International Geology Review
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tigr20

Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance
Ramin Samadia, Hassan Mirnejadb, Hiroshi Kawabatac, Chris Harrisd, Mohammad Vali Valizadehb & Esteban Gazele
a Department of Geology, College of Basic Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
b Department of Geology, Faculty of Science, University of Tehran, Tehran, Iran
c Research and Education Faculty, Kochi University, Kochi, Japan
d Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
e Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
Published online: 05 Feb 2014.

To cite this article: Ramin Samadi, Hassan Mirnejad, Hiroshi Kawabata, Chris Harris, Mohammad Vali Valizadeh & Esteban Gazel (2014) Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance, International Geology Review, 56:5, 596-621, DOI: 10.1080/00206814.2014.880659

To link to this article: http://dx.doi.org/10.1080/00206814.2014.880659

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance

Ramin Samadi*a, Hassan Mirnejadb, Hiroshi Kawabatac, Chris Harrisd, Mohammad Vali Valizadehb and Esteban Gazele

*aDepartment of Geology, College of Basic Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran; bDepartment of Geology, Faculty of Science, University of Tehran, Tehran, Iran; cResearch and Education Faculty, Kochi University, Kochi, Japan; dDepartment of Geological Sciences, University of Cape Town, Rondebosch, South Africa; eDepartment of Geosciences, Virginia Tech, Blacksburg, VA, USA

(Received 28 October 2013; accepted 3 January 2014)

The Triassic Dehnow pluton of NE Iran is a garnet-bearing I-type calc-alkaline metaluminous diorite-tonalite-granodiorite intrusion. The parental magma formed as the result of partial melting of intermediate to felsic rocks in the lower crust. Petrological and geochemical evidence, which indicates a magmatic origin for the garnet, includes: large size (~10–20 mm) of crystals, absence of reaction rims, a distinct composition from garnet in adjacent metapelitic rocks, and similarity in the composition of mineral inclusions (biotite, hornblende) in the garnet and in the matrix. Absence of garnet-bearing enclaves in the pluton and lack of sillimanite (fibrolite) and cordierite inclusions in magmatic garnet suggests that the garnet was not produced by assimilation of meta-sedimentary country rocks. Also, the δ18O values of garnet in the pluton (8.3–8.7‰) are significantly lower than δ18O values of garnet in the metapelitic rocks (12.5–13.1‰). Amphibole-plagioclase and garnet-biotite thermometers indicate crystallization temperatures of 708°C and 790°C, respectively. A temperature of 692°C obtained by quartz-garnet oxygen isotope thermometry points to a closure temperature for oxygen diffusion in garnet. The composition of epidote (Xep) and garnet (Xadr) indicates ~800°C for the crystallization temperature of these minerals. Elevated andradite content in the rims of garnet suggests that oxygen fugacity increased during crystallization.

Keywords: garnet; oxygen isotopes; diorite-tonalite-granodiorite; Iran

Introduction

Garnet is a common mineral in metamorphic rocks, but it is rare in igneous rocks, and its origin in igneous rocks is controversial. Garnet in granitoids is generally reported from S-type granitoids (e.g. Jung et al. 2001; Dahlquist et al. 2007; Villaros et al. 2009; Taylor and Stevens 2010), but some examples have been found in A-type (e.g. Zhang et al. 2009; Zhang et al. 2012) and I-type granitoids (e.g. Green 1992; Yuan et al. 2008). Most occurrences of magmatic garnet are in felsic pegmatites (SiO2 ≥ 70 wt.%) associated with peraluminous to metaluminous granitoids (e.g. Allan and Clarke 1981; Miller and Stoddard 1981; du Bray 1988; Hogen 1996; Dahlquist et al. 2007). Garnet may occur in granite for several reasons, for example as a restite mineral or xenocryst, as a partial melting product, and as primary magmatic or secondary metasomatic phases (Clarke and Rottura 1994). Kawabata and Takafuji (2005) classified garnet from calc-alkaline rocks of the Setouchi volcanic belt in Japan into I-type garnet (i.e. phenocrysts precipitated from peraluminous magmas at pressures greater than 5–7 kbar) and M-type garnet (metamorphic xenocrysts derived from crustal xenoliths). Therefore, garnet-bearing granitoids can provide useful information concerning melt formation and transportation (e.g. Harangi et al. 2001).

In order to understand the magmatic versus xenocrystic origin of garnet in igneous rocks (magmatic or xenocrystic), major and trace elements as well as isotopic compositions of garnet and host rock, the nature of mineral inclusions in the garnet, and the pressure-temperature conditions of garnet formation all need to be considered (e.g. Spear 1993; Harangi et al. 2001; Kawabata and Takafuji 2005; Dahlquist et al. 2007; Yuan et al. 2008). For example, garnet composition, its inclusions, and enclosed metamorphic rock fragments provide evidence for xenocrystic garnet in magma (e.g. Harangi et al. 2001). Although oscillatory chemical zoning is known to be a characteristic of xenocrystic garnets (e.g. Green and Ringwood 1968; Manning 1983; Harrison 1988), oscillatory chemical zoning is also common in garnets of magmatic origin (e.g. Kano 1983; Day et al. 1992). The oxygen isotopic composition of garnet is of potential importance (Lackey et al. 2006, 2008) in determining the origin of garnet in granitic rocks, because the closure temperature for oxygen diffusion in garnet is high (>800°C) (e.g. Farquhar et al. 1996; Lackey et al. 2006, 2008; Harris and Vogeli 2010), hence the δ18O value for garnet does not change once crystallized. Garnet is also highly resistant to post-crystallization interaction to fluids. A number of recent studies have been made on the
O-isotope composition of magmatic garnet in granitoids (e.g. Mason et al. 1996; Harangi et al. 2001; King and Valley 2001; Lackey et al. 2006, 2008, 2012; Harris and Vogeli 2010). The $\delta^{18}O$ value for magmatic garnet in almandine-bearing dacite and andesite from the northern Pannonian Basin (with mantle origin) is +6.1 to +7.3‰ (Harangi et al. 2001). The $\delta^{18}O$ values for garnet in the S-type Peninsula granite (South Africa) vary from +10.0 to +11.4‰, suggesting formation by incongruent melting of metapelitic rocks (Harris and Vogeli 2010). Metamorphic garnet in metapelites generally has high $\delta^{18}O$ values, ranging from +11.4 to +13.4‰ (Kohn et al. 1997).

The Dehnow diorite-tonalite-granodiorite pluton (DTG) is located in NW Mashhad, NE Iran (Figure 1A). Granitoid outcrops are covered by Quaternary gravel fan deposits (Figure 1B), such that outcrops are few but widely distributed. Megacrysts of garnet (~10–20 mm) are a common minor constituent in the DTG pluton. Moazzz-Lesco and Plimer (1979) and Plimer and Moazzz-Lesco (1981) suggested that all large megacrysts are xenocrysts representing residual phases formed by assimilation of garnet-rich metamorphic rocks, but did not consider alternative hypotheses. In this paper, we consider the petrology, major elements, and oxygen isotope composition of garnet megacrysts, the major element composition of their inclusions, and coexisting minerals from the Dehnow DTG suite in NE Iran. We also provide a comparison with garnet from granitoids elsewhere around the world in order to further understand the origin of garnets in an I-type granitoid melt and their petrogenetic implications. Abbreviations of minerals were adopted from Kretz (1983) and Whitney and Evans (2010).

Geological background

The DTG pluton outcrop is approximately 1 km by 2 km in size (Figure 1B) and intruded along the Palaeo-Tethys suture zone. It is a part of the Mashhad-Pamir Arc (so-called Silk Road Arc), which lies in the middle of the Alpine-Himalayan orogenic system. The Silk Road Arc extends 8300 km along the entire southern margin of Eurasia from North China to Europe, and was formed as...
the result of north-dipping subduction of the Palaeo-Tethys (Natalin and Sengör 2005). This suture zone includes meta-ophiolites and meta-flysch sequences, representing the Palaeo-Tethys Ocean closure in the Jurassic (Alavi 1991). It is thought that the Silurian opening of the Palaeo-Tethys in northern Iran followed northward subduction beneath the Turan plate (the southern part of Eurasia) in the Late Devonian and the collision between the Iranian microcontinent and the Turan plate in Late Triassic time (Alavi 1991; Natalin and Sengör 2005). Mineralogical and geochemical works by Samadi (2009) and Samadi et al. (2012a, b, 2014), together with the isotopic data of Mirnejad et al. (2013) confirm that the Dehnow DTG suite is metaluminous to mildly peraluminous with a calc-alkaline I-type character, and formed after the subduction of the Palaeo-Tethys oceanic slab beneath the Turan block along the Alpine-Himalayan suture zone. Karimpour et al. (2010) suggested that remnants of the Palaeo-Tethys crust (meta-ophiolite and meta-flysch) were intruded by granitic plutons in the Triassic, based on zircon U-Pb dating (215 ± 4 Ma for the DTG pluton). Meta-ophiolites and granites in the Mashhad area are surrounded by metamorphic rocks consisting of well-layered slate, phyllite, schist, hornfels, marble, quartzite, and skarn. The main lithological units intruded by the DTG pluton are hornfels and mica schist (Figure 1B).

The narrow aureole of hornfels that surrounds the pluton formed from mica schist (Figure 2A). Outside the hornfels aureole, mica schist occurs with a considerable topographic relief relative to the pluton (Figure 2A). Sampling for this work was done from the DTG pluton, the hornfels, and mica schist.

Figure 2. (A) Outcrop of garnet-bearing hornfels and adjacent mica schist. The boundaries of rock units are marked with dashed lines. The view is northward; (B), (C) and (D) outcrop and hand specimens of garnet-bearing diorite-tonalite-granodiorite (DTG) from Dehnow, in which coarse-grained garnet crystals (~10–20 mm in diameter) are visible; (E) hand specimens of garnet-bearing hornfels; (F) hand specimens of garnet-bearing mica schist.
Analytical techniques

Major-element oxides in the minerals were investigated using a wavelength-dispersive electron probe microanalyser, JEOL JXA-8800, at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The operating conditions were 15 kV accelerating voltage and 15 nA beam current. Standard ZAF data corrections were performed. Natural and synthetic minerals of known composition were used as standards.

