

x1 - x;, [I ( x2 - ) ] is finite for all c > I. E W ' c -  

A "smooth" version of S* can be obtained by replacing the multiplier of 
(XI - xil)/(X2 - Xi,) by a more refined function. The resulting estimator 
has 

Effects of Outliers 
The effects of outliers on the estimation of a in the one-parameter case 
(19.28) has received considerable attention in the literature since the early 
1970s. Among the first studies were those of Kale and Sinha (1971) and Joshi 
(1972). They initially studied situations where n - 1 independent random 
variables each had distribution (19.28), while one further random variable 
(the "outlier") has a pdf of the same form, but with a replaced by a/a. 

For situations where the identity of the outlier is not known (and the 
probability that X, is the outlier is n-' for j = 1,. . . , n), Kale and Sinha 
(1971) suggest consideration of the class of estimators (for u): 

where Tk is defined as in (19.73). Joshi (1972) tabulates optimum values for 
n 

k, minimizing the mean square error. If k = n [with 6" = Xi/(n + I)], we 
have i = l  

MSE(C?~/~) = (n  + 1)-'  + 2(a- '  - ~ ) ~ ( n  + I)-', (19.88) 

where a/a is the mean of the outlier. 
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Generally, the optimum k has to be found numerically. Joshi (1972) found 
that for 0.55 I a 5 1 the optimal value of k is n. Later [Joshi (198811 he 
found that the optimal value of k is fairly stable over wide ranges of values of 
a and suggested, as a rule of thumb, 

Take k = n for 0.5 5 a < 1.0 
Take k = n - 1 for 0.25 5 a < 0.5 
Take k = n - 2 for 0.05 I a 5 0.25. 

Chikkagoudar and Kunchur (1980) suggest the estimator 

Comparison between 6, and V shows that neither estimator dominates the 
other (in terms of mean square error loss). [T, (for optimal k) is superior for 
values of a near 0 or 1.1 Balakrishnan and Barnett (1994) have recently 
proposed some generalized estimators of this form and discussed their 
properties. 

From (1991) has studied robust estimators that are general linear func- 
tions of order statistics, aiming to obtain optimal (or near-optimal) values for 
the coefficients ci in C~,lciX;, for various values of a and n. Optimal choice 
calls for rather complicated calculations, so From advocates use of simplified 
estimators with very nearly optimal mean square error, which is always less 
than those of 6, and V. This estimator uses 

with d l  > d2 and appropriate integer m. Tables are provided giving optimal 
values of (dl, d,, rn) for n = 2(1)15(5)30(10)50 and a = 0.05, 0.15. 

If the value of a is known, Joshi (1972) suggests using the estimator 

He also suggests estimating a (if it is unknown) by an iterative procedure, 
solving the equation 

to estimate a ,  and then using optimal k to get a new estimator 6,, of a, and 
so on; see also Jevanand and Nair (1993). 

Through a systematic study of order statistics from independent and 
non-identically distributed exponential random variables, Balakrishnan (1994) 
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has established several recurrence relations for the single and the product 
moments of order statistics. These results will enable the computation of all 
the single and product moments of order statistics arising from a sample 
containing p outliers (recursively in p by starting with p = 0 or the i.i.d. 
case). Through this recursive computational process, Balakrishnan (1994) has 
extended the work of Joshi (1972) to the p-outlier case and determined the 
optimal trimmed and Winsorized estimators. The robustness properties of 
various linear estimators, including the Chikkagoudar-Kunchur estimator in 
(19.89), have also been examined by Balakrishnan (1994). 

Veale (1981) has investigated cases where the identity of the outlier is 
known. This of course leads to much simpler analysis. 

Returning to uncontaminated (no-outliers) data, the estimation of a in 
the standard (one-parameter) case (19.28), subject to the condition that a is 
no less than a,, was studied by Gupta and Basu (1980). [Related cases 
u < a,, or a in (a,, a ,)  can be analyzed similarly by using appropriate 
transformations.] 

Natural estimators of a (given u > a,) are 

6 = max(3, a,) (the MLE) (19.92) 

Numerical studies show that the mean square error (MSE) of a *  is less than 
that of 6 for small n, when u,/u is small. Indeed, even for n = 30, a *  has 
the smaller MSE if u,/u I 0.3. 

Estimation of the probability P = Pr[Y < XI, where X and Y are inde- 
pendent exponential variables, has received prominent attention in the 
literature. The common interpretations of this probability is a measure of the 
reliability or performance of an item of strength Y subject to a stress X, or 
probability that one component fails prior to another component of some 
device. 

Tong (1974, 1975) obtained the uniformly minimum variance unbiased 
estimator (UMVUE) of P when X and Y are independent one-parameter 
exponential (19.28) variables. Kelley, Kelley, and Schucany (1976) derived the 
variance of the UMVUE of P. Beg (1980) obtained the UMVUE of P when 
X and Y have two-parameter exponential (19.1) distributions with unequal 
scale and location parameters. Gupta and Gupta (1988) obtained the MLE, 
the UMVUE, and a Bayesian estimator of P when the location parameters 
are unequal but there is a common scale parameter. Bartoszewicz (1977) 
tackled the problem in the exponential case for different types of censoring. 
Reiser, Faraggi, and Guttman (1993) discuss the choice of sample sizes for 
the experiments dealing with inference on Pr[Y < X) in an acceptance 
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sampling theory framework with exponential variables. Most recently Bai and 
Hong (1992) revisited the problem, obtaining the U M W E  of P with 
unequal sample sizes when X and Y are independent two-parameter expo- 
nential random variables with an unknown common location parameter. 
Kocherlakota and Balakrishnan (1986) have discussed one-sided as well as 
two-sided acceptance sampling plans based on Type-I1 censored samples. 

If X and Y are independent one-parameter exponential (19.28) random 
variables with hazard rates (u-') A and p,  respectively, then 

Given two independent random samples X,, . . . , X,,, and Y,, . . . , Yn, the 
MVUE of P is 

[Tong (1974)l where a(b) = a(a - 1) . . - ( a  - b + I ) ,  atbl = a(a + 1 )  - . 
(a + b - 1).  

If p is known so that there is no need to sample for Y values, the MVUE 
is 

m - l  
P** = ( -  l ) ' (m - l ) " ' ( m p ~ ) - '  

If there is Type I1 censoring, with only the first g order statistics Xi,. . . , Xi 
of X and the first h order statistics Y,', . . . , Y,' of Y being available, the 
UMVUE of P is 

where G = Cig,,lXj' + ( m  - g)XL, H = C;=ly + (n - h)YL. For g = m and 
h = n, (19.97) reduces to (19.95). If each failed item is replaced immediately 
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by a new item having the same lifetime distribution, the UMVUE of P is 
obtained from (19.97) by replacing G by mXi and H by nY,'. 

The maximum likelihood estimator of P (given complete sample values) is 

If rn = n the MLE is unbiased ( E [ P ^ ]  = p(A + p)-I), and hence it is also the 
UMVUE of P, as noted by Chious and Cohen (1984). Expressions for the 
UMVUE of P for the general case of two-parameter exponential random 
variables are complex, even in the case of common (unknown) location 
parameter. 

However, the MLE of P is given by 

where T = min(X,Y) = min(X;, Y;) is the maximum likelihood estimator of 
the common location parameter. As m, n -, m, with rn/n -, y, asymptoti- 
cally 

where u2 = p2(1 - P),Iy(l - y)) and the ? and the UMVUE are asymptot- 
ically equivalent in this case. 

In view of (19.94), the problem of choice of sample sizes for estimating P 
with specified accuracy is equivalent to the solution to the sample size 
problem provided by Reiser, Faraggi, and Guttman (1993) for the ratio of 
two exponential scale parameters. Given PI, a ,  P2, p with 0 < P2 < P, < 0, 
0 < a < 1, 0 < p < 1, it is required to find an acceptance rule of the form 
P > PC, with rn and n such that (1) if P = PI, the probability of acceptance is 
1 - a, and (2) if P = P2, the probability of acceptance is p. In this case rn 
and n must satisfy 

where F,,,,,;, is the a percentage point of the F,,,,, distribution. 
When a random sample of size n has been censored by omission of the 

greatest n - k observed values, it may be of interest to estimate (predict) the 
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value of a specific one of the omitted values X;, say ( r  > k). Lawless (1971) 
used the pivotal variable 

x; - xi 
G, = [T,  as defined in (19.73)] (19.102) 

Tk 

to obtain the upper 100(1 - a)% prediction limit (UPL), 

where Pr[Gl s g,, , -,I = 1 - a. The cdf of GI  is 

Lingappaiah (1973) suggested using 

in place of GI, noting that these would lead to simpler calculations and that 
XA contains "all the prior information" about X:. However, Kaminsky (1977) 
pointed out that this is only true if a is known. He also noted that the 
probability that the UPL based on GI exceeds that based on G, is close to 
(but below) 0.5 in a number of representative cases. Furthermore he showed 
that the asymptotic probability (as n + 03) that the length of predictor 
interval based on G, exceeds that based on G, is zero. 

For the two-parameter distribution (19.1) similar procedures can be fol- 
lowed, noting that the variables Xi' - Xi are distributed as order statistics 
from a random sample of size n - 1 from the distribution (19.28). Likeg 
(1974) extends Lawless's (1971) treatment to this case, using the statistic 

with TL = Cik,,~; + (n - k)Xi - (n - 1)Xf. Tables of quantiles of G; were 
' constructed by Likes and NedtSlka (1973). Further results on these lines were 
/ obtained by Lawless (19771, and later incorporated in his important textbook, 
i 
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Lawless (1982). Prediction intervals under "hybrid censoring"-termination 
when either k "failures" have occurred, or at a fixed time T, whichever 
comes first-have been studied by Ebrahimi (1992). 

Sometimes, it is desired to "predict" statistics based on a future random 
sample from the same exponential population. If all observed values in the 
original sample (XI I . I XA,) are available the (minimum variance 
unbiased) estimator of the sth order statistic (c) in a future sample of size 
n, is in fact the best linear unbiased estimator. 

A predicted interval for the range of a future sample has been constructed 
by Colangelo and Pate1 (1992), using the cdf of the ratio (W2/W1) of ranges 
of independent random samples of sizes n, and n,. We have 

The authors provide tables of value K, such that Pr[(W,/W,) I K,] = y for 
n,, n, = 5(5)25 and y = 0.005, 0.001, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, 
0.99,0.995. From these tables 100(1 - a, - a,)% prediction intervals 
( KaIW, K, -a2W) can be constructed. 

Evans and Nigm (1980) [see also Dunsmore (197411 use Bayesian methods 
to obtain a predicted interval for Xi, based on a Type I censored data 
(Xi,.  . . , XL) (k < s). They point out that with the Bayesian approach it is 
easy to take into account prior information on the value of 8 [in (19.1)] such 
as 8 > 0. 

Dunsmore's (1974) result, which does not allow for the condition 8 > 0, 
may serve as a reasonably good approximation even when the true underlying 
distribution is the left-truncated exponential, since in typical life-testing 
situations the amount of probability given to negative X's using Dunsmore's 
approach is small. Dunsmore7s (1974) results, which do not impose positivity 
constraint, can be used as starting values in an iterative solution and in many 
cases may provide an adequate approximation. 

8 CHARACTERIZATIONS 

In the preparation of this section, some 200 works published on this subject 
during the last 35 years [from Fisz (1958) onward] have been studied. These 
include three monographs-Galambos and Kotz (1978), Azlarov and Volodin 
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(1986) and Kakosyan, Klebanov, and Melamed (1984)-and the survey of 
Kotz (1974). The stream of publications shows no signs of drying up. We are 
highly impressed by the ingenuity displayed in much of the work on this 
topic, though we must admit to having some doubts on adequate justification 
for publishing some of it. It is of course impossible to mention all the 
published results, and the inevitable choices presented considerable difficul- 
ties. We would like to make it clear that lack of citation of a result is not 
necessarily indicative of assessment of lesser value, on our part, and certainly 
not in any objective sense. 

The main criteria for inclusion were chronological novelty (post 1978) and 
evidence of development of the four basic types of characterization delin- 
eated in the Galambos and Kotz (1978) monograph. We believe the latter is 
the clearest (most "transparent") available system of classification, enabling 
us to distinguish, in many cases, among overlapping, albeit independent, 
results. Our sincere apologies go to researchers whose names are not men- 
tioned or whose contributions are included only in part. 

We have also attempted to include new types of characterizations, devel- 
oped since 1978, although, in our opinion, these constitute only a minority in 
the flood of recently published results. For readers' convenience we produce 
here-with minor modifications-the four distinct types of characterizations 
presented in Galambos and Kotz (19781, ignoring some mathematical niceties. 
See Table 19.1. 

Table 19.1 A Dictionary of Characterizations of the Exponential Distribution 

Mathematical Properties Statistical Interpretation 

I. F(xl + x2) = F(xI)F(x2) for xl, x2 > O Lack of memory property 
11. F(m) = {F(x)p for n 2 1, x 2 0 nX; L X (characterization 

in terms of the minimum 
value in random sample 
of size n) 

III. ~ m ~ ( x ) d x = F ( z ) f o r r ~ ~  

and successive iterations 
of this integral equation 

IV. p (x )  = cF(x) for x 2 O 

Characterizations in terms of 

truncated distributions, the 
constancy of conditional 
expectations, conditional 
variances, and conditional 
higher moments 

Constancy of the hazard rate 

Remark 
In a substantial number of papers, characterizations in terms of indepen- 
dence of order statistics and some other relations between them are directly 
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reduced to property I in Table 19.1 via the property 

(?(y) ) is independent of x for all n 2 1, u r 0. 

The underlying tool (in many cases) is the logarithmic version of the cele- 
brated Cauchy functional equation 

1 

or its more abstract equivalent, the Choquet-Deny equation. This is espe- i 
cially true in type I characterizations. I 

The major part of the edifice of characterizations of exponential distribu- 
tions is rooted, in the final analysis, in this equation, or in its integral form, 
although very often in a hardly recognizable guise. Once again we note that 
what follows is a condensed account of a selective catalog of characteriza- 
tions, motivated by two (occasionally conflicting) aims-emphasizing the 
more recent results and assessing the (potential) applicability of these results 
in practical situations. 

There are quite severe restraints on size, since this is just one section of a 
volume containing ten chapters. We have also kept in mind the aim of 
reflecting, and reporting objectively on, the "state of the art" in statistical 
distribution theory in the last decade of the twentieth century. The results 
are presented, more or less, in chronological order, and we have tried to hint 
at mathematical tools used in their derivation. The close relationship be- 
tween exponential and Poisson distributions is glossed over in this section. 
Some relevant characterizations are sited in Chapter 4 (on Poisson distribu- 
tions), and other results relating to exponential distributions appear in 
Chapter 6 (on negative binomial, including geometric, distributions). 

8.1 Characterizations Based on Lack of Memory 
and on Distributions of Order Statistics 

The lack of memory property is identical with the constancy of hazard rate 
property (group IV) provided that the existence of a density [absolute 
continuity of F,(x)l is assumed, so we will not treat the latter separately. We 
will, however, include in this subsection characterizations based on distribu- 
tions of order statistics. We now consider extensions of the simple lack of 
memory property as characterizations of exponential distributions. 
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We first discuss conditions in terms of releuation functions. The earliest 
concept of this kind introduced by Krakowski (1973) in order to represent the 
distribution of the time T to failure of the second component in a system, 
where each item is replaced on failure by an item of the same age. If the 
lifetime cdf of each item is Fx(x), with Fx(0) = 0, and the density px(x) = 

Fi(x)  exists, the relevation cdf is 

The similarity is apparent to the cdf of the convolution of two X's (corre- 
sponding to replacement by a new item), which is 

The two cdfs are in fact identical if Fx(x) is of form (19.28). Under certain 
mild assumptions on Fx(x), the converse is also true. 

In fact, if (19.109) and (19.110) are identical, or equivalently if 

then provided that Fx(x) is absolutely continuous Fx(x) = 1 - e-X/" .  
For the case where the replacement item has lifetimes X, with a cdf 

Fxfx) differing from Fxl(x), Grosswald, Kotz, and Johnson (1980) and 
Westcott (1981), among others, extend (19.111) to 

If Fx$x) is continuous and F,l(x) is absolutely continuous, then F ~ ~ ( X )  0- 

1 - ePX/"  whatever Fxl(x) may be. Rao and Shanbhag (1986) show that this 
result holds even under less stringent conditions than continuity of Fx$x). 

Ahsanullah (1976, 1977, 1978a, b) considers the following equation: 

This can be regarded as an "integrated" lack of memory condition. It is 
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clearly satisfied for exponential distributions of type (19.28) since Fx(x) = 
e-"/- results in Fx(x + z)/Fx(x) = e-"/" = Fx(z). Conditions under which 
the converse also holds are more difficult to establish than those sufficing for 
(19.111) and (19.112). Grosswald and Kotz (1981), and also Shimizu (1978), 
found that satisfaction of the condition 

is sufficient. Further refinements were obtained by Yanushkyavichyus (1989). 
A theorem of Lau and Rao (1982, 1984) reveals that integrated lack of 

memory properties generally lead to solutions of type 

where 

g ( x  + w) = g ( x )  for some w. 

[This generally does reduce to e-" provided the support of w is not a 
. lattice.] 

In this subsection it will be convenient, in our study of characterizations 
using order statistics, to denote the rth order statistic in a random sample of 
size n by the symbol X::, because we will need to refer to different sample 
sizes in the same equation. Puri and Rubin (1970) showed that the condition 

which is equivalent to 

characterizes a (nonlattice) exponential distribution. Ahsanullah (1976) 
claimed that the conditions 

characterize exponential distribution (provided the distribution is absolutely 
continuous). [Gather (1989) points out that Ahsanullah's proof involves the 
assumption that F(x + u)/{F(u)F(x)) - 1 has the same sign (always posi- 
tive or always negative) for all u > 0 and any fixed x > 0.1 
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Another result of Ahsanullah's (1977bthat 

d 
( n  - ) ( X +  - X )  = X for some i and n (19.117) 

characterizes an exponential distribution-is effectively based on the func- 
tional equation 

In fact property I1 of Table 19.2 can be derived from I. Since 

and generally 

by taking s, = s, = . s, = x, we have 

We therefore do not assign a separate subsection to property 11, and proceed 
to property 111. 

Recently, Liang and Balakrishnan (1992) proved a characterization result 
for exponential distributions with possibly different scale parameters. Their 
result is as follows: "Let X,, X,, . . . , X, be mutually independent nonnega- 
tive random variables having absolutely continuous distribution functions 
Fi(x) over its support [0, m) and the corresponding density function pi(x) > 0 
for x > 0. Let A denote the event that Xi - Xi+, > 0 for all i = 1,2,. . . , 
n - 1. Then, conditional on the event A, Xi - Xi+, and Xi+, are indepen- 
dent for all i = 1,2,. . . , k if and only if Xi (i = 1,2,. . . , k)  are exponentially 
distributed random variables (possibly with different scale parameters), where 
1 5 k s n - 1." 

A similar characterization of geometric distributions has also been estab- 
lished by Liang and Balakrishnan (1993). Fosam and Shanbhag (1994) have 
shown that these characterization results can be proved through Lau and 
Rao's (1982, 1984) theorem mentioned above under weaker assumptions. 
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8.2 Characterizations Based on Conditional Expectation (Regression) 

If X is a nonnegative random variable, and h(z) is a real-valued measurable 
function for z > 0, such that the expected value of Jh(X)I is finite, we have 
the following characterizations based on the condition 

for all nonnegative values of y. If h(z) is linear, the corresponding condition 

characterizes the exponential distributions [Shanbhag (1970); Dallas (1973)l. 
With h(z) a polynomial in z the same result was derived by Sahobov and 

Geshev (1974). An even more general result was obtained by Klebanov 
(1980). His characterization of exponential distributions is set out formally 
below. 

The cdf FX(x) is of form (19.28) if and only if for some absolutely 
continuous h(z) and for some value of u, 

h'(z)exp(-uz) for z 2 0, 
for z < 0, 

is integrable in Lebesgue measure, and also 

1. lim, ,,{&(x)exp(ax)) = 0, 

We have the following characterizations as corollaries: 

1. E[e-XIX 2 y] = e-yE[X] for all y r 0. 
2. E[exp{- i ( X  - Y)~}IX 2 y] = E[exp(- ;x2)] for all y 2 0. 
3. E[(X - y)"lX 2 y] = E[Xa] for all y 2 0 and for 0 < a s 4 provided 

that lim,,,esX{l - Fx(x)) = 0 for some 6 > 0. 

Introducing the further condition on FX(x) [in addition to Fx(0) = 0] that 
E[x21  is finite, we have 

which characterizes distribution (19.28), as does 

E[(X - y ) 2 1 ~  > y ]  = c for all Y 2 0. (19.124) 

[Azlarov, Dzamirzaev, and Sultanova (1972); Laurent (197411. 
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Dallas (1979) showed that if Fx(0) = 0 and E[Xr] is finite for some 
positive integer r, then 

E[(X - y ) r l ~  > y ]  = c for all Y a 0 (19.125) 

characterizes (19.28). Nagaraja's (1975) characterization avoids introducing 
constancy of conditional expectation directly. The condition is 

The condition 

where h(-)  is strictly increasing and differentiable characterizes 

F , ( x )  = 1 - exp ( -- h r ) ) ,  

as does the condition 

Kotlarski (1972) obtained a generalization of this case. 
Characterizations due to Guerrieri (1963, Reinhardt (1968), Hoang (1968), 

Shanbhag (1970), Obretenov (1970), Azlarov, Dzamirzaev, and Sultanova 
(1972), Laurent (1974), Vartak (1974), Dallas (19741, Deryagin and Polesit- 
skaya (1975), and Gupta (1975) are all equivalent to, or included in Sahobov 
and Geshev's (1974) result (see the following paragraph). 

As an indication of the mathematical tools employed in Sahobov and 
Geshev's (1974) work, note that their equation [see also Dallas (197411 

for all y a 0 and some integer r > 0 is mathematically equivalent to the 
functional equation 

which leads to an equation of form 
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1 

The general solution of this equation is 1 
1 

where an > 0 and the zi's are (possibly) complex numbers. 
The conditions that F ( y )  is bounded, nonincreasing, and nonnegative 

ensure that ci = 0 for i = 1,. . . , n - 1 SO that 

-that is, it is the survivor function of an exponential distribution. Similarly 
the condition Var(X - y lX 2 y) = c for all y 2 0 is equivalent to 

leading to 

where $( y) = j,"(x - y h, and I,+"( y  ) = F( 1. Solutions of (19.132) 
are 

1. $(Y) = co exp(f f i /K),  
2. +( y) = quadratic function of y. 

However only #(y) = ~,b, em(- f i / K )  satisfies the boundary conditions. 
Wang and Srivastava (1980) obtained a characterization in terms of order 

statistics. If X has a continuous cdf and has finite expected value, then 

characterizes a exponential distribution. Mukherjee and Roy (1986) noted 
that since 

E[(n - k)- '  ( X  X n n  = y = E [ X  - y l ~  > y], 
i = k + l  1 
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this result is equivalent to the results of Reinhardt (1968) and Shanbhag (1970). 
They also showed that the exponential distribution is characterized by con- 
stancy of the conditional coefficient of variation of (n - k ) - l C ~ = k + l ( ~ ~ , n  - 
XL:J, givenXL:,. 

In a later paper Roy and Mukherjee (1991) show that among distributions 
with finite variance and monotone E[Cy,2(Xjl:n - Xi :,)IX; :, = X I  = r(x), 
the condition Cov(Xi : ,, Cy,2(Xjl: , - Xi : n)) = 0 characterizes exponential 
(19.1) distributions [see also Swanepoel (199111. Kotz and Shanbhag (1980) 
pointed out that any distribution with Fx(0) = 0-as is typical for lifetime 
distributions-is uniquely determined by its mean residual life function 
E[X - ulX > ul, and many of the results cited above can be derived from 
this fact. 

The following example of a stable characterization is appealing. Van Beek 
and Braat (1973) showed that if E[XI = 1 and the residual lifetime at a 
randomly chosen "age" is distributed as X/q, then if q = 1, 

while if 0 < q < 1, 

for any periodic measure v of period 1. [It is straightforward to allow for 
E[X] # 1.1 

All distributions of the above class have the same moments 

Although the moments do not determine ("characterize") the distributions, 
Vardi, Shepp, and Logan (1981) have shown that they differ little unless q is 
very small. In fact for q > e-2" = 0.001867, the maximum absolute differ- 
ence between the cdfs of any two distributions in the class is less than' 

where a = -log q. 
Vardi, Shepp, and Logan (1981) note that for q > 0.8, the absolute 

difference cannot exceed lo-''. This may be regarded as a remarkable 
example of "stability" in a characterization. Vardi and his coworkers also 
showed that it is not possible to have q > 1. 
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Suppose Xi, i = 1,2,3, are i.i.d., nonnegative continuous random variables 
that are square-integrable such that E[Xi] = Var(Xi) = 1 for i = 1,2,3. Let 

1 1 1 1 
U = -X2 - -XI and W =  -X3 - -XI. 

b a b a 

Then, Pusz (1993) has proved that Xi's are exponentially distributed if and 
only if 

a 
i f W r O  

( a  + b)b 

("+a 

( a  + b12 + b2 E[U(W] = and Var(UIW) = 

i f W > O  ( a  + b)'b2 
( a  + b)b 

8.3 Record Values 

Characterization based on record values has been a fashionable topic during 
the last 15 years. A record value in a sequence XI, X2, . . . is defined as any 
Xj that is greater than the preceding values (XI, . . . , Xi- ,). [Lower record 
values (e.g., time to run 100 m.) may similarly be defined as any Xi that is 
smaller than the preceding values (XI, . . . , Xi - , ).I 

The record times are the values of j for which Xj is a record value. In 
terms of order statistics (Xi:, I Xi:, I . . . I XA:,), if the uth record time 
is n(,,, then 

and the uth record value is 

The starting point of much research in this field was Tata's (1969) 
theorem, which states that if Fx(x) is absolutely continuous, it is an exponen- 
tial cdf if and only if R(,) and R(,, - R(,, are mutually independent. 
[Galambos and Kotz (1978) provide a detailed discussion.] A flood of general- 
izations, extensions, and variants followed the original work. These are well 
summarized in Deheuvels (1984). 

8.4 Miscellaneous 

Another line of development started from results obtained by Ferguson 
(1964) and Crawford (1966), stating that quite generally if Xi:, and 
Xi:, - X; :, are mutually independent, then either Fx(x) is a geometric cdf 
(see Chapter 5) or 
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An independent flood of generalizations followed, the most notable being 
due to Rossberg (1972a, b). Among his results, we quote the following: 

1. If &- (XI  is neither degenerate nor a lattice distribution, the condition 

characterizes distributions of form (19.28). 
2. If F(x) and G(x) are cdfs, such that lim,, ,+F(x) = 0 and 

lim,,,+G(x) = 1, F(x) not being a lattice distribution, then the 
condition 

cuF(x) + PG(x)  = F ( x )  * G(x)  (19.136) 

[the convolution of independent variables with cdfs F(x), G(x), respec- 
tively] is equivalent to F(x) being of form (19.28) and G(x) being the 
cdf of the negative of a variable of the same form (19.28), with the ratio 
of the parameters (cr,/u,) being P/a. 

