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Problem B-8--16

Referring to Problem B-8-9, it is desired to design the state feedback gain matrix

K = [k. —ki] such that the system has reasonable step-response characteristics. Let
us assume that we use the quadratic optimal control scheme.
Let us assume the following performance index:

7= %2 [x(k)*Qu(k) + w(k)*Rw(k)]

k=0

If @ and R are chosen to be positive definite, the resulting system is stable. For this

problem, we choose

_J100 0 B
Q*[O J, R=1

Note that the present Q and R are only one possible set. {Other positive definite Q and -

R may be chosen. The resulting system is stable but different for each different set of ;
Qand R.) :

Using the state-space representation shown in Problem B—8-9, determine m-atrix,
K with MATLAB. Write a MATLAB program. Using matrix K thus determined,

obtain the unit-step response of the designed system with MATLAB. Plot y(k) versus
& and v{k) versus k. :

A-7 DEFINITIONS

Matrices that we frequently encounter in the study of modern control theory are the
symmetric matrix, skew-symmetric matrix, orthogonal matrix, Hermitian matrix,
skew-Hermitian matrix, unitary matrix, and normal matrix. The following equations
define these matrices:

AT = A A is symmetric

AT=—4A A is skew-symmetric
AAT = ATA = A is orthogonal

A* = A A is Hermitian

A% = —A A is skew-Hermitian
AA® = A%A =] A is unitary

AA® = A%A or AAT = ATA A is normal

where the superscript * denotes the conjugate transpose and superscript 7 signifies
the transpose.

A-2 DETERMINANTS

Determinants of @ 2 X 2 Mawrix, a3 X 3 Matrix, and a 4 X 4 Matrix. For a
2 X 2 matrix A, we have

ay

A=y b

= Q]bg - bxaz

833
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For a 3 X 3 matrix 4,

a; a, as
lAi: by by by :ﬂlb203+blc2fl3+clazb3‘Clbzﬂs_blazCa“alba’Jz
Ci C2 O3

For a 4 X 4 matrix A,

!A[ il [;2 bc3 by
1 2 Ca Gy
dl dZ d3 dfl
@ Jc3 al e allbs by
by billdy dil 1oy elldy dy
§a1 (253 b3 b4 b1 bzl ds Q4
+ !
Edl d2 3 Cy4 + C1 Czl d3 d4
| i :
_ by byl |a; a4’ € G| ag .
@ dile el 4 4o, b, (A1)

(This expansion is called Laplace’s expansion by the minors. )

Properties of the Determinant. The determinant of an n X » matrix has the -

following properties:

1. If two rows (or two columns) of the determinant are interchanged, only the sign -

of the determinant is changed.

2. The determinant is invariant under the addition of a scalar multiple of a row

(or a column) to another row (or column).

3. If an n X n matrix has two identical rows (or columns), then the determinant® *

is zero.
4. For an n X n matrix A,

AT = 1Al |A* = [4]

5. The determinant of a product of two n X n matrices A and B is the product
of their determinants:

\AB| = |A|B| = [BA|

6. If a row (or a column) is multiplied by a scalar k, then the determinant is

multiplied by k.

7. 1f all elements of an n X n matrix are multiplied by &, then the determinanf,,' k

is multiplied by k"; that is,
kAl = kAl
8. If the eigenvalues of A are A; (i = 1,2,...,n), then

Al = LAy . A,

Hence, |&| # 0 implies A, # 0 for i = 1,2,...,n. (For details of the @igcn-'

value, see Section A-6.)
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9. Imatrices A, B, C,and Dareann X n,ann X m,anm X n,andanm X m
matrix, respectively, then

A 131 B ’A 6] _ .
!0 p=lc b~ IA||D], if 4] # 0 and [D| # 0 (A-2)

A B A O .
& Bl=|A 9l=0, iflal=0orpi=00ral=pj=0
Also,
A B|_[AlID-CATB, if|a]#0 (A-3)
'c bl T |p|la-BDC, [P #0 (A—4)

[For the derivation of Equation (A-2), see Problem A-1. For derivations of
Equations (A-3) and {A—4), refer to Problem A-2.]

10. For an n X m matrix A and an m X n matrix B,
I, + AB| = |, + BA| (A-3)

(For the proof, see Problem A-3.) In particular, form = 1,thatis, forann x 1
matrix A and a 1 X n matrix B, we have

|E, + AB| = 1 + BA (A-6)

Equations (A-2) through (A~6) are useful in computing the determinants of
matrices of large order.

A-3 INVERSION OF MATRICES

Nonsingular Matrix aend Singular Mawix. A square matrix A is called a
nonsingular matrix if a matrix B exists such that BA = AB = L If such a matrix B
exists, then it is denoted by A™'. A™! is called the inverse of A. The inverse matrix
A exists if |4] is nonzero. If A™! does not exist, A is said to be singular.