Whole-rock major element concentrations (SiO$_2$, TiO$_2$, Al$_2$O$_3$, MnO, MgO, CaO, K$_2$O, Na$_2$O, P$_2$O$_5$) and selected trace elements were measured by X-ray fluorescence (XRF) at Activation Laboratories (ActLabs) and at the XRF laboratory of the Geological Survey of Iran. In general, the limit of detection is about 0.01 wt.% for the major elements (but 0.001% for MnO). The error for standards BIR-1a, W-2, and J-1 run with samples is better than 5% relative to the certified values for trace elements, and better than 1% for major element data (with the exception of Na$_2$O and MnO, which yield errors better than 3%).

For oxygen isotope measurements, the whole-rock samples were disaggregated in a small stainless steel crusher, sieved, and cleaned in hot HCl and ethanol. Garnet and quartz grains were hand-picked. All O-isotope data were obtained at the University of Cape Town. Powdered whole-rock samples were analysed, following methods described by Harris and Ashwal (2002). Approximately 10 mg of sample was reacted with ClF$_3$ in externally heated Ni reaction vessels. The liberated O$_2$ was converted to CO$_2$ using a hot, platinized carbon rod. The quartz, garnet, and biotite grains were analysed by the laser fluorination method described by Harris and Vogeli (2010). Each sample was reacted in the presence of approximately 10 kPa BrF$_3$. The purified O$_2$ was then collected on a 5 Å molecular sieve in a glass storage bottle. All isotope ratios were measured using a Finnigan Delta XP mass spectrometer in dual-inlet mode. The estimated precision is 0.16‰ (2σ) for the conventional and 0.16‰ (2σ) for the laser data, based on multiple analyses of the internal MQ (quartz) and MON GT (garnet) standards.

Petrography

The DTG pluton has a granular texture and is composed mainly of plagioclase, quartz, biotite, and accessory minerals which include alkali feldspar, amphibole, garnet, epidote, and ilmenite (Figure 3A, Table 1). Secondary minerals such as muscovite and chlorite were formed by later metamorphism and alteration activity.

Euhedral to subhedral megacrysts of garnet are common in the DTG pluton. The garnet megacrysts range between ~10 and 20 mm in diameter (Figure 2B–D) and contain inclusions of biotite, amphibole, quartz, plagioclase, muscovite, epidote, and ilmenite (Figure 3B).

The hornfels aureole is composed of fine-grained quartz, feldspar, muscovite, garnet, and lesser amounts of biotite, fibrolite, chlorite, tourmaline, andalusite, and ilmenite. Subhedral to anhedral garnet porphyroblasts (~1.0–1.5 mm) (Figure 2E) contain minute inclusions of quartz, mica, and ilmenite (Figure 3C, D). Outside the aureole, away from the DTG pluton, mica schist contains quartz, muscovite, alkali feldspar, biotite, garnet, and andalusite, and minor amounts of fibrolite, chlorite, ilmenite, and tourmaline. Garnet occurs as small, brownish grains with a diameter of ~1.0–2.5 mm (Figure 2F), and contains minute inclusions of quartz and muscovite (Figure 3E, F).

Mineral chemistry

In the DTG pluton, plagioclase inclusions in garnet are not albitionized and have higher anorthite content than phenocrysts in the matrix. The plagioclase in the metamorphic rock is more sodic (Table 2). Amphibole occurs in the matrix and as inclusions in garnet. The amphibole range from ferro-hornblende to ferro-tschermakite hornblende (Table 3, Figure 4A). Epidote inclusions in the garnets and epidote in the matrix have X$_{ep}$ ($= \text{Fe}^{3+}/\text{Fe}^{3+} + \text{Al}^{3+}$) of 0.32 and 0.24, respectively. The biotite in the matrix of the DTG pluton and biotite inclusions in the garnet show similar composition, but differ from the biotite in the hornfels and mica schist in having lower Mg# and higher AlVI (Tables 4 and 5, Figure 4B).

The garnet megacrysts in the DTG pluton are Fe-rich, having the chemical formula alm$_{58.86-65.50}$ grs$_{13.17-23.11}$ prp$_{18.18-21.32}$ sps$_{2.70-9.88}$ adr$_{0.00-2.47}$ (Table 6). In contrast, the small garnet grains in hornfels and mica schist are enriched in Fe and Mn and depleted in Ca and Mg content (sps value is higher than prp and grs) relative to the garnet in the granitoids of DTG. The chemical formulas of garnet in hornfels and mica schist are alm$_{56.84-81.66}$ grs$_{7.64-14.32}$ prp$_{5.37-8.26}$ and alm$_{82.07-85.06}$ sps$_{5.78-9.86}$ grs$_{0.50-1.42}$ and alm$_{56.56-1.38}$ grs$_{5.56-1.38}$, respectively (Tables 7 and 8). Figure 5 presents zoning patterns in three garnet megacrysts selected from the DTG pluton. Trend lines are drawn to clarify the complex zoning patterns. Garnet megacrysts show chemical zoning from core to rim of increasing Mg and decreasing Ca, Fe, and Mn (Figure 5). The variation in Fe and Mn is relatively small (<5 mol%), whereas the range is relatively significant for Ca and Mg (>5 mol%). In the hornfels and mica schist, garnet rims (relative to cores) have higher concentrations of Fe and Mg and lower Mn, while the opposite is true for garnet of the DTG pluton (Figure 5).

Whole-rock chemistry

The whole-rock chemistry of representative samples from the Dehnow DTG pluton and its surrounding metapelitic rocks is given in Table 9. The SiO$_2$ content ranges from 55
to 59 wt.% in diorite, from 60 to 64 wt.% in tonalite, and from 65 to 67 wt.% in granodiorite. All of these variants are metaluminous with an alumina saturation index (A/CNK) of 0.9–1.0 (Table 9). However, part of the DTG pluton contains neither metamorphic garnet-bearing enclaves nor assimilated metamorphic minerals, differing chemically from the adjacent metapelitic rocks in regard to major elements. The DTG pluton is lower in Al₂O₃, Fe₂O₃, TiO₂, LOI, and A/CNK than the enclosing metamorphic rock, and higher in MgO, CaO, Na₂O + K₂O, and P₂O₅.

The oxygen isotope data for the whole-rock, garnet, and quartz of the DTG pluton, hornfels, and mica schist are presented in Table 10. For the hornfels the δ¹⁸Ogarnet is 13.1‰ (n = 1), while for the mica schist the δ¹⁸Obulk-rock value ranges from 14.8 to 16.0‰ (mean±SD) = 15.57, 0.67) and the δ¹⁸Ogarnet from 12.5 to 13.8‰.

Table 1. Average modal composition of the DTG pluton.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Diorite</th>
<th>Tonalite</th>
<th>Granodiorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>~45</td>
<td>~39</td>
<td>~43</td>
</tr>
<tr>
<td>Quartz</td>
<td>~12</td>
<td>~27</td>
<td>~23</td>
</tr>
<tr>
<td>Biotite</td>
<td>~20</td>
<td>~19</td>
<td>~13</td>
</tr>
<tr>
<td>Alkali feldspar</td>
<td>~10</td>
<td>~6</td>
<td>~14</td>
</tr>
<tr>
<td>Amphibole</td>
<td>~8</td>
<td>~5</td>
<td>~4</td>
</tr>
<tr>
<td>Garnet, ilmenite</td>
<td><5–10 vol.%</td>
<td><5–10 vol.%</td>
<td><5–10 vol.%</td>
</tr>
</tbody>
</table>

Figure 3. (A) Photomicrograph of the Dehnow DTG pluton consisting of amphibole, biotite, quartz, and plagioclase (XPL = cross-polarized light). (B) Garnet megacryst that is uniform in colour and contains minute inclusions of other minerals including plagioclase, amphibole, biotite, and ilmenite. (C) and (D) Garnet in hornfels. The garnet is surrounded by quartz, feldspar, muscovite, andalusite, fibrolite, staurolite, tourmaline, and ilmenite in XPL and PPL (plane-polarized light), respectively. (E) and (F) Garnet in mica schist surrounded by biotite, muscovite, and andalusite in XPL and PPL, respectively. The solid line indicates the analysis profile of garnet.
Table 2. Representative microprobe analyses of feldspar in the Dehnow DTG pluton (feldspar in the matrix and feldspar inclusions in the garnet), hornfels, and mica schist and the calculated structural formula based on eight oxygen atoms.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>DTG pluton</th>
<th>Hornfels</th>
<th>Mica schist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inclusions</td>
<td>Matrix</td>
<td></td>
</tr>
<tr>
<td>Point no.</td>
<td>609 618 619 620 621 622</td>
<td>584 585 586 592 593</td>
<td>85 86 87 183 766 767 768 770</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>59.80 52.78 52.27 56.22 60.64 56.21</td>
<td>51.43 53.14 56.62 57.54 55.33</td>
<td>63.50 64.66 64.18 65.18 64.26 64.68 64.62 64.96</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.03 0.02 0.02 0.00 0.00 0.02</td>
<td>0.02 0.00 0.00 0.01 0.00</td>
<td>0.01 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.01 0.00 0.01 0.00 0.00 0.00</td>
<td>0.00 0.02 0.01 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.83 0.10 0.07 0.06 0.02 0.25</td>
<td>0.31 0.06 0.09 0.39 0.15</td>
<td>0.16 0.14 0.20 0.30 0.50</td>
</tr>
<tr>
<td>MgO</td>
<td>0.02 0.00 0.00 0.01 0.00 0.00</td>
<td>0.00 0.00 0.01 0.00 0.00</td>
<td>0.01 0.00 0.00 0.00 0.01</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.20 0.07 0.06 0.09 0.11 0.12</td>
<td>0.05 0.06 0.10 0.14 0.07</td>
<td>0.82 0.09 0.07 0.05 0.14 0.07 0.12 0.09</td>
</tr>
<tr>
<td>Si</td>
<td>100.08 99.70 99.63 99.54 99.60 99.12</td>
<td>99.77 99.27 99.28 100.06 99.36</td>
<td>98.09 98.99 98.86 98.67 98.92 99.08 98.82 99.35</td>
</tr>
<tr>
<td>Ti</td>
<td>2.67 2.40 2.38 2.54 2.71 2.55</td>
<td>2.34 2.42 2.56 2.58 2.51</td>
<td>2.85 2.86 2.86 2.90 2.86</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>CrO$_2$</td>
<td>1.30 1.56 1.47 1.37 1.45 1.45</td>
<td>1.66 1.57 1.44 1.41 1.49</td>
<td>1.18 1.16 1.14 1.10 1.14</td>
</tr>
<tr>
<td>Fe</td>
<td>0.03 0.00 0.00 0.00 0.00 0.01</td>
<td>0.01 0.00 0.00 0.01 0.01</td>
<td>0.01 0.01 0.01 0.01 0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>Al</td>
<td>0.59 0.59 0.59 0.59 0.59 0.59</td>
<td>0.64 0.57 0.56 0.56 0.56</td>
<td>0.89 0.81 0.90 0.93 0.85 0.92 0.93 0.91</td>
</tr>
<tr>
<td>Na</td>
<td>0.01 0.01 0.01 0.01 0.01 0.01</td>
<td>0.00 0.00 0.01 0.01 0.01</td>
<td>0.05 0.01 0.00 0.00 0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.01 0.01 0.01 0.01 0.01 0.01</td>
<td>0.00 0.00 0.01 0.01 0.01</td>
<td>0.01 0.01 0.00 0.00 0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>5.03 5.01 5.01 5.00 5.01 5.01</td>
<td>5.01 5.01 5.00 5.02 5.00</td>
<td>5.02 4.96 5.02 5.01 5.00</td>
</tr>
<tr>
<td>Albite</td>
<td>0.69 0.41 0.39 0.54 0.71 0.56</td>
<td>0.35 0.43 0.55 0.59 0.50</td>
<td>4.88 12.28 11.16 6.68 11.10</td>
</tr>
<tr>
<td>Anorthite</td>
<td>0.30 0.59 0.61 0.46 0.29 0.44</td>
<td>0.64 0.56 0.44 0.41 0.49</td>
<td>90.31 87.15 88.47 93.02</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>0.01 0.00 0.00 0.01 0.01 0.01</td>
<td>0.00 0.00 0.01 0.01 0.01</td>
<td>0.48 0.57 0.37 0.31 0.79</td>
</tr>
</tbody>
</table>
Table 3. Representative microprobe analyses of amphibole in the Dehnow DTG pluton and the calculated structural formula based on 23 oxygen atoms.

