
eISBN: 9781589483972

GIS Tutorial for Python Scripting uses practical examples, exercises, and assignments to help
students develop proficiency using Python® in ArcGIS®. This workbook for Python scripting
builds upon previously acquired GIS skills and takes them to the next level with the use of
Python. Knowledge of Python—a key tool for scripting geoprocessing functions and tasks
in ArcGIS for Desktop—is expanded through hands-on programming geared to automating
GIS applications. Exercise data is provided, and instructor resources are available.

David W. Allen is the GIS manager for the City of Euless, Texas. He has taught at Tarrant County College since
1999, where he helped found one of the first GIS degree programs in Texas and establish a state standard
for GIS degree programs. He is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2013)
and Getting to Know ArcGIS ModelBuilder (Esri Press, 2011) and the co-author of GIS Tutorial 3: Advanced
Workbook (Esri Press, 2011).

G
IS

 T
u

t
o

r
ia

l f
o

r
 P

y
t
h

o
n

 S
c

r
ip

t
in

g

David W. Allen

for ArcGIS® 10.2ArcGIS®
10.2

Allen

This page intentionally left blank.

This page intentionally left blank.

Esri Press, 380 New York Street, Redlands, California 92373-8100
Copyright © 2014 Esri
All rights reserved.

Printed in the United States of America

19 18 17 16 14 1 2 3 4 5 6 7 8 9 10

The information contained in this document is the exclusive property of Esri unless otherwise noted. This work is protected under United States copyright law and the
copyright laws of the given countries of origin and applicable international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system, except as expressly
permitted in writing by Esri. All requests should be sent to Attention: Contracts and Legal Services Manager, Esri, 380 New York Street, Redlands, California 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U.S. Government Restricted/Limited Rights: Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. The
commercial license rights in the License Agreement strictly govern Licensee's use, reproduction, or disclosure of the software, data, and documentation. In no event shall
the US Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the US Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (DEC 2007); FAR §52.227-19(b) (DEC 2007) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer
Software); and DFARS §252.227-7015 (DEC 2011) (Technical Data – Commercial Items) and/or DFARS §227.7202 (Commercial Computer Software and Commercial
Computer Software Documentation), as applicable. Contractor/Manufacturer is Esri, 380 New York Street, Redlands, CA 92373-8100, USA.

@esri.com, 3D Analyst, ACORN, Address Coder, ADF, AML, ArcAtlas, ArcCAD, ArcCatalog, ArcCOGO, ArcData, ArcDoc, ArcEdit, ArcEditor, ArcEurope, ArcExplorer,
ArcExpress, ArcGIS, arcgis.com, ArcGlobe, ArcGrid, ArcIMS, ARC/INFO, ArcInfo, ArcInfo Librarian, ArcLessons, ArcLocation, ArcLogistics, ArcMap, ArcNetwork,
ArcNews, ArcObjects, ArcOpen, ArcPad, ArcPlot, ArcPress, ArcPy, ArcReader, ArcScan, ArcScene, ArcSchool, ArcScripts, ArcSDE, ArcSdl, ArcSketch, ArcStorm,
ArcSurvey, ArcTIN, ArcToolbox, ArcTools, ArcUSA, ArcUser, ArcView, ArcVoyager, ArcWatch, ArcWeb, ArcWorld, ArcXML, Atlas GIS, AtlasWare, Avenue, BAO, Business
Analyst, Business Analyst Online, BusinessMAP, CityEngine, CommunityInfo, Database Integrator, DBI Kit, EDN, Esri, esri.com, Esri—Team GIS, Esri—The GIS Company,
Esri—The GIS People, Esri—The GIS Software Leader, FormEdit, GeoCollector, Geographic Design System, Geography Matters, Geography Network, geographynetwork.
com, Geoloqi, Geotrigger, GIS by Esri, gis.com, GISData Server, GIS Day, gisday.com, GIS for Everyone, JTX, MapIt, Maplex, MapObjects, MapStudio, ModelBuilder, MOLE,
MPS—Atlas, PLTS, Rent-a-Tech, SDE, SML, Sourcebook·America, SpatiaLABS, Spatial Database Engine, StreetMap, Tapestry, the ARC/INFO logo, the ArcGIS Explorer logo,
the ArcGIS logo, the ArcPad logo, the Esri globe logo, the Esri Press logo, The Geographic Advantage, The Geographic Approach, the GIS Day logo, the MapIt logo, The
World’s Leading Desktop GIS, Water Writes, and Your Personal Geographic Information System are trademarks, service marks, or registered marks of Esri in the United
States, the European Community, or certain other jurisdictions. CityEngine is a registered trademark of Procedural AG and is distributed under license by Esri. Other
companies and products or services mentioned herein may be trademarks, service marks, or registered marks of their respective mark owners.

Ask for Esri Press titles at your local bookstore or order by calling 800-447-9778, or shop online at esri.com/esripress. Outside the United States, contact your local Esri
distributor or shop online at eurospanbookstore.com/esri.

Esri Press titles are distributed to the trade by the following:

In North America:

Ingram Publisher Services
Toll-free telephone: 800-648-3104
Toll-free fax: 800-838-1149
E-mail: customerservice@ingrampublisherservices.com

In the United Kingdom, Europe, Middle East and Africa, Asia, and Australia:
Eurospan Group
3 Henrietta Street
London WC2E 8LU
United Kingdom
Telephone: 44(0) 1767 604972
Fax: 44(0) 1767 601640
E-mail: eurospan@turpin-distribution.com

CONTENTS
Preface VII

Introduction IX

Chapter 1 Using Python in labeling and field calculations 1

Tutorial 1-1 Python introduction and formatting labels 2

Tutorial 1-2 Decision making in the Label Expression dialog box 10

Tutorial 1-3 Using Python in the Field Calculator 17

Tutorial 1-4 Decision making in the Field Calculator 24

Tutorial 1-5 Working with Python date formats 31

Chapter 2 Writing stand-alone Python scripts 39

Special introduction: Working with Python 40

Tutorial 2-1 Creating describe objects 46

Tutorial 2-2 Scripting geoprocessing tasks 53

Tutorial 2-3 Coding for multiple geoprocessing tasks 62

Tutorial 2-4 Using while statements 69

Tutorial 2-5 Using lists and for statements 78

Tutorial 2-6 Building script tools 86

Tutorial 2-7 Using cursors 101

Tutorial 2-8 Combining loops 113

Tutorial 2-9 Creating custom toolbars 120

Chapter 3 The ArcPy mapping module 129

Tutorial 3-1 Accessing map document elements 129

Tutorial 3-2 Controlling the map extent 144

Tutorial 3-3 Creating a map series 158

Chapter 4 Python toolboxes 171

Tutorial 4-1 Creating a Python toolbox 171

Tutorial 4-2 Setting up value validation 184

Tutorial 4-3 Setting up dependencies 193

VI Content s

Chapter 5 Python add-ins 203

Special introduction: Python add-ins 204

Tutorial 5-1 Creating a Python add-in application 222

Tutorial 5-2 Using buttons and combo boxes 229

Tutorial 5-3 Using tools to interact with the map 242

Appendix A: Using an IDE for Python scripting 257

Appendix B: Tool index 263

Appendix C: Data source credits 269

PREFACE
Do you want to be an expert Python programmer? Well, so do I! That desire put me on a path of
investigation and learning to find out everything I could about using Python with ArcGIS, from A to Z,
and eventually led me to writing this book.

As a bit of a confession, I’m not the world’s greatest Python programmer, but I overcome that by being
the best GIS analyst I can be and knowing how to research the tools that I’m already familiar with.

My strategy is to write detailed pseudo code, research the tools I will need in ArcGIS for Desktop
Help, test those tools, and then try out what I have learned. I often write code in small steps,
debugging each part of the overall program before moving on to the next. As an example, I may write
and debug a file collection process, add and debug a cursor to go through the files, and then add
and debug the code to modify the files. I find this process much easier than trying to write massive
amounts of code and then having to debug several processes and techniques that may be used all at
once. This strategy makes me an excellent Python programmer in the realm of ArcGIS, which is what
I want you to be!

Your work in the tutorials will reflect that process. After all, the end user will not see your code but will
be amazed at the job it does. You can get your Python basics from the other books, and in this book,
I will show you the tools and functions you’ll want to use most in ArcGIS. Then you can work through a
variety of hands-on tutorials and exercises that will have you writing pseudo code, creating scripts from
scratch, and solving problems like a pro.

The other part of being a good programmer is learning to think like a computer: your steps should
be clear and concise and follow a logical path. That clarity is sometimes contrary to how we function
in the real world and to how we use language every day. As an example, let’s say you are on a train in
Germany, traveling to Wolfsburg, and a passenger makes an upward gesture and says to you in English,
“Please, sir, to help me on the shelf on top of my head to put my bag.” You would be able to interpret
this sentence and understand that he wants help putting his bag in the overhead compartment.
A computer, however, would not understand this sentence at all nor would it be influenced by any
voice inflection or gestures. Its interpretation might be that you want to put the man on the shelf
and then put the bag on top of his head. The sequence and understanding of the process is not right.
The construction of detailed pseudo code will help you think through the process, ensuring that the
instructions are clearly stated and that they follow a logical sequence. The more detailed the project,
the more important the pseudo code. In fact, it is nearly impossible to write a Python add-in without
pseudo code.

VIII Pre f ac e

I regret that I cannot include every possible tool and technique that exists for Python programming—
there are just too many. However, this book covers many of the more commonly used processes that
are afforded to programmers in the ArcGIS world. When you master these processes, you will be able
to look out into the Python world and begin to learn and understand the more advanced programming
techniques that are available to enhance your code.

INTRODUCTION
A few Python books are now available that are specific to using Python in ArcGIS—with one problem.
Most of them are not hands-on workbooks. These books describe the tools individually but do not go as
far as showing you how to weave the tools together into scripts to accomplish a goal. It is the equivalent
of showing you a picture of a hammer, describing how nails work (note which end is pointed), and then
expecting you to build a house. The practical knowledge you need to become a programmer is included
in this workbook.

With each of the tutorials, you should read the introduction, scenario, and description of the data.
Following these sections is a section called “Scripting techniques,” which outlines some techniques
that you might want to use in your script. This section may also describe aspects of tools that you
may not necessarily use but are useful to know. You should try writing your own pseudo code without
looking ahead at the suggested solution, and then check and modify your completed pseudo code
against it. If you have a substantially different process from what the book presents, work the tutorial
as written so that you will learn the techniques included, and then feel free to go back and work the
tutorial a second time using your own pseudo code. It will be great practice. Data for the book is
available to download on the Esri Press “Book Resources” webpage, esripress.esri.com/bookresources.
Click the appropriate book title, and then click the data link under “Resources” to download the
exercise data. A 60-day trial of ArcGIS for Desktop software and extensions is available for readers at
esri.com/trydesktop.

You may also find that some of the code is not as concise as hard-core programmers might write. This
level of code is used, in part, to keep different tools and techniques separated and to make it easier
for you to understand. Students sometimes have a problem looking at sample code that has several
advanced techniques going on and trying to pick out and learn each technique separately. The simplicity
also helps to make the code easier to debug. As you are learning, you may not always know where to
start with the debugging process, and complex code will only make debugging more confusing. As you
become more advanced, work on making your code more concise.

This book’s tutorials are divided into five chapters. Chapter one goes over many of the components
of Python and shows you how to use them in label expressions and field calculations in ArcMap. This
chapter also introduces decision-making and condition statements and explains how they can all
be used together. Chapter two has you start writing stand-alone Python scripts and script tools and
using them in ArcMap and ArcCatalog. Chapter three works with the ArcPy mapping module used to
control the map elements in your layouts. Chapters four and five cover the design and creation of more
advanced features, such as Python toolboxes and Python add-ins.

X Int ro duc t ion

As you go over these tutorials and exercises, take an extra moment to try the techniques on your own
data, or at least on data that you are more familiar with. As with many subjects, the more you practice,
the better you will become. It is also important to see how these techniques apply to your specific
situation; that is what is going to ingrain these tools into your thought process and make you a good
programmer.

Python code is edited with specialized programs called IDEs (integrated development environments),
and there are several good IDEs for Python. When you install Python, it comes with an IDE called IDLE.
In addition, you may want to install PythonWin, which ships with ArcGIS but is restricted as to the
operating systems it can use. The examples in this book are created using an IDE called PyScripter, which
is free to download and install and has many rich features that make using it appealing. You are welcome
to use any IDE you like. The results will be basically the same. More information on these IDEs is available
in appendix A.

Chapter 1

Using Python in
labeling and field
calculations

Introduction

As you begin working with Python as a programming language and start incorporating
Python scripts into ArcGIS, you will find that there are many places where Python
code can be used. This use may be as a small code snippet as demonstrated in this
chapter or in fully developed programs as you will see in later chapters. For these first
tutorials, take extra time to research the various Python and ArcGIS components and
the structure of the code. As the projects become more complex, you will appreciate
understanding the basics of this type of programming.

2 Chapter 1 Using Python in labeling and field calculations

Tutorial 1-1 Python introduction and
formatting labels

Python code can be used in places other than fully developed scripts. The Label Expression dialog
box in ArcGIS allows you to insert code to control labels on your map.

Learning objectives
• Basics of Python

• Text formatting

• Variable manipulation

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “What is Python?”

• “Building label expressions”

Introduction

Python is a powerful scripting and programming tool, but you need to know the basic rules of the
game before you start playing. This tutorial presents a summary of the components most commonly
used in ArcGIS. You can reference the Python documentation online at http://www.python.org and
other Python reference books, such as Python Scripting for ArcGIS by Paul A. Zandbergen (Esri Press,
2013), for full descriptions and more advanced tools. Also, research the ArcGIS-related tool you will
be using in ArcGIS for Desktop Help, where you will find descriptions of the tools and code samples
that can be used to better understand the tool’s usage.

Here are some basic rules for Python:

• Python code runs in a linear fashion—from top to bottom.

• Python includes variables, which can contain a variety of data types, including numbers, strings,
lists, tuples, and objects (with properties).

• Variable types (e.g., numeric, string, list, date) do not need to be declared—Python determines
the variable type based on the input.

• Variable names are case sensitive—“myFeatureClass” is not the same as “myfeatureclass.”

• Either single or double quotation marks can be used when creating string-type variables—the
Python code interpreter does not care, so “myFeatureClass” is the same as ‘myFeatureClass.’

• Indentation in Python is important. Indenting is a way to group tools and operations into a set of
code within your script, such as a code block associated with an if or while statement. Indentations
are typically two spaces or four spaces; you can use tabs, but do not mix tabs and spaces.

The next few steps will let you practice some of these rules before you tackle the first tutorial.

http://www.python.org

Tutorial 1-1 Python introduction and formatting labels 3

1. Open your integrated development environment (IDE), and start a new script.

The example shown in the graphic is a modified PyScripter template for ArcGIS that includes
the name of the script, the author, a script description, the date of creation, and the license level
that this script might require. Information on setting up this template in PyScripter is found in
appendix A. Note that these lines are preceded by a hashtag, which denotes them as comments and
not code that can be run.

2. Type the code as shown:

This code creates a couple of variables and prints them to the IDE code window. Note that the
variable is created simply by using the equals sign, and the various parts are brought together in the
print statements using the plus sign. This is called concatenation, which basically creates one line of
text out of all the components.

If you were to try and run this code, you’d get an error. Why? Python runs these lines in order, from
top to bottom. The print statement is run before the second variable is defined.

3. Change the order of the statements so that they will run correctly. Save the script for future
reference, and then run the script.

Remember that Python runs from top to bottom, so the lines of code must be in the correct order.

4. Type the code shown in the graphic to use different types of formatting to create four variables:

Note the format of the variable names. The names are descriptive of what they contain, start with
lowercase letters, and use uppercase letters to distinguish words within the name. This is called camel
case. Although this format is not required, it is standard in the ArcGIS for Desktop Help sample code.

4 Chapter 1 Using Python in labeling and field calculations

Two of the example variables shown are strings (text), and each of them uses a different style of
quotation marks. Both styles can be used, and both are considered regular strings. Note that the
numbers are also different. One has decimal points, and one does not, but both are still interpreted
in Python as numeric. The IDE shows these lines in different colors so that you can tell the number
variables from the string variables.

Expressions can be used to concatenate the strings and to perform math on the numbers. The
graphic in step 2 shows an example of concatenating string variables with the plus sign. Numbers can
be concatenated into these types of sentences as well, but numbers must first be converted to strings
using the string formatting method, .str(). Because the IDE colored the numbers differently, you can
easily tell when a conversion is necessary.

5. Type the code shown in the graphic, and then run your script to see the results.

The strings are concatenated together, and the number is added once it is converted to a string.
Note that in the second line, there is some math occurring inside the string conversion function. This
calculation is fine as long as the result is converted to a string. Also, pay attention to where the extra
spaces are added to the text to make the sentence appear correct when printed.

It is also possible to slice characters from a string variable. Each character in the variable is
automatically assigned an index number, starting at the left with zero (0). You can count over to the
characters you want, and then slice those characters from the string. To slice characters, add square
brackets at the end of the variable ([]), and then inside the brackets, add the starting index number, a
colon, and the ending index number.

6. Type the print statement shown in the graphic to slice only the street name from the streetName
variable.

The first slice gets all the characters starting at index number 0 over to but not including index
number 5. The second slice gets all the characters starting at index number 6 and over to the end.
The indexes can also be counted with negative numbers from the end of the string. The word Lane
could also have been sliced using this statement, which gets all the characters starting four back from
the end and proceeding to the end, as shown:

Tutorial 1-1 Python introduction and formatting labels 5

A common use of the negative slice is to remove the file extension from the end of a file name. The
example in the previous graphic, using -4, would remove .shp from the end of a file name, regardless
of its length.

Another type of variable is a list. List variables can contain many values and are used extensively in
ArcGIS to hold lists of feature classes, file names, and workspaces. The individual values within the
string are accessed by using an index number. Each value is given an index number, starting at 0.
For example, a variable with eight list items would have index numbers from 0 to 7.

7. Type the code shown in the graphic to assign a list to a variable, and then print one of the values
using its index number.

Remember that the first value is given index number 0, so this code will print the names Holly
and Timmy.

These are simple examples of creating and manipulating variables. More complex manipulations
follow in other sections of the book. Try some of these things in ArcMap.

8. Close the IDE you’ve been using and save the file for future reference.

These text manipulations can be used in various parts of ArcGIS, and this tutorial examines using
them in a labeling expression. The interface you use for labeling features in a map layout will
recognize Python script and allow you to do formatting and make on-the-fly changes to the text that
you may be using from a layer attribute. This feature may save you a lot of time when the attribute
values are not formatted exactly as you like or when your data has to meet a standard that is
different from other datasets you may be using.

Scenario
A standard ArcMap layout is used by your department to review the owners of properties in the
fictitious City of Oleander, Texas. The formatting is not the best, but it is functional for your internal
use. Recently, the city manager asked you to make more of this type of data available through online
maps, and the formatting is not appropriate. You should explore some ways to use Python scripting
to make the text more presentable.

Data
The data is the parcel and ownership data for the City of Oleander, Texas, a small community in
the Oleander/Fort Worth Metroplex (O/FW). A map document is set up to display data for each
property from the owner name field.

6 Chapter 1 Using Python in labeling and field calculations

SCRIPTING TECHNIQUES

The Label Expression dialog box has a Python function built in to make it easier
to use the code. A function is basically a set of code that can receive one or more
values and return values back to the program that called it. In the case of the
label expression, the built-in function is named FindLabel() (which you should not
change). This function appears on a line starting with def, meaning that it defines the
function. The function may also have one or more field names at the end appearing
in parentheses. These field names are passed to the code of the function so that you
can use and manipulate their values. Finally, a return statement returns a value to
the program that called the function, which in this case is the label expression. For
labels, make sure to return a single value.

The Label Expression dialog box lets you use a variety of Python text formatting
methods, including the following:

• .capitalize()—makes the first character of the string a capital letter
• .find(X)—finds the specified character in the string
• .isdigit()—returns the value of True if the variable is alphanumeric
• .lower()—makes the entire string lowercase
• .lstrip()—strips any spaces from the left end of the string
• .replace(X,Y)—replaces one character with another in the string
• .rstrip()—strips any spaces from the right end of the string
• .strip()—strips spaces from the start and end of a string
• .title()—capitalizes the first character of every word in a string
• .upper()—makes the entire string uppercase

Check your Python reference books for more string and numeric handlers for
variables. Some are obscure, but you never know when they will be useful.

Use Python in the Label Expression dialog box

1. Using the information provided, write the sequence of the calculation in nontechnical language,
as shown in the following list. Then use this sequence to decide the formal structure of the code.
The goal is to use Python string-handling techniques to dress up the labels on this map.

• Change the text to read as a regular name (first, then last).
• Add an ampersand (&) if a couple owns the house.
• Change the text to upper- and lowercase rather than all uppercase.

This informal description of the processes your code will complete is the pseudo code. Even simple
pseudo code is useful, and as you tackle more complex projects, your pseudo code will reflect this
complexity.

Tutorial 1-1 Python introduction and formatting labels 7

2. Start ArcMap, and open the map document Tutorial 1-1 from the location where you installed
the book’s sample data and exercises.

The map in the graphic shows the Elm Fork subdivision with a label on each property that displays
the owner’s name. Although this format is acceptable, the map would look better if the text were
formatted to show the first name followed by the last name. The current format of the data is
“last name–comma–space–first name(s).” This data can be sliced into separate pieces to show it as
“first name(s)–space–last name.” This slice involves using the .find() method on the string, which
returns the index number of the character you will search for, and then using that location in a slice
operation. If you can find the location of the comma, everything before the comma is the last name,
and everything two characters past the comma (remember the space) is the first name(s).

3. Open the properties of the Elm Fork Addition layer, and click the Labels tab. Then click the
Expression button. It shows the expression as [OwnerName]. At the bottom of the Expression
box, click the Parser arrow, select Python, and then select the Advanced check box in the middle
of the dialog box on the right side.

8 Chapter 1 Using Python in labeling and field calculations

This step automatically enters the first few lines of Python code to define the FindLabel() function.
At the end of this line is a colon (:). All the code that is to be evaluated as part of this function will
appear below this line and be indented, ending with a return statement that sends a value back to
the FindLabel() function and ultimately onto the map. The standard indentation in Python is four
spaces, but the code here uses only two. Next, create a new line of code, indent the code two spaces,
and use the .find() method to determine the index number of the comma in each value.

4. Place your cursor after the colon, and press Enter. Add two spaces, and then type the following:

rawName = [OwnerName]

It is not always necessary to put the field name into a variable, but it will make the process easier to
understand.

5. Press Enter, add two spaces, and type the following:

commaNum = rawName.find(“,”)

The value of commaNum is now equal to the index number of the comma. See if you can write the code
to format the string correctly, and store it in a variable named formatName. Here is what needs to happen:

Slice out everything starting at two characters past the comma over to the end of the string, add a
space, and add the slice of characters from the start of the string over to but not including the comma.

6. After the line of code, press Enter, and add two spaces. Type the code to perform the field
formatting. Then replace the expression [OwnerName] in the last line with formatName, as
shown. Click OK, and close the layer properties to see the result.

Tutorial 1-1 Python introduction and formatting labels 9

Notice how you can do math in the slice command. A few more things still need to be corrected. The
ownership files use the Latin abbreviation ETUX (et ux) in front of a spouse’s name. Replace that with
an ampersand using the .replace() method.

7. Open the layer properties, and modify the expression by adding the .replace() method at the end
of the rawName statement, as shown:

8. Add the .title() method at the end of the return statement to make the names appear in upper-
and lowercase, as shown:

The resulting labels show the first and last names in upper- and lowercase, along with ampersands in
place of the combined wording ETUX.

9. When your code matches the graphic, click the Save button, and save the code you have written
to a calculation (.cal) file for later reference. Then click OK to run the script and perform the
calculation.

10. Close the map document.

Exercise 1-1

Open the map document Exercise 1-1, a map of the subdivisions in Oleander with their names
displayed. The city manager needs to show this map to another city and wants you to dress it
up a little. First, the names should not have .PDF at the end, and second, the names should be in
upper- and lowercase with the first letter of each word capitalized.

10 Chapter 1 Using Python in labeling and field calculations

Write the steps needed to accomplish this task, including the Python code to use for the labeling.
Then apply the code to the labeling expression in the map to reformat the text.

Tutorial 1-1 review

This code performed a lot of string handling with different variables. Note how you
are able to find specific characters in a variable, store the index number, and use that
number to slice the string in different ways. There may be times when this gets tricky, such as
when an address number has an apartment or unit number that is a letter character
(e.g., 304 A Pine St.). Looking for the first space would not give you the correct address number.
You could look for the instance where a character stands alone—in other words, any single
character with a space on both sides. To give a more complicated example, what if you had
single-letter street names, such as D Street or P Street? The stand-alone character is the
street name and not part of the address number. To make it even more confusing, Galveston,
Texas, has half streets, such as P½ Street. This situation may require some complex Python
coding to solve.

Study questions
1. Will finding the first space always identify the address number? Could you find all the

spaces? Write some code to find the first stand-alone character in a string (a single
character with a space on both sides).

2. Can strings and numbers be combined in Python? Write code to concatenate a text string,
such as “Miles to go are,” with a numeric variable, such as 102.

3. Give examples of when you might use the .upper(), .title(), and .lower() methods.

Tutorial 1-2 Decision making in the Label
Expression dialog box

Labels can be simple displays of data from an attribute table, or with some Python coding, labels can
be used to show values that are not in the table.

Learning objectives
• Defining functions

• Using if-elif-else logic for decision making

• Changing the label display text

Tutorial 1-2 Decision making in the Label Expression dialog box 11

Preparation
Research the following topic in ArcGIS for Desktop Help:

• “Using If-then-else logic for branching”

Introduction

In tutorial 1-1, you learned how to use Python code to control labels in a map document using
various text-handling techniques. Those techniques involved simply arranging and reformatting the
existing values of the fields used for labeling. You can also create labels that use entirely different text
strings from the fields—it all depends on what you send back to the label expression with the return
command.

In this tutorial, you will apply decision-making techniques to the labels in ArcMap. You will be able to
pull the value out of the field and use it to determine what the label should contain.

Scenario
A file has been provided by the planning office of Oleander. This file needs a map to display at City
Council meetings that shows the general zoning categories of Oleander. You have a good dataset for
this, but the zoning is shown as code rather than a text description. You must use some decision-
making tasks to turn the codes into the appropriate labels.

Data
You are provided with the zoning map for the City of Oleander containing a layer with the zoning
district polygons named General Zoning Districts. This layer has a field named Code, which contains
a coded value for zoning. The codes are as follows:

RES = Residential
MF = Multi-Family
SPEC = Special District
C = Commercial
I = Industrial

12 Chapter 1 Using Python in labeling and field calculations

SCRIPTING TECHNIQUES

You will need to build a condition statement using the if statement. This book covers if
statements in more detail in later chapters, but for now, here is a quick introduction.

Every programming language has some version of the if statement to perform
branching based on a condition being true, and Python is no exception, providing
one of the easiest if formats. The first if statement tests a condition that can evaluate
to either True or False, along with a set of code to run if the statement is true. This
statement can be followed by any number of elif statements to run if the condition
is tested to be false—and the elif condition statements are all evaluated in sequence
until one is true. Finally, an else statement is provided with no condition to be met
and is run if all the other conditions are false. A basic decision-making statement
looks like this:

Note that the evaluator is a double equals sign (check your Python reference for
other evaluators such as the greater than symbol or the lesser than symbol), and the
code for each if, elif, or else statement is kept indented until the next statement. This
format designates which lines of code to run if the statement evaluates to True. The
return statement tells the code what to send back to ArcMap—in this case, the text
for the label.

Use if-elif-else statements in the Label Expression dialog box

1. Write the pseudo code for this project:

• Get the code value from the field.
• Determine what text to use for each code value.
• Return the text string to the label expression.

Tutorial 1-2 Decision making in the Label Expression dialog box 13

2. Start ArcMap, and open the map document Tutorial 1-2. Right-click the General Zoning Districts
layer, and open the properties. If necessary, click the Labels tab as shown, and set the Label field
to CODE.

3. Click the Expression button. Do you remember how to set this to accept Python code? (Hint: set
the Parser to Python and click Advanced.)

14 Chapter 1 Using Python in labeling and field calculations

4. The framework is ready for the code to be entered. First set a variable to equal the zoning code
that is brought into the script by the function. Add two spaces before the variable name to keep
the indentation, as shown:

5. Construct the if statement. Remove the line “return [CODE]” because this will be replaced within
the if statement. Add a new line, indent two spaces, and add the if statement, remembering to
add the colon at the end of the line, as shown:

6. Add another line, and indent four spaces. Everything that keeps the four-space indentation will
be evaluated when this if statement evaluates to True. Add a return statement to tell ArcMap
what to use as a label, as shown:

Next, add code to handle what happens when the if statement is not true—you will set up the next
label. Python makes checking multiple conditions easy with the use of an elif statement. Remember
that this statement also gets a colon at the end of the line, and everything after the colon that is kept
to a four-space indentation will run if the condition is true.

7. Add another line, indent two spaces, and type the elif statement; then add another line with a
four-space indentation and the return statement.

Tutorial 1-2 Decision making in the Label Expression dialog box 15

Your turn
Add the rest of the code to test each of the remaining conditions. Remember that the last line can be an else
statement with no condition. Try it from your own notes first before looking at the code in the next image.
(Hint: make sure to watch your case on variables; use the == evaluator; put a colon at the end of each line
with an if, elif, or else statement but not after the return statement; and watch your indentations carefully).

8. Click OK and then OK to run the code and create the labels.

If you have an issue, go back over the code, and pay particular attention to the things noted in the
“Your turn” hint.

You will see that your code has turned the zoning codes into a more descriptive label. It is important
to remember that these labels are generated on the fly and used for this map only; these labels are
not stored anywhere in the attribute table.

16 Chapter 1 Using Python in labeling and field calculations

Exercise 1-2

The other map turned out so well that the planner wants a similar map for the comprehensive
land development data. Open the map document Exercise 1-2, and use Python code in the label
expression to turn the following USE_CODE values into descriptive text:

A1 = Single Family
B1 = Multi-Family
F1 = Commercial
F2 = Industrial
PRK = Parks
ROW = Right-of-Way
TX10 = Special Texas District

Write your code before attempting to type the expression in the Label Expression dialog box.

Tutorial 1-2 review

The if statement in Python is one of the easiest to use in the programming world. For any set of
conditions, continue adding elif statements until you have handled all the possible conditions. It is
good practice to put an else statement after the last elif statement just to handle a situation that is
not the norm or that you might have forgotten about or to handle the last known condition without
having to use a condition statement.

If statements can also be nested, but this is only done to test two entirely different sets of conditions.
For instance, your first if statement might be to identify the land-use code, and you nest an if
statement within that statement to determine whether the particular parcel fits within a certain
range of acreage. However, you would not need to use nesting to test for more land-use conditions
as you would with other programming languages. These conditions could easily be handled with
additional elif statements, one for each additional land use.

Another interesting note with if statements is that the condition need only return a value of True
or False. If you are testing a variable that equates to True or False, you need only put the variable as
the condition for the if statement. For instance, the .isDigit() function returns the values of True for
a variable containing alphanumeric characters and False if the variable is empty. If you retrieved a
variable named Name that contained characters, the code myVariable = Name.isdigit() would set
myVariable to either True or False, depending on whether the field had an alphanumeric value. This
situation would make the if statement look like this:

Tutorial 1-3 Using Python in the Field Calculator 17

The if condition statements can also test for more than one variable at a time, just like a query
statement in ArcMap. The only trick is that there must be a combination of values that equate to
True, or the code will never run. For instance, if you needed to find all the 40-inch or larger PVC pipe,
the code would look like this:

It does not matter that one condition tested a string-type value and the other tested a numeric
value. Be careful with the condition though, because an incorrect AND or OR can send your code
in an unwanted direction. If you are unfamiliar with the AND and OR handlers, check them out in
ArcGIS for Desktop Help, and try practicing the statement as a definition query in ArcMap.

Study questions
1. When would you nest if statements, and when would you rely on elif statements? Write

the code to find parcels that have a land-use code of A1, and note whether the acreage is
less than two acres, from two to five acres, or more than five acres. Add additional code to
find parcels with a land-use code of B1, and perform the same test for area.

2. How would you format a complex condition statement? Write the code to find employees
over 50 who are retired if their age is stored in a field named currAge, and the field noting
retirement status is a true/false field named statusRetired.

3. Where can you find more Python methods that deal with string and numeric variables?
Write code to find all the employees with a last name containing more than 10 characters
if their last names are stored in a field named LastName (or else it will not fit on the new
engraved name tags).

Tutorial 1-3 Using Python in the Field
Calculator

Snippets of Python code can be used in the Field Calculator to perform complex functions, including
any of the text formatting commands shown in the Label Expression dialog box.

Learning objectives
• Text formatting with Python

• Using Python code blocks

• Concatenating text values

18 Chapter 1 Using Python in labeling and field calculations

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Calculate field examples”

• “Fundamentals of field calculations”

Introduction

The first two tutorials show how to use Python code to alter the labeling in an ArcMap map
document. This labeling made the maps look great, but remember that the changes occurred only in
the labels and were not stored anywhere permanently.

To make a more permanent change to your data, you can use Python to calculate the values
in fields. You would normally use the Field Calculator and a simple expression to set a field
value, but there are limits to what you can accomplish with the simple expressions that are
allowed. By using Python code in the Field Calculator, you can store the results for future use
by yourself and others.

Scenario
You received some data from the Fire Department, and it would like you to format the addresses so
that its analyst can geocode them and make a simple presentation map. To do the geocoding, the
address needs to be in a single field, and right now that information is parsed out into five fields. You
must write an expression in the Field Calculator to create a single address with the components in
the right sequence, and without extra spaces.

Data
You are provided a file named FireRuns2010 with the calls for service data from the Oleander Fire
Department. The file contains a variety of data about the type of call, the time it was received and
dispatched, and which unit responded. The file also contains address information that has been split
into five fields:

addNum = address number
stPrefix = street prefix
stName = street name
stType = street type
suffDir = street suffix direction

Tutorial 1-3 Using Python in the Field Calculator 19

SCRIPTING TECHNIQUES

Using Python code in the Field Calculator is a little trickier than the labels expression
because ArcMap does not automatically create the code for the function. You need
to set the parser language to Python, and then select the Show Codeblock check
box. This will expose two empty boxes where you will type your code.

The lower box, called the Expression box, will look familiar. This is the box that you
normally work with for simple calculations and that you used to hold your label
formatting code. Instead of using a regular statement, you will have the expression
call a function from the code box described below. The syntax is to name the
expression, which can be anything you like, but common practice is to begin the
name with a lowercase fn to denote a function. Then in parentheses, add all the
fields from the attribute table that you will be using in your code. It does not matter
how many you use, and they will be separated by commas. You can add them by
double-clicking the field name in the Fields list.

All the code work is done in the Pre-Logic Script Code box, or code box. The first
line defines the function you named in the Expression box. It then has a set of
parentheses and contains a variable name for each of the fields that you are sending
to it. For instance, if your statement in the Expression box has five fields coming
in, the function in the Pre-Logic Script Code box must set up five variables to
accept them. The function ends with a colon, and all the code that follows must be
indented. There is no automatic indenting here, so you must manually add spaces
for indenting and then keep track of them.

Next, type all your Python code to process the data and perform the calculation,
with the last line being the return statement. This code sends a value back to the
Expression box, which is saved to the field. As with the label expressions, the use of if
statements may result in several return statements.

Debugging this code can be problematic, but it is best to start by checking the
indent levels. Then go back over the syntax of the code.

Use Python in the Field Calculator

1. Write pseudo code to describe the process for reformatting the field value and storing the result:

• Concatenate the values for address number, street prefix, street name, street type, and street
suffix direction into a single value.

• Store this value in the empty field full_address.

20 Chapter 1 Using Python in labeling and field calculations

2. Start ArcMap, and open the map document Tutorial 1-3. If necessary, switch to the List By Source
view in the table of contents. Open the FireRuns2010 table.

3. Right-click the field full_address, and click Field Calculator. A warning about editing outside an
edit session appears. Click Yes to continue.

It can be dangerous to edit outside an edit session in ArcMap because there is no undo option. If you
make a mistake, it is permanent. In this case, you are populating an empty field, so there is no risk of
destroying any critical data by calculating the field.

4. In the Parser box, click Python. Below the Fields list, select the Show Codeblock check box.

In the Expression box, you will create a name for the function, such as fnAddress, and write the
Python code to perform your operation. The name here can be anything you like, but standard
convention is to start functions with a lowercase fn to identify their type and add a descriptive name
in uppercase.

Tutorial 1-3 Using Python in the Field Calculator 21

5. In the Expression box under “full_address =,” type the line shown in the graphic. Type the
function name, and double-click the field names to enter them. Be sure to add commas between
the field names.

Double-clicking the field names to add them to the function will automatically place the proper
characters around the field name. These may be quotation marks, exclamation points, or square
brackets, among others, depending on the data source. It is hard to know exactly which characters
will be needed, so using the double-click method ensures that the correct characters are used.

6. In the Pre-Logic Script Code box, type the following code:

This defines a function named fnAddress and accepts each of the fields listed in the Expression
box. Note: This is the format for all code that you will ever write in the Field Calculator. The Label
Expression dialog box names a function, followed by all the fields that will be used in the script. Then
the Pre-Logic Script Code defines the function beginning with def and accepts each of the fields into
a Python variable that you name.

7. Write the Python code to format and concatenate the fields into a single string. Remember to
account for a space between the values. When you have the code entered, click OK to perform
the calculation. If you have difficulties, check your code against the graphic, but try writing the
code on your own first.

This worked pretty well, but there is still a problem. If the stPrefix string is empty, an additional space
is added to the output string. Also, extra spaces are added at the end of the output string if suffDir
is empty. Using what you know about if statements, try writing the code that will test for this field

22 Chapter 1 Using Python in labeling and field calculations

being empty, and then handle the case of what to do if it is empty. It should have this logic (add this
to your pseudo code):

• If the field stPrefix is empty, write the concatenation without this field included.
• Add a command at the end of the output to strip off blank spaces.
• �If the field stPrefix is not empty, write the same concatenation as before with the command

added to strip blank spaces from the end of the string.

You should also investigate other Python formatting tools to remove any blank spaces from the
values and perhaps to control the capitalization.

8. Right-click the full_address field, and open the Field Calculator dialog box. Type the code you
wrote—making sure to use the correct indentations with the if statements. (Hint: indent two
spaces for every command after the def statement and four spaces for every command to run
with the if statement.) Click OK to test it—the completed code looks like this:

Note the use of indentations to distinguish the commands for the different parts of the if statement.
This example also includes the .strip() and .title() functions to help with the text formatting.

