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Introduction

Why does a bicycle with round wheels roll smoothly on a flat road?

As the wheel rolls, the center of the wheel stays at a constant
height, allowing the bicycle to ride smoothly.
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What about for a Square Wheel?

As the square wheel rolls across a flat surface, the center of the
square changes elevation. To compensate for these elevation
changes and to smooth the ride, the road’s surface needs to be
uneven.
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Reinventing the Road

A series of these “bumps” forms a road that a square can roll
smoothly on.

How do we determine the exact shape of these “bumps”?
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Determining the Shape of the “Bumps”

Design Criteria:

I The center of the wheel must stay at a constant height d .
I The wheel must be tangent to the road’s surface at the point

of contact.
I The center of the wheel should be directly above the point of

contact with the road’s surface.
I The distance along the surface of the “bump” must equal the

length of one side of the square.
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The Geometry Behind the Shape
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The Geometry Behind the Shape

a = (d − y) cos(θ)
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The Geometry Behind the Shape

a = (d − y) cos(θ) = (d − y)
1√

1 +
(
dy
dx

)2
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Calculus

Solve for dy
dx :

dy

dx
=

√(
d − y

a

)2

− 1

Separate the x ’s from the y ’s:

1√(
d−y
a

)2
− 1

dy = dx

Integrate both sides:∫
1√(

d−y
a

)2
− 1

dy =

∫
dx
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Calculus (continued)

∫
1√(

d−y
a

)2
− 1

dy =

∫
dx

∫
−a√
u2 − 1

du =

∫
dx , where u =

d − y

a

What is an antiderivative of g(u) = 1√
u2−1?

G (u) = cosh−1(u) (inverse hyperbolic cosine)!!
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Calculus (continued)

Solving for y , we get that y = d − a cosh( xa + c), where c is some
constant.

Initial Value: y(0) = d − a, so c = 0. Thus, y = d − a cosh( xa ).
(This type of curve is called an inverted catenary.)
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Example:

For example, if the wheel is a square with sides of length 2, a = 1
and d =

√
2.

Thus, y =
√

2− cosh(x).
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How Much of the Graph Do We Need to Use?

Because of how we set up this problem, we only need to use the
portion of the graph lying above the x-axis (i.e. the portion of the
graph with −b ≤ x ≤ b, where b = cosh−1(

√
2) ≈ 0.8814) and

repeat it.

Remarks:

I The arclength of y =
√

2− cosh(x) from x = −b to x = b
equals 2, which is the length of a single side of the square.

I The slope of the graph of y =
√

2− cosh(x) at x = b is 1,
and the slope at x = −b is -1, so the angle between two
consecutive “bumps” of the road is 90◦.
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Squares on a Roll

Mathematica Demonstration

Figure 1: Macalester College Figure 2: St. Norbert College

Texas A & M Video
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Hyperbolic Functions and Catenaries

The hyperbolic cosine function y = cosh(x) = ex+e−x

2 seemingly
appeared out of nowhere in this application, but catenary functions
actually appear in many natural settings and applications.

A catenary is the shape you get when you let a chain or a string
hang freely between two endpoints.
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Catenaries (continued)

I Pyramids: There is evidence that ancient Egyptians might
have used tracks of wood cut into quarter-circles (whose
shapes are very close to those of inverted catenary curves) to
move large blocks of stone for the pyramids.

Stacy Hoehn Fonstad Vanderbilt University

Smooth Rides on Square Wheels



Catenaries (continued)

I Arches: Inverted catenaries y = d − a cosh( xa ) form the
strongest arches.

The Gateway Arch is actually a weighted catenary of the form
y = d − b cosh( xa ) because it is narrower at the top than at
its base. Its shape corresponds to the shape that a weighted
chain, having lighter links in the middle, would form.
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What about Other Regular Polygons?

I The same procedure that we used for a square will work for
any regular polygon (except for a triangle!)

I Instead of d =
√

2a, now d = a
cos(π/n) , where n is the number

of sides of the polygon.
I As the number of sides of the polygon increases, the bumps

on the catenary road will become flatter and flatter.
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Other Things to Try

I Given some other wheel shape, can we figure out the shape of
the corresponding road?

I Given a road shape, can we find a wheel that will ride
smoothly over that road?
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