If A and B are nonsingular matrices, then the product AB is a nonsingular
matrix and

(AB)? =B AT

Also,
(AT = (A7)

and
(A= (A7)

Properties of the Inverse Matrvix. The inverse of a matrix has the following
properties.
1. If k is a nonzero scalar and A is an n X n nonsingular métrix, then

1
L= 2 A7)
(k&) =74
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The determinant of A~ is the inverse of the determinant of A, or

This can be verified easily as follows:

Vector-Matrix Analysis

JAATY = [Af]A7Y] = 1

Useful Formulas Jor Finding the Inverse of a Magrix

. For a 2 X 2 matrix A, where

A=[g SJ, ad — be + 0

the inverse matrix s given by

1
-l
A ad — bc[

- For a 3 X 3 matrix A, where

a b ¢
A=1d e fl
g h i

the inverse matrix s given by
le
‘h

il
ste e

4 el |

g h

m X m matrix, then

(A +BDC)™ = A - AT TRpt 4 CA'B) 1At

provided the indicated inverses exist, Equation (A-7)is commonly referred 10 -
as the matrix inversion lemmag. (For the proof, see Problem A-4)

=

2]

fA[%O
¢ b
i e
c| _!a
il id
b] a
Al d

IfD =1, then Equation (A-7) simplifies to

(A+BC)" = A7 - g-1gq, 1 CA™'B)"ICA™

In this last equation, if B and C are an n X 1 matrix and a 1 X »n matri, =

respectively, then

(A+BC)" =41 -

ATBCA™
1+ CA'B

;
/
C
7
d

e

< IfA B, C,and D are, respectively, an # X n, an n x m,anm X n, and an-
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Equation (A-8) is useful in thatifan zn x 5 matrix X can be written as A + BC,
where A is an n X n matrix whose inverse is known and BCis a product of a
column vector and a row vector, then X! can be obtained easily in terms of
the known A~!, B, and C.
4. IfA,B,C,and D are, respectively, an n X n, an n x m,anm X n, and an
m X m matrix, then
[A B]‘l _ [A'l +ATB(D - CA™B)'CAT —AB(D — CA*B)-I]

C b —(D - CA™'B)"'CA™! (D — CAIB)!
(A-9)
provided A # 0 and [B — CA™'B| + 0, or
[A BT _ [ (A - BDIO) ~(4 - BD'C)"'BD! ]
C D “DUC(A-BDTC) DTC(A - BDIC) 'BD-! + p-!
(A-10)

provided [D| # @ and |A — BD™'C| +# 0. In particular, if C = §or B = 0, then
Equations (A~9) and (A~10) can be simplified as follows:

-1
A B ATl —ATIBD!
[0 DJ = [ 0 D ] (A-11)
or
-1
A 0 Al 0
[c D] = [—D“CA"‘ D*J (4-12)
[For the derivation of Equations (A-9) through (A-12), refer to Problems A-S5
and A-6.]

A-4 RULES OF MATRIX OPERATIONS

In this section we shall review some of the rules of algebraic operations with matrices
and then give definitions of the derivative and the integral of matrices. Then the rules
of differentiation of matrices will be presented.

Note that matrix algebra differs from ordinary number algebra in that matrix
multiplication is not commutative and cancellation of matrices is not valid,

Multiplication of a Matrix by a Scalar.  The product of a matrix and a scalar
Is a matrix in which each element is multiplied by the scalar. That is,

kall kﬂlg e kalm
kA - k{lm kﬁ.lzz cr k‘{lm
Koo kay - kay,

Multiplication of o Matrix by a Matrix.  Multiplication of a matrix by a matrix
is possible between matrices in which the number of columns in the first matrix is
cqual to the number of rows in the second. Otherwise, multiplication is not defined.
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Consider the product of an n X m matrix A and an m X r matrix B:

n At G || by by - by,
AB=|% 2 o bu bn o by
Lm @z o G || B LI (-

(Cn Cip " O

— | Cn -t O

LCrl Gz 7 e

where

m

.
Cik = 2 @by
j=1

Thus, multiplication of an n X m matrix by anm X r matrix yields an n X r matrix.
It should be noted that, in general, matrix multiplication is not commutative; that is

AB # BA in general

For example,
AB = ’:an alzJ[bu bu:l - [au by + apby  auby + aypby
an  an|| by by Lanbn + anby  ayby + apby
and

BA = l:bu b1z}[au ap| _ | buan + bpay byay + bpay
by bypjlan an bunay + bunay byap + bynay

Thus, in general, AB # BA. Hence, the order of multiplication is significant and

must be preserved. If AB = BA, matrices A and B are said to commute. In the

preceding matrices A and B, if, for example, @, = ay = by, = by, = (), then A'and

B commute, ;
For n x n diagonal matrices A and B,

anby 0
AB = [a,8,[b,5,] = anbn
0 Qb

If‘A‘, B, and C are an n X /m matrix, an m X r matrix, and an r X p matrix,
respectively, then the following associativity law holds true:

(AB)C = A(BC)

This may be proved as follows:

(i, k)th element of AB = X a; b,
j=1

(7. h)th element of BC = >, by c

k=1
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= j=1k=1

= 2 2 aij(bjkckh) = 2%,-[2 by Ckhjt
j=1k=1

j=1 k=1

(i, h)th element of (AR)C = 2, (E a; b,»k)ckh =2 2 (@ ba)cw
k=1 \j=1

= (i, h)th element of A(BC)
Since the associativity of multiplication of matrices holds true, we have
ABCD = (AB)(CD) = A(BCB) = (ABC)D
AT = AR, m,n=1,2,3,...