You can see that complex scripts can be developed for use in the Field Calculator. The format for any
script you write will be the same: name a function in the Expression box along with the fields you will
be using in the script, define a function in the Pre-Logic Script Code box with a Python variable for
each field named in the function, and write the code to do your processing.

Exercise 1-3

The chief would like to export this data into another program for analysis, but there must be a field
describing which station responded. The field district has a number that designates the station code,
but the chief would like it in the format “Station 1” instead of the code.

Add a text field to the table FireRuns2010, and name it Station. Then write a script in the Field
Calculator that will populate the field with the appropriate text:

151 = “Oleander Station 1”
551 = “Oleander Station 1”
152 = “Oleander Station 2”
552 = “Oleander Station 2”
153 = “Oleander Station 3”
553 = “Oleander Station 3”

Tutorial 1-3 Using Python in the Field Calculator 23

Anything else should be made equal to “Outside Station.”

As a bonus, add the shift code at the end of each value. For instance, for 551 shift B, the output would
read “Oleander Station 1 – Shift B.”

Tutorial 1-3 review

As you can see, the code in the Field Calculator can get complex. The trick is to maintain the
indentations because the code block box does not handle indent levels automatically, as a good IDE
would. It is sometimes good practice to build these statements in your IDE using some preset dummy
data variables to test the syntax and set the indentations correctly. Then you can copy and paste the
code to the Field Calculator.

The same rules that apply to if statements in the Label Expression dialog box also apply to if
statements in the Field Calculator dialog box. Follow these rules carefully, and test any condition
statements to make sure that they will not send your code out of control and that they have an
instance that equates to True.

In both the Field Calculator and Label Expression dialog boxes, you are required to manage your
own indent levels. Because of this, it is good practice to test your code in an IDE first for syntax and
indentations before placing it in the Field Calculator. It is also advisable to calculate values into new,
empty fields rather than to calculate values over existing values. If something is wrong in your code,
you will destroy the original data values. These values would be impossible to recover if you were
calculating outside an edit session.

This tutorial includes condition statements using string values. If the fields or values being compared
do not match in case (uppercase, lowercase, or a combination thereof), the values may not equate
to True, even when they are the same except for case. In this instance, you can use one of the string
formatting functions to force the case to match before performing the testing.

Study questions
1. Could these same scripts be used to display labels on a temporary basis rather than

storing the output string in a field? Write a code example to complete the exercise as a
label statement (if you think it can be done).

2. What other string formatting statements are available for use in Field Calculator scripts?
Write code to compare name fields from two different tables if the first is Name and
stores a value in upper- and lowercase letters and the second is EmpName and stores a
value in all uppercase letters.

3. Besides using double equals signs (==) for “is equal to,” what other evaluators are available
in Python? Write code to find pipe sizes starting at 8 inches and going up to 12 inches.

24 Chapter 1 Using Python in labeling and field calculations

Tutorial 1-4 Decision making in the Field
Calculator

Complex operations in the Field Calculator can include advanced Python math functions and if-elif-
else logic.

Learning objectives
• Writing a Python code block

• Using if-elif-else logic

• Text formatting

Preparation
Research the following topic in ArcGIS for Desktop Help:

• “Using if-then-else logic for branching”

Introduction

In tutorial 1-3, you learned how to perform various text formatting techniques in the Field Calculator.
The Field Calculator allows you to perform a variety of math functions as well. Python has many
math expressions built in, such as adding, subtracting, multiplying, dividing, exponentials, and square
roots, but Python also has a math module that can be imported to add higher-level math operators.
This scenario uses simple math operators, but you can explore other Python code references for
more options.

Scenario
The city engineer is preparing to do a flow rate study on the sewer system data. It is a gravity flow
system, and the flow rate in gallons per minute (gpm) of wastewater must be calculated for each pipe
size. In addition, she wants you to include a drag coefficient for the different pipe materials because
some types of pipe are not flowing at the optimum rate due to friction or buildup in the pipes.
Because you do not know the slope of the pipes, calculate the flow rate assuming a 1 percent grade,
and she can calculate a more accurate flow rate when better slope data is acquired.

Your script must find the pipe size, get the flow rate for that size, and multiply the flow rate by the
drag coefficient of the pipe material. The flow rates are as follows:

4 in. = 30 gpm
6 in. = 70 gpm
8 in. = 175 gpm
10 in. = 280 gpm
12 in. = 410 gpm

Tutorial 1-4 Decision making in the Field Calculator 25

The drag coefficients for the different materials are as follows:

Ductile iron = 0.82
Reinforced concrete = 0.88
Vitrified clay = 0.92
High-density polyethylene = 0.97
Polyvinyl chloride = 0.97

Notice that even the best pipe, with a coefficient of 0.97, does not allow for wastewater to flow at the
maximum rate. Because the pipe must maintain an air gap to allow the wastewater to flow freely, the
maximum theoretical flow rate is never achieved.

Data
The data is the sewer utility data for the City of Oleander. The pipeline database already has an empty
field in which you will calculate the flow rate. In addition, there is a field containing the pipe size
and another one containing a description of the pipe material. A definition query has been applied
to limit the pipe sizes to less than 14 inches to save time typing a lot of code. In reality, this process
would be done on the entire dataset.

SCRIPTING TECHNIQUES

The first few tutorials used various Python controls to manipulate strings, but there
are just as many available for mathematical functions. The common controls are
addition (+), subtraction (-), multiplication (*), and division (/), but a variety of more
complex functions exist, such as exponentials and square roots. A double-asterisk
(**) operator is used for an exponential, so 2 to the power of 4 would be 2**4. Seven
squared would be 7**2 (seven to the second power).

Python also has a separate math module that can be referenced from your scripts to
do more scientific calculations, but these calculations are not addressed here.

Make decisions in the Field Calculator

1. Try writing your pseudo code for this project on your own before referring to the description shown:

This pseudo code shows a general outline of the process.

26 Chapter 1 Using Python in labeling and field calculations

2. Think about each of these steps, and determine what type of Python scripting you may have to
write to accomplish the goal, and add that description to the pseudo code. You can be more
specific in this step because the next step requires writing the actual code.

3. Start ArcMap, and open the map document Tutorial 1-4. This is the sewer utility data for
Oleander, zoomed in on a small area. Open the attribute table for the Sewer Lines layer, and note
the fields in the table that you will be using in this process.

Tutorial 1-4 Decision making in the Field Calculator 27

4. Right-click the FlowRateGPM field, and open the Field Calculator dialog box. Click the settings
to allow for the entry of Python code, and define a function to accept Python code as described
in step 1 of your pseudo code. Refer to tutorial 1-3 for a reminder of how to do this. The function
should pass the PSIZE and MATERIAL fields to the code block (in each step, try out your own
code before referring to the graphics).

5. Construct the if statement as outlined in step 2 of your pseudo code. Lay out the entire structure
to determine pipe size before thinking about the steps to find the pipe material. Remember
to control your indentations. The return statements return a blank value and are here just as
placeholders. Note: The displays of code shown in the graphic are from an IDE for legibility. You
may want to develop this code in an IDE or text editor, and copy it to the Field Calculator when
you are done.

28 Chapter 1 Using Python in labeling and field calculations

6. Move on to step 3 of the pseudo code, and add the nested if statement to determine material
type. The if and elif statements are indented two spaces from the pipe size condition statement.

Note the use of the slice function to get the first letter of each description in the if statement. This
function keeps you from having to type the entire description, but make sure that when you use this
function you are producing a unique value for each if statement. Although only one set of condition
statements for pipe materials is shown, these statements need to occur for each pipe size.

7. Finally, you must construct the calculation, and add it for each condition. Note: only part of the
final script is shown in the graphic.

Tutorial 1-4 Decision making in the Field Calculator 29

8. Once you have the entire script in the Field Calculator code box, click Save, and save to your
MyExercises folder.

9. Click OK to run the code, and see the results calculated into the field. (Hint: make sure Python is
still selected as the parser in the Field Calculator dialog box—it sometimes resets to the default of
VB Script.)

If your code is not running correctly, double-check the variable names, the indentations, the colons,
and so on. For long, complex scripts like this one, you can do them in your IDE, which checks syntax
as you go, and then copy and paste the final script to the Field Calculator code box.

30 Chapter 1 Using Python in labeling and field calculations

Exercise 1-4

The city engineer has a similar project using the water line data. Open the map document
Exercise 1-4 and look at the attribute table for the Distribution Laterals layer. Use the fields PSIZE,
PTYPE (for material), and Shape_Length to calculate the desired use factor.

The formula is PSIZE * Shape_Length * Material Coefficient, using the material coefficients from the
following table:

For pipes 6 in. or less For pipes 8 in. or larger

Asbestos concrete 80 95

Cast iron 60 75

Polyvinyl chloride 90 105

Write pseudo code to determine the process. Then use the Field Calculator to complete the process,
and place the answer in the DiamLengthPressure field.

Tutorial 1-4 review

Working in the Field Calculator is unique because it lets you do a series of checks and calculations on
a per-feature or per-row basis. Each feature is evaluated individually. To do this in stand-alone Python
scripts, you use a cursor, which you will learn about later, so the Field Calculator is like an automatic
cursor.

There are limitations to the Field Calculator, however. Although you can bring a number of field
values from the current feature class into the script, you can only deal with one output field at a
time—and for that matter, only one feature class or one table at a time. In a full Python script, you
can control any number of field values, feature classes, or tables simultaneously and send output to
other fields, other feature classes and tables, or even files outside ArcGIS.

Study questions
1. If you have a feature class with property values (Tot_Value) and a separate feature class

with lot size (Acreage), could you write a script to calculate the value per acre using the
Field Calculator? Write the script (if you think you can do it).

2. You need to calculate a property drainage coefficient based on lot size (Acreage), land use
(Use_Code), an impervious area (Imperv_Area), and soil type (Dirt_Type). If all these fields
are in the same feature class, can they all be used in the Field Calculator? Write the code
to bring all these fields into the Field Calculator dialog box (if you think you can do it).

3. Name three things to watch for when nesting if statements.

Tutorial 1-5 Working with Python date formats 31

Tutorial 1-5 Working with Python date
formats

Dates are a complex item in any programming language, but Python makes using them easy. Basic
formatting techniques are used to extract and manipulate data information.

Learning objectives
• Using Python date directives

• Working with date information

• Building complex Python objects

Preparation
Research the following topic in ArcGIS for Desktop Help:

• “Fundamentals of date fields”

Introduction

As you have seen in tutorials 1-3 and 1-4, complex calculations can be made in the Field Calculator
using Python directives and if condition statements. One type of calculation that causes concern
among programmers is performing date calculations because the fields that hold the dates are not
standard fields, and they are not structured on a base 10 calculation like common numbers. A date
field is a special type of field that can contain the day, month, year, and time of day in a variety of
formats, which means that a standard Python variable is not able to contain the data. Instead, you
must use a Python date object. In using the date object, make sure to specify the date components
as they are brought into the object so that they can be retrieved as needed.

You also must pay attention to the time field. Merely subtracting the time values will not produce
the desired results. The hours, minutes, and seconds must be calculated separately, and at the same
time, you must also be aware of the scenario covering multiple days.

Scenario
The fire chief has provided you with the calls for service data for the past year and wants you to
calculate the elapsed time between the dispatch time and the time that the vehicle arrived on the
scene in decimal minutes. Any call that exceeds five minutes will need to be investigated. Although
this sounds simple, it can be one of the more complex functions to perform.

32 Chapter 1 Using Python in labeling and field calculations

Data
The calls for service data has the fields dispatched and arrived, which represent the time the vehicle
left the station and the time it arrived on the scene.

SCRIPTING TECHNIQUES

Remember that variables typically hold a single value, but objects can hold multiple
values. The list objects that you used earlier are a good example of objects with
multiple values. The key to working with objects is to understand the format of
what the object holds and how to access it. As the book progresses, you will see
more examples of objects and how to research their structure.

Date objects can actually hold both date and time, or date only or time only, so
particular care must be taken to assess the values in the object before deciding how
to process them. Once this is done, identify each of the components using a format
code called a date directive. The following list of directives will help you decide how
to format the date object:

• %a = abbreviated weekday name
• %A = full weekday name
• %b = abbreviated month name
• %B = full month name
• %c = preferred date and time representation
• %C = century number (the year divided by 100, range 00 to 99)
• %d = day of the month (01 to 31)
• %D = same as %m/%d/%y
• %g = like %G, but without the century
• %G = four-digit year corresponding to the ISO week number (see %V)
• %h = same as %b
• %H = hour, using a 24-hour clock (00 to 23)
• %I = hour, using a 12-hour clock (01 to 12)
• %j = day of the year (001 to 366)
• %m = month (01 to 12)
• %M = minute
• %n = add a new line
• %p = either a.m. or p.m., according to the given time value
• %r = time in a.m. and p.m. notation
• %R = time in 24-hour notation
• %S = second
• %t = Tab character

Tutorial 1-5 Working with Python date formats 33

• %T = current time, equal to %H:%M:%S
• %u = weekday as a number (1 to 7), where Monday = 1 (Warning: in the Sun

Solaris operating system, Sunday = 1.)
• %U = week number of the current year, starting with the first Sunday as the

first day of the first week
• %V = the ISO 8601 week number of the current year (01 to 53), where week

one is the first week that has at least four days in the current year, and with
Monday as the first day of the week

• %W = week number of the current year, starting with the first Monday as the
first day of the first week

• %w = day of the week as a decimal, where Sunday = 0
• %x = preferred date representation without the time
• %X = preferred time representation without the date
• %y = year without a century (range 00 to 99)
• %Y = year including the century
• %Z or %z = time zone or name or abbreviation
• %% = a literal % character

You must use the Python DateTime module to correctly use the date object. This
is a standard Python module that contains specialized functions and methods for
working specifically with date information. The syntax is to add “from datetime
import datetime” at the beginning of your code. This syntax brings in the date
and time functions you will use in the calculations. For example, the date string
“10/25/2012” would use the format string “%m/%d/%Y”.

The DateTime module also includes special functions to perform math on
dates. Simple subtraction of dates using the standard Python math functions
could produce incorrect results. Imagine a call for service that started at
11:58 a.m. and ended four minutes later at 12:02 p.m. Performing a simple
subtraction of these values would produce a negative number. The same would
be true of a call that occurred just before midnight and ran into the next day.
But once the values in the fields are put into date objects, subtracting them
produces a time delta object. The function total_seconds() can be used to
extract a value into a numeric variable, and dividing this by 60 converts the
value to minutes.

Handling time is also tricky. Seconds and minutes are on a base 60 system, with
hours being on a base 12 system, or a base 24 system for military time. You
determine the base when you format the Python object. The directives handle
almost any combination, but make sure you match them to the data carefully. This
will ensure success with your code.

34 Chapter 1 Using Python in labeling and field calculations

Work with the Python DateTime module

1. Open the map document Tutorial 1-5. In the table of contents, click the List By Source button,
and open the table Calls_for_service_2012. Note the fields that you are working with.

Notice the format of the date. The fields have the following structure:

• Month shown as two digits followed by a slash

• Day of the month shown as two digits followed by a slash

• Year shown as four digits followed by a space

• Hour in base 12 shown as one or two digits followed by a colon

• Minutes in base 60 shown as two digits followed by a colon

• Seconds in base 60 shown as two digits followed by a space

• AM and PM shown as two uppercase characters to determine morning or afternoon, respectively

The key to working with dates is to select the correct formatting string during the object assignment.
Use the function .strptime() with the syntax strptime(date, format) where date is the date string you
are bringing in from ArcMap, and format is the Python directive to identify each component of the
date.

2. Write the general and detailed pseudo code necessary to calculate the elapsed time. Include
the date string formatting directives to accept the data from the calls for service table. Use the
preceding list in “Scripting techniques” to determine which directives to use. (As usual, try to
write the complete pseudo code for each step before comparing your results with the graphics).

Tutorial 1-5 Working with Python date formats 35

3. Right-click the ElapsedTime field, and open the Field Calculator dialog box. Enter the code to set
up the function, and bring in the necessary fields.

4. Add the code to format the date string. Import the Python date-handling method, and then
create a Python object with the correct date format, as shown:

The date subtraction is next. The calculation must accommodate the possibility of a time that
bridges the day or the morning to afternoon break. Subtracting the two date objects will result in
a time delta object, which is designed to automatically accommodate the time changes. The time
delta object holds the elapsed time in seconds and is retrieved using the total_seconds() function.
When divided by 60, the result is the total elapsed time in decimal minutes.

5. Write your version of the code to perform the date subtraction and compare it to this:

36 Chapter 1 Using Python in labeling and field calculations

6. Add the return statement, and send the results back to the table. Click OK to see the results.
By sorting the field in descending order, you can quickly see which calls exceeded the required
response time.

Dates can be problematic, but this example should help you understand how to do a variety of date
calculations. The key is to use the correct directive when formatting the Python date object.

Exercise 1-5

Open the map document Exercise 1-5. Perform the same elapsed-time calculations on the Calls_for_
service_2010 data. Notice that the date and time data are in separate fields.

Write the pseudo code first to determine which directives are necessary to create the Python date
objects.

Write the code in the Field Calculator, and store the results in the ElapsedTime field.

Tutorial 1-5 review

The examples in this tutorial cover how to properly format dates as input and place them into
variables. Then these variables were used for calculations. The key to working with dates is to know
the date format of the input value. Some date fields contain the full range of information, including
date and time. Other fields may have only the date, and yet others may have only the time.

Tutorial 1-5 Working with Python date formats 37

The date directives listed at the start of this tutorial also handle the formatting of output dates. For
instance, you could format a date into a Python date object and print the corresponding day of the
week using %u or the corresponding week of the year using %U or %W (depending on whether you
start your week on Sunday or Monday).

Study questions
1. Research the date handlers in your Python reference book, and list the function to get

today’s date.

2. What format directives would you use on this date string: 31 12 2013 23:59:59 (New Year’s
Eve in London)?

3. What format directive would you use to give the full weekday name?

This page intentionally left blank.

Chapter 2

Writing stand-alone
Python scripts

Introduction

Much of the Python programming you create will be stand-alone Python scripts, which
you may also bring into ArcGIS as script tools. The scripts will follow a standard format
and are written using an integrated development environment (IDE), such as IDLE,
which comes with Python; PythonWin, which is popular with many programmers; or
PyScripter, which is gaining popularity and is used for the examples in this book. You
may use any of these IDEs because the formatting of the scripts and the code you write
will be the same, regardless of the IDE used. Please read the documentation of the IDE
you choose to learn how to create, run, and save Python programs.

One of the most important things you can do in your code development is to write
proper pseudo code. Pseudo code is a plain-text description and diagram of what your
code should accomplish. You should note which modules you need to import, which
tools you might need to use, the steps necessary to perform the desired operations,
which variables you might need to set up and use, and any research notes about the
Python code you write. This description is not intended to be code, but it may become
documentation in the script for future reference. You wrote a little pseudo code in the
first chapter of this book. The pseudo code for these next chapters should be well
written and researched and contain detailed descriptions of your process. A simple
outline of the pseudo code is found at the end of each tutorial. You should prepare your
own pseudo code first, and then compare it with the outline provided.

40 Chapter 2 Writing stand-alone Python scripts

This chapter reviews some of the basic structure of Python code, but you should
use a good Python reference book for more detailed study. Each tutorial is
designed to highlight particular techniques to interface your code with ArcGIS. As
always, if you find a better or more efficient way to accomplish the same task, by
all means, give it a try. Writing and troubleshooting the code is good practice.

Special introduction: Working with Python

Python is similar to other object-oriented programming languages because it deals with functions,
classes, and objects. Esri has written a module for Python, named ArcPy, that adds special functions,
classes, and objects that deal specifically with ArcGIS and its components. In addition to standard
Python code elements, ArcPy also provides access to all the tools available in ArcToolbox. To
be successful, learn more about these elements and how to find references to their use. These
tool references are easy to find in the materials provided with ArcGIS. The easiest and most
straightforward method to access these tools is to search for the tool in ArcGIS for Desktop Help.
Another easy way to get a tool reference is to right-click the tool in ArcToolbox, and select Item
Description. A third way is to search for the tool in the Search window, and click the link provided
with the tool’s name. Whichever way you choose, you will be provided with an explanation of the
tool’s function, the syntax for the tool’s parameters, and code samples showing how to use the code
in Python scripting.

The simplest code to program uses the ArcGIS tools. Any tool found in ArcToolbox can be brought
into a Python script. The basic syntax for using these tools is to call the ArcPy module, add a
period, add the tool name and then an underscore, followed by the alias of the toolbox where this
tool resides, and then add a set of parentheses containing the parameters necessary to run the
tool. For example:

Module.Tool_ToolboxAlias(param1, param2)

This syntax may seem difficult, but code samples are given in the tool reference for each tool.
For example, the Buffer tool would be added like this:

How do you know things like the toolbox alias and the tool parameters? Simple: look in the tool’s
reference. The Help for the Buffer tool includes the tool syntax, a description of the parameters, and
a couple of sample scripts to show how the tool is used in Python. As good practice, you could copy
and paste the tool syntax into your script as a comment so that as you write out the parameters, you

Special introduction: Working with Python 41

are sure to put them in the correct order. Also, pay close attention to the capitalization. Remember,
Python is case sensitive.

Here is the tool reference for Buffer (shown without the optional parameters):

Look up a few commonly used tools in ArcGIS for Desktop Help or some tools in
ArcToolbox, such as creating a file geodatabase and performing a union, and note the syntax
and code examples provided. If you are not familiar with the exact tool name, use the Search
window to find it. Be careful because some tools that you may commonly access from the
toolbar when working manually may have different names when used as ArcPy tools. Good
examples of these tools include Select By Location on the menu, which becomes Select
Layer By Location in ArcPy, and Export from the Table Options menu, which becomes Copy
Rows in ArcPy.

In many cases, the tools accessed through ArcPy require the path to files or workspaces. The
backslash (\) is a protected character in Python, so system paths that include a backslash must be
handled in a certain way. There are three ways to handle these paths: (1) use a double backslash (\\);
(2) substitute a forward slash (/); or (3) put a lowercase r at the beginning of the character string
containing the path. The three examples shown in the graphic would all point to the path correctly
in a Python script.

Another programming item provided by ArcPy is functions. Common Python functions include
the string and math functions, such as str(x), which casts a numeric variable as a string variable,
and round(x,n), which rounds a numeric variable to n digits. Many of these functions are used
in chapter one. A list of all the ArcPy functions (too long to list here) is available in ArcGIS for
Desktop Help. These functions may perform simple tasks, such as adding error or warning
messages to your script or determining the current license level.

Functions that are more complex and useful are used more often. The first of these is the Exists()
function. This function is used with any dataset object to see if it already exists. It is often necessary to

42 Chapter 2 Writing stand-alone Python scripts

make sure that the output of a tool does not exist before trying to create it, such as geodatabases,
feature datasets, tables, and feature classes. If the output already exists, it may cause your script to
malfunction, so it is useful to check for the existence of items first.

Another commonly used function is a list function, and ArcPy has several types of them. List
functions are used to create list objects of a variety of items that you will use in your script. All the list
functions are shown in the graphic:

The result of a list function is a list object, which is used with looping structures to iterate
through the list. For example, if you wanted to see if a field named ROW_Width was in a feature
class, you would use the ListFields() function to create a list object of the fields, and then

Special introduction: Working with Python 43

iterate through the list to see if that name were there. As you can see, many items can be
included in lists.

One of the most important features of ArcPy is a script's capacity to get input from the user.
Without this feature, your scripts would just do the same things over and over. Python includes
a function named raw_input() to get user input, but ArcPy includes a special function to do
this named GetParameterAsText(). This function is used when you intend to run your script as
a script tool in a toolbox. Conversely, a function named SetParameterAsText() returns values
from your script tool in the event that you are using the script tool in a model. More about the
use of these functions is found in later tutorials as you begin to write more code and use other
code samples.

The next concept to master in Python is working with objects. An object is used to hold multiple
characteristics or parameters of an element you may be using in your code. Interestingly, objects can
be created with simple definition statements in the same way as variables, or objects can be returned
from functions.

For example, a feature class is defined as an object in ArcPy. With the simple code shown in the
graphic, you can create a feature class object.

Although the code may look simple, a feature class is a complex object with a variety of
characteristics and properties that you can access. For a feature class, these attributes may include
the name, file type, path, and extension. The tricky part is accessing these attributes through your
Python code, which is accomplished using the Describe() function. The Describe() function outputs
a describe object with all the properties available for easy use. For instance, the code in the following
graphic creates a feature class object that holds the street centerlines feature class. The Describe()
function is used to create a describe object for the feature class, which contains properties of the
feature class. The print statement shown will print the name of the feature class, and the .path
method will retrieve the path to the folder where the feature class is stored.

With the file location hard-coded to a specific geodatabase, this may not seem too important, but
note the optional code shown that would ask the user to enter a feature class location. A describe

44 Chapter 2 Writing stand-alone Python scripts

object must be created from the feature class to extract the feature class properties. The code uses
.baseName to get the name of the feature class and .path to get the data path, which then is used to
set the scratch workspace.

The Describe() function can be used on just about any type of file and dataset brought into ArcGIS.
The list in the graphic shows the variety of objects this function will act upon.

The first item listed (Describe Object Properties) has properties associated with whatever object
you are describing, while the other properties are specific to their individual object type. The
properties .baseName (the name of the item) and .path (the folder or workspace containing the
item) are part of the common object properties of such things as .extension (the file extension if
the item is a file) and .children (a list element of items in a workspace or feature dataset). One of
the most useful methods is .dataType, which returns the item’s data type, such as FeatureClass,
Workspace, FeatureDataset, File, or LocalDatabase. The script in the following graphic can be
used to print all the describe object properties of any item, and these properties could be used

Special introduction: Working with Python 45

to check that the correct file type is being used, to store the workspace for data creation, or to
capture an item’s name.

Each item type will also have a set of describe properties to access properties unique to the
particular item, such as Text File Properties and Geometric Network Properties. For instance, to
access additional properties of a feature class, you might look at the Dataset Properties, FeatureClass
Properties, File Properties, GDB FeatureClass Properties, Layer Properties, and Table Properties to
uncover a variety of different properties.

Classes are a more complex element in ArcPy and are used to create objects to hold tool parameters
independent of feature classes and workspaces. The long list of these classes is found in ArcGIS for
Desktop Help. These classes may be used to set up the parameters for items such as fields, spatial
references, and extents before they are applied to existing geometry objects, or these classes may be
used to store these parameters after they are extracted from geometry objects.

A common thread in using all these ArcPy features is ArcGIS for Desktop Help, which is beneficial for
finding the syntax, usage, and code examples of these features. As stated before, it is good practice to
copy and paste information from the Help files into your script as comments to remind you of how
an element can be used.

By using combinations of functions, classes, objects, and tools, you will be able to write scripts that
will do amazing things with your geographic data.

46 Chapter 2 Writing stand-alone Python scripts

Tutorial 2-1 Creating describe objects

The ArcPy module provides access to all the geoprocessing tools for tasks you can perform in ArcGIS.
These tasks can be done one at a time or used for batch processing with a loop routine.

Learning objectives
• Writing pseudo code

• Using the Describe() function

• Learning ArcPy module basics

• Using Python environment variables

• Using basic error handling

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “A quick tour of Python”

• “Importing ArcPy”

• “Using environment settings in Python”

Introduction

This tutorial demonstrates some of the basic code structure to get your Python scripts to
interface with ArcGIS. The main component is the use of the ArcPy module. A module is a special
set of tools that you bring into Python to add functionality in extending the basic Python code.
In tutorial 1-5, you used a Python module named DateTime, which adds special time handlers.
ArcGIS users can import the Esri module ArcPy, which provides access to all the geoprocessing
tools and many special features associated with spatial data. For more information about ArcPy,
go to the ArcGIS for Desktop Help Contents tab, and navigate to Desktop > Geoprocessing >
ArcPy > Introduction.

Scenario
You have received some geographic data in a folder, and you would like to get information about
some of its elements. Try your new Python skills and learn more about the layout of a stand-alone
Python script by writing a Python script to report the information. Here's the pseudo code for this
script:

• Import Python modules.

• Set the workspace environment.

• Check the spatial reference for a feature class in the workspace.

• Print the results to the screen.

Tutorial 2-1 Creating describe objects 47

Data
In the Data folder of the online data that goes with this book is a file geodatabase named
Sample Data, which contains the feature classes shown:

SCRIPTING TECHNIQUES

This script and all the scripts that follow start with code to import the ArcPy
module and the env class and then to set the workspace environment. Almost
every script you write will perform these three tasks at the beginning. Importing the
modules is not necessary if the script is run as a tool in ArcMap or ArcCatalog, but it
does no harm to include this code. Other environment settings, such as adding the
results to the current map document, also are used only if you are working from a
script tool in a map document.

In addition, this script uses the Describe() function to get information about a
feature class. The syntax is to make a variable equal to arcpy.Describe(feature
class name), resulting in a describe object. This syntax can be used in a variety
of ways, depending on the information you are extracting. The code shown
creates a describe object and then uses that object to extract parameters of the
feature class.

Once the variables are set to the different parameters, they can be used in if
statements and other constructs within the script.

48 Chapter 2 Writing stand-alone Python scripts

Write loop routines

1. Start your IDE, and create a new file named Tutorial_2-1.py. Add comments at the top of the code
block to name and describe your program. Add the pseudo code as comments, which will help
when you start entering the code.

Start by writing the code. The first step is to import the ArcPy module. If this script were to run in
ArcGIS, this step would not be needed, but it does no harm to include it in case you want to run the
script outside ArcGIS.

The standard format to add the ArcPy module is to type “import arcpy.” Arcpy contains several
functions, classes, and modules, which supply specialized tools. The env class provides access to the
ArcGIS environment setting; the data access (arcpy.da) module provides access to various data access
tools and functions; and the mapping (arcpy.mapping) module provides access to the settings and
characteristics of map documents. These modules are imported as part of ArcPy, or they can be
imported separately by using the format “from arcpy import env.”

2. After the first line of pseudo code, add the statements import arcpy and from arcpy import env,
as shown. This code will import the modules necessary to access the ArcGIS tools and the file
geodatabase.

Tutorial 2-1 Creating describe objects 49

Notice that the env class was also loaded, which will help shorten the instructions you will need to
write in your code to access the env properties. A few of the more commonly used properties are
shown here, but the entire list can be found in ArcGIS for Desktop Help.

3. Add code to set the workspace property to the location where you installed the student data,
as shown:

Note the second line in this graphic is how you would call the env class if you had not used the
from-import statement earlier. Any of the env properties can be set in the same manner, as shown:

50 Chapter 2 Writing stand-alone Python scripts

Following the guide of the pseudo code, the next step is to find the spatial reference of a named
feature class. Finding the spatial reference involves creating a Python object to contain the properties
of the feature class. These objects are created the same way that variables are created.

4. Because you have already set the workspace, the Python script will know where to look for the
feature class you name, so set a variable named fcName to ZIPCODES_poly, as shown:

Once this variable is set, you can access the properties of the feature class using the Describe()
function, including the name, feature type, path, file extension, and extent. The table shows a few of
these properties, including the presence of a spatial reference.

The syntax for describing a layer is:

Tutorial 2-1 Creating describe objects 51

5. Write the code to create a describe object named fcNameProperties that references the
properties of fcName. Check your code against the code shown:

By adding the .spatialReference parameter at the end of the describe object, you will gain access
to the many spatial reference properties of the layer. These properties include all the technical
specifications of the spatial reference, but you are interested in the name. The syntax for getting the
name of the spatial reference is:

6. Write the code to print the name of the spatial reference of fcNameProperties. If your script
matches the one shown, save and run it.

The feature class has the spatial coordinate system as shown:

52 Chapter 2 Writing stand-alone Python scripts

Your turn
Modify the code to examine the feature classes arbordaze2009tents and complan, and determine whether
these classes have a spatial reference.

What would happen if you misspelled one of the layer names? The code would have some serious issues
with variables that do not exist and a Describe() function that does not work.

7. Add some error handling to your code with the Python try and except statements. Basically, add
try: at the top of your code and except: at the bottom. After the except statement, add a print
statement to warn the user of an error. The basic syntax is:

Note that the try-except routine requires that you indent all your code, in addition to indenting your
warning message at the end.

8. As shown, add the try-except error handing to your script with the message “I couldn’t find that
feature class!” Then type an incorrect file name and run it.

This example is simplistic error handling, and you will learn more about error handling later.

Tutorial 2-2 Scripting geoprocessing tasks 53

Exercise 2-1

Write the pseudo code and script to discover the shape type in the specified feature class name.
(Hint: Search ArcGIS for Desktop Help for the shapeType property of the Describe() function, which
will explain the syntax for using this function. Check the describe object properties for a property to
get the file’s base name and the feature class properties for a property to get the file’s shape type.)

Tutorial 2-1 review

The format for this Python script is the basis for every Python script you write, with the documentation
first, the import arcpy statement (and any other module you need) coming next, and then the code to
perform the operation. You can make a template file of this script format for future use. This template
will not only simplify your code writing in the future, but also standardize your code. The inclusion of
comments is important to help document your pseudo code. These comments also are helpful if you or
another programmer must alter this script at some point in the future. This alteration may be made weeks
or years later, and relearning the process this code is performing may be difficult without these comments.

The use of the Describe() function is also an important process to learn. Many of the properties of
your data can be accessed by describing them to an object. ArcGIS for Desktop Help is helpful in
finding all these properties. It is important to note that there may be more than one describe group
for any one item, so searching Help is a good way to find all the groups. For instance, you could
describe a feature class to an object and return characteristics as shown under properties, including
Describe Object Properties, Dataset Properties, FeatureClass Properties, and File Properties.

Study questions
1. Using ArcGIS for Desktop Help, how many ways can you find to access the describe

properties of a table?

2. What is the ArcPy module, and why is it used for geoprocessing scripts? Give examples of
the modules, classes, and functions contained in the ArcPy module.

3. How would you find the available properties in the arcpy.environment class?

Tutorial 2-2 Scripting geoprocessing tasks

Almost any geoprocessing task can be automated with Python. This automation can help increase
productivity for full-time GIS users or allow complex tasks to be shared with casual GIS users.

Learning objectives
• Programming geoprocessing tasks

• Understanding tool syntax

54 Chapter 2 Writing stand-alone Python scripts

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Using the Results window”

• “Union (Analysis)”

• “Select (Analysis)”

Introduction

The environment settings and describe objects you worked with in tutorial 2-1 demonstrate
the characteristics of feature classes. Now you are ready to start using these feature classes in
geoprocessing tasks.

All the geoprocessing tools in ArcGIS are available through ArcPy. Each tool description provides
both simple and complex Python code examples so that you can get an idea of how to use the tool
in your scripts. Simply copy the examples into your own scripts, and modify them to use different
workspaces and datasets.

Run the tools in ArcMap to test your processes. Then copy a code snippet from the process results
to use in your scripts. For the more adventurous, drop the tool into a model, configure it, and export
the model to a Python script. If done tool by tool, you could systematically extract almost all the
code needed for a new script.

Scenario
You are creating a new wall map for the city planner that she intends to hang in her office. The
map should show the parcels color-coded by the zoning classification. The datasets you have are
parcels that have neither the zoning codes nor the zoning districts data that overlaps the streets.
The objective is to create a dataset to use in this map that will color-code each parcel by its zoning
classification without including the streets.

To create this dataset, union the parcels and the zoning districts to create a new feature class, and
then remove the segments that are in the street right-of-way.

Data
The map document for this tutorial has the property lines for reference, the parcel data, and the
zoning districts data, which is already classified by zoning code. The workspace for this data is as
follows:

C:\EsriPress\GISTPython\Data\City of Oleander.gdb

(Modify it if necessary to match the location where you installed the student data.)

Tutorial 2-2 Scripting geoprocessing tasks 55

SCRIPTING TECHNIQUES

In this tutorial, you will start bringing geoprocessing tools into your script. There is
no real trick to it, but it is good practice not only to look up the tool in ArcGIS for
Desktop Help and understand its usage, but also to copy and paste the syntax into
your script as a comment. This comment will provide an easily accessible reference
for future use.

Also used in the script is a technique to run your tools across several lines in the
script. This is accomplished by adding a space and a backslash (\) after any of the
parameters and then pressing Enter. The code is shown on multiple lines but will
run as though it is on one. It is good practice to start a new line of code after one of
the commas separating the parameters rather than in the middle of a path name or
query statement.

Script geoprocessing tasks

1. Write the pseudo code for this script. A completed version of the pseudo code is shown at the
end of this tutorial. Write your pseudo code, and then compare it with the pseudo code provided.
If your pseudo code differs and seems viable, work the tutorial as written, and then go back and
try it again with your unique pseudo code.

2. Open the map document Tutorial 2-2. Note that the zoning categories shown overlap the
streets—that is the part you will remove.

56 Chapter 2 Writing stand-alone Python scripts

3. Start a new Python script in your IDE, and name it ZoneUnion.py. Add all the standard lines of
code that you will need in your script, as shown:

This template of code can be the basis for almost every script you write.

4. Add the code to set the workspace environment setting to the location of the parcels and zoning
data. For help, refer to tutorial 2-1.

Next, union the parcels and the zoning districts layers. There are several ways to get a code snippet of
this tool, so for this tutorial, use the geoprocessing Results window.

5. In ArcMap, open the Search window, and find the Union tool. Run this tool with the parameters shown:

Tutorial 2-2 Scripting geoprocessing tasks 57

6. When the tool is finished running, open the Geoprocessing > Results window from the main
ArcMap toolbar. Expand the Current Session line, right-click Union, and click Copy As Python
Snippet, as shown. Close the Results window.

7. In your IDE, start a new indented line after the ENTER CODE comment line, right-click,
and click Paste. In the example shown, a backslash was added to wrap the code onto a
second line.

You can see that the code for the Union tool starts with arcpy to access the ArcPy module, and then
includes the tool name. Next are an underscore and the word analysis, which calls out the alias of
the toolbox that contains this tool. A set of parentheses contains all the parameters for running this
tool. The snippet will contain the raw path, so add a lowercase r at the beginning of the path to signal
Python to interpret this string as a path and not as a string with special escape characters.

Notice that because you used a different file location for the output than the environment you set
earlier, you will need to include this entire string when this file is used in other commands.

Also, be careful using this process of getting code snippets when you are writing a stand-alone script.
The code snippet will use the layer alias from the table of contents, but when you run the script, it
will look for the actual layer name. Any layer with an alias will need to be replaced in the code with
the actual layer name.

58 Chapter 2 Writing stand-alone Python scripts

8. In ArcMap, open the attribute table of the UnionTemp layer. Right-click the FID_Parcels field and
click Sort Ascending. Notice the records with a value of -1. Close the attribute table.

The records with a value of -1 are the parts of the zoning data that fall in the street right-of-way. To
remove these records, create a query to select all but these features, and then write the selected
features to a new feature class. The Select tool in the Analysis toolbox will create a new feature class
that contains only those features that meet a selection query.