<table>
<thead>
<tr>
<th>Garnet grain no.</th>
<th>Inclusions</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DH2- Grt line</td>
<td>DH2</td>
</tr>
<tr>
<td>Point no.</td>
<td>605 606 607 608 610 611 612 613 614 616 617</td>
<td>573 574</td>
</tr>
<tr>
<td>SiO₂</td>
<td>43.56 43.08 43.43 44.37 43.33 42.81 43.05 43.38 42.85 42.28 43.17</td>
<td>43.13 42.30</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.08 1.11 0.96 0.90 1.07 1.05 1.02 0.99 1.01 1.12 0.99</td>
<td>1.02 1.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.91 11.22 11.35 10.20 11.30 11.16 10.98 10.88 10.84 12.02 10.90</td>
<td>10.90 11.49</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01 0.01 0.04 0.00 0.02 0.00 0.00 0.02 0.00 0.04 0.00</td>
<td>0.02 0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.64 0.66 0.62 0.63 0.66 0.64 0.62 0.62 0.62 0.64 0.65</td>
<td>0.65 0.64</td>
</tr>
<tr>
<td>MgO</td>
<td>7.72 7.59 7.68 8.22 7.57 7.43 7.66 8.03 7.97 6.96 7.77</td>
<td>7.30 7.23</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.97 1.11 0.98 0.86 1.12 1.07 1.07 1.34 1.00 1.12 0.99</td>
<td>1.00 0.98</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.11 1.16 1.07 0.89 0.96 1.05 1.04 0.94 0.98 1.02 0.97</td>
<td>1.04 1.17</td>
</tr>
<tr>
<td>Sum</td>
<td>97.34 97.20 97.41 96.93 97.13 96.65 96.75 96.92 96.55 96.82 96.83</td>
<td>97.20 96.82</td>
</tr>
<tr>
<td>Alᵢ</td>
<td>1.41 1.46 1.45 1.29 1.44 1.47 1.45 1.44 1.47 1.56 1.45</td>
<td>1.45 1.54</td>
</tr>
<tr>
<td>Alᵢᵢ</td>
<td>0.53 0.55 0.57 0.52 0.58 0.53 0.52 0.50 0.48 0.60 0.50</td>
<td>0.51 0.53</td>
</tr>
<tr>
<td>Ti</td>
<td>0.12 0.13 0.11 0.10 0.12 0.12 0.12 0.11 0.12 0.13 0.11</td>
<td>0.12 0.12</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>Feᵢ⁺</td>
<td>0.42 0.39 0.45 0.39 0.43 0.49 0.49 0.49 0.51 0.53 0.54</td>
<td>0.50 0.50</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>2.10 2.13 2.05 2.04 2.07 2.08 2.05 1.90 2.00 2.08 2.08</td>
<td>2.14 2.12</td>
</tr>
<tr>
<td>Mn</td>
<td>0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08</td>
<td>0.08 0.08</td>
</tr>
<tr>
<td>Mg</td>
<td>1.74 1.72 1.73 1.85 1.71 1.69 1.74 1.81 1.81 1.58 1.76</td>
<td>1.65 1.65</td>
</tr>
<tr>
<td>Ca</td>
<td>1.85 1.86 1.85 1.87 1.84 1.84 1.84 1.77 1.88 1.82 1.85</td>
<td>1.85 1.87</td>
</tr>
<tr>
<td>Na</td>
<td>0.28 0.33 0.29 0.25 0.33 0.32 0.31 0.39 0.30 0.33 0.29</td>
<td>0.29 0.29</td>
</tr>
<tr>
<td>K</td>
<td>0.21 0.22 0.21 0.17 0.18 0.20 0.20 0.18 0.19 0.20 0.19</td>
<td>0.20 0.23</td>
</tr>
<tr>
<td>Sum</td>
<td>15.35 15.41 15.34 15.30 15.35 15.36 15.36 15.35 15.37 15.35 15.33</td>
<td>15.35 15.39</td>
</tr>
<tr>
<td>Mg/(Mgᵢ⁺Fe³⁺)</td>
<td>0.45 0.45 0.46 0.48 0.45 0.45 0.46 0.49 0.47 0.43 0.47</td>
<td>0.44 0.44</td>
</tr>
<tr>
<td>Fe²⁺/(Fe³⁺Alᵢᵢ)</td>
<td>0.44 0.41 0.44 0.43 0.43 0.48 0.49 0.54 0.52 0.47 0.52</td>
<td>0.5 0.48</td>
</tr>
</tbody>
</table>

Naming	FH FH FH FH FH FH FH FH FTH FH FH FTH											
Barometry method												
P (kbar)												
HZ86	5.9	6.2	6.2	5.2	6.2	6.2	6.0	5.8	5.9	6.9	5.9	5.9
H87	6.2	6.6	6.6	5.5	6.6	6.6	6.4	6.2	6.2	7.4	6.2	6.3
JR89	4.8	5.0	5.1	4.2	5.1	5.0	4.9	4.7	4.8	5.7	4.8	4.8
S92	6.3	6.6	6.6	5.6	6.6	6.5	6.4	6.2	6.3	7.3	6.3	6.3

Note: FH, ferro-hornblende; FTH, ferro-tschermakitic hornblende; HZ86, Hammarstrom and Zen (1986); H87, Hollister et al. (1987) and Johnson and Rutherford (1989); S92, Schmidt (1992).
These values are within the compositional range of sedimentary rocks of supercrustal origin (Taylor and Sheppard 1986). In contrast, the $\delta^{18}O$ values of garnet from the DTG pluton range from 8.3 to 8.7‰ (mean(n=7) = 8.54, SD = 0.13) and the $\delta^{18}O$ values of quartz from 11.5 to 12.2‰ (mean(n=3) = 12.56, SD = 0.35), with one value of 14.73‰. Assuming a value for $\Delta_{\text{quartz-magma}}$ of 1.1‰ for granites, as suggested by Fourie and Harris (2011), the original DTG magma had approximate $\delta^{18}O$ values of 10.4 to 10.7, 11.1, and 13.6‰, which is consistent with I-type granitoids (e.g. Harris et al. 1997; Boztug and Arehart 2007; Öztürk et al. 2012) (Figure 6). Combining the quartz-garnet fractionation factor ($\Delta_{\text{quartz-garnet}} = 2.00$ at 1000 °C, Zheng 1993) with the quartz-magma fractionation factor of 0.4 (Bindeman 2008) gives a garnet-magma fractionation of −1.6‰. This suggests that the average $\delta^{18}O$ of the magma ranges between 9.9 and 10.3‰.

Discussion

Factors controlling the chemical zoning of garnet in the DTG pluton and country rocks

The parameters that control the chemical zoning in the DTG garnet are pressure (P), temperature (T), growth rate, and changes in the chemical composition of the matrix in equilibrium with the garnet, as suggested by Spear (1993) and Konrad-Schmolke et al. (2005) for other localities. Oscillatory compositional zoning is regarded as characteristic of garnet xenocrysts of metamorphic origin (e.g. Green and Ringwood 1968; Manning 1983; Harrison 1988); however, such zoning is also reported in magmatic garnet (e.g. Kano 1983; Day et al. 1992; Kawabata and Takafuli 2005). Table 11 summarizes the characteristics of magmatic garnet from several worldwide case studies. In general, garnet phenocrysts are enriched in Fe, except in mafic rocks (e.g. Aydar and Gourgaud 2002; Kawabata and Takafuli 2005; Patranabis-Deb et al. 2009). Fe-rich rims and Mg-rich cores are the typical zoning pattern in magmatic garnet (e.g. Green and Ringwood 1968; Brousse et al. 1972; Bach et al. 2012), but the opposite may also occur (e.g. Fitton 1972; type 1B and 4 in Harangi et al. 2001; type I in Kawabata and Takafuli 2005; Yuan et al. 2008; sample 1C in Bach et al. 2012). Some garnet phenocrysts in igneous rocks are not zoned (e.g. Aydar and Gourgaud 2002; Mirnejad et al. 2008; Patranabis-Deb et al. 2009). Moreover, some phenocrysts have Mn-rich rims while others have Ca-rich rims (e.g. Green and Ringwood 1968; Brousse et al. 1972; Harangi et al. 2001; Kawabata and Takafuli 2005; Yuan et al. 2008; Bach et al. 2012; Zhang et al. 2012). Abbott (1985) attributed the late appearance of Mn-rich garnet during fractional crystallization to strong partitioning of Mn$^{2+}$ into the liquid relative to muscovite or biotite.