If A and B are n X m matrices and C and D are m X r matrices, then the
following distributivity law holds true:

(A + B)(C + D) = AC + AD + BC + BD

This can be proved by comparing the (7,/)th element of (4 + BY(C + D) and the
(i,j)th element of (AC + AD + BC + BD).

Remarks on Cancellation of Matrices. Cancellation of matrices is not valid in
matrix algebra. Consider the product of two singular matrices A and B. Take, for

example,
121 _ 1 =2
A“{s 3}*0’ B“[—z 4}”’

el 52 L

Clearly, AB = 0 implies neither A = ¢nor B = €. Infact, AB = 8 implies one of the
following three:

Then

iI. A=0.
2. B=0.
3. Both A and B are singular.

It can easily be proved that, if both A and B are nonzero matrices and AB = @,
then both A and B must be singular. Assume that B is nonzero and A is not singular.
Then |A| # 0 and A™! exists. Then we obtain

A'AB=B =0

which contradicts the assumption that B is nonzero. In this way we can prove that
both A and B must be singular if A # 0 and B + 6.

Similarly, notice that if A is singular then neither AB = AC nor BA = CA
implies & = C. If, however, A is a nonsingular matrix, then AB = ACimpliesB = C
and BA = CA also implies B = C.
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Derivative and integral of @ Magrix.  'The derivative of an # X m matrix Ary:
is defined by the matrix whose (i, /)th element is the derivative of the (i,)/)th element
of the original matrix, provided that all the elements a;(t) have derivatives with -
respect 1o ¢:

d d
p Zi_ia“(t) e “d-;alm(t)
— A1) = :
dt d
Eaﬂl([) e —d—[anm(t)

In the case of an n-dimensional vector x(),
d
aflxl(t)

d .
—x(t) = :
dt

d

=0

Similarly, the integral of an n X m matrix A(z) with respect to t is defined 'by :

the n}atrix whose (i, 7)th element is the integral of the (i, /)th element of the original
matrix, or -

fall(t) dr fal,,,(t) dt
f Ay dt = : :
an(t)dr --- f @ (1) dt
provided that the a;;(z)’s are integrable as functions of 1.

Differentiation of a Matrix.  1f the elements of matrices A and B are funciions::
of ¢, then

d d d '
d dA dB |
a ) =g B ATy &1

If k(t) is a scalar and is a function of t, then

d _dA dk (1) '
7 AROT = "2k + A= (A—15)k5 :
Also,
bdA o[t dB 16)
fa ~ Bdr = AB . —fa At (A—lﬁ)L .
It is important to note that the derivative of A~ is given by |
4, . G dA
£ S L -17
th A dt A (17
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Equation (A-17) can be derived easily by differentiating AA™ with respect to t.
Since

dypr A, ,dA”
At _th tAT
and also
d,,a_4d,_
dzAA vdtI ¢
we obtain
aa” _ _dA
dr dr
or
dA™t  dA™! dA
-1 - = p-1BLE
ATATT =T T A A

which is the desired result.

Derivatives of a Scalar Function with Respect to a Vector. I J(x) is a scalar
function of a vector %, then

a i At A
o dxy Pey (92.1:1 dty 0% 9%y 0%y
) I P ALY ST

I OX, 0%y Oy X3 ax?

Also, for a scalar function V(x(t)), we have

T
d aV\ dx
V&) = (dx) dr
Jacobian. I an m X 1 matrix f(x) is a vector function of an n-vector x (note:
an n-vector is meant as an n-dimensional vector), then

i b .. AU
Ix, Ox; ax
of afi 9 Ifrn
— =L = .. 2l A~18
X ax, 0xy ax; ( )
dx, ox, 9%,

Such an rn X m matrix is called a Jacobian.
Notice that, by using this definition of the Jacobian, we have

%Ax = 47 (A-19)
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The fact that Equation (A-19) holds true can be easily seen from the following -
example. If A and x are given by o

X
A = i 4y 4 _ !
A = B X=X
Oy axn 4z
X3
then
X1 -
sz[an [3%3 ﬂ13:| X z’:a]]x1+a12x2+al3x3J=[fl
ay Gy a4y % X1 + AnX, + a3 X3 fZ
and
9 b
é’x, (7X1
ayg a4
Doax = |
= | =
Jx oy dxy a” a~2
p . 13 Ay
%
oz ax;