9. Use the Search window to find the Select tool. Run the tool, set the tool to output only
the records from UnionTemp where FID_Parcels are <> -1, and store the records in a new
feature class named UnionFinal. When your parameters match those shown in the graphic,
click OK.

10. Using the technique shown in step 6, copy the Python snippet for the Select tool from the
geoprocessing Results window.

11. In your IDE, add a new indented line below the Union command, and paste the code
snippet for the Selection tool. Add the full path for the UnionTemp layer in the command
and the r at the beginning of the paths. Some additional comment lines are added, which
you can delete.

Note: Versions of ArcGIS prior to 10.2.1 may not format the query string in this command correctly.
To accommodate this deviation, you must rework the query to use single or double quotation marks
as shown:

The output will be a feature class that shows zoning for each parcel but not in the street
right-of-way.

Tutorial 2-2 Scripting geoprocessing tasks 59

12. Add a print statement after the “Determine results” comment, and change the error message at
the end to something more appropriate for error handling, as shown:

Next, delete the file UnionTemp from the geodatabase.

Your turn
Use the Search window to find a tool that will delete the feature class UnionTemp from the MyAnswers
geodatabase. Configure the tool correctly, and add it to your script. Pay attention to the path names, and
use the lowercase r if necessary to identify the path.

13. In ArcMap, use the Catalog window to delete the feature classes UnionTemp and UnionFinal that
you created in testing. In your IDE, save your code, and run it, as shown:

60 Chapter 2 Writing stand-alone Python scripts

When your script is finished running, a new feature class will be created that meets the city planner’s
requirements. Add the script to your map document, and import the same symbol schema from the
ZoningDistricts layer.

Here’s the pseudo code for this project:

Exercise 2-2

The fire chief needs an updated map of the Fire Department’s response zones, called boxes.
The data layer FireBoxMap contains these zones. He would like the zones to have a gap between
them so that they stand out on the printed maps. For aesthetics, you could symbolize the zones
with a graduated color at the edges. The problem is, how is the feature for this type of display
created?

Here is a description of the process from which you can write your pseudo code, research the tools
necessary, and eventually write the script:

Convert the FireBoxMap polygons to a linear feature class, buffer them 50 feet, union the result with
the FireBoxMap layer, and remove the features that represent the gap. Have your script delete any
temporary files made in the process.

Tutorial 2-2 Scripting geoprocessing tasks 61

If done correctly, it should look like this:

Tutorial 2-2 review

This tutorial uses some geoprocessing tools that you are probably familiar with from projects you
may have done in ArcMap. When running the tools manually, you filled in the parameters in a
pop-up dialog box and started the overlay process. The geoprocessing Results window provided a
code snippet that you can use in your own scripts, which is convenient because all the tool’s required
and optional parameters are already set. Having this reference is also a good way to study the code
and see how various paths and values are handled.

Study questions
1. This process of color-coding each parcel by zoning classification used the Union tool.

Could you have used a different overlay tool? If so, what changes would need to be made
in the code? Create a code snippet in the geoprocessing results for your code.

2. Could you have found all the polygons in the output of the Union tool that represented
the right-of-way? Add code to make that layer, and store it in a new feature class.

3. The input layers for the Union tool must be polygons. Can you write the code to make
sure that the layers are of the type polygon before the Union tool runs? (Hint: look at the
describe properties.)

62 Chapter 2 Writing stand-alone Python scripts

Tutorial 2-3 Coding for multiple
geoprocessing tasks

Combining geoprocessing tasks with features, such as decision-making logic and feature cursors,
allows programmers to make sophisticated scripts.

Learning objectives
• Using cursors and for statements

• Making a feature layer

• Using decision-making logic

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Accessing data using cursors”

• “Make feature layer (Data Management)”

• “Buffer (Analysis)”

• “Select Layer By Location (Data Management)”

• “An overview of the Layers and Table Views toolset”

Introduction

Running the geoprocessing tools in ArcMap and copying a code snippet is an effective way to get the tool
syntax with all the parameters set, but there are still some issues that need to be fixed. That method also
will not handle decision-making processes such as if-elif routines. In this tutorial, you will explore another
method of developing the tool syntax by researching the script examples in ArcGIS for Desktop Help.

Each tool in the ArcGIS environment and each function and class in ArcPy have a well-documented
Help page. This page provides a description of the tool and its parameters, and it typically includes
two Python scripting examples—a simple case and a complex case. The simple example will probably
make sense to you now, and as you develop your Python skills, the more advanced examples will as
well. In fact, you may pick up some good coding techniques from the more complex examples, which
you can also use in future scripts.

Scenario
A gas well drilling company has made an application to drill several wells in Oleander. To perform this
drilling, the company must notify and get a signed lease document from all the property owners that
are located over the planned drill paths. The city’s Engineering division has asked that you generate a
set of lists of property owners for each drill path. Before each path is drilled, the city will hold a public
meeting with those homeowners and the drilling company to work out any issues that might exist.
Because you do not know when each well will go online, you will create a separate mailing list for
each well path and have them on hand for use when they are needed.

Tutorial 2-3 Coding for multiple geoprocessing tasks 63

To create the list, buffer the well path and select the properties that intersect the buffer. Different
well path lengths require different buffer widths—the longer the path, the wider the buffer. The
distances are as follows:

• For well paths less than 3,000 feet, the buffer width is 75 feet.

• For well paths over 3,000 feet but less than 4,000 feet, the buffer width is 175 feet.

• For well paths 4,000 feet and longer, the buffer width is 300 feet.

Data
The data includes the well paths for nine proposed well projects. Also in the map document is the
parcel data with a field named Prop_Add, which contains the property address necessary for the
mailing list. Start with the most important step—writing the pseudo code.

SCRIPTING TECHNIQUES

Two new techniques are introduced in this tutorial. The first technique uses a cursor
to access the rows in the feature class’s attribute table or in a stand-alone table.
Three types of cursors exist: search, which returns read-only values to the script;
insert, which allows you to insert new rows into a table; and update, which allows
you to change and delete rows in a table.

Start by defining a cursor object. This object uses one of the cursor commands from
the data access module in ArcPy. The cursors have two required arguments, which are
the table name and the fields from the table to use in the cursor. A single field or a list
object that has many field names can be used in the cursor. The fields are indexed in
the cursor in the order in which you list them. For example, index 0 would be the first
field in the list, and index 1 would be the second field. The code shown in the graphic
defines one of each type of cursor using either a single field or a list of fields.

As an option, the cursor could have a query statement so that only a subset of the
rows is accessed.

64 Chapter 2 Writing stand-alone Python scripts

Once the cursor is created, you can use it to move through the table one row at a
time, always moving forward. The for statement has two parameters, the name of
the object representing the current row and the cursor. Following these parameters,
variables are added to hold the field values from the current row. The code shown in
the graphic sets up a variable for each of the four values from the preceding update
cursor example.

When all your processing is done, and before the script ends, delete the current
row object and the cursor object, as shown in the following graphic. Deleting these
objects will remove the file locks on the feature class or table you used.

This step is not needed for a search cursor because that type of cursor does not lock
the file being accessed.

The other new technique in this tutorial is the use of feature layers. The
advantage of using a feature layer instead of a feature class is that the feature
layer is a temporary copy of the data that exists only in memory. Changes can
be made to the items in a feature layer and the data structure itself without
affecting the source file. The changes will not persist after the script ends unless
they are explicitly saved to the script. The MakeFeatureLayer tool also allows you
to add a selection clause to the process that lets you work with a subset of the
data. For instance, the vacant property of Oleander could be put in a separate
layer file with the MakeFeatureLayer tool and an optional selection clause of
“UseCode = ‘VAC.’”

Code multiple geoprocessing tasks

1. Write the pseudo code for this project. Include tool references and notations of parameters and
conditions that you must set.

Make sure that only one feature is selected, and that you have the correct feature length to set the
buffer. A completed version of the pseudo code is included at the end of this tutorial that you can
use for comparison to your own.

Tutorial 2-3 Coding for multiple geoprocessing tasks 65

2. Start ArcMap, and open the map document Tutorial 2-3. Also, start your IDE, and create a new
Python script named WellNotification.py.

You can use the basic template of a Python script from tutorial 2-2, but in this tutorial, add some
additional environment settings. In tutorial 2-2, code was added to the script to delete temporary
feature classes so that they would not become a permanent part of your data. This time, use a
scratch workspace to hold the temporary outputs rather than store them in your permanent
workspace. To avoid an error, set the geoprocessing environment to allow existing data to be
overwritten.

3. In your IDE, set the workspace to C:\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data.
Add the environment setting to overwrite the output of geoprocessing tasks, if it exists. Compare
your code with the code shown:

4. Create a variable to hold the name of the feature class that contains the first well path, as shown:

Now that the feature class is known, determine the distance to use in the buffering. The script should
check the Shape_Length value for each drill path and set up a condition statement to determine the
buffer distance.

To get the field value, use a cursor, which allows you to go through each row in the table for the
feature class and get the field values, one by one. For these datasets, each feature class has only one
feature, so the first returned value can be used to determine the buffer path.

Of the several types of cursors, use a search cursor for this task. Research SearchCursor in ArcGIS for
Desktop Help or any other ArcPy reference you have available. Next, set up the cursor to find the
Shape_Length field, and then store that value in a variable.

5. Write the code to create a search cursor named wellCursor. Add the statements to store the value
of Shape_Length in a variable named drillLength, as shown:

Use the length of the feature to determine the buffer distance. The scenario at the start of this
tutorial describes the conditions for each distance.

66 Chapter 2 Writing stand-alone Python scripts

6. Set up an if-elif-else statement to determine the correct buffer distance, and create a variable to
store it named wellBuffDist, as shown:

Next, buffer the input feature class by the determined well buffering distance. Store the output
in a file named SelectionBuffer, and store it in a separate workspace, C:\EsriPress\GISTPython\
MyExercises\Scratch\TemporaryStorage.gdb.

7. Find the tool documentation for buffer, and use the examples shown to set up the correct buffer
statement.

With the buffer completed, move on to the selection process. Use the new buffer to select the
parcels that intersect it. If you were doing this manually in ArcMap, you would use the Select By
Location tool from the ArcMap Selection menu. A counterpart is available in ArcPy named Select
Layer By Location, but the ArcPy selection tool will act only on a feature layer, not on a feature class.
You must write code to make the input feature class a feature layer, and then add code to make the
selection.

8. Research the Make Feature Layer and Select Layer By Location tools, and use the code samples to
determine the code for this project, as shown in the graphic. (Hint: use the full path name for the
Parcels input layer because it is not coming from the default workspace you set.)

Now that you have the features within the buffer selected, the last step is to write them out to
a new table that can be used with mail-merge software. Note that this should not be a feature
class. A search of the Help files produces two tools that look like they might work for this step:
Table To Table and Copy Rows. Research these tools, and determine which one would work best.

Tutorial 2-3 Coding for multiple geoprocessing tasks 67

9. Using your research, add the code to write the selected features to a new table formatted as the
input feature class name with the word MailList appended at the end, as shown. When the code is
completed, save the script.

Note the double backslash (\\) at the end of the folder string. Because this is pointing to a folder
and not a file, Python requires the additional formatting character—otherwise, no backslash would
appear between the completed file path and the file name.

10. To test the script, run it and select one of the drill path feature classes from the City of Oleander.gdb\
Well_Data feature dataset.

11. Add the new database table to your ArcMap document and open it. It contains all the fields from
the Parcels layer, including the one you need, as shown:

You can supply this table to the city engineers, and they can use it when necessary to notify the
property owners as each well is drilled.

12. Test your script on one or two of the other drill paths.

Here’s the pseudo code for this task:

68 Chapter 2 Writing stand-alone Python scripts

Exercise 2-3

The city manager has been asked by the city council to determine whether there are any areas of
town that do not have adequate nighttime illumination from street lights. He in turn has passed
this task on to you. Your results will be used to determine where street lights need to be added or
whether any existing lights should be moved in the long term. You must write a script to do this job
because the locations will be changing over the next two years, and you will be running this analysis
frequently.

The data in the map document Exercise 2-3 includes the current street light locations. There are four
different types of lights, and each type requires a different buffer distance. The codes are stored in a
field named Type and are listed here with their appropriate buffer distances:

MV (mercury vapor) = 125 ft

MVH (mercury vapor—high pressure) = 160 ft

SV (sodium vapor) = 100 ft

SVH (sodium vapor—high pressure) = 200 ft

The script you write will need to consider each feature and generate a buffer according to the light
type. The final results can be overlaid on the city layer to reveal places that need more lighting.
Creating a new feature dataset to hold the output files would be helpful.

Write the pseudo code and the script necessary to perform this task. (Hint: Try adding a field to
the feature class to store the buffer distance, and then go through each feature with a cursor and
determine which buffer distance should be used. When all the distances are set, run the buffer tool
using the new attribute as the buffer distance.)

Tutorial 2-3 review

When used in a script, the tool parameters must be set in the code. These parameters can be
a hard-coded value or even a variable. The required and optional parameters can be found
by looking up the tool in ArcGIS for Desktop Help. The Help files also include sample scripts
showing how the tools can be used in your own scripts. Note that some of the parameters may
be optional and can either be included, left out completely, or skipped by providing the value of
“” as a placeholder so that other optional parameters can be accessed further along in the tool’s
usage syntax.

This tutorial also uses cursors to access the data feature by feature. Cursors can be used to access the
data or to change or add data. The syntax is to create the cursor object, which holds all the values of
all the features in one place. The for statement can then be used to step through the features or rows
one at a time for processing. Closing the cursor at the end of its use is important so that the features
are not locked to further access.

Tutorial 2-4 Using while statements 69

The use of a feature layer is important in these situations because it provides a way to make
selections and process the data without putting the source data in jeopardy. These types of layers
can be created for tables, called table view, and you will see later how a query can extract a subset of
the data. For this tutorial, the feature layer was required because the selection processes only work
either in a map document that is referenced from the table of contents or in a feature layer or table
view. These processes will not work on layers referenced by their source path.

Study questions
1. Name a few other geoprocessing tools, and look up these tools’ syntax and sample scripts

in ArcGIS for Desktop Help.

2. When is it useful to work with a copy of the data in a feature layer or table view rather
than access the source data directly?

3. Look up the syntax for cursors in ArcGIS for Desktop Help, and show the different types.

Tutorial 2-4 Using while statements

The iteration of a script can be controlled with a while statement, which will cause the script to
continue running until a condition is met. The number of iterations will change depending on the
condition.

Learning objectives
• Using cursors with while statements

• Iterating through features

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Cursor (arcpy)”

• “Copy Features (Data Management)”

Introduction

In tutorial 2-3, you learned the simple use of a cursor. A cursor can be used to go through an entire
dataset feature by feature or row by row and to perform an individual task on each item it finds. By
default, geoprocessing tasks act only on the selected feature, and a cursor has the effect of making
the current cursor item the only selected feature.

70 Chapter 2 Writing stand-alone Python scripts

The cursor you used in tutorial 2-3 retrieved the value of a single field to be used in a condition
statement. Cursors can access any field in the input dataset, which is specified in the cursor setup.
The for statement is used with the cursor to handle the looping through the dataset. The for
statement and all the code included in its indent level is run for each item in the cursor. Mastering
the use of cursors is important in writing a script that can handle a variety of tasks.

In addition to a cursor, this tutorial uses another control statement, the while statement.
The programmer sets up a condition, and the while statement will continue running the script
or portion of a script until the condition is met. Once the condition is met, the rest of the code
runs. The while statement is often used to process subsets of the data or to monitor the number
of times a process is performed. One thing to be careful about, however, is that if no scenario
exists in which the condition of the while statement equates to False, the while statement will
never end.

Scenario
The library in Oleander bought a bookmobile at the Fort Worth Police Auction and is investigating
the best way to put it in service. The library has decided that the bookmobile will make periodic
stops at apartment complexes because of the density of people it can reach with one stop. The
question is how to implement bookmobile stops for single-family residential customers.

The head librarian has an idea that he wants to investigate. He has selected six places in
the city where they would be able to set up stops. The librarian wants to serve about 200
households at each stop, but he is not sure how far those 200 households would have to travel
to get to the bookmobile. The process is complicated, so you will want to build a script to test
locations. Also, the librarian will be selecting more locations for further research based on your
initial results.

The process is to go through each of the six sites, one by one, and do some analysis on the household
count. For each site, select all the parcels within 150 feet, and add up the number of dwelling units.
If the number exceeds 200, stop the selection process. If the number does not exceed 200, select all
the parcels within another distance of the currently selected set, and add up the households again. If
the number does not exceed 200, repeat the selection until it does. Output the selected set to a new
feature class, and move on to the next site.

Data
The map document for this tutorial includes a file named BookmobileLocations that contains the six
sites the librarian chose. The field Marker contains the site name. Also included are the parcels with a
field named DU, which has the count of dwelling units.

Tutorial 2-4 Using while statements 71

SCRIPTING TECHNIQUES

This script must do two things: iterate through a set of features, and perform a
select operation at each iteration. A good practice is to write and test the code
for the first process, and then add the second process. This practice simplifies the
troubleshooting process because you will be limiting the number of errors that can
occur. Set up and test a cursor to access each of the features in the input feature
class. Once this cursor is running, add the second process.

This second process includes another type of iterator called a while statement. As
you know, a cursor will go through the records one by one and stop when all the
records have been accessed. With a while statement, you will define a condition and
write code to process the data. This process repeats as long as the condition you set
evaluates to True. As with the other types of condition statements and iterators, the
processes associated with the while statement hold at an indent level to identify
where the process stops.

This tutorial requires you to imbed one type of iterator inside another, which
can be tricky. Make sure that each iterator has a condition that will cause it
to complete. The cursor is easy because it completes when the last record is
accessed, but the while statement is not as straightforward. If you were to
unknowingly set a condition that could never be false, the while statement would
never end. For this reason, it is sometimes advisable to add a counter inside the
while statement to limit the number of possible iterations to a number known to
be past the script’s reasonable operation. For example, if you feel that the script
can complete its tasks in 15 iterations or less for all cases, then stop the script
once it reaches 20 iterations. Stopping the script involves imbedding a count
variable inside the while statements and using an if statement to end the script
if the count exceeds the predetermined maximum. An example of this action is
given later, and you can add this as an option.

Use while statements

1. Open the map document Tutorial 2-4.

2. Write the pseudo code for this project. (Hint: you will need a cursor to go through the six sites
and a while statement to keep adding more parcels until the dwelling unit count exceeds 200.)
Completed pseudo code is shown at the end of this tutorial.

3. Create a new Python script in your IDE, and name it BookmobileAnalysis.py. You can use the
familiar template lines to start your script.

72 Chapter 2 Writing stand-alone Python scripts

4. Import the appropriate modules, and set the workspace environment to C:\EsriPress\
GISTPython\Data\City of Oleander.gdb, as shown:

Start by writing a cursor to access each of the individual sites in the BookmobileLocations
feature class. Get the code for the cursor working first, and add the while statement later.
Writing the code in this order will not only be easier to understand, but will also be easier
to troubleshoot.

As a general housekeeping rule, make a feature layer for each of the feature classes you will be working
with. In addition, the feature layer for parcels should include only the single-family households, which
you can find by adding an optional selection clause (DU = 1). A feature layer is only a temporary copy
of the data, so any changes made to it are also temporary unless specifically saved to the script.

5. Make two feature layers named Parcels_lyr and Locations_lyr from the Parcels and
BookmobileLocations layers, as shown. Add a query to the Parcels_lyr statement to select only
the single-family units. Check the tool reference if you are unsure of the query syntax.

Next, create a search cursor to go through the Locations_lyr file, which contains the setup sites for
the bookmobile.

6. Create a new search cursor named siteCursor. Have the cursor bring in the field Marker, which
contains the unique site name for each location, as shown:

This particular layer has six features, so you know that the siteCursor object will contain the six values
of the field Marker. The for statement will reference each row in the attribute table, one at a time,
and allow you to perform geoprocessing tasks for each value. The syntax is:

for {variable name to track the current row} in {cursor name}:

Note that the statement ends with a colon. The colon signals the start of an indent level, and all the
code that maintains that level will be run once for each row. The end of the for statement is signified
by going back one indent level.

Tutorial 2-4 Using while statements 73

7. Construct a for statement using the siteCursor object, as shown:

The variable named row will now hold the value of the field Marker. It is an indexed list variable, so
you must add an index number at the end of the variable to reference which field value to use. In this
case, only one field was brought into the cursor, so row[0] will return that value. If other fields were
brought into the cursor, they would be referenced in the order listed in the cursor statement, and the
variable row[x] would hold their index number.

8. Create a new variable named siteName that holds the value of Marker at each iteration, as shown:

The code from steps 6 and 7 is shown so that you can note the indent level. Maintain this level until
the cursor routine is finished.

In each iteration through the cursor, select the location feature from Locations_lyr, and use that
location to select all the parcels within 150 feet.

9. Research the various select tools available in ArcMap, and note the syntax of the code. In this
example, the Select_analysis tool is used. Store the selected feature in your scratch folder as SiteTemp
(MyExercises\Scratch\Temporary Storage.gdb\SiteTemp). Be careful to correctly format the where
clause parameter in this tool’s syntax. Write your code, and check it against the code shown:

The formatting of the where clause is tricky. As an example, the resulting statement for the first site
should be as follows:

“Marker” = ‘Site 1’

Decode the sequence of characters used in the selection statement. Use your Python references for help.

After selecting the site feature, next select all the parcels within 150 feet. You have used this tool
before and should be familiar with its syntax.

10. Add a Select Layer By Location tool, and configure it to use the selected feature from step 9 and a
150-foot search distance, as shown:

74 Chapter 2 Writing stand-alone Python scripts

A condition statement called a while loop will be placed in this part of the code, but for now, finish
the processing to be performed in the cursor. Export the selected features to a new feature class, and
name it using the value from the field Marker.

11. Research a tool to export features to a new feature class in your MyAnswers geodatabase. Find
the proper syntax, and write your code before referencing the code shown:

There are two things to note here. First, the site names have a space in them, which is not allowed
in a feature class name. You can use the Python string method .replace() to change the space to an
underscore. Second, a print statement was added to print the site name and to confirm that the
steps were completed successfully. If no print statement was added, you would get no indication of
the script’s status.

Next, test the code, and see if the cursor is working as expected.

12. Save your script and run it.

The script should create new feature classes in the MyAnswers geodatabase, as shown:

Put some of the files into your map document and see if they meet your expectations.

Now move on to the while statement.

A while statement sets a condition and continues looping through its processes until the statement
is false. In this project, the count of selected features must be less than 200. Check your Python
resource books or ArcGIS for Desktop Help for the syntax and usage of while statements. Basically,

Tutorial 2-4 Using while statements 75

set up a variable to hold the count of parcels, and then start the while statement with the condition
that the variable not exceed 200.

13. In the section of the code for the while statement, add a variable to get the count of features
selected in the parcels layer. Then set up the while statement using this variable, as shown:

Note that the while statement ends with a colon and starts a new indent level. Everything that is
indented at this level runs within the while statement. To end the statement, drop back one indent
level.

The variable that is controlling the while loop (parcelCount) is called a sentry variable because it
watches over the loop and provides the value that will eventually cause it to end. This variable was
initialized with an ArcPy function named GetCount(), which is useful in a lot of Python scripts. Note
that because parcelCount is a Python object and not a simple variable, you must add .getOutput(0)
at the end of the object to reference the value’s index number.

When you use the sentry variable in the while statement, you must make sure that the value can be
true on the first run. Otherwise, the loop will never run. The second thing to watch for is that the
sentry variable is updated somewhere in the loop and that a condition eventually exists where the
condition of the while statement is false. Otherwise, the loop will never end. Some programmers will
nest a count variable in the while loop and cause the loop to end after a certain number of iterations
are completed.

If the count of parcels is less than 200, make another selection to add all the parcels within a
distance of the currently selected parcels to the selection set. This process will use Select Layer
By Location with a distance of 150 feet—check the tool Help to determine how to set the overlap
type to select features within a certain distance and how to set the selection type to add features
to the current set.

14. Add the selection statement, making sure to select the parcels, and add the parcels to the
currently selected features. Copy the parcelCount statement to get a new count, as shown:

The selection will increase the number of currently selected features, so the value of the parcelCount
variable will also increase. This condition will eventually cause the while loop to end.

76 Chapter 2 Writing stand-alone Python scripts

As a bonus, add a count variable, and limit the while loop to eight iterations. The code would look
something like this:

The code is now finished; save and run it. Drag a few of the output layers to your map document to
see the results, as shown:

Tutorial 2-4 Using while statements 77

Here’s the pseudo code for this project:

Exercise 2-4

A similar project has cropped up in the Public Works Department. The City of Oleander runs its own
public water supply system and must maintain a state certification with annual inspections. The
water system has water sampling stations where samples can be drawn and sent to the state lab for
testing. Oleander wants to move up to a level 1 certification, which will require analysis of the pipes
immediately adjacent to the sampling stations.

Open the map document Exercise 2-4.

Your task is to write a Python script that will select the 10 adjacent pipes around each water sampling
station and output these to a new file using the description as the name. Be careful because some of the
sampling stations are closed and should not be included in the analysis. (Hint: use the selection type
dealing with common boundaries between the features rather than a set distance to select adjacent pipes.)

Tutorial 2-4 review

Nesting looping statements is a way to perform multiple processes on your data. In this case, you
nested a while statement inside the cursor. Each feature was selected one at a time, and a complex
process was performed.

The while statement included a condition for the looping process. As long as the condition of the
while statement remains true, the loop will continue. Make sure that at some point the condition
equates to false for the loop to end, or your script might never complete its processing. As a fail-safe
maneuver to prevent an endless loop, a while statement with a count variable adds additional control
to the number of times the processes loop.

Study questions
1. Give an example of when you might use a while statement in your data processing.

2. Is there a limit to the number of loops that can be nested in each other?

3. Besides a counter, what other control(s) could have been included to make sure it was not
an endless loop? (Hint: use the count of the features.)

78 Chapter 2 Writing stand-alone Python scripts

Tutorial 2-5 Using lists and for statements

A list object can be used to store a list of such items as features, files, and tables. This list object can
be used in a for statement to iterate through the list. This technique provides a loop that iterates a
finite number of times—once for each item in the list.

Learning objectives
• Creating and using lists

• Creating and calculating fields

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Create lists of data”

• “ListFeatureClasses (arcpy)”

• “Add Field (Data Management)”

• “Calculate Field (Data Management)”

Introduction

In tutorials 2-3 and 2-4, you learned how to iterate through features in a feature class using a
cursor and a for statement. You can also use the for statement to iterate through other items
by placing them in a list object. A list object is a special type of Python variable that can
hold a list of values, and these values are indexed just as you have seen with the Python text-
handling functions.

List objects can be defined simply by providing the values separated by commas, but
ArcPy has several special functions to create lists from elements commonly used in
geoprocessing tasks. These functions include listing fields, layers, and raster files. There are also
functions to list map layout components, such as data frames and layout elements. The output
of these tools is, in fact, tuples, which are a special type of Python list in which the values
contained in the list cannot be changed. Because the use of tuples in ArcGIS is almost identical
to how you would use lists, the references here will continue to treat them as standard Python
list objects.

Once these ArcPy list objects are created, you can use them with a for statement to iterate through
the list contained in the object. Each iteration of the for statement will expose an object that can be
used for feature classes that need processing, layout elements that need updating, fields that need
changing, and any number of other tasks.

Tutorial 2-5 Using lists and for statements 79

Scenario
The Fire Department needs a count of all the single-family homes and multifamily structures in
each of the 44 fire response zones. The secretary in that department is trying to complete this task
with a felt-tipped pen and an aerial photo. You see that she has already missed a few structures,
misidentified a few, and is spending an inordinate amount of time on this project. You are going to
write a script that will be faster and more accurate. The Fire Department’s geodatabase contains a
polygon feature class for each response zone, or box. You will need to add two fields to each box: one
for the single-family count and one for the multifamily count. The secretary has already added the
fields to a portion of the feature classes, but the rest of the classes do not have these fields.

Data
The FireDepartment geodatabase contains 44 feature classes representing the box zones.
Note that the name structure for these feature classes is the phrase “FireBoxMap”
followed by the box ID number. In addition, there is a polygon feature class with the
building footprints. Each building has a use code in a field named UseCode (1 = single family,
2 = multi-family).

SCRIPTING TECHNIQUES

Because there are 44 different feature classes to be used in this project, the
best course of action is to make a list of the feature classes and iterate
through the list. A list object can be created using the ListFeatureClasses tool,
which can be set to include only files that meet a specified criterion. Once
the list object is created, a for statement can be used to iterate through the
list. Use a combination list and for routine for feature classes, although this
type of iteration can be done with any of the list tools shown at the start of
this chapter.

The second technique introduced here is the use of the Calculate Field
tool. This tool is used to write values into fields of the attribute table. Any
number or text string can be created and stored in a variable, and then
the variable can be written to the specified field. The unique aspect of this
technique is that the fields are written one by one rather than as a batch, so
individual steps that may not be appropriate for the entire dataset can be
calculated here.

80 Chapter 2 Writing stand-alone Python scripts

Use lists and for statements

1. Open the map document Tutorial 2-5, and note the BldgFootprints feature class. Open the
attribute table, and make note of the field containing the use code (UseCode), as shown:

2. In the Catalog window, note the feature classes representing the 44 boxes, as shown:

Develop a plan of action for tackling this project.

Tutorial 2-5 Using lists and for statements 81

3. Write the pseudo code for this task, which will involve getting a list of all the layers and adding
fields among other tasks. Completed pseudo code for this task is found at the end of this tutorial.

4. Start a new Python script named DwellingCount.py. Add the comments and template
components as in the previous scripts, as shown:

Notice that a different type of error handling has been added in the except line. The special
arcpy.ExecuteError object will trap any errors raised by ArcPy statements. The second except
statement will trap any other errors. Check the ArcPy documentation for more information on
this object.

Start by making a list object of the feature classes in the FireDepartment geodatabase.

82 Chapter 2 Writing stand-alone Python scripts

5. Search ArcGIS for Desktop Help to locate an ArcPy function that can be used to get a list of
feature classes. Several are shown in the table. Select the one you think is most appropriate, and
open and read the tool reference.

The ListFeatureClasses function will work, but you must set the workspace environment and use a
wildcard to get only the box zone files.

6. Add the workspace code, and the list code using the examples from the tool reference,
as shown:

The feature class names can now be retrieved from the list object by using an index number,
starting at zero (0). The first would be fcBoxZones[0], and the 44th would be fcBoxZones[43]
(remember to start the index numbers at 0). Notice that in the graphic an extra line was added
to explicitly select number 14. You can use this for testing the script so that it does not have to
iterate through all 44 files.

Tutorial 2-5 Using lists and for statements 83

Now use a for statement to retrieve the files one by one. All the code written in the for statement will
run for each file in the list object. When the last file is processed, the for statement will release the
script to continue to the end.

7. Write the for statement to go through all the files, and then check your code against the code
shown:

8. Research tools that can create the fields to hold the results. Reference the tool Help, and write
the code to add two integer fields named SFCount and MFCount, as shown:

The scenario says that some of the files already have these fields added. The AddField command will
automatically detect this and not duplicate a field if it already exists.

Next, get the counts using a select statement. In previous scripts, you copied the feature class to
a feature layer and used a query to get only the features you needed. It is interesting to note that
multiple feature layers can be created for the same feature class and used in different ways. Consider
this option when preparing the select statements.

9. Add the code to make a feature layer, and perform the selections for single-family homes,
as shown:

You have used all three of these statements before with slight differences. Be careful about the syntax
for the query in the MakeFeatureLayer command. Also, the selection command uses the wording
“HAVE_THEIR_CENTER_IN” for the overlap type parameter so that no building will appear in more
than one box. The overlap type keywords must be typed exactly as shown in the tool reference. If you
were using the overlap type “INTERSECT,” a building that crossed the boundary would be selected
twice. Note that some print statements were added so that you can follow the progress of the script
as it runs.

Next, update the fields in the feature class to contain the count of single-family homes.

84 Chapter 2 Writing stand-alone Python scripts

10. Research the tool necessary to put the value bldgCount into the field SFCount, as shown:

Your turn
The code for selecting the single-family housing is working. Add the code to do the selection, and update the
MFCount field for the multifamily buildings, as shown in the graphic. Remember that the use code for the
building footprints is 2 for multi-family.

The script is almost complete. The counts will be made for both building types, and the fields will be
updated.

11. Save the script. If you were using a single feature class for testing, change the wildcard expression
in the list statement to select all the FireBox feature classes. Run the script.

Tutorial 2-5 Using lists and for statements 85

Here’s the pseudo code for this script:

Exercise 2-5

When you take the results back to the Fire Department, you find the secretary hard at work with a
ruler and another printed map. She is trying to measure the linear lane-miles for roads in each box—
that is, the length of the street in miles multiplied by the number of lanes. Once again, you tell her
that a script can be written to solve this problem and add the results to each of the individual box
zone files.

Open the map document Exercise 2-5. The street data and all the box files are shown. Intersect each
box file with the streets, and use the fields Shape_Length and Number of lanes to calculate the
results into a new field named LaneMiles.

Tutorial 2-5 review

As seen in the table of list functions shown in step 5 of this tutorial, there are many list
functions in ArcPy. The results of these functions are list objects, which basically contain all the
values that are returned. Much like the cursors, a for statement is used to access the values in
the list objects. This statement goes through each item in the list one by one and performs the
processing tasks you specify. Lists cannot get into an endless loop because they have a finite
number of values.

The items in a list object are indexed—for example, text strings in a list. You could pull out an
individual item from the list by its index number, if you knew it. Otherwise, you must iterate
through the list and find the individual feature class of interest. The list commands also include
an optional wildcard value that will let you limit what goes into the list. This may be used to
limit the list values to such things as only polygon feature classes or only tables that start with
certain letters.

86 Chapter 2 Writing stand-alone Python scripts

Study questions
1. Select one of the other list types shown in the chart of list functions in the chapter’s

special introduction, and provide an example of using the list type with a wildcard value.

2. The new fields and final counts were added to the source feature class, but all the
selections were done to a feature layer. Why is this desirable?

3. Write an example of code that will return only a single layer from a ListFiles command.

Tutorial 2-6 Building script tools

Scripts can be placed in tools located in a custom toolbox for easy access and easy sharing.

Learning objectives
• Building script tools

• Getting and controlling user input

• Using ArcPy messages

• Creating script tool documentation

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “What is a script tool?”

• “Accessing parameters in a script tool”

• “Understanding messages in script tools”

• “Value list filter”

Introduction

The scripts in the previous tutorials of this chapter all deal with predefined inputs and are designed
to run independently of any user input. Although this design functions well in many situations, there
are times that you will want to run scripts inside ArcMap and accept user input. To perform these
tasks, your scripts must become script tools.

Tutorial 2-6 Building script tools 87

Creating a script tool is straightforward, and several interesting options allow you to make sure
things run smoothly. The basic process is to add the script to a toolbox and define the input
and output parameters. As with many items in Python, the inputs are indexed in the script,
and these index numbers determine the order in which they will appear in the user dialog box.
Although there is a Python system command for getting user input, a special function in ArcPy
allows you to specify the input type when you create your script tool. This function is named
arcpy.GetParamterAsText(), and you increase the index number for each input parameter.
Options include defining the type of entry that can be made and pulling a list of values from a
domain or attribute table.

Once your script tool is created from a script, it will perform just like the regular ArcGIS tools. You
can place it on toolbars, access it from the Catalog window, call it in other scripts, and even index it
in the Search window to make it easier to find.

Scenario
You completed a script to perform a single- and multifamily building count for all the box zones in
Oleander, and the Fire Department will do periodic counts of other building types in a single box
on an as-needed basis. With some simple modifications, you can have the script get input from
the user to decide what box zone to work on and which building type to search for. The resulting
building count can be stored in a new field with a predetermined name and then displayed in the
geoprocessing Results window. Because the building count will differ as the city changes, it will be
helpful to run this script to get fresh counts each time.

Data
The data is the box map layer and the individual box zone files from the City of Oleander
geodatabase. Also in the map document are the building footprints. The field UseCode has a
numeric code for each use type. The following list contains the use type followed by the field name
you should use to store the building count for each type:

1 = Single Family (SFCount)
2 = Multi-Family (MFCount)
3 = Commercial (ComCount)
4 = Industrial (IndCount)
5 = City Property (CityCount)
6 = Storage Sheds (ShedCount)
7 = Schools (SchCount)
8 = Church (ChurCount)

88 Chapter 2 Writing stand-alone Python scripts

SCRIPTING TECHNIQUES

The new technique shown here is how to create a script tool from a
script. Two important steps will help lead to predictable results. The first
step is to carefully track any input or output variables. Make notations
in the code to identify the order in which the input values are accepted from
the user. The script tool must consume these values in the same order. The
index numbers are used to track this order, starting with zero and moving up
from there.

Although this script does not use it, there is a special function for returning a value
from a script tool. This function is primarily used to feed a return value to a model,
but it may also be used to send a value to another script or model. This function is
arcpy.SetParameterAsText(), which is tracked with an index number and is set as
output in the script tool.

The second step is to ensure that the input value type is set correctly. Setting
these value types will cause the script to use the standard ArcMap input
dialog boxes, giving your custom tool the look and feel of a system tool. But
remember that whatever type you set, the dialog box will expect you to select
that type of item. For instance, if you set the input to Feature Class, the dialog
box will have you select an existing feature class. But if the tool is set to create
a new feature class, you will not be able to give it a valid name because you will
be prompted to select an existing feature class. In this case, you would set the
input to a string, and then use the string to create the feature class. However, if
you are setting a default workspace, and you set the input to workspace, only
valid, existing workspaces can be selected, which would be correct. Use the
rule that whatever data type you set, an existing item of that data type will be
selected.

Another interesting technique is the use of an input filter. You can set a filter
for certain data input types. This filter can be as simple as a predefined list of
values, or it may include complex code, which you will learn in tutorial 2-7. The
list will limit the choices of the user—these types of data integrity rules are
always a good idea. In addition to the list, you will add documentation to the
script so that the user can better understand how to use the tool—another
good practice. Make it a goal with all your scripts to document the code
thoroughly for future programmers, set as many data integrity rules as possible
to make it easier on the user, and add as much detailed documentation as
possible to avoid user confusion.

Tutorial 2-6 Building script tools 89

Build script tools

1. Open the map document Tutorial 2-6. The box zones and the building footprints are as shown:

2. Examine the data, and determine your course of action. Write your pseudo code outlining the
necessary steps. Completed pseudo code is shown at the end of this tutorial.

3. Start a new script in your IDE named Tutorial2-6.py. Although this script is being written to
your IDE, it will later become an ArcGIS script tool. Set up the template lines in your script
to store the description, and load the ArcPy module. Set the workspace environment to
C:\EsriPress\GISTPython\Data\City of Oleander.gdb.