8.5 Stability 

The "stability" of certain characterizations of the exponential distr- 
ibution-namely the closeness of a distribution to an exponential distribution 
consequent upon near (but not exact) satisfaction of a characterization 
condition-has been studied by Shimizu (1980, 1981). He showed, among 
other things, that if XI,.  . . , X,, are i.i.d. with survival function F(x), and 

~r[min(a,X,,  . . . , a,X,) < x] = [I - ~ ( x ) ] F ( x )  (19.137) 
n 

for 0 I x I x, with x, > 0, a j  > 0, a j l  < r*, where 
j =  1 

then 
I 

e-X/u(l + &,5x2), 
4 

P/x) = 
o l x l l ,  

-"'g{l + Qf;t- exp(Qx)/, I t x  t x , ,  
(13'23fl 

 here lim,,,+IF(x)/x) = cr-', E ,  = 2.41 - a)-1, 4 = 2(& + ~ ) ( 1  - a)-', 
and a- ' = max(a; ', . . . , a, I). [See also Y anushkyevichene (1983).1 

Fmm B~~xA&ey/2ene /9B) ad  Ym~~b&~y/c%lps 098%) we hm 
another stability theorem: If Fx(x) is continuous and stn'ct/u monotone over 
+ha IIlmai~ 0 <F[(J) < 1 and has a finite first moment, and if for some 

-~+daM~>Lmg~tagty such that for F-almost a11 > 
- 
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then for all x r 0, 

where A*, A, and C depend only on y and n - j. 
The following result gives stability theorem for record value characteriza- 

tions. Let { R j }  be record values of a sequence of i.i.d. nonnegative random 
variables with a continuous distribution function F(x), possessing a finite 
first moment and also strictly monotonic over 0 < F(x) < 1. If for some fixed 
j there exists a positive constant y such that for all x 2 0, 

then 

where A = y- '  - 6 > 0, 6 a fixed positive constant, and C and A, depend 
only on y and 6. 

Before leaving the topic of characterizations we note the following simple 
transformations [for distribution (19.2)l that relate the exponential distribu- 
tion to other commonly employed distributions. 

Transformation F,( y) = 1 - F,( y) Distribution 
Y = log X exp(-ey) Extreme value (Chapter 22) 
Y = exp(X/r) ( 1 1 ~ ) ~  ( Y  2 1) Pareto (Chapter 20) 
y =  1 - e - X  1 - y (0 I y I 1) Uniform (Chapter 26) 
Y = x"' (c > 0) exp( - y ') ( y > 0) Weibull (Chapter 21) 

Characterizations of these distributions can be used (with appropriate trans- 
formation) to characterize exponential distributions, and conversely. 

9 MIXTURES OF EXPONENTIAL DISTRIBUTIONS 

Mixtures of exponential distributions have important life-testing applications. 
A batch of electronic tubes may consist of two subpopulations, with each 
subpopulation having its own characteristic mean life and the two subpopula- 
tions being in proportions w ,  and o, = 1 - o,. (Each unit of the population 
may be regarded as if it contains a "tag" that indicates the subpopulation to 
which it belongs and hence defines the way in which that particular item will 
fail.) Finally, the failure times for the ith subpopulation are assumed to be 
independently distributed with probability density function (19.28) with u = ui 
(i = 1,2). 
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If w, is the proportion of units belonging to subpopulation i = 1, then the 
cumulative distribution function of T, the time to failure, is 

and the density function is 

This distribution has also been applied (under the name Schuhl distribution) 
to the distances between elements in traffic [Petigny (1966)l. Mixtures of 
exponential distributions have been found to represent some demographic 
distributions [Susarla and Pathala (1965)l. 

Gumbel (1939) gave a method for fitting a mixture of two exponential 
distributions, using the first two sample moments. Cases where a has a 
continuous distribution have been studied by Bhattacharya and Holla (1965) 
and Bhattacharya (1966). In the latter paper it is shown that if a has an 
exponential distribution (with parameters 0, P)  the probability density func- 
tion of T is 2/?-'K,(2(t/~)'/~) (0 < t), where KO(.) is a modified Bessel 
function of the third kind of zero order (see Chapter 1, Section A12). If a 
has a beta distribution (Chapter 25) over the range (0,O) the probability 
density function can be expressed in terms of a Whittaker function. In the 
earlier paper the special case where a has a uniform distribution is consid- 
ered. 

We now consider methods of estimating the parameters w,, a,, and a, in 
(19.139a) and (19.139b). 

Case A: Relative Magnitude of Subpopulation Parameters Not Known 
Mendenhall and Hader (1958) derived the following equations for the maxi- 
mum likelihood estimators, expressed in terms of 

where 
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and 

A 

k = 

EXPONENTIAL DISTRIBUTIONS 

Here 

n = the number of units on test, 
to = the time at which test is terminated, 
R = the total number of failures during test, 
R, = the number of failures from subpopulation 1, 
R, = the number of failures from subpopulation 2 (note that R, + R2 = 

R ), 
Xi, = T,,/to, T,, being the time at which the jth failure from the ith 

population occurs, 
6 is the estimator of pi = q/ to  (i = 1,2). 

The estimators of P,, P,, and w ,  must be obtained by solving the simultane- 
ous equations (19.140). A method of solving these approximately was given by 
Mendenhall and Hader (1958). 

Case B: Relative Magnitude of Subpopulation Parameters Known E 

In the special case p, = p, = /3 the maximum likelihood estimators become 

In general, we have to use the method in case A to obtain estimators, but if 
we have crossover, that is, 

bl > b2 while P1 I P2 

fil < b2 while P, 2 P,, 

we use case B estimators corresponding to the special case P, = P2 = P.  
Rider (1961) used the "method of moments" to obtain rather involved 

estimators of mixture exponential parameters. Proschan (1963) also discussed 
the problem of mixture of several exponential distributions and derived some 
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interesting results concerning the resulting mixed population. For the case of 
mixture distributions with pdf 

(the number of "outliers" in the sample not being specified), Willemain et al. 
(1992) carried out extensive Monte Carlo comparisons of seven estimators of 
a, using the relative closeness (difference of absolute values of errors of 
estimation) as a criterion. More details on mixtures of exponential distribu- 
tions can be found in books by Everitt and Hand (1981) and Titterington, 
Smith, and Makov (1985). 

Mixed distributions with 

can arise in clinical trial situations where there is a probability w of 
immediate failure but survivors have a lifetime distribution as in (19.28). 
Kleyle and Dahiya (1975) have considered estimation of the parameters w 
and a. 

McClean (1986) studied estimation for the mixed exponential distribution 
where the failure time data is grouped. The problem originated from the data 
of job status of university graduates in the Northern Ireland collected 
quarterly for various grades over 5 $  year period on whether or not they were 
still in service. Bartholomew (1982) has shown that a mixed exponential 
distribution provides a good fit to these data. 

Mixtures of generalized exponential distributions have also found applica- 
tion in "mine dust" analysis [Tallis and Light (1968)l. In particular, a problem 
that arises is that of estimating the parameters a ,  p, and y of the distribution 
with density function 

whereA, B, and a are known constants. 
The method of maximum likelihood is often regarded as the standard 

method of estimating parameters. In this case, however, we would obtain 
rather complicated equations, and methods using half-moment equations 
have been developed [Joffe (1964)l. Half-moment equations are less compli- 
cated. Although they must be solved iteratively, they can be handled on a 
pocket calculator. The three half-moment equations are 
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L '- 

mi = - ( n  is the number of elements) 
n  i - 1  

and 

Use may be made of the recurrence relationship 

One can express 8 as a function of ai and q, and the three half-moments 
as follows: 

where 

9 may be written as a function of &, and the three half-moments as 

where 

A solution of these equations can be obtained iteratively by choosing a value 
of & and consequent values and 7 from (19.143a) and (19.143b). 
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Considerable work has also been done on the generalized mixed exponen- 
tial form (often denoted by GH) in the last decade; for example, see Botta 
and Harris (1986), Botta, Marchal, and Harris (1987), Harris and Sykes 
(1987), Harris and Botta (1988), and Harris, Marchal, and Botta (1992). 
These generalized mixed exponential forms are linear but not necessarily 
convex combinations of negative exponential distribution functions (unlike 
the mixture form). The cumulative distribution function is given by 

with 8, > 0, Cf=,pi = 1, -oo < p i  < m, and 8, < 8, < - . -  < 8, (without 
loss of any generality). Botta and Harris (1986) showed that the above class is 
dense in the set of all distribution functions relative to an appropriate metric. 
Harris, Marchal, and Botta (1992) have recently reviewed the relationship of 
these generalized hyperexponential distributions to other types of distribu- 
tion functions in the Coxian family, particularly the phase types. Interest- 
ingly, by assuming the claim amount distribution to be of the generalized 
hyperexponential form given above, Gerber, Goovaerts, and Kaas (1987) have 
considered the probability and the severity of ruin in terms of the usual 
model of the collective risk theory in insurance. 

10 RELATED DISTRIBUTIONS 

There are many important distributions closely related to the exponential 
distribution. (See also the end of Section 8.) 

If a variable X (> 8) is such that Y = ( X  - 8)" has the exponential 
distribution (19.281, then X is said to have a Weibull distribution with shape 
parameter c. It is necessary that c be greater than - 1, for otherwise the 
integral of 

between x = 8 and x = 8' > 8 will be infinite. (See Chapter 21 for a detailed 
discussion of this distribution.) If c and 8 are known (and often 8 is known to 
be zero) the transformed variable Y = ( X  - 8)" may be used, and the 
well-developed techniques associated with the exponential distribution be- 
come applicable. If c is not known, special techniques are needed; these 
techniques are discussed in Chapter 21. 

If Y = e-X has an exponential distribution of form (19.28), then X has a 
distribution of extreme value form (Chapter 22). 



Another distribution of theoretical, and some practical, importance is the 
double (or bilateral) exponential distribution. This is the distribution of a 
random variable X with probability density function 

It is also known as Laplace's Jirst law of error. (Laplace's second law of error 
is the normal distribution.) The exponential distribution might be regarded as 
a double exponential "folded" about x = 8. The double exponential distribu- 
tion is the subject of Chapter 24. 

The fact that the exponential distribution belongs to the class of gamma 
distributions has been mentioned in Section 1. Taking 8 = 0 and u = 2 in 
(19.0, we obtain the distribution of X 2  with two degrees of freedom. From 
this it can be seen that if XI, X,, . . . , X, are independent random variables 
each with probability density function (19.1), then their arithmetic mean is 
distributed as 8 + $n-'u x (x2 with 2n degrees of freedom). We further I 

note that if the quadratic form Z2,=,aijQU, in independent unit normal 1 
variables U,, U,, . . . , Un has a matrix A with eigenvalues A,, A,, . . . , An, then 1 
applying an appropriate linear transformation of the U's, 

n n 

C aZjqU, = C A,u,*,, (19.146) 
i, j = 1  j- 1 

where UF, U,*, . . . , U,* are independent unit normal variables. If the nonzero 
A's are equal in pairs, then C ~ , , A ~ U , * ~  can be expressed as a linear function 
of independent variables each distributed as X 2  with two degrees of freedom, 
and so exponentially. The distribution theory of such a variable is much 
simpler than that of a general quadratic form in normal variables. 

In fact, if X,, . . . , X, are independent standard exponential variables, 
then the linear form 

n 

Y = hjXj, A j  # A,, 
j=l 

has the probability density function 

This is a special type of mixture of exponential distributions and called the 
general gamma or the general Erlang distribution. It is used in queueing 
theory, reliability theory, and psychology. Some special patterns of A's have 
been discussed by Likes (1967, 1968), McGill and Gibbon (1965), and others. 
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Kaminsky, Luks, and Nelson (1984) derived a recursive formula that is 
easily programmable for the evaluation of the distribution function of ratios 
of linear combinations of independent exponential random variables. The 
result is based on a generalization of the lack of memory property for the 
exponential distribution. 

Let a = (a,, . . . , a,)', b = (b,, . . . , b,,Y be vectors ofpositive constants, and 
let X = (XI, X2, . . . , XmY, Y = (Y,, Y2, . . . , Y,Y be independent vectors of 
independent exponential random variables, each with density p,(x) = ewX, 
x > 0. For any vector U = (Ul, . . . , U,Y, let U* = (U2, . . . , U,Y. Then the 
functions G,,,: ((R+Irn x (R+In) [O, 11 given by 

satisfy 

with boundary conditions, 

The relationship between the exponential and rectangular distributions is 
discussed in more detail in Chapter 26. Here we note only the following 
property: If XI, X2,.  . . , X,, each have probability density function (19.28), 
then Y;. = C{=,Xi/[C~= ,Xi] for j = 1, .  . . , (n - 1) are distributed as the 
order statistics of a random sample of size n - 1 from a rectangular distribu- 
tion over the range 0 to 1. 

The following relation between Poisson and exponential distributions is of 
importance in applications (see also Chapter 4, Sections 2 and 9): If TI, T2, . . . 
are a succession of independent random variables each having the same 
density function (19.28) and the random variable N is defined by the 
inequalities 

then N has a Poisson distribution with expected value r /a. 
An exponential distribution truncated from below is still an exponential 

distribution with the same scale parameter. 
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An exponential distribution truncated by exclusion of values exceeding xo 
has the density function 

The expected value of this distribution is 

If XI, X,, . . . , Xn are independent random variables, each having the 
distribution (19.149), then the statistic C;=,Xj is sufficient for a, if 8 be 
known. Bain and Weeks (1964) have shown that the density function of 
Y = Cy=,Xj - no is 

for jo(xo - 8) < y < ( jo + lXx, - O),  jo = 0,1,2,. . . , (n - 1). The cumula- 
tive distribution function is 

where y = (x, - 8)(jo + d), j, being an integer and 0 I: d r 1. 
Deemer and Votaw (1955) showed that if 8 be known to be zero, then the 

maximum likelihood estimator B of a is the solution of the equation 
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provided that 3 < i x o .  If 3 > $xo, then 6 is infinite; this result may be 
taken to mean that a truncated exponential distribution is inappropriate. 
[Formally, it indicates that a rectangular distribution (Chapter 26) over the 
range 0 to x, should be used.] In Deemer and Votaw (1955) there is a table 
of g / x o  to four decimal places as a function of 6-' for 6-' = 0.01(0.01)0.89. 
For n large, 

Estimation of 8 for the cumulative distribution function 

[where F(x) is the cumulative distribution function of a non-negative random 
variable] was treated by GerEbah (1967). He suggested an estimator based on 
a random sample of size n = km. Divide the sample into m groups at 
random, with Xi(,! the smallest value in the jth group. Then under certain 
monotonicity conditions on F(x) 

is a consistent estimator of 8 as k and m tend to infinity. 
In extending the Marshall-Olkin bivariate exponential distribution to an 

absolutely continuous and not necessarily possessing memoryless property 
model, Ryu (1993) has recently presented a generalization of the exponential 
distribution derived as a marginal distribution of this generalized bivariate 
model. The new generalized distribution with density function 

has an increasing failure rate in general. Note that when s + a, the density 
in (19.153) becomes the exponential density function with constant hazard 
rate of A, + A,,. In Figure 19.2, plots of the exponential density function and 
the generalized exponential density function are presented. While the expo- 
nential density function is monotonically decreasing, the density in (19.153) is 
initially increasing and then decreasing. 
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density 

Figure 19.2 Plots of the Generalized Exponential Density in (19.153) and the Exponential 
Density for the Case A ,  = 0.1, A,* = 0.2 and s = 0.5, and A ,  = 0.1, A,, = 0.2 and s = m, 
Respectively. The Dashed Line Is the Exponential Density and the Solid Line Is the Generalized 
Exponential Density. 
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C H A P T E R  2 0  

Pareto Distributions 

1 INTRODUCTION 

Since the publication of the first edition of this book, the literature on Pareto 
distributions has grown, perhaps faster than for any other continuous univari- 
ate distribution. To survey comprehensively the new material would require 
much more space than is available for this distribution. Fortunately, the 
availability of an excellent text by B. C. Arnold (1983), devoted solely (except 
for the last chapter) to the univariate Pareto and related distributions allows 
us to concentrate on topics that are only briefly discussed in that text (e.g., 
estimation using order statistics) and also to emphasize developments since 
1982. Besides a thorough discussion of characterization and measures of 
inequality that are closely associated with Pareto distributions, Arnold's 
monograph provides a comprehensive historical overview. 

2 GENESIS 

The Pareto distribution is named after an Italian-born Swiss professor of 
economics, Vilfredo Pareto (1848-1923). Pareto's law, as formulated by him 
(1897), dealt with the distribution of income over a population and can be 
stated as follows: 

where N is the number of persons having income 2 x ,  and A, a are 
parameters (a is known both as Pareto's constant and as a shape parameter). 
It was felt by Pareto that this law was universal and inevitable-regardless of 
taxation and social and political conditions. "Refutations" of the law have 
been made by several well-known economists over the past 60 years [e.g., 
Pigou (1932); Shirras (1935); Hayakawa (1951)l. More recently attempts 
have been made to explain many empirical phenomena using the Pareto 
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distribution or some closely related form [e.g., Steindl (1965); Mandelbrot 
(1960, 1963, 1967); Hagstroem (1960); Ord (19791. 

Harris (1968) has pointed out that a mixture of exponential distributions, 
with parameter 8-' having a gamma distribution, and with origin at zero, 
gives rise to a Pareto distribution. [See also Maguire, Pearson, and Wynn 
(1952).] In fact, if 

and p = 8-' has a gamma distribution [(17.2) of Chapter 171, then 

which is of the form (20.4) below. 

3 DEFINITIONS 

The Pareto distribution has survived in its original form as 

where F'(x) is the probability that the income is equal to or greater than x 
and k represents some minimum income. As a consequence of (20.11, the 
cumulative distribution function of X, representing income, may be written 
as 

and the corresponding pdf is 

This is a special form of Pearson Type VI distribution; we will denote it by 
X - P(IXk, a). The relation given by (20.2) is now more properly known as 
the Pareto di3tribution of the first kind. 

For Bayesian analysis a slightly different parametrization is sometimes 
found to be convenient (see Section 6). In economic literature, special 
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attention is given to determination of an appropriate value of the parameter 
a. For income distributions, the assumption that a > 1 seems to be quite 
realistic. In Bresciani-Turroni (1939) we find the comment: 

The actual values of "a". . . fall within comparatively narrow limits. They oscillate 
about 1.5, and deviations from this value appear to be caused [more] by imperfec- 
tions of statistical material than by the real cause. 

Some 30 years later, Cramer (1971, p. 57) remarked 

The values of "a" have increased from between 1.6 and 1.8 in the nineteenth 
century to between 1.9 and 2.1 in the developed countries at the present time. 

Two other forms of this distribution were proposed by Pareto. One, now 
,eferred to as the Pareto distribution of the second kind (sometimes Lomax 
Btribution), is given by 

'his is also a Pearson Type VI distribution. It will be denoted by X - 
'(IIXC, a). Lomax (1954) used this distribution in the analysis of business 
ailure data. 

The standard POI) distribution has C = 1; its pdf is 

nd the survival function is 

Introducing a location parameter p,  the P(I1) distribution's survival func- 
on can be represented as 

I most applications p is nonnegative. The shape parameter a is often 
isumed to exceed 1, so as to ensure that the expected value is finite. We will 
:note this distribution by P(IIXp, C, a). 
The third distribution proposed by Pareto-the Pareto distribution of the 

ird kind-has the cdf 
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It can be denoted P(IIIXa, b; C). 
In this chapter we will concentrate mainly on the simple Pareto (I) and 

Pareto (11) distributions. Arnold (1983) defines a Pareto distribution by the 
cdf 

We will denote this distribution as P(IVXp, u ,  y, a). Note that 

P ( I ) ( u , a )  = P ( I V ) ( u , u , l , a )  and 

P(II)(p,  u ,  a )  = P(IV)(p, u ,  1, a ) .  

Feller (1971) defines a Pareto distribution as the distribution of W = Y-' - 1 
when Y has a standard beta (y,, Y,) distribution. The pdf of Y is 

If y, = 1 the distribution of W is a Lomax distribution (20.4). Arnold (1983) 
pointed out that the variable 

is a generalization of the Pareto (IV) variable. This in turn is called a 
generalized F variable if p = 0 [Kalbfleisch and Prentice (198011; see 
Chapter 27. 

A basic property of a standard (P(IXk, a)) Pareto variable X is that 

where V is a standard exponential variable (p,(v) = em(-u), v > 0). 
[Equivalently 2a log(X/k) has a X 2  distribution with two degrees of free- 
dom.] 

This intimate relationship between P(1) and exponential distributions 
permits us to obtain a wide range of properties of the former-in particular, 
characterizations-from properties of the latter. (See Chapter 19, Section 8, 
for characterizations of exponential distributions.) Takano (1992) has dis- 
cussed recently a relationship between the Pareto distribution and a differ- 
ential equation. An expression for the U-measure of the Pareto density has 
also been given by Takano (1992), where it is considered as a generalized 
gamma convolution (see Chapter 17, Section 8.4). 
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4 MOMENTS AND OTHER INDICES 

4.1 Moments 

Provided that r is less than a ,  the r th moment about zero of a P(IXk, a )  
variable is 

In particular the expected value is 

and the variance is 

Also 

As a -+ oo, cr,(x) + 2, and a 4 ( X )  -+ 9. The mean deviation is 
2k(a - 1)Y1(l - ( a  > 1) and 

Mean deviation 
= 2(1 - 2a-1)1'2(1 - a- ' ) ' - l ,  a > 2.  (20.12) 

Standard deviation 

The value of this ratio is 0.513 when a = 3, and 0.597 when a = 4. As a 
tends to infinity, the ratio tends to 2e-' = 0.736. Cohen and Whitten (1988) 
provide tables of the skewness [a3(X)1 and kurtosis [a , (X) ]  of P(I)(k, a )  as 
functions of a for a = 4.1,4.2(0.2)19.0,20,30,50,100, and the expected value 
and variance as functions of a and k .  

4.2 Alternative Measures of Location 

Although the expected value does not always exist, the following alternative 
measures of location do exist. The population geometric mean is 
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The population harmonic mean ({E[XP '1)- ') is 

h = k ( l  + a-I ) .  

The population median is 

PARETO DISTRIBUTIONS 

One might also use the mode k, though this index does not take into 
account the value of a. [The mode of P(IIXp, C, a)  is at p.] 

4.3 Measures of Inequality 

Arnold (1983) emphasizes that the value of the variance is of little impor- 
tance in the context of modeling income distributions, as compared with 
some other measures of inequality. We note the Gini index, which for 
P(IXk, a) is 

Also the Lorenz curve is 

An alternative expression for G is 

from which an extension to a generalized nth-order Gini index 

has been made. [Here Xi :, denotes the first order statistic (least value) in a 
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random sample of size m.1 For the P(IXk, a)  distribution 

G,, = {n(n + l ) a  - n) -'. (20.18) 

Other classical measures of inequality are the average income of poorer- 
than-average individuals 

for P(l)(k,  a ) )  (20.19) 

and the average income of richer-than-average individuals 

a 

( = (=) for P ( I ) ( ~ ,  a ) ) .  

The hazard rate is 

r ( x )  = ax-', 

and the cumulative hazard rate is 

~ ( x )  = o ( t )  dt = a log - . (J (20.22) 

Note that the hazard rate is a decreasing function of x. However, the 
elasticity [d log F(x)/d log x]  is constant (equal to a). 

Ahmed, Haq, and Khurshid (1990) have discussed the peakedness of the 
Pareto distribution through a slight modification of a measure of peakedness 
given by Horn (1983). The modification has been made in order to take into 
account the skewness of the Pareto distribution. 

5 ESTIMATION OF PARAMETERS 

In this section we will suppose (unless otherwise explicitly stated) that 
XI, X,, . . . , X,, are independent random variables each distributed as in 
(20.2). 



580 PARETO DISTRIBUTIONS 

5.1 Least-Squares Estimators 

Rearranging (20.2) and taking logarithms of both sides, we obtain 

log[l - Fx(x)] = a log k - a log x. (20.23) 

The parameters a and k may be estimated by least-squares from sample 
estimates of Fx(x), using as the dependent variable the logarithm of 1 minus 
the cumulative distribution of the sample. The least-squares estimator of a is 
then 

a ' =  
-nCy=, log Xi log[l - Fx(Xi)] + (Cy=l log Xi)(C~=, log[l - Fx(Xi)]) 

2 
nCy= l(log Xi) - (C:=, log 

The corresponding least-squares estimator of k may be obtained by substitut- 
ing into (20.23) the arithmetic mean values of the dependent and indepen- 
dent variables along with the estimator a' and solving for k. Estimators of the 
parameters obtained by least-squares methods have been shown to be consis- 
tent [Quandt (196611. 

5.2 Estimators from Moments 

Provided that a > 1, the mean of the Pareto distribution exists and is given 
by (20.11a). By equating this to the sample mean x and rearranging, we 
obtain the relation 

between estimators a*, k* of a and k. A formula for k* may be found by 
the following argument [Quandt (1966)l: The probability that all n of the Xi's 
are greater than a particular value x is (k/x)"". Let Fxi(x) be the cumulative 
distribution function of the smallest sample value. Then 

The corresponding density function is 

ank "" 
px;(x) = 
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From (20.27) the expected value of Xi (the smallest sample value) is 

ank 
E[X;] = - 

a n -  1 '  

Equating Xi to E[X;] in (20.28), the estimator of k is found to be 

and substituting this in (20.23, we obtain 

The estimators a* and k* are consistent [Quandt (1966)l. 

5.3 Maximum Likelihood Estimation 

The likelihood function for a sample (X,, . . . , X,) from a Pareto distribution 
is 

Taking logarithms of both sides, differentiating partially with respect to the 
parameter a, and setting the result to zero we find the relation 

8 = n  log - 
[j:l 

between the maximum likelihood estimators 8, ,& of a ,  k, respectively. 
A second equation (corresponding to ~3 log L / d k  = 0) cannot be obtained 

in the usual way, since log L is unbounded with respect to k .  Since k is a 
lower bound on the random variable X, log L must be maximized subject to 
the constraint 

By inspection, the value of ,& that minimizes (20.31) subject to (20.33) is 
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â  may be expressed as a function of $ and the geometric mean by substitut- 
ing & = (17~=t , ,~i )1/n  into (20.32) to yield 

- 1 

6 = kg(;)] . (20.35) 

We have 

nka 1 
E [ $ ]  = ---- n > - ,  

na - 1 '  a 

nka2 2 
var(L) = , n > - ;  (20.36b) 

(na - 112(na - 2) a 

hence 

2k2 2 
MSE($) = n > -. (20.36~) 

(na - l ) (na  - 2 ) '  a 

Also 

hence 

It has been shown by Quandt (1966) that both â  and are consistent 
estimators of a and k, respectively. 

