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Preface

The theory and methods of smoothing have been developed mainly in the last ten years.

The intensive interest in smoothing over this last decade had two reasons: statisticians

realized that pure parametric thinking in curve estimations often does not meet the need for

flexibility in data analysis and the development of hardware created the demand for theory

of now computable nonparametric estimates.

Smoothing techniques have a long tradition. In the nineteenth century the nonparamet-

ric approach has been used as a major tool for empirical analysis: in 1857 the Saxonian

economist Engel found the famous Engelsches Gesetz by constructing a curve which we

would nowadays call a regressogram. The nonparametric smoothing approach has then long

been neglected and the mathematical development of statistical theory in the first half of this

century has mainly suggested a purely parametric approach for its simplicity in computation,

its compatibility with model assumptions and also for its mathematical convenience.

This book concentrates on the statistical aspects of nonparametric regression smoothing

from an applied point of view. The methods covered in this text can be used in biome-

try, econometrics, engineering and mathematics. The two central problems discussed are

the choice of smoothing parameter and the construction of confidence bands in practice.

Various smoothing methods among them splines and orthogonal polynomials are presented

and discussed in their qualitative aspects. To simplify the exposition kernel smoothers are
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investigated in greater detail. It is argued that all smoothing methods are in an asymptotic

sense essentially equivalent to kernel smoothing. So it seems legitimate to expose the deeper

problems of smoothing parameter selection and confidence bands for that method that is

mathematically convenient and can be most easily understood on an intuitive level.

Most of the results are stated in a rather compact form and proved only in the simplest

situations. On purpose I have tried to avoid being as general and precise as possible since I

believe that the essential ideas which are relevant to practical data analysis can be understood

without too much mathematical background. Generalizations and specializations, as well as

additional results are deferred to an ”Exercises and Problems” part at the end of each

section. I am aware that this decision might discourage most theoretical and some practical

statisticians. However, I am sure that for the average reader this is a convenient presentation

of a collection of tools and mathematical concepts for the application of smoothing methods.

I would like to express my deepest gratitude to Theo Gasser and to Werner Hildenbrand.

Theo Gasser introduced me to the subject I treat in this book. Without his feeling for

smoothing problems in practice I could have never developed the viewpoint of an applied

mathematician. I have certainly taken up many of his ideas without explicit reference.

Werner Hildenbrand opened my eyes for smoothing techniques in economics, especially in

connection with the ”law of demand”. Without his constant encouragement and very con-

structive criticism I would not have written this book.

In the last years I have had particularly close collaboration with Adrian Bowman, Ray Car-

roll, Jürgen Franke, Jeff Hart, Enno Mammen, Michael Nussbaum, David Scott, Alexander

Tsybakov and Philippe Vieu. Their influence and contributions essentially determined the

shape of the book. I would like to thank all of them for their extremely helpful cooperation.

During the last two years I have taught on smoothing techniques at the Rheinische–Friedrich–

Wilhelms Universität Bonn; Universität Dortmund; Université de Sciences Sociales, Toulouse,

G.R.E.Q.E., Marseille and Universidad de Santiago de Compostela. It was a pleasure to teach

at these places and to discuss with colleagues and students.
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I am especially grateful to Steve Marron, who helped a lot in focussing the book on the central

themes. Peter Schönfeld pointed out some errors in earlier versions and advised me in the

presentation of the smoothing problem. I would also like to thank Charles Manski who helped

me in sharpening my view towards the economic themes. Nick Fisher, Kurt Hildenbrand,

John Rice, Heinz–Peter Schmitz, Ritei Shibata, Bernard Silverman, Rob Tibshirani read

the manuscript at different stages and helped improving the exposition. Their help and

comments are gratefully acknowledged. The text was carefully typed in a non WYSIWYG

environment by Christiane Beyer, Irenäus Drzensla, Elisabeth Fetsch, Katka Kukul and

Rüdiger Plantiko. Sigbert Klinke and Berwin Turlach provided efficient algorithms and

assisted in computing. Their help was essential and I would like to thank them.

Finally I gratefully acknowledge the financial support of the Air Force Office of Scien-

tific Research, the Koizumi Foundation and the Deutsche Forschungsgemeinschaft (Son-

derforschungsbereiche 123 und 303).

Bonn, June 1989 Wolfgang Härdle
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Symbols and Notation

X predictor variable in Rd

Y response variable in R

f(x) marginal density of X

f(x, y) joint density of X and Y

f(y | x) = f(x, y)/f(x) conditional density of Y given X = x

F (y | x) conditional distribution function Y given X = x

f̂(x) estimator of f(x)

m(x) = E(Y | X = x) regression curve of Y on X

m̂(x) estimator of m(x)

σ2(x) = E(Y 2 | X = x)−m2(x) conditional variance of Y given X = x

σ̂2(x) estimator of σ2(x)

Φ(x) Standard Normal distribution function

ϕ(x) density of the Standard Normal distribution

I(M) indicator function, i.e. I = 1 on M, I = 0 otherwise

x = arg max g(u) iff g(·) has a unique maximum at x

x = arg min g(u) iff g(·) has a unique minimum at x

Distributions
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N(0, 1) Standard Normal distribution

U(a, b) Uniform distribution on (a, b)

{(Xi, Yi)}ni=1 sample of n observations

{X(i)}ni=1 the order statistic of {Xi}ni=1 in R

{(X(i), Y(i))}ni=1 the ordered sample with {X(i)}ni=1 sorted according to X

Fn1 = σ((X1, Y1), ..., (Xn, Yn)) the σ-algebra generated by {(Xi,i )}ni=1.

F∞n = σ((Xn, Yn), ...) the σ-algebra generated by {(Xn, Yn), . . .}.

Mean Squared Error

MSE = E[m̂h(X)−m(X)]2

Mean Integrated Squared Error

MISE = dM(h) = E
∫

[m̂h(x)−m(x)]2w(x)dx)

Integrated Squared Error

ISE = dI(h) =
∫

[m̂h(x)−m(x)]2f(x)w(x)dx

Averaged Squared error

ASE = dA(h) =
∑n

i=1[m̂h(Xi)−m(Xi)]
2w(Xi)

Mean Averaged Squared Error

MASE = dMA(h) = EdA(h)

Kernel constants

cK =
∫
K2(u)du

dK =
∫
u2K(u)du

Let αn and βn be sequences of real numbers.
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αn = O(βn) iff αn/βn → constant, as n→∞

αn = o(βn) iff αn/βn → 0 , as n→∞

αn ∼ βn iff αn/βn = c+ 0(1), c 6= 0 , as n→∞

Let An and Bn be sequences of real random variables.

An = Op(Bn) iff ∀ε > 0∃M, ∃NsuchthatP{| An/Bn |> M} < ε, ∀n > N .

An = op(Bn) iff ∀ε > 0 limn→∞ P{| An/Bn |> ε} = 0

An ≈ Bn iff An = Bn + op(Bn)

An
a.s.→A iff P{limn→∞An = A} = 1.

An
p→A iff An − A = op(1), as n→∞

An
r→A iff E[An − A]r = o(1), as n→∞

An
L→A iff P{An < x} → P{A < x} = F (x) , at every point of continuity of F(x) as n→∞

For comparison of these convergence concepts see Schönfeld (1969) ,(Chapter 6).

g : Rd → R is called Hölder continuous if there exist constants C and 0 ≤ ξ ≤ 1 such that

|g(u)− g(v)| ≤ C||u− v||ξ ∀u, v.
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Part I

Regression smoothing





1 Introduction

As regards problems of specification, these are entirely a matter for the practical

statistician, for those cases where the qualitative nature of the hypothetical population is

known do not involve any problems of this type.

Sir R. A. Fisher (1922)

A regression curve describes a general relationship between an explanatory variable X and

a response variable Y . Having observed X, the average value of Y is given by the regression

function. It is of great interest to have some knowledge about this relation. The form

of the regression function may tell us where higher Y -observations are to be expected for

certain values of X or whether a special sort of dependence between the two variables

is indicated. Interesting special features are, for instance, monotonicity or unimodality.

Other characteristics include the location of zeros or the size of extrema. Also, quite often

the regression curve itself is not the target of interest but rather derivatives of it or other

functionals.

If n data points {(Xi, Yi)}ni=1 have been collected, the regression relationship can be modeled

as

Yi = m(Xi) + εi, i = 1, . . . , n,
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with the unknown regression function m and observation errors εi. A look at a scatter plot

of Xi versus Yi does not always suffice to establish an interpretable regression relationship.

The eye is sometimes distracted by extreme points or fuzzy structures. An example is given

in Figure 1.1, a scatter plot of Xi = rescaled net income versus Yi = expenditure for potatoes

from the Survey (1968–1983). The scatter of points is presented in the form of a sunflower

plot (see Cleveland and McGill (1984), for construction of sunflower plots).

In this particular situation one is interested in estimating the mean expenditure as a function

of income. The main body of the data covers only a quarter of the diagram with a bad

“signal to ink ratio”(Tufte, 1983) : it seems therefore to be difficult to determine the average

expenditure for given income X. The aim of a regression analysis is to produce a reasonable

analysis to the unknown response function m. By reducing the observational errors it allows

interpretation to concentrate on important details of the mean dependence of Y on X. This

curve approximation procedure is commonly called “smoothing”.

This task of approximating the mean function can be done essentially in two ways. The quite

often used parametric approach is to assume that the mean curve m has some prespecified

functional form, for example, a line with unknown slope and intercept. As an alternative

one could try to estimate m nonparametrically without reference to a specific form. The

first approach to analyze a regression relationship is called parametric since it is assumed

that the functional form is fully described by a finite set of parameters. A typical example

of a parametric model is a polynomial regression equation where the parameters are the

coefficients of the independent variables. A tacit assumption of the parametric approach

though is that the curve can be represented in terms of the parametric model or that, at

least, it is believed that the approximation bias of the best parametric fit is a negligible

quantity. By contrast, nonparametric modeling of a regression relationship does not project

the observed data into a Procrustean bed of a fixed parametrization, for example, fit a

line to the potato data. A preselected parametric model might be too restricted or too

low-dimensional to fit unexpected features, whereas thenonparametric smoothing approach

offers a flexible tool in analyzing unknown regression relationships.
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Figure 1.1: Potatoes versus net income. Sunflower plot of Y = expenditure for potatoes

versus X = net income of British households for year 1973, n = 7125. Units are

multiples of mean income and mean expenditure, respectively. The size indicates

the frequency of observations falling in the cell covered by the sunflower. Survey

(1968–1983). ANRpotasun.xpl

The term nonparametric thus refers to the flexible functional form of the regression curve.

There are other notions of “nonparametric statistics” which refer mostly to distribution-free

methods. In the present context, however, neither the error distribution nor the functional

form of the mean function is prespecified.

http://www.quantlet.org/mdstat/codes/anr/ANRpotasun.html


6 1 Introduction

The question of which approach should be taken in data analysis was a key issue in a bitter

fight between Pearson and Fisher in the twenties. Fisher pointed out that the nonparametric

approach gave generally poor efficiency whereas Pearson was more concerned about the

specification question. Tapia and Thompson (1978) summarize this discussion in the related

setting of density estimation.

Fisher neatly side-stepped the question of what to do in case one did not know the functional

form of the unknown density. He did this by separating the problem of determining the form

of the unknown density (in Fisher’s terminology, the problem of “specification”) from the

problem of determining the parameters which characterize a specified density (in Fisher’s

terminology, the problem of “estimation”).

Both viewpoints are interesting in their own right. Pearson pointed out that the price we have

to pay for pure parametric fitting is the possibility of gross misspecification resulting in too

high a model bias. On the other hand, Fisher was concerned about a too pure consideration

of parameter-free models which may result in more variable estimates, especially for small

sample size n.

An example for these two different approaches is given in Figure reffig:12 where the straight

line indicates a linear parametric fit (Leser, 1963, eq. 2a) and the other curve is a non-

parametric smoothing estimate. Both curves model the market demand for potatoes as a

function of income from the point cloud presented in Figure 1.1 The linear parametric model

is unable to represent a decreasing demand for potatoes as a function of increasing income.

The nonparametric smoothing approach suggests here rather an approximate U-shaped re-

gression relation between income and expenditure for potatoes. Of course, to make this

graphical way of assessing features more precise we need to know how much variability we

have to expect when using the nonparametric approach. This is discussed in Chapter 4.

Another approach could be to combine the advantages of both methods in a semiparametric

mixture. This line of thought is discussed in Chapters 9 and 10.
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Figure 1.2: Potatoes versus Net income. A linear parametric fit of Y = expenditure for

potatoes versus X = net income (straight line) and a nonparametric kernel

smoother (bandwidth = 0.4) for the same variables, year 1973, n = 7125. Units

are multiples of mean income and mean expenditure, respectively. Survey (1968–

1983). ANRpotareg.xpl

1.1 Motivation

The nonparametric approach to estimating a regression curve has four main purposes. First,

it provides a versatile method of exploring a general relationship between two variables.

http://www.quantlet.org/mdstat/codes/anr/ANRpotareg.html
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Second, it gives predictions of observations yet to be made without reference to a fixed

parametric model. Third, it provides a tool for finding spurious observations by studying

the influence of isolated points. Fourth, it constitutes a flexible method of substituting for

missing values or interpolating between adjacent X-values.

The flexibility of the method is extremely helpful in a preliminary and exploratory statistical

analysis of a data set. If no a priori model information about the regression curve is avail-

able, the nonparametric analysis could help in suggesting simple parametric formulations of

the regression relationship. An example is depicted in Figure 1.3 In that study of human

longitudinal growth curves the target of interest was the first (respectively, second) deriva-

tive of the regression function (Gasser, Müller, Köhler, Molinari and Prader (1984a); Pflug

(1985)).

The nonparametric regression smoothing method revealed an extra peak in the first deriva-

tive, the so-called mid-growth spurt at the age of about eight years. Other approaches based

on ad hoc parametric modeling made it extremely difficult to detect this extra peak (dashed

line Figure 1.3).

An analogous situation in the related field of density estimation was reported by Hildenbrand

(1986) for the income density income of British households. It is important in economic

theory, especially in demand and equilibrium theory, to have good approximations to income

distributions. A traditional parametric fit – the Singh–Madalla model – resulted in Figure

1.4

The parametric model class of Singh-Madalla densities can only produce unimodal densities

per se. By contrast, the more flexible nonparametric smoothing method produced Figure 1.5

The nonparametric approach makes it possible to estimate functions of greater complexity

and suggests instead a bimodal income distribution. This bimodality is present over the

thirteen years from 1968–1981 and changes its shape!More people enter the “lower income

range” and the “middle class” peak becomes less dominant.

An example which once more underlines this flexibility of modeling regression curves is pre-
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Figure 1.3: Human height growth versus age. The small graph gives raw data of height con-

nected by straight lines (solid line) with cross-sectional sample quantiles (dashed

lines). Velocity of height growth of a girl (above) and acceleration (below) mod-

eled by a nonparametric smoother (solid line) and a parametric fit (dashed line).

Units are cm (for height), cm/year (for velocity) and cm/year2 (for acceleration).

From Gasser and Müller (1984) (figure 1) with the permission of the Scandinavian

Journal of Statistics.

sented in Engle, Granger, Rice and Weiss (1986). They consider a nonlinear relationship

between electricity sales and temperature using a parametric–nonparametric estimation pro-

cedure. Figure 1.6 shows the result of a spline smoothing procedure that nicely models a

kink in the electricity sales.
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Figure 1.4: Net income densities over time. A Singh-Madalla fit to the densities of

X = net income from 1969 to 1983. Units are mean income for each year.

ANRnilognormal.xplSurvey (1968–1983).

Another example arises in modeling alcohol concentration curves. A commonly used practice

in forensic medicine is to approximate ethanol reduction curves with parametric models.

More specifically, a linear regression model is used which in a simple way gives the so-called

β60 value, the ethanol reduction rate per hour. In practice, of course, this model can be used

only in a very limited time interval, an extension into the “late ethanol reduction region”

would not be possible. A nonparametric analysis based on splines suggested a mixture of a

http://www.quantlet.org/mdstat/codes/anr/ANRnilognormal.html
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Figure 1.5: Net income densities over time. A nonparametric kernel fit (bandwidth h = 0.2)

to the densities of X = net income from 1969 to 1981. Units are mean income

for each year. ANRnidensity.xpl Survey (1968–1983).

linear and exponential reduction curve. (Mattern, Bösche, Birk and Härdle, 1983).

The prediction of new observations is of particular interest in time series analysis. It has

been observed by a number of people that in certain applications classical parametric models

are too restrictive to give reasonable explanations of observed phenomena. The nonpara-

metric prediction of times series has been investigated by Robinson (1983) and Doukhan

http://www.quantlet.org/mdstat/codes/anr/ANRnidensity.html
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Figure 1.6: Temperature response function for Georgia. The nonparametric estimate is given

by the solid curve and two parametric estimates by the dashed curves. From

Engle et al. (1986) with the permission of the American Statistical Association.

and Ghindès (1983). Ullah (1987) applies kernel smoothing to a time series of stock market

prices and estimates certain risk indexes. Deaton (1988) uses smoothing methods to examine

demand patterns in Thailand and investigates how knowledge of those patterns affects the

assessment of pricing policies. Yakowitz (1985b) applies smoothing techniques for one-day-

ahead prediction of river flow. Figure 1.7 below shows a nonparametric estimate of the flow

probability for the St. Mary’s river.

A treatment of outliers is an important step in highlighting features of a data set. Extreme

points affect the scale of plots so that the structure of the main body of the data can become

invisible. There is a rich literature on robust parametric methods in which different kinds of

outlier influence are discussed. There are a number of diagnostic techniques for parametric

models which can usually cope with outliers. However, with some parametric models one may

not even be able to diagnose an implausible value since the parameters could be completely

distorted by the outliers. This is true in particular for isolated (leverage) points in the
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Figure 1.7: Nonparametric flow probability for the St. Mary’s river. From Yakowitz (1985b)

with permission of the Water Resources Research.

predictor variable X. An example is given in Rousseouw and Yohai (1984) in which a linear

regression line fitted a few outliers but missed the main body of the data. Nonparametric

smoothing provides a versatile pre-screening method for outliers in the x-direction without

reference to a specific parametric model. Figure 1.8 shows a nonparametric smoother applied

to analysis of simulated side impact studies. The curve shown is an approximation to the

probability of a fatal injury as a function of anthropometric and biokinetic parameters. The

Y -ordinates are binary in this case (Y = 1 denoting fatal injury). The curve shows visually

what could also be derived from an influence analysis: it makes a dip at the isolated x-points

in the far right. The points could be identified as observations from young persons which

had a rather unnormal reaction behavior in these experiments; see Kallieris and Mattern

(1984). This example is discussed in more detail in Section 10.4.

Missing data is a problem quite often encountered in practice. Some response variables may

not have been recorded since an instrument broke down or a certain entry on an inquiry form

was not answered. Nonparametric smoothing bridges the gap of missing data by interpolating

between adjacent data points, whereas parametric models would involve all the observations

in the interpolation. An approach in spatial statistics is to interpolate points by the “kriging”

method. This method is used by statisticians in hydrology, mining, petroleum engineering

and is related to predicting values of noisy data in a nonparametric fashion; see Yakowitz

and Szidarovsky (1986). Schmerling and Peil (1985) use local polynomial interpolation in
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Figure 1.8: Indicators of fatal injury (Y = 1) as a function of an injury stress index together

with an estimate of the regression curve. From Härdle and Scott (1992).

anatomy to extrapolate missing data.

1.2 Scope of this book

This book takes the viewpoint of an applied statistician who is interested in a flexible regres-

sion analysis of exploratory character. In this spirit, I shall concentrate on simple smoothing

techniques and analyze problems that typically arise in applications. Important practical

questions are:

What is the right amount of smoothing?

How close is the estimated curve to the underlying curve?

How can we effectively estimate curves in dimensions higher than three?

One of the simplest smoothing techniques is kernel estimation. It is straightforward to

implement without further mathematical knowledge and it is understandable on an intuitive



1.2 Scope of this book 15

level. It is argued in Chapter 2 that kernel smoothing is a suitable tool in many ways. A

variety of alternative smoothing techniques such as splines are discussed as well. In Chapter

3 it is seen that they are, in an asymptotic sense, equivalent to kernel smoothing.

The decision about the right amount of smoothing is crucial. Every smoothing method has

to be tuned by some smoothing parameter which balances the degree of fidelity to the data

against the smoothness of the estimated curve. A choice of the smoothing parameter has

to be made in practice and controls the performance of the estimators. This smoothing

parameter selection problem will be discussed in great detail and will be a centerpiece of

this book (Chapters 4 and 5). The user of a nonparametric smoothing technique should be

aware that the final decision about an estimated regression curve is partly subjective since

even asymptotically optimal smoothers contain a considerable amount of noise that leaves

space for subjective judgment. It is therefore of great importance to make such a decision

in interaction with the data, which means that ideally one should have computer resources

with some sort of interactive graphical display. Bearing this in mind, a great deal of the

discussion will be devoted to algorithmic aspects of nonparametric smoothing.

In Chapters 6 and 7 I discuss smoothing in the presence of outliers and correlation, respec-

tively. In Chapter 8 smoothing under qualitative constraints, such as monotonicity or more

general piecewise monotonicity, is presented. Smoothing in dimensions higher than three

creates problems on the computational and on the statistical side of the estimator. It takes

longer to compute the estimators and the accuracy decreases exponentially as the dimen-

sion grows. Chapter 9 presents some semiparametric approaches to incorporate parametric

components into nonparametric smoothing. Chapter 10 discusses additive models and gives

some heuristics as to why these models achieve better accuracy and in this sense reduce the

dimension problem.

The great flexibility of nonparametric curve estimation makes a precise theoretical descrip-

tion of the accuracy of the smoothers for finite sample sizes extremely difficult. It is therefore

necessary to achieve some sort of simplification. This is done here in two ways. First, the
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mathematical arguments are of asymptotic character, that is, the accuracy of the nonpara-

metric smoothing method will be evaluated as the sample size n tends to infinity. Second,

the class of smoothers that is mainly considered here is of very simple structure (kernel

estimators).

The reader interested in the applied aspects should not be too disappointed about the asymp-

totic mathematical results. I have tried to present them in the spirit aptly described by

Murray Rosenblatt:

The arguments . . . have been of an asymptotic character and it is a mistake to take them

too literally from a finite sample point of view. But even asymptotic arguments if used and

interpreted with care can yield meaningful ideas.

Technical details of the mathematical theory are kept simple or else deferred to exercises

and complements. I believe that each chapter provides stimulation to work out some of

the mathematical arguments. Some practically oriented readers might find themselves en-

couraged to try the methods in practice. This can be done, for instance, with graphically

oriented computing environments and systems such as GAUSS (1987),ISP (1987), S (1988)

or XploRe (1989).
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If m is believed to be smooth, then the observations at Xi near x should contain

information about the value of m at x. Thus it should be possible to use something like a

local average of the data near x to construct an estimator of m(x).

R. Eubank (1988, p. 7)

Smoothing of a dataset {(Xi, Yi)}ni=1 involves the approximation of the mean response curve

m in the regression relationship

Yi = m(Xi) + εi, i = 1, . . . , n. (2.0.1)

The functional of interest could be the regression curve itself, certain derivatives of it or

functions of derivatives such as extrema or inflection points. The data collection could have

been performed in several ways. If there are repeated observations at a fixed point X = x

estimation of m(x) can be done by using just the average of the corresponding Y -values. In

the majority of cases though repeated responses at a given x cannot be obtained. In most

studies of a regression relationship (2.0.1), there is just a single response variable Y and

a single predictor variable X which may be a vector in Rd. An example from biometry is

the height growth experiment described in 1. In a frequently occurring economic example
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the variable Y is a discrete variable (indicating some choice) and the vector X denotes an

influential variable; see Manski (1989).

There are other restrictions on the possibility of multiple data recording. An experimental

setup may not be repeatable since the object under consideration gets demolished. This is

often the case in biomechanical experiments. Kallieris and Mattern (1984) describe a side

impact study where acceleration curves from postmortal test objects have been recorded

in simulated crashes. Also, budget restrictions and ethical considerations may force the

experimenter to adopt a single experimental setup. One can certainly imagine situations in

which it is too expensive to carry out more than one experiment for a specific level of the

influential variable X. This raises the following question:

If there are no repeated observations how can we possibly gather information about the re-

gression curve?

In the trivial case in whichm(x) is a constant, estimation ofm reduces to the point estimation

of location, since an average over the response variables Y yields an estimate of m. In

practical studies though it is unlikely (or not believed, since otherwise there is not quite a

response to study) that the regression curve is constant. Rather the assumed curve is modeled

as a smooth continuous function of a particular structure which is “nearly constant” in small

neighborhoods around x. It is difficult to judge from looking even at a two dimensional

scatter plot whether a regression curve is locally constant. Recall for instance the binary

response example as presented in Figure 1.8 It seems to be hard to decide from just looking at

this data set whether the regression function m is a smooth function. However, sometimes a

graphical inspection of the data is helpful. A look at a two-dimensional histogram or similar

graphical enhancements can give support for such a smoothness assumption. One should

be aware though that even for large data sets small jumps in m may occur and a smooth

regression curve is then only an approximation to the true curve.

In Figure 2.1 a scatter plot of a data set of expenditure for food (Y ) and income (X) is

shown. This scatter plot of the entire data looks unclear, especially in the lower left corner.
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Figure 2.1: Food versus net income. Scatter plot of Y = expenditure for food versusX = net

income (both reported in multiples of mean expenditure, resp. mean income),

n = 7125. (See Figure 1.1 for the corresponding plot of potatoes versus net

income). ANRfoodscat.xpl Survey (1968–1983).

It is desirable to have a technique which helps us in seeing where the data concentrate. Such

an illustration technique is the sunflower plot (Cleveland and McGill, 1984) : Figure 2.2

shows the food versus net income example.

The sunflower plot is constructed by defining a net of squares covering the (X, Y ) space

http://www.quantlet.org/mdstat/codes/anr/ANRfoodscat.html
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Food vs. Net Income
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Figure 2.2: Food versus net income. A sunflower plot of Y = expenditure for food versus

X = net income (both reported in multiples of mean expenditure, resp. mean

income), n = 7125. The data shown are from the year 1973 (see 1.1 for the

corresponding plot of potatoes versus net income). ANRfoodsun.xpl Survey

(1968–1983).

and counting the number of observations that fall into the disjoint squares. The number

of petals of the sunflower blossom corresponds to the number of observations in the square

around the sunflower: It represents the empirical distribution of the data. The sunflower

plot of food versus net income shows a concentration of the data around an increasing band

http://www.quantlet.org/mdstat/codes/anr/ANRfoodsun.html
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Figure 2.3: Height versus age. Histogram of the two-dimensional distribution of Y = height

(in cm) versus X = age (in days) for n = 500 female persons. Bin size for age=2

years, for height = 2 cm. The needles give the counts of how many observations

fall into a cell of the bin-net. Source: Institute of Forensic Medicine, University

of Heidelberg.

of densely packed “blossoms”. The shape of this band seems to suggest smooth dependence

of the average response curve on x.

Another example is depicted in Figure 2.3, where heights and ages of a group of persons are

shown.
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The lengths of the needles in Figure 2.3 correspond to the counts of observations that fall

into a net of squares in (X, Y ) space. The relation to the sunflower plot is intimate: the

needle length is equivalent to the number of petals in the sunflower. In this height versus

age data set, the average response curve seems to lie in a band that rises steeply with age

(up to about 10,000–15,000 days) and then slowly decreases as the individuals get older.

For the above illustrations, the food versus income and height versus age scatter plots our eyes

in fact smooth: The data look more concentrated in a smooth band (of varying extension).

This band has no apparent jumps or rapid local fluctuations. A reasonable approximation to

the regression curve m(x) will therefore be any representative point close to the center of this

band of response variables. A quite natural choice is the mean of the response variables near

a point x. This “local average” should be constructed in such a way that it is defined only

from observations in a small neighborhood around x, since Y -observations from points far

away from x will have, in general, very different mean values. This local averaging procedure

can be viewed as the basic idea of smoothing. More formally this procedure can be defined

as

m̂(x) = n−1

n∑
i=1

Wni(x)Yi, (2.0.2)

where {Wni(x)}ni=1 denotes a sequence of weights which may depend on the whole vector

{Xi}ni=1.

Every smoothing method to be described here is, at least asymptotically, of the form (2.0.2).

Quite often the regression estimator m̂(x) is just called a smoother and the outcome of the

smoothing procedure is simply called the smooth (Tukey, 1977). A smooth of the potato

data set has already been given in Figure 1.2. A very simple smooth can be obtained by

defining the weights as constant over adjacent intervals. This procedure is similar to the

histogram, therefore Tukey (1961) called it the regressogram. A regressogram smooth for

the potato data is given in Figure 2.4 The weights {Wni(x)}ni=1 have been defined here as

constant over blocks of length 0.6 starting at 0. Compared to the sunflower plot (Figure
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Figure 2.4: Potatoes versus net income. The step function is a nonparametric smooth

(regressogram) of the expenditure for potatoes as a function of net income. For

this plot the data are normalized by their mean. The straight line denotes a

linear fit to the average expenditure curve, n = 7125, year=1973. Survey (1968–

1983). ANRpotaregress.xpl

1.1) of this data set a considerable amount of noise reduction has been achieved and the

regressogram smooth is again quite different from the linear fit.

Special attention has to be paid to the fact that smoothers, by definition, average over

http://www.quantlet.org/mdstat/codes/anr/ANRpotaregress.html
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observations with different mean values. The amount of averaging is controlled by the

weight sequence {Wni(x)}ni=1 which is tuned by a smoothing parameter. This smoothing

parameter regulates the size of the neighborhood around x. A local average over too large

a neighborhood would cast away the good with the bad. In this situation an extremely

“oversmooth” curve would be produced, resulting in a biased estimate m̂. On the other hand,

defining the smoothing parameter so that it corresponds to a very small neighborhood would

not sift the chaff from the wheat. Only a small number of observations would contribute

nonnegligibly to the estimate m̂(x) at x making it very rough and wiggly. In this case

the variability of m̂(x) would be inflated. Finding the choice of smoothing parameter that

balances the trade-off between oversmoothing and undersmoothing is called the smoothing

parameter selection problem.

To give insight into the smoothing parameter selection problem consider Figure 2.5. Both

curves represent nonparametric estimates of the Engel curve, the average expenditure curve

as a function of income. The more wiggly curve has been computed using a kernel estimate

with a very low smoothing parameter. By contrast, the more flat curve has been computed

using a very big smoothing parameter. Which smoothing parameter is correct? This question

will be discussed in Chapter 5 .

There is another way of looking at the local averaging formula (2.0.2). Suppose that the

weights {Wni(x)} are positive and sum to one for all x, that is,

n−1

n∑
i=1

Wni(x) = 1.

Then m̂(x) is a least squares estimate at point x since we can write m̂(x) as a solution to

the following minimization problem:

min
θ
n−1

n∑
i=1

Wni(x)(Yi − θ)2 = n−1

n∑
i=1

Wni(x)(Yi − m̂(x))2. (2.0.3)

This formula says that the residuals are weighted quadratically. In other words:
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Potatoes vs. Net Income
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Figure 2.5: Potatoes versus net income. The wiggly and the flat curve is a nonparametric

kernel smooth of the expenditure for potatoes as a function of net income. For

this plot the data are normalized by their mean. The kernel was quartic and

h = 0.1, 1.0, n = 7125, year = 1973. Survey (1968–1983). ANRpotasmooth.xpl

The basic idea of local averaging is equivalent to the procedure of finding a local weighted

least squares estimate.

It is well known from the theory of robustness that a wild spike in the raw data affects

the small sample properties of local least squares estimates. When such outliers (in Y -

http://www.quantlet.org/mdstat/codes/anr/ANRpotasmooth.html
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direction) are present, better performance can be expected from robust smoothers, which

give less weight to large residuals. These smoothers are usually defined as nonlinear func-

tions of the data and it is not immediately clear how they fit into the framework of local

averaging. In large data sets, however, they can be approximately represented as a weighted

average with suitably nonlinearly transformed residuals; see Chapter 6. The general basic

idea of weighted averaging expressed by formula (2.0.2) thus applies also to these nonlinear

smoothing techniques.

2.1 The stochastic nature of the observations

I shall consider two scenarios on how the data {(Xi, Yi)}ni=1 have been generated. The first

setting is concerned with independent, identically distributed random variables {(Xi, Yi)}ni=1.

The regression curve is defined as

m(x) = E(Y |X = x). (2.1.4)

The regression curve is well defined if E|Y | <∞. If a joint density f(x, y) exists, then m(x)

can be calculated as

m(x) =

∫
yf(x, y)dy/f(x), (2.1.5)

where f(x) =
∫
f(x, y)dy denotes the marginal density of X. For a more technical discussion

of this formula see (Feller, 1971, p. 71)). It is common terminology to refer to this setting as

the random design model. By contrast, the fixed design model is concerned with controlled,

non-stochastic X-variables, so

Yi = m(Xi) + εi, 1 ≤ i ≤ n,

where the {εi}ni=1 denote zero-mean random variables with variance σ2. In many experiments

the predictor variables {Xi}ni=1 are taken to be equidistributed on an interval [a, b]; without

loss of generality it can be assumed that [a, b] = [0, 1] and Xi = i/n.
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An example for the fixed design model is the study of human growth curves. The X-variable

has been determined well in advance by a team of pediatricians Gasser, Müller, Köhler,

Molinari and Prader (1984b). By contrast, the data of Figure 2.4, a sample of heights and

ages, do not have this feature of a controlled X-variable since both X and Y are random.

Although the stochastic mechanism is different, the basic idea of smoothing is the same for

both random and nonrandom X-variables. In both cases one would like to average over

neighboring observations and in both cases one would tailor the span and the size of the

weights to the relative frequency of the X-variables.

Most results in this book are presented for the stochastic design case, since especially the

economic applications I consider are in a random design model. For some questions the

amount of technical mathematics for the random design model can be enormous. Therefore

I sometimes present statistical ideas only for the fixed design model. These ideas carry over

to the random design model but require mostly more tedious mathematics. Some of the

mathematical arguments I sketch only for the fixed design case, which is easier to analyze

theoretically. A possible way of seeing similarities between both models is given in the

complements of this section.

2.2 Hurdles for the smoothing process

As does every statistical method the smoothing procedure has to clear some hurdles that

require special thought and coordination. It has already been mentioned that compared to

a parametric approach there is, in an asymptotic sense, an increase in variability. From a

pure quantitative point of view one could justify the statement that the loss in statistical

accuracy is “only in an asymptotic sense” and therefore no major difficulties for the data

at hand are to be expected. Indeed, for moderate sample size, the confidence intervals will

not be much larger than for a parametric model. However, it seems natural to ask what the

smoothing process does – in a qualitative sense – to the data at hand. In other words, what
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are the “qualitative hurdles,” for example, shape distortions, that we expect when smoothing

a finite data set? The simplest way to answer this question is to assume that no noise is

present, e.g. the best strategy would be not to smooth at all.

One scenario is concerned with the behavior at peaks of m. Since averaging is performed

over neighboring observations, clearly an estimate of m at the peak point will flatten this

maximum to some extent. This behavior is an indication that we have to expect a finite

sample bias which depends on the local curvature of m. Of course an “asymptotic remedy”

is to let the neighborhood around x shrink but when just one data set is at hand we have

to do some adjustments; see Section 5.3.

At the boundary of the observation interval the local averaging process gets asymmetric, that

is, half of the weights Wni(x) are nondefined and outside the boundary. This will also create

a bias: The smooth will depend on the tangential behavior at the boundary. Boundary

modifications are discussed in Section 4.4. Another situation is the case where we have

regions of sparse data. If the weights Wni(x) do not adapt for that case it can happen that

the weights are undefined since there are no observations to average. A safe way of ensuring

that observations fall into the averaging window is to design the weights with variable span.

Problems of this kind are discussed in Chapter 3.

What computational effort do we expect? At any point x the weights define a neighborhood

into which a certain fraction of the X-variables fall. A naive way of computing the smooth

{m̂(Xj)}nj=1 consists of calculating for i = 1, . . . , n the weights Wni(Xj) for all j = 1, . . . , n.

This unfortunately results in O(n2) operations. If such an algorithm is implemented in some

interactive device, then the calculations can take so long that the process is not really inter-

active. It is therefore necessary to take great care of the numerical efficiency of smoothing

methods. Computational aspects for different weighting schemes are discussed in Chapter3.
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2.2.1 Complements

This complement to Section 2.1 can be omitted by a reader not so interested in mathematical

details. Suppose that an experimenter has chosen the X-variables at locations {Xi}ni=1 in

the fixed interval [0, 1]. Is there a way to express the local density of the X−observations?

Define the empirical distribution function Fn as

Fn(u) = n−1# {i : Xi ≤ u}.

Assume that there exists an absolutely continuous distribution function F on [0, 1] such that

Fn → F uniformly in [0, 1]. An example of a nonstochastic X-variable that is regularly

distributed with density f = F ′ on [a, b] = [0, 1] is

Xi = F−1

(
i− 1/2

n

)
, i = 1, . . . , n.

Clearly

Fn(u) = n−1[nF (u) + 1/2],

and therefore

sup
0≤u≤1

|Fn(u)− F (u)| = (1/2)n−1.

In the case of stochastic X-variables a slightly slower rate is attained. By the Glivenko–

Cantelli Theorem (see Serfling, 1980, Th. 2.1.4b)

sup
u
|Fn(u)− F (u)| = O(n−1/2(log log n)1/2) a.s.

Thus in both cases one could speak of a marginal distribution F of X, although in the case of

controlled X-variables the randomness of the response only enters through the observation

errors {εi}ni=1.
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3 Smoothing techniques

The overriding problems are the choice of what method to use in any given prac-

tical context and, given that a particular method is being used, how to choose the various

parameters needed by the method.

Silverman (1986, p.32)

In this chapter a survey of the major regression smoothing methods is given. The kernel

estimator will be discussed in more detail in later chapters, but it is helpful to elucidate

some common structures of the main smoothing methods before examining a particular

technique. In particular, I present the specific weight sequences {Wni(x)}ni=1 for kernel,

splines, k-NN and orthogonal series smoothing. These weight sequences will be related to

each other and it is argued that one of the simplest ways of computing a weight sequence is

kernel smoothing. The summary of the commonly used methods given here is concentrated

on univariate regression estimation. This is done for two reasons. First, the notation gets

rather complicated for higher dimensional X-variables. Second, the additive model fitting

discussed in 10 uses univariate smoothing algorithms as elementary building blocks. The

different methods will be compared for a simulated data set and the motor cycle data set,

which are presented in Table 1 and Table 2 in Appendix 2.
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3.1 Kernel Smoothing

A conceptually simple approach to a representation of the weight sequence {Wni(x)}ni=1

is to describe the shape of the weight function Wni(x) by a density function with a scale

parameter that adjusts the size and the form of the weights near x. It is quite common to

refer to this shape function as a kernel K. The kernel is a continuous, bounded and symmetric

real function K which integrates to one,∫
K(u)du = 1. (3.1.1)

The weight sequence for kernel smoothers (for one-dimensional x) is defined by

Wni(x) = Khn(x−Xi)/f̂hn(x), (3.1.2)

where

f̂hn(x) = n−1

n∑
i=1

Khn(x−Xi) (3.1.3)

and where

Khn(u) = h−1
n K(u/hn)

is the kernel with scale factor hn. Supressing the dependence of h = hn on the sample size n,

the kernel weight sequence 3.1.2 is conveniently abbreviated as {Whi(x)}ni=1. The function

f̂h(·) is the Rosenblatt–Parzen kernel density estimator (Rosenblatt (1956);Parzen (1962)) of

the (marginal) density of X. The form 3.1.2 of kernel weights Whi(x) has been proposed by

Nadaraya (1964) and Watson (1964) and therefore

m̂h(x) =
n−1

∑n
i=1 Kh(x−Xi)Yi

n−1
∑n

i=1 Kh(x−Xi)

is often called the Nadaraya–Watson estimator. The shape of the kernel weights is determined

by K, whereas the size of the weights is parameterized by h, which is called the bandwidth.

The normalization of the weights f̂h(x) makes it possible to adapt to the local intensity

of the X-variables and, in addition, guarantees that the weights sum to one. A variety of
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kernel functions are possible in general, but both practical and theoretical considerations

limit the choice. For instance, kernel functions that take on very small values can cause

numerical underflow on a computer, so one might restrict attention to kernel functions that

are zero outside some fixed interval. A commonly used kernel function, which enjoys some

optimality properties to be discussed in Section 4.5, is of parabolic shape (Epanechnikov

(1969); Bartlett (1963)):

K(u) = 0.75(1− u2)I(|u| ≤ 1). (3.1.4)

A plot of this so-called Epanechnikov kernel is given in Figure 3.1.

Note that this kernel is not differentiable at u = ±1. The kernel smoother is not defined

for a bandwidth with f̂h(x) = 0. If such a “0/0” case occurs one defines m̂h(x) as being 0.

Suppose that the kernel estimator is only evaluated at the observations {Xi}ni=1. Then, as

h→ 0,

m̂h(Xi)→ K(0)Yi/K(0) = Yi;

small bandwidths thus reproduce the data. Let us now investigate what happens as h→∞.

Suppose that K has support [−1, 1] as in Figure 3.1 Then K(x−Xi
h

)→ K(0) and thus

m̂h(x)→ n−1

n∑
i=1

K(0)Yi/n
−1

n∑
i=1

K(0) = n−1

n∑
i=1

Yi;

very large bandwidths thus result in an oversmooth curve, the average of the response vari-

ables.

How does this Epanechnikov kernel act on real data and what is the shape of the weights

{Whi(x)}ni=1? To obtain some insight, consider the food versus net income data again (see

Figures 2.1 and 2.2). The economist is interested in estimating the so-called statistical Engel

curve, the average expenditure for food given a certain level of income. Kernel smoothing is

a possible procedure for estimating this curve. The kernel weights {Whi(x)} depend on the

values of the X-observations through the density estimate f̂h(x). In Figure 3.2 the effective
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The Epanechnikov kernel
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Figure 3.1: The Epanechnikov kernel. This kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) is of

parabolic shape and has support [-1,1]. ANRepa.xpl

weight function for estimating this Engel curve for food in 1973 is shown centered at x = 1

for the bandwidths h =0.1, 0.2, 0.3. Note that the effective weight function depends only on

the X-values.

One can learn two things from this picture. First, it is obvious that the smaller the band-

width, the more concentrated are the weights around x. Second, in regions of sparse data

where the marginal density estimate f̂h is small, the sequence {Whi(x)} gives more weight

http://www.quantlet.org/mdstat/codes/anr/ANRepa.html
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Figure 3.2: The effective kernel weights for the food versus net income data set. Kh(x −

·)/f̂h(x) at x = 1 and x = 2.5 for h = 0.1 (label 1), h = 0.2 (label 2),

h = 0.3 (label 3) with Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1)

and density estimate as in Figure 1.5, year = 1973, n = 7125. Survey (1968–

1983). ANRpotakernel.xpl

to observations around x. Indeed, around x = 1 the density estimate f̂h(x) reaches its

maximum and at x = 2.5 the density is roughly a tenth of f̂h(1). (See Figure 1.5 for the

year=1973 which is the fourth density contour counting from the front.)

http://www.quantlet.org/mdstat/codes/anr/ANRpotakernel.html
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For multidimensional predictor variables Xi = (Xi1, . . . , Xid) one can use a multidimensional

product kernel function

K(u1, . . . , ud) =
d∏
j=1

K(uj).

The kernel weights for this case are then defined as

Whi(x) =

∏d
j=1 Kh(xj −Xij)

f̂h(x)
,

where in the definition of the Rosenblatt–Parzen density estimator a product kernel is used

as well.

There are cases of applications for which the density f(x) = F ′(x) of the X-variables is

known. The kernel weights that have been investigated for this sampling scheme are (Gre-

blicki (1974); Johnston (1979) Johnston (1982); Greblicki and Krzyzak (1980) and Georgiev

(1984a),Georgiev (1984b))

W
(1)
hi (x) = Kh(x−Xi)/f(x). (3.1.5)

Often the X-observations are taken at regular distances and form an equidistant grid of

points of some interval. Examples are observations from longitudinal data or discretized

analog processes; see Müller (1987). Without loss of generality we can assume that the

X-observations have been taken in the unit interval [0, 1]. In this case, one could use the

modified kernel weights {W (1)
hi (x)} with f = I[0,1], the density of the uniform distribution on

[0, 1]. In the fixed design model of nearly equispaced, nonrandom {Xi}ni=1 on [0, 1], Priestley

and Chao (1972) and Benedetti (1977) considered the weight sequence

W
(2)
hi (x) = n(Xi −Xi−1)Kh(x−Xi), (X0 = 0). (3.1.6)

An interpretation of this weight sequence in terms of 3.1.2 is possible by setting f̂(x) =

[n(Xi −Xi−1)]−1 for x ∈ (Xi−1, Xi]. Gasser and Müller (1979) defined a related weight
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sequence

W
(3)
hi (x) = n

∫ Si

Si−1

Kh(x− u)du, (3.1.7)

where Xi−1 ≤ Si−1 ≤ Xi is chosen between the ordered X-data. The special case of Si = Xi

has been investigated by Cheng and Lin (1981). A notion of an asymptotic equivalence of

the weight sequences {W (2)
hi } and {W (3)

hi } is deferred to the Exercises. Note that {W (1)
hi } and

{W (2)
hi } do not necessarily sum up to one, but {W (3)

hi } does.

The weights W
(3)
hi (x) are related to the so-called convolution smoothing as defined by Clark

(1980); see Exercise 3.1.3 The weight sequences {W (2)
hi (x)} and {W (3)

hi (x)} have been mostly

used in the fixed design model. Theoretical analysis of this stochastic behavior in the random

design model indicates that they have different variance compared to the Nadaraya–Watson

kernel smoother; see Section 3.11.

The consistency of the kernel smoother m̂h with the Nadaraya–Watson weights Whi(x) de-

fined by 3.1.2 is shown in the following proposition. The proof of consistency of the other

weight sequences is very similar and is deferred to exercises.

Proposition 3.1.1 Assume the stochastic design model with a one-dimensional predictor

variable X and

(A1)
∫
|K(u)| du <∞,

(A2) lim|u|→∞ uK(u) = 0,

(A3) EY 2 <∞,

(A4) n→∞, hn → 0, nhn →∞.

Then, at every point of continuity of m(x), f(x) and σ2(x), with f(x) > 0,

n−1

n∑
i=1

Whi(x)Yi
p→ m(x).
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The proof of this proposition is in the Complements of this section. The above result states

that the kernel smoother converges in probability to the true response curve m(x). It is

natural to ask how fast this convergence is going to happen. The mean squared error

dM(x, h) = E[m̂h(x)−m(x)]2

at a point x is one way of quantifying this convergence. The following Theorem gives the

speed of dM(x, h) as a function of h and n. For simplicity it is stated for the fixed design

model. The rate of convergence for the more complicated random design is the same. The

constants are different though and are presented in Section 4.1.

Theorem 3.1.1 (Gasser et al., 1984a) Assume the fixed design model with a one-dimensional

predictor variable X and define

cK =

∫
K2(u)du

dK =

∫
u2K(u)du.

Take the kernel weights {W (3)
hi } and assume

(A0) K has support [−1, 1] with K(−1) = K(1) = 0,

(A1) m ∈ C2,

(A2) maxi|Xi −Xi−1| = O(n−1),

(A3) var(εi) = σ2, i = 1, . . . , n,

(A4) n→∞, h→ 0, nh→∞.

Then

dM(x, h) ≈ (nh)−1σ2cK + h4d2
K [m′′(x)]2/4.

The mean squared error splits up into the two parts, variance and bias2. The above theorem

says that the bias, as a function of h, is increasing whereas the variance is decreasing. By

this qualitative behavior one gets a feeling of what the smoothing problem is about:
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Balance the variance versus the bias2.

We will come back to this task in Chapter 4.

3.1.1 Kernel estimators are local polynomial fits

The kernel weights define a neighborhood of points around a grid point x. Let us investigate

the question of fitting a polynomial in such a neighborhood.

The simplest polynomial to fit in such a neighborhood is a constant. There is a striking

similarity between local polynomial fitting and kernel smoothing. For fixed x, the kernel

estimator m̂h(x) with positive weights Whi(x) is the solution to the following minimization

problem

min
t

n∑
i=1

Kh(x−Xi)(Yi − t)2 =
n∑
i=1

Kh(x−Xi)(Yi − m̂h(x))2. (3.1.8)

In this sense, the kernel smoother can be understood as a local constant polynomial fit:

It minimizes, in a neighborhood around x determined in shape and span by the sequence

Kh, the sum of squared residuals. How are more complex polynomials related to kernel

smoothing?

This question is investigated in the fixed design model. Consider equispaced Xi = i/n, and

a local parabolic fit. Let us take a point x that is not too close to the boundary of the

observation interval. (The behavior of kernel smoothers at the boundary is discussed in

Section 4.4.) Consider a uniform kernel KU(u) = 1/2 I(|u| ≤ 1), which parameterizes the

neighborhood around x. We have then to minimize

n−1
∑
i

KU
h (x−Xi)(Yi − a− b(Xi − x)2)2

with respect to a and b. The linear term is not present here, since it is “orthogonal” to the

symmetric, uniform kernel. The normal equations for this problem are

n−1
∑
i

KU
h (x−Xi)(Yi − a− b(Xi − x)2) = 0, (3.1.9)
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n−1
∑
i

KU
h (x−Xi)(Yi − a− b(Xi − x)2)(Xi − x)2 = 0. (3.1.10)

Define Ŷ as n−1
∑

iK
U
h (x−Xi)Yi and approximate n−1

∑
iK

U
h (x−Xi) by one. For large n,

the sum

n−1
∑
i

KU
h (x−Xi)(x−Xi)

2

can be replaced by ∫
KU
h (x− u)(x− u)2 du.

Integration by substitution shows that this is equal to h2/3. Using similar arguments for

n−1
∑
i

KU
h (x−Xi)(x−Xi)

4 shows that the normal equations (3.1.9–3.1.10) can be rewritten

as

Ŷ − a− (h2/3) b = 0,

A− (h2/3) a− (h4/5) b = 0,

where

A = n−1
∑
i

KU
h (x−Xi)(x−Xi)

2 Yi.

Elementary algebraic calculations show that a satisfies the equation

3h2 Ŷ − 5A+ (−3 + 5/3) h2a = 0,

which is solved by

â = 3/4

(
n−1

∑
i

KU
h (x−Xi)

(
3− 5

(
x−Xi

h

)2
)

Yi

)
. (3.1.11)

Similary, an estimate b̂ can be computed which leads to the “local parabola” â + b̂(x − u)2

in a small neighborhood around x. At the point x itself the regression curve m̂ is estimated

by â. A closer look at 3.1.11 reveals that â can be written as

â = m̂(x) = n−1
∑
i

K∗h(x−Xi) Yi,
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Figure 3.3: Local parabolic fits. The kernel smooth for acceleration versus time data (see

Section 8.1). The kernel smooth is compared to the local parabolic fits at x=

525and620.

where

K∗h(u) = 3/8 (3− 5u2)I(|u| ≤ 1)

is a kernel with vanishing first, second and third moment. In this setting of equispaced

predictor variables a kernel estimate with kernel K∗ is essentially a local parabolic fitting

procedure. Figure 3.3 shows some of the “local parabolas” together with a kernel estimate

based on the kernel K∗h. The data set is a stretch from the acceleration versus time data as

discussed later in Section 8.1.

The equivalence of local polynomial fitting and kernel smoothing has been studied in great

detail by Müller (1987). Some numerical comparison has been done by Schmerling and Peil
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(1985, figure 1). They used a Gaussian kernel weight sequence with kernel

K(u) = (2π)−1/2 exp(−u2/2)

and compared locally constant, linear and parabolic fits in an agricultural example.

3.1.2 Kernel estimators of derivatives

The technique of kernel estimation can also be used to estimate derivatives of the regression

function. Kernel derivative estimators are defined by differentiating the weight function

sequence with respect to x. If the weights are sufficiently smooth and the bandwidth sequence

is correctly tuned then these estimators will converge to the corresponding derivatives of m.

This can be easily illustrated in the equidistant design setting with the kernel smoother,

using the Priestley–Chao weights {W (2)
hi (x)}. Taking the k-th derivative with respect to x

gives

m̂
(k)
h (x) = n−1h−(k+1)

n∑
i=1

K(k)

(
x−Xi

h

)
Yi. (3.1.12)

The kernel estimate of the k-th derivative of m is thus a local average of the response variables

in which the k-th derivatives of the kernel weights have been used as weights.

Proposition 3.1.2 Assume the fixed design model with a one-dimensional predictor variable

X and define

c
(k)
K =

∫
[K(k)]

2
(u)du,

d
(k)
K =

∫
uk+2K(k)(u)du.

Take the Priestley–Chao kernel weights {W (2)
hi (x)} and assume

(A0) K ∈ C(k) has support [−1, 1] with K(j)(−1) = K(j)(1) = 0, j = 0, . . . , k − 1,

(A1) m(k)(x) ∈ C2,

(A2) Xi = i/n, i = 1, . . . , n,
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(A3) var(εi) = σ2, i = 1, . . . , n,

(A4) n→∞, hn → 0, nhk+1
n →∞.

Then

dM(x, h) ≈ (nh2k+1)−1σ2c
(k)
K + h4d

(k)
K

2
[m(k+2)(x)]

2
/(k + 2)!2.

A sketch of the proof of this proposition is given in the Complements to this section. Gasser

and Müller (1984) studied slightly different weights based on derivatives of {W (3)
hi (x)}. In

view of the asymptotic equivalence of the weight functions {W (2)
hi (x)} and {W (3)

hi (x)} (see

Exercise 3.1.3) it is not surprising that the Gasser–Müller kernel estimator has the same mean

squared error expansion as given in Proposition 3.1.2 Figure 3.4 is taken from an application

of the Gasser–Müller method, in which they compute the velocity and acceleration of height

growth. The upper graphs compare the growth velocity (first derivative) of boys to that of

girls. The graphs below depicts the growth accelerations (second derivatives) for the two

sexes.

In the case of non-equally spaced and random X-variables the weight sequence becomes more

complicated. The principle of differentiating the kernel weights to obtain kernel estimates

for derivatives of the regression function also works here. For instance, the first derivative

m′(x) could be estimated using the effective weight sequence

Whi(x) =
K

(1)
h (x−Xi)

f̂h(x)
− Kh(x−Xi)f̂

′
h(x)

(f̂h(x))2
, (3.1.13)

where

K
(1)
h (u) = h−2K(1)(u/h)

and

f̂ ′h(x) = n−1

n∑
i=1

K
(1)
h (x−Xi)

is an estimate of the first derivative of the marginal density f(x).
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Figure 3.4: First and second derivatives of kernel smoothers. Average velocity curves (above)

and acceleration curves (below) for boys (dashed line) and girls (solid line). From

Gasser et al. (1984a) with permission of the Institute of Mathematical Statistics.

3.1.3 Computational aspects of kernel smoothing

Suppose that it is desired to compute the Nadaraya–Watson kernel estimate at N distinct

points. A direct application of formula (3.1.2) for a kernel with unbounded support would

result in O(Nn) operations for determination of the estimator at N gridpoints. Some com-

puter time can be saved by using kernels with bounded support, say [−1, 1]. Local averaging

is then performed only in a neighborhood of size h around the gridpoints. The number of

operations would then be O(Nnh) since about 2nh points fall into an interval of length 2h.
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Since h = hn tends to zero, the introduction of kernels with bounded support looks like a

drastic improvement.

For optimization of the smoothing parameter one needs to repeat kernel smoothing several

times and so even for moderate sample size the algorithm would still be extremely slow.

More efficient kernel smoothing algorithms can be defined by first discretizing the data into

bins of the form

B(x;x0, h) = [x0 + kh, x0 + (k + 1)h]

for some integer k. This means that one replaces the response variables by a step function

with heights equal to the average of the response in the bins. Similarly the predictor variable

is replaced by its frequency in the respective bins. This discretization step takes O(n)

operations.

The computational advantage comes from building a weighted average of rounded points

(WARP). In particular, consider the set of “origins”{
x0,k =

kh

M

}
, k = 0, . . . ,M − 1,

and estimate, for example, the marginal density by an average over histograms with origin

x0,k,

f̂h,m(x) = m−1

M−1∑
k=0

#{i : Xi ∈ B(x;x0, h)}/(nh)

= (Mnh)−1

M−1∑
k=1−M

(M − |k|)#{i : Xi ∈ B(x;x0, h)}/(nh).

The triangular weights (1 − |k| /M) can be generalized in an obvious way to other weight

sequences. For example, the quartic kernel

K(u) = (15/16)(1− u2)2I(|u| ≤ 1)

corresponds to the weights

WM(k) = (15/16)(1− k2/M2)2, |k| ≤M.
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Using this generalization we can rewrite the above formula in the general form

f̂(x) = M−1
∑
|k|≤M

WM(k)RPi(x)+k,

where i(x) is the bin in which x falls and where in the above case of density smoothing, RPl

is the frequency of rounded points (= RP ) in the `-th bin. Applying this idea to regression

smoothing gives

m̂(x) = M−1
∑
|k|≤M

WM(k)Ȳi(x)+k/f̂(x),

where Ȳl is the average of the response variable over the `-th bin. Estimates of this kind

are discussed in Härdle and Scott (1988). After discretization of the data the operations are

O(NM).

Another technique uses Fourier transforms

g̃(t) =

∫
g(x) exp(−itx)dx.

Observe that for g(x) = n−1
∑n

i=1 Kh(x−Xi)Yi, the denominator of the Nadaraya–Watson

estimator, one has the Fourier transform

g̃(t) = K̃(th)
n∑
i=1

exp(−itXi)Yi.

If one uses the Gaussian kernel

K(u) = exp(−u2/2)/
√

2π

one has for example K̃(t) = exp(−t2/2). The numerical efficiency comes from decoupling

the smoothing operation from the Fourier transform of the data. The Fourier transform of

the data
n∑
i=1

exp(−itXi)Yi

can be computed via the Fast Fourier Transform. If the data is discretized into N bins as

above, the operation will be O(N logN). Note that for computing several smoothes only

the rescaled Fourier transform of the kernel function has to be multiplied with the Fourier
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transform of the data which can be retained in the memory of the computer. An algorithm

for this technique is presented in Härdle (1987a).

