$f(x-r)=r(x-r)+r=r x-1$
$f^{-1}\left(\frac{X}{r}\right)=\frac{1}{r}\left(\frac{X}{r}\right)-\frac{r}{r}=\frac{X}{r}-\frac{r}{r}$

الف) $f(x)=x^{r}$	$D_{f}=\mathbb{Z}$
ب) $g(x)=-x$	$D_{g}=\mathbb{R}$
↔ $h(x)=\sqrt{x}$	$D_{h}=\mathbb{N}$
ت) $t(x)=r \sqrt[r]{x}$	$D_{t}=\{-1,0,1, \wedge\}$

$A=\{x \mid x \in \mathbb{R}, f \leq x<\Lambda\}$

$B=\{x \mid x \in \mathbb{R},-r<x<s\}$

$A \cup B=(-r, \lambda) \quad A \cap B=[r, \varepsilon)$

$f(10)=r_{00} \Rightarrow\left(1_{0}, r_{00}\right) \in f$
$f(10)=r_{000} \Rightarrow\left(10, r_{000}\right) \in f \Rightarrow r_{10}=\frac{f_{00-}-r_{00}}{10-1_{0}}=v_{0}$
خ معادل $y-r_{00}=v \varepsilon_{0}\left(x-1_{0}\right) \Rightarrow y=v \varepsilon_{0} x-v f_{\circ 0}$
$f(x)=v \varepsilon_{0} x-v F_{\circ} \circ$
$f(-r)=0 \Rightarrow(-r, 0) \in f$
$f^{-1}(r)=f \Rightarrow(r, r) \in f^{-1} \Rightarrow(r, r) \in f$
ff ضابطه تابع خطى :y $:=0=\frac{1}{r}(x+r) \Rightarrow y=\frac{1}{r} x+1 \Rightarrow f(x)=\frac{x}{r}+1$
$f(-r)=\circ \Rightarrow(-r, 0) \in f \Rightarrow(0,-r) \in f^{-1}$
$f^{-1}(r)=f \Rightarrow(r, f) \in f^{-1}$
f^{-1} : ضابطه: $y-r=r(x-r) \Rightarrow y=r x-r \Rightarrow f^{-1}(x)=r x-r$

خمط $: y-r r_{000}=r r_{00}\left(x-\Delta_{0}\right) \Rightarrow y=r r_{00} x+190000$
$f(x)=r r_{00 x}+19000 \quad f\left(\Lambda_{0}\right)=r r_{000}\left(\Lambda_{0}\right)+1 \varepsilon_{0000}=r r_{000} \quad$ تومان

$$
\begin{array}{ll}
& f(r)=\Delta \\
& (r, \Delta) \in f(x)=x+r \\
(r, v) \in f \Rightarrow f(r+r)=r+f(r) \Rightarrow f(r)=r+\Delta=r \\
\text { b } n=\frac{r-\Delta}{f-r}=1
\end{array}
$$

$$
\left.\begin{array}{l}
f(r)=r \\
f^{-1}(r)=r \\
f^{\circ}(0)=-1 \\
f^{-1}(s)=r
\end{array}\right\} \Rightarrow \frac{f(r)+f^{-1}(r)}{r f(\cdot)+f^{-1}(s)}=\frac{r+r}{r(-1)+r}=\frac{0}{r}
$$

الف $f(x+r)-f(x)=r(x+r)+1-(r x+1)=r$
ب) $f\left(\frac{1}{r} x\right)=r\left(\frac{1}{r} x\right)+1=x+1$
, $\frac{f(x+h)-f(x)}{h}=\frac{r(x+h)+1-(r x+1)}{h}=\frac{r h}{h} \stackrel{h \neq \sigma^{\prime}}{=} r$
ت) $\frac{f(x)-f(r)}{x-r}=\frac{r x+1-r}{x-r}=\frac{r(x-r)}{x-r}=r$

در اين تمرين دانشأموز منوجه امميت دامنه تابع خواهد شد. در تمامى موارد ضـابطه يكسـان بـود ولى بـا
 حل كنيد.