Note that 2na/a^ is distributed as X 2  with 2(n - 1) degrees of freedom. A 
100(1 - a)% confidence interval for a is given by 

The pdf of & is 

The set (k, 6) is jointly sufficient for (k, a), and k and 6 are mutually 
independent [Malik (197011. Also k is sufficient for k when a is known and 6 
is sufficient for a when k is known. 
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From (20.37a) and (20.37b1, 

and 

are unbiased estimators of a and k, respectively. The variance of k* is 

2 
Var(k*) = a-'(n - 1)-'(nu - 2)-'k2, n > -. (20.41) 

a 

Since (a^,i) is a sufficient statistic for (a, k), and (a*, k*) is a function of 
(2,  R), (a*,  k*) is the uniform minimum variance estimator of (a, k). Its 
ellipse of concentration is contained within the ellipse of concentration of 
every other unbiased estimator of (a, k). From this point of view it may be 
called the "best" unbiased estimator of (a, k), though some biased estimators 
might be "better" in terms of appropriate loss functions. 

If k is known the maximum likelihood estimator of a is 

. Note that 2na/d' is distributed as X 2  with 2n degrees of freedom. A 
100(1 - a)% confidence interval for a is given by 

[Compare with (20.38) to assess the greater accuracy accruing from knowl- 
edge of the value of k.] Also 

Maximum likelihood estimation from grouped data for P(IXk, a)  when k 
is known (i.e., estimation of a when k is known) has been discussed by Fisk 
(1961) and Aigner and Goldberger (1970). Aigner and Goldberger apply a 
general method of KulldorfT (1961) for maximum likelihood estimation from 
grouped data, to estimation of a from P(I) distributions with k = 1 [P(IXl, a) 
distributions]. 
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Let x ,  = 1 < x ,  < x ,  < < x ,  < x,,, = oc be the boundaries of the 
(T + 1) groups, and denote the number of observations, in a random sample 
of size n, falling into the group bounded by x ,  and x ,+ , ,  by N, (t = O,1,. . . , T; 
CT,,N, = n). The maximum likelihood estimator of a is the solution of the 
equation 

T -  1 xt-,nl log X I + ,  - x;" log X ,  + NT log X ,  = 0. (20.45) 
t = O  

Although the left-hand side of (20.45) is highly nonlinear in a, Aigner and 
Goldberger (1970) assert that it is usually amenable to iterative solution, or 
simply to trial-and-error search over a relevant range of values for a. It 
should be noted, however, that zero values of N, pose problems for maxi- 
mum likelihood estimation. It is recommended that such group intervals 1::. 
disregarded (though this is likely to lead to bias in the estimator). 

If the group boundaries are in equal ratios, with x ,  = cx,-,  for t = 1,. . . , I 
(and x ,  = k), then the maximum likelihood estimator of a is 

log 1 + - 
log c ( c:= Ot4 1 

(The grouped data have a truncated log-geometric distribution; see Chapter 
5, Section 11). 

5.4 Estimation Based on Order Statistics 

For P(IXk, a)  distribution both the moment estimation (Section 5.2) and the 8 

maximum likelihood estimation (Section 5.3) may be modified by using the 
equation 

together with (20.25) or (20.32), respectively. Estimation of k and a, using 
estimators of two quantiles, is simple to apply, in the way described below. 

Select two numbers P I  and P ,  between 0 and 1 and obtain estimators of 
the respective quantiles $, and ZP2 .  [In large samples it is possible to take 
ZPj = X[n+,,pj.] Estimators of a and k are then obtained by solving the two 
simultaneous equations 
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The estimator of a is 

The corresponding estimator of k can be obtained from (20.48). It has been 
shown that the estimators of a and k obtained by this method are consistent 
[Quandt (1966)l (see also Section 5.8). 

Koutrouvelis (1981) extends the quantile method of estimation to the use 
of suitably chosen order statistics XL,, XLz,. . . , XLk from a random sample of 
(large) size n from a P(IXk, a )  distribution (see also Section 5.8). The idea is 
to reduce the problem to an exponential distribution by noting that Yii = 

log XAi is an order statistic from a population with cdf Fy(y) = 1 - 
exp(-(y - q)/a), where q = log k and a = l/a. The estimators .Fi and 6 
are obtained from the weighted linear regression fit to E[log XAi] = q - 
a log0 - ti) (i = 1,. . . , k), where ti = ni/n. They are given by 

fj = log XL, - 6u,,  (20.50b) 

where 

with 

These estimators are asymptotically BLUES of q and a, respectively [Ogawa 
(1962)], while the estimators = exp(ij) and a' = 1/6 (with fj and 6 given 
above) remain asymptotically unbiased but no longer linear. Koutrouvelis 



(1981) has shown that 6 and &are consistent and asymptotically normal with 
means k and a and variances 

Since the determinant of the variance-covariance matrix of L and a  ̂ is 
k2{exp(u,) - 1}/(n2L), the optimal values for u,, . . . , u, are obtained by 
maximizing the function {exp(u,) - 1)-'L with respect to u,, u,, . . . , uk 
subject to the constraint 0 < u, < u, < . . . < u, < m. The values of t, and 
of u, = - log0 - t,) must be positive. Saleh and Ali (1966) propose to first 
take the optimal ny = 1 and t: = ny/(n + i) for fixed t,, . . . , t,. Thus 
uy = log{l - l/(n + $)I-'. The optimal choice of u,, . . . , u, is determined 
after replacing u, by uy. Koutrouvelis (1981) provides additional details. d 
Simulation investigations carried out by Koutrouvelis (1981) show that for f 
parameter k, his method using two optimal sample quantiles performs almost I 
as well as using five optimal quantiles (for n = 25, 100, and 500), while for I 

parameter a the estimator based on five sample quantiles is substantially 
more efficient than the two quantile procedure, and competes in efficiency 
with the maximum likelihood estimator. For all the cases considered RE(&) 
2 0.697 for the five quantile procedure and RE(;) 2 0.584 for two quantile 
procedure (n = 25,100,500, k = 1, and a = 0.5, 1.5, and 4.5). He also 
discovered that even a slight change of the definition of sample quantile has a 
significant effect on the values of moments of a'. 

For the three-parameter P(IIXp, C, a)  distribution (20.4Y, the construc- 
tion of BLUEs for p and C, when a is known has received much attention. 
KulldorfT and Vannman (1973) and Vannman (1976) pioneered this work. 
Charek, Moore, and Coleman (1988) compared BLUEs with six minimum 
distance estimators of p and C [based on Kolmogorov ( D l  distance, Cramtr- 
von Mises distance and the Anderson-Darling statistic, each applied with two 
different minimization routines]. They found that for the values a = 1(1)4 
and sample sizes n = 6(3)18, the BLUE for C had the smallest mean square 
error, and that the BLUE for p also has advantageous properties. 

The BLUEs developed by Kulldorff and Vannman (1973) for the case 
a > 2, are calculated from the equations 
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where 

Vannman's (1976) estimators, developed for the case a < 2, are given by 

where 

and the Bi's are as defined in (20.52~). For 2/n < a I 2, with 2/a an integer, 
Vannman's estimators simplify to 

Note that in (20.53bY only the first n - (2/a) order statistics are used. 
Asymptotically BLUEs of C, when a is known, have been considered by 
Chan and Cheng (19731, who also dealt with censored cases. 

For small sample sizes, calculation of BLUEs is fairly simple, but it 
becomes tedious as n increases. Vannman (1976) suggests using BLUEs 
based on the first k order statistics, with k considerably less than n. Arnold 
(1983) notes that the latter order statistics may be unstable. 
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5.5 Sequential Estimation 

Hamdy and Pallotta (1987) constructed a three-stage procedure for estimat- 
ing the parameters of P(IXk, a). From a random sample XI, X,, . . . , X, of 
size n, we have estimators 

k,* = X i  = min(Xl, ..., X , ) ,  (20.54a) 

a ; = ( n - l )  ( C l o g -  (a)]-' , 

of k and a,  respectively. Hamdy and Pallotta (1987) assume that the optimal 
sample size needed to estimate k is of the form 

where /3 and y are known constants. If a also were known, then no would be 
determined. If a is not known, the following three-stage procedure is pro- 
posed: Start with a sample of size m ( r  2), and take an "appropriate" constant 
8. If   pa:-^] + 1 > m take an additional sample of size [8pa*,-Y] + 1 - m 
so that the total sample size is R* = max(m, [ e ~ a ; - ~ ]  + 1). In the third stage 
we make the final sampb size to be 

by taking N* - R* additional observations. Hamdy and Pallotta suggest 
taking 8 = i, and assert that their method is a practical alternative to 
one-at-a-time sequential sampling. 

5.6 Minimax Estimation 

Kaluszka (1986) has shown that for the P(IXk, a )  distribution, a minimax and 
admissible estimator (with mean square error loss function) of a', if k is 
known, is 

r ( n  - r )  fa n 
- n log k + C log Xi , r < - (20.56) 

r ( n  - 2r) i= 1 2 

[See also Iliescu and Vod5 (1979).1 The result is obtained by noting that the 
distribution of C:='=, log(Xi/k) is gamma (n, a-') and then applying a general 
method of Kaluszka (1986). [See also Chapter 17, Section 8.1 
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5.7 Estimation of Pareto Densities 

Asrabadi (1990) discusses estimation of the P(IXk, a) pdf 

using the popular method of finding the UMVUE of this simple function of 
the parameters. If k is known, then T = n L I X i  is a complete sufficient 
statistic for the parameter a. Thus the conditional pdf of XI, given T, is a 
function of T only, pz(xl TI, say, and this is the UMVUE of p,(x). We have 

( n  - l){log T - log x - ( n  - 1)log k)"-2 
P W )  = , k I x I Tk-"+I. 

x(log T - n log k)"-' 

(20.58) 

The corresponding estimate of the cdf 

l o  for x < k,  

I {log T - log x - ( n  - 1)log kjn- '  
F,*(x) = 1 - for k I x I ~ k - " + ' ,  

(log T - n log k)"-' 

for n r TkWn+'. 

(20.59) 

This is the UMVUE of Fx(x). Similarly the rth moment of p;(x) is the 
UMVUE of the rth moment of the P(IXk, a) distribution. 

After successive integrations by parts we find 

'-2 (log T - n log k)'ri 
Tk-'" - 1 - C . (20.60) 

i =  1 i ! 

We emphasize that these simple expressions are due to the especially simple 
form of the pdf and cdf of the classical P(IXk, a) distribution (see analogous 
results for the exponential distribution in Chapter 19). 
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Both p,(x) and pz(x) are decreasing functions of x for x r k (and equal 
to zero for x < k). The value of p;(x) at x = k is (n - 1)k-'{log T - 
n log k) - ', which is the UMVUE of k-'a, the value of p,(x) at x = k. Note 
that 

n - 1  
a* = - 

n log k 

is the U M W E  of a and that the distribution of a*-' is gamma 
(n, a-'(n - I)-'), so 2(n - l)a/a* has a Xz,, distribution (see Chapter 18). 
Also 

and ~ * ~ ( n  - I)-' is an unbiased estimator of Var(a*). 
Reduction to a problem involving exponentially distributed variables is 

employed by Hassanein, Saleh, and Brown (1991) to estimate the survivor 
function 

for P(IXk, a)  using just m ( s  n) of the order statistics from a random sample 
of size n. Choice of the appropriate order statistics is discussed in their 
paper. 

5.8 Estimation of Pareto Quantiles 

Umbach, Ali, and Hassanein (1981) consider the P(IIIXp, C, a)  distribution 
(20.4Y7 with known shape parameter a. They wish to estimate xg, the 
6-quantile of P(IIIXp, C, a)  by the estimator i 

1 

where Xi, XL are the Ith and uth order statistics (I < u) in a random sample 
of size n, and b, and b, are chosen so that ig(l ,  u) will be asymptotically 
unbiased and minimum variance. 

Suppose that 1 = [np,] + 1, u = [np,] + 1 (p, < p,). The asymptotic ex- 
pected values of Xi and Xi are 

where zg is the 6-quantile of P(IX1, a). 
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Table 20.1 Values of ( 2) for Specific Estimator of xE 

of the Form (20.64) 

The asymptotic variance of f &l, u) is 

k 2 

~ a r ( f , ( l ,  u)) = 
nu2( zp, - zpl) 

2 ((zPu - zf)2z;l (z; ,  - 1) 

If optimal values of 1 and u (minimizing the asymptotic variance) include 
p, = 0, then p, = 1 - k i a ,  b, = (k, - zf)/(ka - I), and b,, = (zf - 1)/ 
(k, - 11, where 

Expressions for theboptimal values of p,, p,, b,, and b, are more complex 
in the general case. Optimal sets of values are shown in Table 20.1 for a few 
special cases. Of course one needs to have a good idea of the value of a to 
use these tables. Values of the ARE of f f ,  compared to the nonparametric 
estimator Xhfl+l ,  is presented in Table 20.2 which indicates that f f  per- 
forms far better than Xkf1+, especially for values of ( close to 0 or 1. 

A different approach to estimation of quantiles was adopted by Asrabadi 
(1990), using formula (20.59) for the UMVUE, F;(x) of FX(x). The 6-quan- 
tile of F,*(x), viz., XF = F;-'(&) is not a UMVUE of xf,  the 6-quantile of 
P(IXk, a). However, from the distribution of X; an approximate 100(1 - a)% 
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exceeds T. If k is known, the MLE of a is 

If k is not known, Cohen and Whitten (1988) recommend modified maximum 
likelihood estimators, obtained by solving the equations 

iteratively, starting with k slightly less than Xi. 
Rohatgi and Saleh (1987) discuss the case where T is not known, but only 

the least n - c among the n sample values (Xi I X; I . . I Xi-,) are 
known. All that is known of the remaining c values is that they are not less 
than XA-,. Extending results of Saksena and Johnson (1984), they obtain the 
maximum likelihood estimators 

The UMVUEs are 

n - c  1 
k* = (1 - 

n(n - c - 1) a  ̂

n - c - 2  
a* = â  

n - c  

If we have independent samples of sizes n,, n, from P(IXk, a, )  and 
P(I)(k, a,), respectively, of which only the n, - c,, n, - c, least values are 
known, UMVUE of the common value of k is 

where subscripts refer to estimators based on the jth sample values, and 
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k = min(kl, k,). The variance of this UMVUE of k is estimated by 

5.10 Bayesian Estimation 

The following prior distributions for the parameters a and k in P(I)(k, a)  
have been studied [* denotes natural conjugate, and (Pareto)-' signifies 
distribution of the reciprocal of a P(IXk, a )  variable]: 

Reference k a 

Gamma* 
a a-'  

Lwin (1972) 

Nigm and Hamdy (1987) 

Arnold and Press 

Power Function Known 
m(m - l)m(-log n)" kma-I a * 

r (m)  na 

Gamma* 
a a-  ' (independent) 

(1983) Power function* Gamma* 
(1989) (Pareto) - ' Known 
(1989) (Pareto)- ' Gamma* 

Gamma distributions are natural conjugates for a; power-function distribu- 
tions are natural conjugates for k. 

Geisser (1984, 1985) has provided extensive analysis of the application of 
Bayesian methods in predicting future values of P(IXk, a)  distributed random 
variables from observed values in a complete random sample. Nigm and 
Hamdy (1987) have considered a similar problem where only the r least 
values (first r order statistics) in a random sample of size n ale available, and 
it is desired to predict the remaining n - r values. Geisser (1985) and 
Arnold and Press (1989) are of the opinion that it is more natural to assess 
prior belief about k first and then to consider the conditional prior distribu- 
tion of a,  given k, than conversely. Arnold and Press (1989) also point out 
that Nigm and Hamdy's (1987) analysis can be performed for the case where 
for the P(IXk, a) distribution 



ESTIMATION OF LORENZ CURVE AND GINI INDEX 

By considering the Pareto density function in (20.3) when the shape 
parameter a is known and the scale parameter k is unknown, Liang (1993) 
has discussed the problem of estimating the scale parameter k under a 
squared-error loss through the nonparametric empirical Bayes approach. He 
has then derived an empirical Bayes estimator of k and discussed the 
corresponding asymptotic optimality. Under some mild conditions, Liang 
(1993) has shown that this empirical Bayes estimator is asymptotically opti- 
mal and that the associated rate of convergence is of order O(n-2/3). 

6 ESTIMATION OF LORENZ CURVE AND GINI INDEX 

The Lorenz curve is 

1 -a- '  
L ( P , ~ )  = 1 - (1 -P)  7 

and the Gini index is 

G(a)  = (2a - I)-' 

(see Section 4.3). 
The maximum likelihood estimators of these two quantities are obtained by 
replacing a by â  (if k is known) or by 4' (if k is unknown) and then 
introducing the condition L(p, a )  > 0. Moothathu (1985, 1990) has investi- 
gated the sampling distributions of the estimators ( i )  of L(p, a), showing 
them to be asymptotically consistent. The distribution is mixed, with 

~ r [ i  = 11 = Pr[(MLE of a )  I 11 

and density 

PL(W) = - 
~ " - ~ + l  ,, (1 - w)" -'(log w ) " - ~ ,  (20.80b) T(n - s + 1)(1 - p )  

with q = na/log(l - p), and s = 1 (2) according as k is (is not) known. 
An unbiased estimator of L(p, a)  is 
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Note that 
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I'(n + l)I'[;(n + 1) - a-I] 
E [ M ]  = x k. r[f ( n  + l ) ] r ( n  + 1 - a-I )  

(20.92) 

[Note also from (20.15) that the population median value is 2l'"k.I 
Applying Stirling's formula to (20.92), using logarithmic expansion, and 

retaining terms to the order of l /n,  we obtain 

Var(M) = k222/aa-2n-1. (20.93) 

It is apparent from (20.93) that 
1 

l i m E [ M ] = 2 1 / a k = m ;  [cf(20.15)] ; 
n-m 

Further, we see that 

where & = 2'1% is the MLE of the median (m). 
On setting the parameter k in (20.2) equal to 1, we obtain 

This may be regarded as a standard form of the Pareto distribution. A 
location parameter E can be introduced to yield 

It can be shown [Gumbel (1958)l that if T has an exponentiaI distribution 
with scale parameter 8, then X = exp(T) + E has the Pareto distribution 
(20.95) with 

A single-order statistic estimator using only XL of a ,  given E, is 
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where 

[Moore and Harter (1967)l. a'le and 6 are consistent estimators of the shape 
parameter of the Pareto distribution and the scale parameter of the exponen- 
tial distribution, respectively [Moore and Harter (1967)l. 

It can be shown [Moore and Harter (196711 that an exact confidence 
interval for a based on XA alone, if E is known, is 

where the coefficients Dl, ,, and D,, ,, have been tabulated [Harter (196411 
when n = 1(1)20(2)40 for m optimal. (In the sense that the value of m 
selected maximizes the efficiency of the confidence interval.) 

8 ORDER STATISTICS AND RECORD VALUES 

8.1 Order Statistics 

We have already noted the distribution of the median of n (= 2p  + 1) 
independent random variables, each having the Pareto distribution. The jth 
smallest order statistic Xi has density function 

and its rth moment about zero is 

[see (20.91) which is obtained by putting j = i (n + 1) in (20.99).] The joint 
probability density function of two order statistics X:, X,' ( r  < s)  is 

PX~,X:(X~, xs) = ( r  - l )!(s  - r - l )!(n - s) !  

-(a+l) (x,x,) , k s xr s x,, (20.100) 
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and their covariance can be calculated from 

Malik (1966) showed that the characteristic function of the kth smallest 
order statistic X; in a random sample of size n is 

T(n + 1) " T(k + ja-I) (it)' 

I'(k) F0 I '  a + 1 j! ' 

and obtained the interesting recurrence relationships 

He has provided tables of: 

1. E[X,'] for n I 12, 
2. E[X:X,'] for n I 12, 
3. Var(X/) and Cov(X:, X,') for n s 8 

to four decimal places. 
Huang (1975) showed that for P(I)(k, a)  

kWn(r) 
E[x,"] = for a > i (n  - r + I)-'. (20.103) 

(n  - ia -l)(r) 

Balakrishnan and Joshi (1982) derived further recurrence relations among 
single and product moments of order statistics for different sample sizes, with 
&!n = E[(X;: , ) ' ]  and pr .,:, = E[X::,X,':,l, namely 
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and 

8.2 Record Values 

Pareto distributions arise as limiting distributions of the waiting time W,, the 
number of new observations needed to obtain a value exceeding the ath 
greatest among n observations already available. Formally, 

It can be shown that if the parent distribution is continuous 

This is the P(IX1, a)  distribution. This is a general result for any continuous 
parent distribution. 

For cases where the parent distribution itself is Pareto, Ahsanullah and 
Houchens (1989) and Balakrishnan and Ahsanullah (1994a, b) have obtained 
several results: Let X, (n 2 1) be a sequence of i.i.d. random variables, 
possessing a pdf. Define 

Y,  = max(X,, . . . , X,), n 2 1. 

Then Xj is a (upper) record value of the sequence (X,) if Xj > ( j  > 1). 
(By definition, X, is a record value.) 

The indices T, at which the record values occur are the record times. 
Formally, 

with To = 1. A characteristic property of the Pareto distribution is that the 
ratios XTn/XTn-! are independent and identically distributed as P(IX1, a). 
The pdf of XTn is 

where R(x) is the cumulative hazard rate a log(x/k) (see Section 4.3). It 
follows that XTn is the product of n - 1 mutually independent P(IXk, a) 
variables. 



Ahsanullah and Houchens (1989) provide tables of the variances and 
covariances of XTm and XTn for a = 2.5(0.5)5.0, 0 < m < n I 3. 
Balakrishnan and Ahsanullah (1994a) derive recurrence relations for single 
and product moments of (upper) record values for standardized Lomax, 
P(II), distributions with cdf 

They show that the pdf of XTn is 

Using direct calculations, they show that 

In particular, 

Also 

Ahsanullah (1991) has carried out a detailed study of a generalized 
Pareto (11) (Lomax) distribution, with pdf 

In this case XTn is distributed as 

where the K's are i.i.d. as P(IX1, P - I ) .  For this case, Balakrishnan and 
Ahsanullah (1994b) have established recurrence relations for single and 
product moments of upper record values generalizing the results given above 
[equations (20.111)] for the Lomax distribution. 
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9 CHARACTERIZATIONS 

The close relationship between the exponential and Pareto distributions 
emphasized in Section 3 allows us to simply translate various characteriza- 
tions of the exponential distribution to Pareto. These characterizations are 
however of limited intrinsic value for understanding the models that can be 
generated by and/or admit a Pareto distribution fit. Galambos and Kotz 
(1978) provide a detailed discussion of characterizations of the exponential 
and Pareto distributions; some of these characterizations are presented in 
Chapter 19. Most characterizations of Pareto distribution are essentially 
based on the mean residual life property (Hagstroem (1925)). More rigorous 
proofs have been developed by Arnold (1971) and Huang (1974). 

A typical, more recent, result along these lines, due to Morrison (19781, 
states that the Pareto distribution of the second kind (with range x > 0) is 
the unique gamma mixture of exponential distributions that yields a linearly 
increasing mean residual lifetime E[X(X > t ]  regardless of the mixing pro- 
cess. (Recall that Pareto is generated by a gamma mixing of exponentials-see 
Section 2). There is an extensive discussion of characterizations based on 
mean residual lifetime in Kotz and Shanbhag (1980). A second class of 
characterizations is based on the property connecting truncation to rescaling. 
A typical result, due to Bhattacharya (1963), is that under certain conditions 
on the support of the distribution, the relationship 

P ~ [ x >  y l ~ >  x,] = Pr - X >  y , for all y > x ,  2 k,  (20.114) ("," 
characterizes P(IXk, a) distributions with scale parameter k. 

Under the assumption of the existence of moments, this characterization is 
equivalent to the linearity of the mean residual lifetime as a function of x, 
[Kotz and Shanbhag (1980), Dallas (1976)l. 

The property (20.114) can be interpreted in the following ("underreported 
income property") way: 

If the distribution of Y = OX, where 0 < O 5 1, truncated from below at k,, is the 
same as the distribution of X, then X must have a P(I1) distribution with scale 
parameter k [Krishnaji (1970, 197111. Y may be regarded as reported and X as 
actual income. 

Refinements of this interpretation have been provided by Huang (1978) and 
Marsaglia and Tubilla (1975). Hawker, the assumption that underreported 
income has this relation to actual income is very doubtful. 

Characterizations based on truncation invariance of the Gini index [Ord, 
Patil, and Taillie (1981)l and on a linear relation between log x and 
log(1 - F*(X)} [Moothathu (1984)l have similar bases. 
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Schmittlein and Morrison (1981) claimed that the median residual lifetime 

is of form a + bx, if and only if X has a P(I1) distribution. However, Gupta 
and Langford (1984) showed that non-Paretian distributions with cdf of form 

with g ( - )  a periodic function of period log(b + 1) such that 

g(log(a + bk)) = ( a  - : ")', 

where c = (log2)/{log(b + I)), also have M(xo) of this form. 
Many characterizations are based on distributions of order statistics, 

usually involving the least observed value, Xi. 
A typical result is 

Let Xi 5 Xi 5 . . . s XA be the order statistics from an absolutely continuous 
distribution function Fx(x) where the lower bound on the random variable X is 
given by k, that is, Fx(k) = 0. It can then be shown for a sample of size n from 
this distribution that the statistics Xi and (Xi + . . . +X;)/X;, or equivalently Xi 
and (Xi + . +X;)/Xi, are independent if and only if the random variable X 
has the Pareto distribution. [Srivastava (196511 

Dallas (1976) provides an essentially equivalent theorem "Under the 
assumption of existence of the r-th moment 

XJXi = x = cxr  implies that X is Pareto (I) ." (20.116) 
i = l  1 

Characterizations of the type: 

E[x,':,Ix,' = X ]  = cxr for 1 < s < n (20.117) 

[Beg and Kirmani (1974), Khan and Khan (1987)l are simply restatements of 
the characterizing equation 

of the Pareto distribution (see Section 4). 
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James's (1979) characterization based on the independence 
(Xl/Xi, X2/Xi,. . . X,/X;) and Xi, falls within the general framework of 
shape-size analysis in Mosimann (1970). 

Arnold (1983) provides an alternative, very illuminating interpretation of 
these results. The reader is referred to his book for further characterizations 
of Pareto distributions of various kinds. In our opinion most of the character- 
izations of Pareto (and exponential) distributions are in essence variants of 
the memoryless property of the exponential and are eventually reduced 
to solving a Cauchy-type functional equation or its integral variants (see 
Chapter 19). 

10 PRODUCT AND RATIOS OF PARETO RANDOM VARIABLES 

The product of n independent Pareto random variables Xi, distributed as 
P(IXki, a,) (i = 1,.  . . n) can be expressed in the form 

where the 5 's  are independent standard exponential variables. 
If the ai's are all distinct but k, = k for all i, the distribution of 

V = ny=,Xi is given in terms of the survival function as 

Pederzoli and Rathie (1980), using the method of Mellin transforms, 
obtained an expression for the distribution of Y when the ails are not all 
distinct. 