Exercises

3.1.1 Recall the setting for the weight sequence {W (2)
hi (x)}. Consider linear interpolation

between two successive observations (Xi−1, Yi−1) and (Xi, Yi) with (X0, Y0) = (0, Y1),

gi(u) =
Yi − Yi−1

Xi −Xi−1

(u−Xi−1) + Yi−1, i = 1, . . . , n.

The linear interpolant of the data can be written as

Gn(u) =
n∑
i=1

gi(u) I(Xi−1 ≤ u < Xi).

Clark (1980) suggested convoling this linear interpolant with a kernel function with band-

width h,

m̂(x) =

∫
Kh(x− u)Gn(u)du

=
n∑
i=1

∫ Xi

Xi−1

Kh(x− u)gi(u)du

=
n∑
i=1

∫ Xi

Xi−1

Kh(x− u)duYi−1

+
n∑
i=1

∫ Xi

Xi−1

Kh(x− u)(u−Xi)du
Yi − Yi−1

Xi −Xi−1

.

Show that if the x-variables are equispaced on [0, 1], that is, Xi = i
n
, then the last term

converges in probability to zero.

3.1.2 Discuss the behavior of the kernel estimator when a single observation moves to a very

large value, that is, study the case (Xi, Yi)→ (Xi, Yi±c) with c→∞ for a fixed i. How does

the curve change under such a distortion? What will happen for a distortion in X-direction

(Xi, Yi)→ (Xi ± c, Yi)?

3.1.3 When we had the situation of equispaced Xi = i
n

we said that a local linear fit would

not make much sense with a symmetric kernel weight. Consider now the situation of random
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Xs. Would you expect a gain in using a local linear fit now?

3.1.4 Prove in analogy to Proposition 3.1.1 the asymptotic mean squared error decomposi-

tion of kernel smoothers with weight sequences {W (2)
hi } and {W (3)

hi }, respectively.

3.1.5 Recall the the weighted local fitting of polynomials. If the order of the approximating

polynomial ϕ0 ≡ 1 is p = 0, then m̂h(x) is just the ordinary kernel estimate with weights

W ∗
hi(x) = Whi(x)/f̂h(x). For a local linear approximation one has

ϕ0(u) = 1,

ϕ1(u) = (u− x0)−M11(x0)/M10(x0),

whereM1j(x) =
n∑
i=1

(Xi − x)jWhi(x), j = 0, . . . , p.

This results in

m̂h(x) =
M20(x)M12(x)−M21(x)M11(x)

M10(x)M12(x)− [M11(x)]2
,

whereM2j(x) =
n∑
i=1

(Xi − x)jWhi(x)Yi, j = 0, . . . , p.

Try this method in practice. (Schmerling and Peil, 1977, present the ALGOL code for this

procedure.) Comment on the difference from ordinary kernel smoothing.

3.1.6 Verify that the kernel K∗ from the local parabolic fit (see 3.1.13) is indeed a kernel

and has vanishing first, second and third moments.

3.1.7 Consider the positive food versus net income data set. Suppose you are asked to do a

kernel smooth at the right end. What can happen if the kernel K has negative “sidelobes”,

that is, the tails of K are allowed to take on negative values?

3.1.8 Give a rigorous proof of Proposition 3.1.2 (A sketch of the proof is in the Complements

of this section.) Compare the remainder terms of the bias approximations for the weight

sequence {W (2)
hi (x)} with those of the weight sequence {W (3)

hi (x)}.

3.1.9 Derive that the rate of convergence of dM(x, h) from Theorem 3.1.1 is h and is chosen
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optimally, that is,

h = hopt = arg min
h
dM(x, h).

3.1.10 Show the asymptotic equivalence of the weight sequences {W (2)
hi (x)} and {W (3)

hi (x)}

in the following sense

W
(2)
hi (x) = W

(3)
hi (x) +O(n−1).

3.1.11 Give reasons why f̂(X(i)) = n(X(i) −X(i−1)), as in the weight sequence (3.1.6), is a

reasonable choice for a density estimate. [Hint : Consider the asymptotic distribution of the

spacings X(i) −X(i−1).]

3.2 Complements

3.3 Proof of Proposition

The proof of this proposition (3.1.1) follows a technique used by Parzen (1962) in the setting

of density estimation. Recall the definition of the kernel weights,

Whi(x) = Kh(x−Xi)/f̂h(x).

Consider the denominator and numerator separately. I show that

r̂h(x) = n−1

n∑
i=1

Kh(x−Xi)Yi
p→ m(x)f(x) = r(x), (3.3.14)

f̂h(x) = n−1

n∑
i=1

Kh(x−Xi)
p→ f(x). (3.3.15)

From (3.1.9) and (3.3.15) it follows by Slutzky’s Theorem Schönfeld (1969, Chapter 6), that

r̂h(x)/f̂hx)
p→ r(x)/f(x) =

m(x)f(x)

f(x)
= m(x).
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Only (3.3.14) is shown; the statement (3.3.15) can be proved very similarly. Note that

Er̂h(x) =

∫ ∫
Kh(x− u)yf(u, y)dudy,

where f(u, y) denotes the joint density of the distribution of (X, Y ). Conditioning on u gives∫
Kh(x− u)r(u)du,

since

m(u) =

∫
yf(y|u)dy =

∫
yf(u, y)dy/

∫
f(u, y)dy.

Using integration by substitution it can be shown (see Lemma 3.1 in these Complements)

that for δ > 0

|Er̂h(x)− r(x)| ≤ sup|s|≤δ |r(x− s)− r(x)|
∫
|K(s)| ds

+δ−1 sup|s|≥δ/h |sK(s)|
∫
|r(s)| ds

+ |r(x)|
∫
|s|≥δ/h |K(s)| ds.

The last two terms of this bound tend to zero, by (A1) and (A2), as n → ∞. Now let δ

tend to zero; then the first term by continuity of r(·) will tend to zero. This proves that

Er̂h(x) − r(x) = o(1), as n → ∞. Now let s2(x) = E(Y 2|X = x). Use integration by

substitution and the above asymptotic unbiasedness of r̂h(x) to see that the variance of

r̂h(x) is

var(r̂h(x)) = n−2

n∑
i=1

var(Kh(x−Xi)Yi)

= n−1

{∫
K2
h(x− u)s2(u)f(u)du

−
(∫

Kh(x− u)r(u)du

)2
}

≈ n−1h−1

∫
K2(u)s2(x+ uh)f(x+ uh)du.

This is asymptotically equal to n−1h−1
∫
K2(u)du s2(x)f(x) using the techniques of splitting

up the same integrals as above. Observe now that the variance tends to zero as nh → ∞.
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This completes the argument since the mean squared error E(r̂h(x)− r(x))2 = var(r̂h(x)) +

[Er̂h(x)− r(x)]2 → 0 as n→∞, nh→∞, h→ 0. Thus we have seen that

r̂h(x)
2→ r(x).

This implies

r̂h(x)
p→ r(x),

(see Schönfeld, 1969, chapter 6) proof can be adapted to kernel estimation with higher

dimensional X. If X is d-dimensional, change Kh to h−dK(x/h), where K: Rd → R and the

ratio in the argument of K has to be understood coordinatewise.

LEMMA 3.1 The estimator r̂h(x) is asymptotically unbiased as an estimator for r(x).

Use integration by substitution and the fact that the kernel integrates to one to bound

|Er̂h(x)− r(x)| =

∫
Kh(x− u)(r(u)− r(x))du

=

∫
Kh(s)(r(x− s)− r(x))ds

≤
∫
|s|≤δ
|Kh(s)| |r(x− s)− r(x)| ds

+

∫
|s|>δ
|Kh(s)| |r(x− s)| ds

+

∫
|s|>δ
|Kh(s)| |r(x)| ds

= T1n + T2n + T3n.

The first term can be bounded in the following way:

T1n ≤ sup
|s|≤δ
|r(x− s)− r(x)|

∫
|K(s)| ds.

The third term

T3n ≤ |r(x)|
∫
|K(s)| ds.
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The second term can be bounded as follows:

T2n =

∫
|s|>δ
|sKh(s)| |r(x− s)| / |s| ds

≤ sup
|s|>δ
|sKh(s)|

∫
|s|>δ
|r(x− s)| / |s| ds

= δ−1 sup
|s|≥δ/h

|sK(s)|
∫
|r(s)| ds.

Note that the last integral exists by assumption (A3) of Proposition 3.1.1

3.3.1 Sketch of Proof for Proposition

The derivative estimator m̂
(k)
h (x) is asymptotically unbiased.

Em̂
(k)
h (x) = n−1h−(k+1)

n∑
i=1

K(k)

(
x−Xi

h

)
m(Xi) (3.3.16)

≈ h−k
∫
K(k)(u) m(x− uh)du

= h−k+1

∫
K(k−1)(u) m(1)(x− uh)du

=

∫
K(u) m(k)(x− uh)du

∼ m(k)(x) + hd
(k)
K m(k+2)(x)/(k + 2)!, h→ 0,

using partial integration, (A0) and (A4).

The variance of m̂
(k)
h (x) tends to zero if nh2k+1 →∞, as the following calculations show:

var{m̂(k)
h (x)} = n−1h−2(k+1)

n∑
i=1

[
K(k)

(
x−Xi

h

)]2

σ2 (3.3.17)

≈ n−1h−2k−1

∫
[K(k)(u)]2du σ2.

3.4 k-nearest neighbor estimates

The construction of nearest neighbor estimates differs from that of kernel estimates. The

kernel estimate m̂h(x) was defined as a weighted average of the response variables in a
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fixed neighborhood around x, determined in shape by the kernel K and the bandwidth h.

The k-nearest neighbor (k-NN) estimate is a weighted average in a varying neighborhood.

This neighborhood is defined through those X-variables which are among the k-nearest

neighbors of x in Euclidean distance. The k-NN weight sequence has been introduced by

Loftsgaarden and Quesenberry (1965) in the related field of density estimation and has been

used by Cover and Hart (1967) for classification purposes. In the present regression setting

the k-NN smoother is defined as

m̂k(x) = n−1

n∑
i=1

Wki(x)Yi, (3.4.18)

where {Wki(x)}ni=1 is a weight sequence defined through the set of indexes

Jx = {i : Xi is one of theknearest observations tox}.

With this set of indexes of neighboring observations the k-NN weight sequence is con-

structed:

Wki(x) =

 n/k, ifi ∈ Jx;

0 otherwise.

To give some insight into the construction of weights consider the following example. Let

{(Xi, Yi)}5
i=1 be {(1, 5), (7, 12), (3, 1), (2, 0), (5, 4)} and let us compute the k-NN estimate

m̂k(x) for x = 4 and k = 3. The k observations closest to x are the last three data points,

therefore Jx = J4 = {3, 4, 5} and thus

Wk1(4) = 0,Wk2(4) = 0,Wk3(4) = 1/3,Wk4(4) = 1/3,Wk5(4) = 1/3,

which results in m̂3(4) = (1 + 0 + 4)/3 = 5/3.

In an experiment in which the X-variable is chosen from an equidistant grid the k-NN

weights are equivalent to kernel weigths. Let k = 2nh and compare {Wki(x)} with {Whi(x)}

for a uniform kernel K(u) = 1
2
I(|u| ≤ 1) for an x not too close to the boundary. Indeed for

i ∈ Jx:

Wki(x) =
n

(2nh)
=

1

2
h−1 = Whi(x).
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The smoothing parameter k regulates the degree of smoothness of the estimated curve. It

plays a role similar to the bandwidth for kernel smoothers. The influence of varying k on

qualitative features of the estimated curve is similar to that observed for kernel estimation

with a uniform kernel.

Consider for fixed n the case that k becomes larger than n. The k-NN smoother then is

equal to the average of the response variables. The other limiting case is k = 1 in which the

observations are reproduced at Xi, and for an x between two adjacent predictor variables a

step function is obtained with a jump in the middle between the two observations. Again a

smoothing parameter selection problem is observed: k has to be chosen as a function of n or

even of the data. As a first goal one might like to reduce the noise by letting k = kn tend to

infinity as a function of the sample size. The second goal is to keep the approximation error

(bias) low. The second goal is achieved if the neighborhood around x shrinks asymptotically

to zero. This can be done by defining k = kn such that kn/n → 0. Unfortunately, this

condition conflicts with the first goal. In order to keep the variance as small as possible one

would like to choose k as large as possible.

So again we face a trade-off problem between a “good approximation” to the regression

function and a “good reduction” of observational noise. This trade-off problem can be

expressed formally by an expansion of the mean squared error of the k-NN estimate.

Proposition 3.4.1 (Lai, 1977) Let k → ∞, k/n → 0, n → ∞. Bias and variance of the

k-NN estimate m̂k with weights as in (3.4.19) are given by

Em̂k(x)−m(x) ≈ 1

24f(x)3
[(m′′f + 2m′f ′)(x)] (k/n)2,

var{m̂k(x)} ≈ σ2(x)

k
.

The trade-off between bias2 and variance is thus achieved in an asymptotic sense by setting

k ∼ n4/5. A consequence is that the the mean squared error itself converges to zero at a rate

of k−1 ∼ n−(4/5).
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Other weight sequences Wki(x) have been proposed by Stone (1977). In addition to the

“uniform” weights (3.4.18) he defined “triangular and quadratic k-NN weights.” Generally

speaking, the weights can be thought of as being generated by a kernel function K,

WRi(x) =
KR(x−Xi)

f̂R(x)
, (3.4.19)

where

f̂R(x) = n−1

n∑
i=1

KR(x−Xi)

is a kernel density estimate of f(x) with kernel sequence

KR(u) = R−1K(u/R)

and R = Rn is the distance between x and its k-th nearest neighbor. In the example given

above with x = 4 and k = 3, the distance R would be equal to 2 since the observation (2,0)

is the furthest away among the three neighbors of x = 4.

To give insight into this weight sequence consider the potato example again. In Figure 3.5

the effective k-NN weights WRi(x) are shown analogous to the kernel weigths Whi(x) in

Figure 3.5

One can see quite clearly the difference in the kernel weights. At the right end of the

data, where the observations get sparser, the k-NN weights spread out more than the

kernel weights, as presented in Figure 3.2 Mack (1981) computes bias and variance for this

parameterization of the weights {WRi}ni=1.

Proposition 3.4.2 (Mack, 1981) Let k →∞, k/n→ 0, n→∞ and let cK , dK be defined

as in Theorem 3.1.1 Then

Em̂R(x)−m(x) ≈
(
k

n

)2
(m′′f + 2m′f ′)(x)

8f(x)3
dK , (3.4.20)

var(m̂R(x)|X = x) ≈ 2
σ2(x)

k
cK . (3.4.21)



56 3 Smoothing techniques

The effective k-NN weights
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Figure 3.5: The effective k-NN weights for the food versus net income data set. KR(x−

.)/f̂R(x) at x=1 and x=2.5 for k=100 (label 1), k=200 (label 2), k=300 (label 3) with

Epanechnikov kernel K(u)=0.75(1−u2)I(|u|≤1) and density estimate as in Figure 1.3,

year = 1973, n = 7125. ANRkNNweights.xpl Survey (1968–1983).

A consequence of this proposition is that a balance between the bias2 and the variance

contribution to the mean squared error is as for the uniform k-NN weights (3.4.19) achieved

by letting k = kn be proportional to n4/5. Thinking of the bandwidth parameter h for kernel

smoothers as being roughly equivalent to 1
2
nk−1 it is seen that the bias and variance rates of

m̂R are completely equivalent to those for kernel smoothers, only the constants differ. The

http://www.quantlet.org/mdstat/codes/anr/ANRkNNweights.html
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bias of m̂R tends to be large in the tail of the marginal distribution. The kernel estimators

show a different behavior: There the variance is a multiple of f(x)−1 and the bias turns out

not to be a function of f(x)−3. A comparison of kernel and k-NN smoothers mean squared

error properties can be found in Table 3.1

Table 3.1: Bias and variance of k-NN and kernel smoother. Source: Mack (1981, table,1).

kernel k-NN

bias h2 (m′′f+2m′f ′)(x)
2f(x)

dK
(
k
n

)2 (m′′f+2m′f ′)(x)
8f3(x)

dK

variance σ2(x)
nhf(x)

cK
2σ2(x)
k

cK

The entries of Table 3.1 show the asymptotic dependence of bias and variance on f, k and h.

The essential equivalence of the row entries of Table 3.2.1 can be seen by using the relation

k = 2nhf(x). (3.4.22)

Using this k leads to the same (asymptotic) mean squared error (at x) for the k-NN and

the kernel smoothers. The accuracy of m̂R can be stated in terms of a central limit theorem,

which was given by Mack (1981, theorem 3). Rates of convergence for this k-NN smoother

have also been derived by Devroye (1978a) and Györfi (1981).

A third kind of k-NN smoothers are symmetrized nearest neighbor estimators . Let Fn denote

the empirical distribution of the sample from X. Let h be a bandwidth tending to zero. The

estimate proposed by Yang (1981) and studied by Stute (1984) is

m̂k(h)(x) = (nh)−1

n∑
i=1

K

(
Fn(Xi)− Fn(x)

h

)
Yi. (3.4.23)

The estimate (3.4.23) is also a nearest neighbor estimate, but now neighbors are defined in

terms of distance based on the empirical distribution function of the {Xi}ni=1. Thus a weight

sequence (symmetric in Fn(X) space)

Wk(h)(x) = Kh(Fn(Xi)− Fn(x))
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is used.

Note that m̂R always averages over a symmetric neighborhood in the X-space, but may

have an asymmetric neighborhood of Fn(X). By contrast, m̂k(h) always averages over the

same amount of points left and right of x, but may in effect average over an asymmetric

neighborhood in the X-space. The estimate m̂k(h) has an intriguing relationship with the

k-NN estimator used by Friedman (1984). The variable span smoother (supersmoother)

proposed by Friedman uses the same type of neighborhood as does m̂k(h); see Section 5.3.

The estimate (3.4.23) also looks appealingly like a kernel regression estimate of Y against

not X but rather Fn(X). Define the expected value

m̄k(h)(x) = h−1

∫
m(u)K

(
F (u)− F (x)

h

)
du.

Then Stute (1984) shows that as n→∞, h→ 0 and nh3 →∞,

(nh)1/2(m̂k(h)(x)− m̄k(h)(x))
L→N(0, cKσ

2(x)).

With this choice of h, m̂k(h)(x) has the same limit properties as a kernel or ordinary nearest

neighbor estimate as long as its bias term is of order O(h2). It is in fact not hard to show

that the bias satisfies to order O(h2):

h2dK
(m′′f −m′f ′)(x)

2f 3(x)
. (3.4.24)

Carroll and Härdle (1988) compare (3.4.24) with the bias for kernel smoothers and k-NN

smoothers. They show that even when the variances of all three estimates are the same (the

case h = hf(x)), the bias properties differ unless

m′(x)f ′(x) = 0.

Otherwise, the smoothing parameter balancing variance versus bias2 for the kernel and or-

dinary nearest neighbor estimates will lead to a different mean squared error than what one

obtains for the symmetrized nearest neighbor estimate. An example is given in Figure 3.6
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For these data, we used the quartic kernel

K(u) = (15/16)(1− u2)2I(|u| ≤ 1).

We computed the ordinary kernel estimate m̂h(x) and the symmetrized nearest neighbor

estimate m̂k(h)(x), the bandwidths being selected by cross-validation, see Chapter 4. The

data driven bandwidths were h = 0.25 for the kernel smoother on the scale [0, 3] of Figure

3.6 and h = 0.15 on the Fn(X) scale. The resulting regression curves are similar for x ≤ 1,

which is where most of the data lie. There is a sharp discrepancy for larger values of x,

the kernel estimate showing evidence of a bimodal relationship and the symmetrized nearest

neighbor estimate indicating either an asymptote or even a slight decrease as income rises.

In the context, the latter seems to make more sense economically and looks quite similar to

the curve in Hildenbrand and Hildenbrand (1986). Statistically, it is the range of the data

where the density f(x) takes on small values; see Figure 2.1, for example. This is exactly

when we expect the biggest differences in the estimates, that is, the kernel estimate should

be more variable but less biased.

3.4.1 Computational aspects of k-NN smoothing

A great advantage of the k-NN estimate (3.4.18) is that its computation can be updated

quite easily when x runs along the sorted array of X-variables. The algorithm requires essen-

tially O(n) operations to compute the smooth at all Xi, as compared to O(n2h) operations

for direct computation of the kernel estimate.

Let us construct k-NN smoothers as weighted averages over a fixed number of observations

with uniform weights as used as in (3.4.19). Suppose that the data have been pre-sorted, so

that Xi ≤ Xi+1, i = 1, . . . , n − 1. Then if the estimate has already been computed at some

point Xi the k-NN smoother at Xi+1 can be recursively determined as

m̂k(Xi+1) = m̂k(Xi) + k−1(Yi+[k/2]+1 − Yi−[k/2]),

where [u] = sup{i : i ≤ u}.
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This updating formula is also applicable for local polynomial fits. For simplicity only the

local linear fit is described . The slope β and intercept α of the least squares line through

the neighborhood determined by uniform weights (3.4.19) are given by

αXi = m̂k(Xi)− βµXi ,

βXi =
CXi − µXi · m̂k(Xi)

VXi − µ2
Xi

,

with

µx = k−1
∑
i∈Jx

Xi,

Cx =
∑
i∈Jx

XiYi,

Vx =
∑
i∈Jx

X2
i .

If an observation (Xi+[k/2]+1, Yi+[k/2]+1) is added and (Xi−[k/2], Yi−[k/2]) falls out of the window

over which to average, the following formulas can be used:

µXi+1
= µXi + k−1(Xi+[k/2]+1 −Xi−[k/2]),

m̂k(Xi+1) = m̂k(Xi) + k−1(Yi+[k/2]+1 − Yi−[k/2]),

CXi+1
= CXi +Xi+[k/2]+1Yi+[k/2]+1 −Xi−[k/2]Yi−[k/2],

VXi+1
= VXi +X2

i+[k/2]+1 −X2
i−[k/2].

This recursive algorithm is a component of the supersmoother to be described in Section 5.3.

The principal idea of updating also applies to the k-NN estimate m̂R(x) if a discrete ap-

proximation to the kernel K is used. Suppose that for fixed k the effective kernel weight is

sufficiently well approximated by a sum of indicator functions

(2[k/2])−1

[k/2]∑
j=0

I(|x−Xi| ≤ Rn(k − 2j)),

where Rn(k) is the distance of x to its k-th nearest neighbor. Then m̂R(x) can be represented

as a sum of simple k-NN estimates,

m̂R(x) ≈ (2[k/2])−1

[k/2]∑
j=0

m̂k−2j(x).
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Every term in this sum can be updated as before. The computational costs are linear in n.

Exercises

3.4.1 Show that the bias and variance of m̂R are identical to the bias and variance of m̂k if

a uniform kernel is used.

3.4.2 Define dM(k) =variance(k)+bias2(k). Compute

kopt = arg min
k
dM(k)

as a function of m, f and K. Also compute dM(kopt). Compare with the speed of convergence

for kernel smoothers. Interprete the constants occuring in these expressions.

3.4.3 Implement the k-NN algorithm on a computer and compare with a brute force pro-

gramming of the kernel smoother. Where do you see numerical advantages or disadvantages

of the recursive updating algorithm?

3.4.4 Compare kernel and k-NN smoothes subjectively. At what regions of the data would

you prefer the one before the other?

3.4.5 Verify the bias formula (3.4.24) for the symmetrized nearest neighbor estimator. Com-

pare with the bias for the ordinary k-NN smoother and the kernel smoother.

3.5 Orthogonal series estimators

Suppose that the regression function can be represented as a Fourier series,

m(x) =
∞∑
j=0

βjϕj(x), (3.5.25)

where {ϕj}∞j=0 is a known basis of functions and {βj}∞j=0 are the unknown Fourier coefficients.

Szegö (1959) gives conditions under which such a representation of m is possible. Well-known

examples for basis functions are the Laguerre and the Legendre polynomials. Once a basis

of functions is fixed, the problem of estimating m can be tackled by estimating the Fourier
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coefficients {βj}. There is, of course, the restriction that there may be infinitely many non-

zero βj in (3.5.25). So, given the finite sample size n, only a subset of the coefficients can be

effectively estimated.

For simplicity of presentation let us assume that the X-variable is confined to the interval

| − 1, 1| and that observations {Yi}ni=1 have been taken at equidistant points {Xi}ni=1 over

this interval. Suppose that the system of functions {ϕj} constitute an orthonormal basis on

| − 1, 1|,, that is,

∫ 1

−1

ϕj(x)ϕk(x)dx = δjk =

 0, ifj 6= k;

1, ifj = k.
(3.5.26)

Then the Fourier coefficient βj can be computed as

βj =
∞∑
k=0

βkδjk

=
∞∑
k=0

βk

∫ 1

−1

ϕk(x)ϕj(x)dx

=

∫ 1

−1

m(x)ϕj(x)dx.

The last integral in this line involves not only the known basis functions but also the unknown

function m(x). If it can be estimated in a reasonable way it automatically gives an estimate

of βj. Recall that the observations are taken at discrete points in | − 1, 1|. Let {Ai}ni=1 be a

set of disjoint intervals such that

n∑
i=1

Ai = | − 1, 1|

and

Xi ∈ Ai, i = 1, . . . , n.
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Now the formula for the Fourier coefficients from (3.5.27) can be written as

βj =
n∑
i=1

∫
Ai

m(x)ϕj(x)dx

≈
n∑
i=1

m(Xi)

∫
Ai

ϕj(x)dx, (3.5.27)

if the intervals Ai are concentrated around Xi. By plugging in the response variable Yi for

m(Xi) we obtain an estimate for βj of

β̂j =
n∑
i=1

Yi

∫
Ai

ϕj(x)dx. (3.5.28)

Since only a finite number of observations are available not all Fourier coefficents can be es-

timated at a time. If N(n) terms in the representation (3.5.25) are considered, the regression

function is approximated by

m̂N(x) =

N(n)∑
j=0

β̂jϕj(x). (3.5.29)

This estimator is called an orthogonal series estimator of m. It is a weighted average of the

Y -variables with weights

WNi(x) = n

N(n)∑
j=0

∫
Ai

ϕj(u)duϕj(x). (3.5.30)

The smoothing parameter here is N(n), the number of Fourier coefficents that enter (3.5.29).

In Figure 3.5 an effective weight function WNi(x) evaluated at

Xi = −1 + 2(i/n), n = 100, Ai = |Xi−1, Xi|, X0 = 1

is shown for estimation at the point x = 0. For this effective weight function the first six
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normalized Legendre polynomials are used

P0(x) = 1/
√

2,

P1(x) = x/
√

2/3,

P2(x) =
1

2
(3x2 − 1)/

√
2/5,

P3(x) =
1

2
(5x3 − 3x)/

√
2/7,

P4(x) =
1

8
(35x4 − 30x2 + 3)/

√
2/9,

P5(x) =
1

8
(63x5 − 70x3 + 15x)/

√
2/11.

The Legendre polynomials constitute an orthogonal system of functions on | − 1, 1|. They

can be quite easily computed by the following recurrence relation

(m+ 1)Pm+1(x) = (2m+ 1) x Pm(x)−mPm−1(x).

The statistical aspects of orthogonal series estimation have been investigated mainly in the

field of density estimation; see Cenzov (1962), Wahba (1975), Walter (1977). From the few

applications in the field of nonparametric regression, I report only two results, concerning

consistency and exact rate of convergence, and one application from an agricultural experi-

ment. The consistency of m̂N(x) follows from the next proposition.

Proposition 3.5.1 If for some 0 < s < 1

ns−1

N(n)∑
j=0

sup
x
|ϕj(x)|2 <∞ (3.5.31)

and

E |εi|
s+1
s <∞

it then as N(n)→∞

m̂N(x)
p→ m(x).
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A sketch of the proof is given in the Complements of this section. A detailed proof of

consistency of m̂N can be found in Rutkowski (1981). Szegö (1959) shows that

sup
x
|ϕj(x)| ∼ jρ, j = 1, 2, 3 . . . ,

with ρ = −1/4 for the Hermite and the Laguerre systems, and ρ = 0, 1/2 respectively for

the Fourier and Legendre systems. The assumption (3.5.31) takes then the form of a growth

condition on N(n)

N(n)2ρ+1/n1−s ≤ C <∞ as n→∞. (3.5.32)

The smoothing parameter N(n) has to tend to infinity to ensure consistency, but not too fast

as (3.5.32) suggests. Precise convergence rates of orthogonal series smoothers are given by

Härdle (1984) in the setting of stochastic X-variables. In that paper Legendre polynomials

and the weight sequence

WNi(x) = KN(x;Xi)/n
−1

n∑
j=1

KN(x;Xi)

have been used, where

KN(x;Xi) =

N(n)∑
j=0

ϕj(x)ϕj(Xi).

An orthogonal series estimate could also be applied in a local neighborhood around x by

rescaling the interval | − 1, 1|. This approach was pursued by Schmerling and Peil (1986).

An application of (local) orthogonal series estimates to real data was given by Schmerling

and Peil (1985). In Figure 3.8, the fits with N(n) = 0, 1, 2, respectively, are shown. One sees

that increasing the degree of approximation N(n) makes the smooth follow the data more

closely.
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The symmetrized NN estimator

0 1 2 3
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2
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Figure 3.6: The symmetrized nearest neighbor estimator together with the kernel estimator

for the potatoe versus income data set. From citeasnouncar:har:88 with permis-

sion of Elsevier Science Publishers. ANRsimnn.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimnn.html
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Figure 3.7: The effective weight function of the Legendre system. The weight function

WNi(x) from (3.5.30) for N(n)=5, n = 100, Ai = [Xi−1, Xi], X0 = 1 evaluated

at Xi=−1+2(i/n). The normalized Legendre polynomial system was chosen as the

system of basis functions {ϕj}∞j=0.
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Figure 3.8: The amount of sugar in sugar-beet as a function of temperature. Three orthogo-

nal series estimators (N=0,1,2) of the functional relationship between temperature

and the amount of sugar in sugar-beet. The dotted line is the (local) constant fit,

the fine dashed line involves a linear term and the dashed curve is a fit involving

three orthogonal polynomials. From Schmerling and Peil (1985) with permission

of Gegenbaurs Morphologisches Jahrbuch.
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Exercises

3.5.1 Establish that the Legendre polynomials are indeed orthonormal, that is, show that

∫ 1

−1

Pj(x)Pk(x)dx = δjk.

3.5.2 Show that if m is Lipschitz continuous then Eβj → β.

3.5.3 Compute the variance of m̂N and show that it tends to zero under the condition

(3.5.31).

3.5.4 How many terms N(n) should be used for m̂N in order to achieve a trade–off between

variance and bias2?

3.5.5 Investigate the approximation occurring in (3.5.27). How close is βj to

n∑
i=1

m(Xi)

∫
Ai

ϕj(x)dx?

[Hint : Use the mean value theorem and the fact that Xi −Xi−1 = O(n−1). ]

3.5.6 Consider {WNi(x)}, as given in (3.5.30), more closely. If we exchange summation with

integration we see that

WNi(x) = n

∫
Ai

N(n)∑
j=0

ϕj(u)ϕj(x)

 du.

This looks very much like the weight sequence W
(3)
hi (x). Can you make this more precise?

3.5.1 Complements

Sketch of proof of Proposition 3.5.1

The bias Em̂N(x)−m(x) tends to zero if m is Lipschitz continuous. This can be seen from
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the inequalities

|Em̂N(x)−m(x)|

≤

∣∣∣∣∣∣
N(n)∑
j=0

ϕj(x)
n∑
i=1

∫
Ai

(m(xi)−m(u))ϕj(u) du

∣∣∣∣∣∣
+

∣∣∣∣∣∣
N(n)∑
j=0

ϕj(x)
n∑
i=1

∫
Ai

ϕj(u) m(u)du−m(x)

∣∣∣∣∣∣
≤ Cn−1

N(n)∑
j=0

sup
x
|ϕj(x)|2 +

∣∣∣∣∣∣
∞∑

j=N(n)+1

βjϕj(x)

∣∣∣∣∣∣ .
The variance calculation is left to the reader. [Hint : Use the assumption (3.5.31), essentially

a condition on the growth rate of N(n)].

3.6 Spline smoothing

A common measure of “fidelity to the data” for a curve g is the residual sum of squares
n∑
i=1

(Yi − g(Xi))
2.

If g is allowed to be any curve – unrestricted in functional form – then this distance measure

can be reduced to zero by any g that interpolates the data. Such a curve would not be

acceptable on the grounds that it is not unique and that it is too wiggly for a structure-

oriented interpretation. The spline smoothing approach avoids this implausible interpolation

of the data by quantifying the competition between the aim to produce a good fit to the

data and the aim to produce a curve without too much rapid local variation.

There are several ways to quantify local variation. One could define measures of roughness

based, for instance, on the first, second, and so forth derivative. In order to explicate the

main ideas the integrated squared second derivative is most convenient, that is, the roughness

penalty ∫
(g′′(x))2 dx
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is used here to quantify local variation. Using this measure, define the weighted sum

Sλ(g) =
n∑
i=1

(Yi − g(Xi))
2 + λ

∫
(g′′(x))2 dx, (3.6.33)

where λ denotes a smoothing parameter. The smoothing parameter λ represents the rate of

exchange between residual error and roughness of the curve g. The problem of minimizing

Sλ(·) over the class of all twice differentiable functions on the interval |a, b| = |X(1), X(n)| has

a unique solution m̂λ(x) which is defined as the cubic spline; see Schoenberg (1964), Reinsch

(1967), Good and Gaskins (1971) and Boneva, Kendall and Stefanov (1970). The basic idea

dates back at least to Whittaker (1923) who called this smoothing process a graduation or

adjustment of the observations. The estimated curve m̂λ(·) has the following properties:

m̂λ(x) is a cubic polynomial between two successive X-values; at the observation points Xi,

the curve

m̂λ(·) and its first two derivatives are continuous but there may be a discontinuity in the

third derivative;

at the boundary points X(1) and X(n) the second derivative of m̂λ(x) is zero.

It should be noted that these properties follow from the particular choice of the roughness

penalty. It is possible to define, say, quintic splines by considering a roughness penalty that

involves higher-order derivatives.

An example of a spline smooth is given in Figure 3.9, a spline smooth of the so-called

motorcycle data set, see Table 1 in the Appendix 2 for a complete listing of this data set.

Recall that the spline is a cubic polynomial between the knot points. The “local cubic

polynomial” property is illustrated in Figure 3.10 where at three significant points the (local)

cubic polynomial fit is superimposed on the spline smooth, computed from the motorcycle

data set. The curve shown is computed at the points {Xi}ni=1 itself using the IMSL routine

ICSSCU. The motorcycle data set is listed in Table 1 in the Appendix 2.

A conceptual difficulty in spline smoothing is the fact that m̂λ is defined implicitly as the



72 3 Smoothing techniques

Spline Smooth
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Figure 3.9: A spline smooth of the Motorcycle data set. From Silverman (1985) with per-

mission of the Royal Statistical Society. ANRmotspline.xpl

solution to a functional minimization problem. This makes it hard to judge the behavior

of the estimate and to see what m̂λ is actually doing to the data values. The following

argument shows that m̂λ is, in fact, a weighted average of the Y -observations.

The minimum of Sλ(g) is unique, so we must have Sλ(m̂λ + αg) ≥ Sλ(m̂λ) for any g ∈ C2

and α ∈ R. This means that the real function T (α) = Sλ(m̂λ + αg) has a local minimum at

http://www.quantlet.org/mdstat/codes/anr/ANRmotspline.html
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α = 0. In particular, the Euler–Lagrange condition (Hadley and Kemp 1971, p. 30–31),

T ′(0) =
n∑
i=1

(Yi − m̂λ(Xi)) g(Xi) + λ

∫
m̂′′λ(x) g′′(x) dx = 0,

(for all twice differentiable g) must be satisfied. Consider now two splines m̂
(1)
λ , m̂

(2)
λ for the

data {(Xi, Y
(1)
i )}ni=1, ({(Xi, Y

(2)
i )}ni=1). Using the above Euler–Lagrange condition one sees

that m̂
(1+2)
λ = m̂

(1)
λ + m̂

(2)
λ is the spline for the data set {(Xi, Y

(1)
i + Y

(2)
i )}ni=1. If the data

vector {Yi}ni=1 is written as a linear combination of the n coordinate vectors it is easily seen

that there exist weights Wλi(x) such that

m̂λ(x) = n−1

n∑
i=1

Wλi(x)Yi. (3.6.34)

The spline is thus linear in the Y -observations. The weight function can be plotted by

applying the spline smoothing method to Y -values which are all zero, except one response

variable which is set equal to the sample size n. However, the functional form of {Wλi(x)}ni=1

is hard to write down explicitly and the dependence on the smoothing parameter λ and

the design points is extremely complicated. Recall that Wλi(·) is the spline for the data

(X1, 0), . . . , (Xi, n), . . . , (Xn, 0). More generally, define the spline at point t as Wλ(·, t).

Silverman (1984, theorem A) showed that the effective weight function Wλ(·, t) looks like a

kernel Ks, where the kernel function Ks is given by

Ks(u) = 1/2 exp(− |u| /
√

2) sin(|u| /
√

2 + π/4).

Theorem 3.6.1 (Silverman, 1984) Assume the fixed design model with a design density as

in Section 2.1. Apart from very technical conditions the smoothing parameter λ depends on

n in such a way that λn1−ε → ∞ for some ε > 0. Choose any fixed t such that a < t < b.

Then

λ1/4n−1/4f(t)−1/4Wλ(t+ λ1/4n−1/4f(t)−1/4x, t)→ Ks(x)/f(t)

as n→∞, uniformly over all x for which t+ λ1/4n−1/4f(t)−1/4x lies in |a, b|.



74 3 Smoothing techniques

The approximation of W·,λ(Xi) = Wλi(·) in the above Theorem says that for large n and

small λ and Xi not too close to the boundary,

Wλi(·) ≈ f(Xi)
−1h(Xi)

−1Ks

(
· −Xi

h(Xi)

)
(3.6.35)

and the local bandwidth h(Xi) satisfies

h(Xi) = λ1/4n−1/4f(Xi)
−1/4.

Indeed, setting t = Xi and using the variable substitution u = Xi + xh(Xi) in the Theorem

3.6.1 yields formula (3.6.35). A plot of the effective kernel function Ks is given in Figure

3.11.

One sees that Ks is a symmetric kernel function with negative side lobes and that Ks has

vanishing second moment, that is,
∫
u2 Ks(u) du = 0. A graphical comparison of the exact

weight function Wλi(x) and its asymptotic form Ks is given in Silverman (1984, figure 2, p.

902).

The kernel form of this weight function changes as x approaches the boundary of the ob-

servation interval. Engle et al. (1986) computed the effective spline weight function for the

temperature response example (see Figure 1.6). Figure 3.12 is a reproduction from their

article where they show the equivalent kernel function for an x roughly in the middle of the

observation interval.

As the observation point moves to the right the weight function becomes more asymmetric

as Figure 3.13 indicates.

The question of how much to smooth is of course also to be posed for spline smoothing.

A survey of the literature on the mean squared error properties of spline smoothing can

be found in Eubank (1988). The smoothing parameter selection problem for this class of

estimators has been mainly investigated by Grace Wahba. From her rich collection of results

I would like to mention those which are directly connected with the optimization of λ. In

Wahba (1975), Wahba (1979) convergence rates of splines are considered. The pioneering
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article on cross-validation in this context is Wahba (1975), which was extended later to the

smoothing of the log periodogram; (see Wahba, 1980). The term generalized cross-validation

(GCV) was coined by Wahba (1977). A minimax type approach to the question of rates of

convergence was done by Nussbaum (1985) who obtained exact bounds for the integrated

squared error under a normality assumption on the error variables.

Some statistical software packages that compute the spline coefficients of the local cubic

polynomials require a bound Λ on the residual sum of squares
n∑
i=1

(Yi − g(Xi))
2. These

programs solve the equivalent problem∫
|g′′(x)|2dx = min

under the constraint
n∑
i=1

(Yi − g(Xi))
2 ≤ Λ. The parameters λ and Λ have similar meanings.

A very small λ gives a very rough curve, as does a small Λ since the spline curve is allowed

to stay very close to the data. On the other hand, a large value of Λ allows g′′ to be nearly

zero and the same holds true for the parameter λ. A connection between the two parameters

can be derived as follows.

Proposition 3.6.1 Let G(Λ) =
∫

(m̂′′Λ(x))2dx, where m̂Λ(x) solves the above minimization

problem. Then the equivalent λ is given by

λ = −|G′(Λ)|−1.

This correspondence is derived explicitly for the example given in Section 3.11. The same

methods can be used to derive an equivalent Λ for a given smoothing parameter λ.

The effective weights of spline smoothing can be more easily computed for equispaced uniform

Xi = i/n. In this situation the k-NN estimator m̂k and the kernel estimator m̂h coincide for

k roughly equal to 2nh. Huber (1979) showed under a periodicity assumption on m that the

spline smoother is exactly equivalent to a weighted kernel-type average of the Y -observations.
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He considers the following function of Z = (Z1, ...., Zn)

S̃δ(Z) =
n∑
i=1

{(Yi − Zi)2 + δ (n2∆2Zi)
2},

where ∆2Zi = Zi+1 − 2Zi + Zi−1 denotes the second difference quotient. Note that S̃δ is

different from Sλ in two respects. First, the roughness penalty is defined by a sum of second

difference quotients rather than an integral of second derivatives. Second, δ corresponds to

n3δ since n−1
∑n

i=1(n2∆2Zi)
2 is analogous to

∫ 1

0
|g′′(x)|2dx. Huber showed that the mini-

mization of S̃δ(Z) for circular data {Yi} yields the weighted average

Zi =
∑
j

W̃δj Yi−j,

where the weights W̃δj have the asymptotic form

W̃δj =
1

π

π∫
0

cos(ωj)

1 + δ(2 sinω/2)4
dω. (3.6.36)

This asymptotics holds for fixed j and δ as n→∞. It is interesting to compare this form of

the weights with the approximation given by Silverman (1984). Figure 3.14 gives the form

of the weights W̃δj for different values of δ. The weights W̃δj are more concentrated around

zero if δ is small.

The curves in Figure 3.14 look indeed very similar to the one in Figure 3.10

Exercises

3.6.1 Use the spline smoothing algorithm to plot the exact weight function {Wλi(x)}. Com-

pare with the approximate function given by Ks. How does the approximation change when

x moves to the boundary?

3.6.2 Show that the kernel KS is a kernel in the sense of Section 3.1 and prove that∫
ujKs(u)du = 0, 1 ≤ j ≤ 3,∫
u4Ks(u)du = −1.
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3.7 Complements

Proof of Proposition 3.6.1

The proof follows from a slight generalization of Pourciau (1980, Section 1), (John multiplier

rule). There exist nonzero µ1, µ2 such that the pair (Λ, m̂Λ) minimizes

µ1

[∫
(g′′(x))2dx−G(Λ)

]
+ µ2

[
n∑
i=1

(Yi − g(Xi))
2 − Λ

]
.

A consequence of this is that

0 =
∂

∂Λ
G(Λ) = −µ1G

′(Λ)− µ2

or

G′(Λ) = −µ2/µ1.

Therefore the spline curve with parameter λ can be derived by setting λ = µ1/µ2 =

−(G′(Λ))−1.

Proof of equivalence of the Silverman and Huber approximation

This can be quantified by yet another approximation to the integral (3.6.36). For fixed u

and δ → ∞, put j = uδ1/4. After a change of variables ω = t/δ1/4 and a first-order Taylor

approximation 2 sin(ω/2) ∼ ω we obtain

δ1/4 W̃δ,uδ1/4 →
1

2π

∫ ∞
−∞

eiut

1 + t4
dt.

To evaluate the integral, consider f(z) = eiuz/(1 + z4). The denominator has zeros at

ηk = ei
2k−1

4
π, k = 1, . . . , 4. Integrating over a semi circle in the complex plane using the

residue theorem yields

1

2π

∮
f(z)dz = i{res|f(z); η1|+ res|f(z); η2|}

=
1

2
e−u/

√
2 cos(u/

√
2− π/4)
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which is the effective weight function Ks as given by Silverman (1984). To establish the

connection to the approximation in Theorem 3.6.33, remember that δ corresponds to λn3

and W̃δj corresponds to n−1Wλ(i−j)(Xi).

3.8 An overview of various smoothers

Not all smoothing techniques have received equal attention. The kernel, k−NN , orthogonal

series and spline estimators which have been presented up to this point are widely known

and there is a well–developed mathematical theory for them. There are two reasons for this.

First, these estimators are simple in structure and therefore easy to compute and easy to

analyze mathematically. Second, these estimators have a wide field of applicability and are

not designed for estimating special features.

The smoothing techniques to be presented in this section have not received as much theo-

retical treatment but are of interest in their own right, since they exemplify how the non-

parametric smoothing method might be adapted to specific contexts. The list of smoothers

presented here is far from being complete, the interested reader should consult the review

article by Collomb (1981) for more references.

3.9 Recursive techniques

Suppose that the data {(Xi, Yi)}i≥1 are not observed as a sample of fixed size n but rather as

an ongoing sequence (X1, Y1), (X2, Y2), . . . from some observational mechanism. Such mech-

anisms occur in surveillance problems, control operations or intervention problems. More

generally, one can think of a time series of data. Since nonparametric smoothers are typically

defined from the whole sample, for every newly arriving data point the estimator has to be

recomputed. It could therefore be of computational advantage if the regression estimator

based on (n+ 1) points could be evaluated from the (n+ 1)-th observation (Xn+1, Yn+1) and
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from the estimator based on the first n points without recalling the previous data points

from a computer memory. In this spirit Revesz (1976), Revesz (1977) proposed estimating

m(x) recursively by

m̂n+1(x) = m̂n(x) + n−1Khn+1 (x−Xn+1)(Yn+1 − m̂n(x)), (3.9.37)

where m̂0 ≡ 0 and Kh is a kernel sequence. He showed convergence of this sequentially

defined estimator in different norms and derived the asymptotic normal distribution.

This technique can also be applied to a very general form of time-varying systems which can

be modeled by the regression relationship

Yi = mi(Xi) + εi

with a slowly varying mean function mi(x). Rutkowski (1985a),Rutkowski (1985b) con-

sidered an algorithm very similar to (3.1.5) which asymptotically identified the regression

functions. Greblicki, Rutkowska and Rutkowski (1983) defined an orthogonal series estimate

in this time-varying regression setting and derived the rate of convergence of their estimator.

The simpler setting of non-time-varying functions was considered by Rutkowski (1981) by

construction of orthogonal series estimates of sequential type.

Ahmad and Lin (1976) studied sequential estimates of the numerator and the denominator

of the Nadaraya–Watson estimator

m̂h(x) =
Nn(x)

Dn(x)
,

with

Nn+1(x) = Nn(x) + Yn+1Khn+1(x−Xn+1),

Dn+1(x) = Dn(x) +Khn+1(x−Xn+1).

Stochastic approximation methods for estimating a zero or an extremum of m(x) in this

setting were proposed by Härdle and Nixdorf (1986). Tsybakov (1988) embedded this re-
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cursive scheme into the framework of passive stochastic approximation (PSA). Consider, for

instance, the estimation of a zero of m. The sequential scheme

Zn+1 = Zn − anKhn(Zn −Xn)Yn, (3.9.38)

(Z1 arbitrary, {an} a sequence tending to zero) will converge under some conditions to that

zero. More details about these techniques are contained in Chapter 8.

3.10 The regressogram

This name was coined by Tukey (1961) to accentuate the relationship of this smoother to

the histogram. The regressogram is an average of those response variables of which the

corresponding Xs fall into disjoint bins spanning the X-observation space (Tukey, 1947). It

can be thought of as approximating m(x) by a step function and is in fact a kernel estimate

(with uniform kernel) evaluated at the midpoints of the bins. Convergence in mean squared

error has been shown by Collomb (1977) and Lecoutre (1983, 1984). Figure 3.15 shows the

motorcycle data set together with a regressogram of bin size 4.

Although the regressogram is a special kernel estimate it is by definition always a discon-

tinuous step function which might obstruct the perception of features that are “below the

bin-size.” Recall Figures 1.2 and 2.5 Both show the average expenditures for potatoes. The

regressogram (Figure 2.5) captures the general unimodal structure but cannot resolve a slight

second mode at x ≈ 2, the double income level. This slight mode was modeled by the kernel

smoother in Figure 1.2

A k − NN analogue of the regressogram has also been proposed. Instead of averaging the

response variables in bins of fixed width, the statistically equivalent block regressogram is

constructed by averaging always over k neighbors. The result is again a step function but

now with different lengths of the windows over which averaging is performed. Bosq and
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Lecoutre (1987) consider consistency and rates of convergence of this estimator.

3.10.1 Convolution smoothing

The idea of convolution smoothing was proposed by Clark (1977) and has strong relations

to kernel smoothing (see Section 3.1). The CS-estimator (CS for convolution-smoothing) is

defined as

m̂CS(x) =

∫
Gn(t) Kh(x− t) dt,

where Gn(t) is the linear interpolant of the data {(Xi, Yi)}ni=1 and Kh is a kernel sequence

as in Section 3.1. Clark (1980) studied prediction and calibration of carbon–14 curves and

presented Monte Carlo simulations in which the smoothing parameter h had been selected

by cross-validation, a method to be analyzed in detail in Section 5.1. It is easy to see that

the CS-estimator has also the form of a weighted average:

m̂CS(x) = n−1

n∑
i=1

W
(CS)
ni (x) Yi, (3.5.4)

where

W
(CS)
ni (x) =

∫
vi(t) Kh(x− t) dt

and vi(t) is the linear interpolant of the points {(Xj, δij)}nj=1, δij being the Kronecker delta.

3.10.2 Delta function sequence estimators

A delta function sequence (DFS) is a sequence of smooth weighting functions {δn(x)}, ap-

proximating the Dirac δ–function for large n. These DFSs were used by Johnston (1979) in

forming the following type of regression estimator,

m̂δ(x) = n−1

n∑
i=1

δn(x−Xi) Yi/n
−1

n∑
i=1

δn(x−Xi). (3.10.39)
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This estimator, in fact, generalizes the Nadaraya–Watson kernel estimator with the DFS

Kh(u). Watson and Leadbetter (1963, 1964) formulated the conditions

(a) sup
n

∫
|δn(u)| du <∞, (3.10.40)

(b)

∫
δn(u) du = 1,

(c) sup
|u|≥α
|δn(u)| → 0 for all α > 0

(d)

∫
|u|≥α

δn(u) du→ 0 for all α > 0. (3.10.41)

Under these general conditions on {δn} and continuity assumptions on m and f it can be

shown that

m̂δ(x)
p→ m(x).

Further restrictions on the speed of convergence of the DFSs permit formulation of a central

limit theorem for m̂δ (Johnston 1979). There is a richer literature on DFS estimation of

densities (see e.g. Walter and Blum 1979).

3.10.3 Median smoothing

Suppose that the aim of approximation is the conditional median curve med(Y |X = x) rather

than the conditional mean curve. A sequence of “local medians” of the response variables

defines the median smoother . This estimator and related robust smoothers are considered

more theoretically in Chapter 6, but it makes sense to already present it here since median

smoothing played a dominant role in the historical evolution of smoothing techniques. More

formally, it is defined as

m̂(x) = med{Yi : i ∈ Jx},

where

Jx = {i: Xi is one of the k-nearest neighbors of x}.
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It has obvious similarities to the k-NN estimate (3.4.18) but differs in at least two aspects:

Median smoothing is highly resistant to outliers and it is able to model unexpected disconti-

nuities in the regression curve med(Y |X = x). A comparison of both smoothing techniques

is given in Figure 3.16, which shows the motorcycle data set (Table 1 in Appendix 2) with

a median smooth and a k-NN smooth.

Note that the robustness aspect of median smoothing becomes visible here. The median

smooth is not influenced by a group of possible outliers near x ≈ 35 and it is a little bit

closer to the main body of the data in the two “peak regions” (x = 20, 32). A slight

disadvantage is that by its nature, the median smooth is a rough function.

Median smoothing seems to require more computing time than the k-NN estimate (due

to sorting operations). The simplest algorithm for running medians would sort in each

window. This would result in O(nk log(k)) operations using a fast sorting routine. Using

the fast median algorithm by Bent and John (1985) this complexity could be reduced to

O(nk) operations. Härdle and Steiger (1988) have shown that by maintaining a double heap

structure as the window moves over the span of the X-variables, this complexity can be

reduced to O(n log(k)) operations. Thus running medians are only by a factor of log(k)

slower than k-NN smoothers.

3.10.4 Split linear fits

A useful assumption for the mathematical analysis of the nonparametric smoothing method

is the continuity of the underlying regression curve m. In some situations a curve with steps,

abruptly changing derivatives or even cusps might be more appropriate than a smooth regres-

sion function. McDonald and Owen (1986) give several examples: These include Sweazy’s

kinked demand curve (Lipsey, Sparks and Steiner 1976) in microeconomics and daily read-

ings of the sea surface temperature. Figure 3.17 shows a sawtooth function together with a

kernel estimator.
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The kernel estimation curve is qualitatively smooth but by construction must blur the dis-

continuity. McDonald and Owen (1986) point out that smoothing by running medians has

no trouble finding the discontinuity, but appears to be very rough. They proposed, there-

fore, the split linear smoother . Suppose that the X-data are ordered, that is, Xj ≤ Xj+1.

The split linear smoother begins by obtaining at x a family of linear fits corresponding to

a family of windows. These windows are an ensemble of neighborhoods of x with different

spans centered at x or having x as their left boundary or right boundary. The split linear

smoother at point x is then obtained as a weighted average of the linear fits there. These

weights depend on a measure of quality of the corresponding linear fits. In Figure 3.18 the

sawtooth data are presented together with the split linear fit. This smoother found the dis-

continuous sawtooth curve and is smooth elsewhere. Theoretical aspects (confidence bands,

convergence to m) are described in Marhoul and Owen (1984).

3.10.5 Empirical regression

Schmerling and Peil (1985) proposed to estimate the unknown joint density f(x, y) of (X,Y )

and then to estimate m(x) by the standard formula. In particular, they proposed to use the

mixture

f̂(x, y) = n−1

n∑
i=1

fXY (x, y;Xi, Yi),

where fXY (x, y;Xi, Yi) are known densities. The evaluation of the conditional expectation

on the basis of this estimate results in a curve which they call the empirical regression curve.

There are many possibilities for a choice of fXY . From

fXY (x, y;Xi, Yi) = Kh(x−Xi)Kh(y − Yi)

for instance, follows

m̂h(x) =
n−1

∑n
i=1 Kh(x−Xi)Yi

n−1
∑n

i=1 Kh(x−Xi)
.
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This is the Nadaraya–Watson estimator. It is also possible to take a special two-dimensional

Gaussian density

fXY (x, y;Xi, Yi) =
1

2πσ2(det(S))1/2
exp(− Qi(x, y)

2σ2 det(S)
),

with S a matrix with components

Sxx = n−1

n∑
i=1

(Xi − X̄)2,

Syy = n−1

n∑
i=1

(Yi − Ȳ )2,

Sxy = Syx = n−1

n∑
i=1

(Yi − Ȳ )(Xi − X̄),

and the quadratic form

Qi(x, y) = n−1(Syy(Xi − X̄)2 − 2Sxy(Yi − Ȳ )(Xi − X̄) + Syy(Yi − Ȳ )2).

Then the empirical regression curve for a Gaussian kernel is given by

m̂h(x) =

∑n
i=1(Yi + Sxy

Sxx
(x−Xi) exp(−n(Xi−X̄)2

2σ2Sxx
)∑n

i=1 exp(−n(Xi−X̄)2

2σ2Sxx
)

. (3.10.42)

Figure 3.19 gives an impression of how this empirical regression curve works with real data.

For more details I refer to Schmerling and Peil (1985).

Exercises

3.10.1 Vary the “origin” of the regressogram, that is, define the bins over which to average

the response variable as

((j − 1 + l/m)h, (j + l/m)h), l = 0, . . . ,m− 1, j = . . .− 2,−1, 0, 1, 2 . . . .

Study qualitatively the behavior of the regressogram as you compare different regressograms

over `.

3.10.2 Average the m regressograms as defined in Exercise 3.10.5 Do you see any connection
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with the kernel technique? [Hint : In Section 3.1 we called this Weighted Averaging over

Rounded Points the WARPing technique.]

3.10.3 Find a correspondence between the conditions (3.10.40) and the assumptions needed

for the kernel consistency Proposition 3.1.1

3.10.6 Complements

Schmerling and Peil also considered more general polynomial fits than there introduced in

Section 3.1. These local polynomial fits can be obtained by approximating polynomials of

higher order or by using other kernels than the uniform kernel in (3.1.13); see also Katkovnik

(1979, 1983, 1985) and Lejeune (1985).

Suppose that m(x) is to be approximated by a polynomial

p∑
j=0

αj(x)ϕj(u− x), p+ 1 < n,

where ϕj(·) are polynomials of order j and αj(x) are some weighting coefficients. If the

weight sequence Whi(x) = Kh(x−Xi) with a positive symmetric kernel K is used, the least

squares problem
n∑
i=1

Whi(x)

[
Yi −

p∑
j=0

αj(x)ϕj(Xi − x)

]2

!
= min

gives coefficients {α̂j(x)}pj=0. A necessary and sufficient condition is

2
n∑
i=1

Whi(x)

[
Yi −

p∑
j=0

αj(x)ϕj(Xi − x)

]
ϕk(Xi − x) = 0, h = 1, . . . , n.

This linear system of equations can be solved easily if the ϕjs are orthogonal polynomials,

that is, for some constant Cx
n∑
i=1

Whi(x)ϕj(Xi − x)ϕk(Xi − x) = CxI(j = k).

Hence the least squares coefficients {α̂j(x)} can be written as

α̂j(x) =

∑n
i=1[Whi(x)ϕj(Xi − x)]Yi∑n
i=1 Whi(x)ϕ2

j(Xi − x)
, j = 0, . . . , p,
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and the local polynomial fit can be written as

m̂h(x) = n−1

n∑
i=1

W ∗
hi(x)Yi

with effective weight sequence

W ∗
hi(x) =

p∑
j=0

[
Whi(x)ϕj(Xi − x)

n−1
∑n

k=1 Whk(x)ϕ2
j(Xk − x)

]
ϕj(0).

So here again the local polynomial fitting leads to a weight sequence {W ∗
hi(x)}, but this

weight sequence is slightly more complicated than that for the ordinary kernel estimator.