$f^{-1}(x)=r-a x$
$\left.\begin{array}{l}f^{-1}(x)=r-a x \\ f(1)=\Delta \Rightarrow f^{-1}(\Delta)=1\end{array}\right\} \Rightarrow 1=r-a(\Delta) \Rightarrow a=\frac{r}{\Delta}$
$f^{-1}(x)=r-\frac{r}{\Delta} x$
يك نقطة دلخواه روى تابع ff در نظر مىكيريم.
$x=\cdot \Rightarrow f^{-1}(\cdot)=r \Rightarrow(\cdot, r) \in f^{-1} \Rightarrow(r, \cdot) \in f$
$f(1)=\Delta \Rightarrow(1, \Delta) \in f$
ffare معادله : $y-\cdot=\frac{0}{r}(x-r) \Rightarrow y=\frac{0}{r} x-\frac{10}{r}$
$f(x)=\frac{0}{r} x-\frac{10}{r}$

فالف $D_{f}=[-r, s], R_{f}=[\cdot, r]$
ب) $\mathrm{D}_{\mathrm{g}}=(\cdot,+\infty), \mathrm{R}_{\mathrm{g}}=(-1,+\infty)$
$\left.\begin{array}{l}f(m+n)=a(m+n)+b=a m+a n+b \\ f(m)+f(n)=a m+b+a n+b\end{array}\right\} \Rightarrow f(m-n) \neq f(m)+f(n)$
$f(m n)=a(m n)+b=a m n+b$
$\left.f(m) \times f(n)=(a m+b)(a n+b)=a^{r} m n+a b m+a b n+b^{r}\right\} \Rightarrow f(m n) \neq f(m) \cdot f(n)$
: على $A=[\Lambda, 1 \varepsilon]$
رض: $B=[V, I f]$
$A \cap B=[\Lambda, I f]$
(u)
$A-B=[\Lambda, 1 \varepsilon]-[\gamma, 1 f]=(1 F, \mid \varepsilon]$
(ت)
$(A-B) \cup(B-A)=(1 f, \mid \varepsilon] \cup[\vee, A)$

ويرٔ دانشآموزان علاقهمند

(en) -1
$\frac{f(x+h)-f(x)}{h}=\frac{a(x+h)+b-(a x+b)}{h}=\frac{a h}{h}=a$
 أنجا كه فقط يك خط از نقطه A به موازات محور Xها مىتوان رسم كرد بس تنها يك تابع خطـى مـىتـوان ســاخت بـا
f(x) =f f

تابع g عدد a را مىكيرد و (- -) تحويل مىدهد، بس:
$g(a)=-r \Rightarrow f a-r=-r \Rightarrow f a=-r \Rightarrow a=-1$
تابع f عدد (-) , را كرفته و b , ا تحويل مىدهد. يس:
$f(-v)=b \Rightarrow r(-v)+1=b \Rightarrow b=-1 r$

(a) $-\Delta$
$\frac{g\left(x^{r}+r x+r\right)}{f(\sqrt{x})}=\frac{g\left((x+1)^{r}+1\right)}{f(\sqrt{x})}=\frac{\sqrt{(x+1)^{r}+1-1}}{(\sqrt{x})^{r}+1}=\frac{|x+1|}{x+1}$
حون x x يֶ عبارت (x+1) مقدارى مثبت است و داريه:
$\frac{x+1}{x+1}=1$