Castellani (1950) and Malik (1970a) have analyzed the special case when 
a1 =a2  = . . .  = a, = a. 

In this case, 

is distributed as a gamma (n, a-') variable, and the distribution of the 
product has pdf 

{m l o g ( ~ / m ) ) " - ' ( Y / m ) - ~ ( a / Y )  
PY(Y) = ( y 2 m), (20.121) 

r ( n >  

where m = Ily=',,ki. 
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The distribution of the quotient Z = X,/X2 of two independent Pareto 
random variables with parameters (k,, a,) and (k,, a,) respectively, was also 
tackled by Pederzoli and Rathie (1980). The corresponding pdf is 

for z I k1k;' 

P Z ( ~ )  = -",-I (20.122) 
for z 2 k1k;' 

The cdf is 

for z I k,k;' 

for z > k1k;'. 

Given a random sample of size n from P(IXk, a) with order statistics 
Xi _< Xi I . . . I Xi, the pdf of the ratio 

x; 
W G  - xi' ( i  < j )  

[see, e.g., Springer (1979)l. 
The pdf of the product T = X;X; was also obtained in a closed, albeit 

cumbersome, form, using the Mellin transform. The exact expression involves 
summations with respect to r and s of terms of the type: 

[ [ ; -a(2r+n+i-2j-s+1) 

. I -  - I = h(t ,  a ,  k ;  i, j, s, r ) ,  (20.125) 

with appropriate weights. 
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Explicitly: 

where I 5 i < j s n, [see, e.g., Springer (1979)l. 
Distribution of products of independent Pareto (IV) variables can be 

derived from the distribution of products of powers of independent gamma 
variables (generalized gamma variables)-see Chapter 17, Section 8.7. Blum 
(1970) has discussed the distribution of the sum of independent Pareto 
variables. 

If X has a P(IXk, a)  distribution, then Y = X-' has the density function 

This distribution, which is a special Pearson Type I distribution, is called the 
power-function distribution. Its moments are, of course, simply the negative 
moments of the corresponding Pareto distribution, so that 

Moments of order statistics for this distribution were calculated by Malik 
(19671, while recurrence relations for these quantities have been derived by 
Balakrishnan and Joshi (1981). Rider (1964) has obtained the distribution of 
products and quotients of maximum values of sets of independent random 
variables having distribution (20.127). He suggests such distributions might be 
used in approximate representation1 of the lower tail of the distribution of a 
random variable having a fixed lower bound (as in a gamma distribution, for 
example). 

11 APPLICATIONS AND RELATED DISTRIBUTIONS 

The discrete form of the Pareto distribution (Zipf-Estoup's law) has been 
discussed in Chapter 11. In many cases the Pareto distribution may be used 
as an approximation to the Zipf distribution. Xekalaki and Panaretos (1988) 
consider the Yule distribution discussed in Chapter 6, Section 10.3 to be the 
discrete analog of the Pareto distribution and provide a mutual characteriza- 
tion of these distributions. Many socioeconomic and other naturally occurring 
quantities are distributed according to certain statistical distributions with 
very long right tails. Examples of some of these empirical phenomena are 
distributions of city population sizes, occurrence of natural resources, stock 
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price fluctuations, size of firms, personal incomes, and error clustering in 
communication circuits. Many distributions have been developed in an at- 
tempt to explain these empirical data. As Arnold (1985) points out: 

The bald fact remains that in the upper tail, income distributions are reasonably 
well approximated by Pareto distributions and, certainly for predictive purposes, 
the lack of a compelling explanatory model should not deter one from capitalizing 
on the appealing simplicity of Pareto's distribution. 

The lognormal distribution has emerged as the main competitor for 
Pareto. It has been observed that while the fit of the Pareto curve may be 
rather good at the extremities of the income range, the fit over the whole 
range is often rather poor. On the other hand, the lognormal (Gibrat) 
distribution (Chapter 14) fits well over a large part of the income range but 
diverges markedly at the extremities [Fisk (1961)l. 

Ferguson (1962) and James (1979) discuss the Pareto distributions as 
limiting distributions of the generalized gamma distribution (Chapter 17) 
when the parameter c -+ - m. 

Truncated Pareto distributions, with an upper limit (k') as well as a lower 
limit (k), have been found by Goldberg (1967) to fit the distribution of oil 
fields, in a specified area, by size. A truncated P(IXk, a) distribution has 
density function of the form 

( k  r x a k') (20.129) 

and cumulative distribution function 

( X  < k )  
a - 1  

- (k/kf)  ] [I - ( k / ~ ) ~ ]  ( k  a x a k') (20.130a) 

( X  > kt) ,  

or equivalently 

with K = k(l - Q)'/",, where Q and 1 - P (Q < P) are the proportions 
truncated on the left and right, respectively. Moments of order statistics 
E[x:~:,] = py!, from this distribution exist for all r, n and i because the 
range of the distribution is finite. 

Balakrishnan and Joshi (1982) derived recurrence relations for these 
moments. Taking, without loss of generality, the scale parameter k = 1, a 
typical relation is: 
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{(n  - r + 1)a - i]pv!n 

= a[(. - r + l)pvL1:, + n ~ ~ ( ~ v ~ ~ - ~  - p'$l:,l)] (20.131) 

where 

(Compare with similar relationship for the nontruncated case in Section 8.) 
Similar relations were obtained by Khurana and Jha (1985) based on 

expressions for pv!n in terms of hypergeometric functions ,Fl(a, b; c; t). A 
typical relation is 

which follows from 

since (a - b),F,(a, b; c; z)  = a2Fl(a + 1, b; c; z)  - b2Fl(a, b + 1; c; z). 
Cohen and Whitten (1988) discuss estimation of parameters for distribu- 

tions truncated on the right (at point x,). When k is known, the MLE of a is 
the solution (in a^) of the equation 

Cohen and Whitten recommend the use of 

as the initial value in an iterative procedure, which would be the MLE of a if 
the distribution were not truncated. 

A mixture of two Pareto distributions is sometimes called a double Pareto 
distribution. 

Modifications of the Pareto distribution have been developed to give 
better representation of income distributions. 

One of the best known income distributions is the Champernowne distribu- 
tion [Champernowne (1952)l. It is supposed that the random variable X, 
termed "income-power," and defined by X = log T, where T is the actual 
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income, has a density function of the form 

where n, a ,  x, and A are parameters (n is, of course, a function of a 
and A). This is included in Perks's family of distributions, described in 
Chapter 23. We have retained the unusual notation (n) used by 
Champernowne. This symbol does not have anything to do with "sample 
size" in the present context. 

The curve given by (20.134) is symmetrical and x ,  is the median value of 
the income-power. If we let log to = xo then the density function of income 
(T = ex) is 

and to is the median value of the income. 
In order to find the proportion of persons with income greater than t, we 

integrate (20.135). The form that the integral takes will depend on the value 
of A. For - 1 < A < 1 the cumulative distribution function is 

sin 0 
FT(t)  = 1 - - tan-' e cos e + (t/t0)" 

} ( t > O ) ,  (20.136) 

where 

For A = 1 

For A > 1 

O < O < ? r  and c o s 0 = A .  

where 

cosh q = A .  

In (20.136)-(20.138)' a is equal to Pareto's constant (Section 2), and to is the 
median value of the income. No simple interpretation exists for the parame- 
ters 6 and q. The latter may be regarded as a parameter used for adjusting 
the kurtosis of the fitted density function (20.134) along the income power 
scale [Champernowne (1952)l. 
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The three forms of the density function corresponding to (20.136)-(20.138) 
may be obtained by differentiation and are, respectively 

a sin 

a sinh q 
(20.141) 

q{( t / t0)"  + 2cosh q + (t0/t)") ' 

[These are all of form (20.135), of course.] Methods of fitting are described in 
Champernowne (1952). 

In general, it is possible to improve the fit of a distribution by the 
incorporation of extra parameters. To this end Champernowne (1952) pro- 
posed a five parameter model of the form: 

[ I  - b)e [(. - 110 + ;tanp1 ( cos e + sine (t/t,)"* )] f o r ~ s t s t ~ ,  

F*(t) = 

( 
sin 0 

1 - tan-' 1 for t 2 to. 
(1 + ~ ) 0  cos e + (tit,)" 

The fifth parameter u may be considered as a measure of skewness, in that 
when u > 1 the curve exhibits positive skewness, and when a < 1 the curve 
is negatively skewed. When u = 1, the distribution (20.136) is obtained. 

The limiting form of the density function of the Champernowne distribu- 
tion as 8 -* 0 is 

On making the transformation (T/to)" = ed, the logistic or sech square 
density jknction 

is obtained [see Chapter 231 [Fisk (1961)l. The shape of this distribution is 
quite similar to that of the normal density function. However, in the tails the 
sech square density is greater than the normal. For economists concerned 



612 PARETO DISTRIBUTIONS 

with the upper tails of distributions, the Pareto, Champernowne, and sech 
square distributions are probably more useful than the lognormal, which 
generally gives a poor fit in the tails [Aitchison and Brown (195711. 

The cumulative distribution function corresponding to (20.143) is 

that is, 

For small t, (20.146) is close to the Pareto distribution (20.2). 
A number of papers [Mandelbrot (1960, 1963, 1967)l discuss a class of 

distributions that has been termed "stable Paretian." In the development of 
the theory, two forms of the Pareto law are distinguished [Mandelbrot 
(1960)l: 

Strong Law of Pareto. The distribution is of the form given by (20.2); that 
is, 

= 1 x < k. 

Weak or Asymptotic form of the law of Pareto. The form of this distribution 
is 

This implies that if log[l - Fx(x)] is plotted against log x, the resulting curve 
should be asymptotic to a straight line with slope equal to -a as x 
approaches infinity (see Section 9). It has been shown [Lhy (19291 that there 
is a class of distributions that follow the asymptotic form of the law of Pareto 
and are characterized by the fact that 0 < a < 2. These are known as the 
stable Paretian or stable non-Gaussian distributions. The normal distribution 
(a = 2) is also a member of the family of stable laws and has the property 
that it is the only one with a finite variance. A further property of the 
non-Gaussian stable laws when 1 < a < 2 is that the expected value is finite. 

It has been shown by Uvy (1925) that the logarithm of the characteristic 
function of the stable Paretian distribution is 

log 4 ( t )  = i 6t  - yltla[l - iP(t/ Itl)tan(arr/2)]. (20.148) 

The parameters of (20.148) are a ,  P, y and 6. The location parameter is 6; 
and if a > 1, then 6 is the mean of the distribution. /3 is an index of 
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skewness such that when equal to zero the curve is symmetric; when /3 > 0 
the curve is skewed to the right, and when /3 < 0 it is skewed to the left. The 
scale parameter is y; a is intimately related to the Pareto exponent (in the 
sense that the limit of xa-' Pr[X > x] is finite and non-zero) and controls 
the amount of probability found in the tails of the distribution. When 
0 < a < 2, the extreme tails of the stable distributions are higher than those 
of the normal, with the total probability in the tails increasing as a moves 
from 2 to 0. Explicit expressions for the density functions of stable Paretian 
distributions are known for only three cases; the Cauchy ( a  = 1, /3 = O), the 
normal ( a  = 21, and the "coin tossing" (Bernoulli) case (a = 3, /3 = 1, 
6 = 0, y = 1) [Fama (1963)l. 

Putting /3 = 0 in (20.148), we have 

log 4 ( t )  = i 6t - rltla 

For the variable Y = (X - ~ 3 ) ~ - ' / "  we have the "standard form" of symmet- 
ric stable distribution with 

log (by(t) = - Itla. 

Bergstrom (1952) has shown that, for a > 1, 

so that 

For large y, the asymptotic series 

is useful for calculating Fy( y 1, when a > 1. 
Fama and Roll (1968) give tables of values of Fy(y), to four decimal 

places, for 

a = 1 .O(O.l) 1.9(0.05)2.00 

and 

y = 0.05(0.05)1.00(0.1)2.0(0.2)4.0(0.4)6.0(1)8,10,15,20. 

They also give values of yp satisfying Fy( yp) = P, to three decimal places, 
for the same values of a and P = 0.52(0.02)0.94(0.01)0.97(0.005)0.995,0.9995. 
It is notable that y,,, varies but little with a. Its value increases from 0.827 
when a = 1 (Cauchy) to about 0.830 ( a  = 1.3 - 1.6) and then decreases to 
0.824 for a = 2 (normal). 
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Fama and Roll (1968) suggest that this stability may be used to construct 
an estimator of y l / "  as 

(0.827)-' x [upper 28% order statistic-lower 28% order statistic], 

which should be robust with respect to changes in a. 
The Pareto distribution has been applied by astronomers to model the 

brightness (equivalent to magnitude) distribution of comets. Donnison (1990) 
used the Pareto power-law model for the distribution of the long-period 
comets (those that take more than 200 years to complete an orbit) and the 
short-period comets (those that take less than 15 years to complete an orbit). 
Donnison analyzed some data by assuming a Pareto distribution for the 
distribution of brightness. By hypothesizing that brightness indices have 
increased with discovery date, Donnison and Peers (1992) subsequently 
analyzed the same data in terms of trend analysis. Pettit (1993) has recently 
provided an alternative Bayesian solution to the problem by using Gibbs 
sampling. 

12 GENERALIZED PARETO DISTRIBUTIONS 

1. A class of "generalized Pareto" distributions was described by Ljubo 
(1965). The cumulative distribution function is 1 

i 

with p > 0. 
2. A class more extensively studied within the framework of extreme-value 

distributions and used in applications is originally due to Pickands 
(1975) but more recently propagated by Hosking and his co-workers. 

Hosking and Wallis (1987) and Dargahi-Noubary (1989), among others, 
investigate a generalized Pareto distribution (GPD) with the cdf 

Special cases, c = 0 and c = 1, correspond respectively to exponential distri- 
bution with mean k and the uniform distribution on (0, k), while Pareto 
distributions correspond to negative values of c. This distribution is exten- 
sively used in the analysis of extreme events (Pickands (1975) was apparently 
the first to use this distribution in this context), especially in hydrology 
[van Montfort and Witter (1985)], as well as in reliability studies when 
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Figure 20.1 Probability Density Function of the Generalized Pareto Distribution for Different 
Values of the Shape Parameter c [Source: Hosking and Wallis (198711 

robustness is required against heavier tailed or lighter tailed alternatives to 
an exponential distribution, Qpical forms of these distributions are depicted 
in Figure 20.1. 

The pdf is 

The support of the distribution is x > 0 for c i 0 and 0 < x < k / c  for 
c > 0. 

Dargahi-Noubary (1989) recommends GPD for use as the distribution of 
the excess of 6bserved values over an arbitrarily chosen "threshold." He 
points out that, "the GPD arises as a class of limit distribution for the excess 
over a threshold, as the threshold increases toward the right-hand end of the 
distribution (tail)." 

Moreover, "Direct connection between the GPD and extreme value distri- 
butions is as follows: If N is a Poisson random variable with mean A and 
Y,, Y,, . . . Y, are independent excesses with the distribution function 
[(20.153)], then 

(an extreme value distribution; see Chapter 22). 
If X has a GPD with parameters (k, c) then the conditional distribution 

of X - y' given X > y' is GPD with parameters k - cy', c provided k  - cy' 
> 0. (Compare with the memoryless property of the exponential distribution.) 

This property of GPD is called "threshold stability." Dargahi-Noubary 
(1989) also advocates use of GPD (and threshold methods) for fitting a 
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distribution of annual maxima of the wind speed (gusts) using the data 
provided by Cook (1982), and that of maximum floods of the Feather River 
for the years (1962-1980). He finds the fit based on GPD to be much better 
than one using classical extreme value methods. 

The hazard rate r,(x) = px(x)/{l - Fx(x)) of the GPD is l /(k - cx), 
which is a monotonic function of x, decreasing for c < 0, constant for c = 0, 
and increasing for c > 0 [see Xekalaki (1983), who characterizes this distribu- 
tion by its hazard rate]. 

Generalized Pareto distributions with c > 3 have finite endpoints with 
px(x) > 0 at each end (see Figure 20.1). Such distributions seldom occur in 
statistical application. (The variance of generalized Pareto for c 2 is 
infinite.) 

With E[(1 - cX/k)'] = (1 + re)-' for 1 + rc > 0, we have 

and 

The skewness is 

and the kurtosis is 

In general the r-th moment exists if c > - l/r.  
Also, since -c- '  log(1 - cX/k) has a standard exponential distribution, 

E -log 1 - - = csI'(s + 1) for integer s. (20.156e) [i i c:)fl 
Davison (1984) has observed that if X has a GPD (k, c) distribution, then 

for all u > 0 

if c > - 1. Thus the plot of mean "excess" over u, versus u, should be 
roughly linear with the slope -c/(l + c) and intercept k/(l + c). 

Hosking and Wallis (1987) provide a detailed investigation of estimation 
procedures for the GPD. Their general conclusion is that "maximum likeli- 



GENERALIZED PARETO DISTRIBUTIONS 617 

hood estimation, although asymptotically the most efficient method, does not 
clearly display its efficiency even in samples as large as 500, while the method 
of moments is generally reliable except when c < -2." 

The maximum likelihood equations are: 

Since log L approaches infinity when c > 1 and k/c approaches max(Xi) 
= XA, the MLEs are taken as the values and 2 which yield a local 
maximum of log L (unless the Giesbrecht and Kempthorne (1976) approach 
of maximizing grouped-data likelihood function is used-as described in 
Chapter 14 for the lognormal distribution). 

Maximum likelihood estimation of parameters works well if c < 3, but not 
otherwise. For c < 3 the asymptotic normal distribution of the maximum 
likelihood estimates based on a sample of size n has the mean value (c, k)  
and variance-covariance matrix 

(1  - c ) ~  k ( l  - c)  

k ( l  - C) 2k2(1 - c). 

The estimators are consistent, asymptotically normal, and asymptotically 
efficient for c < 3. The nonregular case is discussed by Smith (1985). 

Grimshaw (1993) describes an algorithm for solution of equations (20.157). 
He points out that 2&-' can be determined from (20.157a), and this value 
can then be inserted in (20.157b) to obtain c .̂ If no local minimum is found in 
the space 

there is no maximum likelihood estimator. In such cases, Grimshaw (1993) 
recommends using "alternative estimators given by Hosking and Wallis 
(19871.'' 

The moment estimators are easily computed from the formulas 

- - fc = 3 x ( x 2 r 2  + 1) (20.159a) 

and E = i(X2/s2 - 1) (20.159b) 

where X and s2 are the sample mean and variance respectively. 
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Since var(s2) is infinite for c I - 1/4, these estimators are not asymptot- 
ically normal (of order n-'1. For c = 0, we have exponential distributions 
and the moment estimators coincide with the maximum likelihood ones. For 
c > - 1/4, (i, E )  is asymptotically bivariate normal with variance-covariance 
matrix 

Hosking and Wallis (1987) also suggest use of probability-weighted moments 
(PWM) 

for estimation of GPD parameters. In particular, 

exists for c > - 1 and the identities 

are valid. They recommend substituting a, and a, in (20.162) by the estima- 
tors 

( n - j ) ( n - j - 1 )  ...( n - j - r + l )  
a ' ,=n- '  C Xi), r = 0,1, 

j= 1 ( n  - l ) (n  - 2) .  . . ( n  - r )  

n 

a', = n-' x (1 - p j : n ) r ~ j ' ,  r = 0,1, (20.163b) 
j =  1 

where pj,, = ( j  + y)/(n + S), where y and 6 are suitable constants (often 
y = - 0.375 and 6 = 0.25). 

The estimators a', and hr are asymptotically equivalent. 
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Figure 20.2 Asymptotic Efficiency, Relative to the Maximum Likelihood Estimator, of Moment 
and PWM Estimators' of the Shape Parameter of the Generalized Pareto Distribution 

Asymptotic efficiency of moment and probability-weighted moment esti- 
mators of the shape parameter of the GPD are presented in Figure 20.2. 

Simulations carried out by Hosking and Wallis (1987) have shown that the 
estimators with the smallest mean squared error (MSE) are moment estima- 
tors when c > 0 and PWM estimators when c < -0.2, while PWM have 
overall lower bias. The theoretical and simulated standard deviations of the 
estimators differed by less than 10% provided n 2 50 and c > 0.4. 

Quantile estimators of GPD are easily obtained from the relation 

= - k  log(1 - F ) ,  c = 0 (20.164) 

by substituting k and c by their estimators L and c^. 
Since 

the accuracy of f (F) ,  for small F, is essentially determined by the accuracy 
of l. 

Smith (1987) estimates the tail of a distribution that covers all three limit 
laws of classical extreme value theory. Given a large number of independent 
observations XI, . . . , X, with a common density f ,  fix a high threshold u and 
let N denote the number of exceedance of u and let Y,, . . . , Y,, be the 
excesses. Namely Y;, = Xj - U when j is the index of the i-th exceedance. 
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E 

Conditionally on N the excesses are i.i.d. with the definition 
I 

1 

where x ,  is the upper end point of F. 
Smith (1987) proposes to estimate F,, by the GPD G(.; k ,  c), estimating k 

and c by maximum likelihood estimates. A similar approach has been taken 
by Hall (1982) and Joe (1987). 

The justification of these approximations is based on Pickands's (1975) 
result stating 

lim sup ( l i , (y )  - ~ ( u ;  k ( u ) ,  c )  1 = 0 (20.166) 
u+Xo o<y<xo-u 

for some fixed c and function k(u) if and only if F is in the domain 
of attraction of one of the three limit extreme value laws. (See 
Chapter 22.) 
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C H A P T E R  2 1  

Weibull Distributions 

1 HISTORICAL REMARKS 

The Weibull distribution is named after the Swedish physicist, Waloddi 1 
Weibull, who (1939a, b) used it to represent the distribution of the breaking ! 
strength of materials and in 1951 for a wide variety of other applications. The 1 
close agreement that Weibull demonstrated between his observed data and 
those predicted with the fitted Weibull models was quite impressive. He used I 

I the distribution to model data secured from problems dealing with yield 
strength of Bofors' steel, fiber strength of Indian cotton, length of syrtoideas, i 

i 
fatigue life of an ST-37 steel, statures of adult males born in the British I 

Isles, and breadth of beans of Phaseolus vulgaris. Interestingly Rosen and 
Rammler had used this distribution earlier in 1933 to describe the "laws 
governing the fineness of powdered coal." In the Russian statistical literature 
this distribution is often referred to as the Weibull-Gnedenko distribution, 
since it is one of the three types of limit distributions for the sample 
maximum established rigorously by Gnedenko (1943) [e.g., see Gnedenko, 
Belyaev, and Solov'ev (1965)l. The name Frechit distribution is also used 
sometimes due to the fact that it was FrechCt (1927) who first identified this 
distribution to be an extremal distribution [later on shown to be one of three 
possible solutions by Fisher and Tippett (1928)l. 

The Weibull distribution includes the exponential and the Rayleigh distri- 
butions as special cases (see Chapters 19 and 18). Since the hazard function 
(or the failure rate) of this distribution is a decreasing function when the 
shape parameter c is less than 1, a constant when c equals 1 (the exponential 
case), and an increasing function when c is greater than 1, the use of the 
distribution in reliability and quality control work was advocated by many 
authors following Weibull (1950, Kao (1958, 1959), and Berrettoni (1964). 
Due to the nature of the hazard function described above, the distribution 
often becomes suitable where the conditions for "strict randomness" of the 
exponential distribution are not satisfied, with the shape parameter c having 
a characteristic or predictable value depending upon the fundamental nature 
of the problem being considered. Unlike in the case of the exponential 
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distribution, probabilistic bases for the Weibull distribution are not com- 
monly encountered in situations where the distribution is actually employed. 
However, Malik (1975) and Franck (1988) have assigned some simple physical 
meanings and interpretations for the Weibull distribution, thus providing 
natural applications of this distribution in reliability problems particularly 
dealing with wearing styles [see also Harter (1986)l. The distribution, being a 
power transformation of the exponential, presents a convenient way of 
introducing some flexibility in the model through the power (or the shape 
parameter) c. Some situations where the Weibull distribution will likely arise 
have been mentioned by Gittus (1967). Hallinan (1993) has recently provided 
an excellent review of the Weibull distribution by presenting historical facts, 
and the many different forms of this distribution as used by practitioners and 
possible confusions and errors that arise due to this non-uniqueness. 

The Weibull distribution is undeniably the distribution that has received 
maximum attention during the past 23 years since the first edition of this 
volume was published. This is clearly evident from the large number of 
references (most of which have been published since 1970) at the end of this 
chapter. 

2 DEFINITION 

A random variable X has a Weibull distribution if there are values of the 
parameters c (> O), a (> O), and 5, such that 

has the standard exponential distribution with probability density function 

The probability density function of the Weibull random variable X is then 

The cumulative distribution function is 

and the survival (or the reliability) function is 
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From (21.3) and (21.5) we get the hazard function 

As mentioned earlier, it is clear that the hazard function in (21.6) is 
decreasing for c < 1, constant for c = 1, and increasing for c > 1. The mean 
residual life or the life expectancy of a Weibull component is obtained from 
(21.5) as 

Raja Rao and Talwalker (1989) derived lower and upper bounds for this 
function. 

For c > 1 the Weibull density function in (21.3) tends to 0 as x -, 5,, and 
there is a single mode at 

This value tends to a + 5, very rapidly as c a. For 0 < c I 1 the mode is 
at 5, and the density is a decreasing function of x for all x > 5,. 

From (21.4) we observe that the median of the distribution is 

a (log 2) + 5,. (21.8) 

It is also of interest to note that for all values of c, 

The standard form of the distribution will have 5, = 0 and a = 1 so that 
the standard density function is 

and the corresponding cumulative distribution function is 
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The distribution of X now depends on the shape parameter c alone. The 
plots of the standard density function in (21.10) for c = 0.25,0.5, 
1,1.5,2,3,4,5 are presented in Figure 21.1. The moment ratios, coefficient of 
variation, and standardized cumulants K , / K $ / ~  of the standard distribution 
are of course the same as those of the distribution in (21.31, which depend 
only on c and not on 5, or a (as they are location and scale parameters). 
Moments corresponding to the three-parameter distribution in (21.3) are 
easily derived from those corresponding to the standard distribution in 
(21.10) by using the transformation X' = 5, + ax. 

Since XC has the standard exponential distribution in (21.2), the rth raw 
moment of X is also the (r/c)th moment about zero of the standard 

X X 

Figud21.1 Plots of Standard Weibull Density Function in (21.10) 
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c = 3.0 

Figure 21.1 (Continued) 

exponential random variable (see Chapter 19). Hence 

from which we get 

'similar expressions for the moment ratios can easily be written down explic- 
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itly. When c is large, we obtain from (21.13) that 

where y is Euler's constant. 
Table 21.1 gives some numerical values of the mean, standard deviation, 

and the coefficients of skewness and kurtosis for various values of c. It may 
be noted from this table that for c = 3.6 (approx.) the coefficient of skewness 
fi is zero. In fact, for values of c in the neighborhood of 3.6, the Weibull 
distribution is similar in shape to a normal distribution. Dubey (1967a) made 
a detailed study of the closeness of agreement between the two distributions. 
It is of interest to note from the table that the coefficient of kurtosis P2 has a 
minimum value of about 2.71 when c = 3.35 (approx.). 