3.11 A comparison of kernel, k-NN and spline smoothers

The purpose of this section is to present a comparative study of the three most commonly

used and easy-to-implement smoothers: the kernel, the k-nearest neighbor and the cubic

spline smoothers. The comparison is performed theoretically and empirically. The practical

comparison is based on a simulated data set, which is presented in Table 2 in Appendix 2.

The theoretical comparison is presented for the two design models – fixed equidistant and

random design. Kernel estimators m̂h with weight functions {W (3)
hi } and {Whi} (see Section

3.1) and the k-NN smoother m̂R are compared. Although the spline estimator also makes

sense for stochastic predictor variables its statistical properties have been studied mostly for

the fixed design case. We have found in Section 3.6 that the fixed design spline almost acts

like a kernel smoother with design dependent bandwidth. Recall the kernel-spline equiva-

lence theorem, Theorem 3.6.1 It says that the spline estimator m̂λ for regularly distributed

Xi = F−1((i − 1/2)/n) behaves like a Priestley–Chao kernel smoother with effective local

bandwidth

h(x) = λ1/4f(x)1/4.

The effective local bandwidth is thus a power of the density of the X variables, fα(x).
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From Table 3.1 we saw that the k-NN estimator m̂R has mean squared error properties

comparable to the kernel estimator if the bandwidth R(x) ∼ f(x)−1. It therefore makes

sense to consider kernel smoothers with bandwidths proportional to f(x)−α, α ∈ [0, 1].

Bias and variance behaviors of kernel smoothers with weigths {W (3)
hi } and bandwidth h ∼ fα

have been studied by Jennen-Steinmetz and Gasser (1988). The bias and variance of the

above three estimators for the fixed equidistant design (d = 1, Xi = i/n, α = 0) are listed

in Table 3.2. For the correct interpretation of this table recall the definition of cK , dK as

given in Section 3.1. Table 3.2 shows clearly that the two kernel sequences {W (3)
hi } and

{Whi} have the same mean squared error properties for the fixed equidistant design case.

As noted before the k-NN weight sequence can be seen as a kernel sequence if we make the

identification h = k
2n

.

Table 3.2: Pointwise bias and variance of k-NN and kernel smoothers for the fixed design

case

bias variance

kernel weights {Whi} h2m
′′(x)
2
dK

σ2(x)
nh

cK

kernel weights {W (3)
hi } h2m

′′(x)
2
dK

σ2(x)
nh

cK

k-NN weights ( k
n
)2m

′′(x)
8
dK

2σ2(x)
k

cK

Source: Jennen-Steinmetz and Gasser (1988, table 1).

The bias and variance for the random design case is drastically different, as Table 3.3 shows.

Pointwise bias and variance are complicated functionals not only of the regression curve m

but also of the marginal density f .

Note that essentially all three estimators coincide for the fixed design case when chosing

k = 2nh as indicated already in Section 3.4. This is not true for the random design. For

α = 0 the variance of the kernel with weights {W (3)
hi } is twice as big as for the Nadaraya–

Watson estimator. By constrast, the bias of the Nadaraya–Watson smoother is a complicated

expression of m and f . The same is true when comparing the bias of the k-NN smoother
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Table 3.3:

Pointwise bias and variance of k-NN and kernel smoothers for the random design case

bias variance

kernel weights {Whi} h2 (m′′f+2m′f ′)(x)
2f(x)

dK
σ2(x)
nhf(x)

cK

kernel weights {W (3)
hi } h2 m′′(x)

2f(x)2αdK
2σ2(x)

nhf(x)1−α cK

k-NN weights ( k
n
)2 (m′′f+2m′f ′)(x)

8f3(x)
dK

2σ2(x)
k

cK

Source: Jennen-Steinmetz and Gasser (1988, table 1).

for α = 1.

The empirical study is based on the simulated data from Figure 3.20. It shows n = 100 data

points simulated from the regression curve

m(x) = 1− x+ e−200 (x−1/2)2

.

The X-variate is uniformly stochastically distributed over the unit interval and the observa-

tion errors εi have standard normal distributions. (Pseudo-random number generators based

on Marsaglia’s shuffling method for uniforms and the polar-Marsaglia method for normals

were used for this plot; see Morgan 1984.)

A list of the values {(Xi, Yi)}ni=1 is given in Table 2 in Appendix 2. After looking at Figure

3.20 one might say that this example is somewhat extreme since most of “the signal seems

to be buried in the noise.” By contrast, I consider it as realistic since it shows what can

happen in practice. The sunflower plot of the food versus net income example in Chapter 2

gave an impression of such a “realistic data set.” Note that the pattern of observation errors

in the region around x ≈ 0.25 seems to be skewed toward positive errors. Any smoother

must therefore have a tendency to lie slightly above the true regression curve in this region.

This can be seen immediately from the plot of the kernel smoother (Figure 3.21).

The kernel weights

Whi(x) = Kh(x−Xi)/f̂h(x)
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of the Nadaraya–Watson estimator have been used here with a Gaussian kernel K(u) =

(2π)−1/2 exp(−u2/2) and bandwidth h = 0.05. Note that this bandwidth does not mean

that the observations are averaged in an interval of length 0.1. Rather, the kernel weights

based on the above K extend over the whole interval but downweight observations that are

away from the center of the kernel. In this example, f̂h ≈ 1 since the X-distribution is

uniform. Observations near x will receive weight 2.65 whereas an observation which is 2h

away will be given weights 0.35.

Special attention must be paid to the boundary points 0 and 1 of the observation interval.

Estimation points x that are close to the boundary have only a one-sided neighborhood over

which to average the Y -values. The kernel smoother must therefore be less accurate at the

boundary (see Section 4.4 for a mathematical formulation of this problem). This inaccuracy

can be seen from Figure 3.21 near the left boundary: most of the observations there lie below

the true regression curve, the asymmetric average therefore considerably underestimates the

true m(x) near x ≈ 0.

The bandwidth h = 0.05 was chosen completely subjectively. I asked several colleagues

and they felt that a higher amount of smoothing would “wash out” too much structure

and a smaller bandwidth would give too rough a curve. Had another kernel been used,

for instance a kernel with compact support, the picture would have been different for this

specific bandwidth of h = 0.05. The reason is that different kernels are in general differently

scaled. A way of adjusting the bandwidths and kernels to the same scale is discussed in

Section 5.4.

The k-NN estimate produced a slightly rougher curve. In Figure 3.22 the graph of the k-NN

smoother, as defined in (3.4.19), is displayed for k = 11. The reason for the “wiggliness” is

the so-called uniform weight sequence that is used in (3.4.19). Theoretically speaking, the

k-NN smooth is a discontinuous function.

In practice, this means that as the window of weights moves over the observation interval,

new observations enter at the boundary of the “uniform window” according to the nearest
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neighbor rule. Any entering observation that has a value different from the current average

will cause an abrupt change of the k-NN smoother. Such an effect would be diminished if

a smoother k-NN weight sequence, like the one defined in (3.4.19), were used.

Here also boundary effects need special discussion. As the estimation point x moves to the

boundary, the interval of observations entering the determination of the smoother becomes

asymmetric. This was also the case for the kernel smoothers. Note, however, that, in contrast

to kernel smoothing, the asymmetric region left or right of x always has the same number of

points. The averaging procedure near the boundary thus involves a lot more points which, in

general, have different mean values. This is not so drastic in our example since the regression

curve is relatively flat at the boundaries. In cases where the regression function is steeper at

the boundary the k-NN smoother is expected to be more biased than the kernel smoother.

The smoothing parameter k was also chosen subjectively here. A bigger k seemed to me

to yield too smooth a curve compared to the raw observations. A smaller k produced too

rough a curve, and amplified local spiky structures such as the one at X ≈ 0.85.

The spline smoother m̂λ(x) is shown in Figure 3.23. The algorithm of Reinsch (1967) was

used to generate the smooth m̂λ. The smoothing parameter was chosen to be Λ = 75; that

is, m̂Λ is the solution to the minimization problem∫
[g′′(x)]2dx = min!

under the constraint
n∑
i=1

(Yi − g(Xi))
2 ≤ Λ.

The relation of Λ to the smoothing parameter λ was presented in Section 3.6.

In Table 3.4 the relation between Λ and G(Λ) =
∫

(m̂′′Λ(x))2dx is shown. As Λ increases the

spline curve becomes flatter and flatter. In the limit it is equivalent to fitting a least squares

line.

Table 3.5 presents the equivalent parameter Λ for various values of λ. The λ equivalent to

Λ = 75 is therefore λ = 0.6× 10−5.
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Table 3.4: The function G(Λ) =
∫

(m̂′′Λ(x))2dx as a function of Λ.

Λ G(Λ) =
∫

(m̂′′Λ(x))2dx

45 0.18× 109

50 0.72× 108

55 0.29× 108

60 0.11× 108

65 0.36× 107

70 0.10× 107

75 0.21× 106

80 0.24× 105

85 0.35× 104

90 0.38× 103

95 0.23× 102

100 0.23× 101

105 0.68× 10−26

By construction, the spline fit looks very smooth since it is a function that is glued together

from pieces of cubic polynomials. The overall shape of the spline function is the same that

as for the kernel and k-NN smooth. The peak in the middle of the observation interval

is relatively well approximated (Figure 3.24), but to the left of it all smoothers exhibit a

somewhat smaller bump that is really only a random function of the data pattern.

Note that the spline smoother may produce a partially negative smooth even when all the

response variables are positive. This can be understood from the asymptotic kernel repre-

sentation (3.6.35) of m̂λ. Since the kernel Ks has negative side lobes (Figure 3.10) it may

happen that for a sparse data pattern the resulting spline smooth is negative although one

averages over purely positive observations.

A comparison of the behavior of all three smoothers can be obtained from Figure 3.24,
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Table 3.5: The parmater λ as a function of Λ.

Λ −1/G′(Λ)

50 0.47× 10−7

55 0.12× 10−6

60 0.28× 10−6

65 0.70× 10−6

70 0.20× 10−5

75 0.61× 10−5

80 0.27× 10−4

85 0.24× 10−3

90 0.16× 10−2

95 0.14× 10−1

100 0.24

105 0.22× 101

the residual curves (“fit” minus “true”) for the three approximation methods. All three

smoothers have the artificial bump at x ≈ 0.2, introduced by the data pattern, but show

essentially the same behavior in the residual curves.

Exercises

3.11.1 Try the kernel, k-NN and spline smoothing on the simulated data set with different

smoothing parameters. Describe how you found a “good” smoothing parameter.

3.11.2 Quantify the behavior of the above smoothers at the boundary of the observation

interval. Supppose |m′(x)| is relatively large at the boundary. What do you expect from a

local averaging method in this situation?
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3.11.1 Complements

In the simulated data set from Table 2 no repeated observations (in the X–variable) have

been observed. For the case of repeated observations the spline smoothing algorithm of

Reinsch (1967) needs some preparatory steps. If one observes multiple responses for a fixed

X = x one pools the corresponding Y -values into one observation by averaging them. Sup-

pose that there are Ni ≥ 1 observations at each Xi. Then the spline algorithm solves the

weighted minimization problem

n∑
i=1

(Yi − g(Xi))
2/Ni + λ

∫
[g′′(x)]2dx.
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Spline Smooth with cubic pol. fit
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Figure 3.10: Spline smooth with cubic polynomial fit. The motorcycle data (Table 1 in

the Appendix 2) with a spline smooth (λ=2) and three (local) cubic polyno-

mial approximations. The raw data {(Xi,Yi)}ni=1, n=150, are shown as squares.

The smooth as a solid line, local fits at x=21,40,55. Units are g (earth-

acceleration) for Y and ms (milliseconds after impact in a simulated experiment)

for X. ANRmotcubic.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRmotcubic.html
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The effective spline kernel
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Figure 3.11: Silverman’s approximation to the effective spline kernel. The asymptotic spline

kernel function, Ks=1/2 exp(−|u|/
√

2) sin(|u|/
√

2+π/4). ANRsplinekernel.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsplinekernel.html
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Figure 3.12: Equivalent kernel function for the temperature range 40◦ to 45◦ Fahrenheit.

From Engle et al. (1986, figure 6) with permission of the American Statistical

Association.
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Figure 3.13: Equivalent kernel function for the temperature range 60◦ to 65◦ Fahrenheit.

From Engle et al. (1986, figure 7) with permission of the American Statistical

Association.
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Figure 3.14: Huber’s approximation to the effective spline weight function,

W̃δj=π
−1
∫ π
0

cos(ωj)

1+δ(2 sinω/2)4
dω. Shown are the weights W̃δj for δ=0.5,8,40.5,128,312.5.
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Regressogram Smooth
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Figure 3.15: A regressogram smooth of the motorcycle data. The raw data are indi-

cated by squares, the regressogram (solid line) has bin-size 4 and bin-edge

0. ANRmotregress.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRmotregress.html
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Runn. median & k-NN smooth
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Figure 3.16: Running median and a k-NN smooth. The squares indicate the raw data (mo-

torcycle data set, Table 3.1), the curve with label 1 is the running median, the

curve with label 2 denotes the k-NN smooth, k=15. ANRmotcompare.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRmotcompare.html
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A kernel smooth & a sawtooth function

Figure 3.17: A kernel smooth applied to a sawtooth function. From McDonald

and Owen (1986) with permission of the American Statistical Association.

ANRsawtooth.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsawtooth.html


3.11 A comparison of kernel, k-NN and spline smoothers 103

Figure 3.18: The split linear fit applied to a sawtooth function. From McDonald and Owen

(1986) with permission of the American Statistical Association.
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Figure 3.19: Empirical regression for the thickness of the myelin sheath as a function of the

axon diameter. From Schmerling and Peil (1985) with permission of Gegenbaurs

morphologisches Jahrbuch.
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A simulated data set
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Figure 3.20: A simulated data set. The raw data {(Xi,Yi)}ni=1, n=100 were constructed from

Yi=m(Xi)+εi,εi∼N(0,1),Xi∼U(0,1) and m(x)=1−x+e−200 (x−1/2)2 . ANRsimul.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimul.html
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A kernel smooth of the simulated data set
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Figure 3.21: A kernel smooth of the simulated data set. The solid line (label 1) denotes

the underlying regression curve m(x)=1−x+e−200 (x−1/2)2 . The dashed line (label 2)

is the kernel smooth m̂h(x), h=0.05, Gaussian kernel K(u)=exp(−u2/2)/(
√

2π) from the

simulated data given in Table 2 in the Appendix. ANRsimkernel.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimkernel.html
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A k-NN smooth of the simulated data set
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Figure 3.22: A k-NN smooth of the simulated data set (Table 3.2). The solid line (label 1)

denotes the underlying regression curve m(x)=1−x+e−200 (x−1/2)2 . The dashed line

(label 2) is the k-NN smooth m̂k(x),k=11. Gaussian kernel K(u)=exp(−u2/2)/(
√

2π) from

the simulated data given in Table 2 in Appendix 2. ANRsimknn.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimknn.html
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A k-NN smooth of the simulated data set
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Figure 3.23: A spline smooth of the simulated data set (Table 3.2). The solid line (label

1) denotes the underlying regression curve m(x)=1−x+e−200 (x−1/2)2 . The dashed

line (label 2) is the spline smooth m̂Λ(x), Λ=75, computed with the IMSL routine

ICSSCU. ANRsimspline.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimspline.html
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A residual plot for the simulated data set
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Figure 3.24: Residual plot of k-NN, kernel and spline smoother for the simulated data set

(Table 3.2). The fine dashed line (label 1) denotes the k-NN residual, m̂k(x)−

m(x),k=11. The dashed line (label 2) is the spline residual with m̂Λ(x)−m(x),Λ=75.

The solid line (label 3) is the kernel residual m̂h(x)−m(x) with Gaussian kernel

and bandwidth h=0.15. ANRsimresidual.xpl

http://www.quantlet.org/mdstat/codes/anr/ANRsimresidual.html
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Part II

The kernel method





4 How close is the smooth to the true

curve?

It was, of course, fully recognized that the estimate might differ from the parameter

in any particular case, and hence that there was a margin of uncertainty. The extent of this

uncertainty was expressed in terms of the sampling variance of the estimator.

Sir M. Kendall and A. Stuart (1979, p. 109)

If the smoothing parameter is chosen as a suitable function of the sample size n, all of

the above smoothers converge to the true curve if the number of observations increases.

Of course, the convergence of an estimator is not enough, as Kendall and Stuart in the

above citation say. One is always interested in the extent of the uncertainty or at what

speed the convergence actually happens. Kendall and Stuart (1979) aptly describe the

procedure of assessing measures of accuracy for classical parametric statistics: The extent of

the uncertainty is expressed in terms of the sampling variance of the estimator which usually

tends to zero at the speed of the square root of the sample size n.

In contrast to this is the nonparametric smoothing situation: The variance alone does not

fully quantify the convergence of curve estimators. There is also a bias present which is a

typical situation in the context of smoothing techniques. This is the deeper reason why up
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to this Section the precision has been measured in terms of pointwise mean squared error

(MSE), the sum of variance and squared bias. The variance alone doesn’t tell us the whole

story if the estimator is biased.

We have seen, for instance, in Section 3.4 , that the pointwise MSE

E[m̂(x)−m(x)]2,

tends to zero for the k-NN smoother m̂k, if k →∞ and k/n → 0. There are some natural

questions concerning this convergence. How fast does the MSE tend to zero? Why should

the measure of accuracy only be computed at one single point? Why not investigate a more

“global” measure like the mean integrated squared error (MISE)? It is the purpose of this

chapter to present several of such distance measures for functions and to investigate the

accuracy of m̂(·) as an estimate of m(·) in a uniform and pointwise sense. In this chapter

the response variable can also be a multidimensional variable in Rd.

A variety of “global” distance measures can be defined. For instance, the integrated absolute

deviation (weighted by the marginal density f)

dL1(m̂,m) =

∫
|m̂(x)−m(x)| f(x)dx

has been shown Devroye and Wagner (1980a, 1980b) to converge almost surely to zero for

kernel estimators m̂(x). Devroye and Györfi (1985) demonstrate an analogous result for the

regressogram.

Another distance is defined through the maximal absolute deviation,

dL∞(m̂,m) = sup
x∈X
|m̂(x)−m(x)| ,

where the supx ranges over a set X ∈ Rd of interest. Devroye (1978), Mack and Silverman

(1982) and Härdle and Luckhaus (1984) investigated the speed at which this distance tends

to zero for kernel estimators.

Quadratic measures of accuracy have received the most attention. A typical representative
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is the Integrated Squared Error (ISE)

dI(m̂,m) =

∫
(m̂(x)−m(x))2f(x)w(x)dx,

where w denotes a weight function. A discrete approximation to dI is the Averaged Squared

Error (ASE)

dA(m̂,m) = n−1

n∑
i=1

(m̂(Xi)−m(Xi))
2w(Xi).

In practice this distance is somewhat easier to compute than the distance measure dI since

it avoids numerical integration. A conditional version of dA

dC(m̂,m) = E{dA(m̂,m)|X1, . . . , Xn}

has also been studied. The distance dC is a random distance through the distribution of the

Xs. Taking the expectation of dI with respect to X yields the MISE

dM(m̂,m) = E{dI(m̂,m)}.

In order to simplify the presentation I will henceforth consider only kernel estimators. Most

of the error calculations done for kernel smoothers in Section 3.1 can be extended in a

straightforward way to show that kernel smoothers converge in the above global measure

of accuracy to the true curve. But apart from such desirable convergence properties, it is

important both from a practical and a theoretical point of view to exactly quantify the speed

of convergence over a class of functions. This is the subject of the next section. In Section 4.2

pointwise confidence intervals are constructed. Global variability bands and error bars are

presented in Section 4.3. The boundary problem, for example, the fact that the smoother

behaves qualitatively different at the boundary is discussed in Section 4.4. The selection

of kernel functions is presented in Section 4.5. Bias reduction techniques by the jackknife

method are investigated in Section 4.6.
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4.1 The speed at which the smooth curve converges

This section is rather theoretical in spirit. The reader more interested in practical conse-

quences of the theoretical results should go directly to the Exercises and Complements.

In parametric problems the speed at which estimated parameters tend to the true value is

typically n−1/2 (Bickel and Doksum 1977, chapter 4.4). By contrast, in the nonparametric

curve estimation setting, the rate of convergence, if quantified, for instance, by the square

root of the quadratic deviation, is usually of slower order n−r, 0 < r < 1/2. The subject

of this section is to shed some light on the dependence of this rate r on four important

qualitative features of regression smoothing,

(S) the Smoothness of m;

(D) the Dimension d of X;

(O) the Object m(k), the kth derivative of m, that is to be estimated;

(T) the Type of estimator that is used.

Other distance measures, for example, the uniform deviation dL∞(m̂,m), depend also on

these four characteristics of regression smoothing but might have a slightly different rate.

Consider for the moment just the mean integrated squared error dM(m̂,m) for which we

would like to analyze the speed of convergence. Let bn be a sequence of positive constants.

It is called a lower rate of convergence if for some c > 0 and n ≥ n0

inf
m̂

sup
m∈M

dM(m̂,m) ≥ cb2
n.

Here the infm̂ denotes the infimum over all possible estimators m̂ of m and the supm∈M

denotes the supremum over a class of functions M with certain smoothness properties. A

lower rate of convergence bn is thus a sequence of constants that tends to zero faster than
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any smoother m̂ converges to m in a uniform sense. The sequence is said to be an achievable

rate of convergence if there is an estimator m̂ and a C > 0 such that for n ≥ n0

sup
m∈M

dM(m̂,m) ≤ Cb2
n.

An achievable rate of convergence is thus a sequence that tends to zero slower than a specific

smoother converges to the true regression function. An optimal rate of convergence is a rate

that is both a lower and an achievable rate of convergence. A consequence of these definitions

is that if bn is a lower rate of convergence and b′n is an achievable rate of convergence, the

sequence bn must tend to zero faster than b′n in the sense that b′n ≥ c1bn for some c1 > 0 and

n ≥ n0. The notion of optimal rate of convergence is not unique since, with an optimal rate

bn, bn(1 + o(1)) also is optimal. Asymptotically, optimal rates of convergence differ by only

a constant, so it makes sense to call any optimal rate of convergence the optimal rate of

convergence. A smoother m̂ that achieves the optimal rate is called asymptotically optimal.

So far the concept of optimal rates of convergence has been defined through the mean

integrated squared error (MISE) dM . It turns out that for kernel estimators one could

equally well have stated the concept of optimal rates with the integrated squared error dI

or some other distance measure, such as dA; see Härdle (1986b). Asymptotically they define

distance measures of equal sharpness, as is shown in the following theorem by Marron and

Härdle (1986, theorem 3.4).

Theorem 4.1.1 Assume that

(A1) E(Y k|X = x) ≤ Ck <∞, k = 1, 2, . . . ;

(A2) f(x) is Hölder continuous and is positive on the support of w;

(A3) K is Hölder continuous.
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Then for kernel estimators

sup
h∈Hn

|dA(h)− dM(h)| /dM(h) → 0 a.s.,

sup
h∈Hn

|dI(h)− dM(h)| /dM(h) → 0 a.s.,

where Hn =
[
nδ−1/d, n−δ

]
, 0 < δ < 1/(2d) and d•(h) is short for

d•(m̂h,m).

The optimal global rates of convergence for nonparametric regression were derived for the

case d = 1 by Ibgragimov and Hasminskii (1980) and for the multidimensional case by Stone

(1982), Nussbaum (1985) and Nemirovskii, Polyak and Tsybakov (1985). Nemirovskii et al.

(1985) gave very general results on the optimal rates of convergence including the setup

with an Lp loss function. Stone (1982) derived optimal global rates of convergence using

dI among other distance measures. The following theorem is the immediate consequence of

Stone’s (1982) theorem 1. To formulate it I need some notation. Let M = Mp,β be the

smoothness class of all p-times differentiable functions m on the real line such that the pth

derivative is Hölder continuous with exponent β

|m(p)(u)−m(p)(v)| ≤ Lβ|u− v|β,

where 0 < β ≤ 1.

Theorem 4.1.2 Suppose that

(A1) w(x) is the indicator function of the compact set X ;

(A2) the conditional distribution of Y given X = x is normal with variance σ2(x);

(A3) the conditional variance σ2(x) is bounded from above as well as bounded from zero on

some compact set X ′ ⊂ X ;

(A4) the marginal density f(x) is bounded away from zero on X ′;
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(S) m(x) is in smoothness class Mp,β;

(D) X is one-dimensional;

(O) m(k), k ≤ p, is to be estimated.

Then the lower rate of convergence is n−r with

r =
p+ β − k

2(p+ β) + 1
. (4.1.1)

Stone (1982) proved that under the assumptions of this theorem the rate n−r with r as in

4.1.1 is also achievable in some weaker sense than defined earlier. He also showed that for a

suitable generalization of Mp,β the optimal rate in this weaker sense is n−r with

r =
p+ β − k

2(p+ β) + d
, (4.1.2)

with d denoting the dimension of X. Ibgragimov and Hasminskii (1980), Nussbaum (1985)

and Nemirovskii et al. (1985) proved that this rate is achievable under the equispaced design

(or nearly equispaced design). The achievability for the one-dimensional case will become

evident from the calculations given in this section and in Section 4.5. Pointwise convergence

rates are analogous and were derived by Stone (1980).

Note that the optimal rate tends to zero faster if the regression curve has more derivatives

existing. The optimal rate tends to zero slower if the X-variable is of higher dimension or if

higher order derivatives m(k) of m are to be estimated.

Kernel estimators are asymptotically optimal if the bandwidth sequence and the kernel

function are suitably chosen. Consider the fixed design model in which the data are taken

at Xi = i/n and Yi = m(Xi) + εi, where εi is normal with variance σ2. Suppose that m is

four-times differentiable and it is desired to estimate the second derivative m(2)(x).

Theorem 4.1.2 says that for this estimation problem (p = 4, k = 2, d = 1) the best rate of

convergence can only be n−4/9. If this rate is also achievable it is optimal. In particular,

n−4/9 is a lower rate of convergence. (Recall the definition of optimal rate of convergence.)
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I shall show that the rate n−4/9 is achievable over M4,0 for a certain kernel. Take the

Priestley–Chao kernel estimate with weight sequence {W (2)
hi }:

m
(2)
h (x) = n−1h−3

n∑
i=1

K(2)

(
x−Xi

h

)
Yi, (4.1.3)

where K(2) denotes the second derivative of a symmetric kernel function. It is not hard to

derive that (see the Complements of this section and of Section 3.1),

var{m(2)
h (x)} = O(n−1h−5)

bias2{m(2)
h (x)} = O

(∫
(m(4)(x))2w(x)dx h4

)
, (4.1.4)

as h→ 0, nh5 →∞. So if the bandwidth is set at h ∼ n−1/9,

sup
m∈M4,0

dM(m̂
(2)
h ,m(2)) ≤ Cn−4/9

for some C > 0 and for n ≥ n0. Thus n−4/9 is by definition an achievable rate of convergence.

Note that if h is chosen different from n−1/9, in this example the kernel estimator will not

achieve the optimal rate. To illustrate this, consider a bandwidth sequence h = n−1/9+δ with

δ positive or negative. If δ > 0 then the squared bias component of dM(m̂
(2)
h ,m(2)) dominates

and dM ≈ n−4/9(n4δ). If δ < 0 then the variance component of dM(m̂
(2)
h ,m(2)) dominates

and dM ≈ n−4/9(n−5δ). In any case, the rate of convergence is slower than the optimal rate

n−4/9.

This example shows that it is very important to tune the smoothing parameter h to the

right speed to balance bias2 and variance. In Section 5.1 it will be seen how data-driven

bandwidths can be constructed which automatically achieve the correct rate of convergence,

giving asymptotically optimal estimates. This might seem to be somewhat at odds with

the merits of the nonparametric smoothing approach. One motivated nonparametric regres-

sion estimation by a desire to assume less about the structure of m than in a parametric

framework, but in order to construct optimal estimators one seems to need the very specific

assumption that higher derivatives up to certain order exist. A way out of this dilemma
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is presented in Section 5.1 where it is seen that the smoothing parameter can, in fact, be

adapted to the degree of smoothness of m without prior knowledge of the degree of differ-

entiability of m.

On the other hand, the aim to achieve the optimal rate over a specific smoothness class should

not be taken too literally, since in a practical situation the number n−r1 , r1 = p1/(2p1 + 1),

will not be much different from n−r2 , r2 = p2/(2p2 + 1). Suppose that p1 = 16. Even if

we double the degree of differentiability to achieve a better rate of convergence, the relative

improvement, n−r2/n−r1 , for a sample size of n = 100 is only 3.5 percent.

Note that there are kernel smoothers of the form 4.1.3 which do not achieve the optimal

rate of n−4/9. This addresses the fourth characteristic (T) of regression smoothing: The

type of estimator has to be selected in a reasonable way in order to achieve the optimal

rate. Suppose that we had taken an asymmetric kernel in 4.1.3 which did not fulfill the

orthogonality condition
∫
u K(u)du = 0. A little calculus and partial integration yields

bias{m̂(2)
h (x)} =

∫
Kh (x− u) [m(2)(x)−m(2)(u)]du

+O(n−1h−1) + o(h) (4.1.5)

≈ hm(3)(x)

∫
uK(u)du, h→ 0, nh→∞,

which converges more slowly than h2, the order of bias for symmetric kernels.

4.1.1 Rates of convergence for nonquadratic distance measures

More general distance measures of the form

dLν (m̂,m) =

[∫
|m̂(x)−m(x)|ν w(x)dx

]1/ν

, ν ≥ 1,

have also been considered in the literature (Prakasa Rao 1983, p. 244). The distance for

ν =∞ is defined, as usual, as the uniform maximal deviation

sup
x∈X
|m̂(x)−m(x)| .
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As with quadratic distance measures one can define an optimal rate of convergence. Stone

proved that, with r as in the Theorem 4.1.2, n−r is the optimal rate of convergence for dLν ,

if 1 ≤ ν < ∞. If ν = ∞, the optimal rate is n−r(log n)r. The uniform maximal deviation

thus converges slightly slower to zero. In the Complements of this section I show that under

some weak conditions

sup
x∈X
|m̂(x)−m(x)| = Op(max{(nh/(log n))−1/2, h}). (4.1.6)

This result was also obtained by Mack and Silverman (1982, section 3). If the bandwidth

sequence is chosen as h = hn = O((n/ log n)−1/3) one has the rate Op((n/ log n)−1/3) in

4.1.5 which is the optimal rate 4.1.2 for p = 1, k = 0, d = 1 and ν = ∞. In Härdle,

Janssen and Serfling (1988) this was shown to be an achievable rate of convergence not only

for estimation of m but also for other smooth functionals of the conditional distribution

function. Such functionals include the nonparametric scale curve (see also Section 6.2) and

trimmed L-smoothers or M -smoothers (Section 6.1).

Exercises

4.1.1 From the discussion after Theorem 4.1.2 we have seen that the type of estimator has

to be adapted as well to achieve the optimal rate of convergence. Consider now the fixed

design setting and m ∈ C4 and a positive kernel weight sequence. Such a kernel smoother

cannot achieve the optimal rate which is

n−((2·4)/(2·4+1)).

Why? Which rate is achieved instead?

[Hint : Compute the bias as in Section 3.1]

4.1.2 Conduct a small Monte Carlo study in which you compare the distances dL∞ and dM

for the same bandwidth. Do you observe the slower rate of convergence for dL∞?

4.1.3 Describe the qualitative differences of the accuracy measures dL∞ and dM .

[Hint : Consider a situation where the smooth curve contains a wild single spike or wiggles
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around the true curve with a small variation.]

4.1.4 Give exact arguments for 4.1.4 in the fixed design setting.

[Hint : Look up the paper by Gasser and Müller (1984).]

4.1.5 Compute the optimal bandwidth that minimizes the first two dominant terms of MISE.

Interpret the constants occurring in this asymptotically optimal bandwidth. When will h

tend to be large? When would you expect h to be small?

4.1.6 Compute the bandwidth that balances the stochastic and the bias term for the supre-

mum distance. Is it going faster or slower to zero than the MSE optimal bandwidth?

[Hint : The stochastic term is of order Op((nh)−1/2(log n)1/2 as is shown in the complements.

The systematic bias term is as seen above of the order O(h2) for m ∈ C2.]

4.1.2 Complements

To have some insight into why the dL∞ rate has this additional log term consider the one-

dimensional case d = 1. We have to estimate the following probability.

P{sup
x∈X
|m̂(x)−m(x)| > δbn}

= P{ sup
l=1,...,Mn

sup
|x−xl|≤ηn

|m̂(x)−m(x)| > δbn}

≤ P

{
sup

l=1,...,Mn

|m̂(xl)−m(xl)| >
δ

2
bn

}
+ sup

l=1,...,Mn

P

{
sup

|x−xl|≤ηn
|m̂(x)−m(x)

− (m̂(xl)−m(xl))| >
δ

2
bn

}
,

where the Mn intervals {x : |x− xl| ≤ ηn} cover the compact set of interest X . If ηn is

chosen small enough, then the second term is negligible compared to the first one. The first
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term can be estimated via the Bonferroni inequality, so it remains to bound the following

Mn∑
l=1

P

{
|m̂(xl)−m(xl)| >

δ

2
bn

}
≤Mn sup

l=1,...,Mn

P

{
|m̂(xl)−m(xl)| >

δ

2
bn

}
.

Suppose now that m̂ is the kernel estimator, d = 1, Xi = i/n and m is Lipschitz continuous,

that is, p = 1. Then

|m̂(xl)−m(xl)| ≤ |E(m̂(xl))−m(xl)|

+|m̂(xl)− E(m̂(xl))|

= O(h) +

∣∣∣∣∣n−1

n∑
i=1

Kh(xl −Xi)εi

∣∣∣∣∣ .
Choosing h = Cbn, where C > 0 is some small constant, we get

P

{
|m̂(xl)−m(xl)| >

δ

2
bn

}
≤ P

{∣∣∣∣∣n−1

n∑
i=1

Kh(xl −Xi)εi

∣∣∣∣∣ > δ

4
bn

}
.

If we assume that the errors are bounded and |K(u)| ≤ 1 then we can estimate the last

probability using Bernstein’s inequality (Uspensky 1937).

P

{∣∣∣∣∣n−1

n∑
i=1

Kh(xl −Xi)εi

∣∣∣∣∣ > δ

4
bn

}
≤ 2 exp

( −n( δbn
4

)2

2σ2
n + 2

3h
( δbn

4
)

)
,

where

σn = E[h−2K2(xl −Xi)] = O(h−1).

It is easily seen now that if

bn ∼ n−1/3 log n1/3

then for Mn = O(n) the term

Mn sup
l=1,...,Mn

P

{
|m̂(xl)−m(xl)| >

δ

2
bn

}
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tends to zero as δ →∞. This means that bn supx∈X |m̂(xl)−m(xl)| is bounded in probability,

that is,

sup
x∈X
|m̂(xl)−m(xl)| = Op(n

−1/3 log n1/3).

4.2 Pointwise confidence intervals

The aim of this section is to develop the construction of pointwise confidence intervals for

kernel estimators and to prepare the ground for the uniform confidence bands which are

treated in the next section. The basic idea is to derive the asymptotic distribution of the

kernel smoothers and then to use either asymptotic quantiles or bootstrap approximations

for these quantiles for the confidence intervals. The shrinkage rate of the confidence intervals

is proportional to n−r, the optimal rate of convergence if the bandwidth is chosen so that the

optimal rate is achieved. It is certainly desirable to use smoothers that are asymptotically

optimal since they give the narrowest confidence intervals obtainable and keep the squared

bias and variance at the same order.

The reader more interested in practical aspects should not be discouraged by the rather

theoretical beginning of this section, but instead should jump to Algorithm 4.2.1, which

describes the construction of confidence intervals at k different points.

The asymptotic distribution is normal. The center of this distribution is shifted by the

asymptotic bias which depends on derivatives of the regression curve and the marginal

density of X. The asymptotic variance is a function of

the conditional variance σ2(x);

the kernel K; and

the marginal density f(x).

The asymptotic bias is a function of
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the kernel K; and

derivatives of m and f .

Before I come to the theoretical statement of the asymptotic distribution of kernel smoothers

let me point out some simplifications. The kernel smoother m̂h(x) is a ratio of random

variables, direct central limit theorems therefore cannot be applied and the smoother has to

be linearized. The kernel estimator has the same limit distribution as the right-hand side of

the following linearization,

m̂h(x)−m(x) ≈ r̂h(x)−m(x)f̂(x)

f(x)
,

where

r̂h = n−1

n∑
i=1

Kh(x−Xi)Yi

denotes, as in Section 3.1, the numerator of the Nadaraya–Watson kernel smoother. The fol-

lowing theorem states the asymptotic distribution of the Nadaraya–Watson kernel estimator

for one-dimensional predictor variables.

Theorem 4.2.1 Suppose that

(A1)
∫
|K(u)|2+η du <∞ for some η > 0;

(A2) h ∼ n−1/5;

(A3) m and f are twice differentiable;

(A4) the distinct points x1, x2, . . . , xk are continuity points of σ2(x) and E{|Y |2+η |X = x}

and f(xj) > 0, j = 1, 2, . . . , k.

Then the suitably normalized Nadaraya–Watson kernel smoother

m̂h(xj) at the k different locations x1, . . . , xk converges in distribution to a multivariate

normal random vector with mean vector B and identity covariance matrix,(
(nh)1/2

{
(m̂h(xj)−m(xj))

(σ2(xj)cK/f(xj))1/2

})k
j=1

L→ N(B, I), (4.2.7)
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where

B =
(
dK{m′′(xj) + 2m′(xj)(f

′(xj)/f(xj))
)k
j=1
. (4.2.8)

The proof is given in the Complements extending results of Johnston (1979) and of Schuster

(1972). The proof is based on the linearization given above.

The asymptotic bias 4.2.8 is proportional to the second moment of the kernel and a measure

of local curvature of m. This measure of local curvature is not a function of m alone but

also of the marginal density. At maxima or minima, the bias is a multiple of m′′(x) alone;

at deflection points it is just a multiple of only m′(x)(f ′(x)/f(x)).

This theorem can be used to define confidence intervals. Suppose that the bias is of negli-

gible magnitude compared to the variance, then the following algorithm yields approximate

confidence intervals.

Algorithm 4.2.1

STEP 1.

Compute the kernel smoother m̂h and the density estimate f̂h at distinct points x1, . . . , xk.

STEP 2.

Construct an estimate of σ2(x),

σ̂2(x) = n−1

n∑
i=1

Whi(x)(Yi − m̂h(x))2,

Whi = Kh(x−Xi)/f̂h(x).

STEP 3.

Take cα, the (100− α)-quantile of the normal distribution, and let

CLO = m̂h(x)− cαc1/2
K σ̂(x)/(nhf̂h(x))1/2,

CUP = m̂h(x) + cαc
1/2
K σ̂(x)/(nhf̂h(x))1/2.
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STEP 4.

Draw the interval [CLO,CUP ] around m̂h(x) at the k distinct points x1, . . . , xk.

This algorithm does not take the bias of m̂h(x) into account, since the bias is a complicated

function of m and f . Bias estimates could be built in by using estimates of the derivatives of

m and f but would considerably complicate the algorithm. So if the bandwidth h ∼ n−1/5

then the above steps do not lead asymptotically to an exact confidence interval. However, if

h is chosen proportional to n−1/5 times a sequence that tends slowly to zero, then the bias

vanishes asymptotically.

If the variation in m and f is moderate, little difference is to be expected between such

two sequences of bandwidths, so one could use the unshifted confidence intervals as well.

However, at small peaks (high bias!) it may be desirable to shift the [CLO,CUP ] interval

by a bias estimate. The decision of the occurrence of such peaks has to be made by the

statistician. The analysis of expenditure data is a field where we do not expect sudden and

abrupt changes of m(x). In Figure 4.1 an estimate of the regression curve for the potato

versus net income example (Figure 1.1) is shown together with ten pointwise confidence

intervals.

It is apparent from this picture that the confidence interval lengths increase as they move to

the right boundary of the observation interval. Since the kernel is a fixed function, this must

be due to the other factors controlling the variance of the kernel smoother. First, it is the

conditional variance σ2(x) which increases as x goes to the right boundary (compare with

Figure 1.1). Secondly, the inverse of the marginal X-distribution enters as a proportionality

factor. Since the data are more sparse near the right boundary, (compare with Figure 1.5),

the variance estimate also gets inflated for this reason. A plot of σ̂(x), an estimate of the

conditional standard deviation curve, σ(x) is presented in Figure 4.2.

As a possible way of visualizing both effects in one plot, I propose plotting confidence intervals

at points xj such that the number of observations between xj and xj+1 is constant. As
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Confidence int. for the potato vs. net income
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Figure 4.1: Approximate confidence intervals for the potato versus net income data. 95

percent confidence intervals are shown for the kernel smoother m̂h(x), h = 0.6,

n = 7125, Epanechnikov kernel. The vertical axis is normalized by the mean

expenditure. The horizontal axis is normalized by the mean net income for that

year.Survey (1968–1983). ANRpotconf.xpl

the marginal density decreases, the Euclidean distance between neighboring points xj will

become bigger. This can be seen from Figure 4.3, which shows a kernel smooth (h = 0.6,

Epanechnikov kernel) of the potato versus net income data together with confidence intervals.

These intervals are placed such that in between successive intervals there are a fixed number

http://www.quantlet.org/mdstat/codes/anr/ANRpotconf.html
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Conditional stand. deviation curve
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Figure 4.2: Conditional standard deviation curve for the potato versus net income data. The

curve shown is

σ̂(x) =

(
n−1

n∑
i=1

Whi(x)(Yi − m̂h(x))2

)1/2

,

n = 7125, h = 0.6 an estimate of σ(x). ANRpotdev.xpl Survey (1968–1983).

of 700 data points.

There are always 700 observations between neighboring gridpoints xj. In this plot, one

not only sees an increase of the variance but also a decrease of the marginal density f(x).

This becomes apparent at the right boundary: The peak to the right of the approximate

http://www.quantlet.org/mdstat/codes/anr/ANRpotdev.html
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Confidence int. for the potato vs. net income
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Figure 4.3: Approximate confidence intervals for the potato versus net income data. 95

percent confidence intervals are shown for the kernel smoother m̂h(x), h = 0.6,

n = 7125, Epanechnikov kernel. The confidence intervals are placed such that

the number of observations between successive intervals equals 700. The vertical

axis is normalized by the mean expenditure. The horizontal axis is normalized

by the mean net income for that year. ANRpotconf2.xpl Survey (1968–1983).

confidence interval at x ≈ 1.9 is produced by less than fifty observations.

Another method of constructing confidence bands is based on the bootstrap. The bootstrap

is a resampling technique that prescribes taking “bootstrap samples” using the same random

mechanism that generated the data. This prescription makes it necessary to handle the case

of stochastic Xs differently from the case of deterministic X-values. To be precise, in the

http://www.quantlet.org/mdstat/codes/anr/ANRpotconf2.html
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fixed design model the stochastic part of the data is contained only in the observation errors,

so resampling should take place from residuals. If both X and Y are random, resampling

can be done from the data pairs {(Xi, Yi)}ni=1 according to the following algorithm.

Algorithm 4.2.2

b=0

REPEAT

b=b+1

STEP 1.

Sample {(X∗i , Y ∗i )}ni=1 from the empirical distribution function of the data.

STEP 2.

Construct the kernel smoother m̂∗h(x) from the bootstrap sample {(X∗i , Y ∗i )}ni=1.

UNTIL b=B=number of bootstrap samples.

STEP 3.

Define CLO∗ as the α/2 empirical quantile of the B bootstrap estimates m̂∗h(x). Define

CUP ∗ analogously.

STEP 4.

Draw the interval [CLO∗, CUP ∗] around m̂h(x) at the k-distinct points x1, . . . , xk.

This bootstrap algorithm was proposed by McDonald (1982) in his Orion workstation film.

Theoretical properties of this so-called naive bootstrap have been considered by Dikta (1988),

again by disregarding bias terms. The above bootstrap procedure was applied with B = 100

to the simulated data set of Table 3.2. The result is depicted in Figure 4.4.

The kernel smooth for Figure 4.4 was computed with the Epanechnikov kernel (K(u) =

(3/4)(1 − u2)I(|u| ≤ 1)) and bandwidth h = 0.1. Note that this bandwidth is bigger than

the one chosen to produce the kernel smooth of Figure 3.21 but the curve from Figure 4.4
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Bootstrap confidence int.
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Figure 4.4: Bootstrap confidence intervals for the simulated data set, Table 3.2. The kernel

smoother m̂h(x), h = 0.1, n = 100, B = 100 with Epanechnikov kernel has been

applied. ANRsimboot.xpl

is smoother than that of Figure 3.21. The reason for this is the use of different kernels. A

possible means of comparing these bandwidths is presented in Section 5.4.

In the case of the fixed design models with homoscedastic error structure one may use only

the estimated residuals

ε̂i = Yi − m̂h(Xi).

Resampling them as {ε∗i }ni=1 gives bootstrap observations Y ∗i = m̂h(xi) + ε∗i . Of course,

this makes sense only if the error distribution does not depend on x. If this is the case

one constructs bootstrap smoothers m̂∗h(x) and studies the distribution of m̂∗h(x) suitably

http://www.quantlet.org/mdstat/codes/anr/ANRsimboot.html
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centered around m̂h(x). Details of this procedure are given in Section 5.3.

This bootstrap from residuals can also be applied in the stochastic design setting. It is then

able also to incorporate the bias term and is called wild bootstrap by Härdle and Mammen

(1988). It is called wild , since at each observation point Xi (in the fixed or stochastic design

setting) a bootstrap observation is drawn from one single estimated residual. This is done to

better retain the conditional distributional characteristics of the estimate. It is not resampled

from the entire set of residuals, as in Härdle and Bowman (1988).

A different possibility would be to resample from a set of residuals determined by a window

function, but this has the disadvantage of requiring choice of the window width. To avoid

this I propose wild bootstrapping, where each bootstrap residual is drawn from the two-point

distribution which has mean zero, variance equal to the square of the residual, and third

moment equal to the cube of the residual.

In particular, let

ε̂i = Yi − m̂h(Xi)

be the observed residual at point Xi. Now define a new random variable ε∗i having a two-point

distribution Ĝi, where

Ĝi = γδa + (1− γ)δb (4.2.9)

is defined through the three parameters a, b, γ, and where δa, δb denote point measures at

a, b, respectively. Some algebra reveals that the parameters a, b, γ at each location Xi are

given by

a = ε̂i(1−
√

5)/2,

b = ε̂i(1 +
√

5)/2, (4.2.10)

γ = (5 +
√

5)/10.

These parameters ensure that Eε∗ = 0, Eε∗2 = ε̂2i and Eε∗3 = ε̂3i . A geometrical interpreta-

tion of these parameters is related to the Golden Section method by Euclid (–300, Second

book, prop. 11), see Exercise 4.2.3. In a certain sense the resampling distribution Ĝi can be
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thought of as attempting to reconstruct the distribution of each residual through the use of

one single observation. Therefore, it is called the wild bootstrap. It is actually the cumu-

lative effect of all these residuals though that make this bootstrap work. After resampling,

new observations

Y ∗i = m̂g(Xi) + ε∗i

are defined, where m̂g(x) is a kernel estimator with bandwidth g taken to be larger than h

(a heuristic explanation of why it is essential to oversmooth g is given below).

Then the kernel smoother is applied to the bootstrapped data {(Xi, Y
∗
i )}ni=1 using bandwidth

h. Let m̂∗h(x) denote this kernel smooth. A number of replications of m̂∗h(x) can be used as

the basis for a confidence interval because the distribution of m̂h(x)−m(x) is approximated

by the distribution of m̂∗h(x) − m̂g(x), as Theorem 4.2.2 shows. Here the symbol Y | X is

used to denote the conditional distribution of Y1, . . . , Yn | X1, . . . , Xn, and the symbol ∗ is

used to denote the bootstrap distribution of Y ∗1 , . . . , Y ∗n | (X1, Y1), . . . , (Xn, Yn).

Theorem 4.2.2 Given the assumptions of Theorem 4.2.1, along almost all sample sequences

and for all z ∈ R

|P Y |X{
√
nhd[m̂h(x)−m(x)] < z}

−P ∗{
√
nhd[m̂∗h(x)− m̂g(x)] < z}| → 0

For an intuitive understanding of why the bandwidth g used in the construction of the

bootstrap residuals should be oversmoothed, consider the means of m̂h(x)−m(x) under the

Y |X-distribution and m̂∗h(x)− m̂g(x) under the ∗-distribution in the simple situation when

the marginal density f(x) is constant in a neighborhood of x. Asymptotic analysis as in

Rosenblatt (1969) shows that

EY |X(m̂h(x)−m(x)) ≈ h2dKm
′′(x)/2,

E∗(m̂∗h(x)− m̂g(x)) ≈ h2dKm̂
′′
g(x)/2.

Hence for these two distributions to have the same bias one needs

m̂′′g(x)→ m′′(x). This requires choosing g tending to zero at a rate slower than the optimal
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bandwidth h (see Section 4.1) for estimating m(x). The advantage of the bootstrapping

technique is that one does not have to compute various complicated constants, such as the

bias described in Theorem 4.2.1. Algorithm 4.2.3 is thus easy to program but requires quite

a bit of computer intensive resampling. This computational burden can be made easier by

employing a discretization technique (WARPing) or an FFT-based approach as described in

Section 3.1.

Algorithm 4.2.3

b=0

REPEAT

b=b+1

STEP 1.

Sample ε∗i from the two-point distribution Ĝi 4.2.9, where

Ĝi = γδa + (1− γ)δb

and as in 4.2.10

a = ε̂i(1−
√

5)/2,

b = ε̂i(1 +
√

5)/2,

γ = (5 +
√

5)/10.

STEP 2.

Construct new observations

Y ∗i = m̂g(Xi) + ε∗i ,

where m̂g(x) is a slightly oversmoothed kernel estimator with bandwidth g. Compute m̂∗h(x)

from the bootstrap sample

{(Xi, Y
∗
i )}ni=1.

UNTIL b=B=number of bootstrap samples.



4.2 Pointwise confidence intervals 137

STEP 3.

Define CLO∗ as the α/2 empirical quantile of the B bootstrap estimates m̂∗h(x). Define

CUP ∗ analogously.

STEP 4.

Draw the interval [CLO∗, CUP ∗] around m̂h(x) at the k-distinct points x1, . . . , xk.

Exercises

4.2.1 Show that the difference between

m̂h(x)−m(x)

and its linearization
r̂h(x)−m(x)f̂(x)

f(x)

is of order op((nh)−1/2) under the assumptions of Theorem 4.2.1.

[Hint : Write the difference as (
r̂ −mf̂
f

)(
f

f̂
− 1

)
and combine terms.]

4.2.2 Prove formula 4.2.8, that is, show that

nhvar{Hn(x)} → (f(x))−1σ2(x)

∫
K2(u)du;

ncov{Hn(x) Hn(y)} → 0, as n→∞.

4.2.3 Write an efficient program for wild bootstrapping using the WARPing technique as

described in Section 3.1.

4.2.4 Use the wild bootstrap confidence intervals in a real example. Compare them with

the asymptotic confidence intervals from Theorem 4.2.1.

4.2.5 Ricardo Cao has found that the wild bootstrap is related to the Golden Section method

of Euclid (–300). Show that the two-point distribution of the wild bootstrap can be found
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by using the outer Golden Section of the interval E = [0, |ε̂i|].

[Hint : The outer Golden Section E ′ is that interval containing E such that the ratio of the

length of E ′ to the length of E is the same as the ratio of the length of E to that of E ′−E.]

4.2.1 Complements

Define r̂h(x) = m̂h(x)f̂h(x) = n−1
∑n

i=1 Kh(x−Xi)Yi. The difference between

m̂h(x)−m(x)

and its linearization
r̂h −mf̂

f
(x)

is of lower order, that is, of order op((nh)−1/2), see Exercise 4.2.3.

The bias can then be written as
Er̂h −mEf̂

f
(x).

This term equals (
Ef̂

f
(x)

)(
Er̂h

Ef̂
−m

)
(x),

which is approximately equal to

mn(x)−m(x),

where mn(x) = Er̂h(x)/Ef̂h(x). Observe that

mn(x)−m(x)

= (E{Kh(x−X)})−1

{∫
Kh(x− u)m(u)f(u)du−m(x)f(x)

+m(x)f(x)−m(x)

∫
Kh(x− u)f(u)du

}
≈ h2

2

∫
u2K(u)du(f(x))−1((mf)′′(x)−m(x)f ′′(x))

=
h2

2

∫
u2K(u)du{m′′(x) + 2m′(x)(f ′(x)/f(x))}. (4.2.11)
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Note that

m̂h −mn = [r̂h/f − (f̂h/f)mn](f/f̂h)

and f(x)/f̂h(x)
p→ 1, so that m̂h(x) − mn(x) will have the same asymptotic distribution

as the term within square brackets above. Call this term Hn(x). It can be shown in a

straightforward but tedious way that if x 6= y

nhvar{Hn(x)} → (f(x))−1σ2(x)

∫
K2(u)du;

ncov{Hn(x) Hn(y)} → 0, as n→∞. (4.2.12)

An application of the Cramer–Wold device (Serfling 1980, p. 18) then yields the asymptotic

normality of the random vector(
(nh)1/2

{
(m̂h(xj)−m(xj))

(σ2(xj)cK/f(xj))1/2

})k
j=1
.

4.3 Variability bands for functions

Variability bands for functions are intervals [CLO(x), CUP (x)] (based on the sample {(Xi, Yi)}ni=1)

such that with probability 1− α the true curve is covered by the band [CLO(x), CUP (x)],

that is,

P{CLO(x) ≤ m(x) ≤ CUP (x) for all x ∈ X} = 1− α, (4.3.13)

where x ranges over some (compact) set X of interest. Even in parametric models such

bands are hard to compute; see Working and Hotelling (1929) or Wynn (1984) for bounds

in polynomial regression. In the more complicated nonparametric situation useful bands

[CLO(·), CUP (·)] have been computed, which are conservative, that is, with equality re-

placed by “≥” in 4.3.13. The bands are usually of the form

CLO(x) = m̂h(x)− b̂n(x)− cαD̂n(x),

CUP (x) = m̂h(x) + b̂n(x) + cαD̂n(x), (4.3.14)

where b̂n(x) denotes an estimate of bias (mostly zero in parametric models) and D̂n(x) is a

measure of dispersion and cα is the quantile to achieve level α confidence bands.
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There are several approaches to computing upper and lower bands, CUP (·) and CLO(·).

One approach is to use pointwise confidence intervals on a very fine grid of the observation

interval. The level of these confidence intervals can be adjusted by the Bonferroni method in

order to obtain uniform confidence bands. The gaps between the grid points can be bridged

via smoothness conditions on the regression curve.

Another approach is to consider m̂h(x) − m(x) as a stochastic process (in x) and then to

derive asymptotic Gaussian approximations to that process. The extreme value theory of

Gaussian processes yields the level of these confidence bands.

A third approach is based on the bootstrap. By resampling one attempts to approximate

the distribution of

Zn = sup
x∈X
|m̂h(x)−m(x)| ,

which yields CLO(·) and CUP (·) as bands computed from the (α/2)- and (1−α/2)-quantiles

of Zn, respectively. Another bootstrap method is based on approximating the distribution of

m̂h(x)−m(x) at distinct points x and then to simultaneously correct the pointwise confidence

intervals in order to obtain the joint coverage probability 1− α.

4.3.1 Connected error bars

The approach by Hall and Titterington (1986b) is based on the discretization method, that

is, constructing simultaneous error bars at different locations. They considered a fixed design

regression model on the unit interval, that is,

Yi = m(Xi) + εi,

where Xi = i/n and the observation errors are normal with mean zero and variance σ2. Take

the Priestley–Chao-type kernel estimator with weight sequence

W
(2)
hi (x) = Kh(x−Xi),

and uniform kernel K. Their construction works as follows.
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Divide the region of interest into M cells, the jth cell containing those observations (Xi, Yi)

such that

(j − 1)q ≤ i ≤ jq, 1 ≤ j ≤M.

The kernel estimator with uniform kernel for the M cells can be written as

m̂h(xj) = (nh)−1

jnh−1∑
i=(j−1)nh

Yi, (4.3.15)

where xj is in block j and the bandwidth is chosen so that q = nh. The expected value of

m̂h(xj) is

µj = q−1(m(q(j − 1)/n) +m(q(j − 1)/n+ 1/n)

+ · · ·+m(q(j − 1)/n+ (q − 1)/n))

and the variance is σ2/q. The variability bands are computed from simultaneous intervals

for the µjs, with

P{µ̂Lj ≤ µj ≤ µ̂Uj , 1 ≤ j ≤M} = α. (4.3.16)

The gap between adjacent cells is handled through the smoothness of m. Assume that the

first derivative of the regression function in adjacent cells is bounded by constants cj, that

is,

sup
(j−1)h≤u≤(j+1)h

|m′(u)| ≤ cj, 1 ≤ j ≤M. (4.3.17)

For x in the jth cell the difference between m(x) and µj can then be bounded by

Vj(η) = (1/2)((2η + 1)h+ 1/n)cj, 0 < η < 1.

This motivates defining the upper and lower confidence bands in a fixed cell j by

CUP ((j + η)h) = µ̂Uj + Vj(η), 0 < η < 1;

CLO((j + η)h) = µ̂Lj − Vj(η), 0 < η < 1.

It remains to construct the simultaneous confidence intervals µ̂Lj and µ̂Uj . Suppose first that

the error variance σ2 is known. Let Φ denote the standard normal distribution function, and
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cγ denote the solution of 2Φ(cγ)− 1 = γ. Define

µ̂Uj = m̂h(x) + (nh)−1/2σcγ,

µ̂Lj = m̂h(x)− (nh)−1/2σcγ

for x in the jth cell. Note that m̂h(x) is normal with variance (nh)−1σ2 and mean µj. Then

P{µ̂Lj ≤ µj ≤ µ̂Uj , 1 ≤ j ≤M} = γM . (4.3.18)

Taking γ = α1/M will give simultaneous coverage probability α.

If the error variance is not known, Hall and Titterington (1986b) recommend constructing

an estimate of σ2 using differences of observations, that is

σ̂2 = (2n)−1

n∑
i=2

(Yi − Yi−1)2.

Algorithm 4.3.1

Define the M cells and compute the kernel estimator as in 4.3.15.

STEP 1.

Define

µ̂Ll = m̂h(xl)− (nh)−1/2σ̂cγ

and

µ̂Ul = m̂h(xl) + (nh)−1/2σ̂cγ,

where 2Φ(cγ)− 1 = γ, γM = α.

STEP 2.

