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Foreword

Social and medical researchers have long been concerned about the need

properly to model complex data structures, especially those where there is

a hierarchical structure such as pupils nested within schools or measurements

nested within individuals. Statisticians, especially those involved in survey

sampling, recognise that failure to take account of such structures in standard

models can lead to incorrect inferences. What has been less well appreciated is

that a failure to properly model complex data structures makes it impossible

to capture that complexity that exists in the real world. It is only in the last 20

years or so, when appropriate and efficient model-based methods have become

available to deal with this issue, that we have come to appreciate the power

that more complex models provide for describing the world and providing new

insights. This book sets out to present some of the most recent developments

in what has come to be known as multilevel modelling.

An introductory chapter by de Leeuw and Meijer gives a brief history and a

standard exposition of the basic multilevel model involving random coefficients

at level 2 and above, together with a discussion of some likelihood-based

estimation procedures. This is followed by a chapter by Draper that outlines

a Bayesian approach to modelling multilevel structures using the MCMC al-

gorithm, with a clear exposition of the rationale for such an approach and well

worked through examples. This is as good an introduction as any to Bayesian

analysis and MCMC estimation. The next chapter by Snijders and Berkhof

deals with the important issue of diagnostics for multilevel models. It takes

the reader carefully through the various model assumptions and how they

can be examined, for example, making use of model elaborations and residual

analysis. There is also a useful section on smoothing models. Moerbeek, van

Breukelen and Berger look at ways of optimally sampling units in multilevel

models. It includes clear examples for Normal and generalised linear models

with useful discussions of repeated measures and schooling designs. Rauden-

bush contributes a chapter where he looks at the inferential problems that
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can arise when, in a 2-level model, the number of level-1 units per level-2

unit is small. He gives some examples, such as matched pairs and cluster

randomised trials and explains how these can be interpreted and there is a

brief discussion of issues in generalised linear models. The chapter by Hedeker

deals in detail with discrete responses, either ordered or nominal. It has a clear

exposition with useful examples. Skrondal and Rabe-Hesketh discuss models

for longitudinal repeated measures data, including those with serial depen-

dency structures, for Normal and discrete responses. Well-motivated examples

are used for the exposition. Rasbash and Browne show how cross-classified

and multiple membership structures can be modelled. They provide examples

and a convincing exposition of why researchers should be looking beyond

mere hierarchies when analysing real-life data. Rodriguez looks at generalised

linear models with particular reference to survival data and gives a detailed

discussion of various estimation algorithms, together with a useful example.

Longford provides a chapter on missing data, where he describes the use of

the EM algorithm and random multiple imputation. Van der Leeden, Meijer

and Busing, in a comprehensive account, take a careful look at bootstrap and

jackknife procedures for studying bias and for obtaining valid standard errors

and confidence intervals in multilevel models. Finally, the du Toits present an

account of multilevel structural equation models with some useful examples

and detailed derivations.

The book covers a great number of important topics and there is a useful

amount of cross-referencing with a good number of worked examples. The

amount of methodological activity now underway is very impressive, and as

these become incorporated into software packages, they will hopefully per-

suade researchers to undertake data analysis that more closely reflects the

structure of real-world data than traditional methods assume. Most of the

developments discussed leave room for further work. As hardware becomes

more powerful, certain options will become more attractive. This is especially

the case with resampling methods such as the bootstrap, multiple imputation

and MCMC and these do seem to be where we may expect the most interesting

future developments. In particular, given what is happening more generally,

we should expect MCMC methods to become more and more prevalent. Not

only do they allow proper Bayesian inference, especially for small samples, as

emphasised by Draper, they also have great potential because of the modu-

larity of the algorithm steps. This is clearly demonstrated in the chapter by

Rasbash and Browne, where, as they point out, certain kinds of data simply

cannot be treated properly using maximum likelihood.

So, apart from the increasing adoption of MCMC methods, what might

be useful future directions for research? Several of these areas are described

in this volume. I would single out cross-classified and multiple membership

models that move us on from the consideration of simple hierarchies. It is

very rare in the real world to find structures that are purely hierarchical. In
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education, students will typically belong to a school hierarchy at the same

time as a neighbourhood hierarchy, both of which may influence the outcome

variable of interest. In addition students may move among neighbourhoods or

schools so that assignment to a single higher-level unit may be misleading and

lead to important biases. As Rasbash and Browne describe, many other areas

of the biological and social sciences have these structures and this provides

an exciting and fruitful challenge for multilevel techniques.

I would also emphasise missing data procedures with nonrandom missing-

ness, since problems such as nonresponse in surveys are becoming acute in

many places. As Longford suggests, the existence of additional or “auxiliary”

information in surveys can be especially useful in allowing the application of

existing missing data procedures to handle informative nonresponse.

We also need good diagnostic procedures to test the assumptions of our

models and more work here would be very useful, for example in testing the

validity of the standard assumption of multivariate Normality. It is particu-

larly important that these procedures are brought within existing modelling

packages so that their use is encouraged.

Likewise, another large area of interest is in latent variable models of

all kinds, including complex ones such as latent growth trajectory models.

The application of multilevel latent structure models with binary and ordered

responses is an important area for psychometrics where much current activ-

ity under the heading of item response modelling often ignores the inherent

hierarchical structures.

Despite the wide coverage of the topics that are dealt with, there are also

areas that are not so well covered in this book, which is inevitable in a rapidly

changing field.

Thus, measurement and misclassification errors, while mentioned briefly,

are not treated in depth, yet we know that ignoring them can have pro-

found effects on inferences. In educational and medical research, for example,

they abound and are often correlated, and we need research on both how to

estimate measurement error variances and covariances and misclassification

probabilities and then how to incorporate these estimates into our models.

Multivariate models are not as well covered as I would wish, since they

are becoming more extensively used. An interesting problem is where there

are multiple responses at more than one level together. Such models have

important applications to prediction problems, multi-process modelling and

multiple imputation. An example of the first case is where we have both re-

peated measures data on individuals and subsequent individual level measures

we wish to predict, as in growth studies. Likewise, in multi-process models

we may wish to jointly model, say, pupil responses together with teacher

or school level variates, for prediction or adjustment purposes, as well as

moving us towards better causal understandings. For imputation procedures

we often need jointly to model responses at several levels if these variables
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have missing values. Additionally, in all these cases our responses may be

mixtures of continuous and discrete variables, and this presents an additional

challenge.

Whilst all these methodological developments are exciting and important,

the methodological community still has the task of communicating them to

potential users. As with all new techniques this requires a combination of

clear exposition together with suitable software tools. Many of the authors of

chapters in this book have themselves provided such combinations, but more

is needed as the methodology advances. Nevertheless, we do need to be careful

that we are not promoting multilevel modelling as a kind of magic wand that

can transmute bad data into good or turn a poor design into a highly efficient

one. Sensitivity to assumptions and accessible ways of investigating those

assumptions are things we need continually to emphasise.

Finally, the editors are to be congratulated on bringing together a distin-

guished group of authors all of whom have interesting things to say. This

volume gives us an insight into much current research and will hopefully

attract others into this important area of activity.

November 2007 Harvey Goldstein

Professor of Social Statistics

University of Bristol
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1

Introduction to Multilevel Analysis

Jan de Leeuw1 and Erik Meijer2

1 Department of Statistics, University of California at Los Angeles
2 University of Groningen, Faculty of Economics and RAND Corporation

1.1 History

A common assumption in much of classical statistics is that observations are

independently and identically distributed (or i.i.d.). In regression analysis,

using the linear model, we cannot insist on identical distributions, because

observations differ in expected value, but we generally continue to insist on

independence. In fact, we continue to assume that the stochastic parts of the

model, i.e., the errors or disturbance terms, are still i.i.d.

In educational statistics, and in various areas of quantitative sociology,

researchers early on began looking for statistical techniques that could incor-

porate both information about individuals and information about groups to

which these individuals belonged. They realized that one of the most challeng-

ing aspects of their discipline was to integrate micro and macro information

into a single model. In particular, in the applications educational statisticians

had in mind, students are nested in classes, and classes are nested in schools.

And perhaps schools are nested in districts, and so on. We have predictors for

variables of all these levels, and the challenge is to combine all these predictors

into an appropriate statistical analysis, more specifically a regression analysis.

Previously, these problems had been approached by either aggregating

individual-level variables to the group level or disaggregating group-level vari-

ables to the individual level. It was clear that both these two strategies were

unpleasantly ad hoc and could introduce serious biases. Trying to integrate

the results of such analyses, for instance by using group-level variables in

individual-level regressions, was known as contextual analysis [9] or ecologi-

cal regression [42]. It resulted in much discussion about cross-level inference

and the possibility, or even the unavoidability, of committing an ecological

fallacy [104].
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In school effectiveness research, which became popular in the 1970s follow-

ing the epochal studies of Coleman et al. [22] and Jencks et al. [62], educational

researchers realized early on that taking group structure into account could

result in dependencies between the individual observations. Economists and

biostatisticians involved in agriculture and breeding had realized this earlier

and had designed variance and covariance component models for the Anal-

ysis of Variance. But in school effectiveness research a somewhat different

paradigm developed, which looked at dependencies in a more specific way.

The emphasis was on regression analysis and on data of two levels, let’s

say students and schools. Performing a regression analysis for each school

separately was not satisfactory, because often samples within schools were

small and regression coefficients were unstable. Also, these separate analyses

ignored the fact that all the schools were part of the same school system and

that, consequently, it was natural to suppose the regression coefficients would

be similar. This similarity should be used, in some way or another, to improve

stability of the regression coefficients by what became known as borrowing

strength. Finally, in large scale studies there were thousands of schools and

long lists of regression coefficients did not provide enough data reduction to

be useful.

On the other hand, requiring the regression coefficients in all schools to be

the same was generally seen as much too restrictive, because there were many

reasons why regressions within schools could be different. In some schools, test

scores were relatively important, while in others, socio-economic status was a

much more dominant predictor. Schools clearly differed in both average and

variance of school success. Of course, requiring regression coefficients to be

constant did provide a large amount of data reduction, and a small sampling

variance, but the feeling was that the resulting regression coefficients were

biased and not meaningful.

Thus, some intermediate form of analysis was needed, which did not result

in a single set of regression coefficients, but which also did not compute re-

gression coefficients separately for each school. This led naturally to the idea

of random coefficient models, but it left open the problem of combining pre-

dictors of different levels into a single technique. In the early 1980s, Burstein

and others came up with the idea of using the first-stage regression coeffi-

cients from the separate within-school regressions as dependent variables in a

second-stage regression on school-level predictors. But in this second stage, the

standard regression models that assumed independent observations could no

longer be used, mainly because they resulted in inefficient estimates of the re-

gression coefficients and biased estimates of their standard errors. Clearly, the

first-stage regression coefficients could have widely different standard errors,

because predictors could have very different distributions in different schools.

The size of the school, as well as the covariance of the predictors within schools,

determined the dispersions of the within-school regression coefficients. Typical
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of this stage in educational research are Langbein [71], Burstein et al. [15],

and Burstein [14]. Attempts were made to estimate the second-stage regression

coefficients by weighted least squares techniques, or to adjust in some other

way for the bias in the standard errors [11, 50, 118]. These attempts were

not entirely successful, because at the time the statistical aspects of these

two-stage techniques were somewhat baffling. A more extensive historical

overview of contextual analysis and Burstein’s slopes-as-outcomes research

is in de Leeuw and Kreft [28] and Kreft and de Leeuw [67].

It became clear, in the mid-1980s, that the models the educational re-

searchers were looking for had already been around for quite some time in

other areas of statistics. Under different names, to be sure, and usually in a

slightly different form. They were known either as mixed linear models [51] or,

in a Bayesian context, as hierarchical linear models [72]. The realization that

the problems of contextual analysis could be imbedded in this classical linear

model framework gave rise to what we now call multilevel analysis. Thus,

multilevel analysis can be defined as the marriage of contextual analysis and

traditional statistical mixed model theory.

In rapid succession the basic articles by Mason et al. [81], Aitkin and Long-

ford [2], de Leeuw and Kreft [28], Goldstein [44], and Raudenbush and Bryk

[100] appeared. All these articles were subsequently transformed into success-

ful textbooks [46, 67, 76, 101]. The two major research groups in educational

statistics led, respectively, by Goldstein and by Raudenbush produced and

maintained major software packages [97, 102]. These textbooks and software

packages, together with subsequent textbooks, such as Snijders and Bosker

[111] and Hox [59], solidified the definition and demarcation of the field of

multilevel analysis.

1.2 Application Areas

We have seen that multilevel analysis, at least as we have defined it, started in

the mid-1980s in educational measurement and sociology. But it became clear

quite rapidly that once you have discovered ways to deal with hierarchical data

structures, you see them everywhere. The notion of individuals, or any other

type of objects, that are naturally nested in groups, with membership in the

same group leading to a possible correlation between the individuals, turned

out to be very compelling in many disciplines. It generalizes the notion of

intraclass correlation to a regression context. Moreover, the notion of regress-

ing regression coefficients, or using slopes-as-outcomes, is an appealing way to

code interactions and to introduce a particular structure for the dependencies

within groups.
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Survey Data

Many surveys are not simple random samples from a relatively homogeneous

population, but are obtained from nested sampling in heterogeneous sub-

groups. Larger units (e.g., states) are drawn first; within these larger units,

smaller units (e.g., counties) are drawn next; and so forth. Large surveys

typically contain multiple levels of nesting. Sometimes, all units from a certain

level are included, as with stratification. See, e.g., Muthén and Satorra [84] for

some examples of the complicated sampling schemes used in survey design.

The reason for such a complicated nesting structure of surveys is, of course,

that it is assumed that the units are different in some respect. It is then natural

to model the heterogeneity between groups through multilevel models. See,

e.g., Skinner et al. [109] for a book-length discussion of many aspects of the

analysis of survey data.

Repeated Measures

In repeated measures models (including growth study models) we have mea-

surements on a number of individuals that are replicated at a number of

fixed time points. Usually there is only a single outcome variable, but the

generalization to multivariate outcomes is fairly straightforward. In addition,

it is not necessary that all individuals be measured at the same time points.

There can be missing data, or each individual can be measured at different

time points. The number of books and articles on the analysis of repeated

measures is rapidly approaching infinity, but in the context of multilevel anal-

ysis, the key publications are Strenio et al. [116] and Jennrich and Schluchter

[63]. Chapter 7 of this volume discusses models for longitudinal data. For an

extensive treatment of these longitudinal models in the more general context

of mixed linear models, we refer to Verbeke and Molenberghs [122].

A different type of “repeated measures” is obtained with conjoint choice or

stated preference data. With such data, subjects are asked to choose between

several hypothetical alternatives, e.g., different products or different modes

of transport, defined by a description of their alternatives. When subjects

are given more than one choice task, a multilevel structure is induced by

the repeated choices of the same individual. The corresponding models for

such data are usually more straightforward multilevel models than in the case

of longitudinal data, where problems such as dynamic dependence, causing

non-interchangeability of the observations, and attrition (selective dropout of

the sample) often have to be faced. See, e.g., Rouwendal and Meijer [105] for

a multilevel logistic regression (or mixed logit) analysis of stated preference

data. Similar data are common in experimental psychology, where multiple

experiments are performed with the same subjects.
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Twin Studies

In school-based attainment studies we often deal with a fairly small number

of rather large groups. But the opposite can also occur, either by the nature

of the problem or by design. We can decide to use only a small number of

students from each class. Or, in repeated measures studies, we can only have

two measurements per individual (a “before” and “after”, for instance, with a

treatment in between). Another “small groups” example is the twin study, in

which group size is typically two. See Chapter 5 for a discussion of this type

of data.

Meta-Analysis

Data, including historical data, are now much more accessible than in the

past. Many data sets are online or are included in some way or another with

published research. This makes it attractive to use previous data sets studying

the same scientific problem to get larger sample sizes and perhaps a larger

population to generalize to. Such (quantitative) analysis of data or results

from multiple previous studies is called meta-analysis. In Raudenbush and

Bryk [99], multilevel techniques specifically adapted to meta-analysis were

proposed. Compare also Raudenbush and Bryk [101, Chapter 7].

Multivariate Data

There is a clever way, used by Goldstein [46, Chapter 6], to fit general mul-

tivariate data into the multilevel framework. If we have n observations on m

variables, we can think of these m observations as nested in n groups with m

group members each. This amounts to thinking of the n×m data matrix as

a long vector with nm elements and then building the model with the usual

regression components and a suitable specification for the dispersion of the

within-group disturbances. It is quite easy to incorporate missing data into

this framework, because having data missing simply means having fewer obser-

vations in some of the groups. On the other hand, in standard multilevel mod-

els, parameters such as regression coefficients are the same for different obser-

vations within the same group, whereas in multivariate analysis, this is rarely

the case. Thus, writing the latter as a multilevel model requires some care.

1.3 Chapter Outline

In this first chapter of the Handbook we follow the general outline of de Leeuw

and Kreft [29]. After this introduction, we first discuss the statistical models

used in multilevel analysis, then we discuss the loss functions used to measure
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badness-of-fit, then the techniques used to minimize the loss functions, and,

finally, the computer programs written for these techniques. By using these

various steps in the development of multilevel statistical methods, it is easy

to discuss the contributions of various authors. It can be used, for instance,

to show that the most influential techniques in the field carefully discuss (and

implement) all these sequential steps in the framework. After a section on

sampling weights, we give an empirical illustration, in which much of the the-

ory discussed in this chapter will be applied. We close with a few final remarks

and appendixes that discuss notation and other useful technical background.

1.4 Models

A statistical model is a functional relationship between random variables. The

observed data are supposed to be a realization of these random variables, or

of a measurable function of these random variables. In most cases, random

variables are only partly specified because we merely assert that their distri-

bution belongs to some parametric family. In that case, the model is also only

partly specified, and one of the standard statistical chores is to estimate the

values of the unknown parameters.

In this section we discuss the multilevel model in the linear case in which

there are, at least initially, only two levels. Nonlinear and multivariate gener-

alizations will be discussed in later chapters of this handbook. We also relate

it to variance components and mixed models, which, as we have mentioned

above, have been around much longer.

Notation is explained in detail in Appendix 1.A. Our main conventions are

to underline random variables and to write vectors and matrices in boldface.

1.4.1 Mixed Models

The mixed linear model or MLM is written as

y = Xβ +Zδ + ǫ, (1.1)

with X[n, r], Z[n, p], and

(
ǫ

δ

)
∼ N

((
∅

∅

)
,

(
Σ ∅

∅ Ω

))
.

To simplify the notation, we suppose throughout this chapter that both X

and Z have full column rank.

The regression part of the model has a component with fixed regression

coefficients and a component with random regression coefficients. Clearly,

y ∼ N (Xβ,V ),
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with

V
∆
=ZΩZ′ +Σ. (1.2)

This illustrates the consequences of making regression coefficients random. We

see that the effects of the predictors in Z are shifted from the expected values

to the dispersions of the normal distribution. We also see that MLM is a linear

regression model with a very specific dispersion structure for the residuals. The

form of the dispersion matrix for the residuals in (1.2) is somewhat reminiscent

of the common factor analysis model [63], and this similarity can be used in

extending multilevel models to covariance structure and latent variable models

(see Chapter 12).

It is convenient to parametrize both dispersion matrices Σ and Ω using

vectors of parameters σ and ξ. From now on we actually assume that Σ

is scalar, i.e., Σ = σ2I. A scalar dispersion matrix means we assume the

disturbances ǫ are homoskedastic. This guarantees that if there are no random

effects, i.e., if δ is zero almost everywhere, then we recover the classical linear

model. We also parametrize Ω as a linear structure, i.e., a linear combination

of known matrices Cg. Thus,

Ω = ξ1C1 + · · ·+ ξGCG =
G∑

g=1

ξgCg, (1.3)

and, consequently, V also has linear structure

V = ξ1ZC1Z
′ + · · ·+ ξGZCGZ

′ + σ2I =
G∑

g=1

ξgZCgZ
′ + σ2I.

The leading example is obtained when Ω = (ωkl) is completely free, apart

from symmetry requirements. Then

Ω = ω11(e1e
′
1) + ω21(e2e

′
1 + e1e

′
2) + · · ·+ ωpp(epe

′
p),

with ek the k-th unit vector, i.e., the k-th column of I, {ξ1, . . . , ξG} =

{ω11, ω21, . . . , ωpp}, and {C1, . . . ,CG} = {e1e
′
1, e2e

′
1 + e1e

′
2, . . . ,epe

′
p}. An-

other typical example is a restricted version of this where ωkl is a given

constant (such as 0) for some values of (k, l). These two examples cover the

vast majority of specifications used in multilevel analysis.

In some cases it is useful to write models in scalar notation. Scalar notation

is, in a sense, more constructive because it is closer to actual implementation

on a computer. Also, it is useful for those who do not speak matrix algebra.

In this notation, (1.1) becomes, for example,

yi =

r∑

q=1

xiqβq +

p∑

s=1

zisδs + ǫi,
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or

yi = xi1β1 + · · ·+ xirβr + zi1δ1 + · · ·+ zipδp + ǫi.

A two-level MLM, which explicitly takes the group structure into account, is

given by

y
j

= Xjβ +Zjδj + ǫj , (1.4a)

with j = 1, . . . ,m, and

(
ǫj
δj

)
∼ N

((
∅

∅

)
,

(
Σj ∅

∅ Ωj

))
. (1.4b)

and, using ⊥ for independence,

(ǫj , δj) ⊥ (ǫℓ, δℓ) (1.4c)

for all j 6= ℓ.

As before, we assume that Σj = σ2
j I, while, in addition, we assume that

Ωj = Ω. Thus,

y
j
∼ N (Xjβ,Vj),

with

Vj
∆
=ZjΩZ

′
j + σ2

j I,

and the y
j

for different j are independent.

Observe that the assumption that the Xj and the Zj have full column

rank can be quite restrictive in this case, because we could be dealing with

many small groups (as in Chapter 5).

In most applications of multilevel analysis, it is assumed that all σ2
j are

the same, so σ2
j = σ2 for all j. This is not always a realistic assumption

and, therefore, most of our discussion will use separate variances. This has

its drawbacks as well, because, obviously, the number of parameters increases

with the number of groups in the sample. Thus, when the sample consists

of, say, 1000 schools, we would estimate 1000 variance parameters, which is

unattractive. Furthermore, consistent estimation of σ2
j requires group sizes

to diverge to infinity, and therefore in a practical sense, good estimators

of σ2
j would require moderate within-group sample sizes (e.g., nj = 30). In

applications with many small groups, this is obviously not the case.

We can view σ2
j = σ2 as a no-between-groups variation specification and

all σ2
j treated as separate parameters as a fixed effects specification. From

this, it seems that it would be in the spirit of multilevel analysis to treat σ2
j

as a random parameter, σ2
j , and use a specification like

log σ2
j = z′j,p+1γp+1 + δj,p+1,

with, say, δj,p+1 ∼ N (0, ωp+1,p+1), which may be correlated with the other

random terms. Such a specification is uncommon in multilevel analysis, but it
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would be particularly straightforward to incorporate in the Bayesian approach

to multilevel analysis (Chapter 2). In the Bayesian approach, it is more com-

mon to use Gamma or inverse Gamma distributions for variance parameters

though, but adaptation of this specification to such distributions is fairly easy.

We will not further discuss specification of σ2
j as random parameters in

this chapter, and treat σ2
j as separate parameters. For a specification with

σ2
j = σ2, most expressions are unaltered except for dropping the j subscript.

However, there are some instances where the differences are a little bit more

pronounced, e.g., in the derivatives of the loglikelihood functions. Then we

will indicate how the expressions change. Thus, we cover both specifications.

1.4.2 Random Coefficient Models

The random coefficient model or RCM is the model with

y = Xβ + ǫ,

β = β + δ,

with (
ǫ

δ

)
∼ N

((
∅

∅

)
,

(
Σ ∅

∅ Ω

))
.

Obviously, in an RCM we have

y = Xβ +Xδ + ǫ,

which shows that the RCM is an MLM in which Z = X.

The RCM in this form is not very useful, because without additional

assumptions, it is not identified. We give it in this form here to introduce

the notion of random coefficients and to prepare for the multilevel RCM.

The two-level RCM that has been studied most extensively looks like

y
j

= Xjβj + ǫj , (1.5a)

β
j

= β + δj , (1.5b)

with the same distributional assumptions as above for the two-level MLM.

Observe that the fixed part of β
j

is assumed to be the same for all groups.

This is necessary for identification of the model.

In this form the random coefficient model has been discussed in the econo-

metric literature, starting from Swamy [117]. It has also become more popular

in statistics as one form of the varying coefficient model, although this term

is mostly used for models with (partly) systematic or deterministic variation

of the coefficients, such as a deterministic function of time or some other

explanatory variable [54, 61].
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The fact that we are dealing with a two-level model here is perhaps clearer

if we use scalar notation. This gives

yij = xij1βj1 + · · ·+ xijpβjp + ǫij ,

β
js

= βjs + δjs.

An important subclass of the RCM is the random intercept model or RIM. It

is the same as RCM, except for the fact that we assume that all regression

coefficients that are not intercepts have no random component. Thus, all slopes

are fixed. For a two-level RIM, we consequently have, with some obvious

modifications of the notation,

y
j

= µ
j
1nj

+Xjβ + ǫj ,

µ
j

= µ+ δj .

There is an extensive discussion of RIMs, with many applications, in Longford

[76]. The econometric panel data literature also discusses this model exten-

sively; see, e.g., Chamberlain [18], Wooldridge [126, Chapter 10], Arellano [4,

Chapter 3], or Hsiao [60, Chapter 3]. Observe that for a RIM,

Vj = ω2E + σ2
j I,

where E has all its elements equal to +1. This is the well-known intraclass

covariance structure, with intraclass correlation

ρ2
j =

ω2

ω2 + σ2
j

.

1.4.3 Slopes-as-Outcomes Models

We are now getting close to what is usually called multilevel analysis. The

slopes-as-outcomes model or SOM is the model with

y = Xβ + ǫ,

β = Zγ + δ,

with X[n, p], Z[p, r], and

(
ǫ

δ

)
∼ N

((
∅

∅

)
,

(
Σ ∅

∅ Ω

))
.

The characteristic that is unique to this model, compared to others discussed

here, is that the random coefficients β are themselves dependent variables in

a second regression equation. Of course, in a SOM we have
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y = XZγ +Xδ + ǫ,

which shows that the SOM is an MLM in which the fixed regressors are

X = XZ and the random regressors are X.

The two-level SOM is

y
j

= Xjβj + ǫj , (1.6a)

β
j

= Zjγ + δj , (1.6b)

again with the same distributional assumptions. HereXj [nj , p] and Zj [p, r]. It

is possible, in principle, to have different numbers of predictors in the different

Xj , but we will ignore this possibility. The regression equations (1.6b) for the

random coefficients imply that differences between the regression coefficients

of different groups are partly explained by observed characteristics of the

groups. These equations are often of great substantive interest.

By substituting the second-level equations (1.6b) in the first-level equa-

tions (1.6a) and by stacking the resulting m equations, we find

y = Uγ +Xδ + ǫ,

with

U
∆
=



X1Z1

...

XmZm


 (1.7)

and with the remaining terms stacked in the same way, except X, which has

the direct sum form

X =
m⊕

j=1

Xj =



X1 ∅

. . .

∅ Xm


 .

Again, this shows that the two-level SOM is just an MLM with some special

structure. We analyze this structure in more detail below.

In the first place, the dispersion matrix of y has block-diagonal or direct-

sum structure:

y ∼ N
(
Uγ,

m⊕

j=1

Vj

)
,

with

Vj
∆
=XjΩjX

′
j + σ2

j I.

Second, the design matrix U in the fixed part has the structure (1.7). In fact,

there usually is even more structure than that. In the two-level SOM, we often

have
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Zj =

p⊕

s=1

z′j ; (1.8)

i.e., Zj is the direct sum of p row vectors, all equal to a vector z′j with q

elements. The vector zj describes group j in terms of q second-level variables.

More elaborately,

Zj =




z′j ∅ ∅ · · · ∅

∅ z′j ∅ · · · ∅

∅ ∅ z′j · · · ∅

...
...

...
. . .

...

∅ ∅ ∅ · · · z′j



.

This is easily generalized to direct sums of different vectors, even if they have

different numbers of elements. It follows that, if we partition γ accordingly

into p subvectors of length q, we have

E (β
js

) = z′jsγs.

Also

Uj = XjZj =
[
xj1z

′
j1 xj2z

′
j2 · · · xjpz

′
jp

]
,

where xjs is the s-th column of Xj . Thus, U is a block-matrix, consisting of

m by p blocks, and each block is of rank 1. Consequently, we say the U is a

block-rank-one matrix.

From the point of view of interpretation, each column of a block-rank-one

matrix is the product of a first-level predictor from X and a second-level

predictor from Z. Because generally both X and Z include an intercept, i.e.,

a column with all elements equal to 1, this means that the columns of X and

Z themselves also occur in U , with Z disaggregated. Thus, SOM models have

predictors with fixed regression coefficients that are interactions, and much

of the classical literature on interaction in the linear model, such as Cox [23]

and Aiken and West [1], applies to these models as well.

There is one additional consequence of the structure (1.8). We can write

[Uγ]ij =

p∑

s=1

xijsz
′
jγs =

p∑

s=1

q∑

v=1

xijsγsvzjv.

Now define the balanced case of SOM, in which allXj are the same. This seems

very far fetched if we are thinking of students in classes, but it is actually quite

natural for repeated measures. There X could be a basis of growth functions,

such as polynomials or exponentials. If measurements are made at the same

time points, then indeed all Xj are the same. Other situations in which this

may happen are medical or biological experiments, in which dosages of drugs

or other treatment variables could be the same, or psychological experiments,

in which the stimuli presented to all participants are the same.
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In the balanced case, we can rearrange SOM as

Y = ZΓX ′ +∆X ′ +E,

where the (j, i)-th element of Y is yij , the j-th row of Z is z′j , the j-th row

of ∆ is δ′j , the s-th column of Γ is γs, and the meaning of the other symbols

follows. Thus, the rows are independent. This shows that SOM in this case is

a random coefficient version of the classical growth curve model of Potthoff

and Roy [91]. Conversely, SOM can be seen as a far-reaching generalization

of these classical fixed-effect growth models.

1.4.4 Multilevel Models

Most of the classical multilevel literature, with its origins in education and

sociology, deals with the SOM. But in more recent literature, multilevel

analysis can refer to more general Hierarchical Linear Models or HLMs, of

which the two-level MLM (1.4) and the two-level RCM (1.5) are examples. A

good example of this more general use, which we also follow throughout the

Handbook, is the discussion in Gelman [40].

1.4.5 Generalizations

We shall be very brief about the various generalizations of the multilevel

model, because most of these are discussed extensively in the subsequent

chapters of this Handbook.

Heteroskedasticity and Conditional Intragroup Dependence

Heteroskedasticity is the phenomenon that residual variances are different

for different units. More specifically, it usually means that the variance of the

residual depends in some way on the explanatory variables. Heteroskedasticity

is a frequently occurring phenomenon in cross-sectional data analysis (and

some forms of time series analysis, in particular financial time series). There-

fore, we may expect that heteroskedasticity will also be prevalent in many

multilevel data analyses. This is indeed the case. In fact, heteroskedasticity

is an explicit part of most multilevel models. For example, in the model that

we focus on, the covariance matrix of the dependent variables for the j-th

group, y
j
, is Vj = XjΩX

′
j + σ2

j I. Clearly, this depends on Xj , so if Xj

contains more than just the constant and the corresponding elements ofΩ are

not restricted to zero, this induces heteroskedasticity. Furthermore, allowing

different residual variances σ2
j is also a form of heteroskedasticity.

However, in this specification, the residual variances within the same group

are the same, i.e., Var(ǫij) = σ2
j , which is the same for all i. Thus, there is
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heteroskedasticity between groups, but not within groups. This may be unreal-

istic in many applications. In such cases, one may want to specify an extended

model that explicitly includes within-groups heteroskedasticity. Such a model,

and how it can be used to detect heteroskedasticity and thus misspecification

of the random part of the model, is described in Chapter 3.

Another widespread phenomenon is lack of independence of observations.

Again, this is one of the features of a typical multilevel model: It is assumed

that observations within groups are dependent. This gives rise to the well-

known intraclass correlation. As we have seen, this is modeled in a typi-

cal multilevel model through the random coefficients and, more specifically,

through the random terms δj in our model specification. However, again this

feature does not extend to conditional within-groups comparisons. The units

are assumed conditionally independent within their groups, reflected in the

diagonality of the covariance matrix of ǫj . This assumption may also not

always be realistic. The leading example in which it is likely to be violated

is in longitudinal (or panel) data, where the within-groups observations are

different observations of the same subject (or object) over time. In such data,

residuals often show considerable autocorrelation; i.e., there is a high correla-

tion between residuals that are not far apart. This phenomenon, and how it

can be modeled, is discussed extensively in Chapter 7. A similar situation is

encountered with spatial data, such as data on geographic regions. Then there

tends to be spatial autocorrelation; i.e., neighboring regions are “more similar”

than regions further apart. See, e.g., Anselin [3] for an overview of modeling

spatial autocorrelation. This type of model was integrated in a multilevel

model with random coefficients by Elhorst and Zeilstra [37].

More Levels and Different Dependence Structures

Slopes-as-outcomes models can be generalized quite easily to more than two

levels. One problem is, however, that matrix notation does not work any

more. Switching to scalar notation, we indicate how to generalize by giving

the multi-level model for student i1 in class i2 in school i3, and so on. For a

model with L levels, it is

β
(v)
iv,...,iv+L−1

=

p
(v)
L+1,...,v+L−1∑

iv+L=1

x
(v)
iv,...,iv+L

β
(v+1)
iv+1,...,iv+L

+ ǫ
(v)
iv,...,iv+L−1

,

where superscripts in parentheses indicate the level of the variable. In order to

complete the model, we have to assume something about the boundary cases.

For level v = 1, βi1,...,iL is what we previously wrote as yij for a two-level

model, i.e., the value of the outcome for student ij. For the highest level

(L+ 1), the random coefficients are set to fixed constants, because otherwise
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we would have to go on making further specifications. Although the notation

becomes somewhat unwieldy, the idea is simple enough.

Other types of different dependence structures are cross-classifications and

multiple membership classifications. In the former, an observation is nested

in two or more higher-level units, but these higher-level units are not nested

within each other. An example is a sample of individuals who are nested within

the primary schools and secondary schools that they attended, but not all

students from a primary school necessarily attended the same secondary school

or vice versa. Multiple membership classifications occur when observations

are nested within multiple higher-level units of the same type. For example,

patients can be treated by several nurses. These two types of dependency

structure are discussed at length in Chapter 8. The notation that is used in

that chapter can also be applied to “ordinary” (i.e., nested) multiple-level

models, somewhat reducing the unwieldiness mentioned above.

Nonlinear Mixed Models

Nonlinear mixed models come in two flavors. And of course, these nonlinear

generalizations specialize in the obvious way to random coefficient and slopes-

as-outcomes models.

First, we have nonlinear mixed models in which the linear combinations

of the predictors are replaced by nonlinear parametric functions, both for

the fixed part and the random part. An obvious variation, to reduce the

complexity, is to use a nonlinear combination of linear combinations. These

nonlinear mixed models are usually fitted with typical nonlinear regression

techniques; i.e., we linearize the model around the current estimate and then

use linear multilevel techniques. For details we refer to Pinheiro and Bates

[89]. Detection and nonparametric modeling of nonlinearities in the fixed part

of the model is discussed in more detail in Chapter 3.

Second, we have generalized linear mixed models. In the same way as the

generalized linear model extends the linear model, the generalized linear mixed

model extends the mixed linear model. The basic trick is (in the two-level case)

to condition on the random effects and to assume a generalized linear model for

the conditional distribution of the outcomes. Then the full model is obtained

by multiplying the conditional density by the marginal density of the random

effects and integrating. This is, of course, easier said than done, because the

high-dimensional integrals that are involved cannot be evaluated in closed

form. Thus, sophisticated approximations and algorithms are needed. These

are discussed in many of the subsequent chapters, in particular Chapters 2,

5, and 9.

The leading case of applications of nonlinear models is the modeling of

nominal and ordinal categorical dependent variables. Several competing spec-
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ifications exist, and each has its advantages and disadvantages. These are

discussed and compared in detail in Chapter 6.

Multivariate Models, Endogeneity, Measurement Errors, and

Latent Variables

In this chapter, we focus on models with one dependent variable, called y,

and explanatory variables (generically called x and z) that are assumed to be

fixed constants. Instead of the latter, we can also assume that the explanatory

variables are strictly exogenous random variables and then do our analysis

conditionally on their realizations. This does not change the treatment, the

results, or the notation.

In fact, most of the multilevel literature is based on a similar setup, so

in that sense this chapter reflects the mainstream of multilevel analysis. In

many practical situations, however, this setup is not sufficient, or even clearly

incorrect, and extensions or modifications are needed. Here, we briefly mention

a few such topics that are somewhat related.

Of these, multiple dependent variables are often most easily accommo-

dated. In most situations, one can simply estimate the models for each of these

dependent variables separately. If the different equations do not share any

parameters and the dependent variable of one equation does not enter another

as explanatory variable, this should be sufficient. Also, as mentioned earlier,

multivariate models can be viewed as univariate models with an additional

level and thus be estimated within a relatively standard multilevel modeling

setup.

Endogeneity is the situation where (at least) one of the explanatory vari-

ables in a regression equation is a random variable that is correlated with

the error term in the equation of interest. Statistically, this leads to biased

and inconsistent estimators. Substantively, this is often the result of one or

more unobserved variables that influence both the explanatory variable and

the dependent variable in the equation. If it is only considered a statistical

nuisance, consistent estimators can usually be obtained by using some form

of instrumental variables method [e.g., 126], which has been developed for

multilevel analysis by Kim and Frees [65]. In many cases, however, it is of some

substantive interest to model the dependence more extensively. Examples of

such models are especially abundant in longitudinal situations. Chapter 7

discusses these in detail.

A special source of endogeneity that occurs frequently in the social sciences

is measurement error in an explanatory variable. Almost all psychological test

scores can be considered as, at best, imperfect measures of some concept that

one tries to measure. A notorious example from economics is income. Let us

assume that true (log) consumption c∗ of a household depends on true (log)

household income y∗ through a simple linear regression equation, but the
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measurements c and y of consumption and income are only crude estimates.

In formulas,

c∗ = β1 + β2y
∗ + ǫ,

c = c∗ + v,

y = y∗ + w,

where we assume that the error terms ǫ, v, and w are all mutually indepen-

dent and independent of y∗, and we have omitted the indices denoting the

observations. We can write the model in terms of the observed variables as

c = β1 + β2y + u,

where u = ǫ + v − β2w. Because w is part of both the explanatory variable

y and the error term u, these two are correlated and thus we have the en-

dogeneity problem. An extensive general treatment of measurement error, its

statistical consequences, and how to obtain suitable estimators, is given by

Wansbeek and Meijer [123]. Goldstein [46, Chapter 13] discusses the handling

of measurement errors in multilevel models.

Models that include measurement errors explicitly are a subset of latent

variable models. Latent variable models typically specify a relationship be-

tween substantive concepts, the structural model, and a relationship between

these concepts and the observed variables (the indicators), which is the mea-

surement model. The concepts may be fairly concrete, like income above,

but may also be highly abstract theoretical concepts, like personality traits.

Most latent variable models are members of the class of structural equation

models. Because of the flexibility in selecting (multiple) observed variables

to analyze and the flexibility in defining latent variables, structural equation

models encompass a huge class of models. In particular, multivariate models,

endogeneity, measurement errors, and latent variables can all be combined into

a single structural equation model. Structural equation models for multilevel

data are described extensively in Chapter 12.

Nonnormality

It is customary to specify normal distributions for the random terms in a

multilevel model. A normality assumption for error terms can typically be

defended by arguing that the error term captures many small unobserved influ-

ences, and a central limit theorem then implies that it should be approximately

normally distributed. However, normality of random coefficients is often not

at all logical. Empirically, in effectiveness studies of schools, hospitals, etc.,

we might find that many perform “average”, whereas there are a few that

perform exceptionally well or exceptionally poor. Such a pattern would suggest
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a distribution with heavy tails or a mixture distribution. Moreover, the normal

distribution has positive density for both positive and negative values, whereas

in many cases, theory or common sense (which often coincide) says that a

coefficient should have a specific sign. For example, in economics, a higher

price should decrease (indirect) utility, and in education, higher intelligence

should lead to higher scores on school tests.

In economics, marketing, and transportation, the lognormal distribution

has been proposed as a convenient alternative distribution for random coeffi-

cients in discrete choice models, perhaps after changing the sign of the explana-

tory variable. Meijer and Rouwendal [83] discuss this literature and compare

normal, lognormal, and Gamma distributions, as well as a nonparametric

alternative. In their travel preference data, lognormal and Gamma clearly

outperform normal and nonparametric, on the basis of fit and interpretability.

Chapter 7 further discusses the nonparametric maximum likelihood estimator.

For linear multilevel models, it is fairly straightforward that all the usual

estimators are still consistent if the random terms are nonnormally distributed

[121]. The standard errors of the fixed coefficients are still correct under

nonnormality, but standard errors of the variance parameters must be ad-

justed. This can be done by using a robust covariance matrix, which will be

discussed in Section 1.6.3 below, or by using resampling techniques specifically

developed for multilevel data (see Chapter 11).

Estimators of nonlinear multilevel analysis models are inconsistent if the

distribution of the random coefficients is misspecified. Robust covariance ma-

trices and resampling can give asymptotically correct variability estimators,

but it may be questionable whether these are useful if it is unclear whether

the estimators of the model parameters are meaningful under gross misspeci-

fication of the distributions.

An interesting logical consequence of the line of reasoning that leads to

nonnormal distributions is that it also suggests that in cases where the co-

efficient should have a specific sign, the functional form of the level-2 model

should also change. For example, if a level-1 random coefficient β should be

positive, then a specification β = z′γ + δ, even with nonnormal δ, may be

problematic, and a specification

log β = z′γ + δ

may make more sense, where now there is nothing wrong with a normal δ, be-

cause it induces a lognormal β. Remarkably, with this specification, although

both level-1 and level-2 submodels are linear in parameters, the combined

model is not.
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1.5 Loss Functions

Loss functions are used in statistics to measure the badness-of-fit of the model

and the given data. In most circumstances, they measure the distance between

the observed and the expected values of appropriately chosen statistics such as

the means, the dispersions, or the distribution functions. It is quite common in

the multilevel literature to concentrate exclusively on the likelihood function

or, in a Bayesian context, the posterior density function. We will pay more

attention than usual to least squares loss functions, both for historical and

didactic reasons.

1.5.1 Least Squares

A general least squares loss function for the multilevel problem (in particular,

the SOM) is of the form

ρ(γ) =
m∑

j=1

(yj −XjZjγ)′A−1
j (yj −XjZjγ), (1.9)

where the weight matrices Aj are supposed to be known (not estimated).

There is a simple trick that can be used to simplify the computations, and

to give additional insight into the structure of the loss function. Define the

regression coefficients

bj = (X ′
jA

−1
j Xj)

−1X ′
jA

−1
j yj

and the residuals

rj = yj −Xjbj .

Then yj = Xjbj + rj , and X ′
jA

−1
j rj = ∅. Now, for group j,

ρj(γ) = (bj −Zjγ)′X ′
jA

−1
j Xj(bj −Zjγ) + r′jA

−1
j rj . (1.10)

This expression of the loss function is considerably more convenient than (1.9),

because it involves smaller vectors and matrices.

If we choose Aj of the form Vj = XjΩX
′
j + σ2

j I, again with Ω and σ2
j

assumed known, then we can simplify the loss function some more, using the

matrix results in Appendix 1.C. Let Pj
∆
=Xj(X

′
jXj)

−1X ′
j , and Qj

∆
= I − Pj .

We will also write, in the sequel,

Wj
∆
=Ω + σ2

j (X
′
jXj)

−1.

Observe that if bj
∆
= (X ′

jXj)
−1X ′

jyj , then Wj is the dispersion of bj . Ac-

cordingly, from now on we redefine bj
∆
=(X ′

jXj)
−1X ′

jyj and rj
∆
=yj −Xjbj ,

regardless of the definition of Aj .
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From Theorem 1.2 in the appendix,

V −1
j = Xj(X

′
jXj)

−1W−1
j (X ′

jXj)
−1X ′

j + σ−2
j Qj , (1.11)

and thus

r′jV
−1
j rj = σ−2

j r′jrj = (nj − p)s2j/σ2
j

and

X ′
jV

−1
j Xj = W−1

j .

Hence,

ρj(γ) = (bj −Zjγ)′W−1
j (bj −Zjγ) + (nj − p)s2j/σ2

j . (1.12)

Computing least squares loss in this way is even more efficient than us-

ing (1.10).

1.5.2 Full Information Maximum Likelihood (FIML)

The least squares approach supposes that the weight matrix is known, but,

of course, in a more general case the weight function will depend on some

unknown parameters that have to be estimated from the same data as the

regression coefficients. In that case, we need a loss function that not only

measures how close the fitted regression coefficients are to their expected

values, but also measures, at the same time, how well the fitted dispersion

matrices correspond with the dispersion of the residuals. For this we use the

log-likelihood.

As is well known, the method of maximum likelihood has a special position

in statistics, especially in applied statistics. Maximum likelihood estimators

are introduced as if they are by definition optimal, in all situations. Another

peculiarity of the literature is that maximum likelihood methods are intro-

duced by assuming a specific probability model, which is often quite obviously

false in the situations one has in mind. In our context, this means that typically

it is assumed that the disturbances, and thus the observed y, are realizations

of jointly normal random variables. Of course, such an assumption is highly

debatable in many educational research situations, and quite absurd in others.

Consequently, we take a somewhat different position. Least squares esti-

mates are obtained by minimizing a given loss function. Afterward, we derive

their properties and we discover that they behave nicely in some situations.

We approach multinormal maximum likelihood in a similar way. The estimates

are defined as those values of γ, Ω, and {σ2
j } that minimize the loss function

LF (γ,Ω, {σ2
j })

∆
= log |V |+ (y −Uγ)′V −1(y −Uγ). (1.13)

This loss function, which is the negative logarithm of the likelihood function

(except for irrelevant constants), is often called the deviance. The important
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fact here is not that we assume multivariate normality but that (1.13) defines

quite a natural loss function. It measures closeness of y to Uγ by weighted

least squares, and it measures at the same time closeness of R(γ)
∆
= (y −

Uγ)(y −Uγ)′ to V .

This last property may not be immediately apparent from the form

of (1.13). It follows from the inequality log |A| + trA−1B ≥ log |B| + m,

which is true for all pairs of positive definite matrices of order m. We have

equality if and only if A = B. Thus, in our context, log |V | + trV −1R(γ)

measures the distance between V and the residuals R(γ). We want to make

residuals small, and we want the dispersion to be maximally similar to the

dispersion of the residuals. Moreover, we want to combine these two objectives

in a single loss function.

To find simpler expressions for the inverse and the determinant in (1.13),

we use the matrix results in Appendix 1.C, in the same way as they were used

in Section 1.5.1. From Theorem 1.1 in the appendix,

log |Vj | = (nj − p) log σ2
j + log |X ′

jXj |+ log |Wj |.

If we combine this with result (1.12), we find for group j, ignoring terms that

do not depend on the parameters,

LFj (γ,Ω, σ2
j ) = (nj − p)

(
log σ2

j + s2j/σ
2
j

)
+ log |Wj |
+ (bj −Zjγ)′W−1

j (bj −Zjγ).

To distinguish the resulting estimators explicitly from the REML estimators

below, these ML estimators are called full information maximum likelihood

(FIML) in this chapter.

1.5.3 Residual Maximum Likelihood (REML)

In the simplest possible linear model yi = µ + ǫi, with ǫi
iid∼ N (0, σ2), the

maximum likelihood estimator of µ is the mean and that of σ2 is the sum

of squares around the mean, divided by the number of observations n. This

estimate of the variance is biased and, as a consequence, the sample variance

is usually defined by dividing the sum of squares by n−1. The same reasoning,

adjusting for bias, in the linear regression model leads to dividing the residual

sum of squares by n− s, where s is the number of predictors.

We can also arrive at these bias adjustments in a slightly different way,

which allows us to continue to use the log-likelihood. Suppose we compute

the likelihood of the deviations of the mean, or in the more general case the

likelihood of the observed regression residuals. These residuals have a singular

multivariate normal distribution, and the maximum likelihood estimate of

the variance turns out to be precisely the bias-adjusted estimate. Thus, in
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these simple cases, residual maximum likelihood (REML; also frequently called

restricted maximum likelihood) estimates can actually be computed from full

information maximum likelihood estimates by a simple multiplicative bias

adjustment.

In multilevel models, or more generally in MLMs, bias adjustment is not

that easy, but we can continue to use the same reasoning as in the simpler

cases and then expect to get an estimator with smaller bias. Let us start with

the MLM y = Uγ +Xδ + ǫ. Suppose U is n × s and of full column rank.

Also suppose K is any orthonormal basis for the orthogonal complement of

the column space of U ; i.e., K is an n × (n − s) matrix with K ′K = I

and K ′U = ∅. Then define the residuals r
∆
=K ′y ∼ N (∅,K ′V K). Thus, the

negative loglikelihood or deviance of a realization of r is, ignoring the usual

constants,

LR(Ω, {σ2
j }) = log |K ′V K|+ r′(K ′V K)−1r.

Observe that this is no longer a function of γ. Thus, we cannot compute max-

imum likelihood estimates of the fixed regression coefficients by minimizing

this loss function.

Now use Theorem 1.3 from Appendix 1.C, which shows that

r′(K ′V K)−1r = min
γ

(y −Uγ)′V −1(y −Uγ).

Harville [52] shows that

log |K ′V K| = log |V |+ log |U ′V −1U | − log |U ′U |

and, consequently, except for irrelevant constants,

LR(Ω, {σ2
j }) = log |U ′V −1U |+ min

γ
LF (γ,Ω, {σ2

j }).

It follows that the loss functions for FIML and REML only differ by the term

log |U ′V −1U |, which can be thought of as a bias correction. In SOM, we can

use

U ′V −1U =
m∑

j=1

Z ′
jW

−1
j Zj ,

and, if (1.8) applies, then

U ′V −1U =
m∑

j=1

W−1
j � zjz

′
j .

1.5.4 Bayesian Multilevel Analysis

In the Bayesian approach to multilevel analysis, the parameters are treated

as random variables, so in our notation they would be written as γ, Ω, and
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{σ2
j}, jointly denoted as θ. Then a prior distribution for θ is specified, which

is completely known. The parameters of this prior distribution are called

hyperparameters and their values reflect the state of knowledge about θ.

In the absence of prior knowledge, this typically means that variances of

the parameters are chosen to be infinite or at least very large. Given the

specification of the prior distribution, the posterior distribution of θ, given

the observed sample, is found by application of Bayes’ theorem:

p(θ | y) =
f(y | θ)π(θ)

f(y)
= Cf(y | θ)π(θ),

where p(θ | y) is the posterior density, π(θ) is the specified prior density,

f(y | θ) is the conditional normal density that we have been using all along

(which is equal to the likelihood function), and C is a normalizing constant

that does not depend on θ. An explicit expression for C is rarely needed.

The posterior density contains all information about θ; all inferences about

θ are derived from it. It combines the prior information and the information

contained in the sample in a sound (and optimal) way.

From this description, it appears that the Bayesian approach does not

fit into our framework of specifying a loss function and then optimizing it.

However, in the Bayesian approach, it is common to use the posterior mode

or posterior mean as an “estimator” and to compute intervals that contain

100(1 − α)% (e.g., 95%) of the probability mass, which act as a kind of

“confidence interval”. The posterior mean µ̂g of parameter g is the argument

for which the loss function E [(θg − µg)
2], where the expectation is taken

over the posterior distribution, attains its minimum, whereas the posterior

mode θ̂M is by definition the value for which the posterior density p(θ | y)

attains its maximum or, equivalently, the loss function −p(θ | y) attains its

minimum. Both are very natural loss functions and, thus, in this way the

Bayesian approach neatly fits within our framework. An important advantage

of the Bayesian “confidence intervals”, especially for the variance parameters,

is that they may be asymmetric, reflecting a nonnormal posterior distribution.

This is often more realistic for the variance parameters in small to moderate

samples.

An important reason for the increasing popularity of the Bayesian ap-

proach is that it is able to deal with nonlinear models in a fairly straightfor-

ward way, using Markov chain Monte Carlo (MCMC) techniques. This gives

good results where non-Bayesian approaches often have great difficulty in ob-

taining good estimators. Chapter 2 is an extensive discussion of the Bayesian

approach, and in several other chapters, especially those dealing with non-

linear models, it is also discussed, applied, and compared to likelihood-based

approaches. Therefore, we will not discuss it in more detail in this chapter.
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1.5.5 Missing Data

It is implicit in the discussion thus far that we have assumed that there are no

missing data. In practice, the fact that there are missing data is a widespread

phenomenon and often a problem. We can distinguish between unit nonre-

sponse, in which no information is available for a targeted observation, and

item nonresponse, where information is available for some variables but not

for others. If we assume that unit nonresponse is not related to any of the

random variables (δ, ǫ) of interest for the missing unit, we can simply proceed

by analyzing the observed data set. If it is suspected that unit nonresponse

leads to distortions, weighting can be applied (and is often applied) to let

the sample distribution of some key variables match the (assumed known)

population distribution. See Section 1.8 below for a discussion of sampling

weights in multilevel models.

With item nonresponse, the simplest and most frequently applied solution

is to simply omit all observations for which one or more variables are missing

(listwise deletion). Although widely used, it is generally considered a bad

method. It omits useful information and thus gives inefficient estimators. Even

more importantly, it may easily lead to biases in the analyses, if the missing

data patterns are related to the variables of interest. Chapter 10 extensively

discusses how missing data can be treated in a sound and systematic way.

1.6 Techniques and Algorithms

If we have a loss function, then the obvious associated technique to estimate

parameters is to minimize the loss function. Of course, for nonlinear opti-

mization problems there are many different minimization methods. Some are

general-purpose optimization methods that can be applied to any multivariate

function, and some take the properties of the loss function explicitly into

account.

1.6.1 Ordinary and Weighted Least Squares

As we have see in a previous section, the SOM model can be expressed in two

steps, as in

y
j

= Xjβj + ǫj , (1.14a)

β
j

= Zjγ + δj , (1.14b)

or in a single-step, as in

y
j

= XjZjγ +Xjδj + ǫj . (1.15)
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The one-step (1.15) and the two-step (1.14) specifications of the multilevel

model suggest two different ordinary least squares methods for fitting the

model. This was already discussed in detail by Boyd and Iversen [11]. We

follow the treatment of de Leeuw and Kreft [28].

The two-step method first estimates the βj by

bj = (X ′
jXj)

−1X ′
jyj , (1.16)

and then γ by

γ̂ =

(
m∑

j=1

Z ′
jZj

)−1 m∑

j=1

Z ′
jbj . (1.17)

Within the framework of Section 1.5.1, this is obtained by choosing Aj =

XjX
′
j +Qj , so that A−1

j = Xj(X
′
jXj)

−2X ′
j +Qj .

The one-step method estimates γ directly from (1.15) as

γ̂ =

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1 m∑

j=1

Z ′
jX

′
jyj .

By using (1.16), we see immediately, however, that the one-step method can

also be written as

γ̂ =

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1 m∑

j=1

Z ′
jX

′
jXjbj . (1.18)

Thus, the one-step estimate can be computed in two steps as well. Within

the framework of Section 1.5.1, the one-step estimate is obtained by choosing

Aj = I.

Both methods provide unbiased estimators of γ, they are non-iterative,

and they are easy to implement. An expression for their dispersion matrices

is easily obtained by using Cov(bj) = Wj , which was obtained above. Hence,

the dispersion matrix of the two-step estimator is

(
m∑

j=1

Z ′
jZj

)−1( m∑

j=1

Z ′
jWjZj

)(
m∑

j=1

Z ′
jZj

)−1

and the dispersion matrix of the one-step estimator is

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1( m∑

j=1

Z ′
jX

′
jXjWjX

′
jXjZj

)(
m∑

j=1

Z ′
jX

′
jXjZj

)−1

.

Despite their virtues, these least squares estimators have fallen into disgrace in

the mainstream multilevel world, because they are neither BLUE nor BLUP
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[43, 103]. This is somewhat supported by the simulations reported (for a

three-level model) in Cheong et al. [21], where especially for level-1 covariates

efficiencies of ML estimators are substantially higher (up to 55%). The one-

step OLS estimator still enjoys a great popularity in economics, though.

The next candidate that comes to mind applies if both Ω and {σ2
j } are

known. We can then compute the WLS estimate

γ̂ =

(
m∑

j=1

Z ′
jX

′
jV

−1
j XjZj

)−1 m∑

j=1

Z ′
jX

′
jV

−1
j yj . (1.19)

As we have seen, this can be simplified to

γ̂ =

(
m∑

j=1

Z ′
jW

−1
j Zj

)−1 m∑

j=1

Z ′
jW

−1
j bj . (1.20)

Within the framework of Section 1.5.1, the WLS estimate is obtained by

choosing Aj = Vj . The dispersion matrix of the WLS estimator is obtained

analogously to the ones above, and in this case it simplifies to

(
m∑

j=1

Z ′
jW

−1
j Zj

)−1

.

The formal similarity of (1.17), (1.18), and (1.20) is clear. They can all be

thought of as two-step methods, which first compute the bj and then do a

weighted regression of the bj on the Zj . Of course, (1.20) is mostly useless by

itself, because we do not know what σ2
j andΩ are, but we can insert consistent

estimators of these instead. A method to compute consistent estimators of the

elements of the variance parameters from the OLS residuals is discussed in de

Leeuw and Kreft [28], and is also discussed below. The resulting method for

estimating γ is fully efficient and non-iterative.

For WLS estimators with estimators of the variance parameters inserted,

the exact covariance matrix generally cannot be computed. However, it follows

from standard large sample theory (Slutsky’s theorem; see, e.g., Ferguson [38]

or Wansbeek and Meijer [123, pp. 369–370]) that if the estimators of Ω and

σ2
j are consistent, then the asymptotic distribution of the WLS estimator of

γ is the same as the (asymptotic) distribution of the hypothetical estimator

(1.20) that uses the true values of Ω and σ2
j in the weight matrix, so we can

still use the covariance matrix given above, especially with larger sample sizes.

The BLUE and the BLUP

Consider the model y ∼ N (Uγ,V ). A linear estimator of the form γ̂ = L′y

is unbiased if L′U = I, and it has dispersion L′V L. The dispersion matrix
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is minimized, in the Löwner [77] ordering of matrices (i.e., A ≥ B if A −B
is positive semidefinite), by choosing L = V −1U(U ′V −1U)−1. Thus,

γ̂ = (U ′V −1U)−1U ′V −1y

is the best linear unbiased estimator or BLUE. In the SOM,

U ′V −1U =
m∑

j=1

Z ′
jW

−1
j Zj

and

U ′V −1y =
m∑

j=1

Z ′
jW

−1
j bj .

Thus, the BLUE is given by (1.20).

We can also look at estimates of the error components. Of course, this

means we are estimating random variables and, consequently, the best linear

unbiased predictor or BLUP is a more appropriate term than the BLUE. To

find the BLUP, we minimize the mean squared prediction error

MSPE
∆
= E

[
(L′y + a− δ)(L′y + a− δ)′

]
(1.21a)

over L and a on the condition that

E (L′y + a− δ) = ∅. (1.21b)

From (1.21b) we obtain a = −L′Uγ, which means that the mean squared

prediction error (1.21a) is

MSPE = L′V L−L′XΩ −ΩX ′L+Ω

= (V L−XΩ)′V −1(V L−XΩ) +Ω −ΩZ ′V −1ZΩ

≥ Ω −ΩZ ′V −1ZΩ,

with equality if L = V −1XΩ, i.e., if

δ̂ = ΩX ′V −1(y −Uγ).

In the SOM, using (1.11),

δ̂j = ΩW−1
j (bj −Zjγ),

and thus

β̂j = Zjγ + δ̂j = ΩW−1
j bj + (I −ΩW−1

j )Zjγ. (1.22)

Thus, the BLUP of the random effects is a matrix weighted average [19] of

the least squares estimates bj and the expected values Zjγ. The within-group
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least squares estimates are shrunken toward the overall model-based estimate

Zjγ of the regression coefficients. This shrinking, which is common in BLUP

and related empirical Bayes procedures, is also the basis for the discussion of

borrowing strength, which has played a major role in the multilevel literature

[cf. 13, 101].

Of course, (1.22) contains unknown parameters, and in order to use it

in practice, we substitute whatever estimates we have for these unknown

parameters.

Estimating the Variance Parameters

As we have seen, for the WLS estimator of γ and the BLUP of the random

effects, we need consistent estimators of σ2
j andΩ. Moreover, estimating these

parameters is often one of the main goals of a multilevel analysis and the focus

on the random effects is perhaps the most salient difference between multilevel

analysis and ordinary regression analysis.

A simple unbiased estimator of σ2
j is, of course, the within-groups residual

variance s2j . Given the assumptions above,

(nj − p)s2j/σ2
j ∼ χ2

nj−p,

so that in addition to E (s2j ) = σ2
j , we also have Var(s2j ) = 2(σ2

j )
2/(nj−p). Fur-

thermore, s2j is independent of bj . However, the variance, chi-square distribu-

tion, and independence result depend critically on the normality assumption.

If all σ2
j are assumed equal, then its natural unbiased estimator is

s2
∆
=

1

n− p
m∑

j=1

(nj − p)s2j ,

where n is total sample size. Under the model assumptions,

(n− p)s2/σ2 ∼ χ2
n−p,

so that E (s2) = σ2 and Var(s2) = 2(σ2)2/(n − p). Note that consistency of

s2j requires nj → ∞. This is a little problematic because in some standard

asymptotic theory for multilevel analysis (e.g., Longford [76, p. 252]; Verbeke

and Lesaffre [120, Lemma 3]), it is assumed that the group sizes are bounded.

However, close scrutiny of their theories reveals that the general asymptotic

theory should still be valid under a hypothetical sequence such that m→∞,

nj →∞, and nj/m→ 0. Maybe even weaker assumptions suffice. Of course,

with (many) small groups, nj →∞ may not be a useful assumption anyway.

On the other hand, consistency of s2 only requires n→∞, which is obviously

much weaker. However, the latter also requires the much stronger assumption

that all residual variances are equal.
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Observing that Ω = Cov(β
j
) = E

[
(β

j
−Zjγ)(β

j
−Zjγ)′

]
, a simple es-

timator of Ω is obtained by inserting the least squares estimators of β
j

and

γ in this expression:

Ω̂ =
1

m

m∑

j=1

(bj −Zj γ̂)(bj −Zj γ̂)′,

or perhaps with m − 1 instead of m in the denominator, and where γ̂ is

the one-step or two-step OLS estimator. Such an estimator is used in the

MLA program [16] as “least squares estimator” of Ω and as starting value

for the iterations for obtaining the ML estimators. However, this estimator is

biased for two reasons: The variability of γ̂ is not taken into account and the

covariance matrix of bj is not Ω, but Wj . The first cause of bias vanishes as

m→∞ and the second vanishes as nj →∞, so it is only a reasonably good

estimator if sample sizes at both levels are large. We can compute its exact

expectation and exact variances of its elements, but we will not do that here.

In addition to its simplicity, however, it has the virtue that it is guaranteed to

be positive (semi)definite. This may prevent numerical problems when used

as a starting value in an iterative procedure. Kovačević and Rai [66] propose

a similar estimator, with Zj γ̂ replaced by the sample average of the bj ’s, as

a “conservative approximation”.

Based on earlier formulas of Swamy [117], de Leeuw and Kreft [28] derive

an unbiased estimator of Ω. The estimator of Ω is derived elementwise. Thus,

we look at its (k, l)-th element ωkl and define an unbiased estimator of this

element. By doing this for all distinct elements of Ω, we obtain an unbiased

estimator of Ω.

Consider the k-th element of β
j
, β

jk
. According to the model assumptions,

β
jk

= z′jkγk + δjk,

where γk is a subvector of γ. The corresponding subvector of the two-step OLS

estimator γ̂ is γ̂k. Let Zk be the m× qk matrix with j-th row z′jk, where qk
is the number of elements of zjk, i.e., the number of explanatory variables for

the k-th random coefficient. Correspondingly, let bk be the vector of length

m with bjk as its j-th element. Then it follows straightforwardly from the

derivation of γ̂ and the structure of Zj that

γ̂k = (Z ′
kZk)

−1Z ′
kbk.

Let t̂k be the vector of length m with t̂jk = bjk − z′jkγ̂k as its j-th element.

Then we have

t̂k = Qkbk = Qk(bk −Zkγk) = Qktk,

where Qk = Im − Zk(Z ′
kZk)

−1Z ′
k and tk is implicitly defined. Note that

E (bk) = Zkγk and
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Cov(bk, b
′
l) =

m⊕

j=1

(Wj)kl = diag[(Wj)kl] = ωklIm +Σ∇kl,

where Σ is the diagonal matrix with j-th diagonal element equal to σ2
j and

∇kl is the diagonal matrix with j-th diagonal element equal to [(X ′
jXj)

−1]kl.

It follows that E (t̂k) = ∅ and

E (t̂k t̂
′
l) = Cov(t̂k, t̂

′
l) = ωklQkQl +QkΣ∇klQl.

It is now natural to define the estimator

ω̂kl
∆
=

tr
[
t̂k t̂

′
l −QkΣ̂∇klQl

]

tr(QkQl)
=

1

m∗

[
t̂′lt̂k − tr(Σ̂∇klQlQk)

]
,

where m∗ = tr(QkQl) and Σ̂ is the diagonal matrix with j-th diagonal

element equal to s2j . This estimator of ωkl is optimal in the least squares

sense and it is evidently unbiased. However, unbiasedness in this context is

not necessarily good, because it can easily lead to negative variance estimates.

Noticing that ω̂kl is a quadratic function of the data, its variance can be

found by using standard results about the expectations of quadratic forms in

normally distributed random variables. The resulting expression is

Var(ω̂kl) =
1

(m∗)2





m∑

i=1

m∑

j=1

[
(Wi)ll(Wj)kk(QlQk)

2
ij

+ (Wi)kl(Wj)kl(QlQk)ij(QlQk)ji]

+

m∑

j=1

2(σ2
j )

2

nj − p
[(X ′

jXj)
−1]2kl(QlQk)

2
jj



 .

An estimator of this variance is obtained by inserting the estimators s2j for σ2
j

and Ω̂ for Ω (the latter in Wj) in this formula.

A somewhat related but slightly different method for estimating the vari-

ance parameters uses the same ideas as the WLS estimator above, but reverses

the roles of the fixed coefficients and the variance parameters. In particular,

assume that γ is known and that Ω is written in the linear form (1.3). Then

E
[
(y −Uγ)(y −Uγ)′

]
= V

=
m⊕

j=1

(XjΩX
′
j + σ2

j Inj
)

=
G∑

g=1

(
m⊕

j=1

XjCgX
′
j

)
ξg +

m∑

j=1

(eje
′
j � Inj

)σ2
j ,
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where ej is the j-th column of Im, and if all residual variances are equal,

the last summation reduces to σ2In. Clearly, this expectation is linear in the

parameters {ξg} and {σ2
j }.

Now, let U∗[n,G+m] be the matrix with g-th column equal to

U∗
g
∆
=vec

(
m⊕

j=1

XjCgX
′
j

)

and (G+ j)-th column equal to

U∗
G+j

∆
=vec(eje

′
j � Inj

).

Furthermore, let γ∗[G+m] be the vector with g-th element ξg (g = 1, . . . , G)

and (G + j)-th element σ2
j (j = 1, . . . ,m). If all σ2

j are equal, U∗ has G + 1

columns, the last one being vec In, and γ∗ has G + 1 elements, the last one

being σ2. The rest of the discussion is unaltered. Finally, let

y∗ ∆=vec
[
(y −Uγ)(y −Uγ)′

]
. (1.23)

Then E y∗ = U∗γ∗, which suggests that the variance parameters in γ∗ can

be jointly estimated by a least squares method. Although an OLS method

would be computationally much easier, a WLS method is typically used, for

reasons that become clear in Section 1.6.2 below. From the characteristics

of the normal distribution, it follows that the dispersion matrix of y∗ is

2Nn(V �V ) (e.g., Magnus and Neudecker [79, Lemma 9]), where Nn[n
2, n2]

is a symmetric idempotent matrix of rank n(n+1)/2, which projects a column

vector of order n2 onto the space of vec’s of symmetric matrices. It is therefore

called the symmetrization matrix by Wansbeek and Meijer [123, p. 361]. Thus,

the dispersion matrix of y∗ is singular, the reason being that y∗ contains du-

plicated elements. We can remove the duplicated elements and then compute

the nonsingular dispersion matrix and use it in a WLS procedure. Due to the

structure of the problem, this is equivalent to computing the estimate

γ̂∗ =
(
(U∗)′(V ∗)−1(U∗)

)−1
(U∗)′(V ∗)−1(y∗), (1.24)

where V ∗ = 2(V � V ). From the derivation, it follows immediately that

Cov(γ̂∗) =
(
(U∗)′(V ∗)−1(U∗)

)−1
,

where the symmetrization matrix drops out because of the structure of the

matrices involved.

It appears that (1.24) suffers from a few problems. The first is that the

right-hand side contains unknown parameters: not only γ, but also the very

parameters that the left-hand side estimates, through its dependence on V ∗.
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Thus, as before, we have to insert (preliminary) estimators of these. This leads

to the following typical estimation procedure: (1) compute the 1-step or 2-step

OLS estimate of γ; (2) use this to compute an estimate of y∗ and compute a

preliminary estimate of γ∗ from (1.24) with V ∗ = I; (3) use this to compute

an estimate Ṽ of V and compute the WLS estimator of γ from (1.20); (4) use

this to compute an improved estimate of y∗ and compute the WLS estimate

of γ∗ from (1.24) with V ∗ = 2(Ṽ � Ṽ ). Variations, e.g., using the estimators

of de Leeuw and Kreft [28] as preliminary estimators, are possible, but as it

is presented here, it suggests further iterating steps (3) and (4). Indeed, this

is typically done and leads to the IGLS algorithm discussed in Section 1.6.2

below.

The second problem with direct application of (1.24) is that it is a com-

putational disaster. The matrix V ∗ is of order n2 × n2, so if n = 20, 000 as

in the application reported below, then we would have to store and invert a

400 million × 400 million matrix. Fortunately, however, the problem has so

much structure that this is not necessary: V ∗ = 2(V � V ), which reduces

the problem to n × n, but the direct sum form of V reduces this further to

nj × nj . Then, reductions like the ones used above to arrive at (1.20) as a

more convenient version of (1.19) further simplify the computations. Efficient

computational procedures are discussed in Goldstein and Rasbash [47].

A variant of (1.24) is obtained by recognizing that the WLS estimator γ̂

that is inserted in the computation of y∗ is not equal to γ, but is an unbiased

estimator with variance (U ′V −1U)−1, ignoring variance due to estimation

error in the preliminary estimate of V . More specifically, by writing

y −Uγ̂ =
[
I −U(U ′V −1U)−1U ′V −1

]
y,

it follows that

E
[
(y −Uγ̂)(y −Uγ̂)′

]

=
[
I −U(U ′V −1U)−1U ′V −1

]
V
[
I −U(U ′V −1U)−1U ′V −1

]′

= V −U(U ′V −1U)−1U ′,

or

E
[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′V −1U)−1U ′

]
= V .

This suggests replacing (1.23) by

y∗ ∆=vec
[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′Ṽ −1U)−1U ′

]
(1.25)

and then proceeding with the estimation process as described above. The term

U(U ′Ṽ −1U)−1U ′ can be viewed as a bias correction. The resulting estimator

is again consistent with the same expression for the asymptotic covariance

matrix, but is generally less biased in finite samples. The iteration procedure

described above with this estimator leads to RIGLS estimators, which are also

discussed in Section 1.6.2 below.
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1.6.2 Maximum Likelihood

Except for some special cases, explicit closed-form expressions for the maxi-

mum likelihood estimators are not available. The loglikelihood function has

to be optimized by using some kind of numerical algorithm. This section

discusses several of the available algorithms. We can distinguish, on the one

hand, generic numerical optimization techniques that can be used for any well-

behaved function and, on the other hand, algorithms that are more specific

to the problem at hand.

Let f(θ) be a loss function of a parameter vector θ. We want to find the

value θ̂ of θ that minimizes f(θ). Throughout, we assume that f(θ) is well

behaved, i.e., that it is continuous and has continuous first and second partial

derivatives, is locally Lipschitz, etc. The loss functions for FIML and REML

satisfy these and other regularity conditions except in pathological situations

where the sample data have no variation or predictor matrices are not of full

rank. Thus, we assume these away.

For a short introduction to generic numerical optimization, we refer to

Appendix 1.B. The (modified) Newton-Raphson method mentioned there is

described for multilevel models by Jennrich and Schluchter [63] and Lindstrom

and Bates [73] and it is used in the BMDP5V program [107] for repeated

measures models and the nlme package [90] for multilevel analysis in R. The

BFGS method is implemented in most general-purpose optimization func-

tions and is used in the MLA program for multilevel analysis [16]. From

the discussion in Appendix 1.B, it is clear that we typically need at least

first partial derivatives of the loss function, and for Newton-Raphson also

the second partial derivatives. We will give their formulas for the FIML and

REML loss functions below.

Derivatives of FIML

Computing the partial derivatives of the loglikelihood function with respect

to the parameters is a straightforward, albeit tedious, application of (matrix)

calculus as developed by, e.g., Magnus and Neudecker [80]. Here we only give

the results, the derivations are available from us upon request. Throughout,

we will assume that Ω is parametrized as in (1.3). The first partial derivatives

are

∂LF
∂γ

= −2
m∑

j=1

Z ′
jW

−1
j tj , (1.26a)

∂LF
∂σ2

j

= −(nj − p)
(
s2j − σ2

j

(σ2
j )

2

)
− tr

[
Tj(X

′
jXj)

−1
]
, (1.26b)
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∂LF
∂ξg

= −
m∑

j=1

tr(TjCg), (1.26c)

where

tj
∆
= bj −Zjγ,

Tj
∆
=W−1

j (tjt
′
j −Wj)W

−1
j .

It is easy to check that the expected values of these partials (when viewed

as functions of random variables) are zero, as they should be. It follows im-

mediately from (1.26a) that after convergence (first partials are zero), (1.20)

holds. Thus, the FIML estimator of γ is a WLS estimator based on the FIML

estimates of the variance parameters.

The second partial derivatives with respect to the parameters are

∂2LF
∂γ ∂γ′

= 2
m∑

j=1

Z ′
jW

−1
j Zj ,

∂2LF
∂γ ∂σ2

j

= 2Z ′
jW

−1
j (X ′

jXj)
−1W−1

j tj ,

∂2LF
∂γ ∂ξg

= 2
m∑

j=1

Z ′
jW

−1
j CgW

−1
j tj ,

∂2LF
∂σ2

j ∂σ
2
j

= (nj − p)
(

2s2j − σ2
j

(σ2
j )

3

)
+ tr

[
Υj(X

′
jXj)

−1
]
,

∂2LF
∂σ2

j ∂σ
2
k

= 0 for k 6= j,

∂2LF
∂σ2

j ∂ξg
= tr(ΥjCg),

∂2LF
∂ξg ∂ξh

=
m∑

j=1

tr(TjChW
−1
j Cg +W−1

j ChTjCg +W−1
j ChW

−1
j Cg),

where

Υj
∆
=Tj(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1Tj +W−1
j (X ′

jXj)
−1W−1

j .

As mentioned above, often it is assumed that all residual variances are the

same: σ2
j = σ2. This leads to fairly trivial changes in these formulas: Every

explicit or implicit occurrence of σ2
j on the right-hand side is replaced by σ2,

and the derivatives with respect to σ2 are simply the sums over all groups of

the derivatives with respect to σ2
j as given here:
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∂LF
∂σ2

= −
m∑

j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
Tj(X

′
jXj)

−1
]
}
, (1.27)

∂2LF
∂γ ∂σ2

= 2
m∑

j=1

Z ′
jW

−1
j (X ′

jXj)
−1W−1

j tj ,

∂2LF
∂σ2 ∂σ2

=
m∑

j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Υj(X

′
jXj)

−1
]
}
,

∂2LF
∂σ2 ∂ξg

=
m∑

j=1

tr(ΥjCg).

The derivatives can now be used in a standard numerical optimization algo-

rithm to obtain the FIML estimates.

Derivatives of REML

The first partial derivatives of the REML loss function with respect to the

parameters are

∂LR
∂σ2

j

= −(nj − p)
(
s2j − σ2

j

(σ2
j )

2

)
− tr

[
∆j(X

′
jXj)

−1
]
, (1.28a)

∂LR
∂ξg

= −
m∑

j=1

tr(∆jCg), (1.28b)

where

∆j
∆
=W−1

j (t̂j t̂
′
j −Wj +ZjAZ

′
j)W

−1
j ,

t̂j
∆
= bj −Zj γ̂,

γ̂
∆
=A

m∑

j=1

Z ′
jW

−1
j bj ,

A
∆
=

(
m∑

j=1

Z ′
jW

−1
j Zj

)−1

.

Note that there are no derivatives with respect to γ, because LR is not a

function of γ. We use γ̂ as a shorthand, but it is not a parameter, it is a

function of the data and the variance parameters. Of course, after convergence,

this same definition is used to obtain a WLS estimate of γ, but in deriving

statistical properties of the REML estimators, we must treat γ̂ as a function

and not as a mathematical variable.

The second partial derivatives of the REML loss function with respect to

the parameters are
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∂2LR
∂σ2

j ∂σ
2
j

= (nj − p)
(

2s2j − σ2
j

(σ2
j )

3

)
+ tr

[
Θj(X

′
jXj)

−1
]

− 2û′
jAûj − tr(ΛjAΛjA),

∂2LR
∂σ2

j ∂σ
2
k

= −2û′
jAûk − tr(ΛjAΛkA) for k 6= j,

∂2LR
∂σ2

j ∂ξg
= tr(ΘjCg)− 2û′

jAτ̂g − tr(ΛjAΞgA),

∂2LR
∂ξg ∂ξh

=
m∑

j=1

tr(∆jChW
−1
j Cg +W−1

j Ch∆jCg +W−1
j ChW

−1
j Cg)

− 2τ̂ ′
hAτ̂g − tr(ΞhAΞgA),

where

Θj
∆
=∆j(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1∆j +W−1
j (X ′

jXj)
−1W−1

j ,

Λj
∆
=Z ′

jW
−1
j (X ′

jXj)
−1W−1

j Zj ,

ûj
∆
=Z ′

jW
−1
j (X ′

jXj)
−1W−1

j t̂j ,

Ξg
∆
=

m∑

j=1

Z ′
jW

−1
j CgW

−1
j Zj ,

τ̂g
∆
=

m∑

j=1

Z ′
jW

−1
j CgW

−1
j t̂j .

When all σ2
j are equal, the first partial derivative with respect to σ2 becomes

∂LR
∂σ2

= −
m∑

j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
∆j(X

′
jXj)

−1
]
}

(1.29)

and the second partial derivatives involving σ2 become

∂2LR
∂σ2 ∂σ2

=
m∑

j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Θj(X

′
jXj)

−1
]
}

− 2û′Aû− tr(ΛAΛA),

∂2LR
∂σ2 ∂ξg

=
m∑

j=1

tr(ΘjCg)− 2û′Aτ̂g − tr(ΛAΞgA),

where

û
∆
=

m∑

j=1

ûj ,
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Λ
∆
=

m∑

j=1

Λj .

Standard Errors

For the standard errors, we need the expectations of the second derivatives

instead of the second derivatives themselves. This simplifies the formulas con-

siderably, because many terms have expectation zero and thus drop out. In

particular, using E (tj) = ∅, we obtain

E

(
∂2LF
∂γ ∂γ′

)
= 2

m∑

j=1

Z ′
jW

−1
j Zj ,

E

(
∂2LF
∂γ ∂σ2

j

)
= ∅,

E

(
∂2LF
∂γ ∂ξg

)
= ∅.

Hence, the matrix of expectations of the second derivatives of the FIML

loss function is a block-diagonal matrix with a diagonal block for the fixed

coefficients and a diagonal block for the variance parameters.

For the latter part, we observe that E (T j) = ∅ implies that

E (Υ j) = W−1
j (X ′

jXj)
−1W−1

j .

Consequently,

E

(
∂2LF
∂σ2

j ∂σ
2
j

)
=
nj − p
(σ2
j )

2
+ tr

[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]
,

E

(
∂2LF
∂σ2

j ∂σ
2
k

)
= 0 for k 6= j,

E

(
∂2LF
∂σ2

j ∂ξg

)
= tr

[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
,

E

(
∂2LF
∂ξg ∂ξh

)
=

m∑

j=1

tr(W−1
j ChW

−1
j Cg).

When all σ2
j are the same, the first three of these are replaced by

E

(
∂2LF
∂σ2 ∂σ2

)
=

m∑

j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]}

,

E

(
∂2LF
∂σ2 ∂ξg

)
=

m∑

j=1

tr
[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
.
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The information matrix I
F is defined as

I
F ∆

=E

(
− ∂2ℓF

∂θ ∂θ′

)
,

where ℓF is the FIML loglikelihood function viewed as a random variable and

θ is the parameter vector. Up till now, we have ignored some constants that

do not affect the estimators, but we need to be a little more precise for the

standard errors. In fact, LFj = −2(ℓFj −Kj), where Kj is a constant that does

not depend on the parameters. Hence, it follows that

I
F = 1

2
E

(
∂2LF
∂θ ∂θ′

)
,

so we have to divide the formulas that have just been given by 2. Standard

maximum likelihood theory tells us that the standard errors of the estimators

are the square roots of the diagonal elements of (IF )−1. In particular, the

submatrix of I
F corresponding to γ is

I
F
γγ =

m∑

j=1

Z ′
jW

−1
j Zj .

Because of the block-diagonal structure of I
F , it follows that the standard

errors of γ̂ are the square roots of the elements of

(IFγγ)−1 =

(
m∑

j=1

Z ′
jW

−1
j Zj

)−1

,

which corroborates the results obtained earlier for the WLS estimator.

Analogously, for the REML estimators, the expressions are

E

(
∂2LR
∂σ2

j ∂σ
2
j

)
=
nj − p
(σ2
j )

2
+ tr

[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]

− tr(ΛjAΛjA),

E

(
∂2LR
∂σ2

j ∂σ
2
k

)
= − tr(ΛjAΛkA) for k 6= j,

E

(
∂2LR
∂σ2

j ∂ξg

)
= tr

[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
− tr(ΛjAΞgA),

E

(
∂2LR
∂ξg ∂ξh

)
=

m∑

j=1

tr(W−1
j ChW

−1
j Cg)− tr(ΞhAΞgA).
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When all σ2
j are the same, the first three of these are replaced by

E

(
∂2LR
∂σ2 ∂σ2

)
=

m∑

j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]}

− tr(ΛAΛA),

E

(
∂2LR
∂σ2 ∂ξg

)
=

m∑

j=1

tr
[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
− tr(ΛAΞgA).

The information matrix I
R is again obtained by dividing the formulas for the

expectations of the second derivatives by 2. Standard errors are the square

roots of the diagonal elements of the inverse of the information matrix.

As indicated above, after convergence, we use the expression for γ̂ used

in the expressions for the REML derivatives as an estimator of γ. It is im-

mediately clear that this is a WLS estimator with Wj based on the REML

estimators for the variance parameters. Hence, the standard error formulas

given for WLS above apply directly to this estimator.

Scoring

We have seen above that expressions for the second derivatives of the ML

loss functions are rather unwieldy, whereas the expressions for their expec-

tations are much simpler. In fact, because the asymptotic covariance matrix

of the estimators is a positive constant times the inverse of the matrix of

expected second derivatives, the matrix of expected second derivatives must

be a positive definite matrix. Furthermore, in large samples, the exact second

derivatives should be close to the expected second derivatives. Combining

these statistical observations with the general theory of numerical optimiza-

tion suggests that a convenient alternative to the Newton-Raphson algorithm

would be to replace the Hessian by its expectation. Because the expected

Hessian is guaranteed to be positive definite, this does not need to be checked

and modifications of it are not necessary. Thus, an easier expression is used,

which is computationally less demanding, and the block-diagonality of the

expected Hessian reduces the computational burden in computing the inverse

as well.

The resulting algorithm, which is specific to loglikelihood functions (but

certainly not to multilevel models), is called Method of Scoring, Fisher scoring,

or simply Scoring. It was proposed for multilevel models by Longford [74] and

implemented in the VARCL program [75]. It tends to be very fast and stable.

Iteratively Reweighted Least Squares

In (1.20), we have seen a simple, yet statistically efficient estimator of the

fixed coefficients γ, given knowledge of the variance parameters. In practice,
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this means that consistent estimators of the variance parameters are plugged

in. Conversely, in (1.24), combined with either (1.23) or (1.25), we have given

a (conceptually) simple and statistically efficient estimator of the variance

parameters γ∗, given γ and a preliminary estimate of the variance parameters.

As noted there, this suggests an iterative algorithm, in which these two steps

are alternated.

This algorithm was introduced for multilevel models by Goldstein [44]

using (1.23) to compute y∗ and by Goldstein [45] using (1.25) to compute y∗.

In the former case, the algorithm is called iterative generalized least squares

(IGLS), whereas in the latter, it is called restricted iterative generalized least

squares (RIGLS). Similar procedures, also known as iterative reweighted least

squares (IRLS), are used in many branches of statistics. For example, the

standard estimation method for generalized linear models is IRLS [82] and it

can be used to compute estimators based on “robust” loss functions, which are

less sensitive to outliers [48]. An overview, relating IGLS to various numerical

optimization algorithms, is given by del Pino [32]. From these sources, it is

known that IGLS produces maximum likelihood estimators.

The equivalence of IGLS to FIML was shown explicitly for the multilevel

model by Goldstein [44]. Goldstein [45] showed that RIGLS gives REML

estimators. Paralleling his proofs, we can see here, as we have noted above,

that setting (1.26a) to zero is equivalent to the IGLS/RIGLS condition (1.20).

Furthermore, it is easy to show that (1.24) combined with (1.23) and (1.20)

implies that (1.26b) and (1.26c) are zero. Thus, after convergence of the IGLS

algorithm, the first partial derivatives of the FIML loglikelihood are zero and,

thus (assuming regularity), the IGLS estimates must be equal to the FIML

estimates. Analogously, it is equally easy to show that (1.24) combined with

(1.25) and (1.20) implies that (1.28a) and (1.28b) are zero and, thus, that

after convergence, the RIGLS estimates are equal to the REML estimates.

EM Algorithm

The EM algorithm is an iterative method for optimizing functions of the

form f(θ) = log
∫
g(θ,z) dz with respect to θ. It was presented in its full

generality by Dempster et al. [33]. Typically, f(θ) is a loglikelihood function

and log g(θ,z) the complete-data loglikelihood function, i.e., the loglikelihood

function that would have been obtained if the realization of the random vari-

ables z would have been observed. Thus, both are also implicitly functions of

the observed data y. Maximization of f(θ) proceeds by iteratively maximizing

the expectation of the complete-data loglikelihood. That is, in each iteration,

the function

Q(θ | θ(i))
∆
=E

[
log g(θ,z) | y,θ(i)

]
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is maximized, where the expectation is taken over the conditional distribution

of z given the observed data y and the value θ(i) of the parameter vector after

the previous iteration. Appendix 1.D explains in more detail why this works.

For the multilevel model, z consists of the random effects {δj}, and θ and

y have their usual meaning. As derived in Appendix 1.D, when applied to

the FIML loglikelihood, this means that in the expectation step, the following

quantities are computed:

µ
(i)
j = ΩW−1

j (bj −Zjγ),

Σ
(i)
j = σ2

jΩW
−1
j (X ′

jXj)
−1,

where the right-hand sides are evaluated in θ(i). If Ω is completely free (apart

from the requirements of symmetry and positive definiteness, of course), the

maximization step leads to the updates

Ω(i+1) =
1

m

m∑

j=1

(Σ
(i)
j + µ

(i)
j µ

(i)
j

′),

γ(i+1) =

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1 m∑

j=1

Z ′
jX

′
jXj(bj − µ(i)

j ),

(σ2
j )

(i+1) =
1

nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

or, instead of the latter,

(σ2)(i+1) =
1

n

m∑

j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆
=Σ

(i)
j + (bj − µ(i)

j −Zjγ(i+1))(bj − µ(i)
j −Zjγ(i+1))′.

If Ω is restricted, typically by (1.3) with G < p(p+ 1)/2 parameters, the up-

date of the variance parameters ξ is a bit more complicated; see Appendix 1.D.

A great advantage of the EM algorithm is that the loglikelihood is im-

proved in each iteration, i.e., the algorithm is monotonic. Furthermore, the

computations in each iteration are often very simple, much simpler than with

other numerical optimization algorithms. Another strength of the EM algo-

rithm is that it is able to deal with missing data in a very natural way (see

Chapter 10). A drawback of EM is that it tends to converge very slowly. For-

mally, it converges linearly, whereas, for example, Newton-Raphson converges

quadratically when in the neighborhood of the optimum. On the other hand,

when far from the optimum, the EM algorithm shows more stable convergence

in the direction of the optimum. For this reason, the nlme package [90] uses
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EM for the initial iterations and switches to Newton-Raphson later on in the

algorithm. An incomplete list of other multilevel packages that use EM, either

as an option or for specific tasks, is BMDP-5V [107], MLA [16], and especially

HLM [102], which popularized the algorithm for multilevel analysis. The EM

algorithm is described for multilevel analysis and especially its special case

of repeated measures models in Dempster et al. [34], Laird and Ware [70],

Jennrich and Schluchter [63], Laird et al. [69], Lindstrom and Bates [73], and

Raudenbush and Bryk [101, Chapter 14].

Further Numerical and Computational Issues

As we have seen, most formulas for computing estimates for multilevel models

can be expressed in different ways. Some of these are clearly computationally

inefficient, whereas others use the structure of the problem in better ways.

This pertains to usage of memory, sizes of inverses needed, and other ways to

compute the same expressions. Given the sizes of typical multilevel datasets

and the ways in which computations can be done inefficiently, implementing an

estimator for a multilevel model for general use needs considerable fine-tuning.

In many cases, we have presented results using Zj , Wj , bj , and a few

other matrices and vectors. These are of smaller sizes than Uj , Vj , and yj , so

that this already improves the computations considerably. Longford [74] gives

further computational formulas, such that the amount of storage needed is

further reduced (but dimensions of inverses do not become smaller).

However, our formulas still use expressions like bj = (X ′
jXj)

−1X ′
jyj .

Actually computing an estimator in this way is generally considered undesir-

able, because it exacerbates any numerical problems that may exist. A good

way to compute a least squares estimator is to use the QR decomposition.

Pinheiro and Bates [89] discuss these issues at length and present detailed

analyses in which the multilevel loglikelihood is transformed in a way that

makes computations fast, numerically stable, and memory efficient. We do

not present these here, but recommend their book to interested readers.

1.6.3 Robust Covariance Matrix Estimation

We have seen above that the two-step OLS estimator of γ is

γ̂ =

(
m∑

j=1

Z ′
jZj

)−1 m∑

j=1

Z ′
jbj = A

m∑

j=1

Z ′
jbj ,

with A implicitly defined. Its covariance matrix is

C
∆
=Cov(γ̂) = A

(
m∑

j=1

Z ′
j Cov(bj)Zj

)
A.
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If m → ∞, γ̂ is a consistent estimator of γ, and instead of using the model-

based estimator of C presented earlier, C can be straightforwardly estimated

by the cluster-robust covariance matrix [e.g., 98]

Ĉcr = A

(
m∑

j=1

Z ′
j t̂j t̂

′
jZj

)
A,

where t̂j = bj − Zj γ̂. When m is large, this is an accurate estimator, but

in moderately large samples, it tends to be biased because the variability in

estimation of γ is not taken into account. That is, the difference between t̂j
and tj

∆
= bj −Zjγ is ignored. Inspired by similar problems with the (Eicker-

Huber-)White heteroskedasticity-consistent covariance matrix, and fairly suc-

cessful corrections thereof [25, pp. 552–556], corrections to the cluster-robust

covariance matrix can be computed, which take the form of multiplication by

a certain factor, e.g.,
m

m− 1

n− 1

n− r ,

where n is total sample size and r is the number of elements of γ. Cameron

and Trivedi [17, p. 834] mention this correction in the context of the one-step

OLS estimator.

Analogously, abusing the same notation for different estimators, the one-

step OLS estimator is

γ̂ =

(
m∑

j=1

U ′
jUj

)−1 m∑

j=1

U ′
jyj = A

m∑

j=1

U ′
jyj .

Thus, we can estimate its covariance matrix by the cluster-robust covariance

estimator

Ĉcr = A

(
m∑

j=1

U ′
j r̂j r̂

′
jUj

)
A,

[e.g., 126, p. 152], where r̂j = y
j
−Uj γ̂. As observed above, the one-step OLS

estimator can also be written as

γ̂ = A
m∑

j=1

Z ′
jX

′
jXjbj ,

where A is now written as

A =

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1

.

Hence, the cluster-robust covariance estimator can be rewritten as
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Ĉcr = A

(
m∑

j=1

Z ′
jX

′
jXj t̂j t̂

′
jX

′
jXjZj

)
A,

where it is now natural to use the one-step estimator of the coefficient vector

γ in the definition of t̂j .

In the same way, a straightforward cluster-robust covariance matrix of the

WLS estimator γ̂ is found to be

Ĉcr = Â

(
m∑

j=1

U ′
jV̂

−1
j r̂j r̂

′
jV̂

−1
j Uj

)
Â,

where now the WLS estimator of γ is used in the definition of r̂j ,

V̂ j = XjΩ̂X
′
j + σ̂2

jInj
,

Â =

(
m∑

j=1

U ′
jV̂

−1
j Uj

)−1

,

or, equivalently,

Ĉcr = Â

(
m∑

j=1

Z ′
jŴ

−1
j t̂j t̂

′
jŴ

−1
j Zj

)
Â,

with

Ŵ j = Ω̂ + σ̂2
j (X

′
jXj)

−1,

Â =

(
m∑

j=1

Z ′
jŴ

−1
j Zj

)−1

,

and the WLS estimator of γ is used in the definition of t̂j . Note that for the

asymptotic results, it does not matter which estimators of Ω and σ2
j are used,

as long as they are consistent. Of course, in finite samples, it does matter and

we would expect that more precise estimators of Ω and σ2
j result in better

estimators of γ and C.

Robust Covariance Matrices for ML Estimators

A robust covariance estimator for the FIML estimator of γ is immediately

obtained from the one for the WLS estimator given above. The same applies

to the two-step ML (“REML”) estimator obtained as a WLS estimator that

uses the REML estimates of the variance parameters in computing the weight

matrix.
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It is also possible to compute a robust covariance matrix for the variance

parameters. However, because no closed-form expression for the estimators of

the variance parameters exists, this requires a bit more asymptotic statistical

theory. The basic idea starts from the first-order condition for ML estimators

m∑

j=1

∂Lj
∂θ

(θ̂) = ∅.

Then a first-order Taylor series expansion of this, around the true value θ0,

is taken, giving

m∑

j=1

{
∂Lj
∂θ

(θ0) +
∂2Lj
∂θ ∂θ′

(θ0) (θ̂ − θ0) +Op‖θ̂ − θ0‖2
}

= ∅.

Under suitable regularity conditions, a form of the central limit theorem im-

plies that

1√
m

m∑

j=1

∂Lj
∂θ

(θ0)
L

=⇒N (∅,Ψ)

from some finite positive definite matrix Ψ , and a form of the law of large

numbers implies that

1

m

m∑

j=1

∂2Lj
∂θ ∂θ′

(θ0)
P

=⇒H

for some finite positive definite matrix H. Combining results, we obtain

√
m(θ̂ − θ0) = −H

−1 1√
m

m∑

j=1

∂Lj
∂θ

(θ0) + op(1)
L

=⇒N (∅,H−1ΨH
−1).

Obviously, consistent estimators of H and Ψ are

Ĥ =
1

m

m∑

j=1

∂2Lj
∂θ ∂θ′

(θ̂),

Ψ̂ =
1

m

m∑

j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂).

For computing a robust covariance matrix for θ̂, all factors of m drop out and

we obtain

Ĉcr =

(
m∑

j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1( m∑

j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂)

)(
m∑

j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1

. (1.30)

The theory underlying the robust covariance matrices for ML estimators in a

multilevel model is derived in detail, with appropriate regularity conditions,

in Verbeke and Lesaffre [120, 121].
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From (1.26), (1.27), (1.28), and (1.29), it follows that this theory should

work for the FIML and REML estimators of γ and ξg, and for the corre-

sponding estimators of σ2 if all residual variances are assumed to be the same.

However, if separate residual variances σ2
j are estimated, the corresponding

first-order conditions do not satisfy the central limit theorem as presented

here, because they have only one term. In that case, assuming that nj →∞,

it is still possible to derive some kind of robust variance estimators for the

variance estimators σ̂2
j , using within-groups asymptotics along the lines of

Browne [12], but this tends to require large within-group sample sizes, so this

may not work well in practice.

Note that when all the model assumptions are met, we have the well-known

result (correcting for our scaling of the loglikelihood)

1
2
H = 1

4
Ψ = lim

m→∞

1

m
I,

which leads to the standard (model-based) covariance matrix presented earlier.

Robust Versus Model-Based Covariance Matrices

With a few exceptions, the model-based covariance matrices are only correct

if the complete model is correctly specified (“true”). The robust covariance

matrices are consistent under a wider range of assumptions, including fairly

general forms of misspecification of the random part of the model, such as

intragroup dependence and heteroskedasticity. So if the main interest of the

analyses is the fixed part of the model (i.e., γ), a cluster-robust covariance

matrix may be preferred.

On the other hand, if the random part of the model is the main focus

of interest, i.e., modeling/explaining between-group variation is important,

then an estimator of the covariance matrix of the fixed part that is robust

to misspecification of the random part is only of secondary interest. If the

random part is (severely) misspecified, the primary aim of the analysis is not

met. This is even more salient for robust covariance matrices of the variance

parameters themselves. If the model is misspecified, it is generally unclear

what is estimated, and thus it is questionable whether a robust covariance

matrix is of any use [39].

There is, however, a leading example where the random part is misspec-

ified, but the estimators are still consistent estimators of meaningful param-

eters. This is the case when the model is correctly specified, except for the

distribution of the random variables. If these are nonnormally distributed,

the model-based covariance matrices for the estimators of γ are still correct,

but standard model-based covariance matrices of the variance parameters are

incorrect. But Ω and σ2 are still meaningful parameters and their estimators
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are consistent. So then using a robust covariance matrix is clearly useful

[120, 121].

The robust covariance matrices are typically far less precise if the model is

(approximately) correctly specified and the sample size is small to moderate.

Therefore, in not-too-large samples, the model-based covariance matrices will

typically be preferred if the analyst believes that the random part of the

model is reasonably well specified. Maas and Hox [78] performed a simulation

study to investigate these issues for REML estimators and concluded that

the model-based standard errors of the estimator of σ2 performed well under

nonnormality, while the robust standard errors are often too large. However,

both model-based and robust standard errors of level-2 variance parameters

did not perform very well at small sample size, although the robust ones were

clearly better than the model-based ones. They conclude that at least 100

groups are needed for reliable robust standard errors. As a general strategy,

they recommend comparing the robust standard errors with the model-based

ones to diagnose possible misspecification of the model.

An alternative way for robust statistical inference under possible misspec-

ification is to use resampling methods. Moreover, the bootstrap in particu-

lar has the additional potential advantage that it can generate asymmetric

confidence intervals, thereby reflecting nonnormal finite-sample distributions

of especially the level-2 variance parameters. However, confidence intervals

based on resampling methods tend to perform less than satisfactory as well

with small or moderate level-2 sample sizes. See Chapter 11 for a detailed

description of resampling methods for multilevel models and their empirical

properties.

1.7 Software

We will be brief about software here, if only because details about software are

likely to be quickly outdated. An overview of the history of the development

of software for multilevel analysis, and the state of affairs ca. 2000 is given in

de Leeuw and Kreft [30]. The overview is still broadly valid, except that the

details have changed and there are some additions.

As mentioned earlier in this chapter, the software packages have largely

been developed by the same authors who pioneered the development of mul-

tilevel analysis as a statistical method and who have written successful text-

books about multilevel modeling. And, for that matter, are contributors to

this Handbook.

Two software packages dominate the market for dedicated multilevel anal-

ysis software. These are HLM [102] and MLwiN [97]. These packages offer a

broad range of linear and nonlinear specifications of multilevel models and

have user-friendly graphical user interfaces. There are some differences in the



48 J. de Leeuw, E. Meijer

algorithms used, but these are not particularly interesting for the average

user. There are also some differences in the more advanced options or less

frequently used model specifications, so users with specific desires may prefer

one over the other for this reason.

Originally, VARCL [75] was also one of the major packages, but devel-

opment of this package has been terminated. There are many packages that

focus on more specific multilevel models, options, or other aspects. These tend

to be research software, with fewer options and less user-friendly interfaces,

and development of these progresses faster if the authors are working on new

directions in their research that requires additions to the programs. Examples

of these are MLA [16], which focuses on resampling methods (see Chapter 11)

and PINT [10], which focuses on power calculations (see Chapter 4). The

MIXFOO suite [55, 56, 57, etc.] also belongs in this category, although taken

as a whole, it is a fairly comprehensive multilevel package.

The BUGS program and its variants, most notably WinBUGS [113], are

programs for Bayesian data analysis. They offer extensive possibilities for

Bayesian multilevel analysis and are particularly useful for estimating nonlin-

ear multilevel models. See also Chapter 2.

Many general-purpose (or almost-all-encompassing) statistical packages

now have multilevel options as well. Important examples are SAS R© [106],

which has PROC MIXED and PROC NLMIXED, SPSS R© [114], which has

MIXED and several other procedures that can be used for multilevel analyses,

Stata R© [115], which has many “survey”, “cluster”, and “panel” programs and

options, and the extensive gllamm program [95], and R [93], for which the

lme4 and nlme packages are available [7, 90].

A relatively recent development is the incorporation of multilevel facilities

in programs for structural equation modeling, such as LISREL [35, 64], EQS

[8], and Mplus [85]. The possibilities of these programs are somewhat different

from the standard multilevel programs. They often have less extensive options

for estimating nonlinear models and models with three or more levels, but are

better equipped for estimating multivariate models and models with latent

variables and measurement errors, i.e., multilevel structural equation models

(see Chapter 12). Thus, they complement traditional multilevel packages.

Throughout this Handbook, other software packages (perhaps less well

known or more specialized) are mentioned where appropriate and useful.

1.8 Sampling Weights

Surveys are often nonrepresentative of the population of interest, in the sense

that persons (or, more generally, units) with certain characteristics are more

prevalent in the data than in the population. There are essentially two reasons

for this: deliberate oversampling of certain groups and different nonresponse
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rates. An example of the former is the oversampling of relatively small groups,

like minorities, to obtain more reliable information about these groups. An

example of the latter is the tendency to obtain an overrepresentation of women

in a study that was designed to be neutral, which may happen because women

tend to be more often at home than men.

Agencies that collect such surveys typically provide sampling weights with

the data set. The idea is that applying these sampling weights in the analysis

corrects for the nonrepresentativeness of the data by giving underrepresented

groups more weight and overrepresented groups less weight. For example,

assume that we are interested in the mean height of adults in a country of

interest. Assume further that we have a sample of 1000 adults, 600 of which are

women, whereas in the population 50% of adults is female. Height is expected

to be related to sex, so if we simply computed the sample average, we would

likely obtain an underestimate of our parameter of interest. However, if we

give women a weight of wi = 5/6 and men a weight of wi = 5/4, then the

weighted average

h̄w
∆
=

∑1000
i=1 wihi∑1000
i=1 wi

(1.31)

=
600 · (5/6) · h̄f + 400 · (5/4) · h̄m

600 · (5/6) + 400 · (5/4)

= 0.5h̄f + 0.5h̄m

is clearly (the realization of) an unbiased estimator of average height in the

population, where hi is the height of the i-th observation in the sample and

h̄f and h̄m are the average heights of females and males in the sample, re-

spectively. (Note that apparently some software packages define weights as

the reciprocals of the definition we use here, so check your manuals.)

For regression models, there is some discussion in the literature about

whether weights should be applied, even if the sample is nonrepresentative and

weights are available. In fact, if the standard regression model yi = x′
iβ + ǫi,

with ǫi i.i.d., holds and the nonrepresentativeness is possibly related to x

but not to ǫ, then OLS is still the most efficient estimator, and all statistical

inference is correct. However, in many circumstances, it is quite likely that the

error term represents the influence of a large number of variables that each

have a fairly small effect, most of which are unknown and/or unobserved, but

some of which may be somehow related to the probabilities of being included

in the sample. In such cases, OLS would be biased, whereas a weighted analysis

would still give an unbiased estimator.

An important special case where a weighted analysis gives simple con-

sistent estimators and an unweighted analysis does not is in the analysis

of so-called choice-based samples or, more generally, endogenously stratified

samples. In this case, samples are drawn from strata defined by the dependent
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variable. An example is a sample consisting of 500 bus passengers sampled on

board bus lines and 500 car drivers sampled along the road, and the dependent

variable is mode choice. Another important example is a medical study in

which a sample of people having a rare disease is drawn from hospital records

and a similar-sized sample of people not having the disease is drawn from the

general public, and the dependent variable in the study is whether or not one

has the disease.

These issues are extensively discussed in Cameron and Trivedi [17, pp. 817–

829] and Wooldridge [124, 125, 127], who also give detailed derivations and

explanations, showing why unweighted analyses are sometimes inconsistent

and under different circumstances consistent and efficient. For the remainder

of this section, we assume that a weighted analysis is desired.

For multilevel analysis, an additional complication is how to deal with units

at different levels. To continue our example, assume that we have a two-level

sample, where level-1 is individuals and level-2 is counties. Perhaps heights are

correlated within counties because of environmental factors, different socio-

economic composition, different ethnic composition or more specifically family

relations, and therefore a multilevel approach is desired, but still females are

overrepresented. Furthermore, let us assume that we know the population

percentages of males and females in each county (not necessarily 50%). Then

a straightforward adaptation of (1.31) gives an estimate of the within-county

mean height:

h̄wj
∆
=

∑nj

i=1 wi|jhij∑nj

i=1 wi|j

in obvious notation. If each county had the same population size (or height

was unrelated to population size) and the sample of counties is representative

of all counties in whatever way this is defined, a simple average of the county

averages gives an unbiased estimate of the parameter of interest. More gener-

ally, however, we also have a county weight wj , and the overall weighted mean

is computed as

h̄w·
∆
=

∑m
j=1 wj h̄wj∑m
j=1 wj

.

Determining the value of wj depends on the sampling scheme and the result-

ing representativeness at the county level. For example, if the counties are a

simple random sample of all counties in the country, then counties with small

population size are overrepresented given that we are interested in the mean

height of individuals. It is easy to see then that wj should be proportional to

county population size Nj . Often, however, sampling at county level is done

proportional to size, so that wj should be the same for each county.

When a survey data set is given, it typically contains an individual weight

wij and the clusters are defined by the researcher. Then the multilevel weights

can be computed as
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wj
∆
=

nj∑

i=1

wij ,

wi|j
∆
=wij/wj .

See, however, Potthoff et al. [92], Pfeffermann et al. [88], Grilli and Pratesi

[49], Asparouhov [6], and Rabe-Hesketh and Skrondal [94] for a discussion

of different definitions of weights and empirical studies of their properties.

Chantala et al. [20] provide software that computes appropriate multilevel

sampling weights for usage in several software packages.

Let us now assume that we have a set of weights, and we would like to

compute the weighted version of the within-groups OLS estimate bj . The

formula for the latter can be written as

bj
∆
=(X ′

jXj)
−1X ′

jyj =

(
1

nj

nj∑

i=1

xijx
′
ij

)−1(
1

nj

nj∑

i=1

xijyij

)
.

Clearly, each of the two factors contains some kind of average, so that the

analogy with average height mentioned above gives the following weighted

estimate:

bwj
∆
=

(∑nj

i=1 wi|jxijx
′
ij∑nj

i=1 wi|j

)−1(∑nj

i=1 wi|jxijyij∑nj

i=1 wi|j

)

=

(
nj∑

i=1

wi|jxijx
′
ij

)−1( nj∑

i=1

wi|jxijyij

)

= (X ′
jWjXj)

−1X ′
jWjyj ,

where Wj (not to be confused with Wj) is the diagonal matrix with elements

wi|j on its diagonal. A corresponding suitable estimator of σ2
j is obtained by

a properly scaled version of the weighted sum of squared residuals. For the

unbiased estimator, the denominator in this is a bit more complicated than

in the unweighted case. The resulting formula is

s2wj
∆
=(yj −Xjbwj)

′Wj(yj −Xjbwj)/(n
∗
j − p∗),

where

n∗j
∆
=

nj∑

i=1

wi|j = trWj ,

p∗
∆
=tr

[
(X ′

jWjXj)
−1(X ′

jW
2
jXj)

]
.

Then, paraphrasing our earlier discussion and simplifying somewhat, for esti-

mating γ, least squares loss functions incorporating sampling weights can be

defined as
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ρw(γ)
∆
=

m∑

j=1

wj(bwj −Zjγ)′B−1
j (bwj −Zjγ),

leading to the estimators

γ̂w,B
∆
=

(
m∑

j=1

wjZ
′
jB

−1
j Zj

)−1 m∑

j=1

wjZ
′
jB

−1
j bwj .