Cohen (1973) and Rousu (1973) both examined skewness and kurtosis as a 
function of the shape parameter c. With c, = 3.6023494257197, P ,  is ob- 
served to be a decreasing function of c in the interval c < c, and an 
increasing function in the interval c > c, (p ,  = 0 for c = c,). With c,  = 3.35, 
p, is also observed to be a decreasing function of c in the interval c < c,  and 
an increasing function in the interval c > c,. As mentioned above, 

Table 21.1 Moments of Weibull Distributions 

Standard 
c Mean Deviation fi P 2  
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Dubey (1967a) has studied the behavior of the Weibull distribution in 
considerable detail for values of c in the vicinity of c, and c,. Graphs of both 
pl and p2 as functions of c are presented in Figure 21.2. 

When P2 is plotted as a function of P,, two distinct lines or branches are 
observed intersecting at (P, = 0, P2 = 2.72). The point of intersection corre- 
sponds to c = c,, while the two separate branches correspond to the inter- 
vals c < c, and c > c,. These two (/?,, /?,) lines for the Weibull distribution 
along with the corresponding lines for the log-normal distribution and for the 
Pearson Type I11 (gamma) and Type V distributions (see Chapter 12) have 
been plotted in Figure 21.3. As shown in Figure 21.3, the (PI, P2) line for the 
Weibull distribution with c < c, lies in the Type I region (region below Type 
111) and extends approximately parallel to the Type I11 line until the two lines 
intersect off the graph at (/?, = 4.0, /?, = 9.0). The Weibull line for c > c, 
originates in the Type I region and extends approximately parallel to the 
Type V line. It crosses the Type I11 line into the Type VI region (region 
between Types I11 and V) at a point where p, = 0.5 and then moves in close 
to the log-normal line. Hence the Weibull distribution with c > c, will 
closely resemble the Pearson Type VI distribution when p1 2 0.5, and for 
values p, = 1 or greater it will also closely resemble the lognormal distribu- 
tion. The skewness factor of the Weibull family has been studied at great 
length by Groeneveld (1986). 

From (21.12) we obtain the moment generating function of log X to be 

Hence the rth cumulant of log X is +(')(l)/cr, where +(')(.I are the 
"polygamma functions" (derivatives of logarithm of gamma function); see 
Chapter 1, Section A2. In particular, we have 

The variable log X has an extreme value distribution which is discussed in 
detail in Chapter 22. 

The information generating function for the standard distribution in 
(21.10) is 
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Setting uxc = v (taking u > 0 and noting that c > O), we obtain 

from which the entropy of the distribution is 

- T'(1) = 
( c  - 1 ) ~  

- logc + 1. 
C 

A detailed account of these and other properties of the Weibull distribution 
has been presented by Lehman (1963). 

3 ORDER STATISTICS 

Let XI, X,, . . . , X,, be independent and identically distributed Weibull ran- 
dom variables with density function in (21.3) and cumulative distribution 
function (21.4); further, let Xi I Xi I - - . 5 XA denote the order statistics 
obtained from these n variables. The density function of the smallest order 
statistic Xi is 

It is readily observed from (21.20) that Xi is also distributed as a Weibull 
random variable, except that a is replaced by an-'/". In other words, the 
Weibull distribution is "closed under minima." 

From the density function and joint density function of order statistics, 
exact explicit expressions for the single and the product moments of order 
statistics can be derived. For this purpose it is convenient to work with order 
statistics for a random sample from the standard Weibull distribution (21.10), 
since the corresponding results for the three-parameter distribution (21.3) 
can be obtained by using the linear transformation 6, + ax:. 

The density function of X: (1 I r I n )  is 
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From (21.21), we obtain the kth raw moment of X: to be 

n! r-1 - - (_I) ' ( '  ; l ) i w e - x c ( n - r + i + l )  x k 

( r  - l)!(n - r ) !  i=o  

n ! - - r(1 + yil ( - I ) ~ ( ~  ; j - 
( r  - l)!(n - r)!  i=o ( n  - r + i + 1) l+(k/c) ' 

Using (21.22), which is due to Lieblein (1955), Weibull (196%) tabulated 
means and variances of order statistics for n = 5(5)20 and c-' = O.l(O.1)l.O. 
Govindarajulu and Joshi (1968) similarly tabulated means and variances of all 
order statistics for n up to 10 and c = 1,2,2.5,3(1)10. Harter (1970) pre- 
sented a more extensive table of means of order statistics for samples of sizes 
up to 40 and c = 0.5(0.5)4(1)8. Recently Balakrishnan and Chan (1993a) have 
tabulated means and variances of all order statistics for n up to 20 and 

1 1 1 1  c = ~ , a ,  ~ , r ,  1.5(0.5)3,4(2)10. 
An alternate simple recursive method of computing the single moments 

has been proposed by Balakrishnan and Joshi (1981). David and Shu (1978) 
showed that for an arbitrary distribution with distribution function Fx(x), 

with Fxb,n = 1 for all x so that (21.23) is true for r = 1 as well. Further, for 
any arbitrary distribution we have the relation [David (1981, pp. 46-47); 
Arnold, Balakrishnan, and Nagaraja (1992, pp. 11 1-1 1211 

( r  - l)Fx:,,(~) + (n -' + l)Fx;-,Jx) = nFx:- ln-X~)  (21.24) 

which, together with (21.23), readily yields 

n - r + l  
Fx: J x )  = Fx;-, .-I*) - (: I : ) ( ~ x ( X ) ) ~ - l ( l  - F x ( ~ ) )  . (21.25) 

Then, using [Parzen (1960, p. 212)1 

E[(X;:.)'] = klmxk- ' (1  - F ~ ;  Jx)}  dr 
0 
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and substituting for FX;,,(x) from (21.25), we get 

where 

m - x ~  r - l  
J ~ ( ~  - r  + 1, r  - 1) = j x k - l e - x c ( n - r + l )  ( 1 - e  ) &. (21.27) 

0 

These quantities can be computed recursively using 

and then the single moments may be computed recursively from (21.26). 
The joint density function of X: and X,' (1 I r  < s  I n )  is 

n ! xc r - 1  
P X ; , X : ( X ,  Y )  = ( 1  - e -  j 

( r  - l ) ! ( s  - r  - l ) ! ( n  - s ) !  

y C  s - r - 1  
{ e - x c  - e- ) e -xccxc - l  - y c ( n - s + l )  e  cyc-I,  

0 < x  < y  < 00. (21.29) 

From (21.29) we obtain the product moment of X: and X,' as 

n!c 2 r - 1  s- r- 1  
- - c ( - l ) s - r - l - j + i  

( r -  l ) ! ( s  - r  - 1 ) ! ( n  - s ) !  i = o  js,, 
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where +,(a, b) is Lieblein's +-function defined by 

Through a differential equation approach, Lieblein (1955) has shown that for 
a 2 b, 

where' Ip(a, b) is incomplete beta function ratio defined by (see Chapter 1, 
Section A51 

1 
Ip(a,b) = p t a l ( l  - ) dt, 0 < p  < 1. (21.33) 

B(a ,b)  0 

When a < b, 4,(a, b) may be computed from the identity 
I 

After computing the +function from (21.32) and (21.341, the product 
moments (and hence the covariances) of Weibull order statistics may be 
computed from the formula in (21.24). Weibull(1967b) presented covariances 
of all order statistics for n = 5(5)20 and c-' = O.l(O.1)l.O. Govindarajulu 
and Joshi (1968) tabulated covariances of order statistics for sample sizes up 
to 10 and c = 1,2,2.5,3(1)10. Balakrishnan and Chan (1993a) prepared 
tables of covariances of all order statistics for n up to 20 and c 
= L L ~ L  5 ,  4 ,  ?, 2 ,  1.5(0.5)3,4(2)10; see also Adatia (1994) for some extended tables 
of covarlances. 

The tables of means, variances, and covariances of order statistics are 
necessary for the determination of best linear unbiased estimators of the 
parameters 5, and a (when c is assumed to be known), as explained in the 
following section. We note here that Pate1 and Read (1975) and Pate1 (1975) 
discussed bounds on moments of linear functions of order statistics. Malik 
and Trudel (1982) derived the density function of quotient of two order 
statistics. Recurrence relations satisfied by the product moments of order 
statistics were derived by Khan et al. (1983). By noting from (21.12) that 
negative moments (of order r > -c) do exist for the standard Weibull 
random variable, Khan, Khan, and Parvez (1984) discussed the negative 
moments of all Weibull order statistics (of order greater than -c) .  Further 
relevant discussions on order statistics have been provided by Miller (1976), 
Harter (1988), and Shor and Levanon (1991). 
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4 METHODS OF INFERENCE 

For the two-parameter Weibull distribution (with 6, = 0) with probability 
density function 

numerous papers have appeared over the years dealing with exact or approxi- 
mate methods of inference for the shape parameter c and the scale parame- 
ter a. In this case the transformed variable Y = log X is easily seen to have 
the probability density function 

which is a Type 1 extreme-value distribution (a member of the location-scale 
family of distributions) with the location parameter q = log a and the scale 
parameter 6 = l/c. Due to this fact, given a sample from the two-parameter 
Weibull distribution (21.351, after using the logarithmic transformation on 
the data and estimating the parameters q and 6 using some method or 
criterion, one can obtain estimators of the parameters a and c through the 
relationships a = e" and c = 1/6. Of course some properties of the estima- 
tors of the parameters q and 6 will be passed on to the transformed 
estimators of the parameters a and c (e.g., the maximum likelihood prop- 
erty), while some other properties may not be inherited by the transformed 
estimators of a and c (e.g., the unbiasedness property). Almost all the papers 
that deal with inference for the two-parameter Weibull distribution are based 
on this transformation idea. Since these results, in principle, were derived 
primarily in developing inference for the location and scale parameters q 
and 6 of the Type 1 extreme-value distribution, they will be discussed in 
detail in Chapter 22. Other inference-related topics like tolerance limits and 
intervals and prediction limits and intervals are handled in Sections 5 and 6, 
respectively. Once again, most of the developments in these topics are also 
based on the transformation idea. As a result our primary focus in this 
section will be on methods of inference developed for the three-parameter 
Weibull distribution, or those results that do not hinge upon the transforma- 
tion of the Weibull data to the extreme-value form. 

4.1 Moment Estimation 

By equating the first three moments of X to the first three sample moments 
and solving, it is possible to determine the moment estimators of to, a ,  
and c. The value of the first moment ratio (fi) depends only on c, and 
once fi is estimated from the sample coefficient of skewness ( 6 1 ,  c can 
be determined numerically. Using this estimated value of c, a is determined 
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from the standard deviation, and finally 5, is determined from the sample 
mean. If 6,  is known, then c can be estimated from the ratio (standard 
deviation)/(mean - 5,). A nomogram provided by Kotel'nikov (1964) for this 
purpose is presented in Section 8, Figure 21.6. Dubey (1966f, 1967b) provided 
tables of asymptotic relative efficiency of moment estimators. 

Using the formula for the moments of X, it is possible to construct simple 
estimators of c-', applicable when 5, is known. Menon (1963) proposed the 
estimator 

- 6 
(c-l) = - x {Sample standard deviation of log XI, log X2, . . . , log X,} 

T 

which is an asymptotically normal and unbiased estimator of c-'. Its variance 
is {1.1 + O(n- '))(~-~/n),  and its asymptotic efficiency, relative to the 
Cram6r-Rao lower bound, is 55%. Kagan (1965) constructed a generalization 
of Menon's estimator with a higher asymptotic efficiency. 

Weibull (1967b) proposed that estimation of the parameters can be based 
on the first and second moments about the smallest sample value 

As n -, a, the expected value of R,/R? tends to a function f(c) of the 
shape parameter c. By solving the equation 

an asymptotically unbiased estimator of c can be derived. The table pre- 
sented below, taken from Weibull (1967b), gives some values of f(c): 
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For c 2 0.5, this estimator is markedly more accurate than the estimator 
based on central moments. The asymptotic efficiency (compared with MLEs) 
decreases from 97.6% when c = 0.5 to 60.8% when c = 1.0, while that of a 
central moment estimator (obtained by equating fi to the sample value 
A) decreases from 17.1% to 7.6% over the same range of values of c. Of 
course the moment estimator uses the third central moment, while R2/RT in 
(21.39) uses only the first two moments, so one might expect the former to be 
relatively inaccurate. 

The statistic 

1 " 
- log a - - C log Xi 
Y { n , = 1  1 

is an unbiased estimator of c-', with variance 

where y is Euler's constant. Menon (1963) pointed out that this estimator, 
apart from its unbiasedness, does not have very many desirable properties; 
for example, its efficiency is as low as 12%. On the other hand, the estimator 
of a derived from (21.40), given by 

is asymptotically unbiased, with variance 

This estimator has an asymptotic efficiency of 95%. 
Moment estimation of the shape parameter c was also discussed by 

Mihram (1977). The properties of moment estimators for the three-parame- 
ter case have been discussed by many authors, including Newby (1980, 1984) 
and Cran (1988). A nomogram for estimating all three parameters has been 
prepared by Sen and Prabhashanker (1980). Tables that would facilitate the 
method of moments estimation of all three parameters have been presented 
by Blischke and Scheuer (1986). Bowman and Shenton (1983) have given 
series expressions for moments of these moment estimators. 
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4.2 Best Linear Unbiased Estimation 

Let Xi,,, X;+,, . . . , XL-, be a doubly Type I1 censored sample from the 
three-parameter Weibull distribution in (21.3), where the smallest r and the 
largest s lifetimes (out of n components based on a life test) were not 
observed. Let Zi+ ,, Z;+,, . . . , ZA-, be the corresponding doubly Type I1 
censored sample from the standard Weibull distribution (21.10), where 
Z,! = (Xi' - 5,)/a for r + 1 I i I n - S. Further, let us denote E[Z,!] by pi, 
Var(Z,!) by Cov(Z:, ZJ.) by q, j, and write 

Explicit expressions for these quantities have already been presented in 
Section 3, wherein the available tables for these quantities have also been 
listed. Realize, however, that these depend on the value of the shape 
parameter c. With the assumption that the shape parameter c is known the 
BLUEs of the location (or threshold) and scale parameters 5, and a can be 
derived as shown below. 

With xT = (X;+ ,, X;+2, . . . , X; -J, upon minimizing the generalized 
variance 

with respect to the unknown parameters 5, and a ,  we obtain the BLUEs of 
to and a as 
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The variances and covariance of these estimators are given by 

The coefficients ai and bi and the values of Vl, V2, and V3 have been 
tabulated by various authors for different choices of the sample size n and 
values of the shape parameter c. For example, Weibull (1967a) presented 
tables for n = 5(5)20 and c-' = O.l(O.1)l.O. Govindarajulu and Joshi 
(1968) presented tables for sample size n up to 10 and c = 1,2,2.5,3(1)10. 
Balakrishnan and Chan (1993b) prepared tables for n up to 20 and 

1 1  1 1  c = 5,4,5,3,1.5(0.5)3,4(2)10. 
Musson (1965) provided early discussion on the determination of the 

BLUES of 6, and a. Stump (1968) proposed nearly best unbiased estimators 
of (, and a as functions of order statistics. Further discussion and develop- 
ments on the best linear unbiased estimators of the parameters (, and a 
obtained through least-squares theory have been provided by Friedman 
(1980, Friedman and Gertsbakh (1980, Engeman and Keefe (19821, and 
Yildirim (1990). 

For the case when 5, can be assumed to be zero, Vogt (1968) has 
constructed a median-unbiased estimator of c. Since = (X,!/aY ( j  = 

1,2,. . . , n) are order statistics corresponding to independent standard expo- 
nential variables, it can be shown that 

There is a unique value of w (> 03, say w,/,, such that the probability is 
equal to i. Then, since the events Y,'/Y,' s w,/, and 

c g (log X:, - log x;) - '(log ~ 1 ~ 2 )  

are identical, it follows that c is the median of the distribution of 

(log x; - log Xi) - '(log w,/,). 

Some values of log,, wl/,, based on Vogt (19681, are shown in Table 21.2. 
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Table 21.2 Values of g, = log,, w,,, such that g,(log,o XL - log,, Xi) -' 
is a Median-Unbiased Estimator of c 

n 2 3 4 5 

g, 0.477 0.802 1.009 1.159 1.278 1.375 1.458 1.530 1.594 

For large samples, when 5, is known to be zero, Dubey (1967~) suggested 
using the estimated 16.7% and 97.4% quantiles, y,, y,, respectively, and 
estimating c by the formula 

This estimator is asymptotically unbiased and normal, with approximate 
variance 0.916c2/n. 

The construction of best linear unbiased estimators for c-' and log a 
using the first k order statistics has been studied by White (1965). For the 
special case when k = 2, the following estimators have been suggested by 
Leone, Rutenberg, and Topp (1960): 

1. If 6,  is known to be zero, c is estimated by solving the equation 

2. If the value of 5, is not known but that of c is known, then 5, is 
estimated as 

3. If the values of both a and c are known, then 5, is estimated as 

This is an unbiased estimator of 5,. 
4. If the value of c is known, a is estimated as 
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5. Finally, if the values of both 5, and c are known, a may be estimated 
as 

(x;+l - &o)[log{(n + l ) / (n  - P ) I I - ~ / ~  
using the single order statistic X;+,, where p is the largest integer not 
exceeding n(l - e-I). 

Note that a linear function of order statistics (Xi) is also a linear function 
of c-'-th powers {z;"~) or order statistics corresponding to n independent 
exponentially distributed variables. If all the sample were available, then it 
would be best to use a linear function of the Zj's (i.e., of Xjc's). While this 
may not be so when incomplete sets of order statistics are used, it appears 
quite likely that if c is known, functions of form CA,X,!" will be more useful 
than those of form CAjXi. 

4.3 Asymptotic Best Linear Unbiased Estimation 

By making use of the asymptotic approximations (see Chapter 12), we have 

and 

where p(.) and F - ' ( . )  are the density function and the inverse cumulative 
distribution function of the standard Weibull distribution (with 5, = 0 and 
a = I), and ni = [nAi] + 1. Then the asymptotic best linear unbiased estima- 
tors (ABLUEs) of 5, and a may be derived, based on k optimally selected 
order statistics (or quantiles), by determining the optimal values of 
A,, A,, . . . , A,, subject to 0 < A, < A, < . . . < A, < 1, that minimize some 
norm of the variance-covariance matrix of the estimates. 

Using the approximations in (21.50) and (21.511, we can write the asymp- 
totic approximations for the variances and covariances of the BLUES (,* and 
a* in (21.47) through (21.49) as 

a 
COV(&,*, a*) = - - x v12 

VllV22 - v:, ' 
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In the above formulas 

with A, = 0, A,+, = 1, p(F-'(A,)) = F-'(A,)~(F-'(A,)) = p ( ~ - l ( ~ k + l ) )  = 

F-'(A,+ l )p(F- l (~k+l))  = 0. Then the ABLUEs [,** and a** are derived 
by determining the optimal spacing (A,, A,, . . . , A,), subject to 0 < A, < A, 
< ... < A,, which minimizes the determinant or the trace of the variance- 
covariance matrix of (,* and a*. For example, if the determinant norm is 
used for this purpose, then we will need to determine A,, A,, . . . , A, that 
maximize the quantity (VllV2, - VA). 

Similarly, if the threshold parameter (, is unknown but the scale parame- 
ter a is known, then the ABLUE [,** is derived by determining A,, A,, . . . , A, 
to maximize Vll since in this case the asymptotic approximation for the 
variance of the BLUE [,* is given by 

On the other hand, if the threshold parameter 8, is known but the scale 
parameter a is unknown, then the ABLUE a** is derived by determining 
A,, A,, . . . , A, that maximize V,,, since in this case the asymptotic approxima- 
tion for the variance of the BLUE a *  is given by 

Estimation of the scale parameter a by the use of one optimally selected 
order statistic has been discussed by Quayle (1963) and Moore and Harter 
(1965). Clark (1964) has discussed the estimation of a by the use of k 
optimally selected order statistics. Moore and Harter (1966) have discussed 
the interval estimation of the parameter a based on one optimally selected 
order statistic. Murthy and Swartz (1975) discussed the estimation of parame- 
ters based on two order statistics. Chan, Cheng, and Mead (1974) discussed 
the simultaneous estimation of the parameters 6, and a based on k opti- 
mally selected order statistics [also see Hassanein (1971)l. Hassanein, Saleh, 
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and Brown (1984) provided estimators based on k optimally selected order 
statistics from complete as well as Type I1 censored samples. Zanakis and 
Mann (1982) proposed a simple percentile estimator for the shape parameter 
c when all three parameters are unknown. 

For distribution (21.2), the cumulative distribution function is 

Fx(x) = 1 - exp - - [ j X  R ~ ~ ) ~ ] -  
This equation can be written 

Suppose that i P i ,  J?pj, J?pk are estimators of the values of X correspond- 
ing to Fx(x) = pi, p,, p,, respectively. (In a large sample kPi would be the 
[ (n  + l)pi]-th order statistic.) Then the three equations 

could be solved, yielding the estimators e*, a*, and c*. 
The equation for c* is 

J ?  - 2,  [ - log(1 - pi)] 'Ic* - [ - log(1 - P,)] l"* - - 

f -1. [ - log(1 - p,)] - [ - log(1 - P,)] 
1/c* 

If it can be arranged that 

then the above equation for c* simplifies to 

Dubey (1967~) has discussed the optimal choice of pi, pi, and p,. 
If the value of 6, is known (e.g., zero), then a variety of methods of 

estimating c and a is available. The function Y; = 1 - exp[-(Xj/a)c] is the 
probability integral transform of Xj if X, has distribution (21.2) with 6, = 0. 
If Y; I Y,' 5 . . I Y,' are the corresponding order statistics, then 



650 WEIBULL DISTRIBUTIONS 

and the v ' s  are distributed as order statistics in a random sample from the 
standard uniform distribution over the interval 0 to 1 [see (26.1) of Chapter 
26 with a = h = $1, and so E[I;'l = j/(n + 1). 

Estimators a*, c* of a ,  c, obtained by minimizing 

with respect to c and a, are 

x;= ,( K, - E )  (log Xi - log X) 
C* = 

Z q= ,(log x; - log x) 
7 

where 

n 

log X = n-' log Xi 
j= 1 

These estimators were proposed by Gumbel (1958). 
Estimators of similar form, with K,  replaced by log[Cj,,(n - i + I)-'], 

were proposed by Bain and Antle (19671, and with K j  replaced by 

n - j + (3/2) 
log[- log n - j  I 

by Miller and Freund (1965). [A further estimator was obtained by Bain and 
Antle (1967), replacing K j  by minus expected value of the (n - j + 1)-th 
order statistic of random samples of size n from the standard Type 1 extreme 
value distribution (22.26) of Chapter 22; see also Kimball (1960) and Mann 
(1968). Bain and Antle (1967) show that for all estimators of this form the 
distribution of c*/c does not depend on any parameter (and so confidence 
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intervals of c can be constructed from an observed value of c*). They further 
found, from a Monte Carlo investigation, that all the estimators (with various 
values of K j )  just described are comparable with (and rather better than) 
Menon's estimator (21.40). 

The c*'s are biased estimators of c, but the bias could be removed by an 
appropriate corrective multiplier (equal to {E[c*/c]]-I). Bain and Antle give 
values for this multiplier. 

Sometimes it is desired to estimate the "reliability," that is, 

R ( x )  = Pr[X > x ]  = exp - - [ 
or, if 5, be known to be zero, exp[ - ( ~ / a ) ~ l .  Of course, if 4,  c^ are maximum 
likelihood estimators of a, c, respectively, then exp[ -(x/4)" is a maximum 
likelihood estimator of R(x). 

4.4 Minimum Quantile Distance Estimation 

In the case of the three-parameter Weibull distribution, the method pro- 
posed by Carmody, Eubank, and LaRiccia (1984) provides a minimum 
quantile distance estimator for the parameter 8 = ( to ,  a ,  c). Parr 
and Schucany (1980) presented a useful discussion on minimum distance 
estimation using the empirical cumulative distribution function, while 
LaRiccia (1982) gave a lucid account of the quantile domain approach. 

Let Q(A) = -log(l - A), 0 < A < 1, denote the quantile function of the 
standard exponential distribution. Then the quantile function corresponding 
to the three-parameter Weibull distribution in (21.3) is 

Define the sample quantile function as 

For a given set of k < n percentile points h = {A,, A,, . . . , A,) with 0 < A, < 
A, < - .  < A, < 1, let 
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and 

QA(0) = (Q(Al;O),Q(A,;O) , . . . , ~ ( ~ r ; e ) ) ~ >  

where Q(A; 0) and Q(A) are as defined in (21.60) and (21.61), respectively. 1 Then the minimum quantile distance estimator of 0 is the vector that 
+ i 

minimizes the quadratic form 

as a function of 8, where W(B) is a user-defined k x k matrix of weights that 
may be chosen to depend on 0. Thus (21.62) provides an entire family of 
estimators G,(w), indexed by both A and W. A good choice of W, suggested 
by Carmody, Eubank, and LaRiccia (1984), is 

where R;' = min(A,, hi) - A i A j  and H,(c) is the k X k diagonal matrix 
having its ith diagonal element to be c(l - A,){Q(A,))('-')/~. Since R,' has a 
tridiagonal inverse whose typical row has nonzero entries 

the elements of W*(c) in (z1.63) can easily be evaluated. 
Although the estimator B,(W) will not have a closed form, the estimator 

can be computed without much difficulty, using a standard minimization 
routine. The interesting thing about this method of estimation is that it 
requires no modifications if the sample is Type I1 right censored, left 
censored, or doubly censored. Carmody, Eubank, and LaRiccia (1984) have 
established some asymptotic properties of the estimator including the 
uniqueness, consistency, and asymptotic normality. Further they have made 
some suggestions on the selection of A, since the variance-covariance matrix 
of the estimat9r is a function of the specific quahtiles selected, even though 
the estimator 0,(W*) is optimal for any given A. 