Let the bound of variation be

Vl(η) = (1/2)((2η + 1)h+ 1/n)cl, 0 < η < 1,

where cl the upper bound on m′(x) as in 4.3.17.
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STEP 3.

Define as in 4.3.18

CUP ((l + η)h) = µ̂Ul + Vl(η), 0 < η < 1;

CLO((l + η)h) = µ̂Ll − Vl(η), 0 < η < 1.

STEP 4.

Draw CLO(·) and CUP (·) around m̂h(xi).

The band [CLO(x), CUP (x)] is a level α uniform confidence band for m as was shown by

Hall and Titterington (1986b). The discretization method was also employed by Knafl, Sacks

and Ylvisaker (1985) and Knafl et al. (1984).

Figure 4.5 gives an example of a uniform confidence band for the radiocarbon data set (Suess

1980). The variables are those of radiocarbon age and tree-ring age, both measured in years

before 1950 A.D. and thinned and rounded so as to achieve equal spacing of the tree-ring

ages. For more background on this calibration problem see Scott, Baxter and Aitchison

(1984). Altogether, 180 points were included. Hall and Titterington have chosen M = 30 so

that q = 6. The bands are constructed with α = 0.05 and under the assumption of a single

derivative with uniform bound c = 1 on m′(x).

A different approach to handling the fluctuation of m(x) in between the grid points could

be based on the arc length of m(x) between two successive knot points. Adrian Bowman

suggested that instead of bounding derivatives of m, one could assume an upper bound on

the arc length, ∫ Xi+1

Xi

√
1 + (m′(x))2dx,

between two grid points Xi, Xi+1. In this case the gaps between mesh points are bridged by a

chain of ellipse shells with the two foci in the endpoints of neighboring confidence intervals.
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Figure 4.5: Uniform confidence band for radiocarbon band data (Suess 1980). The uni-

form confidence band is constructed with bandwidth h = 15. From Hall and

Titterington (1986b).

4.3.2 Smooth confidence bands

It was shown in Theorem 4.2.1 that the suitably scaled kernel smoother m̂h(x) has an

asymptotic normal distribution,

√
nh(m̂h(x)−m(x))

L→ N(B(x), V (x)), (4.3.19)

where B(x) denotes the bias term and V (x) is the asymptotic variance (depending on the

kernel K and the bandwidth). More generally consider now the left-hand side of 4.3.19 as

a stochastic process in x. If this process converges in a suitable way to a Gaussian process

G(x) with known covariance structure, then a uniform confidence band can be constructed



4.3 Variability bands for functions 145

from the distribution of supx |G(x)|. This latter distribution is well studied in extreme value

theory of Gaussian processes.

In the setting of nonparametric regression use of this approach was made by Johnston (1982)

for the kernel weights (with known marginal density f)

W
(1)
hi (x) = Kh(x−Xi)/f(Xi).

Major (1973) used this method to find variability bands for the regressogram. Liero (1982)

and Härdle (1987b) extended Johnston’s results by allowing Whi(x) to be of the Nadaraya–

Watson form.

The basic idea of the approach taken by these authors is to standardize the process
√
nh[m̂h(x)−

m(x)] and to approximate it by a suitable Gaussian process. More precisely, Johnston (1982)

has shown that a suitably rescaled version of

√
nh[m̂h(x)−m(x)]

has approximately the same distribution as the stationary Gaussian process

G(x) =

∫
K(x− u)dW (u), (4.3.20)

with covariance function
∫
K(x)K(u − x)dx and standard Wiener process W (x). For a

definition of a Wiener process see, for instance, Serfling (1980 p. 41). Bickel and Rosenblatt

(1973) derived the asymptotic distribution of the supremum supx |G(x)| of the process 4.3.20.

This result permits construction of approximate confidence bands.

Theorem 4.3.1 Define

σ̂2
h(x) = n−1

n∑
i=1

Kh(x−Xi)Y
2
i /f̂h(x)− m̂2

h(x).

Suppose that X = [0, 1] and

(A1) m(x), f(x) and σ2(x) are twice differentiable;
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(A2) K is a differentiable kernel with bounded support [−A,A];

(A3) E(|Y |k |X = x) < Ck, k = 1, 2, . . .;

(A4) f(·) is strictly positive on X ;

(A5) h = n−δ, 1/5 < δ < 1/3.

Then the maximal deviation between m̂h(x) and m(x) over X has the limiting distribution

P

(2δ log n)1/2

(nh
cK

)1/2

sup
x∈X

(
f̂h(x)

σ̂2
h(x)

)1/2

× |m̂h(x)−m(x)| − dn) < z} → exp(−2 exp(−z)), n→∞.

Here

dn = (2δ log n)1/2 +
1

(2δ log n)1/2
{logC1π

−1/2 + (1/2) log(log nδ)},

where

C1 =
K2(A) +K2(−A)

2cK

if C1 > 0, and otherwise

dn = (2δ log n)1/2 +
1

(2δ log n)1/2

{
log

(
C2

2π2

)1/2
}
,

where

C2 =

∫
(K ′(x))2dx

2cK
.

From this theorem one can obtain approximate confidence bands for m. Take the quartic

kernel K(u) = (15/16)(1 − u2)2I(|u| ≤ 1), for instance. For this kernel cK = 5/7 and it

vanishes at the boundary of its support [−1, 1], so C1 = 0 in the Theorem 4.3.. The following

algorithm is designed for the quartic kernel.

Algorithm 4.3.2

STEP 1.
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Define from cK = 5/7 and C2 = (15/7)/(2cK)

dn = (2 log 1/h)1/2 + (2 log 1/h)−1/2 log

(
C2

2π2

)1/2

,

CLO(x) = m̂h(x)− [cα/(2 log(1/h))1/2 + dn]

×[σ̂2
h(x)/(f̂h(x)nh)]1/2/cK

and CUP (x) analogously, where cα is such that

exp(−2 exp(−cα)) = 1− α.

STEP 2.

Plot the asymptotic confidence bands CUP (x) and CLO(x) around m̂h(x).

Note that this theorem does not involve a bias correction as in Algorithm 4.3.1. The bias

term is suppressed by assuming that the bandwidth h tends to zero slightly faster than the

optimal rate n−1/5. A bias term could be included, but it has the rather complicated form

4.2.8; see Theorem 4.2.1. A means of automatically correcting for the bias is presented

subsequently in the wild bootstrapping algorithm.

Figure 4.6 shows an application of Algorithm 4.3.2, a uniform confidence band for the ex-

penditure Engel curve for food with 1− α = 0.95.

4.3.3 Bootstrap bands

The idea of bootstrap bands is to approximate the distribution of

sup
x∈X
|m̂h(x)−m(x)|

by the bootstrap technique. The following procedure was proposed by McDonald (1982)

is based on the naive bootstrap. For this algorithm, unfortunately, no theoretical result is
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Figure 4.6: Uniform confidence band for the food expenditure Engel curve for 1973. Shown

is the kernel smooth mh(x), h = 0.35 (quartic kernel), and a parametric fit, a

third-order polynomial through zero. Family Expenditure Survey (1968–1981).

available.

Algorithm 4.3.3

b=0

REPEAT

b=b+1

STEP 1.

Sample {(X∗i , Y ∗i )}ni=1 from the data {(Xi, Yi)}ni=1.

STEP 2.
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Construct a kernel smooth m̂∗h(·) from the bootstrap sample {(X∗i , Y ∗i )}ni=1 and define Zb =

sup
x∈X
|m̂∗h(x)− m̂h(x)|.

UNTIL b=B (=number of bootstrap samples).

STEP 3.

Define CLO∗ as the α/2 quantile of the B bootstrap deviations Zb. By analogy, define CUP ∗

as the 1− α/2 quantile.

STEP 4.

Draw the interval [CLO∗, CUP ∗] around every point x of the observation interval.

The above algorithm is extremely computer intensive since on a fine grid of points the statistic

Zb has to be computed B times. A computationally less intensive procedure is to consider

not a band but rather a collection of error bars based on bootstrapping. This method is

based on a pointwise bootstrap approximation to the distribution of m̂h(x)−m(x). In the

following I describe the approach taken by Härdle and Marron (1988), which uses the wild

bootstrap technique to construct pointwise confidence intervals. How can these pointwise

confidence intervals be modified in order to cover the true curve m(x) with simultaneous

coverage probability 1− α?

A straightforward way of extending bootstrap pointwise intervals to M simultaneous con-

fidence intervals is by applying the Bonferroni method. A drawback to the Bonferroni

approach is that the resulting intervals will quite often be too long. The reason is that this

method does not make use of the substantial positive correlation of the curve estimates at

nearby points.

A more direct approach to finding simultaneous error bars is to consider the simultaneous

coverage on pointwise error bars, and then adjust the pointwise level to give a simultaneous

coverage probability of 1 − α. Fisher (1987, p. 394) called this a “confidence ribbon” since

the pointwise confidence intervals are extended until they have the desired simultaneous
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coverage probability of 1−α. A general framework, which includes both the Bonferroni and

direct methods, can be formulated by thinking in terms of groups of grid points.

First, partition into M groups as in the Hall and Titterington approach, the set of locations

where error bars are to be computed. Suppose the groups are indexed by j = 1, . . . ,M

and the locations within each group are denoted by xj,k, k = 1, . . . , Nj. The groups should

be chosen so that for each j the xj,k values in each group are within 2h of each other. In

the one-dimensional case this is easily accomplished by dividing the x−axis into intervals of

length roughly 2h.

In order to define a bootstrap procedure that takes advantage of this positive correlation

consider a set of grid points xj,k, k = 1, . . . , Nj that have the same asymptotic location ck

(not depending on n) relative to some reference point xj,0 in each group j. Define

xj,k = ckh+ xj,0, k = 1, . . . , Nj.

In the multidimensional case, the simplest formulation is to have each group lying in a

hypercube with length 2h.

Now, within each group j use the wild bootstrap replications to approximate the joint

distribution of

{m̂h(xj,k)−m(xj,k) : k = 1, . . . , Nj}.

Recall Theorem 4.2.2 for the wild bootstrap approximation to this distribution. There is

was shown that
√
nh[m̂h(x)−m(x)]

and
√
nh[m̂∗h(x)− m̂g(x)]

have the same limiting normal distribution. For each group j this joint distribution is used

to obtain simultaneous 1 − α/M error bars that are simultaneous over k = 1, . . . , Nj as

follows. Let β > 0 denote a generic size for individual confidence intervals. The goal is to

choose β so that the resulting simultaneous size is 1− α/M .
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For each xj,k, k = 1, . . . , Nj, define the interval Ij,k(β) to have endpoints which are the β/2

and the 1−β/2 quantiles of the (m̂∗h(xj,k)− m̂g(xj,k)) distribution. Then define αβ to be the

empirical simultaneous size of the β confidence intervals, that is, the proportion of curves

which lie outside at least one of the intervals in the group j. Next find the value of β, denoted

by βj, which makes αβj = α/M . The resulting βj intervals within each group j will then

have confidence coefficient 1−α/M . Hence, by the Bonferroni bound the entire collection of

intervals Ij,k(βj), k = 1, . . . , Nj, j = 1, . . . ,M , will simultaneously contain at least 1− α of

the distribution of m̂∗k(xj,k) about m̂g(xj,k). Thus the intervals Ij,k(βj)− m̂g(xj,k) + m̂h(xj,k)

will be simultaneous confidence intervals with confidence coefficient at least 1−α. The result

of this process is summarized as the following theorem.

Theorem 4.3.2 Define M groups of locations xj,k, k = 1, . . . , Nj, j = 1, . . . ,M , where

simultaneous error bars are to be established. Compute uniform confidence intervals for each

group. Correct the significance level across groups by the Bonferroni method. Then the

bootstrap error bars establish asymptotic simultaneous confidence intervals, that is,

lim
n→∞

P{m(xj,k) ∈ Ij,k(βj)− m̂g(xj,k) + m̂h(xj,k),

k = 1, . . . , Nj, j = 1, . . . ,M, } ≥ 1− α.

As a practical method for finding βj for each group j we suggest the following “halving”

approach. In particular, first try β = α/2M , and calculate αβ. If the result is more than

α/M , then try β = α/4M , otherwise next try β = 3α/4M . Continue this halving approach

until neighboring (since only finitely many bootstrap replications are made, there is only

a finite grid of possible βs available) values β∗ and β∗ are found so that αβ∗ < α/M <

αβ∗ . Finally, take a weighted average of the β∗ and the β∗ intervals where the weights are

(αβ∗ − α/M)/(αβ∗ − αβ∗) and (α/M − αβ∗)/(αβ∗ − αβ∗), respectively.

Note that Theorem 4.3.2 contains, as a special case, the asymptotic validity of both the

Bonferroni and the direct simultaneous error bars. Bonferroni is the special case N1 = · · · =

NM = 1, and the direct method is where M = 1.
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The wild bootstrap simultaneous error bars are constructed according to the following algo-

rithm.

Algorithm 4.3.4

b=0

REPEAT

b=b+1

STEP 1.

Sample ε∗i from the two-point distribution Ĝi 4.2.9, where

Ĝi = γδa + (1− γ)δb

STEP 2.

Construct wild bootstrap observations

Y ∗i = m̂g(Xi) + ε∗i ,

where m̂g(x) is a slightly oversmoothed kernel estimator with bandwidth g. Compute m̂∗h(x)

at M different locations from the bootstrap sample {(Xi, Y
∗
i )}ni=1.

UNTIL b=B=number of bootstrap samples.

STEP 3.

Calculate Ij,k(βj) as follows.

First try β = α/2M , and calculate αβ.

If the result is more than α/M , then try β = α/4M , otherwise next try β = 3α/4M .

Continue this halving approach until neighboring values β∗ and β∗ are found so that αβ∗ <

α/M < αβ∗ .
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Finally, take a weighted average of the β∗ and the β∗ intervals where the weights are

(αβ∗ − α/M)/(αβ∗ − αβ∗)

and

(α/M − αβ∗)/(αβ∗ − αβ∗),

respectively.

Define

[CLO∗(xj,k), CUP
∗(xj,k)] = m̂h(xj,k)− m̂g(xj,k) + Ij,k(βj).

STEP 4.

Draw the interval [CLO∗, CUP ∗] around m̂h(x) at the M distinct points x1, . . . , xM .

This wild bootstrap technique was applied to the potato versus net income example. Figure

4.7 displays the error bars for this data.

To study the practical difference between the various types of error bars, Härdle and Marron

(1988) considered the distribution of m̂h(x) − m(x) at a grid of x values for some specific

examples. They chose the underlying curve to be of linear form, with an added bell shaped

hump,

m(x) = x+ 4e−2x2

/
√

2π.

To see what this looks like, consider Figure 4.8. The solid curve in each part of Figure 4.8

is this m(x).

The marginal distribution of X is N(0, 1), and the conditional distribution of Y |X is

N(m(X), σ2), for σ = .3, .6, 1, 1.5. For each of these four distributions 200 observations

were generated. Figure 4.8 shows one realization from each of the four settings. Figure 4.8

also shows m̂h0(x), as calculated from the crosses, for each setting, together with a plot of

the kernel function at the bottom which shows the effective amount of local averaging being

done in each case. The bandwidth for these is h0, the optimal bandwidth as in Härdle and

Marron (1985b), where the weight function w(x) in that paper was taken to be the indicator
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Figure 4.7: Uniform error bars for the potato versus net income data set for 1973. The solid

line is the kernel smooth mh(x), h = 0.35 (quartic kernel). Family Expenditure

Survey (1968–1981).

function of [−2, 2]. As expected, more smoothing is required when the error variance is

larger.

To study the differences among the various error bars, for each setting, 500 pseudo data sets

were generated. Then kernel estimates were calculated, at the points x = −2,−1.8,−1.6, . . . , 1.8, 2

using a standard normal density as kernel. The bandwidth was chosen to be h0. Figure 4.9

shows, for the σ = 1 distribution, m(x) overlayed with error bars whose endpoints are various

types of quantiles of the distribution of m̂h(x). The centers of the error bars are at the means

of these distributions, and show clearly the bias that is inherent in nonparametric regression

estimation. Note, in particular, how substantial bias is caused by both the curvature of m(x)

near the hump, and by the curvature of f(x) near x = −2, 2. The bars in Figure 4.9a are

80% pointwise error bars. In Figure 4.9b they are 80% simultaneous bars. In Figure 4.9c,
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Figure 4.8: Solid curve is m(x), crosses are a realization of Y1, . . . , Y200 for (a) σ = .3, (b)

σ = .6, (c) σ = 1, (d) σ = 1.5. Dotted curve is m̂h0(x); curve at bottom shows

effective window width used by m̂h0(x). ANR200obs.xpl From Härdle and

Marron (1988).

the x values were split up into the neighborhoods {−2, . . . ,−1}, {−.8, . . . , 0}, {.2, . . . , 1},

{1.2, . . . , 2} and the neighborhood method of Theorem 4.3.2 was used. Figure 4.9d shows

the completely Bonferroni 80% error bars.

For easy comparison of the lengths of these intervals, consider Figure 4.10. This shows, for

the same x values, the lengths of the various bars in Figure 4.9. Of course, these bars are

shorter near the center, which reflects the fact that there is more data there, so the estimates

are more accurate. As expected, the lengths increase from pointwise, to actual simultaneous,

http://www.quantlet.org/mdstat/codes/anr/ANR200obs.html
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Figure 4.9: Overlay of m(x) with empirical (from 500 simulation runs) quantiles of m̂h0(x)

distribution. Centers of bars are means of distributions. Error bars are (a)

80% pointwise,(b) 80% simultaneous, (c) 80% neighborhood, (d) 80% Bonferroni.

From Härdle and Marron (1988).

to neighborhood, to Bonferroni bars. Also note that, as stated above, the difference between

the actual simultaneous bars and the neighborhood simultaneous bars is really quite small,

whereas the pointwise bars are a lot narrower.

Exercises
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Figure 4.10: Lengths of the bars in Figure 4.9, where the x locations are the same. From

Härdle and Marron (1990).

4.3.1 Refine Algorithm 4.3.2 to allow a kernel with K(A) > 0.

4.3.2 Use the WARPing algorithm of Exercise 4.2.3 on the wild bootstrap smoothing to

program Algorithm 4.3.4 for simultaneous error bars.

4.3.3 Compare the naive bootstrap bands with the wild bootstrap error bars. Where do you

see the essential difference?

[Hint : Consider the bias of m̂h(x).]

4.3.4 Use Algorithm 4.3.2 to find a smooth uniform confidence band for the motorcycle data

set.

4.3.5 Could you translate Theorem 4.3.1 into the world of k-NN smoothing using the

equivalence statements of Section 3.11?
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4.3.4 Complements

An important issue is how to fine tune the choice of the pilot bandwidth g. Though it is true

that the bootstrap works (in the sense of giving asymptotically correct coverage probabilities)

with a rather crude choice of g, it is intuitively clear that specification of g will play a role

in how well it works for finite samples. Since the main role of the pilot smooth is to provide

a correct adjustment for the bias, we use the goal of bias estimation as a criterion. We think

theoretical analysis of the above type will be more straightforward than allowing the Nj to

increase, which provides further motivation for considering this general grouping framework.

In particular, recall that the bias in the estimation of m(x) by m̂h(x) is given by

bh(x) = EY |X [m̂h(x)]−m(x).

The bootstrap bias of the estimator constructed from the resampled data is

b̂h,g(x) = E∗[m̂∗h(x)]− m̂g(x)

= n−1

n∑
i=1

Kh(x−Xi)m̂g(Xi)/f̂h(x)− m̂g(x).

The following theorem gives an asymptotic representation of the mean square error for the

problem of estimating bh(x) by b̂h,g(x). It is then straightforward to find a g that minimizes

this representation. Such a choice of g will make the means of the Y |X- and ∗-distributions

close to each other.

Theorem 4.3.3 Under the conditions of Theorem 4.2.2, along almost all sample sequences,

E[(b̂h,g(x)− bh(x))2|X1, . . . , Xn] ∼ h4[C1n
−1g−5 + C2g

4],

in the sense that the ratio tends in probability to one, where

C1 =

∫
(K ′′)2 1

2
dKσ

2(x)/f(x),

C2 = (
1

2
dK)4[(mf)(4) − (mf ′′)′′]2(x)/f(x)2.
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An immediate consequence of Theorem 4.3.3 is that the rate of convergence of g for d = 1

should be n−1/9. This makes precise the above intuition which indicated that g should be

slightly oversmoothed. In addition, under these assumptions reasonable choices of h will be

of the order n−1/5. Hence, Theorem 4.3.3 shows once again that g should tend to zero more

slowly than h. A proof of Theorem 4.3.3 is contained in Härdle and Marron (1988).

4.4 Behavior at the boundary

Near the boundary of the observation interval any smoothing method will become less ac-

curate. At the boundary fewer observations can be averaged and thus variance or bias can

be affected. Consider kernel weights; they become asymmetric as x approaches the bound-

ary points. This “boundary effect” is not present for x in the interior of the observation

interval, but for a small to moderate sample size, a significant proportion of the observation

interval can be affected by the boundary behavior. Consider, for instance, the kernel smooth

in Figure 3.2. The Gaussian kernel that has been used there is always truncated through

boundary points. The whole observation interval is thus in a (strict) sense influenced by

boundary effects. Note, however, that this kernel is effectively zero outside the range of

three standard deviations, so a smaller proportion of the observations on each side are due

to boundary effects.

In this section I describe the boundary effects and present a simple and effective solution

to the boundary problem. This solution is due to Rice (1984b) and uses the (generalized)

jackknifing technique. Boundary phenomena have also been discussed by Gasser and Müller

(1979) and Müller (1984b) who proposed “boundary kernels” for use near the boundary. In

the setting of spline smoothing Rice and Rosenblatt (1983) computed the boundary bias.

Consider the fixed design error model with kernels having support [−1, 1]. Take the kernel

estimator

m̂h(x) = n−1

n∑
i=1

Kh(x−Xi) Yi,
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which has expectation equal to (see Exercise 4.4)∫ x/h

(x−1)/h

K(u) m(x− uh) du+O(n−1h−1) (4.4.21)

as nh→∞. In the middle of the observation interval there is no problem since for h small,

x/h ≥ 1 and (x− 1)/h ≤ −1.

Now let x = ρh ≤ 1− h; then by a Taylor series expansion the expected value of m̂h(x) can

be approximated by

m(x)

∫ ρ

−1

K(u) du− hm′(x)

∫ ρ

−1

u du

+
1

2
h2m′′(x)

∫ ρ

−1

u2K(u) du

= m(x)ωK(0, ρ)− hm′(x)ωK(1, ρ)

+
1

2
h2m′′(x)ωK(2, ρ). (4.4.22)

Of course, if ρ ≥ 1,

ωK(0, ρ) = 1,

ωK(1, ρ) = 0,

ωK(2, ρ) = dK ,

and we have the well-known bias expansion for the Priestley–Chao estimator. The idea of

John Rice is to define a kernel depending on the relative location of x expressed through the

parameter ρ.

Asymptotic unbiasedness is achieved for a kernel

Kρ(·) = K(·)/ωK(0, ρ).

If x is away from the left boundary, that is, ρ ≥ 1, then the approximate bias is given by

the third term. If ρ < 1, the second term is of dominant order O(h) and thus the bias is of

lower order at the boundary than in the center of the interval.
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The generalized jackknife technique (Gray and Schucany 1972) allows one to eliminate this

lower order bias term. Let m̂h,ρ(·) be the kernel estimator with kernel Kρ and let

m̂J
h(x) = (1−R)m̂h,ρ(x) +Rm̂αh,ρ(x)

be the jackknife estimator of m(x), a linear combination of kernel smoothers with bandwidth

h and αh. From the bias expansion 4.4.22, the leading bias term of m̂J
h(x) can be eliminated

if

R = − ωK(1, ρ)/ωK(0, ρ)

αωK(1, ρ/α)/ωK(0, ρ/α)− ωK(1, ρ)/ωK(0, ρ)
. (4.4.23)

This technique was also used by Bierens (1987) to reduce the bias inside the observation

interval. In effect, the jackknife estimator is using the kernel function

KJ
ρ (u) = (1−R)K(u)− (R/α)K(u/α), (4.4.24)

where R and α and thus KJ
ρ depend on ρ. In this sense, KJ

ρ can be interpreted as a “boundary

kernel”. Rice (1984b) has recommended the following for the choice of α:

α = 2− ρ.

As an example, take as the initial kernel the quartic kernel

K(u) = (15/16)(1− u2)2 I(|u| ≤ 1). (4.4.25)

The numbers ωK(0, ρ), ωK(1, ρ) can be computed explicitly. Figure 4.11 shows the sequence

of boundary kernels KJ
ρ for ρ = 0.1, 0.2, 0.4, 0.6, 0.8. Note that the kernels have negative

side lobes. Figure 4.12 shows the nonparametric estimate of the function m(x) = x2 from

n = 15 observations (Gaussian noise, σ = 0.05). The bandwidth h is 0.4, thus 60 percent of

the observation interval are due to boundary effects.

Exercises

4.4.1 Compute the constants ωK(0, ρ), ωK(1, ρ), ωK(2, ρ) from 4.4.22 for the quartic kernel.

Construct an algorithm with bias correction at the boundary.
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Figure 4.11: Modified quartic boundary kernels KJ
ρ for ρ = 0.0, 0.2, 0.4, 0.6, 0.8. The

symmetric kernel is the kernel KJ
1 . From Rice (1984b) with permission of Marcel

Dekker, Inc., New York.

[Hint : The system XploRe (1989) contains this algorithm for the triweight kernel.]

4.4.2 Proof formula 4.4.21 by comparing

Em̂h(x) = n−1

n∑
i=1

Kh(x−Xi)m(Xi)

with

n−1

n∑
i=1

∫
∆i

Kh(x− u)m(u)du,

where ∆i = [X(i−1), X(i)), X0 = 0.

4.5 The accuracy as a function of the kernel

The effective weight function {Whi(x)} of kernel smoothers is determined by the kernel K

and the bandwidth sequence h = hn. The accuracy of the estimated curve m̂h(x) is not

only a function of the bandwidth alone, but, more precisely, it is dependent upon the pair

(K,h). In this section the behavior of quadratic distance measures is studied as a function
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Figure 4.12: Nonparametric estimate of m(x) = x2, n = 15, ρ = 0.05, h = 0.4, quartic

kernel. The solid line is the true function, the dotted line is the unmodified

kernel estimate. From Rice (1984b) with permission of Marcel Dekker, Inc.,

New York.

of the kernel K. The variation of these distance measures as a function of the kernel can be

uncoupled from the problem of finding a good smoothing parameter, as is shown in what

follows. The bottom line of this section is that for practical problems the choice of the kernel

is not so critical. The precision of m̂h is more a question of the choice of bandwidth. Recall

the asymptotic equivalence of the squared error distances as described in Theorem 4.1.1.

Given this equivalence I concentrate on the behavior of MISE as a function of K.

In Section 3.1 we have seen that the MSE of m̂h(x) can be written as

CV cKn
−1h−1 + C2

Bd
2
Kh

4, (4.5.26)

where CV , CB are constants depending on the joint distribution of (X,Y ). The bandwidth

minimizing 4.5.26 is

h0 =

(
CV
4C2

B

)1/5(
cK
d2
K

)1/5

n−1/5. (4.5.27)

This smoothing parameter results in the following MSE

MSEopt = n−4/5(4C2
B)1/5C

4/5
V c

4/5
K d

2/5
K
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+n−4/5(CV /4)4/5C
2/5
b c

4/5
K d

2/5
K

= n−4/5(CV )4/5C
2/5
b (41/5 + 4−4/5)c

4/5
K d

2/5
K .

This minimal MSE depends on the kernel through the factor

V (K)B(K) = c2
KdK =

(∫
K2(u)du

)2 ∫
u2K(u)du. (4.5.28)

More generally, we can consider the case of estimating the kth derivative, m(k), of a p-times

differentiable m. If we use derivative kernels, K(k), this functional then takes the form

V (K)B(K) =

[∫ 1

−1

(K(k)(u)2du

]p−k ∣∣∣∣∫ 1

−1

K(k)(u)updu

∣∣∣∣2k+1

.

How can this complicated expression be minimized as a function of K?

To answer this question note first that we have to standardize the kernel somehow since this

functional of K is invariant under scale transformations

K(k)(u) → s−(k+1)K(k)(u/s). (4.5.29)

There are several approaches to this standardization question. Here I present the approach

by Gasser, Müller and Mammitzsch (1985), who propose to set the support of K equal to

[−1, 1]. A possible drawback of this standardization is that one can lose the feeling of what

the bandwidth is really doing to the data. Consider, for instance, the kernel function

K(u) = Cα(1− u2)α I(|u| ≤ 1),

which has for all α support [−1, 1]. For large α the kernels become steeper and steeper

and it becomes difficult to interpret the bandwidths as multiples of the support. In Section

5.4, when I discuss the canonical kernels of Marron and Nolan (1988), I come back to this

standardization question.

Gasser, Müller and Mammitzsch (1985) used variational methods to minimize V (K)B(K)

with respect to K. The answers are polynomials of degree p. Some of these “optimal” kernels

are presented in Table 4.1.
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Table 4.1: Kernel functions minimizing V (K)B(K). Source: Gasser and Mammitzsch

(1985).

k p kernel K(u)

0 2 (3/4)(−u2 + 1) I(|u| ≤ 1)

0 4 (15/32)(7u4 − 10u2 + 3) I(|u| ≤ 1)

1 3 (15/4)(u3 − u) I(|u| ≤ 1)

1 5 (105/32)(−9u5 + 14u3 − 5u) I(|u| ≤ 1)

2 4 (105/16)(−5u4 + 6u2 − 1) I(|u| ≤ 1)

2 6 (315/64)(77u6 − 135u4 + 63u2 − 5) I(|u| ≤ 1)

It is said that a kernel is of order (k, p) if it satisfies the following moment conditions:∫ 1

−1

K(u)uj du = 0, j = 1, . . . , p− k − 1;

= CK(−1)k
(p− k)!

k!
, j = p− k.

Then K(k) satisfies∫ 1

−1
K(k)(u)ujdu = 0, j = 0, . . . , k − 1, k + 1, . . . , p− 1;

= (−1)kk!, j = k;

= CK , j = p.

The optimal kernels given in Table 4.1 are of order (k, p). Another important issue can be

seen from Table 4.1 : Derivatives of “optimal” kernels do not yield “optimal” kernels for

estimation of derivatives, for example, the kernel for (k, p) = (1, 3) is not the derivative of

the one with (k, p) = (0, 4). But note that the derivative of the latter kernel satisfies 4.5.28

with (k, p) = (1, 3).

Figure 4.13 depicts two optimal kernels for p = 2, 4 and k = 0.

Note that the kernel with p = 4 has negative side lobes. The Epanechnikov kernel is “opti-

mal” for estimating m when p = 2. The kernel functions estimating the first derivative must
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Optimal kernels for estimating m
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Figure 4.13: Two optimal kernels for estimating m (from Table 4.5.1). Label 1 (solid line):

(k, p) = (0, 2). Label 2 (dashed line): (k, p) = (0, 4). ANRoptker1.xpl

be odd functions by construction. A plot of two kernels for estimating the first derivative of

m is given in Figure 4.14. The kernels for estimating second derivatives are even functions,

as can be seen from Figure 4.15. A negative effect of using higher order kernels is that by

construction they have negative side lobes. So a kernel smooth (computed with a higher or-

der kernel) can be partly negative even though it is computed from purely positive response

variables. Such an effect is particularly undesirable in demand theory, where kernel smooths

are used to approximate statistical Engel curves; see Bierens (1987).

http://www.quantlet.org/mdstat/codes/anr/ANRoptker1.html
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Optimal kernels for estimating m’
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Figure 4.14: Two optimal kernels for estimating m′, the first derivative of m (from Table

4.5.1). Label 1 (solid line): (k, p) = (1, 3). Label 2 (dashed line): (k, p) = (1, 5).

ANRoptker2.xpl

A natural question to ask is, how “suboptimal” are nonoptimal kernels, that is, by how

much the expression V (K)B(K) is increased for nonoptimal kernels? Table 4.2 lists some

commonly used kernels (for k = 0, p = 2) and Figure 4.16 gives a graphical impression of

these kernel. Their deficiencies with respect to the Epanechnikov kernel are defined as

D(Kopt, K) = [V (Kopt)B(Kopt)]
−1[V (K)B(K)].

http://www.quantlet.org/mdstat/codes/anr/ANRoptker2.html
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Optimal kernels for estimating m’’
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Figure 4.15: Two optimal kernels for estimating m′′, the second derivative of m (from Table

4.5.1). Label 1 (solid line): (k, p) = (2, 4). Label 2 (dashed line): (k, p) = (2, 6).

ANRoptker3.xpl

A picture of these kernels is given in Figure 4.16. The kernels really look different, but Table

4.2 tells us that their MISE behavior is almost the same.

The bottom line of Table 4.2 is that the choice between the various kernels on the basis of the

mean squared error is not very important. If one misses the optimal bandwidth minimizing

MISE (or some other measure of accuracy) by 10 percent there is a more drastic effect on the

http://www.quantlet.org/mdstat/codes/anr/ANRoptker3.html
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Table 4.2: Some kernels and their efficiencies

Kernel K(u) D(Kopt, K)

Epanechnikov (3/4)(−u2 + 1) I(|u| ≤ 1) 1

Quartic (15/16)(1− u2)2 I(|u| ≤ 1) 1.005

Triangular (1− |u|) I(|u| ≤ 1) 1.011

Gauss (2π)−1/2 exp(−u2/2) 1.041

Uniform (1/2) I(|u| ≤ 1) 1.060

Note:The efficiency is computed as {V (Kopt)B(Kopt)/[V (K)B(K)]}−1/2 for k = 0,p = 2.

precision of the smoother than if one selects one of the “suboptimal” kernels. It is therefore

perfectly legitimate to select a kernel function on the basis of other considerations, such as

the computational efficiency (Silverman 1982; Härdle, 1987a).

Exercises

4.5.1 Verify the “small effect of choosing the wrong kernel” by a Monte Carlo study. Choose

m(x) = exp(−x2/2), ε ∼ N(0, 1), X ∼ U(−1, 1), n = 100.

Select as h the MSE optimal bandwidth for estimating m(0). Compute the MSE at x = 0

for the different kernels over 10000 Monte Carlo experiments.

4.5.2 Compute V (K)B(K) for the triweight kernel

K(u) = C3(1− u2)3 I(|u| ≤ 1).

Insert the obtained efficiency loss into Table 4.2.

4.5.3 Prove that V (K)B(K) as defined in 4.5.28 is invariant under the scale transformations

4.5.29.

4.5.4 A colleague has done the Monte Carlo study from Exercise 4.5 in the field of density

smoothing. His setting was

f = φ, n = 100, x = 0
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Positive kernels for estimating m
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Figure 4.16: Positive kernels for estimating m (from Table 4.2). Label 1: quartic; la-

bel 2: triangular; label 3: Epanechnikov; label 4: Gauss; label 5: uniform.

ANRposkernels.xpl

with a MSE optimal bandwidth h. From the 10,000 Monte Carlo runs he obtained the

following table.

Do these numbers correspond to the values D(Kopt, K) from Table 4.2?

http://www.quantlet.org/mdstat/codes/anr/ANRposkernels.html
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Table 4.3: Some kernels and their efficiencies

estimated 95% confidence

Kernel MSE interval

Epanechnikov 0.002214 ±0.000051

Quartic 0.002227 ±0.000051

Triangular 0.002244 ±0.000052

Gauss 0.002310 ±0.000054

Uniform 0.002391 ±0.000055

Note:The efficiency is computed as {V (Kopt)B(Kopt)/[V (K)B(K)]}−1/2 for k = 0,p = 2.

4.5.1 Complements

I give a sketch of a proof for the optimality of the Epanechnikov kernel. First, we have

to standardize the kernel since V (K)B(K) is invariant under scale transformations. For

reasons that become clear in Section 5.4 I use the standardization V (K) = B(K). The task

for optimizing V (K)B(K) is then to minimize∫
K2(u)du

under the constraints

(i)
∫
K(u) = 1,

(ii) K(u) = K(−u),

(iii) dK = 1.

If ∆K denotes a small variation for an extremum subject to the constraints (i)–(iii), the

variation of ∫
K2(u)du+ λ1

[∫
K(u)du− 1

]
+ λ2

[∫
u2K(u)du− 1

]
should be zero. This leads to

2

∫
K(u)∆K(u)du+ λ1

[∫
∆K(u)du

]
+ λ2

[∫
∆K(u)u2

]
= 0.
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Therefore,

2K(u) + λ1 + λ2u
2 = 0.

The kernel K(u) is zero at u = ±(−λ1/λ2)1/2. The answer is thus the Epanechnikov kernel

if we determine λ1, λ2 from the constraints (i)–(iii). The above standardization of c2
K = dK

gives then the rescaled version

K(u) = 3/(4 · 151/2)(1− (u/151/2)2I(|u/151/2| ≤ 1)).

4.6 Bias reduction techniques

In this section we will see that the use of “higher order kernels” has the nice effect of reducing

the bias. The kernels of Figure 1.3 are of higher order. The spline smoothing kernel (Figures

3.10,3.11), for instance, is of order (0, 4). (The order of a kernel was defined in the previous

section.) Another technique for bias reduction is jackknifing. I shall explain subsequently

how jackknifing is related to higher order kernels and investigate the variance of higher order

kernel smoothers.

Consider the fixed design model of equispaced and fixed {Xi = i/n} on the unit interval.

Suppose that it is desired to estimate the kth derivative m(k) of m. The kernel smoother for

this problem is

m̂
(k)
h (x) = n−1h−(k+1)

n∑
i=1

K(k)

(
x−Xi

h

)
Yi 0 < x < 1,

where K(k) is the kth derivative of a k-times differentiable kernel K for which it is required

that

support(K) = [−1, 1];

K(j)(1) = K(j)(−1) = 0 j = 0, . . . , (k − 1).
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Let m be p-times (p ≥ k + 2) differentiable and suppose that the kernel K is such that for

some constant CK ∫ 1

−1

K(u)uj du = 0, j = 1, . . . , p− k − 1;

= CK(−1)k
(p− k)!

k!
, j = p− k. (4.6.30)

Then K(k) satisfies∫ 1

−1
K(k)(u)uj du = 0, j = 0, . . . , k − 1, k + 1, . . . , p− 1;

= (−1)kk!, j = k;

= CK , j = p.

(4.6.31)

The expectation of m̂
(k)
h (x) can be approximated as in 3.3.17 or 4.1.1 by∫ 1

−1

K(u)m(k)(x− uh)du 0 < x < 1 (4.6.32)

Expanding m(k)(x − uh) in a Taylor series around x one sees from 4.6.32 and 4.6.31 that

with a kernel function satisfying 4.6.30 the bias of m̂
(k)
h (x) is, to first order, equal to

h(p−k)

p!

[∫ 1

−1

K(k)(u)up du

]
m(p)(x). (4.6.33)

By increasing p, the degree of differentiability and the order of the kernel, one can make

this quantity arbitrarily small. This technique is commonly called bias reduction through

“higher order kernels”.

Higher order kernel functions K(k) satisfy 4.6.32 with a large value of p (Müller 1984a; Sacks

and Ylvisaker 1981). This means that K(k) has the first (k − 1) moments and then the

(k + 1)th up to the (p− 1)th moment vanishing.

Since higher order kernels take on negative values the resulting estimates inherit this prop-

erty. For instance, in the related field of density estimation, kernel smoothing with higher

order kernels can result in negative density estimates. Also, in the setting of regression

smoothing one should proceed cautiously when using higher order kernels. For example, in

the expenditure data situation of Figure 2.3 the estimated expenditure Engel curve could
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take on negative values for a higher order kernel. For this reason, it is highly recommended

to use a positive kernel though one has to pay a price in bias increase.

It seems appropriate to remind the reader that “higher order” kernels reduce the bias in an

asymptotic sense. Recall that when estimating m, the optimal rate of convergence (Section

4.1) for kernels with p = 2 is n−2/5. If a kernel with p = 4 is used, then the optimal rate is

n−4/9. So using a “higher order” kernel results in a relatively small improvement (2/45) in the

order of magnitude of the best achievable squared error distance. For all except astronomical

sample sizes this difference will become visible. Higher order kernels have other undesirable

side effects as can be seen from the following discussion of the jackknifing approach.

Schucany and Sommers (1977) construct a jackknife kernel density estimator that yields

a bias reducing kernel of higher order. The jackknife technique is also applicable for bias

reduction in regression smoothing. Consider the jackknife estimate (Härdle 1986a)

G(m̂h1 , m̂h2)(x) = (1−R)−1[m̂h1(x)−Rm̂h2(x)],

where R 6= 1 is a constant. Here m̂hl(x) is a kernel smoother with bandwidth hl, l =

1, 2. Suppose that the kernel K is of order 2, that is, satisfies 4.6.31 with p = 2 and the

regression function is four-times differentiable. Then the bias term of the jackknife estimate

G(m̂h1 , m̂h2) can be expressed as:

(1−R)−1

2∑
j=1

[h2j
1 −Rh

2j
2 ]Cj(K)m(2j)(x). (4.6.34)

A good choice of R reduces this bias an order of magnitude. Define

R = h2
1/h

2
2,

making the coefficient of m(2)(x) in 4.6.34 zero. Indeed, the bias of G(m̂h1 , m̂h2) has been

reduced compared with the bias of each single kernel smoother. Moreover, the jackknife

estimator with this R, being a linear combination of kernel smoothers, can itself be defined

by a kernel

K(c)(u) =
K(u)− c3K(cu)

(1− c2)
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with

c = h1/h2 =
√
R.

Note that K(c) depends on n through c. The bias reduction by K(c) can also be seen by

calculations as in Section 4.6. K(c) is indeed a “higher order” kernel satisfying 4.6.31 with

p = 4 but is not optimal in the sense of minimizing V (K)B(K). By l’Hospital’s rule the

limit of K(c) as c→ 1 is

K(1)(u) =
3

2
K(u) +

1

2
uK ′(u)

at points where K is differentiable.

At first sight the use of the jackknife technique seems to be a good strategy. If at the first

step only a small amount of smoothness is ascribed to m then in a further step the jackknife

estimate will indeed reduce the bias, provided that m is four-times differentiable. However,

a sharper analysis of this strategy reveals that the variance (for fixed n) may be inflated.

Consider the Epanechnikov kernel

K(u) = (3/4)(1− u2)I(|u| ≤ 1).

Straightforward computations show that

cK =

∫
K2(u)du = 3/5,∫

K2
(c)(u)du =

9
10

[c3 + 2c2 + 4/3c+ 2/3]

[c+ 1]2

Table 4.4 shows the dependence of this number on c together with the increase in variance

compared to K.

It is apparent from these figures that some caution must be exercised in selecting c (and R),

since the variance increases rapidly as c tends to one. In order to compare the mean squared

error of m̂h with that of G(m̂h1 , m̂h2) one could equalize the variances by setting

h1 =

[∫
K2

(c)(u)du/

∫
K2(u)du

]
h.
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Table 4.4: The variance component
∫
K2

(c)(u)du of the effective kernel as a function of c, and

the relative deficiency
∫
K2

(c)(u)du/
∫
K2(u)du with respect to the Epanechnikov

kernel.

c
∫
K2

(c)(u)du
∫
K2

(c)
(u)du∫

K2(u)du

0.10 0.610 1.017

0.20 0.638 1.063

0.30 0.678 1.130

0.40 0.727 1.212

0.50 0.783 1.305

0.60 0.844 1.407

0.70 0.900 1.517

0.80 0.979 1.632

0.90 1.050 1.751

0.91 1.058 1.764

0.92 1.065 1.776

0.93 1.073 1.788

0.94 1.080 1.800

0.95 1.087 1.812

0.96 1.095 1.825

0.97 1.102 1.837

0.98 1.110 1.850

0.99 1.117 1.862

Without loss of generality one can assume that m(2)(x)/10 = m(4)(x)/280 = 1. The leading

bias term of m̂h is then h2 + h4, whereas that of G(m̂h1 , m̂h2) for c = 0.99 is equal to
√

152.76h4. So, if h2 > 1/(
√

152.76 − 1) the jackknifed estimator is less accurate than the

ordinary kernel smoother.
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Since the choice of R (and c) seems to be delicate in a practical example, it is interesting to

evaluate the jackknifed estimator in a simulated example. Suppose that m(x) = sin(x), n =

100, σ2 = 1 and it is desired to evaluate the mean squared error at x = π/4. A bandwidth

h, being roughly equal to 0.3, would minimize the mean squared error of m̂h(x) (with the

Epanechnikov kernel). Table 4.5 shows the ratio of the mean squared error of G(m̂h1 , m̂h2)

to that of m̂h as c and h are varied.

The use of the higher order kernel technique, as is done by the jackknife technique, may thus

result in a mean squared error nearly twice as large as the corresponding error of the ordinary

Epanechnikov kernel smoother, as can be seen from the entry (h, h1, c) = (0.3, 0.3, 0.9) in

Table 4.5.

Exercises

4.6.1 Why is it impossible to find a positive symmetric kernel of order (0, 4)?

4.6.2 Compute the cK for higher order kernels of order (0, p) as a function of p. Do you

observe an increasing value of cK as p increases?
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Table 4.5:

The efficiency of the jackknifed kernel smoother G[m̂h1 , m̂h2 ] with respect to the ordinary

kernel estimator

c = 0.1 c = 0.2 c = 0.3

h\h1 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.2 1.017 0.67 0.51 1.063 0.709 0.532 1.13 0.753 0.565

0.3 1.52 1.017 0.765 1.59 1.063 0.798 1.695 1.13 0.847

0.4 2.035 1.357 1.020 2.127 1.418 1.064 2.26 1.507 1.13

c = 0.4 c = 0.5 c = 0.6

h\h1 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.2 1.212 0.808 0.606 1.305 0.87 0.652 1.407 0.938 0.703

0.3 1.818 1.212 0.909 1.958 1.305 0.979 2.111 1.407 1.055

0.4 2.424 1.616 1.212 2.611 1.74 1.305 2.815 1.877 1.407

c = 0.7 c = 0.8 c = 0.9

h\h1 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.2 1.517 1.011 0.758 1.632 1.088 0.816 1.751 1.167 0.875

0.3 2.275 1.517 1.137 2.448 1.632 1.224 2.627 1.751 1.313

0.4 3.034 2.022 1.517 3.264 2.176 1.632 3.503 2.335 1.751

Note: Shown is the ratio: mean squared error {G[m̂h1 , m̂h2 ]}/ mean squared error {m̂h} (for

n = 100,m(x) = sin(x), σ2 = 1, and x = π/4) as a function of c, h and h1.

Source: Härdle (1986a), c© 1986 IEEE.



5 Choosing the smoothing parameter

Tous les résultats asymptotiques que nous venons de considérer ne permettent pas

de répondre à l’importante question que posent les praticiens de la Statistique: pour n fixé,

comment choisir hn?

Collomb (1981, p. 82)

The problem of deciding how much to smooth is of great importance in nonparametric

regression. Before embarking on technical solutions of the problem it is worth noting that

a selection of the smoothing parameter is always related to a certain interpretation of the

smooth. If the purpose of smoothing is to increase the “signal to noise ratio” for presentation,

or to suggest a simple (parametric) models, then a slightly “oversmoothed” curve with a

subjectively chosen smoothing parameter might be desirable. On the other hand, when the

interest is purely in estimating the regression curve itself with an emphasis on local structures

then a slightly “undersmoothed” curve may be appropriate.

However, a good automatically selected parameter is always a useful starting (view)point.

An advantage of automatic selection of the bandwidth for kernel smoothers is that compar-

ison between laboratories can be made on the basis of a standardized method. A further

advantage of an automatic method lies in the application of additive models for investiga-

tion of high-dimensional regression data. For complex iterative procedures such as projection
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pursuit regression (Friedman and Stuetzle 1981) or ACE (Breiman and Friedman 1985) it is

vital to have a good choice of smoothing parameter for one-dimensional smoothers that are

elementary building blocks for these procedures.

In the following sections various methods for choosing the smoothing parameters are pre-

sented. The choice is made so that some global error criterion is minimized. Section 5.2

discusses how far away the automatically chosen smoothing parameters are from their opti-

mum. It will be seen that there is indeed room for subjective choice of the bandwidth within

a slowly narrowing confidence interval of the optimum. Several possibilities for adapting

the smoothing parameter to local curvature of the regression curve are presented in Section

5.3. In particular, I propose a method based on bootstrapping from estimated residuals.

The supersmoother , proposed by Friedman (1984), is also presented there. The important

practical question of how to compare automatically chosen bandwidths between laboratories

is discussed in Section 5.4.

5.1 Cross-validation, penalizing functions and the plug-in

method.

The accuracy of kernel smoothers as estimators of m or of derivatives of m is a function

of the kernel K and the bandwidth h. I have argued that the accuracy depends mainly

on the smoothing parameter h (Section 4.5). In this section, several bandwidth selection

procedures will be presented that optimize quadratic error measures for the regression curve

and its derivatives. In particular, I consider the distances

dA(h) = n−1

n∑
j=1

[m̂h(Xj)−m(Xj)]
2w(Xj),

dI(h) =

∫
[m̂h(x)−m(x)]2w(x)f(x)dx,

dC(h) = E[dA(h)|X1, . . . , Xn],
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where w(x) is a nonnegative weight function. The form of the above distances is determined

by a variance component (decreasing in h) and a bias2 component (increasing in h). Consider,

for instance, dC(h); here the bias2(h) is

b2(h) = n−1

n∑
j=1

[
n−1

n∑
i=1

Whi(Xj)m(Xi)−m(Xj)

]2

w(Xj)

and the variance component is

v(h) = n−1

n∑
j=1

[
n−2

n∑
i=1

Whi(Xj)σ
2(Xj)

]
w(Xj),

where Whi(x) = Kh(x − Xi)/f̂h(x) are the Nadaraya–Watson weights. The fact that b2(h)

increases as h increases can be seen in Figure 5.1, where for the the simulated data set (Table

2, Appendix) the function dC(·) is presented as a function of h. The power of h at which

b2(h) increases is a function of the selected kernel and the degree of differentiability of the

regression function; see Section 4.6.

The decreasing curve in Figure 5.1 shows v(h) roughly proportional to h−1. The sum of

both components is the conditional squared error dC(h), which is shown in Figure 5.1 as the

curve above b2(h) and v(h).

Theorem 4.1.1 about the asymptotic equivalence of dI , dA and dC states that all three dis-

tances should have roughly the same minimum. The approximate identity of the three

distances can be seen from Figure 5.2. It is highly desirable to choose a smoothing parame-

ter that balances the systematic bias2 effects versus the stochastic uncertainty expressed by

the magnitude of the variance. For such a choice of smoothing parameter the squared bias

and the variance are of the same order.

How can we find such a smoothing parameter? We have already seen a theoretical analysis of

the MSE properties of kernel smoothers in Section 3.1. We know the asymptotic preferable

choice of h0 ∼ n−1/5, but the MSE and thus h0 involved complicated unknowns that had to

be estimated from the data as well.

The basic idea behind all smoothing parameter selection algorithms is to estimate the ASE or
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Bias^2, Variance and CSE
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Figure 5.1: The conditional squared error dC(h) as the sum of the bias2 component b2(h) and

the variance v(h) for the simulated data set (Table 2, Appendix). The weight

function w(x)=I(|x−1/2|< 0.4) has been used. The function b2(h) is indicated as an

increasing solid line (label 1). The variance is decreasing (fine dashed line, label

2) and dC is the sum of both (long dashed line, label 3). ANRsimmbv.xpl

equivalent measures (up to some constant). The hope is then that the smoothing parameter

minimizing this estimate is also a good estimate for the ASE itself. Expand the ASE as

dA(h) = n−1

n∑
j=1

m2(Xj)w(Xj) + n−1

n∑
j=1

m̂2
h(Xj)w(Xj)

−2n−1

n∑
j=1

m(Xj)m̂h(Xj)w(Xj).

Can we estimate this expression (up to a constant)? At first sight it seems possible. The

http://www.quantlet.org/mdstat/codes/anr/ANRsimmbv.html
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Figure 5.2:

Three measures of accuracy: dI ,dA,dC for the weight function w(x)=I(|x−1/2|≤0.4). The integrated

squared error (computed from 300 grid points) is shown as a solid line labeled 1. The aver-

aged squared error is indicated as a fine dashed line (label 2) and the error measure dC is

displayed with label 3 as a long dashed line. Computed from the simulated data set (Table

2, Appendix).

first term is independent of the smoothing parameter. The second term can be computed

entirely from the data. If the third term could be estimated and if it vanished faster than

dA itself tends to zero, then indeed a device for selecting the bandwidth could be established

quite easily.
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A naive estimate of the third term would be

n−1

n∑
j=1

Yjm̂h(Xj)w(Xj),

where the unknown mean m(Xj) is replaced by the observation Yj at Xj. This is equivalent

to considering the so-called resubstitution estimate of the prediction error

p(h) = n−1

n∑
j=1

[Yj − m̂h(Xj)]
2w(Xj)

as a device for selecting h. Unfortunately, the prediction error is a biased estimate of dA.

Figure 5.3 shows p(h) as an increasing function in h; the best bandwidth would thus be the

smallest bandwidth!

The intuitive reason for the bias in p(h) is that the observation Yj is used (in m̂h(Xj)) to

predict itself. To see this in more detail, consider the expansion

p(h) = n−1

n∑
j=1

ε2
jw(Xj) + dA(h)

−2n−1

n∑
j=1

εj(m̂h(Xj)−m(Xj))w(Xj).

The last term can be rewritten as

C1n(h) = −2n−1

n∑
j=1

εj

[
n−1

n∑
i=1

Whi(Xj)Yi −m(Xj)

]
w(Xj), (5.1.1)

which has expectation (given {X1, . . . , Xn})

−2n−1

n∑
j=1

[n−1Whj(Xj)σ
2(Xj)]w(Xj).

This quantity tends to zero at the same rate as the variance component of dA, which explains

the bias of p(h) as an estimate of dA(h). There are at least three possible ways to find an

unbiased estimate of dA:

1. a leave-out-technique to obtain zero expectation for 5.1.1;

2. a modification of p(h) such that bias terms like that of 5.1.1 cancel asymptotically;

3. a “plug-in” method, using asymptotics of “optimal bandwidth” sequences.
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The predection error
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Figure 5.3: The prediction error p(h) for the simulated data set (Table 2, Appendix 2). The

weight function w was set to the indicator function on [0.1,0.9]. ANRsimpre.xpl

5.1.1 Leave-one-out method, cross-validation

The leave-out method is based on regression smoothers in which one, say the jth, observation

is left out:

m̂h,j(Xj) = n−1
∑
i6=j

Whi(Xj)Yi. (5.1.2)

With these modified smoothers, the function

CV (h) = n−1

n∑
j=1

[Yj − m̂h,j(Xj)]
2w(Xj) (5.1.3)

is formed.

http://www.quantlet.org/mdstat/codes/anr/ANRsimpre.html
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The function CV is commonly called a cross-validation function since it validates the ability

to predict {Yj}nj=1 across the subsamples {(Xi, Yi)}i6=j (Stone 1974). In the context of kernel

smoothing this score function for finding h was proposed by Clark (1975). The idea is related

to variables selection in linear regression. Allen (1974) proposed the related quantity PRESS

(prediction sum of squares). Wahba and Wold (1975) proposed a similar technique in the

context of spline smoothing. The general structure of smoothing methods in linear regression

models is discussed in Hall and Titterington (1986a).

The reason why cross-validation works is simple: The cross-product term from the CV

function, similar to 5.1.1, is

C2n(h) = −2n−1

n∑
j=1

εj

n−1

n∑
i6=j
i=1

Whi(Xj)Yi −m(Xj)

w(Xj) (5.1.4)

and has expectation zero. The CV -function for the simulated data set is shown in Figure

5.4.

Note that by itself the fact that 5.1.4 has expectation zero does not guarantee that ĥ =

arg min[CV (h)] minimizes dA (or any other of the equivalent error measures). For this

procedure it must be required that C2n(h) converges uniformly over h to zero. Note also

that the bandwidth suggested here by cross-validation (for the quartic kernel, h = 0.1) is

not exactly equal to the subjectively chosen bandwidth from Section 3.11. The reason may

be twofold. First, the two bandwidths could be really different, even on the “correct scale.”

Second, they could be different since Figure 3.21 was produced with a Gaussian kernel and

the above cross-validation function was computed using a quartic kernel. A “common scale”

for comparing bandwidths from different kernels is derived in Section 5.4.

5.1.2 Penalizing functions

The second proposal, based on adjusting p(h) in a suitable way, aims at an asymptotic

cancellation of the bias 5.1.1. For this purpose introduce the penalizing function Ξ(u) with
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Cross-validation CV(h)
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Figure 5.4: The cross-validation function CV (h) for the simulated data set (Table 2, Appendix

2). The weight function w(x)=I(|x−1/2|≤0.4) was used. ANRsimcv.xpl

first-order Taylor expansion

Ξ(u) = 1 + 2u+O(u2), u→ 0.

This form of the penalizing function will work out well as will be seen in what follows. The

prediction error p(h) is adjusted by Ξ(n−1Whj(Xj)), that is, modified to

G(h) = n−1

n∑
j=1

(Yj − m̂h(Xj))
2Ξ(n−1Whj(Xj))w(Xj). (5.1.5)

The reason for this adjustment is that the correction function

Ξ(n−1Whj(Xj)) = Ξ(n−1h−1K(0)/f̂h(Xj))

http://www.quantlet.org/mdstat/codes/anr/ANRsimcv.html
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penalizes values of h too low. Recall that the naive approach to finding h = arg min[p(h)]

leads to too small an h. By penalizing p(h) as in 5.1.5 one corrects for this too small h.

Indeed, using the above Taylor expansion for Ξ, the score G(h) is to first order

n−1

n∑
j=1

{[ε2
j + (m(Xj)− m̂h(Xj))

2 (5.1.6)

+2εj(m(Xj)− m̂h(Xj))]

×[1 + 2n−1Whj(Xj)]}w(Xj).

Multiplying out and disregarding lower order terms leads to

n−1

n∑
j=1

ε2
jw(Xj) + dA(h)

+2n−1

n∑
j=1

εj(m(Xj)− m̂h(Xj))w(Xj)

+2n−1

n∑
j=1

ε2
jn
−1Whj(Xj)w(Xj).