$y=a x+b \Rightarrow x=\frac{y-b}{a} \Rightarrow f^{-1}(x)=\frac{x-b}{a}$

مىتوانيم دو نقطل دلخواه (fo f

$f(x)+f^{-1}(x)=x \Rightarrow a x+b+\frac{x-b}{a}=x$
$a x+\frac{1}{a} x-x=\frac{b}{a}-b \Rightarrow x\left(a+\frac{1}{a}-1\right)=b\left(\frac{1}{a}-1\right)$
جون رابطه به ازاى هر مقدار x بايد برقرار و سیس تنها در يك صورت ممكن است كه . >> امكان ندارد:
$\left\{\begin{array}{l}a+\frac{1}{a}-1=0 \Rightarrow a^{r}-a+1=0 \Rightarrow 20 . \\ b\left(\frac{1}{a}-1\right)=0\end{array}\right.$

$r+\sqrt{r}=x \Rightarrow x-r=\sqrt{r} \Rightarrow(x-r)^{r}=r \Rightarrow(x-r)^{r}-r=$.
$f(r+\sqrt{r})=\left(r+\sqrt{r}^{r}\right)^{1 r \wedge A}(\cdot)-r=-r$

آزمون جهاركزينهاى
$f(\cdot)=-1 \Rightarrow(\cdot,-1) \in f \Rightarrow(-1,0) \in f^{-1}$

$$
(F, 1) \in f^{-1}
$$

$f^{-1}(r)=s \Rightarrow(r, s) \in f^{-1} \Rightarrow(\varepsilon, r) \in f \Rightarrow r=s m+1 \Rightarrow m=\frac{1}{q}$
-r
$f(\cdot)=-r \Rightarrow(\cdot,-r) \in f \Rightarrow(-r, \cdot) \in f^{-1}$
$f(1)=\frac{1}{r} \Rightarrow\left(1, \frac{1}{r}\right) \in f \Rightarrow\left(\frac{1}{r}, 1\right) \in f^{\prime} \quad \Rightarrow \quad ش=\frac{1-\cdot}{\frac{1}{r}+r}=\frac{r}{r}$
\Rightarrow :معادل خ : $y-\cdot=\frac{r}{v}(x+r) \Rightarrow y=\frac{r}{v} x+\frac{s}{v} \Rightarrow f^{-1}(x)=\frac{r}{r} x+\frac{q}{v}$
$\frac{r f(r)-g^{-1}(r)}{g(\cdot)+f^{-1}(r)}=\frac{r(-1)-(1)}{(1)+1}=\frac{-r}{r}$
$f(x)=x^{r}-r x+1=(x-1)^{r}$
$x=\sqrt{r}+1 \Rightarrow f(\sqrt{r}+1)=(\sqrt{r}+1-1)^{r}=r$
$\left.\begin{array}{l}f(a b)=\Delta(a b) \\ f(a) \cdot f(b)=\Delta a \cdot \Delta b=r \Delta a b\end{array}\right\} \Rightarrow f(a b) \neq f(a) \cdot f(b)$

ساير كزينهما برقرارند و میتوان نشان داد كه عبارات طرفين با هم مساوى هستند.

$g(-1)=1 \Rightarrow f(g(-1))=f(1)=1$
$f(f)=\sqrt{f}=r \Rightarrow g(f(f))=g(r)=f$
$\frac{\mathrm{f}(\mathrm{g}(-1))}{\mathrm{g}(\mathrm{f}(\mathrm{f}))}=\frac{1}{\uparrow}$
$\left\{\begin{array}{l}x=r \Rightarrow f(r)+r f(-r)=19 \\ x=-r \Rightarrow f(-r)-r f(r)=19\end{array}\right.$

-10
$\mathrm{f}(\mathrm{I})=\cdot \Rightarrow \mathrm{f}(\mathrm{f}(\mathrm{I}))=\mathrm{f}(\cdot)=-\mathrm{l}$

باسخ ايستكاه فكر
دهانه بركار را به يك مقدار دلخواه باز مىكنيه ولى اين مقدار را ات آخر كار تغيير نمىدهيم حالا مراحل كار را مشاهده مىكنيه:

 تقسيم شده است.