The Dehnow DTG garnet differs from the metamorphic garnet in the zoning profiles, and in core-to-rim values for Mn, Mg, Ca, and Fe. This places emphasis on the implication that DTG garnet underwent different nucleation and chemical growth to those in the surrounding metamorphic rocks. The Mg and Ca zoning in the DTG garnet (Figure 5A, B, C) is elaborated more than in the fine garnet grains of the mica schist and hornfels (Figure 5D, E). Based on polynomial trendline patterns, the garnet in the DTG granitoids has a more pronounced negative Ca–Mg correlation, with a core-to-rim increase in Mg and decrease in Fe and Ca (Figure 5A, B, C). These zoning patterns resemble the zoning patterns described by Hamer and Moyes (1982); Brousse et al. (1972, sample C), Harangi et al. (2001, type 2) and Bach et al. (2012, samples 1A and 1B). With regard to the varieties of magmatic garnet described by Dahlquist et al. (2007), garnet megacrysts from the DTG pluton show distinctive U-shaped or irregular zoning in terms of Mn (Figure 5). The oscillatory zoning of Fe, Ca, and Mg may be an indicator of variation in melt composition (Day et al. 1992; Kawabata and Takafuli 2005) and P_{H_2O} (Kano and Yashima 1976) during garnet growth.
Table 4. Representative microprobe analyses of biotite in the Dehnow DTG pluton and biotite inclusions in the garnet (DH1A, garnet grain b3) and the calculated structural formula based on 22 oxygen atoms.

<table>
<thead>
<tr>
<th>Point no.</th>
<th>Inclusions</th>
<th>Matrix</th>
<th>Inclusions</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>432</td>
<td>434</td>
<td>442</td>
<td>451</td>
<td>452</td>
</tr>
<tr>
<td>SiO₂</td>
<td>35.57</td>
<td>35.74</td>
<td>35.51</td>
<td>36.68</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.33</td>
<td>1.40</td>
<td>1.53</td>
<td>1.18</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.25</td>
<td>18.62</td>
<td>18.59</td>
<td>19.83</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>22.38</td>
<td>22.38</td>
<td>22.51</td>
<td>21.28</td>
</tr>
<tr>
<td>MnO</td>
<td>0.31</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>MgO</td>
<td>7.78</td>
<td>7.72</td>
<td>7.23</td>
<td>6.70</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
<td>0.11</td>
<td>0.18</td>
<td>0.22</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.09</td>
<td>0.20</td>
<td>0.11</td>
<td>0.28</td>
</tr>
<tr>
<td>K₂O</td>
<td>8.81</td>
<td>9.50</td>
<td>9.06</td>
<td>9.53</td>
</tr>
<tr>
<td>Sum</td>
<td>94.66</td>
<td>95.94</td>
<td>95.55</td>
<td>95.90</td>
</tr>
<tr>
<td>Si</td>
<td>5.47</td>
<td>5.43</td>
<td>5.43</td>
<td>5.50</td>
</tr>
<tr>
<td>Al<sup>iv</sup></td>
<td>2.53</td>
<td>2.57</td>
<td>2.57</td>
<td>2.50</td>
</tr>
<tr>
<td>Al<sup>vi</sup></td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Ti</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>2.88</td>
<td>2.84</td>
<td>2.88</td>
<td>2.67</td>
</tr>
<tr>
<td>Mn</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>1.78</td>
<td>1.75</td>
<td>1.65</td>
<td>1.50</td>
</tr>
<tr>
<td>Ca</td>
<td>0.02</td>
<td>0.02</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>Na</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>K</td>
<td>1.73</td>
<td>1.84</td>
<td>1.77</td>
<td>1.82</td>
</tr>
<tr>
<td>Sum</td>
<td>15.81</td>
<td>15.91</td>
<td>15.82</td>
<td>15.86</td>
</tr>
<tr>
<td>Fe/Fe+Mg</td>
<td>0.62</td>
<td>0.62</td>
<td>0.64</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Downloaded by [Dr Ramin Samadi] at 09:30 10 February 2014
Table 5. Representative microprobe analyses of biotite inclusions in the garnet of Dehnow hornfels and mica schist and the calculated structural formula based on 22 oxygen atoms.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Mica schist</th>
<th>Hornfels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>553</td>
<td>555a</td>
</tr>
<tr>
<td>Grt grain no.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point no.</td>
<td>764</td>
<td>765</td>
</tr>
<tr>
<td>SiO₂</td>
<td>33.91</td>
<td>33.44</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.87</td>
<td>1.79</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>FeO</td>
<td>23.18</td>
<td>24.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>5.16</td>
<td>6.51</td>
</tr>
<tr>
<td>CaO</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.90</td>
<td>7.30</td>
</tr>
<tr>
<td>Sum</td>
<td>93.57</td>
<td>94.15</td>
</tr>
<tr>
<td>Si</td>
<td>5.31</td>
<td>5.22</td>
</tr>
<tr>
<td>AlV</td>
<td>2.69</td>
<td>2.78</td>
</tr>
<tr>
<td>Fe/Fe+Mg</td>
<td>0.68</td>
<td>0.67</td>
</tr>
<tr>
<td>Fe</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>3.04</td>
<td>3.13</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>1.44</td>
<td>1.51</td>
</tr>
<tr>
<td>Ca</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Na</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>K</td>
<td>1.58</td>
<td>1.45</td>
</tr>
<tr>
<td>Sum</td>
<td>15.51</td>
<td>15.47</td>
</tr>
<tr>
<td>Fe/Fe+Mg</td>
<td>0.68</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Table 6. Representative microprobe analyses of garnet in the Dehnow DTG pluton and the calculated structural formula based on 12 oxygen atoms.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH1-grain1 (rim to core of a garnet phenocryst)</td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>38.31</td>
<td>0.28</td>
<td>21.41</td>
<td>0.00</td>
<td>4.56</td>
<td>0.13</td>
<td>5.46</td>
<td>5.11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>417</td>
<td>37.54</td>
<td>0.35</td>
<td>21.02</td>
<td>0.00</td>
<td>5.52</td>
<td>0.14</td>
<td>5.30</td>
<td>5.32</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>420</td>
<td>38.70</td>
<td>0.22</td>
<td>21.40</td>
<td>0.00</td>
<td>5.23</td>
<td>0.14</td>
<td>5.59</td>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>426</td>
<td>38.26</td>
<td>0.24</td>
<td>21.46</td>
<td>0.00</td>
<td>5.29</td>
<td>0.13</td>
<td>5.50</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>429</td>
<td>38.68</td>
<td>0.34</td>
<td>21.53</td>
<td>0.00</td>
<td>5.51</td>
<td>0.07</td>
<td>5.64</td>
<td>5.31</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>432</td>
<td>38.16</td>
<td>0.40</td>
<td>20.96</td>
<td>0.00</td>
<td>5.54</td>
<td>0.15</td>
<td>5.76</td>
<td>5.32</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>436</td>
<td>37.94</td>
<td>0.33</td>
<td>21.37</td>
<td>0.01</td>
<td>5.24</td>
<td>0.14</td>
<td>5.43</td>
<td>5.33</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>439</td>
<td>37.84</td>
<td>0.55</td>
<td>20.95</td>
<td>0.01</td>
<td>5.94</td>
<td>0.13</td>
<td>5.94</td>
<td>5.34</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>442</td>
<td>37.98</td>
<td>0.38</td>
<td>20.65</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>451</td>
<td>37.99</td>
<td>0.02</td>
<td>21.14</td>
<td>0.00</td>
<td>5.48</td>
<td>0.08</td>
<td>5.94</td>
<td>5.35</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>455</td>
<td>37.90</td>
<td>0.50</td>
<td>21.04</td>
<td>0.01</td>
<td>5.47</td>
<td>0.13</td>
<td>5.84</td>
<td>5.79</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>458</td>
<td>37.88</td>
<td>0.19</td>
<td>21.13</td>
<td>0.00</td>
<td>5.48</td>
<td>0.13</td>
<td>5.84</td>
<td>5.35</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>461</td>
<td>38.04</td>
<td>0.54</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>464</td>
<td>37.85</td>
<td>0.64</td>
<td>20.97</td>
<td>0.01</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>468</td>
<td>37.92</td>
<td>0.04</td>
<td>20.95</td>
<td>0.01</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>471</td>
<td>37.92</td>
<td>0.38</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>474</td>
<td>37.94</td>
<td>0.64</td>
<td>20.97</td>
<td>0.01</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>477</td>
<td>37.92</td>
<td>0.04</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>482</td>
<td>37.98</td>
<td>0.38</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>498</td>
<td>37.90</td>
<td>0.04</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>501</td>
<td>37.90</td>
<td>0.38</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>504</td>
<td>37.60</td>
<td>0.04</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>507</td>
<td>38.07</td>
<td>0.50</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>513</td>
<td>38.31</td>
<td>0.51</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>516</td>
<td>38.11</td>
<td>0.51</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>519</td>
<td>38.12</td>
<td>0.51</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>522</td>
<td>38.03</td>
<td>0.51</td>
<td>21.13</td>
<td>0.00</td>
<td>5.34</td>
<td>0.13</td>
<td>5.64</td>
<td>5.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

(Continued)
Table 6. (Continued).