Because

Wwj
∆
=Cov(bwj) = Ω + σ2

j (X
′
jWjXj)

−1(X ′
jW

2
jXj)(X

′
jWjXj)

−1,

the covariance matrices of these least squares estimators are

(
m∑

j=1

wjZ
′
jB

−1
j Zj

)−1( m∑

j=1

w2
jZ

′
jB

−1
j WwjB

−1
j Zj

)(
m∑

j=1

wjZ
′
jB

−1
j Zj

)−1

.

The estimators corresponding to the 1-step and 2-step OLS estimators are

obtained by choosingBj = (X ′
jWjXj)

−1 andBj = I, respectively. The most

logical analog of the WLS estimator seems to be the one based on Bj = Wwj ,

but the optimality properties of the unweighted version do not hold and the

covariance matrix does not simplify considerably. A different WLS estimator

for data with sampling weights,

γ̂w,KR
∆
=

(
m∑

j=1

wjU
′
jV

−1
j Uj

)−1 m∑

j=1

wjU
′
jV

−1
j y

j

=

(
m∑

j=1

wjZ
′
jW

−1
j Zj

)−1 m∑

j=1

wjZ
′
jW

−1
j bj ,

using the unweighted within-groups estimates bj and Wj , was proposed by

Kovačević and Rai [66]. This also does not have the optimality properties of

the WLS estimator without sampling weights.

Generally, we need an estimate of Ω as well. The estimators discussed

earlier can be adapted relatively straightforwardly, but we omit this here,

with the exception of a general treatment of ML with sampling weights.

The loglikelihood function for a two-level model that is not necessarily

linear can be written as

L =
m∑

j=1

log

∫
exp(Lj|δj

) fδ(δj) dδj ,

where we have suppressed the dependence on the parameter vector θ. The

function fδ(·) is the density function of δj and Lj|δj
is the loglikelihood of

the j-th group conditional on δj . Thus,
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Lj|δj
=

nj∑

i=1

log fy | δ(yij | δj)

in obvious notation. From this form, the adaptation for sampling weights is

straightforward, leading to

Lw,j|δj

∆
=

nj∑

i=1

wi|j log fy | δ(yij | δj),

Lw ∆
=

m∑

j=1

wj log

∫
exp(Lw,j|δj

) fδ(δj) dδj =
m∑

j=1

wjLwj ,

with Lwj implicitly defined. Thus, the first-order condition for the ML esti-

mator with sampling weights is

m∑

j=1

wj
∂Lwj
∂θ

= ∅, (1.32)

so that, adapting (1.30), the covariance estimate for the resulting estimator θ̂

becomes
(

m∑

j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1( m∑

j=1

w2
j

∂Lwj
∂θ

(θ̂)
∂Lwj
∂θ′

(θ̂)

)(
m∑

j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1

.

Unlike the covariance matrix without sampling weights, this formula does

not simplify considerably even if all model assumptions are met. Thus, this

illustrates that the resulting estimators are not proper ML estimators and the

weighted loglikelihood function is not a proper loglikelihood. The estimators

can, however, be viewed as generalized estimating equation (GEE) estimators

based on the estimating equations (1.32) and, under weak regularity condi-

tions, have desirable statistical properties (consistency, asymptotic normality).

From this theory, it also follows that it is immaterial whether the weights are

predetermined (by the sampling scheme) or estimated afterward (because of

differential nonresponse), in which case they would be random variables. The

estimating equations are still valid, unless the nonresponse is related to the

dependent variable of interest (“nonignorable”), in which case analyzing the

data becomes much more complicated and perhaps consistent estimators do

not exist.

Of course, the formulas for the ML estimators with sampling weights sim-

plify considerably for the linear multilevel model. This is straightforward and

we do not give the expresssions here.

More extensive discussions of how to treat sampling weights in survey data

in general and with multilevel models in particular can be found in Skinner

[108], Pfeffermann [87], Pfeffermann et al. [88], and Asparouhov [5, 6].
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1.9 A School Effects Example

In this section, we apply some of the techniques discussed in this chapter by

analyzing the well-known NELS-88 data. These have been used to illustrate

multilevel techniques by several authors and, of course, they have been used

in substantive research as well.

The part of the NELS data that we use contains information about the

score on a mathematics test, which will be our dependent variable, and the

amount of time spent on homework, which will be our level-1 explanatory

variable, and the student-teacher ratio of the school, which will be our level-2

explanatory variable. The math test score is a continuous variable having a

sample average of 51, with a range of 27–71. Homework is coded from 0 =

“None” to 7 = “10 or more hours per week”. This is a slightly nonlinear

transformation of the hours, reflecting expected diminishing returns from ad-

ditional hours of homework. Both the average and the median of this variable

are 2. The student-teacher ratio varies from 10 to 30, with mean and median

approximately equal to 17. The data set consists of 21,580 students in 1003

schools, so the average number of observations per school is about 22. The

number of observations per school varies from 1 to 67.

Kreft and de Leeuw [67] have previously analyzed this data set with mul-

tilevel analysis. We base our analyses on the model they describe in their

Chapter 4. However, whereas their goal is to discuss different model specifi-

cations and the choice between them, we focus on comparing results for the

same model obtained with different estimators.

In line with the description in this chapter, we start by computing the

within-school regressions. This immediately illustrates a drawback of our focus

on two-step estimators: In 10 schools, the within-groups regression coefficients

bj and/or the within groups residual variance s2j cannot be computed because

the sample size is too small (nj ≤ p = 2) or because Xj is not of full column

rank, which is presumably also due to small sample size. Thus, we drop these

10 schools and proceed with the 993 remaining schools, leaving us with 21,558

observations. We do not expect that this seriously affects the results, and this

is confirmed by the closeness of our results with the corresponding ones in

Kreft and de Leeuw [67]. However, this also indicates that models that use

different within-groups residual variances (σ2
j ) will not reliably estimate these

parameters for schools with small numbers of observations.

After these disclaimers, we report the within-schools results for the first

30 successfully analyzed schools in Table 1.1. It shows considerable variation

both in the regression coefficients and in the residual variances. This is cor-

roborated by summary statistics for the whole sample: The within-groups

intercept varies from 34 to 72, with mean and median approximately equal to

48, and the regression coefficient for homework varies from −12 to +15, with

mean and median equal to 1.3, but more than 75% are positive. Finally, the
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Table 1.1 Within-school statistics for the first 30 successfully analyzed schools:

school identifier, number of pupils, student-teacher ratio, regression coefficients, and

residual variance.

Regression coefficient Residual
School ID Observations S-t ratio Constant Homework variance

1249 24 21 54.0969 −0.5760 66.6295

1755 14 16 45.9339 0.3330 60.6991

1806 15 25 45.8242 3.0579 70.4722

1846 36 28 45.3300 1.5674 62.4661

2114 19 13 57.5974 −0.6658 83.7773

2335 19 11 60.0461 0.5249 16.1703

2666 20 14 43.0026 3.1134 69.1364

2759 17 10 57.3730 −2.8981 86.0793

2861 21 17 52.5275 2.6298 73.8099

2888 20 30 53.5131 0.4496 71.1451

2988 23 22 51.0928 0.5839 99.0531

6043 10 23 57.0538 0.5509 54.7340

6044 24 23 55.4732 0.1090 65.2169

6053 44 18 51.6696 2.0880 75.1713

6091 8 22 47.7969 −0.3928 108.5720

6185 3 19 47.9300 0.7850 41.3438

6327 8 23 63.8000 −8.6350 25.8185

6358 10 28 60.6133 0.5409 16.9813

6375 4 20 57.5608 0.4358 21.8832

6420 7 25 53.0421 0.2061 70.3876

6442 11 12 48.8171 0.1168 101.7292

6467 5 19 41.0639 6.9128 11.8384

6518 21 29 60.2006 0.9153 64.9436

6631 5 20 68.5750 −7.4025 40.5725

6641 29 15 50.2446 1.5950 70.2012

6656 4 16 37.7940 3.9710 10.9923

6738 3 26 54.9100 −6.0000 10.7648

6868 18 13 52.3958 0.9523 63.7598

7000 24 13 41.6905 1.2020 72.8585

7011 20 24 45.9697 1.6501 62.8256

residual variance varies from 5 to 180, with mean and median approximately

equal to 71. It is the goal of the second step of the analysis to model at least

some of the variation in the regression coefficients.

Of course, a negative coefficient for time spent on homework does not make

sense substantively. Rather, in addition to the possibility of sheer random

fluctuation, this points to a possible endogeneity problem, caused by students

who have more problems with mathematics spending more time on their

homework. That is, it may be the result of a partial reversal of causality. For
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the analysis here, we will ignore this possibility, given that we are primarily

interested in differences between estimators.

We proceed by computing the one-step and two-step OLS estimates of

the regression coefficients γ. These are reported in the first two columns of

Table 1.2. The estimates are in the first panel, model-based standard errors

(computed using the de Leeuw and Kreft [28] estimate of Ω) in the second

panel, and robust standard errors in the third panel. Unlike a similar com-

parison for different data in de Leeuw and Kreft [28], we see some important

differences between these estimates. The estimated main effect of the student-

teacher ratio is twice as large for the two-step estimator, whereas the main

effect of homework is less than half as large and the interaction term is also

considerably less important, even statistically insignificant.

By using the within-groups and two-step OLS estimates, we can estimate

Ω by the method of de Leeuw and Kreft [28] discussed above. The estimate is

denoted by DLK in Table 1.3. Fortunately, this is positive definite, so we do

not encounter the problems faced by de Leeuw and Kreft for their example.

Thus, we can use this estimate to compute the WLS estimates of γ. They are

given in the third column of Table 1.2. They are very similar to the two-step

estimates. As mentioned above, the estimate ofΩ is also be used in computing

the model-based standard errors of the one-step and two-step OLS and WLS

estimates, which are given in the second panel of Table 1.2. The third panel

contains standard errors obtained from the cluster-robust covariance matrices.

Table 1.2 Estimates of fixed regression coefficients for the NELS-88 data and their

standard errors.

OLS OLS WLS FIML REML FIML REML

(1-step) (2-step) (DLK) (1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

Constant 49.1477 52.1147 52.1062 51.4428 51.4434 51.9983 51.9988

S-t ratio −0.1113 −0.2217 −0.2290 −0.2006 −0.2006 −0.2242 −0.2242

Homework 2.8520 1.2834 1.2785 1.5272 1.5272 1.3557 1.3561

hw × ratio −0.0522 −0.0003 0.0058 −0.0030 −0.0030 0.0028 0.0028

Model-based standard errors

Constant 0.7857 0.7303 0.6913 0.7003 0.7011 0.7307 0.7314

S-t ratio 0.0428 0.0398 0.0378 0.0382 0.0382 0.0399 0.0400

Homework 0.2642 0.2362 0.1875 0.1823 0.1825 0.1781 0.1783

hw × ratio 0.0142 0.0127 0.0103 0.0100 0.0100 0.0098 0.0099

Robust standard errors

Constant 0.8176 0.8287 0.8862 0.8077 0.8049 0.8751 0.8639

S-t ratio 0.0433 0.0437 0.0469 0.0428 0.0427 0.0462 0.0457

Homework 0.2166 0.2225 0.1922 0.1828 0.1782 0.1961 0.1767

hw × ratio 0.0117 0.0118 0.0105 0.0098 0.0097 0.0105 0.0097
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Next, we compute ML estimates. There are four of them: FIML and

REML, each with a common variance parameter σ2 or with separate variances

σ2
j . The results for the fixed coefficients are listed in the last four columns of

Table 1.2. As argued before, these REML results are better called “WLS based

on REML estimates of the variance parameters”, but for convenience we call

them REML here, and similarly WLS based on the DLK variance parameter

estimates will be simply called WLS. The model-based standard errors for

the ML estimators are obtained from the information matrix, whereas the ro-

bust standard errors are obtained from the cluster-robust covariance matrices

described above. An exception is formed by the robust standard errors accom-

panying FIML with separate residual variances. These have been computed by

formulas based on a combination of within-groups and between-groups asymp-

totics, as briefly mentioned but not worked out above (details are available

upon request). This is intended to avoid the problems with the cluster-based

estimator of the variance of the first derivatives of the loglikelihood, because its

σ part is based on only 1 independent observation. However, the within-groups

asymptotics involve sample fourth-order moments, which are highly inaccurate

for the many small within-groups sample sizes. Nevertheless, the numerical

results are similar to the ones for the other ML estimators, and also very

similar to the two-step OLS and WLS results.

Note that the robust s.e.’s of the REML estimator are simply the WLS

formulas, and thus are not affected by this problem. Given that the FIML

estimators of γ are also WLS estimators, based on the FIML estimates of the

variance parameters, we could have done the same for FIML. On the other

hand, these WLS-based variance estimates essentially ignore any variability in

the estimators of the variance parameters, which is also only asymptotically

warranted.

The DLK and ML estimates of the elements of the level-2 covariance ma-

trixΩ are given in Table 1.3. The ML estimates using a single residual variance

parameter are very similar to the DLK estimates (which are, incidentally,

based on separate residual variances). The standard errors are a bit smaller,

reflecting the higher precision of ML. When separate residual variances are

estimated with ML, the estimates of Ω are noticeably larger.

For both ML estimators with a single residual variance parameter, the

estimate of σ2 is 71.74 with a model-based standard error of 0.72 and a robust

standard error of 0.85. The value of 71 corresponds closely with the average

of the within-groups residual variance estimates.

For FIML with separate variances, the estimates of the residual variances

vary from 8 to 161, with mean and median again approximately equal to

71. Similarly, for REML with separate variances, the estimates of the residual

variances vary from 8 to 157, with mean and median also approximately equal

to 71. This range is slightly narrower than the range of the within-groups
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Table 1.3 Estimates of level-2 variance parameters for the NELS-88 data and their

standard errors.

DLK FIML REML FIML REML

(1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

Constant, constant 23.9283 23.2633 23.3326 27.8982 27.9745

Homework, constant −0.9319 −0.9105 −0.9197 −1.6088 −1.6197

Homework, homework 0.8678 0.5190 0.5243 0.6828 0.6878

Model-based standard errors

Constant, constant 1.8298 1.5125 1.5172 1.6826 1.6826

Homework, constant 0.6159 0.3138 0.3149 0.3296 0.3296

Homework, homework 0.3691 0.0993 0.0998 0.0971 0.0971

Robust standard errors

Constant, constant — 1.5646 1.5591 1.7509 1.7509

Homework, constant — 0.2983 0.2931 0.3197 0.3197

Homework, homework — 0.1048 0.1047 0.1262 0.1262

Note: Robust standard errors are not available for the DLK [28] estimator.

estimates of the residual variances, but otherwise seems to confirm that the

residual variances are not equal.

We can compute a likelihood ratio test statistic comparing the model

with a common residual variance with the model with separate variances. For

both FIML and REML, its value is approximately 1500, with 992 degrees of

freedom, which gives a hugely significant p-value of approximately 2.2×10−23.

Even though the chi-square approximation is possibly inaccurate with such

a large number of degrees of freedom and such small within-groups sample

sizes, it clearly points in the direction of heterogeneous variances.

This leaves us with the conclusion that a model with a common variance is

likely misspecified and a model with separate variances cannot be estimated

reliably. Thus, this is a case in point for a more genuine multilevel approach in

which the residual variance is modeled with a systematic part and a random

residual, as suggested earlier.

Fortunately, however, the estimates and standard errors of the fixed coeffi-

cients, and to a lesser degree also the results for the level-2 covariance matrix,

appear fairly insensitive to the specification of the level-1 random part. Thus,

substantive conclusions would also be largely unaffected by this issue.

Clearly, this single empirical example is only an illustration and cannot be

viewed as representative of all multilevel analyses. Many more examples, show-

ing various issues in model specification and estimation, are discussed in detail

in the textbooks [46, 59, 67, 76, 89, 101, 110, 111], the program manuals, and

many empirical articles cited here and in the mentioned textbooks. Finally,
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the remaining chapters of this Handbook contain many empirical applications

as well, although for more complicated models.

1.10 Final Remarks

In this final section, we would like to briefly mention a few topics that have not

been addressed in the previous sections. The first is hypothesis tests. Of course,

this is one of the main topics of statistics (and typically the one that gives

statistics its bad reputation among students in the social sciences). However,

there is almost nothing that is specific to multilevel analysis. Thus, the general

theory of hypothesis testing as presented in, e.g., Cameron and Trivedi [17,

Chapter 7], and in particular, the well-known Wald, likelihood ratio, and

Lagrange multiplier tests, can be directly applied. The only thing worth

mentioning is that the REML loglikelihood cannot be used to test hypotheses

concerning γ, i.e., exclusion of certain variables from the fixed part of the

model, because when viewed as a proper loglikelihood, it does not contain γ.

More generally, model fit is an important subject. In addition to formal

hypothesis tests, this typically involves certain more descriptive indexes of

model fit, like R2 in linear regression. Several such indexes have been proposed

for multilevel analysis, but these tend to have serious drawbacks. Sometimes it

is not guaranteed that the fit index improves as variables (or, more generally,

parameters) are added to the model, whereas other fit indexes do not have

a clear intuitive interpretation. Thus, the literature does not seem to have

converged on this topic. See, e.g., Snijders and Bosker [111, Chapter 7], Hox

[59, Section 4.4], Spiegelhalter et al. [112], Xu [128], and Gelman and Pardoe

[41] for some proposed indexes and their properties. A systematic approach

to diagnosing model (mis)specification, directed at various directions of mis-

specification, is given in Chapter 3 of this volume.

An important issue in multilevel model specification is centering. In social

science data, variables typically do not have a natural zero point, and even

if there is a natural zero, it may still not be an important baseline value.

Therefore, in regression analysis and other multivariate statistical analysis

methods, variables are often centered, so that the zero point is the sample

average, which is an important baseline value. This tends to ease the in-

terpretation of the parameters, especially the intercept, and it sometimes has

some computational advantages as well. This practice has also been advocated

for multilevel analysis, but the consequences for multilevel analysis are not as

innocuous as for ordinary linear regression analysis. Moreover, in multilevel

analysis, there are two possibilities for centering the data. The first is grand

mean centering, i.e., the sample average of all observations is subtracted,

and the second is within-groups centering, where the sample average of only

the observations within the same group is subtracted. Generally, grand mean
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centering does not change the model and is thus innocuous, but within-groups

centering implicitly changes the model that is estimated, unless the sample

averages of all level-1 predictor variables are included as level-2 predictors.

For an extensive analysis, see Kreft et al. [68], Van Landeghem et al. [119], de

Leeuw [27], and the references therein.

We close by noting that the quality of every data analysis crucially depends

on the quality of the data. Most issues in data quality are not specific to

multilevel analysis and are thus not discussed here. One important aspect,

however, is the sampling design. Because a multilevel data set has observa-

tions at different levels, deciding on issues like sample size and randomization

becomes more complicated than with single-level data. This subject is treated

in detail in Chapter 4 in this volume.

Appendix

1.A Notational Conventions

This appendix describes the notation used in this chapter. The notation

throughout this Handbook has been made as consistent as possible, so that

this appendix also serves as a reference for the other chapters. However, the

reader may occasionally discern slight differences in notation between the

chapters.

1.A.1 Existing Notation

We used the most common books on mixed, random coefficient, and multilevel

models to find a compromise notation [24, 46, 67, 76, 89, 101, 111]. There is a

substantial agreement on notation in these books, although there are of course

many differences of detail.

1.A.2 Matrices and Vectors

Matrices are boldface capitals; vectors are lowercase bold. In general, we use

Greek symbols for unknowns and unobservables, such as parameters or latent

variables (disturbances, variance components).

As another convention, we write X[n, r] for “X is an n × r matrix” and

y[n] for “y is an n-element vector”. Also, X = (xij) is used to define a matrix

in terms of its elements.

Two special matrix symbols we use are � for the direct sum and � for the

direct (or Kronecker) product. If A1, . . . ,Ap are matrices, with As[ns,ms],

then the direct sum is the
∑p
s=1 ns ×

∑p
s=1ms matrix
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p⊕

s=1

As = A1 � · · ·�Ap =




A1 ∅ ∅ . . . ∅

∅ A2 ∅ · · · ∅

∅ ∅ A3 · · · ∅

...
...

...
. . .

...

∅ ∅ ∅ · · · Ap



,

where ∅ denotes a (sub-)matrix with all elements equal to zero. The direct

product is a
∏p
s=1 ns×

∏p
s=1ms matrix, which we can best define recursively

starting with two matrices A and B. If A is n×m, then

A�B =




a11B a12B a13B · · · a1mB

a21B a22B a23B · · · a2mB

a31B a32B a33B · · · a3mB
...

...
...

. . .
...

an1B an2B an3B · · · anmB




and, by recursion,

p⊗

s=1

As = A1 � (A2 � · · ·�Ap).

Superscripted delta is the Kronecker delta, i.e.,

δst =

{
1 if i = j

0 if i 6= j.

The identity matrix is I, a vector with all elements equal to 1 is 1. The matrix

E has all elements equal to 1. The size of these matrices and vectors will often

be clear from the context. If we need to be explicit, we can always write, for

instance, E[n,m], but we also use the forms In and 1n. Unit vectors ei have

all elements equal to zero, except for element i, which is equal to 1. Thus, 1

is the sum of the ei.

1.A.3 Special Symbols

We use the following special symbols:
∆
= is defined as

∼ is distributed as

N normal distribution
L

=⇒ convergence in law (distribution)
a.d.
= has the same asymptotic distribution
P

=⇒ convergence in probability
iid∼ i.i.d. with given distribution
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1.A.4 Underlining Random Variables

A non-standard part of our notation is that we underline random vari-

ables [28]. Thus, vector or matrix random variables are both underlined and

bold.

The advantage of distinguishing between random variables and fixed

known or unknown constants in the context of mixed models is clear. We use

constants (the design matrix, unknown parameters) and random variables (the

outcome variables, of which we observe a realization, and the random effects,

which we do not observe at all). We also estimate parameters. Estimates are

fixed values, realization of estimators, which are random variables. Underlining

gives us an extra alphabet, it also gives us a method to indicate how constants

and random variables are related, because we can use y for a realization of

y. The advantages of underlining, known as the Dutch Convention or Van

Dantzig Convention, are discussed in more detail in Hemelrijk [58].

As a simple example, the classical linear model is

y = Xβ + ǫ,

with

ǫ ∼ N (∅, σ2I).

Thus,

y ∼ N (Xβ, σ2I).

We observe y and X, and we compute

β̂ = (X ′X)−1X ′y, (1.33)

which is a realization of a random variable β̂, satisfying

β̂ ∼ N (β, σ2(X ′X)−1).

It obviously makes sense to write E (β̂) = β, and it does not make sense to

write E (β̂) = β.

Equation (1.33) also illustrates the convention of writing the estimate of

a parameter by putting a hat on the parameter symbol. We also use this

convention for “estimating” a random component, for instance,

ǫ̂ = y −Xβ̂.

For conditional expectations, we can both have E (x | y) and E (x | y), because

we can condition on both a random variable and its realization. The first

expression defines a deterministic function of y, the second a function of y,

i.e., a random variable.
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It is important to emphasize some basic consequences of our conventions.

Anything we actually compute cannot be underlined, because we only compute

with realizations, not with random variables. Anything that is underlined

is by definition part of a statistical model, because it implies a framework

of replication or a degree of belief. In Bayesian models, there will be more

underlining than in empirical Bayes models, and empirical Bayes models have

more underlining than classical frequentist models. Ultimately, of course, even

fully Bayesian models will have fixed hyperparameters, because otherwise the

specification of the model will never stop.

1.B Generic Numerical Optimization

The most common starting point for numerical optimization of a generic well-

behaved function is a second-order Taylor series expansion around a point

θ1:

f(θ) = f1 + g′1(θ − θ1) + 1
2
(θ − θ1)

′H1(θ − θ1) + o‖θ − θ1‖2,

where f1, g1, and H1 are the function f(·), its gradient g(·) (vector of first

partial derivatives with respect to θ), and its Hessian H(·) (matrix of second

partial derivatives with respect to θ), respectively, all evaluated in θ1.

Thus, if we ignore the approximation error reflected by the last term, we

find that the function is minimized for

θ̂ = θ1 −H−1
1 g1,

provided thatH1 is positive definite. Of course, in practice the approximation

error is not zero, so that this does not minimize the loss function immediately.

But we can assert that we have come closer and repeat the process, leading

to the algorithm

θi+1 = θi −H−1
i gi,

where i denotes the iteration number. This algorithm defines the well-known

Newton-Raphson method, also known simply as Newton’s method. In practice,

two modifications are often necessary to ensure that this algorithm works well.

The first is that the search direction −H−1
i gi is only guaranteed to point in

the direction of smaller function values if Hi is positive definite. Hence, if

the loss function is not globally convex, Hi may have to be modified in some

iterations to ensure that it is positive definite. This is typically done by adding

a positive multiple of the identity matrix until all eigenvalues are positive. The

second modification that is often used is to insert a step size αi, with which

the search direction is multiplied, so that the algorithm becomes

θi+1 = θi − αiH−1
i gi, (1.34)



64 J. de Leeuw, E. Meijer

where it is understood that Hi may be the modified version to make it pos-

itive definite. Even though it is guaranteed that the search direction points

toward smaller function values, the unmodified update may “overshoot” if the

function decreases slowly in the neighborhood of the current point, but then

increases sharply. Therefore, the factor αi is chosen such that the function

value in the next point is smaller than in the current point. A value of αi
that ensures this always exists if Hi is positive definite and gi is nonzero.

Typically, one would start with αi = 1, halving step size until such a point

is reached. The (modified) Newton-Raphson method is implemented in most

general-purpose optimization functions.

There exist many alternative generic numerical optimization methods,

most of which use the same form (1.34) of an iteration, but with H−1
i re-

placed by another positive (semi)definite matrix. The reason for this is that

it is often computationally demanding to compute H−1
i , and places a larger

burden on the researcher and/or programmer, because the second derivatives

have to be computed and programmed. In principle, these methods converge

more slowly, because in the neighborhood of the minimum, the loss function

is closely approximated by a quadratic function, so that Newton-Raphson

converges very fast. In contrast, the steepest descent method, which simply

replaces H−1
i by the identity matrix, tends to converge extremely slowly. In

many cases, however, the better alternative methods are not noticeably worse

(in terms of speed and accuracy) than Newton-Raphson. A good and popular

method is the BFGS method, which replaces H−1
i by the matrix Gi. The

latter matrix is computed using the update formula

Gi+1 = (I − ρi△θi△g′i)Gi(I − ρi△gi△θ′i) + ρi△θi△θ′i,

where △θi = θi+1−θi, △gi = gi+1−gi, and ρi = 1/△g′i△θi. Clearly, if Gi is

positive semidefinite, then Gi+1 is also positive semidefinite. Moreover, it can

be proved that if Gi is positive definite, then Gi+1 is also positive definite.

Typically, the starting valueG0 is the identity matrix, which is clearly positive

definite, or an informed guess of H−1. When BFGS is applied to a (convex)

quadratic function of an n-element vector θ, and the step size is chosen to

minimize the function along the line defined by the update formula, the global

minimum is attained in n iterations and Gn+1 = H−1 (which is a constant

matrix). Therefore, unless the number of parameters is large, BFGS tends to

converge quickly in the neighborhood of the minimum, where the loss function

is approximately quadratic. The BFGS method is also implemented in most

general-purpose optimization functions.

An extensive treatment of many generic numerical optimization proce-

dures, including Newton-Raphson and BFGS, with derivations of their prop-

erties, can be found in Nocedal and Wright [86].
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1.C Some Matrix Expressions

Here we collect some convenient results to deal with two-level linear models.

The first two results have been known for a long time [26, 36, 117]. Proofs of

the first three results are given, for example, in de Leeuw and Liu [31]. Many

additional useful matrix results are provided by Wansbeek and Meijer [123,

appendix A] and Harville [53].

Theorem 1.1 If A = B + TCT ′ with A and B positive definite, then

log |A| = log |B|+ log |C|+ log |C−1 + T ′B−1T |.

If, in addition, T is of full column rank, then

log |A| = log |B|+ log |T ′B−1T |+ log |C + (T ′B−1T )−1|.

Theorem 1.2 If A = B + TCT ′ with A and B positive definite, then

A−1 = B−1 −B−1T (C−1 + T ′C−1T )−1T ′B−1.

If, in addition, T is of full column rank, then

A−1 = T (T ′T )−1(C + (T ′B−1T )−1)−1(T ′T )−1T ′

+ {B−1 −B−1T (T ′B−1T )−1T ′B−1}.

Theorem 1.3 If A = B + TCT ′ with A and B positive definite,then

y′A−1y = min
x
{(y − Tx)′B−1(y − Tx) + x′C−1x}.

The fourth result was proved by de Hoog et al. [26] by letting C−1 → ∅ on

both sides of Theorem 1.2.

Theorem 1.4 If B is positive definite and T is of full column-rank, then

B−1 −B−1T (T ′B−1T )−1T ′B−1 = (QBQ)+,

where Q = I − T (T ′T )−1T ′ and superscript + denotes the Moore-Penrose

inverse.

1.D The EM Algorithm

The EM algorithm of Dempster et al. [33] is a general method to optimize

functions of the form f(θ) = log
∫
g(θ,z) dz over θ, where g(θ,z) > 0 for all

θ and z in the domain. It is usually presented in probabilistic terminology, but

the reason why it works is the concavity of the logarithm, which is obviously

not a probabilistic result.
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Define h(θ)
∆
=
∫
g(θ,z) dz and k(z | θ) ∆= g(θ,z)/h(θ). Then, by the con-

cavity of the logarithm, it follows from Jensen’s inequality [96, p. 58] that for

all θ and θ̃,

f(θ) ≥ f(θ̃) +

∫
log g(θ,z) k(z | θ̃) dz −

∫
log g(θ̃,z) k(z | θ̃) dz, (1.35)

with equality if and only if g(θ,z) = g(θ̃,z) almost everywhere.

In each iteration of the EM algorithm we take θ̃ to be our current best

approximation to the optimum and improve it by maximizing the right-hand

side of (1.35) over θ for this given θ̃. In other words, we find θ(i+1) by

maximizing

Q(θ | θ(i))
∆
=

∫
log g(θ,z) k(z | θ(i)) dz

over θ. The algorithm is monotone, in the sense that f(θ(i+1)) > f(θ(i))

and in many cases this is enough to guarantee (linear) convergence to a local

maximum of f(·).
In the probabilistic interpretation, f(θ) is a loglikelihood function and

EM stands for expectation-maximization. The E-step computes Q(θ | θ(i)),

which is the conditional expectation of the complete-data loglikelihood g(θ,z),

given the observed data and the current parameter value θ(i), and the M-step

maximizes the resulting function.

We can now apply the EM algorithm to the multilevel FIML loglikelihood.

Here, z consists of all the random effects δj , and θ is the usual parameter

vector. The complete-data loglikelihood has the form

g(θ, δ) =
m∏

j=1

gj(θ, δj),

where gj(θ, δj) is the joint density of y
j

and δj . Using standard probability

theory, we can write

gj(θ, δj) = fδ |y(δj | yj)fy(yj),

hj(θ)
∆
=

∫
gj(θ, δj) dδj = fy(yj),

kj(δj | θ) ∆= gj(θ, δj)/hj(θ) = fδ |y(δj | yj),

Qj(θ | θ(i))
∆
=

∫
log gj(θ, δj) kj(δj | θ(i)) dδj ,

Q(θ | θ(i)) =

m∑

j=1

Qj(θ | θ(i)).

The joint distribution of y
j

and δj is normal:
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(
y
j

δj

)
∼ N

((
Ujγ

∅

)
,

(
Vj XjΩ

ΩX ′
j Ω

))
,

from which we obtain the conditional distribution of δj given yj as

δj | yj ∼ N (µj ,Σj),

with

µj = ΩX ′
jV

−1
j (yj −Ujγ) = ΩW−1

j (bj −Zjγ),

Σj = Ω −ΩX ′
jV

−1
j XjΩ = σ2

jΩW
−1
j (X ′

jXj)
−1.

By writing gj(θ, δj) = fy | δ(yj | δj)fδ(δj), and observing that the marginal

distribution of δj is normal with mean zero and covariance matrix Ω, and the

conditional distribution of y
j

given δj is normal with mean Ujγ +Xjδj and

covariance matrix σ2
j Inj

, we obtain, after some simplification,

log gj(θ, δj) = −nj + p

2
log(2π)− nj

2
log σ2

j −
1

2σ2
j

(nj − p)s2j

− 1

2σ2
j

(bj −Zjγ)′X ′
jXj(bj −Zjγ) +

1

σ2
j

(bj −Zjγ)′X ′
jXjδj

− 1
2

log |Ω| − 1
2

tr
[
(σ−2
j X ′

jXj +Ω−1)δjδ
′
j

]
.

The function Qj(θ | θ(i)) is obtained by integrating the product of this with

kj(δj | θ(i)). That is, it is obtained as the expectation of log gj(θ, δj) when

viewed as a function of the random variable δj that is normally distributed

with mean µ
(i)
j and covariance matrix Σ

(i)
j , which are µj and Σj evaluated

in θ(i). For this distribution, we evidently have E (δj) = µ
(i)
j and E (δjδ

′
j) =

Σ
(i)
j + µ

(i)
j µ

(i)
j

′, so that, after some simplification, we obtain

Qj(θ | θ(i)) =

(
−nj + p

2
log(2π)

)
− 1

2

(
log |Ω|+ tr

[
Ω−1(Σ

(i)
j + µ

(i)
j µ

(i)
j

′)
])

− nj
2

log σ2
j −

1

2σ2
j

(nj − p)s2j −
1

2σ2
j

tr(X ′
jXjΣ

(i)
j )

− 1

2σ2
j

(bj − µ(i)
j −Zjγ)′X ′

jXj(bj − µ(i)
j −Zjγ).

Consequently, the parameter values that optimize Q(θ | θ(i)) are

Ω(i+1) =
1

m

m∑

j=1

(Σ
(i)
j + µ

(i)
j µ

(i)
j

′),

γ(i+1) =

(
m∑

j=1

Z ′
jX

′
jXjZj

)−1 m∑

j=1

Z ′
jX

′
jXj(bj − µ(i)

j ),

(σ2
j )

(i+1) =
1

nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,
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or, instead of the latter,

(σ2)(i+1) =
1

n

m∑

j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆
=Σ

(i)
j + (bj − µ(i)

j −Zjγ(i+1))(bj − µ(i)
j −Zjγ(i+1))′.

Note that when Ω is not completely free (apart from the requirements of

symmetry and positive definiteness, of course), then the M-step with respect

to the parameters {ξg} is nontrivial. We then need to minimize the function

F (ξ)
∆
= log |Ω|+ tr

(
Ω−1S(i)

)

with respect to ξ
∆
= (ξ1, . . . , ξG)′, where

S(i) ∆=
1

m

m∑

j=1

(Σ
(i)
j + µ

(i)
j µ

(i)
j

′).

Assuming (1.3), the first-order conditions are

tr[Ω−1(S(i) −Ω)Ω−1Cg] = 0.

Letting C∗ be the matrix with g-th column equal to vec(Cg), these can be

jointly written as

C∗′(Ω−1 �Ω−1)(vecS(i) −C∗ξ) = ∅,

which is a nonlinear equation that does not generally have a closed-form

solution. However, it strongly suggests that one or more IGLS iterations of

the form

ξ(i+1,k+1) =
[
C∗′(Ω−1 �Ω−1)C∗

]−1
C∗′(Ω−1 �Ω−1) vecS(i),

where in the right-hand side vecS(i) is held fixed throughout these subit-

erations, but Ω is the value from the previous (k-th) subiteration, should

also increase the loglikelihood, so that full optimization in this step is not

necessary.
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2.1 Introduction

Multilevel models have gained wide acceptance over the past 20 years in many

fields, including education and medicine [e.g., 26, 43, 45], as an important

methodology for dealing appropriately with nested or clustered data. The idea

of conducting an experiment in such a way that the levels of one factor are

nested inside those of another goes back all the way to the initial development,

in the 1920s, of the analysis of variance (ANOVA; [34]), so there’s nothing new

in working with nested data; the novelty in recent decades is in the methods for

fitting multilevel models, the ability to work with data possessing many levels

of nesting and multiple predictor variables at any or all levels, and an increased

flexibility in distributional assumptions. The earliest designs featured one-way

ANOVA models such as1

yij = µ+ αTj + aSij , j = 1, . . . , J, i = 1, . . . , nj ,

J∑

j=1

nj = N,
J∑

j=1

αTj = 0, aSij
iid∼ N (0, σ2

S),
(2.1)

in which the subject factor S (indexed by i), treated as random, is nested

within the treatment factor T (indexed by j), treated as fixed. Under the

normality assumption in (2.1) such models required little for the (frequentist)

estimation of the parameters µ, σ2
S , and the αTj beyond minor extensions of

the least squares methods known since the time of Legendre [51] and Gauss

[36]. Regarding the treatment factor as random, however, by changing the

αTj to aTj
iid∼ N (0, σ2

T ) (with the aTj and aSij mutually independent), created

substantial new difficulties in model fitting—indeed, as late as the 1950s, one

1 Note that random variables are not underlined in this chapter.
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of the leading estimation methods [e.g., 65] was based on unbiased estimates

of the variance components σ2
T and σ2

S , the former of which can easily, and

embarrassingly, go negative when σ2
T is small. Fisher [33] had much earlier pi-

oneered the use of maximum likelihood estimation, but before the widespread

use of fast computers this approach was impractical in random-effects and

mixed models such as

yij = β0 + β1(xij − x̄) + aTj + aSij , j = 1, . . . , J, i = 1, . . . , nj ,

J∑

j=1

nj = N, aTj
iid∼ N (0, σ2

T ), aSij
iid∼ N (0, σ2

S)
(2.2)

(where the xij are fixed known values of a predictor variable and x̄ is the

sample mean of this variable), because the likelihood equations in such models

can only be solved iteratively. Multilevel modeling entered a new phase in the

1980s, with the development of computer programs such as ML3, VARCL, and

HLM using likelihood-based estimation approaches based on iterative general-

ized least squares [42], Fisher scoring [52], and the EM algorithm [e.g., 15],

respectively. In particular, the latest versions of MLwiN (the successor to ML3;

[60]) and HLM [66] have worldwide user bases in the social and biomedical sci-

ences numbering in the thousands, and likelihood-based fitting of at least some

multilevel models is also now obtainable in more general-purpose statistical

packages such as SAS [64] and Stata [71].

However, the use of the likelihood function alone in multilevel modeling

can lead to the following technical problems:

• Maximum-likelihood estimates (MLEs) and their (estimated asymptotic)

standard errors (SEs) can readily be found by iterative means for the

parameters in Gaussian multilevel models such as (2.2), but interval es-

timates of those parameters can be problematic when J , the number of

level-2 units, is small. For example, simple “95%” intervals of the form

σ̂2
T ± 1.96 ŝe(σ̂2

T ) (based on the large-sample Gaussian repeated-sampling

distribution of σ̂2
T ) can go negative and can have actual coverage levels

substantially below 95%, and other methods based only on σ̂2
T and ŝe(σ̂2

T )

(which are the default outputs of packages such as MLwiN and HLM) are not

guaranteed to do much better, in part because (with small sample sizes)

the MLE of σ2
T can be 0 even when the true value of σ2

T is well away from

0 [e.g., 12].

• The situation becomes even more difficult when the outcome variable y in

the multilevel model is dichotomous rather than Gaussian, as in random-

effects logistic regression (RELR) models such as

(yij | pij) indep∼ Bernoulli(pij), where

logit(pij) = β0 + β1(xij − x̄) + uj , uj
iid∼ N (0, σ2

u).
(2.3)
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Here the likelihood methods that work with Gaussian outcomes fail; the

likelihood function itself cannot even be evaluated without integrating out

the random effects uj from (2.3). Available software such as MLwiN fits

RELR models via quasi-likelihood methods [7]; this approach to fitting

nonlinear models such as (2.3) proceeds by linearizing the second line of

the model via Taylor series expansion, yielding marginal and penalized

quasi-likelihood (MQL and PQL) estimates according to the form of the

expansion used. These are not full likelihood methods and would be better

termed likelihood-based techniques. Browne and Draper [12] have shown

that the actual coverage of nominal 95% interval estimates with this

approach in RELR models can be far less than 95% when the intervals

are based only on MQL and PQL point estimates and their (estimated

asymptotic) SEs; see Section 2.3.3 below. Calibration results of this kind

for other methods which attempt to more accurately approximate the

actual likelihood function [e.g., 1, 50, 53, 57, 61] are sparse and do not

yet fully cover the spectrum of models in routine use, and user-friendly

software for many of these methods is still hard to come by.

This chapter concerns the Bayesian approach to fitting multilevel models,

which (a) attempts to remedy the above problems (though not without in-

troducing some new challenges of its own) and (b) additionally provides

a mechanism for the formal incorporation of any prior information which

may be available about the parameters of the multilevel model of interest

external to the current data set. A computing revolution based on Markov

chain Monte Carlo (MCMC) methods, and the availability of much faster

(personal) computers, have together made the Bayesian fitting of multilevel

models increasingly easier since the early 1990s. In this chapter I (1) describe

the basic outline of a Bayesian analysis (multilevel or not), in the context of a

case study, (2) motivate the need for simulation-based computing methods, (3)

describe MCMC methods in general and their particular application to mul-

tilevel modeling, (4) discuss MCMC diagnostic methods (to ensure accuracy

of the computations), and (5) present an MCMC solution to the multilevel

modeling case study.

2.1.1 A Case Study

In the spring of 1993 a survey was taken of bicycle and other traffic in the

vicinity of the University of California, Berkeley, campus [37]. Ten city blocks

were selected at random in each of the six cells of a 2 × 3 table that cross-

tabulates presence or absence of a bike route on a street against whether the

street was residential, fairly busy, or busy. This street classification was made

before the data were gathered. Each block was observed for one hour at the

same time and day of the week on a randomly chosen day, and a record was
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Table 2.1 Raw data from the Berkeley traffic survey. Entries are of the form p/n,

where p is the proportion of bicycle traffic (PBT) and n is the number of vehicles

in each block. Data from two (No, Residential) blocks are missing, and one bicycle

was added to the starred block in the (No, Fairly Busy) cell to avoid a zero PBT

value.

Bike Street Type

Route? Residential Fairly Busy Busy

.216/ 74 .091/ 99 .216/ 37 .078/ 450 .037/1605 .033/1550

.172/ 58 .186/ 70 .068/ 456 .311/ 61 .035/1656 .105/ 562

Yes .156/122 .260/ 77 .174/ 218 .065/ 722 .115/ 460 .044/1562

.173/104 .132/129 .066/ 664 .091/ 481 .042/1626 .034/1766

.114/308 .462/119 .382/ 76 .038/ 480 .130/ 547 .077/ 815

.096/125 .053/ 19 .018/ 567 .033/1301 .006/1256 .007/1255

.125/ 16 .083/ 48 .010/ 504 .023/ 615 .004/1602 .005/1774

No .041/217 .095/ 74 .048/1221 .021/ 715 .015/1309 .024/2559

.237/ 38 .049/162 .011/ 91∗ .041/1140 .013/2377 .024/3176

.034/1510 .029/1118 .007/1932 .011/2343

kept of the numbers of bicycles and other vehicles traveling in the sampled

blocks. The data for two of the residential blocks without a bike route were

lost. The study was observational—for instance, no attempt was made to

assign bike routes to streets at random to see what that would do to vehicular

traffic in Berkeley—but interest nevertheless focuses on the “effects” of (a)

having or not having a bike route and (b) street type on the proportion of

bicycle traffic (PBT).

Table 2.1 presents the raw data from this study, and Table 2.2 offers

summaries of the means and standard deviations (SDs) of the block-level

PBT values on the raw and logit (log-odds) scales. It’s clear from these tables

that

• the street type classifications are fairly accurate as to volume of traffic,

although there is overlap; for instance, 8 of the 18 residential streets were

busier during the chosen observation periods than 4 of the 20 fairly busy

streets;

• street type and bike route both have strong effects on PBT in the intu-

itively reasonable directions (e.g., it’s 16 times more likely that a vehicle

will be a bicycle on residential streets with bike routes than busy streets

without them), although there is substantial (unexplained) between-block

variation within cells of the 2× 3 table;

• there is a strong relationship between the cell means and SDs on the raw

PBT scale, and this is substantially diminished when the log-odds of the
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Table 2.2 Summaries of the Berkeley traffic survey data. Entries are means and

(SDs) of the block-level PBT values, on the raw (top table) and logit (bottom table)

scales.

Bike Street Type

Route? Residential Fairly Busy Busy Total

Yes .196 (.105) .149 (.112) .065 (.038) .137 (.106)

No .097 (.063) .026 (.014) .012 (.007) .041 (.049)

Total .152 (.100) .087 (.103) .038 (.038) .091 (.096)

Bike Street Type

Route? Residential Fairly Busy Busy Total

Yes −1.50 (.598) −2.01 (.917) −2.81 (.598) −2.11 (.884)

No −2.38 (.639) −3.71 (.541) −4.63 (.634) −3.66 (1.08)

Total −1.89 (.746) −2.86 (1.14) −3.72 (1.11) −2.85 (1.25)

PBT values are considered, suggesting either additive modeling on the

logit scale or multiplicative modeling on the raw scale;2 and

• there is a fairly strong interaction between street type and bike route (e.g.,

on the logit scale the effect of having or not having a bike route is about

half as large for residential streets as it is for busier streets).

These data have a multilevel (or hierarchical) character: bike route R and

street type T are fully crossed, city block B is nested in R×T , and vehicle V

is nested in B (and therefore also in R×T ). It’s natural in this study to treat

R and T as fixed factors (at 2 and 3 levels, respectively) and to regard B and

V as random. Letting yijkl be 1 if vehicle i observed in block j of bike route

status k and street type l is a bicycle and 0 otherwise, one possible model for

these data is

(yijkl | pijkl) indep∼ Bernoulli(pijkl), where

logit(pijkl) = µ+ αRk + αTl + αRTkl + aBjkl, aBjkl
iid∼ N (0, σ2

B),
(2.4)

with appropriate side conditions on the fixed effects such as
∑K
k=1 α

R
k = 0. The

normal distribution for the random effects aBjkl in (2.4) and the choice of the

logistic link function in this RELR model are both conventional assumptions,

not automatically motivated by the real-world details of this case study, and

2 40 of the 58 PBT values are less than 0.1, and for p close to 0, logit(p)
∆
= log

(

p/(1−
p)

) .
= log(p); thus the log transform, which is routinely used to produce approxi-

mate additivity of multiplicative (raw-scale) treatment effects, and the logit have

almost the same effect here.
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would require checking (see Chapter 3 of this volume for multilevel diagnostic

methods).

An alternative formulation equivalent to (2.4) would define yjkl to be the

number of bicycles among the njkl vehicles in block j with R×T status (k, l)

and would then take

(yjkl | pjkl) indep∼ Binomial(njkl, pjkl), where

logit(pjkl) = µ+ αRk + αTl + αRTkl + aBjkl, aBjkl
iid∼ N (0, σ2

B),
(2.5)

with the analysis conditional on the observed njkl. One final class of models

for these data begins as in the first line of (2.5) but makes distributional

assumptions about the pjkl on the raw scale, e.g., by replacing the second line

of (2.5) by

pjkl ∼ Beta(αjkl, βjkl) (2.6)

and then linking the αjkl and βjkl values for different (k, l) to the levels of the

R and T factors.3 Exact small-sample likelihood inferences for functions of the

αjkl and βjkl such as the mean of pjkl, αjkl/(αjkl + βjkl), would be difficult

in this model, but (as will be seen below) such inferences are straightforward

with Bayesian fitting via MCMC methods.

2.1.2 Prior, Likelihood, Posterior, and Predictive Distributions

To motivate the ingredients of a Bayesian analysis (not necessarily of mul-

tilevel data), consider the first residential city block with a bike route in

Table 2.1, where s = y111 = 16 of the n = n111 = 74 vehicles observed

were bicycles (with the data gathered, say, on a Tuesday afternoon from

3 to 4 pm), and suppose that these were the only data available. For ease

of notation in this section let the individual indicators (y1,111, . . . , y74,111) of

bicycle-or-not be denoted (b1, . . . , bn). In the predictivist approach to Bayesian

statistics that makes the most sense to me [23], I’m encouraged to consider

the binary observables bi before the data have arrived and to quantify my un-

certainty about them by means of a joint (predictive) probability distribution,

p(b1, . . . , bn). I notice that my predictive uncertainty is the same for (say) b17
as it is for (say) b31, which is another way of saying that my p(b1, . . . , bn) would

be unchanged under any permutation of the indices i = 1, . . . , n; de Finetti

called this a judgment of exchangeability4 of (my predictive distribution for)

3 Equation (2.5) accomplishes something similar by means of what might be called

the logit-normal distribution, which models the behavior of p when logit(p) is

assumed to follow a N (µ, σ2) distribution. The logit-normal family exhibits a

range of shapes similar to that of the Beta family.
4 See Draper et al. [28] for an exploration of how data are used to make such

judgments in practice in more complicated situations.
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the bi. de Finetti [22] showed that if I’m willing to regard (b1, . . . , bn) as the

beginning of an indefinitely long sequence of exchangeable binary observables,

this judgment is functionally equivalent to assuming the hierarchical model

θ ∼ p(θ)
(bi | θ) iid∼ Bernoulli(θ)

(2.7)

(for i = 1, . . . , n), or equivalently the model

θ ∼ p(θ)
(s | θ) ∼ Binomial(n, θ),

(2.8)

where in both models n is treated as fixed and known. Here

• θ is interpretable both (a) as the marginal probability Pr(bi = 1) that any

vehicle in the indefinitely long sequence is a bicycle and (b) as the long-run

average of the bi, which could also be thought of in this case study as the

underlying PBT value for this city block (previously denoted p111) during

other periods (e.g., Tuesday afternoons from 3–4 pm) judged similar to the

day on which the data were gathered; and

• logically θ is a fixed (unknown) constant, but to use model (2.7) or (2.8)

it’s necessary to regard it as a random quantity possessing a probability

distribution p(θ). This is my prior distribution for θ, and represents an

opportunity to quantitatively summarize what (if anything) I know about

θ external to the present data set.

Notice that in de Finetti’s formulation θ is not the primitive construct; pre-

diction of future observables is the fundamental operation, and θ arises as a

quantity which makes this prediction easier, by rendering the bi conditionally

IID5 given θ.

Once the bi are observed my state of knowledge about θ will change.

Denoting the data vector by b = (b1, . . . , bn), it can be shown [e.g., 2] that—to

avoid internal inconsistencies in my probability assessments—this new state

of knowledge must be given by the (conditional) posterior distribution p(θ | b)
for θ given b, and that passing from the prior to posterior states of knowledge

must be accomplished via Bayes’ Theorem:6

5 Exchangeability and IID are not the same thing. IID implies exchangeability,

and exchangeable random variables do have identical marginal distributions, but

they’re not independent: If you didn’t know anything about θ, the knowledge of

how some of the bi turn out would help you to predict the other bi, whereas if you

somehow knew the exact value of θ in (2.7) or (2.8), the bi become conditionally

independent given this knowledge, because information about any of the bi (given

θ) would be irrelevant in predicting any of the other bi.
6 Here, p(·) denotes a probability density or probability mass function, i.e., in this

chapter the same symbol is used for a distribution, e.g., p(θ) = Beta(α, β), and

its density function, e.g., p(θ) = c θα−1 (1 − θ)β−1.
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p(θ | b) =
p(θ) p(b | θ)

p(b)
. (2.9)

After the data have arrived the left side of (2.9) is a probability distribution

for θ with b a known quantity, so the same must be true of the right side.

This means that (i) the p(b) term in the denominator is just a constant7

and (ii) p(b | θ), which before the data were gathered would be recognizable

as the joint sampling distribution p(b1, . . . , bn | θ) for the bi given θ, needs

to be interpreted, after the data are known, as a function of θ for fixed b.

Fisher [33] called this the likelihood function l(θ | b); more precisely he noticed

that this function is only determined up to a constant multiple and defined

l(θ | b) = c p(b | θ) (here and below I’ll use c > 0 as a generic positive

constant). In Bayesian work it’s often useful to choose this constant so that

the likelihood integrates to 1; call the result the likelihood distribution for θ

given b. Then (2.9) can be rewritten as

p(θ | b) = c p(θ) l(θ | b). (2.10)

This provides a prescription for calculating a posterior distribution when the

parameter θ in (2.10) is univariate: multiply the prior and likelihood distribu-

tions pointwise (in θ) and normalize the product to integrate to 1.

The first step in applying (2.10) in the case of the model (2.7) is to compute

the likelihood distribution, which is obtained by writing out the joint sampling

distribution p(b1, . . . , bn | θ) for the Bernoulli model and reinterpreting it as

a function of θ for fixed b. Here, because the bi are conditionally IID given θ,

this is just the product of the marginal Bernoulli sampling distributions

p(bi | θ) =

{
θ if bi = 1

1− θ if bi = 0,

and, since this can be written p(bi | θ) = θbi(1− θ)1−bi , the result is

p(b1, . . . , bn | θ) =
n∏

i=1

p(bi | θ) =
n∏

i=1

θbi(1− θ)1−bi = θs(1− θ)n−s, (2.11)

where s =
∑n
i=1 bi counts the number of bicycles among the n vehicles. Thus

in this case8 l(θ | b) = c θs(1−θ)n−s, with c chosen to make l a density in θ for

fixed s. This is recognizable as the Beta(s+1, n−s+1) distribution. It’s worth

noting that the likelihood here depends on the data vector b only through s;

according to Fisher’s [33] definition, this makes s a sufficient statistic for

7 In fact, it’s a normalizing constant, determined by the condition that for all

possible data vectors b,
∫ 1

0
p(θ | b) dθ = 1.

8 The same result is immediate from (2.8): by definition the Binomial sampling

distribution is p(s | θ) = c θs(1 − θ)n−s with c = n!/
(

s! (n− s)!
)

.
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θ in the Bernoulli/Binomial model,9 and this additionally implies that the

posterior for θ given b also depends only on s: p(θ | b) = p(θ | s).
What should I take for my prior distribution p(θ)? As long ago as in the

work of Laplace [49] it was observed that in this problem a computational

simplification arises from assuming that the prior has the same Beta form as

the likelihood: if p(θ) = c θα−1(1− θ)β−1 for some α, β > 0 then

p(θ | b) = c
[
c θα−1(1− θ)β−1

] [
c θs(1− θ)n−s

]

= c θα+s−1(1− θ)β+n−s−1

= Beta(α+ s, β + n− s).

The Beta prior is said to be conjugate to the Bernoulli/Binomial likelihood,10

and this choice of a conjugate prior leads to a simple updating rule:

θ ∼ Beta(α0, β0)

(bi | θ) iid∼ Bernoulli(θ),

i = 1, . . . , n




⇒ (θ | b) = (θ | s) ∼ Beta(α0+s, β0+n−s). (2.12)

It’s important to note that this line of reasoning has only demonstrated that

the Beta distribution is computationally convenient, not necessarily that it’s

scientifically compelling (by which I mean an accurate reflection of my prior

information), although the Beta family does exhibit a wide variety of (uni-

modal and U-shaped11) behaviors as α and β range freely over (0,∞).

The choice of a conjugate prior brings with it interpretational as well as

computational advantages. For example, the mean of the Beta(α0, β0) distri-

bution is α0/(α0 + β0); from this, having used a Beta prior, it’s possible to

write the posterior mean E (θ | b) as a weighted average of the prior mean

E (θ) and the data mean b̄ = s/n:

9 Fisher was interested in dimensionality reduction, and it appealed to him that

(conditional on the “truth” of model (2.7)) you don’t have to carry around the

full n-dimensional data vector b to draw inferences about θ; the one-dimensional

summary s is enough. In fact he would have called s a minimal sufficient statistic,

meaning that all other sufficient statistics are of dimensionality at least as large as

that of s. For example, (
∑k

i=1 bi,
∑n

i=k+1 bi) for any k = 1, . . . , n− 1 is sufficient

but not minimal sufficient here.
10 Informally, a prior p(θ) is conjugate to a likelihood l(θ | y) if the resulting

posterior p(θ | y) has the same distributional form as p(θ); see Bernardo and

Smith [2] for a formal definition.
11 Other shapes can be achieved by using Beta distributions as building blocks; in

fact, Diaconis and Ylvisaker [24] have shown that all possible prior distributions

for parameters of models that can be expressed as members of the exponential

family can be approximated arbitrarily closely by mixtures of conjugate priors

(see, e.g., Bernardo and Smith [2] for a thorough discussion of the exponential

family).
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E (θ | b) =
α0 + s

α0 + β0 + n

=

(
α0

α0 + β0

)(
α0 + β0

α0 + β0 + n

)
+
( s
n

)( n

α0 + β0 + n

)

= E (θ)

(
α0 + β0

α0 + β0 + n

)
+ b̄

(
n

α0 + β0 + n

)
.

Thus the data mean s/n receives n votes and the prior mean gets α0 + β0

votes in the posterior compromise between data and prior information, and

since the data sample size is n it’s natural to refer to n0 = α0 + β0 as the

prior sample size: as far as the prior-to-posterior updating is concerned it’s

as if the prior information were equivalent to a prior data set consisting of α0

1s and β0 0s which is merged with the current data set consisting of s 1s and

(n− s) 0s to yield the posterior data set.12

Consider two seemingly rather different sets of prior information/beliefs

in this problem:

• In the first set, before the data arrive I’d be quite surprised if θ, the

proportion of bicycle traffic in the residential city block with a bike route

at issue here, were less than 5% or greater than 50%.

• In the second set, before b is observed I wish to express comparative

ignorance about θ across the entire range of its possible values from 0

to 1.

One way to make the first set of prior information/beliefs operational within

the conjugate Beta family is to take the phrase “quite surprised” to mean, e.g.,

Pr(0.05 ≤ θ ≤ 0.5) = 0.9, and to split the remaining 10% of prior probability

equally between the two tails, leading to the two equations

Pr(θ < 0.05) =

∫ 0.05

0

Beta(θ;α0, β0) dθ = 0.05,

Pr(θ > 0.5) =

∫ 1

0.5

Beta(θ;α0, β0) dθ = 0.05,

(2.13)

where Beta(θ;α, β) = c θα−1(1 − θ)β−1 is the Beta density13 with hyperpa-

rameters α and β. The equations in (2.13) may be solved numerically in a

package such as Maple [74] or R [58] to yield (α0, β0)
.
= (2.0, 6.4). With this

specification (a) the prior mean for θ is 2.0/(2.0 + 6.4)
.
= 0.24, (b) its prior

12 This idea provides a direct bridge between Bayesian and frequentist analyses of

the same data: if I conduct the Bayesian analysis described here and instead you

feed the posterior data set based on my prior into the likelihood machinery of

Section 2.1.3 below, you and I will draw the same conclusions.
13 The normalizing constant is c = Γ (α+ β)/

(

Γ (α)Γ (β)
)

.
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Fig. 2.1 Prior-to-posterior updating with two prior specifications in the single-city-

block data set.

standard deviation14 (SD) is about 0.14, and (c) the corresponding prior data

set has 2.0 + 6.4
.
= 8 observations worth of data in it.

As for the second specification above in the Beta family, complete prior

ignorance would correspond to a prior sample size of n0 = 0, which would be

obtained by letting both α0 and β0 tend to 0. The result is an improper prior

which cannot be normalized to integrate to 1 (because its integral is infinite).

However, any positive small choice of α0 and β0, e.g., α0 = β0 = 0.1 or 0.5

or 1.0, will yield a proper prior with a small prior sample size, and all such

choices should lead to similar posterior distributions because the data sample

size (n = 74) is so much larger than the resulting n0. The choice α0 = β0 = 1

yields the familiar Uniform U(0, 1) distribution, with prior mean 0.5 and SD

1/
√

12
.
= 0.29.

Figure 2.1 illustrates prior-to-posterior updating with the two prior spec-

ifications examined above. The top panel plots the prior, likelihood, and

posterior distributions with the first specification (Beta(2.0, 6.4)); the bottom

panel plots the Beta(0.1, 0.1) and Beta(1, 1) = U(0, 1) prior distributions,

the likelihood (which is also the posterior with the U(0, 1) prior), and the

posterior with the Beta(0.1, 0.1) prior. For technical reasons the Beta(0.1, 0.1)

distribution has regrettable asymptotic behavior near 0 and 1, but this does

not affect the posterior because the likelihood is so close to zero in those

regions that the spikes are irrelevant. It’s clear from this figure and the form

of (2.10) that any prior that is locally (nearly) uniform in the region in which

14 The variance of the Beta(α, β) distribution is αβ/
(

(α+ β)2(α+ β + 1)
)

.
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the likelihood is appreciable will have negligible effect on the posterior.15 The

terms noninformative, diffuse, and flat tend to be used interchangeably to

describe the second type of prior specification examined here (the meaning of

the terms diffuse and flat is motivated by plots such as Fig. 2.1), but—given

that all choices of prior specification embody one prior information base or

another—“noninformative” seems a less satisfactory term.

It’s also evident from Fig. 2.1 that a piece of prior information like that

embodied in the first specification has little effect in this problem with a data

sample size as large as n = 74. For example, the posterior mean, SD, and cen-

tral 95% interval16 for θ are 0.218, 0.045, and (0.137, 0.313), respectively, under

the Beta(2.0, 6.4) prior; the corresponding values from the Beta(0.1, 0.1) prior

are 0.217, 0.048, and (0.132, 0.317). Notice that the data sample size is large

enough here that the likelihood and posterior distributions are fairly close to

Gaussian (by the Central Limit Theorem (CLT)): an approximate 95% central

interval for θ under the Beta(2.0, 6.4) prior using this normal approximation

would run from 0.218−(1.96)(0.045)
.
= 0.124 to 0.218+(1.96)(0.045)

.
= 0.310.

The language of this section has emphasized that the Bayesian approach

to uncertainty quantification is personal, or subjective: my prior is mine, and

may differ from yours, because you and I have different knowledge bases or

we invoke different types of judgment to bring that knowledge to bear on the

issue at hand. People have sometimes tried to argue in the past that personal

judgments have no valid part to play in science, a position which would cast

doubt on the relevance of Bayesian inference in scientific reasoning. But in

situations of realistic complexity, particularly in the modeling of observational

data, it’s equally true—under all forms of statistical inference in current use,

not just Bayesian—that my likelihood is mine, and may differ from yours: you

and I may legitimately disagree in our judgments about what is appropriate

to assume about the structure of the model17 (consider, for example, the

range of possibilities mentioned in (2.4) to (2.6) above for the full Berkeley

traffic survey dataset), and it’s not always possible to definitively settle these

differences with data-driven model diagnostics. Personal judgment cannot be

eradicated from complex statistical work in science; the laudable-sounding

goal of “objectivity,” as the word is generally used,18 is unattainable in actual

scientific practice. In light of this, attention should evidently focus—in all

statistical inference, Bayesian or not19—on the stability or robustness of the

15 This is the basis of what Edwards et al. [31] called the stable estimation principle.
16 This can also readily be obtained numerically in Maple or R.
17 See Draper [25] for a Bayesian approach to the quantification of structural model

uncertainty.
18 In Bayesian language saying that a probability assessment is objective just means

that many people would agree with it, at least approximately.
19 The Bayesian approach highlights the need/opportunity to quantify prior infor-

mation about parameters conditional on model structure, and any such choice
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mapping from assumptions to conclusions. Figure 2.1 is a simple example of

one such robustness investigation: if I’m trying to quantify relatively diffuse

prior beliefs, I need to convince myself (and you, if I want you to be a willing

consumer of my conclusions) that a variety of plausible attempts at diffuse

prior specification all lead to essentially the same findings, as is true in this

case.20

This section began with a predictive motivation of Bayesian inference; a

good way to end it is to examine how one would construct the posterior predic-

tive distribution p(bn+1 | b) for the next observable bn+1, given the n binary

indicators seen so far and assuming the Bayesian model (2.12). This predic-

tive distribution initially seems a bit difficult to compute formally, although

intuition says that (a) in this simple subset of the full case study it has to

be a Bernoulli distribution and (b) the posterior predictive mean E (bn+1 | b)
cannot be anything other than the current posterior mean (α0+s)/(α0+β0+n)

of θ. The formal reasoning proceeds as follows.

(1) It’s hard to say what I know about bn+1 by itself, but I know quite a lot

about (bn+1 | θ), so it would help to introduce θ into the calculation. By

the law of total probability

p(bn+1 | b) =

∫ 1

0

p(bn+1, θ | b) dθ.

(2) Now I want to move the θ to the other side of the conditioning bar. By

the definition of conditional probability

∫ 1

0

p(bn+1, θ | b) dθ =

∫ 1

0

p(bn+1 | θ, b) p(θ | b) dθ. (2.14)

(3) p(θ | b) in (2.14) is recognizable as the posterior distribution for θ given

the data seen so far, namely Beta(α0 + s, β0 + n− s).
(4) (and this step is crucial) Given θ, there’s no useful information in b =

(b1, . . . , bn) for predicting bn+1 (informally, “the past and the future are

conditionally independent given the truth”), so p(bn+1 | θ, b) = p(bn+1 | θ),
and this last expression is just the sampling distribution for observation

n+ 1, which under model (2.12) is Bernoulli(θ).

should be justified, but—given that likelihood analyses correspond to Bayesian

answers with a particular form of diffuse prior—it would seem that the imperative

to think about (and justify) priors is not unique to the Bayesian paradigm.
20 In a careful analysis I should also plausibly vary my 0.9 translation of the phrase

“quite surprised” and the θ values 0.05 and 0.5 in (2.13), for instance by increasing

and decreasing each of these specifications by (say) 10% to see what happens, but

you can see from Fig. 2.1 that all such variations would lead to essentially the

same posterior here.
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(5) Therefore

p(bn+1 | b) =

∫ 1

0

p(bn+1 | θ) p(θ | b) dθ.

In other words, the posterior predictive distribution for bn+1 given b is a

weighted average, or mixture, of Bernoulli(θ) sampling distributions, with

the mixing weights given by the current posterior distribution p(θ | b) for

θ given b.

With α∗ = α0 + s and β∗ = β0 + n − s, calculation in this example reveals

that

p(bn+1 | b) =

∫ 1

0

θbn+1(1− θ)1−bn+1
Γ (α∗ + β∗)

Γ (α∗)Γ (β∗)
θα

∗−1(1− θ)β∗−1 dθ

=
Γ (α∗ + β∗)

Γ (α∗)Γ (β∗)

∫ 1

0

θ(α
∗+bn+1)−1(1− θ)(β∗−bn+1+1)−1 dθ (2.15)

=

[
Γ (α∗ + bn+1)

Γ (α∗)

] [
Γ (β∗ − bn+1 + 1)

Γ (β∗)

] [
Γ (α∗ + β∗)

Γ (α∗ + β∗ + 1)

]
.

Recalling that for any real number x, Γ (x+ 1)/Γ (x) = x, (2.15) agrees with

intuition: for example, Pr(bn+1 = 1 | b) = E (bn+1 | b) = α∗/(α∗ + β∗). With

any of the prior distributions examined above, I predict that the next vehicle

in this block on the sampled day of the week and time of day will be a bicycle

with probability about 0.22.

2.1.3 A Comparison with Likelihood Inference

A likelihood inferential21 analysis of the single-city-block data would begin

by computing the MLE for θ, which may be found by maximizing either the

likelihood function or its logarithm (the latter tends to be mathematically

easier and more numerically stable to work with, since likelihood functions

like (2.11) are typically products of a (possibly large) number of values not

far from zero). Here log l(θ | s) = log c+ s log θ+ (n− s) log(1− θ), a concave

function with a single maximum at the value of θ for which

∂

∂θ
log l(θ | s) =

s

θ
− n− s

1− θ = 0, namely θ = θ̂MLE =
s

n
= b̄. (2.16)

Fisher [33] showed that the estimated asymptotic variance of the MLE (in

repeated sampling) is given by

V̂ar(θ̂MLE) = Î−1,

21 Prediction is often more difficult with the repeated-sampling approach to prob-

ability, especially in small-sample non-Gaussian situations; this is a distinct ad-

vantage for the Bayesian approach.
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where Î is the observed information content of the sample:

Î = −
[
∂2

∂θ2
log l(θ | s)

]

θ=θ̂MLE

.

Here the sampling variance of the MLE reduces to the familiar expression

V̂ar(θ̂MLE) =

[
s

θ2
+

n− s
(1− θ)2

]−1

θ=s/n

=
θ̂MLE(1− θ̂MLE)

n
.

In this example θ̂MLE
.
= 0.216 with estimated asymptotic standard error

ŝe(θ̂MLE) =
√

V̂ar(θ̂MLE)
.
= 0.048, and an approximate 95% confidence in-

terval for θ based on the CLT would run from 0.216 − (1.96)(0.048)
.
= 0.122

to 0.216 + (1.96)(0.048)
.
= 0.310. These results are similar to those from the

Bayesian analyses above with both prior specifications, which is typical of

situations with fairly large n and relatively diffuse prior information. Note,

however, that the interpretation of the results from the two approaches differs:

• In the (frequentist) likelihood approach θ is fixed but unknown and b̄

is random, with the analysis based on imagining what would happen if

the random sampling of the observed vehicles in the chosen city block

were hypothetically repeated, and appealing to the fact that across these

repetitions (b̄− θ) .∼ N (0, .0482); whereas

• In the Bayesian approach b̄ is fixed at its observed value and θ is treated

as random, as a means of quantifying uncertainty about it: (θ − b̄ | b̄) .∼
N (0, .0482).

This means among other things that, while it’s not legitimate with the fre-

quentist approach to say that Prf (.12 ≤ θ ≤ .31)
.
= .95, which is what

many users of confidence intervals would like them to mean, the corresponding

statement PrB(.12 ≤ θ ≤ .31 | b,diffuse prior information)
.
= .95 is a natural

consequence of the Bayesian approach. In the case of diffuse prior information

this justifies the fairly common practice of computing inferential summaries

in a frequentist way and then interpreting them in Bayesian language.

2.2 The Need for Simulation-Based Bayesian
Computation

The example above illustrates two approaches to Bayesian computation in a

situation where the parameter of interest is one-dimensional:

• conjugate analysis—showing that some prior family of distributions is

conjugate to the likelihood in the model under investigation, and finding a

member of that conjugate family which (at least approximately) expresses

the relevant prior information; and
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• asymptotic analysis—appealing to the fact that when n is large (a) the

likelihood and posterior distributions will be similar because the prior

sample size n0 will be negligible in relation to n, and (b) both these

distributions will be close to normal by the CLT, so that

(θ | y)
.∼ N (θ̂MLE, Î−1). (2.17)

In (2.17) y is a generic data vector of length n and θ is a generic one-

dimensional regular22 parameter.

Asymptotic analysis extends directly to situations where the unknown θ

is a vector of dimension (say) k > 1, with three main differences: finding the

MLE often then involves solving (perhaps iteratively) a system of k equations

like (2.16) in the k unknowns θ1, . . . , θk; the normal distribution in (2.17) is

multivariate; and the analogue of observed information Î then becomes the

negative Hessian (matrix of second partial derivatives) of the log likelihood

evaluated at θ̂MLE. Conjugate analysis also has a direct extension to cases

with k > 1: Bayes’ Theorem (2.9) is still valid when θ is a vector. However,

it’s far easier to find a conjugate family when k = 1 than in problems of higher

dimension, and a new set of Bayesian challenges arises when k > 1: interest

often focuses on the marginal posterior distributions of individual components

of θ, and these require calculating (k − 1)-dimensional integrals of the form

p(θj | y) =

∫
· · ·
∫
p(θ1, . . . , θk | y) dθ1 . . .dθj−1 dθj+1 . . .dθk . (2.18)

Moreover, four other kinds of high-dimensional integrals also arise when k is

large: (a) with a generic data vector y = (y1, . . . , yn) in place of b in Bayes’

Theorem (2.9), the normalizing constant in that equation is

c−1 = p(y) =

∫
p(y,θ) dθ =

∫
p(y | θ) p(θ) dθ, (2.19)

and this is a k-dimensional integral; (b) as was noted at the end of Sec-

tion 2.1.2, the predictive distribution for the next observation yn+1 is

p(yn+1 | y) =

∫
p(yn+1 | θ) p(θ | y) dθ, (2.20)

22 In most Bayesian work there are three main types of parameters: location, scale,

and range-restricting. Location and scale parameters typically pin down the center

and spread of a sampling distribution and are regular in the sense of this footnote;

as an example of a range-restricting parameter, consider basing the likelihood

function on the Uniform(0, θ) sampling distribution for unknown θ > 0. Range-

restricting parameters are irregular in the sense of this footnote because a different

type of asymptotics than (2.17) typically applies to them; in (2.17) the asymptotic

posterior variance Î−1 typically goes down as the amount of data increases at a

1/n rate, whereas with range-restricting parameters this rate is typically 1/n2.

See Bernardo and Smith [2] and Draper [27] for more details.
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which is another k-dimensional integral; (c) it’s often useful to summarize a

marginal distribution like p(θj | y) with a few of its low-order moments, such

as its mean

E (θj | y) =

∫
θj p(θj | y) dθj , (2.21)

and you can see from (2.18) that this also involves calculating a k-dimensional

integral; and (d) inference about a function of the parameters, such as the

coefficient of variation σ/µ in the N (µ, σ2) sampling model for positive data

distributed well away from 0, also requires complicated manipulations with

high-dimensional integrals. Accurate numerical evaluation of integrals of this

type for large k has been the central technical challenge of Bayesian statistical

work for the past two and a half centuries.23

The conjugate and asymptotic approaches to Bayesian computation are

useful as far as they go, but conjugate priors are rarely (if ever) available

for the complicated likelihoods arising in multilevel models, and asymptotic

analysis can be highly misleading when the sample sizes are small. Consider,

for instance, one of the simplest multilevel settings, a variance components

model, arising (for example) in the measurement of the quality of hospital

care: I choose a random sample of J hospitals in (say) California in (say)

January 2007 and a random sample of nj patients in the chosen hospitals (a

single-stage cluster sample), and initially I fit the model

yij = β0 + aHj + aPij , j = 1, . . . , J, i = 1, . . . , nj ,

J∑

j=1

nj = N, aHj
iid∼ N (0, σ2

H), aPij
iid∼ N (0, σ2

P )
(2.22)

(with the aHj and aPij mutually conditionally independent given the parame-

ters) as a way of quantifying how much of the variation in the quality of care

scores yij is within and between hospitals.24 The parameter vector θ in this

model has three components: the intercept β0 and the variance components

σ2
H and σ2

P , measuring variability at the hospital and patient levels, respec-

tively, with both the hospital factor H and the patient factor P treated as

random because interest focuses on the populations of hospitals and patients

in California in January 2007 from which the cluster sample was drawn.

23 More than 200 years ago Laplace [48] developed an approach, based on a clever

use of Taylor series, to approximating integrals of the form (2.18)–(2.21) which

can work well when n is large; his method was ignored/forgotten for a long time

until it was independently reinvented under the name saddlepoint approximations

[e.g., 20]. See Raudenbush et al. [61] for an application of Laplace approximations

to multilevel models.
24 Equation (2.22) is also sometimes called a random-intercepts regression model,

because it’s like a regression with no predictor variables in which the intercept

β0 + aH
j is allowed to vary randomly from hospital to hospital.
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Conjugate analysis of variance-components models is impossible: there

is no conjugate prior for the parameters of model (2.22). The success of

asymptotic analysis would depend on the sizes J and N of the hospital- and

patient-level samples and the values of the variance components: if J were

on the order of (say) 50 (or more) and N were in the hundreds (or more),

and if additionally both σ2
H and σ2

P were well away from zero, large-sample

normal approximations for the marginal posterior distributions of all three

parameters (given fairly diffuse priors) could well be adequate. However, it’s

important to note that the usual intuitions about sample size require some

modification in multilevel modeling: data sets in this quality of care example

with N = 1,000 could still be “small samples” as far as the accuracy of (at

least one of) the asymptotic approximations is concerned. A large value of N

will typically translate into approximately normal marginal posteriors for β0

and σ2
P , but the behavior of the marginal posterior for σ2

H depends on J , N ,

and the intraclass (or intracluster) correlation

ρ =
σ2
H

σ2
H + σ2

P

,

which is just the ordinary correlation between any two patients yij and yi′j
(i 6= i′) in the same hospital (a measure of the degree to which patients in

any given hospital receive care of similar quality). It’s intuitively evident that

the effective sample size of the sampling plan as far as σ2
H is concerned will

be much closer to J than to N if ρ is large,25 and if J is small the marginal

posterior for σ2
H can be far from normal.

The bottom line from all of this is that the Bayesian approach to multilevel

modeling was severely restricted as long as asymptotic analysis was the only

computational way forward. This situation changed suddenly in the early

1990s, with the introduction (to the discipline of statistics, at least) of a new

class of simulation-based computational tools, Markov Chain Monte Carlo

(MCMC) methods.

2.3 Markov Chain Monte Carlo (MCMC) Methods

The evolution of ideas toward the current set of MCMC methods began

with the efforts of two mathematicians, Nick Metropolis and Stanislav Ulam,

near the end of World War II, in their work on the project that led to the

development of the atomic bomb. For reasons unrelated to those of Bayesian

25 For example, in the limit as ρ → 1, having chosen 50 patients from each of 20

hospitals is the same as having chosen only 1 patient in each hospital, so a sample

of 1,000 patients produces only 20 independent observations for learning about

σ2
H .
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statistics they needed accurate approximations to integrals like the right-hand

side of (2.18), and (through their work on the bomb, and parallel efforts in

England at about the same time by Alan Turing and others to break the

German Enigma codes) they could see that high-speed computers were about

to become a reality. Metropolis and Ulam [55], in a visionary paper that laid

the groundwork for an explosion of new scientific activity decades later, made

two fundamental observations:

• Anything you want to know about a probability distribution p(θ) of es-

sentially arbitrary complexity can be learned to arbitrary accuracy by

sampling a large enough number of random draws from it; and

• If performed correctly, it’s not necessary for the validity of this approach

that the draws from p(θ) be made in an IID fashion.

They called this technique the Monte Carlo method, a reference to the Euro-

pean principality of the same name famous for its gambling casinos.

Suppose, for example, that you’re interested in a k-dimensional posterior

distribution p(θ | y) which can’t be worked with (easily) in closed form. Three

types of things of direct interest to you about p(θ | y) would be

• the marginal means µj = E (θj | y) and the marginal standard deviations

σj =
√

Var(θj | y) of the components of θ,

• the shapes of these marginal distributions (basically you’d like to be able

to trace out the entire density curves), and

• one or more of the quantiles of the marginal distributions (e.g., to construct

a 95% central posterior interval for θj you need to know its 2.5% and 97.5%

quantiles, and sometimes the posterior median (the 50th percentile) is of

interest too).

Suppose you could take an arbitrarily large random sample from p(θ | y),

say θ∗1 , . . . ,θ
∗
m, where each θ∗i is a vector of sampled values of (θ1, . . . , θk).

Imagine collecting these vectors together into an m× k matrix or table {θ∗ij},
with individual sampled vectors as rows and components of θ as columns; call

this the Monte Carlo (MC) data set. Then each of the above three aspects of

p(θ | y) can be estimated from this data set, in straightforward fashion:

• µ̂j = Ê(θj | y) = θ̄∗j =
1

m

m∑

i=1

θ∗ij , and

σ̂j =
√

V̂ar(θj | y) =

√√√√ 1

m− 1

m∑

i=1

(
θ∗ij − θ̄∗j

)2
;

• the marginal posterior density of (θj | y) can be estimated by a histogram

or kernel density estimate based on the values in column j of the MC data

set; and
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• percentiles for θj can be estimated by counting how many of the θ∗ij values

fall below a series of specified points. For example, to find an estimate of

the 2.5% quantile you solve the equation

F̂θj |y(q) =
1

m

m∑

i=1

I(θ∗ij ≤ q) = 0.025 (2.23)

for q, where I(A) is the indicator function (1 if A is true, 0 otherwise).26

This simple idea beautifully solves the marginalization problem—and the low-

order moments problem—posed by having to calculate integrals like (2.18) and

(2.21): to learn anything you want about θj you just use simple descriptive

methods on the values in column j of the MC data set, ignoring all other

columns. Moreover,

• if you’re interested in the relationship between two of the parameters in

the posterior, for instance as summarized by their correlation, you can just

compute the sample correlation coefficient based on the relevant columns

in the MC data set;

• if there’s some function of the parameters that interests you, such as η =

f(θ2, θ5, θ10) = (θ2 + θ10)/
√
θ5, all you have to do to learn about it is

to monitor η by creating a new column in the MC data set with values

η∗i = (θ∗i,2 + θ∗i,10)/
√
θ∗i,5 and then apply the usual descriptive summaries

to η∗; and

26 Notice how literally all of these estimates do their job, e.g., θ̄∗j = 1
m

∑m

i=1 θ
∗
ij is

an estimate of
∫

θj p(θj | y) dθj—the integral is asking us to compute a weighted

average of θj values with weights given by p(θj | y), which is exactly what θ̄∗j does

when the rows of the MC data set are random draws from p(θ | y). More formally,

if (θj | y) is a real-valued random variable with density pθj |y(q) (in a change of

notation) and cumulative distribution function (CDF) Fθj |y(q) = Pr(θj ≤ q | y),

so that pθj |y(q) = dFθj |y(q)/dq and pθj |y(q) dq = dFθj |y(q), the posterior mean

is

µj =

∫

q pθj |y(q) dq =

∫

q dFθj |y(q),

and it’s reasonable to estimate this with the empirical CDF F̂θj |y(q) used to

compute quantiles in (2.23):

µ̂j =

∫

q dF̂θj |y(q) =

∫

q d

[

1

m

m
∑

i=1

I(θ∗ij ≤ q)

]

=
1

m

m
∑

i=1

∫

q dI(θ∗ij ≤ q) =
1

m

m
∑

i=1

θ∗ij ,

from basic properties of step functions and the (Dirac) delta function; see, e.g.,

Butkov [16].
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• this approach also solves the problem of calculating the predictive distri-

bution p(yn+1 | y) for future data, as follows. As noted above, the integral

in (2.20) expresses the predictive distribution as a mixture (in θ) of the

sampling distributions p(yn+1 | θ) weighted by the posterior distribution

p(θ | y). This indicates that to sample a draw from p(yn+1 | y) you just

sample a θ∗ from p(θ | y) and then sample a yn+1 from p(yn+1 | θ∗).
In this way the predictive distribution can simply be monitored as a new

column in the MC data set.

In fact, straightforward use of the Monte Carlo method solves all of the difficult

integration problems mentioned in Section 2.2 except the calculation of the

normalization constant c that makes p(θ) integrate to 1, and this problem will

disappear with the introduction of the Markov chain Monte Carlo methods

examined below.

There’s just one question: what do we have to assume about the nature

of the random sampling of the θ∗ values from p(θ | y) for this idea to work?

Basic repeated-sampling theory based on the (weak) Law of Large Numbers

(see, e.g., Bickel and Doksum [5] for details) shows that figuring out how to

draw the θ∗i in an IID fashion would be sufficient: with IID sampling the

above Monte Carlo estimates of the true summaries of p(θ | y) are consistent,

meaning that they can be made arbitrarily close to the truth with arbitrarily

high probability asm→∞. The problem, of course, is that it can be extremely

difficult to figure out how to make IID draws in an efficient manner from a

high-dimensional distribution. Metropolis and Ulam [55] sketched a possi-

ble solution to this problem by noting that IID sampling is not necessary:

dependent draws from p(θ | y) will also work if the dependence takes a

particular form. Think of iteration number i in the Monte Carlo sampling

process as a discrete index of time t, so that the columns of the MC data set

can be viewed as time series. IID draws from p(θ | y) correspond to white

noise: a time series with zero autocorrelations at all lags (time intervals)27

k 6= 0. However, it can be shown [e.g., 32] that all of the above descriptive

summaries are still consistent as long as the columns of the MC data set

form stationary time series, in the sense that the joint distributions of any

blocks {θ∗n1+t,j
, θ∗n2+t,j

, . . . , θ∗nr+t,j} of MC data in any given column j are

invariant under time shifts (i.e., these distributions should be independent

of t). It might not seem readily apparent how relaxing the IID assumption

in this way constitutes progress, but Metropolis again helped to provide the

breakthrough a few years after his paper with Ulam, this time working with

a different set of colleagues in 1953 [54].

27 The autocorrelation ρk of a stationary time series θ∗t at lag k (see, e.g., Chatfield

[18]) is γk/γ0, where γk = Cov(θ∗t , θ
∗
t+k), the covariance of the series with itself k

iterations in the future (or past).
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2.3.1 IID Monte Carlo Sampling

Consider first how to implement the Monte Carlo method with IID sam-

pling, and for simplicity in this section assume that θ is real-valued. If

θ̄∗ = 1
m

∑m
t=1 θ

∗
t is based on an IID sample of size m from p(θ | y), you

can use the frequentist fact that in repeated sampling Var(θ̄∗) = σ2/m, where

(as above) σ2 is the variance of p(θ | y), to construct a Monte Carlo standard

error (MCSE) for θ̄∗:

ŝe(θ̄∗) =
σ̂√
m
,

where σ̂ is the sample SD of the θ∗ values. This can be used, possibly after

some preliminary experimentation, to decide on m, the Monte Carlo sample

size, which will also be referred to below as the length of the monitoring run.

As an unrealistically simple first example, consider employing the Monte

Carlo approach to estimate the posterior mean in the conjugate Beta-Bernoulli

example of Section 2.1.2: I want to simulate draws from the Beta(α0 + s, β0 +

n−s) distribution with (α0, β0, s, n) = (2.0, 6.4, 16, 74) (pretend here that you

don’t know the formulas for the mean and variance of this distribution). One

of the most computationally efficient ways to generate random draws from

a given density function is rejection sampling, which was first developed by

von Neumann [73]. The idea is as follows. Suppose the target density p(θ | y)

is difficult to sample from, but you can find an integrable envelope function

G(θ | y) such that (a) G dominates p in the sense that G(θ | y) ≥ p(θ | y) ≥ 0

for all θ and (b) the density g obtained by normalizing G—later to be called

the proposal distribution—is easy and fast to sample from. Then to get a

random draw from p, make a draw θ∗ from g instead and accept or reject

it according to an acceptance probability αR(θ∗ | y); if you reject the draw,

repeat this process until you accept. von Neumann showed that the choice

αR(θ∗ | y) = p(θ∗ | y)/G(θ∗ | y) correctly produces IID draws from p, and

you can intuitively see that he’s right by the following argument. Making a

draw from the posterior distribution of interest is like choosing a point at

random (in two dimensions) under the density curve p(θ | y) in such a way

that all possible points are equally likely, and then writing down its θ value. If

you instead draw from G so that all points under G are equally likely, to get

correct draws from p you’ll need to throw away any point that falls between

p and G, and this can be accomplished by accepting each sampled point θ∗

with probability p(θ∗ | y)/G(θ∗ | y), as von Neumann said. A summary of

this method28 is as follows.

28 After having absorbed the idea that Algorithm 2.1 works for univariate θ, notice

that there’s nothing about it that makes this restriction necessary: the algorithm

is valid when θ is a vector of length k for any k ≥ 1.
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Algorithm 2.1 (Rejection sampling) To make m draws at random from

the density p(θ | y), select an integrable envelope function G—which when

normalized to integrate to 1 is the proposal distribution g—such that G(θ |
y) ≥ p(θ | y) ≥ 0 for all θ; define the acceptance probability αR(θ∗ | y) =

p(θ∗ | y)/G(θ∗ | y); and

Initialize t← 0

Repeat {
Sample θ∗ ∼ g(θ | y)

Sample u ∼ Uniform(0, 1)

If u ≤ αR(θ∗ | y) then { θt+1 ← θ∗; t← (t+ 1) }
}
until t = m.

Figure 2.2 demonstrates this method on the Beta(18.0, 64.4) density arising in

the Beta-Bernoulli case study examined earlier. Rejection sampling permits

considerable flexibility in the choice of envelope function. Here, borrowing an

idea from Gilks and Wild [41], I’ve noted that the relevant Beta density is

concave on the log scale, meaning that it’s easy to construct an envelope on

that scale in a piecewise linear fashion, by choosing points on the log density

and constructing tangents to the curve at those points. The simplest possible

such envelope involves two line segments, one on either side of the mode. The

optimal choice of the tangent points would maximize the marginal probability

of acceptance of a draw in the rejection algorithm, which can be shown to

be
[∫
G(θ) dθ

]
−1; in other words, you should minimize the area under the

(un-normalized) envelope function subject to the constraint that it dominates

the target density p(θ | y). Here this optimum turns out to be attained by

locating the two tangent points at about 0.17 and 0.26, as in Fig. 2.2; the

resulting acceptance probability of about 0.75 could clearly be improved by

adding more tangents. Piecewise linear envelope functions on the log scale

are a good choice because the resulting envelope density on the raw scale is

a piecewise set of scaled exponential distributions (see the bottom panel in

Fig. 2.2), from which random samples can be taken quickly.

A preliminary sample of m0 = 500 IID draws from the Beta(18.0, 64.4)

distribution using the above rejection sampling method yields θ̄∗ = 0.2197

and σ̂ = 0.04505, meaning that the posterior mean has already been estimated

with an MCSE of only σ̂/
√
m0 = 0.002 even with just 500 draws. Suppose,

however, that I wanted θ̄∗ to differ from the true posterior mean µ by no more

than some (perhaps even smaller) tolerance T with Monte Carlo probability

at least 1− ǫ:
Pr(|θ̄∗ − µ| ≤ T ) ≥ 1− ǫ,
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Fig. 2.2 Rejection sampling from the Beta(18.0, 64.4) distribution. The top panel

shows the construction of a piecewise linear envelope function on the log scale; the

bottom panel is on the raw (density) scale.

where Pr(·) here is based on the (frequentist) Monte Carlo randomness inher-

ent in θ̄∗. By the CLT, for large m in repeated sampling θ̄∗ is approximately

normal with mean µ and variance σ2/m; this leads to the inequality

m ≥
σ2

[
Φ−1

(
1− ǫ

2

)]2

T 2
, (2.24)

where Φ−1(·) is the standard normal inverse CDF. To pin down three signif-

icant figures (sigfigs) in the posterior mean in this example with high Monte

Carlo accuracy I might take T = 0.0005 and ǫ = 0.05, which yields a rec-

ommended IID sample size of (0.045052)(1.96)2/0.00052 .
= 31, 200. So I take

another sample of 30,700 (which is virtually instantaneous at contemporary

computing speeds) and merge it with the 500 draws I already have; this yields

θ̄∗ = 0.21827 and σ̂ = 0.04528, meaning that the MCSE of this estimate of

µ is 0.04528/
√

31200
.
= 0.00026. I might announce that I think E (θ | y) is

about 0.2183, give or take about 0.0003, which accords well with the true

value 0.2184.

Of course, other aspects of p(θ | y) are equally easy to monitor; for exam-

ple, if I want a Monte Carlo estimate of Pr(θ ≤ q | y) for some q, as noted

above I just work out the proportion of the sampled θ∗ values that are no

larger than q. Or, even better, I recall that Pr(A) = E [I(A)] for any event
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or proposition A, so to the MC data set consisting of 31,200 rows and one

column (the θ∗t ) I add a column monitoring the values of the derived variable

which is 1 whenever θ∗t ≤ q and 0 otherwise; the mean of this derived variable

is the Monte Carlo estimate of Pr(θ ≤ q | y), and I can attach an MCSE to it

in the same way I did with θ̄∗. By this approach, for instance, the Monte Carlo

estimate of Pr(θ ≤ 0.15 | y) based on the 31,200 draws examined above comes

out p̂ = 0.0556 with an MCSE of 0.0013. Percentiles are typically harder to

pin down with equal Monte Carlo accuracy (in terms of sigfigs) than means

or SDs, because the 0/1 scale on which they’re based is less information-rich

than the θ∗ scale itself; if I wanted an MCSE for p̂ of 0.0001 I would need an

IID sample of more than 5 million draws (which would still only take a few

seconds at contemporary workstation speeds).

2.3.2 Metropolis-Hastings and Gibbs Sampling

As mentioned above, IID sampling of p(θ | y) for θ of length k is fine as far

as it goes but can be difficult to implement when k is large. Metropolis et al.

[54] accepted this unpleasant truth and proposed relaxing independence of the

draws in favor of the next simplest random behavior—allowing the draws to

form a (first-order) Markov chain—in combination with von Neumann’s idea

of rejection sampling, which had itself only been published a few years earlier

in 1951.

Here’s a quick review of all necessary facts about Markov chains to appre-

ciate the basic Metropolis et al. idea. A stochastic process is just a collection

of random variables {θ∗t , t ∈ T } for some index set T ; when T stands for time

the resulting process is a time series. In practice T can be either discrete,

e.g., {0, 1, . . .}, or continuous, e.g., [0,∞). Markov chains are a special kind

of stochastic process that can either unfold in discrete or continuous time;

discrete-time Markov chains are all that’s needed for MCMC. The possible

values that a stochastic process can take on are collectively called the state

space S of the process—in the simplest case S is real-valued and can also either

be discrete or continuous. Intuitively speaking, a Markov chain [e.g., 32, 35, 62]

is a time series unfolding in such a way that the past and future states of the

process are independent given the present state—in other words, to figure out

where the chain is likely to go next you don’t need to pay attention to where

it’s been, you just need to consider where it is now. More formally, a stochastic

process {θ∗t , t ∈ T }, T = {0, 1, . . .}, with state space S is a Markov chain if,

for any set A contained in S,

Pr(θ∗t+1 ∈ A | θ∗0 , . . . ,θ∗t ) = Pr(θ∗t+1 ∈ A | θ∗t ).

The most nicely behaved Markov chains satisfy three properties:
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• They’re irreducible, which basically means that no matter where it starts

the chain has to be able to reach any other state in a finite number of

iterations with positive probability;

• They’re aperiodic, meaning that for all states i the set of possible sojourn

times, to get back to i having just left it, can have no divisor bigger than

1. This forces the chain to mix freely among its possible states rather than

oscillating back and forth within a subset of S; and

• They’re positive recurrent, meaning that (a) for all states i, if the process

starts at i it will return to i with probability 1, and (b) the expected length

of waiting time until the first return to i is finite. Notice that this is a bit

delicate: wherever the chain is now, we insist that it must certainly come

back here, but we don’t expect to have to wait forever for this to happen.

Imagine running a “nice” Markov chain (which satisfies the three properties

above) for a long time, and look at the distribution of the states it visits—over

time this distribution should settle down (converge) to a kind of limiting,

steady-state behavior. Formally, a positive recurrent and aperiodic chain is

called ergodic, and it turns out that chains of this type which are also irre-

ducible possess a unique stationary (or equilibrium, or invariant) distribution

π, characterized (in the case of discrete state spaces) by the relation

π(j) =
∑

i

π(i)Pij(t)

for all states j and times t ≥ 0, where Pij(t) = Pr(θ∗t = j | θ∗0 = i) is

the transition matrix of the chain. Informally, the stationary distribution

summarizes the behavior that the chain will settle into after it’s been run

for a long time, regardless of its initial state.

I bring all of this up because Metropolis et al. were driven by the difficulty

of creating IID samplers from complex probability distributions to seek a

solution among the class of samplers with a Markov character (hence the

name Markov chain Monte Carlo (MCMC)). Given a parameter vector θ and

a data vector y, the Metropolis et al. idea is to simulate random draws from

the posterior distribution p(θ | y) by constructing a Markov chain with the

following three properties:

• It should have the same state space as θ,

• It should be easy to simulate from, and

• Its stationary distribution should be p(θ | y).

If you can do this, you can run the Markov chain for a long time, generating

a huge sample from the posterior, and then (as noted at the beginning of

Section 2.3) use simple descriptive summaries (means, SDs, correlations, his-

tograms or kernel density estimates) to extract any features of the posterior

you want. The Markov aspect of the sampler will induce a (typically positive)
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autocorrelation in the random draws, but (as noted above) this affects only

the efficiency of the sampling scheme, not its validity : if {θ∗t , t = 1, 2, . . .}
is a stationary time series then, e.g., the sample mean θ̄∗ = 1

m

∑m
t=1 θ

∗
t is a

consistent estimate of the mean µ of the stationary distribution, the sample

SD

σ̂ =

√√√√ 1

m− 1

m∑

t=1

(θ∗t − θ̄∗)2

is consistent for the SD of the stationary distribution, and so on. The only

change from IID sampling is that if the draws from the target distribution

p(θ) are positively autocorrelated, you’ll learn about p via MCMC at a slower

rate than you would have if you could have figured out how to sample from p

in an IID fashion (intuitively if the θ∗t are positively autocorrelated then each

time you get a new observation you’re getting a bit of new information and

some old information over again, so the effective sample size (in IID terms)

of m positively correlated draws will be smaller than m).

Metropolis et al. were able to create what people would now call a success-

ful MCMC algorithm by the following means (see the excellent book edited

by Gilks et al. [40] for many more details about the MCMC approach).

Consider the rejection sampling method given above in Algorithm 2.1 as a

mechanism for generating realizations of a time series (where as above time

indexes iteration number). At any time t in this process you make a draw θ∗

from the proposal distribution g(θ) (the normalized version of the envelope

function G) and either accept a “move” to θ∗ or reject it, according to the

acceptance probability p(θ∗)/G(θ∗); if accepted the process moves to θ∗, if

not you draw again until you do make a successful move. The stochastic

process thus generated is an IID (white noise) series of draws from the target

distribution p(θ). Metropolis et al. had the following beautifully simple idea

for how this may be generalized to situations where IID sampling is difficult:

they allowed the proposal distribution at time t to depend on the current value

θt of the process, and then—to make things work out right—if a proposed

move is rejected, instead of discarding it the process is forced to stay where

it is for one iteration before trying again. The resulting process is a Markov

chain, because (a) the draws are now dependent but (b) all you need to know

in determining where to go next is where you are now.

Letting θt stand for where you are now and θ∗ for where you’re thinking

of going, in this approach there is enormous flexibility in the choice of the

proposal distribution g(θ∗ | θt,y), even more so than in ordinary rejection

sampling. The original Metropolis et al. idea was to work with symmetric pro-

posal distributions, in the sense that g(θ∗ | θt,y) = g(θt | θ∗,y), but Hastings

[46] pointed out that this could easily be generalized; the resulting method

is the Metropolis-Hastings (MH) algorithm. Building on the Metropolis et al.

results, Hastings showed that you’ll get the correct stationary distribution
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p(θ | y) for your Markov chain29 by making the following choice for the

acceptance probability:

αMH(θ∗ | θt,y) = min

{
1,
p(θ∗ | y)/g(θ∗ | θt,y)

p(θt | y)/g(θt | θ∗,y)

}
. (2.25)

A summary of the method is as follows.

Algorithm 2.2 (Metropolis-Hastings sampling) To construct a Markov

chain whose equilibrium distribution is p(θ | y), choose a proposal distribution

g(θ∗ | θt,y), define the acceptance probability αMH(θ∗ | θt,y) by (2.25), and

Initialize θ0; t← 0

Repeat {
Sample θ∗ ∼ g(θ | θt,y)

Sample u ∼ Uniform(0, 1)

If u ≤ αMH(θ∗ | θt,y) then θt+1 ← θ∗

else θt+1 ← θt

t← t+ 1

}
It’s instructive to compare Algorithms 2.1 and 2.2 to see how heavily the

MH algorithm borrows from ordinary rejection sampling, with the key dif-

ference that the proposal distribution is allowed to change over time. Notice

how (2.25) generalizes von Neumann’s acceptance probability ratio p(θ∗ |
y)/G(θ∗ | y) for ordinary rejection sampling: the crucial part of the new MH

acceptance probability becomes the ratio of two von-Neumann-like ratios,

one for where you are now and one for where you’re thinking of going (it’s

equivalent to work with g or G since the normalizing constant cancels in the

ratio). When the proposal distribution is symmetric in the Metropolis et al.

sense, the acceptance probability ratio reduces to p(θ∗ | y)/p(θt | y), which

is easy to motivate intuitively: whatever the target density is at the current

point θt, you want to visit points of higher density more often and points

of lower density less often, and (2.25) does this for you in the natural and

appropriate way.

A Metropolis-Hastings Example

As an example of the MH algorithm in action, consider one of the simplest

possible Gaussian non-multilevel models: normal data with known mean µ

29 The proposal distribution g(θ∗ | θt,y) can be virtually anything and you’ll get

the right equilibrium distribution using the acceptance probability (2.25); see,

e.g., Roberts [62] and Tierney [72] for the mild regularity conditions necessary to

support this statement.
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and unknown variance σ2. The likelihood function for σ2, derived from the

sampling model (yi | σ2)
iid∼ N (µ, σ2) for i = 1, . . . , n, is

l(σ2 | y) = c
n∏

i=1

(σ2)−1/2 exp

[
− (yi − µ)2

2σ2

]

= c (σ2)−n/2 exp

[
−
∑n
i=1(yi − µ)2

2σ2

]
.

This is recognizable as a member of the Scaled Inverse χ2 family χ−2(ν, s2)

[e.g., 37] of distributions, which is a rescaled version of the Inverse Gamma

family30 chosen so that s2 is an estimate of σ2 based upon ν “observations”:

if θ ∼ χ−2(ν, s2) then θ has density

p(θ) = c θ−(ν/2+1) exp

(
−νs

2

2θ

)
,

so that

l(σ2 | y) = χ−2

[
n− 2,

∑n
i=1(yi − µ)2

n− 2

]
. (2.26)

You can now convince yourself that if the prior for σ2 in this model is taken

to be χ−2(ν, s2), then the posterior for σ2 will also be Scaled Inverse χ2: with

this choice of prior

p(σ2 | y) = χ−2

[
ν + n,

νs2 +
∑n
i=1(yi − µ)2

ν + n

]
. (2.27)

This makes good intuitive sense: the prior estimate s2 of σ2 receives ν votes

and the sample estimate σ̂2 = 1
n

∑n
i=1(yi−µ)2 receives n votes in the posterior

weighted average estimate (νs2 + nσ̂2)/(ν + n).

Equation (2.27) provides a satisfying closed-form solution to the Bayesian

updating problem in this model (e.g., it’s easy to compute posterior moments

analytically, and you can use numerical integration or well-known approxi-

mations to the CDF of the Gamma distribution to compute percentiles). For

illustration purposes suppose instead that you want to use MH sampling to

summarize this posterior. Then your main choice as a user of the algorithm is

the specification of the proposal distribution (PD) g(σ2 | σ2
t ,y). The goal in

choosing the PD is getting a chain that mixes well (moves freely and fluidly

among all of the possible values of θ = σ2), and nobody has (yet) come up

with a sure-fire strategy for always succeeding at this task. Having said that,

here are two basic ideas that often tend to promote good mixing:

30 The simplest way to sample from the Scaled Inverse χ2 distribution is to use

any of a variety of methods for drawing from Gamma distributions, since if θ ∼
χ−2(ν, s2) then 1/θ ∼ Γ ( 1

2
ν, 1

2
νs2).
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(1) Pick a PD that looks like a somewhat overdispersed version of the posterior

you’re trying to sample from [e.g., 72]. Some work is naturally required

to overcome the circularity inherent in this choice: If I fully knew p(θ | y)

and all of its properties, why would I be using this algorithm in the first

place?

(2) Set up the PD so that the expected value of where you’re going to move

to (θ∗), given that you accept a move away from where you are now (θt),

is to stay where you are now:31 E g(θ
∗ | θt,y) = θt. That way, when

you do make a move, there will be an approximate left-right balance, so

to speak, in the direction you move away from θt, which will encourage

rapid exploration of the whole space.

Using idea (1), a decent choice for the PD in the Gaussian model with

unknown variance might well be the Scaled Inverse χ2 distribution: g(σ2 |
σ2
t ,y) = χ−2(ν∗, σ

2
∗). This distribution has mean σ2

∗ ν∗/(ν∗ − 2) for ν∗ > 2.

To use idea (2), then, I can choose any ν∗ greater than 2 that I want, and as

long as I take σ2
∗ = σ2

t (ν∗ − 2)/ν∗ that will center the PD at σ2
t as desired.

So I’ll use

g(σ2 | σ2
t ,y) = χ−2

(
ν∗, σ

2
t

ν∗ − 2

ν∗

)
.

This leaves ν∗ as a kind of potential tuning constant—the hope is that I can

vary ν∗ to improve the mixing of the chain.

Figure 2.3, motivated by an analogous plot in Gilks et al. [40], presents

some typical output of the MH sampler with ν∗ = 2.5, 20, 500. The acceptance

probabilities with these values of ν∗ are 0.07, 0.44, and 0.86, respectively. The

SD of the χ−2
(
ν∗, σ

2
t (ν∗ − 2)/ν∗

)
distribution is proportional to ν2

∗/
[
(ν2

∗ −
2)2
√
ν∗ − 4

]
, which decreases as ν∗ increases, and this turns out to be crucial:

when the proposal distribution SD is large (small ν∗, as in the top panel in

Fig. 2.3), the algorithm tries to make big jumps around θ space (good), but

almost all of them get rejected (bad), so there are long periods of no movement

at all, whereas when the PD SD is small (large ν∗; see the bottom panel of the

figure), the algorithm accepts most of its proposed moves (good), but they’re

so tiny that it takes a long time to fully explore the space (bad). Gelman et al.

[37] have shown that in simple canonical problems with approximately normal

target distributions the optimal acceptance rate for MH samplers like the one

illustrated here is about 44% when the vector of unknowns is one-dimensional,

and this can serve as a rough guide: you can modify the proposal distribution

SD until the acceptance rate is around the Gelman et al. target figure. The

central panel of Fig. 2.3 displays the best possible MH behavior in this problem

in the family of PDs chosen. Even with this optimization you can see that the

mixing is not wonderful, but contemporary computing speeds enable huge

numbers of draws to be collected in a short period of time, compensating

31 This makes the output of the MCMC sampler a martingale; see, e.g., Feller [32].
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Fig. 2.3 Metropolis-Hastings sampling in the Gaussian model with known mean

and unknown variance, and using a Scaled Inverse χ2 proposal distribution with

tuning constant ν∗. The top, middle, and bottom panels give typical output of the

sampler for ν∗ = 2.5, 20, 500, respectively.

for the comparatively slow rate at which the MH algorithm learns about the

posterior distribution of interest.

In this example the unknown quantity θ = σ2 was real-valued, but there’s

nothing in the MH method that requires this; in principle it works equally

well when θ is a vector of any finite dimension (look back at Algorithm 2.2 to

verify this). Notice, crucially, that to implement this algorithm you only need

to know how to calculate p(θ | y) up to a constant multiple, since any such

constant will cancel in computing the acceptance probability (2.25). Thus

you’re free to work with unnormalized versions of p(θ | y), and this solves

the final high-dimensional integration problem not already addressed above

by the general Monte Carlo approach.

There’s even more flexibility in this algorithm than might first appear:

it’s often possible to identify a set A of auxiliary variables—typically these

are latent (unobserved) quantities—to be sampled along with the parameters,

which have the property that they improve the mixing of the MCMC output

(even though extra time is spent in sampling them). When the set (θ,A) of

quantities to be sampled is a vector of length k, there is additional flexibility:

you can block update all of (θ,A) at once, or with appropriate modifications

of the acceptance probability you can divide (θ,A) up into components, say
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(θ,A) = (λ1, . . . ,λl), and update the components one at a time (as Metropo-

lis et al. originally proposed in 1953). As an example, consider data from the

Junior School Project [e.g., 11], a longitudinal study of N = 887 students

chosen randomly from J = 48 randomly sampled Inner London Education

Authority (ILEA) primary schools in 1980 (see Mortimore et al. [56] for the

original, and larger, data set). One focus of interest in this project was the

relationship between mathematics test scores at year 3 and year 5 (xij and yij ,

respectively, for student i in school j). School-level scatterplots of these two

variables indicated approximate bivariate normality, but with a fair amount

of variation in the slopes and intercepts of the school-specific regression lines;

moreover, the numbers nj of pupils per school varied from 5 to 62 in this

data set, with about a third of the schools having 12 pupils or less, so many

of the school-level regressions were quite unstably estimated. It’s natural to

seek a balance between global regression fitting (which incorrectly ignores the

cluster sampling) and noisy local linear estimation, by fitting a random-slopes

regression model such as

yij = (β0 + u0j) + (β1 + u1j)(xij − x̄) + eij ,

uj =

(
u0j

u1j

)
iid∼ N2(∅,Vu), Vu =

(
σ2
u0 γ01

γ01 σ
2
u1

)
, eij

iid∼ N (0, σ2
e),

(2.28)

where j = 1, . . . , J , i = 1, . . . , nj ,
∑J
j=1 nj = N , and x̄ is the mean of

the math scores at year 3 over all N pupils. Centering the predictor in

this way improves MCMC fitting by reducing the positive autocorrelation

of the sampled draws. This model accounts properly for the clustering by

regarding the schools as having been drawn randomly from the population

of ILEA schools, each having its own slope and intercept, and the result of

fitting (2.28) will be to shrink the local estimates of these parameters toward

the global (population) regression. The parameter vector in this model is

θ = (β0, β1, σ
2
u0, γ01, σ

2
u1, σ

2
e), but it will become clear below that, in models

like (2.28) involving random effects (such as the u0j and u1j) at levels other

than the subjects at the bottom of the nesting structure, it can greatly aid the

MCMC sampling to treat the random effects as latent auxiliary variables to

be sampled along with the parameters. An efficient division of the quantities

(θ,A) = (β0, β1, σ
2
u0, γ01, σ

2
u1, σ

2
e ,u1, . . . ,uJ) to be sampled in this model

has been shown (see, e.g., Browne and Draper [11]) to involve l = 4, with

λ1 = (β0, β1); λ2 = (u1, . . . ,uJ); λ3 = Vu (as a matrix); and λ4 = σ2
e .