Also, we have the following useful formula. For an n X real matrix A and a real
n-vector x, ’ :

d -
o xTAx = Ax + ATx (A-20)

In addition, if matrix A is a real symmetric matrix, then
d T
—X Ax = 2Ax
x
INote that if A is an n X n Hermitian matrix and x is a complex n-vector then

Jx

[For derivations of Equations (A-20) and (A-21), see Problem A-7]
For an n X m real matrix A, a real n-vector %, and a real m-vector y, we have:

9 .
EXTAy = Ay (A—ZZ) V
__(;_ T — T s 2
dyx Ay = ATy (A 23,):’

Similarly, for an n x m complex matrix A, a complex n-vector x, and a complex
m-vector y, we have -

; -
XAy = Ay (A-24)
ﬁ—‘;my = AT% <,¢L—2§) .

,—(iX*AX = Ax (A-21) :
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[For derivations of Equations (A-22) through (A-25), refer to Problem A-8.] Note
that Equation (A-25) is equivalent to the following equation:

,i x*Ay = A*x
Iy

A-5 VECTORS AND VECTOR ANALYSIS

Linear Dependence and Independence of Vectors. Vectors %,,%,,...,x, are
said to be linearly independenr if the equation

Xt ot oo +ex =0

where ¢1,¢,, . .., ¢, are constants, implies that ¢, = ¢, = -+ - = ¢, = 0, Conversely,
vectors xy, %, . .« . , X, aresaid to be linearly dependent if and only if x, can be expressed
as a linear combination of x; (j = 1,2,...,n;j # ).

It is important to note that if vectors Xy, x,, . . . , X, are linearly independent and
Vectors Xi, %o, . . ., X, X1 are linearly dependent, then x,.; can be expressed as a
unique linear combination of x;,%,, .. ., x,.

Necessary and Sufficient Conditions for Linear Independence of Vectors. It
can be proved that the necessary and sufficient conditions for n-vectors x; (i = 1,
2,...,m) to be linearly independent are that

. m=n.
2. There exists at least one nonzero m-column determinant of the n X m matrix
whose columns consist of %1, %, ..., Xn.

Hence, for n vectors x;,%,, . .., X, the necessary and sufficient condition for linear
independence is

|&] # 0

where A is the n X n matrix whose ith column is made up of the components of x;
(i=1,2,...,n).

Inner Product.  Any rule that assigns to each pair of vectors x and y in a vector
space a scalar quantity is called an inner product or scalar product and is given the
symbol (x, y), provided that the following four axioms are satisfied:

1. ¥.% =y
where the bar denotes the conjugate of a complex number
2. (cx,y) = T(x,y) = {x,T¥)
where ¢ is a complex number
3. E+yz+w={&2z+{yz+Ew+{w
(x,%) >0, forx # 0
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In any finite-dimensional vector space, there are many different definitions of the =

inner product, all satisfying the four axioms.
In this book, unless the contrary is stated, we shall adopt the following defini-

tion of the inner product: The inner product of a pair of n-vectors x and y in a vector” .

space V is given by

Y =Ey+ Bayat o+ By = SE; (h-26)
i=1

where the summation is a complex number and where the ¥,’s are the complex:

conjugates of the x;’s. This definition clearly satisfies the four axioms. The inner

product can then be expressed as follows: 7
x,3) = x*y

where x* denotes the conjugate transpose of x. Also;

x,y) =, % = yx = y'% = x¥y (Aa-27)

The inner product of two n-vectors x and y with real components is therefore

given by

&y =211+ %y + -+ Xy, = Exl-y,- {A-28) ,’
i=1

In this case, clearly we have

xy)=x"y=y"x, for real vectors x and y

Itis noted that the real or complex vector x is said to be normalized if (x,%) = 1.

Itis also noted that, for an n-vector x, x*x is a nonnegative scalar, butxx*isann X A
matrix. That is,

¥ ={x,0) = x Lt o+ XL,
=+ e+ P
and
XXy XXs ... 4%,
—— xz?l xz.fz S Xz.)?n
XK1 XnXy ... XuX,

Notice that, foran # X n complex matrix A and complex n-vectors x and ¥, -

the inner product of x and Ay and that of A¥x and y are the same, Or
(x, Ay) = x*Ay,  (A%x,y) = x*Ay

Similarly, for an » x n real matrix A and real n-vectors x and y, the inner product
of x and Ay and that of Ax and y are the same, or

x,Ay) = xTAy, (A"x,y) = xTAy
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Unitary Transformation.  If A is a unitary matrix (that is, if A7' = A%), then
the inner product (x, x) is invariant under the linear transformation x = Ay, because

(1, %) = (Ay, Ay) = (y, A*AY) = (7, AT Ay) = (3, %)

Such a transformation x = Ay, where A is a unitary matrix, which transforms
XX into 2. Viyi, is called a unitary transformation.