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>FeO</th>
<th>MnO</th>
<th>K₂O</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>267</td>
<td>38.11</td>
<td>0.25</td>
<td>28.30</td>
<td>1.73</td>
<td>0.03</td>
<td>100.44</td>
</tr>
<tr>
<td>271</td>
<td>38.23</td>
<td>0.24</td>
<td>28.63</td>
<td>2.00</td>
<td>0.04</td>
<td>100.76</td>
</tr>
<tr>
<td>280</td>
<td>38.41</td>
<td>0.29</td>
<td>28.72</td>
<td>2.34</td>
<td>0.00</td>
<td>100.41</td>
</tr>
<tr>
<td>292</td>
<td>38.27</td>
<td>0.23</td>
<td>28.87</td>
<td>2.23</td>
<td>0.00</td>
<td>100.59</td>
</tr>
<tr>
<td>296</td>
<td>38.37</td>
<td>0.38</td>
<td>28.84</td>
<td>2.01</td>
<td>0.00</td>
<td>100.10</td>
</tr>
<tr>
<td>300</td>
<td>38.70</td>
<td>0.35</td>
<td>28.47</td>
<td>1.90</td>
<td>0.00</td>
<td>100.33</td>
</tr>
<tr>
<td>309</td>
<td>38.09</td>
<td>0.17</td>
<td>28.27</td>
<td>1.98</td>
<td>0.00</td>
<td>100.01</td>
</tr>
<tr>
<td>313</td>
<td>38.27</td>
<td>0.26</td>
<td>28.81</td>
<td>1.97</td>
<td>0.00</td>
<td>100.78</td>
</tr>
<tr>
<td>316</td>
<td>38.73</td>
<td>0.32</td>
<td>29.21</td>
<td>1.97</td>
<td>0.00</td>
<td>100.97</td>
</tr>
<tr>
<td>309</td>
<td>38.12</td>
<td>0.34</td>
<td>29.00</td>
<td>1.97</td>
<td>0.00</td>
<td>100.83</td>
</tr>
<tr>
<td>326</td>
<td>38.32</td>
<td>0.33</td>
<td>29.46</td>
<td>1.97</td>
<td>0.00</td>
<td>100.85</td>
</tr>
<tr>
<td>329</td>
<td>38.02</td>
<td>0.43</td>
<td>29.64</td>
<td>1.97</td>
<td>0.00</td>
<td>100.82</td>
</tr>
<tr>
<td>332</td>
<td>38.12</td>
<td>0.26</td>
<td>29.34</td>
<td>1.96</td>
<td>0.00</td>
<td>100.99</td>
</tr>
<tr>
<td>333</td>
<td>38.02</td>
<td>0.48</td>
<td>29.30</td>
<td>1.96</td>
<td>0.00</td>
<td>100.80</td>
</tr>
<tr>
<td>338</td>
<td>37.53</td>
<td>0.39</td>
<td>29.39</td>
<td>1.96</td>
<td>0.00</td>
<td>100.45</td>
</tr>
<tr>
<td>334</td>
<td>37.82</td>
<td>0.32</td>
<td>29.53</td>
<td>1.96</td>
<td>0.00</td>
<td>100.79</td>
</tr>
<tr>
<td>341</td>
<td>37.82</td>
<td>0.64</td>
<td>29.69</td>
<td>1.96</td>
<td>0.00</td>
<td>100.68</td>
</tr>
<tr>
<td>344</td>
<td>37.98</td>
<td>0.20</td>
<td>31.69</td>
<td>1.96</td>
<td>0.00</td>
<td>100.39</td>
</tr>
<tr>
<td>347</td>
<td>37.94</td>
<td>0.34</td>
<td>31.66</td>
<td>1.96</td>
<td>0.00</td>
<td>100.82</td>
</tr>
<tr>
<td>350</td>
<td>37.86</td>
<td>0.27</td>
<td>31.27</td>
<td>1.96</td>
<td>0.00</td>
<td>100.45</td>
</tr>
<tr>
<td>353</td>
<td>37.83</td>
<td>0.37</td>
<td>31.37</td>
<td>1.96</td>
<td>0.00</td>
<td>101.28</td>
</tr>
<tr>
<td>356</td>
<td>37.94</td>
<td>0.59</td>
<td>31.14</td>
<td>1.96</td>
<td>0.00</td>
<td>100.78</td>
</tr>
<tr>
<td>359</td>
<td>37.93</td>
<td>0.62</td>
<td>31.34</td>
<td>1.96</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>362</td>
<td>37.85</td>
<td>0.60</td>
<td>31.30</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>365</td>
<td>37.97</td>
<td>0.61</td>
<td>31.10</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>368</td>
<td>37.87</td>
<td>0.61</td>
<td>31.10</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>371</td>
<td>37.83</td>
<td>0.63</td>
<td>31.03</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>374</td>
<td>37.94</td>
<td>0.61</td>
<td>31.10</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

DH1-grain2 (rim to core of a garnet phenocryst)

- SiO₂ 38.11 - 38.37
- TiO₂ 0.25 - 0.38
- FeO 28.30 - 28.72
- MnO 1.73 - 2.23
- MgO 5.28 - 4.44
- CaO 5.32 - 5.17
- Na₂O 0.04 - 0.02
- K₂O 0.03 - 0.01
- Fe³⁺ 0.00 - 0.02
- Fe²⁺ 1.83 - 1.89
- Mn 0.11 - 0.18
- Mg 0.62 - 0.57
- Ca 0.45 - 0.41
- Na 0.00 - 0.00
- K 0.00 - 0.01
- Mg²⁺ 0.25 - 0.22
- Almandine 60.54 - 63.45
- Andradine 13.82 - 13.89
- Pyrope 20.65 - 17.36
- Spessartine 3.85 - 4.88
- Uvarovite 0.00 - 0.00

(Continued)
<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Si 4-6</th>
<th>Al 2-3</th>
<th>TiO 2-3</th>
<th>MgO 4-6</th>
<th>Na 2-3</th>
<th>K 2-3</th>
<th>Mg# %</th>
<th>Fe 2-3</th>
<th>Fe 3-4+</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Cr 3+</th>
<th>Alvi</th>
<th>Ti 3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.00</td>
</tr>
<tr>
<td>35</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>0.00</td>
</tr>
<tr>
<td>45</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 6. (Continued)
<table>
<thead>
<tr>
<th>Sample no.</th>
<th>210</th>
<th>211</th>
<th>213</th>
<th>214</th>
<th>215</th>
<th>216</th>
<th>217</th>
<th>218</th>
<th>219</th>
<th>220</th>
<th>222</th>
<th>223</th>
<th>224</th>
<th>225</th>
<th>226</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.87</td>
<td>37.13</td>
<td>37.09</td>
<td>36.97</td>
<td>36.83</td>
<td>37.17</td>
<td>37.13</td>
<td>37.01</td>
<td>36.93</td>
<td>36.66</td>
<td>37.00</td>
<td>37.10</td>
<td>37.10</td>
<td>37.26</td>
<td>37.19</td>
<td>37.17</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.02</td>
<td>0.04</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.19</td>
<td>0.30</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.17</td>
<td>0.15</td>
<td>0.10</td>
<td>0.14</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>0.00</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>FeO</td>
<td>35.60</td>
<td>35.02</td>
<td>35.73</td>
<td>34.89</td>
<td>34.97</td>
<td>34.48</td>
<td>34.79</td>
<td>33.61</td>
<td>34.48</td>
<td>34.77</td>
<td>35.40</td>
<td>35.00</td>
<td>35.10</td>
<td>35.10</td>
<td>35.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MnO</td>
<td>4.38</td>
<td>4.30</td>
<td>3.89</td>
<td>4.88</td>
<td>4.75</td>
<td>4.89</td>
<td>5.38</td>
<td>6.05</td>
<td>6.11</td>
<td>6.17</td>
<td>5.50</td>
<td>5.17</td>
<td>5.04</td>
<td>5.04</td>
<td>4.87</td>
<td>4.76</td>
</tr>
<tr>
<td>MgO</td>
<td>1.28</td>
<td>1.91</td>
<td>2.04</td>
<td>1.93</td>
<td>1.80</td>
<td>1.90</td>
<td>1.85</td>
<td>1.97</td>
<td>1.74</td>
<td>1.77</td>
<td>1.65</td>
<td>1.88</td>
<td>2.02</td>
<td>1.92</td>
<td>1.93</td>
<td>1.62</td>
</tr>
<tr>
<td>CaO</td>
<td>0.17</td>
<td>0.46</td>
<td>0.49</td>
<td>0.43</td>
<td>0.43</td>
<td>0.44</td>
<td>0.34</td>
<td>0.39</td>
<td>0.42</td>
<td>0.40</td>
<td>0.47</td>
<td>0.45</td>
<td>0.47</td>
<td>0.45</td>
<td>0.43</td>
<td>0.18</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum</td>
<td>99.86</td>
<td>100.51</td>
<td>100.81</td>
<td>100.78</td>
<td>100.48</td>
<td>100.61</td>
<td>100.79</td>
<td>100.71</td>
<td>100.62</td>
<td>100.31</td>
<td>100.40</td>
<td>100.54</td>
<td>100.49</td>
<td>100.43</td>
<td>100.78</td>
<td>100.44</td>
</tr>
</tbody>
</table>

Table 7. Representative microprobe data (rim to core to rim) of garnet (sample DH-5-grain 587) from Dehnow hornfels and the calculated structural formula based on 12 oxygen atoms.
Table 8. Representative microprobe data (rim to core to rim) of garnet (sample DH-3-grain 548) from Dehnow mica schist and the calculated structural formula based on 12 oxygen atoms.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Na</th>
<th>Al³⁺</th>
<th>Ti</th>
<th>Na⁺</th>
<th>K₂O</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>673</td>
<td>97.24</td>
<td>0.04</td>
<td>0.52</td>
<td>0.41</td>
<td>0.01</td>
<td>0.06</td>
<td>0.41</td>
<td>19.72</td>
<td>0.09</td>
<td>0.06</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>674</td>
<td>34.01</td>
<td>2.21</td>
<td>19.72</td>
<td>23.57</td>
<td>0.06</td>
<td>0.04</td>
<td>0.41</td>
<td>19.72</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>679</td>
<td>36.00</td>
<td>0.06</td>
<td>21.47</td>
<td>36.35</td>
<td>0.19</td>
<td>0.11</td>
<td>0.41</td>
<td>21.47</td>
<td>0.11</td>
<td>0.02</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>680</td>
<td>37.21</td>
<td>0.10</td>
<td>21.27</td>
<td>36.86</td>
<td>0.11</td>
<td>0.13</td>
<td>0.41</td>
<td>21.27</td>
<td>0.11</td>
<td>0.03</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>681</td>
<td>36.87</td>
<td>0.14</td>
<td>21.56</td>
<td>36.79</td>
<td>0.13</td>
<td>0.13</td>
<td>0.41</td>
<td>21.56</td>
<td>0.13</td>
<td>0.02</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>682</td>
<td>37.05</td>
<td>0.21</td>
<td>21.36</td>
<td>37.25</td>
<td>0.14</td>
<td>0.13</td>
<td>0.41</td>
<td>21.36</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>684</td>
<td>37.30</td>
<td>0.16</td>
<td>21.20</td>
<td>36.46</td>
<td>0.15</td>
<td>0.15</td>
<td>0.41</td>
<td>21.20</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>685</td>
<td>37.28</td>
<td>0.16</td>
<td>21.07</td>
<td>36.31</td>
<td>0.15</td>
<td>0.15</td>
<td>0.41</td>
<td>21.07</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>689</td>
<td>37.13</td>
<td>0.15</td>
<td>21.32</td>
<td>36.07</td>
<td>0.15</td>
<td>0.15</td>
<td>0.41</td>
<td>21.32</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>690</td>
<td>36.47</td>
<td>0.15</td>
<td>21.41</td>
<td>35.70</td>
<td>0.15</td>
<td>0.15</td>
<td>0.41</td>
<td>21.41</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>697</td>
<td>37.08</td>
<td>0.17</td>
<td>21.24</td>
<td>35.94</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.24</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>698</td>
<td>37.39</td>
<td>0.17</td>
<td>21.19</td>
<td>35.92</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.19</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>703</td>
<td>37.18</td>
<td>0.17</td>
<td>21.38</td>
<td>35.84</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.38</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>704</td>
<td>37.04</td>
<td>0.17</td>
<td>21.23</td>
<td>35.64</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.23</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>706</td>
<td>37.33</td>
<td>0.17</td>
<td>21.31</td>
<td>35.65</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.31</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>707</td>
<td>37.39</td>
<td>0.17</td>
<td>21.24</td>
<td>36.47</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.24</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>708</td>
<td>37.50</td>
<td>0.17</td>
<td>21.24</td>
<td>36.46</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.24</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
<tr>
<td>709</td>
<td>37.09</td>
<td>0.17</td>
<td>21.24</td>
<td>36.49</td>
<td>0.17</td>
<td>0.17</td>
<td>0.41</td>
<td>21.24</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>5.97</td>
<td>0.07</td>
<td>98.39</td>
</tr>
</tbody>
</table>