90 Chapter 2 Writing stand-alone Python scripts

You must prompt the user for the box number and the building type. Use the arcpy.GetParameterAsText()
function with index numbers 0 and 1, but later when this becomes a script tool, you will see how to
make input statements a list type input.

4. Write the code to get the box zone number as a variable named boxNumber and the building
type code as a variable named buildingType with index numbers 0 and 1, respectively, as shown:

Remember these index numbers because they must be listed in the same order in the script tool. The
first input will be the box number in which the user wants to perform a count, and the second input
will be the building type to use for the count.

5. Use the MakeFeatureLayer tool to get the correct box zone file and the proper set of building
footprints, as shown:

Note that because you are making a variable equal to the MakeFeatureLayer tool, you do not need to
add an output layer name to the tool’s syntax.

Do the selection and count just as you did in tutorial 2-5.

6. Write the code to select the buildings based on the specified box zone, and count the number of
selected features, as shown:

This code will get the building count. Write this code to the geoprocessing Results window, and note
that there is a special ArcPy function to do this—in fact, there are three. The differences are basically
in the color of the text when the message is printed. The commands are as follows:

• arcpy.AddMessage, which adds text to the Results window in black letters

• arcpy.AddWarning, which adds text to the Results window in green letters

• arcpy.AddError, which adds text to the Results window in red letters

Tutorial 2-6 Building script tools 91

Note that none of these commands will interrupt the script, but each will print a message in its
associated color. Next, use one of these commands to add a statement about the feature count to
the Results window.

7. Add the message command to put the feature count in the Results window, as shown:

Next, create a field to store the results, and calculate it equal to the count. The field name will
depend on the building type the user specified. Remember that the ArcPy AddField function will
work, even if the field already exists.

8. Write code that uses the buildingType variable to determine the proper field name, and add it to
the selected feature class. Then calculate the count value to that field, as shown:

This graphic shows a lot of code, but it is basically three steps: determine the field name to use, add
that field, and calculate the value.

92 Chapter 2 Writing stand-alone Python scripts

9. Now that your code entry is complete, save your Python script to your MyExercises folder where
you installed the student data, and close your IDE.

Here’s the pseudo code for the script:

Script tools must be stored in an existing toolbox, so create a new one in your MyExercises folder.

10. In ArcMap, open the Catalog window, and navigate to your MyExercises folder where you
installed the student data. Right-click the folder, and click New > Toolbox, as shown in the
graphic. Name the toolbox Custom Python Tools.

Tutorial 2-6 Building script tools 93

11. Right-click the toolbox, and click Properties. For an alias, type custompython, and add a
description, as shown in the graphic. Click OK.

Adding aliases to your toolboxes is important. When you access tools from a toolbox in a Python
script, use the tool name and an underscore and then the toolbox alias. Have you noticed that the
ArcPy tools you have been using all have a toolbox alias after the tool name? Using the alias helps
distinguish between two tools that might have the same name. You will not use the alias here, but it
is good practice to assign one for later use if you index your custom toolboxes.

Start the process by adding your script to the toolbox. There are several steps, so be careful not to miss one.

12. Right-click the Custom Python Tools toolbox and click Add > Script, as shown:

This opens the script tool dialog box, and you can set the parameters.

94 Chapter 2 Writing stand-alone Python scripts

13. Name the tool CountBuildings, label it Count Buildings, and give the tool an appropriate description.
Also, select the “Store relative path names” check box, as shown in the graphic. Click Next.

14. Click the Navigate button, and select your script from your MyExercises folder, as shown in the
graphic. Click Next.

Tutorial 2-6 Building script tools 95

Next, define the input parameters for the two values you need from the user. Remember
that the index numbers you assigned will get the box zone number first and the building
type second.

15. As shown, click the first cell under Display Name and type Box Zone Number, which will act as a
text prompt to the user.

Setting the data type is next. When you click the Data Type arrow, a long list of data types
appears. It is important to realize that if you choose a particular type of file, such as a
feature class, shapefile, or dBASE file, the input must be a file of this type and must already
exist. The advantage of setting the data type is that the selection dialog box will only take files
of the specified type. For instance, if you set the data type to Workspace and navigate to
C:\EsriPress\GISTPython\Data, you will see only geodatabases listed and none of the text files
or shapefiles that might be there. If you are just getting text that will be used to create one of
these types of files, your input should be a string. For this input, you can select String to allow
alphanumeric entries.

16. Click the Data Type box and select String, as shown:

96 Chapter 2 Writing stand-alone Python scripts

17. On the next line, type the display name as Building Type, and set it to String, as shown in the graphic.
Note that in the Parameter Properties box both of these items are set as Required and Input.

18. With Building Type still highlighted, move to the Parameter Properties panel, and click the cell
next to Filter. In the drop-down list, select Value List, as shown:

This dialog box will let you build a value list to make data entry easier for the user. This value list can
also prevent users from entering an invalid value. The table lists the filter types you can apply with
this setting, as shown:

Tutorial 2-6 Building script tools 97

19. In the Value List, enter the numbers 1 through 8, as shown in the graphic. Click OK, and then
click Finish to complete the script tool creation process.

20. Run the script tool by double-clicking it in the toolbox. Enter a box zone number of 100, and
select a building type of 5, as shown in the graphic. Click OK to run the tool, and make sure to
clear the check box “Close this dialog when completed successfully.” If the dialog box closes too
quickly, or if the script is running in the background, you can open the geoprocessing Results
window to see the building count.

If you completed the steps correctly, the tool will run successfully. If the tool fails, right-click the tool
in the toolbox and click Edit. This opens an editing tool that lets you make changes to the script. The
default editing tool is Notepad. Refer to appendix A for how to set the default editing program for
Python scripts used in ArcGIS.

98 Chapter 2 Writing stand-alone Python scripts

Did you notice that the description you typed earlier during the tool creation process became the
tool Help? You may have also noticed that when you clicked the entry boxes to type values, you did
not get a Help message, as shown:

There is a way to add more relevant help to the tool, enhance its appearance, and give it the same
look and feel as a system tool.

21. Right-click your new tool and click Item Description. In the resulting window, click Edit. Scroll
through the window, and note the variety of items that can be entered (and that tags are
required), as shown:

As you click each of the entry lines, a small Help text is displayed at the bottom of the window to
guide you toward inputting the correct information.

Tutorial 2-6 Building script tools 99

22. Scroll down and click the chevron next to Box_Zone_Number. Here, you can type more
descriptive instructions for the user. Notice that there are many formatting options, including
bold, italic, and bullet lists. Fill in detailed instructions, as shown:

23. Add a better description for the parameter Building_Type, as shown:

24. Explore the other description items, and enter tags that will identify the purpose of this script.
When you are done, click Save and close the Item Description dialog box.

25. Run the script again, and click in each of the entry boxes to see the resulting Help messages, as shown:

100 Chapter 2 Writing stand-alone Python scripts

The additional Help creates a better user experience.

In this script, you are having the user enter a number to represent the building type. As a bonus, can
you alter the script to allow the user to select a text building type description in the input box, and
then can you have the script figure out what value to use and type that text description in the results
message?

Exercise 2-6

Use the script you wrote in exercise 2-5 to create a script tool. Make changes to allow for user input,
and develop a rich Help environment to make data entry easy to understand.

Tutorial 2-6 review

Creating script tools introduces another aspect of ArcGIS customization. With the
other scripts you have created, the user ran them from a folder and so could not appreciate
how they interacted with the map. The user also did not have an opportunity to change
the input feature classes unless they could edit them in an IDE, which is not exactly the
most user-friendly experience. Also, no Help file existed to instruct the user on the correct use
of the tool.

With a script tool, you are creating an item that can be run from the Catalog window, or even moved
onto a toolbar. Script tools provide the rich navigation environment in ArcGIS that allows you to do
such things as select layers from the table of contents and filter the navigation to feature classes. You
also have the option to write custom Help files for the tool, which will help inform the user how to
use the tool.

When the tool was created, you had to specify the data type for each input. A long list
of available data types to choose from exists, and you should become familiar with this list.
You may see many sample scripts using the data type of Any Value, which is fine for
naming items that do not currently exist. However, there is an advantage to using a data
type where the user must select items that already exist, which is that the input dialog box
will be the same one that ArcGIS system tools use. For instance, if you specify the data type
as Table, the user input dialog box will show only table format files as the user browses
through folders.

Script tools must be created in a custom toolbox, either one created earlier or a new one. To share
script tools with others, you must provide the toolbox and the script. Any other tools in the toolbox
will also be shared, so it is sometimes advisable to make a new toolbox with a single script tool when
you are sharing scripts.

Tutorial 2-7 Using cursors 101

Study questions
1. Look over the list of data types for script tool inputs in the script tool parameters Data

Type drop-down list, and give three examples of where specific data types should be
specified. Describe what the input dialog box should look like for each data type example
you have chosen.

2. The filter option was used to restrict the input for the building types. Give examples of
other uses of the filter.

3. Explain why the context-sensitive Help is important.

Tutorial 2-7 Using cursors

Cursors are a programming technique used to step through feature classes and tables,
item by item. Each item the cursor finds can be altered independently or used in a
geoprocessing task.

Learning objectives
• Working with table properties

• Using cursors with tables

• Using input validation in script tools

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Make Table View (Data Management)”

• “Understanding validation in script tools”

Introduction

The lists and cursors that you have used up until now have worked mostly with geodatabases and
feature classes, but these techniques can also be used on tables. You may want to get a list of tables
or use a cursor to go through the rows of a table, one by one.

As with the cursors you have used on features, cursors applied to rows in a table also allow individual
processing. You can access the fields and their values and then use decision-making and condition
statements to perform a variety of tasks.

102 Chapter 2 Writing stand-alone Python scripts

Scenario
On your trip to the Fire Department to show off the building count application, you discover another
complex process that the department is trying to perform manually (you really need to stop going
over there). In any given month, the Oleander Fire Department responds to several hundred calls
around the region. Since Oleander has mutual-aid agreements with 16 neighboring cities, the call
location may be in any one of these locations. The department needs to split the fire run data that
represents each call for service into multiple files with one table for Oleander calls and another table
for each of the other cities in which they responded.

The department would also like to geocode the calls, but in the current format, the addresses
are parsed into separate fields, so the addresses will need to be combined. You could reformat
the address data in the main file, but that would mess up the access to the historical data in the
automated dispatch software (the field schema cannot change). This change can only appear in the
output files, and not in the source data.

You also cannot use a simple query to split this data because you do not know what cities to use in a
selection. The list of cities may be different each month. However, you should be able to make a list of
all the city names and use that list to do your table selections.

The solution is to create a temporary copy of the table in memory, make any field changes
you need, and calculate the new address field. Use the text slicing technique and a file
creation tool to create a new geodatabase that includes the name of the month and the
year. Then use a cursor to run through the data to develop a list of unique city names. Use
that list to do selections on the database, and create new tables for each unique city name
that is found.

You can run this script from ArcCatalog since there are no graphics involved. The tools necessary are
listed here so that you can do some research before writing your pseudo code:

MakeTableView

SelectLayerByAttribute

CreateGeodatabase

CopyRows

CalculateField

FieldInfo()

.replace()

Tutorial 2-7 Using cursors 103

The pseudo code will be complex, so think through the process as if you were doing only one
record and document it. Then check to see what other events might occur to change the process,
and accommodate for these events in your pseudo code. None of the tasks by themselves are that
difficult, but combining them will take planning and precision.

Data
The only data used for this tutorial is the run data for each time frame. A couple of examples are
given, but once the script is written, it could be used for years to come to perform the same function
on any new dataset created from the dispatch software.

SCRIPTING TECHNIQUES

This tutorial combines many of the techniques you have learned in other tutorials.
This tutorial uses cursors, table views, for statements, and several different ArcGIS
tools. A new technique to try is the use of a with block to combine the cursor and
the for statements into a single subset of the code. The format is as follows:

There are two major advantages of using a with block. The first advantage is
that the cursor and the for statements are defined in two lines of code. The
second advantage is that references to any files or map documents in the with
block are automatically removed at the end of the code block, even if the
code fails, which prevents a crashed script from locking those datasets or map
documents.

Another new technique is the use of input validation code. By adding this extra
code in the input properties, the programmer can greatly control what the user
is allowed to use for input into the script. This technique is another type of data
integrity rule that can range from checking for the correct file name to examining
the field structure before allowing the selection. Its function is dependent on the
validation code you write.

Use cursors

1. Start ArcCatalog. Research the tools you may need, and write your pseudo code. A set of pseudo
code is shown at the end of this tutorial. If your pseudo code differs substantially, try using it for
writing the code, and reference the tools as presented in these steps.

104 Chapter 2 Writing stand-alone Python scripts

2. Start your IDE, and set up the template lines for a new script named ProcessFireData. The
workspace environment for outputting new files is C:\EsriPress\GISTPython\MyExercises, as
shown:

The process starts by asking the user which file they want to work on. In the code, you can use the
generic GetParameterAsText() function, and when you create the script tool, set up the data type.

3. Add the line of code to accept user input into a variable named inTable, as shown:

Next, make a copy of the input table in memory with the MakeTableView command. This copy allows
you to make selections and queries without affecting the source data, unless you actively save the
table view object. You do not need to show all the fields in the output, but you must add a field that
can be used to store the concatenated address.

ArcGIS for Desktop Help has a great example of how to do this. Note that you cannot add a field to a
table view, but the sample code in the tool reference for MakeTableView shows a way to change the
name of a field that is not being used.

First, get a list of all the fields in the input table, and then create an object that will store the information
about the fields. This object will be modified and used in the MakeTableView command later on.

4. Get a list of all the fields in inTable, and store the list in a list object named fields. Then use the
FieldInfo() function to create a field object, as shown:

Before you create the table view, alter the field information for the output. This alteration will make
certain fields visible in the output and will change the name of addr_2 to GeoAddress, which will
later accept the concatenated address string. At the end of the elif statements is an else statement
that hides all unidentified fields in the output. The tool reference for MakeTableView has a good
example of this type of statement.

Tutorial 2-7 Using cursors 105

5. Add condition statements to make the list of desired fields visible in the table view. Also, change
the name of addr_2 to GeoAddress, as shown:

When you create the table view, it will contain only the fields you want.

106 Chapter 2 Writing stand-alone Python scripts

6. Create a new table view using the user’s input table and the field object you defined, and name it
fire_view, as shown:

7. Write the code to reformat the address fields into a single field named GeoAddress, as shown.
This code is similar to the code you wrote in chapter one.

Note that this reformatting only makes changes to the table view and does not change the source
data unless that change is specifically intended.

The output of the process must be stored in a new table in a new geodatabase. To get the year of the
data’s collection, slice the last four digits from the input file name. Then add the year as a suffix to a
new geodatabase name, and store the geodatabase in your MyExercises folder.

8. Use string slicing to get the year for the input data. Then create a new geodatabase with the year
as the suffix for the file, as shown:

The eventual goal is to create a separate database for each of the different city names
containing only the records for each city, but you do not know what those city names will be.
In some months, there may be only four or five cities with responses, but in a busy month,
the number can grow to as many as 14. You can find all the values by having the cursor iterate
through the records to look for unique names, and then store the values in a list variable.
Remember that a list variable can store multiple values, which are retrieved using an index
number.

You can initialize an empty list variable by making it equal to a set of empty brackets ([]). As you
find the unique values, they can be determined to be in the list and, if necessary, appended to
the list. Check your Python reference for the syntax of these functions. A with statement can set
up the cursor and the framework for the iteration. Then a for statement can run through all the
records, and an if statement can determine whether the found value of cityName is already in
the list.

Tutorial 2-7 Using cursors 107

9. Add the code to set up the with block, which will scroll through the rows looking for city names,
and create a list variable to store the unique results. If you like, add an ArcPy message to show
that the list was created successfully, as shown:

You are ready to create the new tables. By going through the new list of city names, you can get
both the value to use in a search of the table view and the name of the new output table.

10. Use a for statement to go through the city names list, select all the records from that city, and
write a new table to the geodatabase you created in step 8, as shown:

Note that when the new table is created, the spaces in the city names are replaced with
underscores because ArcMap does not accept a space or a special character in the
name of a table. Notice also that code was added to count the number of features and to
report the names and record counts of the new tables back to the Results window as the tables
are created. Although this action is not required, it is helpful to let the user know what the
script is doing.

11. Save the script, and close your IDE.

The script takes only one input—the fire department calls for service—so your script tool will need
only one input, which you can restrict to tables.

108 Chapter 2 Writing stand-alone Python scripts

12. Start ArcCatalog. In the Catalog window, create a new toolbox in your MyExercises folder
named Tutorial 2-7.tbx. Right-click the toolbox and click Add > Script. As shown, name the tool
SplitFireCalls, and add an appropriate label and description. Select the “Store relative path
names” check box and click Next.

13. Navigate to the folder where you stored the script and select it. Click Next.

14. Set the display name to Calls for Service and the data type to Table, as shown. Click Finish.

Tutorial 2-7 Using cursors 109

15. Run the script tool, and test it with the January run data in C:\EsriPress\GISTPython\Data\
FireDepartment.gdb, as shown. Debug the script tool, if necessary.

Here’s the pseudo code for this script:

110 Chapter 2 Writing stand-alone Python scripts

The tool runs fine and creates the required outputs, but there is still one problem: the user could
accidentally enter a table with the wrong formatting, and the script would fail. It would be helpful
to test the input file first and make sure it contains the correct type of data in the correct format.
All the tables start with OFD_Run_Data, which makes them easy to identify. Rather than put this
identifier in the script and have the script stop running if incorrect data is provided, you can instead
have the tool input validate the user’s selection before the tool runs.

You have seen this practice with system tools: the user enters a value for a parameter, and a red X
appears next to the entry and prevents the tool from running. This preventative technique is called
tool validation and is available for use on custom scripts as well. The tool validation code is accessed
through the script properties and allows you to check the user’s input as values are entered, change
the tool parameters based on the input, and change output messages based on certain conditions.
For this script, add a check at the tool’s initialization to make sure the first 12 characters are
OFD_Run_Data before allowing the user to click OK.

16. Right-click the new script tool SplitFireCalls, click Properties, and click the Validation tab.

Tutorial 2-7 Using cursors 111

The Validation tab shows the standard Python code for the validation object associated with the
tool. All the code here is required; you can add to it, but you cannot delete anything. The object
created is named self and has an index to each parameter value that the toolbox asks for, starting
with zero (0). For example, the first parameter would be self.params[0], and the fifth parameter would
be self.params[4]. This object has methods, which can be used to raise an error, and parameters,
such as value, data type, and a True/False flag, to identify whether the value has been altered in the
input box. Using these methods and parameters, you will be able to control the data entry with more
precision than with the normal filter in the script tool entry box.

ArcGIS for Desktop Help has more information on tool validation under “Programming a
ToolValidator class.” Research this topic, and follow along with the code that follows.

The first step is to get the input value from the user interface. When the script detects that the input
value has been changed, you can check its file name to make sure that the first 12 characters use the
proper naming convention. If not, an error message appears, blocking the user from continuing.

17. Click Edit to open your IDE with this script. Under updateMessages, add the following code:

Note that the code is first using the .altered property to check whether the user entered anything. If
so, it describes the data into a variable named inputValue. Using the arcpy.Describe method slices the
input value into its various components, including the path, file name, and extension. Using the file
property and slicing the first 12 characters, the code then checks that the file uses the correct naming
convention. If it does not, an error message is returned, which adds the red X on the input screen and
lets the user know that the entry is not valid.

18. Close your IDE, and save the code. In the Script Properties dialog box, click Apply. Your code
now appears in the validation code block. Click OK. Run the script tool with both a valid and an
invalid entry. Shown is the error message that appears with an invalid entry:

112 Chapter 2 Writing stand-alone Python scripts

19. Alter the script’s description to add useful help in the standard tool Help dialog box.

Using the tool validation in conjunction with the tool validation code is a fantastic way to put
custom restrictions on user input and to prevent users from accidentally running a tool incorrectly.
Research this topic more in ArcGIS for Desktop Help to fully understand how much control you have.

Exercise 2-7

After the Fire Department separates the data by city, it would like to select only the Oleander data
and separate it into the different incident types (inci_type). Again, no set list exists of what incident
types the file will have, and the output file name should indicate the month and year of the data.

Create a separate script tool to reprocess the results of the Split Fire Calls tool to split the Oleander
calls from the resulting file.

Add controls in the tool validation code to make sure the correct file is chosen before the tool runs.

Tutorial 2-7 review

This application uses a variety of techniques learned from previous tutorials and introduces the idea
of input validation, which can be extremely important in script tools that might be used by a large
number of users who may possess different levels of GIS knowledge. This concept is known as data
integrity—the use of code to keep users from creating errors in your data and to help them make
correct choices. The more data integrity techniques you can incorporate in your applications, the
easier it will be to maintain the integrity of your dataset.

Study questions
1. Make a list of the techniques used by this application that you learned from other

tutorials.

2. Give examples of other uses of input validation code.

3. Which input data types allow for filters and validation code?

Tutorial 2-8 Combining loops 113

Tutorial 2-8 Combining loops

Any of the looping techniques, such as while and for statements, can be combined to provide a
flexible method of working with data in Python.

Learning objectives
• Validating data

• Summarizing data

• Managing flow of processing

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Summary Statistics (Analysis)”

• “Get Count (Data Management)”

Introduction

By completing all the previous tutorials in this book, you have learned many different analysis and
programming techniques. These techniques include branching using if statements, for and while
loops, cursors, and lists. This tutorial uses many of these techniques in a single script tool and requires
investigation into how the analysis processes work, how the user will be using this script tool, and
what tools and techniques you will need to incorporate into your script tool. This tutorial also
requires detailed pseudo code, which you should be an expert at by now.

Scenario
The Oleander Public Works Department in the Engineering division is gearing up for a new storm
water testing program to make sure that the water being discharged into the streams and rivers
meets the federal clean-water standards. You already have a dataset of the storm drain system, and
thanks to the department’s summer intern, who slogged up and down every creek in Oleander with
a GPS unit, you also have the locations of all the outfalls. These locations are the points at which a
storm drain collection system for a particular watershed empties into the creek, and there are many
of these outfalls. The department has set up monitoring stations at a few of the locations to start
taking water quality readings, and a system name has been given to each station. To complete the
analysis, the department needs to know the characteristics of the drainage system for the watershed
connected to the particular outfall at the monitoring station. These descriptions need to include
an inventory of the fixtures attached to the watershed system, along with a summary of pipe sizes.
From this information, the department can calculate maximum capacity and determine whether the
readings at the outfalls are within specifications.

The script tool you will write to automate the process will have the user select one outfall, and
then the tool will trace the connected pipes until all are selected. This tool can be used to create
the pipe inventory. Then the tool will select and form an inventory of the fixtures attached
to these pipes. A data maintenance task can also be completed while you're at it. The fixtures
are supposed to have a value for the size pipe they are connected to, but that data was not

114 Chapter 2 Writing stand-alone Python scripts

populated when the storm drain database was created. This problem will be easy for your script
to solve as it goes through the features.

Data
The data provided is the storm drain data for Oleander. The data includes a pipeline database with
a field named PipeSize and a fixtures database with a field named Type, which identifies the fixture
type. These fields will be used for the summaries of each outfall. Both datasets have a field named
System, into which you will store the system name that has been assigned to the metering station.
The fixtures dataset also has a field named PipeSize, in which you can store the size of pipe that each
fixture is connected to.

SCRIPTING TECHNIQUES

You have used all the techniques required for this tutorial before, but here is some
help on the pseudo code.

The user will select an outfall before running the script. As an extra data integrity
rule, make sure only one feature is selected before you continue. An if statement can
check this condition.

Start selecting the lines connected to the outfall. The first selection will be to
get the line connected to the outfall, and the next selection will be to select
the other lines connected to the first selected line. This process will repeat
until all the lines in that particular watershed system have been selected.
How will you know when to stop selecting? Try setting up a count of the
selected features, and then use a while statement to see whether the number
has increased after an iteration of the selection process. If the number has
increased, keep on selecting. Once the number remains the same through an
iteration, you are done.

The selection of the attached fixtures is straightforward and can be done in a single
command. Then you can use a cursor to go through the selected set of features one
by one and get the pipe size from the attached line and transfer it to the point.

The final processes of storing the system name and performing the summaries can
be done with a single step for each process.

This task sounds simple, but it requires some careful coding to make sure all the
interrelated steps occur in the correct order. As with the other tutorials, perform
it in steps, and code and debug each individual process before adding the next
process. Be sure to write detailed pseudo code! Note that there is no sample pseudo
code given for this script.

Tutorial 2-8 Combining loops 115

Combine loops

1. Open the map document Tutorial 2-8. An overall view of the storm drain system at the north end
of Oleander is displayed. The purple triangles represent the outfalls for the study, as shown in the
graphic. Open bookmark LBC-12A to zoom to the first outfall. From this point, you can get an
idea of what a single drainage shed system looks like. Make a manual selection of the outfall, and
then use the other selection tools to select all the lines and fixtures associated with this drainage
shed. Also investigate the attribute tables of these feature classes, and look for the fields you will
be working with. This inspection will give you an idea of what the script will be doing.

2. For simplicity, start with a simpler drainage shed, so move to bookmark WC-2B, as shown in the
graphic. Once you have the script written and debugged, move on to more complex drainage sheds.

116 Chapter 2 Writing stand-alone Python scripts

3. After you have familiarized yourself with the process and written your pseudo code, begin writing
the script. Open your IDE, and create a new script file named DrainageshedAnalysis.py with the
standard lines to import module and set the working environment.

The selection process is at the heart of this script, so you should write and debug that part of the
code first and create the script tool. Then, as you continue to edit the script, the script tool will gain
more functionality. Start your code by making sure that only one feature is selected.

4. Write the step to make sure that only one feature in the Fixtures feature class is selected.
Otherwise, send a message to the user to let them know that the script will not run, as shown:

Next, get the drainage system name. You could prompt the user to supply it, or you could retrieve it
from the field System in the Fixtures feature class. Determining the drainage system name sounds like
a simple process, but you must set up a cursor and use the row object with the getValue object to get
the value of the single feature.

5. Set up a cursor using the Fixtures feature class. Then set up a variable to accept the value of the
field System, as shown:

You will be making selections of both the storm drain lines and the fixtures, so make a feature layer
for each of the feature classes. Remember that making selections inside a script can only be done on
feature layers. An interesting note is that if you made the fixtures feature layer using the feature class
in the current table of contents, the layer would contain only one feature because it has a selected
feature. Instead, you should make the feature layer from the data in the geodatabase.

6. Add the code to make a feature layer for the line and point feature classes, as shown:

Tutorial 2-8 Combining loops 117

7. Add code, as shown in the graphic, to use the selected outfall to select the line(s) that intersect it.
Note that this process does not use the feature layer, but rather the feature class from the table of
contents with the selected feature.

This code selects the first line (or in some cases, more than one line), which can now be used to select
other lines. You can select lines that intersect this line and repeat until you have selected all the lines
in this watershed system, or basically select until the count of selected features no longer increases.
To accomplish this task, you can set up two count variables to hold the current count of selected
features and the new count of selected features. When these two counts are equal, it means that the
selection process did not select any new features and is therefore complete.

8. Add the code to set up two count variables to hold the feature counts, as shown:

9. Add the while statement and the code to select and check the count of new features, as shown:

The while statement checks its condition before it runs. Inside the statement, set the first count
variable to the previous count and the second count variable to the new count. When the statement
repeats, it checks the condition again. A message line is included so that the user can check the
results on the fly. This line is useful for debugging, too. As an option, you may want to include a
message to signify that the selection process is finished and to report how many features are in the
selected set, as shown:

To complete the selection process, select the fixtures that intersect the selected line features.

118 Chapter 2 Writing stand-alone Python scripts

10. Add the code to select the point features based on their intersection with the selected line
features, as shown:

The selection processes are all complete, and you can go ahead and create the script tool and test it.

11. Create a new toolbox in your MyExercises folder named Engineering, and add a new script
tool using the DrainageshedAnalysis.py script, as shown in the graphic. The script will have
no input parameters. When this is done, select the outfall for system WC-2B, and run the
script. You may also want to try running it without any features selected to test the count-
checking routine.

If everything checks out, continue with the script. Otherwise, finish debugging the selection
processes.

The next set of processes to code is the summary statistics. For the lines, the storm water
supervisor wants a table showing a summary of length categorized by line size. For the
points, the supervisor wants a count of features categorized by type. If the summaries are
done on the feature layers, they will contain information from only the selected features,
so the code for the summaries should follow the selection of the fixtures. The names can
include the system name you extracted earlier followed by either _StormLineSummary or
_StormFixtureSummary.

Tutorial 2-8 Combining loops 119

12. Add the code for the Summary Statistics tool for both the lines and the fixtures, as shown:

This procedure fills the requirements of the Public Works Department, and the department can use
the two output tables for its calculations.

Exercise 2-8

The city has done an elevation study of the creeks in Oleander and wants to do a more detailed study
in 3D using this new data, which can be found at City of Oleander > Planimetrics > AnalysisCreeks.
Each segment has a field named Slope, which contains the creek’s measured percentage of slope.
The elevation of the outfalls (where the smaller creeks enter the major waterways) has also been
recorded for each creek network, but for 3D analysis, each creek line segment must have the input
and output elevations recorded. The fields for the input and output already exist as FlowLine_In and
FlowLine_Out, respectively. Only FlowLine_Out for the outfall segments is recorded, which is shown
in blue in the map document. Write a script to populate the rest of the flow line fields.

The user will select one of the creek outfalls and run the script tool you create. The tool will trace the
creek line by line, calculate each new elevation upstream, record it, and then move on.

The key to this process is to calculate the change in elevation from one end of the line to the other.
The change in elevation is found by multiplying the slope by the segment length and dividing
by 100 (because the slopes are percentages). The change in elevation can then be added to the
FlowLine_Out value to get the next FlowLine_In value. Repeat this step for each segment, moving
upstream and using the last calculated value of FlowLine_In as the FlowLine_Out value for the
next segment.

(Hint: This process will work until you hit a fork in the creek. Why is this a problem? What can be
done to fix it?)

Use the map document Exercise 2-8 for this project.

Tutorial 2-8 review

All the techniques used in these processes were used in previous tutorials and exercises, except in this
tutorial no pseudo code was given for the script. By now, you probably appreciate the importance of
pseudo code in keeping track of all the steps the code must complete and the order in which they
must occur. If you completed this tutorial successfully, designing and coding all the processes without
the aid of prewritten pseudo code, you are well on your way to becoming a Python programmer.

120 Chapter 2 Writing stand-alone Python scripts

Study questions
1. What was the hardest part about writing pseudo code for this project?

2. Does it help or hurt to add messages in the code to report progress?

3. The potential for an endless loop existed in this project. Can you explain what it was and
how you mitigated it?

Tutorial 2-9 Creating custom toolbars

Script tools make running your tasks from a custom toolbox faster and easier, but these tools may
also be placed on a custom toolbar, making them more convenient.

Learning objectives
• Creating custom toolbars

• Adding tools and scripts to custom toolbars

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Creating a new toolbar”

• “Adding and removing tools on menus and toolbars”

Introduction

Toolbars are easy to create and can contain your custom script tools, models, and system tools. You
can categorize items on a toolbar, and even make drop-down submenus. It is important to note,
however, that the tools still operate as stand-alone tasks and do not interact with each other. Also,
any custom toolbars you create through the customized interface exist only in the map document in
which they are created. These toolbars cannot be shared easily with other users.

Scenario
The script tool you created in tutorial 2-8 requires that an item be selected before the tool runs. It
would make things easier for the user if you created a separate toolbar and assembled all the tools
together to accomplish the task, including the script tool, the Select Features tool, and the Clear
Selected Features tool. As an option, you can include the Continuous Pan tool to make moving
around the map area easier.

Tutorial 2-9 Creating custom toolbars 121

Data
Use the script tool you created in tutorial 2-8, along with several system tools.

SCRIPTING TECHNIQUES

Toolbars are created in the Customize Mode and accessed from the Customize
menu, which makes any toolbar customizable.

When you click New in the Customize dialog box, as shown, a new toolbar is created.

122 Chapter 2 Writing stand-alone Python scripts

Then you can simply drag your tools to the toolbar. To make custom drop-down
menus on a toolbar, go to the Commands tab, scroll all the way to the bottom, and
select New Menu, as shown in the graphic. This menu can be dragged to the toolbar
and customized.

Once tools are added to the toolbar, the toolbar will perform exactly like a system
toolbar. You can drag the customized toolbar anywhere on your screen or dock it
to any of the existing menus. Remember, however, that the toolbar does not exist
beyond the map document in which it is created.

The sample in the graphic shows a variety of tools and menus on a custom toolbar.

Tutorial 2-9 Creating custom toolbars 123

Create a custom toolbar

1. Open the map document Tutorial 2-9. On the main menu, click Customize > Customize Mode.

Note all the existing toolbars listed in the Toolbars panel. Any of the toolbars that have a check mark
next to them are currently visible in the map document. Notice also that every tool on every toolbar
appears as active, meaning that each toolbar can be moved or deleted as desired.

2. Click New at the right of the Toolbars panel, and name the new toolbar Storm Drain Tools, as
shown. Click OK.

The toolbar is created, and by default it will be added to the map document. The toolbar may be
docked in the menu area at the top of your map document, or it may be free-floating in the map
area, as shown:

3. Undock the toolbar, and drag it just above the Customize dialog box in the map area to make it
easier to work with.

The script tool you created must be brought into the Customize interface before it is available to use
on menus.

124 Chapter 2 Writing stand-alone Python scripts

4. On the Customize dialog box, click the Commands tab, and scroll to the bottom. Click
[Geoprocessing Tools] and click the Add Tools button, as shown:

5. When prompted, navigate to the Engineering toolbox, and select the Storm Drain Watersheds
tool, as shown. Click Add.

The tool is now available to be placed on any toolbar simply by dragging it to the toolbar.

Tutorial 2-9 Creating custom toolbars 125

6. Drag the Storm Drain Watersheds tool to your new toolbar, and drop it there.

As shown in the graphic, the tool appears on the toolbar, but there is still some customizing to do. You
can control the icon that is displayed, the text that is displayed, and what will be shown to the user.

7. Right-click the new tool on the toolbar. Note the options displayed. Change the name to
Trace Watersheds and click Text Only, as shown. This will display only the name of the tool.

126 Chapter 2 Writing stand-alone Python scripts

In addition to the storm drain tool, you also need to add a new drop-down menu with some feature
selection tools.

8. On the Customize dialog box, click [New Menu]. In the Commands panel, click New Menu and
drag it to the left side of your toolbar, as shown:

Notice that the menu item has a drop-down arrow, which indicates to users that it is a drop-down
menu rather than an active tool.

9. Right-click the menu item, change the name to Selection Tools, as shown, and press Enter.

Tutorial 2-9 Creating custom toolbars 127

This new menu will hold the Select By Rectangle tool and the Clear Selected Features tool. You can
use the Search feature on the Customize dialog box to find any tool in any category.

10. On the “Show commands containing: ” line, type Select By. Look down the resulting list and
find Select by Rectangle. Then drag it to the toolbar, placing it below the drop-down menu,
as shown:

Your turn
Use the Search feature to locate the Clear Selected Features tool, and add it to the drop-down menu.
Then locate the Continuous Pan tool, and add it to the right side of the toolbar. When you are done,
close the Customize dialog box. Examine the toolbar and the tools it contains. Note that the Clear
Selected Features tool appears dimmed, as shown in the graphic, because features must be selected for
it to become active.

The toolbar is now ready for use and contains a combination of custom tools that you created and
system tools from the ArcGIS toolboxes.

128 Chapter 2 Writing stand-alone Python scripts

Exercise 2-9

In exercise 2-7, you wrote some custom script tools for the Fire Department, and you feel that the
department might also benefit from having its custom tools accessible from a single location.

Open the map document Exercise 2-9. Create a custom toolbar to contain the script tools you
created for the Oleander Fire Department in exercise 2-7.

Tutorial 2-9 review

The creation of custom toolbars will make your applications appear even more professional. You can
include all the custom script tools you have created and system tools. The toolbars you create can
also be docked or kept free floating. They cannot, however, be shared with others. These types of
toolbars are saved only to your personal files and are accessible only through your map documents.

Study questions
1. Why is it useful to add existing system tools to your custom toolbar?

2. Can you control the availability of a tool on a custom toolbar—in other words, can you
cause a tool to be disabled until certain conditions are met, such as when an item is
selected or when you are in data view?

3. When would you use a menu, and when would you use a toolbar?

Chapter 3

The ArcPy mapping
module

Introduction

The ArcPy module includes a special set of tools for working with your map documents
called the ArcPy mapping (arcpy.mapping) module. This module provides access to all
the elements of a map document and allows you to control the output for custom
maps and map books. The tutorials in this chapter demonstrate how to access map
documents, data frames, graphic elements, and data layers. Each of these elements
has a unique set of properties for controlling these elements.

Tutorial 3-1 Accessing map document
elements

Working with the graphic elements on the map page is one of the most basic tasks of map creation, but
also one of the most powerful. Each element can be altered with Python code you write to create maps and
map books.

Learning objectives
• Controlling the map document elements

• Listing and controlling map layers

• Accessing features in a list object

• Setting input filters and default parameter values

130 Chapter 3 The ArcPy mapping module

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “MapDocument (arcpy.mapping)”

• “ListLayoutElements (arcpy.mapping)”

• “ListLayers (arcpy.mapping)”

• “Customizing script tool behavior”

Introduction

If you are familiar with geoprocessing in ArcMap and ArcCatalog, you are familiar with most of
the tools that you would use in stand-alone Python scripts and the script tools available with the
ArcPy mapping module. However, the mapping module introduces a new concept of working with
the elements within map documents. The module allows you to work with data frame parameters,
components of the table of contents, and characteristics of elements of a currently open map
document in ArcMap or with those in a saved map document.

One standard line of code is all that is necessary to access a map document and gain control of it.
The code to access a map document that is currently open in ArcMap looks like this:

The code to access any map document without having to open it looks like this:

You can set the map document equal to an object name, which provides access to all the current
map document parameters in ArcMap, or replace the keyword CURRENT with the name of another
map document to access its parameters without opening it. These parameters include classes, such as
identifying the data frames and noting which one is active; controlling the map documentation, such
as author, description, tags, and title; and characteristics, such as the page size and file path.

In addition to the document’s characteristics, you can manipulate layers in the table of contents.
Functions in the mapping module allow you to add or alter layers in the table of contents, which may
include something as simple as handling their visibility to something as complex as reworking their
symbology.