Orthogonal Transformation. I A is an orthogonmal matrix (that is, if
A1 = AT), then the inner product (x, %) is invariant under the linear transformation
x = Ay, because

(x,%) = (&Y, Ay) = (v, ATAy) = (5, A7 Ay) = {y,y)

Such a transformation x = Ay, which transforms >, x7 into >n, vf, is called an
orthogonal transformation.

Norms of a Vector.  Once we define the inner product, we can use this inner
product to define norms of a vector x. The concept of a norm is somewhat similar
to that of the absolute value. A norm is a function that assigns to every vector x in
a given vector space a real number denoted by x|} such that

1. Il =0, forx + 0
2. K| =0, ifandonlyifx=0
3. liexl) = || =],
where k is a scalar and |k| is the absolute value of k
4. I+ it = =l + lll, for all x and y
5, K, w1 = =)yl (Schwarz inequality)

Several different definitions of norms are commonly used in the literature.
However, the following definition is widely used. A norm of a vector is defined as
the nonnegative square root of (x,x):

el = (e, )2 = (o) = Vi P+ [P + -+ [P (A-29)

If x is a real vector, the quantity ||z can be interpreted geometrically as the square
of the distance from the origin to the point represented by the vector x. Note that

“X - YH = <X -y, X y)l/Z = \/(xl ')’1)2 + (XZ _yZ)2 +oeee A (xn _yn)z

The five properties of norms listed earlier may be obvious, except perhaps the
Jast two inequalities. These two inequalities may be proved as follows. From the
definitions of the inner product and the norm, we have

Iax + yIF = Qx + y, Ax + ) = (Ax, Ax) + (v, Ax) + (x,y) + (v, 9)
AMEIP + Ay, x) + X,y + P
= AIRE + (,y) + A%y + IiF =0

it
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If we choose

_xy

A= HXHZ s forx #¢
then
N "l Xa / L,
XTay) + Iy = ~%—y—> F iy =0
and

[Pyl = (x, y)(x, y) = Kz, 90, forx # 0
For x = 0, clearly,
[Pyl = Kx, )P
Therefore, we obtain the Schwarz inequality,

%, 93] = el vl (A-30)

By use of the Schwarz inequality, we obtain the following inequality:

This can be proved easily, since
I+ =G+ yx+y
=)+ ®y) R+,
= [l + (e, 90 + (90 + [yl?
= Ix? + Iyl + 2 Re(x, y)
= [ + vl + 2/(x, y)]
= [kl + Iyl + 20ix] Iyl
= (=l + Iyt

Equations (A-26) through (A-31) are useful in modern control theory.

As stated carlier, different definitions of norms are used in the hterdture '

Three such definitions of norms follow.
i. A norm x| may be defined as follows:
Il = [(Tx)*(Tx)}"* = (FT*Tx)"? = (x*Qx)¥?

V2
= {qu,if,-ij =0

i=]j=1

The matrix ¢ = T#T is Hermitian, since Q% = T#T = = Q. The norm HX”":f

(x*Qx)"? is a generalized form of (x*x)"2, which can be written as (x*Ex)"":

2. Anorm may be defined as the sum of the magnitudes of all the components ¥ <

Ixl| = Z Jx]

Vecior-Matrix Analysis  App. A

I+ vl = Il + (A-31)
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3. A norm may be defined as the maximum of the magnitudes of all the compo-
nents x;:

) = ma {xf}
It can be shown that the various norms just defined are equivalent. Among

these definitions of norms, norm (x*x)"” is most commonly used in explicit
calculations.

Norms of a Matrix. The concept of norms of a vector can be extended to
matrices. There are several different definitions of norms of a matrix. Some of them
follow.

1. A norm [A| of an n X r matrix A may be defined by
|Al = mink
such that
lAx] = &kl
For the norm (x*x)"2, this definition is equivalent to
AP = miix {x*A%Ax; x*x = 1}

which means that ||A]? is the maximum of the “absolute value” of the vector
Ax when x*x = 1.

. A norm of an n X n matrix A may be defined by

lal = 2 2 las

i=1)=1

(5]

where [a,-,-{ is the absolute value of a;;.
3. A norm may be defined by

non 12
Il = (2 % tai,-tz)
i=1j=1
4. Another definition of a norm is given by

Jal = max (3
i j=1
Note that all definitions of norms of an # X n matrix A have the following
properties:

1 Jal =A%l or  JAl = A7)
2 A + Bl = Al + 1B
3 [AB| = Al |8
4 lAx)] = [JAl =]

Orthogonality of Vectors.  If the inner product of two vectors x and y is zero,
or {x,y) = 0, then vectors x and y are said to be orthogonal to each other. For
example, vectors
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1 0 1

X =1(1], % = |01, X = | 1

0 1 0

are orthogonal in pairs and thus form an orthogonal set.
In an n-dimensional vector space, vectors %, %, . . ., x, defined by
1 0 0
0 1

X = M X = M £ R Xp = 0
O 0 1

satisfy the conditions {x;,x;) = 8, or

xnx) =1

x,x =0, i #j
where i,/ = 1,2,...,n. Such a set of vectors is said to be orthonormal , since the
vectors are orthogonal to each other and each vector is normalized.