Almandine 89.40 71.17 84.52 83.97 84.08 84.26 85.21 84.76 83.45 82.49 82.83 83.13 83.04 82.89 83.66 82.64 82.48 82.37 82.74 82.33 82.28 83.68 83.95 84.53 65.04 99.83
Pyrope 0.54 0.17 89.85 68.1 67.5 61.6 57.2 61.2 71.6 85.5 80.4 73.7 75.9 74.9 73.5 75.7 67.3 77.7 75.5 75.7 70.8 83.8 8.12 5.33 33.14 0.03

Uvarovite 0.15 0.21 0.02 0.05 0.10 0.07 0.00 0.14 0.09 0.04 0.10 0.05 0.04 0.00 0.10 0.01 0.03 0.00 0.08 0.10 0.00 0.06 0.00 0.17 0.10
In contrast to the DTG pluton, garnet in the metamorphic rocks has erratic zoning profiles. The best zoning patterns, based on 3rd degree polynomial regression trend lines (Figure 5D, E), indicate that the garnet from hornfels is characterized by a negative Mn–Fe correlation with core-to-rim increase in Fe and decrease in Mn, Ca, and Mg. The garnet from mica schist has a negative Mn–Mg correlation, with core-to-rim increase in Mg and decrease in Mn and Fe (Figure 5). In the schist and hornfels, the core-to-rim decrease in Mn in the garnet porphyroblasts is due to temperature reduction in the host metamorphic rock.

Volume diffusion in high-grade garnet usually obliterates growth zoning and would tend to homogenize its composition (Tuccillo et al. 1990). However, diffusion is unlikely to have significantly affected the composition of the different garnets in this study because compositional zoning is common in the garnets of the DTG pluton, hornfels, and mica schist (Figure 5).

Based on temperature and melt viscosity, Hawkesworth et al. (2000) suggested that crystal growth rates in magmatic systems are fast (10^{-10}–10^{-15} cm/s). This means that a 10 mm crystal would take 10^6–10^7 years to grow, compatible with the duration of magmatic events. The timescale of magmatic processes in granite genesis, from melting to crystallization, rarely exceeds 10^7 years (Villaros et al. 2009 and references therein). The experiments of Korolyuk and Lepezin (2008) show that the diffusion coefficients (D_c) of Ca, Mg, Fe, and Mn are in the order $D_{\text{Mn}} > D_{\text{Fe}} > D_{\text{Mg}} > D_{\text{Ca}}$. Diffusion coefficients are pressure-independent, but temperature-dependent. Korolyuk and Lepezin (2008) indicate that at 500 °C, the homogenization of a garnet grain of 1 mm radius, with an extremely inhomogeneous distribution of major components, will take 1×10^8, 1.5×10^8, 2×10^8, and 3×10^9 years for Mn, Fe, Mg, and Ca, respectively. At a higher temperature (650°C), the process will take 1×10^7, 5×10^7, 1×10^9, and 1.5×10^9 years, respectively. However, the actual D_c of elements in natural garnet must be higher than these experimental values (Korolyuk and Lepezin 2008). Considering the possible cooling rate and magmatic time scale of the DTG pluton (<10^7 years), the large size of garnet (~10–20 mm), and Ca and Mg zoning, it seems that diffusion had no significant effects on garnet composition. For example, the Fe content (Fe has a high D_c) is variable and is higher in hornfels garnet than in the DTG pluton and mica schist. If significant Fe diffusion had occurred, the Fe content of garnet in the hornfels would have reached the average Fe value in the DTG pluton and mica schist.

f_2O_2 and P-T history of garnet crystallization

An increase in the oxygen fugacity in the melt favours the incorporation of Fe$^{3+}$ over Al$^{3+}$ into octahedral sites in the garnet (Scheibner et al. 2007). Thus, higher andradite content in the rim of magmatic garnets reflects the higher oxygen fugacity in the host melt; in contrast, the absence...
Table 9. Representative whole-rock XRF data of the Dehnow DTG pluton (diorite, tonalite, granodiorite) hornfels and mica schist. Total iron concentration is expressed as Fe₂O₃.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Granodiorite</th>
<th>Tonalite</th>
<th>Diorite</th>
<th>Hornfels</th>
<th>Mica schist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no</td>
<td>TD4</td>
<td>GD2.2</td>
<td>GD1.1</td>
<td>GD2.1</td>
<td>GD1.2</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.37</td>
<td>65.98</td>
<td>66.25</td>
<td>66.50</td>
<td>66.60</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.21</td>
<td>14.74</td>
<td>15.02</td>
<td>14.54</td>
<td>14.32</td>
</tr>
<tr>
<td>Fe₂O₃(tonal)</td>
<td>7.37</td>
<td>5.21</td>
<td>4.68</td>
<td>5.09</td>
<td>4.98</td>
</tr>
<tr>
<td>FeO</td>
<td>5.28</td>
<td>3.34</td>
<td>2.86</td>
<td>3.23</td>
<td>3.13</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.09</td>
<td>1.87</td>
<td>1.82</td>
<td>1.86</td>
<td>1.85</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>2.56</td>
<td>2.28</td>
<td>2.12</td>
<td>2.28</td>
<td>2.29</td>
</tr>
<tr>
<td>CaO</td>
<td>4.61</td>
<td>4.62</td>
<td>4.81</td>
<td>4.52</td>
<td>4.80</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.62</td>
<td>2.22</td>
<td>2.29</td>
<td>2.09</td>
<td>2.03</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.93</td>
<td>2.63</td>
<td>2.65</td>
<td>2.71</td>
<td>2.62</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.72</td>
<td>0.50</td>
<td>0.43</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.21</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>LOI</td>
<td>1.15</td>
<td>0.96</td>
<td>1.25</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>Total</td>
<td>99.9</td>
<td>99.4</td>
<td>99.8</td>
<td>99.5</td>
<td>99.5</td>
</tr>
<tr>
<td>K₂O+Na₂O</td>
<td>4.55</td>
<td>4.85</td>
<td>4.94</td>
<td>4.80</td>
<td>4.65</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.33</td>
<td>0.41</td>
<td>0.43</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>A/CNK</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note: *Analysed at ActLabs.
Table 10. δ^{18}O values of garnet, quartz, and biotite grains from the Dehnow DTG pluton, mica schist, and hornfels.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Rock type</th>
<th>δ^{18}O$_{\text{garnet}}$</th>
<th>δ^{18}O$_{\text{quartz}}$</th>
<th>δ^{18}O$_{\text{biotite}}$</th>
<th>δ^{18}O$_{\text{whole rock}}$</th>
<th>$\Delta_{\text{quartz-garnet}}$</th>
<th>$\Delta_{\text{quartz-biotite}}$</th>
<th>$T_{\Delta\text{quartz-garnet}}$ (°C)</th>
<th>$T_{\Delta\text{quartz-biotite}}$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-2011-1-1</td>
<td>Granitoid</td>
<td>8.73</td>
<td>11.80</td>
<td>7.01</td>
<td>n.a</td>
<td>3.07</td>
<td>4.79</td>
<td>666</td>
<td>398</td>
</tr>
<tr>
<td>DH-2011-1-2</td>
<td>Granitoid</td>
<td>8.60</td>
<td>11.51</td>
<td>n.a</td>
<td>n.a</td>
<td>2.91</td>
<td>-</td>
<td>692</td>
<td>-</td>
</tr>
<tr>
<td>DH-2011-1-3</td>
<td>Granitoid</td>
<td>8.64</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-2</td>
<td>Granitoid</td>
<td>8.33</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-3</td>
<td>Granitoid</td>
<td>8.51</td>
<td>14.73</td>
<td>n.a</td>
<td>n.a</td>
<td>6.22</td>
<td>-</td>
<td>387</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-4</td>
<td>Granitoid</td>
<td>8.45</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-5</td>
<td>Granitoid</td>
<td>8.54</td>
<td>12.20</td>
<td>n.a</td>
<td>n.a</td>
<td>3.66</td>
<td>-</td>
<td>586</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-H1</td>
<td>Hornfels</td>
<td>13.12</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-Sch1</td>
<td>Mica schist</td>
<td>12.54</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-G2013-Sch2</td>
<td>Mica schist</td>
<td>13.81</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-2011-2</td>
<td>Mica schist</td>
<td>12.74</td>
<td>n.a</td>
<td>n.a</td>
<td>16.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-2011-3</td>
<td>Mica schist</td>
<td>12.98</td>
<td>n.a</td>
<td>n.a</td>
<td>15.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH-2011-4</td>
<td>Mica schist</td>
<td>12.92</td>
<td>n.a</td>
<td>n.a</td>
<td>14.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: n.a.: not analysed.
of an andradite component in the garnet of metapelitic rocks indicates a reducing metamorphic environment. In addition, epidote stability is limited to high oxygen fugacities, equal to or above the haematite-magnetite (HM) oxygen buffer (Poli and Schmidt 2004). X_{ep} of the epidote inclusions shows a decrease from garnet core to rim. Several geobarometers and geothermometers have been proposed to estimate the P-T conditions of granitoid batholith formation (e.g. Holland and Blundy 1994; Anderson 1996; Holdaway et al. 1997). Because garnets in the DTG pluton contain inclusions of plagioclase, hornblende, and biotite, the Al-in-hornblende barometer (Schmidt 1992), amphibole-plagioclase thermometer (Blundy and Holland 1990), garnet-biotite thermometer (Holdaway 2000), and garnet-biotite-plagioclase-quartz barometer of Wu et al. (2004) can provide direct constraint on the crystallization pressure of garnet. Al-in-hornblende geobarometry and amphibole-plagioclase thermometry, which are preferred for metaluminous granites (Anderson et al. 2008), revealed pressures of ~6.4 kbar and temperatures of ~708°C for the DTG pluton. The garnet-biotite thermometer and garnet-biotite-plagioclase-quartz barometer, which are recommended for peraluminous granites (Anderson et al. 2008), yielded a temperature of ~790°C.