Note that the first term is independent of h and that the expectation (given

{X1, . . . , Xn}) of the third term equals

−2n−1

n∑
j=1

n−1Whj(Xj)σ
2(Xj)w(Xj),

which is the negative expected value of the last term. The last two terms cancel asymptoti-

cally so that G(h) is (up to a shift by n−1
∑n

j=1 ε
2
jw(Xj)) roughly equal to dA(h). A number

of penalizing functions Ξ have been proposed in the literature, the simplest of which is due

to Shibata (1981):

Ξ(u) = 1 + 2u.

Some of the established correction functions are discussed and compared in their performance

in the next section. Figure 5.10 gives an impression of some correction functions Ξ.
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5.1.3 The plug-in method

The third method, the “plug-in” procedure, is based on the asymptotic expansion of the

squared error for kernel smoothers:

MSE = n−1h−1σ2(x)cK/f(x)

+h4[dK(m′′(x) + 2m′(x)(f ′/f)(x))/2]2.

An “optimal” bandwidth minimizing this expression would be (as pointed out in Section 4.1)

proportional to n−1/5 with constants depending on the unknowns σ2(x),m′′(x) and so on. In

practice, these quantities have to be estimated on the basis of some preliminary smoothing

process which raises a second-order bandwidth selection problem. Although the “plug-in”

method achieves the same efficiency as the two other methods (Section 5.2), it is due to

considerable uncertainty about how to choose the bandwidth in that first step. Another

disadvantage, from a theoretical point of view, is that one is always restricted to a certain

smoothness class (in the above expansion, to twice differentiable regression functions).

The first two methods, the leave-out and the penalty technique, lead to estimates of dA

(up to a shift of h) and hence to estimates of dI , dC . The random constant by which the

CV function or the G function differ from dA is roughly n−1
∑n

j=1 ε
2
jw(Xj), which tends to∫

σ2(x)f(x)w(x)dx. In Figure 5.5, the upper curve is the CV -function and the lower curve,

with a similar shape is the averaged squared error dA for the simulation example (Table 2,

Appendix 2).

The two curves in Figure 5.5 differ by a constant in the range [0.7, 0.9], which is a remarkably

accurate estimate of

0.8 =

∫
σ2(x)f(x)w(x)dx =

∫ 0.9

0.1

1dx.

Consider the example of finding the Engel curve of potatoes as a function of net income.

Figure 1.1 shows the data in the form of a sunflower plot. The cross-validation curve CV (h)

of this data set is displayed in Figure 5.6.
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Cross-validation and averaged squared error
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Figure 5.5: The cross-validation CV (h) (label 1) and the averaged squared error dA(h) (label

2) for the simulated set (Table 2, Appendix). The weight function was w(x)=

I(|x−1/2|≤0.4). ANRsimcvase.xpl

The cross-validation function has a clear minimum at h ≈ 0.35. The corresponding kernel

smooth is shown in Figure 5.7.

The estimated curve shows the same nonlinearity as Figure 1.2 but is slightly rougher.

In order to make cross-validation or the penalty method a mathematically justifiable device

for selecting the smoothing parameter, it must be shown that the score (CV or G) approxi-

mates (up to a constant) the accuracy measure dA(h) uniformly over h. If this is the case,

http://www.quantlet.org/mdstat/codes/anr/ANRsimcvase.html
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Figure 5.6: The cross-validation function CV (h) for the potato versus net income data set

(see Figure 1.0.1). The quartic kernel leave-one-out smoother was computed on

the inner 90 percent of the net income range (year 1973). Family Expenditure

Survey (1968–1983).

then the relative loss for a selected bandwidth ĥ,

d•(ĥ)

infh∈Hn d•(h)

a.s.→1. (5.1.7)

Here Hn is a set of reasonable bandwidths and d•(·) is any of the discussed squared deviation

measures. A data-driven bandwidth h that satisfies (5.1.7) is said to be asymptotically

optimal . The following Theorem by Härdle and Marron (1985 b,c) says that CV and G

yield optimal bandwidth selections.

Theorem 5.1.1 Suppose that

(A1) for n = 1, 2, . . ., Hn = [h, h], where

h ≥ C−1nδ−1/d, h ≤ Cn−δ

for some constants C, δ ∈ (0, 1/(2d));
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Optimal kernel smooth
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Figure 5.7: The optimal kernel smooth for the potato versus net income data set

with quartic kernel, h=0.35, n=7125. Family Expenditure Survey (1968–1981).

ANRpotqua.xpl

(A2) K is Hölder continuous, that is, for some L > 0, ξ ∈ (0, 1)

|K(u)−K(v)| ≤ L ‖u− v‖ξ ,

where ‖·‖ denotes Euclidean norm on Rd and also∫
‖u‖ξ |K(u)| du <∞;

(A3) the regression function m and the marginal density f are Hölder continuous;

(A4) the conditional moments of Y given X = x are bounded in the sense that there are

positive constants C1, C2, . . . such that for k = 1, 2, ..., E(Y k|X = x) ≤ Ck for all x;

http://www.quantlet.org/mdstat/codes/anr/ANRpotqua.html


5.1 Cross-validation, penalizing functions and the plug-in method. 193

(A5) the marginal density f(x) of X is bounded from below on the support of w;

(A6) the marginal density f(x) of X is compactly supported.

Then the bandwidth selection rule, “Choose ĥ to minimize CV (h) (or G(h))” is asymptoti-

cally optimal.

Asymptotic optimality of the kernel smoother with weights Whi(x) = Kh(x − Xi)/f(x)

was shown by Härdle and Kelly (1987) for a slightly larger range of bandwidths. Rice

(1984a) proved a related theorem using penalizing functions in the fixed design setting.

These penalizing functions do not yield asymptotically optimal smoothing parameters in the

stochastic design setting, as was shown by Härdle and Marron (1985a).

It is remarkable that the above devices yield optimal smoothing parameters without refer-

ence to a specific smoothness class to which either m or f belongs. Minimization of h is

performed over a wide range Hn of possible bandwidths. The method is not just restricted

to a specific range, for example, [an−1/5, bn−1/5], 0 < a < b, containing, for example, the

optimal smoothing parameters for twice differentiable regression functions. In this sense, the

cross-validation and the penalty method yield optimal smoothing parameters uniformly over

smoothness classes (see the remarks of Section 4.1). This, in turn, has the effect that the

data-driven kernel smoothers achieve “their” optimal rate, independently of the smoothness

of the underlying regression model (Härdle and Marron 1985b, section 3). From a practi-

cal point of view, this last theoretical property of cross-validated bandwidth sequences is

welcome. The user of the cross-validation method need not worry about the roughness of

the underlying curve. The cross-validated bandwidth will automatically give him the right

amount of smoothing, independently of how smooth (in terms of degree of differentiability)

the true regression curve is. This feature is not accomplished by the “plug-in” method.

The cross-validation procedure is formally described in the following algorithm.

Algorithm 5.1.1
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DO OVER (a dense grid Hn of h values)

STEP 1.

Compute the leave-out estimate

m̂h,j(Xj)

at the observation points.

STEP 2.

Construct the cross validation function

CV (h) = n−1

n∑
j=1

(Yj − m̂h,j(Xj))
2w(Xj).

where w denotes a weight function.

END OVER.

STEP 3.

Define the automatic bandwidth as

ĥ = arg min
h∈Hn

[CV (h)]

5.1.4 Bandwidth choice for derivative estimation

The principal idea for smoothing parameter selection in the setting of derivative estimation

is similar to that of finding a bandwidth for estimating m itself. As in Rice (1985), consider

the setting of fixed, equidistant predictor variables. The leave-out estimators for estimating

m′ are defined by leaving out the observations (Xj, Yj) and (Xj−1, Yj−1),

m̂
(1)
h,j(x) = n−1

n∑
i=1

i6=j,j−1

W
(1)
hi (x)Yi,
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where {W (1)
hi (x)} are kernel derivative weights (see Section 3.1). Instead of comparing the

leave-out estimators with the original response variables (at n points) one evaluates the

prediction error (at n2 = n/2 points)

CV (1)(h) = n−1
2

n2∑
j=1

[Y
(1)

(2j) − m̂
(1)
h,(2j)(X(2j))]

2w(X(2j)),

where {(X(j), Y(j))} denote the input data, sorted by X, and

Y
(1)

(j) =
Y(j)−Y(j−1)

X(j)−X(j−1)
is the first difference of the Y -variables (sorted by X). Note that

E{Y (1)
(j) |X1, . . . , Xn} =

m(X(j))−m(X(j−1))

X(j) −X(j−1)

= m′(ξ(j))

with ξ(j) ∈ [X(j−1), X(j)]. Squaring CV (1)(h) leads to

n−1
2

n2∑
j=1

[Y
(1)

(j) −m
′(ξ(j))]

2w(X(j))

+n−1
2

n2∑
j=1

[m′(ξ(j))− m̂(1)
h,(j)(X(j))]

2w(X(j))

+2n−1
2

n2∑
j=1

[Y
(1)

(j) −m
′(ξ(j))][m

′(ξ(j))− m̂(1)
h,(j)(X(j))]w(X(j)).

As in ordinary cross-validation (for estimating m) the cross-product term asymptotically

vanishes, so that the function CV (1)(h) behaves (up to a constant) like

n−1
2

n2∑
j=1

[m′(ξ(j))− m̂(1)
h,(j)(X(j))]

2w(X(j))

≈ d
(1)
A (h)

= n−1
2

n2∑
j=1

[m′(X(j))− m̂(1)
h (X(j))]

2w(X(j))

plus a constant (independent of h). This approach was considered in the random design

setting by Härdle and Carroll (1989). Müller, Stadtmüller and Schmidt (1987) propose a

so-called factor method , which is also based on the plug-in approach. The factor method is

based on comparing bandwidths h0 for estimating m with h
(k)
0 for estimating m(k). These

bandwidths are the same up to a scale factor depending on k, p and the kernel function.
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More precisely, for a p-times differentiable function m the MSE for estimating m(k)(x) is, as

seen before,

MSE ≈ n−1h−(2k+1)σ2

∫
K(k)2

(u)du

+

[
hp−km(k)(x)(−1)p

∫
upK(k)(u)du/p!

]2

.

The bandwidth that minimizes MISE is, as described in Section 4.1,

h
(k)
0 =

[
2k + 1

2(p− k)

σ2
∫
K(k)2

(u)du

[(−1)p
∫
upK(k)(u)du/p!]2

∫
m(k)2

(x)dx

]1/(2p+1)

n−1/(2p+1)·

If we compare the optimum h0 with h
(k)
0 then we see that they differ by the factor

C0,k =

[
(2k + 1)p

p− k

∫
K(k)2

(u)du[(−1)p
∫
upK(u)du/p!]2∫

K2(u)du[(−1)p
∫
upK(k)(u)du/p!]2

]1/(2p+1)

·

Thus the MISE optimal bandwidth h
(k)
0 is given by

h
(k)
0 = C0,kh0.

5.1.5 The dependence of the smoothing parameter on the weight

function

The weight function w was introduced to reduce boundary effects. If one had not introduced

the weight function and just formed the bandwidth selection scores over the whole data range

one would have obtained a bandwidth sequence optimized with respect to the “boundary

behavior” of the kernel smoother. As pointed out in Section 4.4, the convergence rate is

slightly slower at the boundary points. Since the cross-validation method, for example, is

still asymptotically optimal (in the sense of Theorem 5.1.1) one would artificially select a

slower rate of convergence in the center of the data range, where the majority of the data

lie.

However, cutting the range of interest down to, say, 90 percent, doesn’t solve the problem

since typically the kernel weights cover more than 10 percent of the data range (see Figure
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Figure 5.8: Liver weights versus age of 300 female corpses (smoothed with cross-validated

bandwidth h=22 years). From Härdle and Marron (1985b) with permission of the

Institute of Mathematical Statistics.

5.6). This raises the question of how variable the CV -function is as the weight function w

is varied. Figure 5.8 shows an optimal kernel smooth estimating liver weights as a function

of age. The CV -function was computed disregarding the outer 5 percent data on each side.

What happens if the weight function w is varied?

Figure 5.9 shows cross-validation curves as the weights cut off 2, 4, 6, 8 and 10 percent

of the data at each end of the data interval. The location of the minimum, the selected

optimal bandwidth, is remarkably stable except for the case where only 80 percent of the

data interval is cross-validated. I did similar comparisons for the simulated data set (Table

2, Appendix 2) and found qualitatively the same behavior: The weight function does not

influence the selected bandwidth to a large extent.

Exercises
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Figure 5.9: Cross-validation curves as the weight function w is varied. The uppermost CV

curve was computed leaving 2 percent of observations at each end. The curves

below leave out 4,6,8,10 percent at each end. From Härdle and Marron (1985b)

with permission of the Institute of Mathematical Statistics.

5.1.1 Try cross validation and some of the penalizing functions to find a smoothing parameter

for the simulated data set given in the appendix.

5.1.2 Recall the asymptotic equivalence of k-NN and kernel smoothing. How would you

choose a good k with the cross validation method?

5.1.3 How would you modify the penalizing functions in the setting of k-NN smoothing?

5.1.4 Write an efficient algorithm for computing the cross validation function.

[Hint : Use the WARPing technique or the FFT method.]

5.1.5 One could argue that an asymptotically optimal smoothing parameter for m is also

good for estimating m′. A good estimate for m should give a good estimate for m′! Can you
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find an argument against this?

5.1.6 Find ĥ = arg min[CV (h)] and ĥ(1) = arg min[CV (1)(h)]. Compare ĥ with ĥ(1). Do you

find that ĥ < ĥ(1)? [Hint : Study the factor method. ]

5.1.6 Complements

Proof of Theorem 5.1.1

The proof of this theorem is based on the uniform approximation (over Hn) of the distances

dA, dI , and so on; see Theorem 4.1.1. If suffices to prove the asymptotic optimality for dA(·).

The Hölder continuity of K,m, f ensures that it suffices to consider a discrete subset H ′n of

Hn. The existence of all conditional moments of order k gives over this sufficiently dense

subset H ′n of Hn:

sup
h,h′∈H′n

∣∣∣∣dA(h)− dA(h′)− (CV (h)− CV (h′))

dM(h) + dM(h′)

∣∣∣∣ a.s.→ 0· (5.1.8)

A key step in proving 5.1.8 is Whittle’s inequality (Whittle 1960) on bounding higher mo-

ments of quadratic forms of independent random variables. Using the Hölder continuity of

K,m and f and Theorem 4.1.1 gives

sup
h,h′∈Hn

∣∣∣∣dA(h)− dA(h′)− (CV (h)− CV (h′))

dA(h) + dA(h′)

∣∣∣∣ a.s.→ 0· (5.1.9)

Now let ε > 0 be given and let

ĥ0 = arg min
h∈Hn

[dA(h)],

ĥ = arg min
h∈Hn

[CV (h)].

From 5.1.9 we have with probability 1,

dA(ĥ)− dA(ĥ0)− (CV (ĥ)− CV (ĥ0))

dA(ĥ) + dA(ĥ0)
≤ ε.

This implies

0 ≥ CV (ĥ)− CV (ĥ0) ≥ (1− ε)dA(ĥ)− (1 + ε)dA(ĥ0),
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which entails

1 ≤ dA(ĥ)

dA(ĥ0)
≤ 1 + ε

1− ε
·

Since ε was arbitrary, so

P

{
lim
n→∞

∣∣∣∣∣ dA(ĥ)

dA(ĥ0)
− 1

∣∣∣∣∣ < δ

}
= 1 ∀δ > 0,

which means that ĥ is asymptotically optimal.

5.2 Which selector should be used?

There are a number of different automatic selectors that produce asymptotically optimal

kernel smoothers. Certainly, any such bandwidth selector is desirable but there may be data

sets where a specific selector may outperform other candidates. This raises the question of

which selector to use and how far a specific automatic bandwidth is from its optimum. A

further interesting question is how close the deviations d•(·), evaluated at the asymptotically

optimal bandwidth, are from the smallest possible deviations. The answers to these questions

are surprising. All presented selectors are equivalent in an asymptotic sense. The speed at

which an estimated bandwidth tends to the best possible bandwidth is extremely slow. In

addition, theoretical studies show that the optimally data-driven bandwidth is negatively

correlated with the best possible theoretical bandwidth.

Unfortunately, the mathematics necessary to investigate this issue are rather complicated

so I prefer to work in the fixed design model with equispaced design variables on the unit

interval, that is, {Xi = i/n}ni=1. Assume further that the εi have common variance, σ2, say.

The kernel estimator proposed by Priestley and Chao (1972) is considered,

m̂h(x) = n−1

n∑
i=1

Kh(x−Xi) Yi.

Extensions to random X-values and the case of a multivariate X-variate are possible but

require substantially more work. The optimal bandwidth is taken here in this section to be
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ĥ0, the minimizer of the average square error (ASE),

dA(h) = n−1

n∑
i=1

(m̂h(Xi)−m(Xi))
2 w(Xi).

Of course, this is just one way to define an optimal bandwidth. An asymptotically equivalent

measure of accuracy is the mean average square error (see Theorem 4.1.1)

MASE = dMA(h) = EdA(h).

Another good candidate for a selected bandwidth could therefore be h0, the minimizer of

dMA. The optimal bandwidth ĥ0 makes m̂h as close as possible to the regression curve m

for the data set at hand, whereas h0 tries to optimize an average distance over all possible

data sets.

How fast do ĥ0 and h0 tend to zero? We have seen that ĥ0 and h0 are each roughly equal to

h∗0 = C0 n
−1/5,

where

C0 =

{
σ2 (

∫
w(u)du) cK

dK
∫

(m′′(u))2w(u)du

}1/5

· (5.2.10)

Of course, we can try to estimate C0 by the plug-in method, but there may be a difference

when using cross-validation or the penalizing function approach. In this setting of equidistant

Xi on the unit interval, the penalizing functions that are presented in Section 5.1 can be

written as

G(h) = p(h) Ξ (n−1h−1),

where

p(h) = n−1

n∑
i=1

(Yi − m̂h(Xi))
2 w(Xi)

denotes the prediction error and where Ξ denotes the penalizing function that corrects the

biasedness of p(h) as an estimator for dA(h).

Simple examples are:
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(i) Generalized Cross-validation (Craven and Whaba 1979; Li 1985),

ΞGCV (n−1h−1) = (1− n−1h−1K(0))−2;

(ii) Akaike’s Information Criterion (Akaike 1970)

ΞAIC(n−1h−1) = exp (2n−1h−1K(0));

(iii) Finite Prediction Error (Akaike 1974),

ΞFPE(n−1h−1) = (1 + n−1h−1K(0))/(1− n−1h−1K(0));

(iv) Shibata’s (1981) model selector ,

ΞS(n−1h−1) = 1 + 2n−1h−1K(0);

(v) Rice’s (1984a) bandwidth selector ,

ΞT (n−1h−1) = (1− 2n−1h−1K(0))−1.

To gain some insight into how these selection functions differ from each other, consider Figure

5.10.

Each of the displayed penalizing functions has the same Taylor expansion, more precisely,

as nh→∞,

Ξ (n−1h−1) = 1 + 2n−1h−1K(0) +O(n−2h−2).

The main difference among the Ξ-functions occurs at the left tail, where small bandwidths are

differently penalized. Note also that the cross-validation method can be seen as penalizing

the prediction error p(h), since

CV (h)/p(h) = 1 + 2n−1h−1K(0) +Op(n
−2h−2). (5.2.11)

This last statement can be shown to hold also for bandwidth selectors based on unbiased

risk estimation,

R̃(h) = n−1

n∑
i=1

{(Yi − m̂h(Xi))
2 + n−1h−1K(0) (Yi − Yi−1)2} w(Xi);
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Penalizing Functions
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Figure 5.10: Plot of five different correction functions Ξ(n−1h−1K(0)) as a function of h. The

sample size was assumed to be n=75 and the Epanechnikov kernel with K(0)=0.75

was used. ANRpenalize.xpl

see Rice (1984a).

All the above bandwidth selectors are asymptotically optimal, that is, the ratio of estimated

loss to minimum loss tends to one,

dA(ĥ)

dA(ĥ0)

p→1, (5.2.12)

and the ratio of bandwidths tends to one,

ĥ

ĥ0

p→1. (5.2.13)

The question of how fast this convergence in 5.2.12 and 5.2.13 occurs is answered by com-

http://www.quantlet.org/mdstat/codes/anr/ANRpenalize.html
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puting the asymptotic distributions of the difference.

Theorem 5.2.1 Suppose that

(A1) the errors {εi} are independent and identically distributed with mean zero, variance

σ2, and all other moments finite;

(A2) the kernel K is compactly supported with a Hölder continuous second derivative;

(A3) the regression function m has a uniformly continuous integrable second derivative.

Then, as n→∞,

n3/10(ĥ− ĥ0)
L→ N(0, σ2

1), (5.2.14)

n(dA(ĥ)− dA(ĥ0))
L→ C1χ

2
1,

where σ1 and C1 are constants depending on the kernel, the regression function and

the observation error, but not on the specific Ξ-function that has been selected.

Precise formula for σ1 and C1 are given subsequently. A proof of this theorem may be found

in Härdle, Hall and Marron (1988).

Between ĥ and ĥ0, the above convergence speeds 5.2.14 are saying that the relative difference

ĥ− ĥ0

ĥ0

,

decreases at the (slow) rate n−1/10. Also

dA(ĥ)− dA(ĥ0)

dA(ĥ0)

has the (slow) rate n1/5. Of course, in practical research the speed of ĥ is not of interest per

se. The researcher cares more about the precision of the curve measured in dA(ĥ). However,

both these rates seem at first glance to be extremely disappointing, but they are of the same

order as the differences between ĥ0 and h0 and dA(h0)− dA(ĥ0).
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Theorem 5.2.2 Suppose that (A1)− (A3) in Theorem 5.2.1 hold, then

n3/10(h0 − ĥ0)
L→ N(0, σ2

2),

n[dA(h0)− dA(ĥ0)]
L→ C2χ

2
1, (5.2.15)

where σ2
2 and C2 are defined in what follows.

The constants σ1, σ2, C1, C2 from the above two Theorems are

σ2
1 = σ2

4/C
2
3 ,

σ2
2 = σ2

3/C
2
3 ,

C1 = C3σ
2
1/2,

C2 = C3σ
2
2/2,

where (letting ∗ denote convolution)

σ2
4 =

8

C3
0

σ4

[∫
w2

] [∫
(K − L)2

]
+ 4C2

0σ
2d2
K

[∫
(m′′)2w2

]
,

L(u) = −uK ′(u),

σ2
3 =

8

C3
0

σ4

[∫
w2

] [∫
(K ∗K −K ∗ L)2

]
+ 4C0σ

2d2
K

[∫
(m′′)2w2

]
,

C3 =
2

C3
0

σ2c2
K

[∫
w

]
+ 3C2

0d
2
K

[∫
(m′′)2w2

]
.

An important consequence of these two limit theorems describing the behavior of automat-

ically selected bandwidths is that they imply that the “plug-in” method of choosing h (in

which one substitutes estimates of the unknown parts of dMA), even if one knew the un-

knowns σ2 and
∫

(m′′)2w, has an algebraic rate of convergence no better than that of the

ĥs given in Algorithm 5.1.1. Hence the additional noise involved in estimating these un-

known parts in practice, especially the second derivative part in the case where m is not

very smooth, casts some doubt on the applicability of the plug-in estimator.

By comparing σ2
1 and σ2

2, the asymptotic variances of the previous two theorems, one sees

that σ2
2 ≤ σ2

1, so h0 is closer to ĥ0 than ĥ is in terms of asymptotic variances. It is important
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to note that the asymptotic variance σ2
1 is independent of the particular correction function

Ξ(n−1h−1), although simulation studies to be mentioned subsequently seem to indicate a

different performance for different Ξs. In the related field of density estimation Hall and

Marron (1987) showed that the relative rate of convergence of

ĥ− ĥ0

ĥ0

cannot be improved upon n−1/10. This suggests that also in the present setting there is no

better estimator ĥ for ĥ0. This issue is further pursued in the Complements to this section.

Several extensions of the above limit theorems are possible. For instance, the assumption

that the errors are identically distributed can be relaxed to assuming that εi has variance

σ2(Xi), where the variance function σ2(x) is a smooth function. Also the design points need

not be univariate. In the multivariate case with the Xi having dimension d, the exponents

of the first parts of 5.2.14 and 5.2.15 change from 3/10 to (d+ 2)/(2(d+ 4)).

The kernel K can also be allowed to take on negative values to exploit possible higher rates of

convergence (Section 4.1). In particular, if K is of order (0, p) (see Section 4.5) and if m has

a uniformly continuous pth derivative, then the exponents of convergence change from 3/10

to 3/(2(2p+1)). This says that the relative speed of convergence for estimated bandwidths is

slower for functions m with higher derivatives than it is for functions with lower derivatives.

One should look not only at the bandwidth limit theorems but also at the limit result for dA.

In the case in which m has higher derivatives, dA converges faster to zero, specifically, at the

rate n−2p/(2p+1). However, this issue seems to be counter-intuitive. Why is the relative speed

for ĥ for higher order kernels slower than that for lower order kernels? To get some insight

into this consider the following figure showing dMA(·) for higher and lower order kernels.

One can see that dMA(·) for the higher order kernel has a flatter minimum than that the

lower order kernel. Therefore, it is harder to approximate the true bandwidth. But since the

minimum value n−8/9 is smaller than the minimum value n−4/5 for the lower order kernel it

does not matter so much to miss the minimum ĥ0!
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Figure 5.11: A sketch of dMA(·) for a higher order (p=4) and a lower order (p=2) kernel for d=1.

Rice (1984a) and Härdle, Hall and Marron (1988) performed a simulation study in order

to shed some light on the finite sample performance of the different selectors. One hun-

dred samples of n = 75 pseudo-random normal variables, εi, with mean zero and standard

deviation σ = 0.0015 were generated. These were added to the curve m(x) = x3(1 − x)3,

which allows “wrap-around-estimation” to eliminate boundary effects. The kernel function

was taken to be a rescaled quartic kernel

K(u) = (15/8)(1− 4u2)2I(|u| ≤ 1/2).

The result of these simulation studies can be qualitativly described as follows. The selectors

have been compared using the number of times out of 100 Monte Carlo repetitions that

either the ratio of MASE

dMA(ĥ)/dMA(h0)

or the ratio of ASE

dA(ĥ)/dA(ĥ0)
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exceeded 1.05, 1.1, . . . and so on. The T selector turned out to be the best in these simula-

tions. To understand this better, consider the form of the selectors more closely. All these

selectors have a trivial minimum at h = n−1K(0) = 0.025, the “no smoothing” point where

m̂h(Xi) = Yi. The prediction error p(h) has a second-order zero at the “no smoothing” point.

GCV counters this by using a correction factor which has a double pole there, as does T .

On the other hand, FPE has only a single pole, while AIC and S have no poles at the “no

smoothing” point.

The ordering of performance that was observed in both studies can be qualitatively described

through the number of poles that a selector had at the “no smoothing” point. The more

poles the penalizing function had the better it was in these studies.

Figure 5.12 gives an indication of what the limit theorems actually mean in terms of the

actual curves, for one of the actual curves and for one of the 100 data sets (with σ = 0.011

and n = 75). The solid curve in each plot is m(x). The dashed curves are the estimates

m̂h(x).

In Figure 5.12 the dashed curve is computed with ĥ = .26, the minimizer of S for that data

set. In Figure 5.13, m̂h is computed with h = .39, the minimizer of ASE. Finally in Figure

5.14 the curve suggested by all the other selectors (h = .66) is shown. This example of how

different the selectors can be for a specific data set was chosen to demonstrate again the

slow rate of convergence in the above limit theorems. More details about this study, for

example, the question of how close to normality the distribution of n3/10(ĥ− ĥ0) is, for this

small sample size, can be found in Härdle, Hall and Marron (1988).

Table 5.1 shows the sample mean and standard deviation of the bandwidth minimizing the

quantity listed at the left. It is interesting that the selector whose mean matches best with

ĥ0 is the rather poorly performing FPE, which is not surprising given the comments on the

poles above. The selector T biases slightly toward ĥ, while FPE biases more downwards.

The last two columns show the sample correlation coefficients for the selected bandwidth

with ĥ0 and ĥGCV , the minimizer of GCV , respectively.
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(b) Simulated observations, h=0.39
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Figure 5.12: Plot of n = 75 regression observations simulated from solid curve m(x)=

x3(1−x)3 and kernel smooth (quartic kernel) with h=0.26. From Härdle, Hall

and Marron (1988) with permission of the American Statistical Association.

ANR75regobs.xpl

The simulations shown in Table 5.1. indicated that, despite the equivalence of all selectors,

Rice’s T had a slightly better performance. This stemmed, as explained, from the fact that

the selector T has a slight bias towards oversmoothing (pole of T at twice the “no smoothing”

point). The performance of T should get worse if the simulation setting is changed in such

a way that “reduction of bias is more important than reduction of variance”. With other

words the right branch of the dA(h) curve becomes steeper than the left.

A simulation study in this direction was carried out by Härdle (1986e). The sample was

http://www.quantlet.org/mdstat/codes/anr/ANR75regobs.html


210 5 Choosing the smoothing parameter

(b) Simulated observations, h=0.39
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Figure 5.13: Plot of n = 75 regression observations simulated from solid curve m(x)=

x3(1−x)3 and kernel smooth (quartic kernel) with h=0.39. From Härdle, Hall

and Marron (1988) with permission of the American Statistical Association.

ANR75regobs.xpl

constructed from n = 75 observations with normal errors, σ = 0.05, and a sinusoidal regres-

sion curve m(x) = sin(λ2πx). The quartic kernel was chosen. The number of exceedances

(formulated as above) for λ = 1, 2, 3 was studied.

As expected, the performance of T got worse as λ increased, which supports the hypothesis

that the relatively good performance of T was due to the specific simulation setting. The

best overall performance, though, showed GCV (generalized cross-validation).

Exercises

http://www.quantlet.org/mdstat/codes/anr/ANR75regobs.html
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(c) Simulated observations, h=0.66
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Figure 5.14: Plot of n = 75 regression observations simulated from solid curve m(x)=

x3(1−x)3 and kernel smooth (quartic kernel) with h=0.66. From Härdle, Hall

and Marron (1988) with permission of the American Statistical Association.

ANR74regobs.xpl

5.2.1 Prove that in the setting of this section the cross-validation function approach is also

based on a penalizing idea, that is, prove formula (5.2.2)

CV (h)/p(h) = 1 + 2n−1h−1K(0) +Op(n
−2h−2).

5.2.2 Show that R̃(h), the unbiased risk estimation selection function, satisfies

R̃(h)/p(h) = 1 + 2n−1h−1K(0) + op(n
−1h−1).

http://www.quantlet.org/mdstat/codes/anr/ANR74regobs.html
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Table 5.1: Summary statistics for automatically chosen and optimal bandwidths from 100

data sets

ĥ µn(ĥ) σn(ĥ) ρn(ĥ, ĥ0) ρn(ĥ, ˆhGCV )

n = 75

ASE .51000 .10507 1.00000 -.46002

T .56035 .13845 -.50654 .85076

CV .57287 .15411 -.47494 .87105

GCV .52929 .16510 -.46602 1.00000

R .52482 .17852 -.40540 .83565

FPE .49790 .17846 -.45879 .76829

AIC .49379 .18169 -.46472 .76597

S .39435 .21350 -.21965 .52915

n = 500

ASE .36010 .07198 1.00000 -.31463

T .32740 .08558 -.32243 .99869

GCV .32580 .08864 -.31463 1.00000

AIC .32200 .08865 -.30113 .97373

S .31840 .08886 -.29687 .97308

Source:From Härdle, Hall and Marron (1988) with permission of the American Statistical

Association.

5.2.3 Interpret the penalizing term for a uniform kernel using the fact that N = 2nh points

fall into a kernel neighborhood. What does “penalizing” now mean in terms of N?

5.2.4 Prove that from the relative convergence 5.2.12

dA(ĥ)

dA(ĥ0)

p→1

it follows that the ratio of bandwidths tends to one, that is,

ĥ

ĥ0

p→1.
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[Hint : Use Theorem 4.1.1 and Taylor expansion.]

5.2.5 Recall the variances of Theorem 5.2.1 and 5.2.2. Show that

σ2
2 ≤ σ2

1.

[Hint : Use the Cauchy–Schwarz inequality.]

5.2.6 Can you construct a confidence interval for the bandwidths ĥ0?

5.2.7 Can you construct a confidence interval for the distance dA(ĥ0)?

5.2.8 How would you extend Theorem 5.2.1 and 5.2.2 to the random design setting.

[Hint : Look at Härdle, Hall and Marron (1990) and use the linearization of the kernel

smoother as in Section 4.2]

5.2.1 Complements

I have mentioned that in the related field of density estimation there is a lower-bound result

by Hall and Marron (1987) which shows that

ĥ− ĥ0

ĥ0

cannot be smaller than n−1/10. A natural question to ask is whether this relative difference

can be made smaller when ĥ0 is replaced by h0, the minimizer of MISE. In the paper by Hall

and Marron (1988) it is argued that this relative difference can be made as small as n−1/2.

This looks like a drastic improvement, but as Mammen (1988) shows, the search for such

bandwidths is not justified. In particular, he shows

Theorem 5.2.3 Suppose that there exists a data-based bandwidth ĥ with

ĥ− h0

h0

= op(n
−1/10).

Then there exists another data-based bandwidth h̃ such that

n(dI(h̃)− dI(ĥ0))
L→ γ1χ

2
1,
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n(dI(ĥ)− dI(ĥ0))
L→ γ2χ

2
1,

with 0 < γ1 < γ2.

This theorem suggests that

E(dI(h̃))− E(dI(ĥ0))

E(dI(ĥ))− E(dI(ĥ0))

converges to a constant, which is strictly smaller than one. Clearly dI(h̃) ≥ dI(ĥ0) and

dI(ĥ) ≥ dI(ĥ0). Therefore, this would imply that using the bandwidth h̃ leads to a smaller

risk than using ĥ. For more details see Mammen (1988).

5.3 Local adaptation of the smoothing parameter

A smoothing parameter that is selected by one of the previously described methods optimizes

a global error criterion. Such a “global” choice need not necessarily be optimal for the

estimation of the regression curve at one particular point, as the trivial inequality

inf
h

∫
E(m̂h −m)2 ≥

∫
inf
h
E(m̂h −m)2

shows. In this section I present two methods for locally adapting the choice of the smoothing

parameter. The first one is based on the idea of approximating the distribution of
√
nh(m̂h−

m) by bootstrapping. The second one, the supersmoother developed by Friedman (1984), is

constructed via a “local cross-validation” method for k −NN smoothers.

5.3.1 Improving the smooth locally by bootstrapping

We have already seen that the so-called wild bootstrap method (Section 4.2) allows us to

approximate the distribution of
√
nh(m̂h − m). In the following, though, I would like to

present a slightly different bootstrap method in the simpler setting of i.i.d. error terms.

This simpler setting has the advantage that resampling can be done from the whole set of
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observed residuals. Let Xi = i/n and var(εi) = σ2. The stochastics of the observations are

completely determined by the observation error. Resampling should therefore be performed

with the estimated residuals,

ε̂i = Yi − m̂g(Xi)

= Yi − n−1

n∑
j=1

Kg(Xi −Xj)Yj, i = 1, . . . , n,

where g denotes a pilot bandwidth. Since the estimate is more biased near the boundary

it is advisable to use only residuals from an interior subinterval [η, 1 − η], 0 < η < 1/2. In

order to let the resampled residuals reflect the behavior of the true regression curve they are

recentered by their mean:

ε̃i = ε̂i −mean{ε̂i}.

Bootstrap residuals {ε∗i } are then created by sampling with replacement from {ε̃i}, producing

bootstrap response variables

Y ∗i = m̂g(Xi) + ε∗i .

A bootstrap estimator m̂∗ of m is obtained by smoothing {(Xi, Y
∗
i )} rather than {(Xi, Yi)}.

It is commonly said that the bootstrap principle holds if the distributions of m̂∗(x) and m̂(x),

when suitably normalized, become close as the sample size n increases. If convergence of

these distributions is examined in the Mallows metric (Bickel and Freedman 1981), then the

second moments of these distributions also become close. Since at a fixed point x the MSE,

E(m̂h(x)−m(x))2,

is the quantity we are interested in, the bootstrap approximation in terms of the Mallows

metric will give us a method for estimating the local mean squared error. To simplify the

following calculations assume that the kernel is standardized to have dK = 1.

In the bootstrap, any occurrence of εi is replaced by ε∗i , and therefore

m̂∗h,g(x) = n−1

n∑
i=1

Kh(x−Xi)(m̂g(Xi) + ε∗i )
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is the bootstrap smoother. It is the aim of the bootstrap to approximate the distribution of
√
nh(m̂h(x)−m(x)), where

m̂h(x)−m(x) = n−1

n∑
i=1

Kh(x−Xi)εi

+(h2/2)m′′(x) + o(n−1/2h−1/2 + h2)

≈ n−1

n∑
i=1

Kh(x−Xi)εi

+(h2/2)m′′(x), h→ 0, nh→∞.

If this expansion is mirrored by the bootstrap estimator m̂∗h,g, one should center first around

the expectation under the bootstrap distribution, which is approximately

m̂C,h,g(x) = n−1
∑
i

K1(x−Xi;h, g)Yi, (5.3.16)

where

K1(v;h, g) = Kh ∗Kg =

∫
Kh(u)Kg(v − u)du

is the convolution kernel of Kh and Kg. The bias component (h2/2)m′′(x) may be estimated

by employing a consistent estimator of m′′(x). (In Section 3.1 I defined kernel estimators of

derivatives.) This results in the bootstrap approximation

√
nh(m̂∗h,g(x)− m̂C,h,g(x) + (h2/2)m̂′′(x)),

where m̂′′(x) denotes any consistent estimate of the second derivative m′′(x). Härdle and

Bowman (1988) proved that the bootstrap principle holds.

Theorem 5.3.1 If h and g tend to zero at the rate n−1/5 the kernel function K is Lipschitz

continuous and m is twice differentiable then the bootstrap principle holds, that is,

d2(
√
nh(m̂h(x)−m(x)),
√
nh(m̂h,g(x)− m̂C,h,g(x) + (h2/2)m̂′′(x)))p→ 0,

where

d2(F,G) = inf
X∼F
Y∼G

[E(X,Y )(X − Y )2]1/2

denotes the Mallows metric.



5.3 Local adaptation of the smoothing parameter 217

The MSE dM(x, h) = E(m̂h(x)−m(x))2 can then be estimated by

d̂M(x;h) =

∫
(m̂∗h,g(x)− m̂C,h,g(x) + (h2/2)m̂′′(x))2dF ∗n ,

where F ∗n denotes the empirical distribution function of {ε̃i}. Denote by ĥ(x) the bandwidth

that minimizes d̂M(x;h) over a set of smoothing parameters Hn.

This choice of local adaptive bandwidth is asymptotically optimal in the sense of Theorem

5.1.1 as Härdle and Bowman (1988) show; that is,

dM(x; ĥ(x))

infh∈Hn dM(x, h)

p→1. (5.3.17)

This adaptive choice of h = h(x) is illustrated in Figure 5.15, which displays some data

simulated by adding a normally distributed error, with standard deviation 0.1, to the curve

m(x) = sin(4πx) evaluated at X = (i−1/2)
100

, i = 1, . . . , n = 100. Cross-validation was used

to select a good global smoothing parameter (g = 0.03) and the resulting estimate of the

regression function shows the problems caused by bias at the peaks and troughs, where

|m′′(x)| is high.

To see what local smoothing parameters have been actually used consider Figure 5.16. This

figure plots the local smoothing parameters obtained by minimizing the bootstrap estimate

d̂M(x, h) as a function of x.

For comparison, the asymptotically optimal local smoothing parameters

h∗0(x) = C0(x) n−1/5,

with

C0(x) =

[
σ2 cK

dK m′′(x))2

]1/5

,

are also plotted. It can be seen that an appropriate pattern of local smoothing has been

achieved. Comparison with the “plug-in” local smoothing parameters (based on estimating

C0) revealed for this example little difference. The advantage of the above bootstrap method

though lies in the fact that it is insensitive to irregularites introduced by estimation of m′′(x);
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Figure 5.15: Data simulated from the curve m(x)=sin(4πx), with N(0,(0.1)2) error distribution.

True curve (solid line label 1); global smoothing (dashed line, label 2); local

adaptive smoothing (fine dashed line, label 3). From Härdle and Bowman (1988)

with permission of the American Statistical Association .

see Härdle and Bowman (1988). Also, the plug-in method requires an estimate of bias; see

Müller and Stadtmüller (1987). The above idea of bootstrapping from estimated residuals

has been applied to spectral density estimation by Franke and Härdle (1988).

5.3.2 The supersmoother

The so-called supersmoother proposed by Friedman (1984) is based on local linear k-NN

fits in a variable neighborhood of the estimation point x. “Local cross-validation” is applied

to estimate the optimal span as a function of the predictor variable. The algorithm is

based on the k − NN updating formulas as described in Section 3.4. It is therefore highly

computationally efficient.

The name “supersmoother” stems from the fact that it uses optimizing resampling techniques
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Figure 5.16: Local smoothing parameters for the simulated data of Figure 5.15. Asymp-

totically optimal (solid line, label 1); direct estimation (dashed line, label 2);

bootstrap (fine dashed line, label 3). From Härdle and Bowman (1988) with

permission of the American Statistical Association .

at a minimum of computational effort. The basic idea of the supersmoother is the same as

that for the bootstrap smoother. Both methods attempt to minimize the local mean squared

error. The supersmoother is constructed from three initial smooths, the tweeter, midrange

and woofer . They are intended to reproduce the three main parts of the frequency spectrum

of m(x) and are defined by k-NN smooths with k = 0.05n, 0.2n and 0.5n, respectively.

Next, the cross-validated residuals

r(i)(k) = [Yi − m̂k(Xi)]

(
1− 1/k −

(Xi − µXi)
2

VXi

)
(5.3.18)

are computed, where µXi and VXi denote the local mean and variance from the k nearest

neighbors of Xi as in Section 3.4. Then the best span values k̂(Xi) are determined by

minimizing r(i)(k) at each Xi over the tweeter, midrange and woofer value of k.

Since a smooth based on this span sequence would, in practice, have an unnecessarily
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high variance, smoothing the values
∣∣r(i)(k)

∣∣ against Xi is recommended using the resulting

smooth to select the best span values, k̂(Xi). In a further step the span values k̂(Xi) are

smoothed against Xi (with a midrange smoother). The result is an estimated span for each

observation with a value between the tweeter and the woofer values.

The resulting curve estimate, the supersmoother, is obtained by interpolating between the

two (out of the three) smoothers with closest span values. Figure 5.17 shows n = 200 pairs

{(Xi, Yi)}ni=1 with {Xi} uniform on [0, 1],

Yi = sin(2π(1−Xi)
2) +Xiεi,

where the {εi} are i.i.d. standard normal variates. The resulting supersmoother is shown as

a solid line.

Figure 5.18 shows the estimated optimal span k̂(Xi) as a function of Xi. In the “low-noise

high-curvature” region (x < 0.2) the tweeter span is proposed. In the remaining regions a

span value about the midrange is suggested.

When m(x) is very smooth, more accurate curve estimates can be obtained by biasing the

smoothing parameter toward larger span values. One way of doing this would be to use a

smoothing parameter selection criterion that penalizes more than the “no smoothing” point

k = 1. For example, Rice’s T (Figure 5.10) would bias the estimator toward smoother

curves. Friedman (1984) proposed parameterizing this “selection bias” for enhancing the

bass component of the smoother output. For this purpose, introduce the span

k̃(Xi) = k̂(Xi) + (kW − k̂(Xi))R
10−α
i

with

Ri =

[
ê(Xi, k̂(Xi))

ê(Xi, kW )

]
,

where ê(x, k) denotes the estimated residual at x with smoothing parameter k, and kW =

0.5n is the woofer span. The parameter 0 ≤ α ≤ 10 is called the tone control . The value

α = 0 corresponds to very little bass enhancement, whereas α = 10 corresponds to the
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Supersmoother
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Figure 5.17: A scatter plot of n=200 data points {(Xi,Yi)}ni=1.Xi is uniformly distributed over [0,1],

Yi=sin(2π(1−Xi)2+Xiεi,εi∼N(0,1). The solid line indicates the supersmoother. From

Friedman (1984) with permission of the author. ANRsupsmo.xpl

woofer (maximum bass). A choice of alpha between these two extremes biases the selection

procedure toward larger span values.

Exercises

5.3.1 Prove that the term m̂C,h,g(x) is an approximation of lower order than
√
nh to

http://www.quantlet.org/mdstat/codes/anr/ANRsupsmo.html
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Figure 5.18: The selected span sequence k̂(Xi) for the data from Figure 5.18. From Friedman

(1984) with permission of the author.

EF ∗nm̂
∗
h,g(x),

m̂C,h,g(x) = EF ∗nm̂
∗
h,g(x) + op(n

1/2h1/2).

5.3.2 What is the difference between the method here in Section 5.3 and the wild bootstrap?

Can you prove Theorem 5.3.1 without the bias estimate?

[Hint : Use an oversmooth resampling mean m̂g(x) to construct the boostrap observations,

Y ∗i = m̂g(Xi) + ε∗i . The difference

EF ∗nm̂g,h(x)− m̂g(x)

will reflect, as in the wild bootstrap, the bias of m̂h(x).]

5.3.3 Show that the cross-validated residuals 5.3.18 stem from the leave-out technique ap-
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plied to k-NN smoothing.

5.3.4 Try the woofer, midrange and tweeter on the simulated data set from Table 2, Ap-

pendix. Compare it with the supersmoother. Can you comment on where and why the

supersmoother changed the smoothing parameter?

[Hint : Use XploRe (1989) or a similar interactive package.]

5.4 Comparing bandwidths between laboratories

(canonical kernels)

Observe that if one used a kernel of the form

Ks(u) = s−1K(u/s)

and rescaled the bandwidth by the factor s one would obtain the same estimate as with

the original kernel smoother. A kernel can therefore be seen as an equivalence class of

functions K with possible rescalings by s. A consequence of this scale dependence is that

the bandwidth selection problem is not identifiable if the kernel K is determined only up to

scale. Which member of this equivalence class is “most representative?”

More generally, consider the situation in which two statisticians analyze the same data set

but use different kernels for their smoothers. They come up with some bandwidths that they

like. Their smoothing parameters have been determined subjectively or automatically, but

they have been computed for different kernels and therefore cannot be compared directly. In

order to allow some comparison one needs a common scale for both bandwidths. How can

we find such a “common scale?”

A desirable property of such a scale should be that two kernel smoothers with the same

bandwidth should ascribe the same amount of smoothing to the data. An approach to finding

a representative member of each equivalence class of kernels has already been presented in
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Section 4.5. Epanechnikov (1969) has selected kernels with kernel constant dK = 1. Another

approach taken by Gasser, Müller and Mammitzsch (1985) insists that the support of the

kernel be [−1, 1]. A drawback to both methods is that they are rather arbitrary and are not

making the attempt to give the same amount of smoothing for different kernels.

An attempt for such a joint scale is given by so-called canonical kernels in the class of

kernels Ks (Marron and Nolan 1988). It is based on the well-known expansion of the MSE

for d = 1, p = 2 and K = Ks,

dM(h) ≈ n−1h−1cKsC1 + h4d2
KsC2, h→ 0, nh→∞,

where C1, C2 denote constants depending on the unknown distribution of the data. A little

algebra shows that this is equal to

n−1h−1C1(s−1cK) + h4C2(s2dK)2. (5.4.19)

Observe that the problems of selecting K and h are “uncoupled” if

s−1cK = (s2dK)2.

This uncoupling can be achieved by simply defining

s = s∗ =

[
cK
d2
K

]1/5

Hence, define the canonical kernel K∗ as that kernel of the class Ks with s = s∗. For this

canonical kernel one has(∫
u2K∗(u)du

)2

=

∫
(K∗(u))2du

= (s∗)−1cK =
d

2/5
K

c
1/5
K

cK

= d
2/5
K c

4/5
K .

Hence, for the canonical kernel,

dM(h) ≈ (dK)2/5(cK)4/5[n−1h−1C1 + h4C2],
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which shows again that the canonical kernel K∗ uncouples the problems of kernel and band-

width selection. Note that K∗ does not depend on the starting choice of K: one could

replace K by any Ks and K∗ would still be the same.

The advantage of canonical kernels is that they allow simple comparison between different

kernel classes. Suppose that K(1) and K(2) are the canonical kernels from each class and that

one wants the two estimated curves to represent the same amount of smoothing, that is, the

variance and bias2 trade-off should be the same for both smoothers. This is simply achieved

by using the same bandwidth for both estimators . If canonical kernels are used, the dM(h)

functions will look different for the two kernels, as one is a multiple of the other, but each

will have its minimum at the same place. The kernel class that has the lowest minimum is

given by the “optimal kernel” of order 2, the so-called Epanechnikov kernel.

One interesting family of kernels, which contains many of the kernels used in practice, is

Kα(u) = Cα(1− x2)αI(|u| ≤ 1),

where Cα makes Kα a probability density:

Cα = Γ(2α + 2)Γ(α + 1)−22−2α−1.

The first three columns of Table 5.2 show the values of α and Cα for the most common cases.

The normal case is included as α =∞. It is simple to check that the rescaling factor s∗ for

each Kα is

s∗ = 2−1/5Γ(α + 1)−4/5(2α + 3)2/5Γ(2α + 2)2/5Γ(2α + 1)2/5Γ(4α + 2)−1/5.

In practice, one uses kernels that are not necessarily canonical, since one is used to thinking

in terms of a certain scale of the kernel, for example, multiples of the standard deviation for

the normal kernel. How does one then compare the smoothing parameters h1, h2 between

laboratories? The following procedure is based on canonical kernels. First transform the scale

of both kernel classes to the canonical kernel K∗(u) = (s∗)−1K(u/s∗). Then compare the
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Table 5.2: Canonical kernels from the family Kα

Kernel α Cα s∗

Uniform 0 1/2 (9/2)1/5 ≈ 1.3510

Epanechnikov 1 3/4 151/5 ≈ 1.7188

Quartic 2 15/16 351/5 ≈ 2.0362

Triweight 3 35/32 (9450/143)1/5 ≈ 2.3122

Gaussian ∞ - (1/(4π))1/10 ≈ 0.7764

bandwidths for the respective canonical kernels. More formally, this procedure is described

in Algorithm 5.4.1.

Algorithm 5.4.1

Suppose that lab j used kernel Kj and bandwidth hj, j = 1, 2.

STEP 1.

Transform hj to canonical scale:

h∗j = hj/s
∗
j , j = 1, 2.

STEP 2.

Decide from the relation of h∗1 to h∗2 whether both labs have produced the same smooth or

whether one or the other has over- or undersmooothed.

Suppose, for example, that laboratory 1 used the Gaussian kernel and came up with a

bandwidth of, say, h1 = 0.05 (see Figure 3.21). Another statistician in laboratory 2 used

a quartic kernel and computed from cross-validation a bandwidth of h2 = 0.15 (see Figure

5.4). A typical situation is depicted in Figure 5.19, showing the average squared error dA(h)

for the Gaussian and the quartic kernel smoothers as applied to the simulated data set from

Table 2 in the Appendix. Obviously, the bandwidth minimizing each of these functions gives

the same amount of trade-off between bias2 and variance.
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The averaged squared error
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Figure 5.19: The averaged squared error dA(h) averaged from the simulated data set (Table

3.2) for Gaussian (solid line, label 1) and quartic (dashed line, label 2) kernel

smoothers with weight function w(u)=I(|u−0.5|≤0.4). ANRsimase.xpl

Let me compute s∗ explicitly for this example. The factor s∗1 for the Gaussian kernel is

s∗1 =

(∫ (
1

2π

)
e−u

2

du

)1/5

= (2
√
π)−1/5 ≈ 0.776.

The bandwidth for the canonical normal kernel is therefore h∗1 = h1/0.776 = 0.0644. The

quartic kernel K(u) = (15/16)(1 − u2)2I(|u| ≤ 1) has dK = 1/7 and cK = 15/21; the

“canonical quartic kernel” is therefore determined by

s∗2 =

(
15 · 49

21

)1/5

= 351/5 = 2.036,

which means that h∗2 = h2/2.036 = 0.0736.

http://www.quantlet.org/mdstat/codes/anr/ANRsimase.html
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In summary, the optimal bandwidth ĥ0 = arg min[dA(h)] is 0.0736 (on the canonical kernel

scale), which means that my subjective choice (Figure 3.21) for this simulated example of

h∗2 = 0.0644 resulted in slight undersmoothing.

Exercises

5.4.1 Compute the canonical kernel from the triangular kernel.

5.4.2 Derive the canonical kernels for the derivative kernels from Section 4.5.

5.4.3 Try kernel smoothing in practice and transform your bandwidth by the procedure of

Algorithm 5.4.1. Compare with another kernel smooth and compute the bandwidth that

gives the same amount of smoothing for both situations.



6 Data sets with outliers

In exploratory data analysis one might wish instead to discover patterns while mak-

ing few assumptions about data structure, using techniques with properties that change only

gradually across a wide range of noise distributions. Nonlinear data smoothers provide a

practical method of finding general smooth patterns for sequenced data confounded with long-

tailed noise.

P. Velleman (1980, p. 609)

Suppose that one observes data such as those in Figure 6.1: the main body of the data lies

in a strip around zero and a few observations, governing the scaling of the scatter plot, lie

apart from this region. These few data points are obviously outliers. This terminology does

not mean that outliers are not part of the joint distribution of the data or that they contain

no information for estimating the regression curve. It means rather that outliers look as if

they are too small a fraction of the data to be allowed to dominate the small-sample behavior

of the statistics to be calculated. Any smoother (based on local averages) applied to data

like in Figure 6.1 will exhibit a tendency to “follow the outlying observations.” Methods for

handling data sets with outliers are called robust or resistant.

From a data-analytic viewpoint, a nonrobust behavior of the smoother is sometimes unde-

sirable. Suppose that, a posteriori, a parametric model for the response curve is to be postu-
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Figure 6.1: A simulated data set with outliers. The joint probability density function of

{(Xi,Yi)}ni=1, n=100, was f(x,y)=g(y−m(x))I(x∈[0,1]) with m(x)=sin(πx) and the mixture den-

sity g(x)=(9/10)ϕ(x)+(1/10)(1/9)ϕ(x/9), where ϕ denotes the standard normal density.

The data points coming from the long tail mixture part (1/9)ϕ(x/9) are indicated

by squares. The regression line m(x) is shown as a solid line. From Härdle (1989).

lated. Any erratic behavior of the nonparametric pilot estimate will cause biased parametric

formulations. Imagine, for example, a situation in which an outlier has not been identified

and the nonparametric smoothing method has produced a slight peak in the neighborhood

of that outlier. A parametric model which fitted that “non-existing” peak would be too

high-dimensional.

In this case, a robust estimator, insensitive to a single wild spike outlier, would be advisable.

Carroll and Ruppert (1988, p. 175) aptly describe this as follows:

Robust estimators can handle both data and model inadequacies. They will downweight and,

in some cases, completely reject grossly erroneous data. In many situations, a simple model

will adequately fit all but a few unusual observations.
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In this chapter, several resistant smoothing techniques are presented. It is seen how basic

ideas from robust estimation of location can be used for nonparametric resistant smoothing.

From the discussion also evolves an asymptotically efficient smoothing parameter selection

rule.

6.1 Resistant smoothing techniques

A linear local average of the response variable is, per se, not robust against outliers. Moving

a response observation to infinity would drag the smooth to infinity as well. In this sense,

local averaging smoothing has unbounded capacity to be influenced by “far out” observations.

Resistance or “bounded influence” against outliers can be achieved by downweighting large

residuals which would otherwise influence the smoother.

We have already encountered a straightforward resistant technique: median smoothing. It

is highly robust since the extreme response observations (stemming from predictor variables

in a neighborhood around x) do not have any effect on the (local) median of the response

variables. A slight disadvantage of median smoothing, though, is that it produces a rough and

wiggly curve. Resmoothing and twicing are data-analytic techniques to ameliorate median

smoothing in this respect; see Velleman (1980) and Mallows (1980).

6.1.1 LOcally WEighted Scatter plot Smoothing (LOWESS)

Cleveland (1979) proposed the following algorithm, LOWESS, a resistant method based on

local polynomial fits. The basic idea is to start with a local polynomial least squares fit

and then to “robustify” it. “Local” means here a k-NN type neighborhood. The procedure

starts from a k-NN pilot estimate and iteratively defines robustness weights and re-smoothes

several times.

Algorithm 6.1.1
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LOWESS

STEP 1. Fit a polynomial regression in a neighborhood of x, that is, find coefficients {βj}pj=0

which minimize

n−1

n∑
i=1

Wki(x)

(
Yi −

p∑
j=0

βjx
j

)2

,

where {Wki(x)} denote k-NN weights.

FOR i = 1 TO maxiter DO BEGIN

STEP 2.

Compute from the estimated residuals {ε̂i} the scale estimate σ̂ =med {|ε̂i|} and de-

fine robustness weights δi = K(ε̂i/(6σ̂)), where K denotes the quartic kernel, K(u) =

(15/16)(1− u2)
2
I(|u| ≤ 1).

STEP 3.

Fit a polynomial regression as in STEP 1 but with weights

{δiWki(x)}.

END (* i *).

Cleveland recommends the choice p = 1 (as for the supersmoother ) as striking a good

balance between computational ease and the need for flexibility to reproduce patterns in the

data. The smoothing parameter can be determined by cross-validation as in Section 5.1.

Figure 6.2 shows an application of Cleveland’s algorithm to a simulated data set. It is quite

obvious that the LOWESS smooth is resistant to the “far out” response variables at the

upper borderline of the plot.
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Figure 6.2: Scatter plot of artificially generated data (n=50, Yi=0.02Xi+εi, Xi=i, εi∼N(0,1)) and

robust smoothed values with p=1, maxiter=2, k=[n/2]. From Cleveland (1979) with

permission of the American Statistical Association.