A nonzero vector x can be normalized by dividing x by [x|l. The normalized

vector ¥/|lxf is a unit vector. Unit vectors x,,%,, . . ., %, form an orthonormal set if
they are orthogonal in pairs.

Consider a unitary matrix A. By partitioning A into column vectors Ay

Ay, ..., A, we have
[AF
| AF o
A¥p = “=E- [Alezz---:An]

A
[Af Ay AFA, -+ ATA,

| Az A AFA, - AZA,
AT AL ATA, - AYA,
1 0 0

_10 1 0
100 1

it follows that
Af A =(ALAp =1
A(* Aj = <Ai7Aj> = O! l #]

Thus, we see that the column vectors (or row vectors) of a unitary matriz A ar¢
orthonormal. The same is true for orthogonal matrices, since they are uniary.
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A-6 EIGENVALUES, EIGENVECTORS, AND
SIMIILARITY TRANSFORMATION

In this section we shall first review important properties of the rank of a matrix and
then give definitions of eigenvalues and eigenvectors. Finally, we shall discuss Jordan
canonical forms, similarity transformation, and the trace of an n X n matrix.

Rank of a Matrix. A matrix A is called of rank m if the maximum number
of linearly independent rows (or columns) is . Hence, if there exists an m X m
submatrix M of A such that |M| # 0 and the determinant of every X r submatrix
(where r = m + 1) of A is zero, then the rank of A is m. [Note that, if the
determinant of every (m + 1) X (;m + 1) submatrix of A is zero, then any determi-
nant of order s (where s > m + 1) iszero, since any determinant of orders > m + 1
can be expressed as a linear sum of determinants of order m + 1.]

Properties of Rank of a Matrix.  We shall list important properties of the rank
of a matrix in the following.

I. The rank of a matrix is invariant under the interchange of two rows (or
columns), or the addition of a scalar multiple of a row (or column) to another
row (or column), or the multiplication of any row (or column) by a nonzero
scalar.

2. For an n X m matrix A,
rank A < min (n,m)

3. For ann X n matrix A, a necessary and sufficient condition for rank A = n is
that |A] # 0.
4, For an n X m matrix A,

rank A¥ = rank A or rank A" = rank A

5. The rank of a product of two matrices AB cannot exceed the rank of A or the
rank of B; that is,

rank AB =< min (rank A, rank B)

Hence,ifAisann X lmatrixandBisal X mmatrix, thenrank AB = 1 unless
AB = €. If a matrix has rank 1, then this matrix can be expressed as a product
of a column vector and a row vector.

6. For an n X n matrix A (where |A] # 0) and an n X m matrix B,
rank AB = rank B
Similarly, for an m X m matrix A (where |A| # 0) and an n X m matrix B,
rank BA = rank B
Eigenvalues of a Square Matrix. For an n X n matrix A, the determinant
AL — Al

is called the characterisiic polynomial of A. It is an nth-degree polynomial in A. The
characteristic equation Is given by

M- A =0
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If the determinant [AY — Al is expanded, the characteristic equation becomes

A = ay g c Tl
—a A —a o —
|M - A| - an “an .aln
~an TGt A T4y

=N+ A g, At a, =0

‘The n roots of the characteristic equation are called the eigenvalues of A. They are.

also called the characteristic roors.

It is noted that an n X n real matrix A does not necessarily possess real

eigenvalues. However, for an n X n real matrix A, the characteristic equation

AT — A = 0 is a polynomial with real coefficients, and therefore any complexv"

eigenvalues must oceur in conjugate pairs; that is, if « + jB is an eigenvalue of A,
then @ — jB is also an eigenvalue of A.
There is an important relationship between the eigenvalues of an # X 1 matrix.

4 and those of A™!. If we assume the eigenvalues of A to be A; and those of A" 1o
be w;, then '

w=A",  i=1,2,....n

That is, if A; is an eigenvalue of A, then A, is an eigenvalue of A™. To prove this;

notice that the characteristic equation for matrix A can be written as
AT — Al = [AA71 — 1) |&] = |A]ja! - AIAl =0
or
= AT =0
By assumption, the characteristic equation for the inverse matrix A~ is
el - 47 =0
By comparing the last two equations, we see that
po=A"

Hence, if A is an cigenvalue of A, then & = A™! is an eigenvalue of A7.

Finally, note that it is possible to prove that, for two square matrices A and B’l -

IAI ~ AB| = |AI - BA|
(For the proof, see Problem A-9.)