Figure 6. Comparison of δ¹⁸O values of bulk rock quartz and garnet from the Dehnow DTG pluton and surrounding metapelitic rocks with available data from sedimentary and igneous rocks in general, and for other examples of magmatic and metamorphic garnet and quartz.
Table 11. Summary of case studies investigating the origin of garnet in igneous rocks. ‘I’ denotes magmatic garnet phenocrysts and ‘M’ metamorphic garnet xenocrysts (n.a., not available; n.z., not zoned).

<table>
<thead>
<tr>
<th>Author</th>
<th>Rock type</th>
<th>Garnet type</th>
<th>Rim</th>
<th>Core</th>
<th>CaO (wt%)</th>
<th>MnO (wt%)</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green and Ringwood (1968)</td>
<td>Rhyodacite and Granodiorite</td>
<td>Alm-rich</td>
<td>Alm-Sps</td>
<td>Prp</td>
<td>0.69</td>
<td>1.9</td>
<td>I</td>
</tr>
<tr>
<td>Brousse et al. (1972)</td>
<td>Andesite (Samples A and B)</td>
<td>Alm-rich</td>
<td>Alm-Sps-Grs</td>
<td>Prp</td>
<td>2.24</td>
<td>10.05</td>
<td>I</td>
</tr>
<tr>
<td>Brousse et al. (1972)</td>
<td>Rhyolite (Sample C)</td>
<td>Alm-rich</td>
<td>Alm-Prp</td>
<td>Sps-Grs</td>
<td>2.24</td>
<td>10.05</td>
<td>I</td>
</tr>
<tr>
<td>Fitton (1972)</td>
<td>Andesite and Dacite</td>
<td>Alm-rich</td>
<td>Prp</td>
<td>Alm</td>
<td>1.26</td>
<td>2.16</td>
<td>I</td>
</tr>
<tr>
<td>Vennum and Meyer (1979)</td>
<td>Diorite-Granodiorite</td>
<td>Alm-rich</td>
<td>Alm-Sps</td>
<td>Prp-Grs</td>
<td>1.00<</td>
<td>13.00<</td>
<td>I</td>
</tr>
<tr>
<td>Miller and Stoddard (1981)</td>
<td>Granite, Aplitic and Pegmatite</td>
<td>Sps-rich</td>
<td>Alm</td>
<td>Sps</td>
<td>0.46</td>
<td>0.68</td>
<td>I</td>
</tr>
<tr>
<td>Plank (1987)</td>
<td>Granite</td>
<td>Prp (Alm)-rich</td>
<td>Alm</td>
<td>Prp</td>
<td>1.33<</td>
<td>2.00<</td>
<td>I</td>
</tr>
<tr>
<td>Hamer and Moyes (1982)</td>
<td>Andesite ~ Rhyolite (S-type)</td>
<td>Alm-rich</td>
<td>Alm-Prp</td>
<td>Grs</td>
<td>3.50</td>
<td>1.80</td>
<td>I</td>
</tr>
<tr>
<td>Dobbe (1992)</td>
<td>Granitoid</td>
<td>Alm (Sps)-rich</td>
<td>Sps</td>
<td>Alm</td>
<td>0.15</td>
<td>1.1</td>
<td>I</td>
</tr>
<tr>
<td>Jung et al. (2001)</td>
<td>Rhyodacite (type 1A)</td>
<td>Alm-rich</td>
<td>Grs</td>
<td>Prp</td>
<td>4.5-5.4</td>
<td>1.7-2.3</td>
<td>I</td>
</tr>
<tr>
<td>Harangi et al. (2001)</td>
<td>Dacite (type 1B)</td>
<td>Alm-rich</td>
<td>Prp-Grs</td>
<td>Alm-Sps</td>
<td>4.9-8.1</td>
<td>0.8-3.0</td>
<td>I</td>
</tr>
<tr>
<td>Harangi et al. (2001)</td>
<td>Andesite (type 2)</td>
<td>Alm-rich</td>
<td>Prp</td>
<td>Grs-Sps</td>
<td>4.6-6.0</td>
<td>1.8-3.0</td>
<td>I</td>
</tr>
<tr>
<td>Harangi et al. (2001)</td>
<td>Andesite, Dacite (type 3 composite ~ core)</td>
<td>Alm-rich</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.8-1.6</td>
<td>0.7-7.1</td>
<td>M</td>
</tr>
<tr>
<td>Harangi et al. (2001)</td>
<td>Andesite, Dacite (type 3 composite ~ rim)</td>
<td>Alm-rich</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4.2-8.1</td>
<td>0.8-2.7</td>
<td>I</td>
</tr>
<tr>
<td>Harangi et al. (2001)</td>
<td>Xenolith in Andesite (type 4)</td>
<td>Alm-rich</td>
<td>Prp-Grs</td>
<td>Alm-Sps</td>
<td>0.8-2.7</td>
<td>3.3-10.9</td>
<td>M</td>
</tr>
<tr>
<td>Aydar and Gourgaud (2002)</td>
<td>Basalt</td>
<td>Alm (Prp)-rich</td>
<td>n.a.</td>
<td>n.a.</td>
<td>5.97</td>
<td>1.00<</td>
<td>I</td>
</tr>
<tr>
<td>Kawabata and Takafuli (2005) (I)</td>
<td>Dacite</td>
<td>Alm-rich</td>
<td>Prp-Grs</td>
<td>Alm-Sps</td>
<td>1.16-2.99</td>
<td>5.06-6.48</td>
<td>I</td>
</tr>
<tr>
<td>Kawabata and Takafuli (2005) (M)</td>
<td>Dacite</td>
<td>Alm-rich</td>
<td>Prp</td>
<td>Sps</td>
<td>0.24-6.31</td>
<td>1.30-7.23</td>
<td>M</td>
</tr>
<tr>
<td>Rene and Stelling (2007)</td>
<td>Granite (Garnet group I)</td>
<td>Alm-rich</td>
<td>Sps-Grs</td>
<td>Prp</td>
<td>0.79<</td>
<td>5.56<</td>
<td>I</td>
</tr>
<tr>
<td>Dahlquist et al. (2007)</td>
<td>Rhyolitic tuff</td>
<td>Alm-rich</td>
<td>Unzoned</td>
<td>Unzoned</td>
<td>0.07-2.64</td>
<td>0.06-0.80</td>
<td>I</td>
</tr>
<tr>
<td>Patranabis-Deb et al. (2009)</td>
<td>Tonalitic porphyry</td>
<td>Alm-rich</td>
<td>Prp-Sps</td>
<td>Alm</td>
<td>5.27</td>
<td>11.41</td>
<td>I</td>
</tr>
<tr>
<td>Yuan et al. (2008)</td>
<td>Rhyolite</td>
<td>Alm-rich</td>
<td>n.z.</td>
<td>n.z.</td>
<td>3.05</td>
<td>5.66</td>
<td>I</td>
</tr>
<tr>
<td>Mirnejad et al. (2008)</td>
<td>Granite</td>
<td>Alm-rich</td>
<td>Alm</td>
<td>Prp</td>
<td>n.a.</td>
<td>n.a.</td>
<td>I</td>
</tr>
<tr>
<td>Harris and Vogel (2010)</td>
<td>Granite</td>
<td>Sps (Alm)-rich</td>
<td>Sps</td>
<td>Grs</td>
<td>1.09-5.84</td>
<td>24.21-27.44</td>
<td>I</td>
</tr>
<tr>
<td>Zhang et al. (2012)</td>
<td>Andesite (Sample 1A)</td>
<td>Alm (Prp)-rich</td>
<td>Prp</td>
<td>Alm-Grs</td>
<td>7.98-6.75</td>
<td>0.68-0.75</td>
<td>I</td>
</tr>
<tr>
<td>Bach et al. (2012)</td>
<td>Andesite (Sample 1B)</td>
<td>Prp (Alm)-rich</td>
<td>Prp</td>
<td>Grs</td>
<td>7.89-9.22</td>
<td>0.85-0.86</td>
<td>I</td>
</tr>
<tr>
<td>Bach et al. (2012)</td>
<td>Andesite (Sample 1C)</td>
<td>Alm (Prp)-rich</td>
<td>Grs-Prp</td>
<td>Alm</td>
<td>8.20-9.36</td>
<td>1.03-1.70</td>
<td>I</td>
</tr>
<tr>
<td>Bach et al. (2012)</td>
<td>Andesite (Sample 1D)</td>
<td>Alm-rich</td>
<td>Alm</td>
<td>Prp</td>
<td>1.6-9</td>
<td>0.84-1.51</td>
<td>I</td>
</tr>
<tr>
<td>This Study</td>
<td>Granitoid</td>
<td>Alm (Grs>Prp)-rich</td>
<td>Prp</td>
<td>Alm-Grs</td>
<td>4.7-7.1</td>
<td>1.6-4.3</td>
<td>I</td>
</tr>
</tbody>
</table>
and 8.4 kbar. These results suggest a crystallization depth of ~22–30 km (the upper lithosphere) (Samadi 2009). Abbott and Clarke (1979); Miller and Stoddard (1981), and Abbott (1981a, b) discussed how garnet could crystallize at the expense of biotite in MnO- and Al₂O₃-rich evolved magma. Based on the paragenesis of biotite + hornblende → biotite + hornblende + garnet (consistent with the petrography), the AFM of Abbott (1981b) indicates temperatures greater than ~800°C, and 4H₂O << 1 (equilibrium z-z line in Figure 3 of Abbott 1981b). Day et al. (1992) demonstrated that the assemblage garnet + plagioclase + amphibole + quartz is stable at 10 kbar and 800–850°C in a garnet-bearing andesite from New Zealand. Green (1992) demonstrated that a mineral assemblage of garnet + plagioclase + amphibole in dacitic magma with 5% H₂O would be stable at 8–13 kbar and 820–920°C. Many other researchers (e.g. Green and Ringwood 1966; Clemens and Wall 1988; Conrad et al. 1988; Spear and Cheney 1989; Vielzeuf and Montel 1994; Harangi et al. 2001; Kawabata and Takafuli 2005) have shown that garnet with high CaO (>4 wt.%) and low MnO (<4 wt. %), together with Ca-rich plagioclase and amphibole, is indicative of high pressures (7–12 kbar) and temperatures (800–950°C). CaO and MnO contents (core to rim) of garnet in the DTG pluton are ~7.44–4.91 wt. % and ~1.94–2.84 wt. %, respectively.