Tutorial 3-1 Accessing map document elements 131

A set of list functions also exists. These list functions are much like the list of ArcPy functions
you used in chapter two that let you build list objects of things such as bookmarks, layers, data
frames, and layout elements. The key to using list functions, however, is that each item placed
in your map must be assigned an alias. The list functions all access the items based on their
name or alias. An interesting thing to note about the list functions is that a list object is
always returned, even if the results have only one value, which will affect how you retrieve
and manipulate the values.

ArcGIS for Desktop Help has a list of all the classes and functions available in arcpy.mapping and
provides good examples, tool descriptions, and sample code to help you understand how these tools
can be used.

Scenario
The city planner has asked that you show the parcel data in several maps: one map to show the land
use, another to show the appraised value of the properties, and the third to show the age of the
structures grouped into 10-year categories.

With arcpy.mapping, you can use a basic map template to change the components necessary to
create each of these maps. The nice thing about using a template is that you do not have to worry
about opening ArcMap and finding the appropriate layers, and all three maps will have a similar look
and feel. You can even export the results to a PDF document that can be e-mailed to the city planner.
The supplied template has symbolized map layers in the three required classifications. Determine
which map type is selected from the user input window, and make the correct layers visible. Then
export a completed map.

Data
A map template named ParcelTemplate is ready for this project. This template holds the parcel data
that you need, is symbolized in the three required methods, and has a map layout with titles and
descriptions that you can change for each output map.

132 Chapter 3 The ArcPy mapping module

SCRIPTING TECHNIQUES

You will find it easy to manipulate elements within your map using the
arcpy.mapping module in your scripts, and there are three basic techniques you
need to perform in these scripts. The first of these techniques is to create a map
document object that references the map document you wish to work with. The
introduction to this tutorial shows how to create this object using either the
keyword CURRENT or the path name of a stored map document.

The second technique is to create a list object of all the data frames in the map
document you have selected. This is done with the ListDataFrames() function.
Each data frame is added to the list object, and the data frames are accessed by
using the object’s name and the index number of the data frame. Remember
that the index numbers start at zero, so if there is only one data frame in your
specified map document it will have the index number zero. You will learn how
to write the code for this technique in this tutorial.

The final technique for working with the arcpy.mapping module is to access the
elements in your map document. The technique requires that you first assign a
name to each map element. For instance, if you wanted to work with a title and
subtitle, you would need to open the properties for each text item and assign them
a name such as mainTitle and mapSubTitle. The next step is to create a list object
of the map’s elements using the ListLayoutElements() function. The list will contain
the names you have assigned to each element, making it easy to reference elements
by name, such as mainTitle or mapSubTitle. As with other list elements you have
created and worked with, you can use a for statement to iterate through the list, and
then use an if statement to find the specific element of interest.

The script in this tutorial will totally automate the creation of three maps as well
as alter the map elements for each unique map. There are three preset names and
descriptions for the three types of maps you will create. In the script tool dialog box,
you will set up a menu for the user with a value list, and then use the tool validation
code to totally automate the text entry for the various maps. Although this example
script shows tool validation code being set up to control map elements, it could also
be used to control any aspect of the user’s input for a script.

Access map document elements

1. Start ArcMap, and open the map document ParcelTemplate.

The template looks as if it will make fine maps, but you must do some preliminary setup work to be
able to access all the map elements through a script. Each element in the map must have a unique
name set as a property. When you search through map elements with a list command, you need to
be able to uniquely identify each map element and understand what each element represents. It is
also important to make sure that there is an existing map element for everything you might want to

Tutorial 3-1 Accessing map document elements 133

work with on the map. The mapping module works only on existing map elements and does not have
the capability to add new elements.

2. In the table of contents, right-click the data frame name, and open the properties. Click the Size
and Position tab. Notice that the element name is the default name Layers. Rename the element
Parcel View, as shown, and close the Properties window.

If there were more than one data frame in the map, you would need to give them all a unique and
descriptive name. Next, create names and set the properties for the other map elements.

3. In the map layout, right-click the map title text and click Properties. Note that the title has
no element name. Name the element Map Title, and close the Properties window.

134 Chapter 3 The ArcPy mapping module

Notice that the anchor point of the text is the lower-left corner. As you change the title, and the
length of the text becomes longer or shorter, the text grows away from or toward this location, which
is important to note because it can ensure that your text stays in the map area when you change
it. As you look at the other map elements, make sure their anchor points will allow them to change
without running off the edge of the map page. It is also good to examine the text justification on the
Text tab to make sure that the anchor point matches the text justification. For example, if you use
the lower-left corner for the anchor point, make sure the text is left justified; or if you use the right
corner, make sure the text is right justified. The anchor point for text represents the location relative
to the unrotated text—lower left is relative to the text as it is read, not relative to its appearance on
the map.

The map layout has several other elements, some of which you will not change in your map creation.
However, each element needs to have a unique and recognizable name so that you can identify which
ones you will be changing and, just as importantly, which ones you will not be changing.

Your turn
Open the properties of each of the map elements, and give them the element name shown. Also, set the
anchor point and text justification to an appropriate setting.

City logo image: Oleander Logo

Text box at left of map: Map Description

Legend: Legend (Hint: check the anchor point for the legend.)

Map subtitle: Map Subtitle

City of Oleander: City Name

Date: Map Date

North arrow: North Arrow

Because all the elements in the map are assigned a name, you will have no trouble identifying each
one correctly in the script, which does not have your WYSIWYG instincts.

Begin to build the script to manipulate the map. For this tutorial, build and run the script in ArcMap
so that you can see the changes to the map as you go along. Create a new script, make it a script tool,
and then run and edit it in the Catalog window in ArcMap.

4. Write pseudo code for this script, including changing the map elements and layer symbology.

5. Start your IDE, and create a new Python script named ThreeWayMap.py. Without adding any
code, save and close the script.

Tutorial 3-1 Accessing map document elements 135

6. In the Catalog window, navigate to the Custom Python Tools toolbox in your MyExercises folder.
Right-click the toolbox and click Add > Script. Give the script a name, label, and description,
as shown:

7. Set the tool to point to the new script you created. There are no input parameters yet, so leave
that portion blank. Click Finish to create the script tool.

8. Right-click the script tool and click Edit.

Your IDE opens, and you can make changes to the Python code and have the script tool recognize
the changes as soon as you save them. Note: if your IDE of choice does not open, see appendix A for
instructions on how to set the default IDE for ArcGIS.

Because you are running this script in ArcMap, you do not need to import ArcPy or set any
environments. Everything you will do is associated with this map document, but there are certain
lines of code that you will use in all your mapping scripts that you can add to a template for
future use. These lines include commands to get the current map document, the data frame, and
a list of the layers in the data frame. For these commands, use the functions MapDocument(),
ListDataFrames(), and ListLayers(). Look up these functions in ArcGIS for Desktop Help to determine
their syntax and to see code samples.

136 Chapter 3 The ArcPy mapping module

9. Add the code to create a map document object named thisMap using the CURRENT keyword.
Then create a data frame list named myDF and a list of the layers it contains, and save these lists
to a list object named myLayers, as shown:

Note that this code is written specifically for a map document with one data frame. The inclusion
of the zero-numbered index value (index[0]), means that it will automatically define the data frame
object as the first data frame. The list of layers contains all the layers in the map document, with the
layer at the top being indexed at zero and increasing by one as you go down the table of contents.

Prompt the user for the names and descriptions that you want to use in the map. Ask for a map title,
a map subtitle, a current date, and a description for the text box.

10. Add four variables to your code that will accept the input from the user for map title, subtitle,
date, and description, as shown:

With this information on hand, you can begin to alter the text properties of the text type map
elements. Use the ListLayoutElements() function to create an indexed list object of all the map
elements. Research this function in ArcGIS for Desktop Help, and you’ll find that it can be restricted
to a certain element type, such as just the text or the graphic elements, and that it may include a
wildcard. The elements will be indexed in the list object, but there is no way to predict in what order,
so when you access them, use the names set earlier.

11. Add the code to create a list object named myElements of the text elements that start with the
word map, as shown. Note that the wildcard is not case sensitive.

The code is in place to update the text for each of the map elements. Once you identify each of
the elements by name, replace the element’s text with the user input. When the updates are made,
refresh the map using the RefreshActiveView() function to see the changes.

Tutorial 3-1 Accessing map document elements 137

12. Write the code to loop through each of the layout elements, and match the name with the new
text entered by the user, as shown. (Hint: use a for statement to scroll through the elements and
an if statement to find the element name and to decide which elements you want to modify.)

The script is ready to change the appropriate map elements, but the script tool is not. When you
created the tool, no user inputs were defined. Now that you have added those statements to the
script, you must modify the script tool to accept the input.

You want this adjustment to be as foolproof as possible so that the city planner will not encounter
any problems with the script. Because the output can be only one of three maps, you could give the
user a drop-down list to select the title. Then the subtitle and map description could be a block of
preset text, depending on the chosen map title. The only other information the user will need to
provide is the month and year to display on the map. Because this information represents the date
the data was last updated, you would not necessarily want to use today’s date, but rather let the user
supply it. All of this can be done with the tool validation code.

If the user selects the map to display Property Value when they run your script, set the following
text for subtitle and description:

Derived from Appraisal District files

The property values for Oleander are appraised and determined by the Tarrant County Appraisal
District. Monthly reports are used to update the parcel database to keep the data as current as
possible. Property shown with a value of $0.00 may be under protest, and the new value will be
available after the owner has had a public hearing to settle the matter.

If the user selects the map to display Land Use, set the following text for subtitle and description:

Current land use for all property

Land use is determined by city staff to fit into one of many categories. The initial land use is
determined by the occupant’s Certificate of Occupancy application and later verified in the field.
Any changes in land use are noted on an annual basis, which may trigger the occupant to obtain
a new Certificate of Occupancy or if necessary a Specific User Permit.

138 Chapter 3 The ArcPy mapping module

If the user selects the map to display Date of Construction, set the following text for subtitle and
description:

Historical construction data shown by decade

The records of construction for Oleander date back to the 1940s when Oleander was first
incorporated. Buildings constructed prior to that date are grouped into the “pre-1940s” category
since the city does not have verification of dates earlier than that. Vacant property and property
where no construction date is known are shown with no color shading. The purpose of this map
is to give an overview of the growth of Oleander over the years and not to determine a specific
building’s date of construction.

13. Save and close the script. Right-click the script tool, open the properties, and then click the
Parameters tab. On the first line, add a display name of Map Title with a data type of String.
Set the filter to Value List, and add the three map titles to the list, as shown:

Tutorial 3-1 Accessing map document elements 139

14. Enter the other three input display names as Subtitle, Date, and Description, in that order,
and each with a data type of String, as shown in the graphic. Click Apply. (Hint: the order is
determined by the order in which the script indexes the map elements.)

The tool validation code can be used to set any of the text values, but the user will be able to type
additional information if desired.

In the tool validation code, the updateParameters class is used to accept and monitor the inputs for
the script. Each value typed by the user is placed in the self object and indexed in the same order
as referenced in the script. For example, the first parameter is self.params[0], and the second is self.
params[1]. These objects have properties such as .enabled, which determines whether the input value
has been changed, and .value, which is where the entered text is stored. Your code will check to see if
the input for map title, chosen from the value list, has been changed. If a change is detected, use an
if statement to determine which title was selected, and then set the subtitle and map description to
the preset text.

140 Chapter 3 The ArcPy mapping module

15. Open the properties of the script tool, and click the Validation tab. Click Edit, add the code
necessary to determine whether the title has been changed, and set the other parameters
accordingly, as shown. Save the code edits, apply the changes, and close the Parameters window.

At this point, you have completed the code for the user interface and text element portions of the
application. Test what you have completed before moving on.

16. Double-click the Three Way Map script tool to run it. Try using different selections in the dialog
box, and note how the other fields change, as shown. Select one, add a month and year for the
date, and click OK. Notice the changes in the map.

Tutorial 3-1 Accessing map document elements 141

In the map template, three layers are symbolized for the output maps: Property Value, Land Use, and
Date of Construction. Once you determine which title has been chosen by the user, scroll through
the layers, and use the name and visible properties to turn the correct layers on (or off).

17. Add an if statement and a for statement to determine the selected title, and use that information
to determine which layers to make visible, as shown:

Note the addition of the RefreshActiveView() function. This function refreshes the map on your
screen and makes the changes visible. If you were working with a closed map document, you would
not need to include this function for the changes to be made on the map.

The last requirement is to output the map to a PDF document. This can be done using the
ExportToPdf() function and storing the output to a folder.

142 Chapter 3 The ArcPy mapping module

18. Add a line of code to export the current map document to a PDF document. Use the map title
concatenated to the date to create the output file name, and save it to your MyExercises folder,
as shown:

A little housekeeping is needed when working with arcpy.mapping. You should always delete the
map document object when you are finished to prevent the map document from being locked to
other users.

19. Add a line of code at the end of your script to delete the map document object thisMap, as
shown. Save and close your script.

Note that this does not delete the map document, but only the reference to it in your script.

20. Try running the Three Way Map script tool for different map titles, and note the results. Check
that the PDF document was created successfully.

With this script completed, these monthly exhibit maps will be created quickly and easily with little
user interaction. You may even turn this task over to the city planner because it will be virtually
impossible to create the wrong map.

Exercise 3-1

In ArcGIS for Desktop Help, research the tools used to set the properties of the layer objects
used in the Three Way Map script tool, and in particular look at the methodology of changing
the characteristics of the symbology scheme. The classification of a layer can be altered, but the
classification type cannot be changed.

The city planner has asked that the application be altered to allow him to select which year’s values
are used for the Property Value map. Add a value list to the input box that will ask which property
value field should be used if the map type selected is Property Value. If any other type of map is
selected, make this input inactive using the tool validation code. (Hint: this is done with the .enabled
property of the self.params[] object.)

Once the map type of Property Value is selected, and the user identifies which field to use, produce
the requested map. The other map titles will work the same as in tutorial 3-1.

Tutorial 3-1 Accessing map document elements 143

Tutorial 3-1 review

This tutorial uses two types of lists: one to get a list of the elements in the map document, and one
to get a list of the layers. As you have learned, both lists are controlled with indexes. Another list was
used to list the data frames in the current map document, but it returned only one value. Because
there was only one data frame listed, by default, it has an index number of zero, so code was added to
make the returned value a single data frame object rather than a data frame list. After this addition,
any references to the data frame do not need to include the index number. The following code gives
an example of each method of acquiring a layer object for processing and shows one way to make
your code more concise:

The basis of this tutorial is to turn layers on and off. As you learned, the layer property for visibility
is easily manipulated. There are many other properties you can change, including name and
transparency.

You also learned another use of the tool validation code. In this case, it is not checking to see if the
values the user entered were valid, but taking other actions based on the user’s input. As a data
integrity technique, the validation code can prevent a lot of misspellings and incorrect data entry.

Study questions
1. What changes could you make to the script for tutorial 3-1 so that you could run it

without opening a map document?

2. Where else might you have used the indexing technique to return a layer object rather
than a list object?

3. Where else might you use the data validation technique used in this tutorial?

144 Chapter 3 The ArcPy mapping module

Tutorial 3-2 Controlling the map extent

You have learned how to interact with the elements of a map document using the ArcPy mapping
module by changing the parameters of various items. There are many more characteristics of the map
document that you can interact with, which you will explore in this tutorial.

Learning objectives
• Accessing layers in the table of contents

• Altering the map extent

• Exporting a map to a PDF document

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “DataFrame (arcpy.mappping)”: getSelectedExtent()

• “DataFrame (arcpy.mappping)”: panToExtent()

Introduction

Many elements of the map can be stored as an object and manipulated using the Describe() and List()
functions. These elements include properties of the map document itself, such as the description,
title, and tags, and methods to create a thumbnail image or save the map document in the current
and earlier version formats. Access to these functions is through the map document object, which
you learned to create in tutorial 3-1, and which is created in every script that uses arcpy.mapping.

Manipulating these items is one thing, but the real power of the mapping module comes in being
able to manipulate the data within the map and in how the data is displayed in the data frame. You
can change the scale of the map or zoom and pan the map, and you can also add and control data
layers within the map. The mapping module lets you add data, change the symbology, select a scale
and spatial reference, and even change the map extent to match selected data layers. A good tutorial
included in ArcGIS for Desktop Help is the topic “Creating Data Driven Pages.” Data Driven Pages
basically works as a map book generator.

In this tutorial, you will develop an application that changes the page elements and exports the
results to a PDF document.

Scenario
The City of Oleander receives frequent requests from real estate agents for small exhibit maps of
properties they are showing. The agents typically e-mail the tax account number to identify the
subject tract. As an aid to creating these maps, design a tool that will create all the maps once
the parcel is selected. The agents will be able to choose a parcel map showing the property with
subdivision names and lot numbers, a water utility map, a sewer utility map, or a storm water utility
map. The utility maps will also show the building footprints and the addresses.

Tutorial 3-2 Controlling the map extent 145

Data
A template drawing has already been created, so your application will only need to accept input from the
user, select and pan to the target feature, turn on or off the appropriate layers, set the map titles, and export
the results to a PDF document. The Parcels layer has a field named EKEY that contains the tax account
number.

The template has six group layers that you will turn on or off to make the maps. The user will be able
to choose from four maps, and the group layers to show with each map are noted here:

• Parcel Map—turn on the groups Parcels Group and Base Group

• Storm Water Utility Map—turn on the groups Storm Water Utility Group, Physical Features Group,
and Base Group

• Water Utility Map—turn on the groups Water Utility Group, Physical Features Group, and Base
Group

• Sewer Utility Map—turn on the groups Sewer Utility Group, Physical Features Group, and Base
Group

SCRIPTING TECHNIQUES

In tutorial 3-1, you learned how to create a map document object, a data frame object,
and a layer list object. These objects are created in every script in which you want to
gain control of the map document and all of its associated elements and properties.

You also learned how to create a filter and a value list for input. Perform these tasks
again to present the user with a list of maps to choose from. Then determine which
maps were chosen, and use that information to configure the display and generate
the outputs.

Use the input from the user to find the subject tract in the Parcels layer. Previous
tutorials showed how to make a feature layer and use that layer to select features.
This is the required technique when you are running a script outside an ArcMap edit
session. When running a script in an ArcMap edit session, you access the layer from
the table of contents. The layer list object that you create will hold the Parcels layer,
and you can find and use that layer for the selection.

Once you make the selection, pan the map to the selected feature. To get the
extent of the selected feature, use arcpy.mapping to access the getSelectedExtent()
method. This extent can then be fed into a method of the data frame named
panToExtent(), which moves the map to the subject tract and maintains a scale of
1” = 100’. If you wanted to change the zoom and the display locations, you could
use the zoomToSelectedFeatures() method, which changes the scale property of
the data frame. In this tutorial, however, the scale is fixed.

146 Chapter 3 The ArcPy mapping module

Control the map extent

1. Start ArcMap, and open the map document Tutorial 3-2, which is shown in the graphic:

This map template will be used to create the exhibit maps for the real estate agents. First, however,
make sure the graphic elements in the map have appropriate names so that you can access and
control them.

2. Select each graphic element in the map layout, open its properties, and set an appropriate name,
as shown in the list. Also, change the location and anchor point of the title and subtitle elements
to accommodate whatever text is provided when the maps are created.

Data frame = Exhibit
Main title = Main Title
Subtitle = SubTitle
City logo = Logo
Title box = Title Box
Scale bar = Scale Bar
North arrow = North Arrow

It is important to give every element in the map a unique name so that names are not repeated and
values are not null.

Write your pseudo code, and design the steps of accepting user input and manipulating the map.
Sample pseudo code for this script is shown at the end of this tutorial.

Tutorial 3-2 Controlling the map extent 147

3. Create a new Python script, and name it RealtorExhibit.py. Add the standard code to import the
ArcPy module.

The first part of the script is to accept the user input. Because this is a script tool in a toolbox, use the
getParameterAsText() function for the input. Later, you will create the input box to accept a list of
the maps the real estate agent wants.

You will also accept the text for the main title and the subtitle and the tax account number of the
subject tract from the user.

4. Add the code to accept user input into a variable named mapList. Add the code to accept a main
title, a subtitle, and a tax account number, as shown. Save and close the script when you are finished.

Create the script tool, and set up the user input interface.

5. In your MyExercises folder, create a new toolbox named Tutorial 3-2. Start the process to add a
script, and give the script the name and description shown in the graphic. Click Next.

148 Chapter 3 The ArcPy mapping module

6. Navigate to and select the script RealtorExhibit.py, as shown in the graphic. Click Next.

The next screen will accept the setup for the inputs. Remember that these must go in order of the
index numbers you assigned in the script. The user will have the option to select any or all of the
preset map types, but you will need to build an input dialog box to accommodate this selection.
The technique is to make the input a data type of String with the MultiValue parameter set to Yes.
Then provide a value list in the filter dialog box. When the script runs, the user will be presented with
a set of check boxes, and each value that is checked will appear in the variable created. Note that
the selected values will be in a regular text variable, separated by semicolons, and will not have the
proper structure to be a list object.

7. On the first line, enter a display name of Select the map(s) to create, and set the data type to
String, as shown:

8. Set the MultiValue parameter to Yes, set the Filter parameter to Value List, and enter the list of
map names, as shown in the graphic. When these are entered, click Apply and then click OK.

Tutorial 3-2 Controlling the map extent 149

Your turn
Add the display name and data type to accept the other three variables in this script, as shown in the
graphic. Make the variables all strings, and transform them into other data types as necessary within the
script. When you have entered all the variables, click Finish to create the script tool.

9. Test the input interface by double-clicking the script tool. The following graphic gives you an idea
of what the users will see when they run the script. When you have finished your investigation,
click Cancel.

With the data entry part of the script working, you can focus on the feature selection tools. The
script will need to select the subject tract based on the number the user entered, in the same
manner as previous tutorials. Once the subject tract is selected, the extents of that feature can be
used to pan the tract to the center of the map.

150 Chapter 3 The ArcPy mapping module

To control the properties of the data frame, create a data frame object. This object will also be used
to list the layers within the data frame. As demonstrated in tutorial 3-1, with only one data frame,
you will not need to worry about indexing or using a for loop designed to iterate through multiple
data frames.

10. Add code to create a map document object, a data frame object, and a list object of all the layers
included in the table of contents, as shown:

Adding the index number at the end of the statement that creates the data frame list object means
that you are dealing with only the first data frame (index number 0), which is okay because there is
only one data frame. The result is that the myDF list object contains only one entry, and future use of
the object will not require an index number. If you are working with a map document that has more
than one data frame, you would not add [0] at the end of the creation statement, and the myDF
object would have multiple entries. You may be able to use the activeDataFrame property of the data
frame to place a single data frame in an object, but if you are unsure of the active data frame, you
may not get the expected results. Then you would use a for loop to go through the list to find the
particular data frame you wanted to work with.

With the layer list object created, you can go through that list with a for statement to find the layer
named Parcels.

11. Add the code to scroll through the layer list object to find the Parcels layer. Optionally,
you can add ArcPy messages to report back the progress while the script is running,
as shown:

Tutorial 3-2 Controlling the map extent 151

It is interesting to see what the layer list object includes because the ArcMap table of contents contains
both layers and group layers. Each group layer is shown by its name, and following good practice, all
these group layers end with the word group, and all layers are prefaced by the group name. Note in the
following graphic that the layer Lot Addresses appears in several groups. This naming convention is
important to remember if you want a particular layer that may be repeated in other groups.

Next, do the feature selection.

12. Add the code to select the feature using the tax account number and the field EKEY, as shown:

152 Chapter 3 The ArcPy mapping module

13. Save your Python script, and run the tool to test it. You can enter anything you like for the first
values, but for the tax account, enter the number 5561280.

You see the parcel selected on the screen, as shown in the graphic. If not, go back and troubleshoot
your code until this step works.

With the parcel selection operating successfully, the next step is to pan the map so that the selected
feature is in the center of the map. There is a special method for layers to get the extent of the
selected features and a variety of methods for data frames to pan or zoom to the selected feature’s
extent. Research these methods for the next step.

14. Add the code to pan the map to the selected features, as shown:

Note that the sample code includes an option to zoom the map instead of pan. If you want to try this
option, change the extent property of the data frame to make zooming automatic. For this example,
zooming in too closely to the parcel would not give a good overall impression of the utility systems,
so the scale is fixed at 1:1200.

Make the script set the title and subtitle based on the user input.

Tutorial 3-2 Controlling the map extent 153

Your turn
In tutorial 3-1, you learned how to access and change the text elements in a map document. Now add the
code to set the map title and subtitle to the user’s input. This code will involve making a list object of the
map’s elements and setting each object’s text value according to its name value, as shown:

The final step is to determine which boxes were checked in the user dialog box, turn layer groups on
and off accordingly, and export the map exhibits.

The input dialog box allowed the user to select check boxes to determine which maps to draw. The
choices were accepted by the script tool and sent to the variable mapList, which contains all the map
names that were selected, separated by semicolons, as shown:

To create the correct maps, you can interrogate this variable with an if statement, looking to see
if it contains each individual map type. For example, the commands to make the water utility
exhibit could be prefaced with an if statement to see if the words Water Utility Map were in
this string.

15. Add an if statement to determine whether the check box for Parcel Map was selected, as shown:

154 Chapter 3 The ArcPy mapping module

Your turn
Add if statements for each of the other map types to determine whether they were selected by the user,
as shown:

16. Run the tool, select all the boxes, enter sample text for the titles, and use tax account number
5561280. Optionally, run the tool with only a couple of the check boxes selected, and note the
results.

With the process of choosing the correct map working, add the code to turn on or off the
appropriate layers for each map. Refer to the description in the scenario for the correct layer
combinations.

The process is simple. Use the layer list object that you have already created, and make a group layer
visible or not visible by changing the visibility property. Remember to refresh the map and the table
of contents.

17. Add the code to set the visibility for all the layer groups in the case of the Parcel Map box being
selected, as shown:

Tutorial 3-2 Controlling the map extent 155

18. Add the line of code to export the map to a PDF document using the map type and the map title
in the name, as shown in the graphic. Save the script when completed.

19. Run the tool to test your progress. Select only the check box for Parcel Map. Enter a map title of
Oak Forest Addition, a subtitle of Block A, Lot 14, and use tax account number 5561302. When
the process is completed, open the PDF document in your MyExercises folder, and compare your
file to the graphic shown:

Your turn
Add the code to produce the other three map types. Control the visibility to turn the correct layer groups
on, and output the map to a PDF document. Reference the description in the tutorial’s scenario to see which
layers to make visible for each map type.

156 Chapter 3 The ArcPy mapping module

20. Save the script, and close your IDE. Test the script tool using the information shown:

With this application completed, the task of making exhibit maps for real estate agents is now quite
simple. It would be possible to allow the agents to fill out the form and create the maps themselves,
or even use this application to develop a web-based entry form from which anyone could create an
exhibit map and have it e-mailed back to them.

Here’s the sample pseudo code for this project:

Exercise 3-2

The city planner has seen the application for real estate agents and wants a similar application for
property owner notification maps. He would like to be able to enter a list of tax account numbers
(representing a single case) and have the application use these numbers to select the subject tracts.
The application can automatically buffer the tracts 200 feet. Then he would like the application to
zoom to that area and create a parcel map and a physical features map.

A sample map is provided, map document Exercise 3-2. The key differences in this application are as follows:

• The user will be able to enter more than one tax account number.

• The map will be zoomed rather than panned.

• There are two data frames in this map document.

Tutorial 3-2 Controlling the map extent 157

Name all the elements in the map document, and prepare it for being automated. Then write the
code, and create a script tool interface to accept account numbers and, optionally, a buffer distance
(some cases may require more than a 200-foot buffer).

When the tool is finished running, you should have two maps for each case.

The first is a parcel map with the following layers:

• Lot_Boundaries

• PlatIndex

• Blocks

• Lot Numbers

• ZoningDistricts

• Street Names

• The new buffer layer that you create

The second is a physical features map with the following layers:

• Lot_Boundaries

• Address Numbers

• Building Footprints

• Paved areas

• Creeks

• Bodies of Water

• Recreational Features

• Street Names

• The new buffer layer that you create

Here are some planning cases that you can use for testing:

Tutorial 3-2 review

This tutorial encompasses a variety of map manipulation techniques from tutorial 3-1 and many
programming techniques from other chapters. These new techniques include the manipulation of
the map’s view of the data. In this case, the map was panned to the selected features, but it could
also have been zoomed to the selected features and the scale adjusted.

The user input was also adapted to include as many data integrity techniques as possible. Presenting a
quality interface and limiting the choices of the user increases the chances of a successful run.

158 Chapter 3 The ArcPy mapping module

Another new technique is handling the output of printable maps. These maps were exported to
PDF documents, but other forms of presentation are available. It is important to make sure that the
output file names are unique, which allows the user to create several sets of maps in one session and
to know that the files are not being overwritten.

Study questions
1. What other data integrity techniques might be used to ensure that the tax ID number

entered by the user is valid?

2. Why would zooming to selected features be better in some circumstances than panning
to selected features?

3. Check ArcGIS for Desktop Help to determine the other types of map output formats.

Tutorial 3-3 Creating a map series

The techniques used for manipulating the map elements can be combined with geoprocessing tasks
to create a series of custom maps. Feature lists and selections can be used to control the extent of
the map.

Learning objectives
• Combining feature selection techniques and map element manipulations

• Cloning map elements

• Creating a map book

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “GraphicElement (arcpy.mapping)”: Clone

• “DataFrame (arcpy.mapping)”: zoomToSelectedFeatures()

• “ExportToPDF (arcpy.mapping)”

• “PDFDocument (arcpy.mapping)”

Introduction

In tutorials 3-1 and 3-2, you learned how to manipulate the elements in a map document and how
to control the properties of the layers in the table of contents. In this tutorial, you will combine
selections and geoprocessing tasks with these other techniques to create a series of maps.

Tutorial 3-3 Creating a map series 159

Making selections in a layer and iterating through the selected features is a common task. As each
feature is accessed, the extent of the feature, or for that matter a set of features, can be used to pan
or zoom the map. The panToExtent() method is used in tutorial 3-2 because the map was set to a
fixed scale, but by using the zoomToSelectedFeatures() method, the scale of the map is changed
to accommodate the selected features. One caveat is that the area covered by the selected set of
features may vary greatly, so the map document must be able to accommodate many scales.

Although, in general, you are only able to work with elements already in the map document, and you
can neither add nor delete elements, this limitation is not completely true because arcpy.mapping
has the ability to clone graphic elements in your map to create copies that you can manipulate.
Another common practice for using graphic elements is to include extra elements in the map
document that are moved off the virtual page. If you need more elements than were originally used
in the map document, make a list of all the elements in the map document, on or off the virtual
page, and find one of the extras. Then move the element’s location coordinates onto the virtual page.
Elements not on the virtual page do not appear in prints or exported files.

Scenario
The Oleander Public Works Department must submit a water quality report to the State of Texas
each year to maintain its ranking of “Superior Water Supply.” Part of the process for developing
the report is to take and test water samples at locations throughout the city. When the report is
submitted, the department wants to include a series of small exhibit maps showing the location of
each sampling station and a list of the property descriptions within 30 feet. It is supplying a point
feature class with the sampling station locations, and it wants one map for each location.

Use the template map document provided, and iterate through each sampling station. Then select
the properties within the specified distance, and generate the list of property descriptions. Make a
table at the bottom of the map using graphic lines and text.

Each map should be exported to a PDF document, and when they are all completed, the maps can be
combined to form a single map book.

Data
A map document is provided as a template, which includes the water utility system, the feature
class containing the sampling stations, and a feature class containing the property information. The
elements to use include the following:

• Water Utility—the data frame for the main map display.

• Title—the map title that you will change to reflect the station number.

• PropDesc—text that contains the property description of the selected properties. Clone this for
each additional property.

• LeftVert and RightVert—the lines bordering the property description. Clone these for each
additional property.

• TopHoriz and BotHoriz—the lines at the top and bottom of the property description. Clone the
bottom line for each additional property.

160 Chapter 3 The ArcPy mapping module

In the sampling station feature class, the field named Status shows which stations are operational.
Only these stations should be mapped. There is also a description that will appear on the map.

The layer Parcels has two fields to supply the legal description of the property: Prop_Des_1 and
Prop_Des_2. Combine these two fields into a single text element for each parcel, and display this text
on the exhibit map.

SCRIPTING TECHNIQUES

The new technique in this tutorial includes the functions to clone text and graphics.
At least one of the graphic elements you wish to clone must be present in the map
document. Then the item can be cloned using the clone method, and its location
and size can be adjusted using the element’s properties. It is a suggested practice to
add a suffix value to the cloned items. This value can be any string you like, but
_clone is customary. Each new feature gets this suffix along with a count value. For
example, _clone_1, _clone_2, and _clone_3.

After you are finished with the map exhibit, use the delete method to delete
the cloned items. These items will be easy to identify because of the suffix, so a
ListLayoutElements results object with a wildcard can easily find them all. Deleting
all the cloned elements resets the map for the next iteration.

Another technique is to establish a set of variables for each layout element. In the
previous tutorials, a list was created and searched each time an element needed
to be found and used, which can be resource intensive for a script that creates a
large number of maps. Instead, go through the list of elements once, and establish
variables for each element. Finding and modifying elements will be easier and faster
after the variables are established.

The last new technique shown here is working with PDF documents. Besides
exporting the map to a PDF document, you can use other methods with PDF
documents. Rather than send a large number of PDF documents to another user,
combine them into a single PDF document for added convenience. It is also a good
way to create a single map book that can be easily shared and printed.

To accomplish this task, export the individual map pages as normal. Then create a new,
empty PDF document to hold the final map book. Using a looping statement, append
all the individual pages to the map book file, creating the desired single output file. As
a matter of cleanup, delete the individual files so that only the map book remains.

Tutorial 3-3 Creating a map series 161

Create a map series

1. Start ArcMap, and open the map document Tutorial 3-3.

Take a moment to examine the names of the graphic elements as described in the data section at the
start of this tutorial. You can use this map as a reference, but this script is a stand-alone script and has
no user parameters. When it runs, the script creates a PDF document of each map and, at the end,
combines all the maps into a single PDF document.

2. Write the pseudo code for this script. Yours will be more detailed, but follow this basic outline:

• Iterate through the features in the SamplingStations layer, making sure to use only the
active station.

• Use the current sampling station to select all the property within 30 feet.
• Zoom the map document to show the currently selected features.
• Change the map title to reflect the sampling station.
• Build a chart of the property descriptions, and separate the values with lines.
• Create an exhibit map for each sampling station, and when completed, merge all the maps

into a single PDF document.

When you have your pseudo code ready, continue with the tutorial.

3. Start your IDE, and create a new script named SampleStationsMapBook.py in your MyExercises
folder.

4. Add the title information and author, and import the ArcPy module, as shown:

5. Create the reference to the map document with an object named thisMap, as shown in the
graphic. Note that the full path is given so that this script can be run as a stand-alone script.

162 Chapter 3 The ArcPy mapping module

6. Create a data frame object to reference the Water Utility data frame. This method shows a way
to find the correct data frame with a single index, even if it is not the first data frame (index[0]),
as shown:

7. Use the ListLayoutElements method to create a list object of all the graphic elements in the map.
Then use a for statement to loop through the elements to assign each element to a variable, as shown:

This technique performs the loop through the element list only once, saving time and code as the
elements are referenced throughout the script. Note the inclusion of print statements to track the
progress of the script.

8. Create a list object of the layers in the table of contents. Find the Parcels and SamplingStations
layers, and assign them to variables for future use. Create a feature layer of the sampling stations
with a wildcard to include only the operational stations, as shown:

Tutorial 3-3 Creating a map series 163

The feature layer of the sampling stations is used to access each station for the maps. Note that the
Parcels layer is not being put into a feature layer. Although you can do selections in a feature layer,
you cannot use them to manipulate the map extent or scale. Because feature layers exist in virtual
memory, their connections to the map document and data frame are removed. Changing the extent
or scale of a feature layer does not affect the map document. You may, however, get the extent of a
feature layer and use it to set the data frame extent, which would have the effect of zooming to the
feature layer.

9. Add the code to create a new folder in your MyExercises folder named WaterExhibitMaps to hold
the output PDF documents, as shown:

Each completed map document is exported to this folder as a PDF document. At the end of the
script, access this folder to combine all the files into one PDF document.

The script so far includes the code to set up all the data and workspaces for the geoprocessing and
map creation tasks to be done. Next, set up a cursor to step through the features in the sampling
stations feature layer. Feature selections and map document manipulations will be made for each
feature, producing an individual map for each station.

10. Set up a search cursor for the sampling stations feature layer. Include the field Desc with the
cursor to be used as the map title. Write a for statement to iterate through each feature, as shown:

The field Desc will be used to name each output map. The cursor object will contain a single attribute
value for each feature, which means that index number 0 will hold the value from that field. If more
fields were included in the cursor initialization, the fields would be accessed in the order in which
they were called in the cursor command, with index numbers starting at one.

11. Set a variable named featureDesc to contain the attribute value for the current feature, as shown:

The current feature in the cursor is referenced but not selected. To perform the selection
with the 30-foot buffer, select the currently referenced feature, which can be done using the
query “Desc” = ‘featureDesc.’ Selecting this single item makes it easy to select by location.

164 Chapter 3 The ArcPy mapping module

12. Add a select by attribute function to select the currently referenced feature. Use a select by
location function to select all the parcels within 30 feet, as shown:

With the parcel feature selected, you can alter the extent of the map to show the current sampling
station and the parcels around it. Accessing the extent property of the selected features and passing
this along to the data frame would be fine, but the zoomToSelectedFeatures() method accomplishes
this task with one line of code. Because the sampling station selection was done on a feature layer, it
will have no effect on the map extent. The parcel selection, which was done on the layer in the table
of contents, will control the zoom.

Once the zoom is completed, check the scale to make sure that it is not zooming in too closely.
A scale of 1:1800 should be the closest zoom, and if the scale factor is larger than that, it is a
good idea to increase the scale by about 10 percent. This change keeps the items at the edge
of the selected set from touching the map border. Note that the arcpy.RefreshActiveView or
arcpy.RefreshTOC functions are not necessary here. These functions refresh the screen and have
no effect on a stand-alone script.

13. Add the code to zoom to the selected features. Then test to see if the scale factor is below 1800.
If so, set the scale to 1800, and if the scale is larger, add a 10 percent margin to the scale, as
shown:

The map area is now set to show the desired features at an appropriate scale. The next phase
is to set the map title and to build a chart showing the descriptions of the selected parcels.
Refer back to the variable names assigned to the different graphic items, noted when you first
opened the map document, to get the names of the objects you will change. The graphic storing
the map title was set to the variable mapTitle, so to change its text, access the mapTitle.text
property.