Eigenvectors of an n X n Mairix. Any nonzero vector x; such that

Ax; = Ax;

1s said to be an eigenvector associated with an eigenvalue A; of A, where Aisann X7

matrix. Since the components of x; are determined from 7 linear homogeneous
algebraic equations within a constant factor, if x,is an eigenvector, then for any scalal
o # 0, ox; is also an eigenvector. The eigenvector is said to be a normalized
eigenvector if its length or absolute value is unity.
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Similar Matrices. The n X n matrices A and B are said to be similar if a
nonsingular matrix P exists such that

PAP =B

The matrix B is said to be obtained from A by a similarity transformation , in which
P is the transformation matrix. Notice that A can be obtained from B by a similarity
transformation with a transformation matrix P!, since

A =PBP ' = (P )IBEY)

Diagonalization of Matrices. If ann X nmatrix A has n distinct eigenvalues,
then there are n linearly independent eigenvectors. If matrix A has a multiple
eigenvalue of multiplicity £, then there are at least one and not more than k linearly
independent eigenvectors associated with this eigenvalue.

If an n X n matrix has » linearly independent eigenvectors, it can be diagonal-
ized by a similarity transformation. However, a matrix that does not have a complete
set of n linearly independent eigenvectors cannot be diagonalized. Such a matrix can
be transformed into a Jordan canonical form.

Jordan Canonical Form. A k x k matrix J is said to be in the Jordan canon-
ical form if

&, ¢
3= I

0 b,

where the J,,’s are p; X p; matrices of the form

A1 0 00

0 x 1 0 0
Jo=17 1 Dol

0090 -+~ A1

000 --- 0 A

The matrices J,, are called p; th-order Jordan blocks. Note that the A in J , and that
in J,, may or may not be the same, and that

P1+P2+"'+Ps=k
Forexample,ina7 X 7matrix J,ifp; = 3, p, = 2, p; = 1, ps = 1, and the eigenval-
ues of J are Ay, Ay, Ar, Ag, Ay, Ag, Ay, then the Jordan canonical form may be given by

[E:() 0 10 0
0 A 11
0 0 X 1
= Ja(A1) | o=
! B A1
U
31(A) el
| 0 ) 0 I
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' Jordan canonical forms have the propertics that the elements on the main
diagonal of the matrix are the eigenvalues of A and that the elements immediately -

above (or below) the main diagonal are either 1 or O and all other elements are Zeros,
The determination of the exact form of the Jordan block may not be sim

To illustrate some possible structures, consider a 3 X 3 matrix having a triple

eigenvalue of A;. Then any one of the following Jordan canonical forms is possible;

N1 0 A 110 N0 0

0 A 1, 0 A0y 07 A0

0 0 A 0 014 0 0 i
1

Each of the three preceding matrices has the same characteristic equatidn

(A = &)’ = 0. The first one corresponds to the case where there exists only oe

linearly independent eigenvector, since by denoting the first matrix by A and solving
the following equation for x, :

(A-MDx=0
we obtain only one eigenvector:
u
x=10] a = nonzero constant
0

The second and third of these matrices have, respectively, two and three Iinearly' '

%ndependent eigenvectors. (Notice that only the diagonal matrix has three linearly
independent eigenvectors.)

As we have seen, if a & X k matrix A has a k-multiple eigenvalue, then the
follewing can be shown:

1. fif the rank of AI ~ Ais k — s (where 1 <5 = k), then there exist s linearly’
independent eigenvectors associated with A.

2. There are s Jordan blocks corresponding to the s eigenvectors.
3. The sum of the orders p; of the Jordan blocks equals the multiplicity £.

Therefore, as demonstrated in the preceding three 3 x 3 matrices, even if the

multiplicity of the eigenvalue is the same, the number of Jordan blocks and their

orders may be different depending on the structure of matrix A.

Similarity Transformation When an n X n Matrix Has Distinct Eigenvalues. If -

n eigenvalues of A are distinet, there exists one eigenvector associated with each

eigenvalue A;. It can be proved that such n eigenvectors x,,x,, . . . , x, are linearly
independent.

Let us define an n X n matrix P such that

where column vector P, is equal to column vector X;, Or

Po=x, i=1,2,....n

ple
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Matrix P defined in this way is nonsingular, and P! exists. Noting that eigenvectors
%1, %, . . . , X, satisfy the equations

AX; = )tlxl
AXy = A%,
Ax, = A, x,

we may combine these n equations into one, as follows:

A] O
.o . .. . Az
Az i--ix,] = [ximi-ix,]
0 An
or, in terms of matrix P,
Ay 0
AP =P A2 .
0 Ay

Ay 0
P“l AP = . X = diag (Al,)\z, ey )ln)
0 An

Thus, matrix A is transformed into a diagonal matrix by a similarity transformation.
The process that transforms matrix A into a diagonal matrix is called the
diagonalization of matrix A.
Asnoted earlier, a scalar multiple of eigenvector x;is also an eigenvector, since
«x; satisfies the following equation:

Alax;) = Aax;)

Consequently, we may choose an « such that the transformation matrix P becomes
as simple as possible.