The idea in this component-by-component version of the algorithm, which

Gilks et al. [40] call single-component MH sampling, is to have l different

proposal distributions, one for each component of θ. Each iteration of the

algorithm (indexed as usual by t) has l steps, indexed by i; at the beginning

of iteration t you scan along, updating λ1 first, then λ2, and so on until you’ve

updated λl, which concludes iteration t. Let λt,i stand for the current state
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of component i at the end of iteration t, and let λ−i stand for the (θ,A)

vector with component i omitted. (The notation gets awkward here; it can’t

be helped.) The proposal distribution gi(λ
∗
i | λt,i,λt,−i,y) for component i

is allowed to depend on the most recent versions of all components of (θ,A);

here λt,−i is the current state of λ−i after step i − 1 of iteration t + 1 is

finished, so that components 1 through i− 1 have been updated but not the

rest. The acceptance probability for the proposed move to λ∗
i that creates the

correct equilibrium distribution turns out to be

αMH(λ∗
i | λt,−i,λt,i,y)

= min

[
1,
p(λ∗

i | λt,−i,y) gi(λt,i | λ∗
i ,λt,−i,y)

p(λt,i | λt,−i,y) gi(λ∗
i | λt,i,λt,−i,y)

]
. (2.29)

The distribution p(λi | λ−i,y) appearing in (2.29), which is called the full

conditional distribution for λi, has a natural interpretation: it represents

the posterior distribution for the relevant portion of (θ,A) given y and the

rest of (θ,A). The full conditional distributions act like building blocks in

constructing the complete posterior distribution p(θ | y), in the sense that

any multivariate distribution is uniquely determined by its set of full condi-

tionals [3].

Gibbs Sampling in Gaussian Multilevel Models

An important special case of single-component MH sampling arises when the

proposal distribution gi(λ
∗
i | λt,i,λt,−i,y) for component i is chosen to be the

full conditional p(λ∗
i | λt,−i,y) for λi: you can see from (2.29) that when this

choice is made a glorious cancellation occurs and the acceptance probability

is 1. This is Gibbs sampling, independently (re)discovered by Geman and

Geman [39]: the Gibbs recipe is to sample from the full conditionals and

accept all proposed moves. Even though it’s just a version of MH, Gibbs

sampling is important enough to merit a summary of its own. Single-element

Gibbs sampling, in which each real-valued coordinate θ1, . . . , θk gets updated

in turn, is probably the most frequent way Gibbs sampling gets used, so that’s

what I’ll summarize.32

Algorithm 2.3 (Single-element Gibbs sampling) To construct a Markov

chain whose equilibrium distribution is p(θ | y) with θ = (θ1, . . . , θk),

Initialize θ∗0,1, . . . , θ
∗
0,k; t← 0

Repeat {

32 Algorithm 2.3 details Gibbs sampling in the case with no auxiliary variables A,

but the algorithm works equally well when θ is replaced by (θ,A) in the summary.
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Table 2.3 The MCMC data set generated by single-element Gibbs sampling applied

to the variance-components model (2.22).

Phase of Iteration Simulated Quantity

Sampling t β0 aH
1 · · · aH

J σ2
H σ2

P

Initialization 0 (β0)
∗
0 (aH

1 )∗0 · · · (aH
J )∗0 (σ2

H)∗0 (σ2
P )∗0

1 (β0)
∗
1 (aH

1 )∗1 · · · (aH
J )∗1 (σ2

H)∗1 (σ2
P )∗1

Burn-in
...

...
...

. . .
...

...
...

b (β0)
∗
b (aH

1 )∗b · · · (aH
J )∗b (σ2

H)∗b (σ2
P )∗b

b+ 1 (β0)
∗
b+1 (aH

1 )∗b+1 · · · (aH
J )∗b+1 (σ2

H)∗b+1 (σ2
P )∗b+1

Monitoring
...

...
...

. . .
...

...
...

b+m (β0)
∗
b+m (aH

1 )∗b+m · · · (aH
J )∗b+m (σ2

H)∗b+m (σ2
P )∗b+m

Sample θ∗t+1,1 ∼ p(θ1 | y, θ∗t,2, θ∗t,3, θ∗t,4, . . . , θ∗t,k)
Sample θ∗t+1,2 ∼ p(θ2 | y, θ∗t+1,1, θ

∗
t,3, θ

∗
t,4, . . . , θ

∗
t,k)

Sample θ∗t+1,3 ∼ p(θ3 | y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t,4, . . . , θ

∗
t,k)

...
...

...

Sample θ∗t+1,k ∼ p(θk | y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t+1,3, . . . , θ

∗
t+1,k−1)

t← (t+ 1)

}
To really see what’s going on it’s instructive to visualize the MC data set,

which from now on I’ll call the MCMC data set. Table 2.3 illustrates this data

set when Gibbs sampling is applied to the variance-components model (2.22).

The MH algorithm creates a Markov chain whose stationary distribution

is p(θ | y), but you have to start the chain off somewhere and there’s no

guarantee that the chain will already be in equilibrium at the beginning of

the sampling. The usual way to run an MH sampler is to try to (i) start it off

at a vector of initial values which is close to a measure of center for the target

distribution, such as the posterior mean or mode; (ii) run the chain until it’s

shrugged off its dependence on the initial values and reached equilibrium (this

is called the burn-in phase); and then (iii) monitor the quantities of interest for

a long enough period of time to get whatever Monte Carlo accuracy you want

in the descriptive summaries of the MCMC draws. Thus MCMC sampling

can be divided into three phases, which are usually called (i) initialization

(iteration 0), (ii) burn-in (iterations 1, . . . , b), and (iii) monitoring (iterations

b + 1, . . . , b + m). The draws in phases (i) and (ii) (rows 0 through b in the

MCMC data set) are typically discarded.
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Returning to the variance-components model (2.22), as was the case with

the random-slopes regression model (2.28), Gibbs sampling proceeds most

smoothly by treating the hospital random effects aHj as latent auxiliary vari-

ables to be sampled along with the parameters (β0, σ
2
H , σ

2
P ). For the algorithm

to work correctly it doesn’t matter in what order the elements of (θ,A) are

updated; the ordering from left to right in Table 2.3 is as good as any. Having

chosen initial values (β0)
∗
0, (aH1 )∗0, . . . , (aHJ )∗0, (σ2

H)∗0, (σ2
P )∗0 in some way (I’ll

address this in more detail in the section below on MCMC diagnostics), row

t = 1 in the MCMC data set is filled in as follows:

• Sample (β0)
∗
1 from p

[
β0 | y, (aH1 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (aH1 )∗1 from p
[
aH1 | y, (β0)

∗
1, (a

H
2 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (aH2 )∗1 from p
[
aH2 | y, (β0)

∗
1, (a

H
1 )∗1, (a

H
3 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

and so on down to

• Sample (aHJ )∗1 from p
[
aHI | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J−1)

∗
1, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (σ2
H)∗1 from p

[
σ2
H | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J )∗1, (σ

2
P )∗0
]
, and

• Sample (σ2
P )∗1 from p

[
σ2
H | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J )∗1, (σ

2
H)∗1

]
.

The key idea is always to use the most recent value of each component of

(θ,A), which will always be either in the current row in the MCMC data set

or the one above it.

An important practical detail not yet addressed is how to calculate the

full conditional distributions. In the VC model (2.22), for example, taking β0

first and letting aH = (aH1 , . . . , a
H
J ), the definition of conditional probability

gives

p(β0 | y,aH , σ2
H , σ

2
P ) =

p(β0,y,a
H , σ2

H , σ
2
P )

p(y,aH , σ2
H , σ

2
P )

. (2.30)

Notice, however, from the acceptance probability (2.29) that the full condi-

tionals only need to be computed up to a constant multiple, as was true with

the complete posterior distribution in (2.25). This means that anything that

doesn’t involve β0 in the right-hand side of (2.30), such as the denominator,

can simply be absorbed into a generic constant:

p(β0 | y,aH , σ2
H , σ

2
P ) = c p(β0,y,a

H , σ2
H , σ

2
P ).

Next, again using the definition of conditional probability, and thinking about

the hierarchical nature of how the model (2.22) defines its knowns and un-

knowns,

p(β0 | y,aH , σ2
H , σ

2
P ) = c p(β0, σ

2
H , σ

2
P ) p(aH | β0, σ

2
H , σ

2
P )

× p(y | β0,a
H , σ2

H , σ
2
P ).
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Now (a) little of value is usually lost in multilevel modeling by taking the fixed

effects and the random-effects variances to be independent33 in the prior, so

that p(β0, σ
2
H , σ

2
P ) = p(β0) p(σ

2
H) p(σ2

P ), which can be taken to be c p(β0)

in this calculation; (b) the conditional distribution of aH given (β0, σ
2
H , σ

2
P )

depends only on σ2
H and again can be taken to be constant in this calculation;

and (c) the conditional (sampling) distribution34 of yij given (β0,a
H , σ2

H , σ
2
P )

is N (β0 + aHj , σ
2
P ). Thus, after a bit more simplification,

p(β0 | y,aH , σ2
H , σ

2
P ) = p(β0 | y,aH , σ2

P )

= c p(β0) exp


− 1

2σ2
P

J∑

j=1

nj∑

i=1

(yij − β0 − aHj )2


. (2.31)

The full conditional likelihood for β0—the exponential expression in (2.31),

viewed as a distribution in β0 for fixed (y,aH , σ2
P )—is

l(β0 | y,aH , σ2
P ) = c exp


− 1

2σ2
P

J∑

j=1

nj∑

i=1

(yij − β0 − aHj )2




= N


 1

N

J∑

j=1

nj∑

i=1

(yij − aHj ),
σ2
P

N


.

(2.32)

This demonstrates that the conditional conjugate choice for the prior distri-

bution for β0 in this model, as far as Gibbs sampling is concerned, is normal:

with this choice you can verify that the full conditional for β0 will also be

normal. Prior distributions in multilevel modeling will be discussed more fully

below; for now it’s enough to note that if you want to specify a diffuse prior

for β0 you can do so in a conditionally conjugate way by choosing a normal

distribution with any mean you like and a huge variance σ2
β0

. In the limit as

σ2
β0
→∞ (the ultimate in diffuseness) the prior distribution β0 would tend to a

constant and the full conditional for β0 would just be the Gaussian distribution

in (2.32). Of course there’s no such thing as a proper distribution which is

constant on (−∞,∞), because the area under such a curve would be infinite.

33 Typically the data set will be sufficiently informative that the appropriate degree

of correlation between these parameters in the posterior will be learned via the

likelihood.
34 You can begin to see why it’s useful in multilevel MCMC to sample the random

effects aH along with the parameters: computing the sampling distribution of the

yij without conditioning on the aH
j would require integrating over the random

effects, and while this can be done analytically in Gaussian random-effects models

(because a mixture of Gaussians is still Gaussian) it gives a hint of how difficult

things can become in non-Gaussian random-effects models if you don’t sample

the random effects.
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p(β0) = c is another example of an improper prior (like the Beta(0, 0) prior

in Section 2.1.2); this topic will be examined in more detail in Section 2.3.3.

A similar calculation reveals that the aHj are conditionally independent

given (y, β0, σ
2
H , σ

2
P ) and that

p(aHj | y, β0, σ
2
H , σ

2
P ) = N

[
Vj
σ2
P

nj∑

i=1

(yij − β0), Vj

]
,

where Vj = (nj/σ
2
P + 1/σ2

H)−1. As for σ2
H , logic similar to that underlying

the full conditional for β0 (and again assuming independence of β0, σ
2
H , and

σ2
P in the prior) yields

p(σ2
H | y, β0,a

H , σ2
P ) = c p(σ2

H ,y, β0,a
H , σ2

P ) = c p(σ2
H) p(aH | σ2

H)

(because p(y | β0,a
H , σ2

H , σ
2
P ) = N (β0 +aHj , σ

2
P ) doesn’t depend on σ2

H), and

this is

p(σ2
H | y, β0,a

H , σ2
P ) = p(σ2

H | aH)

= c p(σ2
H)

J∏

j=1

(σ2
H)−1/2 exp

[
−

(aHj )2

2σ2
H

]

= c p(σ2
H) (σ2

H)−J/2 exp

[
−
∑J
j=1(a

H
j )2

2σ2
H

]
. (2.33)

Leaving aside the prior p(σ2
H) for the moment, the rest of (2.33)—the full

conditional likelihood for σ2
H given aH—is recognizable as a member of the

Scaled Inverse χ2 family:

l(σ2
H | aH) = χ−2

[
J − 2,

∑J
j=1(a

H
j )2

J − 2

]
.

As noted below (2.26), the Scaled Inverse χ2 family is conditionally conju-

gate for Gibbs sampling in Gaussian models of this type; taking p(σ2
H) =

χ−2(νH , s
2
H), the full conditional for σ2

H becomes

p(σ2
H | aH) = χ−2

[
νH + J,

νHs
2
H +

∑J
j=1(a

H
j )2

νH + J

]
.

Finally, a similar calculation shows that

p(σ2
P | β0,y,a

H , σ2
H)

= c p(σ2
P ) (σ2

P )−N/2 exp

[
−
∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

2σ2
P

]

= c p(σ2
P )χ−2

[
N − 2,

∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

N − 2

]
,
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so that the conditional conjugate prior for σ2
P is also Scaled Inverse χ2, and

with the choice p(σ2
P ) = χ−2(νP , s

2
P ) the full conditional for σ2

P is35

p(σ2
P | β0,y,a

H) = χ−2

[
νP +N,

νP s
2
P +

∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

νP +N

]
.

It would evidently not be pleasant to be forced routinely to make detailed

calculations of full conditional distributions to perform Gibbs sampling in

multilevel models. Fortunately, at least two rather general-purpose computer

programs are available at this writing which make these calculations for you

automatically: WinBUGS [70] and MLwiN [60].36 WinBUGS can fit a broader class

of Bayesian models than MLwiN, but the coding in MLwiN has been optimized

in such a way that it often takes less CPU time than WinBUGS to achieve

the same level of MCMC accuracy (some efficiency comparisons will be given

below).

It’s clear from Algorithm 2.3 and the discussion surrounding it that the

single-component Metropolis-Hastings (MH) sampler offers immense flexibil-

ity in implementation: for example, you’re free to use Gibbs updating for

some components of the vector (θ,A) of unknowns-plus-auxiliary-variables,

and Metropolis or MH updating for other components. This is sometimes

referred to as a hybrid Metropolis-Gibbs approach (even though it’s all really

MH sampling). WinBUGS generally attempts to use Gibbs sampling whenever

possible, often employing adaptive rejection sampling (ARS), a method de-

veloped by Gilks and Wild [41], to sample from the full conditionals. If the

distributions needed for Gibbs sampling are concave on the log scale, envelope

functions can be created in a piecewise linear fashion, using tangents to the

log full conditionals as in Fig. 2.2. ARS proceeds adaptively to create an

increasingly tighter envelope by adding a new tangent line at each sampled

point, so that the rejection probability goes down as the sampling unfolds.

If some of the full conditionals are not log concave, WinBUGS uses a hybrid

approach based on Gibbs sampling via ARS when possible and MH sampling

otherwise. MLwiN typically uses a different hybrid strategy, which I’ll now

describe in the context of random-effects logistic regression (RELR) models.

35 The conditionally conjugate choices for the prior distributions for β0, σ
2
H , and σ2

P

examined here have been motivated by computational convenience; other priors

could of course be used, but (a) diffuse prior choices are easy to make in the

conditionally conjugate families and (b) these families will often also be adequate

approximations in a wide variety of situations when stronger prior information is

available.
36 Bill Browne (at the University of Bristol) and I were the co-developers of the

Bayesian MCMC capabilities in version 1.0 of MLwiN in 1998. Bill has since gone

on to greatly enhance the range of models that can be fit via MCMC in MLwiN;

see Browne et al. [14] for details.
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Metropolis and Hybrid Sampling Strategies in Multilevel Models

with Dichotomous Responses

When the outcome variable in a multilevel investigation is binary and random-

effects models are called for—an example is the RELR model (2.3)—the

MCMC fitting process becomes more involved, because Gibbs sampling in

RELR models is not straightforward. For instance, in the even simpler version

of (2.3) in which no predictor variable x is available, and taking all prior

distributions to be uniform for simplicity, the full conditional distribution for

β0 is

p(β0 | y,u, σ2
u) = c

∏

ij

(
1 + e−β0−uj

)−yij
(
1 + eβ0+uj

)yij−1
.

This distribution does not lend itself readily to direct sampling. Rejection

sampling [75] is possible, and (as mentioned above) WinBUGS employs adaptive

rejection sampling. MLwiN uses a hybrid Metropolis-Gibbs approach in RELR

models which involves two steps: (a) a particular form of adaptive Metropolis

sampling for the fixed effects, such as β0 in (2.3), and the random effects uj ,

treated as latent auxiliary variables as usual, and (b) Gibbs sampling for the

random-effects variances.

Since the fixed and random effects live on the whole real line, the simplest

choice for the proposal distributions (PDs) in the Metropolis sampling, if all

of the fixed and random effects are to be updated one at a time, is a series of

univariate Gaussian distributions, but it still remains to specify the location

and scale of these PDs. Consider (as an example) the intercept β0 in model

(2.3), and imagine that the sampler is at some value β0(t) at time t. A simple

way to specify a Gaussian PD for this parameter would be to use the normal

distribution N (β∗
0 | β0(t), σ

2
β0

) centered at where the sampler is now, β0(t),

and with some PD variance σ2
β0

. This PD has the property that it depends

on β∗
0 and β0(t) only through the distance |β∗

0 − β0(t)| between them, which

is the defining characteristic of a random-walk Metropolis sampler, and this

idea fixes the location of the PDs.

MLwiN uses random-walk Metropolis on the fixed and random effects in

RELR models, and chooses the PD variances adaptively to avoid the extremes

illustrated by Fig. 2.3: in the top panel of this figure the PD variance is too

big, leading to an acceptance probability that’s too low, and in the bottom

panel the scale of the PD is too small, resulting in an acceptance probability

that’s too high. I mentioned in Section 2.3.2 that the optimal acceptance rate

for one-dimensional (random-walk) MH samplers with Gaussian PDs when

the target distribution is approximately normal is about 44%; Browne and

Draper [11, 12, 13] used this fact to equip MLwiN with the following simple

adaptive method for choosing the PD variances. From starting values based

on the estimated covariance matrices of the MLEs for the parameters in the
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given model, the method first employs a sampling period of random length

(but with an upper bound) during which the proposal distribution variances

are adaptively tuned and eventually fixed for the remainder of the run; this is

followed by a burn-in period (see Section 2.4.1); and then the main monitoring

run from which posterior summaries are calculated occurs. The tuning of the

proposal distribution variances is based on achieving an acceptance rate for

each parameter that lies within a specified tolerance interval (r − δ, r + δ).

The algorithm examines empirical acceptance rates in batches of 100 it-

erations, comparing them for each parameter with the tolerance interval and

modifying the proposal distribution appropriately before going on to the next

batch of 100. With r∗ as the acceptance rate in the most recent batch and

σp as the proposal distribution SD for a given parameter, the modification

performed at the end of each batch is as follows:

If r∗ ≥ r then σp → σp

(
2− 1− r∗

1− r

)
else σp →

σp
2− r∗/r .

This modifies the proposal standard deviation by a greater amount the farther

the empirical acceptance rate is from the target r. If r∗ is too low, the proposed

moves are too big, so σp is decreased; if r∗ is too high, the parameter space

is being explored with moves that are too small, and σp is increased. If the

r∗ values are within the tolerance interval during three successive batches of

100 iterations, the parameter is marked as satisfying its tolerance condition,

and once all parameters have been marked the overall tolerance condition

is satisfied and adapting stops. After a parameter has been marked it’s still

modified as before until all parameters are marked, but each parameter only

needs to be marked once for the algorithm to end. To limit the time spent

in the adapting procedure an upper bound is set (the MLwiN default is 5,000

iterations) and after this time the adapting period ends regardless of whether

the tolerance conditions are met (in practice this occurs rarely). Values of

(r, δ) = (0.5, 0.1) appear to give near-optimal univariate-update Metropolis

performance for a wide variety of multilevel models [11, 12, 13].

To give some examples of MCMC efficiency comparisons, Browne and

Draper [11, 12, 13] and Browne [10] have gathered information in a wide vari-

ety of multilevel models that can be fit both by WinBUGS using Gibbs sampling

via ARS37 and by MLwiN using adaptive hybrid Metropolis-Gibbs sampling. In

addition to univariate Metropolis updating in multilevel modeling, as noted in

the discussion surrounding (2.28), it’s also possible to update parameters in L

sets of blocks with multivariate proposal distributions, where L is the number

of levels in the model. In models with Gaussian responses, MLwiN uses (a)

Gibbs sampling on the random-effects variances and (b) multivariate normal

37 WinBUGS version 1.4.1 allows the user to specify MH sampling instead of Gibbs

sampling via ARS, but the latter is still the default.
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PDs on everything else, with the fixed effects forming one block and the other

L − 1 groups of nl blocks of size nrl comprising all of the random effects at

level 2, . . . , L, respectively, where nl is the number of blocks at level l and nrl
is the number of random effects per block at level l.

• In the two-level RELR models examined in the work summarized here,

Gibbs sampling via ARS was the most efficient method per MCMC it-

eration (in the sense of producing MCMC output with smaller levels of

positive autocorrelation), but ARS was much slower per iteration than

Metropolis; the winner in CPU time to achieve the same level of MCMC

accuracy (as measured by the default Raftery-Lewis MCMC diagnostic;

see Section 2.4.2) was multivariate Metropolis, by factors ranging from 1.7

to 9.0;

• In multilevel models involving heteroscedasticity (unequal random-effects

variances, which may be modeled as a function of predictor variables) at

one or more levels of the hierarchy, Metropolis sampling was 4.1–9.1 times

faster than ARS to achieve default Raftery-Lewis accuracy in the examples

studied;

• In multilevel models with multivariate Gaussian responses, MLwiN’s ap-

proach based on Gibbs sampling with block updating was 3.3 times faster

than ARS; and

• In one particular example involving a multilevel measurement error model,

MLwiN’s version of Gibbs sampling was 67 times faster than the WinBUGS

Gibbs implementation (the clock time comparison was 1 hour 14 minutes

versus 1.1 minutes to obtain 50,000 monitoring iterations on a 3GHz PC).

These results are anecdotal but are typical of many examples studied. The

principal reason for these efficiency findings appears to be that ARS’s gener-

ality is bought at the price of considerable computational overhead in creat-

ing and adaptively improving the rejection-sampling envelope function. (Of

course, none of these comparisons reflect the fact that the class of models

that can currently be fit with WinBUGS is considerably larger than the range

of models available at present via MLwiN; see www.mrc-bsu.cam.ac.uk and

www.cmm.bristol.ac.uk/MLwiN/index.shtml for details.)

2.3.3 Prior Distributions for Multilevel Analysis

As with all Bayesian inference, broadly speaking two classes of prior dis-

tributions are available for multilevel models: (a) diffuse and (b) non-diffuse,

corresponding to situations in which (a) little is known about the quantities of

interest a priori or (b) substantial prior information is available, for instance

from previous studies judged relevant to the current data set. In situation

(a), on which I’ll focus here, it seems natural to seek prior specifications

that lead to well-calibrated inferences [e.g., 21], which I’ll take to mean point
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estimates with little bias and interval estimates whose actual coverage is close

to the nominal level (in both cases in repeated sampling). As mentioned in

footnote 33, when the goal is a diffuse prior specification it’s customary (and

often does little harm) to take all parameters to be independent in the prior

for convenience (on the ground that the likelihood will provide the appro-

priate correlation structure in the posterior), and—with one exception to be

discussed below—I’ll follow that practice here.

There is an extensive literature on the specification of diffuse priors [e.g.,

2, 37, 70], leading in some models to more than one intuitively reasonable

approach. It’s sometimes stated in this literature that the performance of the

resulting Bayesian estimates is broadly insensitive, with moderate to large

sample sizes, to how the diffuse prior is specified. In preliminary studies in

joint work with Bill Browne, we found this to be the case for fixed effects in

a wide variety of multilevel models; as a result MLwiN uses (improper) priors

that are uniform on the real line R for such parameters (these are functionally

equivalent to proper Gaussian priors with huge variances). As others [e.g.,

29] have elsewhere noted, however, we found noticeable differences in perfor-

mance across plausible attempts to construct diffuse priors for random-effects

variances in both model classes. Intuitively (as mentioned toward the end of

Section 2.2) this is because the effective sample size for the level-2 variance in

a two-level analysis with J level-2 units (e.g., hospitals) and N total level-1

units (e.g., patients; typically J ≪ N) is often much closer to J than to N ;

in other words, in the language of the example near (2.22), even with data on

hundreds of patients the likelihood information about the between-hospital

variance can be fairly weak when the number of hospitals is modest, so that

prior specification can make a real difference in such cases.

The off-the-shelf (improper) choice for a diffuse prior on a variance in

many Bayesian analyses is p(σ2) = c/σ2, which is equivalent to assuming that

log(σ2) is uniform on R. This is typically justified by noting that the posterior

for σ2 will be proper even for very small sample sizes; but [e.g., 30] this choice

can lead to improper posteriors in random-effects models. MLwiN avoids this

problem by using two alternative diffuse (but proper) priors, both of which

produce proper posteriors:

• A locally uniform prior for σ2 on (0, 1/ǫ) for small positive ǫ [17, 38], which

is equivalent to a Pareto(1, ǫ) prior for the precision τ = 1/σ2 [70]; and

• A Γ−1(ǫ, ǫ) prior for σ2 [70], for small positive ǫ.

Both of these priors are members of the χ−2(ν, s2) family: the Uniform and

Inverse Gamma priors just mentioned are formally specified by the choices

(ν, s2) = (−2, 0) and (2ǫ, 1), respectively (in the former case in the limit as ǫ→
0). We have found that results are generally insensitive to the specific choice of

ǫ in the region of 0.001. (Earlier versions of the examples manual for WinBUGS

[69] frequently employed Γ (0.001, 0.001) marginal priors for quantities (such
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as precisions) which live on the positive part of the real line, and more recent

versions still give results with this prior for comparison. Evidence is beginning

to emerge that uniform priors on the standard deviation scale may have even

better calibration properties than those described below; see [12] and the

discussion therein.)

The exception I mentioned above to the idea of making all the parameters

independent in the prior arises in models, such as the random-slopes regression

formulation (2.28), in which random effects at more than one level are jointly

modeled with a covariance matrix V . In the same way that priors for a

variance are typically either expressed on the scale of σ2 or its reciprocal,

priors for covariance matrices are usually either specified in terms of V or

V −1. With Gaussian random effects the conditionally conjugate prior choice

for the inverse of a covariance matrix is the Wishart family, a multivariate

generalization of the Gamma distribution. In the parameterization used, for

example, by Gelman et al. [37], the Wishart distribution Wk(ν,S) for a k× k
matrix W has density

p(W ) = c |W |(ν−k−1)/2 exp

[
− tr(S−1W )

2

]
;

in this expression |A| and tr(A) denote the determinant and trace of the

matrix A, respectively, and the density is only defined over positive definite

matrices W and for ν ≥ k. This distribution has mean E (W ) = νS, so (by

analogy with the χ−2(ν, s2) distribution) specifying Wk(ν,S) as a prior for

V −1 is roughly equivalent to supplying S as a prior estimate of V based

on ν prior “observations.” Small values of ν thus lead to relatively diffuse

specifications; for example, the default prior for a k × k covariance matrix V

in MLwiN is p(V −1) = Wk(k, V̂ ), where V̂ is the MLE for V . This is gently

data-determined, but usually the effective sample size in the data for learning

about V is so much larger than k that all reasonable choices of S in the

Wk(k,S) distribution as a prior for V yield essentially the same conclusions.

There’s relatively little information in the literature about the calibration

performance of diffuse priors in multilevel modeling. An exception is Browne

and Draper [12], which presents results from large simulation studies in two

multilevel settings: the variance-components model (2.22) and the three-level

RELR model38

(yijk | pijk) ∼ Bernoulli(pijk), with

logit(pijk) = β0 + β1x1k + β2x2jk + β3x3ijk + vk + ujk ,
(2.34)

where yijk is a binary outcome variable and in which vk ∼ N (0, σ2
v) and

ujk ∼ N (0, σ2
u). The RELR model in this work involved a design configuration

based on a medical study (Rodŕıguez and Goldman [63]) of 2,449 births by

38 Browne and Draper [11] offers similar results in random-slopes regression models.
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1,558 women living in 161 communities in Guatemala; the VC simulation

study, motivated by an educational example with pupils nested in schools,

permitted the number of schools to range from 6 to 48 and the numbers of

pupils per school to vary from 5 to 62 in such a way that the average number of

pupils per school was 18 (the resulting total numbers of pupils varied from 108

to 864). The parameters in (2.34) in the RELR simulation were set to values

similar to those in the original Rodŕıguez-Goldman study; the random-effects

variances in the VC simulations were chosen to span a wide range of intraclass

correlation values from 0.012 to 0.5.

A comparison was made between likelihood-based and Bayesian diffuse-

prior methods, using bias of point estimates and nominal versus actual cov-

erage of interval estimates in repeated sampling as evaluation criteria. As

mentioned in Section 2.1, maximum likelihood estimates (and restricted ML

(REML) estimates which attempt to achieve approximate unbiasedness) are

readily found in VC models but are considerably more difficult to compute

in RELR models, because numerical integration is required over the random

effects to evaluate the likelihood function; as a result the likelihood-based

methods in most frequent use at present are quasi-likelihood techniques based

on linear approximations to the nonlinear RELR model. The results of the

simulations were as follows.

• In two-level VC models (a) both likelihood-based and Bayesian approaches

can be made to produce approximately unbiased estimates, although the

automatic manner in which REML achieves this is an advantage, but (b)

both approaches had difficulty achieving nominal coverage of interval esti-

mates in small samples and with small values of the intraclass correlation.

• With the three-level RELR model examined, (c) quasi-likelihood meth-

ods for estimating random-effects variances perform badly with respect to

bias and coverage in the example studied, and (d) Bayesian diffuse-prior

methods lead to well-calibrated point and interval RELR estimates.

One important likelihood-Bayesian comparison I’ve not yet addressed is com-

putational speed, where likelihood-based approaches have a distinct advantage

(for example, quasi-likelihood fitting of model (2.34) to the original Rodŕıguez-

Goldman data set takes 2.7 seconds on a 3GHz PC versus 1.8 minutes using

MCMC with 25,000 monitoring iterations). It’s common practice in statistical

modeling to examine a variety of models on the same data set before choosing

a small number of models for reporting purposes (although this practice by

itself encourages underpropagation of model uncertainty, e.g., Draper [25]).

The results in Browne and Draper [12] suggest a hybrid modeling strategy,

in which likelihood-based methods like those described here are used in the

model exploration phase and Bayesian diffuse-prior methods are used for

the reporting of final inferential results. Other analytic strategies based on
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less approximate likelihood methods are also possible but would benefit from

further study of the type summarized above.

2.4 MCMC Diagnostics

While MCMC methods offer a promising path toward a solution to the numer-

ical integration problem at the heart of Bayesian computations, it’s evident

from Section 2.3.2 that some new technical challenges arise in implementing

such methods: What should you use for starting values? How long should the

burn-in period be? (Equivalently, how do you know when the Markov chain

has reached equilibrium?) How long do you need to monitor the chain to get

results of sufficient Monte Carlo accuracy? A burgeoning literature on MCMC

diagnostics to help answer these questions has developed over the last 15 years;

see, e.g., Cowles and Carlin [19] and Brooks and Roberts [9] for good reviews.

A number of the most promising diagnostics have been distributed by Best

et al. [4] in a collection of programs called CODA (written in the S-PLUS R© [47]

and R languages). I’ll confine my coverage of this topic here to a discussion

of a few of the most useful diagnostic methods in multilevel modeling; these

tend to be methods (a subset of the techniques in CODA) available in software

such as MLwiN and WinBUGS.

2.4.1 Starting Values and the Length of the Burn-In Period

On the subjects of where to start the chain and how long the burn-in phase

should be (which are of course related: the worse the starting values, the

longer the burn-in needs to be), it helps to reach equilibrium quickly if you

can initialize the chain somewhere near a measure of center of the relevant

posterior distribution, such as its mean or mode. With diffuse priors this

suggests using maximum-likelihood estimates for initial values, since the mode

of the posterior and the maximum of the likelihood distribution will then be

close. This strategy is particularly well suited to a package like MLwiN which

permits both maximum-likelihood and MCMC fitting of multilevel models,

and in fact the MLEs are the default starting values in MLwiN. Browne and

Draper [11] have demonstrated anecdotally that a short burn-in period of

only 500 iterations from MLE starting values is more than adequate to reach

equilibrium in a remarkably wide variety of multilevel models; this is the

default burn-in behavior in MLwiN. WinBUGS (and other software) users who

do not have ready access to the MLEs often try generic starting values, such as

0 for any parameter whose range is the entire real line (fixed-effects regression

coefficients, for example) and 1 for any parameter which lives only on (0,∞)

(such as random-effects variances or precisions); this approach may fail in the

sense that the MCMC software is unable to begin sampling from such a poor
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starting place, and even when this type of failure does not occur a longer

burn-in period may be necessary.

The only real possibility, in Bayesian inference via MCMC, of obtaining

a truly inaccurate summary of the correct posterior distribution arises when

the posterior is multimodal and, for whatever reason, the sampler is run in

such a way that not all of the modes are discovered. Suppose, for example,

that the posterior has two modes which are far apart in parameter space, and

your sampling strategy (Metropolis, say) is as follows: you start the chain

off near one of the modes and (unknown to you) the proposal distribution

standard deviation you’re using is too small to permit discovery of the other

mode quickly. Theoretically your sampler will still (with probability 1) find

the other mode eventually, but this may not occur until millions of iterations

have been performed, and nothing in the output of the sampler in the first

50,000 or 100,000 iterations will give you any clue that there’s anything wrong.

Gelman and Rubin [38] have developed a simple diagnostic (implemented

in CODA and WinBUGS) for detecting multimodality based upon the idea of

running multiple chains from widely dispersed starting values and performing

an analysis of variance to see if the between-chain variability is large in relation

to the average variation within the chains (if so this would indicate more

than one mode). Fortunately multimodality is rare when fitting multilevel

models in situations which typically arise in practice; this problem should

not arise when the data provide substantial likelihood information about the

parameters of interest and the prior information is relatively diffuse in relation

to the likelihood.

2.4.2 The Required Length of the Monitoring Run

Once equilibrium has been reached it may still be true that an optimized

version of an approach such as Metropolis sampling will produce output with

sufficiently high autocorrelation that tens of thousands of iterations may be

needed to achieve respectable Monte Carlo accuracy. I’ll examine one possible

approach to determining how long the monitoring run should be by looking

at some output of the MLwiN package in a simple variance components model.

Figure 2.4 presents results from MCMC fitting of the model

yij = β0 + β1xij + aSj + aPij , j = 1, . . . , J, i = 1, . . . , nj ,

J∑

j=1

nj = N, aSj
iid∼ N (0, σ2

S), aPij
iid∼ N (0, σ2

P )
(2.35)

to a 2-level data set from education obtained by Goldstein et al. [44]; these

authors chose a random sample of J = 65 schools (factor S) from the Inner

London Education Authority in the late 1980s and then sampled a total of

4,059 16-year-old pupils (factor P ) at random from the chosen schools (a
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Fig. 2.4 Output of MLwiN initial MCMC fitting of model (2.35) to the Goldstein

et al. [44] educational data.

single-stage cluster sample). Here yij is a normalized examination score at

age 16 and xij is a score on a standardized reading test at age 11 (both

variables were linearly transformed to have mean 0 and SD 1). Figure 2.4

summarizes where things stand after MLwiN’s default hybrid Metropolis-Gibbs

sampler (described in Section 2.3.2) has performed a burn-in of 500 iterations

from the maximum-likelihood estimates in (2.35) and an initial monitoring

run of 5,000 iterations. The Equations window in the lower right corner

gives the current posterior means and SDs of the model parameters (based on

the 5,000 monitoring iterations): in the notation of (2.35), and regarding the

posterior means as point estimates, the current values (with posterior SDs in

parentheses) are β̂0 = 0.005 (0.042), β̂1 = 0.563 (0.012), σ̂2
S = 0.097 (0.021),

and σ̂2
P = 0.566 (0.013). The Trajectories window in the upper left corner

presents time series traces of the most recent 500 iterations for each of the

four parameters in the model (plus the deviance—a value based on the log

likelihood of the model evaluated at the current parameter estimates—which

can be used to assess the fit of the model; see, e.g., Spiegelhalter et al. [68]

for applications of the deviance to this task, some of which are controversial).

It’s evident that some parameters are mixing better than others; the rate of

MCMC learning about β0 is particularly slow, but that doesn’t matter here
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Fig. 2.5 MLwiN MCMC diagnostics for σ2
S in model (2.35), when fit to the educa-

tional data set examined in Fig. 2.4.

because the linear transformations of both x and y in this model mean that

β0 should be zero, rendering this parameter effectively ignorable.

Consider σ2
S , which is referred to in MLwiN as σ2

u0. Clicking on this pa-

rameter in the Trajectories window yields the default set of MLwiN MCMC

diagnostics about σ2
S , presented in Fig. 2.5. Five plots are given, together

with a variety of numerical diagnostics and summaries. The upper left plot

is a time series trace of all 5,000 monitoring iterations for σ2
S , and the upper

right plot is a kernel density trace (an estimate of the marginal posterior

p(σ2
S | y); see, e.g., Silverman [67] for details), which has a gentle degree of

skewness that’s about what you’d expect for a variance parameter (note that

the posterior mode, median, and mean for σ2
S , all of which are given in the

Summary Statistics part of the display, are estimated as 0.092, 0.095, and

0.097, respectively, a pattern that’s consistent with modest right skewness).

The left-hand graph in the second row of the figure is a plot of the estimated

autocorrelation function (ACF) for σ2
S ; as indicated in footnote 27, this mea-

sures the degree to which σ2
S at lag t is correlated with itself at lags t − 1,

t− 2, and so on (a purely IID time series would have autocorrelation 1 at lag

0 and estimated autocorrelations near zero at all other lags).

The remaining two plots require a brief digression on the subject of au-

toregressive models for time series [e.g., 18]. Letting et denote an IID (white

noise or purely random) process with mean 0 and variance σ2
e , the time series

θ∗t is said to be an autoregressive process of order p (AR(p)) if
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θ∗t = α1 θ
∗
t−1 + · · ·+ αp θ

∗
t−p + et. (2.36)

Equation (2.36) is like a multiple regression model except that θ∗t is being

regressed on past values of itself instead of on other predictor variables; this

gives rise to the term autoregressive. The right-hand graph in the second row

of Fig. 2.5 is the estimated partial autocorrelation function (PACF) for σ2
S .

The PACF for a time series θ∗t measures the excess correlation between θ∗t
and θ∗t+k not accounted for by the autocorrelations at lags 1 through k − 1,

and is useful in diagnosing the order of an AR(p) process: if θ∗t is AR(p) then

the PACF at lags 1, . . . , p will be significantly different from 0 and then close

to 0 at lags larger than p. Evidently in this case the series for σ2
S behaves like

an AR(1) process with first-order serial correlation of about ρ̂1
.
= +0.3 (the

height of the spike at lag 1 in both the ACF and PACF). The theoretical ACF

for an AR(1) series exhibits geometric decay, with the autocorrelation at lag

2 related to that at lag 1 by ρ2 = ρ2
1, followed by ρ3 = ρ3

1, and so on, and you

can see that the estimated ACF does have this behavior here.

The reason I bring this up is that when the output of an MCMC sampler

for any given variable is at least approximately AR(1), as will often be the case,

a simple generalization of (2.24)—the expression giving the required length of

the monitoring run in IID Monte Carlo sampling, when the goal is to specify

a target for the accuracy of the posterior mean—is available. It’s a standard

result from time series [e.g., 6] that if θ∗t is a stationary process with variance

σ2
θ and autocorrelation ρk at lag k, then in repeated sampling the standard

error (the square root of the variance) of the sample mean θ̄∗ = 1
m

∑m
t=1 θ

∗
t is

se(θ̄∗) =
σθ√
m

√√√√1 + 2
m−1∑

k=1

(
1− k

m

)
ρk , (2.37)

and a good approximation to this for large m is given by

se(θ̄∗)
.
=

σθ√
m

√
τ ,

where

τ = 1 + 2
∞∑

k=1

ρk (2.38)

is called the autocorrelation time for the series. In the special case of an AR(1)

process (2.37) reduces to

se(θ̄∗)
.
=

σθ√
m

√
1 + ρ

1− ρ , (2.39)

where ρ = ρ1 is the autocorrelation at lag 1. This formula wraps up the bad

news arising from a poorly mixing chain in a neat package: as ρ approaches
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+1 (i.e., as less and less new information is learned with each new Monte

Carlo draw from the posterior), (2.39) goes to +∞. The final plot in Fig. 2.5,

the left-hand graph in the third row of the figure, gives an estimated version

of (2.39)—using estimates of the posterior SD and first-order autocorrelation

of σ2
S based on the 5,000 monitoring iterations so far—plotted against m, to

indicate how long the chain needs to be run to achieve any particular target

value of ŝe(θ̄∗).

MLwiN also estimates the autocorrelation time τ̂ (by summing the ρ̂k in

(2.38) from k = 1 forward until they’re no longer statistically significantly

different from 0) and uses this to create a quantity called the effective sample

size ÊSS = m/τ̂ , which measures the efficiency of the MCMC sampler in

current use versus IID sampling; here the value ÊSS = 2,821 (printed in

the Summary Statistics section of the display) means that MLwiN’s default

sampler for this model has achieved a level of accuracy with 5,000 moni-

toring iterations that’s equivalent to what would have been achieved with

an IID sample from the posterior of size 2,821. (You can use the relation

τ̂ = (1 + ρ̂)/(1 − ρ̂) for AR(1) processes to solve backwards from the ÊSS

value, obtaining ρ̂ = (m− ÊSS )/(m+ ÊSS ). Here this yields ρ̂
.
= 0.28, which

agrees well with the graphs in Fig. 2.5.)

The current MCSE for the posterior mean of σ2
S with m = 5,000 is 0.0004

(this can be read off the graph, and is also printed in the Summary Statistics

section of the display). Given that the current posterior mean for σ2
S is 0.097,

this turns out not to be accurate enough to pin down the posterior mean µσ2
S

to

two sigfigs with high Monte Carlo probability; a calculation based on the CLT

approximation to the repeated-sampling distribution of 1
m

∑m
i=1(σ

2
S)∗i reveals

that a Monte Carlo confidence interval for µσ2
S

of the form (0.0965, 0.0975)

only has approximate confidence level 79%. A quantity referred to by MLwiN

as the Brooks-Draper (BD) diagnostic [8, 11] estimates the required length m̂

of a monitoring run to achieve at least k sigfigs, with Monte Carlo probability

at least 1 − α, in the posterior mean estimate for a quantity θ with current

sample mean θ̄∗ which can be written a · 10b for 1 ≤ a < 10; if the current

estimate of the posterior SD of θ is σ̂θ, and if the time series for θ behaves like

an AR(1) process with estimated first-order autocorrelation ρ̂, then m̂ must

satisfy

m̂ ≥ 4
[
Φ−1

(
1− α

2

)]2( σ̂θ
10b−k+1

)2(
1 + ρ̂

1− ρ̂

)
. (2.40)

Here to achieve k = 2 sigfigs with at least 95% Monte Carlo probability

MLwiN evaluates (2.40) and obtains m̂ ≥ 11,365 (this is referred to as Nhat

in the Accuracy Diagnostics section of the display, next to the phrase

Brooks-Draper (mean)).

The final accuracy diagnostic routinely printed by MLwiN was developed

by Raftery and Lewis [59] to address a different aspect of the posterior than



2 Bayesian Multilevel Analysis and MCMC 127

that covered by the BD diagnostic: Raftery and Lewis were interested in the

accuracy of the quantiles defining (say) the 95% central interval estimate for

a quantity θ, obtained by quoting the 2.5% and 97.5% points in the empirical

distribution for θ based on the m monitoring iterations so far (MLwiN denotes

this choice of relevant quantiles by q = (q1, q2) = (0.025, 0.975)). The Raftery-

Lewis (RL) diagnostic is expressed not on the scale of the data but on the

probability scale; in the case of the q1 point, for example, the diagnostic—when

used with its default settings—indicates how long the monitoring run needs to

be so that the actual amount of probability to the left of the quoted q1 point

in the true posterior distribution is within r = 0.005 of the nominal value q1
with at least s = 0.95 Monte Carlo probability. With these choices of q and

r the goal is for the actual probability content of the nominal 95% central

interval estimate for θ to be somewhere between 94% and 96% with at least

95% Monte Carlo probability. By default MLwiN reports RL values for both

of the q1 and q2 points; a natural way to use this output is to take the larger

of the two values as the recommended length of monitoring run from the RL

point of view. Here the default settings produce m̂ = (4199, 3996) (MLwiN

also calls these values Nhat), so the 95% central interval (0.063, 0.145) for

σ2
S reported in the Summary Statistics portion of the display exceeds the

default RL accuracy standards with the monitoring run of 5,000 iterations

already performed.

A natural strategy in MLwiN for choosing a final length of monitoring run

to produce publishable findings when the posterior distribution is multivariate

is to decide on the desired BD and RL accuracy standards for each parameter

(the defaults are easy to change) and to run the sampler for m∗ iterations,

where m∗ is at least as large as the maximum across the resulting BD and

RL recommendations for all parameters. In model (2.35) with the Goldstein

et al. data, ignoring the irrelevant parameter β0 and using the settings chosen

above, this yields m∗ = 11,365 (it turns out that the mixing for σ2
S is the

worst for the three main parameters in the model); rounding up to 12,000 and

running the sampler for an additional 7,000 iterations (which takes just a few

seconds at 3 GHz) yields good MCMC diagnostics and leads to final reportable

values (posterior means, with posterior SDs in parentheses) of β̂0 = 0.005

(0.041), β̂1 = 0.563 (0.013), σ̂2
S = 0.097 (0.020), and σ̂2

P = 0.566 (0.013). These

estimates differ little from the earlier values; in this model with this data set,

the initial monitoring run of 5,000 draws was already highly informative.

2.5 The Case Study Revisited

I’ll conclude this chapter by applying the ideas discussed in the previous

four sections to the Berkeley traffic case study in Section 2.1.1. Figure 2.6

illustrates the MCMC fitting of the random-effects logistic regression (RELR)
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Fig. 2.6 WinBUGS fitting of a regression reformulation of model (2.5) to the Berkeley

traffic data in Section 2.1.1.

model (2.5) to the data summarized in Tables 2.1 and 2.2, using WinBUGS

release 1.4.1. The fixed effects in (2.5) are written using an analysis-of-variance

over-parameterization which employs slightly awkward side conditions (such

as
∑L
l=1 α

T
l = 0) to make the model identifiable; it’s arguably more natural

to fit a model like this by appealing to the duality between ANOVA and

regression, which is what I’ve done. There are K = 6 fixed-effects degrees of

freedom to fit in this model (in ANOVA language, one for the grand mean,

one for the bike-route effect, two for street type, and two for the interaction

between the two fixed factors), so I defined 6 dummy or indicator variables: x1

is 1 for all N = 82 rows in the data set (the intercept); x2 is 1 for streets with

a bike route (and 0 otherwise); x3 and x4 are 1 if street type is residential and

fairly busy, respectively; and x5 = x2 x3 and x6 = x2 x4 carry the interaction

information. With these definitions, in regression notation (2.5) becomes (for

i = 1, . . . , N)
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(yi | pi) indep∼ Binomial(ni, pi), where

logit(pi) =
K∑

k=1

βk xik + ei, ei
iid∼ N (0, σ2

e),
(2.41)

with the “errors” or residuals ei corresponding to the block-level random

effects aBjkl. The left-most window in Fig. 2.6 specifies this regression model

in WinBUGS syntax, and the larger middle window in the figure gives the data.

I used diffuse priors for the βk (in WinBUGS the specification dflat( ) cor-

responds effectively to a normal distribution with mean 0 and huge variance,

or, equivalently, tiny precision), and I used a Γ (0.001, 0.001) diffuse prior

for the residual precision τe = 1/σ2
e (similar results are obtained here with

other diffuse priors). I also initialized all the parameters in (2.41) in a default

manner (see the small window at the bottom of Fig. 2.6), by starting the

Markov chain off at 0 for all the βk and 1 for τe; this was lazy (and WinBUGS

had to generate initial values for all 82 of the residuals from this relatively

inaccurate starting point), but exploration revealed that the chain reached

equilibrium well within a quick burn-in of 500 iterations, so my laziness was

not punished in this case.

The dummy coding described above makes it easy to fit the model, but

some work is required to translate between the β (regression) and (µ, α)

(ANOVA) parameterizations. The top part of Table 2.4 gives the represen-

tation of each of the cells in the 2 × 3 table in this example in terms of the

xk (for example, membership in the (no bike route, busy) cell corresponds

to (x1, . . . , x6) = (1, 0, 0, 0, 0, 0)), and the representations of the row means,

column means, and the grand mean (on the logit scale) are then available by

simple averaging of the indicator codings in the cells (this ignores the slight im-

balance in the design in Table 2.1, with the two missing blocks in the (no bike

route, residential) cell, but a more precise analysis that corrects for this yields

almost exactly the same results). The bottom part of Table 2.4 records the ex-

pected logit(pjkl) values in model (2.5), in the ANOVA parameterization and

bearing in mind the usual side conditions. Given that the expected logit(pi)

values in (2.41) are of the form
∑K
k=1 βk xik with the xk values presented in the

top part of Table 2.4, it’s now possible to work out what functions of the βk in

the regression parameterization need to be monitored to obtain estimates of

the parameter values in the ANOVA representation. For example, the grand

mean µ in (2.5), which corresponds to the entry c′1 = (1, 1
2 ,

1
3 ,

1
3 ,

1
6 ,

1
6 ) in the

top part of the table, can be estimated by monitoring the linear combination

c′1β =
∑K
k=1 c1kβk of the βk; similarly αR1 = (µ + αR1 ) − µ corresponds to

c′2 = (1, 1, 1
3 ,

1
3 ,

1
3 ,

1
3 )− (1, 1

2 ,
1
3 ,

1
3 ,

1
6 ,

1
6 ) = (0, 1

2 , 0, 0,
1
6 ,

1
6 ); and so on. The data

file in Fig. 2.6 displays the weight vectors c3 through c6 which permit the

monitoring of the other fixed-effect parameters (αT1 , αT2 , αRT1 , and αRT2 ) in
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Table 2.4 The top table gives the dummy coding of the cells in the 2 × 3 table for

the Berkeley traffic study of Section 2.1.1; the bottom table records the expected

logit(pjkl) values in model (2.5), in the ANOVA parameterization and bearing in

mind the usual side conditions.

Bike Street Type

Route? Residential Fairly Busy Busy Mean

Yes (1, 1, 1, 0, 1, 0) (1, 1, 0, 1, 0, 1) (1, 1, 0, 0, 0, 0) (1, 1, 1
3
, 1

3
, 1

3
, 1

3
)

No (1, 0, 1, 0, 0, 0) (1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 1
3
, 1

3
, 0, 0)

Mean (1, 1
2
, 1, 0, 1

2
, 0) (1, 1

2
, 0, 1, 0, 1

2
) (1, 1

2
, 0, 0, 0, 0) (1, 1

2
, 1

3
, 1

3
, 1

6
, 1

6
)

Bike Street Type

Route? Residential Fairly Busy Busy Mean

Yes
µ+ αR

1 +

αT
1 + αRT

11

µ+ αR
1 +

αT
2 + αRT

12

µ+ αR
1 +

αT
3 + αRT

13

µ+ αR
1

No
µ+ αR

2 +

αT
1 + αRT

21

µ+ αR
2 +

αT
2 + αRT

22

µ+ αR
2 +

αT
3 + αRT

23

µ+ αR
2

Mean µ+ αT
1 µ+ αT

2 µ+ αT
3 µ

the ANOVA version of the model (the WinBUGS function inprod can be used

to create the desired linear combinations).

The online MCMC diagnostics in WinBUGS are not as extensive as those in

MLwiN, although it’s easy in WinBUGS to store the MCMC data set for offline

analysis with CODA; here I’ll illustrate a simple approach to determining how

long the Markov chain should be monitored using only the online diagnostics.

As an example of the method I’m describing, Fig. 2.7 presents a variety of

plots and numerical summaries for the parameter αR1 in (2.5), which measures

(on the logit scale) the amount—on streets with a bicycle route—by which

bicycle traffic is more likely than average; the figure is based on an initial

monitoring run of 5,000 iterations after the burn-in of length 500 mentioned

above. The dynamic trace in the lower left corner of the figure (which tracks

the last 500 iterations in the current monitoring run) shows how slowly this

parameter is mixing with the default WinBUGS sampling strategy,39 and the

time series trace of all 5,000 monitored iterations (in the center of Fig. 2.7)

also looks like that of an AR(1) series with a high first-order autocorrelation,

an impression that’s confirmed by the autocorrelation plot in the lower right

corner. The running quantiles for αR1 in the right center of the figure show

that the estimates of the 2.5% and 97.5% points of the marginal posterior

distribution for this parameter at about iteration 700 (200 iterations into

39 Other MCMC strategies are available in WinBUGS; I did not explore them.
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Fig. 2.7 WinBUGS online summaries and MCMC diagnostics for the parameter αR
1

in model (2.5), as fit to the Berkeley traffic data.

the current monitoring run) are quite different than their values at iteration

5,500, and the kernel density trace in the upper right corner is quite jagged

with the WinBUGS default choice for smoothing of the density estimate; all of

this reinforces the sense that a longer monitoring run is needed.

Columns 2–6 in Table 2.5 summarize where things stand after the initial

5,000 monitoring iterations for a variety of unknown quantities (not all of

which I’ve yet discussed) in models (2.5) and (2.41), including αR1 ; column 5

estimates ρ1 for each of these quantities (ρ̂1 values are available in WinBUGS),

and column 6 records the corresponding estimated BD m̂ values, with target

numbers of sigfigs in parentheses. The first-order autocorrelations for the first

eight quantities in the table are all above +0.9, a typical result in RELR

models; across all the unknowns in the table this leads to m̂ recommendations

ranging from about 1,100 to more than 115,000, depending on the autocorre-

lation and the number of sigfigs desired. A parameter like αRT2 , which has an

estimated posterior mean near 0 but which nevertheless has substantial values

for both the posterior SD and ρ1, will need a fairly long monitoring run just

to be able to quote a single sigfig with decent Monte Carlo accuracy.
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Table 2.5 Numerical summaries for a variety of unknown quantities (11 param-

eters and a future observable) in the Berkeley traffic case study. r.e is short for

route.effect.

After 5,000 Iterations After 120,000 Iterations

Unknown Mean (MCSE) SD ρ̂1 BD m̂ (sigfig) Mean (MCSE) SD

αR
1 0.72 (.007) 0.092 0.934 37800 (2) 0.72 (.002) 0.093

αT
1 0.88 (.009) 0.13 0.907 56400 (2) 0.87 (.002) 0.14

αT
2 0.02 (.009) 0.13 0.921 61100 (1) −0.01 (.002) 0.13

αRT
1 −0.24 (.01) 0.13 0.940 85800 (2) −0.26 (.003) 0.14

αRT
2 0.04 (.01) 0.13 0.953 115900 (1) 0.08 (.003) 0.13

β5 −0.88 (.04) 0.41 0.947 9610 (1) −0.87 (.01) 0.46

µ −2.85 (.006) 0.092 0.912 28200 (3) −2.84 (.001) 0.092

r.e 4.3 (.06) 0.80 0.934 28500 (2) 4.3 (.02) 0.80

p33 0.10 (.001) 0.047 0.537 1140 (2) 0.10 (.0003) 0.048

p35 0.048 (.0002) 0.013 0.361 5640 (2) 0.048 (.00005) 0.013

σe 0.63 (.002) 0.074 0.673 4290 (2) 0.63 (.0005) 0.074

ynew
33 1.6 (.02) 1.42 0.108 3850 (2) 1.6 (.006) 1.42

After looking at the results in Table 2.5 I decided to aim for a total mon-

itoring run of 120,000 iterations (by merging 115,000 new simulated draws

from the posterior with the previous 5,000); this took about 1 minute at

3 GHz. The last three columns in Table 2.5 summarize the posterior means

(with MCSEs) and SDs of the monitored quantities after 120,000 iterations.

All of the Monte Carlo estimates were quite stable in passing from the shorter

to the longer monitoring run except αRT2 , whose posterior mean doubled in

size (while still, of course, remaining close to 0). The following substantive

and statistical conclusions, some of which echo and reinforce the preliminary

impressions from Table 2.2 mentioned in Section 2.1.1, may be drawn.

• Averaging over street type, a randomly chosen vehicle on a street with

a bike route is far likelier to be a bicycle than if the street had no

bike route: αR1 , the main effect of the bike route variable, has a pos-

terior mean of +0.72 on the logit scale, with a posterior SD of 0.093,

meaning that the mean difference (in logits) between the bike-route-yes

and bike-route-no blocks was 2αR1 = 1.43. Given that the average block

without a bike route had only about 4% bicycle traffic (from Table 2.2),

the “effect” of adding a bike route would be to roughly quadruple40 the

40 Starting with a no-bike-route PBT of p = 0.041, for which l = logit(p)
.
= −3.15,

and (naively) adding 1.43 yields l∗ = l + 1.43 = −1.72, from which p∗ = [1 +

exp(−l∗)]−1 .
= 0.15.
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PBT (proportion of bicycle traffic; “effect” is in quotes because this is

an observational study, from which it would be bold to draw such a

strong causal conclusion). As a rough confirmation of this, I monitored

the quantity41 r.e = route.effect = exp
(
2αR1

)
along with everything

else in Table 2.5; its posterior mean (which does not adjust for bias arising

from the nonlinear transformation) was about 4.3, with a posterior SD of

0.80.

• Averaging over presence or absence of a bike route, street type also has a

strong effect on PBT; for example, αT1 , which contrasts residential streets

(on the logit scale) with average behavior, had a posterior mean and SD of

+0.87 and 0.14, respectively. Based on calculations similar to those given

above, residential streets were about four times as likely to have bicycles

on them as busy streets, and about twice as likely as fairly busy streets.

• However, fairly large interactions between the two fixed effects complicate

the picture; the “effect” of bike route on PBT is different according to

street type. This may be seen by looking at posterior summaries of the

interaction parameters (for example, on the logit scale αRT1 has posterior

mean (SD) −0.26 (0.14)), but the interaction comes into focus even more

clearly by contrasting what happens when you go from no-bike-route to

bike-route for each of the residential and busy street types. With (i, j)

denoting the cell in row i and column j of the basic 2×3 table, this involves

making a cell-means comparison of the form [(1, 1)−(2, 1)]−[(1, 3)−(2, 3)].

The relevant linear combination of the βk from Table 2.4 turns out to be

(0, 0, 0, 0, 1, 0); in other words, it suffices to monitor β5 to address this

question. From Table 2.5 you can see that its posterior mean and SD

came out −0.87 and 0.46, respectively. Since e0.87
.
= 2.4, the interpretation

would be that the “effect” of bike route on PBT is more than twice as large

for busy streets as it is for residential ones.

• There is substantial unexplained heterogeneity between city blocks within

the cells of the 2 × 3 layout: the SD of the random effects at the block

level (σe in model (2.41) and σB in (2.5)) has a posterior mean on the

logit scale of 0.63 (with a posterior SD of 0.074). In an average cell with

a typical PBT of about 9%, this means (using calculations similar to that

in footnote 40) that it would not be surprising to see block-level PBT

values ranging from about 3% to 26%. Clearly, while model (2.5)/(2.41)

has made progress in explaining why some city blocks in Berkeley have

a lot of bicycle traffic and others do not, there is still some way to go in

achieving full causal understanding.

• In addition to parameters in both the ANOVA and regression formulations

of the RELR model at issue here, I also monitored the underlying pi values

in (2.41) for two city blocks in the (residential, no bike route) cell of the

41 See footnote 2 for the reasoning behind this choice.
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Fig. 2.8 Marginal posterior kernel density traces for six of the unknown quantities

in Table 2.5.

2×3 table. These blocks, numbered 33 and 35 in the data set, had observed

PBT and nj values (written in the PBT/nj format of Table 2.1) of 0.125/16

and 0.041/217, respectively. Since the two blocks were both in the same

cell you might have thought that the posterior means of p33 and p35 would

be similar, but they’re not: from Table 2.5, in posterior (mean ± SD)

notation, p33
.
= 0.10 ± 0.048 and p35

.
= 0.048 ± 0.013. Recalling from

Table 2.2 that the overall PBT rate in this cell of the table was 0.097,

some reflection clarifies what’s going on here: under the random-effects

formulation in the model, the posterior means of both p33 and p35 will

shrink toward the cell mean 0.097 (this is the same phenomenon noted in

Section 2.3.2), but the amount of the shrinkage will depend strongly on

how much data is available for each city block. Block 33, which only had

16 vehicles, experiences substantial shrinkage, from a data value of 0.125

all the way to 0.10 (nearly the entire distance to 0.097), whereas block 35,

with 217 vehicles, hardly shrinks at all (the posterior mean moves only to

0.048 from a data value of 0.041).

• Finally, Fig. 2.8 captures marginal posterior density estimates for a variety

of the unknowns of interest in Table 2.5, including a predictive distribution

for a future observable. Using the method described in Section 2.3, by

adding the line y33.new ∼ dbin( p[ 33 ], n[ 33 ] ) to the WinBUGS

model (as in Fig. 2.6), the MCMC approach correctly calculates the predic-

tive distribution for the number of bicycles in a future sample of n33 = 16

vehicles from a location like city block 33 as a mixture of binomial distribu-

tions, with the posterior distribution for p33 providing the mixing weights.

Some of the marginal posteriors in Fig. 2.8 are approximately Gaussian

(the plots for µ and αRT1 on the left) and some are skewed (the density

traces for σe, p33, and route.effect); some are discrete (the predictive

for ynew
33 ) and some are continuous; and all are correct up to a small (and
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controllable) amount of Monte Carlo noise. Asymptotic posterior calcula-

tions, of the type on which Bayesian multilevel analyses were necessarily

based until the mid-1990s, would provide poor approximations to the right

answers here. In the last several years MCMC has clearly opened a new

door, and the many Bayesian multilevel modeling applications that are

now within easy reach are just the beginning.

Acknowledgement I’m grateful to Bill Browne for specific helpful comments on

this chapter and for a long, productive, and enjoyable collaboration, without which

a good bit of the work described here would not have been possible.
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3.1 Specification of the Two-Level Model

This chapter focuses on diagnostics for the two-level Hierarchical Linear Model

(HLM). This model, as defined in Chapter 1, is given by

y
j

= Xjβ +Zjδj + ǫj , j = 1, . . . ,m, (3.1a)

with (
ǫj
δj

)
∼ N

((
∅

∅

)
,

(
Σj(θ) ∅

∅ Ω(ξ)

))
(3.1b)

and

(ǫj , δj) ⊥ (ǫℓ, δℓ) (3.1c)

for all j 6= ℓ. The lengths of the vectors yj , β, and δj , respectively, are nj , r,

and s. Like in all regression-type models, the explanatory variables X and Z

are regarded as fixed variables, which can also be expressed by saying that the

distributions of the random variables ǫ and δ are conditional on X and Z.

The random variables ǫ and δ are also called the vectors of residuals at levels

1 and 2, respectively. The variables δ are also called random slopes. Level-2

units are also called clusters.

The standard and most frequently used specification of the covariance

matrices is that level-1 residuals are i.i.d., i.e.,

Σj(θ) = σ2Inj
, (3.1d)

where Inj
is the nj-dimensional identity matrix; and that either all elements

of the level-2 covariance matrix Ω are free parameters (so one could identify

Ω with ξ), or some of them are constrained to 0 and the others are free

parameters.
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Questioning this model specification can be aimed at various aspects: the

choice of variables included in X, the choice of variables for Z, the residuals

having expected value 0, the homogeneity of the covariance matrices across

clusters, the specification of the covariance matrices, and the multivariate

normal distributions. Note that in our treatment, the explanatory variablesX

and Z are regarded as being deterministic; the assumption that the expected

values of the residuals (for fixed explanatory variables!) are zero is analogous

to the assumption, in a model with random explanatory variables, that the

residuals are uncorrelated with the explanatory variables.

The various different aspects of the model specification are entwined, how-

ever: Problems with one may be solved by tinkering with one of the other

aspects, and model misspecification in one respect may lead to consequences

in other respects. For example, unrecognized level-1 heteroscedasticity may

lead to fitting a model with a significant random slope variance, which then

disappears if the heteroscedasticity is taken into account; non-linear effects of

some variables in X, when unrecognized, may show up as heteroscedasticity

at level 1 or as a random slope; and non-zero expected residuals sometimes

can be dealt with by transformations of variables in X.

This presentation of diagnostic techniques starts with techniques that can

be represented as model checks remaining within the framework of the HLM.

This is followed by a section on model checking based on various types of

residuals. An important type of misspecification can reside in non-linearity

of the effects of explanatory variables. The last part of the chapter presents

methods to identify such misspecifications and estimate the non-linear rela-

tionships that may obtain.

3.2 Model Checks Within the Framework of the
Hierarchical Linear Model

The HLM is itself already a quite general model, a generalization of the

General Linear Model, the latter often being used as a point of departure

in modeling or conceptualizing effects of explanatory on dependent variables.

Accordingly, checking and improving the specification of a multilevel model

in many cases can be carried out while staying within the framework of the

multilevel model. This holds to a much smaller extent for the General Linear

Model. This section treats some examples of model specification checks that

do not have direct parallels in the General Linear Model.

3.2.1 Heteroscedasticity

The comprehensive nature of most algorithms for estimating the HLM

makes it relatively straightforward to include some possibilities for modeling
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heteroscedasticity, i.e., non-constant variances of the random effects. (This is

sometimes indicated by the term “complex variation”, which however does

not imply any thought of the imaginary number i =
√
−1.)

As an example, the iterated generalized least squares (IGLS) algorithm

implemented in MLwiN [18, 19] accommodates variances depending as linear

or quadratic functions of variables. For level-1 heteroscedasticity, this is carried

out formally by writing

ǫij = vijǫ
0
ij ,

where vij is a 1× t variable and ǫ0ij is a t× 1 random vector with

ǫ0ij ∼ N
(
∅,Σ0(θ)

)
.

This implies

Var(ǫij) = vijΣ
0(θ)v′ij . (3.2)

The standard homoscedastic specification is obtained by letting t = 1 and

vij ≡ 1.

The IGLS algorithm works only with the expected values and covari-

ance matrices of y
j

implied by the model specification; see Goldstein [18,

pp. 49–51]. A sufficient condition for model (3.1a)–(3.1c) to be a meaningful

representation is that (3.2) is nonnegative for all i, j—clearly less restrictive

than Σ0 being positive definite. Therefore, it is not required that Σ0 be

positive definite, but it is sufficient that (3.2) is positive for all observed vij .

For example, a level-1 variance function depending linearly on v is obtained

by defining

Σ0(θ) =
(
σhk(θ)

)
1≤h,k≤t

,

with

σh1(θ) = σ1h(θ) = θh, h = 1, . . . , t,

σhk(θ) = 0, min{h, k} ≥ 2,

where θ is a t × 1 vector. Quadratic variance functions can be represented

by letting Σ0 be a symmetric matrix, subject only to a positivity restriction

for (3.2).

In exactly the same way, variance functions for the level-2 random effects

depending linearly or quadratically on level-2 variables are obtained by in-

cluding these level-2 variables in the matrix Z. The usual interpretation of a

“random slope” then is lost, although this term continues to be used in this

type of model specification.

Given that among multilevel modelers random slopes tend to be more

popular than heteroscedasticity, unrecognized heteroscedasticity may show

up in the form of a fitted model with a random slope of the same or a corre-

lated variable, which then may disappear if the heteroscedasticity is modeled.
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Therefore, when a researcher is interested in a random slope of some variable

Zk and thinks to have found a significant slope variance, it is advisable to test

for the following two kinds of heteroscedasticity: The level-1 residual variance

may depend (e.g., linearly or quadratically) on the variable Zk, or the level-2

intercept variance may depend on the cluster mean of Zk, i.e., on the variable

defined by

z̄.jk =
1

nj

nj∑

i=1

zijk .

Given that one uses software that can implement models with these types of

heteroscedasticity, this is an easy (and sometimes disconcerting) model check.

Some examples of checking for heteroscedasticity can be found in Goldstein

[18, Chapter 3] and Snijders and Bosker [51, Chapter 8].

3.2.2 Random or Fixed Coefficients

A basic question in applying the HLM is whether a random coefficient model

is appropriate at all for representing the differences between the level-2 units.

In other words, is it appropriate indeed to treat the variables δj in (3.1) as

random variables, or should they rather be treated as fixed parameters δj?

On a conceptual level, this depends on the purpose of the statistical infer-

ence. If the level-2 units j may be regarded as a sample from some population

(which in some cases will be hypothetical or hard to circumscribe, but nev-

ertheless conceptually meaningful) and the statistical inference is directed at

this population, then a random coefficient model is in principle appropriate;

cf. Hsiao [30]. This is the case, e.g., when one wishes to test the effect of

an explanatory variable that is defined at level 2, i.e., it is a function of the

level-2 units only. Then testing this variable has to be based on some way of

comparing the variation accounted for by this variable to the total residual

variation between level-2 units, and it is hard to see how this could be done

meaningfully without assuming that the level-2 units are a sample from a

population.

If, on the other hand, the statistical inference aims only at the particular

set of units j included in the data set at hand, then a fixed effects model is

appropriate. Note that in the fixed effects model, the only random effects are

the level-1 residuals ǫj ; under the usual assumption (3.1d) of homoscedasticity,

this model can be analysed by ordinary least squares (OLS) regression, so that

the analysis is very straightforward except perhaps for the large number of

dummy variables. When the cluster sizes are very large, there is hardly a

difference between the fixed effects and the random effects specification for

the estimation of parameters that they have in common.

If the differences between the level-2 units are a nuisance factor rather

than a point of independent interest, so that there is interest only in the
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within-cluster effects, the analysis could in principle be done either way. Then

the fixed effects estimates of the within-cluster regression coefficients, obtain-

able by OLS regression, achieve a better control for unexplained differences

between the level-2 units, because they do not need the assumption that

the explanatory variables X are uncorrelated with the level-2 random effects

δ. More generally, the fixed effects estimates have the attractive robustness

property that they are not influenced at all by the specification of the level-2

model. This can, of course, be generalized to models with more than two

levels. This robustness property is elaborated with a lot of detailed matrix

calculus in Kim and Frees [32].

On a practical level, the choice between random and fixed effects depends

strongly on the tenability of the model assumptions made for the random coef-

ficients and the properties of the statistical procedures available under the two

approaches. Such practical considerations will be especially important if the

differences between level-2 units are a nuisance factor only. The assumptions in

model (3.1) for the random effects δj are their zero expectations, homogeneous

variances, and normal distributions. The normality of the distributions can

be checked to some extent by plots of residuals (see below). If normality

seems untenable, one could use models with other distributions for the random

effects such as t-distributions (e.g., Seltzer, Wong, and Bryk [48]) or mixtures

of normal distributions (the heterogeneity model of Verbeke and Lesaffre [54];

also see Verbeke and Molenberghs [55]). Homogeneity of the variances is very

close to the assumption that the level-2 units are indeed a random sample

from a population; in the preceding section, it was discussed how to model

variances depending on level-2 variables, which can occur, e.g., if the level-2

units are a sample from a stratified population and the variances depend on

the stratum-defining variables.

To understand the requirement that the expected values of the level-2

residuals are zero, we first focus on the simplest case of a random intercept

model, where Zj contains only the constant vector with all its nj entries

equal to 1, expressed as Zj = 1nj
. Subsequently, we will give a more formal

treatment of a more general case.

The level-2 random effects δj consist of only one variable, the random

intercept δj . Suppose that the expected value of δj is given by

E δj = z2jγ,

for 1× u vectors z2j and a regression coefficient γ. Accordingly, δj is written

as δj = z2jγ + δ̃j . Note that a term in 1nj
E δj that is a linear combination

of Xj will be absorbed into the model term Xjβ, so this misspecification is

nontrivial only if 1nj
z2j cannot be written as a linear combination XjA for

some weight matrix A independent of j.

The question now is in the first place, how the parameter estimates are

affected by the incorrectness of the assumption that δj has a zero expected
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value, corresponding to the omission of the term z2jγ from the model equa-

tion.

It is useful to split the variable Xj into its cluster mean X̄j and the

within-cluster deviation variable X̃j = Xj − X̄j :

Xj = X̄j + X̃j ,

where

X̄j = 1nj
(1′
nj

1nj
)−11′

nj
Xj .

Then the data-generating model can be written as

y
j

= X̄jβ + X̃jβ + 1nj
z2jγ + 1nj

δ̃j + ǫj ,

for random effects δ̃j that do satisfy the condition that they have zero expected

values.

A bias in the estimation of β will be caused by lack of orthogonality of

the matrices Xj = X̄j + X̃j and 1nj
z2j . Since the definition of X̃j implies

that X̃j is orthogonal to 1nj
z2j , it is clear that X̄j is the villain of the piece:

Analogous to the situation of a misspecified General Linear Model, there will

be a bias if the cluster mean of X is non-zero, X̄ ′
j1nj

6= ∅. If it is non-zero,

there is an obvious solution: extend the fixed part by giving separate fixed

parameters β1 to the cluster means X̄ and β2 to the deviation variables X̃,

so that the working model reads

y
j

= X̄jβ1 + X̃jβ2 + 1nj
δj + ǫj ,

(taking out the zero columns from X̄j and X̃j , which are generated by columns

in Xj which themselves are within-cluster deviation variables or level-2 vari-

ables, respectively). An equivalent working model is obtained by adding to

(3.1) the fixed effects of the non-constant cluster means X̄j . In this way, the

bias in the fixed effect estimates due to ignoring the term z2jγ is absorbed

completely by the parameter estimate for β1, and this misspecification does

not affect the unbiasedness of the estimate for β2. The estimate for the level-2

variance Var(δj) will be affected, which is inescapable if there is no knowledge

about z2j , but the estimate for the level-1 variance σ2 will be consistent.

In the practice of multilevel analysis, it is known that the cluster means

often have a substantively meaningful interpretation, different from the level-1

variables from which they are calculated (cf. the discussion in Sections 3.6

and 4.5 of Snijders and Bosker [51] about within- and between-group regres-

sions). This often leads to a substance-matter-related rationale for including

the cluster means among the variables with fixed effects.



3 Diagnostic Checks for Multilevel Models 147

It can be concluded that in a two-level random intercept model, the sen-

sitive part of the assumption that the level-2 random effects have a zero

expected value is the orthogonality of these expected values to the cluster

means of the variables X with fixed effects. This orthogonality can be tested

simply by testing the effects of these cluster means included as additional

variables in the fixed part of the model. This can be interpreted as testing the

equality between the within-cluster regression coefficient and the between-

cluster coefficient. This test—or at least a test with the same purpose—is

often referred to as the Hausman test. (Hausman [26] proposed a general

procedure for tests of model specification, of which the test for equality of the

within-cluster and between-cluster coefficients is an important special case.

Also see Baltagi [3], who shows on p. 69 that this case of the Hausman test is

equivalent to testing the effect of the cluster means X̄.)

In econometrics, the Hausman test for the difference between the within-

cluster and between-cluster regression coefficients is often seen as a test for

deciding whether to use a random or fixed coefficient model for the level-

2 residuals δj . The preceding discussion shows that this is slightly beside

the point. If there is a difference between the within-cluster and between-

cluster regression coefficients, which is what this Hausman test intends to

detect, then unbiased estimates for the fixed within-cluster effects can be

obtained also with random coefficient models, provided that the cluster means

of the explanatory variables are included among the fixed effect variables X.

Including the cluster means will lead to an increase of the number of fixed

effects by at most r, which normally is much less than the m−1 fixed effects

required for including fixed main effects of the clusters. Whether or not to

use a random coefficient model depends on other considerations, as discussed

earlier in this section. Fielding [16] gives an extensive discussion of this issue

and warns against the oversimplification of using this Hausman test without

further thought to decide between random effects and fixed effects models.

Now consider the general case that Z has some arbitrary positive di-

mension s. Let the expected value of the level-2 random effects δj in the

data-generating model be given by

E δj = Z2jγ,

instead of the assumed value of ∅. It may be assumed that ZjZ2j cannot

be expressed as a linear combination XjA for some matrix A independent

of j, because otherwise the contribution caused by E δj could be absorbed

into Xjβ.

Both Xj and yj are split in two terms, the within-cluster projections ~Xj

and ~yj on the linear space spanned by the variables Zj ,

~Xj = Zj(Z
′
jZj)

−1Z ′
jXj and ~yj = Zj(Z

′
jZj)

−1Z ′
jyj ,
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and the difference variables

X̃j = Xj − ~Xj and ỹj = yj − ~yj .

The projection ~Xj can be regarded as the prediction of Xj , produced by the

ordinary least squares (OLS) regression of Xj on Zj for cluster j separately,

and the same for ~yj . The data-generating model now is written as

y
j

= Xjβ +ZjZ2jγ +Zj δ̃j + ǫj ,

where, again, the δ̃j do have zero expected values.

The distribution of y
j

is the multivariate normal

y
j
∼ N (Xjβ +ZjZ2jγ,Vj),

where

Vj = σ2Inj
+ZjΩ(ξ)Z ′

j . (3.3)

Hence, the log-likelihood function of the data-generating model is given by

− 1
2

∑

j

(
log det(Vj) + (yj −Xjβ −ZjZ2jγ)′V −1

j (yj −Xjβ −ZjZ2jγ)
)
.

The inverse of Vj can be written as [41, 44]

V −1
j = σ−2Inj

−ZjAjZ
′
j , (3.4)

for a matrix

Aj = σ−2(Z ′
jZj)

−1 − (Z ′
jZj)

−1
(
σ2(Z ′

jZj)
−1 +Ω(ξ)

)−1
(Z ′

jZj)
−1.

This implies that

(yj −Xjβ −ZjZ2jγ)′V −1
j (yj −Xjβ −ZjZ2jγ)

=
(
~yj − ~Xjβ −ZjZ2jγ

)′
V −1
j

(
~yj − ~Xjβ −ZjZ2jγ

)

+ σ−2‖ỹj − X̃jβ‖2,

where ‖ · ‖ denotes the usual Euclidean norm. The log-likelihood is

− 1
2

∑

j

(
log det(Vj)

+
(
~yj − ~Xjβ −ZjZ2jγ

)′
V −1
j

(
~yj − ~Xjβ −ZjZ2jγ

)

+ σ−2‖ỹj − X̃jβ‖2
)
. (3.5)

This shows that the omission from the model of ZjZ2jγ will affect the esti-

mates only through the term ~Xjβ. If now separate fixed parameters are given

to ~X and X̃ so that the working model is
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y
j

= ~Xjβ1 + X̃jβ2 +Zjδj + ǫj ,

the bias due to neglecting the term Z2jγ in the expected value of δj will be

absorbed into the estimate of β1, and β2 will be an unbiased estimate for

the fixed effect of X. The log-likelihood (3.5) shows that the ML and REML

estimates of β2 are equal to the OLS estimate based on the deviation variables
~yj , and also equal to the OLS estimate in the model obtained by replacing

the random effects δj by fixed effects.

This discussion shows that in the general case, if one is uncertain about

the validity of the condition that the level-2 random effects have zero expected

values, and one wishes to retain a random effects model rather than work with

a model with a large number (viz. ms) of fixed effects, it is advisable to add

to the model the fixed effects of the variables

~Xj = Zj(Z
′
jZj)

−1Z ′
jXj , (3.6)

i.e., the predictions of the variables in X by within-cluster OLS regression of

Xj on Zj . The model term Zj E δj will be entirely absorbed into the fixed

effects of ~Xj , and the estimates of β2 will be unbiased for the corresponding

elements of β in (3.1). Depending on the substantive context, there may well

be a meaningful interpretation of the constructed level-2 variables (3.6).

3.3 Residuals

Like in other regression-type models, residuals (this term is now also used to

refer to estimates of the residuals ǫ and δ in (3.1)) play an important ex-

ploratory role for model checking in multilevel models. For each level, there is

a set of residuals and a residual analysis can be executed. One of the practical

questions is whether residual checking should be carried out upward—starting

with level 1, then continuing with level 2, etc.—or downward—starting from

the highest level and continuing with each subsequent lower level. The litera-

ture contains different kinds of advice. For example, Raudenbush and Bryk [45]

suggest an upward approach for model construction, whereas Langford and

Lewis [35] propose a downward approach for the purpose of outlier inspection.

In our view, the argument given by Hilden-Minton [27] is convincing: Level-1

residuals can be studied unconfounded by the higher-level residuals, but the

reverse is impossible. Therefore, the upward approach is preferable for the

careful checking of model assumptions. However, if one wishes to carry out a

quick check for outliers, a downward approach may be very efficient.

This section first treats the “internal” standardization of the residuals.

Externally standardized residuals, also called deletion residuals, are treated

in Section 3.3.5.



150 T. A. B. Snijders, J. Berkhof

3.3.1 Level-1 Residuals

In this section we assume that level-1 residuals are i.i.d. Residuals at level 1

that are unconfounded by the higher-level residuals can be obtained, as re-

marked by Hilden-Minton [27], as the OLS residuals calculated separately

within each level-2 cluster. These are just the same as the estimated residuals

in the OLS analysis of the fixed effects model, where all level-2 (or higher-

level, if there are any higher levels) residuals are treated as fixed rather than

random. These will be called here the OLS within-cluster residuals. Consider

again model (3.1) with the further specification (3.1d). When X̌j is the matrix

containing all non-redundant columns in (Xj Zj) and Pj is the corresponding

projection matrix (the “hat matrix”)

Pj = X̌j

(
X̌ ′
jX̌j

)−1
X̌ ′
j ,

the OLS within-cluster residuals are given by

ǫ̂j =
(
Inj
− Pj

)
y
j
.

The model definition implies that

ǫ̂j =
(
Inj
− Pj

)
ǫj , (3.7)

which shows that indeed these residuals depend only on the level-1 residuals

ǫj without confounding by the level-2 residuals δj .

These level-1 residuals can be used for two main purposes. In the first

place, for investigating the specification of the within-cluster model, i.e., the

choice of the explanatory variables contained in X and Z. Linearity of the

dependence on these variables can be checked by plotting the residuals ǫ̂j
against the variables in X and Z. The presence of outliers and potential

effects of omitted but available variables can be studied analogously.

In the second place, the homoscedasticity assumption (3.1d) can be

checked. Equation (3.7) implies that, if the model assumptions are correct,

ǫ̂ij ∼ N
(
0, σ2(1− hij)

)
, (3.8)

where hij is the i-th diagonal element of the hat matrix Pj . This implies that

the “semi-standardized residuals”

ǫ̌ij =
ǫ̂ij√

1− hij
,

have a normal distribution with mean 0 and variance σ2. For checking ho-

moscedasticity, the squared semi-standardized residuals can be plotted against

explanatory variables or in a meaningful order. This is informative only under
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the assumption that the expected value of the residuals is indeed 0. Therefore,

these heteroscedasticity checks should be performed only after having ascer-

tained the linear dependence of the fixed part on the explanatory variables.

To check linearity and homoscedasticity as a function of explanatory vari-

ables, if the plot of the residuals just shows a seemingly chaotic mass of scatter,

it often is helpful to smooth the plots of residuals against explanatory vari-

ables, e.g., by moving averages or by spline smoothers. We find it particularly

helpful to use smoothing splines [cf. 21], choosing the smoothing parameter

so as to minimize the cross-validatory estimated prediction error.

If there is evidence of inhomogeneity of level-1 variances, the level-1 model

is in doubt and attempts to improve it are in order. The analysis of level-1

residuals might suggest non-linear transformations of the explanatory vari-

ables, as discussed in the second half of this chapter, or a heteroscedastic

level-1 model. Another possibility is to apply a non-linear transformation

to the dependent variable. Atkinson [2] has an illuminating discussion of

non-linear transformations of the dependent variable in single-level regression

models. Hodges [28, p. 506] discusses Box-Cox transformations for multilevel

models.

As an example, consider the data set provided with the MLwiN software

[19] in the worksheet tutorial.ws. This includes data for 4059 students in 65

schools; we use the normalized exam score (normexam) (mean 0, variance 1) as

the dependent variable and only the standardized reading test (standlrt) as

an explanatory variable. The two mentioned uses of the OLS level-1 residuals

will be illustrated.

When the OLS within-cluster residuals are plotted against the explanatory

variable standlrt, an unilluminating cloud of points is produced. Therefore,

only the smoothed residuals are plotted in Fig. 3.1.

This figure shows a smooth curve suggestive of a cubic polynomial. The

shape of the curve suggests including the square and cube of standlrt as

extra explanatory variables. The resulting model estimates are presented as

Model 2 in Table 3.1. Indeed, the model improvement is significant (χ2 = 11.0,

d.f. = 2, p < .005).

As a check of the level-1 homoscedasticity, the semi-standardized residuals

(3.8) are calculated for Model 2. The smoothed squared semi-standardized

residuals are plotted against standlrt in Fig. 3.2.

This figure suggests that the level-1 variance decreases linearly with the

explanatory variable. A model with this specification (cf. Section 3.2.1),

Var(ǫij) = σ2 + θ2 standlrtij ,

is presented as Model 3 in Table 3.1. The heteroscedasticity is a significant

model improvement (χ2 = 4.8, d.f. = 1, p < .05).
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ǫ̂

standlrt

−0.20

0.00

0.20

−2.50 0.00 2.50

Fig. 3.1 Smoothing spline approximation for OLS within-cluster residuals (ǫ̂) under

Model 1 against standardized reading test (standlrt).

3.3.2 Homogeneity of Variance Across Clusters

The OLS within-cluster residuals can also be used in a test of the assumption

that the level-1 variance is the same in all level-2 units against the specific

alternative hypothesis that the level-1 variance varies across the level-2 units.

Formally, this means that the null hypothesis (3.1d) is tested against the

alternative

Σj(θ) = σ2
j Inj

,

where the σ2
j are unspecified and not identical.

Table 3.1 Parameter estimates for models fitted to normalized exam scores.

Model 1 Model 2 Model 3

Fixed part

Constant term 0.002 (0.040) −0.017 (0.041) −0.017 (0.041)

standlrt 0.563 (0.012) 0.604 (0.021) 0.605 (0.021)

standlrt2 0.017 (0.009) 0.017 (0.008)

standlrt3 −0.013 (0.005) −0.013 (0.005)

Random part

Level 2: ω11 0.092 (0.018) 0.093 (0.018) 0.095 (0.019)

Level 1: σ2 0.566 (0.013) 0.564 (0.013) 0.564 (0.013)

Level 1: θ2 −0.007 (0.003)

Deviance 9357.2 9346.2 9341.4
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ǫ̌2

standlrt

0.45

0.55

0.65

−2.50 0.00 2.50

Fig. 3.2 Smoothing spline approximation for the squared semi-standardized OLS

within-cluster residuals (ǫ̌2) under Model 2 against the standardized reading test

(standlrt).

Indicating the rank of X̌j defined in Section 3.3.1 by rj , the within-cluster

residual variance is

s2j =
1

nj − rj
ǫ̂′j ǫ̂j .

If model (3.1d) is correct, (nj − rj)s2j/σ2 has a chi-squared distribution with

(nj−rj) degrees of freedom. The homogeneity test of Bartlett and Kendall [4]

can be applied here (it is also proposed in Raudenbush and Bryk [45, p. 264]

and Snijders and Bosker [51, p. 127]). Denoting
∑
nj = n+,

∑
rj = r+ and

lspooled =
1

n+ − r+
∑

j

(nj − rj) log(s2j ), (3.9)

the test statistic is given by

H =
∑

j

nj − rj
2

(
log(s2j )− lspooled

)2
. (3.10)

Under the null hypothesis, this statistic has approximately a chi-squared dis-

tribution with m̃ − 1 degrees of freedom, where m̃ is the number of clusters

included in the summation (this could be less than m because some small

clusters might be skipped).

This chi-squared approximation is valid if the degrees of freedom nj − rj
are large enough. If this approximation is in doubt, a Monte Carlo test can be



154 T. A. B. Snijders, J. Berkhof

used. This test is based on the property that, under the null hypothesis, (nj−
rj)s

2
j/σ

2 has an exact chi-squared distribution, and the unknown parameter

σ2 does not affect the distribution of H because its contribution in (3.10)

cancels out. This implies that under the null hypothesis the distribution of H

does not depend on any unknown parameters, and a random sample from its

distribution can be generated by randomly drawing random variables c2j from

chi-squared distributions with (nj − rj) d.f. and applying formulae (3.9) and

(3.10) to s2j = c2j/(nj − rj). By simulating a sufficiently large sample from the

null distribution of H, the p-value of an observed value can be approximated

to any desired precision.

3.3.3 Level-2 Residuals

There are two main ways for predicting1 the level-2 residuals δj : the OLS

method (based on treating them as fixed effects δj) and the empirical Bayes

(EB) method. The empirical Bayes “estimate” of δj can be defined as its

conditional expected value given the observations y
1
, . . . ,y

m
, plugging in the

parameter estimates for β, θ, and ξ. (In the name, “Bayes” refers to the

conditional expectation and “empirical” to plugging in the estimates.)

The advantage of the EB method is that it is more precise, but the dis-

advantage is its stronger dependence on the model assumptions. The two

approaches were compared by Waternaux et al. [59] and Hilden-Minton [27].

Their conclusion was that, provided the level-1 model (i.e., the assumptions

about the level-1 predictors included in X and about the level-1 residuals ǫj)

is adequate, it is advisable to use the EB estimates.

Basic properties of the multivariate normal distribution imply that the EB

level-2 residuals are given by

δ̂j = E
{
δj | y1

, . . . ,y
m

}
(using parameter estimates β̂, θ̂, ξ̂)

= Ω̂Z ′
jV̂

−1
j (y

j
−Xjβ̂)

= Ω̂Z ′
jV̂

−1
j

(
Zjδj + ǫj −Xj(β̂ − β)

)
,

where

Vj = Cov(y
j
) = ZjΩZ

′
j +Σj , (3.11a)

V̂ j = ZjΩ̂Z
′
j + Σ̂j , (3.11b)

1 Traditional statistical terminology is to reserve the word “estimation” for em-

pirical ways to obtain reasonable values for parameters, and use “prediction”

for ways to empirically approximate unobserved outcomes of random variables.

We will not consistently respect this terminology, since almost everybody writes

about estimation of residuals.
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with Ω̂ = Ω(ξ̂) and Σ̂j = Σj(θ̂).

Some more insight into the properties of these estimated residuals may be

obtained by defining the estimated reliability matrix

R̂j = Ω̂Z ′
jV̂

−1
j Zj .

This matrix is the multivariate generalization of the reliability of estimation

of δjq, the ratio of the true variance of δjq to the variance of its OLS estimator

based on cluster j (not taking into account the component of variability due

to the estimation of β), as defined by Raudenbush and Bryk [45, p. 49].

The EB residuals can be expressed as

δ̂j = R̂jδj + Ω̂Z ′
jV̂

−1
j ǫj − Ω̂Z ′

jV̂
−1
j Xj(β̂ − β). (3.12)

The first term can be regarded as a shrinkage transform of δj , the second

term is the confounding due to the level-1 residuals ǫj , and the third term is

the contribution due to the estimation of the fixed parameters β.

Ignoring the contribution to the variances and covariances due to the

estimation of ξ and θ, the covariance matrix of the EB residuals is

Cov
(
δ̂j
)

= ΩZ ′
jV

−1
j

(
Vj −Xj

( m∑

ℓ=1

X ′
ℓV

−1
ℓ Xℓ

)−1

X ′
j

)
V −1
j ZjΩ. (3.13)

The second term in the large parentheses is due to the third term in (3.12) and

will be negligible if the number m of clusters is large. The resulting simpler

expression is

Cov
(
δ̂j
)
≈ ΩZ ′

jV
−1
j ZjΩ. (3.14)

Another relevant covariance matrix contains the variances and covariances of

the prediction errors. The same approximation leading to (3.14) yields

Cov
(
δ̂j − δj

)
≈ Ω −ΩZ ′

jV
−1
j ZjΩ. (3.15)

If all nj become very large, (3.15) tends to ∅. Expression (3.14) is the asymp-

totic covariance matrix for fixed nj , which tends to Ω if nj tends to infinity.

The variances in (3.13) and (3.14) are relevant for diagnosing properties of

the residuals δj and are called diagnostic variances by Goldstein [18]. The

variances in (3.15) are relevant for comparing residuals δj and are called

comparative (or conditional) variances.

It may be noted that the predictions δ̂j are necessarily uncorrelated with

the errors (δ̂j − δj), because otherwise a better prediction could be made.

This implies

Cov
(
δj
)

= Cov
(
δj − δ̂j

)
+ Cov

(
δ̂j
)
,

which indeed is evident from the formulae.
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For each of the s level-2 random effects separately, various diagnostic plots

can be made. The explanation of the level-2 random effects by level-2 variables,

as reflected by the fixed main effects of level-2 variables and their cross-level

interaction effects with the variables contained in Z, can be diagnosed for

linearity by plots of the raw residuals δ̂j against the level-2 explanatory vari-

ables. The normality and homoscedasticity assumptions for δj can be checked

by normal probability plots for the s residuals separately, standardized by

dividing them by the diagnostic standard deviations obtained as the square

roots of the diagonal elements of (3.13) or (3.14), and by plotting the squares

of these standardized residuals against the level-2 variables. Such plots were

proposed and discussed by Lange and Ryan [34]. Examples of these plots are

given in Goldstein [18], Snijders and Bosker [51], and Lewis and Langford [37].

Eberly and Thackeray [13] showed that it is very well possible that when

such a plot shows deviations from normality, the cause is a misspecification of

the fixed effects model rather than of the distribution of the random effects.

This is in accordance with the general caveat that different aspects of the

specification of statistical models are entwined, and the particular importance

of this issue for assessing fit of multilevel models. It also supports the principle

to first try achieve a good specification of the level-1 model, and assess the

level-2 specification only after this has been done.

A diagnostic for the entire vector of level-2 residuals for cluster j can be

based on the standardized value

δ̂′j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.16)

If one neglects the fact that the estimated rather than the true covariance

matrix is used, this statistic has a chi-squared distribution with s degrees of

freedom.

With some calculations, using formula (3.4) and the approximate covari-

ance matrix (3.14), the standardized value (3.16) is seen to be given by

δ̂′j

{
Ĉov(δ̂j)

}−1

δ̂j ≈ δ̂(OLS)′
j

(
σ̂2(Z ′

jZj)
−1 + Ω̂

)−1

δ̂(OLS)

j , (3.17)

where

δ̂(OLS)

j = (Z ′
jZj)

−1Z ′
j(yj −Xjβ̂j)

is the OLS estimate of δj , estimated from the OLS within-cluster residuals

y
j
−Xjβ̂j . This illustrates that the standardized value can be based on the

OLS residuals as well as the EB residuals, if one uses for standardization the

covariance matrix σ̂2(Z ′
jZj)

−1 + Ω̂, of which the first part is the sampling

variance (level-1 variance) and the second part the true variance (level-2 vari-

ance) of the OLS residuals. The name standardized level-2 residual is therefore

more appropriate for (3.17) than the name standardized EB or OLS residual,

since the latter terminology suggests a non-existing distinction.
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The ordered standardized level-2 residuals can be plotted against the cor-

responding quantiles of the chi-squared distribution with s d.f., as a check for

outliers and for the multivariate normality of the level-2 random effects.

3.3.4 Multivariate Residuals

The fit of the model for level-2 cluster j is expressed by the multivariate

residual

y
j
−Xjβ̂ . (3.18)

The covariance matrix of this residual, if we neglect the use of the estimated

parameter β̂ instead of the unknown true β, is given by Vj in (3.11a). Ac-

cordingly, the standardized multivariate residual is defined by

M2
j = (y

j
−Xjβ̂)′V̂ −1

j (y
j
−Xjβ̂).

This residual has, when the model is correct, approximately a chi-squared

distribution with nj degrees of freedom.

If all variables with fixed effects also have random effects, thenXj = Zj =

X̌j as defined in Section 3.3.1, and rj = r = s. Using (3.4), it can be proved

that in this case

M2
j = (nj − r)

s2j

σ̂2 + δ̂′j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.19)

In words, the standardized multivariate residual (with nj d.f.) is the sum of

the scaled within-cluster residual sum of squares (with nj − r d.f.) and the

standardized level-2 residual (with r = s d.f.). If some of the variables with

fixed effects do not have a random effect, then the difference between the

left-hand side and the right-hand side of (3.19) is a test statistic for the null

hypothesis that the variables in Xj indeed have the effect expressed by the

overall parameter estimate β̂, i.e., the hypothesis that the variables in X and

not in Z have only fixed (and not random) effects. This then approximately

is a chi-squared variate with rj − s d.f.

This split implies that if the standardized multivariate residual for some

cluster j is unexpectedly large, it will be informative to consider its two (or

three) components and investigate whether the high value can be traced to

one of these components separately.

3.3.5 Deletion Residuals

To assess the fit of the model and the possibility of outliers, it is better to

calculate and standardize residuals for cluster j using parameter estimates of

β and Vj calculated on the basis of the data set from which cluster j has
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been omitted. Such measures are called externally studentized residuals [11]

or deletion residuals [2]. This means using the fixed parameter estimate β̂(-j)
obtained by estimating β from the data set from which cluster j has been

omitted and estimating (3.11a) by

V̂ (-j) = ZjΩ̂(-j)Z
′
j + Σ̂(-j), (3.20)

where Ω̂(-j) = Ω(ξ̂(-j)) and Σ̂(-j) = Σj(θ̂(-j)), while ξ̂(-j) and θ̂(-j) are the

estimates of ξ and θ based on the data set from which cluster j has been

omitted.

Using these ingredients, the deletion standardized multivariate residual is

defined by

M2
(-j) =

(
y
j
−Xjβ̂(-j)

)′
V̂ −1

(-j)

(
y
j
−Xjβ̂(-j)

)
. (3.21)

The deletion standardized level-2 residual (for a model where Σj(θ) = σ2Inj
)

is defined by

δ̂(OLS)′
(-j)

(
σ̂2

(-j)(Z
′
jZj)

−1 + Ω̂(-j)

)−1

δ̂(OLS)

(-j) , (3.22)

where

δ̂(OLS)

(-j) = (Z ′
jZj)

−1Z ′
j

(
y
j
−Xjβ̂(-j)

)

and σ̂2
(-j) is the estimate for σ2 calculated from the data set from which cluster

j was omitted.

The general idea of model diagnostics is that they should be easy, or at

least quick, to compute. Elegant computational formulae have been derived

for deletion residuals in the General Linear Model (see Atkinson [2]), and

recently by Zewotir and Galpin [63] and Haslett and Dillane [23] also for

random coefficient models with uncorrelated random coefficients. This yields

the possibility of quick calculations of level-2 deletion residuals. In the HLM,

the assumption of uncorrelated higher-level residuals is trivially satisfied for

the random intercept model where δj is a column vector, but not if there

are random slopes. Therefore, these formulae are not generally applicable for

random slope models.

Re-estimation of a multilevel model for a lot of different data sets, as

implied by the definition of deletion residuals, is not very attractive from the

point of view of quick computations. Two alternatives to full computation

have been proposed in the literature: Lesaffre and Verbeke [36] proposed

influence statistics using an analytic approximation based on second-order

Taylor expansions, and Snijders and Bosker [51] proposed a computational

approximation based on a one-step estimator. The latter approximation will

be followed here because of its simple generalizability to other situations. This

approximation is defined as follows.
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An iterative estimation algorithm is used, viz. Fisher scoring or (R)IGLS.

The initial value for the estimation algorithm is the estimate obtained from

the full data set. The one-step estimate is the result of a single step of the

algorithm, using the data set reduced by omitting all data for cluster j. It is

known from general statistical theory that such one-step estimates are asymp-

totically efficient. They can be quickly estimated by software that implements

Fisher scoring or (R)IGLS. Therefore, all estimates denoted here with the

suffix (-j) can be implemented as such one-step estimates obtained with the

full-data estimate as the initial value.

3.4 Influence Diagnostics of Higher-Level Units

Next to the direct study of residuals as proposed in the previous section,

another approach to model checking is to investigate the influence of individual

data points, or sets of data points, on the parameter estimates. In OLS regres-

sion, the most widely known technique in this approach is Cook’s distance,

explained, e.g., in Cook and Weisberg [11], Atkinson [2], and Weisberg [60]. A

natural way of performing such checks in multilevel models is to investigate

the separate influence of each higher-level unit. This means that the estimates

obtained from the total data set are compared to the estimates obtained from

the data set from which a particular higher-level unit is omitted.

An influence measure of level-2 unit j on the estimation of the parameters

should reflect the importance of the influence of the data for this unit on

the parameter estimates. First, consider the regression coefficients β. Recall

that β̂ is the estimate obtained from the full data set, and β̂(-j) the estimate

obtained from the data set from which unit j has been omitted, or an approx-

imation to this estimate. The difference between these two estimates should

be standardized on the basis of the inherent imprecision expressed by the

covariance matrix of these estimates. In Lesaffre and Verbeke [36] and Snijders

and Bosker [51] it was proposed to use the estimated covariance matrix of the

estimators obtained from the full data set. Since the diagnostic measure has

the aim to detect unduly influential units, it should be taken into account,

however, that the unit under scrutiny also might have an undue influence on

this estimated covariance matrix. Therefore, it is more appropriate to use the

estimated covariance matrix of the estimator obtained from the reduced data

set. It may be noted that the computation of this matrix is straightforward

in the computational approach of Snijders and Bosker [51], but does not fit

well in the analytic approach of Lesaffre and Verbeke [36].

Denote by ŜF (-j) the estimated covariance matrix of β̂(-j) as calculated

from the data set from which level-2 unit j has been omitted. Then a stan-

dardized measure of the influence of this unit on the fixed parameter estimates

is
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CFj =
1

r

(
β̂ − β̂(-j)

)′
Ŝ

−1

F (-j)

(
β̂ − β̂(-j)

)
. (3.23)

This formula is analogous to Cook’s distance for the General Linear Model.

For the parameters θ and ξ of the random part of the model, the same

procedure can be followed. Indicating these parameters jointly by η = (θ, ξ),

this leads to the influence measure

CRj =
1

p

(
η̂ − η̂(-j)

)′
Ŝ

−1

R(-j)
(
η̂ − η̂(-j)

)
, (3.24)

where the analogous definitions are used for η̂(-j) and ŜR(-j), and p is the total

number of parameters in η. Since the parameters of the fixed and random

parts are asymptotically uncorrelated [40], these two influence measures can

be combined in the overall influence measure

Cj =
1

r + p

(
rCFj + pCRj

)
. (3.25)

Comparisons with alternative definitions for diagnostics of the type of Cook’s

distance are given in Verbeke and Molenberghs [55] and Skrondal and Rabe-

Hesketh [49].

The influence of a part of the data set on the parameter estimates depends

on the fit of the model to this part of the data together with the leverage of

this part, i.e., its potential to influence the parameters as determined from the

amount of data and the distribution of the explanatory variables X and Z.

For a level-2 unit, its size nj and the distribution of Xj and Zj determine the

leverage. The fit can be measured by the deletion standardized multivariate

residual (3.21). A poorly fitting cluster with small leverage will not do much

damage to the results of the data analysis. If the model fits well, while there

are no systematic differences between the clusters in the distribution of Xj

and Zj , and the nj are small compared to
∑
j nj , the diagnostics (3.23)–(3.25)

will have expected values that are roughly proportional to the cluster sizes nj .

A plot of these diagnostics against nj may draw the attention toward clusters

that have an undue influence on the parameter estimates. This information

can be combined with the p-values for the deletion standardized multivariate

residuals (3.21) obtained from the chi-squared distribution with nj degrees

of freedom, which give information on the fit of the clusters independently of

their leverage.

3.5 Simulation-Based Assessment of Model Specification

It was shown above that the specification of the level-1 model can be inves-

tigated by considering within-cluster relations between variables or, equiv-

alently, by fixed effect models. These are analyses that effectively reduce
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the HLM to the General Linear Model, for which distributional properties

of many statistics have been derived. These properties can be found in the

ample literature of model diagnostics in such models. Properties of higher-level

diagnostics cannot be derived by going back to the General Linear Model, and

tend to be approximate or unknown. Longford [42] elaborates how simulations

can be used to assess p-values of arbitrary statistics based, e.g., on residuals

or influence measures. This is done by repeatedly simulating the data under

the tested model assumptions and considering the resulting distribution of the

statistic under consideration; such a procedure is also called the parametric

bootstrap, cf. Van der Leeden et al. [53].

Among such simulation-based procedures, the Monte Carlo test proposed

at the end of Section 3.3.2 illustrates the relative simplicity of checking the

level-1 model by the fact that the distribution of the statistic considered is

independent of any unknown parameters (it is said to be pivotal), contrasting

to the general case for higher-level diagnostics.

3.6 Non-linear Transformations in the Fixed Part

One of the purposes for which one can use the residuals discussed in the

preceding sections is to give guidance of an informal kind when investigating

possible non-linear effects of explanatory variables. The remainder of this

chapter presents methods to examine non-linear fixed effects of explanatory

variables by incorporating them formally into the model.

We consider multilevel models for analyzing the effect of a predictor x on

a response variable y under the assumption that this effect is a non-linear

function f(x) with an unknown functional form. The latter situation is com-

mon, e.g., when x refers to time in longitudinal studies, since the effect of time

on the response is usually complex and not well understood. Then it seems

sensible to approximate f(x) by a flexible function that requires only minimal

prior knowledge about f(x) and still provides insight into the dependence

between y and x.

In the following sections, we will consecutively discuss multilevel models in

which the non-linear function f(x) is approximated by a polynomial function,

a regression spline, and a smoothing spline. As a guiding model in the discus-

sion, we will use a two-level model for normal responses. Since longitudinal

data offer the main (but not only) applications of this approach, clusters will

be regarded as individual subjects and level-1 units as repeated measurements

of the subjects. We assume that the responses of subject j are generated by

y
j

= f(xj) +X2jβ +Zjδj + ǫj . (3.26)
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The difference with respect to model (3.1) is that the fixed part is split into,

first, a real-valued variable x with a non-linear effect and, second, variables

X2 with linear effects.

3.7 Polynomial Model

The polynomial model for multilevel data was put forward by many authors

including Goldstein [17], Bryk and Raudenbush [8], and Snijders [50]. The use

of a polynomial approximation seems quite natural since it can be regarded as

a Taylor expansion of the true unknown function. The Q-th degree polynomial

equals

fpol(x) = α0 + α1x+ · · ·+ αQx
Q.

The smoothness of fpol(x) is controlled by the degree Q. The function fpol(x)

is a linear combination of polynomial terms x, x2, . . . , xQ and therefore this

model remains within the confines of the Hierarchical Linear Model, and

can be estimated straighforwardly like any other such model. The number

of parameters only depends on the degree Q so that the polynomial model

is easy to estimate also when xj differs among subjects. However, estimation

problems may arise when xj is badly scaled. In that case, a simple solution

that works for many data sets is to subtract the subject mean from xj . A

slightly more elaborate solution is to orthogonalize the polynomial terms using

the Gram-Schmidt method.

An attractive feature of the polynomial model is that the regression coeffi-

cients can be interpreted as growth parameters, which often are of substantive

interest. The effect α1, for instance, can be interpreted as the rate of change in

the response at x = 0, which may be a useful parameter of a growth process.

The function f(x) is not always well approximated by a low-degree poly-

nomial, however. In human growth studies, for example, polynomials may fail

to produce a smooth and accurate fit because of strong growth during the

first year of age and early adolescence [5]. The underlying problem is that a

polynomial exhibits non-local behavior, which means that a change in one of

the regression coefficients αq leads to a change in the estimated fpol(x) for

(nearly) all values of x. A consequence of non-local behavior is that when the

fit at a certain value of x is improved by increasing Q, the fit may become

poorer at other values of x. In general, a polynomial with a high value of Q

tends to fit accurately in intervals of x with many observations, but this may

be achieved at the cost of a poor fit at other values of x.

3.8 Regression Spline Model

A regression spline [61] consists of piecewise polynomials that are joined

at locations on the x-axis named knots. At each knot, two Q-th degree
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polynomials are connected such that the (Q− 1)-st derivative of the resulting

function exists and is itself a continuous function of x. A popular regression

spline in practical data analysis is the cubic or third-degree regression spline,

the second derivative of which is continuous at the knots. Regression splines

are more flexible than polynomials and often provide a better fit in the

presence of strong local non-linearity. However, regression splines are more

difficult to specify than polynomials because the number of knots and the

positions of the knots need to be determined. For selection of the number of

knots, an ad hoc approach can be adopted in which the number of knots

is increased until an accurate fit is obtained. This approach may lead to

overfitting because there is no penalty for model complexity. To limit the

number of knots, a possible approach is to optimize a model summary such

as Akaike’s Information Criterion (AIC) or the cross-validated log-likelihood

[47]. Regarding the positions of the knots on the x-axis, common choices are

equally spaced points or quantile points of the empirical distribution of x.