6.1.2 L-smoothing

Another class of resistant smoothers is given by local trimmed averages of the response

variables. If Z(1), Z(2), . . . , Z(N) denotes the order statistic from N observations {Zj}Nj=1, a

trimmed average (mean) is defined by

Zα = (N − 2[αN ])−1

N−[αN ]∑
j=[αN ]

Z(j), 0 < α < 1/2,

the mean of the “inner 100(1−2α) percent of the data.” A local trimmed average at the point

x from regression data {(Xi, Yi)}ni=1 is defined as a trimmed mean of the response variables

Yi such that Xi is “in a neighborhood of x.” (The neighborhood could be parameterized, for

instance, by a bandwidth sequence h = hn.) Adopting terminology from robust theory of

estimation, this type of smoothing is called L-smoothing .
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L-smoothing is a resistant technique: the “far out extremes” at a point x do not enter the

local averaging procedure. More generally, one considers a conditional L-functional

l(x) =

∫ 1

0

J(v)F−1(v|x)dv, (6.1.1)

where F−1(v|x) = inf{y : F (y|x) ≥ v}, 0 < v < 1, denotes the conditional quantile function

associated with F (·|x), the conditional distribution function of Y given X = x. For J(v) ≡

1, l(x) reduces to the regression function m(x), since by substituting y = F−1(v|x),∫ 1

0

F−1(v|x)dv =

∫ F−1(1|x)

F−1(0|x)

ydF (y|x) = m(x).

The same occurs in the case J(v) = I(α ≤ v ≤ 1 − α)/(1 − 2α), where 0 < α < 1/2,

with symmetric conditional distribution function. Median smoothing is a special case of

L-smoothing with α = 1/2.

In practice, we do not know F (·|x) and we have to estimate it. If Fn(·|x) denotes an

estimator of F (·|x) one obtains from formula 6.1.1 the L-smoothers. Estimates of F (t|x)

can be constructed, for example, by the kernel technique,

Fh(t|x) =
n−1

∑n
i=1 Kh(x−Xi)I(Yi ≤ t)

f̂h(x)
,

to obtain

m̂L
h (x) =

∫ 1

0

J(v)F−1
h (v|x)dv.

Stute (1984) and Owen (1987) show asymptotic normality of such conditional function-

als. Härdle, Janssen and Serfling (1988) derive (optimal) uniform consistency rates for

L-smoothers.

6.1.3 R-smoothing

Yet another class of smoothers are the R-smoothers derived from R-estimates of location.

Assume that F (·|x) is symmetric around m(x) and that J is a nondecreasing function defined
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on (0, 1) such that J(1− s) = −J(s). Then the score

T (θ, F (·|x)) =

∫ ∞
−∞

J

(
1

2
(F (v|x) + 1− F (2θ − v|x))

)
dF (v|x)

is zero for θ = m(x). The idea now is to replace F (·|x) by an estimate Fn(·|x). If Fn(·|x)

denotes such an estimate of the conditional distribution function F (·|x), then this score

should be roughly zero for a good estimate of m(x). The motivation for this R-smoothing

technique stems from rank tests.

Consider a two-sample rank test for shift based on the sample {Zi}ni=1 and {2θ−Zi}ni=1, that

is, a mirror image of the first sample serves as a stand-in for the second sample. Now try to

adjust θ in such a way that the test statistic Tn = n−1
∑n

i=1 a(Ri) based on the scores

a(i) =

(
2n

∫ i/2n

(i−1)/2n

J(s)ds

)

of the ranks Ri of {Zi} in the combined sample {Zi} + {2θ − Zi} is roughly zero (see

Huber 1981, chapter 3.4). This would make the two samples {Zi} and {2θ − Zi} almost

indistinguishable or, in other words, would make θ a good estimate of location. If this Tn is

translated into the setting of smoothing then the above form of T (θ, F (·|x)) is obtained.

A solution of T (θ, Fn(·|x)) = 0 is, in general, not unique or may have irregular behavior.

Cheng and Cheng (1986) therefore suggested

m̂R
h =

1

2
[sup{θ : T (θ, Fn(·|x)) > 0}

+ inf{θ : T (θ, Fn(·|x)) < 0}] (6.1.2)

as an estimate for the regression curve m(x). Consistency and asymptotic normality of this

smoothing technique are derived in Cheng and Cheng (1987).
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6.1.4 M-smoothing

Resistant smoothing techniques based on M -estimates of location are called M-smoothers .

Recall that all smoothers of the form

m̂(x) = n−1

n∑
i=1

Wni(x)Yi

can be viewed as solutions to (local) least squares problems; see 3.1.8. The basic idea of M -

smoothers is to reduce the influence of outlying observations by the use of a non-quadratic

loss function in 3.1.8. A well-known example (see Huber 1981) of such a loss function with

“lighter tails” is

ρ(u) =

 (1/2)u2, if |u| ≤ c

c|u| − (1/2)c2, if |u| > c
(6.1.3)

The constant c regulates the degree of resistance. For large values of c one obtains the

ordinary quadratic loss function. For small values (c ≈ one or two times the standard

deviation of the observation errors) one achieves more robustness.

In the setting of spline smoothing, an M -type spline was defined by Cox(1983)

argmin
g

{
n−1

n∑
i=1

ρ(Yi − g(ti)) + λ

∫
[g′′(x)]2dx

}
(6.1.4)

where, again, ρ is a loss function with “lighter” tails than the quadratic. Related types of

M -smoothers were considered by Huber (1979), Nemirovskii, Polyak and Tsybakov (1983,

1985), and Silverman (1985).

Kernel smoothers can be made resistant by similar means. Assume that the conditional

distribution F (·|x) is symmetric. This assumption ensures that we are still estimating m(x),

the conditional mean curve. Define a robust kernel M -smoother m̂M
h (x) as

argmin
θ

{
n−1

n∑
i=1

Whi(x)ρ(Yi − θ)

}
(6.1.5)

where {Whi(x)}ni=1 denotes a positive kernel weight sequence. Differentiating 6.1.5 with
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respect to θ yields, with ψ = ρ′,

n−1

n∑
i=1

Whi(x)ψ(Yi − θ) = 0. (6.1.6)

Since the kernel M -smoother is implicitly defined, it requires iterative numerical methods.

A fast algorithm based on the Fast Fourier Transform and a “one-step” approximation to

m̂M
h are given in Härdle (1987a). A wide variety of possible ψ-functions yield consistent

estimators m̂R
h (x). (Consistency follows by arguments given in Huber (1981, chapter 3).)

Note that the special case with linear ψ(u) = u reproduces the ordinary kernel smoother

m̂h(x). To understand what resistant M -smoothers are actually doing to the data, define

unobservable pseudo-observations

Ỹi = m(Xi) +
ψ(εi)

q(Xi)

with

q(Xi) = E(ψ′(εi)|Xi).

The following theorem can be derived using methods given in Tsybakov (1982b) and Härdle

(1984b).

Theorem 6.1.1 Let m̂M
h (x) be the kernel M-smoother computed from

{(Xi, Yi)}ni=1 and let m̂h(x) be the ordinary kernel smoother applied to the pseudo-data

{(Xi, Ỹi)}ni=1; then
√
nh(m̂h(x) − m(x)) and

√
nh(m̂M

h (x) − m(x)) have the same asymp-

totic normal distribution with mean as in (4.2.1) and asymptotic variance

Vx(ψ,K) =
cK
f(x)

E(ψ2(ε)|X = x)

q2(x)
.

This result deserves some discussion. First, it shows that kernel M -smoothers can be inter-

preted as ordinary kernel smoothers applied to nonobservable pseudo-data with transformed

errors ψ(εi)/q(Xi). This sheds some light on how the resistance of M -smoothers is achieved:

The “extreme” observation errors εi are “downweighted” by the nonlinear, bounded function

ψ(εi)/q(Xi). Second, Theorem 6.1.1 reveals that the bias of the ordinary kernel smoother
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is the same as that for the kernel M -smoother. The nonlinear definition of m̂M
h (x) does not

affect the (asymptotic) bias properties. Third, the product form of the asymptotic variance

Vx(ψ,K) as a product of cK/f(x) and E(ψ2(ε)|X = x)/q2(x) allows optimization of Vx(ψ,K)

simply by considering ψ and K separately.

The first of these two separate problems was solved in Section 4.5. By utilizing classical the-

ory forM -estimates of location, the second problem can be treated as in Huber (1981, chapter

4). The details of this optimization technique are rather delicate; the reader is referred to

the standard literature on robust estimation. Optimization of the smoothing parameter is

discussed in Härdle (1984c) and more recently by Leung (1988). Both authors consider the

direct analogue of cross-validation, namely, construct robust leave-one-out smoothers and

then to proceed as in Section 5.1.

A natural question to ask is, how much is gained or lost in asymptotic accuracy when using

an M -smoother? The bias is the same as for the kernel smoother. A way of comparing

the nonresistant and the resistant technique is therefore to study the ratio of asymptotic

variances,
σ2(x)

E(ψ2(ε)|X = x)/q2(x)
, (6.1.7)

of the Nadaraya–Watson kernel smoother to the kernel M -smoother (based on the same

kernel weights). But this relative efficiency 6.1.7 is the same as for the estimation of location.

The reader is therefore referred to the literature on robust estimation (see e.g. Huber 1981).

As an example, I would like to present a smoothing problem in physical chemistry. Raman

spectra are an important diagnostic tool in that field. One would like to identify the location

and size of peaks and troughs of spectral bands; see Hillig and Morris (1982) and Bussian

and Härdle (1984). Unfortunately, small-scale instrumental noise and a certain proportion

of observation error which is caused by random external events blur the observations. The

latter type of error causes high frequency signals or bubbles in the sample and produces

single spikes like those in Figure 6.3.

Estimating with m̂h(x), the ordinary Nadaraya–Watson kernel smoother, results in the curve
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Figure 6.3: A Raman spectrum with two single spike outliers. From Härdle and Gasser

(1984) with permission of the Royal Statistical Society.

depicted in Figure 6.4.

The single spike outliers obviously produced two spurious neighboring peaks. The resistant

smoothing technique, on the other hand, leads to Figure 6.5.

The influence of the outliers is obviously reduced. Uniform confidence bands — based on

asymptotic extreme value theory — may be constructed using the methods presented in

Section 4.3; see Härdle (1987b). Figure 6.6 depicts a kernel M -smoother m̂M
h together with

uniform confidence bands, and m̂h, the Nadaraya–Watson kernel smoother, for the data

presented in Figure 6.1.

Optimal uniform convergence rates (see Section 4.1) for kernel

M -smoothers have been derived in Härdle and Luckhaus (1984). In the context of time

series, robust estimation and prediction has been discussed by Velleman (1977, 1980), Mal-

lows (1980) and Härdle and Tuan (1986). Robust nonparametric prediction of time series

by M -smoothers has been investigated by Robinson (1984, 1987b), Collomb and Härdle

(1986) and Härdle (1986c). Robust kernel smoothers for estimation of derivatives have been
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Figure 6.4: The kernel smoother m̂h(x) applied to the spectrum shown in Figure 6.3, h=9,

K(u)=(3/4)(1−u2)I(|u|≤1). From Härdle and Gasser (1984) with permission of the

Royal Statistical Society.

investigated in Härdle and Gasser (1985) and Tsybakov (1986).

Exercises

6.1.1 Find conditions such that L-smoothers, as defined in 6.1.1, are consistent estimators

for the regression curve.

6.1.2 Find conditions such that R-smoothers, as defined in 6.1.2, asymptotically converge

to the true regression curve.

6.1.3 Do you expect the general L-smoothers 6.1.1 to produce smoother curves than the

running median?

6.1.4 Construct a fast algorithm for L-smoothers 6.1.1. Based on the ideas of efficent running

median smoothing (Section 3.8) you should be able to find a code that runs in O(n log k)
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Figure 6.5: The resistant kernel M-smoother m̂Mh (x) applied to the spectrum shown in Fig-

ure 6.3, h=9, c=0.9, K(u)=(3/4)(1−u2)I(|u|≤1). From Härdle and Gasser (1984) with

permission of the Royal Statistical Society.

steps (k is the number of neighbors).

6.1.5 Prove consistency for the M -smoother 6.1.4 for monotone ψ functions.

[Hint : Follow the proof of Huber (1981, chapter 3).]

6.1.6 Can you extend the proof of Exercise 6.1.4 to nonmonotone ψ functions such as

Hampels “three part redescender?”

6.2 Complements

In order to make an M -type kernel estimate scale invariant, it must be coupled with an

estimate of scale. This coupling can be done by simultaneously estimating the regression

and the scale curve. To fix ideas, assume that

f(y|x) = (1/σ(x))f0((y −m(x))/σ(x)), x ∈ Rd,
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Figure 6.6: The kernel M-smoother with uniform confidence bands and the kernel smoother

m̂h(x). The original data are those of Figure 6.1. From Härdle (1989).

with an unknown f0 and regression curve m(x) and scale curve σ(x). Define, for the moment,

ψ(u) = −(d/du) log f(u|x)

and

χ(u) = (ψ(u)u− 1).

Also define for v ∈ R, w ∈ R+ and fixed x ∈ Rd,

T1(v, w) =

∫
ψ

(
y − v
w

)
dF (y|x) (6.2.8)

T2(v, w) =

∫
χ

(
y − v
w

)
dF (y|x). (6.2.9)

The curves (m(x), σ(x)) satisfy by definition

T1(m(x), σ(x)) = T2(m(x), σ(x)) = 0.

In practice, one does not know F (·|x) and hence cannot compute T1 or T2. The approach

taken is to replace F (·|x) by Fn(·|x), a kernel estimate of the conditional distribution func-

tion, and to assume that ψ and χ are bounded functions to achieve desirable robustness
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properties. Huber (1981, chapter 6.4) gives examples of functions ψ and χ. One of them is

ψ(u) = min(c,max(−c, u)), c > 0,

χ(u) = ψ2(u)− β,

with β = EΦψ
2(u), where Φ denotes the standard normal distribution. Consistency for the

scale estimate may be obtained for the normal model: Under the assumption that the error

is standard normally distributed, the functions ψ(u) = u and χ(u) = ψ2(u) − β = u2 − 1

give the conditional mean as regression curve m(x) and the conditional standard deviation

as scale curve σ(x). In fact, the parameter β plays the role of a normalizing constant: If

one wishes to “interpret” the scale curve with respect to some other distribution G different

from the normal Φ, one can set β = EGψ
2(u).

The functions T1 and T2 can be estimated by Nadaraya–Watson kernel weights {Whi(x)}ni=1

(as in 3.1.1)

T̂1h(v, w) = n−1

n∑
i=1

Whi(x)ψ

(
Yi − v
w

)
, (6.2.10)

T̂2h(v, w) = n−1

n∑
i=1

Whi(x)χ

(
Yi − v
w

)
· (6.2.11)

Call a joint solution of T1h(v, w) = T2h(v, w) = 0 a resistant regression and scale curve

smoother (m̂M
h (x), σ̂Mh (x)). Consistency and asymptotic normality of this smoother were

shown under regularity conditions on the kernel and the functions (m(x), σ(x)) in Härdle

and Tsybakov (1988). Optimization of the smoothing parameter for this procedure was

considered by Tsybakov (1987).
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7 Nonparametric regression techniques

for time series

Parmi les domaines d’applications où la formulation ARMA classique se révèle in-

suffisante figurent les problèmes financiers et monétaires. Les séries financières disponibles

présentent d’abord certaines caractéristiques de dynamique non linéaire, dont la plus im-

portante est le fait que la variabilité instantanée de la série (ou volatilité) dépend de façon

importante du passé.

C. Gouriéroux (1992)

7.1 Introduction

The statistical properties of regression smoothers have been mainly analyzed in the frame-

work of an “i.i.d observation structure”. The assumption that the pairs {(Xi, Yi), i =

1, . . . , n} are an independent sample from an unknown distribution can often be justified

in practice and simplifies technical matters. Certainly in the expenditure data example in

which the observations have been gathered from a quite realistic cross-section of the popu-

lation, the assumptions of independence and identical distributions seem to be justifiable.
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However, there are many practical situations in which it is not appropriate to assume that the

observations (X1, Y1), (X2, Y2), . . . or the errors Yi −m(Xi) are independent. If for example

the data have been recorded over time from one object under study, it is very likely that the

objects response will depend on its previous response. Another example are financial time

series. The stock price or the exchange rate will depend on the past values of the series.

Data in panel structure where each individual is represented by a time series is yet another

example. Again we have dependence of the observations. Such structures can be modeled

in various contexts. I concentrate on the following four scenarios, for which there exists a

large body of literature.

Scenario 1. A stationary sequence of random variables {(Xi, Yi), i ≥ 1}, X ∈ Rd, Y ∈ R

is observed. The observations may be dependent via the time index i = 1, 2, . . . It is

desired to estimate a functional of the conditional distribution L(Y |X) like e.g. the

mean function m(x) = E(Y |X = x) or the median function.

Scenario 2. A nonlinear autoregressive time series

Yt = m(Yt−1, . . . , Yt−d) + εt, t = 1, 2, . . . (7.1.1)

with independent innovation shocks εt = st · ξt is observed. One is interested in pre-

dicting new observations and in estimating the nonparametric autoregressive function

m or the conditional variance function vt = s2
t = Var(εt|(Yt−1, . . . , Yt−d) = x).

Scenario 3. The observation errors {εin} in the fixed design regression model

Yin = m(xin) + εin, xin = i/n, i ≥ 1 (7.1.2)

form a sequence of correlated random variables and one wants to estimate m.

Scenario 4. The data are curves i.e. we assume the following model

Yi(t) = m(t) + εi(t), 0 ≤ t ≤ 1, i = 1, 2, . . . (7.1.3)
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where the processes {εi(t), 0 ≤ t ≤ 1, i = 1, 2, . . . , n} are independent copies of a sta-

tionary, zero mean process with covariance function γ. One is interested in estimating

the mean function m and the covariance structure γ.

The first scenario is typical for dynamic economic systems, which are modelled as multiple

time series. X may denote an exogenous variable and the function of interest is to predict

Y for a given value of X, see Lütkepohl (1992). The second scenario is widely used in the

analysis of financial time series. In that context the variance function of the innovations

is of high interest. In a parametric context this object is often estimated via the ARCH

(autoregressive conditional heteroskedasticity) model family. Engle (1982) introduced this

model class, Gouriéroux (1992) gives a recent overview. Mathematically the second scenario

can be mapped into the first one. I shall present this technique in Section 7.4 where I also

apply it to foreign exchange rate return series. The third scenario makes sense if one has

one object under study which may be observed repeatedly. The fourth scenario is similar

and an application to human gait analysis is described in Rice and Silverman (1991).

7.2 Nonparametric time series analysis

The commonly used approach in time series analysis is the classical ARMA method. It

assumes linear dependence on past values and past innovations. Tjøstheim (1994) confronts

this classical linear modelling with classical data sets and points out that it has its limitations:

There are classical data sets such as the sunspot, lynx and blowfly data where

these properties are far from being fulfilled, and there is an increasing awareness

of deviations from these assumptions in general.

The increasing awareness of deviations from the classical ARMA model is reflected by many

papers for nonlinear time series analysis.
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The most common nonlinear models are the threshold autoregressive (TAR) models of Tong

(1978; 1983), the exponential autoregressive (EXPAR) models of Haggan and Ozaki (1981),

the smooth-transition autoregressive (STAR) models of Chan and Tong (1986) and Granger

and Teräsvirta (1992), the bilinear models of Granger and Anderson (1978), Subba Rao

(1981) and Subba Rao and Gabr (1980), the random coefficient models of Nicholls and Quinn

(1982), the autoregressive conditional heteroscedastic (ARCH) models of Engle (1982) and

the generalized ARCH models of Bollerslev (1986) and Bera and Higgins (1993). Related

references can be found in Tong (1990) and Priestley (1988).

The Whitening by Windowing Principle

How do nonparametric techniques work for dependent observations? Let me explain this for

the kernel density estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(·) is a kernel function, typically with finite support and h > 0, the bandwidth. If

the kernel function has support on [−1, 1], the estimator only uses the observations in the

interval (x− h, x+ h). When the estimator is used on dependent observations, it is affected

only by the dependency of the observations in a small window, not that of the whole data

set. Hence, if the dependency between the observations is of ‘short memory’ which makes the

observations in a small window almost independent, then most of the techniques developed

for independent observations apply in this situation. Hart (1994a) calls this feature the

whitening by windowing principle.

Various mixing conditions are used to reflect different kinds of dependencies. Basically these

conditions try to control the dependency between Xi and Xj as the time distance i − j

increases. For example, a sequence is called to be α-mixing (strongly mixing) (Robinson,

1983) if

sup
A∈Fn1 ,B∈F∞n+k

|P (A ∩B)− P (A)P (B)| ≤ αk (7.2.4)
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where αk → 0 and F ji is the σ-field generated by Xi, · · · , Xj. The random variable X

here may also stand for the pair (X, Y ) so that the σ− fields are defined appropriately for

the regression problem. A stronger condition is the φ-mixing (uniformly mixing) condition

(Billingsley, 1968) where

|P (A ∩B)− P (A)P (B)| ≤ φkP (A) (7.2.5)

for any A ∈ Fn1 , and B ∈ F∞n+k and φk tends to zero. The rate at which αk and φk go to zero

plays an important role in showing asymptotic behaviour of the nonparametric smoothing

procedures. We note that generally these conditions are difficult to check. However, if

the process follows a stationary Markov chain, then geometric ergodicity implies absolute

regularity, which in turn implies strong mixing conditions. There are developed techniques

in checking the geometric ergodicity, see Tweedie (1975), Tjøstheim (1990), Pham (1985)

and Diebolt and Guegan (1990).

Doukhan and Ghindès (1980) have investigated, for example, the nonlinear autoregressive

process Yt = m(Yt−1) + εt. They showed that if m is a bounded continuous function and the

random errors {εt} are independent, identically distributed and have bounded support, then

the sequence (Xi, Yi) = (Yt, Yt+1) is φ-mixing. The prediction problem for the time series

{Yt} is thus the same as to estimate m(x) = E(Y |X = x) for the two-dimensional time

series {(Xi, Yi), i ≥ 1}. For more details concerning this nonlinear autoregressive process,

see Györfi, Härdle, Sarda and Vieu (1989).

Yakowitz (1987) has considered the k-NN prediction (with uniform

weights) of a stationary Markov sequence and compared the nonparametric predictors with

parametric ARMA models. He showed under assumptions very similar to those for Theorem

4.2.1 that the k-NN estimator in this prediction context satisfies for k ∼ n4/5

E{m̂k(x)−m(x)}2 ∼ n−4/5.

This parallels the results for the i.i.d. case, in particular, the rates given in Table 3.1. It

also shows that the k-NN estimator achieves the optimal rate of convergence (Section 4.1)

in this setting.
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Figure 7.1: Runoff measurements of the bird creek data. From Yakowitz (1987) with per-

mission of Basil Blackwell Ltd.

Yakowitz (1985b) applies the k-NN predictor to the flood warning problem for rivers. Figure

7.1 shows the predicted runoff Zn+1 compared to the actual runoff for two parametric models

(Sacramento and ARMAX) and the nonparametric predictor. Yakowitz reports that in

this flood warning problem the nonparametric method produces roughly the same overall

prediction curve as the two parametric approaches but seems to model the peak flow levels

slightly better.

Robinson (1986) proves consistency of kernel density and regression function estimation
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for time series under various mixing conditions. The problem of missing observations in

time series was addressed in a nonparametric context by Robinson (1984b). He considered

interpolation for missing data, nonparametric regression on different lags and applied it to

daily average carbon monoxide (CO) measurements.

Conditional mode function estimator

A different predictor of future values of Y is based upon the mode function (assuming that

it is uniquely defined),

m(x) = arg max
y
{f(y|x)},

where f(y|x) denotes the conditional density of Y given X. Collomb, Härdle and Hassani

(1987) estimated f(y|x) from a sequence of φ-mixing observations. They used a kernel

estimate f̂(y|x), defined the empirical mode predictor as the maximum of f̂(y|x) over y ∈ R

and showed uniform convergence (over x) of this estimator to the mode function.

Local conditional mean (median) estimation

Consider the second scenario i.e. a nonlinear AR(d) process Yt = m(Yt−1, . . . , Yt−d) + εt.

Let Xt = (Yt−1, . . ., Yt−d), and choose δn > 0. For any x ∈ Rd, let In(x) = {i : 1 < i <

n and ||Xi − x|| < δn} and Nn(x) = #In(x). The conditional mean function estimator

is given by m̂(x) = {Nn(x)}−1
∑

i∈In(x) Yi and the local conditional median estimator is

given by m̃(x) = median{Yi, i ∈ In(x)}. Under a strong mixing condition, Truong and

Stone (1987b), Truong (1993) provide the strong consistency and asymptotic normality of

the estimator, along with the optimal rate of convergence.

Nonparametric kernel estimation

Auestad and Tjøstheim (1990), Härdle and Vieu (1992) used a kernel estimator (or robus-

tified versions of it) to estimate the conditional mean and variance functions. The function
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m is estimated by the multivariate Nadaraya–Watson estimator with product kernels:

m̂(y1, . . . , yd) =

∑n
t=d+1

∏d
i=1 K{(yi − Yt−i)/hi}Yt∑n

t=d+1

∏d
i=1 K{(yi − Yt−i)/hi}

, (7.2.6)

and the conditional variance v = s2 is estimated by

ŝ2(y1, . . . , yd) =

∑n
t=d+1

∏d
i=1 K{(yi − Yt−i)/hi}Y 2

t∑n
t=d+1

∏d
i=1 K{(yi − Yt−i)/hi}

(7.2.7)

−{m̂(y1, . . . , yd)}2,

where K(·) is a kernel function with bounded support and the hi’s are the bandwidths.

Robinson (1983), Singh and Ullah (1985) and Masry and Tjøstheim (1992) show strong

consistency and asymptotic normality for α-mixing observations. Bierens (1983; 1987) and

Collomb and Härdle (1986) proved the uniform consistency of the estimator under the as-

sumption of a φ-mixing process.

Local polynomial regression estimation

Tsybakov (1986) and Härdle and Tsybakov (1992) used local polynomial nonparametric

regression techniques to estimate the conditional mean and conditional variance in time

series. They considered the second scenario Yt = m(Yt−1) + s(Yt−1)ξt, where ξt has mean 0

and variance 1. The functions m and g = m+ v are estimated by minimization of

cn(x) = argmin
c∈Rl

n∑
t=1

(Yt − cTUtn)2K{(Yt−1 − x)/hn} (7.2.8)

and

gn(x) = argmin
g∈Rl

n∑
t=1

(Y 2
t − gTUtn)2K{(Yt−1 − x)/hn}, (7.2.9)

where K is a kernel function, hn is a positive bandwidth, and

Utn = H(utn), H(u) = (1 u · · ·ul−1/(l − 1)! )T , utn = (Yt−1 − x)/hn.

The estimators m̂(x) and v̂(x) are given by

m̂(x) = cn(x)TH(0) and v̂(x) = gn(x)TH(0)− {cn(x)TH(0)}2 (7.2.10)

This estimator is applied to foreign exchange rate analysis in Section 7.4.
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Smoothing parameter selection

An important issue in practical implementations is the smoothing parameter selection. Recall

the definition of the averaged squared error (ASE) for the kernel estimator (7.2.6)

ASE(h) = n−1

n∑
i=1

{m(Xi)− m̂h(Xi)}2w(Xi).

Härdle and Vieu (1992) showed that the leave-out technique works also for α-mixing obser-

vations, see (7.2.4). Define as in Section 5.1 the leave-one-out-estimator

m̂h,i(x) =
n−1

∑
i6=jKh(x−Xj)Yj

n−1
∑

i6=jKh(x−Xj)

and define the cross-validation function

CV (h) = n−1

n∑
i=1

{Yi − m̂h,i(Xi)}2 w(Xi).

Theorem 7.2.1 Assume that the process (Xi, Yi) is α-mixing. Then ĥ, selected so as to

minimize CV (h) over a set of bandwidths h ∼ n−1/5, asymptotically minimizes ASE, that is,

ASE(ĥ)

infhASE(h)

p→ 1.

A simulated situation

In Figure 7.2 I show a time series generated according to the recursive scheme in (7.1.1).

The time series {Yt} is of the form (7.1.1) with the logistic mean function m(x) = 1
1+exp(−x)

,

and volatility function s(x) = ϕ(x + 1.2) + 1.5ϕ(x − 1.2), where ϕ denotes the pdf of a

normal distribution. The errors ξi were chosen to be uniformly distributed, the kernel was

the quartic one, K(u) = 15
16

(1− u2)2
+. The aim was estimation of m and s =

√
v.

The local polynomial approximation was chosen to be linear (l = 2). The bandwidth was

selected by cross-validation (Theorem 7.2.1); n = 1000 observations were generated. The

local polynomial algorithm and all other computations were done in XploRe, see Härdle,

Klinke and Turlach (1995).
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Figure 7.2: The time series {Yt} from the second scenario

In Figure 7.5 we show the time series as a scatterplot in the form (Xi, Yi) = (Yt−1, Yt) and the

estimate m̂ of the logistic mean function m. The little peak at the right is due to boundary

effects. Figure 7.4 shows the bimodal scaling function s(x) = {v(x)}1/2, together with its

estimate ŝ(x) = {v̂(x)}1/2. There are almost no observations on the right side as can be seen

from Figure 7.3. The sparseness of the observations at the boundary is responsible for this

jagged behavior of v̂(x), see Section 4.4.

The gold price application

Härdle and Vieu (1992) applied the method to a gold price series (n = 2041), kindly provided

by Dieter Sondermann, Bonn. In figure 7.5, the returns rt = (Yt − Yt−1)/Yt−1 are plotted

against the prices Yt−1. The model rt = m(Yt−1) + s(Yt−1)ξt is estimated and the resulting
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Figure 7.3: The time series m̂

plots for the conditional mean and variance are shown in figure 7.7 and 7.8, respectively.

Note that this relation is also of the form (7.1.1). The bandwidths h were selected using

the cross validation technique. The cross validation function for estimating m is shown in

Figure 7.6. All computation are done in XploRe, using the WARPing technique (Härdle et

al., 1995).

Prediction

Consider the nonlinear AR(1) model Yt = m(Yt−1)+εt. Since the conditional meanE(Yt+k|Yt =

x) is the least squares predictor for k-step ahead prediction, Auestad and Tjøstheim (1990)
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Figure 7.4: The true function s(x) and the estimate{v̂(x)}1/2.

used the ordinary Nadaraya–Watson estimator

m̂h,k(x) =

∑n−k
t=1 K{(x− Yt)/h}Yt+k∑n−k
t=1 K{(x− Yt)/h}

(7.2.11)

to estimate E(Yt+k | Yt = x) directly.

Note that the variables Yt+1, . . . , Yt+k−1 contain substantial information about the conditional

mean function E(Yt+k|Yt). Chen and Hafner (1995) proposed therefore a multistage kernel

smoother which utilizes this information. Consider for example two-step ahead forecasting.

Due to the Markov property, we have

mh,2(x) = E {Yt+2|Yt = x}

= E {E (Yt+2|Yt+1, Yt)|Yt = x} = E {E (Yt+2|Yt+1)|Yt = x}.

Definem1(x) = E (Yt+2|Yt+1 = x). Ideally, if we knewm1, we would use the pairs (m1(Yt+1), Yt),
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Figure 7.5: Gold price returns from 1978 to May 1986

t = 1, . . . , (n−1) to estimate E (Yt+2|Yt), instead of using the pairs (Yi+2, Yi) as the estimator

in (7.2.11). The idea is thus to estimate the function m1 with an estimator m̂1(·) and to use

the pairs (m̂(Yt+1), Yt) to estimate E (Yt+2|Yt). This observation motivated the ‘multistage

smoother’.

m̂h1,h2(x) =

∑n−1
t=1 K{(x− Yt)/h2}m̂h1(Yt+1)∑n−1

t=1 K{(x− Yt)/h2}
(7.2.12)

where

m̂h1(y) =

∑n−1
j=1 K{(y − Yj)/h1}Yj+1∑n−1
j=1 K{(y − Yj)/h1}

.

This smoother is proved to have a smaller mean squared error, see Chen and Hafner (1995).

The estimators in (7.2.11) and (7.2.12) were applied to the gold price example by the above

mentioned authors. They computed a ten–step prediction with both estimators. For the mul-

tistage smoother we need a recursive algorithm, which computes at the kth step a smoother
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Figure 7.6: CV function for the conditional mean problem, hmin = 0.45

of the (k − 1)th smoother, beginning with the simple one–step predictor. At each step the

optimal bandwidth according to the cross validation criterion is obtained. The estimates are

shown in figures 7.9 and 7.10.

Lag Selection and Order Determination

The lag selection and order determination problem is important for effective implementation

of nonparametric time series modelling. For linear time series models, lag selection and

order determination are usually done using information criteria such as FPE, AIC and BIC,

see Akaike (1970; 1974; 1979), along with other model checking procedures such as residual

analysis.

In the nonparametric approach to time series analysis, Auestad and Tjøstheim (1990) and
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Figure 7.7: Conditional mean m̂ of gold prices returns

Tjøstheim and Auestad (1994b) proposed to use the FPE criterion and Cheng and Tong

(1992) proposed to use the cross validation criterion.

More specifically, Tjøstheim and Auestad (1994b) proposed to use an estimated FPE cri-

terion to select lag variables and to determine the model order of the general nonlinear

AR model. Let Yt, t = 1, . . . , n be a stationary strong mixing nonlinear AR process. Let

i = (i1, . . . , ip) and Xt(i) = (Yt−i1 , . . . , Yt−ip)
T . Define

FPE(i) =
1

n

∑
t

[Yt − f̂{Xt(i)}]2w{Xt(i)} (7.2.13)

× 1 + (nhp)−1||K||2p2 Bp

1− (nhp)−1{2Kp(0)− ||K||2p2 }Bp

where

Bp = n−1
∑
t

w2{Xt(i)}
p̂{Xt(i)}
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Figure 7.8: Conditional variance v̂ of gold prices returns

and m̂(Xt(i)) is the kernel conditional mean estimator. Note that the FPE is essentially

a penalized sum of squares of residuals, where the last term in (7.2.14) penalizes small

bandwidth h and large order p.

Cheng and Tong (1992) used leave-one-out cross validation procedure to select the order of

a general nonlinear AR model. Let Xt(d) = (Yt−1, . . . , Yt−d) and

CV (d) =
1

N − r + 1

∑
t

[Yt − m̂−t{Xt(d)}]2w{Xt(d)}

where m̂−t is the kernel conditional mean estimator with Yt deleted. They proved that,

under some regularity conditions,

CV (d) = RSS(d){1 + 2K(0)γh−d/n+ op(1/h
dn)}

where γ =
∫
w(x)dx/

∫
w(x)f(x)dx and h is the bandwidth. Again, we can view this as a
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Figure 7.9: 10-step prediction using the direct Nadaraya–Watson estimator

penalized sum of squares of residuals.

Functional coefficient AR model approach

A functional coefficient autoregressive (FAR) model can be written as

Yt = f1(Yt−d)Yt−1 + f2(Yt−d)Yt−2 + . . .+ fp(Yt−d)Yt−p + εt.

The model generalizes the linear AR models by allowing the coefficients to change accord-

ing to a threshold lag variable Yt−d. The model is general enough to include the TAR

models (when the coefficient functions are step functions) and the EXPAR models (when

the coefficient functions are exponential functions) along with many other models (e.g., the

STAR models and Sine function models). Chen and Tsay (1993b) use an arranged local
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Figure 7.10: 10-step prediction using the multistage smoother

regression procedure to identify the nonlinear function forms. For y ∈ R and δn > 0, let

In(y) = {t : 1 < t < n, |Yt−d − y| < δn}. If we regress Yt on Yt−1, . . . , Yt−p using all the

observations Yt such that t ∈ In(y), then the estimated coefficients can be used as estimates

of fi(y). One can then make inference directly or formulate parametric models based on the

estimated nonlinear function forms. Chen and Tsay (1993b) proved the consistency of the

estimator under geometric ergodicity conditions. Note that the locally weighted regression

of Cleveland and Devlin (1988) can also be used here as well.

For illustration of the ALR procedure, I consider the chickenpox data used by Chen and

Tsay (1993b) and described by Sugihara and May (1990) with 533 observations. Natural

logarithms are taken for variance stabilization. In the implementation in XploRe, a sample

size within each window of at least K (> p) is required to ensure the accuracy of the
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coefficient estimates. Lacking an optimal selection criterion, the structure parameters are

selected heuristically to be K = 30 and the window width c = (xmax − xmin)/10. Several

nonlinearity tests indicate strong nonlinearity for the threshold lag d = 12, which is plausible

because we have monthly data. The most significant lags are 1 and 24. The resulting model

is

Yt = f1(Yt−12)Yt−1 + f2(Yt−12)Yt−24 + εt.

The scatterplots of the estimated functions are shown in figures 7.11 and 7.12, respectively.

Note that f1 and f2 seem to add up to a constant. To formulate a parametric model based

on the estimated functions, we note a level shift around the value Yt−12 = 7.2. Hence a TAR

model is suggested, for details see Chen and Tsay (1993b).

7.3 Smoothing with dependent errors

In this section we deal with the models (7.1.2) and (7.1.3). First we consider the fixed design

model

Yin = m(xin) + εin, xin = i/n, i ≥ 1

with correlated errors {εin}. To give an impression of how methods designed for the i.i.d.

case fail in the setting of smoothing with dependent errors consider Figure 7.13. It shows

the raw data connected by lines together with the regression curve for two different kinds

of error structure for the {εin}. Figure 7.13 is for the i.i.d. case and Figure 7.14 shows the

same situation but with autoregressive errors.

Both data sets were smoothed with a kernel smoother using cross-validation. The result is

shown in Figure 7.15. It is obvious that cross-validation has selected too small a bandwidth

for the date with correlated errors. The reason is that this method interpreted the existing

correlation in the errors as part of the regression curve. (If we try to smooth by eye we

would probably also undersmooth.)
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There are many situations in which we observe a panel i.e. the basic individual responses are

curves. This is in contrast to the usual cross-section studies where the observed quantities

are points or vectors. One example where curves arise is in the investigation of growth and in

the behavioural sciences. Ramsay (1982) analyzes data of this kind in psychology. Another

example is the human gait analysis in Rice and Silverman (1991).

If we consider averaging the curves in (7.1.3) in order to obtain an estimate for m we in fact

have a structure as in (7.1.2). The averaged response curves will have one single regression

function with correlated errors. It is therefore interesting to investigate the asymptotics of

this sampling scheme.

In this asymptotic analysis I follow Hart and Wehrly (1986). They assume, as in Azzalini

(1984), a collection of time series

Yij = m(Xi) + εij, i = 1, . . . , n, j = 1, . . . , N.

The interpretation is that at each Xi we have N experimental units available. Suppose

that the data at the ith unit are serially correlated but samples are independent across

experimental units. More formally, the errors εijs are zero mean random variables satisfying

Cov(εij, εkl) =

 σ2ρ(xi − xk), if j = l;

0, if j 6= l.

Assume also that the correlation function ρ is even with ρ(0) = 1 and |ρ(u)| ≤ 1 for all

u ∈ [−1, 1].

The estimation problem of m is based on averaged responses

Yi• = N−1

N∑
j=1

Yij.

Expressing the model now as

Yi• = m(xi) + εi•

links this setting in an obvious way to the analysis of independent random errors. In fact,
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the averaged random errors εi• satisfy

Cov(εi• , εk•) = (σ2/N) ρ (xi − xk). (7.3.14)

One can now see the problem of estimation of m as that of fitting a smooth curve through

the sample means at each unit. The estimator that Hart and Wehrly (1986) used was a

kernel estimator applied to Yi• with Gasser-Müller weights

WGM
hi (x) =

si∫
si−1

Kh(x− u)du,

where s0 = 0, si = (xi + xi+1)/2, i = 1, . . . , n− 1, sn = 1.

The following proposition shows that, with correlated errors, a kernel estimator is not con-

sistent for m(x) unless the number N of experimental units at each Xi tends to infinity.

Proposition 7.3.1 If m is twice differentiable and ρ is a Lipschitz continuous function then

the MSE of

m̂h(x)n−1

n∑
i=1

W
(3)
hi Yi•

is

E {m̂h(x)−m(x)}2 ≈ (σ2/N)

1∫
−1

1∫
−1

ρ{h(u− v)}K(u)K(v) du dv

+
h4

4
{m′′(x)}2d2

K , (7.3.15)

n→∞, N →∞, h→ 0, nh→∞.

The result is immediate from (7.3.14) and the bias expansions given in Section 3.1. An

important question is how the optimal choice of bandwidth changes if correlation of the εin

is allowed. This is made precise in Theorem 4 of Hart and Wehrly (1986).
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Theorem 7.3.1 Assume that ρ is twice differentiable and that (N/n) = o(1), then the

asymptotic expansion (7.3.15) of the MSE of m̂h(x) is

E {m̂h(x)−m(x)}2 ≈ (σ2/N){1 + h2ρ′′(0)µ2
2(K)}

+
h4

4
{m′′(x)}2µ2

2(K). (7.3.16)

This theorem suggests choosing a bandwidth

h
(1)
N =

[
−2σ2ρ′′(0)

µ2
2(K){m′′(x)}2

]1/2

N−1/2

which minimizes (7.3.16) as a function of N . This bandwidth can be compared with the

“optimal” bandwidth in the case of independent observations

h
(2)
N =

[
σ2||K||22

µ2
2(K){m′′(x)}2

]1/5

(nN)−1/5

(see Section 5.1). Comparing h
(1)
N and h

(2)
N shows that h

(1)
N < h

(2)
N is impossible for n and N

sufficiently large. However, if n is small and serial correlation is large (that is, ρ is “flat”

near 0), the situation may be reversed. Figure 7.15 shows the kernel smoother m̂h(x) for the

plasma citrate data using bandwidths assuming uncorrelated and correlated observations,

respectively.

The bandwidths have been determined by minimizing estimates of the mean averaged squared

error MASE. Assuming independent errors, the accuracy measure dM can be approximated

as in Chapter 5. For the case of correlated observations the unknown correlation function ρ

in (7.3.16) has to be estimated. One could use the canonical estimate

ρ̂(k) = ĉ(k)/ĉ(0),

where

ĉ(k) = (nN)−1

N∑
j=1

n−k∑
i=1

(Yij − Yi•)(Yi+k,j − Yi+k,•).

The two estimated MASE curves are displayed in Figure 7.16. The bandwidth to be picked

for the case of dependent observations is slightly smaller than that for the case of independent
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errors. So, if there is a reason to believe that the data are correlated, it is recommended

that such two estimates of the accuracy be plotted in order to see how the picture changes

with correlated errors.

The fourth scenario was considered in more detail by Rice and Silverman (1991) in human

gait analysis. Raz, Turetsky and Fein (1989) apply this curve sampling model to evoked

potential signals in electroencephalographic studies. Hart and Wehrly (1993) show that the

crossvalidation technique does also work in this context. Pezzuli and Silverman (1993), Besse

and Ramsay (1986), Dauxois, Pousse and Romain (1982) use principal component analysis

for this curve data problem.

7.4 Conditional heteroscedastic autoregressive nonlinear

models

Conditional volatility of asset prices in general and foreign exchange (FX) rates in particular

have been the subject of intense investigation over the last few years. Virtually all estimation

has been parametric. Most popular are the GARCH family (Baillie and Bollerslev, 1989) and

stochastic volatility models (Mahieu and Schotman, 1994). In this Section I report estimates

from the application of the local polynomial technique (LPE) to high-frequency FX quote

data. We shall also see how scenario 2 can be seen within the context of scenario 1.

The scenario considered is the second one, i.e. the observations are supposed to be generated

by

Xt = m(Xt−1) + s(Xt−1)ξt (7.4.17)

In the FX-rate example I consider, Xt denotes the return and time is measured in 10 or 20

minute intervals. The theoretical framework for LPE is given in Härdle and Tsybakov (1992).

The interest in the FX-market context is to estimate the volatility function s in (7.4.17). The

scenario (7.4.17) is called a conditional heteroscedastic autoregressive nonlinear (CHARN)
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model by Bossaerts, Härdle and Hafner (1996). A related model has been introduced by

Gouriéroux and Monfort (1992) who supposed that m and s are step functions with known

number of steps.

In order to establish asymptotic results for the local polynomial estimators ofm and s we need

to ensure that Xt behaves at least asymptotically like a stationary sequence satisfying mixing

conditions like (7.2.4). This is achieved by the following three lemmas. Besides identifiability

conditions the most important assumption here is a relation between the growth of the

functions m and s and the absolute moment of ξ1.

There exist constants C1 > 0, C2 > 0 such that

|m(x)| ≤ C1(1 + |x|), (7.4.18)

|s(x)| ≤ C2(1 + |x|), x ∈ R1,

and

C1 + C2E |ξ1| < 1

.

The first lemma given by Ango Nze (1992) guarantees ergodicity of the process {Xi}. It is

based on application of results of Nummelin and Tuominen (1982) and Tweedie (1975).

LEMMA 7.1 (Ango Nze, 1992) The Markov chain {Xi} is geometrically ergodic, i.e. it is

ergodic, with stationary probability measure π(·) such that, for almost every x,

||P n(·|x)− π(·)||TV = O(ρn),

for some 0 ≤ ρ < 1. Here

P n(B|x) = P{Xn ∈ B|X0 = x},

for a Borel subset B ⊂ R1, and || · ||TV is the total variation distance.
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This lemma says in words that the observed process is exponentially close to a stationary

one for which we may be able to establish mixing conditions and a central limit theorem. In

fact the exponential α-mixing is guaranteed by the second lemma.

LEMMA 7.2 (Davydov, 1973). Let {Yi} be a geometrically ergodic Markov chain, where

Y0 is distributed with its stationary distribution π(·). Then the chain is geometrically strongly

mixing with the mixing coefficients satisfying α(n) ≤ c0 ρ
n
0 for some 0 < ρ0 < 1, c0 > 0.

The third lemma allows us to establish asymptotic normality of the LPE.

Denote Fk = σ(Yk, Yk−1, . . . , Y0) the σ-algebra generated by Y0, . . . , Yk.

LEMMA 7.3 (Liptser and Shirjaev, 1980)[Corollary 6] Let for every n > 0, the sequence

ηn = (ηnk,Fk) be a square integrable martingale difference, i.e.

E(ηnk|Fk−1) = 0, E(η2
nk) <∞, 1 ≤ k ≤ n. (7.4.19)

and let
n∑
k=1

E(η2
nk) = 1, ∀ n ≥ n0 > 0, (7.4.20)

The conditions

∑n
k=1 E(η2

nk|Fk−1)
p−→ 1, as n→∞, (7.4.21)∑n

k=1 E
(
η2
nkI(|ηnk| > ε)|Fk−1

)
p−→ 0, as n→∞, (7.4.22)

(ε > 0) are sufficient for convergence

n∑
k=1

ηnk
D−→ N(0, 1), as n→∞.

These three lemmas are applied in Härdle and Tsybakov (1992) to the estimation of m and

v = s2 by (7.2.8) and (7.2.9). The first lemma guarantees that Yi behaves like a stationary

Markov chain. The second lemma allows to compute the moments of the local polynomial

estimators. The third lemma is useful in establishing the asymptotic distribution v̂ given in
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Theorem 7.4.1 The local polynomial estimator of v̂ = ĝ − m̂2 from (7.2.8) and (7.2.9) is

asymptotically normal distributed: for h = βn−
1

2l+1 ,

n
l

2l+1{v̂(x) − v(x)} L−→ N{bv(x), σ2
v(x)}

The bias and variance in the case of a local linear estimate (l = 2) read as

bv(x) =
µ2(K)β2

2
[v′′(x) + 2{m′(x)}2]

σ2
v(x) =

v2(x)m4||K||22
βf(x)

,

where f denotes the density of the stationary distribution π from Lemma 7.1 and m4 = E ξ4
1 .

Minimisation of this expression with respect to K and β leads to the Epanechnikov kernel

K(u) = K∗(u) =
3

4

(
1− u2

)
+

and to the following value of β:

β(K) =

(
v2(x)m4 ||K||22

f(x)µ2
2(K)

[
v′′(x) + 2{m′(x)}2

]2
)1/5

,

so that

β∗ = β(K∗) =

(
24 v2(x)m4

f(x)
[
v′′(x) + 2{m′(x)}2

]2
)1/5

.

The LP technique was applied by Bossaerts et al. (1996) to FX data. The dataset consists of

bid and ask quotes of Deutsch Mark/US Dollar from Reuter’s FXFX page. The sample covers

the period 1 October 1992 at 0:00:00 GMT till 30 September 1993 at 23:59:59 GMT. The data

were filtered to remove erroneous quotes and other outliers (less than 0.5% of the data). A

time transformation was applied to obtain quotes in 10 min intervals. This is a huge dataset:

the DEM/USD file, for instance, contains 1,472,241 records. The authors fitted first-order

polynomials (i.e., linear functions) locally, using XploRe (1995), with bandwidth selected

by means of crossvalidation. Figure 7.18 displays their estimate of v, the variance function,

for the DEM/USD, together with 95% confidence bounds computed from Theorem 7.4.1.
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Most surprising is the asymmetric shape, as if there were a leverage effect (albeit inverted)

in FX similar to that found in stock prices, with volatility increasing after increases in the

DEM/USD rate.

This ”leverage effect” is caused by the asymmetric nature of central bank reaction policies,

with more uncertainty about imminent intervention after increases in the DEM/USD rate.

The asymmetry in the variance function is significant . To make this clear visually, Figure

7.19 plots the variance function against the absolute value of lagged spot quote changes.

Exercises

7.4.1 Derive formula (7.3.14).

7.4.2 Make precise the arguments needed to prove the MSE expansion (7.3.15).

7.4.3 Show formula (7.3.16). Why is h
(1)
N > h

(2)
N as N, n tend to infinity?

7.4.4 Find a function that satisfies the assumption (7.4.19) necessary for Lemma 7.1. Can

you explain why the bound in (7.4.19) is linear?

7.4.5 Can you explain why the variance function in Figure 7.18 is asymmetric?

7.4.6 How would you bootstrap a process from scenario 2?

7.4.1 Complements

Another approach to modelling dependence in nonparametric regression consists of assuming

that the regression curve is in some sense asymptotically constant overlaid with a time series

of fixed dependence structure. This concept can, in fact, be seen to parallel the model

that the observation errors become less dependent as n tends to infinity. More precisely, if

it is assumed that the {εin} are sampled from a continuous process V (t) with decreasing
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correlation function such that

εin = V (ti/cn)

with discretization points {ti} and a sequence cn tending to zero, then the {εin} become

asymptotically less dependent.

In this framework it can be shown that kernel smoothers and robust relatives of them (kernel

M -smoothers) converge to the true regression function and are asymptotically normal with

identical bias term, as in the independent case. The asymptotic variance in this case depends

also on the covariances of the noise process (Härdle and Tuan, 1986).

The fourth scenario can be analysed in analogy to principal component analysis for mul-

tivariate random vectors. Rice and Silverman (1991) assume that there is an orthogonal

expansion (in the L2 sense) of γ (the covariance function) in terms of eigenfunctions ϕj:

γ(s, t) =
∑
j

γjϕj(s)ϕ(t).

A random curve from the population may be expressed as

Y (x) = m(x) +
∑
j

ξjϕj(x)

where the ξj are uncorrelated random variables with zero mean and variances E ξ2
j = γj.

The deviation of each sample function from the mean is thus a sum of orthogonal curves

with uncorrelated amplitudes. This represantation is particularly interesting if the first

four eigenfunctions are smootn and correspond to high eigenvalues. The variability among

individuals is then well described by a sum of a small number of smooth curves with random

amplitudes.

ARCH processes are time series with heteroscedastic variance structure. A simple example

in scenario 2 is

Yt = εt

ε2
t = c+ aε2

t−1 + ut
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The squared innovations follow an AR(1) process. Gouriéroux (1992)[(3.8)] showed that

Var(Yt|Yt−1) = c+ aY 2
t−1

and hence the conditional volatility pattern is of symmetric quadratic form. This should be

contrasted with Figure 7.18.
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Figure 7.11: Local estimates of f1(x)
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Figure 7.12: Local estimates of f2(x)
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Figure 7.13: Raw data and mean function m(x) = cos 4πx, x = i/n, Var(ε) = 1.
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Figure 7.14: Raw data and mean function m(x) = cos 4πx, x = i/n with ρ = 0.5.
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Figure 7.15: The two smooth curves for the data from Figure 7.13 and Figure 7.14.
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Figure 7.16: Two smooths for the plasma citrate data. The black squares denote Yi, the

mean response over experimental units. The dashed curve is the kernel smooth

using the estimated optimum bandwidth assuming uncorrelated observations.

The solid line is the kernel estimate using an estimated optimum bandwidth

allowing serial correlation. From Hart and Wehrly (1986) with permission of

the American Statistical Association.

Figure 7.17: Two crossvalidation functions for the plasma citrate data. The dashed line

was computed under the assumption of uncorrelated observations. The solid

line curve was obtained allowing for correlation among observations at different

design points. From Hart and Wehrly (1986) with permission of the American

Statistical Association.
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Figure 7.18: Estimated conditional variance function with 95% confidence bands in a

CHARN model of changes in DEM/USD quotes over ten-minute intervals.
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Figure 7.19: Estimated conditional variance against absolute values of its argument, with

95% confidence bands.



8 Looking for special features and

qualitative smoothing

Many economists uncritically accept the appropriateness of a functional form on

the basis of convention or convenience; others try several forms for their relations but report

only the one that in some sense “looks best” a posteriori.

C. Hildreth (1954, p. 600)

One is often interested not only in the curve itself but also in special qualitative characteris-

tics of the smooth. The regression function may be constrained to simple shape characteris-

tics, for example, and the smooth should preferably have the same qualitative characteristics.

A quite common shape characteristic is a monotonic or unimodal relationship between the

predictor variable and the response variable. This a priori knowledge about the qualitative

form of the curve should be built into the estimation technique. Such qualitative features do

not necessarily lead to better rates of convergence but help the experimenter in interpretation

of the obtained curves.

In economic applications involving demand, supply and price, functions with prescribed

shape (monotonicity, convexity, etc.) are common. Lipsey, Sparks and Steiner (1976, chapter

5) present a number of convex decreasing demand curves and convex increasing supply curves
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(in both cases, price as a function of quality). They also give an example for quantity

demanded as a function of household income. A more complex procedure could be applied

to the potatoe Engel curve in Figure 1.2. The nonparametric fit shows a partially increasing

and a decreasing segment. This curve could be estimated by a unimodal regression technique.

Another qualitative characteristic of a regression fit are location of zeros or extrema. They

often yield a rough impression of the regression curve. Experience based on such features

might tell us immediately something about the curve itself, and the information they contain

may suffice to establish a reasonable parametric model.

In this chapter I discuss techniques for smoothing under the following qualitative constraints:

monotonicity and unimodality (Section 8.1). The estimation of zeros and extrema is pre-

sented in Section 8.2. More complicated shape constraining procedures, such as convex

(concave) smoothing, for example, have been treated by Hanson and Pledger (1976) and

Wright and Wegman (1980).

8.1 Monotonic and unimodal smoothing

The problem of monotonic smoothing on a set {(Xi, Yi)}ni=1 of two-dimensional data can be

formalized as follows. Sort the data {(Xi, Yi)}ni=1 byX into {(X(i), Y(i))}ni=1. Find {m̂(X(i))}ni=1

to minimize n−1
∑n

i=1(Y(i) − m̂(X(i)))
2 subject to the monotonicity restriction

m̂(X(1)) ≤ m̂(X(2)) ≤ · · · ≤ m̂(X(n)).

Such a solution exists and can be obtained from the pool adjacent violators algorithm, (Bar-

low et al. 1972, p. 13; Hanson, Pledger and Wright 1973). The pool-adjacent-violators

algorithm (from the left) can be formalized as follows.
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8.1.1 Pool-adjacent-violators (PAV) Algorithm

Algorithm 8.1.1

STEP 1.

Start with Y(1), move to the right and stop if the pair

(Y(i), Y(i+1)) violates the monotonicity constraint, that is,

Y(i) > Y(i+1). Pool Y(i) and the adjacent Y(i+1), by replacing them

both by their average,

Y ∗(i) = Y ∗(i+1) = (Y(i) + Y(i+1))/2 .

STEP 2.

Next check that Y(i−1) ≤ Y ∗(i). If not, pool {Y(i−1), Y(i), Y(i+1)} into

one average. Continue to the left until the monotonicity

requirement is satisfied. Then proceed to the right. The final

solutions are m̂(X(i)).

There are four remarkable facts about this solution. First, if the data are already monotone,

then the PAV algorithm will reproduce the data. Second, since each m̂(X(i)) is an average of

the observations near X(i) the solution is a step function as in Figure 8.1. Third, if there are

outliers or aberrant observations the PAV algorithm will produce long, flat levels. Fourth,

suppose the algorithm is started from the right with the aim of pooling to obtain a decreasing

fit (looking from the right). The fits starting from left and right are different (Exercise 8.1.1).

Especially the third fact about outlier dependence could be treated by first smoothing (with

a robust technique) and then isotonizing the smooth. On the other hand, one could also

first apply the PAV algorithm and then smooth the solution. Hildenbrand and Hildenbrand

(1986) applied the first strategy in nonparametric estimation of Engel curves. Figure 8.1

shows a spline smooth and a PAV smooth obtained from estimating the Engel curve of food

as a function of income.

On the contrary, Friedman and Tibshirani (1984) proposed smoothing the data first and
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Figure 8.1: A spline smooth through the midpoints of the PAV step function. The isotonic

regression curve was computed from the food versus income data set. (Family

Expenditure Survey 1968–1983). From Hildenbrand and Hildenbrand (1986)

with permission of Elsevier Science Publishers .

then searching for a monotone approximation of the smooth. This second algorithm can

be summarized as follows. First, smooth Y on X, that is, produce an estimate m̂1(X(i))

with a cross-validated smoothing parameter. Second, find the monotone function m̂(X(i))

closest to m̂1(X(i)) by means of the PAV algorithm. Friedman and Tibshirani (1984) gave

an example of this algorithm to find an optimal transformation for a nonparametric version

of the Box–Cox procedure (1964).

Kelly and Rice (1988) used monotone smoothing in a similar model for assessment of syner-

gisms. The goal of the nonparametric Box–Cox procedure is to identify the smooth monotone

link function θ(·) and the parameter β in the model

θ(Y ) = βTX + ε.

This can be achieved by finding a function θ̂(·) and an estimate β̂ that minimize

n−1

n∑
i=1

(θ̂(Yi)− β̂TXi)
2
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subject to

n−1

n∑
i=1

(
θ̂(Yi)− n−1

n∑
j=1

θ̂(Yj)

)2

= 1.

Note that this procedure is a special case of the ACE algorithm (Section 10.3), which consists

of finding β̂ for fixed θ̂(·) and vice versa.