Tutorial 3-3 Creating a map series 165

14. Set the map title to the current station description, stored in the featureDesc variable, as shown:

The chart consists of the property description and the three lines abutting the text. If you examine
the map document, you will see these graphic items below the virtual page. In this location, these
items will not appear on any printed or exported maps. Clone these items, and then move the clones
into place to represent each property that is selected. Earlier in the script, the elements were given
the variable names mapLeftVert, mapRightVert, and mapDesc. Each element has a property for the X
and Y page coordinates named elementPositionX and elementPositionY.

To create the chart, set up variables to hold the page coordinates for the first set of lines and the first
chart text derived from the first parcel. Clone the elements, and move them to these positions. For
each additional parcel, move the page coordinates down 0.25 inches, and place a new set of cloned
items in that position.

15. Set up variables to hold the coordinates for the first set of lines and text using the coordinate
values shown:

Many parcels may be selected for each map. To get all the proper descriptions into the charts, set
up a cursor to scroll through the selected properties. This parcel cursor is nested inside the sampling
station cursor. For each sampling station, the parcel cursor will return multiple parcels. When the
end of the parcel cursor is reached, the sampling station cursor will move to the next feature, and the
process will start again.

16. Set up a search cursor for the parcels. Have the cursor return the fields Prop_Des_1 and
Prop_Des_2, which will be used in the chart. Then set up the for statement to
step through the selected parcels, as shown:

166 Chapter 3 The ArcPy mapping module

The text element containing the property description can be cloned into an object named
textClone. The suffix _clone makes it easier to select and delete the cloned items before the
next map is created. Once the item is cloned, it is given the concatenated value of the two
property descriptions. Then it is moved into position using the coordinates shown in the
preceding graphic.

17. Add the code to clone the element PropDesc, set it to the concatenation of the two property
descriptions from the selected parcels, and move it into position, as shown:

18. Write the code to perform a clone operation on the three lines used to make the chart, and move
them into place, as shown:

The first line of the chart is finished. If there are more parcel descriptions to add, the parcelCursor
repeats, and another feature is selected. In order for this line in the chart to appear in the right
location, move everything down 0.25 inches, which involves subtracting that value from the y-values
of the lines and text. The x-values remain unchanged. This adjustment should be made before the
cursor repeats.

Once all the items in the cursor have been processed, delete the cursor object, which is
done by going back to the same indent level as the for statement and issuing the
del command.

Tutorial 3-3 Creating a map series 167

19. Add the code to reduce all the y-coordinates by 0.25 inches, and delete the cursor, as
shown:

When the parcel cursor is finished running, the map for the first sampling station will be complete.
Export the map to a PDF document before repeating the process for the next station.

20. Export the map to a PDF document into the folder you created in step 9, as shown:

In this example, the file resolution and image quality are reduced to save file space. You can research
the other settings in ArcGIS for Desktop Help.

When the map has been exported, remove all the cloned items from the map in preparation for the
next map. Because the clones all have the suffix _clone, they can be easily identified using a wildcard
with the ListLayoutElements() function. Use a for statement to iterate through the list and delete the
elements.

21. Create a list object with the cloned elements, and use a for statement to step through and delete
the elements, as shown:

This is the end of the sampling stations cursor. A complete map has been created, and the
map document has been reset for the next map. The cleanup at the end of the cursor’s process
is to delete the cursor and the map document you have been accessing. Note that these return
to the same indent level as the for statement you used to step through the sampling
stations cursor.

168 Chapter 3 The ArcPy mapping module

22. Add the code to close the cursor and the map document, as shown:

Take all the PDF documents created by this script and combine them into a single PDF document.
The “Getting Started with arcpy.mapping” tutorial in ArcGIS for Desktop Help has a section
demonstrating this process, and the code shown in the graphic for step 23 is derived from that
example.

23. Combine all the PDF documents in the WaterExhibitMaps folder into a single PDF document.
This process involves creating the file, setting the workspace, creating a list of all the PDF
documents in the destination folder, iterating through that list, and appending each file to the
final document, as shown:

Tutorial 3-3 Creating a map series 169

24. Save the SampleStationsMapBook.py script. Close the map document, and run the script. When
the script is finished, look in the destination folder for the output PDF document.

Here’s the pseudo code for this script:

This script is rather complex, but when it works correctly, you can automatically make
dozens of maps.

170 Chapter 3 The ArcPy mapping module

Exercise 3-3

Search ArcGIS for Desktop Help for the topic “Building map books with ArcGIS.” Work through these
examples, and research the ways the Data Driven Pages commands can be used in a Python script.

Tutorial 3-3 review

The mapping module in ArcPy is useful in creating map books, even if the page layouts are different
from one map to another. The use of a cloning technique allows you to place extra graphic elements
in a map layout and use these elements to build such things as charts, tables, and graphs. A graphic
item can be cloned and moved into position as many times as needed.

Another interesting technique demonstrated in this tutorial is the process of creating a list of graphic
elements and assigning the elements you wish to work with to a variable. This means that your cursor
has to iterate through the list of elements only once, which can save a lot of time if you are doing a
lot of work with elements.

You also learned the variety of tasks that can be performed involving PDF documents. Several map
pages, title sheets, or even indexed values, such as street names, can be placed into separate PDF
documents, and then these pages can be grouped into a single PDF document for easy printing and
sharing.

Study questions
1. Would it be possible to nest more than one cursor (iteration) within another? What are

the consequences of trying to do multiple iterations?

2. What other functions can be used to handle PDF documents in arcpy.mapping? Give
examples.

3. What other uses might you see for the cloning technique?

Chapter 4

Python toolboxes

Introduction

The scripts and script tools you have written so far can be powerful and useful, but they
are not easily portable or shared. Often, you need to either share multiple files or know
that the recipient is able to open and run Python scripts in an IDE. These options are
not user-friendly and would be prohibitive if you were sharing your custom tools with
hundreds of users.

Two new features were added in ArcGIS 10.1 to help you write better applications and
share them easily with others—Python toolboxes and Python add-ins. This chapter
covers Python toolboxes, showing you the benefits of this new feature and how to create
and share these toolboxes. Python add-ins are covered in chapter five.

Tutorial 4-1 Creating a Python toolbox

Python toolboxes were introduced in ArcGIS 10.1 with the express purpose of making your script tools
easier to program and to share.

Learning objectives
• Understanding Python toolbox components

• Creating and sharing toolboxes

• Defining multiple tools

172 Chapter 4 Python toolboxes

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “What is a Python toolbox?”

• “Comparing custom and Python toolboxes”

• “Creating a new Python toolbox”

• “Editing a Python toolbox”

Introduction

The Python toolbox has two main advantages over a custom toolbox when it comes to building your
own tools. The first advantage is that tools in Python toolboxes are easier to develop because all the
code is stored in a single file. A script tool requires a Python script (.py) file to store executable code
and a custom toolbox (.tbx) file to store the tool’s interface. The user must manually coordinate
the code with the toolbox properties for inputs, filters, value lists, and output. A Python toolbox
contains the Python code for all the tools and interfaces in a single Python toolbox (.pyt) file, making
the scripting simpler to write and share.

The Python toolbox code structure contains different classes. Each class handles a different
tool, so your toolbox can contain multiple tools. Within the classes are modules that contain
an aspect of the code that may deal with the start-up environment, the input and output
parameters, and the business logic for the tools. There are also separate modules to handle
validation messages and to check the license and extension availability when any of the tools
in the toolbox are used. With all these processes handled in a single file, these applications are
easier to code and troubleshoot.

The second advantage is portability. If you are sharing an application that is written as a standard
script tool, multiple files must be moved to transfer the application to another machine. If there are
issues in the code after the move, both files would need to be scrutinized to find the errors. However,
a Python toolbox application can be moved as a single file, and it presents a single set of code for
troubleshooting.

There is, however, a downside to the Python toolbox. It cannot contain regular script tools or
models—these remain the exclusive domain of custom toolboxes.

Scenario
The application you wrote in tutorial 2-4 is working fine, and you would like to share it with all
the members of the library. If you recall, this application took a previously selected site and
determined how far out you would have to go to find 200 registered library patrons. Sharing the
application will involve putting it on 15 to 25 different machines, so you want to make the tool as
portable as possible. To accomplish this task, take the code written for tutorial 2-4, and migrate it
to a Python toolbox.

Tutorial 4-1 Creating a Python toolbox 173

Data
A completed copy of the code is in text file Tutorial 4-1 in the Data folder. This code will access the
same data as tutorial 2-4.

SCRIPTING TECHNIQUES

The code for the Python toolbox is separated into several parts, each of which
controls a different aspect of the tools you add to the toolbox. The first part is the
Toolbox class. The code for the Toolbox class looks like this:

Import the ArcPy module.

The class Toolbox(object) contains information about the toolbox and the names
of all the tools the toolbox will contain. The class name Toolbox is protected and
should not be changed.

Within this class, define a toolbox label and a toolbox alias—the same things you
would set for a regular toolbox. Make a list of all the class names for the tools this
toolbox will contain. For instance, a toolbox for public works that had tool classes
named StreetArea, WorkNotify, and StormFlow would have the code shown:

174 Chapter 4 Python toolboxes

Note the list object self.tools that contains a list of all the tool class names within
the toolbox.

Your public works Python toolbox would display the tool labels for each class, such
as Storm Drain Flow Analysis, Street Area Calculation, and Work Notification, and
look like this:

For each tool listed, there is a class containing a set of code to define and control
it. The three main components of this class are the initialize (_init_) module, the
parameter module, and the code module.

The _init_ module allows you to set a tool label and description and control the
availability of background processing. The code for the StreetArea class in the public
works example looks like this:

Note that the class defines a label and a description that will be displayed in the
toolbox.

Each tool in a Python toolbox is placed either at the root level of the toolbox or into
a subcategory called a toolset and is always displayed in alphabetical order. Toolsets
can be used to help organize tools within a toolbox, making them easier for the user
to find. Toolsets are defined in the _init_ module of a tool’s class by setting the
self.category parameter, as shown in the following graphic. You can have as many
tools as you like in a toolset by adding the same category statement to the
tool’s _init_ module.

Tutorial 4-1 Creating a Python toolbox 175

In the following graphic, toolsets were created for Storm Water and Street Tools.
Each toolset can contain multiple tools. The tool Work Notification was left outside
of a toolset and appears at the root level of the main toolbox, as shown:

The next component of the tool’s class is the parameters module. In this module, all
the input and output parameters are set in much the same way as creating a script
tool. For each parameter, many properties can be set, including the input name and
label, data type, parameter type, and direction. A complete list of the parameter
properties and methods can be found in ArcGIS for Desktop Help by searching for
“Defining parameters in a Python toolbox” or “Defining parameter data types in a
Python toolbox.” As an example, the code to accept two parameters for the public
works tool would look like this:

Index numbers are used with the parameters the same as in a script tool, and you
can set many of the same properties. The list of valid input data types is basically
the same as that used for creating a script tool, but the keywords are different for

176 Chapter 4 Python toolboxes

Python toolboxes. In this example, the feature class data type is DEFeatureClass,
and the string data type is GPString. Refer to the ArcGIS for Desktop Help topic
“Defining parameter data types in a Python toolbox” for the complete list. The
getParameterInfo method returns a list object you define containing the tool’s
parameters, which can be referenced in the code section of the tool’s class.

When the tool runs, each parameter listed appears in the input dialog
box and allows user interaction, as shown, which basically replaces the
arcpy.GetParameterAsText() command used to get input from the user in
a script tool.

One of the most useful properties that can be set in the parameters module is a
filter. In the same way that you controlled the input in a script tool, a filter can be
set to control the input in a Python toolbox tool. A simple filter might be to set up
a value list. The code for setting a value list filter identifies the filter type and defines
the list of values. The code shown in the following graphic is setting the filter type
to ValueList and then creating a list object with the valid values. A comment in this
code lists all the valid filter types, which must be entered as shown:

Another interesting filter might be to set a field name selection that is dependent
on a selected feature class. For instance, the user would select a feature class in a
tool’s first parameter, and the second parameter would present a value list of field
names from that feature class. In the example code shown in the following graphic,
the first parameter has a data type set to feature class and a filter set to Polygon.

Tutorial 4-1 Creating a Python toolbox 177

This filter allows the selection of only polygon-type feature classes. The second
parameter has a data type of Field, a filter of Text, and a dependency set to the value
of the first parameter, which would allow only string fields from the selected feature
class to appear in the value list.

Many more filter settings are available for establishing data integrity rules. These settings
are found in the ArcGIS for Desktop Help topic “Defining parameters in a Python
toolbox.” The Help topic lists valid filter types, keywords for data types and field types,
and sample code for their use. Remember that the more that you use data integrity
rules to control data entry, the fewer errors users will have when using your tools.

The final component of a tool’s class is the source code, or execute, module. The execute
module contains the code that the tool will use to carry out whatever processes your
application requires. In the example shown in the following graphic, two parameters were
defined in the parameters module and were then brought into variables in the execute
module by referencing their index numbers. The variables can then be used in the code.

Notice that the name references for the parameters have changed. When these
parameters are defined in the getParameterInfo method, you might use param0
and param1. These parameters are then returned to the script as a list object named
parameters[], and they keep the same order and thus the same index numbers. Note
that the definition line of the execute module calls the parameters list object, so, for
example, param0 becomes parameters[0], and param1 becomes parameters[1].

178 Chapter 4 Python toolboxes

Each Python toolbox includes a class to define the characteristics of the toolbox
itself and a class for each tool it contains. Each tool class, at a minimum, has an _init_
module to define the tool and an execute module to contain the source code. It is also
common to have a parameters module to define input and output parameters for the
tool, if it has any. Other modules can be used to define validation rules and messages.

EDITING PYTHON TOOLBOXES
Most IDEs do not recognize a Python toolbox .pyt file as a script file, and therefore
do not perform code completion or syntax-checking functions. Refer to appendix A
for information on how to configure your particular IDE to handle .pyt files.

Also remember to set the Geoprocessing Options in ArcMap to whichever IDE you
wish to use. If no preference is set, your operating system may open a text editor
that is not suitable for editing Python code.

Create a Python toolbox

1. Open the map document Tutorial 4-1, and pin the Catalog window to the desktop interface.

Shown are the parcels for Oleander and the suggested bookmobile sites that the head librarian
suggested.

2. In a text browser, open the text file Tutorial 4-1 in the Data folder.

This text file, shown in the graphic, is a completed version of the script you created in tutorial 2-4 to
perform the library patron analysis.

Tutorial 4-1 Creating a Python toolbox 179

To create a Python toolbox application from this script, create a new Python toolbox, and configure
it to have the source code from the provided file. Creating the new toolbox is simple because it
requires only a name.

3. In the Catalog window, right-click your MyExercises folder and click New > Python Toolbox, as
shown. Name the toolbox Proximity Tools.pyt.

Next, edit the code for the Python toolbox. In a standard custom toolbox, right-click the script
tool and click Edit because you will be editing each script separately. In a Python toolbox, right-click
the toolbox and click Edit because all the code for all the tools this toolbox contains is in the
single .pyt file.

180 Chapter 4 Python toolboxes

4. Right-click Proximity Tools.pyt and click Edit. The code is displayed as shown:

Tutorial 4-1 Creating a Python toolbox 181

The default template that was created with the Python toolbox contains the classes and modules
you need for the tools. Configure the toolbox name, description, and the list of tools it will contain.
This configuration is done in the Toolbox class.

5. In the Toolbox class, set the label to Proximity Tools and the alias to prox. Then enter the tool
name PatronSelect in the self.tools list object, replacing the generic “tool,” as shown:

Now you can change the Tool class to accept the parameters for your library tool.

6. Change the name of class Tool(object) to include your new tool name, class PatronSelect(object).

7. As shown, in the _init_ module, set the label to Bookmobile Patron Selection and the description
to “The user selects a possible bookmobile location, and the distance is measured to see how far
the first 200 patrons will travel to visit it.”

There are no parameters for this tool because the input is a shapefile that the head librarian already
created. Move directly to adding the code to the execute module.

182 Chapter 4 Python toolboxes

8. Copy the code from the text file starting with the line “# Set up the environment” down to
“# Move to the next site and repeat.” Paste the code to the execute module right after the
comment “The source code of the tool.” Be careful to match the indent levels of the existing tool
with the new code. Confirm that the indent levels for the for, while, and if statements have been
maintained.

The code will work as written, except for the print statements. These are fine for stand-alone Python
scripts, but once you move into the ArcGIS environment, you must change these to an ArcPy
message command.

Tutorial 4-1 Creating a Python toolbox 183

9. Scroll through the code, and make these three replacements of the print command, as shown:

10. Save and close the script. Right-click MyExercises and click Refresh to update the code. Your
Python toolbox should now look like this:

11. Double-click the Bookmobile Patron Selection tool to run it. There are no input parameters, so
click OK at the prompt.

The tool should run exactly as it did as a stand-alone script and produce the patron counts
as expected.

Exercise 4-1

Open the map document Exercise 4-1. Edit the code file for the Proximity Tools toolbox. Turn
the stand-alone script you wrote for exercise 2-4 into a Python toolbox tool in the existing
toolbox. You will need to add the tool to the Toolbox class, then duplicate the PatronSelect tool
class, and modify the tool to create the Exercise 2-4 tool class. Be careful with the indentation
and variable types, and be sure to replace any Python-only commands, such as print, with ArcPy
commands.

Tutorial 4-1 review

The Python toolbox contains and runs code in exactly the same way as a Python script tool, but
the interface is much easier to set up. A single .pyt file will hold all the necessary parameters for all
the tools that will appear in the toolbox. These parameters can be controlled in exactly the same
way as a script tool, but because everything is in a single file, .pyt files are much easier to share
with others. A user can receive a .pyt file and place it in any folder. When the file is accessed in
the Catalog window, it will appear exactly like any other toolbox without any further action
from the user.

184 Chapter 4 Python toolboxes

Each tool that you add to the toolbox gets its own class, and each class contains separate functions.
The various functions create and manage the self object, which is used to store values associated
with the function. Within the class, these values can be passed freely from one function to another,
allowing one function to interact with or control other functions.

Study questions
1. What programs are able to edit a .pyt file?

2. Can tools be moved from the Python toolbox to custom toolbars? Try this maneuver, or
research its possibility in ArcGIS for Desktop Help.

3. What are some of the drawbacks of Python toolboxes?

Tutorial 4-2 Setting up value validation

One of the best things you can have your script do is to validate user input, which may keep users
from typing incorrect values that may cause your scripts to crash.

Learning objectives
• Accepting user input

• Setting up data validation

• Formatting Python toolbox messages

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “The Python toolbox template”

• “Defining a tool in a Python toolbox”

• “Accessing parameters within a Python toolbox”

• “Defining parameters in a Python toolbox”

Introduction

Turning a Python script tool into a Python toolbox can get a little more complicated when the
script contains user-defined parameters. To define parameters in the stand-alone script, you first
have to write the code to accept values into a variable, which involves the use of the command
arcpy.GetParameterAsText(), or for outputs, use arcpy.SetParameterAsText(). Then for each

Tutorial 4-2 Setting up value validation 185

defined parameter, you must define a list of properties when you create the script tool in a
toolbox. These properties can be altered but require the juggling of two files and coordinated
saves to make them work.

As described in the introduction to this chapter, the Python toolbox tools have all their parameters
defined within the Python script. Editing becomes faster and easier, and there are more options than
in a script tool. When moving code from a stand-alone script or script tool to the Python toolbox,
you should look through the code and find occurrences of the ArcPy parameter commands. These
commands will be moved into the parameters module of the Python toolbox code along with any
necessary filters or settings.

Scenario
In tutorial 2-5, you wrote an application to use the selected feature in the Fire Department’s box
zone map to summarize the buildings it contained. In tutorial 2-6, you made the tool interactive
by adding a user interface to accept the box number and the building types to summarize.
The input for building types had an associated value list to ensure that the user selected an
appropriate code, with a chart of the building type descriptions then displayed in the context
Help.

For this tutorial, take the code you developed for tutorial 2-6, and turn it into a Python toolbox tool.
You may also want to add validation code to ensure that the box number the user enters
is valid.

Data
A completed version of the code is in text file Tutorial 4-2 in the Data folder, so your task is to move
the code into the Python toolbox structure to make it more portable. The items to be selected are
the building footprints for all of Oleander, which are stored in the feature class BldgFootprints in
the Planimetrics folder in the City of Oleander geodatabase. The feature class has a field named
UseCode, which contains a code for each building type. The following list contains the codes for the
building types:

1 = Single Family
2 = Multi-Family
3 = Commercial
4 = Industrial
5 = City Property
6 = Storage Sheds
7 = Schools
8 = Church

The data being used for the selections is a set of polygon feature classes of box zones in the
FireBoxMaps feature dataset in the City of Oleander geodatabase. Looking at these feature classes,
you will see that there are a large number of these files, one for each box zone. Note also that the
numbers are not sequential. Some ranges are skipped, and some box zones appear in two files, which
will affect the valid list of choices when you build the data integrity rules.

186 Chapter 4 Python toolboxes

SCRIPTING TECHNIQUES

You learned in this chapter’s introduction how to build a value list for a parameter, and
in this tutorial, you will build a value list for the building type codes. Set that parameter’s
filter type property to Value List, and define a filter list object containing the choices.

You will also create custom Help for this tool. The user will need to know what the
building codes mean to be able to make appropriate choices.

Add some code to validate the box number entry. There are too many box numbers to
make a usable value list, but it would be a good data integrity practice to make sure the
number entered by the user is an actual box number. Verifying the box number is done
in a special validation area of the Python toolbox code—the updateParameters module
in each tool class. Commands in this area are called anytime an input parameter is
changed. The simple validation is to ensure the number entered for the box number is
within the allowable range. If the number is not within this range, an error message can
be generated, and the script can be held until a proper number is entered.

Set up value validation

1. Open the map document Tutorial 4-2 and text file Tutorial 4-2 in the Data folder. Examine the
script from tutorial 2-6, as shown:

Tutorial 4-2 Setting up value validation 187

2. Right-click your MyExercises folder, and create a new Python toolbox named
Fire Department.pyt. Open the toolbox for editing.

3. In the Toolbox class, set the label to Fire Department Tools and the alias to fdept. Then replace
the default value Tool with BoxBldgCount, as shown:

4. Change the name of the Tool class to class BoxBldgCount(object).

5. In the _init_ module of the BoxBldgCount class, change the label to Box Zone Building Count and
the description as shown:

Next set up the two input parameters. The first is simply a request for the user to enter a number
(integer). Look up the keyword for this data type in ArcGIS for Desktop Help.

6. Add the code to accept the box number from the user, and set up the other properties of the
input parameter to match the original application, as shown:

The numbers entered into this parameter must correspond to the box zone numbers. Without
this number validation, the user could enter a number that would cause an error in the script. The
validation code is written in the updateMessages module. The updateMessages module is used
to provide feedback to the user based on the values they enter as parameters and is displayed
to the user before they click OK to run the tool. There is an important distinction here. The
updateParameters module validates user input as it is typed, and the updateMessages module can
return feedback to the user based on the parameters entered.

188 Chapter 4 Python toolboxes

The valid box zone numbers are from 100 to 117, 200 to 210, 300 to 309, and 318 to 321. An if
statement can check the validity of the box numbers, and if the number is invalid, a script message
can be sent to the input dialog box.

The two most common script messages are setWarningMessage(), which displays a yellow triangle
icon on the input dialog box, and setErrorMessage(), which displays a red X on the input dialog box.
The error message will also stop the script from running until the error is resolved.

7. Scroll to the updateMessages module in the tool’s class. Add an if statement to validate that the
box number entered is within the acceptable range. Note that the range tool is not inclusive of
the second value. Also add a setErrorMessage() command to stop the script if the number fails
the validation, as shown:

Your turn
The last set of code validates the box maps in District 1. Using the ranges stated previously, add the code to
validate the other acceptable ranges and to provide an applicable error message, as shown:

The entry and validation of the first parameter is complete. Next, add and configure a value list
parameter for the building type. The entry portion of the parameter is basically the same
as the first parameter. Give the user a list of choices using the descriptions by setting the
filter type and the filter list. Then include code to set the return value based on the user’s choice.

Tutorial 4-2 Setting up value validation 189

8. Set up a second parameter (param1) with the display name Select a Building Type and the name
bldgType. The data type is a string, and the keyword for that data type is found in ArcGIS for
Desktop Help.

9. Now add a filter to the parameter to make it a value list with the text descriptions of the building
types, as shown:

10. After defining the two parameters, add them to the parameters list returned by the
getParameterInfo method, as shown:

11. Save and close the Python script. Right-click your MyExercises folder, click Refresh to ensure that the
Python toolbox loads the most recent code, and then double-click the Box Zone Building Count tool
to run it. Note the inputs and validations. Try several box numbers (press Tab after typing each one),
and examine the drop-down lists, as shown. When you are finished, click OK or Cancel. The script has
no code in the execute module, so nothing will happen, but you can see how the interface operates.

Now add all the executable code to run the application.

190 Chapter 4 Python toolboxes

12. Start editing the Python toolbox. Copy the code from the text file Tutorial 4-2 in the Data folder,
starting with the line “# Get input from the user” through to the end. Paste the code to the
execute module above the return statement, and correct the indent levels as necessary. Note the
code to accept user input, as shown:

The original script used arcpy.GetParameterAsText() to gain input from the user, but the Python
toolbox uses parameters from the getParameterInfo method. To add the correct input for the
executable code, change the arcpy.GetParameterAsText() code to parameters[] code, making sure to
keep the same index numbers.

13. Change the data acceptance code to use the parameters from the toolbox script,
as shown:

There is one other change to make. The original script dealt with the building types as integers, and
now they are being selected as strings. This problem is easily repaired by changing the values to
integers based on their text description. However, when you make this change, you must cast this
variable to a string before you can use it in any message.

Tutorial 4-2 Setting up value validation 191

14. In the executable code just above the line “# Make feature layers . . . ,” add a set of if-elif-else
statements to convert the building type description into an integer using the values from the list
provided in the data description at the start of this tutorial, as shown:

15. Save and close the script. Right-click your MyExercises folder, and click Refresh to update the
code. Double-click the Box Zone Building Count tool to run it. Get a count of storage sheds
in box 202, as shown:

Try this with other combinations of box numbers and building types. Afterward, inspect the
attribute tables for the input files, and note the addition of the fields and counts to the tables.

192 Chapter 4 Python toolboxes

Exercise 4-2

The Fire Department has been using the lane-miles tool that you wrote in exercise 2-5 and
wants to share it with other departments in the region. It would be easier to send around
a .pyt file than having to send a .tbx file, a .py script file, and instructions on setting up the files.
The fire chief has asked that you make a Python toolbox tool for the lane-miles calculations.

Review the code you wrote for exercise 2-5, and use that code as the basis for the new toolbox.
Add any input validation that you feel might be warranted. As a bonus, add the tool to the existing
toolbox, and put the toolbox in a toolset named Street Tools.

Tutorial 4-2 review

This tutorial includes the addition of input parameters for the tools. In the script tools, the user input
has to be configured separately when the script is added to the custom toolbox. The Python toolbox
contains a special method for getting user input. All the parameters that are set in the script tool
parameters are stored in the same file as the executable code.

Many of the same validation controls used in script tools are also available in the Python toolbox.
This tutorial includes a value validation for the box number and a value list filter to create a list of
choices for the building type. The validation code is added to a function in the tool class, and then
the behavior is added to the tool and activated when it runs.

Documentation can be added to the tools in a Python toolbox. Simply right-click the tool and click
Item Description > Edit. This opens a dialog box to build the same type of context-sensitive Help that
you can build with a script tool.

The convenience of the Python toolbox is that all the code is easily contained in a single file.
As a result, the toolbox and its custom tools are easier to share with others. However, if you
choose to make custom Help files for a Python toolbox, you will find that all the help is
written to separate XML files and would also need to be copied with the .pyt file when being
shared.

Study questions
1. What did you find to be the easiest and the most difficult things about building a Python

toolbox as compared to a script tool?

2. What changes had to be made to the code to move a tool from a custom toolbox to a
Python toolbox?

3. Search the Esri Support pages at support.esri.com for the script “Toolbox to Python
Toolbox Wrapper.” This script is designed to automatically convert a toolbox file to a
Python toolbox file. Test this script, and see what modifications need to be made to the
code for this script to work.

Tutorial 4-3 Setting up dependencies 193

Tutorial 4-3 Setting up dependencies

Python toolboxes allow the programmer to make decisions on input values based on other choices
the user may make. These types of dependencies make the tool user-friendly and can prevent errors
in data entry.

Learning objectives
• Setting Python toolbox parameters

• Using if-elif-else logic for input validation

• Designing a user input box

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Customizing tool behavior in a Python toolbox”

• “Writing messages in a Python toolbox”

Introduction

Another useful feature of the Python toolbox is the validation module updateParameters.
This module allows you to control the value of a parameter based on the selected input of
another parameter. The user can select a value, and the script will detect that the value has
been changed. The script will then run a set of validation code that can control the value of
other parameters based on the first parameter. For instance, you might have a user select a
workspace as the first parameter, and restrict the second parameter to showing only the files
in that workspace.

This type of validation code can also be used to restrict selections based on another input. Another
example would be to have the user select a feature class, and then restrict a second parameter to
present only the fields from within that feature class. Using any of these types of value validation will
add data integrity rules to your application, which will make the application easier to use and help
prevent data input errors.

Scenario
The map generator you made for the city planner in tutorial 3-1 is a perfect candidate for a
Python toolbox. The script tool prompted the planner to select a map title from a value list and
enter a date. Then the subtitle and map description were populated with prewritten text based
on his choice of map title using value validation code. That code was held in a separate area of
the script tool parameters, but in the Python toolbox it will be incorporated into the single
.pyt file using the updateParameters module. As before, examine the application, and move it to
a new Python toolbox.

194 Chapter 4 Python toolboxes

Data
A completed copy of the code is in text file Tutorial 4-3 in the Data folder, so your task is to move it
into the Python toolbox structure to make it more portable.

SCRIPTING TECHNIQUES

The updateParameters method runs each time the script detects that one of
the input values has been changed. One example may be to have a description
value populated automatically based on the selection of a building type. The
first parameter would define a value list of building types for the user to choose
from. The value list would help prevent typing mistakes or the entry of a building
type that does not exist. The second parameter is simply a text field to hold the
description of that building type, as shown:

In the updateParameters module, add code to determine what building type was
chosen, and set the description to a preset value. In this example, an if statement
is used to check all the possible values. Notice that the parameter reference is now
parameters[0] instead of param0 because the values have been passed from one
module to another. The square brackets are used to contain the index number of
a value in the parameters object. Note also that there is an inclusion of a null or
empty (“”) value in the else statement, as shown in the graphic. This empty value
will be used to set the value of the parameter to null when the script is initialized.

Tutorial 4-3 Setting up dependencies 195

When the tool runs, the user sees the dialog box on the left. When the selection of a
building type is made, the validation code automatically runs, detects the choice,
and fills in the description as shown on the right:

You may also want to control the choices of a value based on the first value. In this
second example, the user is asked in the first parameter to select a feature class.
Then a list of fields is presented in the second parameter based on the chosen
feature class. The first parameter is set up like normal, as shown:

196 Chapter 4 Python toolboxes

The second parameter includes the parameterDependencies property, which sets
the choices based on the first parameter. Note that this is a property of the second
parameter, but it references the first parameter as the dependency, as shown:

This property can be set either in the getParameterInfo method or the
updateParameters method, but remember that if you use the updateParameters
method, you must use the global parameters[] list object.

The input dialog box lets the user navigate to a feature class, and then the second
parameter is populated with a list of field names dependent on the selected
feature class. This example shows the user selecting a feature class as the first input
parameter. A list of field names is then retrieved from the feature class and displayed
as a value list for the second input parameter. The list of fields is dependent on the
choice of feature class, as shown:

Notice that the parameterDependencies property references only the name property
of the first parameter, so how does it know what values to use in the dependency? The
parameterDependencies property checks the data type of the parameter. The first
parameter has a data type of feature class, and the second parameter has a data type
of field. By having a dependency set, the second parameter gets a list of fields from the

Tutorial 4-3 Setting up dependencies 197

feature class selected in the first parameter. For example, if the first parameter asked
for a file name, the dependency would be a list of files.

Controlling user input through lists of valid choices builds strong data integrity rules
that will make your tools more user-friendly.

Set up dependencies

1. Open the map document Tutorial 4-3.

A map of Oleander is displayed with three layers symbolized to show property values, land use,
and the year of construction. As in tutorial 3-1, you will write a Python toolbox tool that will open
a dialog box and allow the user to select a map type and enter a title and date. Then the other text
items will be populated and the correct layer turned on to create the requested map.

2. Open the text file Tutorial 4-3 from the Data folder.

This file contains the code from tutorial 3-1, and in a special section at the bottom, you will find the
validation code. This code was in a separate file in the script tool, and it controls some of the text
entry.

3. In your MyExercises folder, create a new Python toolbox named Planning Maps.pyt, and open the
toolbox for editing.

4. In the Toolbox class, change the label to Planning Tools and the alias to pltools. This toolbox will
have only one tool. Name it makeMaps, as shown:

Now set up the tool’s properties.

5. Change the Tool class to makeMaps, set the label to Make Planning Maps, and type an
appropriate description, as shown:

198 Chapter 4 Python toolboxes

Next define the input parameters. Review the code from the script tool, and note that there are four
inputs: map title, subtitle, date, and description, as shown:

6. Add the code to create four input parameters with the same name and index numbers as the
original script. Set the map title as a value list with the choices of Property Value, Land Use, or
Year of Construction. Work on writing this code yourself first, and then check it against
the code block, as shown:

Tutorial 4-3 Setting up dependencies 199

7. Save and close the script. Right-click your MyExercises folder, and click Refresh to update the
code. Double-click the script tool Make Planning Maps to run it. If constructed correctly, your
input dialog should look like the graphic, with a list of choices for the map type.

The inputs for subtitle and description come from prewritten text in the original script tool’s
parameters. The code to perform this task is in the updateParameters method of the tool’s class.
Remember that the updateMessages method validates an entry and stops the script if the entry is
not valid, and the updateParameters method controls the value of parameters based on the values of
other parameters.

8. Edit the Planning Maps toolbox. Copy the validation code at the bottom of the text file
Tutorial 4-3, and paste the code to the updateParameters code block. Be careful to set the indent
levels correctly, as shown:

Note that this code begins with an if statement and uses the .altered property to determine whether
the user made a selection from the value list. Normally, this code would be run on initialization,
but the .altered property means that the code will run only when the map title parameter has been
altered (and not on initialization).

200 Chapter 4 Python toolboxes

The final step is to paste the executable code. Make sure to read through the code and make any
necessary changes as discussed before, such as altering the commands to accept user input.

9. Copy and paste the executable code from the text file Tutorial 4-3 to the appropriate section of
the .pyt file. Try to determine what code to copy and what changes to make to object names and
indentations on your own before checking your code against the code shown:

Tutorial 4-3 Setting up dependencies 201

10. Save and close the .pyt file. Right-click MyExercises, and click Refresh to update the code. Run the
Make Planning Maps tool, and verify that the tool is making the maps requested.

Exercise 4-3

For this exercise, create a new Python toolbox without the benefit of existing code. The tool will be
used to select a workspace and then get the spatial reference of a feature class in that workspace. You
should make two input parameters: the first to find a workspace, and the second to make a value list
based on the feature classes in that workspace.

Write the pseudo code necessary for the application, and sketch out how the input interface will
work. Then build and debug the application. As a bonus, allow multiple feature classes to be selected
once the workspace is identified.

202 Chapter 4 Python toolboxes

Tutorial 4-3 review

Much like the value validation code from a script tool, the Python toolbox allows the user’s input
to control other input values, which is done with a dependency property. Note that the parameter
using a dependency will match the data type of the parameter it references.

The other important technique in this tutorial is the sharing of parameter values across methods
in the Python code. As long as the methods are in the same class, values will be passed from one
method to the other. In this tutorial, each method in a class brings in the self object, and several of
the methods also bring in parameter values. By bringing in the self object and parameter values, you
can accept or manipulate values in one function, and have those values available for use in other
functions as well.

Study questions
1. Show an example in the code where a value is passed from one function to another.

2. Explain the difference between the updateParameters method and the updateMessages
method.

3. Research the isLicensed method, and describe its purpose.

Chapter 5

Python add-ins

Introduction
You can modify your user experience with ArcGIS in many ways, including with the use of ModelBuilder,
script tools, and Python toolboxes. You can use any of these applications to create custom tools that can
reside on custom menus to make the software easier to run and your data easier to manage. One of
the newest ways to create custom applications is with a Python add-in, which is a program that you
design, write, and compile yourself. Add-ins allow fully customized menus to be developed, which can
contain a variety of tools including ArcGIS system tools. The compiled add-in file can then be easily
distributed to other users.

Python add-ins are a bit of work to create, so it is important to know when they are necessary. These
add-ins have two main functions that distinguish them from other methods of customization. First,
Python add-ins allow you to build tools to interact with the map display directly. Examples of this
include having the user select features, draw boxes for zooming, or click a location on the map. In
addition to the tools interacting with the map, the add-ins can also interact with each other. One tool
can pass values to another tool or even keep another tool disabled until a valid input is made.

The other important function of Python add-ins is the capacity for having the application react to
other events. Examples of this function include having the map document automatically save changes
when you stop editing, zooming the map to the full extent of a new layer that is added, or automatically
closing the Catalog window when a map is printed.

Once your add-ins are built, they are easy to share with others. A single file with an .esriaddin extension
contains everything necessary for your application. When you combine it with a map package, it is easy
to share the application and data using only two files.

Add-ins for ArcGIS are readily available in other programming languages, such as .NET, XML, and
Java. These add-ins were made available in ArcGIS 10.1 for use in ArcMap, ArcScene, ArcGlobe, and
ArcCatalog using Python as the development tool, which is the focus of the tutorials in this chapter.

204 Chapter 5 Python add-ins

Special introduction: Python add-ins

Many components are available for use in the Python add-ins arena, and this special introduction
presents these components and describes how they are implemented. With this knowledge, you will
be able to better design your applications.

The first step in creating an add-in is to create the framework using the addin_assistant wizard. This
wizard can be downloaded from the Esri Support pages at support.esri.com, and a copy is provided
in this book’s data in the GISTPython\Python Add-Ins folder. Unzipping the file creates a bin folder
that contains the executable file for the wizard, addin_assistant.exe. It is advisable to make a desktop
shortcut for this file because it will be used repeatedly during your application development.