A Q-th degree regression spline with L knots at a1, . . . , aL can be con-

structed by extending a Q-th degree polynomial with L truncated polynomial

terms (x− al)Q+ (l = 1, . . . , L), where the truncated term (x− al)Q+ is equal to

(x− al)Q if x > al and zero otherwise. The resulting function freg(x) can be

written as

freg(x) =

Q∑

q=0

αqx
q +

L∑

l=1

αQ+l(x− al)Q+ . (3.27)

This representation is easy to understand and the αq’s have a clear interpre-

tation. It shows that the regression spline is a linear function of polynomial

terms and therefore easy to handle, as it remains within a finite-dimensional

linear function space. For numerical reasons, however, the use of truncated

polynomials is not recommendable especially not when the knots are chosen

close together. It often is better to work with a different set of basis functions.

If freg(x) is a cubic regression spline, it is recommendable to write freg(x) as a

linear combination of so-called B-splines, which are a specific set of piecewise

cubic splines. Computation is stable because B-splines take nonzero values

over an interval with at most five knots [12]. If freg(x) contains one knot at

position a only (i.e., L = 1 in (3.27)), a simple method to improve scaling

of the design matrix is to replace the term xq in the truncated polynomial

formulation of freg(x) by the term (x − a)q− which equals (x − a)q if x < a

and 0 otherwise [51, p. 189]. Because the data columns of values of (x− a)q−
and (x− a)q+ are orthogonal, estimation is stable.

The regression spline is more flexible than the polynomial and tends to

exhibit less non-local behavior. The knots are determined outside the model

and good placement on the x-axis may require some trial and error. Further-

more, if only a small number of knots is used, the regression spline will not

be free from non-local behavior, whereas using too many knots is undesirable
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since it induces non-smooth behavior. To prevent the spline from being either

non-smooth or insufficiently flexible, a possible strategy is to include a large

number of knots and at the same time penalize the regression coefficients so

that a smooth fit is obtained [14]. A limiting case is a function in which a

knot is placed at each distinct value of x in the data set. Splines of the latter

type are discussed in the next section.

3.9 Smoothing Spline Model

Suppose that the data set contains T ordered distinct values x1, . . . , xT . The

cubic smoothing spline, denoted by fcss(x), then is a cubic regression spline

with knots at x1, . . . , xT and it is a linear function outside the interval [x1, xT ].

The degree of smoothness is regulated by extending the log-likelihood function

with a roughness penalty that penalizes functions for having strong curvature,

that is, a large absolute second derivative |f ′′css(x)|. The definition of the

roughness penalty is

− 1
2λ

∫ xT+1

x0

{
f ′′(x)

}2
dx, (3.28)

where λ is a nonnegative smoothing parameter determining the degree of

smoothing, and x0 < x1 and xT+1 > xT .

The following basic properties of smoothing splines can be found in the

literature on this topic, such as Green and Silverman [21]. The fitted cubic

smoothing spline is obtained by maximizing the penalized log-likelihood, that

is, the sum of the log-likelihood and the roughness penalty. An additional

constraint to ensure that fcss(x) is a cubic smoothing spline does not have

to be included because among all functions fcss(x) with continuous second

derivatives, the unique minimizer of the penalized log-likelihood is the cubic

smoothing spline. If we substitute the cubic smoothing spline fcss(x) with

knots at x1, . . . , xT in (3.28), we can evaluate the roughness penalty as

− 1
2λf

′
cssKfcss ,

where fcss is the vector of values of fcss(x) at x1, . . . , xT . The T × T matrix

K equals

K = QR−1Q′,

where Q is a T × (T − 2) matrix having entries qi,i = 1/(xi+1 − xi), qi+2,i =

1/(xi+2−xi+1), qi+1,i = −(qi,i+qi+2,i) for i = 1, . . . , T−2, and zero otherwise.

The (T −2)× (T −2) matrix R is symmetric tridiagonal with diagonal entries

ri,i = 1
3 (xi+2 − xi) for i = 1, . . . , T − 2. The non-zero off-diagonal entries are

ri,i+1 = ri+1,i = 1
6 (xi+2 − xi+1) for i = 1, . . . , T − 3.
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3.9.1 Estimation

The model for the responses of subject j is obtained by substituting Njfcss

for f(xj) in (3.26), where Nj is an nj×T matrix of zeros and ones. Each row

of Nj contains a single one at the entry t for which xij = xt. The resulting

equation is

y
j

= Njfcss +X2jβ +Zjδj + ǫj , j = 1, . . . ,m. (3.29)

The model parameters to be estimated are the vector of spline values fcss, the

fixed regression coefficients β, the level-1 variance σ2, and the level-2 variance

parameters ξ. Given σ2 and ξ, the penalized log-likelihood is maximized by

f̂ css =

(
m∑

j=1

N ′
jUX2,jNj + λK

)−1 m∑

j=1

N ′
jUX2,j yj (3.30)

and

β̂ =

(
m∑

j=1

X ′
2jUN,jX2,j

)−1 m∑

j=1

X ′
2jUN,jyj , (3.31)

where

UN,j = V −1
j − V −1

j Nj

(∑

j

N ′
jV

−1
j Nj + λK

)−1

N ′
jV

−1
j

and

UX2,j = V −1
j − V −1

j X2j

(∑

j

X ′
2jV

−1
j X2j

)−1

X ′
2jV

−1
j ,

with Vj given in (3.3).

The parameters f and β can also be estimated by the Expectation Max-

imization (EM) algorithm. The EM algorithm is an iterative procedure for

locating the mode of the likelihood, or in Bayesian modeling for determining

the posterior mode, see Appendix 1.D. In our case, we need to maximize

the penalized likelihood rather than the likelihood itself. From a Bayesian

viewpoint, this does not substantially alter the problem but is merely a choice

of the prior. Note that the modes of the log posterior and the penalized

log-likelihood coincide if a flat prior is taken for β, and the log-prior of fcss

is, except for a constant, equal to − 1
2λf

′
cssKfcss.

The EM algorithm consists of an E-step and an M-step. To carry out

the E-step, we define the complete-data log-likelihood of y and the random

coefficients δ (treated in this algorithm as missing data) given the model

parameters, i.e., log p(y, δ | fcss,β, σ
2, ξ). We penalize the complete-data

log-likelihood with roughness penalty (3.28) and we further define the condi-

tional distribution of missing data δ given y and the model parameters, i.e.,
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p(δ | y, f̃ css, β̃, σ
2, ξ). Here, fcss and β have been replaced by their current

estimates f̃ css and β̃. The variance components σ2 and ξ are assumed to

be known. The E-step consists of taking the expectation of the penalized

complete-data log-likelihood with respect to the conditional distribution of

the missing data. This involves computing the conditional expectations of δ

and δ δ′, where the former expectation is the empirical Bayes estimator of the

random effects.

In the M-step, we maximize the expected penalized complete-data log-

likelihood (retrieved from the E-step) with respect to the model parameters

fcss and β. The M-step is computationally expensive if the number of distinct

time points T is large because it involves inverting a T × T matrix. In that

case, it is better to update the estimates of fcss and β sequentially. First, we

maximize with respect to fcss and obtain the updated estimate

f̃ css =
(∑

j

(N ′
jNj) + σ2λK

)−1 ∑

j

(y
j
−X2jβ̃ −Zj δ̃j),

where δ̃j is the empirical Bayes estimate of δj at the current estimates of fcss

and β. Second, we maximize with respect to β only and obtain the update

β̃ =
(∑

j

X ′
2jX2j

)−1 ∑

j

(y
j
−Nj f̃ css −Zj δ̃j).

These two steps are computationally cheap: The number of numerical op-

erations to update the estimates of fcss and β is of order T . Although the

expression for f̃ css contains the inverse of a T×T matrix, efficient computation

is possible using the Cholesky factorization method as described, for example,

in Green and Silverman [21]. This algorithm where the M-step is replaced by

two sequential steps is known as the EC(onditional)M algorithm [43]. The two

sequential steps can also be viewed as steps of the backfitting algorithm as

described by Hastie and Tibshirani [24, p. 91].

An EM algorithm can also be constructed after having reparametrized the

model according to Green [20]. Using features of cubic splines, we can write

fcss in (3.29) via a one-to-one transformation as

fcss = γ01T + γ1x
∗ +Q(Q′Q)−1Lη, (3.32)

where γ0 and γ1 are scalars, x∗ = (x1, . . . , xT )′, η is a (T − 2)× 1 parameter

vector, and L satisfies LL′ = R. For the definition ofQ andR, see Section 3.9.

Because the columns of Q are orthogonal to 1T and x∗, it follows that η′η is

equal to f ′
cssKfcss. Hence, the penalized log-likelihood of model (3.29) with

fcss replaced by (3.32) is equal to the sum of the log-likelihood and the term

− 1
2λη

′η. The E-step and M-step can be derived as before. When T is large,

the computational burden can again be lowered by replacing the M-step by

sequential steps.
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So far, we have regarded the variance components σ2 and ξ as known.

Simple estimators of σ2 and ξ are obtained by fitting an overelaborated model

with in the fixed part T dummy predictors, one for each distinct time point

[55, p. 123]. If the model with dummy effects is estimated by restricted IGLS,

unbiased estimates are obtained for σ2 and ξ also when y in the true model is

associated to x by a smooth function f(x). For reasons of efficiency, it may be

preferable to use estimators that depend on the external smoothing parameter

λ. Several authors have suggested considering η as a vector of random effects

η and fitting a crossed random effects model with model parameters γ0, γ1,

β, σ2, and ξ and random effects δ and η [52, 58, 64]. The formulation of the

crossed random effects model is attractive because it allows us to estimate

fcss using existing software. Estimates can be obtained with the restricted

IGLS algorithm implemented in MLwiN [19] and SAS [39]. Here, the variance

of η is set equal to the inverse of the roughness penalty λ. The restricted

IGLS estimator of σ2 performs well in simulation studies [64]. Besides, in a

single-level situation (e.g., longitudinal data of one subject), this estimator

is equal to the classical estimate of σ2 described, for example, by Green and

Silverman [21, p. 39]. The estimation of the crossed random effects model

via restricted IGLS is computationally demanding if the number of distinct

values x1, . . . , xT is large because the number of crossed random effects is

equal to T − 2.

3.9.2 Inferences

A common approach to drawing inferences about fcss is to construct pointwise

correct confidence intervals at x1, . . . , xT . This requires an estimate of the

variance of f̂ css. Two common estimates will be discussed. The first estimate

is obtained by assuming that f̂ css is an estimate of the fixed, unknown fcss.

From (3.30), where f̂ css is written as a linear function of y, it follows that the

covariance matrix is given by

CovF(f̂ css) = W−1

(
m∑

j=1

N ′
jUX2,jNj

)
W−1, (3.33)

where

W =
m∑

j=1

N ′
jUX2,jNj + λK.

The second estimate of the variance is the posterior variance obtained from

a Bayesian model where the logarithm of the prior of fcss is equal to

− 1
2λf

′
cssKfcss except for a constant. The posterior covariance matrix has

a simple form

CovB(f̂ css) = W−1. (3.34)
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Zhang et al. [64] and Lin and Zhang [38] compare the frequentist and Bayesian

estimator in a simulation study in which a fixed nonparametric function f(x)

is postulated. The main conclusion in these studies is that both estimators are

accurate but that the Bayesian estimator sometimes performs slightly better

because it accounts for the bias in f̂ css. The Bayesian variances can also be

obtained from the model with crossed random effects. Software packages such

as MLwiN yield estimates of the variances of γ̂
0

and γ̂
1

and the comparative

variance of the empirical Bayes estimator η̂. The covariance between η̂ and

(γ̂
0
, γ̂

1
) is not always produced. However, the design matrices of (γ0, γ1) and η

are orthogonal if the points at which the measurements are taken are common

to all subjects. Therefore, the precision of the estimator of CovB

(
f̂ css

)
is in

general not substantially affected by the omission of the covariance between

(γ̂
0
, γ̂

1
) and η̂.

Besides the Bayesian model with a finite-dimensional prior for fcss, a model

with an infinite-dimensional prior for the continuous spline fcss(x) exists as

well [58, 64]. This model was put forward by Wahba [56] and is appealing

because a smoothing spline fcss(x) is defined for all x and not only for the

observed values. The finite- and infinite-dimensional formulation lead to the

same posterior variance of f̂ css.

3.9.3 Smoothing Parameter Selection

Several methods exist for selecting the smoothing parameter λ. In this sec-

tion, three are discussed. The first method is to maximize the cross-validated

log-likelihood as a function of λ. The cross-validated log-likelihood is an ap-

proximation to the expectation of the predictive log-likelihood, which is the

expected log-likelihood of a new vector of observations y∗ at the penalized

likelihood estimators of the model parameters fcss, β, σ2, and ξ. The predic-

tion process is imitated by leaving out one subject at a time and predicting

the omitted subject on the basis of the other subjects’ data [46].

A drawback of cross-validation is that it is computationally expensive.

An alternative strategy is to estimate the expected predictive log-likelihood

by the sum of the log-likelihood and the trace of the matrix A that maps

y on the estimator f̂ css = Ay [21, p. 37; 24, p. 52]. This estimator, named

Mallows’ Cp, is cheap and unbiased if the (co)variance parameters σ2 and

ξ are known. For uncorrelated data, the unbiasedness proof is provided by

Hastie and Tibshirani [24, p. 48]. The proof in the case of multilevel data

is analogous. In practice, σ2 and ξ are unknown and can be estimated by

the restricted IGLS estimators in the overelaborated model with dummy time

predictors (see Section 3.9.1).

A limitation of applying criteria like the cross-validated log-likelihood

or Mallows’ Cp is that λ is not treated as a model parameter but as an

external variable. The smoothing parameter becomes a model parameter if
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we adopt the crossed random effects model and estimate the variance of η

freely instead of constraining the variance to be equal to the inverse of λ.

It can be shown that if the crossed random effects model is estimated by

restricted IGLS implemented in MLwiN [19], then the estimate of λ is the

generalized maximum likelihood (GML) estimate [57, 64], which has good

performance in simulation studies [33]. It may also be sensible to examine

whether a model with smoothing spline fcss(x) fits better than a model with a

linear effect for x. Hastie and Tibshirani [25, p. 65] provide some approximate

F -tests based on residual sums of squares and Cantoni and Hastie [9] and

Guo [22] present likelihood ratio tests for H0 : λ−1 = 0, which is equivalent

to H0 : η = 0 (3.32). Instead of the likelihood ratio test, the score test may

also be considered. The score test is computationally cheap because estimates

of the model with crossed random effects are not required. The test is based

on the one-step estimator that is obtained when we start from the estimate

of the null model. The ratio of the one-step estimator to its standard error

has an asymptotic standard normal null distribution. The score test also has

good power properties in a small sample setting [6]. For testing against an

unspecified but monotonic effect of x, this test against a linear effect may be

expected to have good power against most non-linear effects.

3.10 Example: Effect of IQ on a Language Test

We fitted the three different functions that were discussed so far, i.e., the

polynomial function, the regression spline function, and the cubic smoothing

spline function, to a real data set. The estimations were done using MLwiN 1.1

[19] and Gauss 3.2 [1]. The data set is described in Snijders and Bosker [51].

It contains language test scores of 2287 pupils within 131 elementary schools.

We modeled the test score (Y ) as a function of the grand-mean centered IQ

of the pupil (IQ), the gender of the pupil (SEX), the school average of IQ (IQ),

and the socio-economic status (SES) of the pupil. We assumed a non-linear

effect for IQ and linear effects for the other predictors. Note that in most

applications of models with functional non-linear effects, time is the ordering

principle, but an ordering according to any other unidimensional variable

is possible as well. Between-school differences were modeled by including a

random intercept and a random slope of IQ at level 2. Finally, we assumed

that the level-1 measurement errors are homoscedastic and uncorrelated. The

model can be written as

y
ij

= f(IQij) + β1 SESij + β2 SEXij + β3 IQj + δ0j + δ1jIQij + ǫij .

The estimated polynomial function, regression spline function, and cubic

smoothing spline function are presented in Fig. 3.3. The chosen polynomial
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function is of order three. We also considered a fourth-degree polynomial, but

this did not yield a further improvement in fit. The chosen regression spline

is a quadratic spline with a knot at zero. This function was considered by

Snijders and Bosker [51, p. 113] as a flexible and parsimonious alternative

for the polynomial function. We determined the smoothness of the cubic

smoothing spline by maximizing GML. We also considered optimization of

the cross-validated log-likelihood and Mallows’ Cp , but the three methods

rendered similar values for the smoothing parameter: λGML = 1.6, λCp
= 1.6,

λCV = 2.0.

The three fitted functions lead to similar predictions: The effect of IQ

on Y is larger in the middle than in the tails of the distribution of IQ.

The smoothing spline performs slightly better than the other two functions

since it is monotonically increasing, whereas the polynomial function and the

regression spline have a negative slope at low and high values of IQ.

10

30

50

−5 0 5

y

IQ

Fig. 3.3 Language test score (y) against centered IQ score: raw data, cubic polyno-

mial estimate (thin), quadratic regression spline estimate (dashed), and smoothing

spline estimate (bold).

We also estimated the pointwise standard errors of the fitted functions.

These are presented in Fig. 3.4. We see that the standard errors of the fitted

functions are very similar. Data are sparse at the left and right ends of the

window (Fig. 3.4) and the standard errors are large there compared to the

middle part. We further see that the Bayesian standard error of the cubic
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smoothing spline estimate is slightly larger than its frequentist counterpart,

as it should be according to (3.33) and (3.34) [cf. 64].
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Fig. 3.4 Standard errors of the cubic polynomial estimate (open circle) and the

quadratic regression spline estimate (closed circle), and Bayesian (bold line) and

frequentist (thin line) standard errors of the smoothing spline estimate.

3.11 Extensions

The model can be extended to a model with more than two levels or a model

with non-normal responses in the same way as multilevel models without a

functional effect can be extended. Another direction is to specify a model with

two functional effects, f(x) and g(v). This model is called an additive model

and is put forward by Hastie and Tibshirani [24]. Algorithms for estimating

additive multilevel models with cubic smoothing splines are provided by Lin

and Zhang [38]. A related model is a model in which the effect of predictor

w on y is described by function h(x) × w. This model is known as the vary-

ing coefficient model and has been used to describe time-varying effects of

predictors in longitudinal studies [25]. A multilevel extension of the model is

presented by Hoover et al. [29]. The additive and varying coefficient models

can be formulated as random effects models with a separate random effect for

each functional effect. The estimation can be done in MLwiN but becomes
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demanding if we have many functional effects. For varying coefficient models,

less demanding estimators are available [10, 15].

We have discussed functional effects to describe the mean pattern. Func-

tional effects for the random part of the model have been proposed as well.

In multilevel modeling, a common, simple choice is to include polynomial

functions in the random part of the model [cf. 8, 17, 50]. When adding spline

functions instead of polynomial functions to the random part, a possible ap-

proach is to define a separate smoothing spline for each level-2 unit and to

use the mixed effects formulation to define a nested sample of curves [7, 22].

The mixed effects approach is appealing, but it is computationally demanding

when the number of distinct points is large. A somewhat different approach is

to explore the covariance structure by a principal components analysis yielding

functions that describe the main sources of variation among the individual

curves. These methods are particularly attractive when studying variability

between individual curves. Rice and Silverman [46] propose a principal compo-

nents model where the differences among individuals are described by cubic

smoothing splines. The model is applicable only when the points at which

measurements are taken are common to all level-2 units. Rice and Wu [47]

and James et al. [31] use B-spline functions to allow for irregular spacing of

the data. Yao et al. [62] present a model for irregular data with functions

retrieved from a smooth estimate of the (continuous) covariance surface. For

the underlying functions, they also provide asymptotic confidence bounds.
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4.1 Introduction

The analysis of multilevel data with individuals nested within clusters is

complicated by the correlation between outcomes of individuals within the

same cluster. Ignoring this correlation and the use of traditional analysis

methods, like ordinary least squares regression, may sometimes lead to biased

parameter estimates and will generally lead to incorrect standard errors and,

consequently, to incorrect tests and conclusions on effect sizes. The presence

of an intraclass correlation also complicates the design of multilevel studies.

Optimal designs calculated from standard formulae for non-nested data [5]

may be far from optimal for multilevel data. Moreover, these formulae only

specify the total number of individuals needed to gain a certain power on

statistical tests, and cannot specify the number of clusters and the number of

individuals per cluster.

Experiments and observational studies in the social and medical sciences

often involve large amounts of time, money, and labor. These efforts could be

somewhat wasted if the study was not designed optimally. Therefore, guide-

lines for the optimal design of multilevel studies are asked for. During the

last two decades, a number of papers on the design of multilevel studies has

been published. Most have focussed on the optimal sample sizes for cluster

randomized trials [9, 10, 12, 18, 23, 25, 29, 34, 35, 36, 39, 42, 49, 55], and

multisite randomized trials where randomization to treatment conditions is

done at the patient level and treatment by site interaction may be present

[50]. A comparison of cluster randomized trials and multisite trials with per-

son randomization shows that the latter are more efficient [30, 34, 35, 36].

However, control group contamination may destroy this advantage of person

randomization and call for cluster randomization [32]. Snijders and Bosker
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[57] derive sample size formulae for two-level designs with any number of

explanatory variables at each level. Cohen [7] derives optimal sample size

formulae for surveys based on several optimality criteria for the fixed and

random part. Afshartous [1] and Mok [41] compare designs with different

sample sizes at both levels by means of simulation studies.

For multilevel experiments, four design issues may arise. The first three

that are listed may also arise for surveys with nested data. The first design

issue concerns the optimal allocation of units, or, in other words, the optimal

sample sizes at each level of the multilevel data structure. The optimal sample

sizes are restricted by the actual sample sizes in the study population, since

the number of clusters that are enrolled in the study cannot be larger than

the number of clusters that are available for the study. Likewise, the number

of individuals per cluster in the study cannot be larger than the actual clus-

ter size. Sampling individuals within an already selected cluster may be less

expensive than sampling in a new cluster. This can be expressed by a cost

function that is used as a precondition in the derivation of the optimal sample

sizes.

The second design issue concerns the required budget to obtain a specified

power on the test of a certain parameter given the true value of that parameter

and a type I error rate. As we will see in the next section, the power of

the test of a certain parameter is inversely related to the variance of that

parameter, which depends on the sample sizes at each level of the multilevel

data structure. Thus, the second design issue is closely related to the first one.

The third design issue concerns the robustness of optimal designs. A prior

specification of the values of the model parameters, in particular the intra-

class correlation coefficient, must be given to calculate optimal sample sizes,

and one may wonder if the optimal design is robust against incorrect prior

specifications.

A fourth design issue that may be considered is the efficiency of clus-

ter randomization versus randomization at the individual level. Although

individual-level randomization gives a higher power on statistical tests of a

treatment effect, randomization is often done in practice at the cluster level

and one may wonder what the loss in efficiency for this level of randomization

is. Reasons to favor a cluster randomized trial are often of an ethical, practical,

logistical, or administrative nature. Examples are the need to reduce costs and

the need to avoid control group contamination, which occurs when information

leaks from the intervention to the control group.

In this chapter we will give some guidelines for designing multilevel experi-

ments and surveys (observational studies). The contents of this chapter are as

follows. The next section focuses on optimality criteria and power calculation.

Section 4.3 deals with the optimal design of multilevel experiments. There-

after we focus on optimal experimental designs for models with covariates

(Section 4.4), and for multilevel logistic models (Section 4.5). Section 4.6 gives
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results for optimal experimental designs with longitudinal data. Sections 4.7

and 4.8 deal with optimal designs for surveys and variance parameters, respec-

tively. In Section 4.9 the robustness of optimal designs against an incorrect

prior specification of the values of the model parameters is dealt with. This

chapter concludes with some remarks on the use of the optimal designs in

practice. Optimal designs will be derived for two levels of nesting; optimal

designs for three levels of nesting can be found elsewhere [30, 34]. For the

sake of concreteness, units at level 1 and 2 are called pupils and schools in

this chapter, but, of course, any other terminology may be substituted. We

will focus on optimal designs that minimize one optimality criterion at a time;

multiple-objective optimal designs are presented elsewhere [40].

4.2 Optimality and Power

4.2.1 Optimality Criteria

Choosing an optimal design means to choose the design ξ∗ among all designs ξ

in the design space χ that provides maximum information on the parameters

θ in the model. This information may be captured by the Fisher information

matrixM(X,θ), whereX is the design matrix that contains the measures on

the predictor variables, and depends on the chosen regression model η and the

design ξ: X = X(η, ξ). The Fisher information matrix is defined as minus the

expectation of the second-order derivatives of the logarithm of the likelihood

function L(X(η, ξ),θ) [e.g., 56]:

M(X(η, ξ),θ) = −E

(
∂2 logL(X(η, ξ),θ)

∂θ ∂θ′

)
,

and contains information on each parameter θ and each combination of pa-

rameters θ and θ′. The limit of its inverse is equal to the asymptotic covariance

matrix of the parameter estimators, and maximizing the Fisher information

matrix is equal to minimizing the covariance matrix of the parameter estima-

tors. Since matrices cannot be ordered in a unique way, different functions Φ of

the matrix M , which at least have to be convex and differentiable, have been

proposed as optimality criteria. Examples are A-, D-, and c-optimal designs

[e.g., 2, 56].

In this chapter we will use the variance of one single parameter θ as opti-

mality criterion, since minimal variance leads to maximal statistical power of

the test of H0 : θ = 0. This variance will be minimized subject to the precon-

dition that the number of schools, n2, and the number of pupils per school,

n1, are at least equal to 2, to be able to estimate the variance components at

both levels. Furthermore, the budget C for sampling schools and pupils may

not be exceeded by the costs for sampling, which are assumed to be equal to
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the total number of schools times the costs c2 for sampling a school, plus the

total number of pupils times the costs c1 for sampling an pupil, i.e.,

C ≥ c1n1n2 + c2n2 (cl > 0, nl ≥ 2 for l = 1, 2). (4.1)

An optimal design that does not depend on the model parameters θ is called

a globally optimal design, whereas a locally optimal design is a design that

does depend on one or more of the model parameters. For the latter, a prior

specification of the values of these model parameters needs to be given to

calculate the optimal sample sizes. The robustness of optimal designs against

incorrect prior specifications is discussed in Section 4.9. The optimal design

ξ∗ may not always be feasible in practice and an alternative design ξ may be

chosen instead. The efficiency of the alternative design relative to the optimal

design is given by

relative efficiency =
Φ(M−1(X(η, ξ∗),θ))

Φ(M−1(X(η, ξ),θ))
, (4.2)

and this ratio is between 0 and 1. When the variance of one single parameter

is used as optimality criterion, the inverse of the relative efficiency gives the

number of times the suboptimal design ξ needs to be replicated to be as

efficient as the optimal design ξ∗.

4.2.2 Power Calculation

Suppose that we want to test the null hypothesis H0 : θ = 0, where θ is a

model parameter, against an alternative H1 that its value differs from zero.

This hypothesis may be tested with the test statistic z = θ̂/
√

Var(θ̂). If

θ is a regression coefficient and the error variance is assumed known, this

test statistic is asymptotically standard normally distributed under H0. For

one-sided alternatives H1 : θ > 0 and H1 : θ < 0, the power 1−γ, type I error

rate α, Var(θ̂), and the true value of θ are related by

1− γ = Φ

(
θ√

Var(θ̂)
− z1−α

)
, (4.3)

where Φ is the standard normal cumulative distribution function and z1−α is

the 100(1 − α) standard normal percentile. For two-sided alternatives H1 :

θ 6= 0, α is replaced by α/2. For a two-sided alternative hypothesis, the power

is derived from only one of the critical regions. The probability of a rejection

at the wrong side is always less than α/2, and is negligibly small in relation

to a rejection at the correct side. The only exception is an effect size (i.e.,

difference between H0 and H1) that is so small that the power is as large as

α. In trial designs, we aim at power levels equal to 80% or higher, and the

error of the approximation is negligible.
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When the error variance is unknown, the test statistic has approximately

a t-distribution under the null hypothesis, and the standard normal approx-

imation works well for large degrees of freedom. As follows from (4.3), the

power increases with the true value of θ, since a large θ is easier to detect

than a small one. Furthermore, the power also increases with the type I error

rate, and decreases with the variance Var(θ̂), which in its turn is a function

of the sample size. Thus minimizing Var(θ̂) implies maximizing the power.

Formula (4.3) contains four unknowns. Once three of these are specified, the

fourth can be calculated. In practice, a researcher often wishes to calculate

the number of individuals needed to obtain a certain power, which means that

Var(θ̂) has to be calculated from (4.3). For non-nested data, the relationship

between sample size and variance is well known and can be found in, for

example, Cochran [5, Section 4.1]. For nested data, this relation depends on

the sample sizes at both the school and pupil level and will be presented in

the next sections.

4.3 Optimal Designs for Experiments

In this section we focus on the comparison of two treatment conditions, for

example, an intervention and a control. Randomization to these treatment

conditions may be done at the pupil or the school level. The latter is often

referred to as cluster randomization. We will assume a balanced design: The

number of pupils per school is constant across schools and denoted by n1,

whereas the number of schools is denoted by n2. If randomization is done at

the school level, 1
2n2 schools are randomized to the intervention group and

the others are randomized to the control group, assuming that n2 is even.

Likewise, 1
2n1 pupils per school are randomized to each treatment condition

for pupil-level randomization, assuming that n1 is even. The model that relates

the outcome y
ij

for pupil i in school j to treatment condition xij is given by

y
ij

= β0 + β1xij + δ0j + δ1jxij + ǫij , (4.4)

where the treatment condition has values −1 for the control group and +1 for

the intervention group since this will simplify the formulae on optimal sample

sizes if covariates are added to the model. The random error terms δ0j ∼
N (0, τ2

0 ), δ1j ∼ N (0, τ2
1 ), and ǫij ∼ N (0, σ2) are assumed to be independent

of the treatment condition, and the covariance between δ0j and δ1j is denoted

by τ01. Note that xij may be replaced with xj for school-level randomization

since all pupils within a school will then receive the same treatment condition.

In that case, τ2
0 and τ2

1 cannot be estimated separately. Instead, their sum

τ2 = τ2
0 + τ2

1 is estimated. The covariance τ01 can be consistently estimated

for school-level randomization, which is remarkable since τ2
0 and τ2

1 are not
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identified. This is because τ01 is identified by the variances of the outcome in

both conditions. Since xij is coded by −1 and +1, β1 is estimated unbiasedly

by 1
2 (ȳt− ȳc), where ȳt and ȳc are the mean outcomes in the intervention and

control group, respectively, and thus β1 is equal to half the treatment effect.

For both levels of randomization, the variance Var(β̂1) is given in the

second column of Table 4.1. For school-level randomization, this variance is

larger than would have been obtained when ignoring the nested data structure:

Var(β̂1) =
n1τ

2 + σ2

n1n2
=
τ2 + σ2

n1n2
[1 + (n1 − 1)ρ],

where ρ = τ2/(τ2 + σ2) is the intra-school correlation coefficient, which mea-

sures the amount of variation at the school level. The factor [1 + (n1 − 1)ρ]

is called the design effect and increases with n1 and ρ. Even for small ρ, this

factor may already be considerable. For example, if ρ = 0.05 and n1 = 30,

the design effect is equal to 2.45. On the other hand, when randomization

is done at the pupil level and there is no treatment by school interaction,

the Var(β̂1) obtained when ignoring the multilevel data structure is larger

than that obtained with the multilevel model. For randomization at the pupil

level and models with a random slope, it may be smaller or larger than that

obtained with the multilevel model, depending on the number of pupils per

school and the values of the variance components [37].

Optimal designs are calculated under the precondition that the pre-

specified budget for sampling is not exceeded by the total costs for sampling;

see Section 4.2. When n1 is fixed to a constant, the optimal n2 can directly

be calculated from (4.1) and the Var(β̂1) follows from the second column of

Table 4.1. The same method may be applied when n2 is fixed to a constant.

When both n1 and n2 are unrestricted, the optimal sample sizes can be

obtained by expressing n2 in terms of n1 and the costs and budget using

(4.1), substituting into the formula for Var(β̂1) and solving for n1. The optimal

sample sizes n1 and n2 thus obtained are given in the third and fourth columns

of Table 4.1, and the Var(β̂1) obtained with these optimal sample sizes is given

in the last column of this table. Note that the optimal number of schools n2

should be larger than or equal to 2 in order to maintain the multilevel data

structure. In some studies the number of schools or pupils per school may

be limited. If the limited number of schools or pupils per school is smaller

than the optimal number, then this limited number should be used. Note that

the optimal sample sizes and the Var(β̂1) for pupil-level randomization and

τ2
1 > 0 do not reduce to those for pupil-level randomization and τ2

1 = 0. This

is a consequence of the fact that the optimal sample sizes for the latter case

were calculated such that both n1 and n2 are at least 2. Otherwise, τ2
1 → 0

would lead to n2 → 0.

From Table 4.1 it follows that a higher budget C results in sampling more

schools, except when randomization is done at the pupil level and there is
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Table 4.1 Var(β̂1), optimal sample sizes and Var(β̂1) given the optimal sample sizes

for two levels of nesting and a random slope. τ2 = τ2
0 + τ2

1 .

Level of

randomization Var(β̂1) n1 n2 Optimal Var(β̂1)

Pupil (τ2
1 > 0)

n1τ
2
1 + σ2

n1n2

√

σ2c2
τ2
1 c1

C
√

σ2c1c2
τ2
1

+ c2

(

√
σ2c1 +

√
τ2
1 c2

)2

C

Pupil (τ2
1 = 0)

σ2

n1n2

C − 2c2
2c1

2
σ2c1

C − 2c2

School
n1τ

2 + σ2

n1n2

√

σ2c2
τ2c1

C
√

σ2c1c2
τ2

+ c2

(

√
σ2c1 +

√
τ2c2

)2

C

no treatment by school interaction, since then the optimal number of pupils

per school increases with the budget. Furthermore, this table shows that the

number of pupils to be sampled per school reaches its maximum in case of

pupil-level randomization and τ2
1 = 0. This is obvious because when school-

by-treatment interaction is assumed to be absent, there is no point in adding

more schools. In fact, the optimal design is reached when just one school is

sampled, but in that case, the variance component τ2
0 cannot be estimated

and therefore the number of schools is restricted to be at least 2. Of course,

τ2
0 cannot be estimated very well when just two schools are sampled, but on

the other hand, the Var(β̂1) does not depend on this variance component in

case of pupil randomization with τ2
0 = 0. For school-level randomization and

for pupil-level randomization with τ2
1 > 0, the optimal number of schools will

generally be larger than 2. For these cases, the number of pupils per school

increases with the pupil-level variance component σ2, which is obvious since

more pupils are needed in the experiment when there is much variation in

the outcome at the pupil level. Also, the optimal n1 increases with the costs

of sampling an extra school relative to the costs of sampling a pupil because

generally less schools will be sampled in favor of sampling more pupils per

school when it is relatively expensive to sample a school.

Table 4.1 shows that the pupil level is the optimal level of randomization.

The relative efficiency of school-level versus pupil-level randomization is given

by the ratio of the reciprocal of their optimal variances as given in the last

column of Table 4.1, which for models with a fixed slope (i.e., τ2
1 = 0) is

approximated by
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RE ≈ σ2c1(√
σ2c1 +

√
τ2
0 c2

)2 =
1− ρ

(√
1− ρ+

√
ρc2/c1

)2 , (4.5)

and this approximation works well when C > 40c2. Equation (4.5) shows that

the relative efficiency decreases when ρ and/or the cost ratio c2/c1 increase.

The inverse of the relative efficiency gives the number of times the optimal

design for randomization at the school level needs to be replicated to be as

efficient as the optimal design for randomization at the pupil level assuming

τ2
0 = 0. Figure 4.1 shows the relative efficiency as a function of the intra-school

correlation coefficient and for c2/c1 = 10, 20, 40. As follows from this figure,

the decrease in the relative efficiency is already considerable for small ρ. When

ρ = 0.05, it is equal to 0.34, 0.24, and 0.17 for c2/c1 = 10, 20, and 40,

respectively. When ρ approaches unity, the relative efficiency goes to zero.

The relative efficiency is larger when treatment by school interaction is present

(i.e., τ2
1 > 0).

Figure 4.2 gives an impression of the difference in power of two-sided tests

with significance level α = 0.05 obtained with randomization at the school

and pupil level, as a function of the effect size, which is calculated as ES =

2β1/
√
σ2 + τ2

0 + τ2
1 , where 2β1 is the true value of the treatment effect and
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Fig. 4.1 Approximate relative efficiency of school- versus pupil-level randomization

as a function of the intra-school correlation coefficient and the cost ratio c2/c1. For

both levels of randomization, the optimal Var(β̂1) is used.
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Fig. 4.2 Power of two-sided tests as a function of the effect size.

the denominator gives the standard deviation of the outcome yij . Values 0.2,

0.5, and 0.8 correspond to small, medium, and large effects, respectively [6].

From Fig. 4.2 it follows that the difference in power is especially large for

effect sizes near 1. In order to draw this figure, we used the following values

for the costs and budget: c1 = 10, c2 = 200, and C = 8000, which reflect

the fact that the costs for sampling schools are often larger than the costs for

sampling a pupil in an already sampled school. Furthermore, there is often

more variation in the outcome at the pupil level than at the school level, which

is reflected by the parameter values σ2 = 24, τ2
0 = 2, and τ2

1 = 1. For these

parameter values, the optimal sample sizes for school-level randomization are

n1 = 12.6, n2 = 24.5, and Var(β̂1) = 0.200. Rounding to even n2 such that the

budget C is not exceeded gives n1 = 13, n2 = 24, and Var(β̂1) = 0.202. For

randomization at the pupil level, n1 = 21.9, n2 = 19.1, and Var(β̂1) = 0.110.

Rounding to even n1 such that the budget is not exceeded results in optimal

sample sizes n1 = 22, n2 = 19, and Var(β̂1) = 0.110, which is about half of

the variance that is obtained with school-level randomization.

It should be noted that the comparison of randomization at the cluster

level and randomization at the person level as presented in this example is

based on the assumption that control group contamination is absent. This

assumption is not always true in practice. It is easily violated in intervention
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studies where the clustering is such that persons within the same cluster meet

regularly, such as families, classes within schools, and work sites. When the

degree of the contamination is known, the two designs can still be compared on

the basis of their relative efficiencies [32]. For large degrees of control group

contamination, a cluster randomized trial may be favored over a trial that

randomizes persons within clusters.

For both levels of randomization, the power levels of proposed designs can

be evaluated and compared using specialized software, such as the OPTDES

program by Raudenbush et al. [52]. This program allows one to plot the

power levels as a function of the sample size per school (n1), number of

sampled schools (n2), intra-school correlation coefficient, and effect size. It

also calculates optimal sample sizes for equal and unequal costs across the

treatment conditions.

4.4 Optimal Experimental Designs for Models with
Covariates

4.4.1 Effect of Including Covariates on the Optimality Criterion

So far, we have considered optimal experimental designs for models without

covariates. In practice, however, covariates are often included into the mul-

tilevel model to decrease variances of treatment effect estimators and thus

to increase statistical power, and in observational studies also to correct for

confounding. For uncorrelated outcomes, the formula for the variance of the

treatment effect estimator is equal to

Var(β̂1) =
σ2
r

N(1− r2xc)
,

if x is denoted −1 and 1 for the control and intervention group, respectively,

and both treatment groups are of equal size [e.g., 24, 47]. σ2
r = σ2 + τ2

0 + τ2
1

is the total residual variance in yij and r2xc is the squared multiple correlation

coefficient between the treatment condition x and all covariates c. The term

1/(1 − r2xc) is often called the variance inflation factor, abbreviated VIF. Of

course, σ2
r will decrease when a covariate is added to the model, leading to

a smaller variance of the treatment effect estimator, at least if treatment

condition and the covariates are uncorrelated.

Similar formulae have been derived for multilevel data [36]. Following

Neuhaus and Kalbfleisch [47], a grand-mean centered covariate cij can be

split into a component c̄.j that varies at the school level and a component

(cij − c̄.j) that varies at the pupil level. The fixed-slope multilevel model for

pupil i within school j is then given by
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yij = β∗
0 + β∗

1xij + β∗
2 c̄.j + β∗

3(cij − c̄.j) + δ∗0j + ǫ∗ij , (4.6)

where δ∗0j ∼ N (0, τ∗20 ) and ǫ∗ij ∼ N (0, σ∗2). Note that the regression coeffi-

cients and random terms are superscribed with asterisks to stress that their

values may differ from those of the parameters in the model (4.4) without the

covariate. In the analysis stage, we condition on the values of the treatment

effect and the covariate, and these variables are treated as fixed. When the

covariate only varies at the school level, the term β∗
3(cij − c̄.j) is equal to

zero and may be removed from the model. Likewise, the term β∗
2 c̄.j may be

removed when the covariate only varies at the pupil level. For the fixed-slope

model in (4.6), Var(β̂1) as given in the second column of Table 4.1 needs

to be multiplied by the factor 1/(1 − r2xc) [36], and thus Var(β̂1) is minimal

for r2xc = 0. For school-level randomization, r2xc is equal to the correlation

between xij and c̄.j since xij and (cij− c̄.j) are automatically orthogonal, and

for pupil-level randomization, rxc is equal to the sample correlation between

xij and (cij − c̄.j). For a binary distributed variable xij and a normally or

binary distributed variable cij , rxc is approximately normally distributed with

zero mean and variance 1/n and thus r2xc ∈ [0, 4/n] with 95% probability

[19], where n is equal to n1n2 or n2 for pupil- or school-level randomization,

respectively. Thus, r2xc is small for large sample sizes, especially for pupil-level

randomization. A zero sample correlation between treatment condition and

covariate can also be achieved by pre-stratification. For school-level random-

ization, pre-stratification needs to be done on c̄.j and thus for each value of

c̄.j , half of the schools must be randomized to the treatment condition and

the others to the control group. Similarly, pre-stratification needs to be done

on (cij − c̄.j) for pupil-level randomization. In the remainder, we will assume

that r2xc = 0, due to pre-stratification or large sample sizes. Then, the optimal

sample size formulae and the Var(β̂1) as given in Table 4.1 hold when τ2
0 and

σ2 are replaced with τ∗20 and σ∗2, respectively, and it can be shown that this

is also true for models with a random slope with τ2
1 replaced with τ∗21 [30].

4.4.2 Effect of Including Covariates on the Values of the Variance

Components

The inclusion of a covariate will also lead to a change in the values of the

estimated variance components, given the total variance of the outcome. Sup-

pose that both components of the covariate are added to model (4.4) with

τ2
1 = 0 so that we obtain model (4.6). The changes in the estimated variance

components for the fixed-slope model can be established as follows [58]. Note

that we turn from the data and the estimators to the population. The total

variance of an outcome yij and the covariance of two outcomes yij and yi′j
within the same school are equal to
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Table 4.2 Changes in variance components due to the inclusion of a covariate to

the two-level model with a random intercept and a fixed slope.

Changes due to the inclusion of c̄.j Changes due to the inclusion of cij − c̄.j

τ̂2
0 − τ̂∗20 = β̂∗2

2 Var(c̄.j) > 0 τ̂2
0 − τ̂∗20 ≈ 0

σ̂2 − σ̂∗2 = 0 σ̂2 − σ̂∗2 ≈ β̂∗2
3 Var(cij − c̄.j) > 0

Note. It is assumed that n1 is not too small and that r2xc = 0.

Var(yij) = Var(β1xij + δ0j + ǫij), (4.7)

Cov(yij , yi′j) = Cov(β1xij + δ0j , β1xi′j + δ0j)

for model (4.4) with τ2
1 = 0, and

Var(yij) = Var(β∗
1xij + β∗

2 c̄.j + β∗
3(cij − c̄.j) + δ∗0j + ǫ∗ij), (4.8)

Cov(yij , yi′j) = Cov
[
β∗

1xij + β∗
2 c̄.j + β∗

3(cij − c̄.j) + δ∗0j ,

β∗
1xi′j + β∗

2 c̄.j + β∗
3(ci′j − c̄.j) + δ∗0j

]

for model (4.6). Since Var(yij) and Cov(yij , yi′j) are given by the data and

are therefore independent of the chosen model, the Var(yij) and Cov(yij , yi′j)

given by (4.7) can be set equal to the Var(yij) and Cov(yij , yi′j) given by

(4.8). From these two equations, the changes in the estimated variance com-

ponents can be derived, and for both levels of randomization, these are given in

Table 4.2. We assume that r2xc = 0, so that β̂1 = β̂∗
1, and that n1 is large. The

total change due to the inclusion of both components of the covariate is equal

to the sum of the change due to the inclusion of the separate components.

From Table 4.2 it follows that only the estimated variance component at the

level at which the covariate varies decreases when a covariate is added to the

model. Likewise, it can be shown that for models with a random slope of

xij only τ̂2
0 or σ̂2 change when the school- or pupil-level component of the

covariate are added to the model, respectively, under the assumption that

r2xc = 0 within each school [30, Chapter 4].

4.5 Optimal Experimental Designs for Multilevel
Logistic Models

When the responses yij are measured on a binary scale, the multilevel logistic

model applies, see Chapter 6. Assuming treatment by school interaction (i.e.,

a random slope), it is equal to



4 Optimal Designs for Multilevel Studies 189

yij = πij + ǫij =
1

1 + exp[−(β0 + β1xij + δ0j + δ1jxij)]
+ ǫij ,

where πij is the probability of a response yij = 1, and ǫij has zero mean

and variance πij(1 − πij). The independent variable xij is coded −1 for the

control group and +1 for the intervention group. Again, we use the Var(β̂1)

as optimality criterion. An analytical expression for it can only be obtained

when the so-called first-order Marginal Quasi-Likelihood [MQL, 14] estimation

method is used. It can then be shown [35] that the Var(β̂1) is equal to the

formulae given in Table 4.1 when σ2 is replaced with

1
2
(4 + eβ0+β1 + eβ0−β1 + e−β0+β1 + e−β0−β1). (4.9)

To calculate optimal sample sizes, the variance components must be known

or a reasonable prior specification must be given.

First-order MQL, however, produces biased estimates [15, 53], while Pe-

nalized Quasi-Likelihood [PQL, 15] and estimation by means of numerical in-

tegration [16] perform better [54, and Chapter 9]. Only for second-order PQL,

however, the test statistic to test the significance of β1 was shown to follow the

standard normal distribution [38]. Therefore, a simulation study was done [35]

to investigate how the variance of the treatment effect estimator, Var(β̂1), is

affected when second-order PQL with unknown variance components is used

instead of first-order MQL with known variance components.

For models with a fixed slope (i.e., τ2
1 = 0), data sets were generated for

the following parameter values: β0 = 0; β1 = 1.5, 1, 0.5, or 0; and τ2
0 = 1, 0.5,

0.25, or 0. Three different allocations of units were used: (n1, n2) = (10, 40),

(n1, n2) = (20, 20), and (n1, n2) = (40, 10). Both levels of randomization

were considered. Thus, there were 96 combinations of level of randomization,

allocation of units, and parameters values, which will be called simulation

combinations, and for each of these, 200 data sets were simulated. Second-

order PQL as implemented in the computer program MLwiN [48] was used

for parameter estimation. For each of the 96 simulation combinations, the

sampling variance of β̂1 was estimated by

Sampling Variance(β̂1) =

∑200
r=1(β̂1r −

∑200
s=1 β̂1s/200)2

199
,

where β̂1r is the estimate of β1 from the r-th simulated data set. Furthermore,

a correction factor was calculated, which is equal to the Sampling Variance(β̂1)

divided by the Var(β̂1) as obtained from first-order MQL with known vari-

ance components. This factor may be used as a multiplication factor to the

analytical Var(β̂1) as given in Table 4.1 with σ2 replaced with (4.9) when

second-order PQL is used instead of first-order MQL.

The results of the study show that the Sampling Variance(β̂1) increases

with τ2
0 , β1 , and the number of pupils per school (given the total sample size
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n1n2) when randomization is done at the school level. For pupil-level random-

ization, it only increases with β1. Furthermore, it is larger for randomization

at the school level, especially when τ2
0 and/or n1 are large. These conclusions

also hold for first-order MQL with known variance components, see Table 4.1

with σ2 replaced with (4.9). The results of the simulation study suggest that,

on average, the Var(β̂1) as obtained with second-order MQL needs to be

multiplied by 1.2 to get the Var(β̂1) for first-order PQL. The correction factor

is fairly constant across allocations of units, so that the optimal allocations

of units obtained with the formulae for first-order MQL with known variance

components are also optimal for second-order PQL.

A simulation study was also done for models with a random slope and ran-

domization at the pupil level. The following parameter values and allocations

of units were used: β0 = 0; β1 = 1.5, 1, 0.5, or 0; τ2
0 = 1, 0.5, 0.25, or 0; τ2

1 = 0,

or 0.25; and (n1, n2) = (10, 40), (n1, n2) = (20, 20), or (n1, n2) = (40, 10), so

there were 96 simulation combinations. As for first-order MQL with known

variance components, the Sampling Variance(β̂1) increases with τ2
1 and the

number of pupils per school, again given the total sample size n1n2. The results

of the study suggest that the correction factor is about 1.2 for second-order

PQL.

4.6 Optimal Experimental Designs for Longitudinal Data

4.6.1 Sample Sizes, Duration, and Power

In longitudinal intervention studies, persons are randomly assigned to the con-

trol or experimental condition, and their responses are measured at successive

points in time. The multilevel model is an appropriate tool for the analysis

of data obtained from experiments with longitudinal data. The model that

relates the response yij of person j to time point i is given by

yij = β0j + β1jti + ǫij , (4.10)

assuming a linear trend for the sake of simplicity. The intercept β0j and slope

β1j vary across persons and are predicted from the treatment condition xj :

β0j = β00 + β01xj + δ0j , (4.11a)

β1j = β10 + β11xj + δ1j , (4.11b)

where the treatment condition has values −1 and +1 for the control and

intervention group, respectively. The random error terms δ0j ∼ N (0, τ2
0 ),

δ1j ∼ N (0, τ2
1 ), and ǫij ∼ N (0, σ2) are assumed to be independent of the

treatment condition, and the covariance between δ0j and δ1j is denoted by

τ01. Substitution of (4.11) into (4.10) results in the single-equation model
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yij = β00 + β01xj + β10ti + β11xjti + δ0j + δ1jti + ǫij . (4.12)

The aim of a longitudinal intervention study is to detect whether the linear

time effect varies across the two treatment conditions; that is, we want to

test the cross-level interaction effect β11. The variance of β̂11 depends on the

total number of persons n, the number of measurements per person m, and

the duration of the study d. For equally spaced measurements between t1 = 0

and tm = d, it is equal to

Var(β̂11) =
σ2

nms2
+
τ2
1

n
, with s2 =

1

m

m∑

i=1

(ti − t̄ )2, (4.13)

see Galbraith and Marschner [13]. The variance s2 of the time points is an

increasing function of the study duration d. From (4.13) it follows that the

Var(β̂11) decreases with increasing m, n, and d. However, increasing n will

have a larger effect on Var(β̂11) than increasing m and d, since m and s2 only

appear in the denominator of the first term of Var(β̂11).

The test statistic ẑ = β̂11/
√

Var(β̂11) is approximately normally dis-

tributed when the null hypothesis H0 : β11 = 0 is true. The relation between

study duration d, sample sizes m and n and power 1− γ is given by

σ2 +ms2τ2
1

nms2
=

β2
11

(z1−α/2 + z1−γ)2
. (4.14)

The power for the test depends on the true effect β11, of which a realistic

value may be difficult to specify. The standardized effect size for a linear

trend is defined as the group difference in the linear trend divided by the

standard deviation of the linear trend: ES = β11/τ1 [51]. Substitution of the

standardized effect size into (4.14) results in

σ2/τ2
1 +ms2

nms2
=

ES 2

(z1−α/2 + z1−γ)2
, (4.15)

which shows that only the ratio σ2/τ2
1 of the variances σ2 and τ2

1 needs to be

known to calculate the power level of a proposed design. It should be noted

that the comments on power calculations for tests with two-sided alternative

hypothesis in Section 4.5 are also applicable to (4.15).

As an example, consider a study for which it is expected that σ2/τ2
1 = 5

and for which the power to detect a size ES = 0.5 in a two-sided test with

α = 0.05 should be at least 0.8. Figure 4.3 shows the power levels as a function

of n, for two different values of the study duration d (d = 2, 4) and for two

different values of m (m = 5, 9). It follows that increasing m only has a

small effect on power relative to increasing d and n. For d = 4, the number of

persons to reach a power of 0.8 is about 42 (m = 9) and about 48 (m = 5).

For d = 2, a much larger number of persons is needed.
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Fig. 4.3 Power as a function of m, n, and d.

It should be noted that these results hold for linear growth. Results for

higher-order polynomial growth can be found elsewhere [51]. As shown by

Laird and Wang [21], efficiency is gained by dropping in (4.12) the term β01x,

which reflects the group difference at time point 0 and is therefore equal to zero

in the case of randomized trials. Model (4.12) implies a certain nonstationary

covariance structure for the repeated measures. For optimal designs under

different covariance structures, see, e.g., Winkens et al. [64]. Furthermore,

the extensions to studies with drop-out and missing data are presented by

others [13, 17, 33, 44, 45]. The computer programs Mplus [46] and OPTDES

[52] can be used to evaluate and compare alternative designs for studies with

longitudinal data.

4.6.2 Some Other Results on Optimal Experimental Designs for

Longitudinal Data

The multilevel models with covariates as given in Section 4.4 may also be used

for longitudinal designs in which two treatment conditions are compared and

the dependent variable is measured once at pre-test and once at post-test. The

outcome variable in our model (4.6) is the post-test measurement, whereas

the pre-test measurement is included as a covariate. One may also choose

to use a model in which the dependent variable is equal to the difference

between the pre- and post-test (i.e., the change score) and in which the pre-test
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measurement of the dependent variable is not included as a covariate. Due to

randomization, both approaches yield the same expected treatment effect.

The first approach, however, is preferred, since due to the inclusion of the

pre-treatment measurement as a covariate, a lower residual variance in the

outcome, and consequently more statistical power, is achieved. For a repeated

measures formulation of both methods, ANCOVA and ANOVA of change, see

Laird and Wang [21] and Van Breukelen [62].

The papers by Feldman and McKinlay [11] and McKinlay [29] also focus

on longitudinal designs. These papers are restricted to cluster randomization

and the change score is used as dependent variable. Two types of designs are

considered in these papers: cohort designs and cross-sectional designs, whereas

in the previous sections of this chapter we only focused on cohort designs. In

both cohort and cross-sectional designs, a set of clusters is sampled. In a

cohort design, the same individuals are measured at at least two time points.

In a cross-sectional design, a new sample of individuals is drawn within each

cluster at every time point. Cohort designs are favored above cross-sectional

designs if the clusters contains relatively few subjects, if the population is

stable throughout the intervention period, if the intervention period is short

enough to prevent substantial dropout, and if the act of measurement does

not influence the subjects’ subsequent behavior.

The variance of the treatment effect estimator was used as optimality

criterion in the papers mentioned above. The relative efficiency of cohort

designs versus cross-sectional designs was studied [11, p. 68] as a function of

the subject autocorrelation (i.e., the correlation over time between individual

level means) denoted ρs. They show that a cohort design is more efficient than

a cross-sectional design for any ρs > 0, but the ρs has to be unrealistically

close to unity to provide noticeable gains in efficiency. Thus, for weak subject

autocorrelation, the cross-sectional design may be preferred, since for this

design memory effect and drop-out do not occur.

The optimal number of clusters per treatment condition and the optimal

number of individuals per cluster were calculated by McKinlay [29] for both

cohort and cross-sectional designs. The cost function that was used by McKin-

lay takes drop-outs and recovery of drop-outs in a cohort design into account,

and allows the costs at the cluster level to vary across treatment conditions.

In an example, McKinlay shows that cohort designs are more cost efficient

for short trials and high autocorrelations at both the cluster and individual

levels.

4.7 Optimal Designs for Surveys

In multilevel surveys, generally more than one parameter is of main interest.

These parameters may be regression coefficients corresponding to level-1 or
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level-2 predictors or cross-level interactions, as well as variance components

or the intra-school correlation coefficient. Designing multilevel surveys may

be very complicated, since the values of the predictor variables are not under

experimental control, whereas their means, variances, and covariances as ex-

pressed in the design matrix, as well as the covariance matrix of the random

effects, need to be known in advance to design the survey optimally. We will

first derive optimal sample size formulae when there is just one explanatory

variable at either the pupil or school level, and thereafter focus on the case with

more than one explanatory variable. Optimal designs for variance parameters

are the subject of the next section.

Let us first assume that the multilevel model only contains a school-level

explanatory variable xj :

yij = β0 + β1xj + δ0j + ǫij .

For this model, it can be shown [30, Chapter 4] that the Var(β̂1) is equal to

Var(β̂1) =
σ2 + n1τ

2
0

n1n2s2x
,

where s2x is the variance of xj defined as
∑
j(xj − x̄.)

2/n2. This variance

reduces to 1 if xj is a treatment coded −1 and +1 with both values occurring

with 50% probability, as in Table 4.1. The optimal sample sizes for estimating

β1 as efficiently as possible are equal to those for optimal experimental designs

with school-level randomization as given in Table 4.1.

Now suppose that the explanatory variable is a pupil-level variable xij
with school mean zero and that treatment by school interaction is absent.

Then

Var(β̂1) =
σ2

n1n2s2x
, with s2x =

∑

j

∑

i

(xij − x̄.j)2/n1n2, (4.16)

see Moerbeek [30, Chapter 4]. Again, the optimal sample sizes can be found

in Table 4.1 and are equal to those for randomization at the pupil level and

no treatment by school interaction.

Now suppose that the model also contains a random slope, i.e.,

yij = β0 + β1xij + δ0j + δ1jxij + ǫij .

For this model, Var(β̂1) is equal to

Var(β̂1) =
σ2 + n1τ

2
1 s

2
x

n1n2s2x
(4.17)

if the explanatory variable xij has school mean zero and its variance s2x is the

same within each cluster. The optimal sample sizes are given in Table 4.1 and
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are equal to those for randomization at the pupil level and a random slope if

σ2 is replaced with σ2/s2x. Note that the variance s2x in (4.16) and (4.17) is

equal to 1 if xij is treatment coded −1 and +1 and both values occur with

50% probability within each cluster, as in Table 4.1.

Sample size formulae for the model with explanatory variables at the

pupil and/or school level, with cross-level interaction terms and with fixed

or random slopes for the pupil-level variables are presented by Snijders and

Bosker [57]. Their computer program PinT (Power in Two-level designs) [4]

calculates approximate standard errors of regression coefficients for different

combinations of n1 and n2 using the cost constraint (4.1).

To illustrate the use of the program PinT, we work out the following

example. Suppose we want to assess the relationship between a test score on

the one side and the pupil’s socio-economic status (SES) and school size on the

other side. The data structure has two levels: Pupils are nested within schools.

The budget C that is available for his study is equal to 500c1, whereas the

costs c2 for sampling a school are equal to 5c1, with c1 the costs for sampling

a pupil in an already sampled school. Figure 4.4 shows the total number of

pupils and the number of schools as a function of the number of pupils sampled

per school as calculated by PinT. As follows from this figure, the number of

schools decreases as the number of pupils per school increases. This is obvious,

since with large n1, less money is available for sampling schools. For the same

reason, the total number of pupils increases with the number of pupils per

school, see Fig. 4.4.

In order to select the optimal sample sizes, a multilevel regression model

must be specified and an optimality criterion must be chosen. Let us assume

the effect of SES on the test score is constant across schools. The multilevel

model then becomes

yij = β0 + β1SES ij + β2SCHOOL SIZE j + δ0j + ǫij , (4.18)

where yij is the score of pupil i within school j. Standard errors of both

estimated regression coefficients will be used as optimality criteria. To calcu-

late approximate standard errors for these regression coefficients, a reasonable

guess of the within- and between-school covariance matrices ΣW and ΣB of

the predictor variables and of the variances of the random effects is needed.

In the PinT manual, guidelines for obtaining such guesses are given. For

convenience, it is assumed that all predictor variables have zero mean and

variance 1. We assume that 80% of the variance in SES is located at the pupil

level; thus, ΣW = (0.8). The remaining 20% is between-group variance. The

covariance of SES and SCHOOL SIZE is assumed to be equal to 0.2; thus,

ΣB =

(
1 0.2

0.2 0.2

)
.
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Furthermore, let us assume that σ2 = 0.6 and that τ2
0 = 0.1. The standard

errors of β̂1 and β̂2 for these values are plotted in Fig. 4.5. Note that se(β̂1) <

se(β̂2) and that the se(β̂2) is a convex function of n1, whereas se(β̂1) decreases

with increasing n1. Thus, the optimal design for estimating the effect of SES

on the test score as efficiently as possible is achieved by taking n1 as large

as possible. The optimal design for estimating β2 as efficiently as possible,

however, is obtained for n1 = 5. But since the function of se(β̂2) is quite flat

near this formal minimum, values of n1 close to this formal minimum may be

chosen as an alternative.

4.8 Optimal Designs for Variance Parameters

Although the regression coefficients are generally of main interest, in some

multilevel studies one may also be interested in estimating the variance param-

eters as efficiently as possible. For two levels of nesting asymptotic variances of

the variance components in a linear multilevel model with a random intercept

and a fixed slope are given by Longford [27] and shown in the first column of

Table 4.3. The optimal sample sizes for estimating the variance components as

efficiently as possible given the cost restriction (4.1) were derived by Cohen [7].

To obtain sample size formulae of practical use, Cohen used an approximation

to the Var(τ̂2
0) and showed that the optimal sample sizes for this approximated

Var(τ̂2
0) are usually the same as those for the true Var(τ̂2

0). The optimal n1 are

also presented in Table 4.3; the optimal n2 follow from the cost restriction.

The variance of ρ̂ was given by Donner [8] and is also shown in Table 4.3.

For this parameter, the analytical formulae for the optimal sample sizes are

too complex. Instead, one may substitute n2 = C/(c1n1 + c2) into the Var(ρ̂),

which is then a function of n1 and ρ, c1, c2, and C. Once a reasonable prior

Table 4.3 Variance of variance components and intraclass correlation coefficient

and optimal n1.

Optimality criterion Optimal n1

Var(σ̂2) =
2σ4

n2(n1 − 1)

C − 2c2
2c1

Var(τ̂2
0) =

2σ4

n2n1

[

1

n1 − 1
+ 2

ρ

1 − ρ
+ n1

(

ρ

1 − ρ

)2
]

√

c1

(

c1 + 8c2
ρ

1 − ρ

)

+ c1

2c1
ρ

1 − ρ

Var(ρ̂) =
2[(1 − ρ)(1 + (n1 − 1)ρ)]2

n1(n1 − 1)(n2 − 1)
Analytical formula complex
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Fig. 4.6 Variance of ρ̂ as a function of the number of pupils per school and ρ.

specification of the value of ρ has been made, the Var(ρ̂) may be plotted as

a function of n1 and the optimal n1 may be established. Such a plot is given

in Fig. 4.6, in which the Var(ρ̂) is plotted as a function of the true ρ and the

number of pupils per school for c1 = 100, c2 = 200, C = 8000. As follows from

this figure, the Var(ρ̂) increases with the true ρ. The value n1 at which the

Var(ρ̂) is minimized decreases when the true value ρ increases.

Although we use the variance of the estimators σ̂2, τ̂2
0, and ρ̂ as optimality

criterion, it has to be noted that the estimators are skewed and thus statistical

tests of and confidence intervals for these parameters do not only depend on

the variance.

4.9 Robustness of Optimal Designs

The values of the parameters of the multilevel random effects regression model

that is used to analyze the data have to be known in advance to plan multilevel

studies as efficiently as possible. On the other hand, the study is implemented

to get some knowledge of the values of these unknown parameters. To solve

this problem, one may use a reasonable prior specification of these parameter

values. Such values may be obtained from the results of comparable studies

(see the references in Table 1 of Murray et al. [43]), from a pilot study or

from theoretical opinions about the minimally relevant treatment effect. One
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may, however, wonder to what extent the optimal design is robust against

misspecification of the model parameters. For each model parameter θ, the

robustness can be expressed in terms of the relative efficiency as given by

(4.2). If, for example, Φ(M−1(X(η, ξ),θ)) = Var(β̂1) and randomization is

done at the school level, the efficiency of the design ξ = (n1, n2) obtained

with an incorrect prior specification of the value of ρ relative to the efficiency

of the design ξ∗ = (n∗1, n
∗
2) obtained with the true value of ρ is given by
(
n∗1ρ+ (1− ρ)
n1ρ+ (1− ρ)

)(
n1n2

n∗1n
∗
2

)
,

where ρ is the true value of the intra-school correlation coefficient.

As an example, let us consider the model (4.4) with randomization at the

school level and no treatment by school interaction (i.e., τ2
1 = 0). The optimal

sample sizes for estimating β1 are given in Table 4.1, whereas those for the

variance components σ2 and τ2
0 can be found in Table 4.3. The intra-school

correlation coefficient ρ needs to be known in order to calculate the optimal

sample sizes for β1 and τ2
0 . Let us assume that C = 10000, c1 = 2, and c2 = 30,

and that the true ρ = 0.07. Then the robustness of the optimal designs for β1

and τ2
0 is plotted in Fig. 4.7 in terms of the relative efficiency as a function

of ρ. As follows from this figure, the optimal design for β1 is a bit more

robust against incorrect prior guesses of ρ than the optimal design for τ2
0 . For

ρ = 0.07, the relative efficiency especially decreases very rapidly when a too

low prior guess for ρ is supplied. When the incorrect prior guess of ρ lies within

the interval [0.04, 0.15] the relative efficiency for both parameters is high (i.e.,

> 0.9). This is, however, not necessarily the case for each combination of C,

c1, and c2.

Different approaches have been proposed to derive robust optimal designs

for multilevel model. One such approach is the use of sample size re-estimation.

The optimal sample sizes are calculated based on prior estimates of the model

parameters as obtained from subject-matter knowledge or an educated guess.

Then, a predefined proportion of the number of clusters or of the number

of persons within clusters is sampled, the data are collected, and the model

parameters are estimated on basis of the collected data. Then, the optimal

sample sizes are re-estimated and the remainder of the data are collected. All

data are used in the final analysis; hence, the pilot is referred to as an internal

pilot. This approach has been evaluated for cluster randomized trials [22] and

surveys with nested data [31] by means of simulation studies. The results

showed that sample size re-estimation has large control over power and the

costs of the study. Another approach is the use of Bayesian optimal designs

[59, 61]. This approach allows taking uncertainty about the model parameters

into account by specifying prior distributions of these parameters. Then, a

large number of times the model parameters are sampled from their prior

distributions, and the power levels of the test statistic of the model parameter
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of interest are calculated. The power distribution that is thus obtained reflects

the uncertainty in the model parameters. The computer program WINBUGS

can be used to calculate Bayesian optimal designs [60]. Another approach to

calculate robust optimal designs is the use of maximin optimal designs. A

maximin optimal design is the design among all possible designs in the design

space χ that maximizes the minimum relative efficiency over the parameter

space. For an application of maximin optimal designs, we refer to Berger and

Tan [3].

4.10 Concluding Remarks

In this chapter, four design issues for the design of multilevel experiments and

surveys were considered: the required budget to obtain a specified power on

the test of a certain parameter, the optimal sample sizes at each level of the

multilevel data structure, the robustness of optimal designs, and the optimal

level of randomization to treatment conditions. As optimality criterion, the

variance of model parameters was used, since minimum variance leads to

maximum power of statistical tests, at least assuming unbiased parameter

estimation and an approximately normal distribution of the estimator. When
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designing multilevel experiments, the treatment effect is generally of main

interest and so its variance is used as optimality criterion. For multilevel

surveys, more than one parameter may be of interest and it may be worthwhile

to derive a multiple-objective optimal design [40].

The statistical optimality criteria may or may not conflict with other

criteria. In some circumstances, ethical criteria may be applied. For example,

in some experiments it may be unethical to treat certain individuals within

a certain cluster while others are not treated. In this case, randomization

at the individual level will become impossible. Practical criteria consist of

the need to reduce costs and administrative efforts, political and logistical

reasons, and the need to avoid control group contamination, which occurs

when information leaks from the intervention group to the control group.

Sometimes there is no alternative to cluster randomization. This may occur

in, for example, community-based interventions where the intervention will

necessarily affect all members of a cluster.

The optimal sample sizes as given in this chapter may be considered as

guidelines that have to be pursued as much as possible in designing multilevel

studies. They were calculated under the assumption that cluster sizes do not

vary and that the costs do not vary across treatment conditions, which is not

always plausible in practice. For instance, school sizes in private schools may

be smaller than those in public schools. And even if school sizes were equal,

there will always be some non-response due to drop-out or for other reasons.

The effects of unbalanced cluster sizes on the variance of the treatment effect

estimator in cluster randomized trials are studied by Manatunga et al. [28],

Kerry and Bland [20], and Van Breukelen et al. [63]. The assumption of equal

costs across treatment conditions may also be unrealistic, and optimal sample

size formulae for varying costs per treatment condition have been published

by Liu [26].
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Many Small Groups

Stephen W. Raudenbush

University of Chicago, Department of Sociology

5.1 Introduction

Hierarchical data from many small clusters arise by necessity and by design.

They arise by necessity when the aim is to study married couples [1], identi-

cal twins [25], siblings [12], paired comparison tasks [2], cooperative learning

groups [36], multiple informants of child social behavior [20], and studies of

animal reproduction [35]. They arise by design in cross-sectional studies: clus-

ter randomized trials [11, 18], multisite randomized trials [3, 6], and surveys

that sample a small number of persons in each of many neighborhoods [14] or

a small number of teachers in each of many schools [17]. In repeated measures

studies, it is common to encounter small numbers of observations for each of

many persons in short time-series designs, such as studies of student learning

based on annual assessments [37], the extreme case being a pre-post design.

In my experience teaching methods for multilevel data, students and other

workshop participants have often expressed dismay that their data involve

many clusters but few cluster members. However, there are often good reasons

for such design choices. If the primary aim of a study is to estimate fixed

regression coefficients (as opposed to variance components or realizations of

random effects), a design that minimizes cluster size, n, and maximizes the

number of clusters, J , may be optimal (cf. Chapter 4 in this volume; also

[7, 26, 30, 38]). Optimal n per cluster depends on the cost of sampling at each

level, the magnitude of variation at each level, and research question at hand.

Choosing a small n is wise when little variability exists within clusters or

when it is comparatively expensive to assess each individual within a cluster

(relative to the cost of sampling clusters).

Yet, under certain conditions, the “small n, large J” scenario can pose chal-

lenges to valid statistical inference and can create demanding computational
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tasks as well as problems of statistical precision. The problems are likely to

be less challenging in the case of linear models with normal random effects

at each level and more challenging when non-linear link functions and non-

normal data are involved. These problems are likely to be less challenging

when the aim is to estimate fixed regression coefficients, and more challenging

when the aim is to draw inferences about random regression coefficients (e.g.,

cluster-specific intercepts and slopes) or to estimate variance and covariance

components at the second level of the hierarchy. I provide a brief overview of

each scenario before considering each in more detail.

5.1.1 Linear Models, Normal Random Effects

Consider a two-level setting with J clusters and n members per cluster. One

aim might be to study fixed regression coefficients. A second aim might be

to study random coefficients, that is, cluster-specific coefficients defined as

randomly varying over clusters. A third aim might entail inference about

variation and covariation in such random coefficients defined as a universe of

clusters. How the “small n, large J design” fares will depend on which of these

three aims is of central interest in a given study.

For linear models with normal random effects at each level, having “small n

and large J” generally creates no problems in statistical inference in estimating

fixed regression coefficients. Such a design will be inefficient if it is far more

expensive to sample clusters than to sample cluster members, especially if

variation within clusters is large relative to variation between clusters. In other

cases, such a design may be optimal. Either way, inferences about regression

coefficients proceeds smoothly, and it is a simple matter to compute consistent

and robust standard errors as a check on the sensitivity of inferences to model

assumptions.

When the aim is to estimate cluster-specific intercepts or slopes, “the small

n, large J” strategy tends to be more problematic unless the fit of the model

at level 1 is very good. Holding constant the fit of the model, the optimal

sample size per cluster for estimating random coefficients and second-level

variance components will tend to be larger than when the aim is to estimate

fixed regression coefficients. In part, the difficulty is simply one of obtaining

adequate precision with available resources. However, a more subtle problem

is that the likelihood for the second-level variance will sometimes tend to

be skewed even if J is quite large. In this scenario, the maximum likelihood

(ML) estimator may poorly represent the plausible values of the variance,

and inferences based on large-sample normal theory for the ML estimator can

be misleading. Moreover, empirical Bayes estimates [cf. 23] of cluster-specific

intercepts (or slopes), which condition on the ML estimator of the second-level

variances, may be accompanied by negatively biased standard errors.
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In general, the researcher must keep the complexity of the model of the

covariance structure at level-2 in check when n per cluster is small. In essence,

the lack of data at level 1 requires the imposition of more assumptions (e.g.,

that certain slopes don’t vary). The availability of robust standard errors

minimizes the impact of these assumptions on inferences about the fixed

regression coefficients, but this insurance does not apply to inferences about

the random coefficients or the variance-covariance components.

5.1.2 Non-Linear Links and Non-Normal Random Effects

As mentioned, the problems that can afflict variance estimation in the “small

n, large J” scenario do not seriously affect inference about the fixed regres-

sion coefficients in the case of linear models and normal random effects.

This happy result, which derives from the asymptotic orthogonality of the

variance estimates and the mean structure estimates under normality and

linearity, does not extend to the case of non-linear link functions and non-

normal random effects. For these models, beliefs about level-2 variability have

potentially strong implications for beliefs about the mean as characterized

by regression coefficients. The sensitivity of the fixed regression coefficients

to inferences about variances is more pronounced under unit-specific than

population-average models [15].

Moreover, concerns about inferences for random coefficients and variance

components, mentioned above in the case of linear models and normal random

effects, are, if anything, more pronounced in the case of non-linear models

and non-normal random effects. Discrete data generally carry less information

per cluster, holding constant n, than do continuous data. This tendency is

especially pronounced when the outcome data are highly skewed; examples

involve binary outcomes with small probabilities of occurrence and counts

based on low event rates.

Finally, a computational problem arises in the non-linear case that is not

present in the linear-normal case. In general, likelihood-based inference for

hierarchical models requires integration of the random effects from the joint

distribution of the random effects and the observed data. The required integral

is available in closed form in the linear-normal case. In the non-linear and

non-normal case, the integral is not available in closed form and must be

approximated using numerical or Monte Carlo methods (see Chaps. 6 and 9

in this volume). If n per cluster is sufficiently large, approximating the integral

is comparatively easy because the integrand tends toward normality. When n

is small, the integration problem is more challenging, though this problem is

clearly soluble given current knowledge and technology.
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5.1.3 Focus and Organization of This Chapter

Attention is confined in this chapter to two-level models where the level-1

outcome, conditional on the random effects, is distributed according to an

exponential family with canonical link function (e.g., continuous outcomes

with identity link, binary outcomes with a logit link; Poisson-distributed count

data with a log link). Some or all of the coefficients at level 1 vary over

level-2 units according to a multivariate normal distribution. Although model

checking and robust variance estimation are essential, assuming normality at

level 2 is useful for planning research and for considering the issues that arise

in the “small n, large J” scenario, the focus I have been assigned in this

chapter.

I will generally be concerned with likelihood-based inference. This includes

inference based on Bayesian methods, which converge to likelihood-based in-

ference in the case of large J . I will comment briefly on the added value of the

Bayesian perspective in certain contexts, but I refer the reader to Chapter 2

for a thorough discussion of that perspective.

After this introduction, the second section considers the model. The third

section considers how the model might be tailored to specific applications

when n per cluster is small by necessity or by design. The fourth section

considers statistical issues that arise in linear models with normal random

effects. The fifth section considers the additional issues that arise in the non-

linear and non-normal case.

5.2 The Model

The linear models I will discuss have the form

y
j

= Xjβ +Zj δj + ǫj , (5.1)

where

• y
j
[nj , 1] is the vector of outcomes with elements yij , the outcome for the

i-th level-1 unit within the j-th level-2 unit;

• Xj [nj , f ] is a known matrix of predictors associated with the fixed effects

vector β[f, 1];

• Zj [nj , r] is a known matrix of predictors associated with the random effects

vector δj [r, 1]; and

• ǫj [nj , 1] is a vector of level-1 random effects having elements ǫij .

The indices thus identify level-1 units i = 1, . . . , nj nested within level-2 units

j = 1, . . . , J . In many applications, we will have nj people nested within

cluster j, but in some cases, the level-1 units will be repeated measurements

nested within people.
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For the expository purposes of this chapter, we will assume the level-1

random effects ǫij to be independently and identically distributed as N (0, σ2)

unless otherwise specified. These are also independent of the level-2 random

effects vectors δj , j = 1, . . . , J , which are independently and identically dis-

tributed as r-variate N (∅,Ω).

Equation (5.1) is the “mixed model” formulation. In specifying this model,

it is often conceptually appealing to build it level by level. Thus, we will write

the level-1 model as

y
j

= Ujβj + ǫj , (5.2)

where Uj [nj , p] is the matrix of level-1 predictors having rows U ′
ij [1, p], and

β
j
[p, 1] is a vector of level-1 coefficients. At level-2, the level-1 coefficients

become outcomes:

β
j

= Hjγ + δj , (5.3)

where Hj [p, f ] is the matrix of level-2 predictors and γ is the f × 1 vector of

level-2 coefficients. Substituting (5.3) into (5.2) produces a combined model

y
j

= UjHjγ +Ujδj + ǫj , (5.4)

which is clearly a special case of the mixed model (5.1) with

Xj = UjHj ; Zj = Uj .

The mixed model formulation is more general than the combined model (5.4)

because (5.4) requires every level-1 coefficient to have a random effect at level

2 (p = r). However, the structure of the combined model (5.4) is quite useful

for expository purposes. Particularly if we can assume Uj to be of full column

rank p, we can gain insight by writing the combined model using the ordinary

least squares estimator as the outcome:

(U ′
jUj)

−1U ′
jyj = β̂

j
= Hjγ + δj + ǫj , (5.5)

where ǫj ∼ N [∅, σ2(U ′
jUj)

−1]. Note that U ′
jUj =

∑nj

i=1UijU
′
ij ≡ njΣu. Note

further that, given β
j

= βj , the variance covariance matrix of β̂
j

is

Var(β̂
j
| β

j
= βj) =

σ2

nj
Σ−1
u .

This conditional variance will be small if (a) nj is large; (b) σ2, which measures

the misfit of the level-1 model, is small; or (c) Σu, the dispersion of the level-1

predictors, Uij , is large.

In clarifying how the level-1 design affects precision of estimation of model

parameters, a useful concept is the multivariate reliability matrix
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Λj = Cov(β
j
, β̂

j
)
[
Var(β̂

j
)
]−1

= Ω∆−1
j = Ω

(
Ω +

σ2

nj
Σ−1
u

)−1

. (5.6)

Equation (5.6) defines a matrix of regression coefficients that emerge when the

true random coefficients β
j

are regressed on the least squares estimates β̂
j
.

Note that, holding constant Ω, Λj converges to the identity matrix Ir when

(a) nj becomes large, (b) σ2 becomes small, or (c) Σu becomes large, meaning

that Σ−1
u converges to the null matrix.

The combined model (5.5) creates a useful framework within which we can

study the properties of estimators of the three quantities of interest: the fixed

regression coefficients, γ; the random coefficients, β
j
, j = 1, . . . , J ; and the

variance-covariance components, Ω.

5.2.1 Fixed Regression Coefficients

The variance-covariance matrix of β̂
j
, the outcome of (5.5), is

Var(β̂
j
) = Var(δj + ǫj) = Ω +

σ2

nj
Σu = ∆j .

This leads immediately to the generalized least squares estimator

γ̂ =




J∑

j=1

H ′
j∆

−1
j Hj




−1
J∑

j=1

H ′
j∆

−1
j β̂j , (5.7)

which has as its variance matrix

Var(γ̂) =




J∑

j=1

H ′
j∆

−1
j Hj




−1

. (5.8)

Equation (5.7) assumes ∆j to be known. In practice, it will equated to its

ML or restricted ML estimator [see 5, Chapter 10].

A useful re-expression for (5.8) is

Var(γ̂) =




J∑

j=1

H ′
jΩ

−1ΛjHj




−1

. (5.9)

As (5.9) shows, the weight accorded each unit j in the estimation of γ is

proportional to its reliability matrix Λj .

Example 1. Suppose Hj is the identity matrix. Thus, γ is the population

mean of β
j
. Then the information in the data about γ is the precision of γ̂,

that is, the inverse of its variance
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[Var(γ̂)]−1 = Ω−1
J∑

j=1

Λj . (5.10)

Increasing nj will increase the information about γ only by pushing Λj toward

Ir. If Λj is already near Ir because σ2 is small or Σu is large, increasing nj
will add little to the information about γ. However, if σ2 is appreciable and

Σu is modest, and especially if it is comparatively inexpensive to increase nj ,

doing so may add significantly to the information about γ at small cost.

Example 2. Suppose further that β
j

is univariate and is, in fact, the mean of

y in cluster j. Thus, β̂
j

is the sample mean y
j
. Then (5.10) becomes

[Var(γ̂)]−1 =
J∑

j=1

λj
ω
,

where ω = Var(β
j
) and

λj =
ω

ω + σ2/nj
.

Here, λj is the ratio of the variance ωj of the “true mean” β
j

to the variance

of its estimator, the sample mean y
j
. We will use this expression several times

in later discussions.

5.2.2 Random Regression Coefficients

The conditional mean of the random effect δj given the data y = y (and thus

β̂
j

= β̂j) and the parameters (γ, σ2,Ω) is

E (δj | y,γ,Ω, σ2) = δ∗j = Λj(β̂j −Hjγ). (5.11)

When ML estimates are substituted for the unknown parameters in (5.11),

δ∗j is the empirical Bayes posterior mean commonly used as a point estimate

of the unknown random effect δj . Note that this posterior mean is simply

the least squares residual β̂j −Hjγ “shrunk” toward a mean vector of zero.

The amount of shrinkage is large when Λj is small, that is, when the least

squares estimator β̂
j

is unreliable, as will be the case when nj is small unless

the level-1 model fits the data well so that σ2 is small or unless Σu is large.

If one wishes to estimate the coefficient βj rather than the random effect δj ,

the corresponding expression is

E (β
j
| y,γ,Ω, σ2) = β∗

j = Λjβ̂j + (Ir −Λj)Hjγ. (5.12)

This is the well-known weighted average of the data-based estimate β̂j and

the prior mean Hjγ. Large weight is accorded the data-based estimater when
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Λj is near Ir, that is, the least squares estimator is highly reliable. Large

weight is accorded the prior mean otherwise.

Given the parameters, the posterior variance of the random effect and the

random coefficient are equal, that is,

Var(δj | y, σ2,Ω,γ) = Ω(Ir −Λj).

Thus, the posterior uncertainty about the random effect is the product of the

prior uncertainty Ω and Ir−Λj . If we consider yj to constitute the observed

data while δj constitutes the missing data, we can define Ir − Λj as the

fraction of missing information in cluster j.

5.2.3 Variance-Covariance Components

For simplicity, let us assume that σ2 is known. Given large J , the estimate of

σ2 will be precise in any case. At each iteration, the Fisher scoring estimate

of Ω will then be equal to the iterative generalized least squares estimator

[see 29, Chapter 14]

vech(Ω̂) =




J∑

j=1

(X∗)′(V ∗
j )−1X∗




−1
J∑

j=1

(X∗)′(V ∗
j )−1Y ∗

j , (5.13)

where vech(·) denotes the vector of unique elements of a matrix, and

X∗ =
∂ vec(Ω)

∂(vech(Ω))′
,

V ∗
j = 2(∆j �∆j),

Y ∗
j = vec

[
(β̂

j
−Hjγ)(β̂

j
−Hjγ)′ − σ2(U ′

jUj)
−1
]
.

Each term on the right side of (5.13) is evaluated at the parameter estimates

from the previous iteration. The asymptotic variance matrix at convergence

is the inverse of the expected information

Var
[
vech(Ω̂)

]
≈




J∑

j=1

(X∗)′(V ∗
j )−1X∗




−1

= 2



(X∗)′




J∑

j=1

(
∆−1
j �∆−1

j

)

X∗





−1

= 2
(
(X∗)′

(
Ω−1 �Ω−1

) J∑

j=1

(Λj �Λj)X
∗
)−1

. (5.14)

Once again, the multivariate reliability Λj of β̂
j

plays a central role in under-

standing how nj affects precision. This becomes clear in a simple example.
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Example 3. Once again, let us consider the case in which β
j

is a scalar,

the mean of cluster j, so that Ω = ω is also a scalar. Then the Fisher infor-

mation for ω is the inverse of (5.14), which becomes

[Var(ω̂)]−1 = 1
2

J∑

j=1

λ2
j/ω

2,

where λj and ω are evaluated at the MLE. Thus, the information contained

in each level-1 unit about the level-2 variance is the sum of squared reliabil-

ity coefficients. It is because this sum of squares is likely to be small when

the typical n is small that small n can sharply undermine precision of the

estimation of the level-2 variance, even when J is fairly large.

5.3 Some Applications

The “small n, large J” setting arises by necessity and by design. It arises by

necessity when the object is to study twins, siblings, or married couples, and

when repeated measures studies by necessity involve few time points. It arises

by design when “small n, large J” is desirable for statistical efficiency or cost

considerations.

5.3.1 Small n, Large J of Necessity

Matched Pair Designs

Two types of matched pair designs may be distinguished: those in which pair

members are exchangeable and those in which pair members are always dis-

tinguished by an observed characteristic. A paradigm case of exchangeability

involves studies of twins. Although twin members may differ by gender, they

often do not. A second case involves randomly selected pairs of observers

chosen to assess a person or some other entity such as a classroom. In contrast,

many other matched pair designs involve non-exchangeable pair members.

Examples include pre-post designs, studies of heterosexual couples, or exper-

iments in which one pair member is assigned randomly to an experimental

group and a second is assigned to a control. The analytic model will be

generally different in these two cases.

Exchangeable Pair Members

We might begin with a simple unconditional model
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yij = β0 + δ0j + ǫij , (5.15a)

δ0j
iid∼ N (0, ω00), (5.15b)

ǫij
iid∼ N (0, σ2), (5.15c)

for i = 1, 2 and j = 1, . . . , J . Here the i subscript is exchangeable. Given

balanced data, the ML estimates of the population mean β0, the within-pair

variance σ2, and between-pair variance ω00, have an interesting structure:

β̂0 =
1

2J

J∑

j=1

2∑

i=1

yij ,

σ̂2 =
1

2J

J∑

j=1

(y1j − y2j)
2,

ω̂00 = max





1

J

J∑

j=1

(y1j − β̂0)(y2j − β̂0), 0



 .

Thus, the between-pair variance estimate is the sample covariance between

pair members while the within-pair variance estimate is the average squared

difference between pair members.

The variance of the mean estimate depends on the reliability λ = ω00/(ω00

+ σ2/2) by

Var(β̂0) =
ω00

Jλ
.

Clearly, increasing nj is not an option here. If within-pair differences are small,

λ may still be near 1.0, restricting how large J must be to obtain adequate

precision.

In a similar vein, the variance of the between-pair variance estimate also

depends strongly on λ. When σ2 is unknown, we have (for ω00 > 0)

Var(ω̂00) =
2ω2

00

(J − 1)λ2

[
1 + (1− λ2)

J − 1

J(n− 1)

]
.

In studies that compare monozygotic to dizygotic twins, one might compute

the correlation ρ̂ = ω̂00/(ω̂00 + σ̂2) for each group. One might also compute

a single model that constrains the means to be equal but allows the variance

components to differ for the two types of twins. Other twin types of interest

might be same-gender, both-male, or both-female pairs.

A likely goal in twin designs or other sibling designs is to compare pair

members who have experienced some different treatment or environment.

Such a design eliminates unobserved heterogeneity between twin pairs in the

evaluation of causal effects. The model can easily be elaborated to include

within-pair and between-pair covariates:
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yij = β0 +
P∑

p=1

Upijβp +

Q∑

q=1

HqjβP+q + δ0j + ǫij ,

δ0j
iid∼ N (0, ω00),

ǫij
iid∼ N (0, σ2),

where Upij are within-pair covariates, Hqj are between-pair covariates, and

the within- and between-variances (σ2, ω00) are now residual variances.

Non-Exchangeable Pair Members

Consider now a study of heterosexual couples. A level-1 variable—gender—

thus discriminates between pair members within every pair. We might now

modify the matched pairs model of (5.15) by adding a level-1 variable. How-

ever, such a model has only two variance components, which enforces the

assumption that men and women have equal variances. A simple fix is to

allow distinct level-1 variances, one for each gender:

yij = β00 + β1(Female)ij + δ0j + ǫij ,

where (Female)ij is an indicator for females and ǫij has variance σ2
F for females

and σ2
M for males. The marginal distribution of the pair of outcomes is thus

bivariate normal:
(
y
Mj
y
Fj

)
∼ N

((
β0

β0 + β1

)
,

(
ω00 + σ2

M ω00

ω00 ω00 + σ2
F

))
. (5.16)

This reveals that this two-level hierarchical model is equivalent to the multi-

variate model

yij = (Female)ij(βF + δF ) + (Male)ij(βM + δM ), (5.17)

where (Male)ij = 1 − (Female)ij is an indicator for males, and the bivariate

normal distribution is given by

(
y
Mj
y
Fj

)
∼ N

((
βM
βF

)
,

(
ωMM ωMF

ωFM ωFF

))
. (5.18)

Equalities between (5.17) and (5.18) are clear. Level-1 and level-2 covariates

can again be added as needed given the research problem at hand.

A limitation of model (5.18) and, equivalently, of (5.16) is that variances

and covariances and, hence, correlations, are not adjusted for measurement

error. By exploiting information about measurement errors, one can solve this

problem, extending (5.17) to create

yij = (Female)ij(βF + δF + eFj) + (Male)ij(βM + δM + eMj),
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where eFj and eMj are measurement errors with variances assumed known,

leading to the bivariate distribution

(
y
Mj
y
Fj

)
∼ N

((
βM
βF

)
,

(
ωMM + σ2

e ωMF

ωFM ωFF + σ2
e

))
.

Here the measurement error variances are assumed equal for males and fe-

males. This assumption can readily be abandoned if there is evidence that

measurement error variances depend on gender. Applications of this model

appear in Barnett et al. [1]. Raudenbush et al. [27] extend the model to include

repeated measures.

Short Time Series

The “small n, large J” scenario arises in many studies of individual change. For

example, researchers may use a school’s annual testing program to construct

child-specific records of cognitive growth during the elementary years [37].

Here n is the number of time points per child and generally will not exceed five

or six. Modeling issues that arise in this scenario are discussed elsewhere in this

volume (see Chapter 7). Small within-person errors lead to small σ2. Moreover,

individuals are often quite heterogeneous on growth parameters, which are the

random coefficients β
j
. In this setting, multivariate reliabilities (5.6) are quite

high. For example, in Bryk and Raudenbush’s study of academic learning

during pre-school [5, Chapter 6], least squares estimates of person-specific

intercepts and growth rates displayed reliabilities of about .80. While one tends

to recommend that the number of random effects per level-2 unit should be

small when n is small, I have often found that time series as short as five points

per person will often support quadratic or even cubic growth models with

ease, producing 3 or 4 random coefficients per person. This result contrasts

with data collected on persons nested within schools or neighborhoods where

the level-1 fit is often poor and the clusters are not highly heterogeneous

with respect to random coefficients of interest. In these cases, the number of

random coefficients per cluster must be sharply curtailed when n is small.

In longitudinal studies, however, study duration will often be more impor-

tant than nj in influencing Λj and, therefore, the precision of estimation of

model parameters. Let D denote the duration of the study in some meaningful

metric (e.g., years) and let n denote the number of time-series observations.

Then, assuming equally spaced observations starting at time 0, the frequency

of observation will be (n−1)/D observations per year. Consider, for example,

a simple straight-line growth model for level 1 (time series i = 1, . . . , n within

participant j):

yij = β0j + β1jDi + ǫij .
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Here Di is the duration of the study at the time of observation i. Then we

have a special case of (5.6) with

Var
(
β̂1j | βj = βj

)
=
σ2

n

/
D2(n+ 1)

12(n− 1)
,

so that the reliability of the least squares estimator becomes

λj =
ω11

ω11 +
σ2

n

/
D2(n+ 1)

12(n− 1)

.

Suppose, for example, we choose n = 5 time points with a frequency of one

observation per year, so that the duration of the study is D = 4. Then the

reliability will be ω11/(ω11+σ2/10). On the other hand, with the same number

of time points (n = 5) but with frequency twice per year, the duration would

be D = 2. Now the reliability is ω11/(ω11+σ2/2.50). Despite holding constant

the number of time points, the second study produces a reliability that is likely

substantially diminished because the duration of the study has been reduced,

reducing the leverage in estimating the growth rate.

5.3.2 Small n, Large J by Design

In general, the researcher must keep the complexity of the model of the

covariance structure at level-2 in check when n per cluster is small. With

this caveat in mind, we will see that “small n, large J” can produce excellent

statistical power for some but not all research questions. In particular, we will

examine cases for which 2 < n < 12 and J = 100.

Most two-level cross-sectional designs can be viewed as closely related

to two classical experimental designs: the cluster-randomized trial and the

multi-site randomized trial. In the cluster-randomized trial, the key contrast

of interest is at level 2—the cluster level. For the multi-site randomized trial,

the key contrast is at level 1. The basic design features extend to quasi-

experimental designs, though small adjustments are needed to accommodate

covariates.

Cluster-Randomized Trials

In this design, clusters rather than persons are randomly assigned to treat-

ments. Random assignment of persons is not typically feasible or desirable

given the nature of the treatment, which is crafted to operate on the entire

cluster, or because of concerns about diffusion of the treatment within clusters.

The design serves as an ideal type for many observational studies, including

comparisons of public and private schools [4, 8].
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The model may be written simply as

yij = β0 + β1(Treatment)j + δ0j + ǫij ,

where we assume a balanced design with n participants per cluster and with

J/2 clusters in each treatment. Here (Treatment)j is coded as 0.5 for ex-

perimentals and −0.5 for controls; thus β1 is the mean difference between

treatments. To evaluate power for “small n, large J”, we define

Var(δ0j) = ρ; Var(ǫij) = 1− ρ,

where ρ is the intra-cluster correlation coefficient, and the treatment effect

β1 is now a standardized effect size. Assuming ρ > 0, the F -statistic for

H0 : β1 = 0 is distributed under the alternative hypothesis as a non-central

F with non-centrality parameter Jβ2
1λ/(4ρ) with

λ =
ρ

ρ+ (1− ρ)/n.

Thus, power will increase as the number of clusters J and the effect size β1

increase and as ρ decreases. Here λ (0 < λ < 1) may again be thought of as

the penalty for small n; holding constant ρ, λ converges to 1.0 as n increases.

Note therefore that as n increases, the non-centrality parameter converges

to a limit of Jβ2
1/(4ρ) (ρ > 0), while the non-centrality parameter increases

without bound as J increases. In this sense, increasing J is more effective than

increasing n in driving up the power as long as ρ > 0.

Figure 5.1 displays power for several values of the effect size and ρ as n

varies from 2 to 10, holding J constant at 100. For a standardized effect size of

0.50, power is uniformly high. However, such an effect size is typically viewed

as quite large in many social and educational interventions. For a much more

modest effect size of β1 = .30, only n = 4 participants per cluster are needed

to achieve a power of .80 given small ρ (at .01) and only n = 7 participants

are needed for ρ = .15, typically regarded as a fairly large ρ. Only in the

worst-case scenario of a small effect size (β1 = .20) and ρ = .15 is the power

of the “small n, J = 100” design inadequate. And in that case, increasing J

rather than increasing n is essential to achieving adequate power.

In sum, if the intra-cluster correlation is not too large and the effect size

is not too small, it is possible to achieve substantial power in the “small

n, J = 100” scenario. Skillful choice of covariates will typically reduce ρ to

modest values in many studies in education and human development with

only a small loss in degrees of freedom as the penalty. Thus, “small n, large

J” designs should certainly not be dismissed out of hand for this design, cost

considerations aside.
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Fig. 5.1 Power to detect the treatment effect in a cluster randomized trial with

J = 100 clusters (50 per treatment) as a function of n, the number of participants

per cluster. Power is calculated at standardized effect sizes of 0.20, 0.30, and 0.50

and for intra-cluster correlations of 0.01 and 0.15. Significance level is always 0.05.

Multi-Site Randomized Trials

The second paradigm case of a two-level experimental design involves an

experiment that is replicated in each of many clusters (often termed “sites”).

Such experiments are common in medicine, and the Tennessee class size ex-

periment provides an example in education [13]. We will consider the case in

which n/2 participants are randomly assigned to an experimental or control

site within each of J clusters. Thus, there are Jn participants overall.

The model may be written as

yij = β0 + (β1 + δ1j)(Treatment)ij + δ0j + ǫij .

Note that the treatment contrast is now a level-1 variable taking on a value of

(Treatment)ij = 0.5 for experimentals and −0.5 for controls. Therefore, the

treatment effect β1 + δ1j is potentially site-specific. We assume

(
δ0j
δ1j

)
∼ N

((
0

0

)
,

(
ω00 ω01

ω10 ω11

))

and

ǫij ∼ N (0, 1).
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Once again, β1, the average treatment effect, is standardized, that is, expressed

as a ratio of the average mean difference between treatments divided by the

within-site standard deviation.

The aim now is not only to estimate the average treatment effect, β1, but

also to estimate the treatment-by-site variance component ω11 in the case of

small n with J again held constant at J = 100. Following Raudenbush and Liu

[30], we view ω11 as a standardized treatment-by-site variance and consider

values of .01, .05, and .15 to be small, medium, and moderately large. For β1,

the non-centrality parameter may be expressed as nJβ2
1/(nω11 + 4).

Figure 5.2 provides an idea of the power afforded by small n designs when

J = 100. For large effect size, even n = 4 provides high power at every value of

ω11. For a small effect size of 0.20, n = 8, n = 10, and n = 12 are required to

achieve power of .80 at small, medium, and large values of ω11, respectively.

Thus, the “small n, large J” design does well (when J = 100 is viewed as

large) in the case of the multi-site randomized trial.

But can the “small n, J = 100” design detect the variance of the treatment

effect across sites? This parameter is important in gauging the generalizability

of the treatment. Indeed, if ω11 is non-trivial, the main effect of treatment

becomes misleading as a measure of effect at any specific site. In this case, a

central F -distribution can be used to test the null hypothesis that ω11 = 0

(see Raudenbush and Liu [30] for details).
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Fig. 5.2 Power to detect the main effect of treatment in a multi-site randomized

trial for J = 100 sites with n participants at each site (n/2 in each treatment).

Power is calculated at standardized effect sizes of 0.20, 0.30, and 0.50, and for effect

size variances of 0.01, 0.05, and 0.15. Significance level is always 0.05.
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Fig. 5.3 Power to detect between-site variance at the treatment effect for J = 100

sites as a function of n, the number of participants per site (n/2 in each treatment).

Between-site variances are 0.05, 0.10, and 0.15, and the significance level is always

0.05.

Figure 5.3 gives the results. The key conclusion is that the small n design

(with J = 100) does not perform as well in detecting treatment-by-site vari-

ance as it does in detecting the main effect of treatment. While n = 12 and

n = 18 are adequate to detect variances of ω11 = .15 and .10, respectively,

at power of .80, these variance values are quite large. Significantly more than

20 participants per site are required to detect a medium-sized variance of .05,

not to mention a small variance of .01.

Conclusion

The results of power analysis for the cluster randomized trial and the multi-site

randomized trial, while certainly not exhaustive, confirm what other practical

experience has implied: Given moderately large J , small n designs can be

very effective in detecting fixed effects of level-1 and level-2 predictors. These

designs are much less adequate, however, in detecting variances of random

coefficients. The exception occurs when the level-1 model fits well, as often

occurs in studies of individual growth. But in two-level cross-sectional designs,

the fit at level 1 is rarely good enough to allow high power for detecting the

variances of random coefficients with small n as defined here, given J in the

neighborhood of 100.
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5.4 Validity of Statistical Inferences: Linear-Normal Case

Now-standard approaches to two-level data estimate variances and covariances

via maximum likelihood (ML) or restricted maximum likelihood. Inferences

about fixed and random regression coefficients are then conditional on these

ML point estimates. Inferences about the variances are often based on the

large-sample normal approximation to their sampling distributions. It is well

known that this approach can work poorly when J is small, and especially

when the data are greatly unbalanced (see Chapter 2 in this volume; see

also Raudenbush and Bryk [28], Rubin [32], Seltzer [33]). These authors have

recommended Bayesian methods and sensitivity analysis in the small J case.

How well does the ML machinery work in the case of large J but small n?

The answer to this question appears to depend on the research focus.

In particular, the validity of standard approaches depends on whether fixed

regression coefficients, variance-covariance components, or the random coeffi-

cients themselves are of primary interest. We discuss each in turn.

5.4.1 Fixed Regression Coefficients

The short answer seems to be that inferences about the fixed regression coef-

ficients proceeds comparatively smoothly in the case of small n but large J .

The generalized least squares (GLS) estimator (5.7) sums over large J . Thus,

imprecisions in estimating the weight matrices should have comparatively

small effect. Moreover, the “small n, large J” case is ideal for the use of

J-consistent robust standard errors [cf. 21]. These can be used as substitutes

for model-based standard errors based on GLS and they also can gauge sensi-

tivity of results to model assumptions and therefore signal the need to modify

the hierarchical model.

To see how the robust standard errors are computed, we first rewrite the

GLS estimator (5.6) in its more general form, based on the mixed model (5.1):

β̂ = Var(β̂)

J∑

j=1

X ′
jV

−1
j y

j
,

where Vj = ZjΩZ
′
j + σ2Inj

and

Var(β̂) =




J∑

j=1

X ′
jV

−1
j Xj




−1

. (5.19)

Here the weight matrix for cluster j is V −1
j , evaluated at the ML estimates

of Ω and σ2. Errors in these ML estimates will thus translate into errors in

estimates of the weight matrix. However, when J is large, these errors will

tend to be small, given that the GLS estimator is J-consistent.
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Of course, the poor estimation of the weights, for example under-estimation

of Ω, may distort the estimation of the standard errors (square roots of the

diagonal elements of (5.19)). This would likely occur when the assumptions

about the covariance structure are incorrect. To check on this possibility, we

compute the robust variance

Var(β̂)




J∑

j=1

X ′
jV

−1
j (yj −Xjβ̂)(yj −Xjβ̂)′V −1

j Xj


Var(β̂).

Given a total sample size of Jn (or sum of nj in the unbalanced case), these

robust estimators converge rapidly to the true variance when J is large and

n is small. This convergence is not dependent on assumptions about which

level-1 predictors have random coefficients. This last point is important in

the “small n, large J” case because it is precisely in this case that one must

impose constraints on the dimensionality of the random effects.

In conclusion, GLS seems to perform well in the “small n, large J” case.

Moreover, the standard errors it produces are easily checked using robust

standard errors, and the latter are especially useful in the “small n, large J”

case.

5.4.2 Level-2 Variances

We noted earlier that while “small n, large J” tends to provide good power

for detecting fixed effects of level-1 or level-2 predictors, power was more

problematic when the aim was to detect heterogeneity of random coefficients.

Similarly, threats to valid statistical inference arise when using ML to make

inferences about such variance components.

The key problem is that the likelihood for level-2 variances can become

quite positively skewed when n is small, even though J is fairly large. The

skewness of the likelihood implies that the mode (i.e., the ML estimate) may

poorly reflect the plausible values of the parameter. Moreover, in this case, a

large-sample normal approximation to the likelihood will be poor.

These threats to valid inference are easily handled if the data are balanced.

In this case, the F -distribution can supply the machinery to obtain accurate

(asymmetric) confidence intervals. However, truly balanced data are rare in

practice, often because of missing data, but possibly also because of cost

considerations and because of the use of level-1 covariates that have different

distributions in each cluster.

To illustrate the problems that can arise in making inferences about vari-

ances, we consider the simple case of a balanced, one-way random effects

analysis of variance, i.e.,

yij = β00 + δ0j + ǫij ,
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Fig. 5.4 Likelihood for ω00 in oneway ANOVA with n = 2, J = 100, and the mean

square between equal to its expected value. True value of ω00 = 5.0.

where δ0j ∼ N (0, ω00) and ǫij ∼ N (0, σ2). The likelihood is given by

L(β00, ω00, σ
2;y) = (2π)−Jn/2(σ2)−J(n−1)/2(nω00 + σ2)−J/2

× exp

[
−1

2

(
SSw
σ2

+
SS b

nω00 + σ2

)]
,

where SSw and SS b are the sums of squared deviations within and between

clusters, respectively.

To illustrate the behavior of the likelihood, we set ω00 = 5 and σ2 = 95.

Thus, the intra-cluster correlation coefficient is ρ = .05, a fairly typical value

in several domains of multilevel research. For simplicity, we hold σ2 equal to

its true value. Figure 5.4 plots the likelihood for ω when n = 2 and J = 100 in

a well-behaved case: the SSw and SS b are set to their expected values. We see

that the likelihood, while globally skewed positively, is reasonably symmetric

at its mode, the maximum likelihood estimator and, by construction, the true

value of ω00. Even in this case with n = 2, the modal value is reasonably

representative of the plausible values of ω00.

In reality, the SS b will not be equal to its expected value. To see how the

likelihood behaves in a somewhat less favorable setting, we set SS b to one

standard deviation below its expected value. Such a value could easily arise in

practice. We plot the likelihood in this case in Fig. 5.5. Note the ML estimate
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Fig. 5.5 Likelihood for ω00 in oneway ANOVA with n = 2, J = 100, and the mean

square between equal to one standard deviation below its expected value. True value

of ω00 = 5.0.

is zero and the likelihood is very positively skewed. The modal value poorly

represents the plausible values of ω00.

How much do things improve when we increase n? Increasing n brings

a fairly rapid improvement. Figure 5.6 plots the likelihood under the same

conditions as in Fig. 5.5 but with n increased to 10. Fairly small increases in

n create significant improvement in the shape of the likelihood.

I conclude that, when ρ is small and n is very small, likelihood-based

inference about level-2 variance components can mislead the unwary. Small

increases in n can improve things. These results have implications for infer-

ences about random coefficients, the topic to which we now turn.

5.4.3 Inferences Concerning Random Effects

Obtaining good estimates of cluster-specific random coefficients or random

effects is often, but not always, difficult in the “small n, large J” setting. The

adequacy of these estimates depends strongly on the reliability Λj . As we

have seen, small n tends to work against large Λj , but a good fit at level-1

(and therefore a small σ2) or good leverage among the level-1 predictors can

push Λj toward Ir, even when n is small.
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Fig. 5.6 Likelihood for ω00 in oneway ANOVA with n = 10, J = 100, and the mean

square between equal to one standard deviation below its expected value. True value

of ω00 = 5.0.

In the previous section, we saw that the likelihood for level-2 variances

(elements ωqq) can be highly skewed when n is small even if J is moderately

large. Empirical Bayes inferences for random coefficients, which condition on

the MLE of variance components, may then “over-shrink” the point estimate

toward zero and lead to under-estimates of the posterior variance.

A distinction arises in drawing inferences about random coefficients (β
j
)

as opposed to random effects (δj). The validity of the latter depend more on

large J than does the validity of the former.

5.4.4 Random Coefficients

Based on the two-level normal linear model of (5.4), the random coefficient

vector, β
j
, given the data y and the parameters σ2 and Ω is distributed as

N (β∗
j ,V

∗
j ) with

β∗
j = C−1

j (yj −Hj γ̂) +Hj γ̂, (5.20a)

V ∗
j = σ2

(
C−1
j +C−1

j U ′
jHj Var(γ̂)H ′

jUjC
−1
j

)
, (5.20b)

where Cj = U ′
jUj + σ2Ω−1 and γ̂ is the generalized least squares estimator.

A popular approach to empirical Bayes inference is based on the posterior
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distribution (5.20a) with restricted MLE substituted for the unknown Λ, σ2.

A nice feature of this approach is that the posterior mean will exist even when

Uj is less than full rank. However, when Uj is full rank, so that unit-specific

least squares estimate β̂j exists, the posterior mean has the illuminating

form (5.12), and the posterior variance matrix becomes

Ω(Ir −Λj) + (Ir −Λj)Hj Var(γ̂)H ′
j(Ir −Λj)′. (5.21)

The second term in (5.21) reflects uncertainty about γ. Thus, as J increases

without bound (holding nj constant), this term disappears, and (5.21) con-

verges to Ω(Ir − Λj). Note that as nj increases without bound (holding J

constant), Λj converges to Ir and (5.21) converges to the null matrix. Thus,

large J is not essential in estimating β
j

using empirical Bayes. As we have

seen, large nj is not the only way to push Λj toward Ir inasmuch as small

σ2 or large level-1 dispersion of Uij can also accomplish this.

5.4.5 Random Effects

While large J is not essential to ensure consistency of estimation of the random

coefficients, large J is necessary to ensure consistency in estimating random

effects, which are the discrepancies between the random coefficients β
j

and

their expected values Hjγ. To see this, note that the conditional distribution

of the random effects vector δj , given the data y and the parameters σ2 and

Ω, is distributed as N (δ∗j ,D
∗
j ) where, in the full-rank case,

δ∗j = Λj(β̂j −Hj γ̂), (5.22a)

D∗
j = Ω(Ir −Λj) +ΛjHj Var(γ̂)H ′

jΛ
′
j . (5.22b)

As J increases without bound (holding nj constant), the second term in (5.22b)

disappears, and (5.22b) converges to Ω(Ir − Λj). However, as nj increases

without bound (holding J constant), Λj converges to Ir and (5.22b) converges

to Var(Hj γ̂). Thus, large J is essential for the consistency of the empirical

Bayes estimator of δj .