These results confirm that garnet crystallized at a high P-T condition and garnet growth reached 7–12 kbar and 800–950°C in the lower crust. The high Ca and low Mn in the garnet core indicate higher P-T conditions for the core relative to the rim. On the other hand, the average X,ep of epidote inclusions in the garnets (~0.32) and epidote in the matrix (~0.24), together with the grossular-andradite solid solution (X,adr = 100 × Fe³⁺/(viAl + Fe³⁺ + Cr³⁺) ~ <0.1%) at fO₂ fixed by the HM buffer (by Heuss-Aßbichler and Fehr 1997) (Figure 7), indicate that garnet-epidote equilibrium temperatures are higher than 650°C, and even close to 800°C (Figure 7).

Regarding oxygen diffusion, the Δquartz-garnet values of 6.2, 3.6, 3.0, and 2.9‰ for the DTG pluton indicate the closure temperatures of 387, 586, 666, and 692°C, calculated using the fractionation equation of Valley et al. (2003), in which Δquartz-almandine = 2.71 × 10⁶/T², and a Δquartz-biotite value of 4.5‰ for the DTG pluton corresponds to the closure temperature of 398°C for oxygen diffusion (using the fractionation equation of Chacko et al. (2001), in which Δquartz-biotite = 2.16 × 10⁶/T²) (Table 10). Lower oxygen closure temperature for quartz-biotite and biotite inclusions in the garnet indicates that biotite continues to diffuse oxygen for a longer period after oxygen diffusion has ceased in garnet.

Therefore, crystallization conditions of the garnet and the ascending host melt were at ~708–800°C and 6.4–12 kbar (for the hornblende-plagioclase, garnet-biotite, garnet-biotite-plagioclase-quartz, and garnet-epidote equilibria).
of the garnet grains in the schist suggests different conditions of formation. Differences in δ¹⁸O values of DTG garnet megacrysts and garnet grains in the adjacent mica schist indicate that garnet megacrysts cannot be a refractory restite phase that survived partial melting of the surrounding metamorphic rocks or partial melting in the source region. The δ¹⁸O value of garnets in the DTG pluton (8.3–8.7‰) is lower than δ¹⁸O values in the metamorphic rocks (12.5–13.1‰). Generally, magmatic garnet has lower δ¹⁸O values than garnet in pelitic metamorphic rocks, because the protoliths of the latter are rich in low-temperature minerals such as clays (e.g. Sharp 2006). As shown in Figure 6, the δ¹⁸O values of magmatic garnet from the Northern Pannonian Basin (Harangi et al. 2001) are 6.1–7.2‰. Harris and Vogeli (2010) reported δ¹⁸O values of 10.0–11.4‰ for magmatic garnet and 13.2–14.0‰ for quartz in S-type granites, formed by partial melting of metapelitic rocks. Vielzeuf et al. (2005) reported δ¹⁸O values of 7.3–11.6‰ for the magmatic rim of composite garnets in dioritic migmatites. δ¹⁸O values of 11.4–13.4‰ (Kohn et al. 1997) and 11.6–14.4‰ (Vielzeuf et al. 2005) were obtained for metamorphic garnets. The δ¹⁸O values for garnet from the DTG pluton are comparable with magmatic garnet from other studies (Figure 6). In addition, the co-variation in garnet and quartz δ¹⁸O values for the DTG pluton is comparable to the other

Figure 8. Plot of CaO versus MnO (after Harangi et al. 2001). Core and rim composition of garnet in the DTG pluton is compared. Garnet from DTG is ‘high P-T garnet from I-type magma’. Garnet of mica schist and hornfels is correlated with garnet from ‘metapelitic rocks’.

Figure 9. Garnet of the Dehnow DTG pluton (open circles) compared to the composition of M-type (metamorphic xenocrysts) and I-type (magmatic phenocrysts) garnet of Setouchi volcanic belt (Japan) (after Kawabata and Takaifuji 2005).
examples of magmatic garnet (e.g. Cape Granite Suite, West Cape, Harris and Vogeli 2010; Sierra Nevada, USA, Lackey et al. 2008).

The Fe–Mg distribution between garnet and biotite ((Mg/Fe)Grt/(Mg/Fe)Bt) for the DTG pluton and mica schist (0.36 and 0.15, respectively) is comparable to the corresponding values obtained for igneous (~0.24) and metamorphic rocks (~0.20) studied by Lyons and Morse (1970) and Harangi et al. (2001). The higher Mg#garnet/ biotite of the DTG pluton (~0.43) in comparison with hornfels (~0.24) and mica schists (~0.32), and the higher average Mg#garnet/whole rock of the DTG pluton (~0.31) than mica schists (~0.161) can discriminate these magmatic and metamorphic garnets.

According to Evans and Vance (1987), the low TiO2 of epidote (<0.2 wt.%) in the cores of garnets (~0.02 wt.%) and the matrix (~0.12 wt.%) is consistent with a magmatic origin for garnets, whereas the epidotes in the rim fractures of garnet have higher TiO2 (~0.36 wt.%). Therefore the similar composition of magmatic amphibole, feldspar, and epidote in the groundmass with inclusions of the same minerals in the garnet megacrysts is consistent with a magmatic origin for the garnet as well as the magmatic nature of these inclusions.

Garnets found in metaluminous subduction-related hosts are characterized by higher CaO content (>4 wt.%) than that associated with peraluminous compositions (Bach et al. 2012). On the MnO versus CaO diagram (Harangi et al. 2001), the garnet plots in the high-pressure magmatic field for I/M-type mantle magmas, characterized by CaO >4 wt.% and MnO <4 wt.% (Figure 8). This diagram (Figure 8) also shows the identical chemical composition of garnet cores and rims, in contrast to the ‘composite garnet’ crystals described by Harangi et al. (2001). The ‘composite garnet’ crystals have light-coloured xenocrystic cores (reputedly derived from adjacent metamorphic rocks) with a magmatic overgrowth (e.g. Harangi et al. 2001; Vieleuf et al. 2005). Kawabata and Takafuji (2005) divided the garnets from the peraluminous Setouchi volcanic rocks (Kawabata and Shuto 2005) into I and M types on the basis of petrography and chemistry. However, considering the metaluminous nature of the DTG pluton, our garnet samples show a strong affinity with the I-type (igneous) garnet phenocrysts and are distinctly different from the M-type (metamorphic) garnet (Figure 9A, B).

Conclusions

The Dehnow garnet-bearing DTG intruded the remnants of the Palaeo-Tethys sequence in NE Iran. Dehnow DTG is an I-type calc-alkaline pluton, composed mainly of plagioclase, quartz, biotite, and accessory minerals which include alkali feldspar, amphibole, almandine-rich garnet, epidote, and ilmenite. Petrographic and geochemical evidence suggest that the DTG pluton formed from magmas produced in lower crust, and that the garnet is magmatic. The character of the chemical zoning and the large size of DTG garnet indicate that subsolidus diffusion had negligible effects on growth.

The following criteria indicate that DTG garnets are not xenocrysts: (1) their large size (~10–20 mm), which distinguishes them from the small (~2 mm) garnets in the metamorphic rocks; (2) absence of garnet-bearing xenoliths in the DTG pluton and absence of sillimanite (fibrolite) and cordierite inclusions in garnet; (3) lack of evidence for assimilation at the margin of the DTG pluton; (4) the distinct composition of DTG garnet megacrysts relative to the composition of garnet in metapelitic rocks; and (5) the δ18O value of garnet in the DTG pluton (~8.3–8.7‰), which is lower than the δ18O of the garnet in the metamorphic rocks (~11.6–14.0‰).

Evidence for a magmatic origin of DTG garnet includes: (1) euhedral to subhedral form and absence of reaction rims; (2) Fe-rich composition of garnet, together with higher Mg and lower Ca at the rims; (3) amphibole, plagioclase, and biotite in Dehnow DTG pluton are similar in composition to inclusions of the same minerals in garnet; (4) epidote and amphibole inclusions in the garnet have a magmatic nature; and (5) the chemical composition of garnet which plots in the magmatic field on discrimination diagrams.

In contrast to the reduced, low-f(O2), metamorphic environment of metapelitic rocks reflected in the low andradite content of metamorphic garnet, the higher andradite content in the rim of magmatic garnet reflects higher f(O2) in the DTG melt. Garnet crystallization in DTG melt occurred at temperatures expected for intermediate to felsic melts of lower crust at ~800°C, and the closure temperatures of oxygen diffusion recorded in garnet megacrysts range from ~692 to 387°C.

Acknowledgements

We thank the Institute for Research on Earth Evolution (Yokosuka, Japan), University of Cape Town, and the Department of Geosciences at Virginia Tech for financial supports and providing geochemical facilities. The authors express gratitude to the constructive reviews of Richard N. Abbott and Scott A. Whattam and one anonymous reviewer and the editorial handling of associated editor Bob Stern, which improved the original manuscript. This paper represents part of the first author’s PhD thesis research. The O-isotope work at the University of Cape Town was supported by a NRF grant to CH. We are grateful to Fayrooza Rawoot for assistance with the O-isotope analyses.

References

Abbott, R.N., Jr., and Clarke, D.B., 1979, Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar, and plagioclase for a(H2O) = 1: Canadian Mineralogist, v. 17, p. 549–560.

Harris, C., and Vogeli, J., 2010, Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: Constraints on melting and emplacement

Lackey, J.S., Valley, J.W., and Hinke, H.J., 2006, Deciphering the source and contamination history of peraluminous magmas using δ^{18}O of accessory minerals: Examples from garnet-bearing plutons of the Sierra Nevada batholiths: Contributions to Mineralogy and Petrology, v. 151, p. 20–44.