Running the addin_assistant.exe file will produce the management screen, or wizard, for your project.
Pointing this wizard to an empty folder will create a new add-in, and pointing it to an existing folder
that contains an add-in will let you modify that add-in. As an example, a new folder is created to
contain an add-in named Water Analysis, as shown:

Special introduction: Python add-ins 205

The name of this folder will be displayed as the working folder. Select the ArcGIS module this project
will work with. The Select Product drop-down box provides the available choices. This example will
be used in ArcMap, as shown:

A name and version number are required. The name is what will appear as the toolbar name in
your application. The version is used to track the development of the application. For this example,
the name is Water Analysis Tools, and the version is 1.0. Be careful not to provide too long a name
because it may not fit the width of your toolbar. The values for company, description, and author are
optional and do not affect the running of the application. You can also select a custom image for the
project if you like, which is shown in the add-in manager, as shown:

To create the framework in the new folder, click Save. This folder contains several files and some new
folders. The new Images folder contains all the icons you assign for use in your application. These are
then transmitted with the final .esriaddin file so that other users get the specified look and feel of the
add-in. The Install folder holds the Python code for your application, and is where you will go to write
your code. The files in the Install folder are created by the add-in manager and should only be edited
with extreme caution. As shown in the graphic, the config.xml file is for internal use by the add-in
application and controls such things as the order of tools in the toolbox. By default, tools are shown
in the order in which you create them, but with cautious editing of the config.xml file, you could
rearrange them. The README text file is a generic description of the files associated with the add-in.
The makeaddin.py file is the script that actually creates the .esriaddin file for you.

206 Chapter 5 Python add-ins

The second tab on the add-in wizard is for the Add-In Contents dialog box. This is where you define the
toolbars, menus, and extensions for your project, which in turn create the empty template for these items
in a Python script file. For this example, one of each type of content (a toolbar, a menu, and an extension)
is added to the Python add-in toolbar. It is important to design the toolbar first because each type of
content is added to the add-in script file in the order it was created and will be difficult to move later. As
an example, the sketch shown in the graphic was drawn to help design an add-in toolbar containing each
of the elements available to you. This design will also be used for the other examples in this introduction.

The add-in project begins with creating a toolbar because the toolbar is where all the other
components will reside. To create a toolbar, right-click Toolbars in the Python Add-In Wizard dialog
box and click New Toolbar. There are just a couple of items to define. The first item is the toolbar’s
caption, which is what will be displayed along the top of the toolbar. The second item identifies
this toolbar uniquely within your Python code. The part of the ID to the right of the period is user
definable. If you wanted to programmatically call this toolbar, this ID is what you would use. Select the
Show Initially check box to make this toolbox visible automatically when the add-in is loaded, as shown:

With the toolbar created, the other features can be added to it. For this example, the next thing to
add is a button. A button is one of the most straightforward items to add because it basically runs
a set of code when the button is pressed. To create a button, right-click the toolbar and click New
Button. The selections for other toolbar components are also shown:

A button, like the other items that go on a toolbar, has many parameters to set and many properties
associated with these parameters. The first three parameters are required: the caption, the class
name, and the button ID. The caption is the text used for the button’s title in the toolbar (if the text is
displayed). The caption can contain spaces but should be kept short so that it does not take up too much
room on the toolbar. The class name is used to create the section of code, or class, that is accessed when
you click the button. This class holds the executable code for whatever task the button performs. The
names typically use the up-style naming convention, in which the first letter of each word is capitalized.
The class name should describe the tool’s processes to help distinguish its use for the programmer. The
button ID, like the toolbar ID, is used to identify this tool within the code of your script.

After these required parameters are the Help items. The first pair are the tooltip and message. The
tooltip is a set of words or a phrase that will appear when the mouse is paused over the button, and
the message is a longer description of the tool’s action that appears beneath the tooltip in a smaller
font. The next pair are the Help heading and Help content, which appear when the user opens the
context-sensitive Help. The Help heading and Help content typically contain the same wording as the
tooltip and message unless more information is required beyond these brief descriptions.

You have the option to provide an icon for the button if desired. If an icon is selected, it will be shown
in the regular icon size of 16 x 16 pixels to fit the toolbar. The icon will be copied to the images folder
within the add-in’s folder and included in the compiled add-in file. If an icon is not specified, the
button will display the caption text. For this example, the icon is not specified, as shown:

To add the class for the new button to the add-in Python script in the Install folder, click Save. This
code contains controls for the button and the executable code for the button’s process, as shown:

Special introduction: Python add-ins 207

208 Chapter 5 Python add-ins

Note that the class name defined at the button’s creation is used for the class name within the code.
Although the button ID is not used explicitly in the code, the ID is shown for reference in the purple
text in the code in the previous graphic and noted as a button. Remember that only the part of the
button ID to the right of the period is necessary to identify the button.

Each class created for a toolbar item returns the object “self." You can use the self object to access the
properties that can be set and controlled within this class and the functions that the add-in toolbar
will run. Some of the properties and functions of the self object are listed here:

The _init_ function runs when the toolbar is first initialized and can set the properties of the self
object. Setting the enabled property to False causes the button to be disabled. The property checked
controls the visual appearance of the button either as raised (False) or depressed (True). To control
these properties outside this class, reference them as savetable.enabled or savetable.checked, using
the button ID.

As an example, if you wanted a button to remain disabled until a second button is pressed, set the
enable property of the first button to False and add the enable property to the second button,
making sure to reference the first button by its button ID. In this example, the second to last line
of code for the second button sets the enable property for the first button to True using the code
“<button ID>.enabled = True,” as shown:

The second function in the button is the onClick action of clicking the button. The onClick function
contains code to be executed when the button is pressed.

The project’s design diagram shows that the next item to add is a tool. Tools differ
from buttons in that they require interaction with the map area when activated. Adding
a tool is accomplished by returning to the Python Add-In Wizard, right-clicking the toolbar,
and clicking New Tool. The properties for a tool are the same as those for a button,
as shown:

A new class is added to the add-in’s script file. The new class includes several functions and allows the
control of many properties. The _init_ function and the new class that was created are shown here:

Special introduction: Python add-ins 209

210 Chapter 5 Python add-ins

The self object has an enable property, which you are already
familiar with, and shape and cursor properties. The cursor
property sets the icon used for the cursor, examples of which
are shown in the graphic, and the shape property determines
the geometric shape that will be used to interact with the map
(line, circle, or rectangle). When set to None, the interaction
is to create a point at a single click rather than to draw a
geometry.

This example shows the self object set to have a crosshair cursor, symbol 3 in top graphic, and allows
the user to draw a line on the map.

The code shown in the following graphic also includes the handlers onCircle, onLine, and
onRectangle. These handlers allow the user to draw a geometric shape on the map and return
a geometric object when the task is completed. For instance, when the shape property is set
to rectangle, and the user draws a rectangle on the map, an extent object is returned. Likewise,
a circle returns a polygon object, and a line returns a polyline object. These objects then
have their own properties, which can be accessed to determine their coordinates and other
information, and can be used as a layer feature in selections.

A variety of other handlers also report mouse clicks. The more commonly used mouse handlers
are onMouseDown for pressing and holding the mouse button down, onMouseUp for releasing or
letting the mouse button up, and onDblClick for double-clicking the mouse button. The mouse
handlers are all shown here:

Each handler has a function that contains code to be run when the handler is called. The self object
refers to the properties of the handler, and the x- and y-values return the coordinates of the mouse
position when the function is called. Note that the functions that include Map in their name return
x- and y-values in map coordinates, whereas the other functions return x- and y-values in page
coordinates.

The value for the shift property indicates which mouse button was used. The following chart
gives the shift values for each mouse button. For example, if the user right-clicks on the map, the
onMouseDown function returns a shift value of 2.

There are also handlers for keystrokes on the keyboard, as shown:

Special introduction: Python add-ins 211

212 Chapter 5 Python add-ins

The keycode is the ASCII code for whatever key on the keyboard is pressed, and the shift code
identifies which of the Ctrl, Alt, or Shift keys were pressed simultaneously with the keystroke. The
following chart shows the shift values that may be returned with one of the keystroke handlers:

Note also that there is a handler named deactivate. This is used to set the active tool or to see which
tool is currently active. This handler can be set in code or changed when the user clicks a tool and
might be used to automatically set the active tool after another action is completed. For instance,
you may have the user type a map title, which then immediately activates a tool that allows the user
to select features on the map.

Programming actions for the keys is as simple as adding executable code within each function. It is
also recommended that you remove all the handlers that you do not intend to use from the Python
script. Otherwise, all these handlers will be monitoring the user's actions continuously and activating
when one of the events occurs, thus taking control of the program’s process and passing it back
without running any code.

With these various combinations, you can program and control events based on an almost limitless
number of mouse and key actions. It is advisable, however, not to implement too many of them
because it can make learning and running your application difficult.

The example design diagram at the beginning of this introduction shows that the next item to add
to the Python Add-In toolbar is a combo box. Combo boxes can be used for both single typed-text
entries and drop-down lists from which the user can choose a value. The creation of these elements
follows the usual pattern of right-clicking the toolbar and clicking New Combo Box. As shown in the
graphic, the parameters are clarified with the addition of hint text. Hint text is text that appears in
the combo box when its enabled property is set to False.

A class is added to the add-in script that contains the settings provided in addition to many
properties of the self object. These parameters, included in the _init_ function, run when the combo
box is first activated, as shown:

The items property controls what is displayed in the combo box. In the default template, the
items property is shown as a list object, and whatever is typed in the list object is displayed in a
drop-down box. This property could also be set to another list item that could be derived through
another means. For example, you could use the ListLayers tool from the arcpy.mapping module
to find all the layers in the table of contents, and then set the self.items property equal to that
list item. The drop-down box would display all the layers in the table of contents. Note that if the
items property is used in the _init_ function, it is set only once. If you are making a dynamic list
from a dependency as you did in tutorial 4-3, you should make the list using the onFocus function,
which is described later in this introduction.

The editable property determines whether the user is allowed to type their own value or whether
the user is limited to only the provided selection. If set to True, any value could be typed, even if that
value does not appear in the items list. To make the combo box function a text entry box, set the
enabled property to True and make the items list empty.

The enabled property is a familiar one and controls the active status of the combo box.

You can also define the width of the entry and drop-down parts of the combo box. Any letter can be
used as a placeholder to designate how many characters wide either part should be. In the example,
the letter W is used because it is the widest letter of the alphabet.

Special introduction: Python add-ins 213

214 Chapter 5 Python add-ins

The other functions in the combo box class, shown in the graphic, handle the interaction with the
user when a value is entered.

A combo box can be used in three ways: as a drop-down list selection, a drop-down list selection
with an optional typed value, or a box in which a value can be typed. When used as a drop-down
list with the editable property set to False, only the onSelChange function will work. This function
returns the variable selection, which identifies which item on the list the user has selected. It can be
stored in the self.selectedlayer property to be used globally, as shown:

If the combo box is used as a drop-down list selection with an optional typed value, the editable
property of the combo box is set to True in the _init_ function. Users could select from the list
or type their own value. To code this, you need more functions than onSelChange. The onFocus
function runs when the user first clicks in the combo box. The onSelChange function runs
when the user picks a value from the drop-down list. The selected value is stored in the variable
selection.

If the user begins to type in the combo box, the onEditChange function runs and is followed by the
onEnter function when the user clicks Enter. Note that if a value is typed, it is returned as the variable
self.text in the onEditChange function or as self.value in the onEnter function. As an example, you
may want to have the user select the name of an inspection officer for a report. The user can pick
from the list of known inspectors or type the name of a new inspector who is filing the report. If the
inspector's name is chosen from the list, the value will appear in self.selection, but if it is typed and
not on the list, the value will appear as self.value. This selection method can be tricky to manage, so
care must be taken to allow both types of input.

If the combo box is used as a box to type a value—that is, if the editable property is set to True
and no value list is set in the items property—the user will only have the option to type a value.
The onEditChange function runs when the user begins to type in the combo box, and the onEnter
function stores the entered value when the user clicks Enter.

It is interesting to note that onEditChange stores the value letter by letter as it is being entered and
uses a variable named text. You must actively store the value in the self.value property. However, the
onEnter function stores the value only when Enter is pressed and stores it directly in the property
self.value. The code looks like this:

If you watched the user’s text entry in the Python window, you would see the onEditChange function
storing the value incrementally versus the onEnter function storing the value in its entirety when
Enter is pressed, as shown:

The next item to create on the sample toolbar is a menu item. A menu resides on a toolbar and holds
new buttons or additional menus. Like other items, when menus are created they require a caption
and an ID, as shown:

Special introduction: Python add-ins 215

216 Chapter 5 Python add-ins

The menu design screen includes two check boxes—Has Separator and Is Shortcut Menu—for
characteristics that occur with menus. These check boxes are actually inactive because the behavior
of the menus is controlled automatically. Every menu that appears on the main toolbar is a regular
menu, requiring that you click it to display the menu choices. Then by default, every submenu is a
shortcut menu, meaning that merely pausing the mouse over the main menu displays the submenu
choices. Also by default, submenus do not get separators, which are vertical bar icons used to group
menu items. A typical menu/submenu setup looks like this:

The final item to add to the sample toolbar you have been studying is a tool palette, as shown in the
graphic. The palette is a special item used to hold multiple tools, but it only requires one icon on
the toolbar. When clicked, the tool palette opens a drop-down menu displaying the tools you have
included. After a tool is selected, the menu is compressed back to a single icon representing the
selected, or active, tool.

The tool palette is given the standard caption and ID, but there are two other properties to set. By
default, the tools are displayed as icons only, as shown in the following graphic, and you have the
option to select how many columns of icons are shown. The palette normally uses two columns, but
you may select more.

Optionally, you can set the tools to be displayed in “menu style,” meaning that a single row will be
presented with both the tool icon and the tool caption displayed, as shown:

Notice that with the menu style choice, the column setting is ignored. For whichever style is chosen,
however, only the selected tool remains visible on the toolbar itself.

This concludes the creation of the toolbar, and it comes close to matching the original design
sketched at the beginning. As you get more practice with these toolbars and understand how each
component works, you’ll be able to design your toolbar’s look and feel with more precision.

You may also notice that you can create extensions and menus from the Add-Ins tab on the wizard.
The menus you create with the wizard can be dropped on any toolbar, not just on the custom
toolbars you create. With the exception of this behavior, these add-in menus act just like any other
menu, allowing you to build new buttons and submenus on them. When these menus are shared,
other users can add them to any of their existing toolbars.

The extension created with the Python Add-In Wizard monitors the actions the user makes and
responds to those actions, which may be to trigger an event when a new layer is added to a map
document or when a specific toolbar is activated. Creating an extension is similar to other add-in
items, allowing the user to set a name, class name, ID, and description, as shown:

Extensions constantly monitor the user’s actions, and the list in the graphic on the following page
lists some of the things that an extension can react to. Some of the more common actions monitored
by an extension include opening or closing a map document, starting or stopping an edit session, and
adding or deleting map layers.

Special introduction: Python add-ins 217

218 Chapter 5 Python add-ins

The extensions you create will appear on the ArcMap Customize > Extensions menu and can be
turned on or off, much like the extensions you may be more familiar with, such as the ArcGIS
Network Analyst and ArcGIS Spatial Analyst extensions.

Once you have set up toolbars, menus, and extensions in the Python Add-In Wizard, you will need
to add the executable code (or business logic) to each of the controls. In the working folder you
identified at the start of the process is a folder named Install. Within this folder is the Python script
that contains all the elements of the framework that the Python Add-In Wizard created. You can
identify the classes created for each tool and add code or set parameters as necessary. You will learn
more about how to do this in this chapter's tutorials.

When you start writing the code for your add-in, there are special functions you can use for
dialog and pop-up message boxes. These functions are included in the Python add-ins module
(pythonaddins), which is imported in the same manner as the ArcPy module (arcpy), as shown:

Two of these functions allow the user to interact with data files using either an input dialog box
to select features as input or an output dialog box to save the output of your script. The first, the
OpenDialog() function, accepts a dialog box title to be displayed along the top of the dialog box, a
property to allow multiple file inputs, the path for the input data, and a caption for the dialog box
button. In the following graphics, note the code and the dialog box it creates to allow for multiple

input layers to be selected. The dialog box appears when the user clicks the button and activates the
onClick function, as shown:

The second function allowing interaction with data files is the SaveDialog() function, which opens a
similar navigation box to that of the OpenDialog() function. It can be activated from within an add-in
button using the onClick function and provides a dialog box title, a save location, and a default name
for the feature. Note the code shown here and the dialog box it creates, as shown on the next page:

Special introduction: Python add-ins 219

220 Chapter 5 Python add-ins

One of the more interesting functions in the Python Add-ins module, the GPToolDialog() function,
calls any geoprocessing tool from an add-in button. The code basically names the tool and the
toolbox it comes from, and the tool’s dialog box is displayed when the button is clicked. This can be
used to call tools from custom menus or system tools provided that you know the location of the
toolbox storing the tool you wish to use. To find the toolbox system path, you can open the toolbox
properties to find where the toolbox is stored and note the location value.

A sample of code to call a custom tool is shown in the following graphic, and the resulting dialog box
is exactly the same as if the tool were run from the Catalog window.

The Python Add-Ins module also has its own type of message window. This window allows you to
display a notice to the user with a pop-up dialog box as a result of some action in the script. The
message box parameters include the message to display, a title for the message box, and, more
importantly, the type of message box to display. There are seven different types of message boxes,

which can be used to prompt the user to continue with the process, to cancel, to retry, and other
choices. The options are shown in the chart:

The sample code shown in the following graphic checks to see how many features are selected and
warns the user that an amount over 500 may take an excessive amount of time to process. The
OK/Cancel type of dialog box used allows the user to either continue the process if they are willing
to wait or to cancel the process.

The final function in this module allows the script to access the currently selected layer from
the map’s table of contents or the currently active data frame in your map document. This
function may be helpful if the user has made this selection or if it is already known which layer
or data frame is selected. The script should create a map document object and then call the
GetSelectedTOCLayerOrDataFrame() function to get the active data frame. To get the currently
selected layer, a data frame object must be defined before calling this function. The sample code
in the graphic on the following page shows how to create a data frame object using the active data
frame.

Special introduction: Python add-ins 221

222 Chapter 5 Python add-ins

All the work completed so far creates only the toolbar structure and executable code. The add-in
must still be compiled and an .addin file created, which is used to install the add-in in ArcGIS. The
folder storing the add-in components has a prewritten script named makeaddin.py, and running this
script compiles and creates the .addin file. Once it is created, this single file is all that is needed to
implement your project or share your toolbar with others.

Tutorial 5-1 Creating a Python add-in
application

Creating a Python add-in is a great way for users to design and implement a complex GIS application.
Add-in applications are compiled into a single file that is easy to share and can contain all the tools
necessary for a project.

Learning objectives
• Designing a user interface

• Creating a Python add-in

• Creating a button

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “What is a Python add-in?”

• “Creating an add-in project”

• “Creating a Python add-in button”

Introduction

The process of creating a Python add-in should not be taken lightly. Add-ins you create are fully
developed applications that can contain their own menus and toolbars, with various components,
and sets of executable code to accomplish various geoprocessing and data analysis tasks. The design

Tutorial 5-1 Creating a Python add-in application 223

is more than just writing pseudo code; it requires that you fully design a user interface to contain all
the tools that your add-in will control. This design can then be used to create the framework and
code for your add-in. It is important to note that changing the framework of an add-in is almost like
starting over and should be avoided. Take the time to fully design your interface before you start.

Scenario
Realizing that there is no easy way to see how many features are in a layer before starting a long
analysis process, you decide to make a tool for this purpose. Because you want to be able to
share this tool easily with others, you will make it a Python add-in application. The process will
be to iterate through the layers in the current map document and display a feature count in a
pop-up window.

Data
There is no restriction on what type of data to use because the add-in, by nature, will look at
every layer in the table of contents. Any map document will do, but a reasonably sized map
document is provided for testing. The toolbar design will have a single button with the title
“Get Feature Count.”

SCRIPTING TECHNIQUES

The special introduction to Python add-ins in this chapter shows how to create the
template folder and files using the wizard application. For this tutorial, identify the
different classes the tool contains. The first is the Toolbox Class, which holds all the
information about the toolbar.

The next class is the one created to hold the information about the button you are
creating. Within this class are many functions, each pertaining to an action the user
can take by clicking the button. The two functions of importance here are
the _init_ function, which initializes the button, and the onClick function, which
contains the code to run when the button is clicked.

Use the Python Add-In Wizard

1. Unzip the addin_assistant.zip file in the GISTPython\Python Add-Ins folder. Move to the bin
folder in the unzipped files, right-click addin_assistant.exe, and click Send to Desktop to create
a shortcut. Note: the process for creating a desktop shortcut may differ depending on your
operating system. Rename the shortcut Python Add-In Wizard.

224 Chapter 5 Python add-ins

2. Double-click the new desktop icon for the Python Add-In Wizard to start the process of creating
the Python add-in.

3. Navigate to your MyExercises folder, and click the Make New Folder button at the bottom of the
dialog box. Enter the name of the new folder as Feature Count and click OK, as shown:

With the working folder set, move on to setting the project properties.

4. Set the product to ArcMap, and fill in the other values as shown in the graphic. For the image,
navigate to the Data folder, and select the City of Oleander logo (OleaderTX.png). When you have
the values entered, click Save.

5. Click the Add-In Contents tab. Create a new toolbar by right-clicking Toolbars and clicking New
Toolbar. Fill in the caption and ID as shown in the next graphic. Note that the entire default
string for the ID was removed, and a new name was given. When you move to the Description

Tutorial 5-1 Creating a Python add-in application 225

entry box, the ID prefix is automatically added. Leave the Show Initially box checked to show the
toolbar by default when ArcMap is started, as shown:

6. Right-click the new toolbar and click New Button. Fill in the caption and other properties
as shown. Leave the image blank.

One toolbar with a single button on it is now created. Next, save the toolbar, and add the code for
the button.

7. Click Save and click the Open Folder button. Navigate to the Install folder, and open
FeatureCount_addin.py in your IDE, as shown:

You can see that the script brings in the ArcPy and Python add-ins modules. A class named
Count_Features has been created (per the class name you set for the button), and a couple of default
properties have been set. All you have to do to make this button perform a task is add code to the

226 Chapter 5 Python add-ins

onClick function. The code has been provided, but feel free to tackle the code portion of this tutorial
on your own for an extra challenge. Here’s the pseudo code for the button’s task:

8. Open the text file Tutorial 5-1 in the Data folder to view the code for the button, as shown:

9. If you are not writing your own code, copy the code from the text file, and paste the code to
the FeatureCount_addin.py file inside the onClick function, as shown. Make sure to correct any
indentation errors, and then save and close the Python script.

Tutorial 5-1 Creating a Python add-in application 227

10. Close the text file and the Python Add-In Wizard. In Windows Explorer, navigate to the Feature
Count folder. Run the Python script makeaddin.py to create the Feature Count add-in, and note
the file that is created, as shown:

11. Double-click Feature Count.esriaddin and click Install Add-In, as shown. Click OK when notified
of a successful installation.

The add-in is now installed and ready to test.

228 Chapter 5 Python add-ins

12. Open the map document Tutorial 5-1, as shown. The new toolbar should be loaded automatically,
but if it is not, go to Customize > Toolbars to add it.

13. Click the Count button, and observe the results, as shown:

Use your new Count tool to get feature counts in other map documents.

Tutorial 5-2 Using buttons and combo boxes 229

Exercise 5-1

The feature count is working great and is a big success, but there is another request for a summary
from the table of contents. Create a new toolbar with a button that gives a summary of how many of
each of the major feature type layers there are in the table of contents. For example, the message box
would report how many of each polygon, line, and point layers were found in the table of contents.
As a bonus, make it flexible enough to report all the layer types.

Tutorial 5-1 review

This tutorial demonstrates the basic template for creating Python add-ins. After sketching a design,
you can create the toolbars, buttons, and menus, and a Python script is created.

Each item you define in the creation wizard has its own class in the add-in’s script. Different types
of features have different functions to handle their actions, and this class was quite simple with an
onClick function. Within that function, you can add code to perform a task—something as simple as
counting the features in a feature class or as complex as your coding skills allow.

Study questions
1. Will the add-in you wrote for tutorial 5-1 work with any map document? Why or why not?

2. What file(s) would you need to share with other users who wanted this add-in?

3. When does the _init_ function run, and what types of tasks might you have it perform?

Tutorial 5-2 Using buttons and combo boxes

Python add-ins allow you to design a complete menu bar for an application you create. An add-in can
consolidate custom and system tools in one place and contain a variety of buttons and combo boxes.

Learning objectives
• Designing a custom menu bar

• Designing a menu combo box

• Modifying a user interface

230 Chapter 5 Python add-ins

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Creating an add-in toolbar”

• “Creating a Python add-in combo box”

Introduction

In tutorial 5-1, you learned that the Python Add-In Wizard lets you design your toolbars and menus,
with all the associated components, and then write a template script with all the classes and handlers.
This script can be edited, and your own code can be added to the various functions to control
the application. One major concern is that if you then go back and change your project design, a
new template file will be generated without all the extra code you have written. A backup of the
old file is automatically created, and you have to copy all your code from there to the new file. The
inconvenience of doing this highlights the importance of designing your project in full the first time.

The toolbar can hold a variety of items, as shown in the special introduction to this chapter, and in
this tutorial, you will be working with a combo box. A combo box can be used as a drop-down list or
as a text-entry box, depending on the status of the edit property and the list you create. Either way,
the result is a value that you can then pass to other functions in the application.

You may also want to use one item’s action to control another's. For instance, leave a button disabled
until an action is taken by another item. You may have a combo box accept a buffer distance, and the
button to start the buffering process would be disabled until an appropriate value is selected.

Scenario
The users are happy with the toolbar from tutorial 5-1, except that if there are many layers in the
table of contents, the drop-down box will produce a rather long list of layers. Then the script takes
time to read the list and find the layer of interest. The application would be more functional if the
user could select a single layer and get a feature count for just that layer. Add a combo box that
provides a list of layers from the table of contents so that the user can select from this list. Then a
count of the features can be retrieved from just the selected layer. In addition, add a button that
lets the user browse to any workspace, select a feature class, and report back the number of features
without having to add the feature class to the current map document.

Data
A completed copy of the application to count the features is provided in the Python Add-Ins folder
named SelectNCount. Modify this application to include a combo box and another button.

Tutorial 5-2 Using buttons and combo boxes 231

SCRIPTING TECHNIQUES

The first new thing you will work with is the Add-In Manager in ArcMap, which is
an interface that allows you to see what add-ins are currently loaded and to remove
any that are no longer necessary. Included in the Add-In Manager, by default, is the
ArcGIS Online add-in. You should leave that add-in intact.

You will also see how to access an existing application with the Python Add-In
Wizard. At the wizard start-up, point it to the folder of an existing add-in, and the
wizard will reload all the items that were designed earlier. Some of the changes, such
as tooltips and descriptions, can be altered and saved back to the original files. But if
you change any of the design items, a new template is generated. These design items
include the caption and class properties of any item and the addition or deletion of
any item, such as menus, toolbars, and any of the items that these can contain.

If the core design is altered and a new template is generated, a backup of the original
file is automatically saved as the original name with _1 appended to it. This number
increases incrementally if additional changes are made. You would then need to
copy and paste the custom code that you added to the template from the old file to
the new file. Depending on the purpose of the change, you might also have to alter
the code to accommodate the new items.

As you saw before, each item creates a new class in the Python script. It may be
necessary to pass values from one function to another, and that is done with the
ID (variable name) you provided each item when it was created. These IDs appear
in a comment line for each class as a reminder. Properties for other functions can
also be controlled. For instance, to disable the button in a function with the button
ID of startbuffering, you would set the value “self.enabled = False” in the button’s
function, and then add the code “startbuffering.enabled = True” to the other,
controlling function.

The combo box you add will include code to get a list of layers from the data frame,
so first create a map document object and use it in the creation of a data frame
object. You can then use these objects to create a list object of the included layers.
You have created these objects in other scripts, and you can reference them for the
syntax of these commands.

The new button that you add, however, will use a new technique for getting user
input. It will open a dialog box using the OpenDialog() function from the Python
add-ins module. The introduction to this chapter shows how to format this function
correctly, and it will allow the user to browse to a workspace to select a feature class.

232 Chapter 5 Python add-ins

Modify an existing Python add-in

1. Open the map document Tutorial 5-2. On the main menu, click Customize > Add-In Manager, as
shown. You may see several add-ins loaded. One by one, select and delete these add-ins, leaving
only ArcGIS Online. Then close the Add-In Manager and exit ArcMap.

The editing and troubleshooting process needs to take place with ArcMap closed. Then as the
changes are made, the add-in will be recompiled, and you will start ArcMap to test the latest changes.
It is necessary to edit with ArcMap closed and open it when you are finished because the add-in
reinitializes and loads the new changes only when ArcMap first starts up.

2. Go to the folder where you installed the sample data, and copy the folder SelectNCount from the
Python Add-Ins folder to your MyExercises folder.

Tutorial 5-2 Using buttons and combo boxes 233

3. Start the Python Add-In Wizard, and point it to the SelectNCount project in your MyExercises
folder. Note that it has loaded the properties for the existing add-in, as shown:

4. Click the Add-In Contents tab, and add a new combo box to the existing toolbar.

234 Chapter 5 Python add-ins

5. Set the characteristics for the combo box as shown:

6. Without clicking Save, right-click the SelectNCount toolbar item and click New Button. Populate
the button characteristics as shown:

Tutorial 5-2 Using buttons and combo boxes 235

7. Click Save. A warning box appears commenting on the creation of a new script for the
application. Note the warning shown and click OK.

The warning lets you know that a new template file has been created. You will have to copy your
code from the old file to the new one.

8. On the wizard dialog box, click Open Folder, and open the Install folder. You will see both script
files. Open the SelectNCount_addin.py file in your IDE, and notice that none of your code was
copied over to the new file, as shown:

236 Chapter 5 Python add-ins

Notice that new classes for the combo box and second button were added. These are the basic item
templates that you update with code to perform the tasks you want. Write the code for the combo
box to select layers from the table of contents, and then write the code for the button to select a
feature class from any workspace, as shown:

In the previous version of this script, a list of layers was generated when the button was clicked. In
this version, a list of layers is created when the user first clicks in the combo box. This is controlled by
the onFocus function. By generating the list in the combo box, the onFocus function will update the
table of contents with any changes the user makes.

The onFocus function has an object named focused that is true if the cursor is currently
positioned in the combo box and false if it is elsewhere. You can use that value for the trigger to
create the selection list. The list is created in the same way as in the original script. Then the list
of values for the combo box is stored in the self.items object. The trick here is that the list wants
the layer names, not the layer objects that the list object is storing. To get the layer names, you
can use a for statement to iterate through the list and add the names to self.items. There is an
additional piece of logic in the code, shown in the graphic for step 9, that checks to make sure
the layer contains features so that the count will not be done on layers such as annotation
or dimension.

Tutorial 5-2 Using buttons and combo boxes 237

9. Write the code for the onFocus function in the Select_Layer class to populate the list of values.
Try this on your own first, and then compare your code to the code shown:

The function onSelChange is called when the user makes a choice from the value list. The function
has a parameter named selection that holds the value, which can then be saved to the self object as
self.selectedlayer. This object is then used to pass the value to the button where the count process
occurs.

In addition, there is a line of code to set the button’s enable property to True. In other words, the
button is disabled until a selection is made.

10. Find the onSelChange function in the Select_Layer class. Add the code to save the selection and
enable the button, as shown:

The final change for the combo box is to make sure the items list is blank when it initializes. The only
change is to remove the sample values from the self.items list object.

11. Change the self.items list object to empty, as shown:

This combo box enables the Count button when a valid entry is selected, so you must alter the code
for this button to be disabled when it initializes. Use a pop-up message box to display the count to
the user.

238 Chapter 5 Python add-ins

12. Find the _init_ function of the Count_Features class, and change the enabled property of the
button to False, as shown:

The main processes of the Count button occur in the onClick function. The function brings in the
selected value from the Select_Layer class, using the ID selectlayer, and uses that value for the feature
count process. The results can be displayed in a pop-up message box.

13. Find the onClick function of the Count_Features class, and remove the code word pass. Replace
the code word with code to transfer the value to the onClick function, and show the results in a
Python add-ins message box. Check your code against the code shown:

If you like, you can save the script, compile the add-in, and test with the map document Tutorial 5-2.
At this point, the Select Feature Class button will not have any action associated with it, but the
combo box and count button should work.

Configuring the dialog box to accept user input for counting uses the pythonaddins.OpenDialog()
tool described in the special introduction to this chapter. The syntax is to make this tool equal to
a variable, which will become a feature class object containing the parameters of the selected
feature class.

14. Find the onClick function in the Select_Feature_Class class. Add a variable named inFeatures,
and make the variable equal to the OpenDialog tool with the appropriate parameters. The
starting workspace should be the Sample Data geodatabase, as shown:

The process to get the count and display it in a pop-up box is exactly the same as that used for the
Count button.

Tutorial 5-2 Using buttons and combo boxes 239

15. In the Count Features class, find the five lines of code that perform the counting, starting with
the line that includes the GetCount() function down to the line that includes the MessageBox()
function. Copy these lines of code from this class and paste them to the onClick function of the
Select_Feature_Class class, as shown:

16. Save the script, and close your IDE. Go back to the SelectNCount folder—click Open Folder
in the wizard dialog box if necessary. Run the makeaddin.py script, and then double-click the
SelectNCount.esriaddin file to install the add-in, as shown:

17. Open the map document Tutorial 5-2. If the toolbar was not installed automatically, add it from
the Customize menu. Test the Select Layer combo box drop-down list by selecting a layer and
then clicking the Count Features button to get the count, as shown:

Notice that the Count Features button is disabled until a selection is made in the combo box.

240 Chapter 5 Python add-ins

18. Click the Select Feature Class button to test it. Select one of the layers in the default location, as
shown in the graphic, and then click the Count Features button.

You may want to go back and adjust the widths of the combo box and drop-down list so that the
entire layer names will show. Check the special introduction to this chapter for information on how
to do this. You may also want to try navigating to a different workspace using the Select Feature Class
button and see how the tool responds.

Tutorial 5-2 Using buttons and combo boxes 241

Exercise 5-2

Add a button to the application you built in exercise 5-1 to allow for a similar layer selection
from a browsing-style dialog box. The user will click the first button, which will open a dialog box
and allow the user to browse to a workspace. Clicking the Count Features button will produce a
count of features for all the feature classes in the selected workspace. As in exercise 5-1, display
the results grouped by feature class type (point, line, or polygon). As a bonus, use the describe
object .dataType method to validate that the user’s selection is a workspace because this
application will operate only on workspaces. Also, use the .children method to list any child items
or feature datasets.

Tutorial 5-2 review

As you have learned, making changes to the layout of an add-in can be problematic. The add-in
wizard allows you to add additional items to a toolbar you have already created, but then the wizard
writes a completely new template file. The problem is that it does not copy any of your code to the
new file; that task is left for the programmer to do manually. The example used had one simple
button to transfer, but imagine doing this for a toolbar that has six to 10 controls. Learning this labor-
intensive process serves to emphasize the importance of designing your interface completely when
you write your pseudo code so that you do not find yourself facing a similar situation.

This add-in includes a combo box. The interesting technique here is to populate the combo box with
a list of feature classes from which the user can select. Then once an item is selected from the list, the
value can be passed to other functions and used in your code.

The add-in also uses a user input dialog box from the Python add-ins module. This project uses
the dialog box to accept input, but there is also a tool that will accept and create an output file.
The results are displayed in a pop-up message box, which is useful for displaying a message, but
with the correct type set, message boxes can also be used for error handling. Any of the types that
contain a Cancel button will cause the script to end, but only by the choice of the user, which is
not the same as detecting an issue with a script and automatically ending it as you might with a
try-except code block.

Study questions
1. What other lists might you put in a combo box?

2. Why was altering the template of the add-in such a problem?

3. How was the onClick function able to get the value of the selected feature from the
other class?

242 Chapter 5 Python add-ins

Tutorial 5-3 Using tools to interact with
the map

Python add-ins have the unique capacity of offering the user direct interaction with the map
through a Python tool. This tool allows the program to control all phases of the user’s experience
with the application.

Learning objectives
• Designing an add-in interface

• Using Feature Selection tools

Preparation
Research the following topics in ArcGIS for Desktop Help:

• “Creating an add-in toolbar”

• “Creating an add-in tool palette”

• “Creating a Python add-in tool”

Introduction

Add-ins allow you to program and add a variety of items to a custom toolbar and share the resulting
application with others. Add-ins do one thing that none of the other ArcGIS customization methods
do—they allow the user to interact with features on the map. In all the other scripts, script tools, and
Python toolboxes that you have written in this book, it was always a requirement to have the user
make their selections before running the script. That is no longer the case when you add a tool to an
add-in. The tool can return its location on the map, and that location can be used for selections and
other location-based tasks.

Scenario
The application you wrote for the real estate agents in tutorial 3-2 was a big hit. If you recall, this
application allowed the agents to enter the tax ID of the subject tract, a map title, and a subtitle and
then select between four different output maps. In this tutorial, you will work with three of these
maps: a water map, a storm water map, and a sewer map. By taking this application and making it
a Python add-in, you will be able to add the ability for the agents to interactively select the subject
tract on the map by clicking the desired tract. The toolbar will look like this sketch:

Tutorial 5-3 Using tools to interact with the map 243

Create a toolbar with the following elements:

• Combo box—to accept the typed tax ID

• Tool palette—to hold the two selection tools

• Tool (in a tool palette)—to allow the user to select a single feature with one click

• Tool (in a tool palette)—to allow the user to select multiple features using a rectangle

• Combo box—to accept the map title

• Combo box—to accept the map subtitle

• Menu—to hold the print buttons

• Button—on the menu to print the water map exhibit to a PDF

• Button—on the menu to print the sewer map exhibit to a PDF

• Button—on the menu to print the storm water exhibit to a PDF

As a bonus, if you are comfortable working with the config.xml file, add a Clear Selected Features
system button. It would also be nice to disable the combo boxes for the title and subtitle until a valid
selection is made.

This list of toolbar elements should give you an idea of what needs to be done in the Python Add-In
Wizard to create the complete template and of where to add the code.

Data
A map document is provided for you to test, but you must develop all the code from scratch. You
can use the sample add-in mentioned in the following “Scripting techniques” section to get code for
the selection buttons and also reference your code from tutorial 3-2.

You should write pseudo code for each of the toolbar items describing what operation the tool will
perform and how it may interact with the enabling or disabling of other items on the toolbar.

SCRIPTING TECHNIQUES

The ability to select features on the map using tools from your add-in is an element
that you will want to incorporate in your scripts as much as possible to make your
tools more user-friendly. There are a few obstacles to overcome, but a sample add-in
is provided so that you can see how to overcome them.