5.4.6 Over-Shrinkage and Under-Estimation of Uncertainty

If the likelihood for a level-2 variance is seriously skewed, as can occur when

nj is very small (even if J is moderate in size; see Fig. 5.5), Λ̂j based on

the restricted MLE (or the unrestricted MLE) will be pulled toward the null

matrix. This will pull empirical Bayes random effects estimates toward zero

as it pulls the empirical Bayes random coefficients estimates toward their

predicted values Hj γ̂. It will also tend to produce negatively biased estimates

of the posterior variance (note that as Ω decreases, C−1
j also diminishes). In

this setting, a Bayesian approach [see 34] or a better approximation to the

posterior variance [19] will be helpful.
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5.5 Validity of Statistical Inferences: Non-Linear Link
Functions

We now consider the case in which yij , given the random effect vector δj ,

belongs to a one-parameter exponential family with canonical link function

ηij = X ′
ijβ + Z ′

ijδj with δj ∼ N (∅,Ω). Also, we can collect the elements

ηij into the vector η
j

= Xjβ + Zjδj . The two-level linear models we have

been discussing till now are a special case of this generalized linear mixed

model with identity link and with yij | δj normally distributed. Among many

examples of this model are binary yij with a logit link and a Bernoulli sampling

model, counted yij (so that yij is a non-negative integer) with log link and

Poisson sampling model, and continuous yij > 0 with reciprocal link and

gamma sampling model.

A non-linear link function means that the conditional expectation of y

given the random effects induces an association between the estimate of the

level-2 variance and the estimate of the fixed effects, with implications for

inference in the “small n, large J” case. It also makes the problem of comput-

ing maximum likelihood estimates significantly more challenging than in the

normal theory model with a linear link function.

5.5.1 Relation Between the Mean and the Variance

In our discussion of linear models with normal random effects at each level,

we have seen that the “small n, large J” case can sometimes lead to prob-

lems in estimation of level-2 covariance components. And, because empirical

Bayes bases inferences on ML estimates (or restricted ML estimates) of these

variance components, these problems of variance estimation will tend also to

affect the validity of inferences about random coefficients and random effects.

However, these problems in variance estimation do not cause difficulty in

making valid inferences about fixed effects. First, point estimates of the fixed

effects are not sensitive to mis-estimation of variance components in the “small

n, large J” case because, as J increases, the point estimate of the fixed effects

is uncorrelated with point estimates of variance components. Second, robust

standard errors are available in the “small n, large J”, and these do not depend

on the assumed variance-covariance structure.

When the level-1 link function is non-linear and the level-1 distribution is

non-normal, the asymptotic orthogonality of the fixed effects estimates and

the covariance estimates no longer holds. For example, in the case of a scalar

random effect at level 2, we tend to see that larger estimates of the level-2

variance are associated with point estimates of the fixed effects that are farther

from zero. This problem arises because the expected y is a non-linear function

of the random effects. For example, in the logit linear model, we have the

mixed model
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E (yij | β, δj) =
[
1 + exp{−(X ′

ijβ +Z ′
ijδj)}

]−1

= µij(δj)

≈ µij(∅) + µij(∅)
(
1− µij(∅)

)
Z ′
ijδj

+ µij(∅)
(
1− µij(∅)

)(
0.5− µij(∅)

)
Z ′
ijδjδ

′
jZij .

(5.23)

To the second order, the marginal expectation of yij is

E (yij) ≈ µij(∅) + µij(∅)
(
1− µij(∅)

)(
0.5− µij(∅)

)
Z ′
ijΩZij .

Clearly, the marginal expectation of y depends upon Ω and, therefore, beliefs

about β must depend upon Ω as well. This dependence does not arise in the

population-average model [40] wherein

E (yij) =
[
1 + exp{−X ′

ijβpop.av}
]−1

,

leading Heagerty and Zeger [15] to recommend population-average inference

with robust standard errors as a robust alternative to “unit-specific” models of

the type reflected in (5.23). The unit-specific coefficients β are not, of course,

the same as the population-average coefficients βpop.av. The unit-specific co-

efficients define the expected change in the log odds that yij = 1 given an

increase in the corresponding Xij , holding the random effect δj constant. In

contrast, βpop.av gives the expected change in the log odds yij = 1 associated

with a unit change in the corresponding X, averaging over the distribution

of the random effects. The distinction between unit-specific and population-

average inference does not arise in linear models.

5.5.2 Estimation and Computation

Obtaining MLEs for hierarchical models is a two-step problem. The first step

is to find the likelihood; this requires integration of the random effects from

the joint distribution of the data and the random effects. The second step is to

maximize the likelihood. For hierarchical linear models with normal random

effects at each level, the first step is easy because the integration problem

is soluble analytically. Maximization then proceeds using now-standard ap-

proaches such as the Expectation-Maximization (EM) algorithm [9, 10] or

Fisher scoring [22].

When the level-1 link function is non-linear (and the level-1 sampling

model is non-normal), the integration problem is much more challenging. And

it tends to be especially challenging when nj is small and when the level-2

variances are large. This logic becomes clear if we represent the likelihood as

a Laplace transform.
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The Likelihood

Let f(yj | δj) = exp{ℓj(δj)} denote the level-1 model. We use the binary

outcome case with scalar random effect for illustrative purposes, in which

case

ℓj(δj) =

nj∑

i=1

[yijηij + log(1− µij)] ,

where

ηij = X ′
ijβ + δj , δj ∼ N (0, ω),

µij = [1 + exp{−ηij}]−1.

Defining the parameters as θ = [β, ω], the likelihood of θ at y = y is given

by

L(θ;y) =
J∏

j=1

[
(2π)−nj/2ω−1/2

∫
exp{ℓj(δj)− 1

2
δ2j /ω}dδj

]
. (5.24)

Laplace Transform

We now expand the integrand in an infinite Taylor series about its maximizer

δ̂j . We remove the j subscript for simplicity because the integral must be

computed for every j. Thus, we have

h(δ) = ℓ(δ)− 1
2
δ2/ω

= [ℓ(δ̂)− 1
2
δ̂2/ω] + [ℓ(1)(δ̂)− δ̂/ω](δ − δ̂) + 1

2
[ℓ(2) − ω−1](δ − δ̂)2 + S,

where

S =
∞∑

k=3

Tk,

Tk =
1

k!
[ℓ(k)(δ̂)](δ − δ̂)k,

ℓ(k) =
dkℓ(δ)

dδk

∣∣∣∣
δ=δ̂

.

Because δ̂ maximizes h(δ), the second term in the series vanishes. Substituting

the Taylor series into the integral (5.24) thus yields a useful form of the

likelihood

L(θ;y) =
J∏

j=1

[
(2π)−nj/2ω−1/2 exp{ℓj(δ̂j)− 1

2
δ̂2j /ω}
× EN (0,ψj)[exp{Sj}]

]
, (5.25)
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where the expectation is taken over a normal distribution with mean 0

and variance ψj = −
[
ℓ
(2)
j (δ̂j)− ω−1

]
−1.

Equation (5.25) creates a framework for approximating the likelihood and

for evaluating the accuracy of the approximation. To examine how “small n,

large J” affects accuracy of progressively better approximations, we note that

ψj =

(
nj∑

i=1

wij + ω−1

)−1

= ω(1− λj),

where wij = µij(δ̂j)
(
1 − µij(δ̂j)

)
and λj =

∑nj

i=1 wij/(
∑nj

i=1 wij + ω−1). We

highlight the form involving λj for continuity with the theme running through-

out this chapter. We can view λj as the reliability of the iteratively reweighted

least squares estimator of δj . As the cluster size nj increases, λj converges to

1 and ψj approaches zero. Indeed, ψj = O(n−1
j ). Approximations increase in

accuracy as more terms in exp{S} are absorbed in the expectation. Following

Raudenbush et al. [31], we define the following Laplace approximations:

L1 = exp{S} = 1 +O
(
n−1

)
, (5.26a)

L2 = exp{S} = L1 + T4 + T 2
3 /2 +O

(
n−2

)
, (5.26b)

L3 = exp{S} = L2 + T6 + 2T3 T5 + T 2
4 /2 + 3T 2

3 T4 +O
(
n−3

)
. (5.26c)

Define ζk
∆
=EN (0,ψ)(δ− δ̂)k. The asymptotic order of the approximations can

be found by noting that ζk = O(n−k/2) for k even and ℓ(k)(δ̂) = O(n). Thus,

E (T k) =





0 for k odd,

ζk ℓ(k)(δ̂)

k!
= O(n−k/2)O(n) = O(n−k/2+1) for k even,

E (T k Tm) =





0 for k +m odd,

ζk+m ℓ(k)(δ̂) ℓ(m)(δ̂)

k!m!
= O(n−(k+m)/2)O(n2)

= O(n−(k+m−4)/2) for k +m even,

E (T k Tm T p) =





0 for k +m+ p odd,

ζk+m+p ℓ(k)(δ̂) ℓ(m)(δ̂) ℓ(p)(δ̂)

k!m! p!

= O(n−(k+m+p−6)/2) for k +m+ p even,

E (T k Tm T p T q) =





0 for k +m+ p+ q odd,

ζk+m+p+q ℓ(k)(δ̂) ℓ(m)(δ̂) ℓ(p)(δ̂) ℓ(q)(δ̂)

k!m! p! q!

= O(n−(k+m+p+q−8)/2) for k +m+ p+ q even.
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Table 5.1 Error of approximation: Laplace versus adaptive Gauss-Hermite quadra-

ture.

Order of Laplace Number of quadrature points Error

L1 1 point O(n−1)

L2 4 points O(n−2)

L3 7 points O(n−3)

L4 10 points O(n−4)

Equation (5.26) shows that the accuracy of the approximations depends on

powers of the within-cluster sample size. This shows that for very small n,

the approximations will tend to be poor (especially if ω is large). Eventually,

of course, the rapidly increasing factorial denominators in the terms of S

will dominate, ensuring convergence of higher-order approximations. These

higher-order approximations are, however, tedious to derive.

The most common approach to approximation involves Gauss-Hermite

quadrature [cf. 16]. This approach is useful when the dimension of Ω is small.

Even in the scalar case, comparatively large numbers of quadrature points will

be needed if ω is large and n is small. Adaptive Gauss-Hermite quadrature [24],

which centers the integrand around δ̂j (rather than around 0), will provide

equal accuracy with many fewer quadrature points, but will still encounter

difficulty when the dimension of the random effect is large.

Yosef [39] has clarified the relationship between the accuracy of the Laplace

approximations and approximations to the likelihood based on adaptive

Gauss-Hermite quadrature. We display these in Table 5.1. These are valid,

however, only for scalar random effects.

Models with high-dimensional random effects are rarely feasible when n

is small in the case of binary data, however. Laplace approximations of order

L2 work well in these high-dimensional cases assuming n > 20 [31].
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6.1 Introduction

Reflecting the usefulness of multilevel analysis and the importance of categor-

ical outcomes in many areas of research, generalization of multilevel models

for categorical outcomes has been an active area of statistical research. For

dichotomous response data, several approaches adopting either a logistic or

probit regression model and various methods for incorporating and estimating

the influence of the random effects have been developed [9, 21, 34, 37, 103, 115].

Several review articles [31, 39, 76, 90] have discussed and compared some of

these models and their estimation procedures. Also, Snijders and Bosker [99,

Chapter 14] provide a practical summary of the multilevel logistic regression

model and the various procedures for estimating its parameters. As these

sources indicate, the multilevel logistic regression model is a very popular

choice for analysis of dichotomous data.

Extending the methods for dichotomous responses to ordinal response data

has also been actively pursued [4, 29, 30, 44, 48, 58, 106, 113]. Again, devel-

opments have been mainly in terms of logistic and probit regression models,

and many of these are reviewed in Agresti and Natarajan [5]. Because the

proportional odds model described by McCullagh [71], which is based on the

logistic regression formulation, is a common choice for analysis of ordinal data,

many of the multilevel models for ordinal data are generalizations of this

model. The proportional odds model characterizes the ordinal responses in C

categories in terms of C−1 cumulative category comparisons, specifically, C−1

cumulative logits (i.e., log odds) of the ordinal responses. In the proportional

odds model, the covariate effects are assumed to be the same across these

cumulative logits, or proportional across the cumulative odds. As noted by

Peterson and Harrell [77], however, examples of non-proportional odds are
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not difficult to find. To overcome this limitation, Hedeker and Mermelstein

[52] described an extension of the multilevel ordinal logistic regression model

to allow for non-proportional odds for a set of regressors.

For nominal responses, there have been developments in terms of multi-

level models as well. An early example is the model for nominal educational

test data described by Bock [14]. This model includes a random effect for

the level-2 subjects and fixed item parameters for the level-1 item responses

nested within subjects. While Bock’s model is a full-information maximum

likelihood approach, using Gauss-Hermite quadrature to integrate over the

random-effects distribution, it doesn’t include covariates or multiple random

effects. As a result, its usefulness for multilevel modeling is very limited. More

general regression models of multilevel nominal data have been considered by

Daniels and Gatsonis [25], Revelt and Train [88], Bhat [13], Skrondal and

Rabe-Hesketh [97], and in Goldstein [38, Chapter 4]. In these models, it is

common to adopt a reference cell approach in which one of the categories is

chosen as the reference cell and parameters are characterized in terms of the

remaining C−1 comparisons to this reference cell. Alternatively, Hedeker [47]

adopts the approach in Bock’s model, which allows any set of C − 1 compar-

isons across the nominal response categories. Hartzel et al. [43] synthesizes

some of the work in this area, describing a general mixed-effects model for

both clustered ordinal and nominal responses, and Agresti et al. [3] describe

a variety of social science applications of multilevel modeling of categorical

responses.

This chapter describes multilevel models for categorical data that accom-

modate multiple random effects and allow for a general form for model covari-

ates. Although only 2-level models will be considered here, 3-level generaliza-

tions are possible [35, 63, 83, 107]. For ordinal outcomes, proportional odds,

partial proportional odds, and related survival analysis models for discrete- or

grouped-time survival data are described. For nominal response data, models

using both reference cell and more general category comparisons are described.

Connections with item response theory (IRT) models are also made. A full

maximum likelihood solution is outlined for parameter estimation. In this

solution, multi-dimensional quadrature is used to numerically integrate over

the distribution of random effects, and an iterative Fisher scoring algorithm is

used to solve the likelihood equations. To illustrate application of the various

multilevel models for categorical responses, several analyses of a longitudinal

psychiatric dataset are described.

6.2 Multilevel Logistic Regression Model

Before considering models for ordinal and nominal responses, the multilevel

model for dichotomous responses will be described. This is useful because both



6 Multilevel Models for Ordinal and Nominal Variables 239

the ordinal and nominal models can be viewed as different ways of generalizing

the dichotomous response model. To set the notation, let j denote the level-2

units (clusters) and let i denote the level-1 units (nested observations). Assume

that there are j = 1, . . . , N level-2 units and i = 1, . . . , nj level-1 units nested

within each level-2 unit. The total number of level-1 observations across level-2

units is given by n =
∑N
j=1 nj . Let Y ij be the value of the dichotomous

outcome variable, coded 0 or 1, associated with level-1 unit i nested within

level-2 unit j. The logistic regression model is written in terms of the log odds

(i.e., the logit) of the probability of a response, denoted pij = Pr(Y ij = 1).

Augmenting the standard logistic regression model with a single random effect

yields

log

[
pij

1− pij

]
= x′

ijβ + δj ,

where xij is the s×1 covariate vector (includes a 1 for the intercept), β is the

s× 1 vector of unknown regression parameters, and δj is the random cluster

effect (one for each level-2 cluster). These are assumed to be distributed in

the population as N (0, σ2
δ ). For convenience and computational simplicity, in

models for categorical outcomes the random effects are typically expressed in

standardized form. For this, δj = σδ θj and the model is given as

log

[
pij

1− pij

]
= x′

ijβ + σδ θj .

Notice that the random-effects variance term (i.e., the population standard

deviation σδ) is now explicitly included in the regression model. Thus, it and

the regression coefficients are on the same scale, namely in terms of the log-

odds of a response.

The model can be easily extended to include multiple random effects. For

this, denote zij as the r×1 vector of random-effect variables (a column of ones

is usually included for the random intercept). The vector of random effects

δj is assumed to follow a multivariate normal distribution with mean vector

∅ and variance-covariance matrix Ω. To standardize the multiple random

effects, δj = Tθj , where TT ′ = Ω is the Cholesky decomposition of Ω. The

model is now written as

log

[
pij

1− pij

]
= x′

ijβ + z′ijTθj . (6.1)

As a result of the transformation, the Cholesky factor T is usually estimated

instead of the variance-covariance matrix Ω. As the Cholesky factor is essen-

tially the matrix square root of the variance-covariance matrix, this allows

more stable estimation of near-zero variance terms.
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6.2.1 Threshold Concept

Dichotomous regression models are often motivated and described using the

“threshold concept” [15]. This is also termed a latent variable model for

dichotomous variables [65]. For this, it is assumed that a continuous latent

variable y underlies the observed dichotomous response Y . A threshold, de-

noted γ, then determines if the dichotomous response Y equals 0 (yij ≤ γ) or

1 (yij > γ). Without loss of generality, it is common to fix the location of the

underlying latent variable by setting the threshold equal to zero (i.e., γ = 0).

Figure 6.1 illustrates this concept assuming that the continuous latent variable

y follows either a normal or logistic probability density function (pdf).

As noted by McCullagh and Nelder [72], the assumption of a continuous

latent distribution, while providing a useful motivating concept, is not a strict

model requirement. In terms of the continuous latent variable y, the model is

written as

yij = x′
ijβ + z′ijTθj + ǫij .

Note the inclusion of the errors ǫij in this representation of the model. In

the logistic regression formulation, the errors ǫij are assumed to follow a

standard logistic distribution with mean 0 and variance π2/3 [2, 65]. The

scale of the errors is fixed because y is not observed, and so the the scale is

not separately identified. Thus, although the above model appears to be the
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Fig. 6.1 Threshold concept for a dichotomous response (solid = normal, dashed =

logistic).
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same as an ordinary multilevel regression model for continuous outcomes, it

is one in which the error variance is fixed and not estimated. This has certain

consequences that will be discussed later.

Because the errors are assumed to follow a logistic distribution and the

random effects a normal distribution, this model and models closely related

to it are often referred to as logistic/normal or logit/normit models, especially

in the latent trait model literature [11]. If the errors are assumed to follow a

normal distribution, then the resulting model is a multilevel probit regression

or normal/normal model. In the probit model, the errors have mean 0 and

variance 1 (i.e., the variance of the standard normal distribution).

6.2.2 Multilevel Representation

For a multilevel representation of a simple model with only one level-1 covari-

ate xij and one level-2 covariate xj , the level-1 model is written in terms of

the logit as

log

[
pij

1− pij

]
= β0j + β1jxij ,

or in terms of the latent response variable as

yij = β0j + β1jxij + ǫij . (6.2)

The level-2 model is then (assuming xij is a random-effects variable)

β0j = β0 + β2xj + δ0j , (6.3a)

β1j = β1 + β3xj + δ1j . (6.3b)

Notice that it’s easiest, and in agreement with the normal-theory (continuous)

multilevel model, to write the level-2 model in terms of the unstandardized

random effects, which are distributed in the population as δj ∼ N (∅,Ω). For

models with multiple variables at either level 1 or level 2, the above level-1

and level-2 submodels are generalized in an obvious way.

Because the level-1 variance is fixed, the model operates somewhat differ-

ently than the more standard normal-theory multilevel model for continuous

outcomes. For example, in an ordinary multilevel model, the level-1 variance

term is typically reduced as level-1 covariates xij are added to the model.

However, this cannot happen in the above model because the level-1 variance

is fixed. As noted by Snijders and Bosker [99], what happens instead (as

level-1 covariates are added) is that the random-effect variance terms tend to

become larger as do the other regression coefficients, the latter become larger

in absolute value.
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6.2.3 Logistic and Probit Response Functions

The logistic model can also be written as

pij = Ψ(x′
ijβ + z′ijTθj) ,

where Ψ(η) is the logistic cumulative distribution function (cdf), namely

Ψ(η) =
exp(η)

1 + exp(η)
=

1

1 + exp(−η) .

The cdf is also termed the response function of the model. A mathematical

nicety of the logistic distribution is that the probability density function (pdf)

is related to the cdf in a simple way, namely ψ(η) = Ψ(η)[1− Ψ(η)].

As mentioned, the probit model, which is based on the standard normal

distribution, is often proposed as an alternative to the logistic model. For

the probit model, the normal cdf Φ(η) and pdf φ(η) replace their logistic

counterparts, and because the standard normal distribution has variance equal

to 1, ǫij ∼ N (0, 1). As a result, in the probit model the underlying latent

variable vector y
j

is distributed normally in the population with mean Xjβ

and variance covariance matrix ZjTT
′Z ′
j + I. The latter, when converted to

a correlation matrix, yields tetrachoric correlations for the underlying latent

variable vector y (and polychoric correlations for ordinal outcomes, discussed

below). For this reason, in some areas, for example familial studies, the probit

formulation is preferred to its logistic counterpart.

As can be seen in the earlier figure, both the logistic and normal distribu-

tions are symmetric around zero and differ primarily in terms of their scale;

the standard normal has standard deviation equal to 1, whereas the standard

logistic has standard deviation equal to π/
√

3. As a result, the two typically

give very similar results and conclusions, though the logistic regression param-

eters (and associated standard errors) are approximately π/
√

3 times as large

because of the scale difference between the two distributions. An alternative

response function, which provides connections with proportional hazards sur-

vival analysis models (see Allison [7] and Section 6.3.2), is the complementary

log-log response function 1 − exp[− exp(η)]. Unlike the logistic and normal,

the distribution that underlies the complementary log-log response function is

asymmetric and has variance equal to π2/6. Its pdf is given by exp(η)[1−p(η)].
As Doksum and Gasko [26] note, large amounts of high-quality data are

often necessary for response function selection to be relevant. Since these

response functions often provide similar fits and conclusions, McCullagh [71]

suggests that the response function choice should be based primarily on ease

of interpretation.
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6.3 Multilevel Proportional Odds Model

Let the C ordered response categories be coded as c = 1, 2, . . . , C. Ordinal

response models often utilize cumulative comparisons of the ordinal outcome.

The cumulative probabilities for the C categories of the ordinal outcome Y

are defined as P ijc = Pr(Y ij ≤ c) =
∑c
k=1 pijk. The multilevel logistic model

for the cumulative probabilities is given in terms of the cumulative logits as

log

[
P ijc

1− P ijc

]
= γc −

[
x′
ijβ + z′ijTθj

]
(c = 1, . . . , C − 1), (6.4)

with C−1 strictly increasing model thresholds γc (i.e., γ1 < γ2 < · · · < γC−1).

The relationship between the latent continuous variable y and an ordinal

outcome with three categories is depicted in Fig. 6.2. In this case, the ordinal

outcome Y ij = c if γc−1 ≤ yij < γc for the latent variable (with γ0 = −∞
and γC =∞). As in the dichotomous case, it is common to set a threshold to

zero to set the location of the latent variable. Typically, this is done in terms

of the first threshold (i.e., γ1 = 0). In Fig. 6.2, setting γ1 = 0 implies that

γ2 = 2.

At first glance, it may appear that the parameterization of the model

in (6.4) is not consistent with the dichotomous model in (6.1). To see the
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Fig. 6.2 Threshold concept for an ordinal response with 3 categories (solid =

normal, dashed = logistic).
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connection, notice that for a dichotomous outcome (coded 0 and 1), the model

is written as

log

[
P ij0

1− P ij0

]
= 0−

[
x′
ijβ + z′ijTθj

]
,

and since for a dichotomous outcome P ij0 = pij0 and 1− P ij0 = pij1,

log

[
1− P ij0
P ij0

]
= log

[
pij1

1− pij1

]
= x′

ijβ + z′ijTθj ,

which is the same as before. Also, in terms of the underlying latent variable y,

the multilevel representation of the ordinal model is identical to the dichoto-

mous version presented earlier in (6.2). If the multilevel model is written in

terms of the observed response variable Y , then the level-1 model is written

instead as

log

[
P ijc

1− P ijc

]
= γc −

[
β0j + β1jxij

]

for the case of a model with one level-1 covariate. Because the level-2 model

does not really depend on the response function or variable, it would be the

same as given above for the dichotomous model in (6.3a) and (6.3b).

Since the regression coefficients β do not carry the c subscript, they do

not vary across categories. Thus, the relationship between the explanatory

variables and the cumulative logits does not depend on c. McCullagh [71]

calls this assumption of identical odds ratios across the C − 1 cut-offs the

proportional odds assumption. As written above, a positive coefficient for a

regressor indicates that as values of the regressor increase so do the odds that

the response is greater than or equal to c. Although this is a natural way of

writing the model, because it means that for a positive β as x increases so

does the value of Y , it is not the only way of writing the model. In particular,

the model is sometimes written as

log

[
P ijc

1− P ijc

]
= γc + x′

ijβ + z′ijTθj (c = 1, . . . , C − 1),

in which case the regression parameters β are identical but of opposite sign.

This alternate specification is commonly used in survival analysis models (see

Section 6.3.2).

6.3.1 Partial Proportional Odds

As noted by Peterson and Harrell [77], violation of the proportional odds

assumption is not uncommon. Thus, they described a (fixed-effects) partial

proportional odds model in which covariates are allowed to have differential

effects on the C − 1 cumulative logits. Similarly, Terza [109] developed a
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similar extension of the (fixed-effects) ordinal probit model. Hedeker and

Mermelstein [52, 53] utilize this extension within the context of a multilevel

ordinal regression model. For this, the model for the C − 1 cumulative logits

can be written as

log

[
P ijc

1− P ijc

]
= γc −

[
(x∗
ij)

′βc + x′
ijβ + z′ijTθi

]
(c = 1, . . . , C − 1),

where x∗
ij is a h× 1 vector containing the values of observation ij on the set

of h covariates for which proportional odds is not assumed. In this model, βc
is a h × 1 vector of regression coefficients associated with these h covariates.

Because βc carries the c subscript, the effects of these h covariates are allowed

to vary across the C − 1 cumulative logits. In many areas of research, this

extended model is useful. For example, suppose that in a alchohol reduction

study there are three response categories (abstinence, mild use, heavy use)

and suppose that an intervention designed to reduce drinking is not successful

in increasing the proportion of individuals in the abstinence category but is

successful in moving individuals from heavy to mild use. In this case, the

(covariate) effect of intervention group would not be observed on the first

cumulative logit, but would be observed on the second cumulative logit. This

extended model has been utilized in several articles [32, 114, 117], and a similar

Bayesian hierarchical model is described in Ishwaran [57].

In general, this extension of the proportional odds model is not problem-

atic; however, one caveat should be mentioned. For the explanatory variables

without proportional odds, the effects on the cumulative log odds, namely

(x∗
ij)

′βc, result in C − 1 non-parallel regression lines. These regression lines

inevitably cross for some values of x∗, leading to negative fitted values for the

response probabilities. For x∗ variables contrasting two levels of an explana-

tory variable (e.g., gender coded as 0 or 1), this crossing of regression lines

occurs outside the range of admissible values (i.e., < 0 or > 1). However, if the

explanatory variable is continuous, this crossing can occur within the range

of the data, and so allowing for non-proportional odds can be problematic. A

solution to this dilemma is sometimes possible if the variable has, say, m levels

with a reasonable number of observations at each of these m levels. In this

case, m − 1 dummy-coded variables can be created and substituted into the

model in place of the continuous variable. Alternatively, one might consider a

nominal response model using Helmert contrasts [15] for the outcome variable.

This approach, described in Section 6.4, is akin to the sequential logit models

for nested or hierarchical response scales that are described in McCullagh and

Nelder [72].

6.3.2 Survival Analysis Models

Several authors have noted the connection between survival analysis models

and binary and ordinal regression models for survival data that are discrete
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or grouped within time intervals (for practical introductions, see Allison [6],

Allison [7], D’Agostino et al. [24], and Singer and Willett [95]). This connection

has been utilized in the context of categorical multilevel or mixed-effects

regression models by many authors as well [42, 54, 94, 106, 108]. For this,

assume that time (of assessment) can take on only discrete positive values

c = 1, 2, . . . , C.1 For each level-1 unit, observation continues until time Y ij at

which point either an event occurs (dij = 1) or the observation is censored

(dij = 0), where censoring indicates being observed at c but not at c + 1.

Define Pijc to be the probability of failure, up to and including time interval

c, that is,

Pijc = Pr(Y ij ≤ c),
and so the probability of survival beyond time interval c is simply 1− Pijc.

Because 1 − Pijc represents the survivor function, McCullagh [71] pro-

posed the following grouped-time version of the continuous-time proportional

hazards model

log[− log(1− Pijc)] = γc + x′
ijβ. (6.5)

This is the aforementioned complementary log-log response function, which

can be re-expressed in terms of the cumulative failure probability, Pijc =

1 − exp(− exp(γc + x′
ijβ)). In this model, xij includes covariates that vary

either at level 1 or 2; however, they do not vary with time (i.e., they do not

vary across the ordered response categories). They may, however, represent

the average of a variable across time or the value of the covariate at the time

of the event.

The covariate effects in this model are identical to those in the grouped-

time version of the proportional hazards model described by Prentice and

Gloeckler [79]. As such, the β coefficients are also identical to the coefficients

in the underlying continuous-time proportional hazards model. Furthermore,

as noted by Allison [6], the regression coefficients of the model are invariant to

interval length. Augmenting the coefficients β, the threshold terms γc repre-

sent the logarithm of the integrated baseline hazard (i.e., when x = ∅). While

the above model is the same as that described in McCullagh [71], it is written

so that the covariate effects are of the same sign as the Cox proportional

hazards model. A positive coefficient for a regressor then reflects increasing

hazard (i.e., lower values of Y ) with greater values of the regressor. Adding

(standardized) random effects, we get

log[− log(1− P ijc)] = γc + x′
ijβ + z′ijTθj . (6.6)

This model is thus a multilevel ordinal regression model with a complementary

log-log response function instead of the logistic. Though the logistic model

1 To make the connection to ordinal models more direct, time is denoted here as c;

however, more commonly it is denoted as t in the survival analysis literature.
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has also been proposed for analysis of grouped- and/or discrete-time survival

data, its regression coefficients are not invariant to time interval length and it

requires the intervals to be of equal length [6]. As a result, the complementary

log-log response function is generally preferred.

In the ordinal treatment, survival time is represented by the ordered

outcome Y ij , which is designated as being censored or not. Alternatively,

each survival time can be represented as a set of dichotomous dummy codes

indicating whether or not the observation failed in each time interval that

was experienced [6, 24, 95]. Specifically, each survival time Y ij is represented

as a vector with all zeros except for its last element, which is equal to dij
(i.e., = 0 if censored and = 1 for an event). The length of the vector for

observation ij equals the observed value of Y ij (assuming that the survival

times are coded as 1, 2, . . . , C). These multiple time indicators are then treated

as distinct observations in a dichotomous regression model. In a multilevel

model, a given cluster’s response vector Y j is then of size (
∑nj

i=1 Y ij) × 1.

This method has been called the pooling of repeated observations method

by Cupples et al. [23]. It is particularly useful for handling time-dependent

covariates and fitting non-proportional hazards models because the covariate

values can change across time. See Singer and Willett [96] for a detailed

treatment of this method.

For this dichotomous approach, define λijc to be the probability of failure

in time interval c, conditional on survival prior to c,

λijc = Pr(Y ij = c | Y ij ≥ c).

Similarly, 1 − λijc is the probability of survival beyond time interval c, con-

ditional on survival prior to c. The multilevel proportional hazards model is

then written as

log[− log(1− λijc)] = x′
ijcβ + z′ijTθj , (6.7)

where now the covariates x can vary across time and so are denoted as xijc.

The first elements of x are usually time-point dummy codes. Because the

covariate vector x now varies with c, this approach automatically allows for

time-dependent covariates, and relaxing the proportional hazards assumption

only involves including interactions of covariates with the time-point dummy

codes.

Under the complementary log-log link function, the two approaches char-

acterized by (6.6) and (6.7) yield identical results for the parameters that do

not depend on c [28, 59]. Comparing these two approaches, notice that for

the ordinal approach, each observation consists of only two pieces of data: the

(ordinal) time of the event and whether it was censored or not. Alternatively,

in the dichotomous approach, each survival time is represented as a vector

of dichotomous indicators, where the size of the vector depends upon the
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timing of the event (or censoring). Thus, the ordinal approach can be easier

to implement and offers savings in terms of the dataset size, especially as the

number of time-points gets large, while the dichotomous approach is superior

in its treatment of time-dependent covariates and relaxing of the proportional

hazards assumption.

6.3.3 Estimation

For the ordinal models presented, the probability of a response in category c

for a given level-2 unit j, conditional on the random effects θ, is equal to

Pr(Yij = c | θ) = Pijc − Pij,c−1 ,

where Pijc = 1/[1+exp(−ηijc)] under the logistic response function (formulas

for other response functions are given in Section 6.2.3). Note that because

γ0 = −∞ and γC = ∞, Pij0 = 0 and PijC = 1. Here, ηijc denotes the

response model, for example,

ηijc = γc −
[
(x∗
ij)

′βc + x′
ijβ + z′ijTθi

]
,

or one of the other variants of ηijc presented. In what follows, we’ll consider the

general model allowing for non-proportional odds, since the more restrictive

proportional odds model is just a special case (i.e., when βc = 0).

Let Yj denote the vector of ordinal responses from level-2 unit j (for the

nj level-1 units nested within). The probability of any pattern Yj conditional

on θ is equal to the product of the probabilities of the level-1 responses,

ℓ(Yj | θ) =

nj∏

i=1

C∏

c=1

(Pijc − Pij,c−1)
yijc , (6.8)

where yijc = 1 if Yij = c and 0 otherwise (i.e., for each ij-th observation,

yijc = 1 for only one of the C categories). For the ordinal representation of

the survival model, where right-censoring is present, the above likelihood is

generalized to

ℓ(Yj | θ) =

nj∏

i=1

C∏

c=1

[
(Pijc − Pij,c−1)

dij (1− Pijc)1−dij
]yijc

, (6.9)

where dij = 1 if Yij represents an event, or dij = 0 if Yij represents a censored

observation. Notice that (6.9) is equivalent to (6.8) when dij = 1 for all

observations. With right-censoring, because there is essentially one additional

response category (for those censored at the last category C), it is γC+1 =∞
and so Pij,C+1 = 1. In this case, parameters γc and βc with c = 1, . . . , C are

estimable, otherwise c only goes to C − 1.



6 Multilevel Models for Ordinal and Nominal Variables 249

The marginal density of Y j in the population is expressed as the following

integral of the likelihood, ℓ(·), weighted by the prior density g(·),

h(Yj) =

∫

θ

ℓ(Yj | θ) g(θ) dθ, (6.10)

where g(θ) represents the multivariate standard normal density. The marginal

log-likelihood from the N level-2 units, logL =
∑N
j log h(Yj), is then maxi-

mized to yield maximum likelihood estimates. For this, denote the conditional

likelihood as ℓj and the marginal density as hj . Differentiating first with

respect to the parameters that vary with c, let αk represent a particular

threshold γk or regression vector β∗
k, where k = 1, . . . , C if right-censoring

occurs, otherwise k = 1, . . . , C − 1. Then

∂ logL

∂αk
=

N∑

j=1

h−1
j

∂hj
∂αk

,

with

∂hj
∂αk

=

∫

θ

nj∑

i=1

C∑

c=1

yijc

[
dij

(∂Pijc)ack − (∂Pij,c−1)ac−1,k

Pijc − Pij,c−1

− (1− dij)
(∂Pijc)ack
1− Pijc

]
× ℓj g(θ)

∂ηijk
∂αk

dθ, (6.11)

where ∂ηijk/∂αk = 1 and −x∗
ij for the thresholds and regression coefficients,

respectively, and ack = 1 if c = k (and = 0 if c 6= k). Also, ∂Pijc represents the

pdf of the response function; various forms of this are given in Section 6.2.3.

For the parameters that do not vary with c, let ζ represent an arbitrary

parameter vector; then for β and the vector v(T ), which contains the unique

elements of the Cholesky factor T , we get

∂ logL

∂ζ
=

N∑

j=1

h−1
j

∫

θ

nj∑

i=1

C∑

c=1

yijc

[
dij

∂Pijc − ∂Pij,c−1

Pijc − Pij,c−1
− (1− dij)

∂Pijc
1− Pijc

]

× ℓj g(θ)
∂ηijc
∂ζ

dθ, (6.12)

where
∂ηijc
∂β

= −xij ,
∂ηijc

∂(v(T ))
= −Jr(θ � zij),

and Jr is the elimination matrix of Magnus [69], which eliminates the elements

above the main diagonal. If T is an r × 1 vector of independent variance

terms (e.g., if zij is an r× 1 vector of level-1 or level-2 grouping variables, see

Section 6.7), then ∂ηijc/∂T = zijθ in the equation above.
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Fisher’s method of scoring can be used to provide the solution to these like-

lihood equations. For this, provisional estimates for the vector of parameters

Θ, on iteration ι are improved by

Θι+1 = Θι −
{

E

[
∂2 logL

∂Θι ∂Θ
′
ι

]}−1
∂ logL

∂Θι
, (6.13)

where, following Bock and Lieberman [17], the information matrix, or minus

the expectation of the matrix of second derivatives, is given by

−E

[
∂2 logL

∂Θι ∂Θ
′
ι

]
= E



N∑

j=1

h−2
j

∂hj
∂Θι

(
∂hj
∂Θι

)′

 .

Its estimator is obtained using the estimated parameter values and, at conver-

gence, the large-sample variance covariance matrix of the parameter estimates

is gotten as the inverse of the information matrix. The form on the right-hand

side of the above equation is sometimes called the “outer product of the

gradients.” It was proposed in the econometric literature by Berndt et al.

[12], and is often referred to as the BHHH method.

6.4 Multilevel Nominal Response Models

Let Y ij now denote a nominal variable associated with level-2 unit j and

level-1 unit i. Adding random effects to the fixed-effects multinomial logistic

regression model (see Agresti [2] and Long [65]), we get that the probability

that Y ij = c (a response occurs in category c) for a given level-2 unit j is

given by

pijc = Pr(Y ij = c) =
exp(ηijc)

1 +
∑C
h=2 exp(ηijh)

for c = 2, 3, . . . , C, (6.14a)

pij1 = Pr(Y ij = 1) =
1

1 +
∑C
h=2 exp(ηijh)

, (6.14b)

where the multinomial logit ηijc = x′
ijβc + z′ijTc θj . Comparing this to the

logit for ordered responses, we see that all of the covariate effects βc vary

across categories (c = 2, 3, . . . , C). Similarly for the random-effect variance

term Tc. As written above, an important distinction between the model for

ordinal and nominal responses is that the former uses cumulative comparisons

of the categories, whereas the latter uses comparisons to a reference category.

This model generalizes Bock’s model for educational test data [14] by

including covariates xij and by allowing a general random-effects design vector

zij including the possibility of multiple random effects θj . As discussed by



6 Multilevel Models for Ordinal and Nominal Variables 251

Bock [14], the model has a plausible interpretation. Namely, each nominal

category is assumed to be related to an underlying latent “response tendency”

for that category. The category c associated with the response variable Y ij
is then the category for which the response tendency is maximal. Notice that

this assumption of C latent variables differs from the ordinal model where only

one underlying latent variable is assumed. Bock [15] refers to the former as

the extremal concept and the latter as the aforementioned threshold concept,

and notes that both were introduced into psychophysics by Thurstone [111].

The two are equivalent only for the dichotomous case (i.e., when there are

only two response categories).

The model as written above allows estimation of any pairwise comparisons

among the C response categories. As characterized in Bock [14], it is benefical

to write the nominal model to allow for any possible set of C − 1 contrasts.

For this, the category probabilities are written as

pijc =
exp(ηijc)∑C
h=1 exp(ηijh)

for c = 1, 2, . . . , C, (6.15)

where now

ηijc = x′
ijΓdc + (z′ij � θ′j)J

′
r∗Λdc . (6.16)

Here, D is the (C − 1) × C matrix containing the contrast coefficients for

the C − 1 contrasts between the C logits and dc is the c-th column vector

of this matrix. The s × (C − 1) parameter matrix Γ contains the regression

coefficients associated with the s covariates for each of the C − 1 contrasts.

Similarly, Λ contains the random-effect variance parameters for each of the

C − 1 contrasts. Specifically,

Λ = [ v(T1) v(T2) . . . v(TC−1) ] ,

where v(Tc) is the r∗ × 1 vector (r∗ = r(r + 1)/2) of elements below and on

the diagonal of the Cholesky (lower-triangular) factor Tc and Jr∗ is the afore-

mentioned elimination matrix of Magnus [69]. This latter matrix is necessary

to ensure that the appropriate terms from the 1×r2 vector resulting from the

Kronecker product (z′ij � θ′j) are multiplied with the r∗ × 1 vector resulting

from Λdc. For the case of a random-intercepts model, the model simplifies to

ηijc = x′
ijΓdc +Λdc θj ,

with Λ as the 1× (C − 1) vector Λ = [ σ1 σ2 . . . σC−1 ].

Notice that if D equals

D =




0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . .

0 0 0 . . . 1


 ,
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the model simplifies to the earlier representation in (6.14a) and (6.14b). The

current formulation, however, allows for a great deal of flexibility in the types

of comparisons across the C response categories. For example, if the categories

are ordered, an alternative to the cumulative logit model of the previous

section is to employ Helmert contrasts [15] within the nominal model. For

this, with C = 4, the contrast matrix would be

D =




−1 1
3

1
3

1
3

0 −1 1
2

1
2

0 0 −1 1


 .

Helmert contrasts are similar to the category comparisons of continuation-

ratio logit models, as described within a mixed-model formulation by Ten Have

and Uttal [108]. However, the Helmert contrasts above are applied to the

category logits, rather then the category probabilities as in continuation-ratio

models.

6.4.1 Parameter Estimation

Estimation follows the procedure described for ordinal outcomes. Specifically,

letting Yj denote the vector of nominal responses from level-2 unit j (for the

nj level-1 units nested within), the probability of any Yj conditional on the

random effects θ is equal to the product of the probabilities of the level-1

responses

ℓ(Yj | θ) =

nj∏

i=1

C∏

c=1

(pijc)
yijc , (6.17)

where yijc = 1 if Yij = c, and 0 otherwise. The marginal density of the

response vector Yj is again given by (6.10). The marginal log-likelihood from

the N level-2 units, logL =
∑N
j log h(Yj), is maximized to obtain maximum

likelihood estimates of Γ and Λ. Specifically, using ∆ to represent either

parameter matrix,

∂ logL

∂∆′
=

N∑

j=1

h−1(Yj)

∫

θ

[
nj∑

i=1

D (yij − Pij) � ∂∆

]

× ℓ(Yj | θ) g(θ) dθ, (6.18)

where

∂Γ = x′
ij , ∂Λ = [Jr∗(θ � zij)]

′
,

yij is the C × 1 indicator vector, and Pij is the C × 1 vector obtained by

applying (6.15) for each category. As in the ordinal case, Fisher’s method of

scoring can be used to provide the solution to these likelihood equations.
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6.5 Computational Issues

In order to solve the above likelihood solutions for both the ordinal and

nominal models, integration over the random-effects distribution must be

performed. Additionally, the above likelihood solutions are only in terms of

the regression parameters and variance-covariance parameters of the random-

effects distribution. Often, estimation of the random effects is also of interest.

These issues are described in great detail in Skrondal and Rabe-Hesketh [98];

here, we discuss some of the relevant points.

6.5.1 Integration over θ

Various approximations for evaluating the integral over the random-effects

distribution have been proposed in the literature; several of these are com-

pared in Chapter 9. Perhaps the most frequently used methods are based

on first- or second-order Taylor expansions. Marginal quasi-likelihood (MQL)

involves expansion around the fixed part of the model, whereas penalized or

predictive quasi-likelihood (PQL) additionally includes the random part in its

expansion [39]. Both of these are available in the MLwiN software program

[84]. Unfortunately, several authors [19, 87, 90] have reported downwardly

biased estimates using these procedures in certain situations, especially for

the first-order expansions.

Raudenbush et al. [87] proposed an approach that uses a combination of

a fully multivariate Taylor expansion and a Laplace approximation. Based

on the results in Raudenbush et al. [87], this method yields accurate re-

sults and is computationally fast. Also, as opposed to the MQL and PQL

approximations, the deviance obtained from this approximation can be used

for likelihood-ratio tests. This approach has been incorporated into the HLM

software program [86].

Numerical integration can also be used to perform the integration over the

random-effects distribution. Specifically, if the assumed distribution is normal,

Gauss-Hermite quadrature can approximate the above integral to any practi-

cal degree of accuracy [104]. Additionally, like the Laplace approximation, the

numerical quadrature approach yields a deviance that can be readily used for

likelihood-ratio tests. The integration is approximated by a summation on a

specified number of quadrature points Q for each dimension of the integration.

The solution via quadrature can involve summation over a large number of

points, especially as the number of random effects is increased. For example,

if there is only one random effect, the quadrature solution requires only one

additional summation over Q points relative to the fixed-effects solution. For

models with r > 1 random effects, however, the quadrature is performed

over Qr points, and so becomes computationally burdensome for r > 5 or

so. Also, Lesaffre and Spiessens [61] present an example where the method
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only gives valid results for a high number of quadrature points. These authors

advise practitioners to routinely examine results for the dependence on Q.

To address these issues, several authors have described a method of adaptive

quadrature that uses relatively few points per dimension (e.g., 3 or so), which

are adapted to the location and dispersion of the distribution to be integrated

[18, 64, 78, 80]. Simulations show that adaptive quadrature performs well

in a wide variety of situations and typically outperforms ordinary quadra-

ture [82]. Several software packages have implemented ordinary or adaptive

Gauss-Hermite quadrature, including Egret R© [22], gllamm [81], LIMDEP [40],

MIXOR [49], MIXNO [46], Stata [101], and SAS PROC NLMIXED [93].

Another approach that is commonly used in econometrics and transporta-

tion research uses simulation methods to integrate over the random-effects

distribution (see the introductory overview by Stern [102] and the excellent

book by Train [112]). When used in conjunction with maximum likelihood

estimation, it is called “maximum simulated likelihood” or “simulated maxi-

mum likelihood.” The idea behind this approach is to draw a number of values

from the random-effects distribution, calculate the likelihood for each of these

draws, and average over the draws to obtain a solution. Thus, this method

maximizes a simulated sample likelihood instead of an exact likelihood, but

can be considerably faster than quadrature methods, especially as the number

of random effects increases [41]. It is a very flexible and intuitive approach

with many potential applications (see Drukker [27]). In particular, Bhat [13]

and Glasgow [36] describe this estimation approach for multilevel models

of nominal outcomes. In terms of software, LIMDEP [40] has included this

estimation approach for several types of outcome variables, including nomi-

nal and ordinal, and Haan and Uhlendorff [41] describe a Stata routine for

nominal data.

Bayesian approaches, such as the use of Gibbs sampling [33] and related

methods [105], can also be used to integrate over the random-effects distribu-

tion. This approach is described in detail in Chapter 2. For nominal responses,

Daniels and Gatsonis [25] use this approach in their multilevel polychotomous

regression model. Similarly, Ishwaran [57] utilize Bayesian methods in model-

ing multilevel ordinal data. The freeware BUGS software program [100] can

be used to facilitate estimation via Gibbs sampling. In this regard, Marshall

and Spiegelhalter [70] provide an example of multilevel modeling using BUGS,

including some syntax and discussion of the program.

6.5.2 Estimation of Random Effects and Probabilities

In many cases, it is useful to obtain estimates of the random effects and also to

obtain fitted marginal probabilities. The random effects θj can be estimated

using empirical Bayes methods [16]. For the univariate case, this estimator θ̂j
is given by the mean of the posterior distribution,
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θ̂j = E (θj | Yj) =
1

h(Yj)

∫

θ

θj ℓ(·) g(θ) dθ, (6.19)

where ℓ(·) is the conditional likelihood for the particular model (i.e., ordinal

or nominal). The variance of the posterior distribution is obtained as

Var(θ̂j | Yj) =
1

h(Yj)

∫

θ

(θj − θ̂j)2 ℓ(·) g(θ) dθ.

These quantities may be used, for example, to evaluate the response proba-

bilities for particular level-2 units (e.g., person-specific trend estimates).

To obtain estimated marginal probabilities (e.g., the estimated response

probabilities of the control group across time), an additional step is required

for models with non-linear response functions (e.g., the models considered

in this chapter). First, so-called “subject-specific” probabilities [75, 118] are

estimated for specific values of covariates and random effects, say θ∗. These

subject-specific estimates indicate, for example, the response probability for

a subject with random effect level θ∗ in the control group at a particu-

lar time-point. Denoting these subject-specific probabilities as P̂ss, marginal

probabilities P̂m can then be obtained by numerical quadrature, namely

P̂m =
∫
θ
P̂ss g(θ) dθ, or by marginalizing the scale of the regression coef-

ficients [51, p. 179]. Continuing with our example, the marginalized estimate

would indicate the estimated response probability for the entire control group

at a particular time-point. Both subject-specific and marginal estimates have

their uses, since they are estimating different quantities, and several authors

have characterized the differences between the two [45, 62, 75].

6.6 Intraclass Correlation

For a random-intercepts model (i.e., zj = 1nj
), it is often of interest to express

the level-2 variance in terms of an intraclass correlation. For this, one can make

reference to the threshold concept and the underlying latent response tendency

that determines the observed response. For the ordinal logistic model assum-

ing normally distributed random effects, the estimated intraclass correlation

equals σ̂2/(σ̂2 + π2/3), where the latter term in the denominator represents

the variance of the underlying latent response tendency. As mentioned earlier,

for the logistic model, this variable is assumed to be distributed as a standard

logistic distribution with variance equal to π2/3. For a probit model, this term

is replaced by 1, the variance of the standard normal distribution.

For the nominal model, one can make reference to multiple underlying

latent response tendencies, denoted as yijc, and the associated regression

model including level-1 residuals ǫijc ,

yijc = x′
ijβc + z′ijTc θj + ǫijc , c = 1, 2, . . . , C.
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As mentioned earlier, for a particular ij-th unit, the category c associated

with the nominal response variable Y ij is the one for which the latent yijc
is maximal. Since, in the common reference cell formulation, c = 1 is the

reference category, T1 = β1 = 0, and so the model can be rewritten as

yijc = x′
ijβc + z′ijTc θj + (ǫijc − ǫij1), c = 2, . . . , C,

for the latent response tendency of category c relative to the reference cat-

egory. It can be shown that the level-1 residuals ǫijc for each category are

distributed according to a type I extreme-value distribution [see 68, p. 60].

It can further be shown that the standard logistic distribution is obtained

as the difference of two independent type I extreme-value variates [see 72,

pp. 20 and 142]. As a result, the level-1 variance is given by π2/3, which

is the variance for a standard logistic distribution. The estimated intraclass

correlations are thus calculated as rc = σ̂2
c/(σ̂

2
c + π2/3), where σ̂2

c is the

estimated level-2 variance assuming normally distributed random intercepts.

Notice that C − 1 intraclass correlations are estimated, one for each category

c versus the reference category. As such, the cluster influence on the level-1

responses is allowed to vary across the nominal response categories.

6.7 Heterogeneous Variance Terms

Allowing for separate random-effect variance terms for groups of either i or j

units is sometimes important. For example, in a twin study it is often necessary

to allow the intra-twin correlation to differ between monozygotic and dizygotic

twins. In this situation, subjects (i = 1, 2) are nested within twin pairs (j =

1, . . . , N). To allow the level-2 variance to vary for these two twin-pair types,

the random-effects design vector zij is specified as a 2 × 1 vector of dummy

codes indicating monozygotic and dizygotic twin-pair status, respectively. T

(or Tc in the nominal model) is then a 2 × 1 vector of independent random-

effect standard deviations for monozygotics and dizygotics, and the cluster

effect θj is a scalar that is pre-multiplied by the vector T . For example, for a

random-intercepts proportional odds model, we would have

log

[
P ijc

1− P ijc

]
= γc −

{
x′
ijβ + [MZ j DZ j ]

[
σδ (MZ )

σδ (DZ )

]
θj

}
,

where MZ j and DZ j are dummy codes indicating twin-pair status (i.e., if

MZ j = 1 then DZ j = 0, and vice versa).

Notice, that if the probit formulation is used and the model has no covari-

ates (i.e., only an intercept, xij = 1), the resulting intraclass correlations

ICCMZ =
σ2
δ (MZ )

σ2
δ (MZ ) + 1

and ICCDZ =
σ2
δ (DZ )

σ2
δ (DZ ) + 1



6 Multilevel Models for Ordinal and Nominal Variables 257

are polychoric correlations (for ordinal responses) or tetrachoric correlations

(for binary responses) for the within twin-pair data. Adding covariates then

yields adjusted tetrachoric and polychoric correlations. Because estimation of

polychoric and tetrachoric correlations is often important in twin and genetic

studies, these models are typically formulated in terms of the probit link.

Comparing models that allow homogeneous versus heterogeneous subgroup

random-effects variance thus allows testing of whether the tetrachoric (or

polychoric) correlations are equal across the subgroups.

The use of heterogeneous variance terms can also be found in some item

response theory (IRT) models in the educational testing literature [14, 16,

92]. Here, item responses (i = 1, 2, . . . ,m) are nested within subjects (j =

1, 2, . . . , N) and a separate random-effect standard deviation (i.e., an element

of the m×1 vector T ) is estimated for each test item (i.e., each i unit). In the

multilevel model this is accomplished by specifying zij as an m× 1 vector of

dummy codes indicating the repeated items. To see this, consider the popular

two-parameter logistic model for dichotomous responses [66] that specifies the

probability of a correct response to item i (Y ij = 1) as a function of the ability

of subject j (θj),

Pr(Y ij = 1) =
1

1 + exp[−ai(θj − bi)]
,

where ai is the slope parameter for item i (i.e., item discrimination), and bi
is the threshold or difficulty parameter for item i (i.e., item difficulty). The

distribution of ability in the population of subjects is assumed to be normal

with mean 0 and variance 1 (i.e., the usual assumption for the random effects

θj in the multilevel model). As noted by Bock and Aitkin [16], it is convenient

to let ci = −aibi and write

Pr(Y ij = 1) =
1

1 + exp[−(ci + ai θj)]
,

which can be recast in terms of the logit of the response as

logitij = log

[
pij

1− pij

]
= ci + ai θj .

As an example, suppose that there are four items. This model can be repre-

sented in matrix form as



logit1j
logit2j
logit3j
logit4j


 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Xj




c1
c2
c3
c4




c

+




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Zj




a1

a2

a3

a4




a

( θj),
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showing that this IRT model is a multilevel model that allows the random-

effects variance terms to vary across items (level 1). The usual IRT notation is

a bit different than the multilevel notation, but c simply represents the fixed

effects (i.e., β) and a is the the random-effects standard deviation vector

T ′ = [ σδ1 σδ2 σδ3 σδ4 ].

The elements of the T vector can also be viewed as the (unscaled) factor

loadings of the items on the (unidimensional) underlying ability variable (θ).

A simpler IRT model that constrains these factor loadings to be equal is the

one-parameter logistic model, the so-called Rasch model [116]. This constraint

is achieved by setting Zj = 1nj
and a = a in the above model. Thus, the

Rasch model is simply a random-intercepts logistic regression model with

item indicators for X.

Unlike traditional IRT models, the multilevel formulation of the model

easily allows multiple covariates at either level (i.e., items or subjects). This

and other advantages of casting IRT models as multilevel models are described

in detail by Adams et al. [1] and Rijmen et al. [89]. In particular, this allows a

model for examining whether item parameters vary by subject characteristics,

and also for estimating ability in the presence of such item by subject in-

teractions. Interactions between item parameters and subject characteristics,

often termed item bias [20], is an area of active psychometric research. Also,

although the above illustration is in terms of a dichotomous response model,

the analogous multilevel ordinal and nominal models apply. For ordinal items

responses, application of the cumulative logit multilevel models yields what

Thissen and Steinberg [110] have termed “difference models,” namely, the

treatment of ordinal responses as developed by Samejima [92] within the IRT

context. Similarly, in terms of nominal responses, the multilevel model yields

the nominal IRT model developed by Bock [14].

6.8 Health Services Research Example

The McKinney Homeless Research Project (MHRP) study [55, 56] in San

Diego, CA was designed to evaluate the effectiveness of using Section 8 cer-

tificates as a means of providing independent housing to the severely mentally

ill homeless. Section 8 housing certificates were provided from the Department

of Housing and Urban Development (HUD) to local housing authorities in San

Diego. These housing certificates, which require clients to pay 30% of their

income toward rent, are designed to make it possible for low-income indi-

viduals to choose and obtain independent housing in the community. Three

hundred sixty-one clients took part in this longitudinal study employing a

randomized factorial design. Clients were randomly assigned to one of two

types of supportive case management (comprehensive vs. traditional) and to

one of two levels of access to independent housing (using Section 8 certificates).
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Eligibility for the project was restricted to individuals diagnosed with a severe

and persistent mental illness who were either homeless or at high risk of

becoming homeless at the start of the study. Individuals’ housing status was

classified at baseline and at 6-, 12-, and 24-month follow-ups.

In this illustration, focus will be on examining the effect of access to

Section 8 certificates on repeated housing outcomes across time. Specifi-

cally, at each time-point each subjects’ housing status was classified as either

streets/shelters, community housing, or independent housing. This outcome

can be thought of as ordinal with increasing categories indicating improved

housing outcomes. The observed sample sizes and response proportions for

these three outcome categories by group are presented in Table 6.1.

These observed proportions indicate a general decrease in street living and

an increase in independent living across time for both groups. The increase

in independent housing, however, appears to occur sooner for the Section 8

group relative to the control group. Regarding community living, across time

this increases for the control group and decreases for the Section 8 group.

There is some attrition across time; attrition rates of 19.4% and 12.7%

are observed at the final time-point for the control and Section 8 groups,

respectively. Since estimation of model parameters is based on a full-likelihood

approach, the missing data are assumed to be “ignorable” conditional on

both the model covariates and the observed responses [60]. In longitudinal

studies, ignorable nonresponse falls under the “missing at random” (MAR)

assumption introduced by Rubin [91], in which the missingness depends only

on observed data. In what follows, since the focus is on describing application

of the various multilevel regression models, we will make the MAR assumption.

Table 6.1 Housing status across time by group: response proportions and sample

sizes.

Time-point

Group Status Baseline 6-months 12-months 24-months

Control Street .555 .186 .089 .124

Community .339 .578 .582 .455

Independent .106 .236 .329 .421

n 180 161 146 145

Section 8 Street .442 .093 .121 .120

Community .414 .280 .146 .228

Independent .144 .627 .732 .652

n 181 161 157 158
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A further approach, however, that does not rely on the MAR assumption (e.g.,

a multilevel pattern-mixture model as described in Hedeker and Gibbons [50])

could be used. Missing data issues are described more fully in Chapter 10.

6.8.1 Ordinal Response Models

To prepare for the ordinal analyses, the observed cumulative logits across

time for the two groups are plotted in Figs. 6.3 and 6.4. The first cumulative

logit compares independent and community housing versus street living (i.e.,

categories 2 and 3 combined versus 1), while the second cumulative logit

compares independent housing versus community housing and street living

(i.e., category 3 versus 2 and 1 combined). For the proportional odds model

to hold, these two plots should look the same, with the only difference being

the scale difference on the y-axis. As can be seen, these plots do not look

that similar. For example, the post-baseline group differences do not appear

to be the same for the two cumulative logits. In particular, it appears that

the Section 8 group does better more consistently in terms of the second

cumulative logit (i.e., independent versus community and street housing). This

would imply that the proportional odds model is not reasonable for these data.

To assess this more rigorously, two ordinal logistic multilevel models were

fit to these data, the first assuming a proportional odds model and the sec-

ond relaxing this assumption. For both analyses, the repeated housing status

classifications were modeled in terms of time effects (6-, 12-, and 24-month

follow-ups compared to baseline), a group effect (Section 8 versus control), and

group by time interaction terms. The first analysis assumes these effects are

the same across the two cumulative logits of the model, whereas the second
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Fig. 6.3 First cumulative logit values across time by group.



6 Multilevel Models for Ordinal and Nominal Variables 261

−2

−1.5

−1.0

−0.5

0.0

0.5

1.0
E

m
p
ir
ic

a
l
lo

g
it
s

0 6 12 24

Months since baseline

Control
Section 8

Fig. 6.4 Second cumulative logit values across time by group.

analysis estimates effects for each explanatory variable on each of the two

cumulative logits. In terms of the multilevel part of the model, only a random

subject effect was included in both analyses. Results from these analyses are

given in Table 6.2.

The proportional odds model indicates significant time effects for all time-

points relative to baseline, but only significant group by time interactions for

the 6- and 12-month follow-ups. Marginally significant effects are obtained

for the Section 8 effect and the Section 8 by t3 (24-months) interaction.

Thus, the analysis indicates that the control group moves away from street

living to independent living across time and that this improvement is more

pronounced for Section 8 subjects at the 6- and 12-month follow-up. Because

the Section 8 by t3 interaction is only marginally significant, the groups do not

differ significantly in housing status at the 24-month follow-up as compared

to baseline.

However, comparing log-likelihood values clearly rejects the proportional

odds assumption (likelihood ratio χ2
7 = 52.14), indicating that the effects of

the explanatory variables cannot be assumed identical across the two cumu-

lative logits. Interestingly, none of the Section 8 by time interaction terms are

significant in terms of the non-street logit (i.e., comparing categories 2 and 3

versus 1), while all of them are significant in terms of the independent logit

(i.e., comparing category 3 versus 1 and 2 combined). Thus, as compared to

baseline, Section 8 subjects are more likely to be in independent housing at

all follow-up time-points, relative to the control group.

In terms of the random subject effect, it is clear that the data are corre-

lated within subjects. Expressed as an intraclass correlation, the attributable
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Table 6.2 Housing status across time: Ordinal logistic model estimates and standard

errors (se).

Proportional Odds Non-Proportional Odds

Non-streeta Independentb

Term estimate se estimate se estimate se

Intercept −.220 .203 −.322 .218

Threshold 2.744 .110 2.377 .279

t1 (6 month vs. base) 1.736 .233 2.297 .298 1.079 .358

t2 (12 month vs. base) 2.315 .268 3.345 .450 1.645 .336

t3 (24 month vs. base) 2.499 .247 2.821 .369 2.145 .339

Section 8 (yes=1, no=0) .497 .280 .592 .305 .323 .401

Section 8 by t1 1.408 .334 .566 .478 2.023 .478

Section 8 by t2 1.173 .360 −.958 .582 2.016 .466

Section 8 by t3 .638 .331 −.366 .506 1.073 .472

Subject sd 1.459 .106 1.457 .112

−2 logL 2274.39 2222.25

bold indicates p < .05, italic indicates .05 < p < .10
a Logit comparing independent and community housing vs. street
b Logit comparing independent housing vs. community housing and street

variance at the subject level equals .39 for both models. Also, the Wald test is

highly significant in terms of rejecting the null hypothesis that the (subject)

population standard deviation equals zero. Strictly speaking, as noted by

Raudenbush and Bryk [85] and others, this test is not to be relied upon,

especially as the population variance is close to zero. In the present case, the

actual significance test is not critical because it is more or less assumed that

the population distribution of the subject effects will not have zero variance.

6.8.2 Nominal Response Models

For the initial set of analyses with nominal models, reference category con-

trasts were used and street/shelter was chosen as the reference category. Thus,

the first comparison compares community to street responses, and the second

compares independent to street responses. A second analysis using Helmert

contrasts will be described later.

Corresponding observed logits for the reference-cell comparisons by group

and time are given in Figs. 6.5 and 6.6. Comparing these plots, differ-

ent patterns for the post-baseline group differences are suggested. It seems

that the non-Section 8 group does better in terms of the community versus
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Fig. 6.5 First reference-cell logit values across time by group.
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Fig. 6.6 Second reference-cell logit values across time by group.

street comparison, whereas the Section 8 group is improved for the indepen-

dent versus street comparison. Further, the group differences appear to vary

across time. The subsequent analyses will examine these visual impressions

of the data.

To examine the sensitivity of the results to the normality assumption for

the random effects, two multilevel nominal logistic regression models were

fit to these data assuming the random effects were normally and uniformly
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Table 6.3 Housing status (community versus street) across time: Nominal model

estimates and standard errors (se).

Normal prior Uniform prior

Term estimate se estimate se

Intercept −.452 .192 −.473 .184

t1 (6 month vs. base) 1.942 .312 1.850 .309

t2 (12 month vs. base) 2.820 .466 2.686 .457

t3 (24 month vs. base) 2.259 .378 2.143 .375

Section 8 (yes=1, no=0) .521 .268 .471 .258

Section 8 by t1 −.135 .490 −.220 .484

Section 8 by t2 −1.917 .611 −1.938 .600

Section 8 by t3 −.952 .535 −.987 .527

Subject sd .871 .138 .153 .031

−2 logL 2218.73 2224.74

bold indicates p < .05, italic indicates .05 < p < .10

distributed, respectively. Tables 6.3 and 6.4 list results for the two response

category comparisons of community versus street and independent versus

street, respectively. The time and group effects are the same as in the previous

ordinal analyses.

Table 6.4 Housing status (independent versus street) across time: Nominal model

estimates and standard errors (se).

Normal prior Uniform prior

Term estimate se estimate se

Intercept −2.675 .367 −2.727 .351

t1 (6 month vs. base) 2.682 .425 2.540 .422

t2 (12 month vs. base) 4.088 .559 3.916 .551

t3 (24 month vs. base) 4.099 .469 3.973 .462

Section 8 (yes=1, no=0) .781 .491 .675 .460

Section 8 by t1 2.003 .614 2.016 .605

Section 8 by t2 .548 .694 .645 .676

Section 8 by t3 .304 .615 .334 .600

Subject sd 2.334 .196 .490 .040

−2 logL 2218.73 2224.74

bold indicates p < .05, italic indicates .05 < p < .10
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The results are very similar for the two multilevel models. Thus, the

random-effects distributional form does not seem to play an important role

for these data. Subjects in the control group increase both independent and

community housing relative to street housing at all three follow-ups, as com-

pared to baseline. Compared to controls, the increase in community versus

street housing is less pronounced for Section 8 subjects at 12 months, but

not statistically different at 6 months and only marginally different at 24

months. Conversely, as compared to controls, the increase in independent

versus street housing is more pronounced for Section 8 subjects at 6 months,

but not statistically different at 12 or 24 months. Thus, both groups reduce

the degree of street housing, but do so in somewhat different ways. The control

group subjects are shifted more toward community housing, whereas Section 8

subjects are more quickly shifted toward independent housing.

As in the ordinal case, the Wald tests are all significant for the inclusion of

the random-effects variance terms. A likelihood-ratio test also clearly supports

inclusion of the random subject effect (likelihood ratio χ2
2 = 134.3 and 128.3

for the normal and uniform distribution, respectively, as compared to the

fixed-effects model, not shown). Expressed as intraclass correlations, r1 = .19

and r2 = .62 for community versus street and independent versus street,

respectively. Thus, the subject influence is much more pronounced in terms of

distinguishing independent versus street living, relative to community versus

street living. This is borne out by contrasting models with separate versus

a common random-effect variance across the two category contrasts (not

shown), which yields a highly significant likelihood ratio χ2
1 = 49.2 favoring

the model with separate variance terms.

An analysis was also done to examine if the random-effect variance terms

varied significantly by treatment group. The deviance (−2 logL) for this

model, assuming normally distributed random effects, equaled 2218.43, which

was nearly identical to the value of 2218.73 (from Tables 6.3 and 6.4) for

the model assuming homogeneous variances across groups. The control group

and Section 8 group estimates of the subject standard deviations were respec-

tively .771 (se = .182) and .966 (se = .214) for the community versus street

comparison, and 2.228 (se = .299) and 2.432 (se = .266) for the indepen-

dent versus street comparison. Thus, the homogeneity of variance assumption

across treatment groups is clearly not rejected.

Finally, Table 6.5 lists the results obtained for an analysis assuming nor-

mally distributed random effects and using Helmert contrasts for the three

response categories. From this analysis, it is interesting that none of the Sec-

tion 8 by time interaction terms are observed to be statistically significant for

the first Helmert contrast (i.e., comparing street to non-street housing). Thus,

group assignment is not significantly related to housing when considering sim-

ply street versus non-street housing outcomes. However, the second Helmert

contrast that contrasts the two types of non-street housing (i.e., independent
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Table 6.5 Housing status across time: Nominal model estimates and standard errors

(se) using Helmert contrasts.

Independent

& Community Independent

vs. Street vs. Community

Term estimate se estimate se

Intercept −1.042 .163 −1.112 .163

t1 (6 month vs. base) 1.541 .215 .371 .187

t2 (12 month vs. base) 2.303 .323 .634 .176

t3 (24 month vs. base) 2.119 .258 .920 .179

Section 8 (yes=1, no=0) .434 .222 .130 .213

Section 8 by t1 .623 .330 1.069 .253

Section 8 by t2 −.457 .401 1.233 .256

Section 8 by t3 −.216 .345 .628 .255

Subject sd 1.068 .099 .732 .083

−2 logL = 2218.73

bold indicates p < .05, italic indicates .05 < p < .10

versus community) does reveal the benefical effect of the Section 8 certificate

in terms of the positive group by time interaction terms. Again, the Section 8

group is more associated with independent housing, relative to community

housing, than the non-Section 8 group. In many ways, the Helmert contrasts,

with their intuitive interpretations, represent the best choice for the analysis

of these data.

6.9 Discussion

Multilevel ordinal and multinomial logistic regression models are described

for the analysis of categorical data. These models are useful for analysis of

outcomes with more than two response categories. By and large, the models

are seen as extensions of the multilevel logistic regression model. However,

they generalize the model in different ways. The ordinal model uses cumulative

dichotomizations of the categorical outcome. Alternatively, the nominal model

typically uses dichotomizations that are based on selecting one category as the

reference that the others are each compared to. This chapter has also described

how other comparisons can be embedded within the nominal model.

For ordinal data, both proportional odds and non-proportional odds mod-

els are considered. Since, as noted by Peterson and Harrell [77], examples of

non-proportional odds are not difficult to find; the latter model is especially
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attractive for analyzing ordinal outcomes. In the example presented, the non-

proportional odds model provided more specific information about the effect

of Section 8 certificates. Namely, as compared to baseline, these certificates

were effective in increasing independent housing (versus community housing

and street living combined) at all follow-up time-points. Interestingly, the

same could not be said when comparing independent and community housing

combined versus street living. Thus, the use of the non-proportional odds

model was helpful in elucidating a more focused analysis of the effect of the

Section 8 program.

For the nominal model, both reference cell and Helmert contrasts were

applied in the analysis of these data. The former indicated an increase for

community relative to street housing for the non-Section 8 group, and an

increase for independent relative to street housing for the Section 8 group.

Alternatively, the Helmert contrasts indicated that the groups did not differ

in terms of non-street versus street housing, but did differ in terms of the

type of non-street housing (i.e., the Section 8 group was more associated with

independent housing). In either case, the nominal model makes an assump-

tion that has been referred to as “independence of irrelevant alternatives”

[10, 67, 68]. This is because the effect of an explanatory variable compar-

ing two categories is the same regardless of the total number of categories

considered. This assumption is generally reasonable when the categories are

distinct and dissimilar, and unreasonable when the nominal categories are

seen as substitutes for one another [8, 73]. Furthermore, McFadden [74] notes

that the multinomial logistic regression model is relatively robust in many

cases in which this assumption is implausible. In the present example, the

outcome categories are fairly distinct and so the assumption would seem to be

reasonable for these data. The possibility of relaxing this assumption, though,

for a more general multilevel nominal regression model is discussed in detail

in Train [112].

The example presented illustrated the usefulness of the multilevel approach

for longitudinal categorical data. In particular, it showed the many possible

models and category comparisons that are possible if the response variable

has more than two categories. In terms of the multilevel part of the model,

only random-intercepts models were considered in the data analysis. However,

in describing model development, multiple random effects were allowed. An

analysis of these data incorporating random subject intercepts and linear

trends is discussed in Hedeker [46]. Additionally, the data had a relatively

simple multilevel structure, in that there were only two levels, namely, re-

peated observations nested within subjects. Extensions of both the ordinal

and nominal models for three and higher levels is possible in the MLwiN [84]

and HLM [86] software programs.
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7.1 Introduction

Longitudinal data, often called repeated measurements in medicine and panel

data in the social sciences, arise when units provide responses on multiple

occasions. Such data can be thought of as clustered or two-level data with

occasions i at level 1 and units j at level 2.

One feature distinguishing longitudinal data from other types of clustered

data is the chronological ordering of the responses, implying that level-1 units

cannot be viewed as exchangeable. Another feature of longitudinal data is

that they often consist of a large number of small clusters.

A typical aim in longitudinal analysis is to investigate the effects of co-

variates both on the overall level of the responses and on changes of the

responses over time. An important merit of longitudinal designs is that they

allow the separation of cross-sectional and longitudinal effects. They also allow

the investigation of heterogeneity across units both in the overall level of the

response and in the development over time. Heterogeneity not captured by

observed covariates produces dependence among responses even after control-

ling for those covariates. This violates the typical assumptions of ordinary

regression models and must be accommodated to avoid invalid inference.

It is useful to distinguish between longitudinal data with balanced and

unbalanced occasions. The occasions are balanced if all units are measured at

the same time points ti, i = 1, . . . , n, and unbalanced if units are measured

at different time points, tij , i = 1, . . . , nj . In the case of balanced occasions,

the data can also be viewed as single-level multivariate data where responses

at different occasions are treated as different variables. One advantage of the

univariate multilevel approach taken here is that unbalanced occasions and
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missing data are accommodated without resorting to complete case analysis

(sometimes called listwise deletion). We will use maximum likelihood estima-

tion, which produces consistent estimates if responses are missing at random

(MAR) as defined by Rubin [59]; see Chapter 10 [40] for other approaches

in the case of MAR and Verbeke and Molenberghs [65] for approaches in the

case of responses not missing at random (NMAR).

In this chapter we will consider both linear mixed models and generalized

linear mixed models. A linear mixed model is written in Chapter 1, equa-

tion (1.4), as

y
j

= Xjβ +Zjδj + ǫj , (7.1)

where y
j

is the vector of continuous responses for unit j. In this book the

covariate matrices Xj and Zj are treated as fixed. Extra assumptions are

required when these matrices are treated as random; see, for instance, Rabe-

Hesketh and Skrondal [54].

A generalized linear mixed model also accommodates non-continuous re-

sponses and can be written as

g(E (y
j
| δj)) = Xjβ +Zjδj

∆
=η

j
, (7.2)

where g(·) is a link function and ηj is a vector of linear predictors. Conditional

on the random effects δj , the elements yij of y
j

have a distribution from

the exponential family and are mutually independent. See Rabe-Hesketh and

Skrondal [54] and Chapter 9 [58] for treatments of generalized linear mixed

models.

For dichotomous and ordinal responses, generalized linear mixed models

with logit and probit links can also be defined using a latent response formula-

tion. A linear mixed model is in this case specified for an imagined continuous

latent response y∗ij . The observed dichotomous or ordinal response yij with

S > 1 categories results from partitioning y∗ij into S segments using S − 1

cut-points or thresholds; see Chapter 6 [31] for details.

We will use an example dataset to illustrate some of the ideas discussed

in this chapter. The dataset comes from an American panel survey of 545

young males taken from the National Longitudinal Survey (Youth Sample)

for the period 1980–1987. The data were previously analyzed by Vella and

Verbeek [64] and can be downloaded from the web pages of Wooldridge [70]

and Rabe-Hesketh and Skrondal [53]. The response variable is the natural

logarithm of the hourly wage in US dollars and the following covariates will

be used:

• educ: Years of schooling (x1j)

• black: Dummy variable for being black (x2j)

• hisp: Dummy variable for being Hispanic (x3j)

• labex: Labor market experience (in 2-year periods) (x4ij)
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• labexsq: Labor market experience squared (x5ij)

• married: Dummy variable for being married (x6ij)

• union: Dummy variable for being a member of a union (x7ij)

The first three covariates are time-constant, whereas the next four are time-

varying.

7.2 Models with Unit-Specific Intercepts

In longitudinal data it is usually impossible to capture all between-unit vari-

ability using observed covariates. If the remaining “unobserved heterogeneity”

is ignored, it induces longitudinal dependence among the responses for the

same unit (after controlling for the included covariates). A simple way of rep-

resenting “unobserved heterogeneity” is by including unit-specific intercepts,

which could be either random or fixed.

7.2.1 Random Intercept Models

Consider the response yij of unit j on occasion i (i = 1, . . . , nj). In a linear

random intercept model, sometimes referred to as a one-way error component

model, it is assumed that the unit-specific effects are realizations of a random

variable δj ,

yij = x′
ijβ + δj + ǫij ,

where δj and ǫij are independently distributed δj ∼ N (0, ω2) and ǫij ∼
N (0, σ2). The random intercept or “permanent component” δj allows the level

of the response to vary across units, whereas the “transitory component” ǫij
varies over occasions within units. The model is a special case of a linear

mixed model (7.1) with Zj = 1nj
.

The variance-covariance matrix of the responses y
j
, after controlling for

Xj , is given by

Cov(y
j
) = Cov(1nj

δj + ǫj) = ω21nj
1′
nj

+ σ2Inj
,

with diagonal elements ω2 + σ2 and off-diagonal elements ω2. The residual

intraclass correlation becomes

Corr(yij , yi′j) =
ω2

ω2 + σ2
. (7.3)

This covariance structure is also shown in panel A of Table 7.1. It is sometimes

referred to as exchangeable since the joint distribution of the residuals for a

given unit remains unchanged if the residuals are exchanged across occasions.

The covariance structure also satisfies the sphericity property that the condi-

tional variances Var( yij − yi′j ) of all pairwise differences are equal. Note that
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Table 7.1 Common dependence structures for longitudinal data (Ψj
∆
= Cov(y

j
)).

A. Random intercept structure:

Ψj = ω21nj
1′

nj
+ σ2

Inj =











ω2 + σ2

ω2 ω2 + σ2

...
...

. . .

ω2 ω2 · · · ω2 + σ2











B. Random coefficient structure:

Ψj = ZjΩZ
′
j + σ2

Inj

C. Autoregressive residual structure AR(1):

Ψj =
σ2

u

1 − α2











1

α 1
...

...
. . .

αnj−1 αnj−2 · · · 1











D. Moving average residual structure MA(1):

Ψj = σ2
u

















1 + a2

a 1 + a2

0 a 1 + a2

...
...

...
. . .

0 0 0 · · · 1 + a2

















E. Autoregressive response structure AR(1):

Ψj =
σ2

ǫ

1 − γ2











1

γ 1
...

...
. . .

γnj−1 γnj−2 · · · 1











the covariances ω2 are restricted to be nonnegative in the random intercept

model. If this restriction is relaxed, the above covariance structure is often

called compound symmetric. In the case of balanced occasions, we could also

allow the variance of ǫij to take on a different value Σii for each occasion.

Typically, the random intercept model is estimated by either maximum

likelihood or restricted maximum likelihood [42]. The likelihood has a closed

form, but iterative methods such as the EM algorithm, Newton-Raphson,

Fisher scoring, or iterated generalized least squares (IGLS) must be used to

estimate the parameters; see Chapter 1 [15].
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Maximum likelihood estimates of the random intercept model for the wage

panel data, obtained using Stata’s [63] xtmixed command, are given in the

first column of Table 7.2. As might be expected, more years of schooling,

more labor market experience, being married, and being a union member are

all associated with higher hourly wages, whereas being black decreases the

wage compared with being white, and Hispanics’ wages are similar to those of

whites (controlling for the other covariates). The residual intraclass correlation

is estimated as 0.47; 47% of the variance not explained by the covariates is

therefore between individuals and 53% within individuals.

For generalized linear mixed models, the dependence among observed

responses is generally difficult to express because the model-implied corre-

lations and variances depend on the covariates. However, for a generalized

linear random intercept model, obtained by substituting Zj = 1nj
in (7.2),

with dichotomous or ordinal responses, the intraclass correlation of the latent

responses is constant and given by (7.3) with σ2 replaced by π2/3 for logit

models and 1 for probit models. An important interpretational issue in gener-

alized linear mixed models concerns the distinction between conditional and

marginal effects, which correspond to unit-specific and population-averaged

effects in the longitudinal setting. We return to this in Section 7.6.

Generally, the marginal likelihood does not have a closed form for gen-

eralized linear mixed models, making estimation more difficult. Common

approaches include penalized quasilikelihood [23], maximum likelihood us-

ing adaptive quadrature [56] and Markov Chain Monte Carlo (MCMC) [10];

see also Chapter 9 [58]. For dichotomous responses and counts, closed-form

likelihoods can be achieved by specifying a conjugate distribution for the

random intercepts, giving the beta-binomial and negative-binomial models,

respectively [38].

Simulation studies [5, 26, 48, 69] suggest that inference for the ran-

dom intercept model and similar models is relatively robust to violation

of the normality assumption for the random intercept. However, to safe-

guard against distributional misspecification, the random intercept distribu-

tion can be left unspecified by using nonparametric maximum likelihood esti-

mation [30, 34, 37]. The nonparametric maximum likelihood estimator of the

random intercept distribution is discrete with estimated locations and masses,

their number being determined to reach the largest maximized likelihood.

For the wage panel data, gllamm [53, 55] in Stata was used to estimate

models with a discrete random effects distribution. The directional deriva-

tive [37] was used to determine whether the nonparametric maximum likeli-

hood estimator (NPMLE) was achieved as described in Rabe-Hesketh et al.

[52]. In the example, the NPMLE appears to have eight mass points whose

estimated locations and masses are shown in Fig. 7.1. This estimated discrete

distribution is quite symmetric apart from a tiny mass at 1.77, which appears

to accommodate one outlying individual whose log wage exceeded the 99th
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Fig. 7.1 Estimated discrete random intercept distribution from NPMLE.

percentile (across individuals and time) in 1981–1987. The standard deviation

of the discrete distribution is very close to ω̂0 for the conventional random

intercept model, as are the estimates of the regression parameters β and

variance parameter σ2 given in the second column of Table 7.2.

As discussed for linear models in Chapter 3 [61], violation of the as-

sumption that δj has zero expectation can invalidate inference. Specifically,

if E (δj) = z′jγ, where 1nj
zj and Xj are nonorthogonal, the estimates of

the regression coefficients β will be inconsistent. When the covariates Xj are

treated as random variables Xj , this problem is referred to as endogeneity in

econometrics because the covariates are correlated with the random effects.

The standard approach to handling endogeneity in econometrics is instru-

mental variables estimation [70]. In the present context, a simpler solution is

to estimate the within-unit effects of Xj , which can be achieved by also con-

trolling for the cluster mean covariates X̄·j . An alternative for linear models

is to use a fixed effects approach, which will be discussed next. Unfortunately,

there are no easy fixes for violation of the assumption that E (ǫij) = 0.

7.2.2 Fixed Intercept Models

A simple linear fixed intercept model or fixed effects model has the form

yij = x′
ijβ + δj + ǫij , (7.4)

where δj are unit-specific intercepts or “fixed effects” and ǫij are identically

and independently normally distributed residuals with E (ǫij) = 0. Due to the
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Table 7.2 Estimates for wage panel data.

Intercept Intercept and Slope Autoregressive (1)

Random NPML Fixed Both random Random slope Both fixed AR Residual AR Response

Est (SE) Est (SE) Est (SE) Est (SE) Est (SE) Est (SE) Est (SE) Est (SE)

Fixed part

β0 [cons] −0.11 (0.11) −0.17 (0.10) −0.16 (0.12) −0.11 (0.11) 0.11 (0.06)

β1 [educ] 0.10 (0.01) 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.05 (0.00)

β2 [black] −0.14 (0.05) −0.14 (0.05) −0.15 (0.04) −0.14 (0.05) −0.08 (0.02)

β3 [hisp] 0.02 (0.04) 0.01 (0.03) 0.01 (0.04) 0.02 (0.04) 0.01 (0.02)

β4 [labex] 0.22 (0.02) 0.22 (0.02) 0.23 (0.02) 0.21 (0.02) 0.22 (0.02) 0.23 (0.02) 0.03 (0.02)

β5 [labexsq] −0.01 (0.00) −0.02 (0.00) −0.02 (0.00) −0.01 (0.00) −0.01 (0.01) −0.01 (0.01) −0.02 (0.00) 0.00 (0.00)

β6 [married] 0.06 (0.02) 0.07 (0.02) 0.05 (0.02) 0.07 (0.02) 0.05 (0.02) 0.04 (0.03) 0.06 (0.02) 0.05 (0.01)

β7 [union] 0.11 (0.02) 0.10 (0.02) 0.08 (0.02) 0.11 (0.02) 0.08 (0.02) 0.04 (0.02) 0.09 (0.02) 0.07 (0.01)

γ [lag] 0.56 (0.01)

Random part

ω0 0.33 (0.01) 0.33 (–) 0.44 (0.02) 0.31 (0.01)

ω1 0.10 (0.01) 0.11 (0.01)

ρ10 −0.66 (0.04)

σ 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.33 (0.00) 0.33 (0.00) 0.37 (0.00) 0.39 (0.00)

α 0.27 (0.01)

Log-likelihooda −2193.3 −2176.1 −2118.9 −2109.0
a No log-likelihood given when estimates are based on transformed data or subset of data.



282 A. Skrondal, S. Rabe-Hesketh

inclusion of fixed effects δj for each unit j, the mean structure of y
j

is satu-

rated so that the regression coefficients β represent within-unit or longitudinal

effects only. Unlike the random intercept model, the fixed intercept model no

longer makes any assumptions regarding the cross-sectional component of the

model, so that endogeneity bias can be avoided. The cost of this robustness

is that regression parameters for time-constant covariates such as gender or

treatment group cannot be estimated and all covariates must therefore be

time-varying.

The fixed intercepts are rarely of interest in themselves and estimation can

be involved when there are many units. An attractive alternative to estimating

all parameters is to eliminate the fixed intercepts. This can be accomplished

by transforming both the responses and covariates and then using ordinary

least squares (OLS). In econometrics, two popular transformations are first-

differencing: yij − yi−1,j , xij − xi−1,j , and cluster-mean centering: yij − ȳ·j ,
xij − x̄·j . Both approaches yield consistent estimates of the remaining regres-

sion coefficients, but the latter, known as the fixed effects estimator, is more

efficient if the residuals ǫij are mutually independent as assumed above [70].

Verbeke et al. [66] propose eliminating the intercepts by conditioning on the

cluster mean responses and maximizing the resulting conditional likelihood.

This can be implemented by premultiplying y
j

and Xj by a nj × (nj − 1)

orthonormal contrast matrix. This approach yields identical estimates as the

fixed effects estimator based on cluster mean centering, but has the advantage

that the OLS standard error estimates need not be corrected for the loss of

degrees of freedom.

Some insight can be gained [41] regarding the difference between fixed

effects and random effects estimators of the regression coefficients by consid-

ering the generalized least squares (GLS) estimator for the latter. The GLS

estimator is asymptotically equivalent to the maximum likelihood estimator

but has a closed form. It can be shown that the GLS estimator is a ma-

trix weighted average of the fixed effects (or within-unit) estimator and the

between-unit estimator obtained by OLS estimation for the regression of the

cluster-mean response on the cluster-mean covariates. If the random intercept

model is correctly specified, the GLS estimator is more efficient since it uses

cross-sectional information in addition to longitudinal information. However, if

the cross-sectional component of the model is misspecified, the GLS estimator

becomes inconsistent for the longitudinal effects in contrast to the fixed effects

estimator. Thus, a difference between fixed effects and GLS estimates for β

suggests that the random effects model is misspecified and is the basis for the

popular Durbin-Wu-Hausman specification test [25] in this context.

Returning to the wage panel data, the fixed effects estimates of the co-

efficients of the time-varying covariates, obtained using Stata’s xtreg com-

mand, are given in the third column of Table 7.2. The estimates are quite

similar to the estimates for the random intercept model, suggesting that
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the cross-sectional component of the random intercept model is not severely

misspecified.

In generalized linear models, except for linear Gaussian or log-linear Pois-

son models, inclusion of a fixed intercept for each unit leads to inconsistent

estimates of the regression parameters β, which is known as the incidental

parameter problem [49]. For binary logistic models, the problem can be over-

come by conditioning on the sum of the responses for each unit to eliminate the

unit-specific intercepts, as mentioned above for linear models. In epidemiology,

such a conditional maximum likelihood approach is used for matched case-

control studies [7], in psychometrics for the Rasch measurement model [57],

and in econometrics for panel data [8, 9]. In addition to the limitation of not

permitting time-constant covariates, this approach also discards units with

all responses equal to 0 or all equal to 1. Furthermore, conditional maximum

likelihood estimation is impossible for some model types such as probit models.

7.3 Models with Unit-Specific Intercepts and Slopes

Sometimes units vary not just in the overall level of the response (controlling

for covariates) but also in the effects of time-varying covariates on the re-

sponse. A typical example is where the effect of time, i.e., the rate of change,

varies between units. Such heterogeneity in the effects of covariates can be

viewed as interactions between the included covariates and a categorical vari-

able representing the units.

7.3.1 Continuous Random Coefficients

The random coefficient model [35] can be written as

yij = x′
ijβ + z′ijδj + ǫij ,

where xij denotes both time-varying and time-constant covariates with fixed

coefficients β and zij denotes time-varying covariates with random coeffi-

cients δj ∼ N (∅,Ω). Since the random coefficients have zero means, xij will

typically contain all elements in zij , with the corresponding fixed effects in-

terpretable as the mean effects. The first element of these vectors is invariably

equal to 1, corresponding to a fixed and random intercept, respectively. The

random intercept model is thus the special case where zij = 1. The random

coefficient covariance structure of the vector y
j

is presented in panel B of

Table 7.1.

A useful version of the random coefficient model for longitudinal data is a

growth curve model where individuals are assumed to differ not only in their

intercepts but also in other aspects of their trajectory over time, for example
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in the linear growth (or decline) of the response. These models include random

coefficients for (functions of) time. For example, a linear growth curve model

can be written as

yij = x′
ijβ + δ0j + δ1jtij + ǫij , (7.5)

where tij , the time at the i-th occasion for individual j, is one of the covariates

in xij . The random intercept δ0j and random slope δ1j represent unit-specific

deviations from the mean intercept and slope, respectively. The random in-

tercept and slope should not be specified as uncorrelated, because translation

of the time scale tij changes the magnitude of the correlation [18, 39, 62].

In a linear growth curve model, the variance of the responses (controlling

for the covariates) varies over occasions tij ,

Var( yij) = ω2
0 + 2ω10tij + ω2

1t
2
ij + σ2.

Note that the variance increases as a quadratic function of time if tij ≥ 0

and ω10 ≥ 0. The covariance between two responses yij and yi′j for a unit at

different occasions i and i′ becomes

Cov( yij , yi′j) = ω2
0 + ω10(tij + ti′j) + ω2

1tijti′j ,

which depends on the time associated with the occasions.

For the wage panel data, we would expect wages to increase more rapidly

for some individuals as they gain more labor market experience than for oth-

ers. We therefore estimated a model with a random slope for labex in addition

to the random intercept. Maximum likelihood estimates using xtmixed are

given in the fourth column of Table 7.2. The fixed part estimates remain

practically the same as for the random intercept model. There is a negative

estimated correlation between the random intercept and random slope. To

visualize the model, the bottom panel of Fig. 7.2 shows the fitted trajectories

(obtained by plugging in empirical Bayes predictions of the random intercepts

and slopes and setting married and union to zero) for the first 40 individuals.

For comparison, the corresponding trajectories for the random intercept model

are given in the top panel of the figure. These trajectories are nonlinear due

to the quadratic term labexsq in the fixed part of the model.

For balanced occasions with associated times tij = ti, the linear growth

curve model can also be formulated as a two-factor model with fixed factor

loadings,

yij = λ0i β0j + λ1i β1j + ǫij , λ0i = 1, λ1i = ti ,

where

β0j = β0 + δ0j , β1j = β1 + δ1j .

Note that the means of the factors cannot be set to zero here as is usually done

in factor models. A path diagram of this model is shown in Fig. 7.3, where
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Fig. 7.2 Fitted trajectories for linear random intercept model (top) and random

coefficient model (bottom). Empirical Bayes predictions are substituted for the ran-

dom effects and married and union set to zero.

there are three occasions with times t1 = 0, t2 = 1, and t3 = 2. Following the

usual conventions, latent variables or random effects are represented by circles

and observed variables by rectangles. Long arrows represent regressions and

short arrows residual errors.

Meredith and Tisak [43] suggest using a two-factor model with free factor

loadings λ1i for β1j (subject to identification restrictions, such as λ11 =0 and
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Fig. 7.3 Path diagram for growth curve model with balanced occasions.

λ12 =1) to model nonlinear growth. Estimation of this factor model requires

balanced occasions, but modern software can handle missing data.

Generalized linear random coefficient models are defined analogously to

the linear case. Maximum likelihood estimation using numerical integration

becomes computationally more demanding as the number of random effects

increases. Unfortunately, we can no longer exploit conjugacy to obtain closed-

form likelihoods for counts and dichotomous responses.

7.3.2 Fixed Coefficients

Instead of considering the unit-specific intercepts and slopes as random, we

can specify a model with fixed intercepts and slopes,

yij = x′
ijβ + δ0j + δ1jzij + ǫij .

If the data are balanced, zij = zi, and the differences zi − zi−1 are constant,

then the δ0j and δ1j can be eliminated by double-differencing [70]. Alterna-

tively, first-differencing can be used to turn the model into a fixed-intercepts

model, which can subsequently be estimated by any of the methods discussed

in Section 7.2.2. This approach was used to obtain the estimates for the wage

panel data given in the sixth column of Table 7.2. The estimated regression

coefficients for married and union are considerably closer to zero than in the

random coefficient model. Wooldridge [70] also describes an approach for elim-

inating the intercepts and slopes in more general models with unbalanced zij .

Verbeke et al. [66] suggest a hybrid approach, treating the intercepts as

fixed but the slope(s) as random,
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yij = x′
ijβ + δ0j + δ1jzij + ǫij .

The fixed intercepts are eliminated by forming contrasts using an orthonormal

coefficient matrix as described in Section 7.2.2, corresponding to conditional

maximum likelihood estimation. Estimates for the wage panel data using this

approach are given in the fifth column of Table 7.2 and are quite similar to

the estimates for the random coefficient model.

7.3.3 Discrete Random Coefficients

It is sometimes believed that the population consists of different subpop-

ulations or classes of units characterized by different unknown patterns of

development over time. Since class membership is not known, the parameters

characterizing the development trajectory can be treated as discrete latent

variables or random effects.

In a linear latent trajectory model or latent profile model [22] analogous

to (7.5), the model for a unit in latent class c (c = 1, . . . , C) is given by

yijc = e0c + e1ctij + ǫijc.

Each latent class is characterized by a pair of coefficients e0c and e1c, repre-

senting the intercept and slope of the latent trajectory. Other covariates can

be included in the regression model above, so that the e0c and e1c describe the

distinct patterns of deviations from the mean trajectory given the covariates.

Alternatively, other covariates could be included in a multinomial logit model

for the latent class membership probabilities, as is often done in conventional

latent class models [14].

Interestingly, the number of classes cannot be increased indefinitely. If

it is attempted to exceed the maximum possible number of classes, then

estimated locations of some classes will either coincide or the probabilities of

some classes tend to zero. The solution with the maximum number of classes

then corresponds to the nonparametric maximum likelihood estimator [1]. An

extension of the model would be to allow the variance of residuals ǫijc to differ

between classes.

For balanced occasions, we do not have to assume that the latent trajec-

tories are linear or have another particular shape but can, instead, specify an

unstructured model with latent trajectory

yijc = eic + ǫijc, i = 1, . . . , n,

for class c.

In the case of categorical responses, latent trajectory models are typically

referred to as latent class growth models [47] and represent an application of

mixture regression models [51, 68] to longitudinal data.
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All these models assume that the responses on a unit are conditionally

independent given latent class membership. Muthén and Shedden [46] relax

this assumption for continuous responses in their growth mixture models by

allowing the residuals ǫijc to be correlated conditional on latent class mem-

bership with covariance matrices differing between classes.

7.4 Models with Correlated Residual Errors

In the models considered so far, the residuals ǫij have been assumed to be

mutually independent and the longitudinal dependence among the responses

(given the covariates) has been accommodated by including either fixed or

random unit-specific effects. In the case of random effects, the responses are

conditionally independent given the random effects but marginally dependent

with covariance structures for linear models given in Table 7.1.

These covariance structures may be overly restrictive, particularly for a

random intercept model when there are a large number of occasions. For

instance, the correlations between pairs of responses often decrease as the

time lag increases, which is at odds with the constant correlations induced by

the random intercept model. For such reasons, the residuals ǫij are sometimes

allowed to be correlated. Caution should be exercised when combining a com-

plex unit-level random part with a covariance structure for the residuals, as

the resulting model may not be identified.

Allowing for dependence among the residuals can also be motivated as

follows. Unit-specific intercepts and slopes accommodate the effects of only

time-constant influences (not represented by the covariates). The indepen-

dence assumption for the residuals then implies that time-varying random

influences are immediate and do not persist over more than a single occasion.

There is often no compelling reason to exclude a third type of random influence

that is neither everlasting nor fleeting, but persists for an intermediate length

of time, leading to serially correlated residual errors.

In the following subsections, we follow the treatment in Skrondal and

Rabe-Hesketh [60]. We discuss the case of continuous responses, sometimes

indicating how the models are modified for other response types. The models

to be described can be generalized to dichotomous and ordinal responses using

the latent response formulation.

7.4.1 Autoregressive Residuals

When occasions are equally spaced in time, a first-order autoregressive model

AR(1) can be expressed as

ǫij = αǫi−1,j + uij , (7.6)
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Fig. 7.4 Path diagrams for autoregressive responses and autoregressive and mov-

ing average residuals. Covariates and paths from covariates to responses omitted

(Source: Skrondal and Rabe-Hesketh [60]).

where ǫi−1,j is independently distributed from the “innovation errors” uij ,

uij ∼ N (0, σ2
u). This is illustrated in path diagram form in the first panel of

Fig. 7.4. A “random walk” is obtained if the restriction α = 1 is imposed.

Assuming that the process is weakly stationary, |α| < 1, the covariance

structure is as shown in panel C of Table 7.1. The correlations between re-

sponses at different occasions become

Corr(ǫij , ǫi+k,j) = αk.

For non-equally spaced occasions, the correlation structure is often specified

as

Corr( yij , yi+k,j) = α|ti+k−ti|,

where the correlation structure for unbalanced occasions is simply obtained

by replacing ti by tij [16]. In the case of balanced occasions, we can also

specify a different parameter αi for each occasion, giving an antedependence

structure [21] for the residuals.

For the wage panel data, we estimated a random intercept model with

AR(1) residuals by maximum likelihood using the lme() function in S-PLUS

giving the estimates in column 7 of Table 7.2 (Stata’s xtregar command can

be used to estimate the model using the generalized least squares estimator

proposed by Baltagi and Wu [4]). The autoregressive coefficient is estimated

as α̂ = 0.27 and the estimates of the regression parameters β are very similar

to those given for the random intercept model in the first column. The random

intercept model with AR(1) residuals has a considerably larger log-likelihood

than the random intercept model with uncorrelated residuals. Introducing a

random slope increases the log-likelihood to −2095.7 and reduces the esti-

mated autoregressive coefficient to α̂ = 0.17 (estimates not shown).

First-order autoregressive covariance structures are often as unrealistic as

the random intercept structure since the correlations fall off too rapidly with
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increasing time lags. One possibility is to specify a higher-order autoregressive

process of order k, AR(k),

ǫij = α1ǫi−1,j + α2ǫi−2,j + · · ·+ αkǫi−k,j + uij .

7.4.2 Moving Average Residuals

Random shocks disturb the response variable for some fixed number of periods

before disappearing and can be modeled by moving averages [6]. A first-order

moving average process MA(1) for the residuals can be specified as

ǫij = uij + a ui−1,j .

A path diagram for this model is given in the second panel of Fig. 7.4 and the

covariance structure is presented in panel D of Table 7.1. The MA(1) process

“forgets” what happened more than one period in the past, in contrast to the

autoregressive processes.

The moving average model of order k, MA(k), is given as

ǫij = uij + a1ui−1,j + a2ui−2,j + · · ·+ akui−k,j ,

with “memory” extending k periods in the past.

7.5 Models with Lagged Responses

Lags of the response yij can be included as covariates in addition to xij .

Such models are usually called autoregressive models but are sometimes also

referred to as transition models [17], Markov models [17], or conditional mod-

els [11].

When occasions are equally spaced in time, a first-order autoregressive

model for the responses yij can be written as

yij = x′
ijβ + γyi−1,j + ǫij .

A path diagram for this model is shown under “AR(1) responses” in the third

panel of Fig. 7.4. Assuming that the process is weakly stationary, |γ| < 1,

the covariance structure is shown in panel E of Table 7.1. An extension of the

autoregressive model is the antedependence model, which specifies a different

parameter γi for each occasion.

A first-order autoregressive model for the responses was estimated for the

wage panel data giving the estimates shown in the last column of Table 7.2.

The regression coefficient of the lagged response is estimated as γ̂ = 0.56. As
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would be expected, many of the other regression coefficients change consider-

ably due to controlling for the lagged response.

As for the residual autoregressive structure, the first-order autoregressive

structure for responses is often deemed unrealistic, since the correlations fall

off too rapidly with increasing time lags. Once again, this may be rectified by

specifying a higher-order autoregressive process AR(k),

yij = x′
ijβ + γ1yi−1,j + γ2yi−2,j + · · ·+ γkyi−k,j + ǫij .

Apart from being of interest in its own right, the lagged response model

is useful for distinguishing between different longitudinal models. Consider

two simple models; a model with a lagged response and lagged covariate but

independent residuals ǫij

yij = γ yi−1,j + β1xij + β2xi−1,j + ǫij , (7.7)

and an autocorrelation model without lagged response or lagged covariate

yij = β xij + ǫij ,

but residuals ǫij having an AR(1) structure. Substituting first for ǫij =

αǫi−1,j + uij from (7.6), then for ǫi−1,j = yi−1,j − β xi−1,j , and reexpressing,

the autocorrelation model can alternatively be written as

yij = α yi−1,j + β xij − αβ xi−1,j + uij .

This model is equivalent to model (7.7) with the restriction β2 = −γβ1. This

means that we can use (7.7) to discriminate between autocorrelated residuals

and lagged responses.

Use of lagged response models should be conducted with caution. First,

lags should be avoided if the lagged effects do not have a “causal” interpre-

tation since the interpretation of β changes when yi−1,j is included as an

additional covariate. Second, the models require balanced data in the sense

that all units are measured on the same occasions. It is problematic if the

response for a unit is missing at an occasion. In practice, the entire unit is often

discarded in this case. Third, lagged response models reduce the sample size.

This is because the yij on the first occasions can only serve as covariates and

cannot be regressed on lagged responses (which are missing). Alternatively, if

the lagged responses are treated as endogenous, the sample size is not reduced,

but an initial condition problem arises for the common situation where the

process is ongoing when we start observing it [28]. Finally, if random effects

are also included in the model, even the initial response (at the start of the

process) becomes endogenous [28].

An advantage of lagged response models as compared to models with

autoregressive residuals is that they can easily be used for response types
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other than the continuous. Heckman [29] discusses a very general framework

for longitudinal modeling of dichotomous responses, for instance combining

lagged responses with random effects.

7.6 Marginal Approaches

As is clear from the general form of generalized linear mixed models (includ-

ing linear mixed models) in (7.2), the model linking the expectation to the

covariates is specified conditional on the unit-specific random effects δj . The

regression coefficients β therefore have a conditional or unit-specific interpre-

tation.

The marginal or population averaged expectations of the responses can be

obtained by integrating the inverse link function of the linear predictor over

the random effects distribution

E (yij) =

∫
g−1(x′

ijβ + z′ijδj) φ(δj ;∅,Ω) dδj , (7.8)

where φ(δj ;∅,Ω) is the multivariate normal density of the random effects.

For linear mixed models, the link function g(·) is the identity and the

population averaged expectation is simply the fixed part x′
ijβ of the model.

Therefore, the regression coefficients β also have a population averaged in-

terpretation in this case. In the linear case, it could therefore be argued

that it does not matter whether the model is interpreted conditionally or

marginally. However, in the marginal interpretation of the random part, only

the covariance matrix Ψj of the total random part (as shown in Table 7.1)

is interpreted, not the individual covariance matrices Ω and Σj
∆
=Cov(ǫj).

Thus, Verbeke and Molenberghs [65] argue that the covariance matrices Ω

and Σj need not be positive semi-definite in this case as long as Ψj is positive

semi-definite.

For link functions other than the identity, the expectation in (7.8) differs

from the fixed part of the model. For generalized linear mixed models with

probit links, we can derive a simple form for the population averaged ex-

pectation using the latent response formulation. The model can be specified

as

y∗ij = x′
ijβ + z′ijδj + ǫij , δj ∼ N (∅,Ω), ǫij ∼ N (0, 1),

with yij = 1 if y∗ij > 0 and yij = 0 otherwise. The unit-specific model then

becomes

E (yij | δj) = Pr(yij = 1 | δj) = Φ(x′
ijβ + z′ijδj),

where Φ(·) is the standard normal cumulative distribution function, the inverse

probit link. The corresponding marginal model is given by
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E (yij) = Pr(yij = 1)

= Pr(y∗ij > 0)

= Pr(x′
ijβ + z′ijδj + ǫij > 0)

= Pr
(
−(z′ijδj + ǫij) ≤ x′

ijβ
)

= Pr

(
z′ijδj + ǫij√
z′ijΩzij + 1

≤
x′
ijβ√

z′ijΩzij + 1

)

= Φ

(
x′
ijβ√

z′ijΩzij + 1

)
, (7.9)

where the denominator is greater than 1 if Ω 6= ∅. For a random intercept

probit model, the denominator is a constant
√
ω2 + 1 and the population

averaged model has the same functional form as the unit-specific model but

with attenuated regression coefficients β/
√
ω2 + 1. This attenuation is shown

graphically in Fig. 7.5, where the dashed curves represent unit-specific rela-

tionships for a random intercept probit model with a single covariate, whereas

the flatter solid curve represents the population averaged relationship.

It can be seen from (7.9) that if any aspect of the random part of the

model is altered, the regression coefficients must also be altered to obtain a
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good fit to the empirical (marginal) relationship between the response and

covariates. Therefore, estimates of the unit-specific regression parameters be-

come inconsistent under misspecification of the random part except for linear

mixed models.

Whether unit-specific or population averaged effects are of interest will

depend on the context. For example, in public health, population averaged

effects may be of interest, whereas unit-specific effects are important for the

patient and clinician. An advantage of unit-specific effects is that they are

more likely to be stable across populations, whereas marginal effects depend

greatly on the between-unit heterogeneity, which will generally differ between

populations.

If interest is focused on marginal effects and between-unit heterogeneity

or longitudinal dependence are regarded as a nuisance, generalized estimating

equations (GEE) [36, 71] can be used. The simplest version is to estimate the

mean structure as if the responses were independent and then adjust stan-

dard errors for the dependence using the so-called sandwich estimator. The

estimates of the population averaged regression parameters can be shown to

be consistent, but if the responses are correlated, they are not efficient. To in-

crease efficiency a “working correlation matrix” is therefore specified within a

multivariate extension of the iteratively reweighted least squares algorithm for

generalized linear models. Typically, one of the structures listed in Table 7.1

is used for the working correlation matrix of the residuals yij − g−1(x′
ijβ),

as well as unrestricted and independence correlation structures. The working

correlation matrix is combined with the variance function of an appropriate

generalized linear model, typically allowing for overdispersion if the responses

are counts. It is important to note that, apart from continuous responses, the

specified correlation structures generally cannot be derived from a statistical

model. Thus, GEE is a multivariate quasi-likelihood approach with no proper

likelihood.

There are also “proper” marginal statistical models with corresponding

likelihoods. Examples include the Bahadur [2] and Dale [13] models, which

parameterize dependence via marginal correlations and marginal bivariate

odds ratios, respectively [19, 44]. See Molenberghs and Verbeke [45] for an

overview of these models.

Heagerty and Zeger [27] introduce random effects models where the

marginal mean is regressed on covariates as in GEE. In these models, the

relationship between the conditional mean (given the random effects) and

the covariates is found by solving the integral equation (7.8) linking the

conditional and marginal means. Interestingly, the integral involved can be

written as a unidimensional integral over the distribution of the sum of the

terms in the random part of the model.
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7.7 Concluding Remarks

It is straightforward to extend the longitudinal models discussed here to

situations where units are clustered by including random effects varying at

higher levels.

We have focused on linear and quadratic growth models, but nonlinear

growth models can also be specified via linear mixed models using higher-

order polynomials of time or splines [62]. Nonlinear mixed models [50] can be

preferable if specific functional forms are suggested by substantive theory as

in pharmacokinetics.

Useful books on modeling longitudinal data include Skrondal and Rabe-

Hesketh [60], Hand and Crowder [24], Crowder and Hand [12], Vonesh and

Chinchilli [67], Jones [33], Hsiao [32], Baltagi [3], Wooldridge [70], Lindsey

[38], Verbeke and Molenberghs [65], Diggle et al. [17], and Fitzmaurice et al.

[20].
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8.1 Introduction

In the models discussed in this book so far we have assumed that the structures

of the populations from which the data have been drawn are hierarchical.