4.5 Modified Moment Estimation 

For the three-parameter Weibull distribution, Cohen, Whitten, and Ding 
(1984) suggested the use of the traditional method of moments equations 
E [ X l  = X and VadX) = S2 along with the equation E [ X ; ]  = Xi for the 
simultaneous estimation of the parameters 5,, a, and c, and this is the 
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method of modified moment estimation. Realizing from (21.13) and (21.22) 
that 

E [ X l  = so + ffr l(c)  

Var(X) = a2{r2(c) - r?(c))  (21.64) 

the estimating equations readily become 

where r,(c) = r [ l  + (k/c)l, = (l/n)C7='=,Xi is the observed sample mean, 
s2 = [l/(n - l)]Cy= l(Xi - ZI2 is the observed sample variance, and XI is 
the observed smallest order statistic. After a few simple algebraic manipula- 
tions, the three equations of (21.65) reduce to 

where c. = T;(c )̂ = r [ l  + ( j /c^)] .  Equivalent expressions for and d that 
are convenient for use are 

d=SC(c^)  and i 0 = X - s ~ ( c ^ ) ,  (21.67) 

where C(c) = 1/ 4- and D(c) = rl/ d m .  
With f ,  S2, and Xi available from the sample data, (21.66a) need to be 

solved for c ,̂ and subsequently 5^, and d can be determined from (21.66b) and 
(21.66~1, respectively. Although this method of estimation is applicable for all 
values of the shape parameter c, Cohen, Whitten, and Ding (1984) pointed 
out that some computational difficulties may be encountered when c < 0.5 (a 
case not of great practical importance). Graphs of {r2(c) - r?(c))/ 
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l, 

Figure 21.4 Graphs of (r, - T:)/[(l - n-1/c)~l]2 

((1 - n-1/c)r,(c)}2 are presented in Figure 21.4. Similarly graphs of C(c) 
and D(c) are presented in Figure 21.5. 

Even though asymptotic variances and covariances for the maximum 
likelihood estimates are not strictly applicable for the modified moment 
estimates presented here, a simulation study carried out by Cohen and 
Whitten (1988) disclosed close agreement between simulated variances and 
corresponding asymptotic variances. However, when all three parameters to, 
a, and c have to be estimated, the asymptotic variances are valid only if 
c > 2. In fact, in order to avoid possible computational difficulties in practi- 
cal applications, c needs to be greater than 2.2 approximately (see the next 
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Figure 21.5 Graphs of C(c)  and D(c)  

Section). For more details on this method of estimation, readers are referred 
to the books by Cohen and Whitten (1988) and Balakrishnan and Cohen 
(1991). 

Instead of the simple modified moment equation E[X;] = Xi, Cohen and 
Whitten (1982) considered some other possible equations: 

giving -log[n/(n + 111 = [(Xi - &,)/a]C, and 

median(X) = Sample median, x,,, (21.69) 

giving 5, + a(l0g2)''~ = x,,,. Cohen and Whitten (1982) have compared 
the performance of these estimators with the MLEs (discussed in Section 4.6) 
and some modified maximum likelihood estimators (discussed in Section 4.7). 
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4.6 Maximum Likelihood Estimation 

The most usual situation is 6, known (e.g., zero, without loss of generality) 
but c unknown, so both c and a must be estimated. Given sample values 
from a random sample of size n from the two-parameter Weibull distribution 
with probability density function 

the maximum likelihood estimators 2 and 6 of c and a ,  respectively, satisfy 
the equations 

and 

If 5, is not equal to zero, then each Xi is replaced by Xi - 6, in the above 
equations. The value of 2 needs to be obtained from (21.72) and then used in 
(21.71) to obtain 8. It should be noted that if c were in fact known to be 
equal to 2, then 6 in (21.71) would be the maximum likelihood estimator 
of a. 

If the parameter 6, is also unknown, then the maximum likelihood 
estimates 2, 6 ,  and lo satisfy the equations 

and 

If the value & satisfying (21.73H21.75) is larger than Xi, then it is the MLE 
of 6,. Otherwise, the MLE is 5 ,̂ = Xi in which case (21.73) and (21.74) must 
be solved for & and 2. It should be noted that the MLEs are "regular" (in the 
sense of having the usual asymptotic distribution) only for c > 2. If c is 
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known to be in the interval (0, I), then Xi is a "superefficient" estimator for 
6,. If the MLEs are regular, then Dubey (1965) has given for large n (when 
5, is known) 

where $(-) and I,+'(.) are digamma and trigamrna functions (see Chapter 1, 
Section A2). 

Haan and Beer (1967) suggested that (21.74) be solved for 2, for each of a 
series of trial values of to. The value of d is then easily obtained from (21.73) 
and the value of the likelihood can be calculated. An alternative method 
would be to compare the values of & obtained from (21.73) and (21.75). 
Monte Carlo studies conducted by Aroian (1965) and Miller (1966) estab- 
lished that 2 is a biased estimator of c, the relative bias depending on sample 
size but not on c. For sample size 170, for example, the bias is about 0.8%. 

Based on a Type I1 censored sample Xi I Xi I - . XL with the largest 
n - k observations censored, Cohen (1965) has given the maximum likeli- 
hood equations for estimators of t o ,  a, and c. For example, if 5, is known to 
be 0, then the equations are of form similar to (21.71) and (21.72) but with 

n-l,  C x:, C X: log Xi, C log Xi 
i = l  i = l  i = l  

replaced by 

k 

C xie log ~ , l  + ( n  - k)XLt log x;, 
i=  1 

respectively. For samples of size 10, censored by omission of the five largest 
values, McCool (1966) presented estimated percentile points of the distribu- 
tion of 2/c,  based on sampling experiments. The estimates are based on five 
sets of 1000 samples each, for c = 0.9,1.1,1.3,1.5,1.7, respectively. It is 
noteworthy that the estimated value of E[?/cl is 1.37, indicating that 2 
should be divided by 1.37 to obtain an approximately unbiased estimator of c. 
McCool also showed that the distribution of 2 log(J?JxP), where 2p is the 
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maximum likelihood estimator of 

does not depend on any of the parameters. 
Since (21.73)-(21.75) do not yield explicit solutions for the estimates, 

Cohen (1965) suggested eliminating a' from the first two equations to give 

When 6, is known, (21.76) can be easily solved for c .̂ When 5, is unknown, 
Cohen suggested the following approach: Select a first approximation lo < Xi, 
and solve (21.76) and (21.73) for c^ and &; then verify whether the likelihood 
equation for 6,  in (21.75) is satisfied for these values of the estimates, and 
iterate until a pair of estimates for 6, is attained that is suffi5iently close. 

The asymptotic variance-covariance matrix for the MLEs t o ,  & and c^ can 
be shown to be 

where 
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Here 

with 

The variance-covariance factors in (21.78) have been tabulated by Cohen and 
Whitten (1988, p. 48) and Balakrishnan and Cohen (1991, p. 125) for various 
values of the shape parameter c > 2. 

Harter (1970, pp. 104-106) has presented similar expressions for the case 
where the available sample is doubly Type I1 censored. Harter has also given 
some tables of the variance-covariance factors for selected values of c and 
different levels of censoring at both ends. Lawless (1982) and Bain and 
Engelhardt (1991a) have also discussed iterative methods of determining the 
maximum likelihood estimates of the parameters. Cohen (19751, Lemon 
(19751, and Wingo (1973) have discussed the maximum likelihood estimation 
of parameters where the available sample is progressively censored. 

Escobar and Meeker (1986a) presented the Fisher information matrix 
based on complete and censored data. Pertinent discussion on the maximum 
likelihood estimation for this case may also be seen in the paper by Smith 
(1985) discussing the problem in general for the class of nonregular .cases. 
Zanakis and Kyparisis (1986) reviewed various maximum likelihood estima- 
tion methods available in literature for the three-parameter case. Zanakis 
(1979) also carried out a simulation study comparing various simplified 
estimators proposed for the three-parameter case. 

By adapting Fisher's conditional approach to inference, Lawless (1978, 
1980, 1982) has developed procedures for exact inference concerning the 
parameters and some functions of them such as quantiles. Although these 
exact conditional procedures have the advantage of not requiring extensive 
tables like the unconditional procedures, numerical integration is usually 
necessary for their application. For this reason DiCiccio (1987) proposed a 
method of approximate conditional inference based on normal approxima- 
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tions to the distributions of signed square roots of likelihood ratio statistics. i 
By comparing the results with those of Lawless (1982), DiCiccio has shown 
that his approximate conditional method provides fairly accurate approxima- 
tions to the exact method even in case of small samples. DiCiccio, Field, and 
Fraser (1990) have described two tail probability approximations for this 
problem in order to avoid high-dimensional integrals. 

4.7 Modified Maximum Likelihood Estimation 

Cohen and Whitten (1982) proposed modified maximum likelihood estima- 
tors (MMLEs) of 5,, a ,  and c as alternatives for use when the MLEs are 
likely to be unsatisfactory (when c < 2 or perhaps 2.2); these estimators also 
possess some advantages with respect to ease of computation, bias, and 
variance for all values of c. The various MMLEs proposed by Cohen and 
Whitten (1982) are based on replacing the likelihood equation for 5, in 
(21.75) with alternate functional relationships of the following forms: 

1 
E[Fx(X;)I = ;;;-T reducing to 

E[X;] = Xi reducing to 

E [ X ]  = X reducing to 5, + ar 1 + - = X, (21.81) ( :I - 

Var(X) = s2 reducing to 

E [ X,,,] = X,,, reducing to 

Here, X,,, denotes the sample median. Then (21.73), (21.74), and one of 
(21.79H21.83) are solved jointly to obtain the MMLEs. Through a simula- 
tional study, Cohen and Whitten (1982) have also shown that the entries in 
the asymptotic variance-covariance matrix of the MLEs in (21.77) and (21.78) 
provide a reasonable approximation to variances and covariances of the 
MMLEs (when c > 2). Further discussion on the MMLEs may be found in 
Cohen and Whitten (1988), Balakrishnan and Cohen (1991), and Cohen 
(1991). 
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Wyckoff, Bain, and Engelhardt (1980) proposed the following procedure 
for estimating the parameters 5,, a ,  and c. Xi is used as an initial estimate 
of 5,. An initial estimate of c is obtained by taking 5, = Xi and using the 
estimator of c proposed by Dubey (1967~) given by [see Section 4.21 

where X, and Xh are the 94th and 17th sample percentiles, respectively. 5, 
is reestimated from (21.80), with a replaced by (X - (,)/Ill + (l/c)] [from 
(21.81)]; ĉ , is substituted for c, and the resulting equftion is solved for 5,. 
The solution is the new estimate for to, depoted by 5,. The parameters a 
and c are then estimated by assuming 5, = 5, and using the estimators given 
by Engelhardt and Bain (1977). Proceeding somewhat similarly, Kappenman 
(1985b) proposed the following estimators of to, a ,  and c: 

c^ = nk, , , (21.86) 
[ s/( n - s)] EL. + iog(X; - $0) - E;= 1 log(~ i '  - 5 0) 

and 

where c^, is given by (21.84), s = [0.84n] with [ - I  denoting the integer part, 
X,,, is the 63rd sample percentile, and k, is a constant that depends upon the 
sample size [Engelhardt and Bain (1977)l. Through a simulation study Kap- 
penman (1985b) has displayed that the mean squared errors for the estima- 
tors of 5, and c in (21.85) and (21.86) are always considerably smaller than 
those for the corresponding MMLEs; the same is true for the estimators of 
a ,  except for the case where c = 0.5. 

4.8 Bayesian Estimation and Shrinkage Estimation 

Considerable amount of work dealing with Bayes, empirical Bayes, and 
shrinkage estimation methods for the parameters of the Weibull distribution 
has been done since 1970. Volumes by Tsokos and Shimi (1977) and Martz 
and Waller (1982) will provide interested readers with many details and 
developments in this direction. 

Soland (1966, 1967) initiated the Bayesian estimation of the Weibull 
parameters. Papadopoulos and Tsokos (1975) derived Bayesian confidence 
bounds for the Weibull model. By considering a two-parameter form under 
stochastic variation of the shape and scale parameters c and a ,  Tsokos and 
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Rao (1976) described the Bayesian analysis. While Kamat (1977) discussed 
the Bayesian estimation of the system reliability using Monte Carlo simula- 
tion, Martz and Lian (1977) considered the Bayes and empirical Bayes point 
as well as interval estimation of the reliability; see Bennett (1977) for further 
results on empirical Bayes estimates. Lingappaiah (1977) presented the 
Bayesian approach to the prediction problem based on complete and cen- 
sored samples; also see Tziafetas (1987) for further discussion on this issue. 
By considering the two-parameter Weibull distribution, Erto (1982) derived 
practical Bayesian estimators for the parameters a and c. Bayesian estima- 
tion of the parameters as well as the reliability function for the three-pararn- 
eter case has been discussed by Sinha (19861, Sinha and Guttman (19881, and 
Sinha and Sloan (1988). Similar discussions have been made by Sinha (1982, 
1987) and Sinha and Sloan (1989) for mixtures of Weibull distributions. 
Singpurwalla (1988) and Singpurwalla and Song (1988) have presented a 
discussion on how to incorporate expert opinion in the reliability analysis 
based on Weibull distributions. Smith and Naylor (1987) compared the 
performance of the Bayesian estimators of the parameters to, a ,  and c with 
the corresponding maximum likelihood estimators. Canavos (1983) similarly 
compared the performance of the Bayesian and empirical Bayesian estima- 
tors of the parameters. Abdel-Wahid and Winterbottom (1987) proposed 
approximate Bayesian estimates for the reliability function and the hazard 
rate based on complete and censored data, while Dey and Kuo (1991) gave a 
new empirical Bayesian estimator based on censored data. 

An experimenter involved in life-testing experiments becomes quite famil- 
iar with failure data and hence may often develop knowledge about some 
parameters of the distribution. In the case of Weibull distribution, for 
example, knowledge on the shape parameter c can be utilized to develop 
improved inference for the other parameters. If an initia!zing value 8, of a 
parameter 8 is available, say, the shrunken estimator k8 + (1 - k)8, (0 < 
k < 1) for 8 as proposed by Thompson (1968) is more efficient than the 
estimator 8  ̂ only if 8 is close to 8, and is less efficient otherwise. This 
shrinkage estimation of the Weibull parameters has been discussed by a 
number of authors, including Singh and Bhatkulikar (1978), Pandey (1983, 
1988), Pandey, Malik, and Srivastava (1989), Pandey and Singh (1984), 
Pandey and Upadhyay (1985, 1986), and Pandey and Singl: (1993). For 
example, Singh and Bhatkulikar (1978) suggested performing a significance 
test of the validity of the prior value of c (which they took as 1). Pandey 
(1983) also suggested a similar preliminary test shrunken estimator for c. In a 
recent paper Pandey and Singh (1993) derived a test based on Q p e  I1 
censored data for the hypothesis Ho : c = c, versus HI : c # c, (by minimiz- 
ing the sum of the probabilities of the two types of error) and used it to 
propose another preliminary test shrunken estimator for c. The authors have 
shown that this estimator has higher efficiency and also Pitman's closeness 
than other shrunken estimators even in case of small sample sizes. 
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Then it is easily verified from (21.89) that 

forms a lower y tolerance limit for proportion p. 
Similarly from (21.88) we may define the tolerance limit U to be an upper 

y tolerance limit for proportion /3 (setting L = 6,)  if 

It can be constructed based on the pivotal quantity 

. Suppose that t,* denotes the lower y percentage point of the distribution of 
the pivotal quantity T* in (21.95); that is, 

Then it is easily verified from (21.94) that 

forms an upper y tolerance limit for proportion p. 
Tables of lower tolerance limits can also be used to determine lower 

confidence limits for the reliability function as originally observed by Lloyd 
and Lipow (1962, p. 204) in the case of normal distributions. Let R x ( t )  = 

Pr[X r t ]  = 1 - Fx(t)  denote the reliability at a specified time t .  Then a 
lower confidence limit for the reliability function R,(t)  can be obtained by 
setting t = L and then determining for a specified y the value of p that 
would make the statement in (21.92) to be true. The value of p thus 
determined would then be the lower confidence limit for the reliability 
function RX( t ) .  To see this, let d l  denote the observed value of the chosen 
estimate R x ( t )  for the given sample. Then, by setting 
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we obtain 

Now, we need to choose @ so as to satisfy 

[see (21.91) and (21.92)l. If the reliability function Rx(t) = @, then ~ - ' ( l  - 
@) = (-log @)'/' = (t - So) /a  so that (21.98) becomes 

iff 

or iff 

Thus we have Rx(t) = P to be the value of the reliability function which 
makes (21.99) to be true, and hence @ is the lower confidence limit for Rx(t). 
Such a value exists and is independent of the unknown parameters 5,  and a 
(for the case when the shape parameter c is known), since Dumonceaux 
(1969) has shown that the distribution of fix(t) depends only on the 
unknown parameter Rx(t). 

Thoman, Bain, and Antle (1970) discussed the determination of tolerance 
limits and the estimation of the reliability Rx(t) and also confidence intervals 
for the reliability function using the maximum likelihood method. This 
discussion is for the two-parameter Weibull distribution (with 5, = 0 or 
assumed to be known). Tables are also provided for the lower confidence 
limits of the reliability and hence the lower tolerance limits. Mann and Fertig 
(1973) presented similar tables based on the best linear invariant estimates of 
a and c (when 5,  = 0 or assumed to be known). The results of Thoman, 
Bain, and Antle (1970) were extended to the case of Type I1 censored 
samples by Billman, Antle, and Bain (1972), who also presented some 



necessary tables for the lower confidence limits of the reliability R,(t) when 
the censoring on the right is either 25% or 50%. For the two-parameter 
Weibull distribution, Lawless (1975) discussed the same issues using the 
conditional approach which does not require the construction of any tables 
and is applicable for complete as well as Type I1 censored samples. Mann 
and Fertig (1977) discussed the construction of tolerance limits and lower 
confidence limits on the reliability using the asymptotic linear estimators 
based on k optimally selected order statistics for the parameters a and c 
(when 5, = 0). Mann (1977) also examined the adequacy of an F-approxima- 
tion for a statistic involved in the derivation of lower confidence bounds on 
the percentiles of the distribution discussed earlier by Mann, Schafer, and 
Singpurwalla (19741, for Type I1 censored data. Mann (1978a, b) has made 
further investigation on calculating simple approximate small-sample lower 
tolerance bounds or confidence bounds for percentiles of the distribution 
based on a two-parameter Weibull accelerated life-testing model. Bain and 
Engelhardt (1981) provided some simple approximations for the distributions 
of pivotal quantiles (based on the MLEs) for the two-parameter Weibull 
model that are useful for construction of approximate confidence limits for 
the parameters a and c, and also in determining approximate tolerance 
limits and confidence limits on reliability. These involve the chi-square, t, and ' 

noncentral t distribution (see Chapters 18, 28, 31) approximations for the 
pivotal quantities. Based on the least-squares method and median plotting 
positions, Erto and Guida (1985) determined lower confidence limits for 
reliability (also useful for finding lower confidence limits for population 
quantiles), and presented the necessary tables for various sample sizes and 
different choices of Type I1 right censoring. 

All of these developments are based on the two-parameter Weibull 
distribution (taking 5, = 0) and hence, not surprisingly (as explained in the 
beginning of Section 4), use the logarithmic transformation of the Weibull 
data into the extreme-value form and then proceed with the location parame- 
ter q = log(a) and the scale parameter 6 = l/c. As mentioned earlier in 
Section 4, the Weibull distribution with unknown scale and shape parameters 
is rewritten in the familiar and convenient "location-scale form" of the 
extreme-value distribution that made all the above-mentioned derivations 
possible [with 17 and S appearing in (21.90)-(21.99) in place of 5, and a]. 

Johnson and Haskell (1984) considered the three-parameter Weibull dis- 
tribution in (21.3) and discussed a large-sample approach for deriving lower 
tolerance bounds. This is based on a large-sample approximation for the 
distribution of the maximum likelihood estimates established by Johnson and 
Haskell (1983). By means of a simulation study, they observed that n = 70 is 
even too small for obtaining a good approximate normal distribution for the 
proposed approximate tolerance limits. The approximation is observed to be 
particularly weak when f? is large (e.g., 0.951, with great improvement taking 
place when p is around 0.75. 
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6 PREDICTION LIMITS AND INTERVALS 

For the two-parameter Weibull distribution (with 5, = 01, Mann and 
Saunders (1969) used three specially selected order statistics to predict the 
minimum of a single future sample. Suppose that X:, XL, and X i  are the 
three selected order statistics from the available sample of size n. Further 
suppose that Y; is the smallest in a future sample of size N. Mann (1970) has 
presented tables for the factor v in the probability statement 

for y = 0.95 and selected values of n, N, r, p, and q. If Y;(,) denotes the 
minimum in the ith future sample, Hewett and Moeschberger (1976) showed 
that 

where the sizes N,, N,, . . . , Nk of the future samples all equal N. 
In a repairable system suppose that n breakdowns have occurred and that 

the times of occurrence follow a Weibull process (see Section 12 for details). 
Engelhardt and Bain (1978) discussed the prediction of the time of the next 
breakdown, say, T,,,, and in general the time T,,, of the kth future 
breakdown. In the case of the prediction of T,,,, they derived an exact 
closed-form prediction limit; for the general case of T,,,, they discussed the 
exact limit and also an approximate prediction limit. The y level lower 
confidence limit for T,,, is a statistic TL = TL(n, k, y)  such that 

The form of TL(n, k, y) is 

where 
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and y ,  -, satisfies the equation in y: 

j= l  n(n - 1) 

with 

(-1)'-'(n + k - I)! 
mi = 

( n  - l ) ! (k  - j ) ! ( j  - l )!(n + j -  I)!  

For the case k = 1, (21.103) can be written as 

- '1 
T'(n, 1 , ~ )  = tn (21.104) 

Assuming that a Type I1 right-censored sample is available from the 
two-parameter Weibull distribution (with 5, = O), Engelhardt and Bajn (1979) i 

3 
used the logarithmic transformation to change to the Type 1 extreme-value 4 
distribution form (as explained in the first paragraph of Section 4) and then , 
discussed the construction of prediction limits for the minimum and, in 
general, the jth smallest in a future sample of size N. These intervals are 
based on some closed-form estimates of the extreme-value parameters q 
(= log a) and 6 (= l/c) and F-approximations to the resulting pivotal 
quantities. Engelhardt and Bain (1982) subsequently presented a simplified 
approximation for the lower prediction limit for the smallest in a future 
sample of size N, this simplified limit is an explicit form in terms of the 
estimates of the extreme-value parameters q and 6 and the variances and 
covariance of these estimates. Sherif and Tan (1978) have discussed this 
prediction problem when the available sample is Type I1 progressively 
censored. Fertig, Meyer, and Mann (1980), along the lines of Engelhardt and 
Bain (1979), discussed the prediction of a single future observation through 
pivotal quantities based on the best linear invariant estimators of the ex- 
treme-value parameters q and 6 and presented the necessary tables of 
percentage points for different sample sizes and levels of censoring. 

Wright and Singh (1981) considered the problem of predicting the sth- 
order statistic Xi, having observed the first r order statistics in a sample of 
size n from a two-parameter Weibull distribution (with 5, = 0) when (1) n is 
fixed and (2) n is randomly distributed as a binomial variable. The strong 
assumption that the shape parameter c is known is made in this analysis. 
With the assumption that c is known, the prediction problem considered 
here becomes equivalent to that in the case of the scaled exponential 
distribution (see Chapter 19). 

Adatia and Chan (1982) used the maximin estimator and the adaptive 
estimator of a ,  both of which are robust as explained briefly in Section 4, to 
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construct prediction intervals for an order statistic Xi, having observed the 
first r order statistics Xi,. . . , Xi from a sample of size n from the two- 
parameter Weibull distribution (with 5, = 0). These authors assume that the 
shape parameter c is known to lie in the interval [c,, c,] and then use the 
maximin or the adaptive estimator to propose "robust" predictors of X,'. 
These predictors are taken to be linear functions of the observed order 
statistics Xi, Xi, .  . . , X: with weights determined from the guaranteed effi- 
ciency required. Necessary tables have also been provided by Adatia and 
Chan (1982). Under the same setup Balasooriya and Chan (1983) carried out 
a robustness study of four types of predictors of Xi, given Xi,. . . , Xi, 
assuming that it is only known that the shape parameter c lies in an interval. 
For this comparative study they considered the following four predictors: 

1. Best linear unbiased predictor 

where d(c) is the BLUE of a (see Section 4), Zj is the ith standardized 
order statistic (= X,'/a), X denotes the column vector consisting of the 
given r order statistics, V(c) is the variance-covariance matrix of 
(Z;, . . . , Z:), and w(c) is the r x 1 covariance matrix of ( Z ; ,  . . . , Zi) 
and Zi (1 s r < s  s n ) .  

2. Best linear invariant predictor 

3. Final linear unbiased predictor 

4. Cross-validatory predictive function 
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where a depends on the sample and is given by 

Balasooriya and Chan (1983) showed that the cross-validatory predictive 
function is the best in the sense of guaranteed efficiency; in addition this 
method does not require the knowledge of the covariances of Weibull order 
statistics or the inverse of an r x r matrix. 

Pandey and Upadhyay (1986) considered the prediction of the smallest or 
the ith order statistic from a future sample of size N having observed a Type 
I1 right-censored sample Xi,. . . , Xi from a sample of size n from the 
two-parameter Weibull distribution (with 5, = 0). They assume that the scale 
parameter a is known and then develop prediction limits by using the 
preliminary test estimator of the unknown shape parameter c proposed by 
Pandey (1983) (also see Section 4). 

As mentioned in Section 4.8, Tziafetas (1987) considered the Bayesian 
prediction of a single future observation, having observed a Type I1 right- 
censored sample from the two-parameter Weibull distribution (with 5, = 0). 
Bayesian predictive intervals are derived after assigning Weibull and uniform 
(c,, c2) prior distributions for the scale parameter a and the shape parameter 
c, respectively. Nigm (1990) derived similar Bayesian prediction bounds for 
order statistics from the same sample and also for order statistics from a 
future sample, having observed a Type I censored sample up to time t. Based 
on a Type I1 censored sample X i , .  . . , Xi from a sample of size n, Nigm 
(1989) had earlier discussed the derivation of Bayesian prediction bounds for 
the order statistic X,' ( r  < s n) from the same sample, and also for the 
order statistic Y;' in a future sample of size N. For this development Nigm 
(1989) used an informative prior family for the parameters a* and c of the 
bivariate form 

where c$ ( - )  and $(.) are increasing functions of c. Here the parameter a*  is 
given by and the reparametrized Weibull density is c a * ~ ~ - ' e - ~ * ~ ~ .  
The same Bayesian prediction problem had earlier been discussed by Evans 
and Nigm (1980a, b) but using the noninformative prior for the parameters 
a *  and c given by 
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Dellaportas and Wright (1991) have described a numerical approach to this 
Bayesian prediction problem and the method of evaluating the posterior 
expectations. These authors, in addition to constructing prediction bounds 
for future lifetimes, also discuss the construction of the posterior distribution 
of the median lifetime. 

This section deals only with the two-parameter Weibull distribution (with 
5, = 0 or known). The prediction problems for the three-parameter Weibull 
model in (21.3) seem to be unresolved and is certainly worth looking into. 