The way to perform an interactive selection on the data in a map document is to
use an add-in tool to capture the screen location, and then build objects from that
location’s coordinates that can be used in a SelectByLocation process. If you look
at the default template created with new add-in tools, you will see many different
functions that are called when the user clicks the mouse, as shown in the special
introduction to this chapter. Two of the functions are called when the mouse is
clicked down, and both return x,y coordinates: the onMouseDown function and
the onMouseDownMap function. However, these functions provide different
information. The onMouseDown function provides coordinates in screen pixels

244 Chapter 5 Python add-ins

measured from the upper-left corner of your computer screen. This is of no
use when working with the map. The other choice is the onMouseDownMap
function, which provides map-based coordinates. The problem is that the
coordinates are dependent on the view you are currently using. If you are in
data view, the returned coordinates are in the projected map units of the
current map document. These coordinates can be used directly and will create
objects that overlay your data. But when you are in layout view, the returned
coordinates are in page units and will not overlay the map data. The page
coordinates can be converted to projected map units with a little code, though,
and then used to make selections on the map.

Other tools that capture a geometric shape drawn by the user, including a circle, a
line, or a rectangle, are called click event handlers. When the user draws a geometric
shape on the map, the click event handlers store the properties of the shape drawn.
The coordinates for the geometric shape can then be used to help select features on
the map by using the coordinates to create temporary layer objects and overlaying
them on other layers. The click event handlers for this action are onCircle, onLine,
and onRectangle, or if the click event handler is set to NONE, a single point is used
for the selection.

To see the point and rectangle click event handlers in action, go to the GISTPython\
Python Add-Ins folder and double-click the add-in file SelectFeatures. Then open
the map document Parcels from the Maps folder. Add the toolbar Select Features,
if necessary. These two tools will let you select features from the Parcels layer with
either a single mouse click, using the onMouseDownMap function as a click event
handler, or by dragging a box around them, using the onRectangle function as a
click event handler, similar to the way features are selected with the system selection
tools. Note that you can use these tools in both data and layout views because the
script has code added to convert the coordinates to projected map coordinates
before making the selection.

The code for selections is provided in the Python Add-Ins\SelectFeatures\
Install folder. You can open the SelectFeatures_addin.py file and see how the
conversion process takes place. The conversion code is in a function named
convertCoords at the top of the script. The function can be called from
elsewhere in the script and accepts a pair of coordinates in page units, converts
the page units to projected map units, and returns the new values back to the
line of code that called the function. Examine the code shown in the graphic,
and note how the position relative to the page is converted into projected map
units, using the map scale and data frame coordinates. This function can be
added to all your projects to perform the coordinate conversions if features are
selected in page units.

Tutorial 5-3 Using tools to interact with the map 245

If you look further in this code, you will see each tool’s class and the code to perform
the selection. Each tool is taking the coordinates from the user’s mouse click(s) and
creating temporary geometry items. These geometry items are then used with the
SelectLayerByLocation tool to select a set of features. One geometry item creates
a polygon object from the user-drawn rectangle, and the other geometry item
creates a point object from the single mouse click. This code may also be copied to
your other add-in tools to allow for feature selections. The example in the following
graphic shows the code for a point selection. The onMouseDownMap function
captures the x,y coordinates and then checks to see whether the coordinates are in
map units or page units. If necessary, the coordinates are sent to the convertCoords
function and converted to map units. These are used to create a geometry object,
which in turn is used for feature selections.

246 Chapter 5 Python add-ins

The code also contains an example of selecting with a rectangle. The process is
basically the same, except that it involves more coordinates. This code can be copied
with minor modifications to any of your projects in which you would like to make
selections by point or rectangle.

When the wizard creates your add-in, it creates many files and folders to contain all
the portions of the add-in. One of these files is the config.xml file, which contains
code to manage the components of the add-in. Normally, this file is off-limits and
should never be edited by the user. However, if you are careful and fully understand
what the file contains, there are a few modifications that can be made. These
modifications should be done carefully. One change is to alter the order in which the
tools are displayed on a toolbar. By default, they appear in the order in which they
were created. In the <Toolbars> section of the code, each tool is listed in its order of
appearance, left to right. Moving a tool’s reference line will alter where it appears on
the toolbar. Shown in the graphic is the reference ID for the Select Rectangle tool.
The entire line can be moved to a new location.

Tutorial 5-3 Using tools to interact with the map 247

The code also contains an example of selecting with a rectangle. The process is
basically the same, except that it involves more coordinates. This code can be copied
with minor modifications to any of your projects in which you would like to make
selections by point or rectangle.

When the wizard creates your add-in, it creates many files and folders to contain all
the portions of the add-in. One of these files is the config.xml file, which contains
code to manage the components of the add-in. Normally, this file is off-limits and
should never be edited by the user. However, if you are careful and fully understand
what the file contains, there are a few modifications that can be made. These
modifications should be done carefully. One change is to alter the order in which the
tools are displayed on a toolbar. By default, they appear in the order in which they
were created. In the <Toolbars> section of the code, each tool is listed in its order of
appearance, left to right. Moving a tool’s reference line will alter where it appears on
the toolbar. Shown in the graphic is the reference ID for the Select Rectangle tool.
The entire line can be moved to a new location.

The other modification you can make is to add ArcGIS system tools to the toolbar.
Look on the ArcGIS Resources website for Python for ArcGIS to find the list and IDs
for commands in ArcMap, ArcCatalog, ArcScene, and ArcGlobe. These IDs can be
used to add the buttons or tools to your custom toolbars or menus. As an example,
to add buttons for switching from layout view to data view (or back), first look up
the commands and get their program ID (ProgID), as shown:

Then carefully add the line of code to the config.xml file to add the item. In the
example shown in the following graphic, the two buttons handling the map view have
been added along with the code to add the Identify tool. From the chart, also note that
there are many geoprocessing tools that can be added this way. They will not, however,
accept input from your code or provide data to other processing tasks in your code.

Build a complex Python add-in

1. Start the Python Add-In Wizard, and create a new project named Tutorial 5-3. Add the toolbar
and other items necessary to make the template for this project. Use the class names and IDs
shown in the graphic, and provide tooltips and Help text for all the items.

248 Chapter 5 Python add-ins

With all the required items created, your template should resemble this graphic:

2. Save your project in the Python Add-In Wizard. Close the wizard.

The framework for the toolbar is completed. If you have completed this process correctly, you
will be able to add and edit the code associated with the menu without having to start over
as in the example in tutorial 5-2. Next move on to adding code for the buttons. An instruction
is given for each item on the toolbar to help you understand the code you will write. Pay
attention to the enable property as you write the code for each item you have designed. You
will want to disable the entry boxes for the title and subtitle until a valid parcel selection
is made.

3. Navigate to the Tutorial 5-3 folder where you created the add-in. Edit the Tutorial_addin.py file
created in the Install folder of your add-in.

The first set of code to work with is the combo box for the tax ID entry. The _init_ function sets up
the basic input parameters.

Tutorial 5-3 Using tools to interact with the map 249

Because the combo box will accept only typed responses, the list of choices for the drop-down
box will be empty, and the property editable will be set to True. The button will be enabled
when it initializes, and you can set the width of the entry box to eight characters,
as shown:

Next write the code to accept the data entry and to find the parcel matching the entered tax ID
number.

4. The data capture occurs in the onEnter function, so scroll to that part of the code for the
Accept_TaxID class. The number entered is captured in the self object as self.value. Add a line of
code to save this value in a variable named taxAccount, as shown:

5. Create a layer object for the Parcels layer, from which you can do the selection. (Hint: set up the
three objects for the map document, the data frame, and a specific layer in the table of contents,
as shown.)

The last part of the onEnter code is to make the selection, pan to it, and enable the combo box to
accept the map title.

6. Add the SelectLayerByAttribute tool to find where the field EKEY equals the tax ID entered by
the user. If a valid selection is made, pan to that location, and enable the map title combo box, as

250 Chapter 5 Python add-ins

shown. (Hint: check to make sure the selection is not equal to zero before trying to get the extent
object, and pan the map.)

7. When you have the code ready, create the add-in file, and install and test the file with the map
document Tutorial 5-3 before moving on. A good test value for the tax ID is 40227464. If it
is working correctly, the parcel should be selected, highlighted, and the map panned to that
location.

The user has the option to interactively select the feature in the map rather than type a known tax
ID. The classes Select_Point and Select_Rect hold the code for these tools.

8. Configure the two selection tools as shown in the SelectFeatures add-in described in this
tutorial’s “Scripting techniques” section. The Select_Point tool uses the onMouseDownMap
handler, and the Select_Rect tool uses the onRectangle handler. Each tool should also test for
valid selections, pan to the selected feature(s), and enable the combo box for the title entry.

9. Open the SelectFeatures_addin.py file in the folder C:\EsriPress\GISTPython\Python Add-Ins\
SelectFeatures\Install. Copy the convertCoords function (lines 4 through 38), and paste the
function to the Tutorial addin.py file for your new toolbar. This function should go at the top of
the script file, just after the import pythonaddins statement. Do not alter the convertCoords
code.

10. From the SelectFeatures_addin.py file, copy the code from the onRectangle function in the
Sel_Rectangle class (lines 45 through 85). Go to the Tutorial addin.py file for your new toolbar,
and replace the onRectangle function in the Select_Rect class.

The template code you copied will handle the rectangle selection, but you must still set the _init_
function and add the code to the bottom of the selection to pan the map and enable the map title
combo box.

11. In the _init_ function of the Select_Rect class, make sure that self.enabled is True, and set
self.shape to Rectangle. Then add the code at the end of the onRectangle function to make sure
at least one item is selected, pan the map to the extent of the selected features, and enable the
map title entry. (Hint: Copy the last nine lines of the onEnter function in the Accept_TaxID
class, and paste those lines at the end of the onRectangle function. Be careful to use the correct
indentations, and check all variable names.)

Tutorial 5-3 Using tools to interact with the map 251

Your turn
Configure the Select_Point class to allow the user to select a feature with a single point click. You can copy
the code from the template SelectFeatures add-in, making sure to set the self.shape to NONE. Also, add the
nine lines that will pan the map to the selected features and activate the map title entry. Notice how the
coordinates for the clicked location are tested and, if necessary, sent to the convertCoords function and
returned as map coordinates.

12. Take a moment to test the selection tools. Make sure the tool palette works as expected, the
selections occur, the map pans, and the map title entry box is enabled. Remember that to test the
add-in, you must save your code, exit ArcMap, run the makeaddin.py script, install the add-in file,
restart ArcMap, and then open the map document Tutorial 5-3. When you are done testing the
selection part of the script, close ArcMap.

Have the user type a title for the map. This box should initialize as disabled and will be enabled when
selections are made using one of the other tools. This box uses the onEnter handler to accept what
the user types in much the same way that the Accept_TaxID class does. When there is a valid entry,
have the title in the map change and enable the subtitle entry box.

13. In your IDE, find the Accept_Title class, and set the _init_ parameters. These parameters should
be the same as for the Accept_TaxID class, with the exception of the enabled property being set
to False. This property being set to False will initialize the tool as disabled, but any of the selection
tools will enable it when a proper selection is made.

14. Use the onEnter function to store the user’s entry and change the map’s title, as shown in the
graphic. The process for this is similar to that in tutorial 4-1. After refreshing the map, use the
combo box ID for the subtitle entry class to enable that combo box.

252 Chapter 5 Python add-ins

Your turn

The last data entry is the subtitle. The ability to enter this item is disabled at initialization but is enabled
when the map title is populated. Configure the Accept_Subtitle class to accept a valid entry, change the
subtitle in the map elements, and refresh the map.

Once again you might want to test and troubleshoot your application. You should be able to use any
one of the three methods of selecting features, and then set the title and subtitle.

You may have thought about disabling the print buttons until all the other actions are
completed. Unfortunately, that is not possible with buttons or tools added to a menu. The items
will not initialize until the menu is selected, so the objects on the menu cannot be controlled in
the code.

But on a positive note, you can move on to writing the code for the print buttons. These buttons
basically turn the correct layers on and off and then export the map to a PDF document. The code
used in tutorial 3-2 can be copied and pasted to the add-in code, and with a little modification, the
code can be made workable.

The first of the three print buttons is for the water map. This button turns on the group layer for the
water utility data, the physical feature data, and the base group data. You may also want to check
that the other group layers are turned off. Then export the map with the map title appended to the
default name as Water_Map_AI_.

15. In your MyExercises folder, open the RealtorExhibit.py file from tutorial 3-2. Copy the code that
creates the map document object, the data frame object, and the list of layers from the table
of contents. Then paste this code to the onClick function of the Print_Water class replacing the
word pass, as shown:

Tutorial 5-3 Using tools to interact with the map 253

16. In the RealtorExhibit.py file, find the line ‘if “Water Utility Map” in maplist:. ’ Starting with the
next line after this, copy the code down to the line that creates the PDF document. Paste this
code to the onClick function just below the other code. Make sure to use the ID of the map title
item in the map’s name, as shown:

Your turn
Set up the print buttons for the sewer and storm water exhibit maps. The code for the Print_Sewer and
Print_Storm Water classes can be copied from the RealtorExhibit.py file and modified for use.

17. Test the application using the map document Tutorial 5-3. Try creating the following map
types for the sample locations that are shown in the chart with their tax ID numbers. For the
interactive selections, pan around, and try random parcels located anywhere on the map.

This application uses all the more common components of Python add-ins, so it should serve as a
great starting point for all the rest of the add-ins you write.

254 Chapter 5 Python add-ins

Exercise 5-3

Re-create the application you built in exercise 3-2 using Python add-ins. The scenario is that the city
planner has seen the add-in for real estate agents and wants a similar application for property owner
notification maps. He would like to be able to enter a tax account number or interactively select
from the map and have the application automatically create a 200-foot buffer. Then he would like to
zoom to that area and create a parcel map and a physical features map.

A sample map document Exercise 5-3 is provided. The key differences in this application are as
follows:

• The user can enter more than one tax account number.

• The map is zoomed rather than panned.

• There are two data frames in this map document.

Name all the elements in the map document, and prepare it for automation. Then write the code
and create a Python add-in application to accept an account number or interactive selection, and
optionally a buffer distance (some cases may require more than a 200-foot buffer).

When the tool is finished running, you should have two maps for each case.

The first is a parcel map with these layers:

• Lot_Boundaries

• PlatIndex

• Blocks

• Lot Numbers

• ZoningDistricts

• Street Names

• The new buffer layer you create

The second is a physical features map with these layers:

• Lot_Boundaries

• Address Numbers

• Building Footprints

• Paved areas

• Creeks

• Bodies of Water

• Recreational Features

• Street Names

• The new buffer layer you create

(Hint: design the toolbar first, and then work on the code, reusing as much code as possible from
exercise 3-2.)

Tutorial 5-3 Using tools to interact with the map 255

Here are some sample cases for testing, or use the interactive selections, and select any parcels:

Tutorial 5-3 review

The ability to interact with the map adds a great deal of convenience to your applications and
enhances the user experience. Although not done here, you could add your own tool palette of
zooming and panning tools to the add-in toolbar. You can also add a drop-down menu with other
system tools that might be useful within the application.

The Python add-Ins framework has some limitations, such as ensuring that the toolbar design is right
the first time and restarting ArcMap each time you test the code. However, users will not experience
these limitations, so the result will justify the work you put into your coding and debugging efforts.

Study questions
1. What other user interactions with the map document could you monitor and use as a

means of selection?

2. What other monitored events could you use to collect user data from the mouse or
keyboard?

3. What effect would different map units or different coordinate systems have on the
interactive selection routine shown in this tutorial?

There are many online resources for learning more about Python add-Ins on the ArcGIS Resources
website, resources.arcgis.com, and the Esri Training website, training.esri.com. The Python
community on the ArcGIS Resources website has many articles and blogs concerning Python
programming, links to other training opportunities, and a discussion forum where you can post
questions about your code and get help finding solutions. The Esri Training website offers a variety
of Python training formats from conventional classroom instruction to free online webcasts.

file:///C:\Users\caro5739\Documents\My%20Documents\GIST4\CE\ORIGINALS\resources.arcgis.com

This page intentionally left blank.

APPENDIX A
Using an IDE for Python scripting

Many integrated development environment (IDE) applications are available for programming in Python.
Some IDEs are free to download and use, and other IDEs are commercially available. The decision on
which one to use ultimately rests with you and will depend on your needs and budget. There are three
free, widely available options discussed here, mostly to show how these IDEs can be used in Python
scripting for ArcGIS.

Choosing an IDE
Whichever IDE you choose should be made the default in ArcGIS. With your chosen IDE set as the
default, any time you begin editing a Python script tool or a Python toolbox in ArcMap or ArcCatalog,
your default IDE will open. To set the default IDE program, go to the Geoprocessing menu in either
ArcMap or ArcCatalog and click Geoprocessing Options. In the Script Tool Editor/Debugger box, browse
to and select the IDE executable file you wish to use, as shown:

258 Appendix A: Using an IDE for Python scripting

PythonWin
PythonWin is a good, Windows-based IDE, which works well with ArcGIS. It tracks variables and
offers automatic code completion prompts when you are writing code. It also tracks and maintains
the indentations in your code. The drawbacks of PythonWin include its restriction to run only in the
Windows operating system and its limited debugging capabilities. It can be downloaded and used
for free.

IDLE
IDLE (integrated development environment) comes free with the Python installation files included with
ArcGIS. Its strength is that it runs on a variety of platforms, but it is limited in functionality. It does not
include debugging tools or indentation handling, which is a shortcoming when coding in ArcGIS. It is a
very basic IDE and good for beginners, but most users will move on to a more feature-rich IDE as they
gain code-writing experience.

PyScripter
PyScripter is a solid IDE that can be downloaded for free. It has robust debugging tools, good automatic
code completion functionality, and tracks indentations. In addition to its basic features, it also has many
features that assist in coding. For example, when you use a bracket, parenthesis, quotation mark, or
many of the other characters used to start and stop an entry, PyScripter automatically adds and tracks
the closing character. This feature is useful when nesting these characters and helps to make sure that all
entries are properly closed.

PyScripter also allows the user to set up a file template, which for ArcGIS scripts can include your
name and date as well as import arcpy and other common setup commands. To edit the default script
template, start PyScripter, go to the main menu, and click Tools > Options > File Templates. In the
File Templates dialog box, select Python Script to display the default template for Python scripts. The
template contains a header with code to automatically populate such information as the author and
date, below which you can add ArcGIS-specific code such as import arcpy, as shown:

Appendix A: Using an IDE for Python scripting 259

IDE for Python toolboxes
Python toolboxes in ArcGIS use a file with a .pyt extension. In order for the IDE to apply scripting
features to the code, such as syntax highlighting, code completion prompts, and tracking indent levels,
the IDE must be configured to recognize this extension.

In PythonWin
PythonWin automatically sees a .pyt file as a script and applies all coding features to the file.

26 0 Appendix A: Using an IDE for Python scripting

In IDLE
The following steps enable syntax highlighting on a Python toolbox that is being edited in IDLE:

1. Start Windows Explorer, and navigate to the idlelib folder for the install of IDLE. By default, this
location should be similar to C:\Python27\ArcGIS10.2\Lib\idlelib.

2. Open the EditorWindow.py file for editing in a Python IDE or Notepad.

3. Locate the following lines of code within the EditorWindow.py file (search for os.path.
normcase), as shown:

4. Add .pyt to the list of extensions. The updated EditorWindow.py file should look similar to this:

5. Save the changes to the EditorWindow.py file.

In PyScripter
The following steps enable the coding features on a Python toolbox (.pyt) that is being edited in
PyScripter:

1. Start PyScripter.

2. Click Tools > Options > IDE Options.

3. Scroll down to the File Filters section of the IDE Options dialog box.

4. Add a semicolon and *.pyt to the Python files for Open dialog Python filter. Note that this is
added in two places on the entry line, as shown:

Appendix A: Using an IDE for Python scripting 261

5. Click OK.

This page intentionally left blank.

APPENDIX B

Tool index
Software tool/concept, tutorial(s) in which it appears

.capitalize(), 1-1

.find(X), 1-1

.isdigit(), 1-1, 1-2

.lower(), 1-1

.lstrip(), 1-1

.replace(X,Y), 1-1, 2-7, 3-1

.rstrip(), 1-1

.strip(), 1-1, 1-3, 2-7

.strptime, 1-5

.title, 1-1, 1-3

.upper, 1-1

init function (Python add-in), 5-1, 5-2, 5-3

init function (Python toolbox), 4-1, 4-2, 4-3

AddError(), 2-6, 2-8

AddField_management, 2-5, 2-6

Add-In Manager, 5-2

Add-In Wizard, 5-1, 5-2, 5-3

AddMessage(), 2-6

AddWarning(), 2-6, 2-7, 2-8, 3-2, 4-1

Altering a Python add-in design, 5-2

Anchor point, 3-1

appendPages() (PDF document), 3-3

arcpy.mapping, 3-1, 3-2, 3-3

264 Appendix B: Tool index

Basic Python, 1-1

Buffer_analysis, 2-3

Button (Python add-in), 5-1, 5-2, 5-3

Button class (Python add-in), 5-1, 5-2, 5-3

CalculateField_management, 2-5, 2-6, 2-7

Clone graphic elements, 3-3

Combo box (Python add-in), 5-2, 5-3

Combo box class, 5-2, 5-3

Concatenation, 1-1, 1-3, appears in every script after 1-3

Convert script tool to Python toolbox, 4-1, 4-2, 4-3

CopyFeatures_management, 2-4

CopyRows_management, 2-3, 2-7

Create() (PDF document), 3-3

Create a new Python script, 1-1

Create layout objects, 3-3

CreateFolder_management, 3-3

Cursors, 2-3

Custom toolbar, 2-9

Custom toolbox (.tbx), 2-6, 3-1, 3-2

Customize menu, 2-9

Customize mode, 2-9

Data Access (.da) module, 2-1

Data frame properties, 3-1, 3-2

Date object, 1-5

DateTime module, 1-5

Defining functions, 1-1, 1-2, 1-3, 1-5

Describe, chapter 2 special introduction, 2-1, 2-7

Designing Python add-ins, 5-1, 5-2, 5-3

Element name, 3-1

Element properties, 3-1, 3-2, 3-3

Enabling features (Python add-in), 5-2, 5-3

Environment class, 2-1

execute (Python toolbox), 4-1, 4-2, 4-3

ExportToPDF(), 3-1, 3-2, 3-3

Expression box, 1-3, 1-4, 1-5

Extensions (Python add-in), chapter 5 special introduction

Appendix B: Tool index 265

Field Calculator, 1-3, 1-4, 1-5

FieldInfo(), 2-7

FindLabel() function, 1-1, 1-2

for statement, 2-3, 2-4, 2-5, 2-7, 2-8, 3-1, 3-2, 3-3, 5-2

Geoprocessing introduction, chapter 2 special introduction

GetCount_management, 2-4, 2-5, 2-6, 2-7, 2-8

GetParameterAsText(), chapter 2 special introduction, 2-6, 2-7, 3-1, 3-2

getParameterInfo (Python toolbox), 4-1, 4-2, 4-3

getSelectedExtent(), 3-2

ID name (Python add-in), 5-2, 5-3

if-elif-else logic, 1-2, 1-3, 2-3, 2-4, 2-6, 2-7, 2-8, 3-1, 3-2, 3-3, 4-2, 4-3, 5-2

import arcpy (description), 2-1, appears in every script after 2-1

import pythonaddins, 5-1, 5-2, 5-3

Input filter, 2-6, 3-1, 3-2, 4-1, 4-2, 4-3

Insert cursor, 2-3

Installing Python add-ins, 5-1, 5-2, 5-3

int(), 1-5, 2-4, 2-5, 2-6, 2-7, 2-8

Iteration/loop routines, 2-1, 2-4

Label Expression dialog box, 1-1, 1-2

List functions, chapter 2 special introduction, 2-5

List object/variable, 1-1

ListDataFrames(), 3-1, 3-2, 3-3

ListFeatureClasses(), 2-5

ListFields(), 2-7

ListLayers(), 3-1, 3-2, 5-2

ListLayoutElements(), 3-1, 3-2, 3-3

MakeFeatureLayer_management, 2-3, 2-4, 2-5, 2-6, 2-8, 3-3

MakeTableView_management, 2-7

Map coordinates (Python add-in), 5-3

Map element properties, 3-1

Map interaction (Python add-in), 5-3

MapDocument (“CURRENT”), 3-1, 3-2, 5-2

MapDocument (path), 3-1, 3-3

Mapping module, 3-1

Menu (Python add-in), 5-3

MessageBox() (Python add-in), chapter 5 special introduction

266 Appendix B: Tool index

New menu, 2-9

New toolbar, 2-9

Object properties, chapter 2 special introduction, 2-1

onCircle (Python add-in), 5-3

onClick (Python add-in), 5-1, 5-2, 5-3

onEnter (Python add-in), 5-3

onFocus (Python add-in), 5-2, 5-3

onLine (Python add-in), 5-3

onMouseDown (Python add-in), 5-3

onMouseDownMap (Python add-in), 5-3

onRectangle (Python add-in), 5-3

onSelChange (Python add-in), 5-2, 5-3

OpenDialog() (Python add-in), chapter 5 special introduction

Page coordinates (Python add-in), 5-3

panToExtent(), 3-2

parameterDependencies (Python toolbox), 4-3

PDF documents (combining), 3-3

PDF documents (exporting to), 3-3

PDFDocument(), 3-3

Pre-Logic Script Code box, 1-3, 1-4, 1-5

Print, 1-1, 2-1, 3-3

ProgID, 5-3

Python add-in components, chapter 5 special introduction

Python add-ins (pythonaddins) module, 5-1, 5-2, 5-3

Python code snippet, 2-2

Python data types, 1-1

Python date directives, 1-5

Python indentation, 1-1

Python math functions, 1-4

Python objects, chapter 2 special introduction

Python toolbox (.pyt), 4-1, 4-2, 4-3

Python using quotation marks, 1-1, 2-2

Python variables, 1-1

r“C:/Path,” 2-2

RefreshActiveView(), 3-1, 3-2

RefreshTOC(), 3-2

Appendix B: Tool index 267

saveAndClose() (PDF document), 3-3

SaveDialog() (Python add-in), chapter 5 special introduction

Scale (setting in the map), 3-3

Script tool documentation, 2-6

Script tool on custom toolbar, 2-9

Script tools, 2-6, 3-1, 3-2

Search cursor, 2-3, 2-4, 2-7, 2-8, 3-3

Select_analysis, 2-2, 2-4

SelectLayerByAttribute_management, 2-7, 3-2, 3-3

SelectLayerByLocation_management, 2-3, 2-4, 2-5, 2-6, 2-8, 3-3

SetParameterAsText(), chapter 2 special introduction, 2-6

Slicing, 1-1

Statistics_analysis, 2-8

Store calculations, 1-4

str(), 1-1, 1-3, 2-5, 2-6, 2-7, 2-8

Summary Statistics, 2-8

System tool on custom toolbar, 2-9

System tool on Python add-in toolbar, 5-3

Tool (Python add-in), 5-3

Tool classes, 4-1, 4-2, 4-3

Tool palette (Python add-in), 5-3

Toolbar (Python add-in), 5-1, 5-2, 5-3

Toolbox class, 4-1, 4-2, 4-3

Toolset (Python toolbox), 4-1

ToolValidator() class, 2-7, 3-1

try-except (description), 2-1, 2-5, appears in every script after 2-5

Union_analysis, 2-2

Update cursor, 2-3

updateMessages (Python toolbox), 4-2

updateParameters (Python toolbox), 4-3

Validation code, 2-7, 3-1, 4-1, 4-2, 4-3

Value list, 2-6, 3-1, 3-2, 4-1, 4-2, 4-3

while statement, 2-4, 2-8

Zooming/panning in arcpy.mapping, 3-2, 3-3

zoomToSelectedFeatures(), 3-2, 3-3

This page intentionally left blank.

APPENDIX C

Data source credits
\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_100, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_101, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_102, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_103, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_104, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_105, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_106, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_107, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_108, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_109, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_110, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_111, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_112, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_113, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_114, courtesy of the City
of Euless.

270 Appendix C: Data source credits

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_115, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_116, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_117, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_200, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_201, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_202, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_203, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_204, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_205, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_206, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_207e, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_207w, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_208, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_209, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_210, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_300, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_301, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_302, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_303, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_304, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_305, courtesy of the City
of Euless.

Appendix C: Data source credits 271

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_306, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_307, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_308, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_309, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_318, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_319, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_320, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMaps\FireBoxMap_321, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\AnalysisCreeks, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\BldgFootprints, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\BodiesOfWater, courtesy of the City
of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\Contours, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\Creeks, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\ElecUtil, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\Fences, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\FWAparts, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\PavedAreas, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\PavingPolygons, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\RecFea, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Planimetrics\TreeMass, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_1H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_2H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_3H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_4H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_5H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_ASSOC_6H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_South_1H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_South_2H_Path, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\BC_South_3H_Path, created by the author.

file:///\\EsriPress\GISTPython\Data\City%20of%20Oleander.gdb\FireBoxMaps\FireBoxMap_318

272 Appendix C: Data source credits

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Well_Data\WellSites, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Address_NumbersAnno, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Address_NumbersAnno_1, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Blocks, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\BookmobileLocations, created by the author.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\BuildingFootprints, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Calls_for_service_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Calls_for_service_2012, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\City_Area, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\CityLimitLine, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\ComPlan, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMap, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\FireBoxMapAnno, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\GeneralZoningDistricts, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Lot_Boundaries, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Monument, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Ownership, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Parcels, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\PlatIndex, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\PrivateRoads, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\RecycleZones, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\Street_Centerlines, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\StreetLights, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\VacantIndex, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\ZoningBoundaries, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\City of Oleander.gdb\ZoningDistricts, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\BldgFootprints, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_0, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_1, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_10, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_11, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_12, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_13, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_14, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_15, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_16, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_17, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_18, courtesy of the City of Euless.

Appendix C: Data source credits 273

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_19, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_2, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_20, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_21, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_22, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_23, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_24, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_25, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_26, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_27, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_28, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_29, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_3, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_30, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_31, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_32, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_33, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_34, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_35, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_36, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_37, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_38, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_39, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_4, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_40, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_41, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_42, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_43, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_5, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_6, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_7, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_8, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\FireBoxMap_9, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Apr_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Aug_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Dec_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Feb_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Jan_2010, courtesy of the City of Euless.

274 Appendix C: Data source credits

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Jul_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Jun_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Mar_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_May_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Nov_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Oct_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_Sep_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\FireDepartment.gdb\OFD_Run_Data_TST_2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\OleanderOwnership.gdb\Elm_Fork_Addition, created by the author.

\\EsriPress\GISTPython\Data\OleanderOwnership.gdb\FireRuns2010, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\arbordaze2009tents, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\complan, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\libsprk, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\ROW_And_Easements, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\sprinklerunit, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\Sample Data.gdb\ZIPCODES_poly, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\SewerMaps.gdb\SewerMaps\SewerLin, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\SewerMaps.gdb\SewerMaps\SewerNod, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\SewerMaps.gdb\SewerMaps\TRAMeteringStations, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\SewerMaps.gdb\UtilityGrid300Scale, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\StormDrainUtility.gdb\Storm_Drains\Fixtures, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\StormDrainUtility.gdb\Storm_Drains\MainLat, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\Cycles, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\DistLateral, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\DistMains, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\EffluentWaterContractArea, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\Fittings, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\HydLaterals, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\WaterUtility.gdb\SamplingStations, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\2010 Run Data.xlsx\‘2010 Run Data$,’ courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\2010 Run Data.xlsx.xml, courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\2011 Run Data.xlsx\‘2011 Run Data$,’ courtesy of the City of Euless.

\\EsriPress\GISTPython\Data\ArcMap_MXT_File16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\CountRoutine.py, created by the author.

\\EsriPress\GISTPython\Data\DescribeObject.py, created by the author.

\\EsriPress\GISTPython\Data\ElementCircle16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\ElementLine16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\ElementRectangle16.png, provided by Esri with the Python Add-In Wizard.

Appendix C: Data source credits 275

\\EsriPress\GISTPython\Data\LocationGetPoint16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\Map1.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\Map16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\Map2.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\Map3.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\MapSheet.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\MapWithWrench16.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\NauticalClearScaleBand.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\NauticalSetScaleBand.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\OleanderTX.jpg, created by the author.

\\EsriPress\GISTPython\Data\OleanderTX.png, created by the author.

\\EsriPress\GISTPython\Data\print.png, provided by Esri with the Python Add-In Wizard.

\\EsriPress\GISTPython\Data\Tutorial 4-1.txt, created by the author.

\\EsriPress\GISTPython\Data\Tutorial 4-2.txt, created by the author.

\\EsriPress\GISTPython\Data\Tutorial 4-3.txt, created by the author.

\\EsriPress\GISTPython\Data\Tutorial 5-1.txt, created by the author.

\\EsriPress\GISTPython\Data\Tutorial 5-2.txt, created by the author.

\\EsriPress\GISTPython\Maps, all MXD files created by the author for use with tutorials and exercises.

\\EsriPress\GISTPython\MyExercises\Scratch\Temporary Storage.gdb\BufferTemplate, created by the author.

\\EsriPress\GISTPython\MyExercises\Scratch\Temporary Storage.gdb\SelectionBuffer, created by the author.

\\EsriPress\GISTPython\MyExercises\Scratch\Temporary Storage.gdb\SiteTemp, created by the author.

\\EsriPress\GISTPython\MyExercises\MyAnswers.gdb, created by the author.

\\EsriPress\GISTPython\MyExercises\BufferTemp.lyr, created by the author.

\\EsriPress\GISTPython\MyExercises\Property Value 2009.lyr, created by the author.

\\EsriPress\GISTPython\MyExercises\Property Value 2010.lyr, created by the author.

\\EsriPress\GISTPython\MyExercises\Property Value 2011.lyr, created by the author.

\\EsriPress\GISTPython\MyExercises\Property Value 2012.lyr, created by the author.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\Images\ElementCircle16.png, provided by Esri
with the Python Add-In Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\Images\ElementLine16.png, provided by Esri with
the Python Add-In Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\Images\ElementRectangle16.png, provided by Esri
with the Python Add-In Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\Images\LocationGetPoint16.png, provided by Esri
with the Python Add-In Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\Install\SelectFeatures.py, created by the author.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\config.xml, provided by Esri with the Python
Add-in Wizard.

file:///\\EsriPress\GISTPython\Maps,
file:///\\EsriPress\GISTPython\MyExercises\Scratch\Temporary
file:///\\EsriPress\GISTPython\MyExercises\Scratch\Temporary
file:///\\EsriPress\GISTPython\MyExercises\Scratch\Temporary
file:///\\EsriPress\GISTPython\MyExercises\
file:///\\EsriPress\GISTPython\MyExercises\BufferTemp.lyr
file:///\\EsriPress\GISTPython\MyExercises\Property%20Value%202009.lyr
file:///\\EsriPress\GISTPython\MyExercises\Property%20Value%202010.lyr
file:///\\EsriPress\GISTPython\MyExercises\Property%20Value%202011.lyr
file:///\\EsriPress\GISTPython\MyExercises\Property%20Value%202012.lyr
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\Images\ElementCircle16.png
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\Images\ElementLine16.png
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\Images\ElementRectangle16.png
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\Images\LocationGetPoint16.png
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\config.xml

276 Appendix C: Data source credits

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\config2.xml, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\makeaddin.py, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\README.txt, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\ResourceLinks.txt, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\SelectFeatures.esriaddin, created by the author.

\\EsriPress\GISTPython\Python Add-Ins\SelectFeatures\SelectFeaturesView.esriaddin, created by the author.

\\EsriPress\GISTPython\Python Add-Ins\SelectNCount\Images\Map1.png, provided by Esri with the Python
Add-In Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectNCount\Install\SelectNCount_addin.py, created by the author.

\\EsriPress\GISTPython\Python Add-Ins\SelectNCount\config.xml, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectNCount\makeaddin.py, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\SelectNCount\ReadMe.txt, provided by Esri with the Python
Add-in Wizard.

\\EsriPress\GISTPython\Python Add-Ins\addin-assistant.zip, provided by Esri with the Python Add-in
Wizard.

file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\config2.xml
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\ResourceLinks.txt
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\SelectFeatures.esriaddin
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectFeatures\SelectFeaturesView.esriaddin
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectNCount\Images\Map1.png
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectNCount\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectNCount\config.xml
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectNCount\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\SelectNCount\
file:///\\EsriPress\GISTPython\Python%20Add-Ins\addin-assistant.zip

eISBN: 9781589483972

GIS Tutorial for Python Scripting uses practical examples, exercises, and assignments to help
students develop proficiency using Python® in ArcGIS®. This workbook for Python scripting
builds upon previously acquired GIS skills and takes them to the next level with the use of
Python. Knowledge of Python—a key tool for scripting geoprocessing functions and tasks
in ArcGIS for Desktop—is expanded through hands-on programming geared to automating
GIS applications. Exercise data is provided, and instructor resources are available.

David W. Allen is the GIS manager for the City of Euless, Texas. He has taught at Tarrant County College since
1999, where he helped found one of the first GIS degree programs in Texas and establish a state standard
for GIS degree programs. He is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2013)
and Getting to Know ArcGIS ModelBuilder (Esri Press, 2011) and the co-author of GIS Tutorial 3: Advanced
Workbook (Esri Press, 2011).

G
IS

 T
u

t
o

r
ia

l f
o

r
 P

y
t
h

o
n

 S
c

r
ip

t
in

g

David W. Allen

for ArcGIS® 10.2ArcGIS®
10.2

Allen

	Cover
	Contents
	Preface
	Introduction
	Chapter 1 Using Python in labeling and field calculations
	Tutorial 1-1 Python introduction and formatting labels
	Tutorial 1-2 Decision making in the Label Expression dialog box
	Tutorial 1-3 Using Python in the Field Calculator
	Tutorial 1-4 Decision making in the Field Calculator
	Tutorial 1-5 Working with Python date formats

	Chapter 2 Writing stand-alone Python scripts
	Special introduction: Working with Python
	Tutorial 2-1 Creating describe objects
	Tutorial 2-2 Scripting geoprocessing tasks
	Tutorial 2-3 Coding for multiple geoprocessing tasks
	Tutorial 2-4 Using while statements
	Tutorial 2-5 Using lists and for statements
	Tutorial 2-6 Building script tools
	Tutorial 2-7 Using cursors
	Tutorial 2-8 Combining loops
	Tutorial 2-9 Creating custom toolbars

	Chapter 3 The ArcPy mapping module
	Tutorial 3-1 Accessing map document elements
	Tutorial 3-2 Controlling the map extent
	Tutorial 3-3 Creating a map series

	Chapter 4 Python toolboxes
	Tutorial 4-1 Creating a Python toolbox
	Tutorial 4-2 Setting up value validation
	Tutorial 4-3 Setting up dependencies

	Chapter 5 Python add-ins
	Special introduction: Python add-ins
	Tutorial 5-1 Creating a Python add-in application
	Tutorial 5-2 Using buttons and combo boxes
	Tutorial 5-3 Using tools to interact with the map

	Appendix A: Using an IDE for Python scripting
	Appendix B: Tool index
	Appendix C: Data source credits
	Back cover