This assumption is sometimes not justified. In this chapter two main types

of non-hierarchical model are considered. Firstly, cross-classified models. The

notion of cross-classification is probably reasonably familiar to most readers.

Secondly, we consider multiple membership models, where lower level units

are influenced by more than one higher-level unit from the same classification.

For example, some pupils may attend more than one school. We also consider

situations that contain a mixture of hierarchical, crossed and multiple mem-

bership relationships.

8.2 Cross-Classified Models

This section is divided into three parts. In the first part we look at situa-

tions that can give rise to a two way cross-classification and introduce some

diagrams to describe the population structure, and discuss notation for con-

structing a statistical model. In the second part we discuss some of the possible

estimation methods for estimating cross-classified models and give an example

analysis of an educational data set. In the third part we then describe some

more complex cross-classified structures and give an example analyses of a

medical data set.
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8.2.1 Two-Way Cross-Classifications: A Basic Model

Suppose, we have data on a large number of patients, attending many hospitals

and we also know the neighbourhood in which the patient lives and that

we regard patient, neighbourhood and hospital all as important sources of

variation for the patient level outcome measure we wish to study. Now, typi-

cally hospitals will draw patients from many different neighbourhoods and the

inhabitants of a neighbourhood will go to many hospitals. No pure hierarchy

can be found and patients are said to be contained within a cross-classification

of hospitals by neighbourhoods. This can be represented schematically, for

the case of twelve patients contained within a cross-classification of three

neighbourhoods by four hospitals as in Table 8.1.

In this example we have patients at level 1 and neighbourhood and hospital

are cross-classified at level 2. The characteristic pattern of a cross-classification

is shown: some rows contain multiple entries and some columns contain mul-

tiple entries. In a nested relationship, if the row classification is nested within

the column classification, then all the entries across a row will fall under a

single column and vice versa if the column classification is nested within the

row classification. For example, if hospitals are nested within neighbourhoods,

we might observe the pattern in Table 8.2.

Many studies follow this simple two-way crossed structure; here are a few

examples:

• Education: students cross-classified by primary school and secondary

school.

• Health: patients cross-classified by general practice and hospital.

• Survey data: individuals cross-classified by interviewer and area of resi-

dence.

Table 8.1 Patients cross-classified by hospital and neighbourhood.

Neighbourhood 1 Neighbourhood 2 Neighbourhood 3

Hospital 1 XX X

Hospital 2 X X

Hospital 3 XX X

Hospital 4 X XXX

Table 8.2 Patients nested within hospitals within neighbourhoods.

Neighbourhood 1 Neighbourhood 2 Neighbourhood 3

Hospital 1 XXX

Hospital 2 XX

Hospital 3 XXX

Hospital 4 XXXX
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Hospital H1 H2 H3 H4

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Neighbourhood N1 N2 N3

Fig. 8.1 Diagrams for crossed structure given in Table 8.1.

Diagrams for Representing the Relationship Between

Classifications

We find two types of diagrams useful in expressing the nature of relation-

ships between classifications. Firstly, unit diagrams where we draw every

unit (patient, hospital and neighbourhood, in the case of our first example)

and connect each lowest level unit (patient) to its parent units (hospital,

neighbourhood). Such a representation of the data in Table 8.1 is shown in

Fig. 8.1.

Note that we have two hierarchies present, patients within hospitals and

patients within neighbourhoods. We have organised the topology of the dia-

gram such that patients are nested within hospitals. However, when we come

to add neighbourhoods to the diagram, we see that the connecting lines cross,

indicating we have a cross-classification. Drawing the hierarchical structure

shown in Table 8.2 gives the representation shown in Fig. 8.2.

Clearly, to draw such diagrams that include all units with large data sets

is not practical, as there will be far too many nodes on the diagram to fit into

a reasonable area. However, they can be used in schematic form to convey

the structure of the relationship between classifications. But when we have

four or five random classifications present (as commonly occur with social

data), even schematic forms of these diagrams can become hard to read. There

is a more minimal diagram, the classification diagram, which has one node

for each classification. Nodes connected by an arrow indicate a nested rela-

tionship, nodes connected by a double arrow indicate a multiple-membership
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Hospital H1 H4 H2 H3

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Neighbourhood N1 N2 N3

Fig. 8.2 Diagrams for completely nested structure given in Table 8.2.

relationship (examples are given later) and unconnected nodes indicate a

crossed relationship. Thus the crossed structure in Fig. 8.1 and the completely

nested structure of Fig. 8.2 are drawn as shown in Fig. 8.3.

Patient

Hospital Neighbourhood

(i) crossed structure

Patient

Hospital

Neighbourhood

(ii) nested structure

Fig. 8.3 Classification diagrams for nesting and crossing.
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Some Notation for Constructing a Statistical Model

The matrix notation used in this book for describing hierarchical models, that

is,

y
j

= Xjβ +Zjδj + ǫj ,

does not readily extend to the case of cross-classifications. This is because

this notation assumes a unique hierarchy where we write down the generic

equation for the j-th level-2 unit. In a simple cross-classification we have two

sets of level-2 units, for example, hospitals and neighbourhoods, so which

classification is j indexing?

We can extend the basic scalar notation to handle cross-classified struc-

tures. Assume we have patients nested within a cross-classification of neigh-

bourhoods by hospital, that is the case illustrated in Fig. 8.3(i). Suppose we

want to estimate a simple variance components model giving estimates of the

mean response and patient, hospital and neighbourhood level variation. In

this case, we can write the model in scalar notation as

yi(j1,j2) = β0 + δj1 + δj2 + ǫi(j1,j2) ,

where β0 estimates the mean response, j1 indexes the hospital classification, j2
indexes the neighbourhood classification, δj1 is the random effect for hospital

j1, δj2 is the random effect for neighbourhood j2, yi(j1,j2) is the response for

the i-th patient from the cell in the cross-classification defined by hospital j1
and neighbourhood j2 and finally ǫi(j1,j2) is the patient level residual for the

i-th patient from the cell in the cross-classification defined by hospital j1 and

neighbourhood j2.

Details of how this notation extends to represent more complex models and

patterns of cross-classifications are given in Rasbash and Browne [14]. One

problem with this notation is that as we fit models with more classifications

and more complex patterns of crossing, the subscript notation that describes

the patterns becomes very cumbersome and difficult to read. We therefore

prefer an alternative notation introduced in Browne et al. [2].

We can write the same model as

yi = β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + ǫi ,

where i indexes the observation level, in this case patients, and hosp(i) and

nbhd(i) are functions that return the unit number of the hospital and neigh-

bourhood, respectively, that patient i belongs to. Thus, for the data structure

drawn in Fig. 8.1, the values of hosp(i) and nbhd(i) are given in Table 8.3.

Therefore, the model for Patient 3 would be

y3 = β0 + δ
(2)
1 + δ

(3)
1 + ǫ3
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Table 8.3 Indexing table for hospitals and neighbourhoods for patients given in

Fig. 8.1.

i hosp(i) nbhd(i)

1 1 1

2 1 2

3 1 1

4 2 2

5 2 1

6 3 2

7 3 2

8 3 3

9 4 3

10 4 2

11 4 3

12 4 3

and for Patient 5 would be

y5 = β0 + δ
(2)
2 + δ

(3)
1 + ǫ5.

We number the classifications from 2 upwards as we use classification number

1 to represent the identity classification that applies to the observation level

(like level 1 in a hierarchical model). This classification simply returns the row

numbers in the data matrix. As can be seen, random effects require bracketed

superscripting with their classification number to avoid ambiguity.

This simplified notation has the advantage that the subscripting notation

does not increase in complexity as we add more classifications. This simpli-

fication is achieved because the notation makes no attempt to describe the

patterns of crossing and nesting present. This is useful information and we

therefore advocate the use of this notation in conjunction with the classifica-

tion diagrams, as shown in Fig. 8.3, which display these patterns explicitly.

8.2.2 Estimation Algorithms

We will describe three estimation algorithms for fitting cross-classified models

in detail and mention other alternatives. Each of these three methods has

advantages and disadvantages in terms of speed, memory usage and bias and

these will be discussed later. All three methods have been implemented in

versions of the MLwiN software package [16] and all results in this chapter

are produced by this package.

An IGLS Algorithm for Estimating Cross-Classified Models

The iterative generalized least squares estimates for a multilevel model are

those estimates which simultaneously satisfy both of the following equations:
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β̂ = (X ′V −1X)−1X ′V −1y,

θ̂ =
(
Z∗′(V ∗)−1Z∗

)−1
Z∗′(V ∗)−1y∗,

where β̂ are the estimated fixed coefficients and θ̂ is a vector containing the

estimated variances and covariances of the sets of random effects in the model.

V = Cov(y |X,β) and an estimate of V is constructed from the elements of

θ̂ and Z. y∗ is the vector of elements of (y−Xβ)(y−Xβ)′ and therefore has

length N2 (N is the length of the data set). V ∗ has the form V ∗ = V � V

and Z∗ is the design matrix linking y∗ to V in the regression of y∗ on Z∗. See

Goldstein [7] for more details. Some of these matrices are massive, for example,

(V ∗)−1 is dimensioned N2×N2, making a direct software implementation of

these estimating equations extremely resource intensive both in terms of CPU

time and memory consumed. However, in hierarchical models, V and V ∗ have

a block-diagonal structure which can be exploited by customised algorithms

[see 9] which allow efficient computation.

The problem presented by cross-classified models is that V (and therefore

V ∗) no longer has the block-diagonal structure which the efficient algorithm

requires.

Structure of V for Cross-Classified Models

Let’s take a look at the structure of V , the covariance matrix of y, for cross-

classified models and see how we can adapt the standard IGLS algorithm to

handle cross-classifications.

The basic two-level cross-classified model (with hospitals + neighbour-

hoods) can be written as:

yi = xiβ + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + ǫi ,

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), δ
(3)
nbhd(i) ∼ N (0, σ2

δ(3)), ǫi ∼ N (0, σ2
ǫ ).

The variance of our response is now

Var(yi) = Var
(
δ
(2)
hosp(i) + δ

(3)
nbhd(i) + ǫi

)
= σ2

δ(2) + σ2
δ(3) + σ2

ǫ .

The covariance between individuals a and b is

Cov(ya, yb) = Cov
(
δ
(2)
hosp(a) + δ

(3)
nbhd(a) + ǫa, δ

(2)
hosp(b) + δ

(3)
nbhd(b) + ǫb

)
,

which simplifies to σ2
δ(2) for two individuals from the same hospital but differ-

ent neighbourhoods, to σ2
δ(3) for two individuals from the same neighbourhood

but different hospitals, to σ2
δ(2) + σ2

δ(3) for two individuals from the same

neighbourhood and the same hospital and to zero for two individuals who are

from both different neighbourhoods and different hospitals. If we take a toy
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Table 8.4 Indexing table for hospitals and neighbourhoods for 5 patients.

i hosp(i) nbhd(i)

1 1 1

2 1 2

3 1 1

4 2 2

5 2 1

example of five patients in two hospitals and introduce a cross-classification

with two neighbourhoods, as shown in Table 8.4, this generates a 5 × 5

covariance matrix for the responses of the five patients with the following

structure:

V =




h+ n+ p h h+ n 0 n

h h+ n+ p h n 0

h+ n h h+ n+ p 0 n

0 n 0 h+ n+ p h

n 0 n h h+ n+ p



,

where h = σ2
δ(2), n = σ2

δ(3) and p = σ2
ǫ .

Here, the data is sorted patient within hospital. This allows us to split

the covariance matrix into two components: A component for patients within

hospitals which has a block-diagonal structure (P ) and a component for

neighbourhoods (Q): V = P +Q, where

P =




h+ p h h 0 0

h h+ p h 0 0

h h h+ p 0 0

0 0 0 h+ p h

0 0 0 h h+ p




and

Q =




n 0 n 0 n

0 n 0 n 0

n 0 n 0 n

0 n 0 n 0

n 0 n 0 n



.

Given that the V matrix is sorted according to patient within hospital (P ),

P + Q cannot be simultaneously expressed in a single V matrix as block

diagonal. Splitting the structure of V into a hierarchical, block-diagonal part

that the IGLS algorithm can handle in an efficient way and a non-hierarchical,

non-block-diagonal part forms the basis of a relatively efficient algorithm for

handling cross-classified models.
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If we take the dummy variable indicator matrix of neighbourhoods (Z),

then we have Q = ZZ ′n:

Z =




1 0

0 1

1 0

0 1

1 0



, ZZ ′n =




1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1



n.

We can define a “pseudo-unit” that spans the entire data set, in our toy

example, all five points, and declare this pseudo-unit to be level 3 in the

model (removing the neighbourhood level from the model). We can now form

the three-level hierarchical model

yi = β0 + δ
(2)
hosp(i) + δ

(3)
punit(i),1zi1 + δ

(3)
punit(i),2zi2 + ǫi ,

 δ
(3)
punit(i),1

δ
(3)
punit(i),2


 ∼ N (0, Σδ(3)), Σδ(3) =

(
σ2
δ(3),1 0

0 σ2
δ(3),2

)
,

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), ǫi ∼ N (0, σ2
ǫ ).

Here the level structure is patients within hospitals within the pseudo-unit

level. zi1 and zi2 are the first and second element, respectively, of the i-th

row of Z. σ2
δ(3),1 and σ2

δ(3),2 are both estimates of the between-neighbourhood

variation; therefore, we constrain them to be equal. Thus we can use the

standard IGLS hierarchical algorithm to define and estimate the correct co-

variance structure for a cross-classified model. Now if we had 200 hospitals

and 100 neighbourhoods, we would have to form 100 dummy variables for

the neighbourhoods, allow them all to have variances at level 3 and constrain

the variances to be equal. Details of this algorithm are given in Rasbash and

Goldstein [15] and Bull et al. [3] and it will be referred to as the RG algorithm

in later sections.

MCMC

The MCMC estimation methods (see Chapter 2 of this book for a fuller

description) aim to generate samples from the joint posterior distribution

of all unknown parameters. They then use these samples to calculate point

and interval estimates for each individual parameter. The Gibbs sampler al-

gorithm produces samples from the joint posterior by generating in turn from

the conditional posterior distributions of groups of unknown parameters. In

Chapter 2, the Gibbs sampling algorithm for a normally distributed response

hierarchical model is given.

As we have seen in the notation section, we can describe our model as a

set of additive terms, one for the fixed part of the model and one for each



310 J. Rasbash, W. J. Browne

of the random classifications. The MCMC algorithm works on each of these

terms separately and, consequently, the algorithm for a cross-classified model

is no more complicated than for a hierarchical model. For illustration, we

present the steps for the following cross-classified model based on the variance

components hospitals by neighbourhoods model and refer the interested reader

to Browne et al. [2] for more general algorithms. Note that if the response is

dichotomous or a count, then, as in Chapter 2, we can use the Metropolis-

Gibbs hybrid method discussed there.

The basic two-level cross-classified model (with hospitals + neighbour-

hoods) can be written as:

yi = xiβ + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + ǫi ,

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), δ
(3)
nbhd(i) ∼ N (0, σ2

δ(3)), ǫi ∼ N (0, σ2
ǫ ).

We can split our unknown parameters into six distinct sets: the fixed effects,

β; the hospital random effects, δ
(2)
hosp(i); the neighbourhood random effects,

δ
(3)
nbhd(i); the hospital variance, σ2

δ(2); the neighbourhood variance, σ2
δ(3) and

the residual variance, σ2
ǫ .

Then we need to generate random draws from the conditional distribution

of each of these six groups of unknowns. MCMC algorithms are generally used

in a Bayesian context and, consequently, we need to define prior distributions

for our unknown parameters. For generality, we will use a multivariate normal

prior for the fixed effects, β ∼ Npf
(µp,Sp), and scaled inverse (SI) χ2 priors

for the three variances. For the hospital variance, σ2
δ(2) ∼ SIχ2(ν2, s

2
2); for the

neighbourhood variance, σ2
δ(3) ∼ SIχ2(ν3, s

2
3) and for the residual variance,

σ2
ǫ ∼ SIχ2(νǫ, s

2
ǫ). The steps are then as follows:

• In step 1 of the algorithm, the conditional posterior distribution in the

Gibbs update for the fixed effects parameter vector β is multivariate nor-

mal with dimension pf (the number of fixed effects):

p(β | y, δ(2), δ(3), σ2
δ(2), σ

2
δ(3), σ

2
ǫ ) ∼ Npf

(β̂, D̂),

where

D̂ =

(
N∑

i=1

x′
ixi
σ2
ǫ

+ S−1
p

)−1

,

β̂ = D̂

(
N∑

i=1

x′
idi
σ2
ǫ

+ S−1
p µp

)
,

and

di = yi − δ(2)hosp(i) − δ
(3)
nbhd(i).
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• In step 2, we update the hospital residuals, δ
(2)
k , using Gibbs sampling

with a univariate normal full conditional distribution:

p(δ
(2)
k | y,β, δ(3), σ2

δ(2), σ
2
δ(3), σ

2
ǫ ) ∼ N (δ̂

(2)
k , D̂

(2)
k ),

where

D̂
(2)
k =

(
n

(2)
k

σ2
ǫ

+
1

σ2
δ(2)

)−1

,

δ̂
(2)
k = D̂

(2)
k


 ∑

i,hosp(i)=k

d
(2)
i

σ2
ǫ


 ,

and

d
(2)
i = yi − xiβ − δ(3)nbhd(i).

• In step 3, we update the neighbourhood residuals, δ
(3)
k , using Gibbs sam-

pling with a univariate normal full conditional distribution:

p(δ
(3)
k | y,β, δ(2), σ2

δ(2), σ
2
δ(3), σ

2
ǫ ) ∼ N (δ̂

(3)
k , D̂

(3)
k ),

where

D̂
(3)
k =

(
n

(3)
k

σ2
ǫ

+
1

σ2
δ(3)

)−1

,

δ̂
(3)
k = D̂

(3)
k


 ∑

i,nbhd(i)=k

d
(3)
i

σ3
ǫ


 ,

and

d
(3)
i = yi − xiβ − δ(2)hosp(i).

Note that in the above two steps n
(c)
k refers to the number of individuals in

the k-th unit of classification c.

• In step 4, we update the hospital variance σ2
δ(2) using Gibbs sampling and

a Gamma full conditional distribution for 1/σ2
δ(2):

p(1/σ2
δ(2) | y,β, δ(2), δ(3), σ2

δ(3), σ
2
ǫ )

∼ Gamma


n2 + ν2

2
,

1

2



n2∑

j=1

(
δ
(2)
j

)2
+ ν2s

2
2




 .
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• In step 5, we update the neighbourhood variance σ2
δ(3) using Gibbs sam-

pling and a Gamma full conditional distribution for 1/σ2
δ(3):

p(1/σ2
δ(3) | y,β, δ(2), δ(3), σ2

δ(2), σ
2
ǫ )

∼ Gamma


n3 + ν3

2
,

1

2



n3∑

j=1

(
δ
(3)
j

)2
+ ν3s

2
3




 .

• In step 6, we update the observation level variance σ2
ǫ using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
ǫ :

p(1/σ2
ǫ | y,β, δ(2), δ(3), σ2

δ(2), σ
2
δ(3))

∼ Gamma

(
N + νǫ

2
,

1

2

[
N∑

i=1

ǫ2i + νǫs
2
ǫ

])
.

The above six steps are repeatedly sampled from in sequence to produce cor-

related chains of parameter estimates from which point and interval estimates

can be created as in Chapter 2.

AIP Method

The Alternating Imputation Prediction (AIP) method is a data augmentation

algorithm for estimating cross-classified models with large numbers of random

effects. Comprehensive details of this algorithm are given in Clayton and

Rasbash [4]. We now give an overview.

Data augmentation has been reviewed by Schafer [19]. Tanner and Wong

[20] introduced the idea of data augmentation as a stochastic version of the EM

algorithm for maximum likelihood estimation in problems involving missing

data. Following Tanner and Wong we have

I(mputation) step — Impute missing data by sampling the distribution of

the missing data conditional upon the observed data and current values

of the model parameters.

P(osterior) step — Sample parameter values from the complete data pos-

terior distribution; these will be used for the next I-step.

In the context of random effect models, the random effects play the role of

missing data. If the observed data are denoted by y, the random effects by δ

and the model parameters by θ, then the algorithm is specified (at step t) by

I-step — Draw a sample δ(t) from p(δ | y,θ = θ(t−1)).

P-step — Draw a sample θ(t) from p(θ | y, δ = δ(t)).
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Repeated application of these two steps delivers a stochastic chain with equi-

librium distribution p(δ,θ | y) in a similar way to the MCMC algorithm.

Now let’s look at how we can adapt this method to fit a crossed random

effects model when the only estimating engine we have at our disposal is one

optimized for fitting nested random effects.

An m-way cross-classified model can be broken down into m sub-models,

each of which is a 2-level hierarchical model. For example, patients nested

within a cross-classification of neighbourhood by hospital can be broken down

into a patient within hospital sub-model and a patient within neighbourhood

sub-model.

Take the simple model

yi = xiβ + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + ǫi ,

where hospital and neighbourhood are cross-classified. This cross-classified

model can be portioned into two hierarchical sub-models: patients within

neighbourhoods (model N) and patients within hospitals (model H). An in-

formal description of the AIP algorithm is:

1. Start by fitting model N using an estimation procedure for 2-level models.

2. Sample the model parameters from an approximation to their joint pos-

terior distribution. That is, sample the fixed effects, the neighbourhood

level variance and the patient level variance; denote these samples by

β[0,3], σ
2
δ[0,3] and σ2

ǫ[0,3], respectively. Here [0, 3] labels a term as belonging

to AIP iteration 0, for classification number 3, that is neighbourhood.

This is the P-step for the neighbourhood classification.

3. Next sample a set of neighbourhood level random effects (o[0,3]) from

p(δ[0,3] | y,β[0,3], σ
2
δ[0,3], σ

2
ǫ[0,3]). This is the I-step for the neighbourhood

classification.

4. Offset o[0,3] from y, that is form ỹ = y−o[0,3], re-sort the data according

to hospitals and fit model H using the new offset response ỹ.

5. Next sample β[0,2], σ
2
δ[0,2] and σ2

ǫ[0,2], from this second model, H. This is

the P-step for the hospital classification.

6. Sample a set of hospital level random effects (o[0,2]) from p(δ[0,2] |
y,β[0,2], σ

2
δ[0,2], σ

2
ǫ[0,2]). This is the I-step for the hospital classification.

This completes one iteration of the AIP algorithm; this is an Imputation-

Posterior algorithm that Alternates between the neighbourhood and hospital

classifications. We proceed by forming ỹ = y − o[0,2], that is offsetting the

sampled hospital residuals from y and using that as a response in step 1.

After T iterations, the procedure delivers the following two chains, which can

be used for inference:

{β[0,2], σ
2
δ[0,2], σ

2
ǫ[0,2]}, {β[1,2], σ

2
δ[1,2], σ

2
ǫ[1,2]}, . . . , {β[T,2], σ

2
δ[T,2], σ

2
ǫ[T,2]}

{β[0,3], σ
2
δ[0,3], σ

2
ǫ[0,3]}, {β[1,3], σ

2
δ[1,3], σ

2
ǫ[1,3]}, . . . , {β[T,3], σ

2
δ[T,3], σ

2
ǫ[T,3]}.
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Note that we get two sets of estimates for both the fixed effects and the level-1

variance with the AIP algorithm and the empirical distributions of these quan-

tities should be equal. In our use of AIP, we run the chains for between 100 and

400 iterations and judge convergence for a parameter by looking at the mean

of the distribution of that parameter’s chain. To converge to the posterior

distribution to get accurate estimates of, say, extreme percentiles, would have

required many more iterations. However, compared to the MCMC algorithm

outlined above, each iteration imposes a heavy computational burden. To

avoid this problem, Clayton and Rasbash [4] employed a Rao-Blackwellisation

[6] to estimate characteristics of the posterior distribution from short chains.

However, the accuracy of this method was not thoroughly investigated.

Other Methods

Raudenbush [17] considers an empirical Bayes approach to fitting cross-

classified models based on the EM algorithm. He considers the specific case

of two classifications where one of the classifications has many units whilst

the other has far fewer and shows two educational examples to illustrate the

method.

Two other recent approaches that can be used for fitting cross-classified

models, in particular with non-normal responses are Gauss-Hermite quadra-

ture within PQL estimation [13] and the HGLM model framework as described

in Lee and Nelder [12].

Comparison of Estimation Methods

The RG method when it works is generally fairly quick to converge where

all or all but one of the crossed classifications have small numbers of units.

When there are multiple crossed classifications with large numbers of units

then the speed of the RG algorithm deteriorates and memory usage is greatly

increased, often exhausting the available memory. The AIP method does not

have these memory problems but will be slower for structures that are almost

hierarchical. Although this method works reasonably well, if the response is

a binary variable and quasi-likelihood methods need to be used, then this

method like the RG method is still affected by the bias that is inherent in

quasi-likelihood methods for binary response multilevel models [see 9]. The

MCMC methods have no bias problems, although there are still issues on

which prior distributions to use for the variance parameters. They also, like the

AIP methods, do not have any memory problems. They are, however, generally

computationally a lot slower, as they are estimating the whole distribution

and not simply the mode, although as the structure of the data becomes more

complex, the speed difference is reduced.
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An Example Analysis of a Two-Way Cross-Classification: Primary

Schools Crossed with Secondary Schools

We will here consider fitting the RG method using the IGLS algorithm, the

MCMC method based on Gibbs sampling [2] and the AIP method to an

educational example from Fife in Scotland. Here we have as a response the

exam results of 3,435 children at age 16. We know for each child both the

primary school and secondary school that they attended and we are interested

in partitioning the variance between these two sources and individual pupil

level variation. The classification diagram is shown in Fig. 8.4. There are 148

primary schools that feed into 19 secondary schools in the dataset. Of the

148 primary schools, 59 are nested within a single secondary school, whilst

another 62 have at most 3 pupils that do not go to the main secondary school,

so we have an almost nested structure. This structure is particularly suited

for the RG algorithm.

We will fit the following model to the dataset

yi = β0 + δ
(2)
sec(i) + δ

(3)
prim(i) + ǫi ,

δ
(2)
sec(i) ∼ N (0, σ2

δ(2)), δ
(3)
prim(i) ∼ N (0, σ2

δ(3)), ǫi ∼ N (0, σ2
ǫ ).

The results are shown in Table 8.5.

From Table 8.5 we can see that in this example there is more variation be-

tween primary schools than between secondary schools. The MCMC estimates

replicate the IGLS estimates with slightly greater higher level variances (mean

versus mode estimates) due to the skewness of the posterior distribution.

The AIP method gives very similar results to the IGLS method. A further

discussion of these results is given in Goldstein [8].

Pupil

Primary School Secondary School

Fig. 8.4 Classification diagram for the Fife educational example.
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Table 8.5 Point estimates for the Fife educational dataset.

Parameter IGLS MCMC AIP

Mean achievement (β0) 5.50 (0.17) 5.50 (0.18) 5.51 (0.19)

Secondary school variance (σ2
δ(2)) 0.35 (0.16) 0.41 (0.21) 0.34 (0.15)

Primary school variance (σ2
δ(3)) 1.12 (0.20) 1.15 (0.21) 1.11 (0.20)

Individual level variance (σ2
e) 8.10 (0.20) 8.12 (0.20) 8.11 (0.20)

8.2.3 Models for More Complex Population Structures

In this section we will consider expanding the simple two cross-classified struc-

ture to accommodate more classifications and more complex structures.

Example Scenarios

Let’s take the situation described in the classification diagram drawn in

Fig. 8.3(i) where patients lie within a cross-classification of hospitals by neigh-

bourhoods. We may have information on the doctor that treated each patient

and doctors may be nested within hospitals. The classification diagram for

this structure is shown in Fig. 8.5.

A variance components model for this structure is written as

yi = β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i) + ǫi .

Patient

Doctor

Hospital

Neighbourhood

Fig. 8.5 Classification diagram for two crossed hierarchies (patients within doctors

within hospitals) × (patients within neighbourhoods).
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Patient

Hospital Neighbourhood Doctor

Fig. 8.6 Classification diagram for three crossed hierarchies (patients within hospi-

tals) × (patients within doctors) × (patients within neighbourhoods).

If doctors work across hospitals and are therefore not nested within hospital,

we then have a three way cross-classification which is drawn in Fig. 8.6.

Note that the variance components model for the structure in Fig. 8.6 is

also described by the same equation. This is a reflection of the fact that the

model notation for describing the random effects simply lists the classifications

that are sources of variation for the response we are modelling. In the variance

components model, we only have an intercept term which varies across all four

classifications present. Suppose we had another explanatory variable, x1, and

we wished to allow its coefficient to vary across the doctor classifications; we

would write this model as

yi = β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0 + β1x1i + δ

(4)
doct(i),1x1i + ǫi ,

or, alternatively, we can express the model as:

yi = β0i + β1ix1i + ǫi ,

β0i = β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0 ,

β1i = β1 + δ
(4)
doct(i),1.

It may be that the scenario described in Fig. 8.6 is further complicated because

hospitals, doctors and neighbourhoods are all nested within regions. In this

case, the classification diagram becomes as in Fig. 8.7.

Extending the last model to incorporate a simple random effect for the

region classification, we have

yi = β0i + β1ix1i + ǫi ,

β0i = β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0 + δ

(5)
reg(i) ,

β1i = β1 + δ
(4)
doct(i),1.
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Patient

Hospital Neighbourhood Doctor

Region

Fig. 8.7 Classification diagram for three crossed hierarchies nested within a higher-

level classification.

These few example scenarios indicate how the classification diagrams and

simplified notation can extend to describe patterns of crossings of arbitrary

complexity.

An Example Analysis of a Complex Cross-Classified Structure:

Artificial Insemination Data

We consider a data set concerning artificial insemination by donor. Detailed

description of this data set and the substantive research questions addressed

by modelling it within a cross-classified framework are given in Ecochard

and Clayton [5]. The data was re-analysed in Clayton and Rasbash [4] as an

example case study demonstrating the properties of the AIP algorithm for

estimating cross-classified models.

The data consists of 1901 women who were inseminated by sperm do-

nations from 279 donors. Each donor made multiple donations; there were

1328 donations in all. A single donation is used for multiple inseminations.

Each woman receives a series of monthly inseminations, 1 insemination per

ovulatory cycle. The data contain 12100 cycles within the 1901 women.

There are two crossed hierarchies, a hierarchy for donors and a hierarchy

for women. Level 1 corresponds to measures made at each ovulatory cycle. The

response we analyse is the binary variable indicating if conception occurs in a
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Cycle

Donation

Donor

Woman

Fig. 8.8 Classification diagram for the artificial insemination example model.

given cycle. The hierarchy for women is cycles within women. The hierarchy

for donors is cycles within donations within donors. Within a series of cycles, a

woman may receive sperm from multiple donors/donations. The classification

diagram for this structure is given in Fig. 8.8. The model fitted to the data is

yi ∼ Bernoulli(πi),

logit(πi) = β0 + azooi ∗ β1 + semenq i ∗ β2 + (age > 35)i ∗ β3

+ spermcount i ∗ β4 + spermmot i ∗ β5 + iearly i ∗ β6

+ ilatei ∗ β7 + δ
(2)
woman(i) + δ

(3)
donation(i) + δ

(4)
donor(i) ,

δ
(2)
woman(i) ∼ N (0, σ2

δ(2)), δ
(3)
donation(i) ∼ N (0, σ2

δ(3)), δ
(4)
donor(i) ∼ N (0, σ2

δ(4)).

Note that azoospermia (azoo) is a dichotomous variable indicating whether

the fecundability of the woman is impaired (0 impaired, 1 not impaired). The

results of fitting this model from the MCMC and AIP estimation procedures

are given in Table 8.6. This model could not be fitted using the RG algorithm.

This is because if the data is sorted according to women, then we need to fit

279 dummy variables for donors and 1328 dummy variables for donations.

Alternatively, if we sort the data according to donations within donors, we

have to fit 1901 dummy variables for women. Either way, the size of these

data matrices cause problems of insufficient memory. Even if these memory

problems can be worked around the numerical instability of the constraining

procedure that attempts to constrain over a thousand separately estimated

variances to be equal causes the adapted IGLS algorithm to fail to converge.
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Table 8.6 Results for the Artificial Insemination example.

Parameter MCMC AIP

Intercept (β0) −3.92 (0.21) −3.90 (0.21)

Azoospermia (β1) 0.21 (0.09) 0.22 (0.10)

Semen quality (β2) 0.18 (0.03) 0.18 (0.03)

Womens age > 35 (β3) −0.29 (0.12) −0.27 (0.12)

Sperm count (β4) 0.002 (0.001) 0.002 (0.001)

Sperm motility (β5) 0.0002 (0.0001) 0.0002 (0.0001)

Insemination too early (β6) −0.69 (0.17) −0.67 (0.17)

Insemination too late (β7) −0.27 (0.09) −0.25 (0.09)

Women variance (σ2
δ(2)) 1.02 (0.15) 1.01 (0.11)

Donation variance (σ2
δ(3)) 0.36 (0.074) 0.34 (0.065)

Donor variance (σ2
δ(4)) 0.11 (0.06) 0.10 (0.06)

After inclusion of covariates, there is considerably more variation in the

probability of a successful insemination attributable to the women hierarchy

than the donor hierarchy. Both the AIP and MCMC methods give simi-

lar estimates for all parameters. The fixed effect estimates show that the

probability of conception is increased with azoospermia and increased sperm

quality, count and motility but decreased with the age of the woman and with

inseminations that are too early or too late.

8.3 Multiple Membership Models

As we have seen from the previous section, allowing classifications to be

crossed gives rise to a large family of additional model structures that can

be estimated. The other main restriction of the basic multilevel model is the

need for observations to belong to a unique classification unit, i.e., every pupil

belongs to a particular class, every patient is treated at a particular hospital.

Often however, over time a patient may be treated at several hospitals and

depending on the response of interest all of these hospitals may have influence.

In this section we will first introduce the idea of multiple membership and

give some example scenarios where it may occur. We will then discuss the

possible estimation procedures that can be used to fit multiple membership

models and finish the chapter with a simulated example from the field of

education.

8.3.1 A Basic Structure for Two-Level Multiple Memberships

Suppose we have data on a large number of patients that attend their local

hospital and during the course of their hospital stay, they are treated by
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Table 8.7 Table of patients that are seen by multiple nurses.

Nurse 1 Nurse 2 Nurse 3

Patient 1
√ √

Patient 2
√

Patient 3
√ √

Patient 4
√ √

several nurses and we regard the nurses as an important factor on the patients

outcome of interest. Now typically each patient will be seen by more than one

nurse during their stay (although some will only see 1), but there are many

nurses and so we will treat nurses as a random classification rather than as

fixed effects. To illustrate this, Table 8.7 shows the nurses seen by the first 4

patients.

We can consider this structure in a unit diagram as shown in Fig. 8.9.

Here each line in the diagram corresponds to a tick mark in the table. Again,

as our data set gets larger, such unit diagrams become impractical, as there

will be too many nodes and so we will resort to using the classification di-

agrams introduced earlier for cross-classified models. If we wish to include

multiple membership classifications in such diagrams, we use the convention

of a double arrow to represent multiple membership. This will lead to the

classification diagram shown in Fig. 8.10 for the above patients and nurses

example.

Patient P1 P2 P3 P4

Nurse N1 N2 N3

Fig. 8.9 Unit diagram for multiple membership patients within nurses example.
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Patient

Nurse

Fig. 8.10 Classification diagram for multiple membership patients within nurses

example.

Example Scenarios

Many studies have multiple membership structure; here are a few examples:

• Education: Pupils change school/class over the course of their education

and each school/class has an effect on their education.

• Health: Patients are seen by several doctors and nurses during the course

of their treatment.

• Survey data: Over their lifetime, individuals move household and each

household has a bearing on their lifestyle, health, salary etc.

Constructing a Statistical Model

Returning to our example of patients being seen by multiple nurses, we have

Patient 1’s response being affected by Nurse 1 and Nurse 3 while Patient 2 is

only affected by Nurse 1. As we are treating nurse as a random classification,

we would like each patient’s response to have equal effect on the nurse classi-

fication variance, so we generally weight the random effects to sum to 1. For

example, let’s assume Patient 1 has been treated by Nurse 1 for 2 days and

Nurse 3 for 1 day. Then we may give Nurse 1 a weight of 2
3 and Nurse 3 a

weight of 1
3 . Often we do not have information on the amount of time patients

are seen by each nurse and so we commonly allocate equal weights (in this



8 Non-Hierarchical Multilevel Models 323

case 1
2 ) to each nurse. We can then write down a general two-level multiple

membership model as

yi = xiβ +
∑

j∈nurse(i)

w
(2)
i,j δ

(2)
j + ǫi ,

δ
(2)
j ∼ N (0, σ2

δ(2)), ǫi ∼ N (0, σ2
ǫ ),

where nurse(i) is the set of nurses seen by patient i and w
(2)
i,j is the weight

given to nurse j for patient i. Here we assume that

∑

j∈nurse(i)

w
(2)
i,j = 1 ∀i.

If we wish to write out this model for the first four patients from the example,

we get
y1 = x1β + 1

2
δ
(2)
1 + 1

2
δ
(2)
3 + ǫ1 ,

y2 = x2β + δ
(2)
1 + ǫ2 ,

y3 = x3β + 1
2
δ
(2)
2 + 1

2
δ
(2)
3 + ǫ3 ,

y4 = x4β + 1
2
δ
(2)
1 + 1

2
δ
(2)
2 + ǫ4 .

8.3.2 Estimation Algorithms

There are two main algorithms for multiple membership models, an adaption

of the Rasbash and Goldstein [15] algorithm described earlier and the MCMC

method. The AIP method has not been extended to cater for multiple mem-

bership models.

An IGLS Algorithm for Multiple Membership Models

Earlier we described how to fit a cross-classified model by absorbing one of the

cross-classifications into a set of dummy variables (the RG method). A slight

modification is required to allow this technique to be used to fit multiple

membership models. First let’s consider a two-level hierarchical model for

patients within nurses:

yi = β0 + δ
(2)
nurse(i) + ǫi ,

δ
(2)
nurse(i) ∼ N (0, σ2

δ(2)), ǫi ∼ N (0, σ2
ǫ ).

We can reparameterise this simple two-level model as
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yi = β0 + zi,1 δ
(2)
1 + zi,2 δ

(2)
2 + zi,3 δ

(2)
3 + · · ·+ zi,J δ

(2)
J + ǫi ,



δ
(2)
1

δ
(2)
2

δ
(2)
3
...

δ
(2)
J



∼ N (0, Σδ(2)), Σδ(2) =




σ2
δ(2),1 0 0 . . . 0

0 σ2
δ(2),2 0 . . . 0

0 0 σ2
δ(2),3 . . . 0

...
...

...
. . .

...

0 0 0 . . . σ2
δ(2),J



,

ǫi ∼ N (0, σ2
ǫ ),

where zi,j is a dummy variable which is 1 if patient i is seen by nurse j, 0

otherwise and J is the total number of nurses. Also we add the constraint

σ2
δ(2),1 = σ2

δ(2),2 = · · · = σ2
δ(2),J . Now these two models will deliver the same

estimates; however, the second formulation will take much longer to compute.

The advantage of the second model formulation is that it is straightforward

to extend it to the multiple membership case. Suppose patients are not nested

within a single nurse but are multiple members of nurses with membership

proportions, πi,j . We can simply replace zi,j with πi,j in the second formula-

tion and estimation can proceed in an identical fashion but will now deliver

estimates for the multiple membership model.

MCMC

Once again we will use a Gibbs sampling algorithm that relies on updating

groups of parameters in turn from their conditional posterior distributions.

For illustration, we present the steps for the following simple multiple mem-

bership model based on the variance components model patients within nurses

described earlier. We once again refer the interested reader to Browne et al.

[2] for more general algorithms and note that if the response is dichotomous

or a count, then, as in Chapter 2, we can use the Metropolis-Gibbs hybrid

method discussed there.

The basic two-level multiple membership model (patients within nurses)

can be written as:

yi = xiβ +
∑

j∈nurse(i)

w
(2)
i,j δ

(2)
j + ǫi ,

δ
(2)
j ∼ N (0, σ2

δ(2)), ǫi ∼ N (0, σ2
ǫ).

We can split our unknown parameters into four distinct sets: the fixed effects,

β; the nurse random effects, δ
(2)
j ; the nurse level variance, σ2

δ(2) and the patient

level residual variance, σ2
ǫ .

We then need to generate random draws from the conditional distribution

of each of these four groups of unknowns. We will define prior distributions for
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our unknown parameters as follows: For generality, we will use a multivariate

normal prior for the fixed effects, β ∼ Npf
(µp,Sp), and scaled inverse χ2

priors for the two variances. For the nurse level variance, σ2
δ(2) ∼ SIχ2(ν2, s

2
2),

and for the patient level variance, σ2
ǫ ∼ SIχ2(νǫ, s

2
ǫ). The steps are then as

follows:

• In step 1 of the algorithm, the conditional posterior distribution in the

Gibbs update for the fixed effects parameter vector β is multivariate nor-

mal with dimension pf (the number of fixed effects):

p(β | y, δ(2), σ2
δ(2), σ

2
ǫ ) ∼ Npf

(β̂, D̂),

where

D̂ =

(
N∑

i=1

x′
ixi
σ2
ǫ

+ S−1
p

)−1

,

β̂ = D̂

(
N∑

i=1

x′
idi
σ2
ǫ

+ S−1
p µp

)
,

and

di = yi −
∑

j∈nurse(i)

w
(2)
i,j δ

(2)
j .

• In step 2, we update the nurse residuals, δ
(2)
k , using Gibbs sampling with

a univariate normal full conditional distribution:

p(δ
(2)
k | y,β, σ2

δ(2), σ
2
ǫ ) ∼ N (δ̂

(2)
k , D̂

(2)
k ),

where

D̂
(2)
k =


 ∑

i,k∈nurse(i)

(w
(2)
i,k )2

σ2
ǫ

+
1

σ2
δ(2)




−1

,

δ̂
(2)
k = D̂

(2)
k


 ∑

i,k∈nurse(i)

w
(2)
i,kd

(2)
i,k

σ2
ǫ


 ,

and

d
(2)
i,k = yi − xiβ −

∑

j∈nurse(i),j 6=k

w
(2)
i,j δ

(2)
j .
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• In step 3, we update the nurse level variance σ2
δ(2) using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
δ(2):

p(1/σ2
δ(2) | y,β, δ(2), σ2

ǫ ) ∼ Gamma


n2 + ν2

2
,

1

2



n2∑

j=1

(
δ
(2)
j

)2
+ ν2s

2
2




 .

• In step 4, we update the patient level variance σ2
ǫ using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
ǫ :

p(1/σ2
ǫ | y,β, δ(2), σ2

δ(2)) ∼ Gamma

(
N + νǫ

2
,

1

2

[
N∑

i=1

ǫ2i + νǫs
2
ǫ

])
.

The above four steps are repeatedly sampled from in sequence to produce cor-

related chains of parameter estimates from which point and interval estimates

can be created as in Chapter 2.

Comparison of Estimation Methods

As in the comparison for cross-classified models, there are benefits for both

methods. The RG method is fairly quick, but the number of level-2 units

determines the size of some of the matrices involved and the number of con-

straints that the method has to apply. These dependencies lead to numerical

instability or memory exhaustion in situations with more than a few hundred

level-2 units. The MCMC methods, although again computationally slower,

do not suffer from these memory problems.

An Example Analysis of a Two-Level Multiple Membership

Model: Children Moving School

We consider a simulated data example based on the problem in education

of adjusting for the fact that pupils move school during the course of their

studies. We will consider a study with 4059 students from 65 schools taken

from Rasbash et al. [16]. The actual data in the study has each child belonging

to 1 school, but we will assume that over their education 10% of children

moved school, so we will choose at random for 10% of the children a second

school. We will assume that information about when the move occurred is

unavailable and so for these children we will allocate equal weights of 0.5 to

each school. Browne et al. [2] considered this as the basis for a simulation

experiment by generating 1000 datasets with this structure to show the bias

and coverage properties of the MCMC method. We will instead consider the

true response on our modified structure. We have as a response the pupil’s

total (normalised) exam score in all GCSE exams taken at age 16 and as a
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Table 8.8 Results for the multiple membership schools example.

Parameter RG RIGLS MCMC

Intercept (β0) 0.002 (0.040) 0.003 (0.040)

LRT effect (β1) 0.565 (0.012) 0.565 (0.013)

School variance (σ2
δ(2)) 0.093 (0.018) 0.096 (0.020)

Pupil variance (σ2
ǫ ) 0.570 (0.013) 0.571 (0.013)

predictor the pupil’s (standardised) score in a reading test taken at age 11.

As we are interested in progress from age 11–16, it makes sense to consider

the effect of all schools attended in this period. We will consider the following

model:

normexami = β0 + β1standlrt i +
∑

j∈school(i)

w
(2)
i,j δ

(2)
j + ǫi ,

δ
(2)
j ∼ N (0, σ2

δ(2)), ǫi ∼ N (0, σ2
ǫ ).

We fit this model using both the RG and MCMC methods and the results can

be seen in Table 8.8. From the table, we can see that both methods give similar

results. If we compare the results here with the results in Rasbash et al. [16],

we see only slight changes to the estimates with the level-2 variance slightly

decreased and the level-1 variance slightly increased. However, in cases where

there is greater amounts of multiple membership the variance estimates can be

altered if this multiple membership is ignored. For example, if we randomly

assigned every pupil to a second school, the variances change to 0.088 and

0.609 at levels 1 and 2, respectively.

8.4 Combining Multiple Membership and
Cross-Classified Structures in a Single Model

Consider two of our earlier examples in the field of education, firstly pupils

in a crossing of primary schools and secondary schools and secondly pupils

who are moving from school to school. We could assume that these two struc-

tures occur simultaneously and we will then end up with a model structure

that contains both a multiple membership classification (secondary schools)

and a second classification (primary schools) that is crossed with the first.

This scenario can be represented by a classification diagram as in Fig. 8.11.

Browne et al. [2] refer to models that contain both multiple memberships and

cross classifications as multiple membership multiple classification (MMMC)

models.
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Pupil

P. School S. School

Fig. 8.11 Classification diagram for the primary schools/secondary schools multiple

membership model.

8.4.1 Example Scenarios

Many studies have both cross-classified and multiple membership classifica-

tions in their structure. A few examples are the following:

• Education: Pupils can be affected by the crossing of the neighbourhood

they live in and the school they attend. They could also change class over

their period of education and so this multiple membership class classifica-

tion will be crossed with the neighbourhood classification.

• Health: Patients are seen by several doctors during their treatment and

may visit several hospitals. Doctors who are specialists may move from

hospital to hospital and so are crossed with the hospitals.

• Survey Data: Individuals will belong to many households over the course

of their lives and will reside in several properties. An entire household

may move to a new property, so households can be crossed with properties

and all the households/properties can have an effect on the individual. See

Goldstein et al. [10] for more details.

• Spatial Data: Individuals will belong to a particular area but will also be

affected by multiple neighbouring areas [11].

8.4.2 Constructing a Statistical Model

If we return to our example of pupils attending multiple secondary schools but

coming from one primary school, we need to combine the multiple membership

and cross-classified model structures into one model. As we are treating the

secondary schools as a random classification, we would like each pupil to have

an equal effect on the secondary school classification, so we will use weights

that add to 1 when a pupil attends more than one secondary school. We will
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let second(i) be the list of secondary schools that child i has attended. We

can then write down a general two-classification MMMC model as

yi = xiβ +
∑

j∈second(i)

w
(2)
i,j δ

(2)
j + δ

(3)
prim(i) + ǫi ,

δ
(2)
j ∼ N (0, σ2

δ(2)), δ
(3)
prim(i) ∼ N (0, σ2

δ(3)), ǫi ∼ N (0, σ2
ǫ ).

Here w
(2)
i,j is the weight given to secondary school j for pupil i. We assume

that
∑
j∈second(i) w

(2)
i,j = 1, ∀i. Both the RG algorithm and the MCMC method

can be used to fit these models that combine both multiple membership and

cross-classification.

8.4.3 An Example Analysis: Danish Poultry Farming

Rasbash and Browne [14] consider an example from veterinary epidemiology

concerning the outbreaks of salmonella typhimurium in flocks of chickens in

poultry farms in Denmark between 1995 and 1997. The response of interest is

whether salmonella typhimurium is present in a flock and in the data collected

6.3% of flocks had the disease. At the observation level, each observation

represents a flock of chickens. For each flock the response variable is whether

or not there was an instance of salmonella in that flock. The basic data have

a simple hierarchical structure, as each flock is kept in a house on a farm until

slaughter. As flocks live for a short time before they are slaughtered, several

flocks will stay in the same house each year. The hierarchy is as follows: 10,127

child flocks within 725 houses on 304 farms.

Each flock is created from a mixture of parent flocks (up to 6) of which

there are 200 in Denmark and so we have a crossing between the child flock

hierarchy and the multiple membership parent flock classification. The clas-

sification diagram can be seen in Fig. 8.12. We also know the exact makeup

of each child flock (in terms of parent flocks) and so can use these as weights

for each of the parent flocks. We are interested in assessing how much of the

variability in salmonella incidence can be attributed to houses, farms and

parent flocks.

There are also four hatcheries in which all the eggs from the parent flocks

are hatched. We will therefore fit a variance components model that allows

for different average rates of salmonella for each year with hatchery included

in the fixed part as follows:
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Child Flock

House

Farm

Parent Flock

Fig. 8.12 Classification diagram for the Danish poultry model.

salmonellai ∼ Bernoulli(πi), (8.1a)

logit(πi) = β0 + Y96 ∗ β1 + Y97 ∗ β2 + hatch2 ∗ β3

+ hatch3 ∗ β4 + hatch4 ∗ β5 + δ
(2)
house(i) + δ

(3)
farm(i)

+
∑

j∈p.flock(i)

w
(4)
i,j δ

(4)
j ,

(8.1b)

δ
(2)
house(i) ∼ N (0, σ2

δ(2)), δ
(3)
farm(i) ∼ N (0, σ2

δ(3)), δ
(4)
j ∼ N (0, σ2

δ(4)). (8.1c)

The results of fitting model (8.1) using both the Rasbash and Goldstein

method with 1st-order MQL estimation and the MCMC method can be seen

in Table 8.9. The quasi-likelihood methods are numerically rather unstable

and we could not get either 2nd-order MQL or PQL to fit this model.

We can see here that there are large effects for the year the chickens were

born, suggesting that salmonella was more prevalent in 1995 than the other

years. The hatchery effects were also large, suggesting chickens produced in

Hatcheries 1 and 3 had a larger incidence of salmonella. There is a large

variability for the parent flock effects and for the farm effects which are of

similar magnitude. There is less variability between houses within farms.

Method Comparison

The MCMC results were run for 50,000 iterations after a burn-in of 20,000

(This took 40 min on a 3.4 GHz PC), as we used arbitrary starting values and

so the chain took a while to converge. From Table 8.9 we can see reasonable
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Table 8.9 Results for the Danish poultry example.

Parameter 1st order MQL MCMC

Intercept (β0) −1.862 (0.184) −2.322 (0.213)

1996 effect (β1) −1.004 (0.138) −1.239 (0.162)

1997 effect (β2) −0.852 (0.159) −1.165 (0.187)

Hatchery 2 effect (β3) −1.458 (0.222) −1.733 (0.255)

Hatchery 3 effect (β4) −0.250 (0.209) −0.211 (0.252)

Hatchery 4 effect (β5) −1.007 (0.353) −1.062 (0.388)

House variance (σ2
δ(2)) 0.206 (0.096) 0.208 (0.108)

Farm variance (σ2
δ(3)) 0.639 (0.121) 0.927 (0.197)

Parent flock variance (σ2
δ(4)) 0.892 (0.184) 0.895 (0.179)

agreement between the two methods, although the fixed effects in MQL are

all smaller, as is the farm level variance. This behaviour was shown in simula-

tions on a nested three-level binary response data structure in Rodŕıguez and

Goldman [18] with the improvements of the MCMC method shown in Browne

and Draper [1] and so this suggests that the MCMC results should be more

accurate. (See also Chapter 9 of this volume.)

8.4.4 Complex Random Effects

Model (8.1) is essentially another variance components model, but we could

fit a model that has complex variation at one of the higher classifications. To

illustrate this, we will modify the farm level variance to account for different

variability between years at the farm level. That is, we replace the simple farm

level random effects, δ
(3)
farm(i) with three sets of effects, one for each year. Our

expanded model is then as follows:

salmonellai ∼ Bernoulli(πi), (8.2a)

logit(πi) = β0 + Y96 ∗ β1 + Y97 ∗ β2 + hatch2 ∗ β3

+ hatch3 ∗ β4 + hatch4 ∗ β5 + δ
(2)
house(i) + Y95 ∗ δ(3)

farm(i),1

+ Y96 ∗ δ(3)
farm(i),2 + Y97 ∗ δ(3)

farm(i),3 +
∑

j∈p.flock(i)

w
(4)
i,j δ

(4)
j ,

(8.2b)

δ
(2)
house(i) ∼ N (0, σ2

δ(2)), δ
(3)
farm(i) ∼ N3(0, Σδ(3)),

δ
(4)
j ∼ N (0, σ2

δ(4)).
(8.2c)

The parameter estimates for this extended model are given in Table 8.10.

We see that the fixed effects estimates are fairly similar to model (8.1). It is

interesting to see that all the covariances in the farm level variance matrix

are positive. This suggests that after adjusting for other factors, if a farm has
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Table 8.10 Estimates for the parameters in Model (8.2).

Parameter MCMC estimates

Intercept (β0) −2.544 (0.240)

1996 effect (β1) −1.149 (0.256)

1997 effect (β2) −1.003 (0.293)

Hatchery 2 effect (β3) −1.788 (0.265)

Hatchery 3 effect (β4) −0.143 (0.252)

Hatchery 4 effect (β5) −1.065 (0.383)

House variance (σ2
δ(2)) 0.271 (0.119)

Farm year95 variance (Σδ(3)[1, 1]) 1.416 (0.341)

Farm 95/96 covariance (Σδ(3)[1, 2]) 0.514 (0.262)

Farm 95/97 covariance (Σδ(3)[1, 3]) 0.415 (0.226)

Farm year96 variance (Σδ(3)[2, 2]) 1.239 (0.463)

Farm 96/97 covariance (Σδ(3)[2, 3]) 0.750 (0.321)

Farm year97 variance (Σδ(3)[3, 3]) 1.017 (0.482)

Parent flock variance (σ2
δ(4)) 0.878 (0.180)

an incidence of salmonella in 1995 then it is more likely to have an incidence

again in 1996 and in 1997. In fact, the corresponding correlation estimates are

0.39, 0.35 and 0.67, respectively, showing that in particular there is a strong

correlation between salmonella infection in farms in 1996 and 1997. On the

other hand, these correlations are clearly not equal to 1, which is the value

implied by model (8.1). Hence, this also shows the importance of allowing

complex random effects and the strength of the versatile model specification

approach presented here. The numerical instabilities of the quasi-likelihood

methods mean that comparative estimates could not be calculated for this

model.

8.5 Consequences of Ignoring Non-Hierarchical
Structures

Analysing only hierarchical components of populations which have additional

non-nested structures has two potentially negative consequences. First, the

model is under-specified because there are sources of variation that have not

been included in the model. This under-specification can lead to an underes-

timation of the standard errors of the parameters and therefore to incorrect

inferences. Second, the variance components obtained from the simple hierar-

chical model, or sets of separate hierarchical models, cannot be trusted. They

may change substantially if the additional non-nested structures are included

in a single model. For example, we may wish to know about the relative

importance of general practices and hospitals on the variation in some patient

level outcome. If patients are cross-classified by hospital and general practice,
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Table 8.11 Effects of ignoring a cross-classified structure.

Parameter Model I Model II Model III

Intercept 5.97 (0.07) 6.02 (0.07) 5.98 (0.07)

VRQ effect 0.16 (0.003) 0.16 (0.003) 0.16 (0.003)

Primary school variance 0.28 (0.06) 0.27 (0.06)

Secondary school variance 0.05 (0.02) 0.01 (0.02)

Pupil variance 4.25 (0.10) 4.48 (0.11) 4.25 (0.10)

we need to fit the full cross-classified model including patients, general prac-

tices and hospitals in order to address this question. Looking at two separate

hierarchical analyses, one of patients within hospital, the other of patients

within general practices, is not sufficient.

A numerical example of this is shown in Table 8.11, which shows results for

three models fitted using the RG method to the educational attainment data

from Fife in Scotland, where pupils are contained within a cross-classification

of primary schools by secondary schools. Model I fits pupils within primary

schools and ignores secondary school, Model II fits pupils within secondary

schools and ignores primary school and Model III fits the cross-classification.

The response is an attainment score at age 16, the explanatory variable VRQ

is a verbal reasoning measure taken at age 11. When one side of the cross-

classification is ignored, the released variance is split between the classification

left in the model and the pupil level variance, inflating both estimates. This

has the most drastic effect when the primary school hierarchy is ignored; in

this case (Model II), the inflated estimate of the between secondary school

variance is 2.5 times its standard error as opposed to 0.5 times its standard

error in the full model.
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Multilevel Generalized Linear Models
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9.1 Introduction

Two of the most influential papers in applied statistics published in the last

few decades are Nelder and Wedderburn [65], introducing generalized linear

models (GLMs), and Cox [20], the seminal paper introducing life tables with

regression, better known as proportional hazard models. As we will see, these

two developments are closely related. Nelder and Wedderburn’s unique con-

tribution was to provide a unified conceptual framework for studying a large

range of statistical models, including not only classical linear models, but also

logit and probit models for binary data, log-linear Poisson models for count

data, and others. The unification was not only conceptual, but also led to

common estimation procedures in the form of an iteratively re-weighted least

squares (IRLS) algorithm. The first implementation of these procedures ap-

peared in the highly successful program GLIM [3], which for many statisticians

became synonymous with GLMs.

In this chapter we follow Wong and Mason [94], Longford [54, 56], Gold-

stein [30], Breslow and Clayton [11], and others in exploring extensions of

GLMs to include random effects in a multilevel setting. Chapter 1 in this

handbook has described multilevel models for continuous outcomes, while

Chapter 6 has focused on multilevel models for categorical outcomes. Here we

adopt a unified approach that views the general linear mixed model and many

of the random-effects models for categorical data discussed in earlier chapters

as special cases of the Multilevel Generalized Linear Model (MGLM). This

approach has conceptual merit in emphasizing the similarities among these

models, and provides a common framework to study and evaluate estimation

methods. Alas, we do not have a single estimation procedure that can be

applied to all MGLMs with the same measure of success that IRLS achieved
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for GLMs. Instead, we must choose between quick but sometimes biased

approximations, and more accurate but often compute-intensive maximum

likelihood and Bayesian approaches. Part of our task in this chapter is to

describe and illustrate the alternatives.

Section 9.2 develops the modeling framework. We introduce generalized

linear models (GLMs) as an extension of linear models, and proceed to an

analogous derivation of multilevel generalized linear models (MGLMs) as an

extension of multilevel linear models. The ideas discussed apply more generally

to generalized linear mixed models (GLMMs) and our notation reflects this

broader applicability, but we tend to focus the narrative on the multilevel

case. We review survival models, note their close connection with GLMs, and

describe a natural extension to the multilevel case. We draw an important

distinction between conditional and marginal models that is significant in the

generalized linear case. Finally, we introduce non-linear mixed models and

contrast them with MGLMs.

Section 9.3 is devoted to a discussion of estimation procedures. It turns

out that calculation of the likelihood function for MGLMs involves intractable

integrals. We discuss several alternatives and assess their performance in real-

istic situations, referring to some of our earlier work using simulated data and

a case study [81, 82] and introducing new results. We review a range of approx-

imate estimation procedures that, unfortunately, can be severely biased when

random effects are substantial. We describe maximum likelihood estimation

using Gauss-Hermite quadrature, a method that appears to work remarkably

well, but is limited to relatively low-dimensional models. We also discuss

Bayesian estimation procedures focusing on the Gibbs sampler, a Markov

Chain Monte Carlo (MCMC) method that can be applied to more complex

models involving high-dimensional integrals, albeit not without difficulty. We

close this section with a brief discussion of other approaches to estimation, an

active area of current research.

Section 9.4 is devoted to an application of MGLMs to the study of infant

and child mortality in Kenya, using data from a national survey conducted in

1998. We use a three-level piece-wise exponential survival model that allows

for clustering of infant and child deaths at both the family and community

levels, and fit it to data using the equivalent MGLM with Poisson errors

and log link. We compare estimates that ignore clustering, and estimates

obtained by approximate quasi-likelihood and by full maximum likelihood.

The discussion emphasizes interpretation of the results, particularly the family

and community random parameters. Finally, we show how the model can be

used to estimate measures of intra-family and intra-community correlation in

infant and child deaths.

Section 9.5 is a brief discussion and summary of our conclusions.
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9.2 Extending Multilevel Models

9.2.1 Generalized Linear Models

Consider briefly the general linear model. We usually view the outcome yi for

the i-th individual as a realization of a random variable (r.v.) yi that depends

on a vector xi of predictors or explanatory variables through the equation

yi = x′
iβ + ǫi, (9.1)

where β is a vector of regression coefficients and ǫi is an error term having a

normal distribution with mean 0 and variance σ2.

It will facilitate further generalization if we write this model in a slightly

different way, noting that yi has a normal distribution with mean µi and

variance σ2, which we write

yi ∼ N (µi, σ
2), (9.2)

and the expected value satisfies the linear model

µi = x′
iβ. (9.3)

This approach draws a clear distinction between the stochastic structure of the

data, specified in the first equation, and the systematic component, specified

in the second.

The Exponential Family

Nelder and Wedderburn [65] generalize this model in two master strokes. First,

they assume that the distribution of yi is in an exponential family that includes

as special cases many of the distributions we encounter in applied work, such

as the normal, binomial, Poisson, gamma, and inverse Gaussian. The family

may be written as

f(yi) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
, (9.4)

where θi and φ are unknown parameters and ai(·), b(·), and c(·) are known

functions. Usually ai(φ) = φ/pi , where pi is a known prior weight, and this

will be assumed in the applications that follow. In this family, the mean is

E (yi) = b′(θi) and the variance is Var(yi) = b′′(θi)ai(φ). In applied work, we

often express the variance as a function of the mean, say Var(yi) = φV (µi).

All the distributions mentioned above can be obtained from this general

expression by suitable choice of parameters and functions. For example if

we set θi = µi, b(θi) = 1
2θ

2
i , φ = σ2, and ai(φ) = φ, we obtain a normal
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distribution with mean µi and variance σ2. In this case, the variance function is

the identity. The Poisson distribution with mean µi has θi = logµi, b(θi) = eθi ,

ai(φ) = φ, and φ = 1, and the variance equals the mean. McCullagh and

Nelder [59] show how you can obtain other special cases from the general

formula.

The Link Function

The second aspect of the generalization is that instead of modeling the ex-

pected value of the outcome as a linear function of the covariates, we model a

transformation of the expected value. Specifically, we introduce a one-to-one

continuous differentiable transformation of the mean ηi = g(µi) and assume

that the transformed mean follows a linear model, so that

g(µi) = ηi = x′
iβ. (9.5)

The function g(·) is called the link function, and connects the mean with the

linear predictor x′
iβ and thus the explanatory variables. The simplest possible

link function is the identity, which leads to modeling the mean itself. Other

transformations in common use are the logit, probit, log, inverse, and square

root.

A key feature of GLMs is that the model for the transformed mean ηi
is simple and has a familiar linear structure. Because the link function is

one-to-one, we can always invert it to obtain a a model for the mean

µi = g−1(x′
iβ), (9.6)

but this model is usually more complicated. In particular, interpretation of

the parameters is straightforward in the transformed scale, but may be rather

involved in the original scale. Notable exceptions are models with log and logit

links, where exponentiated coefficients may be interpreted as multiplicative

effects on an expected count or an odds ratio, respectively. An example will

follow in Section 9.4.

Link functions can often be motivated as a way to handle range restrictions

on the mean µi. With count data, for example, a linear model is not attractive

because the mean µi must be non-negative, but the linear predictor x′
iβ may

yield positive or negative values. Modeling the log of the mean instead solves

the problem. The link function can also make the assumption of linearity

more plausible. With count data, for example, one often finds that effects are

relative rather than absolute; an additive model in the log scale is equivalent

to a multiplicative model in the original scale, and can thus represent relative

effects. A link function that maps the mean µi into the parameter θi in the

exponential family is said to be a canonical link. The canonical links for the

Poisson and Bernoulli distributions are the log and the logit, respectively.
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Estimation and Testing

An important practical feature of GLMs is that they can all be fit to data using

the same algorithm, a form of iteratively reweighted least squares (IRLS). The

algorithm may be motivated by considering a linearized form of the model, a

fact that has motivated the adoption of similar strategies for MGLMs. Write

the model as

y = µ(Xβ) + ǫ, (9.7)

where µ(·) is the inverse link function applied element-wise to the linear pre-

dictor η = Xβ, and ǫ is a vector of independent heteroscedastic error terms

with mean ∅ and (diagonal) variance-covariance matrix φV (µ). Expanding

the link using a first-order Taylor series about a trial parameter value β0 and

rearranging terms leads to the approximating linear model

y∗ ≈Xβ + ǫ∗, (9.8)

where y∗ = D−1(y−µ(Xβ0)) +Xβ0 is a working response, ǫ∗ = D−1ǫ is a

new error term with variance φW , where W = D−1V (µ)D−1 is a diagonal

matrix of weights, and D = ∂µ/∂η is a diagonal matrix of derivatives of the

link function with respect to the linear predictor. This approximating linear

model may be fit using weighted least squares to obtain an improved estimate

of β, which can then be used to obtain a better approximating model, and

so on to convergence. McCullagh and Nelder [59] show that this method is

equivalent to Fisher scoring and leads to maximum likelihood estimates.

Under standard regularity conditions, the large sample distribution of the

estimator β̂ is approximately normal with mean equal to the true parameter

value β and variance-covariance matrix φ (X ′WX)−1. This result provides

large-sample standard errors and a basis for Wald tests. Likelihood ratio tests

are often preferable, and in the context of GLMs they are usually calculated

by reference to a statistic known as the deviance. This statistic is constructed

by considering a likelihood ratio test that compares the model of interest with

a saturated model that has a separate parameter for each observation. The

deviance is the product of the scale parameter φ and the usual likelihood ratio

chi-squared statistic −2 log λ. A test comparing two nested models can then

be computed as the difference of their scaled deviances.

9.2.2 Multilevel Generalized Linear Models

We now consider a similar extension for multilevel linear models. In previous

chapters we have written the general linear mixed model in a form analogous

to (9.1),

yi = x′
iβ + z′iδ + ǫi, (9.9)
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where yi is the r.v. representing the outcome for the i-th individual, xi is the

i-th row of the model matrix for the fixed effects β, zi is the i-th row of the

model matrix for the random effects δ, and ǫi is the individual error term. We

assume that the random effects δ have a N (∅,Ω) distribution, and the error

terms are independent and identically distributed (i.i.d.) N (0, σ2) r.v.’s.

We could write this model more compactly in terms of vectors, with ǫ ∼
N (∅, σ2I), but that would not be very productive for the generalization that

follows. Instead, we will reformulate the model in terms of the conditional

distribution of the outcomes yi given the random effects δ, which we write as

yi | δ ∼ N (µi, σ
2). (9.10)

In words, we assume that given the random effects the outcomes are indepen-

dent normally distributed r.v.’s with mean µi and variance σ2. The conditional

mean, in turn, follows the linear model

µi = x′
iβ + z′iδ, (9.11)

depending on unknown coefficients β and given values δ of the random effects.

The essence of this approach is the recognition that given the random effects,

the outcomes are independent and follow a linear model.

The stage is now set for the generalization. We retain the key assumption of

conditional independence. However, instead of assuming that the conditional

distribution of the outcomes y
i

given the random effects δ is normal, we

assume that the distribution is in the exponential family (9.4). This extends

the general linear mixed model to situations where the conditional distribution

of the responses is binomial, Poisson, gamma, or inverse Gaussian.

The second element of the generalization is the introduction of a link

function. We assume that a transformation of the conditional mean, rather

than the mean itself, follows a linear model, so that

g(µi) = x′
iβ + z′iδ. (9.12)

The link function can be the identity, log, logit, probit, or any other one-

to-one continuous differentiable transformation. This final extension leads to

multilevel logit and probit models, multilevel log-linear models for count data,

and many other applications.

By focusing on the conditional distribution of the outcomes given the

random effects, we can apply without changes the entire conceptual apparatus

of generalized linear models. In particular, random and fixed effects can be

interpreted in a unified way, the interpretation is simple in the transformed

scale because fixed and random effects enter linearly, and can often be trans-

lated meaningfully back to the original scale. We will return to these issues in

Section 9.4.
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9.2.3 Survival Models

Let us now consider models for time-to-event or survival data, which are

closely related to GLMs. There is now an extensive literature on survival

models; excellent texts include Kalbfleisch and Prentice [43], Cox and Oakes

[22], and Therneau and Grambsch [89].

Hazards and Survival

In a standard hazard model, we assume that the survival experiences of dif-

ferent individuals are independent and that the hazard for individual i, or

instantaneous risk of occurrence of the event at time t given that it has not

occurred earlier, is given by

λ(t,xi) = λ0(t) exp{x′
iβ}, (9.13)

where λ0(t) represents a baseline hazard at time t and exp{x′β} is a relative

risk associated with covariate values x. The special case where λ0(t) = λ0 is

the exponential survival model of Feigl and Zelen [26]. The model is easily

extended to time-varying covariates x(t) and time-varying effects β(t). Note

that taking logs yields a model that is linear in the relative risk parameters.

The cumulative hazard is defined as Λ(t,xi) =
∫ t
0
λ(u,xi) du, which for

time-fixed covariates is simply the baseline cumulative hazard times the rela-

tive risk for individual i. We will also need the survival function or probability

of being alive at time t, which can be obtained from the cumulative hazard

as S(t | xi) = exp{−Λ(t,xi)}, and therefore for fixed covariates satisfies

S(t | xi) = S0(t)
exp{x′

iβ}, (9.14)

where S0(t) is the baseline survival function.

Estimation with Censored Data

A distinctive feature of survival models is that observations are often cen-

sored, in the sense that for some individuals the event of interest has not

yet occurred at the time the data are analyzed. Estimation of censored-data

hazard models under parametric assumptions for the baseline hazard relies

on the standard survival likelihood, to which an individual who dies at t

contributes λ(t,x)S(t,x), the density at t, and an individual who is censored

at t contributes S(t,x), the probability of surviving to t. This likelihood can

be derived under the key assumption that censoring is non-informative, so all

we know about an individual who is censored at t is that it survived that long;

see Kalbfleisch and Prentice [43]. Cox [20, 21] introduced a partial likelihood
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that allows estimation of the relative risk coefficients β without assumptions

about the shape of the baseline hazard λ0(t).

Several authors have noted a close relationship between hazard models and

GLMs, and a number of papers show how various survival models can be fit

using standard GLM software; see Aitkin and Clayton [4] for the exponential,

Weibull, and extreme value distributions, Bennet and Whitehead [8] for the

logistic and log-logistic, and Clayton and Cuzick [17] and Whitehead [93] for

estimation using Cox’s partial likelihood. In this section we focus on connec-

tions with Poisson models with log link, which we use in our application in

Section 9.4, and binomial models with logit and c-log-log links.

Piece-Wise Exponential Survival

A flexible semi-parametric approach to hazard models is to partition time (or

duration of exposure) into J intervals [τj−1, τj) for j = 1, . . . , J with cutpoints

0 = τ0 < τ1 < · · · < τJ , and assume that the baseline hazard is constant

within each interval, so that λ0(t) = λ0j for t ∈ [τj−1, τj). Judicious choice of

cutpoints leads to good approximations to a wide range of hazard functions,

using more closely spaced boundaries where the hazard varies rapidly and

wider intervals where the hazard changes more slowly.

Holford [40] and Laird and Olivier [47] noted that the piece-wise exponen-

tial model is equivalent to a Poisson regression model. With censored data, we

observe ti, the total time lived by the i-th individual, and di, a death indicator

that takes the value 1 if the individual died and 0 otherwise. Imagine defining

analogous measures for each duration interval, so tij is the time lived by the

i-th individual in the j-th interval, and dij is a death indicator that takes the

value 1 if individual i died in interval j and 0 otherwise. Then a piece-wise

exponential hazard model can be fitted by treating the death indicators dij as

if they were independent Poisson observations with means µij = λijtij , where

λij is the hazard for individual i in interval j.

The proof is not hard and can be sketched as follows. The contribution of

the i-th individual to the standard survival log-likelihood for censored data

has the form di log λ(ti,xi) − Λ(ti,xi). Suppose ti falls in interval j(i) and

write λij(i) as shorthand for λ(ti,xi). The cumulative or integrated hazard

can be computed easily because the hazard is constant in each interval, so

Λ(ti,xi) =
∑
j λijtij , where the sum is over all intervals up to j(i). There is a

slight lack of symmetry in that we have only one term on the death indicator

and j(i) terms on the exposure times, but we can easily add the terms for

previous intervals, which have dij = 0 and thus are all zero, to obtain

logLi =

j(i)∑

j=1

{dij log λij − λijtij}. (9.15)
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This equation coincides with the log-likelihood that we would obtain if we

treated dij as having a Poisson distribution with mean µij = λijtij except for

a term dij log(tij), but this is a constant depending on the data and not the

parameters, so it can be ignored.

It is important to note that we have not assumed that the dij have in-

dependent Poisson distributions, because clearly they do not. If individual i

died in interval j, then it must have been alive in all prior intervals, so the

indicators couldn’t possibly be independent. Moreover, each indicator can only

take the values 1 and 0, so it couldn’t possibly have a Poisson distribution

that assigns probability to values greater than 1. The result is more subtle;

it is the likelihood functions that coincide. Given a realization of a piece-wise

exponential process, we can find a realization of a set of independent Poisson

r.v.’s that happens to have the same probability and thus leads to the same

estimates. The practical implication is that one can fit a piece-wise exponential

model in terms of the equivalent GLM.

Discrete Survival Models

In his original paper, Cox [20] proposed a discrete version of the proportional

hazards model by working with the conditional odds of dying at each possible

failure time tj given survival up to that point. Specifically, he proposed the

model
λ(tj | x)

1− λ(tj | x)
=

λ0(tj)

1− λ0(tj)
exp{x′β}, (9.16)

where λ0(tj) is the baseline conditional probability of dying at tj given survival

to that time and exp{x′β} is the relative risk. In this model, the conditional

log-odds of dying are linear in the relative risk parameters β.

Cox [20] extended his partial likelihood approach to estimate β while

treating the baseline hazards λ0(tj) as nuisance parameters that could be

conditioned out of the likelihood. Allison [5] noted that one could estimate

the complete model, including a separate parameter for each discrete time

of death tj , by running a logistic regression on a set of pseudo-observations,

in a procedure analogous to that described above for piece-wise exponential

models.

An alternative extension of hazard models to discrete data assumes that

the survival functions satisfy (9.14) and then solves for the conditional hazard

at time tj , to obtain

λ(tj | x) = 1− (1− λ0(tj))
exp{x′β}. (9.17)

The transformation that makes the right-hand side a linear function of the

parameters is the complementary log-log, and the model can be fitted using

a GLM with binomial structure and complementary log-log link.
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This model can also be obtained by grouping time in a continuous-time

proportional hazards model, see Prentice and Gloeckler [72] and Kalbfleisch

and Prentice [43] for details. In this approach, time is grouped into intervals

[τj−1, τj) as before, but all we observe is whether an individual survives or dies

in an interval. This construction imposes some constraints on censoring: If an

individual is censored inside an interval, we do not know whether he or she

would have survived the interval, and therefore must censor the observation

back at the beginning of the interval. Unlike the piece-wise exponential setup,

we cannot use information about exposure during part of an interval. On the

other hand, we do not need to assume that the hazard is constant in each

interval.

9.2.4 Multilevel Survival Models

In the last several years, there has been considerable interest in extend-

ing survival models by introducing random effects. A classic demographic

contribution is Vaupel et al. [91], which introduced a gamma-distributed

random effect to represent unobserved heterogeneity of frailty in univariate

survival models, see also Aalen [1], Hougaard [41, 42], and Manton et al. [58].

The idea of frailty can be used to represent association of kindred lifetimes

in a multivariate setting, see Clayton [14], Clayton and Cuzick [18], and

Oakes [68]; to account for association in recurrent events and event history

data, see Clayton [15] and Rodŕıguez [79]; and leads naturally to two- and

three-level survival models, see Guo and Rodŕıguez [37], Sastry [83], and

Barber et al. [7].

The multilevel extension follows the same strategy as for MGLMs. We

assume that given a vector of random effects δ, the survival experiences of

different individuals are independent and follow a hazard model with condi-

tional hazard

λ(t,xi | δ) = λ0(t) exp{x′
iβ + z′iδ}. (9.18)

In this generalization, the hazard for individual i depends not only on the fixed

effects β with model vector xi, but also on the random effects δ with model

vector zi. Once again, the random effects enter a linear predictor in exactly

the same form as the fixed effects. Calculation of the conditional cumulative

hazard and the conditional survival function follows along the same lines as

in ordinary survival models.

We can also calculate unconditional or marginal survival probabilities by

integrating out the random effects. Calculation of unconditional hazards re-

quires special care because hazards, by definition, are conditional on survival

to time t. The extent of dependence of kindred lifetimes can be expressed in

terms of measures of intraclass correlation. Estimation of both discrete- and

continuous-time multilevel survival models can proceed by working in terms
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of the equivalent MGLM with binomial or Poisson errors. We will revisit these

issues in the context of our application in Section 9.4.

9.2.5 Conditional and Marginal Models

An alternative approach to the analysis of correlated data that is popular

in longitudinal or repeated-measurement studies focuses on the marginal dis-

tribution of the responses, see Diggle et al. [25, Chapter 8]. These models

assume that the outcomes have a distribution in the exponential family, and

that a transformation of the marginal mean is a linear function of observed

covariates with coefficients β. The models are usually fit to data using gener-

alized estimating equations (GEE) that take into account the dependence of

the observations. The method is very similar to the IRLS algorithm used in

GLMs, using the same working dependent variable and the same set of weights,

but instead of using weighted least squares (WLS) with a diagonal weight

matrix, it uses generalized least squares (GLS) with a more general weight

matrix, where the non-diagonal elements reflect the correlation structure of

the observations.

In the linear case, the marginal and conditional models coincide, in the

sense that in both instances the mean is a linear function of the covariates with

the same coefficients β. This is no longer true in the more general case; except

for variance-component probit models, where the conditional and marginal

models differ only by a scaling of the coefficients, the two approaches lead

to different models. The distinction is particularly important in the case of

survival models, where it can give rise to interesting paradoxes, see Vaupel

and Yashin [92]. Marginal models are useful when one is interested in mak-

ing inferences about population averages, whereas conditional models have a

subject-specific interpretation, see Neuhaus et al. [66] for a comparison. As

will be shown in our application, one can always use a conditional model to

compute marginal quantities of interest, so in this sense the MGLM approach

is richer, see also Goldstein [31, 32].

9.2.6 Non-Linear Models

Generalized linear models and the extensions considered so far expand the

statistician’s toolkit beyond the assumption of normally distributed outcomes,

while retaining the assumption of linear effects on a transformed scale. Non-

linear models are different; they retain the assumption of normally distributed

outcomes, but move beyond the assumption of linear effects to consider more

general structures where the parameters enter non-linearly. These models of-

ten have a natural physical interpretation, may be more parsimonious than

linear models, and can provide more reliable predictions outside the observed

range of the data. Needless to say, non-linear models have also been extended
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to include random effects at various levels of aggregation, see Davidian and

Giltinan [24] and Pinheiro and Bates [71, Part II]. In this chapter we focus on

MGLMs, but note that the two approaches share common estimation problems

and have adopted similar solutions.

9.3 Approaches to Estimation

Estimation of multilevel linear models for normally distributed outcomes using

maximum likelihood or restricted maximum likelihood is very well understood.

Excellent implementations are available in specialized multilevel packages,

namely HLM and MLwiN, as well as in general-purpose statistical packages,

including Stata, SAS, and R/S-Plus. When it comes to MGLMs, however, the

picture gets more complicated.

Estimation by maximum likelihood requires the marginal distribution of

the responses. We assume that the random effects have density g(δ), a mul-

tivariate normal density with a patterned covariance structure. We further

assume that the conditional density of the outcomes given the random effects,

f(y | δ), is a product of densities in the exponential family. The product of the

marginal and conditional densities gives us the joint density of the outcomes

and the random effects. Calculation of the marginal density of the outcome is

then a “simple matter” of integrating out the random effects:

f(y) =

∫
f(y | δ) g(δ) dδ. (9.19)

Unfortunately, this integral is intractable, with no general closed-form solu-

tion.

There are some special cases of interest with a single random effect whose

distribution is conjugate with the distribution of the outcome, see Lee and

Nelder [49] for a general approach. For example, if y and δ are scalars, the

marginal distribution of the random effect is gamma and the conditional

distribution of the outcome given the random effect is Poisson, then the

marginal distribution of the outcome is negative binomial, see Lawless [48].

For binary outcomes the beta-binomial combination is popular, see Crowder

[23]. A difficulty with these approaches is that they do not extend easily to

models involving multiple dependent random effects. The flexibility of the

assumption of multivariate normality for the random effects is, in fact, un-

matched. To retain this flexibility, we need a way to get around the intractabil-

ity of (9.19). We now turn to a discussion of the three main approaches to

estimation in current use, starting with a simulation study used to evaluate

them.
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9.3.1 A Simulation Study

To assess the performance of alternative estimation procedures, we will use

data from a simulation study described in Rodŕıguez and Goldman [81]. The

study was motivated by work on health care utilization in Guatemala, where

exploratory analyses had suggested large family and community effects on the

use of modern health care, yet more formal analyses using multilevel models,

as implemented in then current software, had failed to confirm the existence of

large effects. To resolve this disparity, we ran a number of simulations, using

what we then considered small and large variance components. Subsequent

work revealed that the actual effects were in fact much larger than the values

used in our simulations, see Pebley et al. [69] and the case study in Rodŕıguez

and Goldman [82].

We will focus here on a set of simulations using the actual structure of

Guatemalan data on prenatal care, with 2449 births to 1558 mothers who were

living in 161 communities. We created three composite explanatory variables

summarizing characteristics of the pregnancy, mother, and community, and

set their fixed-effect coefficients to 1. We added random effects representing

unobserved characteristics of the mother and community, sampled from nor-

mal distributions with mean 0 and variance 1. Finally, we simulated a binary

response following a 3-level random-intercept logit model. This procedure was

used to generate 100 datasets that have been used by several authors and are

freely available at http://data.princeton.edu/multilevel.

Table 9.1 summarizes the results of trying various estimation procedures

on these datasets. The results for MQL-1 and MQL-2 appeared in Rodŕıguez

and Goldman [81]. Goldstein and Rasbash [34] reported results for PQL-2

using the first 25 of our 100 datasets; we have extended the analysis to cover

all 100 and added PQL-1. The results using quadrature methods and the

Gibbs sampler are new. We will comment on these results as we describe

the various procedures. For brevity, we omit presentation and discussion of

standard errors.

Browne and Draper [13] have also analyzed the first 25 of our datasets,

and went on to generate a further 500 samples with the same multilevel

structure, as part of an interesting simulation study contrasting Bayesian

and likelihood-based procedures. The comparison includes MQL and PQL

as well as a Bayesian approach, but excludes maximum likelihood via quadra-

ture procedures. Their implementation of Bayesian estimation combines the

Metropolis algorithm with Gibbs sampling and tries two choices of diffuse pri-

ors for the variances of the random effects. The evaluation criteria include the

bias of point estimates and also the coverage rates of interval estimates. Their

results parallel ours and lead to essentially the same conclusions regarding the

relative merits of these methods.
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Table 9.1 Estimates for simulated data using the Guatemala structure.

Estimation Fixed Parameters (β) Random Parameters (σ)

Method Individual Family Community Family Community

True Value 1.000 1.000 1.000 1.000 1.000

MQL-1 0.738 0.744 0.771 0.100 0.732

MQL-2 0.853 0.859 0.909 0.273 0.763

PQL-1 0.808 0.806 0.831 0.432 0.781

PQL-2 0.933 0.940 0.993 0.732 0.924

ML-5 0.983 0.988 1.037 0.962 0.981

ML-20 0.983 0.990 1.039 0.973 0.979

Gibbs 0.971 0.978 1.022 0.922 0.953

9.3.2 Marginal and Penalized Quasi-Likelihood

Goldstein [30] and collaborators have proposed a general approach to the

estimation of MLGMs that relies on a linearization strategy, and has led to

four different approximations, known as first- and second-order maximum

quasi-likelihood (MQL) and penalized quasi-likelihood (PQL).

MQL-1

To motivate these approximations, we write the MLGM model as

y = µ(Xβ +Zδ) + ǫ, (9.20)

where ǫ is a heteroscedastic error term with mean ∅ and variance V (µ)

depending on the mean. Goldstein [30] approximates the inverse link µ(η)

using a first-order Taylor series expansion around trial values β = β0 and

δ = ∅, to obtain

y = µ(Xβ0) +DX(β − β0) +DZδ + ǫ, (9.21)

where D = ∂µ/∂η0 is a diagonal matrix of derivatives of the mean with

respect to the linear predictor evaluated at η = η0. Pre-multiplying both

sides of the equation by D−1 and rearranging terms gives

y∗ = Xβ +Zδ + ǫ∗, (9.22)

where y∗ = D−1(y − µ0) +Xβ0 and ǫ∗ is an error term with mean ∅ and

variance D−1V (µ)D−1. (The variance is simpler for logit and other models

where the derivative of the linkD coincides with the variance function V (µ).)

Equation (9.22) has the structure of a linear mixed model, with mean

E (y∗) = Xβ and variance

Var(y∗) = ZΩZ′ +D−1V (µ0)D
−1, (9.23)
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which has been evaluated at µ0. Fitting this model by ML or REML leads to

an improved estimate of the fixed effects β, which can then be used to compute

a new approximating model. The procedure is iterated to convergence. This

method is termed maximum quasi-likelihood (MQL) because the approximat-

ing linear mixed model matches the mean and variance of the target model.

Interestingly, if there are no random effects, the method coincides exactly with

the IRLS algorithm used in GLMs and therefore leads to maximum likelihood

estimates.

Longford [54, 56] adopted a different approach that, somewhat surpris-

ingly, leads to an equivalent algorithm. He approximates the conditional like-

lihood f(y | δ) using a second-order Taylor series expansion about δ = ∅.

The random effects appear in this expansion only in a quadratic form, which

can be combined with a similar quadratic form in the marginal density g(δ) of

the random effects to carry out the required integration analytically. Longford

goes on to derive a Fisher scoring algorithm that provides estimates of both

fixed and random effects. This strategy was first implemented in the multilevel

package VARCL [55], and turns out to be exactly equivalent to Goldstein’s

MQL-1 procedure. For further details, see Rodŕıguez and Goldman [81].

Unfortunately, the results in Table 9.1 show that first-order MQL es-

timates can be biased, underestimating the fixed effects (β’s) by 23–26%

and the random parameters (σ’s) by 27% at the community and 90% at

the family level. For related results, see Breslow and Clayton [11] and

Breslow and Lin [12].

MQL-2

Goldstein [30, p. 50] also proposed a quadratic approximation based on a

second-order Taylor series expansion. Specifically, he adds the second-order

terms corresponding to each of the random effects in the model, but omits

second-order terms on the fixed effects as well as mixed derivatives. The

resulting squared terms are treated as additional random effects in the ap-

proximating linear model. Because these are really not separate terms, their

means and variances are not estimated, but rather are calculated from the

variances of the original random effects under the assumption of normality.

The resulting constrained model is easily fit using MLwiN. We refer to this

approximation as MQL-2.

Experience suggests that this method is more accurate than MQL-1, al-

though it doesn’t always converge. Table 9.1 shows that the bias is reduced

to 9–15% for the fixed parameters, and 24% and 73% for the community

and family random parameters, respectively; a notable improvement, although

substantial bias remains.
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PQL-1

Simulations show that MQL-1 and MQL-2 work better when the random

effects are small, i.e., their variances are close to zero. This fact should not

be surprising considering that the approximation is based on a Taylor series

expansion about δ = ∅. An alternative procedure would be to expand about

δ = δ0 with a non-zero pivot, and the obvious candidate is the empirical

Bayes estimate of the random effects, defined as E (δ | y), evaluated at current

parameter values. The expansion then becomes

y = µ(η0) +DX(β − β0) +DZ(δ − δ0) + ǫ, (9.24)

and leads to an approximating multilevel linear model with the same form

as (9.22), except that the working response is now y∗ = D−1(y − µ0) +

Xβ0 + Zδ0. This model can be estimated using ML or REML, and the

resulting estimates of both fixed and random effects are used to obtain a

new approximating model. The procedure is then iterated to convergence.

The same procedure has been derived by other authors using different

approaches. Laird [46] and Stiratelli et al. [87] derive it from a Bayesian

perspective as an approximation to a posterior distribution using a diffuse

prior. Schall [84] starts from a MGLM and uses a linearized form of the link

function applied to the data. Breslow and Clayton [11] derive the procedure

using Laplace’s method for integral approximation, and term it penalized

quasi-likelihood or PQL by relating it to results of Green [36].

Our experience suggests that PQL-1 tends to perform better than MQL-1,

is sometimes competitive with MQL-2, and is more likely to converge. For the

simulated data, the PQL-1 estimates of the fixed effects are not quite as good

as MQL-2, but the estimates of the random parameters are better, although

the family standard deviation is still seriously biased.

PQL-2

Goldstein and Rasbash [34] have proposed an improved version of PQL,

termed PQL-2, that extends the Taylor series to include second-order terms

on the random effects, but no second-order terms on the fixed effects and no

mixed derivatives. The resulting squared terms are treated exactly the same

way as in MQL-2, as additional random effects whose variance is not estimated

but rather calculated from the other parameters.

We have found PQL-2 to be the most accurate method in this series,

although sometimes it fails to converge. The results in Table 9.1 show that

PQL-2 has only a 1–7% bias for the fixed parameters, and underestimates the

community random parameter by 8%, although there is still a 27% bias in the

estimation of the family random parameter.
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Bootstrapping

One way to reduce the bias in the approximate estimation procedures is by

bootstrapping, see Kuk [45] and Goldstein [33], and the detailed discussion

in Chapter 11. We used MLwiN to bootstrap MQL-1 and PQL-1 estimates

in a case study involving three-level random-intercept logit models [82]. We

found that the procedure was successful in correcting the bias of the estimates

of both fixed and random parameters. However, the technique is extremely

compute-intensive (more so than the MCMC methods discussed below), tak-

ing days to converge in one of our datasets and failing after 400 replicates in

another. In both cases, however, we noted that the first few iterations achieved

large bias corrections, suggesting that one could run a few bootstrap iterations

as a diagnostic technique. For more details, see Rodŕıguez and Goldman [82,

Fig. 3].

9.3.3 Gauss-Hermite Quadrature

A second approach to estimation of MGLMs is to calculate the integral (9.19)

representing the marginal likelihood using numerical quadrature procedures.

Previous work along these lines includes Anderson and Aitkin [6] and Hedeker

and Gibbons [38, 39], see also Chapter 6 in this handbook. For an excellent

introduction to numerical integration methods with applications to statistics,

see Thisted [90, Chapter 5].

Table 9.1 shows the results of computing maximum likelihood estimates

for our simulated data using 5-point and 20-point Gauss-Hermite quadrature.

We find no evidence of bias in the estimation of the fixed effects, and only

about a 2% bias in the estimation of the random parameters, well within

the margin of error of our simulations. We now describe the method in some

detail.

Quadrature Rules

Quadrature methods approximate an integral as a weighted sum of function

values evaluated over a grid of points, so that
∫
f(x) dx ≈

∑

q

wqf(xq). (9.25)

Simple methods, such as the trapezoidal rule and Simpson’s rule, evaluate

the integral at equally spaced points and can integrate certain polynomials

exactly; in general, k points lead to exact integration of polynomials of degree

k − 1 with appropriate choice of weights.

Gaussian quadrature rules choose not only the weights, but also the evalu-

ation points or abscissæ, and can achieve higher precision with a fixed number
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of points. In particular, Gauss-Hermite quadrature (so called because the

evaluation points are zeroes of the Hermite polynomials) can be used with

integrals of the form
∫
f(x)e−x

2

dx, and works best when f(x) can be well

approximated by a polynomial. The abscissæ and weights for this rule may be

found in Abramowitz and Stegun [2] or may be computed using the function

gauher in Press et al. [73].

In our applications, we need to evaluate integrals of the form
∫
f(z)φ(z) dz,

where φ(·) is the standard normal density. A simple change of variables leads to

the approximation
∑
wqf(zq), where wq is the Gauss-Hermite weight divided

by
√
π and zq is the Gauss-Hermite abscissa times

√
2.

Two-Level Likelihood

Consider a two-level random-intercept model with nj observations in cluster

j. Let δj ∼ N (0, σ2) denote the cluster effect. We assume that given δj the nj
observations are independent and have a distribution in the exponential family

f(yij | δj). We further assume that the conditional mean E (yij | δj) = µij
satisfies a generalized linear model with g(µij) = x′

ijβ+δj . We write δj = σzj ,

so we only need to consider standard normal random effects.

Let Lj(zj) =
∏
i f(yij | zj) denote the conditional likelihood for cluster

j given the random effect. We can evaluate the marginal likelihood for the

cluster using Q-point Gauss-Hermite quadrature as a simple weighted average

Lj =

Q∑

q=1

wqLjq, (9.26)

where we have written Ljq as shorthand for Lj(zq), the likelihood for cluster

j evaluated at the q-th quadrature point.

Two-Level Score

First and second derivatives of the likelihood can also be evaluated as weighted

averages, but we usually work with the log-likelihood instead. Let θ denote

the model parameters, including β and σ (or better still log σ, which avoids

range restrictions and is usually better behaved).

Let uj = ∂ logLj/∂θ denote the score vector for cluster j. Simple calculus

shows that

uj =

Q∑

q=1

w∗
jqujq, (9.27)

where ujq is the score corresponding to the log-likelihood for cluster j evalu-

ated at the q-th quadrature point, and w∗
jq = wqLjq/Lj .



9 Multilevel Generalized Linear Models 353

The new weight w∗
jq has an interesting interpretation. One can view the

approximate likelihood (9.26) as a mixture model where cluster j comes from

one of Q discrete classes with random effects zq and prior probabilities wq.

The new weight w∗
jq is the posterior probability that the cluster came from

class q given the data yj . Thus, the quadrature score is the posterior average

of the scores evaluated at the quadrature points.

Two-Level Hessian

Let Hj = ∂2 logLj/∂θ ∂θ
′ denote the Hessian or matrix of second derivatives

of the log-likelihood for cluster j. It can be shown that this matrix satisfies

Hj =

Q∑

q=1

w∗
jqHjq +

Q∑

q=1

w∗
jq(ujq − uj)(ujq − uj)′, (9.28)

where Hjq is the Hessian for cluster j evaluated at the q-th quadrature point.

Thus, the Hessian is the posterior average of the Hessians evaluated at the

quadrature points plus the variance of the scores evaluated at the quadrature

points.

This equation is formally identical to a well-known result for maximum

likelihood estimation using the EM algorithm, which views the random effects

δj as missing data, and shows that the incomplete data information equals the

expected complete data information minus the variance of the scores, which

represents the missing information; see Louis [57].

Adaptive Quadrature

Liu and Pierce [53] proposed an extension of Gauss-Hermite quadrature where

the variable of integration is transformed so the integrand is sampled in a more

appropriate region. The starting point is the observation that the integrand in

(9.19) is the product of the prior density of the random effect and the density of

the data given the random effect, and is therefore proportional to the posterior

distribution of the random effect. This, in turn, can be approximated using a

Gaussian density. To fix ideas, consider a two-level variance-components model

where the random effect has a N (0, σ2) prior and write the contribution of a

cluster to the likelihood as
∫
f(y | δ)φ(δ; 0, σ2) dδ =

∫ {
f(y | δ)φ(δ; 0, σ2)

φ(δ;µ, γ2)

}
φ(δ;µ, γ2) dδ, (9.29)

where φ(δ;µ, γ2) denotes the normal density with mean µ and variance γ2.

Liu and Pierce [53] choose µ and γ2 to match the mode and the curvature

at the mode of the posterior density. The integral on the right-hand side is
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then evaluated using Gaussian quadrature, following a change of variables

from δ to (δ − µ)/γ. This has the effect of sampling the integrand in a more

relevant range, and improves accuracy as long as the ratio in braces is better

approximated by a low-order polynomial than the likelihood. The method

with a single node is equivalent to the Laplace (or PQL-1) approximation

to the integral, so this approach may be viewed as an extension of Laplace

approximation.

Pinheiro and Bates [70] derived this algorithm, which they termed adaptive

Gaussian quadrature, from an interesting perspective. They viewed Gaussian

quadrature as a deterministic version of Monte Carlo integration and proposed

adaptive quadrature as a deterministic version of importance sampling, which

tends to be much more efficient than simple Monte Carlo integration, using a

Gaussian density with the same mode and curvature as the posterior density

as the importance distribution.

Rabe-Hesketh et al. [74] proposed a slightly different approach that sim-

plifies the calculations required to place the nodes; instead of matching the

mode and curvature, they use the posterior mean and variance of the ran-

dom effects, which are calculated by building on work of Naylor and Smith

[64]. Their approach, embodied in the gllamm command in Stata, was the

first implementation of adaptive quadrature for multilevel models, and has

now replaced Gauss-Hermite quadrature in other Stata procedures, including

the official commands for random effects logit, probit, and Poisson models.

Another implementation of adaptive methods may be found in R’s lme4.

Although adaptive quadrature requires additional computational effort to

place the abscissæ, it usually pays off by requiring many fewer quadrature

points. In our original analysis of Guatemalan data reported in Pebley et al.

[69], we used Gauss-Hermite quadrature with 20 nodes at each level, so each

likelihood evaluation required going over a 400-point grid. Recently, we were

able to replicate the results exactly using gllamm with the default 6 points

per level. The gllamm code is slow because it is interpreted, but speed has

improved as critical parts of the algorithm have been converted to internal

code in Stata. For further details, see Rabe-Hesketh et al. [74].

Extension to More Dimensions

So far we have discussed a two-level model with a single random effect, but the

quadrature approach can be extended to higher-dimensional models. Consider

first a three-level random-intercept model. Because there is only one random

effect at each level, the model can be estimated by recursive application of

the method described so far. Specifically, the likelihood for a level-3 unit is

computed as a weighted sum of level-3 likelihoods evaluated at the quadrature

points. These are products of level-2 likelihoods, each computed using (9.26).
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Consider next a two-level random-slope model where we have two random

coefficients, say αj = α + δ1j and β
j

= β + δ2j . Fitting this model requires

evaluating a bivariate normal integral, but we can always transform to in-

dependence; in the simplest case by using the marginal distribution of δ1j
and the conditional distribution of δ2j | δ1j , which can then be standardized.

Extension to higher-dimensional models follows along similar lines using a

Cholesky decomposition.

Optimization Algorithms

The foregoing results can be used in a Newton-Raphson algorithm for maxi-

mizing the log-likelihood function. Our experience using the built-in function

minimizers in S-Plus and R, as well as code in Press et al. [73], suggests that

the extra expense of computing second derivatives is not always worthwhile.

Instead, we provide first derivatives only, letting the algorithms compute nu-

merical second derivatives, or use variable-metric methods such as DFP or

BFGS that build an approximation to the Hessian in the course of iteration.

However, we do use analytic results to evaluate the Hessian after convergence,

in order to obtain more accurate standard errors.

The first statistical package to incorporate quadrature methods was Egret

[19]. The latest version of Stata can fit two-level random-intercept logit and

probit models using adaptive quadrature, and has a nice provision for checking

the procedure by comparing results with different numbers of points. A more

general implementation of quadrature methods may be found in the package

aML [51], which can handle, at least in principle, several levels and multiple

random effects.

The computational burden of Gauss-Hermite quadrature increases rapidly

with the dimensionality of the problem. For an m-dimensional model using

Q quadrature points for each random effect, each evaluation of the likeli-

hood function is equivalent to Qm evaluations of a GLM likelihood. Using 12

quadrature points, which seems a reasonable standard for general use, one can

easily fit three-level random-intercept models and two-level models with two

random coefficients, say an intercept and a slope, with each likelihood evalu-

ation the equivalent of 144 GLM likelihoods. But using 12-point quadrature

to evaluate the likelihood of a three-level model with two random coefficients

at each level is equivalent to evaluating almost 21,000 GLM likelihoods. Ob-

viously, the technique works best for relatively low-dimensional models.

9.3.4 Bayesian Estimation Using the Gibbs Sampler

Recent advances in Bayesian estimation avoid the need for numerical inte-

gration by taking repeated samples from the posterior distribution of the

parameters of interest. In particular, use of the Gibbs sampler in the context
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of MGLMs was first proposed by Zeger and Karim [95], and has been discussed

in greater detail by Clayton [16]. See also Chapter 2 in this Handbook and

the Browne and Draper [13] evaluation cited earlier.

Gibbs Sampling

To apply this framework, we adopt a Bayesian perspective, treating all pa-

rameters as random variables and assigning prior (or hyperprior) distributions

to the fixed-effect parameters β and to the precisions τ (the reciprocals

of the variances) of the random effects. To obtain Bayesian estimates that

are roughly comparable to maximum likelihood estimates, many analysts

use vague or non-informative priors. Fixed effects are typically assumed to

come from normal distributions with mean zero and very large variances,

and precisions are sampled from diffuse gamma or Pareto distributions, see

Spiegelhalter et al. [86].

A popular method for sampling from the posterior distribution of the

parameters given the data is the Gibbs sampler, a Markov chain Monte Carlo

(MCMC) method that focuses on the so-called full conditional distributions of

each parameter given all others, turning a complex multivariate problem into

a series of simpler univariate ones. This approach has been combined with a

general method for drawing samples from any log-concave distribution, called

adaptive rejection sampling [29]. The combination is available in the software

package BUGS [86]. Convergence diagnostics can be calculated using a set of

R or S-Plus functions, see Best et al. [9].

Results for Simulated Data

We tried the Gibbs sampler on our simulated Guatemalan data. We used

non-informative priors, treating all four fixed-effect parameters as i.i.d. normal

variates with mean 0 and precision 10−6. For the two random-effect parame-

ters representing the precision of the family and community random effects,

we used a Γ (ǫ, ǫ) distribution with ǫ = 0.001, so the mean is 1 and the variance

is 1000. We then ran a naive Gibbs sampler with a burn-in of 200 iterations

followed by a further 1000 iterations. We are very grateful to David Clayton for

sharing with us a set of C functions for MCMC estimation of generalized linear

mixed models and for adapting his driver program to handle our simulated

data. These routines have now been incorporated in the R package GLMMGibbs,

see Myles and Clayton [63].

The results in Table 9.1 are very encouraging, showing practically no bias

in the estimation of the fixed effects, about a 5% bias in the estimation of the

community effect, and an 8% bias for the family effect. We did some further

work exploring the nature of the remaining bias and discovered that we could
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essentially eliminate it by either (1) using informative priors for the precisions

of the random effects, or (2) using a much larger sample size, simulated by

combining our original samples in groups of five. For additional simulation

results, see Browne and Draper [13].

Experience with Real Data

Our experience applying MCMC methods to real data has been somewhat

mixed. In a case study fitting a three-level random-intercept logit model

to data on immunization from Guatemala, we found slow mixing and poor

convergence, particularly for parameters representing the variances of the

random effects. Deciding whether a run is adequate often requires a battery

of diagnostic procedures; we have used tests due to Geweke [28] and Roberts

[78], and have found very useful the gibbsit software of Raftery and Lewis

[75, 76], which provides an estimate of the number of iterations required to

estimate credible limits for each parameter with given probability of attaining

a desired precision.

Fitting a similar model for prenatal care data characterized by heavier

clustering, particularly at the family level, proved substantially more difficult,

with estimates of the efficiency of our chains as low as 1%. Rather than running

much longer chains, we heeded the advice of Gelman and Rubin [27] and ran

multiple chains with different starting values. The S-Plus function itsim was

very useful in checking the output from multiple chains before pooling them to

produce final estimates. In the end, the MCMC approach required extensive

computation and judging convergence proved something of an arcane art form.

For more details, see Rodŕıguez and Goldman [82].

9.3.5 Other Approaches to Estimation

High-Order Laplace

Breslow and Lin [12] proposed a fourth-order Laplace approximation for two-

level models with a single random effect per cluster, and Lin and Breslow [52]

extended the result to multiple independent random effects per cluster. More

recently, Raudenbush et al. [77] further extended this approach to high-order

approximations for multiple dependent random effects. They report that the

method is remarkably accurate and computationally fast, and validate it by

comparison to Gauss-Hermite quadrature with up to 40 points, using real and

simulated data. This promising strategy was first implemented for two-level

models in version 5 of HLM, but has now been extended to three-level models

in version 6.
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Simulated Maximum Likelihood

Monte Carlo integration is not restricted to Bayesian models, but can also

be used for simulating the likelihood; see Lerman and Manski [50] for an

early application. Closely related approaches are the method of simulated

moments (MSM) introduced by McFadden [61], and the method of simu-

lated scores (MSS), see Keane [44]. These methods are often used by applied

economists estimating complex structural models. A useful survey may be

found in Gouriéroux and Monfort [35].

In the context of generalized linear mixed models, McCulloch [60] de-

veloped Monte Carlo variants of the Expectation-Maximization (EM) and

Newton-Raphson algorithms, as well as simulated maximum likelihood (SML).

Booth et al. [10] compare several stochastic alternatives to numerical in-

tegration, including simulated maximum likelihood using importance sam-

pling. These methods are particularly appropriate for high-dimensional models

where quadrature succumbs to the curse of dimensionality.

Recently, Ng et al. [67] evaluated several simulation-based approaches

for maximum likelihood estimation in multilevel models with binary out-

comes, including bias correction using Kuk’s bootstrap (described earlier) and

the Robbins-Monro stochastic approximation method, and estimation using

simulated maximum likelihood (SML). They conclude that SML performs

comparably with the other methods, but has the advantage of yielding vari-

ance estimates—which can be used to construct Wald tests and confidence

regions—as well as the value of the likelihood at the maximum, which is

useful for constructing likelihood ratio tests to compare nested models. They

note that SML requires good starting values, confirming results in [60], but

is otherwise less prone to computational problems than the other algorithms,

and gives results similar to numerical integration.

9.4 Infant and Child Mortality in Kenya

Our illustration of MGLMs uses data from the 1998 Kenya Demographic and

Health Survey (KDHS) to study infant and child mortality.

9.4.1 The Kenya Survey

The 1998 Kenya Demographic and Health Survey (KDHS) is a national survey

conducted by the National Council for Population and Development (NCPD)

in collaboration with the Central Bureau of Statistics (CBS) and Macro Inter-

national, which provided technical assistance. The survey is national in scope

but excluded seven districts accounting for less than 4% of the population.

The sample was selected using a two-stage stratified design and relied on a



9 Multilevel Generalized Linear Models 359

sampling frame maintained by the CBS. Field work was conducted between

February and July 1998, and achieved an overall response rate of 96.8% of

households and 95.7% of women aged 15–49 who were eligible for an individ-

ual interview. The interview included a retrospective maternity history that

collects data on date of birth, survival status, and age at death for all children

each woman has given birth to.

We selected for analysis all births in the 10 years preceding the interview,

but excluded 170 pairs of twins and one set of triplets, which have much

higher mortality risks than singletons. The final sample consists of 10,878

births to 4,939 women who live in 530 communities, defined in terms of the

ultimate area units used in the sample design. One objective of our analysis is

to determine the extent to which infant and child deaths are clustered within

families and within communities.

We must note at the outset a limitation of the data: The community is

defined in terms of the respondent’s residence at the time of the survey, but our

analysis uses retrospective mortality data over a 10-year period. While this is

far from ideal, we claim three extenuating circumstances. First, a large fraction

of respondents have always lived in the place where they were interviewed, and

80.9% of all births in our sample were born while the mother resided in her

current community. Second, migration would tend to attenuate the influence

of the community, so our estimates can be considered lower bounds on the

true effects. Third, as a sensitivity test we repeated our analysis using only

births in the last five years, and discovered that our estimates were remarkably

resilient to the choice of reference period.

9.4.2 A Three-Level Hazard Model

Let λijk(t) denote the risk of dying at age t for the i-th child of the j-th mother

in the k-th community. We assume that the hazard depends on age t, a set of

observed child, family, and community covariates xijk, and unobserved family

and community random effects δjk and δk via a conditional proportional

hazards model:

λijk(t) = λ0(t) exp{x′
ijkβ + δjk + δk}, (9.30)

where λ0(t) is a baseline hazard, β is a vector of fixed parameters representing

the effects of observed covariates, and the unobserved family and community

effects are normally distributed, δjk ∼ N (0, σ2
2) and δk ∼ N (0, σ2

3).

Choice of Duration Categories

We assume that the baseline hazard is constant in intervals defined by cut-

points 0 = τ0 < τ1 < · · · < τD, so that λ0(t) = λ0d if t ∈ [τd−1, τd). The choice
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of cutpoints is dictated by the shape of the hazard and constraints in data

collection.

The KDHS recorded age at death in days, months, or years. Days are

used for neonatal deaths (occurring in the first month of life), months are

used mostly for infant deaths (occurring before age 1), and years are used

predominantly for deaths at ages 2 or higher. We first tabulated events and

exposure by single months up to age 1 and by single years thereafter. In

calculating exposure for deaths at ages 2 and higher, we treated deaths as

occurring at the midpoint of an interval constrained by the reported age at

death in years and the date of interview. No such approximation is required

for deaths at earlier ages or for survivors.