The Box–Cox procedure and a method proposed by Kruskal (1965) are variants of this

procedure. The Box–Cox procedure consists of using the parametric transformation family

gλ(Y ) =

 (Y λ − 1)/λ, if λ > 0;

log Y, if λ = 0,
(8.1.1)

to model the unknown function θ(·). Kruskal used isotonic regression (by the PAV algorithm)

to estimate θ(·). Friedman and Tibshirani applied the nonparametric procedure to the same

data and showed that the monotone smooth transformation θ̂(·) came remarkably close to

the log-transformation selected by Box and Cox (1964); see Figure 8.2.

Figure 8.3 shows the result of Kruskal’s algorithm together with the log-transformation. The

transformation suggested by the Kruskal method by construction lacks smoothness, whereas

the monotone smooth gives evidence for a log-transformation; see Figure 8.3.

It is, of course, interesting to ask which method is to be preferred in which situation. Should

we smooth first and then isotonize the smooth via the PAV algorithm or should we apply

the PAV algorithm first and then smooth? Mammen (1987) investigated this question in the

fixed design model. His theoretical comparison is given in more detail in the Complements

to this section. It is remarkable from Mammen’s results that neither method outperforms

the other. More precisely, isotonizing the observations first leads to a smaller variance and a

larger bias. The Friedman–Tibshirani method can have a smaller MSE but conditions when

this will happen are rather complicated and depend on the unknown regression function.

Variants of the above methods are monotone median and percentile regression. They have

been investigated by Cryer et al. (1972) and Casady and Cryer (1976). Two-dimensional

isotonic smoothing is given as algorithm AS 206 in Bril et al. (1984).
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Figure 8.2: The monotone smooth selected by the Friedman–Tibshirani algorithm and the

log-transformation. From Friedman and Tibshirani (1984) with permission of

the American Statistical Association.

The problem of unimodal smoothing can be related to monotone smoothing. Suppose that

m(x) has a mode at x = α. This means that

x1 ≤ x2 ≤ α ⇒ m(x1) ≤ m(x2)

and

α ≤ x1 ≤ x2 ⇒ m(x1) ≥ m(x2)).

Then the function

g(x) =

 2m(α)−m(x), if x ≥ α;

m(x), if x ≤ α,

is monotone.

(The problem of “U–shaped regression” can be defined analogously by smoothing −g(x).) A

possible way of finding an unimodal smooth is to mirror the observations at possible mode

points and then to find a monotone smooth of the partially mirrored data.
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Figure 8.3: The result of the Kruskal algorithm and the log-transformation. From Friedman

and Tibshirani (1984) with permission of the American Statistical Association.

More formally, the unimodal regression problem is to find a smooth which minimizes n−1
∑n

i=1(Y(i)−

m̂(X(i)))
2 subject to the restrictions:

X(i) ≤ X(j) ≤ X(k) ⇒ m̂(X(i)) ≤ m̂(X(j))

and

X(k) < X(i) ≤ X(j) ⇒ m̂(X(i)) ≥ m̂(X(j))

for some k.

Frisén and Goteborg (1980) proposed treating the index k as a parameter, and then, solving

for each k, a monotone increasing smoothing problem for the data {(X(i), Y(i))}ki=1 and a

monotone decreasing smoothing problem for the data {(X(i), Y(i))}ni=k+1. Then one chooses

the empirical mode X(k) that leads to the lowest residual sum of squares.

Hildenbrand and Hildenbrand (1986) report that the above algorithm tends to produce a

spike at X(k). For this reason it makes sense to first estimate the mode by α̂ = arg max[m̂(x)]
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Figure 8.4: Unimodal regression for the potato versus net income example. The points

indicate the unimodal regression and the solid line a spline smooth of the uni-

modal regression step function. From Hildenbrand and Hildenbrand (1986) with

permission of Elsevier Science Publishers.

in a “presmoothing step.” In a second step, one then considers unimodal regression with

pre-estimated mode α̂ by mirroring the right half of the data at the empirical mode α̂. This

algorithm has been applied to the potato versus net income example; see Figure 8.4.

Exercises

8.1.1 (by Kurt Hildenbrand)

Consider the following algorithm for PAV smoothing. The input is contained in Y[1. . .N],

the isotonic output in R[1. . . N]. Explain the role of the vector NEXT(I)!

DO I= N TO 1 by -1;

R(I) = Y(I); NEXT(I) = I+1;

DO WHILE (NEXT(I) <= N) IF R(I)*(NEXT(NEXT(I))-NEXT(I))
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< R(NEXT(I))*(NEXT(I)−I) THEN LEAVE; (this loop)

R(I) = R(I) + R(NEXT(I));

NEXT(I) = NEXT(NEXT(I));

END;

END;

DO I = 1 REPEAT NEXT(I) UNTIL (NEXT(I) > N );

IF NEXT(I)-I > 1 THEN DO;

R(I) = R(I)/(NEXT(I)-I);

DO I1 = I + 1 TO NEXT(I)−1; R(I1) = R(I); END;

END;

END;

8.1.2 Explain qualitatively when you would like to prefer to smooth first and then to iso-

tonize.

8.1.3 Calculate the asymptotic MSE from Theorem 8.1.1 in the Complements to this section.

8.1.4 Use an asymptotic MSE optimal bandwidth h0 in 8.1.5. How does the condition then

look?

8.1.5 Rewrite the PAV algorithm so that it starts from the right and does pooling while

descending. Why is the answer, in general, different from the fit starting from the left?

8.1.2 Complements

Let me compare the two proposed methods

SI Smooth first then Isotonize ,
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IS Isotonize first then Smooth .

Consider the fixed design case. Let m̂h(x) denote the Priestley–Chao kernel estimator and

m̂IS
h (x), m̂SI

h (x) the variants of it according to the above two methods. Mammen (1987)

showed the following theorem.

Theorem 8.1.1 Assume that

(A1) Xi = i/n, i = 0,±1, . . . ,±n,

(A2) E(exp(tεi)) <∞ for t small enough,

(A3) m ∈ C2, m′ ≥ 0, x ∈ [−1, 1], m′(0) > 0.

Then

m̂SI
h (0) = m̂h(0) + op(1/n). (8.1.2)

Furthermore, there exist independent random mean zero variables U1n, U2n such that

for some universal constants c1, c2, c3 the following expansions hold.

m̂SI
h (0) = βn + U1n + op(n

−2/3), (8.1.3)

m̂IS
h (0) = βn + δn + (1− ηn)U1n + U2n + op(n

−2/3), (8.1.4)

where

βn = (1/2)m′′(0)dKn
−2/5,

δn = c3σ
4/3m′′(0)[m′(0)]−4/3n−2/3,

ηn = c2σ
4/3[m′(0)]−4/3c

(1)
K c−1

K n−4/15,

c
(1)
K =

∫
[K ′(u)]2du.

Furthermore, n2/5U1n and n8/15U2n are asymptotically normal with variances σ2cK and

c1σ
10/3[m′(0)]−4/3c

(1)
K , respectively.

The theorem can be used to calculate the asymptotic MSE, see Exercise 8.1.1. Mammen

reports that simulations show that c1 < 2c2. Therefore, the method IS leads to a variance
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reduction and a larger bias. Furthermore, it can be computed from 8.1.38.1.4 that m̂IS
h (0)

has a smaller MSE than m̂SI
h (0) if and only if

h5dK [m′′(0)]2

σ2c
(1)
K

<
2c2 − c1

2c3

· (8.1.5)

The universal constants come from the technique used by Mammen, the approximation of

the empirical distribution function by a sequence of Brownian bridges. It is very interesting

that the asymptotic variance of m̂IS
h (0) has a second-order term of the order O(n−16/15),

where the constant in this rate is negative and proportional to [m′(0)]−4/3. This seems to be

quite intuitive: If the slope at a point is not very steep we expect the ISmethod to behave

better than the SI method. Certainly, if m′(0) is small we can allow for a broad (random)

bandwidth from the PAV algorithm.

8.2 Estimation of Zeros and Extrema

It is often sufficient to report a few significant points of a curve in order to describe the nature

of its form. Such significant points are, for example, locations of zeros, peaks, troughs or

inflection points. These significant points usually have an interpretation in terms of the field

of application and, moreover, can be used for comparing groups of similar data sets with

respect to each other. There have been two different models and approaches for estimation

of zeros or extrema. The first model is concerned with the situation that the statistician

has already sampled the data and then wants to estimate these points. The second model

deals with the case that data are observed sequentially (e.g. screening studies) and every

new observation is used to improve the information about the current estimate of the zero

or extremum.

Müller (1985) investigated the question of estimating zeros and location and sizes of extrema

in the first model. He assumed the standard fixed design model

Yi = m(Xi) + εi, i = 1, . . . , n
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with Xi = i/n. Such a model makes sense, for example, in growth curve analysis, where

different (but similar) individuals are compared. A comparison across individuals can then

be done on the basis of location and size of the maximal value of an individual growth curve,

for instance.

Assume that m(k)(x), the kth derivative of the regression function, has a unique maximum

at αk, that is,

m(k)(αk) = max
x∈(0,1)

m(k)(x).

From a kernel smooth m̂
(k)
h (x) one constructs the empirical (most left) location

α̂k,h = inf{x : m̂
(k)
h (x) = max}

and the size m̂
(k)
h (α̂k,h) of a maximum. In the same way, an empirical zero of m is defined

by

ẑk,h = inf{x : m̂
(k)
h (x) = 0}.

It is known from 4.1.6 in Section 4.1 that the maximal deviation between kernel smoothers

and the true regression function converges to zero at the rate γn ∼ max{(nh/ log n)−1/2, h},

provided m is Lipschitz continuous. If m is twice differentiable then the bias is, as we have

seen many times, of the order O(h2). Balancing bias against the stochastic term of the kernel

smoother, we obtain as in Section 4.1 for h ∼ (n/ log n)−1/5 the rate

γn = O((n log n)−2/5)

for the supremum distance

sup
x
|m̂h(x)−m(x)| = Op(γn).

From this rate emerges the speed of convergence for the location of the extremum as the

following proposition by Müller (1985) shows.

Proposition 8.2.1 If

|m(k)(u)−m(k)(αk)| ≥ c|u− αk|ρ, ρ ≥ 1,
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in a neighborhood of αk, then

|α̂k,h − αk| = Op([γn]1/ρ) and

|m̂(k)
h (α̂k,h)−m(k)(αk)| = Op(γn).

An analogous result holds for the estimation of zeros zk of m(k).

Proposition 8.2.2 If

|m(k)(u)| ≥ c|u− zk|vτ , τ ≥ 1,

in a neighborhood of zk, then

|ẑk,h − zk| = Op([γn]1/τ ).

Müller (1985) also computed the asymptotic distribution of α̂k,h and ẑk,h. The method

works remarkably well even on small data sets, as Figure 8.5 indicates. The points in this

picture indicate n = 15 hormone levels. The solid line corresponds to a kernel with order

(k, p) = (0, 2) (see (4.5.27)), whereas the dashed line was computed for (k, p) = (0, 4).

Estimated coordinates of the peak and size are α̂k,h = 14.14 and m̂
(k)
h (α̂k,h) = 4.21 for the

first kernel smooth. Note that the higher order kernel models the peak a little more sharply

than the lower order kernel. Bandwidths were determined by Rice’s T , as described in

Section 5.2.

The second model for estimating zeros and extrema has only been recently investigated in

the stochastic design case. Assume that (X1, Y1), (X2, Y2), . . . come in sequentially. With

the above method used for the fixed sample case, the whole regression curve would have to

be recomputed when a new observation enters, in order to define the peak location or the

height of the maximum. This estimation technique can therefore be extremely time and

space consuming.

When the statistician has complete control over the predictor variables X, less space- and

time-consuming methods for finding zeros or the location of extremal values are available.
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Figure 8.5: A hormone level example. The points indicate n=15 hormone levels. The solid

line corresponds to a kernel with order (k,p)=(0,2) (see (4.5.2)), whereas the dashed

line was computed for (k,p)=(0,4). Estimated coordinates of the peak and size are

âk,h=14.14 and m̂
(k)
h (âk,h)=4.21 for the first kernel smooth. From Müller (1985) with

permission of the Scandinavian Journal of Statistics.

In the fifties Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) defined recur-

sive stochastic approximation methods for estimating these points. The Robbins–Monro

procedure, for instance, is defined through

Xn+1 = Xn − anYn, n ≥ 1.

(New observations Yn+1 = m(Xn+1) + εn+1 can be drawn since the statistician can observe

the curve (up to error) at any point x.) For suitable choice of {an} this sequence converges

to the (unique) zero of m(x).

This algorithm can be extended to the stochastic design model. Motivated by the Robbins–

Monro procedure define an estimator sequence Zn for the zero of m(x)

Zn+1 = Zn − anKh(Zn −Xn)Yn, n ≥ 1, (8.2.6)
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with an arbitrary starting random variable and {an} a sequence of positive constants tending

to zero. The basic idea of this algorithm is to stay passive if an observation enters that is

outside some neighborhood of the zero. The neighborhood of the zero is defined as usual

by a kernel sequence. For this reason it is called a passive stochastic approximation (PSA)

method; see Tsybakov (1988).

In fact, the sequence {Zn} in 8.2.6 will eventually converge to the (unique) zero of

r(x) = m(x)f(x).

The arguments for estimating z0, the unique zero of m(x), can be extended to the problem

of estimating location of extrema. Note that m = r/f and therefore

m′ =
r′f − rf ′

f 2
.

Under suitable assumptions the problem of finding an extremum of m is equivalent to finding

a (unique) zero of r′f − rf ′. It has been proposed in Härdle and Nixdorf (1987) that the

estimation be performed recursively:

Z ′n+1 = Z ′n − anh−3Yn{K((Z ′n −Xn)/h)K ′((Z ′n −Xn)/h) (8.2.7)

−K ′((Z ′n −Xn)/h)K((Z ′n −Xn)/h)}, n ≥ 1 .

Here {Xn} denotes an additional i.i.d. sequence with the same distribution as X. The

asymptotic normality is shown in the following theorem.

Theorem 8.2.1 Assume that apart from minor technical conditions an = n−1, h = n−1/5

and

inf
η≤|u−z0|≤η−1

(u− z0)r(u) > 0 for all η > 0 .

Then the recursively defined sequence {Zn} is asymptotically normal, that is,

n2/5(Zn − z0)
L−→ N(B, V ) ,

where

B = r′′(z0)dK/(2r
′(z0)− 4/5),
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V = cK(σ2(x) +m2(x))f(z0)/(2r′(z0)− 4/5).

Note that the rate of convergence here is slightly better (by a log term) than that in Propo-

sition 8.2.1 for ρ = 1. The reason is that Proposition 8.2.1 is proved by employing a uniform

convergence rate, whereas the the proof of Theorem 8.2.1 uses local properties of r near

z0. Optimality of the passive stochastic approximation algorithm 8.2.6 was considered by

Tsybakov (1988).

Exercises

8.2.1 Prove Proposition 8.2.1 by applying the uniform rate result as given in Section 4.1.

8.2.2 Recall the uniform rate for a function of higher degree of differentiability. How does

the rate change from

γn = O((n/ log n)−2/5)

to a faster rate if m ∈ C4?

8.2.3 Depict graphically the condition of Proposition 8.2.1 on the local behavior of m(·)

near the zero.

8.2.1 Complements

In sequential estimation of zeros or extrema it is interesting to stop the procedure once a

desired precision of the sequence {Zn} is achieved. For this purpose one defines a stopping

rule

N(d) = inf{n ≥ 1|Vn + n−1 ≤ n4/5d2/(qα/2)2}, (8.2.8)

where d is the desired precision of the zero, Vn is an estimate of V , the asymptotic variance of

Zn from Theorem 8.2.1 and qα/2 is the (1−α/2)-quantile of the standard normal distribution.

This stopping rule yields with an estimate Bn of B a fixed-width confidence interval

[ZN(d) − n−2/5Bn − d, ZN(d) − n−2/5Bn + d].
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Using the randomly stopped sequence ZN(d) does not change the asymptotic distribution, as

the following theorem shows.

Theorem 8.2.2 Let an and h be defined as in theorem 8.2.1. Then if N(d) is defined as in

8.2.8,

N(d)2/5(ZN(d) − z0)
L−→ N(B, V ),

where the bias B and the variance V are defined as in Theorem 8.2.1.

Analogous results can be obtained for the estimation of extrema via the sequence {Z ′n}.

Härdle and Nixdorf (1987) applied this algorithm to determine age as a function of height

from some forensic medicine data.
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9 Incorporating parametric components

We must confine ourselves to those forms that we know how to handle, or for which

any tables which may be necessary have been constructed.

Sir R.A. Fisher (1922)

For a pragmatic scientist the conclusion of Fisher (1922), to “confine ourselves to those forms

that we know how to handle, ” must have an irresistible attractive power. Indeed, we know

that the nonparametric smoothing task is hard, especially in high dimensions. So why not

come back to parametrics, at least partially? A parametric together with a nonparametric

component may handle the model building even better than just the nonparametric or the

parametric approach! In this chapter I present approaches from both views. The discussed

models incorporate both parametric and nonparametric components and are therefore called

semiparametric models.

Three topics are addressed. First, the estimation of parameters in a partial linear model.

Second, the comparison of individual curves in a shape-invariant context. Third, a method

is proposed to check the appropriateness of parametric regression curves by comparison with

a nonparametric smoothing estimator.

An example of a semiparametric model is

Yi = βTZi +m(Xi) + εi, i = 1, . . . , n (9.0.1)
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where βT = (β1, . . . , βp) is a p-vector of unknown regression coefficients and m: Rd → R is

an unknown smooth regression function. Here the response Y depends on a pair of predictor

variables (X,Z) such that the mean response is linear on Z ∈ Rp (parametric component)

and possibly nonlinear on X ∈ Rd (nonparametric component). For the structure of its

parametric component this model is called a partial linear model .

Another semiparametric model is motivated from growth curve analysis. In this setting

one observes that individual curves differ but have the same general overall shape. More

formally, suppose that at least two sets of regression data

Yij = mj(Xij) + εij, i = 1, . . . , n, j = 1, . . . , J, J ≥ 2, (9.0.2)

have been observed and that each “individual curve” mj(·) is modeled nonparametrically.

The same “overall shape” of the curves mj can be expressed formally by the existence of

transformations Sθ, Tθ such that

mj(x) = S−1
θj

[m1(T−1
θj

(x))], j ≥ 2. (9.0.3)

The “individual curves” mj are thus mapped into each other by means of certain parametric

transformations. Examples of possible transformations are shift/scale families, that is,

mj(x) = θ3j + θ4jm1((x− θ1j)/θ2j), j ≥ 2, (9.0.4)

where both Sθ and Tθ are of the form (x− u)/v, v 6= 0. Since with these specific transfor-

mations Sθ, Tθ the shape of all individual curves mj(·) is the same for all j, this model has

also been called shape invariant .

As an example of a shape-invariant model consider the issue of constant demand Engel

curves over time (Hildenbrand 1985). Figure 9.1 shows expenditure Engel curves for food as

a function of income for five different years (1969, 1971, 1973, 1975, 1977). All the curves

look similar except that they have different lengths which corresponds to the presence of

inflation and price changes over years.

Inserting such a scaling parameter into the shape-invariant model makes it possible to test

and to evaluate the evolution of Engel curves; see Härdle and Jerison (1988).
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Figure 9.1: Expenditure Engel curves for food as a function of total expenditure. The

shortest line is the curve for year 1969, the next curve is that for year 1971 and

the longest is computed from data for year 1977. Family Expenditure Survey,

Annual Base Tapes (1968–1983).

Some additive models for multivariate data, for example, projection pursuit, could – in a

strict sense – be considered semiparametric as well. The main feature of these models though

is the additivity of their components. This is the reason why these models are presented in

a separate chapter on additive models; see Chapter 10.

In Section 9.1 I present some recent results on partial linear models. Section 9.2 of this

chapter is devoted to shape-invariant modeling. Section 9.3 discusses the comparison of

nonparametric versus parametric regression fitting through evaluation of the squared devia-
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tion between the two curves.

9.1 Partial linear models

A partial linear model is a semiparametric regression model of the form

Yi = βTZi +m(Xi) + εi, i = 1, . . . , n,

where Zi is a predictor in Rp and m is an unknown one-dimensional regression function. Such

models have been investigated by Spiegelman (1976), Green, Jennison and Seheult (1985),

Robinson (1987a), Speckman (1988) and Carroll and Härdle (1989).

Speckman (1988) motivated nonparametric smoothing together with parametric estimation

in this context by considering first a parametric representation of m as Wγ, where W is a

(n× q)-matrix of full rank and γ is an additional parameter. The partial linear model reads,

then, in matrix notation

Y = Zβ +Wγ + ε.

The normal equations for determing β and γ are

ZTZβ = ZT (Y −Wγ),

Wγ = PW (Y − Zβ), (9.1.5)

where PW = W (W TW )−1W T denotes projection onto the column space of W and Z denotes

the (n × p)-matrix of the predictors of the parametric part. Green, Jennison and Seheult

(1985) proposed replacing the projection operator in 9.1.5 by a smoother m̂ and then defining

β̂GJS = (ZT (I −Wh)Z)−1ZT (I −Wh)Y,

m̂GJS = Wh(Y − Zβ̂GJS).

Estimators for the parametric component are motivated by the following observation. Since
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PW is idempotent, the estimates for β and γ can be expressed as

β̂ = [ZT (I − PW )T (I − PW )Z]−1ZT (I − PW )T (I − PW )Y,

Wγ̂ = PW (Y − Zβ̂). (9.1.6)

Another way of looking at this solution is to say that we are estimating β by first ad-

justing Z and Y for the nonparametric component and then regressing the residual (I −

PW )Y on the residual (I − PW )Z. Replacing PW by the kernel smoothing operator Wh =

{Whi}ni=1,Whi(Xj) = Kh(Xi −Xj)/f̂h(Xj), let

Z̃ = (I −Wh)Z

and

Ỹ = (I −Wh)Y.

The equations 9.1.6 then have the nonparametric analogue

β̂ = (Z̃T Z̃)−1Z̃T Ỹ ,

m̂h = Wh(Y − Zβ̂). (9.1.7)

Again these formulas may be interpreted as normal equations for a parametric regression

model with partially adjusted residuals.

Assume now that Z is related to a one-dimensional X in the following way:

Zil = gl(Xi) + ηli, i = 1, . . . , n, l = 1, . . . , d,

with continuous functions {gl}dl=1 and random errors η = {ηli}p n
l=1 i=1 such that n−1ηTη tends

to a positive definite (d × d)-matrix V . Speckman (1988) characterized the asymptotic

behavior of the parametric estimator in the partial linear model as follows.

Theorem 9.1.1 Suppose that g and m are p-times differentiable and that the observation

error has variance σ2. Then for the estimation technique defined in 9.1.7

β − Eβ̂ = h2pV −1

∫
g(p)(u)m(p)(u)du+ o(hpn−1/2),
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var(β̂) = σ2n−1V −1 + o(n−1).

provided h ∼ n−1/(2p+1).

Note that the variance converges at the “parametric rate” n−1/2 whereas the bias has the

usual “nonparametric rate” o(h2p). By contrast, the bias of the above β̂GJS is of order O(hp);

see Exercise 9.1.

Engle et al. (1986), Rice (1986) and Heckman (1986) used spline smoothing in the partial

linear model, that is, finding coefficients β and a function m such that

n−1

n∑
i=1

(Yi − βTZi −m(Xi))
2 + λ

∫
[m′′(u)]2du

is minimized. In the setting of spline smoothing Rice (1986) found a similar interplay between

the parametric and the nonparametric part of the partially linear model as is described in

Theorem 9.1.1. Heckman (1986) considered the case gl(x) = constant and derived asymptotic

zero bias for β̂. (Compare with Theorem 9.1.1) Speckman (1988) gave an application of a

partial linear model to a mouthwash experiment. A control group (Z = 0) used only a water

rinse for mouthwash and an experimental treatment group (Z = 1) used a common brand

of analgesic. Figure 9.2 shows the raw data and the partial kernel regression estimates for

this data set.

The two estimated regression curves m̂h(x) and m̂h(x) + β̂ (Zi = 1 for the treatment

group) are superimposed on this scatter plot. One clearly sees the parametric shift of the

nonparametric component of the regression model due to the treatment effect.

Exercises

9.1.1 Another method for finding estimators for β is to compute the average derivative

δ = EU [g′(U)],
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Figure 9.2: Raw data and partial kernel regression estimates for mouthwash data. The pre-

dictor variable is X= baseline SBI, the response is Y=SBI index after three weeks.

The SBI index is a measurement indicating gum shrinkage. From Speckman

(1988) with permission of the Royal Statistical Society.

where g denotes the sum βTZ + m(X) as a function of U = (Z,X). Show that the first

p components of the average derivative are equal to β. Average derivatives are considered

more closely in Chapter 10.

9.1.2 Prove that 9.1.5 are the normal equations for the partial linear model

Y = Zβ +Wγ + ε.

9.1.3 Prove that the bias of β̂GJS is of order O(hp).



306 9 Incorporating parametric components

[Hint : See Green, Jennison and Seheult (1985).]

9.2 Shape-invariant modeling

Lawton, Sylvestre and Maggio (1972) considered the volume of air expelled from the lungs

as a function of time (spirometer curves). They found that these spirometer curves have

the same shape but differed in location or scale. This motivated them to consider the

following framework for comparison of similar curves. One observes data {(Xi, Yi)}ni=1 and

{(X ′i, Y ′i )}ni=1 with regression curve m1(x) and m2(x), respectively. The idea for formalizing

the similarity between the two curves m2 and m1 is to introduce transformations Sθ, Tθ such

that

m2(x′) = S−1
θ m1(T−1

θ x′), θ ∈ R4. (9.2.8)

Here Sθ, Tθ denote shift/scale transformations Sθ(u) = θ3+θ4u and Tθ(u) = θ1+θ2u. Because

of the nature of these transformations this model is called a shape-invariant model .

An example of such a relationship between the two curves is given in Figure 9.3 from a study

on automobile side impacts (Kallieris and Mattern, 1984; Kallieris, Mattern and Härdle,

1986).

The curves give the impression that they are noisy versions of similar regression curves with

the same shape. The main difference is that the X-axis is shifted and there is a vertical

rescaling. This example is considered in more detail in what follows.

Another example stems from the analysis of human growth curves (Gasser et al. 1985;

Stuetzle et al. 1980). Individual curves have been approximated by nonparametric estima-

tion techniques but may have a simple (parametric) relationship between them. Kneip and

Gasser (1988) consider an extension by defining a random-coefficient shape-invariant model

to fit individual differences. They investigate a method for simultaneous estimation of m

and θ by making use of prior information.
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Figure 9.3: Acceleration curve of side impact data. The X-variable is time (in milliseconds),

the Y -variable is acceleration (in g) after impact, test object =TO4.

In this section I consider the fixed design model of equispaced {Xi}ni=1 on the unit interval.

I will assume throughout that

Yi = m1(Xi) + εi, var(εi) = σ2,

Y ′i = m2(X ′i) + ε′i, var(ε′i) = σ
′2,

where εi, 1 ≤ i ≤ n, are i.i.d. mean zero random errors with all moments existing and

m1,m2 are Hölder continuous.

Suppose that in 9.2.8 there exists a true θ0 mapping m1 into m2 and vice versa. A good esti-

mate of θ0 will be provided by a value of θ for which the curve m1(x) is closely approximated

by

M(x, θ) = Sθm2(Tθx).

The effectiveness of an estimate of θ0 is assessed here by the loss function

L(θ) =

∫
[m1(x)−M(x, θ)]2w(x)dx,
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Figure 9.4: Acceleration curve of side impact data. The X-variable is time (in milliseconds),

the Y -variable is acceleration (in g) after impact, test object =TO3.

where w is a nonnegative weight function. Note that M(x, θ0) = m1(x), so θ0 minimizes

L(θ).

The unknown regression functions are estimated by Priestley–Chao-type kernel smoothers

m̂h1(x) = n−1

n∑
i=1

Kh(x−Xi)Yi,

m̂h′2(x′) = n−1

n∑
i=1

Kh′(x
′ −X ′i)Y ′i .

Since θ0 minimizes L(θ) it is natural to define the estimate θ̂ of θ to be the argument which

minimizes

L̂(θ) =

∫
[m̂h1(x)− M̂h′(x, θ)]

2w(x)dx,

where

M̂h′(x, θ) = Sθm̂h′2(Tθx).

This estimate θ̂ of θ0 is consistent, as the following theorem shows.
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Theorem 9.2.1 Suppose that L(θ) is locally convex in the sense that given ε > 0, there is

a D(ε) > 0 such that |θ − θ0| > ε implies

L(θ)− L(θ0) > D(ε).

Furthermore, assume that Sθ and Tθ are smooth in the sense that

sup
θ∈Θ

sup
x∈[0,1]

|S ′θ(x)| <∞,

sup
θ∈Θ

sup
x∈[0,1]

∣∣(T−1
θ )′(x)

∣∣ <∞,
where

S ′θ(u) =
d

du
Sθ(u)

and

(T−1
θ )′(u) =

d

du
(T−1

θ )(u).

Then with h, h′ in

Hn = [C−1n−1+δ, Cn−δ],

sup
h,h′∈Hn

∣∣∣θ̂ − θ0

∣∣∣ a.s.→0, n→∞.

Let me apply this method to the acceleration curve example. From looking at Figures 9.3,9.4

it makes sense to say that the main acceleration in the curve in Figure 9.3 is somewhat “later”

and less “expanded” than that of Figure 9.4. The shift/scale model

Tθ(u) = θ1 + u,

Sθ(u) = θ4u

is therefore applied to this data set. (This notation is consistent with the model 9.2.8.) A

plot of the loss function L̂(θ) for these transformations is given in Figure 9.5.

As expected from a comparison of Figure 9.3 and 9.4, the choice of θ is more critical than

that of θ4. The “side ridges” in the negative loss correspond to values of θ(1) where there

is matching of “first peaks” to “second peaks.” The loss function was minimized at θ̂ =

(θ̂1, θ̂4) = (0.13, 1.45). Figure 9.6 shows how m̂h1 matches with M̂h′(x, θ).
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Figure 9.5: The negative loss function L̂(θ) for the side impact data set. The weight function

was the indicator function on the interval (0.1, 0.7). From Härdle and Marron

(1989) with permission of the Institute of Mathematical Statistics.

To obtain the asymptotic normality of θ̂ in a straightforward way I shall assume that

Tθ(u) = θ1 + θ2u,

and that Sθ depends only on θ3, . . . , θd, where d denotes the dimension of the parameter

vector. Furthermore, assume that h′ = θ2h and that H(θ0) is positive definite, where H(θ)

is the d× d Hessian matrix with l, l′th entry∫
Ml(x, θ)Ml′(x, θ)w(x)dx

using the notation

Ml(x, θ) =
∂

∂θl
M(x, θ).

The asymptotic distribution of θ̂ is given in Härdle and Marron (1990).
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Figure 9.6: The adjusted curves m̂h1(x) (label 1, dashed line) and M̂h′ (x,θ̂) (label 2, solid line),

θ̂=(0.13,1.45) for the side impact data set. From Härdle and Marron (1989) with

permission of the Institute of Mathematical Statistics.

Theorem 9.2.2 Under the previous assumptions,

√
n(θ̂ − θ0)

L→ N(0, H−1(θ0)ΣH−1(θ0)),

where the l, l′th entry of Σ is

4

∫
[σ2 + σ

′2(S ′θ0(m2(Tθ0x)))2]Ml(x, θ0)Ml′(x, θ0)w(x)dx.

The case Tθ(u) = θ1 + θ2u and Sθ(u) = θ3 + θ4u is considered in more detail in Exercise 9.2.

Exercises

9.2.1 To gain some insight into the assumptions of this section, consider the case Tθ(u) =

θ1 + θ2u and Sθ(u) = θ3 + θ4u, where

M1(x, θ) = θ4m
′
2(θ1 + θ2x),
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M2(x, θ) = θ4xm
′
2(θ1 + θ2x),

M3(x, θ) = 1,

M4(x, θ) = m2(θ1 + θ2x).

What is the positive definiteness of H(θ0) then essentially requiring?

9.2.2 What other loss functions may be possible to compare the goodness of fit?

9.2.3 Recall the mouthwash experiment at the end of Section 9.1. There, Z denoted the

indicator variable for the treatment effect. This special partial linear model fits also in the

present setting of shape-invariant modeling. What are the transformations Tθ and Sθ?

9.2.1 Complements

Proof of Theorem 9.2.1

To prove this Theorem note that given ε > 0

P

{
sup
h
|θ̂ − θ0| > ε

}
≤ P

{
sup
h

(L(θ̂)− L(θ0)) > D(ε)

}
≤ P

{
sup
h

(L(θ̂)− L̂(θ̂) + L̂(θ0)− L(θ0)) > D(ε)

}
≤ P

{
sup
h

(L(θ̂)− L̂(θ̂)) > D(ε)/2

}
+P

{
sup
h

(L̂(θ0)− L(θ0)) > D(ε)/2

}
,

where suph means suph,h′∈Hn . By rearranging terms and using the triangle inequality it

suffices to show that

sup
h

∫
(m̂1(x)−m(x))2w(x)dx,

sup
θ

sup
h

∫
(M̂h(x, θ)−M(x, θ))2w(x)dx (9.2.9)

tend almost surely to zero. Now apply Proposition 4.1.1 with uniform convergence also over

θ to see that both terms in 9.2.9 tend to zero with probability one.
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9.3 Comparing nonparametric and parametric curves

The appropriateness of parametric modeling of regression data may be judged by comparison

with a nonparametric smoothing estimator. For this purpose one may use a squared deviation

measure between the two fits. In this section the wild bootstrap will be used to evaluate the

stochastic behavior of this deviation. It will be seen that this bootstrap works (in contrast

to more classical forms of bootstrap).

The squared deviation measure can be used as a test statistic to test the parametric model,

where the critical value is determined by the wild bootstrap. In particular, I apply this

method of comparison to decide about the parametric form of Engel curves. Leser (1963,

p. 694) stresses the point that emphasis in statistical estimation of Engel curves has been

mainly on parametric models and thus flexible form methods have been neglected.

The problem of finding the most appropriate form of an Engel function is an old one in

econometrics, but as yet no solution appears to have found general acceptance. Generally

speaking, it is perhaps true to say that the specification of the form of relationships has

attracted less attention than have methods of estimating parameters for specified equations.

Leser’s observation motivates me to consider parametric and nonparametric curves jointly

and to decide, probably by a graphical method, which one fits the data better. To formalize

this, consider for the regression curve a given parametric model

{mθ: θ ∈ Θ}. (9.3.10)

Possible parametric models for Engel curves include the Working curve

mθ(x) = θ1x+ θ2x log x

or the Leser curve. The parametric fit mθ̂ shall be compared with the nonparametric m̂h.

Then the question arises can visible differences betweenmθ̂ and m̂h be explained by stochastic

fluctuations or do they suggest the use of nonparametric instead of parametric methods?

One way to proceed is to measure the difference between mθ̂ and m̂h by a metric and to
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use this metric as a test statistic for testing the parametric model. A related approach for

estimating parameters of a linear model based on a pilot nonparametric smooth was pursued

by Cristóbal Cristóbal, Faraldo Roca and González Manteiga (1987).

To formalize this metric let Kh,n denote the (random) smoothing operator

Kh,ng(x) =

∑n
i=1 Kh(x−Xi)g(Xi)∑n

i=1 Kh(x−Xi)
·

Note that E(m̂h(x)|X1, ..., Xn) = Kh,nm(x). So if we compare with an unbiased parametric

model we should correct the parametric model for this bias (see Exercise 9.3 for an illustrative

example). I therefore consider the following modification of the squared deviation between

m̂h and mθ̂:

Tn = nhd/2
∫

(m̂h(x)−Kh,nmθ̂(x))2w(x)dx.

Tn may serve as a test statistic to test the parametric hypothesis:

m(·) ∈ {mθ(·): θ ∈ Θ}.

For an approximate calculation of critical values, the asymptotic distribution of Tn for a

parametric m = mθ0 is determined by Theorem 9.3.1. Furthermore, for a comparison of Tn

with other goodness-of-fit tests the asymptotic power of Tn may be calculated if m lies in

the alternative: say, m(x) = mθ0(x) + cn∆n(x). Clearly, θ0 and ∆n are not uniquely defined

by m. We will see later how to choose θ0 and ∆n dependent on m. It is most appropriate

to choose cn such that the asymptotic power of Tn is bounded away from one and from the

level. It will turn out that for ∆n(x) = ∆(x) fixed cn = n−1/2h−d/4 works.

The assumptions on the stochastic nature of the observations and the parametric estimator

of the regression function are given in detail in the Complements to this section. About the

parametric estimator, I assume that

(P1) mθ̂(x)−mθ0(x) = 1
n

∑n
i=1〈g(x), h(Xi)〉εi+op

(
1

n logn

) 1
2

(uniformly in x), where g and h

are bounded functions taking values in Rk for some k and 〈·〉 denotes the inner product

in Rk.

For the kernel K and the bandwidth h we make the following standard assumptions.
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(K1) The kernel K is a symmetric bounded probability density function with compact

support,

(K2) The bandwidth h fulfills h = hn ∼ n−1/(d+4). Especially (K2) is fulfilled for every

asymptotically optimal choice of the bandwidth h; see Section 5.1.

In the following theorem the distribution of Tn is approximated by a Gaussian distribution

which may depend on n. The distance between these distributions is measured by the

Mallows metric as in Section 4.3.

Theorem 9.3.1 Assume (A1)–(A5), (P1), (K1), (K2). Then

d2

(
L(Tn), N

(
bh +

∫
(Kh∆n)2w, V

))
→ 0,

where

bh = h−d/2K(2)(0)

∫
σ2(x)w(x)

f(x)
dx,

V = 2K(4)(0)

∫
σ4(x)w(x)2

f 2(x)
dx.

Here Kh denotes the smoothing operator

Khg(x) =

∫
Kh(x− t)g(t)dt

and K
(j)
h denotes the j-times convolution product of Kh.

The theorem shows that for d = 1 the power of the goodness-of-fit test based on Tn is

asymptotically constant on regions of the form{
mθ0 + n−9/20∆:

∫
(Kh∆)2w = const.

}
.

This can be compared with the behavior of other goodness-of-fit tests. More classical tests

of Cramer von Mises type or of Kolgomorov-Smirnov type have nontrivial power on points

contiguous to the parametric model, that is, m = mθ0 + n−1/2∆ – but they are of more
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parametric nature – in the sense that they prefer certain deviations ∆n,1,∆n,2, ... (Durbin

and Knott 1972).

The nonparametric behavior of Tn (nearly the same power for all deviations of fixed weighted

L2-norm) must be paid by the larger distance (n−9/20 instead of n−1/2) at which the test

works. The theorem should thus be interpreted and applied very carefully and should be

used only to give a rough idea of the stochastic behavior of Tn. For practical applications I

recommend bootstrap methods.

The naive Bootstrap consists of simple resampling of the original observations. That is,

the bootstrap sample {(X∗i , Y ∗i )}ni=1 is drawn (with replacement) out of the set {(Xi, Yi)}ni=1.

Then create T ∗,N like Tn by the squared deviance between the parametric fit and the nonpara-

metric fit. From L(T ∗,N) define the (1−α)-quantile t̂Nα and reject the parametric hypothesis

if Tn > t̂Nα . Another procedure consists of correcting for the bias in the asymptotic dis-

tribution, that is, one determines the sample quantile from L∗(T ∗,N − E∗T ∗,N) and checks

whether the original Tn − b̂h falls above this last bias corrected (1− α)-quantile, where b̂h is

an estimate of bh, for instance, b̂h = cKn
−1
∑n

i=1(Yi − m̂h(Xi))
2/(
∑n

j=1 Kh(Xi −Xj))
2.

Härdle and Mammen (1988) show that these procedures do not work in the sense that the

bootstrap distribution of T ∗,N does not approximate that ot Tn.

At first sight this result seems to be surprising and against the intuition of the bootstrap.

The deeper reason though lies in the fact that the regression function is not the conditional

expectation of the observation under the bootstrap distribution. As an alternative I recom-

mend the wild bootstrap which is related to proposals of Wu (1986) (see Beran 1986). This

approach does not mimic the i.i.d. structure of (Xi, Yi). It is rather constructed so that

E∗(Y ∗i −m(X∗i )|X∗i ) = 0.

For this purpose define as in Section 4.2

ε̃i = Yi − m̂h(Xi).

Since we are going to use this single residual ε̃i to estimate the distribution of (Yi−m(Xi)|Xi)
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by an F̂i we are calling it the wild bootstrap. More precisely, define F̂i by a two-point

distribution such that EF̂iZ
2 = (ε̃i)

2 and EF̂iZ
3 = (ε̃i)

3. Now construct independent ε∗i ∼ F̂i

and use

(Xi, Y
∗
i = mθ̂(Xi) + ε∗i )

as bootstrap observations. Then create T ∗,W like Tn by the squared deviance between the

parametric fit and the nonparametric fit. From L(T ∗,W ) define the (1 − α)-quantile t̂Wα

and reject the parametric hypothesis if Tn > t̂Wα . The following theorem shows that this

procedure works.

Theorem 9.3.2 Assume (A1),...,(A4),(A5′),(P1),(K1),(K2). Assume for the parametric

estimator θ̂ based on the bootstrap sample

(P1′′) mθ̂∗(x)−mθ̂(x) =
1

n

n∑
i=1

< g(x), h(Xi) > ε∗i )

+op∗

(
1√

n log n

)
·

Then

d2(L∗(T ∗,W ), N(bh, V ))
p→ 0,

where bh and V are defined in Theorem 9.3.1.

Let us check the validity of the asymptotic results in a Monte Carlo experiment. In a first

simulation I generated {Xi}ni=1, n = 100, uniformly in [0, 1] and Yi = m(Xi) + εi,m(u) =

2u− u2 with εi ∼ σ = 0.1, independent of Xi. For construction of the kernel smooth I have

used the quartic kernel. The bootstrap resampling was performed B = 100 times and the

whole procedure was carried out M = 1000 times.

I considered the parametric model of polynomials of degree 2. The true regression curve

m(·) is in this model class. For the kernel estimator the bandwidth h = 0.2 has been chosen.

In Figures 9.7 four curves for one Monte Carlo run are displayed.

The thin line (label 1) denotes the Monte Carlo kernel density estimate of the L2-distance

from the M runs. The medium thin line (label 2) is the kernel density of one bootstrap
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Figure 9.7: Four densities of Tn. The line with label 1 denotes the (kernel) density of the

distribution of Tn over all Monte Carlo runs (M = 1000). The line with label 2

is the (kernel) density of Tn from one Monte Carlo run using the wild bootstrap

method from B = 100 bootstrap curves. The curve labeled 3 is the normal theory

density from Theorem 9.3.1 with the known constants bh and V . The curve labeled

4 is the normal theory density from Theorem 9.3.1 with estimated constants b̂h

and V̂ . From Härdle and Mammen (1988).

sample out of the M runs (taken at random). The thick line corresponds to the normal

theory density as given in Theorem 9.3.1 based on the true bh and V (label 3). The dashed

line finally shows the normal theory density based on estimated bh and V (label 4). In all

four cases the bootstrap estimates the distribution of the distance quite well. The normal

approximations are totally misleading.

To study the power of this bootstrap test I have chosen the parametric model

mθ(x) = θ1 + θ2x+ θ3x
2 (9.3.11)
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and for different c the regression function

m(x) = 2x− x2 + c

(
x− 1

4

)(
x− 1

2

)(
x− 3

4

)
· (9.3.12)

Monte Carlo estimates of the power (α = 0.05) are summarized in Table 9.1 for different

values of c and bandwidth h. Clearly, the bootstrap test rejects the hypothesis for c = 1.

Table 9.1: Monte Carlo estimates of power of the bootstrap test

h, c 0.0 0.5 1.0 2.0

0.1 0.105 0.157 0.325 0.784

0.2 0.054 0.120 0.252 0.795

0.25 0.053 0.099 0.263 0.765

0.3 0.039 0.078 0.225 0.714

Figure 9.8 shows a linear fit and a Working curve and a nonparametric smoothing estimate

for the Engel curve for food as a function of total expenditure. The data came from the

Family Expenditure Survey (1968–1981). The bootstrap test rejected the linear regression

model for any bandwidth. The Working curve has been rejected for some small bandwidths.

Details of this study also applied to other commodities are presented in Härdle and Mammen

(1988).

Exercises

9.3.1 Program the wild bootstrap goodness-of-fit test. Apply it to the simulated data set

and test whether the regression curve is linear.

9.3.2 Consider the linear model

mθ(x) = θ1g1(x) + · · ·+ θkgk(x) = 〈θ, g(x)rangle,

where g is a Rk-valued function (for some k). With a smooth weight function W the weighted
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Figure 9.8: Engel curves. The curve labeled 1 is a linear regression line for food (1973) of

the Family Expenditure Survey. The curve labeled 2 is a nonparametric kernel

smooth. The curve labeled 3 is a Working curve fit.

least squares estimator θ̂n = θ̂ is defined by

θ̂ = argmin
θ

[
n∑
i=1

W (Xi)(Y −mθ(Xi))
2

]
.

In the linear model, θ̂ can easily be calculated,

θ̂ =

(
n∑
i=1

W (Xi)g(Xi)g(Xi)
T

)−1 n∑
i=1

W (Xi)g(Xi)Yi.

Consider, now, a fixed regression function m which may lie in the hypothesis or in the

alternative. We want to write m as m(x) = mθ0(x) + cn∆n(x) for some θ0 and ∆n. θ0 and

∆n(x) may be chosen as follows

θ0 = argmin
θ

[∫
W (x)(m(x)−mθ(x))2dx

]
,
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∆n(x) =
1

cn
(m(x)−mθ0(x)).

With this choice of mθ0 and ∆n, in an appropriate scalar product ∆n is orthogonal to

{mθ(x): θ ∈ Θ}: ∫
W (x)f(x)∆n(x)g(x)dx = 0.

This will imply that the expectation of θ̂ is approximately θ0. This can be seen by the

following stochastic expansion of θ̂:

θ̂ = θ0 +

(∫
W (x)f(x)g(x)g(x)Tdx

)−1

{
1

n

n∑
i=1

W (Xi)g(Xi)εi

+cn

∫
W (x)f(x)∆n(x)g(x)dx

}
+Op

(
cn√
n

)
= θ0 +

1

n

n∑
i=1

h(Xi)εi +Op

(
cn√
n

)
,

where

h(x) =

(∫
W (x)f(x)g(x)g(x)Tdx

)−1

W (x)g(x).

Can you now put the functions g, h into assumption (P1)? Is (P1) true for this linear model?

9.3.3 Show that (P1) holds also for weighted least squares estimators θ̂ in nonlinear models

if m(·) and W (·) are “smooth” and ∆n and θ0 are chosen such that ∆n is “orthogonal” to

the parametric model. Note that∫
W (x)f(x)∆n(x)

∂

∂θ
mθ0(x)dx = 0.

(Trivially this includes the parametric case: ∆n ≡ 0.) (P1) holds with

h(x) =

(∫
W (t)f(t)

(
∂

∂θ
mθ0(t)

)(
∂

∂θ
mθ0(t)

)T
dt

)−1

W (x)
∂

∂θ
mθ0(x),

g(x) =
∂

∂θ
mθ0(x).
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9.3.4 Perform the bootstrap test with the curves and models as in 9.3.11 and 9.3.12. Con-

vince yourself that the “extra wiggle” for c = 1 is not very pronounced on a joint plot of the

model and the true curve.

9.3.5 Suppose you have a regression curve m(x) = (1/10)ϕ(x/10) which has a sharp peak.

Of course, there is a parametric model for this curve. Assume now that you have smoothed

nonparametrically and the peak is thus undersmoothed. You might now say that the para-

metric model differs very much from the nonparametric one and therefore you reject it. How

can you correct this bias?

[Hint : See the definition of the distance Tn.]

9.3.1 Complements

Assumptions

(A1) With probability 1, Xi lies in a compact set (without loss of generality [0, 1]d). The

marginal density f(x) of Xi is bounded away from zero.

(A2) m(·) and f(·) are twice continuously differentiable. w is continuously differentiable.

(A3) ∆n(x) is bounded (uniformly in x and n) and cn = n−1/2h−d/4. In particular, this

contains the parametric case because ∆n may be chosen ≡ 0.

(A4) σ2(x) = var(Yi|Xi = x) is bounded away from zero and from infinity.

(A5) Eε4
i <∞. Instead of (A5) the following stronger assumption will also be used.

(A5′) E (exp(tεi)) is uniformly bounded in i and n for |t| small enough.

Proof of Theorem 9.3.1
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Without loss of generality, we will give the proofs only for d = 1 and w(x) ≡ 1. First note

that

f̂h(x) =
1

n

n∑
i=1

Kh(Xi − x),

= f(x) +Op(n
−2/5

√
log n) (uniformly in x),

m̂h(x) = m(x) +Op(n
−2/5

√
log n) (uniformly in x).

This gives

Tn = n
√
h

∫ 1

0

(m̂h(x)−Kh,nmθ̂(x))2 dx

= n
√
h

∫ 1

0

(m̂h(x)−Kh,nmθ̂(x))2

(
f̂h(x)

f(x)

)2

dx+ op(1)

= n
√
h

∫ 1

0

(
1

n

n∑
i=1

Kh(Xi − x)(m(Xi) + εi −mθ̂(Xi)

f 2(x)

)2

dx

+op(1).

Now apply (P1) and m(·) = mθ0(·) + n−9/20∆n(·):

Tn =

√
h

n

∫ 1

0

f(x)−2

n∑
i=1

Kh(Xi − x)

×

(
n−9/20∆n(Xi) + εi − n−1

n∑
j=1

g(Xi)
Th(Xj)εj

)2

dx+ op(1).

By straightforward calculations, one gets

Tn = Tn,1 + Tn,2 + Tn,3 + op(1)

with

Tn,1 =

√
h

n

n∑
i=1

K
(2)
h (0)

f 2(Xi)
ε2
i ,

Tn,2 =

√
h

n

∑
i6=j

K
(2)
h (Xi −Xj)

f(Xi)f(Xj)
εiεj,

Tn,3 =

∫ 1

0

(
n−1

∑n
i=1 Kh(Xi − x)∆n(Xi)

f(x)

)2

dx.
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Now note that

Tn,1 = bh + op(1),

Tn,3 =

∫ 1

0

Kh∆n(x)2dx+ op(1).

So it remains to prove asymptotic normality of Tn,2. We will use an approach which also

works in the proof of Theorem 9.3.2. According to theorem 2.1 in de Jong (1987) it suffices

to prove:

max
1≤i≤n

n∑
j=1

var(Wijn)/var(Tn,2)→ 0,

E (T 4
n,2/(var(Tn,2))2)→ 3,

where

Wijn =

√
h

n

K
(2)
h (Xi −Xj)

f(Xi)f(Xj)
εiεj, if i 6= j;

= 0, else.

The proof of the first statement is straightforward. For the proof of the second statement

note that:

E (T 4
n,2) = 12

6=∑
EW 2

ijnW
2
kln

+8

6=∑
EW 4

ijn + 48

6=∑
i,j,k,l

EWijnWjknWklnWlin

+192

6=∑
EWijnW

2
iknWjkn

= 3var(Tn,2)2 + o(1).

Here
6=∑

denotes summation over only all pairwise different indexes.
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Smoothing in high dimensions





10 Investigating multiple regression by

additive models

While it is possible to encode several more dimensions into pictures by using time

(motion), color, and various symbols (glyphs), the human perceptual system is not really

prepared to deal with more than three continuous dimensions simultaneously.

Huber, P.J. (1985, p. 437)

The basic idea of scatter plot smoothing can be extended to higher dimensions in a straight-

forward way. Theoretically, the regression smoothing for a d-dimensional predictor can be

performed as in the case of a one-dimensional predictor. The local averaging procedure will

still give asymptotically consistent approximations to the regression surface. However, there

are two major problems with this approach to multiple regression smoothing. First, the re-

gression function m(x) is a high dimensional surface and since its form cannot be displayed

for d > 2, it does not provide a geometrical description of the regression relationship between

X and Y . Second, the basic element of nonparametric smoothing – averaging over neighbor-

hoods – will often be applied to a relatively meager set of points since even samples of size

n ≥ 1000 are surprisingly sparsely distributed in the higher dimensional Euclidean space.

The following two examples by Werner Stuetzle exhibit this “curse of dimensionality”.
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A possible procedure for estimating two-dimensional surfaces could be to find the smallest

rectangle with axis-parallel sides containing all the predictor vectors and to lay down a regular

grid on this rectangle. This gives a total of one hundred cells if one cuts each side of a two-

dimensional rectangle into ten pieces. Each inner cell will have eight neighboring cells. If one

carried out this procedure in ten dimensions there would be a total of 1010 = 10, 000, 000, 000

cells and each inner cell would have 310 − 1 = 59048 neighboring cells. In other words, it

will be hard to find neighboring observations in ten dimensions!

Suppose now one had n = 1000 points uniformly distributed over the ten dimensional unit

cube [0, 1]10. What is our chance of catching some points in a neighborhood of reasonable size

? An average over a neighborhood of diameter 0.3 (in each coordinate) results in a volume of

0.310 ≈ 5.9 · 10−6 for the corresponding ten-dimensional cube. Hence, the expected number

of observations in this cube will be 5.9 · 10−3 and not much averaging can be expected. If,

on the other hand, one fixes the count k = 10 of observations over which to average, the

diameter of the typical (marginal) neighborhood will be larger than 0.63 which means that

the average is extended over at least two-thirds of the range along each coordinate.

A first view of the sparsity of high dimensional data could lead one to the conclusion that

one is simply in a hopeless situation – there is just not enough clay to make the bricks! This

first view, however, is, as many first views are, a little bit too rough. Assume, for example,

that the ten-dimensional regression surface is only a function of x1, the first coordinate of

X, and constant in all other coordinates. In this case the ten-dimensional surface collapses

down to a one-dimensional problem. A similar conclusion holds if the regression surface is

a function only of certain linear combinations of the coordinates of the predictor variable.

The basic idea of additive models is to take advantage of the fact that a regression surface

may be of a simple, additive structure.

A regression tree is based on such a structure. The regression surface is approximated by a

linear combination of step functions

m(x) =

p∑
i=1

ciI {x ∈ Ni},
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where the Ni are disjoint hyper-rectangles with sides parallel to the coordinate axes. The

hyper-rectangles are constructed by succesive splits and can be represented as a tree. A

recursive splitting algorithm (RPR) to construct such a tree is described in Section 10.1.

Another additive model is projection pursuit regression (PPR) (Friedman and Stuetzle 1981).

This model is an extension of the regression tree model and is defined through projections

βTj x, ‖βj‖ = 1, j = 1, . . . , p. It models the regression surface as

m(x) =

p∑
j=1

gj(β
T
j x);

see Section 10.2.

PPR involves one-dimensional nonparametric functions on linear combinations of predictor

variables, whereas the alternative ACE-model determines a linear combination of nonpara-

metric one-dimensional functions operating on the coordinates of the predictor variable with

unknown possibly nonlinear transformations; see Section 10.3.

The last technique considered here is related to PPR,

Y = g(δTX) + ε = m(X) + ε.

The coefficients δ are defined differently as δ = E[m′(X)], an average derivative (ADE);

see Section 10.4. This estimation technique is also important in theoretical economics in

particular in questions related to the law of demand (see Härdle, Hildenbrand and Jerison

1989).

10.1 Regression trees

The structure of the regression surface estimates that is assumed for regression trees is of

the form (Gordon and Olshen 1980)

m(x) =

p∑
j=1

cj I(x ∈ Nj), (10.1.1)
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where the cj are constants and the Nj are disjoint hyper-rectangles with sides parallel to the

coordinate axes such that
p⋃
j=1

Nj = Rd .

Models of this form are sometimes called piecewise constant regression models and can be

determined by recursive partitioning regression (RPR). If the regression surface m(x) is itself

a piecewise constant model with known neighborhoods Nj, it is not hard to see that the best

estimates for ci (in a least squares sense) are

ĉj =
∑

{i:Xi∈Nj}

Yi/#{i: Xi ∈ Nj} . (10.1.2)

Thus the estimate of m(x) for predictor vectors Xi in Nj is simply the average response

of the Y -observations with predictor vectors in Nj. Note, however, that RPR is different

from the smoothing techniques described before. The neighborhoods can be stretched out

in directions along which the response does not vary a lot, and can be skinny in directions

along which the response varies rapidly. RPR achieves this goal by the technique of recursive

splitting .

Consider first the special case p = 2. The task of determining the neighborhoods Nj is solved

by determining a split coordinate l and a split point s. A split coordinate and a split point

define the rectangles Nj by

N1(l, s) = {x|xl < s},

N2(l, s) = {x|xl ≥ s},

where xl denotes the lth coordinate of the vector X. The corresponding partitioning of the

sample is given by

S1(l, s) = {i|Xi ∈ N1(l, s)},

S2(l, s) = {i|Xi ∈ N2(l, s)}.

The least squares optimal constants are

ĉ1(l, s) =
∑
i

Yi I{i ∈ S1(l, s)}/#S1(l, s),
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ĉ2(l, s) =
∑
i

Yi I{i ∈ S2(l, s)}/#S2(l, s).

It is not hard to see that the residual sum of squares (RSS) of the model defined by split

coordinate l and split point s is given by

RSS(l, s) = var{Yi|i ∈ S1(l, s)}+ var{Yi|i ∈ S2(l, s)}. (10.1.3)

The goal is to find that pair (l, s) such that RSS(l, s) is minimal. Note that this requires only

(n− 1) splits for each coordinate since the RSS changes only when s crosses an observation.

If there are 3 neighborhoods {Nj} we have (n−1)d possibilities for the first split and (n−2)d

possibilities for the second split, if the first split is given. In total we have (n− 1)(n− 2)d2

operations to find the best splits for p = 3 neighborhoods. For general p there are

(n− 1)(n− 2) · · · (n− p+ 1)dp−1

possibilities. This number can be too big for a successful exhaustive search, so one will try

the elementary operation for p = 2 recursively. This is the basic idea of recursive partioning.

One starts with the minimization problem for p = 2, as described above. This gives split

coordinate and split point (l, s) and corresponding hyper-rectangles N1(l, s), N2(l, s). The

first split now stays fixed and the same splitting procedure is applied recursively to the two

rectangles N1, N2. This procedure will, in general, not result in the best partitioning but it

has the advantage that the computational effort grows only linearly in n and p.

The splitting procedure can be represented by a binary tree shown in Figure 10.1.

In each terminal node t the fitted response value m̂(x) is constant. The tree can also be

thought of as a multivariate regressogram estimate of the regression surface (see Figure 10.2).