7 RECORD VALUES 

Let XI, X,, . . . be an i.i.d. sequence of standard Weibull random variables 
with density function in (21.10), and let Xu(,), Xu(,), . . . be the upper record 
values arising from this sequence (see Chapter 13, Section 5, for definitions). 
Then the density function of the nth upper record value Xu(,, is 

Similarly the joint density function of Xu(,, and Xu(,, is 

From (21.110), the kth raw moment of Xu(,, is obtained to be 
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In particular, we have 

WEIBULL DISTRIBUTIONS 

Observe also from (21.110) that X&,, is distributed as standard gamma with 
shape parameter n. Dallas (1982) has discussed some further distributional 
results on upper record values from the Weibull population. a 

1 

Next, from the joint density function of Xu(,, and Xu(,, in (21.111), we 
obtain the product moment to be 

From (21.1 13) and (21.114) we immediately obtain 

It is of interest to note here that the variance-covariance matrix ((a,, j)) is of 
the form ui, = nibj: i I j; this will make the inversion of the matrix possible 
explicitly (see Section 4.4) which will enable us to derive the best linear 
unbiased estimators of the parameters 5, and a (when c is known) in an 
explicit form. 

In addition to deriving the above results, Balakrishnan and Chan (19934 
also established the following simple recurrence relations satisfied by the 
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single and the product moments of Weibull upper record values: 

m  
- - ( ~ [ ~ ~ ( r n + l ~ ~ & n + l ) ]  n - m  - ~ [ ~ b ( r n + l ) ~ & n ) ] ) .  

l ~ ~ r n s n - 2 ,  k , l = 1 , 2  ,... . (21.120) 

Suppose that the original sequence of variables arise from the three- 
parameter Weibull population with density function in (21.3). Then the 
likelihood function based on the first n upper records is 

Suppose the threshold parameter 5, is known. If the shape parameter c is 
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also known, then the MLE of a is easily observed to be 

4 = XU(,, - so 
nl/c ' 

with the variance [from (21.113)l 

I 
Suppose that the shape parameter c is unknown. Then the MLE's of a and c 
may be determined numerically from the likelihood function in (21.1211, or 
from'the likelihood function based on the first n record values from the 
extreme value distribution (for details, see Chapter 22). If the threshold 
parameter 5, is also unknown, then the MLE's of so, cu and c have to be 
determined numerically by solving simultaneously the three likelihood equa- 
tions obtained from (21.121). 

For the case when the shape parameter c is known, Balakrishnan and 
Chan (1993~) derived the BLUE'S explicitly by making use of the explicit 
expressions of the means, variances, and covariances of record values pre- 
sented earlier in (21.113) and (21.115). Because of the form of the variance- 
covariance matrix elements ui,, = aibj, i I j (as mentioned earlier), where 

the inverse of ((a,, ,)) can be explicitly written as [Graybill (1983, p. 19811 
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For the case when 5, and c are known, the BLUE of a becomes 

Its variance is 

For large n, these are easily seen to be equivalent to the MLE in (21.122) and 
its variance in (21.123). Proceeding similarly for the case where both 5, and 
a are unknown but the shape parameter c is known, Balakrishnan and Chan 
(1993~) derived the BLUE'S of 5, and a in explicit form, and also presented 
the variances and covariance of these estimators. 

8 TABLES AND GRAPHS 

Several tables and graphs relating to different methods of inference for the 
Weibull parameters have already been listed in Section 4. These will not be 
repeated here. Although the Weibull cumulative distribution function is 
available in an exact explicit form [(21.4)] that is easily computable, it is often 
convenient to have tables, or graphs, from which values can be obtained 
quickly without direct calculations. 

For the standard Weibull case [ t o  = 0 and a = 1 in (21.3)1, Plait (1962) 
presented tables giving values of the probability density function ( c ~ ~ - ' e - ~ ~ )  
to eight decimal places for c = 0.1(0.1)3(1)10 and also of the cumulative 
distribution function (1 - e-xc) to seven decimal places for c = 0.1(0.1)4.0. 
Dourgnon and Reyrolle (1966) also tabulated the cumulative distribution 
function (less extensively). Harter and Dubey (1967) presented values of the 
mean, variance, and first six standardized cumulant ratios K,/K;/', r = 

3, . . . ,8, to eight decimal places for c = l.l(O.1)lO.O. 
For the case where the threshold parameter 5, is zero, by noting that 

E[X] = pr1 = aT[1 + (l/c)l, the cumulative distribution function of X in 
(21.4) can be rewritten as 

F,y(x) = 1 - exp , x 2 0. (21.128) 

As it was indicated in Section 4, Kotel'nikov (1964) used (21.128) in con- 
structing a nomogram for finding FX(x), given the mean pt1 and the standard 
deviation a. This nomogram is presented in Figure 21.6. One part of the 
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nomogram determines the shape parameter c from given values of EL)1 and a. 
This is done by finding the intersection of the straight line joining the 
appropriate points on the EL; and a scales with the c scale. Then it is 
necessary to place the scale at the foot of the figure along the appropriate 
line pr1 and move it till the dotted line on the nomogram passes through the 
appropriate u value on the scale. (Note that the edge of the scale to be used 
depends on c.) Then for any given value of x, the value of the cumulative 
distribution function Fx(x) is the "Fx(x) curve" passing through the value x 
on the appropriate edge of the scale. It is convenient in practice for the 
movable scale to be transparent. 

Weibull probability paper can be constructed in several different ways [e.g., 
see Kao (1959); Nelson (1967); Plait (1962)l. Starting with the form of the 
cumulative distribution function in (21.4). we observe that 

log log{l - F ~ ( X ) }  = - c log - x > f o ,  

Setting log log{l/[l - Fx(x)]) as w and log(x - 6,) as v, we obtain the linear 
relationship 

Therefore, if 1 - Fx(x) or 1/{1 - Fx(x)) is plotted against x - 6, on a 
loglog versus log paper, a straight line is observed. The slope of the line is 
-c or c, and the intercept with the y-axis is c log a or -c log a. This 
Weibull probability paper, as presented by Nelson (1967), is given in Figure 
21.7. 

Nelson and Thompson (1971) have provided a detailed discussion on the 
many different probability papers available for the Weibull analysis. Nelson 
(1972) also discussed the theory and application of hazard plotting based on 
censored data. The volume by D'Agostino and Stephens (1986) provides an 
authoritative account of graphical analysis of Weibull data and also of many 
formal goodness-of-fit methods such as EDF tests. Fowlkes (1987) has also 
presented theoretical quantile-quantile plots that provide some insight for 
users working with real-life data regarding the usage of the Weibull model 
for the data at hand. 

I Harter and Dubey (1967) used Monte Carlo simulations to con- 
F struct extensive tables of the distribution of sample variances, s2  = 

Cy-',l(xi - ? ) * / ( n  - 11, calculated from random samples from Weibull popu- 
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1 2 . 3  4 5 6 7 8 9 1  2 3 4 5 6 7 8 9 1  
x 

Figure 21.7 Weibull Probability Paper 

lations, and also of the "Weibull-t" defined by 

6 ( x  - pr1) 

constructed from i.i.d. samples from the Weibull distribution. They also 
constructed tables of the distribution of the sample mean X using a Cornish- 
Fisher expansion (see Chapter 12). 

Details of tables relating to order statistics from Weibull populations have 
been presented in Section 3. As mentioned earlier, tables and graphs have 
been prepared by several authors in order to simplify the different methods 
of inference proposed in the literature; for the benefit of readers and users, a 
description of such tables and graphs may be seen in Section 4. Tables 
prepared for the determination of Weibull tolerance limits have been de- 



scribed in Section 5. Finally, tables relating to the prediction problems 
concerning the Weibull distribution are detailed in Section 6. 

9 CHARACTERIZATIONS 

It was already shown in Section 3 that when XI, X,, . . . , X,, are independent 
and identically distributed Weibull random variables, then the smallest order 
statistic Xi is also distributed as Weibull. Dubey (1966a) established this to 
be a characterizing property of a Weibull distribution by showing that if Xi 
is distributed as Weibull, then the common distribution of the Xi has to be a 
Weibull distribution. The proof is straightforward if one looks at the survival 
function of Xi (see Chapter 12, Section 6). 

By assuming that X and Y are independent nonnegative random vari- 
ables, Arnold and Isaacson (1976) have shown that, for some pair (a, b )  such 
that 0 < a, b < 1, 

if and only if X and Y have Weibull distributions. More generally, Arnold 
and Isaascon have proved the following characterization result: 

Let XI, X,, . . . , Xm be independent non-degenerate non-negative random vari- 
ables. Suppose that 

where 0 < ai < 1, i = 1,2,. . . , m. If, for that a for which CE"=,r = 1, 
lim,,,, F(x)/xa = c, then the Xi's have Weibull distributions. 

By generalizing the Cauchy functional equation @(x + y) = @(x) + @(y) 
to the form 

@ ( ( x C  + yo1/') = @(x) + @( y),  e # 0, 

assuming @ to be left- or right-continuous, Wang (1976) established a 
characterization of the Weibull distribution as follows: 

Let c # 0 and X be a non-degenerate non-negative random variable. Then, X has 
a two-parameter Weibull distribution if and only if X satisfies 

P ~ ( X  > (xc + yc)'/ ' l~ > y )  = Pr(X > x) for all x ,  y > 0 (21.129) 

with c > 0. If c < 0, there is no random variable possessing property (21.129). 

Note that this characterization is in the spirit of the memoryless property of 
the exponential distribution [see Chapter 19 for details and also Janardan 
(1978)l. 
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Let XI, X,, . . . , Xn by n positive real random variables. For a, 2 0 and 
c > 0, let 

Xi - a,, X ,  > a,, 
Zj(aj) = 

xi I a,, 

and suppose that for some r between 1 and n - 1, (Z,, . . . , 2,) and 
(Z,, ,, . . . , 2,) are independent. Then Cook (1978) proved a characterization 
result that for all a, r 0, E[I3i",,Zj(a,)] depends on the parameters only 
through a function of C;,,a, if and only if all X, are mutually independent 
two-parameter Weibull random variables. 

Let XI:,, X,:,, . . . , X,:, be the order statistics obtained from n i.i.d. 
random variables with absolutely continuous strictly increasing distribution 
function F(x). Janardan and Taneja (1979a) characterized the two-parame- 
ter Weibull distribution based on the following statements: 

1. For any fixed r and two distinct numbers S1 and S, and with 1 < r < 
Sl < S, I n, the distributions of 

Vl = (Xc 
si : ?I - x,?:~)"~ and = XSi-,: ,,-, 

are identical for i = 1 and 2. 
2. The statistics Dl = X1 :, and D, = (X;:, - ~ f :  ,)'/" are independent. 
3. The statistics U, = (XF+ :n  - x;~)'/~, 1 s j 5 n - 1, and Xi,, (1 I 

i I j )  are independent [also see Janardan and Schaeffer (1978)l. 
4. X, XI, . . . , X, are random variables satisfying Pr[X - Cf=, Xi > 01 is 

positive, and 

= Pr[X > a], c > 0. 

Notice the similarity of condition 4 to (21.129). 

Janardan and Taneja (1979b) have provided some further characterization 
results. One of these is based on the conditional expectation as follows: Let 
X be a nonnegative random variable with distribution function F(x). Sup- 
pose that E[X] < m and that y is a positive number. Then F(x) is a 
two-parameter Weibull distribution if and only if 

EIXcIX > y ]  = yc + E[X] for all y, c > 0. 

Another condition based on which they characterize the Weibull distribution 
is 

for all s, t belonging to a dense subset of (O,m), where (X - u)+ denotes 
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max{X - u, 0). Roy (1984) established some characterization results for the 
generalized gamma distribution based on the Fisher-information-minimiza- 
tion and entropy-maximization principles which gives as a special case results 
for the Weibull distribution. Further, denoting the cumulative hazard func- 
tion -log[l - F(x)l by H(x)  and the hazard function by h(x) = H'(x) = 

p(x)/[l - F(x)], Roy and Mukherjee (1986) presented some characteriza- 
tions for the two-parameter Weibull distribution based on the following 
statements: 

1. H(xyIH(1) = H(x)H(y) for all x, y > 0. 
2. H(xy)H(l) = H(x)H(y), with H(1) > 0, for at least one value of 

y > 0 (and not equal to I), for all x > 0, and xh(x)/H(x) is nonde- 
creasing for x > 0. 

3. h(x) is strictly increasing with h(0) = 0 and h(X) is distributed as 
two-parameter Weibull (shape parameter c' > 1) where (l/c) + 
(1/c1) = 1. 

Khan and Beg (1987) proved that the simple condition that 
Var(Xrc+ ,: IXr : = x) does not depend on x characterizes the two-parame- 
ter Weibull distribution. This is, in principle, a direct consequence of a 
characterization of the exponential distribution based on the condition that 
Var(Xr+, : IXr : = x) is a constant, a result due to Beg and Kirmani (1978) 
(see also Chapter 19). Along similar lines Khan and Ali (1987) have charac- 
terized the Weibull distribution through the condition that 

E [ x~+  = x] = x C + constant 

[see also El-Din, Mahmoud, and Youssef (1991)l. 
Ouyang (19871, Beg and Ali (1989), Moothathu (1990), and Chaudhuri and 

Chandra (1990) have provided some other characterizations of the Weibull 
distribution. For example, the characterization result presented by the first 
author is based on the conditional expectation of the function g ( X ) ,  given 
that X I  x. Kamps (1991) has provided a characterization result for the 
Weibull distribution based on inequalities for moments of record values, with 
equality being satisfied if and only if the parent distribution is two-parameter 
Weibull. The proof follows easily from a simple application of Holder's 
inequality. 

Scholz (1990) established an interesting characterization of the three- 
parameter Weibull density function in (21.3): Let C = {(u, u, w): 0 < u < u 
< w < 1, log(1 - u)log(l - w) = (log(1 - u)I2), and F-'(.) denote the in- 
verse of the distribution function in (21.4). Then it is easily verified from 
(21.4) that for some fixed t, namely t = 5,, the quantile relation 

holds for every (u, v, w) E C. Scholz proves that this in fact is a characteriz- 
ing relation for the three-parameter Weibull distribution. in (21.4). He also 
has made some suggestions with regard to the usage of this characterization 
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result in developing a goodness-of-fit procedure for the three-parameter 
Weibull distribution. 

Shimizu and Davies (1981) have established the following two character- 
ization results: 

1. Let N be an integer valued random variable (independent of the X's) 
such that N r 2 with probability 1 and the distribution of log N has a 
finite mean and is not concentrated on a lattice p, 2p,. . . for any p > 0. 
Then the random variable Y = N'/" XI :, is distributed as X if and 
only if X's are distributed as Weibull. 

2. Let m 2 2 be a h e d  positive number, and let Z,, . . . , Zm be a set of 
positive random variables (independent of the X's) satisfying 

log zi 
Pr [- is irrational for some i and j 

log Zj 

Then the random variable Y = min(X,/Z,, . . . , Xm/Zm] is distributed 
as X if and only if the X's have Weibull distributions. 

Roy (1984) presented a characterization of the generalized gamma (or 
generalized Weibull; see Section 12) for two independent nonnegative ran- 
dom variables X and Y based on the conditional distribution of X, given 
Z = X/Y, being also a generalized gamma distribution. 

10 SIMULATION ALGORITHMS 

Since the cumulative distribution function F of a three-parameter Weibull 
variable is of a closed explicit form [see (21.4)], it is easy to generate 
pseudorandom observations through the probability integral transformation 
approach. Specifically, letting 

and inverting this transformation, we obtain 

Thus, after generating a pseudo-random observation U from the uniform 
(0'1) population, the required Weibull observation X can be generated from 
(21.131) for the specified values of the parameters, ,to, a, and c. This simple 
simulational process is easily programmable in languages such as Fortran. 
However, within the context of GPSS, (21.131) cannot be directly imple- 
mented because GPSS does not contain any built-in functions, and in 
particular contains no logarithmic function and no exponentiation operator. 
Tadikamalla and Schriber (1977) have proposed a simulational algorithm in 
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GPSS that involves the following process: 

1. A piecewise linear approximation to the inverse of the cdf (21.131) is 
formed. 

2. This piecewise linear approximation is expressed in GPSS by defining a 
C-type C'continuous") function consisting of ordered pairs of points 
corresponding to the piecewise linear approximation. 

3. When a random observation is needed, the function is invoked; in 
response, the GPSS processor evaluates the function's argument (which 
is a value returned by a 0-1 random number generator), then does a 
table lookup in the function defining set of ordered pairs, performs a 
linear interpolation across the interval that brackets the argument, and 
returns the interpolant value as the value of the function. 

To improve the piecewise linear approximation involved, they suggested 
writing (21.131) equivalently as 

and using a GPSS C-type function to determine a value for log{ - log(1 - U)) 
and another GPSS C-type function to determine a value for exp(argument). 

Of course the process described above can be used for any distribution by 
introducing an appropriate piecewise linear approximation (even when the 
cdf is not available in an explicit form). In languages wherein the logarithmic 
function and the exponentiation operator are available, (21.132) can be 
implemented directly to simulate the required Weibull observation. 

Another natural way to simulate a Weibull observation is to make 
use of any efficient exponential simulational algorithm. By realizing that 
[(X - tO)/a]c is distributed as standard exponential, we can simulate the 
required Weibull observation X by 

where Z denotes the standard exponential pseudo-random observation al- 
ready simulated. Note that the transformation in (21.133) is equivalent to the 
transformation in (21.1321, since - log0 - U) when U - uniform(0, I), is 
distributed as standard exponential Z (see Chapter 19). 

Ishioka (1990) has discussed the generation of Weibull random numbers 
using the ratio of uniform pseudorandom observations. Ramberg and Tadika- 
malla (1974) have shown how gamma variates can be generated by using 
Weibull sampling mechanisms. 
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11 APPLICATIONS 

As mentioned earlier in Sections 1 and 2, the fact that the hazard rate of the 
Weibull distribution is decreasing, constant, and increasing according as 
c < 1, c = 1, and c > 1 has made this distribution highly useful as a lifetime 
model. Naturally numerous articles appeared dealing with this particular type 
of application and the analysis of data resulting from such life tests. 

Despite a warning issued by Gorski (1968) on the "Weibull euphoria," 
many more papers have appeared since 1970 exploring several new and 
interesting applications of the Weibull distribution. Van der Auwera, 
de Meyer, and Malet (19801, Barros and Estevan (1983), Dixon and Swift 
(19841, Conradsen, Nielsen, and Prahm (1984), and Tuller and Brett (1984) 
have all discussed the Weibull distribution in the analysis of wind speed. 
Pavia and O'Brien (1986) used the Weibull distribution to model wind speed 
over the ocean, while Carlin and Haslett (1982) applied the distribution to 
model wind power from a dispersed array of wind turbine generators. The 
Weibull distribution also found applications in analyzing rainfall and flood 
data. Zhang (1982), Boes (1989), and Nathan and McMahon (1990) consid- 
ered the Weibull distribution in the analysis of flood data, while Wilks (1989) 
and Selker and Haith (1990) applied the distribution to model the rainfall 
intensity data. 

The Weibull model was utilized in many analyses relating to health 
sciences. For example, Berry (1975) discussed the design of carcinogenesis 
experiments using the Weibull distribution. Dyer (1975) applied the distribu- 
tion to analyze the relationship of systolic blood pressure, serum cholesterol, 
and smoking to 14-year mortality in the Chicago Peoples Gas Company; 
coronary and cardiovascular-renal mortality were also compared in two 
competing risk models in this study. Whittemore and Altschuler (1976) used 
the model in the analysis of lung cancer incidence in cigarette smokers by 
considering Doll and Hill's data for British physicians. Aitkin, Laird, and 
Francis (1983) applied the Weibull model in analyzing the Stanford heart 
transplant data. Christensen and Chen (1985) proposed a general noninterac- 
tive multiple toxicity model including the Weibull. While carrying out a 
Bayesian analysis of survival curves for cancer patients following treatment, 
Chen et al. (1985) utilized the Weibull distribution. Portier and Dinse (1987) 
made use of the Weibull distribution in their semiparametric analysis of 
tumor incidence rates in survival/sacrifice experiments. Rao, Talwalker, and 
Kundu (1991) applied the model to study the relative relapse rate of placebo 
versus 6-Mercaptopurine group of acute leukemia patients. Some further 
uses of the Weibull distribution in analysis relating to health issues may be 
found in Goldman (1984), Achcar, Brookmeyer, and Hunter (1989, Struthers 
and Farewell (1989), and Koehler and McGovern (1990). Ellingwood and 
Rosowsky (1990, while studying the duration of load effects in Load and 
Resistance Factor Design (LRFD) for wood construction, used the Weibull 
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distribution function for short-term modulus of rupture, obta'ned by loading I the beam to failure over a period of approximately 5 to 10 m nutes. 
In addition to the above-mentioned applications, the Weiqull distribution 

also found important uses in a variety of other problems. For txample, Fong, 
Rehm, and Graminski (1977) applied the distribution as a microscopic 
degradation model of paper. The uses of the distributio I in analyzing 
hydrometeorological, metrological, and pharmacokinetic data have been il- 
lustrated by Wong (1977), Vod5 (1978), and Schwenke (1987), respectively. A 
Weibull shelf life model for pharmaceutical problems wa proposed by 
Ogden (1978). Rink et al. (1979) used the three-parameter eibull distribu- 
tion to quantify sweetgum germination data in genetic researc . The applica- 
tion of the Weibull distribution to the analysis of the reactio 1 time data has 
been introduced by Ida (1980). A role for the Weibull distribution in offshore 
oil/gas lease bidding problems has been demonstrated by Dyer (1981). While 
Berry (1981) used the distribution as a human performance descriptor, 
Newby and Winterton (1983) applied it to model the duration of industrial 
stoppages. Applications of the Weibull distribution in lumber industry have 
been discussed by Johnson and Haskell (1983). Rawlings and Cure (1985) 
introduced the Weibull function as a dose-response model to describe ozone 
effects on crop yields. Kanaroglou, Liaw, and Papageorgiou (1986) used the 
distribution in the analysis of migratory systems. The application of the 
Weibull model in the analysis of thunderstorm data has been displayed by 
Schuette, Salka, and Israelsson (1987). Homan, Pardo, and Trudeau (1987) 
discussed an application of Weibull modeling and discriminant analysis of 
alcoholism relapse among veterans. In order to evaluate the effect of temper- 
ature on cumulative germination of alfalfa, Bahler, Hill, and Byers (1989) 
considered both Weibull and logistic functions and compared the perfor- 
mance of the two. Lalla (1990) used the distribution to model the spell 
duration data. Gates (1985) and Braennaes (1986) have illustrated some 
further applications of the Weibull distribution. Quite interestingly Papas- 
tavridis (1987, 1988) and Chryssaphinou and Papastavridis (1990) established 
Weibull distribution as the limiting distribution for the reliability of consecu- 
tive k-out-of-n, consecutive k-within-m-out-of-n, and consecutive k-out-of-n: 
F systems, respectively. 

It is of interest to mention here the works of Revfeim (1983, 1984) and 
Leese (1973). By assuming that the number of occurrences of an event in a 
fixed period of time has a Poisson distribution, with probability of r events in 
a fixed time T given by 

where p is the mean rate of occurrence of the event per unit of time in which 
T is measured, and then using a two-parameter Weibull distribution, Revfeim 
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(1984) obtained the maximum value distribution (in a stochastic form) as 

G ( x )  - exp(-pT exp(G)). 
He used this stochastic model to analyze extreme annual rainfall data. 

Some other applications of the Weibull distribution have been described 
earlier in Section 1. 

B 

12 RELATED DISTRIBUTIONS 

As pointed our earlier, the Weibull distribution in (21.4), when c  = 1, 
becomes the two-parameter exponential distribution 

which has been discussed in Chapter 19. For the case where c '=  2, the 
Weibull distribution in (21.4) becomes the two-parameter Rayleigh distribu- - 
tion 

which has already been discussed in Chapter 18. 
If X has a Weibull distribution in (21.4), then the probability density 

function of Y = - c  log[(X - l0)/a] is given by 

which is one of the extreme value distributions that will be discussed in detail 
in Chapter 22. As mentioned on several occasions in this chapter, this 
transformation forms a basis for some methods of estimation of the parame- 
ters c and a (when 5, is known). 

When 5, = 0, the probability density function of the random variable X 
can be conveniently written in the form 

where 6 = a-". If c  is fixed but a varies so that the parameter 8 has a 
gamma probability density function 
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then the probability density function of the random variable X can be written 
as 

Note that the transformation X c  (of this compound Weibull random variable) 
has a Pareto distribution (see Chapter 20). This was observed by Dubey 
(1968). It is also of interest to note that the density in (21.135) is Burr's Type 
I11 distribution with a scale parameter S (see Chapter 12, Section 4). 
Proceeding on similar lines, Harris and Singpurwalla (1968) derived com- 
pound Weibull distributions by assigning for the parameter 0 = a-' (1) 
uniform, (2) two-point, and (3) two-parameter gamma distributions. Harris 
and Singpurwalla (1969) discussed the estimation of parameters in such 
Weibull distributions with random scale parameters. 

Rodriguez (1977) made an interesting connection between Burr's Type 
XI1 distribution (see Chapter 12) and the Weibull family. Specifically, he 
observed that the Weibull curve is the lower bound for Burr's Type XI1 
distribution in the Pearson (a, P,) plane, and he explained it as follows: 
For a Burr Type XI1 random variable X, we have 

+ 1 - e - ~ '  a s k  +a. 

He also noted that Burr's Type XI1 distribution can be obtained as a smooth 
mixture of Weibull distributions. 

On reflecting the Weibull distribution with density (21.3) about the vertical 
axis x = to ,  the density function and the distribution function of the re- 
flected distribution become [Cohen (1973)l 
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respectively. When any skewed distribution is reflected about a vertical axis, 
the sign of the skewness is reversed. Accordingly, the "reflected Weibull 
distribution" will be positively skewed for c > c, and negatively skewed for 
c < c, (see Section 2). With the Weibull distribution in (21.3) being the third 
asymptotic distribution of smallest values as discussed by Gumbel (193ri), the 
reflected Weibull distribution given above is actually the third asymptotic 
distribution of largest values or the Fisher-Tippett Type I11 distribution of 
largest values. 

By reflecting the Weibull density function in (21.3) onto the left of 5, (a 
mirror image of the function on the right), Balakrishnan and Kocherlakota 
(1985) defined the double Weibull distribution with probability density func- 
tion 

The density function in (21.136) is symmetric about 5,. [For the case c = 1 it 
becomes the Laplace or double exponential density, which will he studied in 
Chapter 24.1 For this distribution Balakrishnan and Kocherlal,~~ia (1985) 
discussed the properties of order statistics and derived, in particular, explicit 
expressions for means, variances, and covariances of order statistics. Using 
these quantities, they derived the BLUES of the parameters 5, and a, 
assuming the shape parameter c to be known, based on complete samples 
and presented the necessary tables for sample sizes up to 10. These results 
were extended by Dattatreya Rao and Narasimham (1989) to the case of 
Type I1 censored sample. Vasudeva Rao, Dattatreya Rao, and Narasimham 
(1991) have also derived optimal linear estimators for a based on absol~lte 
values of order statistics (when 5, is known). 