Following some exploratory work, we decided to use separate exposure

categories for the first month of life, and then for ages 1–5, 6–11, 12–23,

and 24–59 completed months, with more detail at ages where the hazard is

changing rapidly. These five categories capture more than 90% of the variation

in the hazard by duration (as measured by the deviance in a marginal Poisson

model), and yield 48,094 pseudo-observations. For some preliminary analyses,

we used only three categories: the first month of life, the rest of the first year,

and older ages, which reduced the number of pseudo-observations to 30,456

and yielded very similar results.

Selection of Explanatory Variables

Our selection of variables has been guided by previous work in the field; see

Mosley and Chen [62] for a conceptual framework. We included only one

community-level variable, type of place of residence, classified as urban or

rural. Residence is coded at the time of the survey, so the same caveat we

discussed for community effects applies here.

Our only family-level variable is mother’s education, which can be coded

in terms of completed years or using dummy variables to mark achievements

such as completing primary or secondary school. Our exploratory analysis

indicated that the most efficient way to capture the educational effect was

to use linear and quadratic terms. We found that mortality increased as one

moved up from no education to complete primary, and decreased only when

one went past secondary education, but this tendency became less noticeable

after controlling for mother’s age, which plays the role of a confounding factor:

The children of very young mothers have higher mortality risks, but young

women also tend to be more educated than older women, a fact that actually

lowers their children’s risk.

All remaining variables are defined at the individual level. Males are known

to have higher mortality than females, so we included a dummy variable for

sex. First- and high-order births are also at increased risk. We considered

using dummy variables for first births and for births of order six and higher,
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but noticed that linear and quadratic terms did a better job of capturing what

appeared to be a gradual increase in risk with birth order.

An important determinant of mortality is length of the preceding birth

interval, which of course is defined only for births of order two or higher.

Children born shortly after a previous birth are known to have much higher

risks, either because of maternal depletion or because they have to compete

with older siblings for scarce resources. To capture this effect, we used a linear

spline defined as 30−i (where i is interval length) for intervals shorter than 30

months and 0 for first births and for longer intervals. The linear spline proved

significantly better than a simple dummy for short intervals.

The final individual variable in our model is age of the mother at the time

of birth of the child, which is known to have a U-shaped relationship with

mortality, with higher hazards for the youngest and oldest mothers. We tried

dummy variables for mothers aged < 20 and 40+ at the time of birth of the

child, but discovered that linear and quadratic terms on age at birth did a

better job.

As part of our exploratory work, we allowed all of these variables to interact

with child’s age. We found no evidence of non-proportional effects except

possibly for mother’s education, which appeared to have a larger effect beyond

the first month of life. However, the reduction in deviance did not justify the

additional number of parameters required, as judged by Akaike’s information

criterion, so we retained the simpler proportional hazards model.

Estimation Results

Table 9.2 shows the results of fitting our final model by first-order MQL, first-

order PQL, and maximum likelihood via 12-point Gauss-Hermite quadrature

(ML). We also include for comparison results from a marginal Poisson model

that ignores clustering at the family and community levels. Unlike some of the

results we have obtained for heavily clustered binary data, in this application

all three methods yield similar estimates of the fixed effects. In fact, the results

are very similar to the marginal model as well, except possibly for cohort and

birth order. However, the marginal model underestimates standard errors by

an average of 8%, and does a poor job estimating the precision of the urban

effect. The estimates of the random parameters, reported here in terms of the

standard deviation of the family and community effects, are unusual in that

MQL and PQL lead to slightly larger values than Gauss-Hermite quadrature.

First-order MQL converged quickly and uneventfully. First-order PQL

alternated between two sets of estimates of the random parameters, one of

which had the family variance component set to zero. The other, reported in

Table 9.2, yielded results similar to MQL. We tried second-order MQL and

PQL, but both failed repeatedly from a variety of starting points. We also

tried these procedures with the smaller sample of 30,456 pseudo-observations
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Table 9.2 Parameter estimates for the multilevel model of infant and child survival

in Kenya.

Variable Term GLM MQL-1 PQL-1 ML

Fixed Effects

Constant 1 −4.189 −4.163 −4.164 −4.588

(0.095) (0.105) (0.106) (0.118)

Age 1–5 −1.669 −1.646 −1.647 −1.642

(months) (0.089) (0.090) (0.090) (0.089)

6–11 −2.062 −2.005 −2.007 −1.998

(0.096) (0.097) (0.097) (0.097)

12–23 −2.912 −2.830 −2.834 −2.822

(0.105) (0.104) (0.105) (0.106)

24–59 −3.748 −3.641 −3.646 −3.632

(0.108) (0.106) (0.108) (0.109)

Sex male 0.080 0.087 0.087 0.087

(0.065) (0.067) (0.067) (0.068)

Cohort 1993+ 0.195 0.173 0.173 0.173

(0.066) (0.068) (0.069) (0.069)

Mother’s a− 25 −0.060 −0.048 −0.048 −0.047

Age (0.010) (0.011) (0.011) (0.011)

(a− 25)2 0.003 0.003 0.003 0.003

(0.001) (0.001) (0.001) (0.001)

Birth o− 3 0.079 0.046 0.047 0.043

Order (0.035) (0.038) (0.038) (0.039)

(o− 3)2 0.005 0.004 0.004 0.004

(0.004) (0.005) (0.005) (0.005)

Birth (30 − i)+ 0.039 0.036 0.036 0.036

Interval (0.006) (0.006) (0.006) (0.006)

Mother’s e− 7 −0.074 −0.066 −0.066 −0.068

Education (0.014) (0.015) (0.015) (0.015)

(e− 7)2 −0.008 −0.007 −0.007 −0.007

(0.002) (0.003) (0.003) (0.003)

Residence urban 0.022 −0.001 0.001 0.040

(0.102) (0.144) (0.144) (0.142)

Random Effects

Family σ2 – 0.732 0.696 0.613

log σ2 – −0.312 −0.363 −0.489

– (0.102) (0.096) (0.140)

Community σ3 – 0.747 0.745 0.680

log σ3 – −0.291 −0.294 −0.386

– (0.068) (0.058) (0.081)

Log-likelihood −5688.86 – – −5602.12

Standard errors shown in parentheses.
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using only three duration categories and obtained similar results. We believe

that further exploration of the properties of MQL and PQL for Poisson data

with moderate and large amounts of clustering would be useful. The ML

estimates converged quickly. We verified our calculations for two-level models

that included only the family or community effect by running Stata’s xtpois

procedure, which uses adaptive Gaussian quadrature for normal random ef-

fects, obtaining practically identical results.

Testing Random Parameters

A final technical point before we turn to the interpretation of the results

concerns testing for family and community effects. In Table 9.2, we report

standard errors for log σ rather than σ because normal approximations tend

to work better in the unconstrained scale. One must be careful not to divide

the estimate by its standard error, as this would test the hypothesisH0 : σ = 1

rather than H0 : σ = 0. Instead, we build 95% confidence intervals in the log

scale and exponentiate to obtain intervals for σ. In our example, the confidence

intervals are (0.467, 0.807) for the family and (0.580, 0.797) for the community

σ, indicating large effects. Note that by construction these intervals cannot

include zero, so they should not be used as formal tests.

Likelihood ratio tests are preferable, but are not without difficulties. Be-

cause the null hypothesis H0 : σ = 0 is on the boundary of the parameter

space, the likelihood ratio test does not have the usual large sample chi-

squared distribution with degrees of freedom equal to the number of parame-

ters set to zero, see Self and Liang [85] and Stram and Lee [88]. These authors

suggest treating the test for H0 : σ2 = σ3 = 0 as a 50-50 mixture of χ2
1 and

χ2
2 rather than the nominal χ2

2. Similarly, a test of H0 : σ2 = 0 or H0 : σ3 = 0

would be treated as an equal mixture of zero and a χ2
1. Pinheiro and Bates [71]

simulate likelihood ratio statistics in the context of linear mixed models and

note that these adjustments are not always successful. A simpler approach

is to use the nominal degrees of freedom, understanding that the test would

then be conservative. In our application, twice the difference in log-likelihoods

between the marginal and conditional models is 173.5, and the effect is highly

significant no matter how we treat the test criterion.

9.4.3 Fixed Effects Estimates

The first thing to note in Table 9.2 is the remarkable decline in risk with age.

Exponentiating the coefficients for durations 1–5 and 12–23 we see that by

ages one to five completed months, the risk is 81% lower—and by age one

completed year, it is 95% lower—than in the first month of life. Males in this

sample have a 9% higher risk than females with the same characteristics, but

this difference is not significant.
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Children born in the period since January 1993, however, have 19% higher

risk at any given age than children born in 1992 or earlier. We examined

this result closely for possible artifacts, including sensitivity to the choice of

duration categories, and found it to be robust. We also looked at survival to

age 1 using logit models to compare births in the periods 1–4 and 5–9 years

before the survey, with similar results. It seems clear that infant and child

mortality increased in Kenya in the late 1990s, an unfortunate development

that is probably related to the AIDS pandemic.

Mother’s age at the time of birth of the child has a significant effect on

survival. The left panel in Fig. 9.1 shows the expected U-shaped relationship.

The risk reaches its minimum around age 32, at which point a 10-year dif-

ference in either direction increases the risk by as much as 40%, everything

else being equal. Birth order, on the other hand, has no significant effect on

survival, with sample estimates suggesting, if anything, a linear increase in

risk with parity. The excess risk often observed for first-order births appears

to have been captured by mother’s age.

Short birth intervals have a strong negative effect on infant and child sur-

vival, as expected. The hazard increases 4% for each month that the interval

falls short of 30, the arbitrary cutoff point in our linear spline. This translates

into a 24% excess risk for children born two years after a sibling, compared

to children born after an interval of two and a half years.

Mother’s education, which ranges from 0 to 19 years with quartiles at 4,

7, and 8, has a large effect on infant and child mortality. The right panel in

Fig. 9.1 shows the overall relationship: We see little if any effect of just a

few years of primary education, but a large (and increasing) effect after that.

Around the median, each year of education is associated with a 7% decline in

risk.
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Fig. 9.1 The effects of mother’s age and education on the log relative risk.



9 Multilevel Generalized Linear Models 365

Finally, we find no significant effect of residence on child survival. Inter-

estingly, urban residents in our sample have a 4% higher risk than their rural

counterparts. We speculate that the erosion of the traditional differential that

favors urban residence may be associated with higher prevalence of AIDS in

the cities.

9.4.4 The Random Parameters

The most remarkable feature of our results concerns the large amount of

clustering observed at both the family and community levels. In an analysis of

family effects on infant and child mortality in Guatemala, Guo and Rodŕıguez

[37] find much smaller family effects, and note that their results are in line

with previous work in the area; see also Sastry [83].

Consider first the family random effect, which is estimated to have a

standard deviation of 0.61. Because this effect is in the scale of the linear

predictor, it can be interpreted exactly the same way as a fixed coefficient

pertaining to an observed covariate. In particular, the children of a mother

who is one standard deviation above the mean in a latent distribution of

family frailty have 85% higher risk than the children of an average mother.

In contrast, the children of a mother who is one standard deviation below the

mean enjoy 45% lower risk than the children of the average mother. In both

cases, the comparison is with children with identical observed characteristics

who live in the same community.

The community random effect is, surprisingly, even larger, with a standard

deviation of 0.68. Children who live in a community whose frailty is one

standard deviation above the mean have almost double the risk—while those

who live in communities one standard deviation below the mean have about

half the risk—compared to children with the same observed characteristics

who live in an average community. From a public health point of view, it

would be interesting to identify communities with large estimated random

effects, in search for an explanation of these findings.

One way to put these results in perspective is to look at the effect of

observed characteristics other than age of the child. We computed the observed

log relative risk, defined as the linear predictor omitting the constant, the

dummy variables representing duration, and both random effects. The way

we coded our covariates, this risk is zero for a third child, female, born before

1993, born at least two and a half years after the second birth, whose mother

was 25 at the time of birth, had completed seven years of education, and lived

in a rural area. For a similar male born after 1993 in a city, the log relative

risk is 0.30. In our sample, log relative risks range from −2.04 to 2.16; selected

percentiles are shown in Table 9.3.

Exponentiating these numbers, we find that children in the third quartile

of relative risk have 61% higher risk than those in the first quartile. In contrast,
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Table 9.3 Selected percentiles of log relative risk.

P 1 5 10 25 50 75 90 95 99

lrr −0.78 −0.30 −0.13 0.15 0.38 0.63 0.87 1.02 1.31

the inter-quartile ranges in unobserved family and community characteristics

translate into 2.3-fold and 2.5-fold increases in risk, respectively. Similarly, the

range from the first to the 99th percentile in observed risk factors translates

into an 8-fold increase in risk, whereas the equivalent ranges in the normal

distributions representing family and community effects translate into 17-fold

and 24-fold increases in risk, respectively. By this account, substantial relative

risks associated with family and community frailty remain unobserved.

9.4.5 Survival Probabilities

We now translate our results into conditional and marginal probabilities of

surviving to (or dying by) selected ages. This calculation can be done for

selected values of the covariates, and helps present the results of hazard models

in a less technical language.

Table 9.4 shows the conditional probabilities of infant and child death

for our reference category and for children at the first and third quartile

of observed risk factors and unobserved family and community effects. The

underlying survival probabilities are all estimated as

S(t | xijk, δjk, δk) = exp{−Λ0(t) exp{x′
ijkβ̂ + δjk + δk}}, (9.31)

with the log relative risk x′
ijkβ̂ set to the observed quartiles 0.15 and 0.63,

and the unobserved frailties set to the normal quartiles ±0.67σ̂2 and ±0.67σ̂3.

Table 9.4 Estimated infant and child mortality at first and third quartiles of

observed and unobserved risk.

Risk Factor Mortality

Observed Family Community Infant Child

Q1 Q1 Q1 0.014 0.022

Q3 0.034 0.053

Q3 Q1 0.031 0.049

Q3 0.075 0.118

Q3 Q1 Q1 0.022 0.035

Q3 0.054 0.085

Q3 Q1 0.049 0.078

Q3 0.119 0.183

Baseline 0.028 0.044



9 Multilevel Generalized Linear Models 367

0.0 0.5 1.0 1.5 2.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

log relative risk

In
fa

n
t 
a
n
d
 c

h
ild

 m
o
rt

a
lit

y

Infant

Child

0 5 10 15

0
.0

0
0
.0

2
0
.0

4
0
.0

6

mother's education

In
fa

n
t 
a
n
d
 c

h
ild

 m
o
rt

a
lit

y

Infant

Child

Fig. 9.2 Marginal probabilities of infant and child death by log relative risk and by

mother’s education.

As we move up the quartiles of observed and unobserved risk factors, the

probability of an infant death increases from 14 to 119 per thousand, and the

probability of a child death increases from 22 to 183 per thousand.

Figure 9.2 shows the marginal probabilities of infant and child death as

a function of the log relative risk that combines all observed predictors (left

panel), and as a function of mother’s education with all other variables set to

their reference values (right panel). The corresponding survival probabilities

are estimated by evaluating the double integral

S(t | xijk) =

∫ ∫
S(t | xijk, δjk, δk) dδjk dδk (9.32)

using 12-point Gauss-Hermite quadrature with conditional probabilities esti-

mated using (9.31).

The marginal probability of infant death varies from 6 to 258 per thousand

as a function of observed risk factors. The equivalent range for mortality up

to age five is 9 to 359 per thousand. The effect of mother’s education is

fairly substantial. The probability that a child in our reference category will

die before age one ranges from 47 per thousand if the mother has only a few

years of education to 25 per thousand for high school graduates (and even less

for the few women with higher education), after averaging over unobserved

family and community attributes. Similarly, the probability of dying before

age five declines from 75 to 39 per thousand, on average, as mother’s education

increases through upper primary and high school.
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9.4.6 Intraclass Correlations

The variance parameters in random intercept models are closely related to

measures of intraclass correlation. In a two-level linear model, the Pearson cor-

relation between any two observations in the same cluster is ρ = σ2
2/(σ

2
2 +σ2

1).

In a two-level logit model, the correlation is usually calculated by reference

to the latent variable formulation of the model, setting σ2
1 = π2/3, the vari-

ance of the underlying standard logistic error, see Chapter 6. Rodŕıguez and

Elo [80] show that the correlation of observed or manifest binary outcomes

in two-level models can be quite different, and provide a Stata command

xtrho that can be used to compute marginal and joint probabilities, and

hence measures of correlation such as Person’s r or Yule’s Q, by numerical

integration. Their ideas are easily extended to three-level survival, as shown

below.

In the context of survival models, Oakes [68] has shown that the variance

in a two-level model where frailty has a gamma distribution is closely related

to Kendall’s τ , a coefficient of ordinal association. No similar results have

been obtained in general, but having fitted a multilevel survival model we can

estimate any measure of association as a function of the estimated joint and

marginal distributions. Because we followed children up to age 5 only, we are

not in a position to estimate the correlation of lifetimes, but we can estimate

correlation in survival up to ages one and five.

We calculate three marginal probabilities that are useful in constructing

measures of intraclass correlation. First, we need the probability that a child

with covariates x will live to age t, which is given by (9.32). Second, we

need the probability that two children of the same mother both survive to

age t. Because the survival experiences of these two children are independent

given the family and community random effects, we can calculate the bivariate

survival probability as

S2(t, t | xijk,xi′jk)

=

∫ ∫
S(t | xijk, δjk, δk)S(t | xi′jk, δjk, δk) dδjk dδk, (9.33)

where the double integral is evaluated by Gauss-Hermite quadrature. We

usually set xijk = xi′jk, although only variables at levels 2 and 3 would need

to be the same. Third, we need the probability that two children of different

mothers who live in the same community will both survive to age t. Given the

community random effect δk the survival experiences of these two children are

independent, and the probability of surviving to age t can be calculated for

each one by integrating out the corresponding family effect. The probability

in question is then
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S3(t, t | xijk,xi′j′k) =

∫ (∫
S(t | xijk, δjk, δk) dδjk

×
∫
S(t | xi′j′k, δj′k, δk) dδj′k

)
dδk, (9.34)

and can also be evaluated by Gauss-Hermite quadrature. We usually set xijk =

xi′j′k, although only variables at level 3 need be the same.

With these three probabilities in hand, we can now calculate any measure

of correlation for binary outcomes. For example, the Pearson correlation be-

tween the indicators of survival to age t for two children of the same mother

with observed covariates x is given by

ρ2(t,x) =
S2(t, t | x,x)− S(t | x)2

S(t | x)[1− S(t | x)]
, (9.35)

where S2(t, t | x,x) is the joint survival probability from (9.33) and S(t | x)

is the marginal probability from (9.32). A similar expression applies to the

correlation for children of different mothers living in the same community, but

using (9.34) for the joint probability. These measures of intraclass correlation

are a function of the marginal and joint probabilities of survival to age one or

five, which in turn depend on the linear predictor as well as the variances of

the random effects.

Figure 9.3 shows these correlations calculated over the entire range of

observed relative risks in Kenya using the estimated values of σ2 and σ3 in
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Fig. 9.3 Intra-family and intra-community correlations in infant and child mortality,

by log relative risk.
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Table 9.2. The intra-family correlations, which result from children sharing

unobserved family and community characteristics, are always higher than

the intra-community correlations, which result from sharing unobserved com-

munity characteristics only. The correlations are also higher for child than

for infant mortality (or their complements, survival to ages five and one,

respectively), and increase with the relative risk as measured from observed

covariates. For our reference cell, the intra-family correlation is 0.05 for infant

and 0.07 for child deaths, but these numbers increase to 0.18 and 0.21 at the

highest levels of risk. The fact that the correlation between observed outcomes

in the same family or community increases with the level of risk parallels the

results obtained for two-level logit models in [80].

9.5 Summary and Conclusions

In this chapter we described generalizations of the multilevel model that go

beyond normally distributed outcomes to cover a wide range of continuous

and discrete responses, including binary, count, and survival data. The distin-

guishing feature of the generalization is the assumption that conditional on

a set of random effects, the outcomes are independent and follow a standard

generalized linear model. In this extension, a transformation of the conditional

mean given a set of observed covariates and unobserved random effects follows

a linear model. In a survival context, the conditional hazard has a similar

structure. We contrasted this approach with models that focus on the marginal

distribution of the outcomes, and with models that assume Gaussian outcomes

but a non-linear structure of effects.

We reviewed the three main approaches to estimation, including marginal

and penalized quasi-likelihood, maximum likelihood using Gauss-Hermite

quadrature, and Bayesian estimation using the Gibbs sampler. We reported re-

sults of a simulation study showing that for heavily clustered binary responses

quasi-likelihood estimates can be severely biased, while maximum likelihood

estimates are approximately unbiased. Bayesian estimates showed a small bias

that could be eliminated by using informative priors or larger samples. We

also commented on a case study using binary data from Guatemala that leads

to similar conclusions, but reveals some of the convergence problems that

arise with bootstrapping and Bayesian estimates. Finally, we presented an

application to survival data from Kenya where the approximate procedures

fared better. On balance, there is a clear need for fast and accurate estimation

procedures that can be applied to a wide variety of models and datasets.

Our analysis of infant and child mortality in Kenya illustrates the close

connection between piece-wise exponential survival models and generalized

linear models with Poisson errors and log link. We showed how the risk of

death varies between birth and age five as a function of observed character-
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istics of the child, mother, and community, as well as unobserved random

effects representing heterogeneity of frailty across families and communities.

We found large effects on the hazard, and translated these into marginal and

conditional probabilities of dying by age one and by age five. Finally, we

developed measures of intra-family and intra-community correlation in infant

and child deaths. The study illustrates how much more can be learned from

a dataset by taking into account the group structure in the framework of

multilevel generalized linear models.
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Missing Data
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10.1 Background and Generalities

Nonresponse is a ubiquitous feature of large-scale studies that collect informa-

tion from human subjects or their organizations, such as schools, households

or businesses. The contacted sources of data (subjects, their parents, repre-

sentatives of schools, and the like) may refuse to respond to some or all of the

questionnaire items, may not have ready access to the requested information,

and the record of the responses may be corrupted or lost altogether during

its transfer and conversion to electronic format.

Concerns about missing values, and solutions commensurate with the com-

puting facilities available at the time, can be traced back to Yates [30] and

Healy and Westmacott [9]. These methods can be motivated as estimation of

the missing values followed by an adjustment of the degrees of freedom due to

the lost items of data. The main impetus for the modern approaches, based

on computationally intensive methods, can be identified with Orchard and

Woodbury [22], Rubin [23, 24] and Dempster et al. [4], and their application

in a wide range of areas has been greatly promoted by Little and Rubin [11]

and Rubin [25]. For a comprehensive review and discussion, see Rubin [26].

The early methodological developments were restricted to specific methods

of analysis applied to data from small-scale experiments, such as the analysis

of variance (ANOVA) of field experiments, and saw virtue in computational

simplicity. In contrast, modern approaches pursue flexibility and versatility,

aiming to deal with missing information by a module attached to the pro-

cedure that would have been employed had the data been complete. Indeed,

this complete-data analysis is a key concept in these approaches.

As a consequence of missing values, less information is collected than was

planned. At the same time, the representativeness of the units for which the
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values of a variable have been recorded (the responding units) is questionable.

Methods for addressing nonresponse can be divided into two categories: those

that reduce the dataset (by deleting the records of some units) and those that

make up the data so as to generate, structurally, a look-alike of the complete

dataset. The latter are referred to as imputation methods. The aim of all of

these methods is to adapt the complete-data analysis so that it would yield

an estimator with good resampling properties.

In this chapter, we adopt the frequentist perspective, and so by “good

properties” (efficiency) we understand small mean squared error (MSE) in

repeated applications of the estimator on the datasets generated by hypo-

thetical replications of the process that yielded the original (realized) dataset.

This process is a superposition of sampling of the units (generation of the

complete data) and nonresponse (deletion of a part of the data). An impor-

tant prerequisite is that the complete-data analysis is efficient. That is, the

quantities (parameters) of interest would be estimated efficiently had the data

been complete.

10.1.1 Example

An example with computer generated data is summarized in Fig. 10.1. The

complete data are pairs (xi , yi), i = 1, . . . , n = 20, a random sample from a

bivariate normal distribution. This dataset, a 20× 2 array, is denoted by A.

The value of x1 is not available to the analyst; the horizontal line drawn at

y1 indicates the uncertainty about x1 , although the value of x1 is available to

us, marked by a circle ,.

Suppose we wish to estimate the regression slope β = Cov(x, y)/Var(x).

The corresponding complete-data analysis is β̂ = Sxy/Sxx , where Sxx =∑
i(xi − x̄)2 and Sxy =

∑
i(xi − x̄)(yi − ȳ) are the corrected totals of squares

x2 and cross products xy, respectively (z̄ is the sample mean of z; z is either

x or y). These two totals cannot be evaluated because the contribution of unit

1 to them is not available.

The obvious deletion method reduces the sample to the units i = 2, . . . n

that have complete records. At this point we have to distinguish between the

missing values in the realized dataset (one value of x missing), and missing

values in hypothetical replications of the sampling and nonresponse processes.

After all, these processes may yield a dataset with no missing values, or with

more than just one missing value.

Denote the units with incomplete records by M , and the realized dataset

by A−M . For A−M , the estimator β̂ is well defined. We distinguish between

the two estimators, β̂(A) and β̂(A−M ), by indicating the dataset used as

the argument of β̂; β̂(A) is efficient because the units i = 1, . . . , 20 were

obtained as a random sample (from a well-defined population). Without the
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Fig. 10.1 A computer generated dataset with one missing value of x (in circle). The

lines drawn are the “true” regression (solid), the complete-data regression (dots),

and the regression based on the complete records (dashes).

missing unit(s), the resulting subsample may no longer be a random sample

and β̂(A−M ) no longer efficient.

However, this should not stop us in our tracks. It can reasonably be argued

that a few missing values are unlikely to alter the results radically. This we

can check by deleting at random, or by a deliberate choice, another value of

y, obtaining the dataset A−(M,k) and comparing β̂(A−M ) with β̂(A−(M,k)).

Also, the normality of x provides some protection from extreme values of x.

The value of x1 can be further narrowed down by realizing that y1−βx1 is also

“constrained” by normality. On the other hand, the mechanism of missingness

may target units with extreme residuals. Indeed, in Fig. 10.1 the complete-

and incomplete-data analyses yield rather similar regressions. But recall, that

our focus is on properties of estimators (random variables), not the values of

their realizations, and so the proximity of the values of β̂(A) and β̂(A−M )

does not justify a dismissal of the issue.

10.1.2 Imputation Methods

Imputation methods generate a value for each missing item (in Section 10.1.1

for x1), thus completing the dataset. Then the complete-data analysis can

proceed, oblivious to the fact that the value of x1 has been “manufactured”
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by the analyst. Since in this way we pretend to have more information than

was recorded, we can expect the inferences to indicate higher precision than is

warranted. The extent of this problem depends on how we impute for missing

values, and how we exploit the information about the causes that give rise to

the missing values.

Imputing for x1 the sample mean x̂1 = x̄ or the back-calculated value

of x1 , ˆ̂x1 = {y1 − ȳ(A−M )} /β̂(A−M ), are simple examples of imputation

methods. Each of these imputed values is associated with a model for the

mechanism of missingness. For x̂1 , it is

x1 = µx + η1 (10.1)

(µx is the population mean of x), and so we estimate x1 by the fit of this

model. For ˆ̂x1 , the model is

y1 = α+ βx1 + η1 , (10.2)

where η1 is a random draw from a centered normal distribution. Neither of

these models is necessarily correct; the process of missingness may prefer to

select extreme values of x, or extreme values of the deviation η. However, in

some vague sense, the model in (10.2) is better informed because it makes use

of the realized value of y1 .

The complete-data analysis can be straightforwardly applied to the com-

pleted dataset Â = {(x̂1 , y1), (x2 , y2), . . . , (xn , yn)}, but the estimator β̂(Â)

will not have the desired property of efficiency, and its sampling variance will

not be estimated with honesty (without bias). Not only have we “invented”

one value (in general, several values) for the missing data, our invention (x̂1 or
ˆ̂x1) looks too good. We have substituted η1 = 0, that is, no deviation from the

fit, and that could hardly be expected. This could be remedied by drawing

a value of η1 at random from the distribution fitted for η. In this way, we

will not recover the value of x1 with precision, but will mimic the assumed

mechanism of missingness more closely.

The following example illustrates why estimating each missing value with-

out bias is sometimes not very useful. Suppose the value of x is missing but

we know that it is equal to −1, 0, or +1. Further, ±1 are equally likely, but

x = 0 is most likely, say, with probability 0.7. Imputing x̂ = 0 would seem to

be reasonable. However, if the quantity of interest is x2 and we would estimate

it by (x̂)2 = 0, with MSE equal to 0.3, we would fail to protect our inferences

against the possibility that x2 = 1. A better choice for x2 is its expected value,

x̂2 = 0.3, because, assuming that the conditional distribution of x is correct,

we would estimate x2 with smaller MSE, equal to 0.21. Note that in this way

we break some rules of arithmetic; (x̂)2 6= x̂2. In fact, if x̂ and V̂ar(x̂) are

unbiased for x and Var(x̂), respectively, then (x̂)2− V̂ar(x̂) is unbiased for x2.
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10.2 Models for Missing Values

Having highlighted the importance of the mechanism of missingness, we now

introduce a notation and associated terminology. To align it with the conven-

tions in the literature [e.g., 11], we define the complete data as (X,Y ) where

X are the values of the variables which are never missing (such as variables set

by design, or available prior to data collection), and some values of Y may be

missing. The indicator of missingness is the array R of the same dimensions

as Y , defined as follows: the element of R for unit i and variable k is Rik = 1

if Yik is recorded, and Rik = 0 otherwise. The rows of R are denoted by ri
and columns by Rk , and the analogous notation is used for X and Y . For

instance, the record of a subject on four variables may be yi = (1, ?, ?, 5.37);

‘?’ indicates a missing value. The corresponding vector r is ri = (1, 0, 0, 1).

We call r the pattern of missingness. A practical way of summarizing the

extent of missing values is by tabulating r. An example is given in Table 10.1

(the commas separating the elements of r are omitted to save space). A less

complete summary enumerates only the number of missing values for each

variable; this can be expressed as n−∑i ri , where n is the sample size. For

Table 10.1, this summary is (117, 97, 174, 115).

Thus the sampling and missingness (nonresponse) processes are described

by the random array (R,Y ;X), or its joint distribution. By Y r we denote the

recorded part of Y , that is, all yik for which rik = 1. By Y m we denote the

missing part of Y . Note that Y r and Y m may be “ragged” arrays, with gaps.

When the missingness process is simple random sampling we say that data

are missing completely at random (MCAR); in this case, R depends neither

on X nor on Y :

(R) ∼ (R | Y ;X) ,

where ∼ stands for “has the same distribution as”. Simple random sampling is

a very special process, unlikely to arise without either being promoted in some

way or the cause of missingness being unrelated to the processes involved in

generating the complete data.

A much more general mechanism of missingness arises by stratified random

sampling. With it, MCAR applies within each subpopulation (stratum) de-

fined by the categories of one or several completely recorded discrete variables.

We can extend this definition to continuous variables by a limiting argument

Table 10.1 Tabulation of the pattern of missingness. An example.

Pattern r

(1111) (1110) (1101) (1100) (0011) (0110) (0100) (0000)

Count 1233 17 87 24 43 11 9 54
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(using finer and finer discretization). This mechanism of missingness is re-

ferred to as missing at random (MAR); R depends on the complete data only

through the recorded data:

(R | Y ;X) ∼ (R | Yr ;X) .

Finally, mechanisms of missingness in which dependence on the missing values

is essential (is present even after conditioning on all the recorded data) are

called missing not at random (MNAR). Note that MAR and MNAR are

qualified by the variables in X and Y .

The following is an example of MNAR. A survey of alcohol consumption

among the students of a college is to be conducted by telephone interviewing.

Since students attend lectures on weekdays, they will be contacted in their

homes on a Saturday morning and asked to recall their consumption the

previous day. It is reasonable to anticipate that some of the students who

have consumed alcohol in excess the night before will not be well disposed to

respond. This is likely to be the case not only among students in general (so

that this is not MCAR), but even within any conceivable category of students

defined at the outset of the study. So this process of nonresponse is not a

MAR either.

The central role of the MAR mechanism stems from the following charac-

terization. When MAR applies, the missing part of a record, Y m , is associated

with the recorded part Yr in the same way as the corresponding components

in complete records. This enables us to establish, in principle, the marginal

distribution of the missing part of a record. In practice, this marginal distribu-

tion is estimated, and estimation can be improved by using the records which

are not complete but their recorded parts overlap with the missing part Y m .

The joint distribution (R,Y ;X) can be expressed in terms of the condi-

tional distributions (R | Y ;X) and (Y | R ;X) as

(R,Y ;X) ∼ (R | Y ;X)× (Y ;X) (10.3)

and

(R,Y ;X) ∼ (Y | R ;X)× (R ;X) , (10.4)

respectively. The decomposition in (10.3) comprises the complete-data dis-

tribution (Y ;X) and the distribution of the deletion (selection) process

(R | Y ;X); it is referred to as the selection model. Its obvious appeal is

in the correspondence with our description of the sampling and missingness

processes. The decomposition in (10.4) corresponds to separate models for

each pattern of missingness. It is referred to as the pattern-mixture model.

Since a dataset may contain many patterns of missingness (up to 2K for K

variables), it may not be practical to associate each pattern r with a separate
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set of parameters describing the conditional distribution (Y | r). Also, no

assumptions about the missing values could be supported empirically from

the subset of data with the given pattern r. For instance, the conditional

distribution (Y | r = (1, 1, 0, 0); X) cannot inform us about the third and

fourth components of Y without using the data on units with the other pat-

terns. So, the use of pattern-mixture models is somewhat more complicated,

but their flexibility can be used with advantage. In general, pattern-mixture

and selection models yield different distributions for the missing values when

particular assumptions (distributions and parameters) are specified for their

components. The two kinds of models can be combined. For instance, instead

of conditioning on each pattern separately, models can be formulated for sets

of patterns, and (some of) these models may be selection models. All these

models are informed by the associations among the (pairs of) variables, and

so the units with complete records, r = (1, . . . , 1), play a central role.

10.3 EM Algorithm and Multiple Imputation

We have so far considered a complete-data analysis β̂ as an estimator β̂(A)

that would be obtained had the complete data A been available. Deletion

methods apply β̂ to a reduced dataset A− which contains no missing values;

imputation methods define values for the missing items, thus creating a com-

pleted dataset A+, and evaluate β̂(A+). These estimators are deficient even

when β̂(A) is efficient and the deletion is “minimal” or the imputation “in-

telligent” (unbiased). When the dataset has few missing values, this problem

can be dealt with by a caveat in the discussion of the analysis. When there

are numerous missing values, their impact is no longer innocuous.

EM algorithm and multiple imputation are two general approaches to

estimation with incomplete data. These approaches seek to adjust (efficient)

complete-data estimators in such a way that the resulting (incomplete-data)

estimator would also be efficient, with reference to replications of the sampling

and missingness processes. In the EM algorithm, the computational proce-

dure for the complete-data estimator is adjusted; with multiple imputation,

additional “data” is generated to complete the observed dataset, but the

complete-data estimator is applied without any alterations.

10.3.1 EM Algorithm

Let the complete-data likelihood for a parameter vector θ be L(θ;Y ,X). The

likelihood for the observed data is
∫
L(θ;Yr ,Ym ;X) p(R | Yr ;X) dF (Ym ;X) , (10.5)



384 N. T. Longford

where p is the conditional probability of the pattern of missing data, and F

is the distribution function of the missing data. This integral is in general

difficult to evaluate or maximize. The EM algorithm avoids its direct maxi-

mization. EM is an iterative procedure, with iterations comprising two steps,

E (estimation) and M (maximization). In the E-step, the expectation of the

complete-data log-likelihood L is evaluated at the current estimate θ̂. The

expectation is taken over the conditional distribution of Y m given Yr and

X. The M-step maximizes this expected log-likelihood, and the value of θ at

which the maximum is attained is adopted as the updated value of θ̂. The

iterations of EM are then repeated until the updating changes the value of θ̂

only slightly.

A substantial simplification in (10.5) takes place when the mechanism of

missingness can be eliminated from the likelihood. This happens when the

sets of parameters characterizing the sampling and missingness processes are

disjoint and functionally unrelated (separated) and MAR applies. When these

two conditions hold the mechanism of missingness is said to be ignorable.

Separation is usually satisfied, but MAR is the key assumption that makes

the estimation task manageable. Under ignorable missingness

L(θ;Yr ,X) =

∫
L(θ;Yr ,Ym ;X) dF (Ym ;X) ,

and so the conditional expectations in the E-step are much simpler.

The log-likelihood can often be expressed as a linear function of a small

number of statistics (called sufficient statistics). In such a setting, the E-step

estimates the contribution of the missing values to these statistics, and in the

M-step the estimates of these statistics are used in place of their (unknown)

complete-data values. The EM algorithm requires a value of θ̂ for the first

iteration. This has to be obtained separately, although this estimator need

not have good properties; the estimator based on the complete records is

usually satisfactory. Often the first few iterations of the EM algorithm move

θ̂ most of the way toward the maximum likelihood estimate, but then many

further iterations are required to get very close to the solution.

For a proof of convergence of the EM algorithm and the associated regu-

larity conditions, see Dempster et al. [4]. Convergence properties of the EM

algorithm are derived by Wu [29]. The EM algorithm is particularly appeal-

ing when the M-step evaluates a simple estimator, because this evaluation

will be conducted many times. The general idea of the EM algorithm has

been extended in several directions. They include dealing with more complex

problems, widening the scope of the EM algorithm, and acceleration of its

convergence. See Statistica Sinica [6] for several innovations and Meng and

van Dyk [21] for a review.

The estimated Hessian obtained from the last M-step estimates the com-

plete-data Hessian which is related to the complete-data information. Its
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inverse estimates Var
{
θ̂(A)

}
; it underestimates Var

{
θ̂(A−M )

}
. The differ-

ence Var
{
θ̂(A−M )

}
− Var

{
θ̂(A)

}
is the inflation of variance due to missing

data. Louis [17], Meilijson [18] and Meng and Rubin [19] describe approaches

to estimating the incomplete-data sampling variance (matrix) from the EM

algorithm. These methods are not applicable or suitable in all settings. For

example, there may be no shortlist of sufficient statistics. The second-order

partial derivatives of the log-likelihood can always be approximated numeri-

cally by finite differences of the values of the log-likelihood, and these values

can be approximated by simulations. This is a fall-back option when no com-

putationally less demanding approach is suitable.

For univariate θ, the fraction of the information that is missing is defined as

γ = 1−Var
{
θ̂(A)

}
/Var

{
θ̂(A−M )

}
. This definition is extended to multivariate

θ by considering estimation of the linear combinations θ′c for various vectors

c. The speed of convergence of the EM algorithm is closely related to the

fraction γ, or to the largest fraction γ(c) [29].

10.4 Multiple Imputation

With multiple imputation, a small number of alternative completions of the

observed dataset are generated and the complete-data analysis is carried out

on each completed dataset. The generation of these completions (completed

datasets), say, A(1), . . . , A(K) is usually the most complex task, but the

remainder is straightforward. The complete-data analysis is applied on each

completion, yielding estimates β̂(1) = β̂(A(1)), . . . , β̂(K) = β̂(A(K)) and esti-

mated complete-data sampling variances ŝ2(A1), . . . , ŝ
2(AK). Although this

requires K times as much computing, it entails little programming effort ad-

ditional to that for conducting one complete-data analysis. The estimator for

the recorded data is obtained by averaging theK results of the completed-data

analyses:

β̃ =
1

K

K∑

k=1

β̂(k),

s̃2 =
1

K

K∑

k=1

ŝ2k +
K + 1

K(K − 1)

K∑

k=1

(
β̂(k) − β̃

)2

.

(10.6)

The completions, sets of plausible values Ỹk , are generated by simulations

from the model that relates the missing values to the observed data. For

this, it is essential that missingness is ignorable. Otherwise, the details of the

departure from ignorability have to be specified in detail. Suppose the missing

values are related to the recorded values by the model

ym = g(yr ;ψ) + ξ , (10.7)
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where g is a function involving a set of parameters ψ and ξ is a random

sample from a distribution (such as normal) with one or several unknown

parameters ω. The parameter (vectors) ψ and ω can be estimated from the

complete records, although other records may also contribute (e.g., by using

an EM algorithm). One set of plausible values is generated by drawing a set

of plausible parameters ψ̃ and ω̃ from the estimated sampling distribution

of ψ̂ and ω̂, followed by the “prediction” ỹm = g(yr ; ψ̃) + ξ̃, where ξ̃ is

drawn at random from the estimated distribution of ξ (such as the centered

normal distribution with variance ω̃). This can be interpreted as a meticulous

reflection of the uncertainty in both the estimated parameters and in the

missing values. This is an important ingredient of the method, contributing

to the “inheritance” of the good properties of the complete-data estimator.

Suppose the complete-data estimator θ̂(A) is unbiased and its sampling

variance s2(A) = Var
{
θ̂(A)

}
is estimated, by ŝ2, without bias and with sam-

pling variance Var
{
ŝ2(A)

}
much smaller than s4. Further, suppose the model

for missing data (as in (10.7)) is correctly specified. Then, using infinitely

many imputations, the estimator β̃ is also unbiased, and its sampling variance

is

Var
(
β̃
) .

= E
(
ŝ2
)

+B , (10.8)

where B = Vark
(
β̂(k)

)
is the between-imputation variance; its finite-K esti-

mator is

B̂K =
1

K − 1

K∑

k=1

(
β̂(k) − β̃

)2

.

For proof of (10.8), see Rubin [25].

In practice, only a finite number of imputations is used. The results about

β̃ remain valid, with an “approximation” caveat. The estimator β̃ remains

unbiased. The estimator of the sampling variance can be expressed as

s̃2 = ŝ2 +

(
1 +

1

K

)
B̂K ,

where the bar denotes the average over the K imputations. As K −→ +∞,

B̂K converges to B, so B/K is the contribution to the sampling variance

due to having used only K sets of imputations. The average ŝ2 estimates the

complete-data sampling variance Var
{
β̂(A)

}
and B can be interpreted as the

inflation of the sampling variance caused by the missing values. It is useful

to define the fraction of information that is missing as γ = B/{s2(A) + B}.
When several parameters are estimated, their fractions γ may differ.

The number of imputations K has an impact on the precision of β̃. By

using an additional set of imputations, the sampling variance is reduced by

B/K−B/(K+1) = B/{K(K+1)}, that is, by approximately 100γ/{K(K+

1)}%. Thus, the value of γ is an important factor in choosing K. The gains
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in precision due to the first few sets of imputations are quite dramatic, but

then the gains diminish. For instance, the sixth set of imputed values reduces

the sampling variance by B/30, whereas infinitely many imputations after the

fifth would have reduced it by B/5. The decision about setting K should be

based on the anticipated fraction of the information missing. Nowadays, the

amount of computing is not a serious concern, and so it should not enter into

consideration about setting K. A more serious concern is the storage of the

plausible values; this grows linearly with K. Of course, sets of plausible values

do not have to be stored if they are immediately used in the completed-data

analysis. However, then new sets of plausible values have to be generated for

each analysis.

The model for missing data can rarely be established with any certainty.

Rubin [26] and Schafer [27] recommend involving as many covariates as is

practicable, so as to improve the chances of MAR being appropriate. If the

model contains some unimportant or redundant terms the uncertainty about

the missing values is greater than it could be otherwise, but this is less of

a concern than unbiasedness in the estimation of the parameters associated

with the missing values—that no important variable is omitted.

10.5 Missing Values in Multilevel Data

The previous sections summarized the general approach to dealing with miss-

ing values. Here we discuss issues specific to multilevel analysis. We consider

the model

y
j

= Xjβ +Zjδj + ǫj , (10.9)

where β is a set of regression parameters and δj , j = 1, . . . , N2 , and the

N = n1 + · · · + nN2
elements of ǫj are mutually independent random sam-

ples from centered normal distributions with pz × pz variance matrix Ω and

variance σ2, respectively; pz is the number of columns in Z. This model

has the form of an analysis of covariance (ANCOVA) model; the only dif-

ference from the standard setting is in the status of the terms δj . In AN-

COVA, they are parameters (subject to an identification constraint, such as

δ1 + · · · + δN2 = ∅pz
). In our model they are random variables described by

their variance matrix Ω. We say that two such models are paired. We denote

X =
(
X ′

1 , . . . ,X
′
N2

)
′, Z =

(
Z ′

1 , . . . ,Z
′
N2

)
′ and y =

(
y′

1 , . . . ,y
′
N2

)
′, so that,

for instance, E (y ) = Xβ. Further, Vj = Var
(
y
j

)
= σ2Inj

+ ZjΩZ
′
j . It is

practical to define Ψ = σ−2Ω, so that σ2 can be factored out of Var
(
y
j

)
:

Vj = σ2Wj , with Wj = Inj
+ZjΨZ

′
j . The log-likelihood is l = l1 + · · ·+ lN2

,

where

−2 lj = nj log(2πσ2) + log
(
detWj

)
+ (yj −Xjβ)′W−1

j (yj −Xjβ) .
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We assume that the parameters in Ψ are functionally related to neither β

nor σ2.

We will refer to the Fisher scoring algorithm [12, 13] as the complete-

data analysis. The algorithm can be compactly described by the following

equations:

β̂ =
(
X ′Ŵ−1X

)−1
X ′Ŵ−1y,

σ̂2 =
1

N

(
y −Xβ̂

)′
Ŵ−1

(
y −Xβ̂

)
,

∂lj
∂θ

=
1

2σ2

∑

j

(yj −Xjβ)′W−1
j Zj

∂Ψ

∂θ
Z ′
jW

−1
j (yj −Xjβ)

− 1

2

∑

j

tr

(
Z ′
jW

−1
j Zj

∂Ψ

∂θ

)
,

−E

(
∂2lj

∂θ1 ∂θ2

)
=

1

2

∑

j

tr

(
Z ′
jW

−1
j Zj

∂Ψ

∂θ1
Z ′
jW

−1
j Zj

∂Ψ

∂θ2

)
,

whereW =
⊕N2

j=1Wj is the block-diagonal matrix with blocksWj . (V can be

defined similarly.) The first two equations are explicit, although they depend

on the estimate of Wj which involves Ψ̂ . In the third and fourth equations, θ,

θ1 and θ2 are any parameters involved in Ψ . The Hessian matrix H and the

scoring vector s for the parameters θ involved in Ψ are assembled from these

equations, and an update of them is given by

θ̂new = θ̂old +H−1s ,

with H and s evaluated at the current (old) estimates of β, σ2 and Ψ . The

formulas for β̂ and σ̂2 have to be evaluated after each update, unless the

update is very close to ∅. Provisions have to be made to ensure that the

estimated variance matrix Ψ̂ is non-negative definite. A practical proposition

is to estimate a decomposition of Ψ , such as the Cholesky or singular value

decomposition; see Lindstrom and Bates [10] or Longford [16, Chap. 7].

10.5.1 EM Algorithm

We use the Fisher scoring algorithm as the M-step of the EM algorithm.

Central to this is a description of the complete-data log-likelihood as a function

of sufficient statistics. Noting that

W−1
j = Inj

−ZjΨG−1
j Z

′
j ,

det(Wj) = det(Gj) ,
(10.10)

where Gj = Ipz
+Z ′

jZjΨ , a convenient set of minimal sufficient statistics is
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(Xj yj)
′
Zj ,

(X y)
′
(X y) .

These statistics are minimal sufficient also for the paired ANCOVA model.

The role of the E-step is to estimate these summaries. The building blocks

of the summaries are the missing values themselves and products u1u2 , where

at least one of u1 and u2 is a missing value of a variable in X or y, on the

same elementary unit ij. In summary, we require the conditional expectation

and variance of each missing value and the conditional covariance of every

pair of values missing for the same elementary unit. The conditioning is on

the recorded data.

Some variables in X may be constant within clusters j (Xij ≡ Xj); for

a missing value on such a variable its conditional expectation and variance

are still required, but it is only one value each, common to all the elementary

units in the cluster. We split the task of evaluating the conditional moments

of the missing values to the missing outcomes ym and the missing values of

the covariates, Xm , according to the partitioning of the joint distribution of

X and y:

(yr ,Xr)(ym | yr ,X)(Xm | yr ,Xr).

Values Missing on y Only

We assume first that values are missing only on the outcome y. Information

about a missing value on y is contained in the values of the covariates for the

unit and in the other units of the cluster, which share the same value of δj .

Assuming MAR given X, the conditional distribution of a missing value yij ,

given yr and X, is obtained from the joint distribution of y
j
:

y
j
∼ N

(
Xjβ , σ

2Wj

)
.

For notational simplicity, suppose the values ym,j = (y1j , y2j , . . . , yqjj
)′ are

missing, and the remainder of y
j

is recorded. Let Xj , Zj and Wj have the

corresponding partitioning, Xj =
(
X ′
m,j X

′
r,j

)
′, Zj =

(
Z ′
m,j Z

′
r,j

)
′ and

Wj =

(
Wr,j Wrm,j

Wmr,j Wm,j

)
.

The conditional distribution of ym,j given yr,j is

N
{
Xm,jβ +Wmr,jW

−1
r,j

(
yr,j −Xr,jβ

)
, σ2
(
Wm,j −Wmr,jW

−1
r,jWrm,j

)}
,

from which the required expectations are extracted straightforwardly. Since

Wr,j and Wm,j have the same form as Wj , they can be inverted either

directly, or by using (10.10):
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W−1
r,j = Irj

−Zr,jΨ
(
Ipz

+Z ′
r,jZr,jΨ

)−1
Z ′
r,j ,

where rj = nj − qj , and similarly for Wm,j . Of course, this identity is useful

only when the dimensions of Wr,j are much greater than those of Ψ .

Missing Covariate Values

We separate the variables in X into those that are never missing, T , and

those that contain some missing values, U ; either of these matrices, or their

cluster-level submatrices Tj and U j may be empty.

In estimating the contributions of the missing values of y we have relied on

the model (y |X), (10.9). Similarly, for estimating the contributions of U we

require a model for U . A practical proposition is to specify a distribution for

(U | T ); we omit conditioning on yr for convenience. The variables in U can

be categorical or continuous, and defined for elementary units or clusters, so

several cases have to be distinguished. For the set of continuous variables in

U , U con , the natural model to consider is the multivariate multilevel model

with no covariates:

U ij,con = µcon + δj,con + ǫij,con , (10.11)

with mutually independent centered normal random samples {δj,con} and

{ǫij,con}. Dependence on the (cross-classified) categories of U cat can be intro-

duced by allowing the mean to depend on the category. Such a variable can

also be associated with cluster-level variation, or the components of ǫcon may

have category-specific variances. Note, however, that the number of categories

grows very quickly with the number of variables, and so parsimony may be

essential. If the normality assumption for some of the components of U con is

not appropriate, the log-transformation may be applied. The E-step requires

the expectations on the original scale; these are

E{exp(x )} = exp{E (x ) + 1
2 Var(x )},

Var{exp(x )} = exp{2E (x ) + Var(x )}
[
exp{Var(x )} − 1

]
.

For some other non-linear transformations there are no analytical expressions.

Although the delta method can be employed, one should be weary of apply-

ing approximations repeatedly (for several missing values) in iterations. The

model in (10.11) can be expanded by replacing the vector of means µcon with

a linear regression on T and could also include variables representing the

categorical variables and their interactions.

For U cat , the categorical versions of the multilevel models can be adopted,

but fitting them is much more time-consuming (and ML estimation is only

approximate), so they are not always practicable for the unrecorded cat-

egories. More practical alternatives assume that the within-cluster (multi-

nomial) distributions are identical, or that the within-cluster probabilities



10 Missing Data 391

satisfy a normal multilevel model with the dependence structure implied by

multinomiality. That is, let p
j

be the K × 1 vector of probabilities in cluster

j. For each j, these probabilities add up to unity. We specify for them that

p
j

= p+ δj , (10.12)

where δj is a random sample from a centered multivariate normal distribution,

N (∅,Ω). To satisfy the identity p′
j
1K = 1 for each j, Ω has to be such that

1′
KΩ 1K = 0. For the vectors of counts cj , the samples from the respective

multinomial distributions with sample sizes nj and vectors of probabilities pj ,

we have

Var(cj | pj) = nj
{
diag(pj)− pjp′j

}
. (10.13)

Equations (10.12) and (10.13) specify a two-level model which, with the ad-

mittedly invalid assumptions of normality, can be fitted by Fisher scoring.

As an alternative, Ω can be estimated by moment matching, as the variance

matrix of the sample proportions cj/nj in excess of that implied by (10.13).

In its generality, the EM algorithm appears rather extensive and requiring

a substantial programming effort. Its implementation is practical when only a

few patterns of missingness arise, so that a limited number of cases discussed

above have to be dealt with. A distinct disadvantage of the general approach

is that the already iterative and not particularly simple algorithm has to be

interfered with. The compounding of two kinds of iterations, Fisher scoring

and EM algorithm, generates no problems additional to those for either kind

[20]; after a few EM iterations, one iteration of Fisher scoring within each EM

iteration is usually sufficient.

10.5.2 Multiple Imputation

Multiple imputation overcomes some of the difficulties arising in the EM al-

gorithm. First of all, the (Fisher scoring or another) complete-data algorithm

is applied without any alterations. This is a great advantage for an analyst

not acquainted with all the details of the algorithm, or when the algorithm is

available only in a compiled form.

Like the EM, multiple imputation is based on a model for the missing

values. A proposition practical in many settings is that of MAR, after con-

ditioning on as many variables as is feasible. If we cannot condition on all

the variables, those that are more closely associated (correlated) with the

incompletely recorded variables should be preferred.

The plausible values can be generated in stages. For this, the incompletely

recorded variables are classified into a small number of groups. The model for

missing data for the first group relies on the information from that group and

the completely recorded variables. At the second stage, missing data for the

second group of variables are generated from a model which conditions on the
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first-group and completely recorded variables, and so on. At each stage the

imputed values in the previous stages are conditioned on. It is advantageous

to impute first for variables with few missing values which are useful for

conditioning at later stages, and to deal with variables with a lot of missing

values last.

When multiple imputation is organized in stages information about the

missing values is not used fully; we trade efficiency for computational tractabil-

ity or simplicity. However, efficiency is lost only due to handling missing-data

information; only the component B in (10.8) is affected. An iterated version

of this scheme makes better use of the information in incomplete records. The

method described in van Buuren et al. [28] corresponds to the setting in which

each incompletely recorded variable forms a group on its own.

10.5.3 Monotone Pattern of Missingness

In general, data can be missing with any conceivable pattern r. However, some

sets of variables may have a restricted pattern of missingness. An important

example is when the only patterns occurring for a set of variables, suitably

permuted, are such that r is non-increasing. That is, each r comprises a

segment of ones, followed by a segment of zeros; either segment may be empty.

This commonly arises in longitudinal studies, in which a subject may drop out

at any stage, but no returns to the study occur after skipping a stage.

In this setting, multiple imputation by stages can be applied, with each

variable included in a stage on its own. The plausible values for the first time-

point are generated first; then the plausible values for the second time-point

are generated, conditioning on the (recorded or imputed) values for the first

time point, and so on for values at the second and subsequent time-points.

In this way, the plausible values are generated using univariate analyses

(completing one variable at a time), and all information about the missing

values is exploited. Variations on this theme include grouping the variables

so that missingness is monotone with respect to these groups; if a subject

has some values missing for variables in group k, all values are missing for

variables in groups k + 1, k + 2, . . . . Also, the monotone pattern may apply

but for a small number of exceptions. In such a case, we may proceed with

imputation for the remaining units, and make different arrangements for the

few units that break the monotone pattern.

10.5.4 Sensitivity Analysis

All theoretical results about multiple imputation rely on the correctness of

the assumption about the model for the missing values. Since this model,

typically based on MAR, cannot be verified, we have to address the concern
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that the possibly inappropriate model for missing data has induced a bias of

the incomplete-data estimator θ̃.

Exploring the entire range of alternative models for missing values is

rarely feasible because of the vast variety of MNAR mechanisms that can

be conceived. However, when estimating a specific parameter θ, we can define

alternative models for missing data that stack the plausible values against the

inference drawn from MAR-generated plausible values.

By way of an example, suppose the difference of the means of a variable

for men and women in a given population is of interest. In the analysis of the

study that collected the relevant data, MAR is assumed for the missing values.

Suppose the hypothesis of no difference between men and women is rejected;

the estimated mean for men is higher than for women. In the sensitivity

analysis, we alter the plausible values, “disadvantaging” men’s missing values.

A practical way of doing this is to reduce each plausible value (replacement

for a missing value) for men by c and increase each plausible value for women

by c. Instead of adding or subtracting, for a variable with positive values, we

can multiply or divide each plausible value by a given positive constant. This

constant, or its additive version, describes the extent of departure from MAR.

Of interest is the smallest value c for which substantially different conclusions

are drawn. We can then speculate whether the MNAR process given by this

constant is feasible. If it is not, we conclude that the result obtained assuming

MAR holds for all feasible mechanisms of missingness. Otherwise, the result

is inconclusive because of the uncertainty about this mechanism.

10.5.5 Generalized Linear Mixed Models

In generalized linear models, the (univariate) outcome y is related to the

covariates x by the formula

E ( y | x;β) = f(xβ) ,

where f is a strictly monotone function (its inverse is called the link function),

and the conditional distribution of y, given xβ, is in a specified parametric

family. The ordinary regression model corresponds to identity f and normal

distribution of y. The natural extension to generalized linear mixed models

(GLMM) is by a reference to generalized ANCOVA (gANCOVA) models, that

is, for the outcomes y
j

in cluster j

E (y
j
|Xj ,Zj ,β, δj ) = f (Xjβ +Zjδj) ,

whereXj and Zj are the regression and variation design matrices for cluster j,

β is a vector of (average) regression parameters, δj is the vector of deviations

of the regression specific to cluster j from the average regression, and the

function f is applied elementwise. In GLMM, δj ∼ N (∅,Ω), iid, for some
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variance matrix Ω, whereas in the paired ANCOVA model δj are parameters,

subject to an identification constraint. Note that the qualifier “average” is

appropriate only on the linear scale (Xjβ and Zjδj), not on the scale of

outcomes y
j
, unless the link function f−1 is linear.

We can associate a specific GLMM with a (normal) random coefficient

model, by replacing the link with identity, and the distributional assumption

with normality. The algorithms for fitting a GLMM are rather complex. One

class of them is based on analytical approximations to the log-likelihood [1],

and another on numerical approximations, using Gaussian quadrature [14].

The implementation of Markov chain Monte Carlo (MCMC) algorithms [7]

has revolutionized model fitting, although some computational issues associ-

ated with MCMC are still awaiting practical resolution. For a more extensive

treatment of these models and algorithms, see Chapters 6 and 9.

None of the algorithms for fitting GLMM admits a description in terms

of a set of sufficient statistics much smaller than the number of observations.

As a consequence, implementing the EM algorithm with either of them is

extremely difficult. Multiple imputation, on the other hand, is much better

suited with GLMM because the model for missing data, and the process of

generating plausible values is unaffected by the complete-data model and the

complete-data algorithm is used without any alteration.

The advantages of multiple imputation are not specific to GLMM; they

pertain to all complex complete-data analyses, including random coefficient

models with multiple layers of nesting and cross-classifications, as well as their

non-linear extensions.

10.6 Other Applications of EM and MI

The range of problems that can be formulated as analysis of incomplete data

is much wider than the stereotype setting in which, contrary to the plan,

some observations were not recorded. We can declare some data as missing

even if we never had any intention to collect its values. An important generic

example is that of the measurement error in the covariates. We illustrate this

application first on a simple example, and then proceed to general cases.

Suppose we are interested in the simple regression

y = b0 + b1x+ ǫ ,

with the usual assumptions of independence, normality and homoscedasticity

of ǫ, ǫ ∼ N (0, σ2), iid. Instead of the covariate x we observe only its corrupted

version, u = x + ξ, where ξ is N (0, τ2), iid, independent of x and y. This

simple (measurement error) model/process can be more appropriately named

the corruption model/process, since the deviation of u from x may be due to

causes other than measurement. Suppose first that τ2 is known.
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In the complete-data analysis, we evaluate

b̂1 =

∑n
i=1(xi − x̄)( yi − ȳ )∑n

i=1(xi − x̄)2
(10.14)

(x̄ is the sample mean of the xi and ȳ the sample mean of the yi). Since

xi are not observed, we estimate their contributions to the numerator and

denominator in (10.14) by functions of ui . This is easy to accomplish by

moment matching. In the following identities, E ξ indicates expectation over

the deviations ξi. We have

E ξ{(ui − ū)(yi − ȳ)} = (xi − x̄)(yi − ȳ)

but

E ξ{(ui − ū)2} = (xi − x̄)2 +
n− 1

n
τ2 .

So, the numerator in (10.14) can be estimated naively, replacing each xi with

ui , whereas the denominator has to be adjusted; its unbiased estimator is

∑n
i=1(ui − ū)2 − (n− 1)τ2 .

The combination of the E- and M-steps yields the estimator

b̃1 =

∑n
i=1(ui − ū)(yi − ȳ)∑n

i=1(ui − ū)2 − (n− 1)τ2
.

This slope estimator is steeper than the naive estimator of b1 ; this phe-

nomenon is generally referred to as attenuation. The estimator b̃1 can be

derived without any reference to the EM algorithm. In any case, this EM

algorithm is very unusual; only one application of the E- and M-steps is

required because the E-step is independent of the M-step.

When τ2 is not known, its estimator can be used. For this, the design

may have to be expanded and a random sample of the values of xi observed

independently, by the same corrupted process, twice or several times. With

such observations, τ2 can be estimated from the within-x variation. For an

application in educational testing, see Longford [15].

Multiple imputation entails simulating plausible values of xi , followed by

their substitution in the complete-data analysis (10.14). From

(
x

u

)
∼ N

{(
µx
µx

)
,

(
σ2
x σ2

x

σ2
x σ2

x + σ2
ξ

)}

we have

(xi | ui) ∼ N
(

σ2
x

σ2
x + σ2

ξ

ui +
σ2
ξ

σ2
x + σ2

ξ

µx ,
σ2
xσ

2
ξ

σ2
x + σ2

ξ

)
.
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This can be interpreted as shrinkage toward the mean µx or preferring to err

on the side of the overall mean. The reward for this strategy is smaller mean

squared error on average.

Since the complete-data analysis is very simple, involving a short list of

linear and quadratic statistics, the EM algorithm is much more practical.

However, for generalized linear models and their multilevel extensions, multi-

ple imputation is much more versatile because simulation of the missing values

is unaffected by the complexity of the complete-data analysis.

An alternative approach to handling measurement error, competing in

versatility with multiple imputation, is the simulation-extrapolation method

(SIMEX) of Carroll et al. [2]. With this method, corrupted values of the

covariates are generated with a range of levels of the corruption greater than

the realized level. The complete-data estimator is evaluated for each dataset

completed with the simulated corrupted values, and inferences are made by

extrapolating the values of the estimates to zero corruption. SIMEX relies on

a good method of extrapolation and an appropriate choice of the levels of cor-

ruption. Difficulties arise with complex complete-data analyses when little is

known about the dependence of the estimators on the extent of corruption and

when several variables are subject to corruption. In comparison, simulation

of the plausible values in multiple imputation is based solely on the assumed

process of corruption, and is oblivious to the complexity of the complete-data

analysis.

Misclassification can be regarded as a corruption process. The corrupted

version of a dichotomous variable x is another dichotomous variable u; x 6= u

with the misclassification probability. With multiple imputation, several draws

are made from the plausible distribution of xm , which is established from the

estimated conditional distribution of xm given xr and u. This distribution usu-

ally depends on the probability of misclassification. The plausible distribution

is based on a plausible (randomly drawn) value of this probability. When the

misclassification probability depends on some covariates, and the parameters

of this dependence are estimated, the uncertainty about these parameters also

has to be reflected in the plausible values of x.

10.6.1 Random Coefficients as the Missing Data

Analysis with random coefficient models can be naturally formulated as a

missing information problem. If the random coefficients were known the (or-

dinary least squares) analysis would be straightforward. The EM algorithm

with this approach was developed by Dempster et al. [5]. This EM algorithm

converges slowly when the fraction of the missing information is substantial,

and such cases are encountered frequently. With direct maximization algo-

rithms, such as Fisher scoring and iteratively reweighted least squares [8], such
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problems are much less acute. However, direct algorithms are difficult to im-

plement for very complex models. The programming task can be reduced by a

judicious assignment of a set of coefficients as missing data, selecting a simpler

complete-data analysis. The E-step of the EM algorithm would estimate the

contributions of the “missing” random coefficients to the sufficient statistics.

In most settings, EM algorithm is not feasible, and the missing data have to

be represented by multiple imputation. Since the complete-data algorithm is

iterative, multiple imputation may have to be applied in each iteration. This

complicates the assessment of convergence somewhat. Also, there is no proof

that the good properties of the multiple-imputation estimator are maintained

at the converging iteration. See Clayton and Rasbash [3] for a study of such

an algorithm.

10.7 Summary

In most of statistical enterprise, inferences are made about specified (or im-

plied) populations. Multilevel analysis, as many other generic methods of

analysis, assume that the analysed dataset is representative of the studied

population. Good representation is often eroded by selective missingness, and

so methods for dealing with incomplete data should be in the toolkit of every

statistical analyst. This imperative is even stronger in studying human popu-

lations because human subjects are often poorly motivated, easily distracted

while responding, and do not cooperate with study protocols perfectly.

Although several kinds of data incompleteness can be handled by mul-

tilevel analysis without having to make special arrangements, invisible bias

may be incurred when the analysed dataset is treated as complete. This

chapter discussed two general approaches to dealing with missing values—

the EM algorithm and multiple imputation. Both approaches consider an

efficient complete-data analysis (typically, by maximizing a likelihood). In the

EM algorithm, this analysis is adjusted, and applied iteratively. In multiple

imputation, the complete-data analysis is used without any alteration, but

multiple sets of replacements for the missing values have to be generated.

Multiple imputation is more versatile, applicable with complex complete-data

analyses in which EM would be very difficult to implement.

Methods for missing data are applicable in a much wider range of problems.

Many complex problems could be simplified if some additional information

(data) were available. If such data is regarded as missing a general approach

to dealing with missing information can be invoked. The chapter discussed

measurement error and complex random coefficient models as examples in

which secondary applications of missing-data methods can be applied, leading

to a reduction in the computational (programming) effort and enabling us to

exploit available algorithms constructed for simpler problems.
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11.1 Introduction

Estimation in (linear) multilevel models usually relies on maximum likelihood

(ML) methods. The various computer programs for multilevel analysis employ

versions of full information (FIML) and restricted maximum likelihood (REML)

methods. Two vital assumptions underlying ML theory are that (a) the residu-

als are i.i.d. with a distribution from a specified class, usually the multivariate

normal, and (b) the sample size is (sufficiently) large. More specifically, the

attractive properties of FIML estimators—consistency, (asymptotic) efficiency

and (asymptotic) normality—are derived from the supposition that the sample

size goes to infinity. In practice, however, these assumptions will frequently

be met only approximately, which may lead to severely biased estimators and

incorrect standard errors [7].

Resampling methods can be used to obtain consistent estimators of bias

and standard errors, and to obtain confidence intervals and bias-corrected es-

timates of model parameters. A number of general resampling approaches are

found throughout the literature, of which we mention the bootstrap and the

jackknife, permutation, and cross-validation. Bayesian Markov chain Monte

Carlo methods [e.g., 16, 23] and simulation-based estimators for mixed non-

linear models [e.g., 27, 61, 63] are also closely related to these resampling

methods. Particularly, bootstrap and jackknife procedures have proven to

be methods that yield satisfactory results in small sample situations under

minimal assumptions. In this chapter, we discuss resampling of multilevel data

by means of bootstrap and jackknife procedures. In cases where the assump-

tions underlying ML methods for estimating multilevel models are violated,

bootstrap and jackknife estimation may provide useful alternatives.
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The application of the bootstrap and the jackknife to multilevel models

is not straightforward. For the bootstrap, there are several possibilities, de-

pending on the nature of the data and the assumptions one is willing to make.

Each of them, however, has its own associated problems. In this chapter, we

discuss three different approaches, which are derived from general principles of

bootstrap theory and apply concepts adapted from bootstrapping regression

models.

The application of the jackknife to multilevel analysis is based on a ver-

sion of the delete-m jackknife approach [57, Section 2.3]. In this procedure,

subsamples are obtained from the original sample by successively removing

mutually exclusive groups of size m. For the application to multilevel analysis,

the delete-m jackknife has been adapted for groups of unequal size.

Bootstrap and jackknife estimation in the context of multilevel analysis

have been studied by several authors and for various models and situations.

Laird and Louis [33, 34] discuss empirical Bayes confidence intervals based on

bootstrap samples and Moulton and Zeger [45] study bootstrapping a model

for repeated measurements. Bellmann et al. [3] use a parametric bootstrap

for a panel data model that is essentially a multilevel model and Booth [4]

similarly uses a parametric bootstrap for generalized linear mixed models.

Goldstein [24] presents an iterated bootstrap based on the results of Kuk

[32]. A theoretical analysis of nonparametric bootstrapping of balanced two-

level models without covariates is given in Davison and Hinkley [14, pp. 100–

102]. Our discussion largely follows the lines of the systematic development of

resampling methods for multilevel models in Busing et al. [8, 9, 10, 12], Van

der Leeden et al. [68], and Meijer et al. [42, 43].

In this chapter, we focus on FIML estimation for multilevel linear models

with two levels. The ideas, however, are directly applicable to REML estimators

and generalize straightforwardly to models with three or more levels.

In Section 11.2, we define the model upon which we center our discussion

and we elaborate on the consequences of violating the assumptions of ML

estimation in multilevel models. In Section 11.3, we briefly discuss the general

ideas of the bootstrap and the jackknife, and the specific issues involved in the

application of the bootstrap to regression models. Section 11.4 provides an ex-

tensive discussion of the three methods for bootstrap implementation, as well

as a number of approaches to construct confidence intervals. In Section 11.5,

the application of the jackknife to multilevel models is discussed. Section 11.6

briefly discusses the availability of resampling options in existing software

for multilevel analysis. In Section 11.7, we discuss some results of evaluation

studies of the various resampling approaches and in Section 11.8, we briefly

discuss application of the presented approaches to other types of multilevel

models, and we mention various possible extensions and alternatives to the

(bootstrap) resampling methods presented.
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11.2 Model, ML Estimation, and Assumptions

For our discussion of resampling methods for multilevel models, we consider a

version of the two-level mixed linear model. Suppose data are obtained from

n individuals nested within J groups, with group j containing nj individuals.

For each group j, the model is given by

y
j

= Xj β +Zj δj + ǫj , (11.1a)

with (
ǫj
δj

)
∼ N

((
∅

∅

)
,

(
σ2Inj

∅

∅ Ω

))
(11.1b)

and (ǫj , δj) ⊥ (ǫℓ, δℓ) for all j 6= ℓ. Under these assumptions,

y
j
∼ N (Xjβ,ZjΩZ

′
j + σ2Inj

). (11.2)

In some situations, however, we assume that the explanatory variables are

not fixed constants, but random variables with unspecified distributions, so

that we should write Xj and Zj instead of Xj and Zj . In that case, (11.2)

should be viewed as the conditional distribution of y
j

given Xj = Xj and

Zj = Zj .

We tend to think of the model as being derived from a two-level slopes-

as-outcomes model, which is a special case of the mixed linear model pre-

sented here, but we do not need that in our discussion, so we will confine

ourselves to the mixed linear model specification. See de Leeuw and Meijer

[15] for a more extensive discussion of the model and the various ways to

interpret it.

The parameters of the model described by (11.1a) can be divided into a set

of fixed parameters, the elements of β, and a set of random parameters, i.e.,

σ2, the variance of the level-1 residuals, and the elements of Ω, the variances

and covariances of the level-2 residuals. The random parameters are commonly

referred to as variance components. Under the given normality assumptions

for the residuals, FIML estimates are obtained by maximizing the loglikelihood

function with respect to all model parameters. The asymptotic covariance

matrix of the estimators is the inverse of the information matrix, which is

derived from standard ML theory. Standard errors for both fixed and random

parameters are obtained by taking the square roots of the diagonal elements

of an estimate of this matrix.

The assumptions underlying ML estimation need closer examination. Two

general assumptions were briefly mentioned above. The first assumption is

a sufficiently large sample size. Hierarchical data structures, however, make

sample size a more complicated issue: besides the total sample size, the sample

size at each level of the hierarchy has to be considered. The second assumption

is (multivariate) normality of the residuals. In multilevel models, each level
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in the data generates its own residuals. Therefore, several distributions are

involved in the estimation procedure for which the normality assumption

must be met. One further assumption, often made more implicitly, is that

the estimated model is correct. In other words, it is assumed that the condi-

tional expectation E (y
j
| Xj ,Zj) = Xj β and the covariance matrix Vj of

y
j

conditional on Xj and Zj , equal to Vj = ZjΩZ
′
j + σ2Inj

, are specified

correctly.

Obviously, in practical research, the aforementioned assumptions may eas-

ily be violated, especially the assumption of a large sample size. The effects

that these violations have on the quality of the estimators and their standard

errors in multilevel (or similar) models have been discussed by several authors.

It is well understood, theoretically, that FIML estimators of the variance com-

ponents are (negatively) biased [e.g., 56, p. 240]. Moreover, several simulation

studies show that this bias can be substantial. Particularly when the sample

size is small, FIML may fail [7, 31, 67]. Magnus [40] and Breusch [6], however,

proved that the ML estimators of the fixed parameters are unbiased if the

random component rj = Zj δj + ǫj is symmetrically distributed. Even if the

components of δj and ǫj are skewed, this requirement will be approximately

satisfied due to a central limit theorem argument. Furthermore, theory for ML

estimation under distributional misspecification [69, 71] ensures that even

in such cases, the ML estimators of the fixed parameters will be virtually

unbiased. Asymptotic calculations of Breslow and Lin [5] for a particular

class of mixed linear models confirm that bias in the fixed parameter esti-

mators is negligible, whereas variance component estimators may be seriously

biased.

Standard errors are based on large sample theory as well. The idea is that

as the sample size goes to infinity, the distribution of the estimators converges

to a (multivariate) normal distribution with covariance matrix equal to the

inverse of the information matrix. The standard errors of the ML estimators,

as reported by the various multilevel analysis programs, are the square roots

of the diagonal elements of an estimate of this matrix. In finite samples, the

covariance matrix of the estimators may not be approximated well by the

asymptotic covariance matrix. Moreover, if the distributional assumptions

are incorrect, the asymptotic covariance matrix differs from the inverse of

the information matrix as assumed by the ML method. As a result, asymp-

totically correct standard errors based on a so-called sandwich estimator of

the asymptotic covariance matrix may be quite different from standard errors

based on the inverse of the information matrix. This difference appears to be

small for the fixed parameters, but may be large for the variance components

[70]. Furthermore, convergence to normality may not be satisfactory for the

distributions of the estimators. Busing [7] shows that they can be severely

skewed for the variance components.
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11.3 General Theory of Bootstrap and Jackknife

In this section, we discuss theory and general principles of the bootstrap and

the jackknife. Ordinary regression models and multilevel models share similar

characteristics. Therefore, to prepare the stage for bootstrapping multilevel

models, we illustrate the principles of the bootstrap with respect to regression

models. The jackknife is introduced in its classic form.

11.3.1 The Bootstrap

The bootstrap is a general approach to estimate the bias and the variance (and

consequently the standard error) of an estimator under minimal assumptions

[14, 20, 28]. Let z be a random variable with distribution function F , and let

{z1, z2, . . . , zn} be a random sample of size n from F . The underlying idea

of the bootstrap is that the empirical distribution function F̂n, generated by

this sample, is a consistent estimator of the distribution function F in the

population [e.g., 44, p. 507].

Let θ0 be the true value of a parameter θ associated with the distri-

bution F , θ0 = θ(F ), and let θ̂ be an estimator of θ from the sample,

θ̂ = θ(z1, z2, . . . , zn) = θ(F̂n). The bootstrap simulates the sampling and

estimation process by drawing samples with replacement from F̂n, which is

completely known once the original sample is obtained. In this simulation,

the distribution F̂n plays the role of F , and θ̂ plays the role of θ0. Simulation

samples, referred to as bootstrap samples, are drawn from F̂n and θ̂ is estimated

by θ∗ in the same way θ0 was estimated by θ̂.

Because F̂n
P

=⇒F , it is assumed that the properties of the estimator θ∗

based on the distribution F̂n give information about the properties of θ̂ based

on the distribution F . For example, the bias of θ∗ based on the distribution

F̂n is taken as an estimator of the bias of θ̂ based on the distribution F . It

has been proven by many authors that this approach works in many cases: It

leads to consistent estimators of the properties of θ̂ [e.g., 47].

The bootstrap is implemented as follows: B bootstrap samples {z∗b1,
z∗b2, . . . , z

∗
bn}, b = 1, . . . , B, are drawn from F̂n (i.e., drawn with replacement

from {z1, z2, . . . , zn}). From each of the B samples, the parameter θ is esti-

mated, thereby obtaining B estimates θ∗b , b = 1, . . . , B. The expectation of θ∗

(given F̂n) is estimated by the mean of the estimates θ∗b : θ
∗
(.) =

∑B
b=1 θ

∗
b/B.

The variance of θ∗ (given F̂n) is estimated by the variance of the estimates

θ∗b : V̂ar(θ∗) =
∑B
b=1(θ

∗
b − θ∗(.))2/(B − 1).

The bias of θ̂ is estimated by the (estimated) bias of θ∗:

B̂iasB = B̂ias(θ∗) = θ∗(.) − θ̂, (11.3)

and the bias-corrected estimator of θ is therefore [see, e.g., 28, pp. 8–9]
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θ̂B = θ̂ − B̂iasB = 2θ̂ − θ∗(.). (11.4)

The standard error of θ̂ is estimated by the square root of the estimated

variance of θ∗ [see, e.g., 20, p. 47]:

ŝeB =

√
V̂ar(θ∗) =

√√√√ 1

B − 1

B∑

b=1

(
θ∗b − θ∗(.)

)2

. (11.5)

The bootstrap described above is called the nonparametric bootstrap, be-

cause the bootstrap samples are drawn from the nonparametric empirical

distribution function F̂n. Frequently, however, F is assumed to be a specific

distribution F (φ), only depending on a parameter (or parameter vector of

fixed dimension) φ, which may or may not be the same parameter as θ. Then,

if φ is estimated by φ̂, F can also be estimated by F̃n = F (φ̂), instead of F̂n,

and a parametric bootstrap can be defined [see, e.g., 20, Section 6.5]. If the

distributional assumption about F is correct, one benefits from the fact that

this parametric empirical distribution function F̃n will generally be a more

efficient estimator of F .

The parametric bootstrap is defined exactly analogous to the nonparamet-

ric bootstrap, except that bootstrap samples are drawn from F̃n instead of

F̂n. For example, if it is assumed that F is a normal distribution function

with mean µ and variance σ2, then bootstrap samples are drawn from a

normal distribution with mean x̄ and variance s2, where x̄ and s2 are the

mean and variance of the observed, original sample. A consequence of the

parametric bootstrap is that samples are drawn from a generally smoother

distribution than the nonparametric empirical distribution, which is a step

function. Therefore, in contrast to the nonparametric bootstrap, the values

z∗bi encountered in the bootstrap samples will usually not be present in the

original sample.

Bootstrapping Regression Models

Consider the linear regression model

yi = α+ βxi + ǫi,

where ǫi is a residual with zero mean and variance σ2. Suppose that we have

observed the sample {(y1, x1), . . . , (yn, xn)}. Then parameter estimates α̂, β̂,

and σ̂2 can be obtained by using the familiar ordinary least squares method.

Depending on the assumptions made, several different bootstrap methods can

be used.

If the explanatory variable x is considered a random variable, therefore

now denoted as x, nonparametric bootstrap samples can easily be obtained



11 Resampling Multilevel Models 407

from a straightforward generalization of the basic method discussed above

to vector-valued variables. In this case, bootstrap samples are drawn from

the bivariate empirical distribution function of (y, x). This means drawing

complete cases with replacement: Bootstrap samples {(y∗1 , x∗1), . . . , (y∗n, x∗n)}
consist of pairs (y∗i , x

∗
i ) that are also elements of the original sample: for each

i = 1, . . . , n, there exists a j, 1 ≤ j ≤ n, such that (y∗i , x
∗
i ) = (yj , xj). Next,

the regression parameters can be estimated from each bootstrap sample and

bias-corrected estimates can be obtained, as well as standard errors of the

estimators, using formulas (11.4) and (11.5).

The situation is different if the exogenous variable x is a fixed design

variable, determined by the research problem or chosen by the experimenter.

This happens, for instance, if x is the dose of some drug administered to

a group of experimental subjects. Now, each bootstrap sample should have

exactly the same x values, that is, x∗i = xi for each i in each bootstrap

sample. The distribution function from which bootstrap samples should be

drawn is the empirical conditional distribution of y given x. Sampling from this

distribution amounts to resampling the residuals instead of complete cases.

First, the residuals are estimated from the original sample by

ǫ̂i = yi − α̂− β̂xi, (11.6)

with α̂ and β̂ as above. Then, bootstrap samples {ǫ∗1, . . . , ǫ∗n} are drawn from

{ǫ̂1, . . . , ǫ̂n}, and bootstrap samples of y are obtained from

y∗i = α̂+ β̂xi + ǫ∗i . (11.7)

When B bootstrap samples have been obtained, bias-corrected estimates of

the parameters and bootstrap estimates of the covariance matrix of the pa-

rameters may be computed in the usual way, although for the simple linear

regression model, resampling is not necessary and the bootstrap results can be

computed analytically [e.g., 20, p. 112]. This will not be the case for multilevel

models, however.

If x is a fixed design variable and ǫ is assumed to be normally distributed,

the parametric estimator of the conditional distribution of yi given xi, is a

normal distribution with mean α̂+β̂xi and variance σ̂2. Therefore, parametric

bootstrap samples can be obtained by drawing samples {ǫ∗1, . . . , ǫ∗n} from a

normal distribution with mean zero and variance σ̂2 and then adding these to

the estimated mean α̂+β̂xi. Then, the parametric bootstrap method proceeds

in the same way as the nonparametric bootstrap method with fixed x. Similar

parametric bootstrap methods can be designed for random x.

The bootstrap methods discussed here for regression models are the con-

ventional implementations as, for instance, discussed by Freedman [22], Efron

[18], Hinkley [30], Hall [28, pp. 170–171], and Efron and Tibshirani [20, Chap-

ter 9]. These methods have some drawbacks and, therefore, several alternative
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resampling methods have been proposed that are, for example, robust to

heteroskedasticity. A thorough discussion is given by Wu [73].

11.3.2 The Jackknife

The jackknife was originally introduced by Quenouille [48, 49] to estimate the

bias of an estimator and to correct for it. Tukey [65] proposed an accompa-

nying estimator for the variance of the estimator, and hence for its standard

error.

The idea of the jackknife is as follows. Consider an independently and

identically distributed sample of size n from some distribution and an esti-

mator θ̂n of a parameter θ obtained from this sample. Furthermore, consider

removing a group of m observations from the sample, and let θ̂n−m be the

estimator of the same parameter θ based on this sample of size n −m. The

difference between θ̂n and θ̂n−m can then be used to estimate the bias of θ̂n
and this estimate can be used to obtain the bias-corrected jackknife estimator

θ̂J . It is known that the bias of θ̂J is generally of order n−2 if m is relatively

small compared to n. This is typically much smaller than the bias of θ̂n, which

is generally of order n−1.

Obviously, there are many possibilities for selecting a group of observations

of size m from the sample. If m is equal for each group, the simplest case is

obtained form = 1. Now, the sample is divided into n “groups” of size one, i.e.,

the n observations. In all other cases with m > 1 and n a multiple of m, the

sample is divided into g mutually exclusive groups of size m, with g = n/m. In

the remainder of this section, we will give the details of the standard jackknife

procedures for these situations. Justifications can be found in the standard

jackknife literature [e.g., 57] or as special cases of the discussion in Section 11.5

below.

Delete-1 Jackknife

Suppose θ̂n is an estimator of θ based on a sample of size n. Now, remove the

i-th observation from the sample, and let θ̂(i) be the estimator of θ based on

a sample size of n− 1. The delete-1 jackknife estimator of θ is now given by

θ̂J(1) = nθ̂n − (n− 1)θ̄(1), (11.8)

where θ̄(1) = n−1
∑n
i=1 θ̂(i).

The delete-1 jackknife variance estimator [65], based on the pseudo-values

θ̃(i) = nθ̂n − (n− 1)θ̂(i), i = 1, . . . , n,
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is given by

σ̂2
J(1) =

1

n

n∑

i=1

1

n− 1

(
θ̃(i) −

1

n

n∑

k=1

θ̃(k)

)2

=
n− 1

n

n∑

i=1

(
θ̂(i) − θ̄(1)

)2

.

(11.9)

As mentioned above and discussed in more detail in Section 11.5, the bias

of θ̂J(1) is typically O(n−2), whereas the bias of θ̂n is typically O(n−1).

Furthermore, σ̂2
J(1) is a consistent estimator of the asymptotic variance of

both θ̂n and θ̂J(1).

Delete-m Jackknife

Suppose the sample is divided into g mutually exclusive and independent

groups of (equal) size m (m > 1), where m = n/g. Now remove the m

observations of group j from the sample, and let θ̂(j) be the estimator of

θ based on the corresponding reduced sample of size n − m. The delete-m

jackknife (or grouped jackknife) estimator of θ is now given by

θ̂J(m) = gθ̂n − (g − 1)θ̄(m), (11.10)

with θ̄(m) = g−1
∑g
j=1 θ̂(j). Hence, θ̂J(m) is based on g estimators θ̂(j) of θ,

each based on a subsample of size n−m. Clearly, for m = 1, (11.10) reduces

to (11.8).

The delete-m jackknife variance estimator is defined similarly to (11.9). It

is based on the pseudo-values

θ̃(j) = gθ̂n − (g − 1)θ̂(j), j = 1, . . . , g,

and given by

σ̂2
J(m) =

1

g

g∑

j=1

1

g − 1

(
θ̃(j) −

1

g

g∑

k=1

θ̃(k)

)2

=
g − 1

g

g∑

j=1

(
θ̂(j) − θ̄(m)

)2

.

(11.11)

The mathematics leading to (11.8)–(11.11) can be found in the standard

jackknife literature. For example, Shao and Tu [57] provide a systematic intro-

duction to the theory of the jackknife, including a discussion of its theoretical

properties.
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11.4 Bootstrapping Two-Level Models

In order to make the bootstrap succeed, the simulation must reflect the

properties of the stochastic model that is assumed to have generated the

data. Therefore, a resampling scheme for multilevel models must, first of

all, take into account the hierarchical data structure, that is, the fact that

observations are subject to intraclass dependency. Multilevel models can be

viewed as linear regression models with a complex structure for the residuals.

Hence, we may consider the methods for bootstrapping regression models to

implement the bootstrap for multilevel models. In order to deal properly with

the intraclass dependency, we have to make several adaptations, which we

will discuss below. In exactly the same manner as with regression models, it

is useful to distinguish between two different kinds of models: incorporating

fixed or random explanatory variables.

Analogous to the discussion in Section 11.3, we discuss three approaches

to apply the bootstrap to two-level models: (1) the parametric bootstrap; (2)

the residual bootstrap, in which the residuals are resampled; and (3) the cases

bootstrap, in which entire cases are resampled. The three bootstrap methods

discussed here are based on different assumptions. The parametric bootstrap

requires the strongest assumptions: The explanatory variables are considered

fixed, and both the model (specification) and the distribution(s) are assumed

to be correct. The residual bootstrap requires weaker assumptions: Apart from

considering the explanatory variables as fixed, only the model (specification)

is assumed to be correct. This implies, for example, that the residuals are

assumed to be homoskedastic. The cases bootstrap, finally, requires minimal

assumptions: Only the hierarchical dependency in the data is assumed to be

specified correctly.

11.4.1 Parametric Bootstrap

The parametric bootstrap uses the parametrically estimated distribution func-

tion of the data to generate bootstrap samples. In the two-level model dis-

cussed here, two of these distribution functions are involved. For the level-1

residuals ǫj , we use the N (∅, σ̂2Inj
) distribution function, and for the level-2

residuals, contained in the vectors δj , we use the N (∅, Ω̂) distribution func-

tion. Compared to the other two bootstrap approaches, we could say that the

parametric bootstrap is “closest” to FIML.

Let β̂ be the FIML estimate of β. The (re)sampling procedure is now as

follows:

1. Draw J vectors δ∗j , j = 1, . . . , J , of level-2 residuals from a (multivariate)

normal distribution with mean zero and covariance matrix Ω̂.
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2. Draw J vectors ǫ∗j of sizes nj , j = 1, . . . , J , containing level-1 residu-

als from a normal distribution with means zero and covariance matrices

σ̂2Inj
.

3. Generate the bootstrap samples y∗
j , j = 1, . . . , J , from y∗

j = Xjβ̂+Zjδ
∗
j+

ǫ∗j .

4. Compute estimates for all parameters of the two-level model.

5. Repeat steps 1–4 B times and compute bias-corrected estimates and boot-

strap standard errors using formulas (11.4) and (11.5).

In this procedure the explanatory variables are assumed to be fixed. Note that

the values on the outcome variable encountered in the bootstrap samples will

generally not be present in the observed, original sample.

11.4.2 Residual Bootstrap

If the variables contained inXj and Zj are considered to be fixed explanatory

(design) variables, bootstrap samples can be obtained by resampling the resid-

uals. To implement this strategy, called residual bootstrap, the residuals at each

level need to be estimated first. We can study (at least) two approaches: (1)

estimation by the method of shrinkage, which gives δ̂j = Ω̂Z ′
jV̂

−1
j (yj −Xjβ̂)

and ǫ̂j = yj −Xjβ̂ − Zj δ̂j , and (2) estimation of raw residuals, using OLS

decomposition of the total residuals, which gives δ̂j = (Z ′
jZj)

−1Z ′
j(yj −Xjβ̂)

and ǫ̂j = yj −Xjβ̂ − Zj δ̂j . (See Snijders and Berkhof [60] for an extensive

and complementary discussion of residuals in a multilevel model.) In both

cases, β̂ is the FIML estimate of β. Resampling of both types of residuals

may be considered for the following reason. Raw residuals are unbiased, but

inefficient, estimators. Shrunken residuals are (asymptotically) more efficient

than their raw counterparts, but are biased toward zero and may therefore

not adequately reflect the true variation in the residuals, which could have

undesirable effects upon bootstrap results. Note that the estimation of these

residuals is mathematically equivalent to the estimation of factor scores in

factor analysis. Given this similarity, it follows that one could also estimate

the residuals by a covariance preserving method [e.g., 62], so that the (sample)

covariance matrix of the estimated transformed residuals is equal to the es-

timate of the covariance matrix of the corresponding random variables. This

idea has been elaborated by Carpenter et al. [13], although their two-step

method does not coincide with one of the two optimal solutions given by

Ten Berge et al. [62].

Unlike in regression analysis, the estimated residuals in multilevel analysis

do not necessarily have an average of zero. Therefore, the residuals must be

centered first. Otherwise, the possibly nonzero average of the residuals would

lead to biased bootstrap estimators [cf. 22].
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Let {ǫ̂ij} and {δ̂j}, j = 1, . . . , J , i = 1, . . . , nj , be the sets of (centered)

estimates of the level-1 and level-2 residuals, respectively. Further, let β̂ be

the FIML estimate of β. Now, bootstrap samples are obtained by the following

procedure:

1. Draw a sample {δ∗j} of size J with replacement from the set {δ̂j} of

estimated level-2 residuals.

2. Draw J samples {ǫ∗ij} of sizes nj , j = 1, . . . , J , with replacement from the

elements of {ǫ̂ij}.
3. Generate the bootstrap samples y∗

j , j = 1, . . . , J , from y∗
j = Xjβ̂+Zjδ

∗
j+

ǫ∗j .

4. Compute estimates for all parameters of the two-level model.

5. Repeat steps 1–4 B times and compute bias-corrected estimates and boot-

strap standard errors using formulas (11.4) and (11.5).

The level-1 and level-2 residuals are assumed to be independently distributed

and therefore, in the above procedure, they are also independently resampled.

As a result, the level-1 and level-2 residuals corresponding to the same indi-

vidual observation are not kept together during resampling. If it is suspected

that δj and ǫj are not independent, a bootstrap method that is robust to

this kind of dependence is obtained by drawing the level-1 residuals ǫ∗j from

the estimated level-1 residuals for the same original level-2 unit the drawing

δ∗j happens to come from: If δ∗j = δ̂k, then {ǫ∗ij , i = 1, . . . , nj} are drawn

with replacement from {ǫ̂hk, h = 1, . . . , nk}. This is called the linked residual

bootstrap [25]. A theoretical discussion of the virtues of various forms of

linking and shrinkage in balanced two-level models without covariates is given

by Davison and Hinkley [14, p. 102].

A variant on the residual bootstrap is obtained if we consider the mul-

tilevel model as a regression model y = Xβ + r, with y = (y′
1, . . . ,y

′
J)′,

X = (X ′
1, . . . ,X

′
J)′, and where r is the resulting vector of non-i.i.d. residuals.

The covariance matrix of r is V =
⊕J

j=1 Vj . Let L be a matrix such that

LL′ = V . Then we can define ζ = L−1r, so that E (ζ ζ′) = In and r = Lζ.

Hence, given the FIML estimates, we can compute L̂ from V̂ , r̂ = y −Xβ̂,

and ζ̂ = L̂−1r̂. After centering ζ̂, residuals ζ∗ij can be drawn with replace-

ment from {ζ̂hk, k = 1, . . . , J ;h = 1, . . . , nk}, and y∗ = Xβ̂ + L̂ζ∗ can be

used in the bootstrap procedure. This method is statistically correct under

a wider range of assumptions than the residual bootstrap discussed thus far

and performed very well in a simulation study using error component models

for panel (longitudinal) data [1]. However, it uses the multilevel structure in

the data only implicitly through the covariance matrix V . It is therefore less

intuitively appealing, which explains why the method has (to our knowledge)

not been used in multilevel analysis yet.
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11.4.3 Cases Bootstrap

If the explanatory variables contained in Xj and Zj are considered to be

realizations of random variables, bootstrap samples can be obtained by re-

sampling entire cases. Therefore, this method is called the cases bootstrap.

The resampling procedure is as follows [2, 8]:

1. Draw a sample of size J with replacement from the level-2 units; that

is, draw a sample {j∗
k
, k = 1, . . . , J} (with replacement) of level-2 unit

numbers.

2. For each k, draw a sample of entire cases, with replacement, from (the

original) level-2 unit j = j∗k . This sample has the same size n∗k = nj∗
k

= nj
as the original unit from which the cases are drawn. (Note that this implies

that the total sample size of the bootstrap samples may not be n.) Then,

for each k, we have a set of data {(y∗ik,X∗
ik,Z

∗
ik), i = 1, . . . , n∗k}.

3. Compute estimates for all parameters of the two-level model.

4. Repeat steps 1–3 B times and compute bias-corrected estimates and boot-

strap standard errors using formulas (11.4) and (11.5).

An alternative formulation is: (1) draw one entire level-2 unit (yj ,Xj ,Zj),

containing nj level-1 cases, with replacement; (2) from this level-2 unit, draw a

bootstrap sample (y∗
j
,X∗

j ,Z
∗
j ) of size nj with replacement; (3) repeat steps 1

and 2 J times; (4) compute all parameter estimates for the two-level model; (5)

repeat steps 1–4 B times and compute bias-corrected estimates and bootstrap

standard errors using formulas (11.4) and (11.5).

The above procedure shows that for the cases bootstrap each observed

response yij keeps joined together with the observed scores on the explanatory

variables in Xij and Zij .

The cases bootstrap must be handled with some care. It depends on the

nature of the data whether it makes sense to resample units from both levels,

or only from level 2 or level 1. Two examples may give insight into this

problem.

1. If the level-2 units are individuals and the level-1 units are repeated

measures of some variables for these individuals [58, 59, 66], it makes

sense to resample only the individuals and keep the values of the y, X,

and Z variables constant for each individual. Thus, only level-2 units are

resampled and once a level-2 unit enters the bootstrap sample, all level-1

units within this level-2 unit are collected from the original sample and

are not resampled.

2. If the level-2 units are countries and the level-1 units are individuals

from these countries, it makes sense to resample only the individuals and

keep the countries and the country-specific (level-2) variables constant.

Now only level-1 units are resampled within each level-2 unit. The level-2
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units and their variables are taken from the original sample and are not

resampled.

Many more examples can be given in which only the level-2 units, or only the

level-1 units, or both level-1 and level-2 units should be resampled. Which of

these three possibilities is most appropriate depends mainly on two factors: (1)

the degree of randomness of the sampling at both levels, and (2) the (average)

sample size at both levels. If, for example, students (level 1) from all Dutch

universities (level 2) are compared, it is clear that the sample of universities is

nonrandom, and that only level-1 units should be resampled. The reverse may

be true for a sample of families, with all family members from each family

present in the sample.

If the sample size at one level (usually level 1) is very small [see 52, for

examples], the sample size at this level may be too small to give accurate

bootstrap results. Furthermore, resampling the units at this level may lead

to numerical problems, because it can easily happen that in the bootstrap

sample only one original unit is present, repeated J or nj times.

If the most appropriate resampling scheme is selected in this way, the

cases bootstrap leads to consistent estimators. Goldstein [26, p. 82] suggests

that this would not be the case if both levels are resampled, because the

within-group dependence would be lost, but this is incorrect. The independent

resampling at level 1 is conditional on the level-2 unit; observations from

different original level-2 units cannot be assigned to the same level-2 unit in

the resampling. Conditional on the level-2 unit, the observations at level 1

are assumed independent in the model. This is exactly how the resampling

is done and hence it gives consistent estimators. After resampling at level 1,

the bootstrap observations within the same level-2 unit share the same (un-

conditional) dependence as in the original sample. However, cases bootstrap

estimators are typically less efficient than parametric and residuals bootstrap,

but this is because they use considerable weaker assumptions. For example,

cases bootstrap is still consistent under heteroskedasticity. Thus, as is often

the case, there is a trade-off between robustness and efficiency.

11.4.4 Bootstrap Confidence Intervals

Up till now, we have used the bootstrap only for bias correction and computa-

tion of standard errors. However, an important and nontrivial application of

the bootstrap is the computation of confidence intervals. We will now discuss

a number of different types of bootstrap confidence intervals for a typical

parameter θ with true value θ0. We will only discuss two-sided intervals;

one-sided intervals are defined analogously. The intended nominal coverage of

the confidence interval will be denoted by 1− α, so that the probability that

the interval contains the true parameter value should be approximately 1− α.
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Notation

Before we introduce the different bootstrap confidence intervals, we will in-

troduce some useful notation. Let Φ(z) be the standard normal distribution

function. Then zα is the α-th quantile of the standard normal distribution,

zα = Φ−1(α). Let the distribution function of the estimator θ̂ be H(θ), that

is, H(θ) = Pr(θ̂ ≤ θ). A consistent estimator of this distribution function is

obtained from the B bootstrap replications θ∗b , b = 1, . . . , B, of θ̂:

Ĥ(θ) =
#{b : θ∗b ≤ θ}

B
. (11.12)

Note that Ĥ is invariant under monotonic transformation, in the sense that

if g(θ) is a monotonically increasing function of θ, then the estimate of its

distribution function is

H̃(g(θ)) =
#{b : g(θ∗b ) ≤ g(θ)}

B
= Ĥ(θ) .

This property has been used in the derivations of some of the confidence

intervals described below.

Bootstrap Normal Confidence Interval

If the assumptions of the model, including the normality assumptions, hold,

then the estimators are asymptotically normally distributed with a certain

covariance matrix, derived from the likelihood function. Hence, for our typical

parameter θ, we have √
n(θ̂ − θ0) L

=⇒N (0, ψ), (11.13)

say. The distribution of θ̂−θ0 can be approximated by the normal distribution

with mean zero and variance ψ̂/n, where ψ̂ is a consistent estimator of ψ

derived from the likelihood function. The usual confidence intervals for θ0 are

therefore [
θ̂ + z 1

2α
ŝeN (θ̂); θ̂ + z1− 1

2α
ŝeN (θ̂)

]
, (11.14)

where ŝeN (θ̂) =
√
ψ̂/n is the estimator of the asymptotic standard devia-

tion of θ̂. Under mild regularity conditions, the estimators are asymptotically

normally distributed, even if the random terms in the model are not. In that

case, ŝeN may not be a consistent estimator of the standard deviation of

the estimators of the variance components, although it is still consistent for

the fixed parameters. This suggests replacing ŝeN in (11.14) by a bootstrap

estimator. This gives the bootstrap normal confidence interval

[
θ̂ + z 1

2α
ŝeB(θ̂); θ̂ + z1− 1

2α
ŝeB(θ̂)

]
, (11.15)
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in which ŝeB is the bootstrap estimator of the standard deviation of θ̂. Alter-

natively, one might use
[
θ̂B + z 1

2α
ŝeB(θ̂); θ̂B + z1− 1

2α
ŝeB(θ̂)

]
, (11.16)

where θ̂B is the bootstrap bias-corrected estimator of θ.

The bootstrap normal confidence interval relaxes the assumption of nor-

mality of the data, but it still heavily relies on the asymptotic normality of

the estimators. In finite samples, however, the estimators may not be approx-

imately normally distributed [7].

Hall’s Percentile Interval

Hall’s percentile interval [28, p. 12] takes the bootstrap normal interval (11.15)

as its starting point. That interval is based on the idea that

Pr
(
θ̂ + z 1

2α
ŝeB(θ̂) ≤ θ0 ≤ θ̂ + z1− 1

2α
ŝeB(θ̂)

)
−→ 1− α, (11.17)

because θ̂ is asymptotically normally distributed and ŝeB(θ̂) is a consistent

estimator of its standard deviation. In finite samples, however, the distribution

of θ̂ may not be approximately normal [7]. Therefore, instead of using quantiles

of the normal distribution, using bootstrap quantiles may give more accurate

results.

To derive the necessary bootstrap quantiles, let us rewrite (11.17) into the

following form:

Pr
(
z 1

2α
ŝeB(θ̂) ≤ θ0 − θ̂ ≤ z1− 1

2α
ŝeB(θ̂)

)
−→ 1− α.

The estimated quantiles q 1
2α

= z 1
2α

ŝeB(θ̂) and q1− 1
2α

= z1− 1
2α

ŝeB(θ̂) of the

normal distribution have to be replaced by corresponding quantiles of the

distribution of θ0− θ̂. These are estimated by quantiles q̂ 1
2α

and q̂1− 1
2α

of the

bootstrap distribution of θ̂−θ∗. From the definition Pr(θ̂−θ∗ ≤ q̂ 1
2α

) = 1
2α, it

follows that q̂ 1
2α

= θ̂−Ĥ−1(1− 1
2α) and, consequently, the confidence interval

for θ0 becomes the interval [θ̂ + q̂ 1
2α

; θ̂ + q̂1− 1
2α

], which reduces to
[

2θ̂ − Ĥ−1(1− 1
2α); 2θ̂ − Ĥ−1( 1

2α)
]
. (11.18)

Note that the upper quantile of Ĥ ends up (in reverse) in the lower confidence

point and vice versa. This tends to give a small bias and skewness correction.

Percentile-t

The percentile-t (also called bootstrap-t) is a combination of the ideas of the

bootstrap normal and Hall’s percentile intervals. It is derived by rewriting

(11.17) into the following form:
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Pr

(
z 1

2α
≤ θ0 − θ̂

ŝeB(θ̂)
≤ z1− 1

2α

)
−→ 1− α. (11.19)

The quantiles of the normal distribution are now replaced by quantiles of the

distribution of t̂ = (θ0 − θ̂)/ŝeB(θ̂). These are estimated by quantiles of the

bootstrap distribution of t∗ = (θ̂ − θ∗)/se∗B(θ∗). Let Ĝ(t) be the bootstrap-

estimated distribution function of this quantity, i.e.,

Ĝ(t) =

#

{
b :

θ̂ − θ∗b
se∗B,b(θ

∗)
≤ t

}

B
,

and let t̂ 1
2α

and t̂1− 1
2α

be the 1
2α-th and (1 − 1

2α)-th quantiles of Ĝ, respec-

tively; that is, t̂ 1
2α

= Ĝ−1( 1
2α) and t̂1− 1

2α
= Ĝ−1(1− 1

2α). The percentile-t

interval is obtained by replacing z 1
2α

by t̂ 1
2α

and z1− 1
2α

by t̂1− 1
2α

in (11.15)

and is thus [
θ̂ + t̂ 1

2α
ŝeB(θ̂); θ̂ + t̂1− 1

2α
ŝeB(θ̂)

]
. (11.20)

This confidence interval requires an estimate se∗B,b(θ
∗) of the standard de-

viation of θ∗ for each bootstrap resample b. This is usually obtained by per-

forming a small bootstrap within each bootstrap resample. Thus, for example,

B = 1000 bootstrap samples are drawn with replacement from the original

sample and within each sample b = 1, . . . , B, B2 = 25 samples are drawn with

replacement from the bootstrap sample. From the B2 samples, se∗B,b(θ
∗) is

obtained. This means that B · B2 bootstrap samples have to be drawn and

B · B2 times the estimator of θ has to be computed. In the example, this

amounts to 1000 ·25 = 25,000 bootstrap samples and 25,000 times computing

the estimator.

The percentile-t interval tends to perform better than the bootstrap nor-

mal and Hall’s percentile interval, because it uses the nonnormality of the

distribution of the estimator (as opposed to the former) and t̂ is more nearly

pivotal than θ0 − θ̂ in a number of important cases, which means that its

distribution depends less on the parameters that are being estimated. The

quantity t̂ is not always nearly pivotal, however, and in those cases in which

it is not, the percentile-t confidence interval performs less well. A complicated

extension that aims at transforming the parameter to a near-pivotal quantity

is the variance stabilized percentile-t interval, see, e.g., Efron and Tibshirani

[20, Section 12.6].

Efron’s Percentile Interval

The idea behind this interval is quite different from the ideas behind the

bootstrap normal interval and its extensions. It was stated above that Ĥ(θ) is a
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consistent estimator of the distribution function of θ̂. Therefore, an asymptotic

1−α confidence interval can be obtained by taking the relevant quantiles from

Ĥ, which leads to the interval

[
Ĥ−1( 1

2α); Ĥ−1(1− 1
2α)

]
. (11.21)

Efron’s percentile interval does not rely on the asymptotic normality of θ̂. Its

coverage performance in finite samples is, however, frequently not very well,

because the end points of the interval tend to be a little biased. Note the

difference with Hall’s percentile interval. Here, percentiles of the distribution

of θ̂ are approximated by percentiles of the distribution of θ∗, whereas in Hall’s

percentile interval, percentiles of the distribution of θ0 − θ̂ are approximated

by percentiles of the distribution of θ̂ − θ∗.

Bias-Corrected (BC) and Bias-Corrected and Accelerated (BCa)

Percentile Intervals

The BC and BCa intervals have been introduced to correct for some bias in

the endpoints of Efron’s percentile interval (11.21). Assume that there exists

a monotonically increasing function g(θ) such that

g(θ̂)− g(θ0)
1 + ag(θ0)

∼ N (−z0, 1). (11.22)

The constant z0 allows for some bias in the estimator g(θ̂) of g(θ0) and the

constant a, called the acceleration constant, expresses the speed at which

the standard deviation of the estimator increases with the parameter being

estimated. In typical estimation problems, a = O(n−1/2) and z0 = O(n−1/2).

From the likelihood based on (11.22), it can now be derived that the exact

confidence interval for θ0 is equal, up to order O(n−1), to the BCa interval

given by [
Ĥ−1

(
Φ(z[ 12α])

)
; Ĥ−1

(
Φ(z[1− 1

2α])
)]
, (11.23)

where

z[ 12α] = z0 +
z0 + z 1

2α

1− a(z0 + z 1
2α

)

and z[1− 1
2α] is similarly defined. Note that this interval does not depend on

the specific transformation g(·), which follows from the invariance property of

Ĥ discussed earlier. In practice, the constants z0 and a have to be estimated,

but this does not alter the results up to order O(n−1). Moreover, even if

(11.22) does not hold, the BCa endpoints are correct up to order O(n−1),

whereas in many cases the endpoints of the intervals discussed previously are

only correct up to order O(n−1/2).



11 Resampling Multilevel Models 419

A simple consistent estimator of z0 is ẑ0 = Φ−1
(
Ĥ(θ̂)

)
. The estimation

of a is the most important problem with the BCa method. If it is assumed

that a = 0, we obtain the BC interval, which is discussed, e.g., in Efron [18].

Usually, however, the BC interval is only correct up to order O(n−1/2) and is

therefore typically worse than the BCa interval.

Efron [19] provided several formulas for a. In a one-parameter para-

metric model where θ̂ is the ML estimator, a good approximation for a is

a ≈ 1
6Skewθ=θ̂(l̇θ), where “Skew” denotes the skewness of a random variable

and l̇θ is the score function (derivative of the loglikelihood with respect to θ).