Each node in the tree corresponds to

• a rectangular region of the predictor space;

• a subset of the observations lying in the regions determined by (l, s);
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Figure 10.1: A regression tree with five terminal nodes, indicated by squares. (The predicted

value is denoted here as y(t).) From Breiman et al. (1984) with permission of

Wadsworth Ltd.

• a constant c which is the average response of the observations in S(l, s).

Note that this tree (and every subtree) completely specifies a piecewise constant model. The

tree representation has the advantage that the fitted model can be looked at very quickly.

One can also get an idea about the geometry of the regression surface, which is not so easy

for the local averaging procedures just described.

As an example consider the Boston housing data set. Harrison and Rubinfeld (1978) collected

n = 506 observations for each census district of the Boston metropolitan area. The predictor

variable was d = 13 dimensional.

response median value of owner-occupied homes in thousand of dollars (MV )
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Figure 10.2: The corresponding regression surface for the regression tree from Figure 10.1.

From Breiman et al. (1984) with permission of Wadsworth Ltd.

predictors crime rate (CRIM)

percent land zoned for large lots (ZN)

percent nonretail business (INDUS)

Charles river indicator, 1 if on Charles River, 0 otherwise (CHAS)

nitrogen oxide concentration (NOX)

average number of rooms (RM)

percent built before 1980 (AGE)

weighted distance to employment centers (DIS)

accessibility to radial highways (RAD)

tax rate (TAX)



334 10 Investigating multiple regression by additive models

Figure 10.3: The regression tree for the Boston housing data set. The numbers inside the

circles are the piecewise constant estimates of the RPR model 10.1.1. (Note

that the constant at the node DIS≤1.4 is 23.3, not 233.) From Breiman et al.

(1984) with permission of Wadsworth Ltd.

pupil-teacher ratio (PT )

percent black (B)

percent lower status (LSTAT )

The RPR as shown in Breiman et al. (1984) leads to the following regression tree.

Note that the splitting process stops when no more observations are left over to split (minimal

bucket size rule). This stopping rule could give trees which are too complex. An idea for

reducing complexity is to stop splitting when the RSS is not sufficiently reduced. However,

this is not a good approach, since the actual split might not help much but further splits might
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be more interesting. It is therefore suggested that the following procedure be performed:

• split down to a very complex tree;

• decide which nodes to recombine by a bottom-up recombination (pruning).

The recombination is done by introducing a cost function for each node t:

cost of node t =

 RSS(t), if node terminal,

c(l(t)) + c(r(t)) + λ, otherwise,

where l(t) denotes the node left oft and r(t) the node right of t. Consider, then, a split as

being worthwhile if the cost of making a node terminal is greater than the cost of making

a node nonterminal. The parameter λ can be interpreted as a complexity parameter of the

tree. If λ is large the splitting procedure will end up with a small tree. How can λ be

selected?

Define T (λ) as the minimum cost subtree of T (= tree with minimum bucket size) for

complexity parameter λ. The tree T (λ) has the following properties:

1. T (0) = T ;

2. T (∞) is the tree consisting of a root node only, hence the model is the global average;

3. If λ1 > λ2, then T (λ1) is a subtree of T (λ2);

4. If T has k terminal nodes, there are at most k different subtrees that can be obtained

by picking different λs.

The best choice for λ can be determined, for instance, by cross-validation.

Algorithm 10.1.1

STEP 1.
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Divide the training sample into N subsamples.

STEP 2.

FOR j = 1 TO N DO BEGIN.

STEP 3.

Set subsample j aside.

STEP 4.

Build tree from remaining observations.

STEP 5.

Calculate all optimally terminated subtrees T (λ) for different λ.

STEP 6.

Compute CVj(λ) = RSS when predicting j using the tree T (λ) END.

STEP 7.

Set CV (λ) =
N∑
j=1

CVj(λ).

STEP 8.

Find the best λ as λopt = argmin
λ

CV (λ).

Exercises

10.1.1 Prove that the coefficients ĉj in 10.1.2 are the least squares estimates of cj in model

10.1.1. Also prove 10.1.3.

10.1.2 Consider the case of one-dimensional X ( d = 1). Describe the difference to the

regressogram.

10.1.3 What would the RPR algorithm produce if the regression surface demands a split
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not along a coordinate axis but rather along a line not parallel to one of the axes?

10.2 Projection pursuit regression

The recursive partitioning regression (RPR) basically operates as follows: A certain split

coordinate giving the best variance reduction determines two hyper-rectangles on which

constant regression surfaces are fitted. This splitting procedure is then applied recursively

to each of the regions obtained. An obvious limitation of this RPR is that splits only

occur parallel to particular coordinate projections. Regression functions that are piecewise

constant, but in a different, rotated coordinate system, would not be approximated well. A

simple function such as m(x) = m(x1, x2) = x1x2 would not be well represented by the RPR

technique.

Note that this particular m can be written as 1
4
(x1+x2)2− 1

4
(x1−x2)2, a sum of two functions

operating on projections

βT1 x = (1, 1)

(
x1

x2

)
and

βT2 x = (1,−1)

(
x1

x2

)
.

This motivates a generalization of RPR: Instead of using constant functions of projections

along the coordinate axis, the regression surface is approximated by a sum of empirically

determined univariate ridge functions {gj} of projections βTx,

m(x) =

p∑
j=1

gj(β
T
j x) . (10.2.4)

This representation need not be unique; see Exercise 10.2.1 and Diaconis and Shahshahani

(1984). The ridge functions {gj} can be thought of as generalizations of linear functions:

They are also constant on hyperplanes.

The idea of approximating high dimensional functions by simpler functions that operate on

projections goes back at least to Kruskal (1969). Friedman and Tukey (1974) applied this
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idea of searching for “interesting” projections in an analysis of a particle physics data set.

(An interactive graphical analysis with PRIM-9 (Fisherkeller, Friedman and Tukey 1974)

suggested that this data set consisted of a number of low dimensional “rods.”) Theoretical

aspects of PPR can be found in Hall (1988). A discussion of this technique with a variety of

examples also from projection pursuit density estimation is presented in Jones and Sibson

(1987).

The projections of the additive model 10.2.4 are constructed in an iterative manner by looping

over βjs and gjs. Friedman and Stuetzle (1981) proposed the following algorithm.

Algorithm 10.2.1

Projection Pursuit Regression (PPR)

STEP 1.

Center the response: n−1
∑n

i=1 Yi = 0.

STEP 2.

Initialize current residuals

ε̂
(0)
i = Yi, i = 1, . . . , n,

and set p = 0.

STEP 3.

Search for the next term in the model 10.2.4. For a given linear combination Zi = βTXi find

a smooth {ĝp+1(Zi)}ni=1. Evaluate the current smooth in terms of the fraction of unexplained

variance

qp+1(β) = 1−
n∑
i=1

[ε̂
(p)
i − ĝp+1(βTXi)]

2/
n∑
i=1

[ε̂
(p)
i ]2.

Find the projection vector βp+1 that maximizes qp+1(β) (projection pursuit) and the corre-

sponding smooth ĝp+1.

STEP 4.
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If the criterion of fit q(β) is smaller than a user-specified threshold, STOP.

Otherwise construct the next set of residuals

ε̂
(p+1)
i = ε̂

(p)
i − ĝp+1(βTp+1Xi), i = 1, . . . , n,

p = p+ 1.

and go to STEP 3.

For its highly iterative character the smoothing procedure in this algorithm should be com-

putationally efficient. I would recommend using the symmetrized k-NN (Section 3.4) or the

WARPed kernel smoother (Section 3.1). The projections βp+1 maximizing qp+1(β) can be

found by the Newton–Raphson method. Friedman and Stuetzle (1981) constructed an artifi-

cial example with

m(x) = x1x2. A sample of n = 200 observations was generated with (X1, X2) uniformly

distributed in (−1, 1)2 and ε ∼ N(0, (0.2)2). I present a session with this data using the

above algorithm as implemented in XploRe (1989).

Figure 10.4 shows Y plotted against starting projection β1 = (1, 0)T . The algorithm then

uses the Newton–Raphson method to find another direction. An intermediate step in this

search is shown in Figure 10.5. The first estimated ridge function ĝ1(·) is shown in Figure

10.6. The fraction of explained variance and the value of β1 is displayed in Figure 10.7.

The projection β̂T1 = (0.669,−0.74) was found by projection pursuit with the corresponding

smooth ĝ1(β̂T1 x). The algorithm in XploRe (1989) then goes on by constructing the residuals

and continues as described in the above algorithm.

Figure 10.8 shows the result after fitting the residuals with the PPR algorithm. The second

estimated ridge function ĝ2(·) is shown together with the data points. The fraction of

explained variance is 0.80725 and the value of β̂2 is β̂T2 = (0.668, 0.74). A third projection is

not accepted by the algorithm because the criterion of fit is below the user-defined threshold

of 0.1. The pure quadratic shapes of ĝ1 and ĝ2 together with the coefficient vectors β̂1 and



340 10 Investigating multiple regression by additive models

Figure 10.4: The response Y versus the initial projection βT1 X,β
T
1 =(1,0). Made with XploRe

(1989).

β̂2 suggest that PPR has essentially found the additive form of m(x),

m(x) = x1x2 =
1

4
(x1 + x2)2 − 1

4
(x1 − x2)2 .

Exercises

10.2.1 Find infinitely many representations of m(x1, x2) = x1x2 as a sum of two ridge

functions.

10.2.2 Find a function that cannot be represented as a sum of finitely many ridge functions.
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Figure 10.5: The response Y and the smooth (midrange k-NN) in an intermediate step.

Made with XploRe (1989).

Figure 10.6: The response Y and the first ridge function g1. β̂T2 =(0.668,0.74). Made with XploRe

(1989).

10.3 Alternating conditional expectations

Breaking down an intricate regression with many variables into a system of simpler relation-

ships – each involving fewer variables – is a desirable goal when modeling high dimensional

regression data. Leontief (1947a), for example, considers the process of steel production and
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Figure 10.7: The control menu of the PPR modul of XploRe (1989).

Figure 10.8: The response Y and the second ridge function g2. β̂T2 =(0.668,0.74). Made with

XploRe (1989).

points out that the various materials involved in the production of steel should be combined

into additional, intermediate variables. Such a goal can be achieved, for instance, by an

additive model in which the multivariate regression function m(x) splits up into a sum of

nonparametric functions.

More precisely, let Ψ(Y ), g1(X1), . . . , gd(Xd) be arbitrary measurable mean zero functions of

the corresponding random variables. The fraction of variance not explained by a regression
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of Ψ(Y ) on
∑d

j=1 gj(Xj) is

e2(Ψ, g1, . . . , gd) =
E{[Ψ(Y )−

∑d
j=1 gj(Xj)]

2}
EΨ2(Y )

· (10.3.5)

Define the optimal transformations Ψ∗, g∗1, . . . , g
∗
d as minimizers of 10.3.5. Such optimal

transformations exist and the ACE algorithm (Breiman and Friedman 1985) gives estimates

of these transformations. Leontief (1947b) calls such a model additive separable and describes

a method of checking this additive separability.

For the bivariate case (d = 1) the optimal transformations Ψ∗ and g∗ satisfy

ρ∗(X, Y ) = ρ(Ψ∗, g∗) = max
Ψ,g

ρ(Ψ(Y ), g(X)),

where ρ is the correlation coefficient. The quantity ρ∗ is also known as the maximal corre-

lation coefficient between X and Y and is used as a general measure of dependence. For

theoretical properties of maximal correlation I refer to Breiman and Friedman (1985). These

authors also report that according to Kolmogorov if (Y,X1, . . . , Xd) are jointly normally dis-

tributed then the transformations Ψ, gj having maximal correlation are linear.

Suppose that the data are generated by the regression model

Ψ(Y ) =
d∑
j=1

gj(Xj) + ε.

Note that the optimal transformations do not correspond to the conditional mean function

here. Looking for functions that maximize correlation is not the same as estimating the

conditional mean function. However, if the gj(Xj) have a joint normal distribution and ε is

an independent normal random variable then the optimal transformations are exactly the

(linear) transformations Ψ and gj. In general, though, for a regression model of this form

with ε independent of X, the optimal transformations are different from the transformations

used to construct the model. In practice, the transformations found by the ACE algorithm

are sometimes different , as will be seen in the Exercises.

To illustrate the ACE algorithm consider first the bivariate case:

e2(Ψ, g) = E[Ψ(Y )− g(X)]2 . (10.3.6)
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The optimal Ψ(Y ) for a given g(X), keeping EΨ2(Y ) = 1, is

Ψ1(Y ) = E[g(X)|Y ] /‖E[g(X)|Y ]‖, (10.3.7)

with ‖ · ‖ = [E(·)2]1/2. The minimization of 10.3.6 with respect to g(X) for given Ψ(Y ) gives

g1(X) = E[Ψ(Y )|X]. (10.3.8)

The basis of the following iterative optimization algorithm is the alternation between the

conditional expectations 10.3.7 and 10.3.8.

Algorithm 10.3.1

Basic ace

SET Ψ(Y ) = Y/‖Y ‖;

REPEAT g1(X) = E[Ψ(Y )|X];

Replace g(X) with g1(X);

Ψ1(Y ) = E[g(X)|Y ]/‖E[g(X)|Y ]‖

Replace Ψ(Y ) with Ψ1(Y )

UNTIL e2(Ψ, g) fails to decrease.

The more general case of multiple predictors can be treated in direct analogy with the basic

ACE algorithm. For a given set of functions {gj(Xj)}dj=1 minimization of 10.3.5, with respect

to Ψ(Y ), holding EΨ2(Y ) = 1,

EΨ = Eg1 = · · · = Egd = 0, yields

Ψ1(Y ) = E

[
d∑
j=1

gj(Xj)|Y

]/∥∥∥∥∥E
[

d∑
j=1

gj(Xj)|Y

]∥∥∥∥∥ .
Next 10.3.5 is minimized with respect to a single function gk(Xk) for given Ψ(Y ) and given

g1(X1), . . . , gk−1(Xk−1), gk+1(Xk+1), . . . , gd(Xd). This iterative procedure is described in the

full ACE algorithm.

Algorithm 10.3.2
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Full ace

SET Ψ(Y ) = Y/‖Y ‖ and gj(Xj) = 0, 1 ≤ j ≤ d;

REPEAT

REPEAT

FOR k = 1 TO d DO BEGIN

gk,1(Xk) = E[Ψ(Y )−
∑

j 6=k gj(Xj)|Xk];

gk(Xk) = gk,1(Xk);

END;

UNTIL e2(Ψ, g1, . . . , gd) fails to decrease;

Ψ1(Y ) = E[
∑d

j=1 gj(Xj)|Y ]/‖E[
∑d

j=1 gj(Xj)|Y ]‖;

Ψ(Y ) = Ψ1(Y );

UNTIL e2(Ψ, g1, . . . , gd) fails to decrease.

In practice, one has to use smoothers to estimate the involved conditional expectations. Use

of a fully automatic smoothing procedure, such as the supersmoother , is recommended. Fig-

ure 10.9 shows a three-dimensional data set (X1, X2, Y ) with X1, X2 independent standard

normals and

Y = (X1 +X2)3 + ε,

with standard normal errors ε. The ACE algorithm produced the transformation g1 presented

in Figure 10.10.

The estimated transformation is remarkably close to the transformation g1(x1) = x1. Figure

10.11 displays the estimated transformation Ψ, which represents the function Ψ(y) = y1/3

extremely well.

Breiman and Friedman (1985) applied the ACE methodology also to the Boston housing data
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Figure 10.9: A simulated data set. X1,X2,ε independent standard normal, Yi=(Xi1+Xi2)3+εi,1≤

i≤n=100. Made with XploRe (1989).

set (Harrison and Rubinfeld 1978; and Section 10.1). The resulting final model involved four

predictors and has an e2 of 0.89. (An application of ACE to the full 13 variables resulted

only in an increase for e2 of 0.02.) Figure 10.12a shows a plot from their paper of the solution

response surface transformation Ψ(y). This function is seen to have a positive curvature for

central values of y, connecting two straight line segments of different slope on either side.

This suggests that the log-transformation used by Harrison and Rubinfeld (1978) may be

too severe. Figure 10.12b shows the response transformation for the original untransformed

census measurements. The remaining plot in Figure 10.12 display the other transformation

gj; for details see Breiman and Friedman (1985).

Exercises

10.3.1 Prove that in the bivariate case the function given in 10.3.7 is indeed the optimal
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Figure 10.10: The estimated ACE transformation g1(X1). Made with XploRe (1989).

Figure 10.11: The estimated transformation ψ(Y ). Made with XploRe (1989).

transformation Ψ∗.

10.3.2 Prove that in the bivariate case the function given in 10.3.8 is indeed the optimal
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transformation g∗.

10.3.3 Try the ACE algorithm with some real data. Which smoother would you use as an

elementary building block?

10.3.4 In the discussion to the Breiman and Friedman article D. Pregibon and Y. Vardi

generated data from

Y = X1X2

with X1 ∼ U(−1, 1) and X2 ∼ U(0, 1). What are possible transformations Ψ, g?

10.3.5 Try the ACE algorithm with the data set from Exercise 10.3.2. What transformations

do you get? Do they coincide with the transformations you computed in 10.3.2?

[Hint : See the discussion of Breiman and Friedman (1985).]

10.4 Average derivative estimation

The primary motivation for studying the average derivative

δ = E[m′(X)]

with

m′(X) =

(
∂m

∂x1

, . . . ,
∂m

∂xd

)
(X),

comes from models where the mean response depends onX only through a linear combination

βTx. That is, similarly to projection pursuit regression,

m(x) = g(xTβ) (10.4.9)

for some nonparametric function g.

The average derivative δ is proportional to β since

δ = E[m′(X)] = E[dg/d(xTβ)]β.
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Thus the average derivative vector δ determines β up to scale. In this section a nonparamet-

ric estimator δ̂ of the average derivative is considered which achieves the rate n−1/2 (typical

for parametric problems). From this δ̂ the multivariate m̂(x) = ĝ(xT δ̂) is constructed which

achieves the rate n−4/5 (typical for one dimensional smoothing problems). A weighted aver-

age derivative estimator has been introduced by Powell, Stock and Stoker (1989).

Assume that the function g(xT δ) = E(Y |X = xT δ) is normalized in such a way that

E[dg/d(xT δ)] = 1. Average derivative estimation(ADE) yields a direct estimator for the

weights β in 10.4.9. (Note that as in PPR the model 10.4.9 is not identifiable unless we

make such a normalization assumption.)

Let f(x) denote the marginal density,

f ′ = ∂f/∂x

its vector of partial derivatives and

l = −∂ log f/∂x = −f ′/f

the negative log-density derivative. Integration by parts gives

δ = E[m′(X)] = E[lY ]. (10.4.10)

Consequently, if f̂h denotes a kernel estimator of f(x) and l̂(x) = −f̂ ′h(x)/f̂h(x), then δ can

be estimated by the sample analogue

δ̂∗ = n−1

n∑
i=1

l̂(Xi)Yi .

Since this estimator involves dividing by f̂h, a more refined estimator δ̂ of δ is advisable in

practice. For this reason the following estimator is proposed:

δ̂ = n−1

n∑
i=1

l̂h(Xi)YiÎi, (10.4.11)

with the indicator variables

Îi = I{f̂h(Xi) > bn}, bn → 0,
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and the density estimator

f̂h(x) = n−1

n∑
j=1

h−dK

(
x−Xj

h

)
·

Note that here the kernel function K is a function of d arguments. Such a kernel can be

constructed, for example, as a product of one-dimensional kernels; see Section 3.1. The main

result of Härdle and Stoker (1989) is Theorem 10.4.1.

Theorem 10.4.1 Assume that apart from very technical conditions, f is p-times differen-

tiable, {bn} “slowly” converges to zero and nh2p−2 → 0, where p denotes the number of

derivatives of f . Then the average derivative estimator δ̂ has a limiting normal distribution,

√
n(δ̂ − δ) L−→ N(0,Σ),

where Σ is the covariance matrix of

l(X)Y + [m′(X)− l(X)m(X)] .

There are some remarkable features about this result. First, the condition on the bandwidth

sequence excludes the optimal bandwidth sequence h ∼ n−1/(2p+d); see Section 4.1. The

bandwidth h has to tend to zero faster than the optimal rate in order to keep the bias

of δ̂ below the desired n−1/2 rate. A similar observation has been made in the context of

semiparametric models; see Section 8.1. Second, the covariance matrix is constructed from

two terms, l(X)Y and m′(X)− l(X)m(X). If one knew the marginal density then the first

term l(X)Y would determine the covariance. It is the estimation of l(X) by l̂(X) that

brings in this second term. Third, the bandwidth condition is of qualitative nature, that is,

it says that h should tend to zero not “too fast” and not “too slow.” A more refined analysis

(Härdle, Hart, Marron and Tsybakov 1989) of second-order terms shows that for d = 1 the

MSE of δ̂ can be expanded as

MSE(δ̂) ∼ n−1 + n−1h−3 + h4. (10.4.12)
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A bandwidth minimizing this expression would therefore be proportional to n−2/7. Fourth,

the determination of the cutoff sequence bn is somewhat complicated in practice; it is there-

fore recommended to just cut off the lower 5 percent of the l̂(Xi).

Let me come now to the estimation of g in 10.4.9. Assume that in a first step δ̂ has been

estimated, yielding the one-dimensional projection Ẑi = δ̂TXi, i = 1, . . . , n. Let ĝh′(z)

denote a kernel estimator with one-dimensional kernel Kz of the regression of Y on Ẑ, that

is,

ĝh′(z) = n−1

n∑
i=1

Kz
h′(z − Ẑi)Yi/n−1

n∑
i=1

Kz
h′(z − Ẑi). (10.4.13)

Suppose, for the moment, that Zi = δTXi instead of Ẑi were used in 10.4.13. In this case, it

is well known (Section 4.2) that the resulting regression estimator is asymptotically normal

and converges at the optimal pointwise rate n−2/5. Theorem 10.4.2 states that there is no cost

in using the estimated projections {Ẑi}, that is, one achieves through additivity a dimension

reduction, as considered by Stone (1985).

Theorem 10.4.2 If the bandwidth h′ ∼ n−1/5 then

n2/5[ĝh′(z)− g(z)]

has a limiting normal distribution with mean B(z) and variance V (z), where, with the density

fz of δTX,

B(z) =
1

2
[g′′(z) + g′(z)f ′z(z)/fz(z)]dKz ,

V (z) = var[Y |δTX = z]cKz .

More formally, the ADE procedure is described in

Algorithm 10.4.1

STEP 1.
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Compute δ̂ by 10.4.11 with a cutt of α = 5%.

STEP 2.

Compute ĝ by 10.4.13 from (δ̂TXi, Yi) with a one-dimensional cross-validated bandwith.

STEP 3.

Compose both steps into the function

m̂(x) = ĝ(δ̂x).

An application of this technique is given in Appendix 2 where I consider a desirable com-

puting environment for high dimensional smoothing techniques. Simulations from the ADE

algorithm for different nonparametric models in more than four dimensions can be found in

Härdle and Stoker (1989). One model in this article is

Yi = sin

(
4∑
j=1

Xij

)
+ 0.1εi, i = 1, . . . , n,

where εi, Xi1, . . . , Xi4 are independent standard normally distributed random variables.

Table 10.1: ADE estimation of the Sine model

h = 0.9 h = 0.7 h = 1.5 known density

δ̂1 0.1134 0.0428 0.1921 0.1329

(0.0960) (0.0772) (0.1350) (0.1228)

δ̂2 0.1356 0.0449 0.1982 0.1340

(0.1093) (0.0640) (0.1283) (0.1192)

δ̂3 0.1154 0.0529 0.1837 0.1330

(0.1008) (0.0841) (0.1169) (0.1145)

δ̂4 0.1303 0.0591 0.2042 0.1324

(0.0972) (0.0957) (0.1098) (0.1251)

b 0.0117 0.0321 0.0017

Note: In brackets are standard deviations over the Monte Carlo simulations. n=100, α=0.05.
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The average derivative takes the form

δ = δ0(1, 1, 1, 1)T ,

and some tedious algebra gives δ0 = 0.135. Table 10.1 reports the result over 100 Monte

Carlo simulations with a cutoff rule of α = 0.05. It is remarkable that even in the case of

a known density (therefore, l is known) the standard deviations (given in brackets) are of

similar magnitude to those in the case of unknown l. This once again demonstrates that

there is no cost (parametric rate!) in not knowing l. An actual computation with n = 200

resulted in the values of δ = (0.230, 0.023, 0.214, 0.179). The correlation between Zi = δTXi

and Ẑi = δ̂TXi was 0.903. The estimated function ĝh′(z) is shown in Figure 10.13 together

with the points {Ẑi, Yi}ni=1. A kernel smooth based on the true projections Zi is depicted

together with the smooth ĝh′(z) in Figure 10.14. The estimated ĝh′(z) is remarkably close

to the true regression function as Figure 10.15 suggests.

Exercises

10.4.1 Prove formula 10.4.10.

10.4.2 Explain the bandwidth condition “that h has to tend zero faster than the optimal

rate” from formula 10.4.12.

10.4.3 Assume a partial linear model as in Chapter 8. How can you estimate the parametric

part by ADE?

10.4.4 Assume X to be standard normal. What is l in this case?

10.4.5 In the case of a pure linear model Y = βTX what is δ?
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10.5 Generalized additive models

Generalized linear models (GLIM) are regression models where a linear predictor

η = βTX, X ∈ Rd, (10.5.14)

is connected with the discrete response variable Y ∈ {0, 1} through a link function G(·). A

well-known model is the logistic dose response model where at each value of the covariate

X, the probability of the binary response

p(x) = P (Y = 1|X = x)

is modeled by a logistic function,

p(x) =
exp(η)

1 + exp(η)
· (10.5.15)

Here the logit link function is

G(p) = log(p/(1− p)) = η. (10.5.16)

In the economic literature such models are called discrete choice models . Many empirically

important economic decisions involve choice among discrete alternatives. The indicator

variable Y may denote a decision about travel mode (car or bus?), for example. Many more

examples can be found in Manski and McFadden (1981). The basic idea of the discrete

choice is to model the decision about a certain object of economic relevance by a binomial

distribution dependent on βTX. In the travel mode decision the predictor variable X might

be the distance to the working place and an indicator of social status, for example. Basically,

the model 10.5.15 is parametric in its nature and one might question why the predictor

variables enter in a linear way into the probabilistic decision-making process.

Hastie and Tibshirani (1986) generalized the above additive model to the form

η =
d∑
j=1

gj(Xj), (10.5.17)
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where gj are nonparametric regression functions. They called the model 10.5.17 with known

link function G(·) a generalized additive model (GAM).

In the framework of GLIM (McCullagh and Nelder 1983) the parameter β in 10.5.16 is found

by a weighted least squares regression method. More precisely, given η̂ (a current estimate

of the linear predictor), with corresponding fitted value

µ̂ = G−1(η̂),

one forms the adjusted dependent variable

Z = η̂ + (Y − µ̂)(dη/dµ). (10.5.18)

Then one defines weights W by

W−1 = (dη/dµ)2V,

where V is the variance of Y at µ = µ̂. (In the logit case Wi = p̂(Xi)(1 − p̂(Xi)).) The

algorithm proceeds by regressing Z on X with weights W to obtain an estimate β̂. Using β̂,

a new µ̂ and η̂ are computed. A new Z is computed and the process is repeated until the

change in the log-likelihood is sufficiently small.

This same idea underlies the local scoring algorithm for fitting GAMs by Hastie and Tib-

shirani (1987). The core of this local scoring algorithm is the backfitting algorithm for

estimating additive regression functions

m(x) = α +
d∑
j=1

gj(xj)

assuming that

Egj(Xj) = 0.

Algorithm 10.5.1

Backfitting

INITIALIZATION
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ĝj(x) = 0 for all x, j, α̂ = n−1
∑n

i=1 Yi = Ȳ ;

REPEAT

FOR j = 1 TO d DO BEGIN

FOR i = 1 TO n DO BEGIN

ε̂i = Yi − α̂−
∑d

k 6=j ĝk(Xik).

ĝj(Xij) = SMOOTH(ε̂i) AT Xij.

END

END

UNTIL RSS =
∑

i(Yi − α̂−
∑

j ĝj(Xij))
2 converges.

Smooth at X denotes here a fast and efficient smoother, for example, the FFT kernel

smoother or the k-NN with symmetric weights (Section 3.1,3.4). As an easy to implement

smoother I recommend the k-NN with a “midrange” k. More sophisticated users might

want to install the supersmoother. The local scoring algorithm is based on the backfitting

technique and is defined as follows.

Algorithm 10.5.2

Local scoring

INITIALIZATION

ĝ
(0)
j (x) = 0 for all x, j, α̂(0) = logit(Ȳ ).

REPEAT OVER k

FOR i = 1 TO n DO BEGIN

η̂(k)(Xi) = α̂(k) +
∑d

j=1 ĝ
(k)
j (Xij).

p̂(Xi) = logit−1(η̂(k)(Xi)).

Zi = η̂(k)(Xi) + (Yi − p̂(Xi))/(p̂(Xi)(1− p̂(Xi))).
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Wi = p̂(Xi)(1− p̂(Xi)).

END

OBTAIN

α̂(k+1), ĝ
(k+1)
j

by backfitting Zi on Xi with weigths Wi.

UNTIL the deviance

DEV = −2
∑

i(Yi log p̂(Xi) + (1− Yi) log(1− p̂(Xi)))

converges.

An example in Hastie and Tibshirani (1987) is the analysis of a coronary heart disease study.

The indicator variable Y denoted the presence of heart disease. The predictor variable X was

six-dimensional and included factors such as systolic blood pressure (SBP) and cumulative

tobacco intake (CTI). An application of this local scoring algorithm to survival data is

presented in Figure 10.16. In this figure the estimated contribution ĝ1 of SBP to logit(p(x))

is shown and seen to be quite different from the linear classical logit model.

One clearly sees the nonlinear structure of the conditional probability curve in the logit scale.

Theoretical properties of this algorithm are not known to date.

Exercises

10.5.1 What is the basic difference between the ACE model and the GAM?

10.5.2 Derive the weights and the adjusted residuals for the logit case

G(p) = log(p/(1− p)).

10.5.3 Apply the GAM technique to the side impact data given in Table 3 of Appendix 2.
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Figure 10.12: The ACE method applied to the Boston housing data set. (a) Transformed

log(MV ); (b) Transformed M; (c) Transformed RM2; (d) Transformed log(LSTAT );

(e) Transformed PTRatio; (f) Transformed Tax; (g) Transformed NOX2 ; (h)

Transformed y versus predictor of transformed Y . From Breiman and Friedman

(1985) with permission of the American Statistical Association.
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Figure 10.13: The estimated curve ĝh′ (z) together with the projected data {Ẑi,Yi}ni=1.
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Figure 10.14: Two kernel smooths based on {Zi,Yi}ni=1, {Ẑi,Yi}ni=1, respectively. The thin line

indicates the ADE smooth based on the estimated projections Ẑi=δ̂
TXi. The

thick line is the kernel smooth based on the true projections Zi=δ
TXi.
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Figure 10.15: The ADE smooth and the true curve. The thin line indicates the ADE smooth

as in Figure 10.14 and Figure 10.13; the thick line is the true curve g(δTXi).
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Figure 10.16: The estimated contribution ĝ1 of SBP to logit(p(x)) is the solid bold curve.

The two dashed lines are ĝ1±2STD(ĝ1). From Hastie and Tibshirani (1987) with

permission of the Royal Statistical Society.
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Figure 10.17: The estimated contribution ĝ2 of CTI to logit(p(x)) is the solid bold curve.

The two dashed lines are ĝ2±2STD(ĝ2). From Hastie and Tibshirani (1987) with

permission of the Royal Statistical Society.
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A XploRe

How we think about data analysis is strongly influenced by the computing environ-

ment in which the analysis is done.

McDonald and Pederson (1986)

Here we show how to get started with XploRe and support you in performing your first

statistical analysis. We explain how you can get help and how you can do your own quantlet

programming.

A.1 Using XploRe

A.1.1 Input and Output Windows

Once you have clicked on the XploRe icon, three windows open up on the screen.

These windows are

• the main window, with its menu bar,

• the input window, in which you can enter instructions interactively,

• the output window, which displays the numerical results and text information.
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A.1.2 Simple Computations

Let’s carry out some elementary calculations to get familiar with XploRe. Assume that you

wish to calculate the sum of 2 numbers, e.g. 1 and 2. Then you have to follow these steps:

1: point the cursor to the command line, i.e. the lower part of the input window,

2: enter 1+2,

3: press the <Return> key.

The screen changes as follows:

The outcomes of the above sequence of operations are

• the upper part of the input window now contains the command entered, the command

line is empty and ready to receive new commands,

• the output window contains the result, i.e. 3.
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A.1.3 First Data Analysis

The typical basic steps for a statistical data analysis in XploRe are

1: read the data,

2: apply a statistical method.

Let’s load our first data set. The ASCII file pullover.dat contains data on pullovers sales

in 10 time periods. The four columns of pullover.dat correspond to four variables. These

are the number of pullovers sold, the price (in DM), costs for advertising (in DM), and the

presence of a shop assistant (in hours per period).

We read the data file pullover.dat into XploRe by entering

x=read("pullover")

at the command line. With this instruction, we have assigned the contents of the data file

pullover.dat to the XploRe variable x. We can print the contents of x by issuing

x

http://www.xplore-stat.de/data/pullover.dat
http://www.xplore-stat.de/data/pullover.dat
http://www.xplore-stat.de/data/pullover.dat
http://www.xplore-stat.de/data/pullover.dat
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at the command line. This shows

Contents of x

[ 1,] 230 125 200 109

[ 2,] 181 99 55 107

[ 3,] 165 97 105 98

[ 4,] 150 115 85 71

[ 5,] 97 120 0 82

[ 6,] 192 100 150 103

[ 7,] 181 80 85 111

[ 8,] 189 90 120 93

[ 9,] 172 95 110 86

[10,] 170 125 130 78

As an example of a statistical analysis of the data, let’s compute the mean function (the

average of the columns) here:

mean(x)

returns

Contents of mean

[1,] 172.7 104.6 104 93.8

in the output window. This shows that during the 10 considered periods, 172.7 pullovers have

been sold on average per period, the average price was 104.6 DM, the average advertising

costs were 104 DM and the shop assistant was present for 93.8 hours on average.

http://www.xplore-stat.de/help/mean.html
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A.1.4 Exploring Data

In the previous example, we applied the XploRe built-in function mean which provides the

sample mean of the data. Apart from the built-in functions, XploRe offers libraries (=

quantlibs) of functions (= quantlets) that must be loaded before usage.

In general, the statistical analysis of data comprises the following steps:

1: read the data,

2: select the interesting variables from the data,

3: load the necessary library,

4: explore the data,

5: find a statistical model and apply a statistical method,

6: display the results.

We continue our analysis with the pullover data. The first column of this data set contains

measurements on the sales of “classic blue” pullovers in different shops whereas the second

column contains the corresponding prices. Let’s say we are interested in the relation between

prices and sales.

We read the data again and now select the price and sales columns (second and first columns)

only:

x=read("pullover")

x=x[,2|1]

One of the strengths of XploRe is the graphical exploration of data. A scatter plot of the

data should give us a first impression on the relation of both variables. We will show the

scatter plot by means of the function plot. Since this function is part of the quantlib plot,

we must load this library first:

http://www.xplore-stat.de/help/mean.html
http://www.xplore-stat.de/data/pullover.dat
http://www.xplore-stat.de/help/plot.html
http://www.xplore-stat.de/help/0plot.html
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library("plot")

plot(x)

The last instruction creates a display, i.e. a new graphics window, which contains the scatter

plot:

Looking at this scatter plot, it is difficult to find a clear tendency in the relation between

price and sales. It is the task of regression analysis to determine the appropriate functional

relation between variables. We will now use one of the regression methods introduced there:

regx=grlinreg(x)

plot(x,regx)

The resulting plot in Figure A.1 shows the regression line regx and the data x as circles.

The regression line has a negative slope. We can conclude that (on average) the number of

sold pullovers decreases if the price of the pullover increases. However, this result may be

influenced by the two extreme observations in the upper right and lower right of the figure.

XploRe can easily identify such “outliers”. For example, the instruction

x=paf(x,(100<x[,2])&&(x[,2]<200))
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Figure A.1: Regression line and data.

would only keep those lines of x where the sales observation is above 100 and below 200.

You could now redo the previous regression in order to see how the regression line changes.

A.1.5 Printing Graphics

XploRe offers several ways to produce quality graphics for publication. You can modify the

objects in a plot (point and line style, title and axes labels) and finally save the graphical

display in different file formats.

Let’s continue with the regression example from the previous subsection. We can improve

the graphic by several graphic tools. For example,

x=setmask(x,"large","blue","cross")

plot(x)

setgopt(plotdisplay,1,1,"xlabel","price","ylabel","sales")

will show the data points as blue crosses and the axes labels with the appropriate names of

the variables. We can set a title for the display in the same way:
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setgopt(plotdisplay,1,1,"title","Pullover Data")

The final plot is shown in Figure A.2.

Figure A.2: Final regression plot.

Graphical displays can be printed or saved to a file. If you click on the display plotdisplay,

the Print menu will appear in the menu bar of XploRe. This menu offers three choices: to

Printer prints the display directly on your default printer, to Bitmap file ... saves the display

to a Windows Bitmap file, to PostScript file ... saves the display to a PostScript file. The two

latter menu items open a file manager box, where you can enter the file name. Here you see

the resulting PostScript plot: PostScript files can also be printed by an XploRe instruction:

print(plotdisplay,"Plot1.ps")

will save the display plotdisplay into the file Plot1.ps.
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A.2 Quantlet Examples

Throughout the book we use XploRe example code which can be directly typed into the

command line. We have seen this in the previous sections when calculating the mean and

creating the scatter plot for the pullover data.

Since it can be cumbersome to type many lines of code, we summarized instructions that

belong together into quantlet files. These quantlet files are either displayed within the text

or printed at the end of a sequence of instructions:

x=read("pullover") ; reads data

x=x[,2|1]

library("plot")

plot(x) ; shows scatter plot

You can find all example quantlets in the examples directory of your XploRe installa-

tion. This means, if XploRe is installed in C:\XploRe, you can find the examples in

C:\XploRe\examples.

To load an example quantlet, use the Open item from the Program menu. Change the direc-

tory to examples and double-click on the appropriate file. This opens an editor window

containing the example code. We execute the quantlet by clicking the Execute item in the

menu bar or by entering <Alt E>.

Quantlets contain one XploRe instruction in each line. Additionally, it is possible to add

comments. For example, in

x = 1 ; assign the value 1 to x

y = 2 // assign the value 2 to y

everything beyond the ; and // is a comment. You can also use /* and */ to mark the

beginning and the end of several lines of comments.

http://www.xplore-stat.de/data/pullover.dat
http://www.xplore-stat.de/help/op_comment1.html
http://www.xplore-stat.de/help/op_comment2.html
http://www.xplore-stat.de/help/op_comment3.html
http://www.xplore-stat.de/help/op_comment3.html
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The following subsections intend to give you an impression of the capabilities of XploRe.

We will present some of the statistical methods that are explained in detail later on.

A.2.1 Summary Statistics

XploRe has several functions to print summary statistics of all columns of a data file. The

following example uses the function summarize from the stats library:

library("stats")

x=read("pullover")

library("stats")

setenv("outputstringformat","%s")

summarize(x, "sales"|"price"|"ads"|"assistance")

This returns the following table in the output window:

Contents of summ

[1,]

[2,] Minimum Maximum Mean Median Std.Error

[3,] -----------------------------------------------

[4,] sales 97 230 172.7 172 33.948

[5,] price 80 125 104.6 99 15.629

[6,] ads 0 200 104 105 53.996

[7,] assistance 71 111 93.8 93 14.038

[8,]

A.2.2 Histograms

A histogram visualizes univariate data. Hence, we produce separate histograms for the

variables (columns) of a data matrix. The following example shows the histogram for the

http://www.xplore-stat.de/help/summarize.html
http://www.xplore-stat.de/help/0stats.html
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sixth column (diagonal length) of the Swiss bank notes data stored in the file bank2.dat .

library("plot")

y=read("bank2")

y=y[,6]

library("plot")

setsize(640,480) ; sets display size

plothist(y) ; plots histogram

Figure A.3 shows the resulting histogram. We recognize two modes in the distribution of

the data. This indicates two clusters.

137 138 139 140 141 142 143

X

0
0.

1
0.

2
0.

3
0.

4

Y

Figure A.3: Histogram.

A.2.3 2D Density Estimation

The method of kernel density estimation allows us to estimate the distribution of data in a

very flexible way. Here we compute the density estimate for the joint density of the upper

frame length and the diagonal length (fifth and sixth variable) of the bank2 data.

http://www.xplore-stat.de/data/bank2.dat
http://www.xplore-stat.de/data/bank2.dat
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library("smoother")

library("plot")

x = read("bank2")

x=x[,5:6]

library("smoother")

library("plot")

fh = denxestp(x) ; density estimation

fh = setmask(fh,"surface","blue")

setsize(640,480)

axesoff()

cu = grcube(fh) ; box

plot(cu.box,cu.x,cu.y, fh) ; plot box and fh

setgopt(plotdisplay,1,1,"title","2D Density Estimate")

axeson()

This example computes the density estimate on a grid of points. It returns a graphical display

containing the estimated function. To obtain the three-dimensional surface in Figure A.4,

you need to rotate the estimate by using the cursor keys. The vertical axis shows the

estimated density while the horizontal axes show the upper frame (to the right) and the

diagonal length (to the left), respectively.

The density estimate confirms our impression from Subsection ?? that the data set features

two clusters.

A.2.4 Interactive Kernel Regression

XploRe is particularly suited for interactive use. The following quantlet computes a non-

parametric regression smoother and asks interactively for the bandwidth.

proc()=interactive(x)
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2D Density Estimate

8.8
10.0

11.2
139.0

140.1

141.2

Figure A.4: Two-dimensional density estimate.

error(cols(x)!=2,"x has more than 2 columns!")

x=setmask(x,"red","cross")

h=(max(x[,1])-min(x[,1]))/5

stop=0

while (stop!=1)

mh=setmask(regxest(x,h),"line")

plot(x,mh)

hnew=readvalue("Bandwidth h (0 to stop)",h)

while (hnew<0)

hnew=readvalue("Bandwidth h (0 to stop)",h)

endo

if (hnew!=0)

h=hnew

else

stop=1

endif
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endo

endp

library("plot")

library("smoother")

x=read("nicfoo")

interactive(x)

When the quantlet is executed, it first shows a graphical display with the nonparametric

regression curve (solid line) and the data (red crosses). Next, a dialog box opens which

allows us to modify the currently used bandwidth parameter. The quantlet stops, if 0 (zero)

has been entered.

A.3 Getting Help

XploRe has an extensive help system, the Auto Pilot Support System (APSS). To start the

APSS, select the Help item from the menu bar of the XploRe main window and select APSS

Help. This will open your default World Wide Web browser and display the start page as
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shown in Figure A.5.

Figure A.5: APSS start page.

The APSS provides several entry points for searching help using and programming in XploRe:

• Function Groups lists all functions by topic,

• Alphabetical Index lists all available functions alphabetically,

• Keywords lists all functions by keyword,

• Tutorials links to tutorials on a broad range of topics.
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Figure A.6: APSS help file for abs.

Figure A.6 shows — as an example — the help page for the function abs which computes

the absolute value. As an advanced user of XploRe, you will be able to generate your help

pages for your self-written functions. You are able to add your own functions to the APSS

such that you can create an XploRe environment according to your own needs.

http://www.xplore-stat.de/help/abs.html
http://www.xplore-stat.de/help/abs.html
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A.4 Basic XploRe Syntax

A.4.1 Operators

In the introductory example in Section ??, we have only considered two numbers 1 and 2,

and the addition operator +. Other standard operators are available:

• the symbol - stands for subtraction,

• the symbol * stands for multiplication,

• the symbol / stands for division,

• the caret symbol ∧ stands for exponentiation.

These five basic operators are ordered by precedence rules, which are the same as in pencil

and paper calculus: entering in the input line the arithmetic expression

2*2+3

gives in the output window

7

since the operator * has precedence on the operator +. Thus, the computation 2*2 is carried

out first and gives 4 as result, which is added to 3 to yield 7.

The exponent operator ∧ has the highest level of precedence. Next, the operators * and

/ have the same order of precedence, and have precedence over the operators + and -.

As in standard paper and pencil calculus, you can force these precedence rules by using

parentheses: the command line

(3*4)^2

http://www.xplore-stat.de/help/op_plus.html
http://www.xplore-stat.de/help/op_minus.html
http://www.xplore-stat.de/help/op_matmulti.html
http://www.xplore-stat.de/help/op_div.html
http://www.xplore-stat.de/help/op_expo.html
http://www.xplore-stat.de/help/op_matmulti.html
http://www.xplore-stat.de/help/op_plus.html
http://www.xplore-stat.de/help/op_expo.html
http://www.xplore-stat.de/help/op_matmulti.html
http://www.xplore-stat.de/help/op_div.html
http://www.xplore-stat.de/help/op_plus.html
http://www.xplore-stat.de/help/op_minus.html
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gives

144

as the expression (3*4) is enclosed in parentheses, and is then evaluated independently from

the other operations. The outcome of this operation, 12, is squared to obtain 144.

As in pencil and paper calculus, parentheses could be nested, although left and right paren-

theses must match. Assume that you enter the instruction:

(1+(3*4)^2

which is incomplete since the two left parentheses are matched by only one right parenthesis.

This incomplete instruction ends in a error message, i.e. the syntax analyzer of XploRe,

or parser, has detected that something went wrong and gives the cause of the mistake.

A.4.2 Variables

In the previous subsection, we have considered numeric expressions which — once evaluated

— are “lost” since they are not stored anywhere. If you need to keep the result of a numeric

expression for further calculation, you can store it in a precise location by assigning it to a

variable.

The assignment is done with the assignment operator denoted by the symbol = which

means “equal”. For example,

a = 2*3

assigns the value 6 to the variable a.

We assign a variable by either storing in it a number or the content of another variable. The

following command

http://www.xplore-stat.de/help/op_equal.html
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b = a

assigns into the variable b the content of the variable a. We can verify this by displaying

the content of b by typing its name:

b

prints

Contents of b

[1,] 6

in the output window.

A.4.3 Variable Names

The name of a variable should be a string of alphabetic or numeric characters: a, b, product,

result are possible variable names. Not allowed for the use in variable names are spaces

(blanks) and underscore symbols ( ).

The XploRe parser is case sensitive, i.e. the variables a, A, as well as result, Result,

ResulT and RESULT are considered as distinct. Thus, assigning the value 5 to the variable A

A = 5

does not affect the content of the variable a which still contains the number 6. We display

the content of both A and a by typing

A

a

which gives in the output window
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Contents of A

[1,] 5

Contents of a

[1,] 6

Lastly, some labels which represent standard constants in XploRe are protected and cannot

be used as variable names. These are pi for the constant π = 3.1415926. . . and eh for the

constant e = 2.7182818. . . .

A.4.4 Functions

The environment XploRe provides several hundreds of functions for data handling, statistical

data analysis, graphics and user interaction. There are two types of functions:

• commands = built-in functions,

• quantlets = functions programmed in the XploRe language.

Among the commands, you find all important mathematical functions, such as

log, log10, exp logarithm and exponential functions

sin, cos, tan trigonometric functions

abs absolute value

sqrt square root

floor, ceil, rint rounding functions

Since XploRe is a matrix-oriented language, applying a mathematical function to a data

matrix means that the function is applied to all elements of this matrix. For example,

x=#(1,2,3) ; vector of 1, 2, and 3

log(x)

http://www.xplore-stat.de/help/log.html
http://www.xplore-stat.de/help/log10.html
http://www.xplore-stat.de/help/exp.html
http://www.xplore-stat.de/help/sin.html
http://www.xplore-stat.de/help/cos.html
http://www.xplore-stat.de/help/tan.html
http://www.xplore-stat.de/help/abs.html
http://www.xplore-stat.de/help/sqrt.html
http://www.xplore-stat.de/help/floor.html
http://www.xplore-stat.de/help/ceil.html
http://www.xplore-stat.de/help/rint.html
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returns

Contents of log

[1,] 0

[2,] 0.69315

[3,] 1.0986

i.e. the log has been applied to all elements of the vector x.

Quantlets are used in the same way as the built-in commands, except for the fact that a

quantlib has to be loaded first. For example, the function mean is a built-in command while

the function median is a quantlet from the xplore library. If you want to compute the

median of a data vector, you first have to load the xplore library:

library("xplore")

x=#(1,2,3) ; vector of 1, 2, and 3

median(x)

To find out which library a function belongs to, consult the APSS help file of this function.

A.4.5 Quantlet files

Any file which consists of XploRe instructions is called a quantlet. Quantlets are saved as

text files using the file extension .xpl.

We use the term quantlet for two types of .xpl files:

• Files of XploRe instructions that contain the definition of a procedure.

This means that the quantlet adds a new function to the XploRe environment. An

example of this type of quantlet is the above-mentioned median function which is part

of the xplore library.

http://www.xplore-stat.de/help/log.html
http://www.xplore-stat.de/help/mean.html
http://www.xplore-stat.de/help/median.html
http://www.xplore-stat.de/help/0xplore.html
http://www.xplore-stat.de/help/0xplore.html
http://www.xplore-stat.de/help/median.html
http://www.xplore-stat.de/help/0xplore.html
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• Files of XploRe instructions that we execute line by line.

All quantlet files can be loaded by using the Open item from the Program menu. This opens

an editor window containing the quantlet code. We execute the quantlet by clicking the

Execute item in the menu bar or by entering <Alt E>.

If the quantlet contains a code to be executed line by line, the execution is immediately

started. If the quantlet defines a procedure, an additional instruction to carry out the

procedure is required.



B Tables

B.0.1 Tables

All data sets are available on the MD*base webpage at www.mdtech.de. More detailed

information on the data sets may be found there.

http://www.mdtech.de
http://www.mdtech.de
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Table B.1: The motorcycle data set
x y x y x y x y
2.4 0.0 65.6 -21.5 23.4 -128.5 34.8 75.0
2.6 -1.3 15.8 -21.5 24.0 -112.5 35.2 -16.0
3.2 -2.7 15.8 -50.8 24.2 -95.1 35.2 -54.9
3.6 0.0 16.0 -42.9 24.2 -81.8 35.4 69.6
4.0 -2.7 16.0 -26.8 24.6 -53.5 35.6 34.8
6.2 -2.7 16.2 -21.5 25.0 -64.4 35.6 32.1
6.6 -2.7 16.2 -50.8 25.0 -57.6 36.2 -37.5
6.8 -1.3 16.2 -61.7 25.4 -72.3 36.2 22.8
7.8 -2.7 16.4 -5.4 25.4 -44.3 38.0 46.9
8.2 -2.7 16.4 -80.4 25.6 -26.8 38.0 10.7
8.8 -1.3 16.6 -59.0 26.0 -5.4 39.2 5.4
8.8 -2.7 16.8 -71.0 26.2 -107.1 39.4 -1.3
9.6 -2.7 16.8 -91.1 26.2 -21.5 40.0 -21.5

10.0 -2.7 16.8 -77.7 26.4 -65.6 40.4 -13.3
10.2 -5.4 17.6 -37.5 27.0 -16.0 41.6 30.8
10.6 -2.7 17.6 -85.6 27.2 -45.6 41.6 -10.7
11.0 -5.4 17.6 -123.1 27.2 -24.2 42.4 29.4
11.4 0.0 17.6 -101.9 27.2 9.5 42.8 0.0
13.2 -2.7 17.8 -99.1 27.6 4.0 42.8 -10.7
13.6 -2.7 17.8 -104.4 28.2 12.0 43.0 14.7
13.8 0.0 18.6 -112.5 28.4 -21.5 44.0 -1.3
14.6 -13.3 18.6 -50.8 28.4 37.5 44.4 0.0
14.6 -5.4 19.2 -123.1 28.6 46.9 45.0 10.7
14.6 -5.4 19.4 -85.6 29.4 -17.4 46.6 10.7
14.6 -9.3 19.4 -72.3 30.2 36.2 47.8 -26.8
14.6 -16.0 19.6 -127.2 31.0 75.0 47.8 -14.7
14.6 -22.8 20.2 -123.1 31.2 8.1 48.8 -13.3
14.8 -2.7 20.4 -117.9 32.0 54.9 50.6 0.0
15.4 -22.8 21.2 -134.0 32.0 48.2 52.0 10.7
15.4 -32.1 21.4 -101.9 32.8 46.9 53.2 -14.7
15.4 -53.5 21.8 -108.4 33.4 16.0 55.0 -2.7
15.4 -54.9 22.0 -123.1 33.8 45.6 55.0 10.7
15.6 -40.2 23.2 -123.1 34.4 1.3 55.4 -2.7

57.6 10.7

Note:The X-values denote time (in milliseconds) after a simulated impact with motorcycles. The

response variable Y is the head acceleration [ in g] of a PTMO (post mortem human test object).

From Schmidt, Mattern, Schüler (1981).
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Table B.2: A simulated data set
x y x y x y

0.00452 1.83613 0.30060 0.64960 0.68085 -0.17996
0.00837 -0.97443 0.32759 -0.16932 0.69696 -0.42336
0.01229 0.53992 0.35690 1.12878 0.70432 -0.26322
0.03682 0.46113 0.35891 0.33772 0.71094 -0.52858
0.03688 2.00374 0.36202 1.05152 0.71561 0.50815
0.04753 -0.72132 0.36487 0.41197 0.71813 0.94339
0.07120 1.28708 0.36566 -0.41853 0.72874 -0.91171
0.08281 -1.26908 0.36627 3.03907 0.73008 0.27614
0.08511 2.63863 0.38073 0.64303 0.76162 0.98254
0.09017 -0.25029 0.38979 -0.54217 0.77494 0.63778
0.09331 0.73673 0.40219 0.71329 0.78354 -0.80649
0.11212 0.26705 0.42153 0.97109 0.79327 0.55979
0.11457 0.81824 0.45009 1.97278 0.81226 -0.69888
0.11467 0.05118 0.48200 2.04211 0.81868 -0.72442
0.11752 0.48483 0.50161 3.54774 0.82433 -0.14897
0.11922 2.22813 0.50202 0.98850 0.82645 -1.42030
0.11952 1.57051 0.50203 0.28272 0.82654 -0.02744
0.14354 0.57802 0.51123 1.71133 0.82768 -0.12909
0.14526 0.59176 0.52401 2.83595 0.84186 0.36166
0.15239 0.89032 0.52426 0.57377 0.85518 0.78004
0.17781 2.86420 0.52614 1.84754 0.86838 -1.11895
0.19420 0.92809 0.53805 -0.12198 0.89536 0.18627
0.19606 2.88992 0.54039 0.07410 0.89737 -0.14874
0.20214 0.07135 0.54042 2.70415 0.91137 -0.55851
0.20355 0.32582 0.54090 2.77430 0.91171 1.05371
0.21694 0.95779 0.56182 0.18000 0.91372 0.41848
0.21793 0.80795 0.57445 -0.32403 0.91578 0.70488
0.21796 0.85995 0.58101 0.74803 0.91668 -1.54878
0.23354 0.83378 0.59064 -0.46347 0.91789 -0.59214
0.24067 3.08766 0.61799 -0.10944 0.96018 -0.29103
0.27053 1.46206 0.62652 0.12693 0.96152 -1.99601
0.29464 0.41268 0.64060 0.90819 0.96505 -0.78273
0.29908 0.70020 0.65604 -0.21575 0.96909 0.51049

0.98453 -0.10069
Note: The raw data {(Xi,Yi}ni=1,n=100 were constructed from Yi=m(Xi)+εi,εi∼N(0,1),Xi∼U(0,1) and

m(x)=1−x+e−200 (x−1/2)2 .
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Table B.3: The side impact data set
AGE ROSYM Y AGE ROSYM Y

33.0000 109.0000 1.0000 62.0000 141.0000 1.0000
53.0000 162.0000 0.0000 23.0000 89.0000 0.0000
29.0000 137.0000 0.0000 19.0000 243.0000 0.0000
39.0000 152.0000 1.0000 29.0000 62.0000 0.0000
28.0000 144.0000 1.0000 47.0000 82.0000 1.0000
42.0000 239.0000 1.0000 22.0000 150.0000 0.0000
23.0000 170.0000 1.0000 52.0000 155.0000 1.0000
50.0000 198.0000 1.0000 59.0000 239.0000 1.0000
40.0000 197.0000 1.0000 60.0000 122.0000 1.0000
44.0000 140.0000 1.0000 30.0000 64.0000 0.0000
51.0000 81.0000 1.0000 53.0000 145.0000 1.0000
27.0000 103.0000 0.0000 64.0000 114.0000 1.0000
25.0000 158.0000 0.0000 22.0000 46.0000 0.0000
54.0000 67.0000 0.0000 21.0000 134.0000 0.0000
40.0000 105.0000 1.0000 23.0000 100.0000 0.0000
43.0000 217.0000 1.0000 36.0000 111.0000 1.0000
58.0000 185.0000 1.0000 45.0000 98.0000 1.0000
41.0000 150.0000 1.0000 49.0000 139.0000 0.0000
27.0000 185.0000 0.0000 60.0000 111.0000 1.0000
24.0000 62.0000 0.0000 59.0000 178.0000 1.0000
65.0000 71.0000 1.0000 26.0000 138.0000 0.0000
63.0000 89.0000 1.0000 41.0000 137.0000 0.0000
26.0000 78.0000 0.0000 25.0000 102.0000 0.0000
47.0000 106.0000 0.0000 53.0000 244.0000 1.0000
31.0000 103.0000 1.0000 47.0000 213.0000 1.0000
50.0000 107.0000 1.0000

Note: The variable AGE denotes the age of the post mortal test object, ROSYM the biomechanic

stress at the thorax and Y is an indicator for injury. From Härdle, Kallieris and Mattern (1988)
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Doukhan, P. and Ghindès, M. (1980). Estimation dans le processus xn = f(xn−1) + εn., C.

R. Acad. Sc. Paris 297: 61–4.



Bibliography 395

Doukhan, P. and Ghindès, M. (1983). Estimation de la transition de probabilité d’une châıne
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Granger, C. and Teräsvirta, T. (1992). Modeling Nonlinear Dynamic Relationships, Oxford

University Press, Oxford.

Granger, C. W. J. and Anderson, A. P. (1978). An Introduction to Bilinear Time Series

Models, Vandenhoeck & Ruprecht, Göttingen & Zürich.
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