Zacks (1984) introduced a three-parameter Weibull-exponential distribu- 
tion having a distribution function 

where Y+= max(0, Y) ,  A > 0 (scale parameter), c 2 1 (shape parameter), 
and 7 2 0 (change-point parameter). This family possesses a nondecreasing 
hazard rate function given by 

which is simply a superposition (for x 2 7) of a Weibull hazard rate on the 
constant hazard rate of an exponential distribution. It is clear that as the 
change-point parameter r + 00, the distribution approaches the exponential 
distribution with parameter A. As Zacks (1984) aptly pointed out, this family 
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is suitable for modeling systems that, after a certain length of time, enter a 
wear-out phase in which components of the system have an increasing hazard 
rate. Adaptive Bayesian inference has also been developed by Zacks for the 
parameter T. 

Mention should be made here of the piecewise Weibull model discussed 
by Nelson (1982). 

Stacy and Mihram's (1965) generalized gamma distribution with the proba- 
bility density function 

and cumulative distribution function 

where T(p; y )  = lJe-'tp-' dt is the incomplete gamma function, is a gener- 
alization of the three-parameter Weibull distribution in (21.3); the three- 
parameter Weibull pdf in (21.3) is a special case of this distribution when the 
second shape parameter P = 1. A discussion of this distribution is presented 
in Chapter 17 (as it is a generalization of the three-parameter gamma 
distribution as well). Cohen (1969) discussed this distribution as the four- 
parameter generalized Weibull distribution, while Arora (1974) studied in 
detail various characteristics of this generalized Weibull family. 

Suppose that Xi (i = 1,2,. . . , k) are independently distributed as three- 
parameter Weibull ( to ,  a i ,  ci) with probability density function (21.3); then a 
random variable X that is distributed as Xi with probability .rri (such that 
P, + P, + - - - +rk = 1) is said to have a finite-mixture Weibull distribution. 
The density function of X is given by 

and the cumulative distribution function is given by 
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The case when k = 2 is commonly referred to as a two-component mixture 
Weibull distribution and has received considerable attention over the years 
from numerous researchers. For example, Kao (1959) suggested the use of 
this model in life-testing experiment involving electron tubes and proposed a 
graphical method of estimation of the parameters involved in this model. 
Rider (1961) discussed the method of moments estimation of the parameters 
of this mixed-Weibull model. Kaylan and Harris (1981) developed efficient 
numerical algorithms to derive the maximum likelihood estimates of the 
parameters involved in the finite-mixture Weibull model. Cheng and Fu 
(1982) have discussed further on estimation of mixed Weibull parameters. 
Bayesian inference has been developed for a variety of problems involving 
the two-component mixture Weibull distribution by many researchers includ- 
ing Ashour and Rashwan (1981), Ashour, Shoukry, and Mohamed (1983), 
Ashour (1987a), Sinha (19871, and Sinha and Sloan (1989). Of these, the first 
and the last articles dealt with the prediction problem, while Sinha (1987) 
dealt with the Bayesian estimation of the parameters and the associated 
reliability function of the model; see also Sinha (1982). Dykacz and 
Hennessey (1989) have explained how a two-component Weibull model can 
arise due to some natural features of a process. The usage of mixtures of 
Weibull distributions in order to estimate mixing proportions has been 
elaborated by Woodward and Gunst (1987). The special case of mixed 
Weibull-exponential model (a two-component mixture Weibull distribution in 
which one of the components has an exponential distribution, i.e., c, = 1) 
has also been studied in detail by Ashour (1985, 1987b). This author has 
discussed estimation of parameters from censored samples secured from this 
model and also the Bayesian estimation of the parameters involved. Mixtures 
of exponential distributions also could be considered as a special case of 
mixture Weibull distribution in (21.137) [Jewell (1982)1, but more details on 
this specific case may be seen in Chapter 19. An interesting discussion of 
general mixture models and their role in survival analysis has been made by 
Farewell (1986). 

In a similar effort Al-Hussaini and Abd-El-Hakim (1989) proposed the 
Inverse Gaussian-Weibull mixture distribution with density function 

where pl(x) is the IG(P, A) density (see Chapter 15) given by 

and p2(x) is the two-parameter Weibull density given by 
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The parameter 8 in (21.139) is the vector of all five parameters involved in 
the mixture model. The density in (21.139) can be either unimodal or 
bimodal. Since the hazard rate of the IG distribution is either upside-down 
bathtub or increasing and the hazard rate of the Weibull distribution is 
decreasing, constant, or increasing, the mixture model yields six different 
combinations of hazard rates; see Al-Hussaini and Abd-El-Hakim (1989). 
Thus the mixture model in (21.139) provides a very flexible model for 
reliability studies. Estimation of parameters for this model has been consid- 
ered by Al-Hussaini and Abd-El-Hakim (1990). 

The Weibull distribution in (21.3) can be restricted to lie in the interval 
(L, U); that is, the distribution is truncated below L and above U. In this 
case the distribution is referred to as the doubly truncated Weibull distribu- 
tion, and its density function is given by 

The special case of L = 8,  is referred as the right-truncated Weibull distribu- 
tion, and its pdf is 

Similarly the special case of U + oc is referred as the left-truncated Weibull 
distribution, and its pdf is 

These truncated Weibull distributions have also been suggested for use in 
life-test analysis. Sugiura and Gomi (1985) presented the Pearson diagram of (a, p2) for truncated Weibull distributions, while McEwen and Parresol 
(1991) presented expressions for the moments and summary statistics. Wingo 
(1988) described methods for fitting the right-truncated Weibull distribution 
in (21.141) to life-test and survival data; see also Martinez and Quintana 
(1991). Wingo (1989) discussed the role and properties of the left-truncated 
Weibull distribution in (21.142). A mention should be made of Mittal and 
Dahiya (1989) who have discussed the problem of estimation of parameters 
of a truncated Weibull distribution. 
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Nakagawa and Osaki (1975) defined a discrete Weibull distribution as a 
distribution {Pk}F=o such that 

m 

C q ( q , c )  = q
k c,  k = 0 , 1 , 2  ,..., c > O , O < q < l .  (21.143) 

j - k  

In this case the probability mass function and the hazard rate are given by 

and 

It is clear from (21.145) that this distribution has decreasing hazard rate if 
0 < c < 1, constant hazard rate if c = 1 (in fact it becomes the geometric 
distribution in this case), and increasing hazard rate if c > 1. Thus this 
distribution mimics the property of the continuous Weibull distribution and 
hence becomes a natural analogue of it. It is also easy to verify that if X has . 

the discrete Weibull distribution in (21.143), then Xc has a geometric 
distribution (a property similar to the continuous Weibull distribution). 
Nakagawa and Osaki (1975) appropriately pointed out that this discrete 
Weibull distribution will be useful in modeling failures of some devices that 
often depend more on the total number of cycles than on the total time that 
they have been used (switching devices, rail tracks, tires, etc.). Stein and 
Dattero (1984) introduced another discrete Weibull distribution as the distri- 
bution whose hazard rate is given by 

where m is given by 

This discrete Weibull distribution has the following appealing properties: 
(1) the hazard rate behaves similarly to that of the continuous Weibull 
distribution, (2) it provides the exact lifetime distribution of a specific system, 
and (3) the lifetime converges in limit to that given by the continuous Weibull 
distribution. Ali Khan, Khalique, and Abouammoh (1989) have recently 
proposed a simple method of estimation of the parameters of these two 
discrete Weibull distributions and compared its efficiency with the method of 
moments estimates. 
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When X has a Weibull distribution with density function as in (21.3), the 
distribution of 1/X is referred as the inverse Weibull distribution. Its density 
function or distribution function can be written down easily from (21.3) and 
(21.4). Erto (1989) has discussed the properties of this distribution and its 
potential use as a lifetime model. The maximum likelihood estimation and 
the least-squares estimation of the parameters of the inverse Weibull distri- 
bution are discussed by Calabria and Pulcini (1990). 

Starting with the Weibull density with unit median given by 

Ekstrom (1973) used the usual Rice procedure [e.g., see Whalen (1971, pp. 
103-1031 to derive the density function of the Weibull-Rician distribution as 

log 2 eap [( - log 2) (y2 - 2 AY cos 4 + A')"~] 
p w y  = 2 ( c y ) (  0 

l y 2  - 2~~ cOs 4 +12]12c)/2 

Here y is the envelope, A is the peak signal-to-median clutter ratio, and c is 
the parameter of the unit median Weibull density in (21.147). The integration 
on the RHS of (21.148) is not difficult to do numerically. Nilsson and Glisson 
(1980) derive this density function and the corresponding cumulative distribu- 
tion function using conditional probability arguments, and in this method the 
cumulative distribution function is also expressed as a single integral. 

A Weibull process is a useful model for phenomena that are changing over 
time. As noted by Ascher (1979), it is important to distinguish between a 
Weibull process, which models a repairable system, and the Weibull distribu- 
tion (discussed so far), which models a nonrepairable system. Crow (1974) 
proposed a stochastic model in which the number of system failures is 
assumed to occur according to a nonhomogeneous Poisson process, {NO): 
t 2 0), with mean value function of the form m(t) = E[N(t)] = Atc and 
intensity function of the form v(t) = dm(t)/dt = hctc-'. This is consistent 
with the empirical finding of Duane (1964) that the number of system failures 
and operating time are approximately linearly related (in the logarithmic 
scale), since log m(t) = log A + c log t is a linear function of log t. Another 
commonly used parametrization is m(t) = (t/8Y, with c < 1 corresponding 
to improvement of the system and c > 1 corresponding to its deterioration. 
The Weibull process inherits its name due to the fact that in the sequence of 
successive failure times T,, T2, . . . , the time to first failure T, has the 
Weibull distribution with hazard rate function v(t) = c(t/8)'-'/8. Further- 
more the conditional failure time T,, given T, = t,, . . . , T, -, = t, - ,, also has 
a Weibull distribution truncated below at t,-,. More details on various 
results regarding Weibull processes can be obtained from a review article by 
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Engelhardt (1988). Moeller (1976) has presented a similar discussion on the 
Rasch-Weibull process. 

Based on the Griffith theory of brittle fracture and the statistical theory of 
extreme values, Black et al. (1989) proposed the brittle fracture distribution, 
which is a three-parameter distribution that includes the Weibull and the 
exponential distributions as special cases. The cumulative distribution func- 
tion of this distribution is 

r Here, X represents the breaking stress or strength. The corresponding : 
probability density function is 

Black, Durham, and Padgett (1990) observed that the value of P affects the 
scale and that a and r both increase the variance as they increase. 

For the case when f? = 0 and 6 = 2r, (21.149) reduces to the Weibull 
distribution with shape parameter 6 and scale parameter a. If P = 0 and 
r = 1/2, then (21.149) becomes an exponential distribution with mean l/a. 
Since a closed-form expression does not exist for the moment generating 
function or the characteristic function of the brittle fracture distribution in 
(21.149), Gulati, Durham, and Padgett (1993) derived bounds for the kth 
moment (k 2 1). While the lower bound turns out to be sharp, the upper 
bound does not. Black, Durham, and Padgett (1990) discussed estimation of 
the three parameters by a simple least-squares procedure and also by the 
maximum likelihood method. These authors have noted that the least-squares 
estimates could be used as good initial values for an iterative procedure for 
obtaining the maximum likelihood estimates; they also examined the behav- 
ior of these estimators by means of simulations. 

Kopaev (1990, 1993) has considered a mod@ed Weibull distribution with 
cumulative distribution function 

where +(x/c) is taken for p > 0 and -(x/c) for p < 0. Kopaev has 
discussed many properties of this distribution and also some methods of 
estimation of the parameters in (21.151). 
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Rice (see Noncentral chi-square(d)) 
S- 
s,, SL.9 S" 
Sargan 
Schuhl 
semi-normal 
skew(ed)-normal 
slash 
Stacy-Mihram (see Generalized gamma) 
subexponential 
t 
Toranzos 
trapezoidal 
triangular 
Tukey g- and h- 
Tukey lambda 
uniform 
Weibull 
Weibull-exponential 
Weibull-Gnedenko (see Weibull) 
Weibull-Rician 
Zipf 

Convolution: 
generalized gamma (GGC), 396 
lognormal, 217 
normal-lognormal, 247 

Cornish-Fisher expansions, 63, 364, 428 
CramCr-Rao lower bound, 307,642 
Cramp function, 81 
Cross-validatow predictive function, 669 
Cumulants, 299 
CUSUM (cumulative sum) schemes, 499 

Darmois-Koopman distributions, 55 
Darmois-Skitovich theorem, 102 
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De Moivre distribution, see Normal 
distribution 

Degrees of freedom, 22,417 
Delta method (statistical differentials), 9 
Differential equations, 15, 93, 504 
Discrete distributions: 

Bernoulli 
binomial 
discrete Weibull 
hypergeometric 
negative binomial 
Poisson 
Zipf-Estoup 

Double exponential distributions, see Laplace 
distributions. See also Extreme value 
distributions 

Double Pareto distributions, 609 

Edgeworth expansions, 28 
tilted, 33 

Elasticity, 579 
Empirical Bayes, 595 
Entropy, 637 
&-coincident, &-normal, 107 
&-independence, 108 
Erlang distribution, 172, 552 
Error function, 81, 119 
Error integral, 81 
Estimation: 

graphical, 168, 209, 236, 666 
least-squares, 580 
maximin, 668 
maximum likelihood, see Maximum I 

likelihood 
I 

I 
maximum probability, 526 

I median-unbiased, 645 
minimax, 588 
minimum absolute error, 527 

I 

minimum mean square error, 527 
! 
I modified moment-method, 231, 249, 273, 

I 652-655 
moment-method, 273, 548, 580, 641 

1 probability-weighted moment-method, 619 
quantile method, 585 

Estimator: 

I "almost unbiased," 366 

I 
asymptotically best linear unbiased, see 

ABLUE 
best linear invariant, 668 
best linear unbiased, see BLUE 

i best quadratic, 222, 462 
1 equivariant, 314 

least-squares, 580 

maximum likelihood, see Maximum 
likelihood 

median, 378 
minimax, 588 
minimum distance, 586 
minimum variance unbiased (MWE), 221, 

235, 508, 519, 586, 596 
modified moment, 231, 249, 273, 652-655 
shrinkage, 519, 661 
uniform(1y) minimum variance unbiased 

(UMVUE), 221,271, 273,467,530,589, 
590,593,594, 596 

Winsorized, 530 
Expansions, 25 

Chebyshev, 121 
Cornish-Fisher, 63, 66, 67, 364, 428 
Edgeworth, 28, 64 
Gram-Charlier, 26, 64, 66, 67, 91 
Laguerre, 67 
orthogonal inverse, 306 

Exponential distributions, 337, 415, 457, 
494-572, 576, 589,598,603,688 

constant hazard rate, 535 
lack of memory property, 535,553,605,679 
mixtures, 546 
reproductive property, 415 
Ryu's generalization, 555 
truncated, 504 

Exponential family, 109 
Exponential-type class of distributions, 55 
Exponentiality, test of, 350 
Extremal quotient, 306 
Extreme value distributions, 238,551,635,641, 

666, 668,686 
Extreme value theory, 619 

F distributions, 451 
generalized, 576 

Ferreri distributions, 55 
Fiducial distribution, 163 
Final linear unbiased predictor, 669 
Fisher information (matrix), 110, 659, 681 
Fisher's z distributions, 239 
Folded Cauchy distributions, 302 
Folded normal distributions, 170 
Fourier series, 32 
Frailty, 291 
Frequency factor, 339 
Functions (mathematical): 

Bernoulli numbers, 2, 304 
Bessel functions, 60, 547 
confluent hypergeometric, 276 
erf, 81 
Euler's constant, 633 
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Functions (mathematical): (continued) 
Euler-Maclaurin formula, 498 
Hh function, 158 
hypergeometric, 302 
incomplete beta, 141, 461 
incomplete beta function ratio, 235, 640 
incomplete gamma, 417, 689 
incomplete gamma function ratio, 345, 388 
Lieblein's +function, 640 
modified Bessel functions, 50, 51 
polygamma, 635 
polynomials, see Polynomials 
Whittaker functions, 57, 547 

Gamma distributions, 18, 53, 337-414, 450, 
523,552,594,672,686 

compound, 381, 607, 682 
convolution, 384 
general, 552 
generalized, 48, 384, 387, 607, 689 
mixtures, 386 
reflected, 386 
reproductive property, 340 
standardized, 340 

Gaussian distribution, see Normal distribution 
General(ized) linear model, 291 
Generalized gamma convolution (GGC), 396, 

576 
Generalized hyperexponential distributions, 

551 
Generalized inverse Gaussian distributions 

(GIG), 284 
Generalized inverse normal distributions, 171, 

288 
Generating functions: 

cumulant, 395, 420, 498 
information, 219 
moment, 89, 109,395,420, 498 

Geometric distributions, 496, 501, 692 
Geometric standard deviation, 597 
Gibrat's law (of proportional effect), 210 
Gini's concentration index, 4, 595 

nth order, 578 
Gini mean difference, 3, 133 
Gompertz-Rayleigh model, generalized, 457 
Goodness-of-fit, 88, 169 
Gram-Charlier distributions, 243 

logarithmic, 243 
Gram-Charlier expansions, 64 
Gram-Charlier series, 26, 431 
Graphical methods, 147, 151,236,662 
Grouped data, 2, 151, 225, 367, 509, 583, 617 

Sheppard's adjustments, 2 

H-transforms, 348 
Half-moment equations, 549 
Half-normal distributions, 97 
Hansmann distributions, 25 
Hazard rate, 120, 219, 531, 628, 691 
Heterogeneity, 291 
History: 

Cauchy distributions, 298 
chi-square(d) distributions, 415 
exponential distributions, 497 
gamma distributions, 343 
inverse Gaussian distributions, 260 
lognormal distributions, 209 
normal distributions, 85-88 
Pareto distributions, 573 
Rayleigh distributions, 456 
Weibull distributions, 628 

Homoscedastic, 15 
Hotelling's T', 302 
Hyperbolic distributions, 60 

generalized, 60 
Hyperbolically completely monotone, 397 
Hypergeometric distributions, 85 

Index: 
Galton's skewness, 40 
Gini concentration, 4, 596 
Gini mean difference, 3, 133 
of a stable distribution, 58 
Theil entropy, 213 

Infinite divisibility, 92, 219, 302, 397 
Interquartile distance, 3 
Inverse Gaussian distributions, 239, 259-297, 

397 
defective, 265 
generalized, 284 
length-biased, 269 
reciprocal, 281 
reproducibility, 268 

Inverse Gaussian-Weibull distributions, 287, 
690 

Inverse Weibull distributions, 693 
Inverted gamma distributions, 524 

Jacobian, 15, 385 
Johnson system, 34, 170 

Kappa (Mielke) distributions, 54 
Kolmogorov distance, 586 
Koopman-Darmois distributions, 55 
Kurtosis, 610 

ordering, 299 
sample, 169 



Laguerre series, 32, 67, 343 
Laha distributions, 55 
Laplace, 

first law, 552. See also Laplace distributions 
second law, 552. See also Normal 

distributions 
Laplace distributions, 39, 60, 154, 299 
Laplace-normal distributions, 171 
Least-squares, 298, 580, 666 

generalized, 461 
regression, 240 

Lifetime distributions, 239, 283, 377, 456, 499, 
629, 684 

Likelihood, 246 
Likelihood ratio, 512 
Lindeberg's condition, 87 
Linnik distributions, 55 
Location parameter, 12 
Location-scale family, 12, 521, 641, 666 
Log-concave property, 451 
Logistic distributions, 39, 48, 111, 611 
Logistic-normal distributions, 170 
Log-logistic line, 39 
Lognormal distributions, 33, 111,144,207-258, 

266, 397, 608 
Cohen's estimators, 231 
convolution, 217 
Finney's estimators, 229 
hybrid, 243 
Kemsley's estimators, 230 
line, 35, 212, 244, 635 
mixtures, 247 

Lomax distributions, 575, 602 
Lorenz curve, 4,502, 595 

function, 4 
ordering, 4, 502 

Loss function, squared error, 316, 471, 527 
Lyapunov condition, 86 

Macdonald distributions, 57 
Mahalanobis's D', 53 
Makeham-Gompertz distributions, 457 
Mallows distributions, 61 
Markov chain, additive, 500 
Marshall-Olkin (bivariate exponential) 

distributions, 555 
Maximum likelihood, 54, 140, 211, 220, 223, 

245, 270, 287, 310, 387, 466, 506, 514, 
547, 581, 593, 595,656 

conditional, 369 
modified, 149, 227, 520, 655, 660 
weighted, 287 

Maximum product-of-spacings, 232 
Maxwell-Boltzmann distributions, 417, 453 

Mean deviation/standard deviation ratio, 31, 
91, 159, 169, 264, 577 

Mean square error, 128, 316 
Median, 3, 8, 307, 421, 598, 655 
Mellin transform, 605 
Minimum quantile distance estimator, 651 
Mixtures, 165, 247, 285, 546, 609 
Mobius group, 313 
Mode, 24,213,282 
Moment-ratios, 212. See also (PI,  P2) diagram 
Moments, 44, 88 

central, 212 
existence of, 303 
fractional, 299, 306 
probability-weighted, 618 

Multimodality, 29, 38, 164, 310 
Multinomial distributions, 343, 415 
Multinormal distributions, 442 
Multivariate chi-square(d) distributions, 450 

Natural conjugate distributions, 594 
Negative exponential distributions, see 

Exponential Distributions 
Newton-Raphson iteration, 243, 309, 311 
Nomograms, 425, 675, 676 
Noncentral chi-square(d) distributions, 53,143, 

382, 451 
Noncentral F distributions, 343 
Noncentral t distributions, 142, 666 
Noncentrality parameter, 142, 151 
Normal distributions, 27, 80-206, 611 

characterizations, 100- 110 
compound, 163 
contaminated, 165 
sample range, 383 
truncated, 156-162 

Normal-gamma prior, truncated, 162 

Optimal spacing, 138, 308, 463, 591, 649, 666 
Order statistics, 6, 44, 93, 125, 234, 309, 370, 

459, 469, 500, 511, 536, 584, 599, 604, 
637,645 

limit distributions, 13 
Ordering 

kurtosis, 299 
Outliers, 99, 169, 372, 528, 549 

Murphy's test, 98 

Pareto: 
strong law of, 612 
weak law of, 612 

Pareto distributions, 397, 573-627, 687 
double, 609 
first kind, 574 
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'areto distributions: (continued) 
generalized, 46, 48, 602, 614 
second kind, 575 
standard form, 598 
third kind, 574 

'areto's constant, 573, 610 
'earson system: 

Types I-VII, 15-25, 67 
Type 111, 57, 635 
Type IV, 38 
Type V, 635 
Type VI, 397,574, 635 
Type VII, 163 
Types VIII and IX, 21 

enalty function, 225 
erks's distributions, 610 
itman "nearness" (closeness), 662 
oisson distributions, 354, 382, 423, 450, 455, 

553, 615, 685 
zero-truncated, 496 

jlya-type distributions, 56 
~lynomials: 
Chebyshev, 33 
Hermite, 27, 64, 114, 117 
Jacobi, 32 
Laguerre, 32, 343 
quasi-Hermite, 217 

lwer, 169 
twer-function distribution, 594, 607 
~wer-gamma distributions, see Generalized 

gamma distributions 
~wer-normal distributions, 49 
[Y < XI estimators, 530 
ediction interval, 225 
edictors, 669 
obability density functions, 1 
calculus, 14 
joint, 8 
lbability integral, 81 
jbability paper, 34, 121 
Cauchy, 299 
gamma, 376 
half-normal, 122 
hybrid lognormal, 224 
lognormal, 122, 237 
normal, 121 
Weibull, 677 
lbit analysis, 210 

adratic forms, 343, 416, 442, 444, 499 
adrature, 121, 218 
ility control, 239, 291, 628 
~nta l  data, 210, 238 
intile, 3, 138, 266, 306, 510, 584, 590, 651, 

68 1 

Quartile, 3, 8 
Quasi-midrange, 310 
Quasi-range, 137, 145, 150, 310, 343, 497 

Random deviates, 84, 237 
Random numbers, 84 
Random walk, 290 
Range, 92, 150, 245, 372 

interquartile, 3 
quasi-, 137, 145, 150, 310, 343, 497 
thickened, 137 

Rayleigh distributions, 686. See also Chi 
distributions 

Record values, 99,475,544, 601,671 
Rectangular distributions, see Uniform 

distributions 
Regression, 110, 240, 540 
Reliability function, 234, 380, 394, 457, 467, 

478, 507, 662, 664, 665 
Residual lifetime: 

mean, 457, 603 
median, 604 

Rice distributions, see Noncentral 
chi-square(d) distributions 

Rounding, 2 

S-distributions, 47 
Sargan distributions, 60, 171 
Scale parameter, 12 
Schuhl distributions, 547 
Sech square(d1 distributions, see Logistic 

distributions 
Semi-normal distribution, 112 

generalized, 390 
Sequential analysis, 260, 290, 499 
Sheppard's adjustment for grouping, 2 
Shrinkage estimator, 519, 661 
Skewness coefficient (index): 

Galton, 40 
MacGillivray, 3 
Pearson (a), 19 

Skewness, sample, 168 
Skew(ed)-normal distributions, 171, 454 
Skitovich-Darmois theorem, 102 
Slash distributions, 63 
Spacings, 232,500, 504 

optimal, 138, 308, 463, 591, 649, 666 
Stable distributions, 56 

index, 57 
Stable non-Gaussian distributions, 612 
Stable Paretian distributions. 612 



Standardization, 3, 80 
Statistical differentials (delta method), 9 
Stochastic processes: 

Gaussian, 344 
Poisson, 693 
Weibull, 667, 693 
Wiener, 266 

t distributions, 21, 234, 301 
Tests, 309, 454 
Theil entropy coefficient, 213 
Threshold value, 222, 615, 644, 648, 675 
Tolerance intervals, 141, 663 
Toranzos distributions, 55 
Total positivity, 451 
Transformations, 33, 110, 641, 666, 683, 687 

Helmert, 92 
normalizing, 31, 33, 48, 66, 209 
power-, 48, 440, 629 
probability integral, 682 
variance equalizing, 239 

Transformed chi-square(d) distributions, 455 
Triangular distributions, 111 
Trimmed mean, 124, 379 
Truncation, 115, 156, 240, 276, 380, 468, 511, 

553, 603, 608,691 
Tukey g- and h-distributions, 47 
Tukey lambda distributions, 39 

Uniform distributions, 8, 85, 320, 496, 503 
Uniform(1y) minimum variance unbiased 

estimator (UMWE) ,  221, 271, 273, 467, I 

530,589, 590, 593, 596 
Unimodality, 29, 39, 41, 397 

Wakeby distributions, 45 
Wald distributions, see Inverse Gaussian 

distributions 
Weibull distributions, 111, 388, 479, 499, 551, 

628-722 
double, 688 
Menon's estimator, 642 
mixture, 689 
modified, 694 
reflected, 687 
truncated, 691 

Weibull-exponential distributions, 688 
Weibull-Rician distributions, 693 
Weighting distribution, 455 
Window estimates, 317 
Winsorized estimator, 530 
Winsorized mean, 149, 387 
Witch of Agnesi, 298 
Wrapped-up Cauchy distribution, 329 

Zipf distributions, 607 
Zipf-Estoup distributions, 607 
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