When more parameters are to be estimated, which is the case in multilevel

analysis, these results are no longer valid. Efron [19] gave a formula for a based

on reducing the multiparameter problem to a one-parameter problem defined

by the least favorable direction. This is defined by the following formulas:

Let fη(y) be the density function of the data dependent on a parameter

vector η, and let l̈η̂ = ∂2 log fη(y)/∂η ∂η′, evaluated in the value η̂ of the

estimator. Let θ = t(η) be the parameter of interest and let ∇̂ = ∂t(η)/∂η,

evaluated in η̂. The least favorable direction at η = η̂ is now defined as

µ̂ = (l̈η̂)−1∇̂. The multiparameter problem is now reduced to a one-parameter

problem by considering only parameter values of the form η̂ + λµ̂. Now,

a ≈ 1
6Skewλ=0[∂ log fη̂+λµ̂(y∗)/∂λ]. Note that the parameter vector is called

η in this definition. This formula may be used for the parametric bootstrap

in multilevel analysis, although the formulas are quite complicated. This

was done for a simple two-level variance components model by LeBlond [36,

Section 7.3.4]. Usually, confidence intervals are required for each parameter

separately, so that t(η) = e′iη and ∇̂ = ei, where ei is the i-th unit vector.

For the nonparametric bootstrap, the standard formula for a is based

on the empirical influence function of θ̂. This is, however, not well defined

for multilevel data, so that this formula cannot be used. Tu and Zhang [64]

proposed to estimate a by the jackknife according to the formula

âJ =
(n− 1)3

6n3(σ̂2
J(1))

3/2

n∑

i=1

(
θ̂(i) − θ̄(1)

)3

. (11.24)

A similar formula for a was used by Frangos and Schucany [21], who also

studied a corresponding method using the positive jackknife, which extends

the data set by duplicating a data point, so that we get a sample size of

n + 1 and estimators θ̂(+i) instead of θ̂(i) for the standard jackknife, which

they call negative jackknife. For multilevel data, we have to replace these

jackknife formulas with grouped jackknife methods for unequal group sizes

(see Section 11.5). It is, however, doubtful whether the jackknife for multilevel

models will give a reasonable estimate of a third-order moment. A bootstrap

analog of (11.24) would be
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âB =
1

6

1

B

B∑

b=1

(
θ∗b − θ∗(.)

)3

[
1

B

B∑

b=1

(
θ∗b − θ∗(.)

)2
]3/2

.

It is still an open question whether this gives reasonable results.

11.5 Jackknifing Two-Level Models

In Section 11.3, we discussed the classic jackknife approach to estimating the

bias of an estimator and to obtain a bias-corrected version of this estimator.

Using the pseudo-values, an accompanying estimator for the variance of the

(original or bias-corrected) estimator, and hence for the standard error, can

be obtained as well.

The jacknife version we discussed is based on subsamples obtained from

the original sample by successively removing mutually exclusive groups of

observations of size m. Furthermore, it relies on the assumption of indepen-

dently and identically distributed observations. Both features influence the

formulation of a jackknife resampling scheme for multilevel data and models.

The independence assumption restricts the application of the jackknife to

the highest level in the data. In the two-level case, independence can only be

assumed for the groups. Within the groups, data are dependent. Consequently,

a multilevel jackknife approach must be based on subsamples obtained by

removing complete level-2 units. In fact, Wolter [72, Section 4.6] already stated

that the delete-m jackknife can be used in cluster sampling, when the data

within clusters are dependent. In multilevel data, however, groups are usually

not of equal size m. Therefore, to make the jackknife suitable for multilevel

data and models, the delete-m jackknife needs to be generalized to a grouped

jackknife for unequal group sizes, called the delete-mj jackknife by Busing

et al. [10].

11.5.1 Delete-mj Jackknife

To apply the delete-m jackknife (with m > 1, and n a multiple of m), the

sample is divided into g mutually exclusive groups of size m, with g = n/m.

In multilevel analysis, the sample is divided into J groups of (usually) varying

size nj ; that is, nj is not equal for each group and n/nj will not necessarily

be equal to J . As a result, the formulas discussed earlier have to be adapted

slightly. Let θ̂(j∗) be an estimator of θ based on a sample from which group j

with size nj is removed. The delete-mj jackknife estimator of θ is now given

by
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θ̂J(mj)
= Jθ̂n −

J∑

j=1

(
1− nj

n

)
θ̂(j∗). (11.25)

The estimator θ̂J(mj) can be justified as follows. Consider an estimator θ̂n of

a parameter θ obtained from a sample of size n from some distribution. In

general, the expected value of such estimators can be written as the true value

θ0 plus a power series expansion in 1/n; that is,

E (θ̂n) = θ0 +
b1
n

+
b2
n2

+
b3
n3

+ · · · , (11.26)

where b1, b2, . . . are unknown constants, independent of sample size, and fre-

quently not equal to zero [see, e.g., 49, 55]. If b1 6= 0, the bias in (11.26) is

clearly of order n−1. Let hj = n/nj . Then, the total sample size can be written

as n = njhj . Hence,

E (hj θ̂n) = hjθ0 +
b1
nj

+
b2
hjn2

j

+
b3
h2
jn

3
j

+ · · · (11.27)

and

E (θ̂(j∗)) = θ0 +
b1

(hj − 1)nj
+

b2
(hj − 1)2n2

j

+
b3

(hj − 1)3n3
j

+ · · · . (11.28)

Combining (11.27) and (11.28) gives

E
[
hj θ̂n − (hj − 1)θ̂(j∗)

]

= θ0 +
b2
n2
j

(
1

hj
− 1

hj − 1

)
+
b3
n3
j

(
1

h2
j

− 1

(hj − 1)2

)
+ · · ·

= θ0 −
b2
n2

hj
hj − 1

− b3
n3

hj(2hj − 1)

(hj − 1)2
+ · · · . (11.29)

Finally, to prevent loss of efficiency, the weighted average of the J possible

estimators is used [cf. 49]. This gives

θ̂J(mj) =
J∑

j=1

nj
n

(
hj θ̂n − (hj − 1)θ̂(j∗)

)

= Jθ̂n −
J∑

j=1

(
1− nj

n

)
θ̂(j∗). (11.30)

The expectation of (11.30) is
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E




J∑

j=1

nj
n

(
hj θ̂n − (hj − 1)θ̂(j∗)

)



=
J∑

j=1

nj
n
θ0 −

J∑

j=1

1

hj

(
b2
n2

hj
hj − 1

)
−

J∑

j=1

1

hj

(
b3
n3

hj(2hj − 1)

(hj − 1)2

)
+ · · ·

= θ0 −
b2
n2

J∑

j=1

1

hj − 1
− b3
n3

J∑

j=1

2hj − 1

(hj − 1)2
+ · · · ,

so that the bias is of order n−2 if b2 6= 0 and if nj is relatively small compared

to the total sample size n.

The corresponding estimator of the variance of θ̂J(mj), based on the

pseudo-values

θ̃(j∗) = hj θ̂n − (hj − 1)θ̂(j∗), j∗ = 1, . . . , J,

is given by

σ̂2
J(mj)

=
1

J

J∑

j=1

1

hj − 1

(
θ̃(j∗) − θ̂J(mj)

)2

=
1

J

J∑

j=1

1

hj − 1

(
hj θ̂n − (hj − 1)θ̂(j∗)

− Jθ̂n +
J∑

k=1

(
1− nk

n

)
θ̂(k∗)

)2

.

(11.31)

Note that when all groups are of equal size, (11.10) follows from (11.30),

that is, the delete-mj jackknife estimator reduces to the delete-m jackknife

estimator. Analogously, (11.31) reduces to the expression for the delete-m

jackknife variance estimator (11.11).

11.5.2 Jackknife Confidence Intervals

The delete-mj jackknife estimator and the delete-mj jackknife variance esti-

mator can be used to construct the jackknife normal confidence interval
[
θ̂J(mj) + z 1

2α
σ̂J(mj); θ̂J(mj) + z1− 1

2α
σ̂J(mj)

]
. (11.32)

The jackknife normal confidence interval relaxes the normality assumption

for the data. However, the interval relies on the asymptotic normality of the

estimators, which may in finite samples not be approximately satisfied [7].

Other jackknife confidence intervals are not applicable or are probably worse,

due to the limited use of the pseudo-values.
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11.6 Software

In this section, we briefly discuss resampling options within the available mul-

tilevel software packages. Basically, there are two programs containing built-in

options for resampling: MLwiN [51] and MLA [11]. The other major programs for

multilevel analysis, HLM [53] and VARCL [38], do not contain resampling options.

In principle, bootstrap and jackknife methods as discussed in the preceding

sections could be implemented within general-purpose packages such as SAS,

SPSS, R, and S-Plus. However, these procedures need to be entirely developed

and programmed by the user.

11.6.1 MLwiN

Goldstein [24] proposed a parametric bootstrap procedure with iterative bias

correction, based on the results of Kuk [32]. This procedure has been imple-

mented in the MLwiN program (versions 1.1 and higher), under the name of

iterated bootstrap. In a series of steps, bootstrap simulation and bias correc-

tion are performed alternatingly. The process starts by using an estimated

parameter as the “true value” from which a set of (parametric) bootstrap

replicates is obtained. From these bootstrap replicates, the bias-corrected es-

timate is computed. In the next step, the corrected estimate serves as the “true

value” for a new set of bootstrap replicates. From this set, an update for the

bias-corrected estimate is computed, and so on. Steps are repeated until the

successive corrected estimates converge. Although Rasbash et al. [51] present

a promising illustration of this iterated bootstrap, they still suggest using the

procedure with care. This phrasing is also used by Goldstein [26, p. 126],

who states that a certain correction to the bootstrap estimates must be done

to obtain “approximately correct standard errors and quantile estimates.”

He also states (on p. 84) an important problem with the iterated bootstrap,

namely that the procedure may not converge.

A second bootstrap method that is implemented in MLwiN is the residual

(“nonparametric”) bootstrap with covariance-preserving residuals as proposed

by Carpenter et al. [13] and mentioned earlier.

11.6.2 MLA

The MLA program has been developed primarily for research on resampling

methods in two-level models. It is extensively documented in Busing et al.

[8, 9, 11]. Langer [35] discusses in detail many examples of analyses with

MLA. The latest version of MLA is version 4.1. Among several options mainly

reflecting the research interests of the authors, the program provides FIML

estimates of parameters and standard errors, and their counterparts obtained

with the parametric bootstrap, the residual bootstrap with raw and shrunken
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residuals with and without linking, and the cases bootstrap. Furthermore,

a number of bootstrap confidence intervals have been implemented, viz. the

bootstrap normal confidence interval, the percentile-t interval, Efron’s per-

centile interval, and the bias-corrected (BC) percentile interval. A final option

of interest for our discussion here is the delete-mj jackknife.

11.7 Empirical Evidence

Bootstrap and jackknife estimation applied to multilevel models has not yet

been studied by many authors, and for some specific models or situations only.

Information about the performance of the different approaches comes from a

relatively limited number of Monte Carlo simulation studies. In this section,

we summarize the results that are most relevant for our discussion.

11.7.1 Bootstrap Bias Correction and Standard Errors

Van der Leeden et al. [68] evaluated the parametric bootstrap, the two versions

of the residual bootstrap, and the cases bootstrap. In an extensive simulation

study they addressed the question whether these bootstrap estimators of

model parameters and standard errors are less biased and have smaller mean

squared error (MSE) than their FIML counterparts. Data were generated for

a two-level model containing one predictor variable at each level. The (condi-

tional) intraclass correlation was set to 0.2, and the intercept-slope correlation

to 0.5. Assumptions were violated by using moderately small sample sizes

(especially at level 2), and severely skewed distributions for the residuals.

The main conclusion of this study was that the shrunken residual bootstrap

works for variance component estimation; that is, it works for cases like the one

simulated (small sample size at level 2 and heavily skewed distribution of the

residuals). In such cases, this type of bootstrap provides nearly unbiased esti-

mators of the variance components at both levels, with relatively small MSE.

It may be considered a valuable alternative to FIML estimation, especially

when the interest is in estimating the “true value” of a variance component.

Regarding bias, the other three bootstrap methods do not produce useful

results for this case, although the cases bootstrap has MSEs similar to those

of the shrunken residual bootstrap.

Results confirmed the finding that bias in the FIML fixed parameter esti-

mators is negligible [cf. 5, 40]. The application of the bootstrap to estimate

these parameters has clearly no surplus value. However, bootstrap confidence

intervals may be useful for testing the fixed parameters, since their FIML

standard errors can be substantially downward biased, making the commonly

used t-ratios suspicious.
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The biases of the standard errors are about equally bad for FIML and

the different bootstrap methods. Compared to the other methods, the cases

bootstrap seemed to perform best. This holds for the MSEs of the standard

errors as well. The cases bootstrap yielded standard errors with the relatively

most satisfactory MSEs.

Although the results of Van der Leeden et al. [68] show that the shrunken

bootstrap method works for the case they had simulated, the study merely

provides empirical evidence in the same tradition as the bootstrap method

itself: using raw computing power. The four bootstrap methods differ in their

assumptions. The extent to which these are violated in the simulation study

gives a little grip on the explanation of the findings.

Compared to the other methods, the parametric bootstrap requires the

strongest assumptions. In particular, it leans heavily upon the assumption of

a (multivariate) normal distribution for the residuals. In the simulation, this

is exactly the assumption that is severely violated. This explains the relatively

bad performance here. In cases where data are less skewed (and the model is

specified correctly), we expect this method to yield more satisfactory results.

For the other methods, matters are more complicated. In the simulation

study, we know that there is homoskedasticity and that the model is correct.

Under these conditions, we should expect good results for the cases bootstrap,

as well as for the residual bootstrap. However, this is not corroborated for the

cases bootstrap. Still, from a theoretical perspective, this method seems to

be the most attractive since it comes closest to the ideal of an assumption-

free method. To explain the bad performance of the cases bootstrap in this

study, we could hypothesize that this method is possibly more sensitive to the

distorting effects of small sample size than the residual bootstrap. In the study,

this method was implemented in its most simple, conventional form. Future

research may include several ways of refining, for instance by balancing, to

improve the performance of this method.

The residual bootstrap treats the regression design as fixed, but “at the

cost” (in contrast to the cases bootstrap, which can deal with heteroskedastic-

ity) of assuming homoskedasticity, that is, a single empirical error distribution

for both levels. In the study, this method works very satisfactory, but only

as far as the resampling of shrunken residuals is concerned. Apparently, these

residuals adequately reflect the true variation of the residuals in the popula-

tion, whereas the raw residuals do not.

The simulation results affirm the theoretical insight that a z-test for the

null hypothesis that a variance component is zero is unreliable and not well

founded. Distributions of the variance component estimators are far from

normal. Therefore, chi-square tests and likelihood ratio tests have been rec-

ommended instead. However, likelihood ratio tests are still founded upon the

assumption of normality, whereas chi-square tests rely on asymptotic prop-

erties (a sufficiently large sample size at level 2). Bootstrap methods may
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provide nonparametric confidence intervals that could replace (or could be

used in addition to) these approaches.

The discussion of resampling methods has so far been limited to FIML

estimation. As stated in Section 11.1, in some cases the bias of FIML is

well understood. An accepted alternative procedure for the estimation of the

variance components is the method of restricted maximum likelihood (REML),

which is claimed to provide less biased estimators [e.g., 56, Chapter 6]. There

are, however, two drawbacks associated with this approach. First, REML still

relies on the assumption of normality, whereas the bootstrap does not. Second,

compared to FIML, the use of REML limits the application of likelihood ratio

tests. REML optimizes a transformed likelihood function that does not contain

the fixed parameters, that is, with respect to the variance components only.

Hence, changes in model specification can only be tested as far as the random

part is concerned. Nevertheless, it is useful and necessary to compare REML

with bootstrap estimation, in particular by the method of shrunken residuals.

Bootstrapping the REML estimators is yet another option.

11.7.2 Bootstrap Confidence Intervals

Meijer et al. [42] studied the performance of bootstrap confidence intervals

for multilevel models by means of a simulation study. They used essentially

the same design as Van der Leeden et al. [68] in their study of bootstrap

bias correction and standard errors as discussed above. The only exception

is that Meijer et al. [42] only studied the cases bootstrap. They compared

the bootstrap normal, percentile-t, Efron’s percentile, and BC intervals to

standard intervals for FIML and REML estimators.

Their results showed that the different bootstrap confidence intervals of the

fixed parameters were all satisfactory. The FIML and REML confidence intervals

of the fixed parameters were also satisfactory, except the confidence intervals

for the intercept, which showed some undercoverage. The FIML and REML con-

fidence intervals for the variance components were dramatically bad, with a

coverage of about 40% for a nominal value of 95%. The bootstrap confidence

intervals studied were a great improvement, but with coverage percentages

around 70%, they were still far from satisfactory. Hence, further research

is needed to find improvements. Possibly, the BCa interval or the double

bootstrap (see below) may give satisfactory results, given their higher-order

accuracies.

11.7.3 Jackknife

Busing et al. [10] studied the performance of the delete-mj jackknife in a

simulation study. Data for a (two-level) random effects ANOVA model were

generated, that is, an intercept-only model including one variance component
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at each level. Residuals were drawn from a skewed distribution and the in-

traclass correlation was set to 0.2. In the simulation design, the number of

groups J , group sizes nj , and the skewness of the residual distributions were

varied in turn.

The results showed that the delete-mj jackknife estimator offers a minor

reduction in bias compared to FIML and REML estimators, in exchange for a

minor decrease in efficiency. A distinct reduction in bias was found for the

delete-mj standard error. When sample size is moderate, this standard error

even improves in efficiency. It can be concluded that the delete-mj jackknife

standard errors are to be preferred to FIML and REML standard errors in the

situations studied.

Due to the assumption of independence, the application of the jackknife for

multilevel models is restricted to the highest level in the hierarchy. However,

this limitation makes the implementation of the jackknife relatively simple.

Researchers may easily use this jackknife method within their own general-

purpose packages (e.g., SAS, S-Plus, R).

By using a very simple multilevel model in the simulation study, the merits

and drawbacks of the presented jackknife approach have not been fully ex-

plored yet. More research is needed to reveal the full potential of the jackknife

for multilevel models.

11.8 Extensions

Up till now, we have limited our discussion of bootstrap and jackknife pro-

cedures for multilevel models to the simple two-level mixed linear model,

estimated with FIML. However, the discussion generalizes straightforwardly to

other types of estimation methods, such as REML or two-step OLS (although in

such cases, shrunken residuals may not be appropriate) and to more levels, in

which case the delete-mj jackknife must be applied to the highest level. Also,

the methods, especially cases bootstrap, apply with little or no adaptation to

estimators that handle missing data, such as multiple imputation and the EM

algorithm [39].

Moreover, from the treatment in this chapter, resampling methods for

other types of models can be easily derived. If a parametric distribution

for the random terms is assumed, for example with generalized linear mixed

models [54], the parametric bootstrap can be applied [4, 32]. If all variables are

assumed to be random, as for example in many multilevel structural equation

models [37, 46], the cases bootstrap or delete-mj jackknife can be applied.

(The multilevel SEM model of du Toit and du Toit [17] includes nonrandom

covariates, though.) If (some of) the covariates are assumed nonrandom and

residuals can be estimated meaningfully, as in nonlinear regression models,

the residual bootstrap can be applied.
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Note, however, that some care is needed in the application of the residual

bootstrap, because the residuals can in some cases not be estimated sat-

isfactorily or are not independent of the covariates. A typical example is

a multilevel logistic regression (or mixed logit) model [e.g., 29], where the

observable dependent variable yi is binary. We may postulate an underlying

continuous random variable that satisfies a regression model with continuous

residuals, but these cannot be estimated. On the other hand, we could compute

the residuals as r̂i = yi − E (yi | Xi), the values of the dependent variable

minus their (conditional) expectations according to the model. If we would

perform a residual bootstrap using these residuals, the bootstrap-generated

values y∗i = E (yi | Xi) + r∗i of the dependent variable would not be binary

anymore. Moreover, the distribution of the residuals ri depends on the value

of the conditional expectation, E (yi |Xi).

With non-hierarchical models [50], parametric and residual bootstrap tech-

niques can generally be used, but cases bootstrap sampling and jackknife are

problematic due to the dependency structure (the data cannot be decomposed

in disjoint independent subsets). It may be possible to define versions of cases

bootstrap analogous to the moving blocks bootstrap for time series that give

satisfactory results, but this is not straightforward.

In the discussion in this chapter, the various characteristics of the distribu-

tion F̂n were obtained by simple random sampling from this distribution. In

many cases, this may be computationally inefficient and with too small values

of B lead to unstable estimators. The literature on Monte Carlo methods

contains a number of strategies to improve the computational and statistical

efficiency, such as antithetic sampling, importance sampling, and control vari-

ates. These, as well as a number of bootstrap-specific issues such as balanced

resampling, are discussed by, e.g., Hall [28, Appendix II], Efron and Tibshirani

[20, Chapter 23], and Davison and Hinkley [14, Chapter 9].

As we have stated, the bootstrap confidence intervals studied by Meijer

et al. [42] do not perform satisfactorily, although they have better coverage

rates than the standard FIML and REML confidence intervals. It is expected that

the BCa interval has better coverage, but the estimation of the acceleration

constant is a little problematic in multilevel data. A promising alternative is

the double bootstrap, which is a computationally highly intensive method, but

this may nevertheless be feasible with today’s (and tomorrow’s) computers.

The double bootstrap is obtained by performing a bootstrap within each

bootstrap sample. The coverage rates of the bootstrap confidence intervals

at the lower level of simulation are used to determine the quantiles of the

bootstrap-estimated distribution function Ĥ(θ) at the higher level that must

be used in order to obtain a suitable confidence interval. The theoretical prop-

erties of the double bootstrap are comparable to those of the BCa method,

but the computations are easier, although they are more extensive as well.
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See, e.g., McCullough and Vinod [41] for the details of the implementation

and the statistical properties of the double bootstrap.

Finally, note that, although the most obvious parameters θ that may be

subjected to bootstrap and jackknife procedures are the fixed parameters and

variance components of the multilevel model, we can let θ be almost any

characteristic of the model or the data, as illustrated by LeBlond [36].
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12.1 Introduction

Multilevel analysis allows characteristics of different groups to be included in

models of individual behavior. Most analyses of social data entail the analysis

of data with built-in hierarchies, usually obtained as a consequence of complex

sampling methods. At each level of the hierarchy, a different set of variables

may be defined.

Random regression models have been developed to model continuous data

[6], and also dichotomous repeated measures data [16] where certain char-

acteristics of the data preclude the use of traditional ANOVA models. Ran-

dom regression models, however, do not allow for the possibility of including

higher-level variables. It has been shown by Aitkin and Longford [2] that the

aggregation of variables over individual observations may lead to misleading

results. Both the aggregation of individual variables to a higher level of obser-

vations and the disaggregation of higher-order variables to an individual level

in the analysis of multilevel data have been shown to be inadequate [11, 20].

Thus, the need for statistical models that take account of the sampling scheme

is well recognized.

The use of multilevel models was initially hampered by the fact that

closed-form mathematical expressions to estimate the variance and covariance

components have only been available for perfectly balanced designs. Iterative

numerical procedures must be used to obtain efficient estimates for unbal-

anced designs. Among the procedures suggested are full maximum likelihood

[18, 31] and restricted maximum likelihood as proposed by Mason et al. [32]

and Raudenbush and Bryk [42]. Another approach is the procedure of Bayes

estimation [13]. Fitting the Mason et al. model, using the method of scoring,

was illustrated by de Leeuw and Kreft [12].
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At the same time, interest in latent variables, i.e., variables that can

not be directly observed or alternatively only imperfectly observed, led to

theory providing for the definition, fitting, and testing of general models for

linear structural relations with latent variables for data from simple random

sample(s). General applications based on this theory followed important con-

tributions by Jöreskog and Sörbom [24] and McArdle and McDonald [33].

A more general model for multilevel structural relations, accommodating

latent variables and the possibility of missing data at any level of the hierarchy

and providing the combination of developments in these two fields, was a

logical next step. In papers by Goldstein and McDonald [19], McDonald and

Goldstein [36], Lee [28], and McDonald [34, 35], such a model was proposed.

Attention was also given to the problem of estimation in the case of both

balanced and unbalanced designs for linear structural relations in two-level

data. Muthén [38, 39, 40] proposed a partial maximum likelihood solution as

simplification in the case of an unbalanced design, entailing the computation

of a single between-groups covariance matrix and an ad hoc estimator/scaling

parameter. An overview of the latter can be found in Hox [21]. Raudenbush

[41], Lee and Poon [29], and Liang and Bentler [30] developed full maximum

likelihood estimators using the EM algorithm.

Liang and Bentler [30] discussed the similarities and differences between

the various formulations of two-level structural equation models and presented

a computationally efficient EM algorithm for obtaining ML estimates for un-

balanced designs with cases missing at random.

In this chapter we describe a general two-level structural model that is

similar to Liang and Bentler [30], the main difference being the estimation

procedure. In our approach, we use the Fisher scoring [see 10] algorithm

to obtain ML estimates. An advantage of this method is that it uses the

expected values of the second-order derivatives and hence standard errors of

the estimated parameters are readily available. We also make use of the spe-

cial structure of the population covariance matrix to derive computationally

efficient expressions (cf. Appendix 12.B) for the log-likelihood function and

derivatives. An algorithm for full maximum likelihood estimation of the model

is proposed, and a likelihood-based discrepancy function and test for goodness

of fit is derived. Two examples, illustrating the implementation of the results

for unbalanced designs with missing data at both levels of the hierarchy, are

given.

12.2 A General Two-Level Structural Equation Model

We use McDonald’s [34] formulation of a multilevel structural equations

model (cf. (12.1)). In his paper, he derived minimal sufficient statistics for a
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balanced sampling design, i.e., nj = n, j = 1, 2, . . . , J , no missing values, and

unrestricted means.

We have concentrated on the full information normal maximum likelihood

procedure for these types of models when data are missing at random and

the samples lead to an unbalanced design. Particular attention is paid to the

derivation of results that can be directly used by researchers who would like

to write their own multilevel SEM programs.

Suppose we have measures yijk on k = 1, 2, . . . , p variables from i =

1, 2, . . . , nj level-1 units (for example students) from j = 1, 2, . . . , J randomly

sampled level-2 units (for example schools). It is further supposed that we

have xjl, l = 1, 2, . . . , q, variables characterizing the level-2 units.

For the j-th level-2 unit, we write the observed data as

y′
j = (y′

1j ,y
′
2j , . . . ,y

′
njj ,x

′
j),

where

y′
ij = (yij1, yij2, . . . , yijp)

and

x′
j = (xj1, xj2, . . . , xjq).

We assume that yij and xj can be written as

yij = X(y)ijβy + Sijvj + Sijuij , (12.1)

xj = X(x)jβx +Rjwj . (12.2)

It is assumed that v1,v2, . . . ,vN are i.i.d. N (∅,ΣB) and that u1j , u2j , . . . ,

unjj are i.i.d. N (∅,ΣW ). It is additionally assumed that Cov(vj ,u
′
ij) = ∅ for

j = 1, 2, . . . , J ; i = 1, 2, . . . , nj .

Note that the matrices X(y) and Sij defined by (12.1) allow for the

handling of incomplete data. For example, suppose p = 4 and that for a

specific (level-2, level-1) combination only two measurements (say y1 and y3)

are available, then

S =

(
1 0 0 0

0 0 1 0

)
, so that Sv =

(
v1
v3

)
.

In general, Sij can be regarded as a selection matrix [14] consisting of a subset

pij of the rows of the p×p identity matrix Ip, where the rows of Sij correspond

to the response measurements available for the (i, j)-th unit. Likewise, Rj can

be regarded as a subset qj of the rows of Iq.

Additional distributional assumptions are
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Cov(wj) = Σxx , j = 1, 2, . . . , J ,

Cov(y
ij
,w′

j) = Σyx , j = 1, 2, . . . , J ; i = 1, 2, . . . , nj ,

Cov(uij ,w
′
j) = ∅.

(12.3)

From (12.1) and (12.2) it follows that

y
j

=

(
X(y)jβy + Sjvj +

∑nj

j=1Zijuij
X(x)jβx +Rjwj

)
, (12.4)

where

X(y)j =



X(y)1j

...

X(y)njj


 , Sj =




S1j

S2j

...

Snjj


 ,

Rj =




R1j

R2j

...

Rnjj


 , and Zij =




∅

...

∅

Sij
...

∅




. (12.5)

From the distributional assumptions given above, it follows that

y
j
∼ N (µj ,Σj),

where

µj =

(
X(y)j ∅

∅ X(x)j

)(
βy
βx

)
= Xjβ, (12.6)

Σj =

(
Vj SjΣyxR

′
j

RjΣxyS
′
j RjΣxxR

′
j

)
, (12.7)

and

Vj = Cov



y1j
...

ynjj


 = SjΣBS

′
j +

nj∑

i=1

ZijΣWZ
′
ij .

Remark

If Rj = Iq and Sij = Ip, corresponding to the case of no missing y or x

variables, then SjΣyxR
′
j = 1nj

�Σyx, where 1nj
is an nj × 1 column vector

(1, 1, . . . , 1)′.
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Furthermore, for Sij = Ip, i = 1, . . . , nj ,

Vj = Inj
�ΣW + 1nj

1′
nj

�ΣB

[see, e.g., 36]. The unknown parameters in (12.6) and (12.7) are β, vecsΣB ,

vecsΣW , vecΣxy, and vecsΣxx, where vecsA denotes the 1
2p(p+1)×1 vector

of nonduplicated elements of the p × p symmetric matrix A. The unknown

parameters are contained in a k∗ × 1 vector π.

Structural models for the type of data described above may be defined by

restricting the elements of β, ΣB , ΣW , Σxy, and Σxx to be functions of some

basic set of parameters γ′ = (γ1, γ2, . . . , γk), k < k∗.

For example, assume the following pattern for the matrices ΣW and ΣB ,

where ΣW refers to the within (level-1) covariance matrix and ΣB to the

between (level-2) covariance matrix:

ΣW = ΛWΨWΛ
′
W +DW ,

ΣB = ΛBΨBΛ
′
B +DB . (12.8)

Factor analysis models typically have the covariance structures defined by

(12.8). Consider a confirmatory factor analysis model with 2 factors and

assume p = 6.

ΛW =




λ11 0

λ21 0

λ31 0

0 λ42

0 λ52

0 λ62



, ΨW =

(
ψ11 ψ12

ψ21 ψ22

)
, and DW =



θ11 · · ·
...

. . .

θ66


 .

If we restrict all the parameters across the level-1 and level-2 units to be equal,

then

γ′ = (λ11, λ21, . . . , λ62, ψ11, ψ21, ψ22, θ11, . . . , θ66)

is the vector of unknown parameters.

12.3 Maximum Likelihood for General Means and
Covariance Structures

In this section we give a general framework for normal maximum likelihood

estimation of the unknown parameters. In practice, the number of variables

(p + q) and the number of level-1 units within a specific level-2 unit may

be quite large, which leads to Σj matrices of very high order. It is therefore

apparent that further simplification of the likelihood function derivatives and



440 S. H. C. du Toit, M. du Toit

Hessian is required if the goal is to implement the theoretical results in a

computer program. These aspects are addressed in Appendix 12.B.

Denote the expected value and covariance matrix of y
j

by µj and Σj ,

respectively (see (12.6) and (12.7)). The log-likelihood function of y1,y2, . . . ,

yJ may then be expressed as

lnL = − 1
2

J∑

j=1

{
nj ln 2π + ln |Σj |+ trΣ−1

j (yj − µj)(yj − µj)′
}
. (12.9)

Instead of maximizing lnL, maximum normal likelihood estimates of the

unknown parameters are obtained by minimizing − lnL with the constant

term omitted, i.e., by minimizing the function

F (γ) = 1
2

J∑

j=1

{
ln |Σj |+ trΣ−1

j Gyj

}
, (12.10)

where

Gyj
= (yj − µj)(yj − µj)′. (12.11)

The first-order condition ∂F (γ)/∂γ = ∅ yields the normal maximum likeli-

hood estimator γ̂ of the unknown vector of parameters γ.

Unless the model yields maximum likelihood estimators in closed form,

it will be necessary to make use of an iterative procedure to minimize the

discrepancy function. The optimization procedure described next [see 10] is

based on the so-called Fisher scoring algorithm, which in the case of structured

means and covariances may be regarded as a sequence of Gauss-Newton steps

with quantities to be fitted as well as the weight matrix changing at each step.

Fisher scoring algorithms require the gradient vector and an approximation

to the Hessian matrix. Elements of the gradient vector g(γ) and approximate

Hessian matrix H(γ) of F (γ) are given by

∂F

∂γr
= [g(γ)]r = −

J∑

j=1

{
trQj

∂µj
∂γr

+ 1
2

trPj
∂Σj

∂γr

}
, (12.12)

where

Qj = (yj − µj)′Σ−1
j (12.13)

and

Pj = Σ−1
j (Gyj

−Σj)Σ
−1
j . (12.14)
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Let

[H(γ)]r,s = −E

(
∂2 lnL

∂γr ∂γs

)
.

In the remainder of this chapter, H(γ) will be referred to as the Hessian.

Hence,

∂2F

∂γr ∂γs
≈ [H(γ)]r,s

=
J∑

j=1

{
tr

(
∂µ′

j

∂γr
Σ−1
j

∂µj
∂γs

)
+ 1

2

(
Σ−1
j

∂Σj

∂γr
Σ−1
j

∂Σj

∂γs

)}
. (12.15)

Suppose that γk is the k-th approximation to the γ̂ that minimizes F (γ).

Let gk = g(γk), Hk = H(γk), and Fk = F (γk). The next approximation is

obtained from

γk+1 = γk + αkδk , (12.16)

where

δk = −H−1
k gk (12.17)

and αk is a step size parameter chosen initially as 1 and then successively

halved until Fk+1 ≤ Fk.
Agresti [1] pointed out that the Fisher scoring method resembles the

Newton-Raphson method, the distinction being that the Fisher scoring (cf.

(12.15)) uses the expected value of the second derivative matrix.

A convenient feature of the Fisher scoring algorithm is that an estimate

{H(γ̂)}−1 of the asymptotic covariance matrix of estimators γ is available on

convergence as a by-product of the calculations.

It may be necessary to minimize F (γ) subject to r nonlinear constraints

of the form

c(γ) = ∅, (12.18)

where c(γ) is a continuously differentiable r × 1 vector-valued function of γ.

Let ck = c(γk) and Lk = L(γk). Then the linear Taylor approximation for

the constraint function is

c(γ) ≈ ck +Lkδ, (12.19)

where δ = γ − γk. A typical element of the Jacobian matrix Lk is given by

[Lk]ij =
∂ci
∂γj

∣∣∣∣
γ=γ

k

, (12.20)
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where ci = [c(γ)]i. Consequently, the nonlinear constraints (12.18) may be

approximated by the linear constraints

Lkδ = −ck . (12.21)

The increment vector δk is obtained [10] as the solution of

(
δk
λk

)
=

(
Hk +L′

kDkLk L′
k

Lk ∅

)−1(−(gk +L′
kDkck)

−ck

)
, (12.22)

where λk is an r×1 vector of Lagrange multipliers andDk is an arbitrary non-

negative definite matrix. The scaling matrix Dk does not affect the solution

and is often chosen to be the null matrix [17]. The next approximation γk+1

for γ̂ is obtained from

γk+1 = γk + αkδk ,

where αk is chosen initially as 1 and is halved successively until

Fb + 2
r∑

i=1

∣∣∣[λk]j [ck+1]j

∣∣∣ < Fα + 2
r∑

i=1

∣∣∣[λk]j [ck]j
∣∣∣, (12.23)

where (cf. (12.10)) Fb = F (γk+1) and Fα = F (γk). If no constraints are

imposed, all terms involving ck and Lk are omitted.

It can happen that the matrix to be inverted in (12.22) is singular or near

singular. An adaptation of the Jennrich and Sampson [22] stepwise regression

procedure may be used to obtain an appropriate conditional inverse. Their

procedure for imposing bounds on the estimates may also be employed.

Let π denote a k∗×1 vector containing the elements of them×1 parameter

vector β, and the nonduplicated elements of ΣB , ΣW , Σxy, and Σxx. It

follows that

k∗ = m+ 2
(

1
2
p(p+ 1)

)
+ pq + 1

2
q(q + 1) .

In Appendix 12.B, results are derived for the gradient vector g = g(π) and

Hessian H = H(π) in terms of the parameters of a two-level model when no

restrictions are imposed on the elements of β and the parameter matrices ΣB

to Σxx.

Two-level structural equation models impose restrictions on the between

(level-2) and within (level-1) variance components. Formally, suppose that

β = β(γ),ΣB = ΣB(γ),ΣW = ΣW (γ),Σxy = Σxy(γ), andΣxx = Σxx(γ),

where γ is a k × 1 vector of unknown parameters, k < k∗. Derivatives of

the form ∂ΣB/∂γr, . . . , ∂Σxx/∂γr form an inherent part of the estimation

procedure in structural equation models and are relatively straightforward to

compute. For example (see (12.8)),

∂ΣW

∂[ΛW ]r,s
= JrsΨWΛ

′
W +ΛWΨWJ

′
rs ,
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where [ΛW ]r,s denotes an element of the parameter vector π and Jrs is a null

matrix except for the (r, s)-th element, which equals 1.

In general, let C: (k∗ × k) denote the matrix of derivatives

C =
∂π

∂γ′
.

Using the chain rule for matrix differentiation, it follows that

∂ lnL

∂γ′
=
∂ lnL

∂π′

∂π

∂γ′
,

and hence

∂ lnL

∂γ
= C ′g(π). (12.24)

Similarly,

H(γ) = −E

(
∂2 lnL

∂γ ∂γ′

)
= C ′H(π)C. (12.25)

The matrix C and expressions (12.24) and (12.25) are instrumental in the

analysis of multilevel structural equation models and the derivation of a χ2

goodness of fit statistic. Note that C = I when γ = π and hence no restric-

tions are imposed on the multilevel variance components. Standard errors of

the estimated parameters are obtained as the square roots of the diagonal

elements of [H(γ̂)]−1, where γ̂ is the maximum likelihood estimator of γ. In

Appendix 12.B, detailed computational formulas for ∂ lnL/∂γ and H(γ) are

derived.

Starting Values and Convergence Issues

In fitting a structural equation model to a hierarchical data set, one may

encounter convergence problems unless good starting values are provided.

We have implemented the following procedure in LISREL [15]. As a

first step, estimates of the fixed components β and the variance compo-

nents ΣB , Σxy, Σxx, and ΣW are obtained. This is accomplished by setting

C = ∂π/∂γ′ = I (see (12.23) and (12.25)), where π′ is the vector of pa-

rameters
(
µ′, (vecsΣB)′, . . . , (vecsΣxx)

′
)

and γ the set of parameters when

restrictions are imposed on µ, vecsΣB , . . . , vecsΣxx.

Our experience with the Gauss-Newton algorithm described above is that

convergence is usually obtained in less than 10 iterations, where initially β =

∅, ΣB = Ip, Σxy = ∅, Σxx = Iq, and ΣW = Ip. At convergence, the value of

−2 lnL is computed.

Next, we treat
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SB =

(
Σ̂B Σ̂yx

Σ̂xy Σ̂xx

)
and SW =

(
Σ̂W ∅

∅ ∅

)

as sample covariance matrices and fit a two-group structural equation model to

the between and within groups. Parameter estimates obtained in this manner

are used as the elements of the initial parameter vector γ0. The estimators

obtained from this step are consistent and are therefore typically already close

to the final ML estimators.

In the third step, the iterative procedure is restarted and γk updated from

γk−1, k = 1, 2, . . . , until convergence is obtained. This value is denoted by γ̂,

the maximum likelihood estimator of γ. Standard errors of the elements of γ̂

are calculated as the square roots of the diagonal elements of [H(γ̂)]−1.

12.4 Fit Statistics and Hypothesis Testing

The multilevel structural equation model, M(γ), and its assumptions imply

a covariance structure ΣB(γ), ΣW (γ), Σxy(γ), Σxx(γ) and mean structure

µ(γ) for the observable random variables, where γ is a k × 1 vector of pa-

rameters in the statistical model. It is assumed that the empirical data is a

random sample of J level-2 units and n =
∑J
j=1 nj level-1 units, where nj

denotes the number of level-1 units within the j-th level-2 unit. From this data,

we can compute estimates of µ, ΣB , . . . , Σxx if no restrictions are imposed

on their elements. The number of parameters for the unrestricted model (see

Section 12.3) is k∗ = m+ 2
[
1
2p(p+ 1)

]
+ pq+ 1

2q(q+ 1) and is summarized in

the k∗ × 1 vector π. To test the model M(γ), we use the likelihood ratio test

statistic

c = −2 lnL(γ̂) + 2 lnL(π̂). (12.26)

If the unrestricted model M(π) holds, c has a χ2 distribution with d = k∗−k
degrees of freedom.

If the model does not hold, c has a noncentral χ2 distribution with d

degrees of freedom and noncentrality parameter λ that may be estimated as

[see 9]

λ̂ = max(c− d, 0). (12.27)

Browne and Cudeck [9] also show how to set up a confidence interval for λ.

It is possible that the researcher has specified a number of competing

models M1(γ1), M2(γ2), . . . , MK(γK). If the models are nested in the sense

that γj : kj × 1 is a subset of γi: ki × 1, one may use the likelihood ratio test

c∗ = −2 lnL(γ̂
j
) + 2 lnL(γ̂i) with degrees of freedom ki − kj to test Mj(γj)

against Mi(γi).

Another approach is to compare models on the basis of some criteria

that take parsimony as well as fit into account. This approach can be used
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regardless of whether or not the models can be ordered in a nested sequence.

Two strongly related criteria are the AIC measure of Akaike [3] and the CAIC

of Bozdogan [7]:

AIC = c+ 2k, (12.28)

CAIC = c+ (1 + lnn)k. (12.29)

The use of c as a central χ2 statistic is based on the assumption that the

model holds exactly in the population. A consequence of this assumption is

that models that hold approximately in the population will be rejected in

large samples.

Steiger [43] proposed the root mean square error of approximation (RM-

SEA) statistic that takes particular account of the error of approximation in

the population,

RMSEA =
√
F̂ 0/d , (12.30)

where F̂ 0 is a function of the sample size, degrees of freedom, and the fit

function. To use the RMSEA as a fit measure in multilevel SEM, we propose

F̂ 0 = max

{
c− d
n

, 0

}
. (12.31)

Browne and Cudeck [9] suggest that an RMSEA value of 0.05 indicates a close

fit and that values of up to 0.08 represent reasonable errors of approximation

in the population.

12.5 A Simple Illustration

The following example illustrates the steps outlined above. The data set used

in this section forms part of the data library of the Multilevel Project at

the University of London, and comes from the Junior School Project [37].

Mathematics and language tests were administered in three consecutive years

to more than 1000 students from 49 primary schools that were randomly

selected from primary schools maintained by the Inner London Education

Authority.

The following variables were selected from the data file:

School School code (1–49)

Math1 Score on mathematics test in year 1 (score 1–40)

Math2 Score on mathematics test in year 2 (score 1–40)

Math3 Score on mathematics test in year 3 (score 1–40).

The school number (School) is used as the level-2 identification.

A simple confirmatory factor analysis model (see Fig. 12.1) is fitted to the

data:
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Math1

Math2

Math3

-

-

-

�
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�������

Fig. 12.1 Confirmatory factor analysis model.

ΣB = λψλ′ +DB ,

ΣW = λψλ′ +DW ,

where λ′ = (1, λ21, λ31) and DB and DW are diagonal matrices with diagonal

elements equal to the unique (error) variances of Math1, Math2, and Math3.

The variance of the factor is denoted by ψ. Note that we assume equal factor

loadings and factor variance across the between and within groups, leading to a

model with 3 degrees of freedom. The SIMPLIS [see 25] syntax to fit the factor

analysis model is shown below. Note that the between- and within-groups

covariance matrices are the estimated ΣB and ΣW obtained in the first step

by fitting the unrestricted model.

Group 1: Between Schools JSP data (Level 2)

Observed Variables: Math1 Math2 Math3

Covariance matrix

3.38885

2.29824 5.19791

2.31881 3.00273 4.69663

Sample Size=24 ! Taken as (n1 + n2 + ... + nN)/N

! and rounded to nearest integer

Latent Variables: Factor1

Relationships

Math1=1*Factor1

Math2-Math3=Factor1

Group 2: Within Schools JSP data (Level 1)

Covariance matrix

47.04658

38.56798 55.37006

30.81049 36.04099 40.71862

Sample Size=1192 ! Total number of pupils

! Uncomment the following line to free the parameter

! Set the Variance of Factor1 Free
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Set the Error Variance of Math1 Free

Set the Error Variance of Math2 Free

Set the Error Variance of Math3 Free

Path Diagram

LISREL OUTPUT ND=3

End of Problem

Table 12.1 shows the parameter estimates, standard errors, and χ2 statistic

from the SIMPLIS output and the corresponding values from the multilevel

SEM output.

Remarks

1. The between-groups sample size of 24 used in the SIMPLIS syntax was

computed as J−1
∑J
j=1 nj , where J is the number of schools and nj the

number of children within school j. Since this value is only used to obtain

starting values, it is not really crucial how the between-group sample size

is computed. See, for example, Muthén [38, 39] for an alternative formula.

2. The within-group sample size of 1192 used in the SIMPLIS syntax is equal

to the total number of school children.

Table 12.1 Parameter estimates and standard errors for factor analysis model.

SIMPLIS Multilevel SEM

Estimate Standard error Estimate Standard error

Factor loadings

Math1 1.000 — 1.000 —

Math2 1.173 0.031 1.177 0.032

Math3 0.939 0.026 0.947 0.028

Factor variance

ψ 32.109 1.821 31.235 1.808

Error variances (between)

Math1 1.640 0.787 1.656 0.741

Math2 2.123 1.059 2.035 0.942

Math3 1.868 0.779 1.840 0.734

Error variances (within)

Math1 14.114 0.810 14.209 0.890

Math2 10.274 0.884 10.256 0.993

Math3 11.910 0.699 11.837 0.806

Chi-square 36.233 46.560

Degrees of freedom 3 3
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3. The number of missing values per variable is as follows:
Math1 : 38

Math2 : 63

Math3 : 239.
The large percentage missing for the Math3 variable may partially ex-

plain the relatively large difference in χ2 values from the SIMPLIS and

multilevel SEM outputs.

4. If one allows for the factor variance parameter to be free over groups, the

χ2 fit statistic becomes 1.087 at 2 degrees of freedom. The total number

of multilevel SEM iterations required to obtain convergence equals 8.

In conclusion, a small number of variables and a single factor SEM model

were used to illustrate the starting values procedure that we adopted. The

next section contains two additional examples, also based on a schools data

set. It should be noted that in the applications to follow, we focus on the

parameters of the latent variable submodel and do not present (although

they may be important in their own right) the regression coefficients of the

exogenous variables.

12.6 Practical Applications

The two examples discussed in this section are based on school data that were

collected during a 1994 survey in South Africa.1

A brief description of the SASchools94.dat data set is as follows: J = 136

schools were selected and the total number of children within schools n =∑J
j=1 nj = 6047, where nj varies from 20 to 60. The data set contains 20

variables as shown in Table 12.2.

The variables Language and Socio are school-level variables and their val-

ues do not vary within schools. Listwise deletion of missing cases results in a

data set containing only 2691 of the original 6047 cases.

12.6.1 Example 1: Confirmatory Factor Analysis

For this example we use the variables Classif, Compar, Verbal, Figure, Patt-

comp, and Numserie from the schools data set discussed in the previous

section. Two common factors are hypothesized: verbal and numeric ability.

The first three variables are assumed to measure Verbfac and the last three

to measure Numfac. A path diagram of the assumed factor model is shown in

Fig. 12.2. Appropriate LISREL syntax is given in the appendix (see p. 458)

of this chapter.

1 This data set is available on request from the authors.
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Table 12.2 Description of variables in SASchool94.dat.

Number

Var. Name Description missing

1 Student Level-1 identification 0

2 School Level-2 identification 0

3 Constant All values equal to 1 0

4 Grade 0 = Grade 2, 1 = Grade 3, 2 = Grade 4 0

5 Language 0 = Whitea, 1 = Blacka 0

6 Gender 1 = Male, 2 = Female 1

7 Mothedu Mother’s level of education on a scale from 1 to 7 783

8 Fathede Father’s level of education on a scale from 1 to 7 851

9 Read Teacher’s evaluation on a scale from 1 to 5b 482

10 Speech Teacher’s evaluation on a scale from 1 to 5b 470

11 Write Teacher’s evaluation on a scale from 1 to 5b 467

12 Arithm Teacher’s evaluation on a scale from 1 to 5b 451

13 Socio Socio-economic status indicator, scale 0 to 5 on school

level

0

14 Classif Classification: total correct out of 30 items 23

15 Compar Comparison: total correct out of 23 items 27

16 Verbal Verbal Instructions: total correct out of 50 items 20

17 Figure Figure Series: total correct out of 24 items 118

18 Pattcomp Pattern Completion: total correct out of 24 items 109

19 Knowled Knowledge: total correct out of 32 items 112

20 Numserie Number Series: total correct out of 15 items 2305
a “White” = Afrikaans or English;

“Black” = One of the 11 official black languages.
b 1 = Poor, . . . , 5 = Excellent.

The between- and within-school structural equation models are

ΣB = ΛΨBΛ
′ +DB , (12.32)

ΣW = ΛΨWΛ
′ +DW , (12.33)

respectively, where

Λ: (6× 2) =




1 0

λ21 0

λ31 0

0 1

0 λ52

0 λ62



,

and where factor loadings are assumed to be equal over the between (schools)

and within (children) levels. The 2 × 2 matrices ΨB and ΨW denote uncon-

strained factor covariance matrices. Diagonal elements of DB and DW are

the unique (error) variances.
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Fig. 12.2 Confirmatory factor analysis model for 6 variables.

Gender and Grade differences were accounted for in the means part of the

model,

E (yijk) = βk0 + βk1Gender + βk2Grade,

where the subscripts i, j, and k denote students, schools, and variables k =

1, 2, . . . , 6, respectively.

From the description of the school data set, we note that the variable

Numserie has 2505 missing values. An inspection of the data set reveals that

the pattern of missingness can hardly be described as missing at random. To

establish how well the proposed algorithm performs in terms of the handling

of missing cases, we have nevertheless decided to retain this variable in both

examples.

Table 12.3 shows the estimated between-schools covariance matrix Σ̂B

when no restrictions are imposed on its elements, and the fitted covariance

matrix ΣB(γ̂) with γ the vector of parameters of the CFA models (12.32)

and (12.33). Likewise, Table 12.4 shows Σ̂W for the unrestricted model and

ΣW (γ̂) for the CFA model.

The goodness of fit statistics for the CFA model (with 6047 students in

136 schools) are: χ2 = 159.87, RMSEA = 0.061, df = 20. Parameter estimates

and standard errors are given in Table 12.5.

It is typical of structural equation models to produce large χ2 values when

sample sizes are large, as in the present case. The RMSEA may be a more

meaningful measure of goodness of fit and the value of 0.061 indicates that the

assumption of equal factor loadings between and within schools is reasonable.
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Table 12.3 Estimated between-schools covariance matrix, ΣB .

(i) Σ̂B unrestricted

Classif Compar Verbal Figure Pattcomp Numserie

Classif 1.29

Compar 1.27 2.66

Verbal 2.83 3.54 10.42

Figure 2.06 2.70 6.89 5.53

Pattcomp 2.17 2.60 6.58 5.09 5.34

Numserie 1.46 1.85 4.93 3.85 3.81 3.16

(ii) ΣB(γ̂) for the CFA model

Classif Compar Verbal Figure Pattcomp Numserie

Classif 1.61

Compar 1.74 3.86

Verbal 2.21 3.22 6.76

Figure 2.52 3.67 4.66 5.82

Pattcomp 2.29 3.33 4.22 5.03 4.93

Numserie 1.79 2.60 3.30 3.93 3.56 3.11

Table 12.4 Estimated within-schools covariance matrix, ΣW .

(i) Σ̂W unrestricted

Classif Compar Verbal Figure Pattcomp Numserie

Classif 8.49

Compar 4.59 18.77

Verbal 5.52 7.64 17.26

Figure 4.45 7.21 8.49 16.27

Pattcomp 4.30 7.21 8.45 9.55 16.19

Numserie 2.69 4.05 5.28 7.31 5.80 7.31

(ii) ΣW (γ̂) for the CFA model

Classif Compar Verbal Figure Pattcomp Numserie

Classif 7.81

Compar 3.31 17.12

Verbal 4.19 6.11 15.07

Figure 3.72 5.42 6.87 14.58

Pattcomp 3.37 4.91 6.23 8.13 14.61

Numserie 2.64 3.84 4.87 6.36 5.76 7.21
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Table 12.5 Parameter estimates and standard errors for the CFA model.

Estimate Standard error

Factor loadings

λ11 1.000 —

λ21 1.456 0.048

λ31 1.846 0.054

λ42 1.000 —

λ52 0.906 0.017

λ62 0.708 0.014

Factor covariances (between schools)

Ψ11 1.196 0.185

Ψ21 2.524 0.342

Ψ22 5.546 0.729

Error variances (between schools)

Classif 0.413 0.081

Compar 1.327 0.223

Verbal 2.673 0.388

Figure 0.279 0.090

Pattcomp 0.377 0.092

Numserie 0.325 0.069

Factor covariances (within schools)

Ψ11 2.271 0.114

Ψ21 3.722 0.128

Ψ22 8.976 0.272

Error variances (within schools)

Classif 5.538 0.119

Compar 12.305 0.262

Verbal 7.328 0.222

Figure 5.606 0.169

Pattcomp 7.239 0.178

Numserie 2.710 0.098

12.6.2 Example 2: Structural Equation Model

We now consider a more elaborate model and use the following variables:

Gender, Grade, Classif, Compar, Verbal, Knowled, Figure, Pattcomp, Num-

serie, Read, Speech, Write, Arithm, Mothedu, Fathedu, Language, and Socio.

The variables Language and Socio are so-called school variables in the sense

that their values vary across, but not within, schools. A path diagram for the

structural equation model is given in Fig. 12.3.

Using Jöreskog’s [23] LISREL notation, the latent variable model is written

as

η = Bη + Γξ + ζ. (12.34)
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Fig. 12.3 Path diagram for the between-schools model.

The η: (2 × 1) vector contains the latent endogeneous variables Verbfac and

Numfac. The coefficient matrix B: (2 × 2) gives the effect of the η’s on

each other. It is usually assumed that B is non-singular and has all diagonal

elements equal to zero. The ξ: (2 × 1) vector contains the latent exogeneous

variables Evaluate and Environ. The coefficient matrix Γ : (2×2) contains the

coefficients for the impact of ξ on η. Disturbances for each latent endogeneous

variable are contained in the 2× 1 vector ζ, and Cov(ζ) = Ψ .

The measurement part of the model is

y = Λyη + ǫ,

x = Λxξ + δ.

Elements of the 7×1 vector y are the 7 endogeneous variables Classif to Num-

serie that are the indicators of Verbfac and Numfac. The coefficient matrix

Λy: (7× 2) (the factor loadings) gives the impact of Verbfac and Numfac on

the variables Classif, Compar, . . . , Numserie. The unique variables or “errors”

are in the vector ǫ: (7×1). It is assumed that E (ǫ) = ∅, Cov(ǫ) = Θǫ (usually

a diagonal matrix) and that Cov(η, ǫ′) = ∅.

Analogous definitions and assumptions hold for the 8 × 1 vector x rep-

resenting the eight exogeneous variables Read, Speech, . . . , Socio. Hence,

E (δ) = ∅, Cov(δ) = Θδ, and Cov(ξ, δ′) = ∅.

It is customary to scale each latent variable by selecting one of its indicators

and setting its factor loading to 1.
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From the above assumptions, it follows for the between-schools group that

(see also Jöreskog and Sörbom [26, equation (1.4)])



ΣB11

ΣB21 ΣB22

ΣB1xy ΣB2xy Σxx




=

(
ΛyA(ΓΦΓ ′ + Ψ)A′Λ′

y +Θǫ ΛyAΓΦΛ
′
x

ΛxΦΓ
′A′Λ′

y ΛxΦΛ
′
x +Θδ

)
, (12.35)

where A = (I −B)−1,

ΣB : (13× 13) =

(
ΣB11: (7× 7) ΣB12

ΣB21: (6× 7) ΣB22: (6× 6)

)
, and Σxx: (2× 2).

Note that the seven variables Classif, Compar, . . . , Numserie are endogeneous

variables in the LISREL model (ΣB11 part), while the next six variables Read,

Speech, . . . , Fathedu are exogeneous variables (ΣB22 part). In the theoretical

framework, these thirteen variables are considered y-variables with between-

schools covariance matrixΣB and within-schools matrixΣW . The two school-

level variables Language and Socio have covariance matrix Σxx.

As described in the previous example, we controlled for Gender and Grade

effects through the inclusion of these variables in the means part of the model.

Table 12.6 shows the estimated between-schools covariance matrix
(
ΣB Σyx

Σxy Σxx

)

when no restrictions are imposed on its elements and also the fitted covariance

matrix for the structural equations model (12.34).

In both between- and within-school models, the residual covariance matrix

of the latent variables Verbfac and Numfac was assumed to be diagonal.

Furthermore, in the between-schools model it was assumed that there is no

effect of endogeneous latent variables on each other, and hence B = ∅. For

the within-schools model,

B =

(
0 0

β21 0

)
.

Since the estimated error variance for the exogeneous variable Fathedu was

negative (but close to zero), this error variance was fixed at zero. The appro-

priate LISREL syntax is given in the appendix (see p. 458) of this chapter.

Table 12.7 shows the estimated within-school covariance matrix for the

unrestricted and restricted cases.

Estimates and standard errors of the unknown parameters in the struc-

tural equation models for the between- and within-school models are given in

Table 12.8.
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Table 12.6 Estimated between-school covariance matrices for ΣB unrestricted and

ΣB restricted according to (12.34).

(i) Σ̂B with no restrictions imposed on the elements

Classif 1.29
Compar 1.26 2.63
Verbal 2.83 3.52 10.40
Knowled 1.76 2.64 5.67 4.57
Figure 2.06 2.70 6.87 3.69 5.51
Pattcomp 2.16 2.58 6.54 3.87 5.06 5.31
Numserie 1.46 1.84 4.89 2.75 3.81 3.77 3.11
Read 0.18 0.17 0.59 0.46 0.37 0.34 0.27 0.14
Speech 0.12 0.13 0.42 0.36 0.24 0.25 0.20 0.12 0.12
Write 0.14 0.14 0.48 0.42 0.25 0.25 0.18 0.12 0.11 0.12
Arithm 0.14 0.16 0.55 0.40 0.34 0.34 0.23 0.12 0.10 0.11 0.13
Mothedu 0.49 0.53 1.26 0.58 1.18 1.15 0.85 0.06 0.04 0.02 0.04 0.70
Fathedu 0.50 0.55 1.33 0.57 1.28 1.21 0.92 0.06 0.02 0.02 0.04 0.72 0.78
Language 0.26 0.22 0.92 0.36 0.77 0.76 0.61 0.03 0.01 0.00 0.02 0.20 0.23 0.21
Socio 0.86 0.97 2.39 1.26 1.96 2.01 1.44 0.12 0.10 0.09 0.13 0.61 0.67 0.32 1.24

(ii) ΣB(γ̂) with restrictions imposed according to the model (12.34)

Classif 1.31
Compar 1.21 2.69
Verbal 2.78 3.66 10.16
Knowled 1.80 2.36 5.44 4.39
Figure 1.33 1.75 4.04 2.61 5.39
Pattcomp 1.31 1.72 3.96 2.56 4.99 5.28
Numserie 1.01 1.32 3.05 1.97 3.84 3.77 3.17
Read 0.22 0.28 0.65 0.42 0.41 0.40 0.31 0.14
Speech 0.19 0.24 0.56 0.36 0.35 0.35 0.27 0.11 0.12
Write 0.20 0.26 0.61 0.39 0.38 0.37 0.29 0.12 0.10 0.12
Arithm 0.20 0.26 0.60 0.39 0.37 0.37 0.28 0.12 0.10 0.11 0.13
Mothedu 0.43 0.57 1.30 0.84 1.27 1.25 0.96 0.04 0.03 0.04 0.04 0.68
Fathedu 0.47 0.61 1.41 0.91 1.38 1.35 1.04 0.04 0.04 0.04 0.04 0.70 0.76
Language 0.15 0.20 0.46 0.30 0.45 0.44 0.34 0.01 0.01 0.01 0.01 0.23 0.25 0.21
Socio 0.43 0.56 1.29 0.83 1.26 1.24 0.95 0.04 0.03 0.04 0.04 0.64 0.70 0.23 1.24

Finally, the goodness of fit measures for the multilevel structural equation

model fitted to the school data set are: χ2 = 691.198, RMSEA = 0.029,

df = 145. The χ2 statistic is for testing the null hypothesis that model (12.34)

holds for the between- and within-schools covariance structures against the

alternative hypotheses that no restrictions are imposed on the covariance ma-

trices. According to this measure of fit, one should reject the null hypothesis.

The RMSEA value of 0.029 and inspection of Tables 12.6 and 12.7 shows that

the fitted model may be quite acceptable.

12.7 Conclusion and Discussion

A Fisher Scoring algorithm is employed to obtain full maximum likelihood

estimation of a general two-level structural equations model. An explicit

feature of our approach is that the likelihood function and derivatives (see
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Table 12.7 Estimated within-school covariance matrices for ΣW unrestricted and

ΣW restricted according to (12.34).

(i) Σ̂W with no restrictions imposed on the elements

Classif 8.49
Compar 4.59 18.78
Verbal 5.52 7.65 17.27
Knowled 3.49 5.40 7.10 16.34
Figure 4.46 7.22 8.49 5.59 16.29
Pattcomp 4.31 7.22 8.46 5.56 9.56 16.20
Numserie 2.71 4.08 5.28 3.65 7.31 5.81 7.31
Read 0.66 0.80 1.21 0.88 1.02 0.87 0.78 1.21
Speech 0.51 0.66 1.01 0.67 0.88 0.78 0.66 0.75 1.04
Write 0.63 0.85 1.23 0.84 1.02 0.94 0.81 0.83 0.73 1.08
Arithm 0.64 0.82 1.21 0.81 1.04 0.92 0.82 0.73 0.64 0.75 1.11
Mothedu 0.23 0.28 0.43 0.20 0.24 0.10 0.14 0.08 0.05 0.05 0.06 1.44
Fathedu 0.20 0.20 0.38 0.15 0.25 0.20 0.16 0.08 0.04 0.03 0.04 0.87 2.00

(ii) ΣW (γ̂) with restrictions imposed according to the model (12.34)

Classif 7.88
Compar 3.39 17.32
Verbal 4.23 6.17 14.86
Knowled 2.71 3.95 4.94 14.75
Figure 3.76 5.48 6.85 4.38 14.72
Pattcomp 3.34 4.87 6.08 3.89 8.11 14.49
Numserie 2.64 3.85 4.81 3.08 6.42 5.70 7.18
Read 0.63 0.92 1.15 0.74 1.08 0.96 0.76 1.18
Speech 0.56 0.82 1.02 0.65 0.96 0.85 0.67 0.71 1.02
Write 0.63 0.93 1.16 0.74 1.08 0.96 0.76 0.81 0.72 1.06
Arithm 0.57 0.84 1.05 0.67 0.98 0.87 0.69 0.73 0.65 0.73 1.11
Mothedu 0.20 0.30 0.37 0.24 0.19 0.17 0.14 0.06 0.05 0.06 0.05 1.45
Fathedu 0.16 0.24 0.30 0.19 0.15 0.14 0.11 0.05 0.04 0.05 0.04 0.88 2.01

Appendix 12.B) are expressed in terms of matrix operations of order less

or equal to p + q leading to a very significant reduction in computational

workload. In the case of most EM algorithms, estimates of the standard errors

of the estimated population parameters are not readily available as is the case

in our method.

Results are given for an unbalanced design with responses possibly missing

at random. The model allows for regression on fixed explanatory variables

and structured residual covariance matrices on both levels of the hierarchy.

A number of fit statistics are discussed and practical examples are given to

demonstrate the feasibility of the derived procedures. Additional examples,

including examples dealing with structured mean vectors, are included with

LISREL [15].

In structural equation modeling (SEM), it is typically assumed that the

data to be analyzed is obtained from a simple random sample (SRS). In many

research studies, however, data has a hierarchical structure. For example,

students nested within schools or patients nested within hospitals. By ignoring

the hierarchical structure of the data, incorrect parameter estimates, standard

errors, and inappropriate fit statistics may be obtained.
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Table 12.8 Parameter estimates and standard errors for the unknown parameters

in model (12.34).

Between schools Within schools

Estimate Standard error Estimate Standard error

Λy

λ21 1.313 0.144 1.459 0.049

λ31 3.027 0.255 1.822 0.053

λ41 1.954 0.172 1.167 0.044

λ62 0.981 0.040 0.888 0.019

λ72 0.756 0.033 0.703 0.015

Λx

λ21 0.863 0.058 0.886 0.014

λ31 0.934 0.052 1.003 0.014

λ41 0.918 0.062 0.909 0.014

λ62 1.084 0.032 0.804 0.153

λ72 0.354 0.040 — —

λ82 0.990 0.090 — —

B β21 2.186 0.195 1.605 0.055

Γ

γ11 1.488 0.220 0.776 0.033

γ12 0.571 0.088 0.143 0.035

γ21 2.587 0.415 0.088 0.058

γ22 1.801 0.176 −0.126 0.049

Φ

φ11 0.130 0.021 0.804 0.022

φ21 0.041 0.029 0.060 0.016

φ22 0.649 0.087 1.090 0.208

Ψ
ψ11 0.353 0.076 1.803 0.095

ψ22 1.735 0.284 3.032 0.179

Θǫ

Classif 0.391 0.076 5.555 0.117

Compar 1.100 0.189 12.380 0.259

Verbal 1.736 0.388 7.153 0.200

Knowled 0.876 0.195 11.590 0.234

Figure 0.302 0.094 5.583 0.171

Pattcomp 0.391 0.102 7.293 0.178

Numserie 0.267 0.066 2.673 0.098

Θδ

Read 0.015 0.004 0.375 0.010

Speech 0.020 0.004 0.394 0.009

Write 0.010 0.003 0.248 0.008

Arithm 0.022 0.005 0.445 0.010

Mothedu 0.030 0.008 0.358 0.207

Fathedu 0.000 — 1.302 0.136

Language 0.126 0.016 — —

Socio 0.606 0.078 — —
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To examine the effect of clustering, one could fit the level-1 SEM models

described in the previous section by treating the data as an SRS. In general,

if the parameter estimates and estimated standard errors are close to those

obtained using the multilevel SEM approach, it can be assumed that there

is a negligible cluster effect. For example, student characteristics under study

do not vary significantly across schools.
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Appendix

12.A LISREL Programs

LISREL Syntax for Example 1 (CFA Model)

Group1: Between Schools HSRC School Project

DA NI=7 NO=0 NG=2 MA=CM MI=-9.0

LA

Classif Compar Verbal Figure Pattcomp Numserie

RA = SASchools94.dat

$CLuster School

SE

1 2 3 4 5 6 /

MO NY=6 NE=2 LY=FU,FI PS=SY,FR TE=DI,FR

LE

Verbfac Numfac

FR LY(2,1) LY(3,1) LY(5,2) LY(6,2)

VA 1.00 LY(1,1) LY(4,2)

PD

OU ME=ML

Group2: Within Schools HSRC School Project

LA

Classif Compar Verbal Figure Pattcomp Numserie
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DA NI=7 NO=0 NG=2 MA=CM MI=-9.0

RA = SASchools94.dat

SE

1 2 3 4 5 6 /

MO NY=6 NE=2 LY=IN PS=IN TE=IN

LE

Verbfac Numfac

FR PS(1,1) PS(2,1) PS(2,2) TE(1,1) TE(2,2)

FR TE(3,3) TE(4,4) TE(5,5) TE(6,6)

! FR LY(2,1) LY(3,1) LY(5,2) LY(6,2)

OU

LISREL Syntax for Example 2 (Structural Equation Model)

Group1: Between Schools Data, HSRC project

DA NI=16 NO=0 NG=2 MA=CM MI=-9.0

LA

Classif Compar Verbal Knowled Figure Pattcomp Numserie

Read Speech Write Arithm Mothedu Fathedu Language Socio

RA=SA_Schools94.dat

$CLuster School

SE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15/

MO NX=8 NY=7 NK=2 NE=2 LY=FU,FI LX=FU,FI BE=FU,FI c

GA=FU,FI PH=SY,FR PS=DI,FR TE=DI,FR TD=DI,FR

LE

Verbfac Numfac

LK

Evaluate Environ

FI TD(6,6)

FR LY(2,1) LY(3,1) LY(4,1) LY(6,2) LY(7,2) BE(2,1)

FR LX(2,1) LX(3,1) LX(4,1)

FR LX(6,2) LX(7,2) LX(8,2)

FR GA(1,1) GA(1,2) GA(2,1) GA(2,2)

VA 1.000 LY(1,1) LY(5,2) LX(1,1) LX(5,2)

VA 0.001 TD(6,6)

PD

OU ME=ML ND=2

Group2: Within Schools Data, HSRC project

DA NI=16 NO=0 NG=2 MA=CM MI=-9.0

LA

Classif Compar Verbal Knowled Figure Pattcomp Numserie

Read Speech Write Arithm Mothedu Fathedu Language Socio
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RA=SA_Schools.dat

MO NX=8 NY=7 NK=2 NE=2 LY=FU,FI LX=FU,FI BE=FU,FI c

GA=FU,FI PH=SY,FR PS=DI,FR TE=DI,FR TD=DI,FR

LE

Verbfac Numfac

LK

Evaluate Environ

FR LY(2,1) LY(3,1) LY(4,1) LY(6,2) LY(7,2) BE(2,1)

FR LX(2,1) LX(3,1) LX(4,1)

FR LX(6,2)

FR GA(1,1) GA(1,2) GA(2,1) GA(2,2)

VA 1.000 LY(1,1) LY(5,2) LX(1,1) LX(5,2)

VA 0.0 LX(7,2) LX(8,2)

!EQ PS(2,2) PS(1,2,2)

!EQ PS(1,1) PS(1,1,1)

!EQ PH(2,2) PH(1,2,2)

!EQ PH(2,1) PH(1,2,1)

!EQ PH(1,1) PH(1,1,1)

!EQ BE(2,1) BE(1,2,1)

OU

12.B Computational Details

12.B.1 Expressions for the Inverse and Determinant of Σ

The estimation procedures outlined in the previous section can be imple-

mented in a computer program for a general two-level structural equation

model. A major problem, however, is how to deal efficiently with the calcu-

lation of the high-order matrix products, determinants, and inverses that are

part and parcel of multilevel models. Due to the particular structure of Σj

defined by (12.7), it is shown that storage space and execution time considera-

tions can be eliminated to a large extent. We show that the likelihood function,

derivatives, and Hessian can be expressed in terms of matrix operations of

order less or equal to p+ q.

From (12.5) and (12.7) it follows that the covariance matrix of (y1j , y2j ,

. . . , ynjj
)′ can be written as

Σjyy = Vj = SjΣBS
′
j +Λj , (12.36)

where Λj is a block-diagonal matrix
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Λj =




Λ1j

Λ2j

. . .

Λnjj




and where

Λij : (pij × pij) = SijΣWS
′
ij , pij ≤ p. (12.37)

Let Aj : (p × p) = S′
jΛ

−1
j Sj . From (12.5) and (12.6) it follows that Aj =∑nj

i=1Aij , where

Aij = S′
ijΛ

−1
ij Sij . (12.38)

Also, define

Bj : (p× p) = (Σ−1
B + S′

jΛ
−1
j Sj)

−1 = (Σ−1
B +Aj)

−1. (12.39)

The following matrix expressions are defined in terms of (12.38) and (12.39):

Cj : (p× p) = (Ip −AjBj), (12.40)

Dj : (p× p) = (Ip −AjBj)Aj = CjAj . (12.41)

In order to obtain expressions for the inverse of the patterned covariance

matrix Σj defined by (12.7), define the qj × qj matrix Σ22.1 as

Σ22.1 = (Σjxx −ΣjxyV
−1
j Σjyx), qj ≤ q (12.42)

where (see (12.7)) Σjxx = RjΣxxR
′
j and Σjyx = SjΣyxR

′
j .

Using a well-known matrix identity [see, e.g., 27], it follows from (12.36)

that

V −1
j = Λ−1

j −Λ−1
j Sj

(
Σ−1
B + S′

jΛ
−1
j Sj

)−1
S′
jΛ

−1
j

= Λ−1
j −Λ−1

j SjBjS
′
jΛ

−1
j . (12.43)

Hence, using (12.39), it follows that

Σ22.1 = Rj

(
Σxx −ΣxyDjΣyx

)
R′
j .

Using another well-known result for the inverse of a partitioned matrix [see,

e.g., 4],

Σ−1
j =

(
Σ11
j Σ12

j

Σ21
j Σ22

j

)
, (12.44)

it follows that

Σ11
j = V −1

j ΣjyxΣ
−1
22.1ΣjxyV

−1
j + V −1

j ,

Σ21
j = −Σ−1

22.1ΣjxyV
−1
j ,

Σ12
j = −V −1

j ΣjyxΣ
−1
22.1 ,

Σ22
j = Σ−1

22.1 .
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Let

Ej : (q × q) = R′
jΣ

22
j Rj = R′

jΣ
−1
22.1Rj . (12.45)

Using (12.43) and (12.45), it follows after simplification that

Σ11
j = V −1

j +Λ−1
j SjCjΣyxR

′
jΣ

−1
22.1RjΣxyC

′
jS

′
jΛ

−1
j

= V −1
j +Λ−1

j SjCjΣyxEjΣxyC
′
jS

′
jΛ

−1
j .

A more compact expression for Σ11
j is obtained by defining the p× p matrix

Fj as

Fj = CjΣyxR
′
jΣ

−1
22.1RjΣxyC

′
j = CjΣyxEjΣxyC

′
j . (12.46)

Finally, define Hj as

Hj = Fj −Bj . (12.47)

Then from (12.43) it follows that Σ11
j can be written as

Σ11
j = V −1

j +Λ−1
j SjFjS

′
jΛ

−1
j = Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j . (12.48)

It can also be verified (see (12.38) and (12.44)) that

Σ12
j = −Λ−1

j SjC
′
jΣyxR

′
jΣ

−1
22.1 . (12.49)

From (12.7) and applying well-known results [see, e.g., 4], for partitioned

matrices, it follows that |Σj | = |Vj | |Σ22.1|, where

|Vj | = |SjΣBS
′
j +Λj | = |Λj | |ΣB | |Σ−1

B +Aj | (12.50)

with Aj as defined in (12.38). Hence,

|Σj | =
{
nj∏

i=1

|Λij |
}
|ΣB | |Σ−1

B +Aj | |Σ22.1|.

12.B.2 Likelihood Function

From the equations (12.1)–(12.7) it follows that

lnLj = − 1
2

{
nj∑

i=1

pij ln 2π + ln |Σj |+ e′jΣ−1
j ej

}
,

where ej = yj − µj and pij = rank(Sij). If no yij values are missing, pij = p

and Sij = Ip. From (12.10) it follows that the function to be minimized is

F (γ) = 1
2

J∑

j=1

(ln |Σj |+ e′jΣ−1
j ej). (12.51)
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Partition ej as

ej =

(
e(1)j

e(2)j

)
, (12.52)

where

e′(1)j = (e′1j , e
′
2j , . . . ,e

′
njj) = (y′

1j − µ′
1j ,y

′
2j − µ′

2j , . . . ,y
′
njj − µ′

njj)

and where

e(2)j = xj − µ(x)j . (12.53)

In order to simplify the terms in (12.51), we define the following vectors in

terms of ej . Recall from (12.1) that µij = X(y)ijβy and µ(x)j = X(x)jβx. Let

pj be a p× 1 vector defined as

pj = S′
jΛ

−1
j e(1)j ; (12.54)

then

pj =

nj∑

i=1

S′
ijΛ

−1
ij eij =

nj∑

i=1

pij .

Also, let

qij = Z ′
ijΣ

11
j e(1)j +Z ′

ijΣ
12
j e(2)j , (12.55)

rj = S′
jΣ

11
j e(1)j + S′

jΣ
12
j e(2)j . (12.56)

From (12.38), (12.48), and (12.54) it follows that

qij = pij +AijHjpj −AijC
′
jΣyxR

′
jΣ

−1
22.1e(2)j ,

rj = (Ip +AjHj)pj −AjC
′
jΣyxR

′
jΣ

−1
22.1e(2)j ,

and

sj = R′
jΣ

21
j e(1)j +R′

jΣ
22
j e(2)j

= R′
jΣ

−1
22.1RjΣxyCjpj +R′

jΣ
−1
22.1e(2)j . (12.57)

Calculation of e′

jΣ
−1

j ej

From (12.52) it follows that e′jΣ
−1
j ej = t11 + 2t12 + t22, where (see (12.43)–

(12.47) and (12.54))

t11 = e′(1)jΣ
11
j e(1)j =

nj∑

i=1

e′ijΛ
−1
ij eij + p′jHjpj ,

t12 = e′(1)jΣ
12
j e(2)j = −p′jCjΣyxR

′
jΣ

−1
22.1e(2)j ,

and

t22 = e′(2)jΣ
−1
22.1e(2)j . (12.58)
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12.B.3 Gradient Vector

From (12.12), (12.14), and (12.53) it follows that

∂F

∂[π1]r
= −

J∑

j=1

tr

{
(Σ−1

j eje
′
jΣ

−1
j −Σ−1

j )
∂Σj

∂[π1]r

}
, (12.59)

∂F

∂[π2]r
= −2

J∑

j=1

tr

{
e′jΣ

−1
j

∂µj
∂[π2]r

}
, (12.60)

where the k∗ × 1 vector π is partitioned as π′ = (π′
1,π

′
2), with π′

1 = (β′
y,β

′
x)

and π′
2 =

(
(vecsΣB)′, (vecsΣW )′, (vecΣxy)

′, (vecsΣxx)
′
)
.

Calculation of ∂F/∂[ΣB]r,s

From (12.7) it follows that

∂Σj

∂[ΣB ]r,s
=




∂Vj
∂[ΣB ]r,s

∅

∅ ∅


 ,

where

∂Vj
∂[ΣB ]r,s

= SjGrsS
′
j ,

Grs = Jrs + (1− δrs)Jsr , (12.61)

and δrs is Kronecker’s delta, i.e., δrs = 1 if r = s, and 0 otherwise.

Therefore, after some simplification using the partitioning (12.44) of Σ−1
j ,

it follows that

∂F

∂[ΣB ]r,s
= −

J∑

j=1

tr
{
(Σ11

j e(1)j +Σ12
j e(2)j)(e

′
(1)jΣ

11
j + e′(2)jΣ

21
j )(SjGrsS

′
j)
}

+
J∑

j=1

trΣ11
j SjGrsS

′
j

=
J∑

j=1

trS′
jΣ

11
j SjGrs −

J∑

j=1

tr rjr
′
jGrs ,

with rj defined in (12.56). Equivalently,

∂F

∂[ΣB ]r,s
= (2− δrs)

J∑

j=1

[
S′
jΣ

11
j Sj − rjr′j

]
r,s
. (12.62)
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Calculation of S′

jΣ
11

j Sj

From (12.48) it follows that

S′
jΣ

11
j Sj = S′

jΛ
−1
j Sj + S′

jΛ
−1
j SjHjS

′
jΛ

−1
j Sj .

Therefore, using (12.38) and (12.66),

S′
jΣ

11
j Sj = Aj(Ip +HjAj) = Kj . (12.63)

Calculation of rj

From the expressions (12.48) and (12.56), it follows that S′
jΣ

11
j e(1)j =

S′
jΛ

−1
j e(1)j + S′

jΛ
−1
j SjHjS

′
jΛ

−1
j e(1)j . Therefore, using (12.54),

S′
jΣ

11
j e(1)j = pj +AjHjpj = (Ip +AjHj)pj . (12.64)

Similarly, from (12.40) and (12.49),

S′
jΣ

12
j e(2)j = −S′

jΛ
−1
j SjC

′
jΣyxR

′
jΣ

−1
22.1e(2)j

= −AjC
′
jΣyxR

′
jΣ

−1
22.1e(2)j . (12.65)

Calculation of ∂F/∂[ΣW ]r,s

From (12.5), (12.7), and (12.36) it follows that

∂Vj
∂[ΣW ]r,s

=

nj∑

i=1

ZijGrsZ
′
ij ,

with Grs defined by (12.61), and Zij by (12.5). Therefore,

∂F

∂[ΣW ]r,s
= −

J∑

j=1

nj∑

i=1

tr
{
(Σ11

j e(1)j +Σ12
j e(2)j)(e

′
(1)jΣ

11
j + e′(2)jΣ

21
j )

×ZijGrsZ
′
ij

}
+

J∑

j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s

=
J∑

j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s
−

J∑

j=1

nj∑

i=1

tr qijq
′
ijGrs

=
J∑

j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s
− (2− δrs)

J∑

j=1

nj∑

i=1

[
qijq

′
ij

]
r,s
,

where qij is defined in (12.55). Since Z ′
ij = (∅, . . . ,S′

ij , . . . ,∅), it follows that

(see also (12.54))
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Z ′
ijΣ

11
j e(1)j = Z ′

ij

[
Λ−1
j +Λ−1

j Sj(Fj −Bj)S
′
jΛ

−1
j

]
e(1)j

= SijΛ
−1
ij eij +AijHjpj

= pij +AijHjpj .

Furthermore, Z ′
ijΣ

12
j e(2)j = −AijC

′
jΣyxR

′
jΣ

−1
22.1e(2)j . Finally (see (12.38)

and (12.47)),

trΣ−1
j

∂Σ

∂[ΣW ]r,s

= tr

{
nj∑

i=1

Z ′
ijΣ

11
j ZijGrs

}

=

nj∑

i=1

tr(Z ′
ijΛ

−1
j ZijGrs +Z ′

ijΛ
−1
j SjHjS

′
jΛ

−1
j ZijGrs)

= (2− δrs)
nj∑

i=1

[
Aij(Ip +HjAij)

]
r,s
.

Hence,

∂F

∂[ΣW ]r,s
= (2− δrs)

J∑

j=1

nj∑

i=1

[
Aij(Ip +Hj)Aij − qijq′ij

]
r,s
.

Calculation of ∂F/∂[Σxx]r,s

∂F

∂[Σxx]r,s
= −

J∑

j=1

tr
{
(Σ21

j e(1)j +Σ22
j e(2)j) (e′(1)jΣ

12
j + e′(2)jΣ

22
j )RjGrsR

′
j

}

+
J∑

j=1

tr

{
Σ−1
j

(
∅ ∅

∅ RjGrsR
′
j

)}

=
J∑

j=1

trΣ22
j RjGrsR

′
j −

J∑

j=1

tr sjs
′
jGrs

= (2− δrs)
J∑

j=1

[
R′
jΣ

22
j Rj −

J∑

j=1

sjs
′
j

]
r,s
,

where sj is defined in (12.57).

12.B.4 Hessian Matrix

The following matrix expressions are defined in terms of (12.38)–(12.41) and

(12.45)–(12.47) in order to simplify elements of the Hessian:
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Kj = S′
jΣ

11
j Sj = Aj(Ip +HjAj) (12.66)

and

Lj : (p× q) = S′
jΣ

12
j Rj = −AjC

′
jΣyxR

′
jΣ

−1
22.1Rj = −D′

jΣyxEj . (12.67)

Let

Mjrs =

nj∑

i=1

AijGrsAij =

nj∑

i=1

{
aijra

′
ijs + (1− δrs)aijsa′

ijr

}
, (12.68)

with aijr the r-th column of Aij = S′
ijΛ

−1
ij Sij . Also, let

Nij = AijHjAij . (12.69)

Note

To compute Mjrs =
∑nj

i=1AijGrsAij let jr be a column vector with all

elements equal to zero except for the r-th element, which equals 1. Hence (see

(12.61)),

Grs = Jrs + (1− δrs)Jsr = jrj
′
s + (1− δrs)jsj′r .

Note that aijr = Aijjr is the r-th column of the symmetric matrix Aij .

Therefore,

nj∑

i=1

AijGrsAij =

nj∑

i=1

{
aijra

′
ijs + (1− δrs)aijsa′

ijr

}
.

Finally, define the block-diagonal matrix Djrs as

Djrs =

nj⊕

i=1

SijGrsS
′
ij . (12.70)

Let σB = vecsΣB , σW = vecsΣW , σxx = vecsΣxx, σxy = vecΣxy, and

π′
2 = (σ′

B ,σ
′
W ,σ

′
xy,σ

′
xx). The Hessian with respect to π2:

[
p(p + 1) + pq +

1
2q(q + 1)

]
× 1 is

H(π2) = E




∂2F

∂σB ∂σ
′
B

[sym.]

∂2F

∂σW ∂σ′
B

∂2F

∂σW ∂σ′
W

∂2F

∂σxy ∂σ
′
B

∂2F

∂σxy ∂σ
′
W

∂2F

∂σxy ∂σ
′
xy

∂2F

∂σxx ∂σ
′
B

∂2F

∂σxx ∂σ
′
W

∂2F

∂σxx ∂σ
′
xy

∂2F

∂σxx ∂σ
′
xx




. (12.71)
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The simplification of the terms for the between and within components,

∂2F/∂[ΣB ]u,v ∂[ΣB ]r,s and ∂2F/∂[ΣW ]u,v ∂[ΣW ]r,s are given in the form of

propositions, followed by a listing of the simplified results for the remaining

elements of the Hessian.

Proposition 12.1

E
∂2F

∂[ΣB ]u,v ∂[ΣB ]r,s
(12.72)

= 1
2

J∑

j=1

trKjGrsKjGuv

=
(2− δrs)(2− δuv)

4

J∑

j=1

([Kj ]r,u[Kj ]s,v + [Kj ]r,v[Kj ]s,u) (12.73)

with Kj defined in (12.66) and F by (12.10).

Proof. From (12.61),

∂Σj

∂[ΣB ]r,s
=

(
SjGrsS

′
j ∅

∅ ∅

)
.

Using this result and (12.44), [H(ΣB)]rs,uv can be written as

[H(ΣB)]rs,uv = 1
2

J∑

j=1

tr

{
Σ−1
j

∂Σj

∂[ΣB ]r,s
Σ−1
j

∂Σj

∂[ΣB ]u,v

}

= 1
2

J∑

j=1

tr{Σ11
j SjGrsS

′
jΣ

11
j SjGuvS

′
j}.

Since trAB = trBA with A = S′
j and B = Σ11

j SjGrsS
′
jΣ

11
j SjGuv,

[H(ΣB)]rs,uv = 1
2

J∑

j=1

tr{S′
jΣ

11
j SjGrsS

′
jΣ

11
j SjGuv}.

From (12.66), Kj = S′
jΣ

11
j Sj , so that

[H(ΣB)]rs,uv = 1
2

J∑

j=1

trKjGrsKjGuv .

From Bargmann [5] the following property holds: trAJijBJrs = [A]si[B]jr.

Using (12.63) and the definition of Grs (see (12.61)), it follows that the

formula for [H(ΣB)]rs,uv can be simplified to the form (12.73). ⊓⊔
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Proposition 12.2

E
∂2F

∂[ΣW ]u,v ∂[ΣW ]r,s
= 1

2

J∑

j=1

tr

{
Σ11
j

∂Vj
∂[ΣW ]r,s

Σ11
j

∂Vj
∂[ΣW ]r,s

}

= 1
2

J∑

j=1

trΣ11
j DjrsΣ

11
j Duv

= 1
2

J∑

j=1

nj∑

i=1

trAijGrsAijGuv

+ 1
2

J∑

j=1

trMjrsHjMjuvHj

+
J∑

j=1

nj∑

i=1

trNijGrsAijGuv ,

where
∂Vj

∂[ΣW ]r,s
=

nj∑

i=1

ZijGrsZ
′
ij

and whereGrs andDrs have been defined in (12.61) and (12.70), respectively.

Proof. From (12.48), Σ11
j = Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j , so that

1
2

J∑

j=1

trΣ11
j DjrsΣ

11
j Djuv

= 1
2

J∑

j=1

tr
{
(Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j )Djrs(Λ

−1
j +Λ−1

j SjHjS
′
jΛ

−1
j )Djuv

}

= 1
2

J∑

j=1

trΛ−1
j DjrsΛ

−1
j Djuv

+ 1
2

J∑

j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

+
J∑

j=1

tr(S′
jΛ

−1
j DjrsΛ

−1
j DjuvΛ

−1
j SjHj). (12.74)

The three terms can be simplified as follows.
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Term 1 : Using (12.37) and (12.38),

1
2

J∑

j=1

trΛ−1
j DjrsΛ

−1
j Djuv

= 1
2

J∑

j=1

nj∑

i=1

tr
{
(S′

ijΛ
−1
ij Sij)Grs(S

′
ijΛ

−1
ij Sij)Guv

}

= 1
2

J∑

j=1

nj∑

i=1

trAijGrsAijGuv .

Term 2 : Using the well-known property trAB = trBA with A = Λ−1
j SjHj ,

1
2

J∑

j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

= 1
2

J∑

j=1

tr(S′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j DjuvΛ

−1
j SjHj).

Using (12.38) and (12.70), S′
jΛ

−1
j DjrsΛ

−1
j Sj can be rewritten as

S′
jΛ

−1
j DjrsΛ

−1
j Sj =

nj∑

i=1

S′
ijΛ

−1
ij SijGrsS

′
ijΛ

−1
ij Sij

=

nj∑

i=1

AijGrsAij

= Mjrs ,

with Mjrs defined in (12.68). Substitution of this result allows the simplifica-

tion of the second term to

1
2

J∑

j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

= 1
2

J∑

j=1

trMjrsHjMjuvHj .

Term 3 : The final term can be simplified using the definitions of Aij , Djrs,

and Grs (see (12.38), (12.70), and (12.61)) to write

S′
jΛ

−1
j DjrsΛ

−1
j DjuvΛ

−1
j Sj =

nj∑

i=1

AijGrsAijGuvAij .
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Thus (see (12.69)),

J∑

j=1

tr(S′
jΛ

−1
j DjrsΛ

−1
j DjuvΛ

−1
j SjHj) =

J∑

j=1

nj∑

i=1

trNijGrsAijGuv .

When the results obtained for the three terms are substituted in (12.74), the

proposition follows. ⊓⊔

The remaining components of the Hessian are obtained in a similar way.

Expressions for each remaining component of (12.71) are given below.

H(1, 2):

E
∂2F

∂[ΣB ]r,s ∂[ΣW ]u,v

= 1
2

J∑

j=1

tr(S′
jΣ

11
j DjuvΣ

11
j SjGrs)

= 1
2

J∑

j=1

tr
{
(S′

jΛ
−1
j +AjHjS

′
jΛ

−1
j )Djuv(Λ

−1
j Sj +Λ−1

j SjHjAj)Grs

}

= 1
2

J∑

j=1

tr
{
(Ip +AjHj)S

′
jΛ

−1
j DjuvΛ

−1
j Sj(Ip +HjAj)Grs

}

= 1
2

J∑

j=1

tr
{
(Ip +AjHj)Mjuv(Ip +HjAj)Grs

}
.

H(1, 3):

E
∂2F

∂[ΣB ]r,s ∂[Σxy]u,v

= 1
2

J∑

j=1

tr(S′
jΣ

11
j SjGrsS

′
jΣ

12
j RjJuv +RjJuvS

′
jΣ

11
j SjGrsS

′
jΣ

12
j )

=
J∑

j=1

tr(S′
jΣ

11
j SjGrsS

′
jΣ

12
j RjJuv)

=
J∑

j=1

trKjGrsLjJuv .

H(2, 3): Using (12.45) and (12.49),
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E
∂2F

∂[ΣW ]r,s ∂[Σxy]u,v

= 1
2

J∑

j=1

tr(Σ11
j DjrsΣ

12
j RjJuvS

′
j +Σ21

j DjrsΣ
11
j SjJ

′
uvR

′
j)

=
J∑

j=1

tr(S′
jΣ

11
j DjrsΣ

12
j RjJuv)

= −
J∑

j=1

tr
{
(Ip +AjHj)S

′
jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxEjJuv

}
.

But (see (12.68))

S′
jΛ

−1
j DjrsΛ

−1
j Sj =

nj∑

i=1

AijGrsAij = Mjrs

and Kj = S′
jΣ

11
j Sj , so that

E
∂2F

∂[ΣW ]r,s ∂[Σxy]u,v

= −
J∑

j=1

tr
{
(Ip +AjHj)S

′
jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxEjJuv

}

= −
J∑

j=1

tr(KjMjrsC
′
jΣyxEjJuv).

H(3, 3):

E
∂2F

∂[Σxy]r,s ∂[Σxy]u,v

=
J∑

j=1

tr(S′
jΣ

12
j RjJrsS

′
jΣ

12
j RjJuv + S′

jΣ
11
j SjJ

′
rsR

′
jΣ

22
j RjJuv)

=
J∑

j=1

tr(LjJrsLjJuv +KjJ
′
rsEjJuv).

H(1, 4):

E
∂2F

∂[ΣB ]r,s ∂[Σxx]u,v
= 1

2

J∑

j=1

tr(S′
jΣ

12
j RjGuvR

′
jΣ

21
j SjGrs)

= 1
2

J∑

j=1

trL′
jGrsLjGuv ,
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with Grs defined in (12.61).

H(2, 4):

E
∂2F

∂[ΣW ]r,s ∂[Σxx]u,v

= 1
2

J∑

j=1

tr(R′
jΣ

21
j DjrsΣ

12
j RjGuv)

= 1
2

J∑

j=1

tr(R′
jΣ

−1
22.1RjΣxyCjS

′
jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxR

′
jΣ

−1
22.1RjGuv)

= 1
2

J∑

j=1

tr(EjΣxyCjMjrsC
′
jΣyxEjGuv).

H(3, 4): From (12.45) and (12.67),

E
∂2F

∂[Σxx]r,s ∂[Σxy]u,v

= 1
2

J∑

j=1

tr(S′
jΣ

12
j RjGrsR

′
jΣ

22
j RjJuv +RjJuvS

′
jΣ

12
j RjGrsR

′
jΣ

22
j )

= 1
2

J∑

j=1

tr(S′
jΣ

12
j RjGrsR

′
jΣ

22
j RjJuv + S′

jΣ
12
j RjGrsR

′
jΣ

22
j RjJuv)

=
J∑

j=1

tr(S′
jΣ

12
j RjGrsR

′
jΣ

22
j RjJuv)

=
J∑

j=1

trLjGrsEjJuv .

H(4, 4):

E
∂2F

∂[Σxx]r,s ∂[Σxx]u,v
= 1

2

J∑

j=1

tr(R′
jΣ

22
j RjGrsR

′
jΣ

22
j RjGuv)

= 1
2

J∑

j=1

trEjGrsEjGuv .

12.B.5 Gradient and Hessian for the Fixed Part of the Model

For the fixed part of the model, the gradient and Hessian are derived in a

similar way. Partition y
j

as y′
j

= (y′
(1)j ,x

′
j), with E (y(1)j) = X(y)jβy = µ(1)j

and E (xj) = X(x)jβx = µ(x)j . Then
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∂F

∂[βy]r
= −

J∑

j=1

tr

(
y(1)j − µ(1)j

xj − µ(x)j

)′ (
Σ11
j Σ12

j

Σ21
j Σ22

j

) (
X(y)jjr

∅

)

= −
J∑

j=1

tr
{
(y(1)j − µ(1)j)

′Σ11
j X(y)jjr + (xj − µ(x)j)

′Σ21
j X(y)jjr

}

= −
J∑

j=1

(e′(1)jΣ
11
j X(y)jjr + e′(2)jΣ

21
j X(y)jjr),

where e(1)j = y(1)j − µ(1)j and e(2)j = xj − µ(x)j . Similarly,

∂F

∂[βx]r
= −

J∑

j=1

tr

(
y(1)j − µ(1)j

xj − µ(x)j

)′ (
Σ11
j Σ12

j

Σ21
j Σ22

j

) (
∅

X(x)jjr

)

= −
J∑

j=1

tr
{
(y(1)j − µ(1)j)

′Σ12
j X(x)jjr + (xj − µ(x)j)

′Σ22
j X(x)jjr

}

= −
J∑

j=1

(e′(1)jΣ
12
j X(x)jjr + e′(2)jΣ

22
j X(x)jjr).

Turning to the elements of the Hessian, we have

[H(β)]r,s =
J∑

j=1

{
∂µ′

j

∂[β]r
Σ−1
j

∂µj
∂[β]s

}
.

In terms of βy, we find that

E
∂2F

∂[βy]r ∂[βy]s
=

J∑

j=1

tr(j′rX
′
(y)jΣ

11
j X(y)jjs).

Also,

E
∂2F

∂[βx]r ∂[βx]s
=

J∑

j=1

tr(j′rX
′
(x)jΣ

22
j X(x)jjs).

Finally,

E
∂2F

∂[βy]r ∂[βx]s
=

J∑

j=1

tr(j′rX
′
(y)jΣ

12
j X(x)jjs).

12.B.6 Simplifications for Special Cases

When there are no missing data, and no x-variables on level 2, the reader may

verify that expressions for the gradient vector and Hessian matrix simplify

considerably [see 14]. For example,
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H(σB ,σ
′
B) = 1

2
G′
p





J∑

j=1

Kj �Kj



Gp ,

where Kj = Aj(Ip−BjAj), with Aj = njΣ
−1
W and Bj = (Σ−1

B +njΣ
−1
W )−1.

Also,

H(σB ,σ
′
W ) = 1

2
G′
p





J∑

j=1

Σ−1
W (Ip −BjAj) �Σ−1

W (Ip −BjAj)



Gp ,

H(σW ,σ
′
W ) = 1

2
G′
p





J∑

j=1

nj(Σ
−1
W −Σ−1

W BjΣ
−1
W ) � (Σ−1

W −Σ−1
W BjΣ

−1
W )

+ nj(nj − 1)(Σ−1
W BjΣ

−1
W ) � (Σ−1

W BjΣ
−1
W )



Gp .

These results follow, since Sij = Ip for j = 1, 2, . . . , J , i = 1, 2, . . . , nj . Use

is also made of the result that trAGrsAGuv is a typical element of G′
p(A�

A)Gp, where [see, e.g., 8] Gp is a unique p2 × 1
2p(p + 1) matrix such that

vecS = Gp vecsS, with S a symmetric p × p matrix, and Grs was defined

in (12.61).

Note that we preferred to obtain expressions for the gradient and Hessian

in terms of individual elements and not in terms of the resulting Kronecker

products. Suppose, for example, that p = 10 and ΣW is constrained to be

equal to a diagonal matrix. The corresponding Hessian will only contain the

55 nonduplicated elements [H(ΣW )]rr,ss instead of the 1
2 (55 × 56) elements

of the unconstrained case.

In general, if allowance is to be made for some elements of ΣW and

ΣB to be fixed, it is more efficient to have elementwise expressions for the

corresponding gradient and Hessian.

One could also compute the patterns of missingness within each level-2

unit, so that, for example,

Aj =

nj∑

i=1

S′
ijAijSij = n∗jΣ

−1
W +

m∑

k=1

nkS
′
ikAikSik ,

where n∗j equals the number of complete patterns, m equals the number of

patterns for missing value cases, and nk denotes the number of cases belonging

to pattern k, k = 1, 2, . . . ,m. Note that
∑m
k=1 nk = nj − n∗j .
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Kovačević, M. S., 29, 52

Kreft, I. G. G., 3, 5, 25, 26, 29, 32, 47,

54, 56, 60, 435

Kuk, A. Y. C., 351, 402, 423

Laird, N. M., 42, 192, 193, 342, 350, 402

Langbein, L. I., 3

Lange, N., 156

Langer, W., 423

Langford, I. H., 149, 156

Laplace, P.-S., 85, 93

Lawless, J. F., 346

LeBlond, D. J., 419, 429

Lee, J. W., 363

Lee, S.-Y., 436

Lee, Y., 314, 346

Legendre, A. M., 77

Lerman, S. R., 358

Lesaffre, E., 28, 45, 145, 158, 159, 253

Lewis, S. M., 126, 357

Lewis, T., 149, 156

Liang, J., 436

Liang, K.-Y., 363

Lieberman, M., 250

Lin, X., 168, 171, 349, 357, 404

Lindsey, J. K., 295

Lindstrom, M. J., 33, 42, 388

Little, R. J. A., 377

Liu, G., 65

Liu, Q., 353

Liu, X., 201, 222

Long, J. S., 250

Longford, N. T., 3, 10, 28, 39, 42, 161,

197, 335, 349, 388, 395, 435

Louis, T. A., 353, 385, 402
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National Council for Population and

Development (NCPD), 358

Negative-binomial models, 279

Newton-Raphson algorithm, 33, 39, 42,

63, 64, 355

nlme program, 33, 41, 48

Nominal response models, 245,

250, 262

Non-exchangeable pair members, 217

Non-hierarchical

multilevel models, 301

structure, consequences of

ignoring, 332

Noninformative prior, see Prior, diffuse

Nonlinear link functions, 209,

230, 345

Nonlinear mixed models, 15, 336, 401

Nonlinear transformations, 161

Nonnormality, 17, 18, 209

Nonparametric maximum likelihood

estimator (NPMLE), 18, 279

Normal random effects, 208

see also Gaussian random effects

Null matrix, 212, 229, 442, 443

Numerical optimization, 63, 64, 355

see also BFGS, DFP, EM algorithm,

Fisher scoring, Gauss-Newton,

IGLS, Newton-Raphson, RIGLS,

Steepest descent

OPTDES program, 186, 192

Optimal designs

experiments, 181, 185

logistic model, 188

longitudinal studies, 190, 193

precondition for calculating, 179

robustness of, 178–180, 198

surveys, 194

variance parameters, 197

Optimality criteria, 179, 195, 201

Ordinal models, 244, 246, 248, 251

Ordinal regression model, 246

Ordinal response models, 260

Ordinary least squares (OLS), 24–26,

31, 144, 148

Outer product of the gradients, 250

Over-Shrinkage, 229

Panel data, see Longitudinal data

Partial autocorrelation function

(PACF), 125

Partial likelihood, 341

Partial proportional odds, 244

Pattern-mixture model, 382

Penalized quasi-likelihood (PQL), 189,

253, 348, 350, 370

Percentile interval

Efron, 417, 418, 424, 426

Hall, 416

Percentile-t, 41

see also Bootstrap

Permutation resampling, 401

Piece-wise exponential survival, 342

PinT software, 48, 195

Plausible values, 385

Poisson

distributed count data, 210

distributions, 338, 343

errors, 370

models, 230, 283, 335, 342, 354, 361

Polynomial

functions, 161, 169, 170, 172

model, 162

Posterior

data set, 86

density, 19, 23, 95, 124, 134,

353, 354

distribution, 23, 83–85, 87–90, 92,

94–98, 102, 105, 106, 107, 109,

111, 112, 116, 118, 121, 122,

126, 127, 130, 132, 134, 165,

228, 229, 254, 255, 309, 310,

314, 315, 324, 325, 350, 353,

355, 356

interval, 95

mean, 23, 85, 88, 89, 96, 98–100, 110,

123–127, 131–134, 213, 229, 254,

354; see also Empirical Bayes

median, 95, 124

mode, 23, 110, 121, 124, 165

moments, 105

predictive distribution, 89, 90

probability, 353
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standard deviation, 123, 126, 127,

131–134

variance, 92, 167, 168, 214, 228, 229,

255, 354

Predictive quasi-likelihood, see

Penalized quasi-likelihood (PQL)

Pre-treatment measurement, 193

Prior

conjugate, 85, 91, 93, 94, 105, 112,

114, 119

data set, 86, 87

density, 23, 249, 353

diffuse, 89, 91, 94, 112, 117–122, 129,

165, 350, 356

distribution, 23, 83–91, 105, 112–115,

117–119, 165, 167, 168, 199, 264,

310, 314, 324, 325, 353, 356,

357, 370,

improper, 87, 113, 118

mean, 85–87, 213, 214

probability, 353

sample size, 86, 87, 92

standard deviation, 86, 87

variance, 214

Probit models, 241, 242, 255, 279, 283,

335, 340, 355

Probit response functions, 242

Proportional hazards model, 246, 247,

341, 343, 344, 361

Proportional odds model, 243

Pseudo-values, 408, 409, 420, 422

Quadratic regression spline estimate,

170, 171

Quadrature, 255, 347, 351, 355, 358

adaptive, 234, 254, 279, 353–355

Gauss-Hermite, 234, 238, 253, 254,

314, 336, 351–355, 357, 361, 363,

367–370, 394

Raftery-Lewis (RL) diagnostic, 127

Random coefficient models, 2–10, 144,

147, 158, 283, 285, 287, 394,

396, 398

Random effects, 229

estimation of, 254

standard deviation, 257

variances of, 112, 116, 241, 265, 347

Random effects logistic regression

(RELR), 78, 114, 127

Random intercept model, 10, 251, 277

Random parameters, 8, 9, 336, 348–351,

361, 363, 365, 403

Random regression coefficients, 213

Random regression models, 435

Random-slopes regression model, 108

Rao-Blackwellisation, 314

Rasch model, 258

Re-estimation, 158

Regression

analysis, 1, 2, 59, 411

coefficients, 6, 54, 207

models, 49, 412

Regression spline model, 162, 163, 170

Rejection sampling, 98–101, 115

Relative efficiency, 180, 183, 184, 193,

199

Repeated measures, 4, 5, 12, 33, 42,

161, 192, 193, 207, 210, 215, 218,

247, 275, 345, 402, 413, 435

see also Longitudinal data

Resampling methods, 401

Residual maximum likelihood (REML),

21, 22, 33, 35, 38–40, 44, 46, 47,

56–59, 120, 149, 349, 350, 401,

402, 426–428

Residuals, 7, 13, 14, 19–22, 26, 51, 129,

141, 142, 144, 145, 147, 149–161,

213, 255, 256, 277, 280, 282,

287–291, 294, 305, 311, 313, 325,

379, 403, 404, 406, 407, 410–412,

423–428

Response functions, 242, 244, 248, 249

Response probabilities, 245, 255

Restricted iterative generalized least

squares (RIGLS), 32, 40, 159,

167–169, 327

see also REML

Restricted maximum likelihood, see

Residual maximum likelihood

(REML)

Robbins-Monro stochastic approxima-

tion, 358
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Robust covariance matrix, see

Covariance matrices, robust

Root mean squared error of

approximation (RMSEA),

445, 450, 455

Roughness penalty, 164, 165, 167

R software, 33, 48, 86, 88, 121, 346,

354–356, 423, 427

Sampling design, 60

Sampling weights, 48–53

Sandwich estimator, 404

SAS software, 48, 78, 167, 254, 346,

423, 427

Scalar notation, 7, 14

Scaled inverse χ2 distribution, 105–107,

113, 114, 310, 325

School effectiveness research, 2

Scoring, Method of, see Fisher scoring

Semi-standardized residuals, 150

Sensitivity analysis, 392

Simple random sample (SRS), 456

Simulated maximum likelihood

(SML), 358

Simulated moments, Method of

(MSM), 358

Simulated scores, Method of (MSS), 358

Simulation-based assessment, 160

Simulation-extrapolation (SIMEX), 396

Single-stage cluster sample, 93

Slopes-as-outcomes model (SOM), 3,

10–15, 19, 22, 24, 27, 403

Slutsky’s theorem, 26

Smoothing spline model, 164

Software, 47, 48, 78, 79, 253, 254, 423

see also aML, BMDP5V, BUGS,

CODA, Egret, EQS, Gibbsit,

GLIM, gllamm, GLMMGibbs,

HLM, LIMDEP, LISREL, lme4,

Maple, MIXFOO, MLA, ML3,

MLwiN, Mplus, nlme, OPTDES,

PinT, R, SAS, S-Plus, SPSS,

Stata, VARCL, WinBUGS

Spatial data, 14, 328

Splines, see B-spline functions;

Regression spline model;

Smoothing spline model

S-Plus software, 121, 289, 346, 355–357,

423, 427

SPSS software, 48, 423

Standard errors, 37, 78

model-based, 224

Standardized effect size, 191

Stata software, 48, 78, 254, 279, 282,

289, 346, 354, 355, 363, 368

Stated preference data, 4

Statistical test, see Hypothesis testing

Steepest descent algorithm, 64

Stochastic process, 101, 103

Stratification, 187

Structural equation modeling (SEM),

17, 435–437, 448, 452, 456, 458

Structural models, 17, 436, 439

Subject-specific probabilities, 255

Sufficient statistics, 84, 85, 384, 385,

388, 394, 397

Survey data, 4, 48–50, 53, 178, 179, 193,

194, 199–201, 207, 276, 302, 322,

328, 338, 358, 448

Survival analysis models, 238, 244, 245,

341, 344

Symmetrization matrix, 33

Taylor series, 232, 349

Threshold concept, 240

Transition models, 290

Treatment effect, 201, 220

variance of, 193

Twin studies, 5, 207, 215, 216, 256, 257

Two-Way Cross-Classification,

302, 315

Unconditional hazards, 344

Underlining random variables, 62, 63

Unobserved heterogeneity, 277

Van Dantzig Convention, see Dutch

Convention

VARCL program, 39, 48, 78, 349, 423

Variance components, 2, 78, 93, 110,

214, 403

Variance inflation factor, 186
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Variance stabilized percentile-t

interval, 417

Wald test, 262, 265

Weighted least squares (WLS), 24–26,

39, 44, 52, 345

Weights, see Sampling weights

WinBUGS software, 48, 114–118, 121,

122, 128–131, 134, 200

see also BUGS

Wishart distribution, 119

z-test, 425