To summarize, if the eigenvalues of an n X »n matrix A are distinct, then there
are exactly n eigenvectors and they are linearly independent. A transformation
matrix P that transforms A into a diagonal matrix can be constructed from such n
linearly independent eigenvectors.

Similarity Transformation When an n X n Matrix Has Multiple Eigenvalues.
Let us assume that an » X »n matrix A involves a k-multiple eigenvalue A, and other
eigenvalues Ay, Arsa, - . ., A, that are all distinct and different from A,. That is, the
eigenvalues of A are

AL AL AL A, Ay o A
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‘We shall first consider the case where the rank of MI — Aisn — 1. For such a case ..
there exists only one Jordan block for the multiple eigenvalue Ay, and there is only.
one eigenvector associated with this multiple eigenvalue. The order of the Jordan™
block is k&, which is the same as the order of multiplicity of the eigenvalue A,. ;
Note that, when an n X n matrix A does not possess # linearly independent
eigenvectors, it cannot be diagonalized, but can be reduced to a Jordan canonical
form.
In the present case, only one linearly independent eigenvector exists for ;. We
shall now investigate whether it is possible to find & — 1 vectors that are somehow
associated with this eigenvalue and that ave linearly independent of the eigenvectors. .
Without proof, we shall show that this is possible. First, note that the eigenvector
%; is a vector that satisfies the equation S

(A - )\IH)Xl =g

so that x; is annihilated by A — X, L. Since we do not have enough vectors that are .
annihilated by A — AL, we seek vectors that are annihilated by (A — 4D
(A — A D), and so on, until we obtain k — 1 vectors, The k& — 1 vectors determined
in this way are called generalized eigenvectors. :

Letusdefine the desired k — 1 generalized eigenvectorsas x,, %3, . . ., x,. Then
these k — 1 generalized eigenvectors can be determined from the equations ©

(A. - )\11)){1 =0
(A a /\1 K)Z'Xz =¢

(A - MDF%, =0 (A-32)
which can be rewritten as

(A - ADx, =0

(A - MDx, = x5

(A - M Dx, = %,
Motice that
A-MD Ty =A-AMD 7y = = A- 1D =x
or - i
(A - MDD Tx, =x (A—33:’)’~
The eigenvector x; and the k — 1 generalized eigenvectors x, %s, . . . , %z dctﬁrmiﬂe'dk

in this way form a set of k linearly independent vectors. ‘

A proper way to determine the generalized eigenvectors is to start with ¥ Ijhat
is, we first determine the x, that will satisfy Equation (A—32) and at the same t0¢
will yield a nonzero vector (A4 — A;D)* 'x,. Any such nonzero vector can be conSld‘v d
ered as a possible eigenvector x,. Therefore, to find eigenvector x,, we apply 2 0% -
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reduction process to (A — A, L) and find k linearly independent vectors satisfying
Equation {(A-32). Then these vectors are tested to find one that yields a nonzero
vector on the right-hand side of Equation (A-33). (Note that if we start with x, then
we must make arbitrary choices at each step along the way to determine x,,
Xi,...,%; Thisis time consuming and inconvenient. For this reason, this approach
is not recommended.)

To summarize what we have discussed so far, the eigenvector x, and the
generalized eigenvectors X, Xs, . . ., X satisfy the following equations:

Axl = Al X1
A.Xz = X3 + )\1 X2

Axk = K1 T A X

The eigenvectOrs Xj41,Xis2,.-.,%, associated with distinct eigenvalues Agyq,
Aesz, - - - » An, TESPECtively, can be determined from

AXpoq = Mg g

AXpyr = Ape2Xper

AX, = Ay X,

Now define

where the n column vectors of § are linearly independent. Thus, matrix S is nonsin-
gular. Then, combining the preceding eigenvector equations and generalized eigen-
vector equations into one, we obtain

ARzl K Xy %y,
Ay 1 01 07
Al 1 “
|
- - 11
S ETRE SSRRRES P55 JYPRERIRS o A Li__(_) ______________
0 ‘k)\kﬂ 0
| .
L0 L0 An)
Hence,
et ] 0
AS=§ Akt
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By premultiplying this last equation by $7°, we obtain

In the preceding discussion we considered the case where the rank of AL — A
wasn — 1. Next we shall consider the case where therank of A, I — Aisn — s (where
2 =5 = n). Since we assumed that matrix A involves the k-multiple eigenvalue A;
and other eigenvalues Ay.1, Agias - - . , A, that are all distinet and different from Ay, we'
have s linearly independent eigenvectors associated with eigenvalue A;. Hence, there J
are s Jordan blocks corresponding to eigenvalue A,. 1

For notational convenience, let us define the s linearly independent eigenvec-
tgrs associated with eigenvalue A; as vy, va, . . . , vy We shall define the generalize’d”;
eigenvectors associated with v,y as vip, Vi3, . . ., Vi, Where i = 1,2, ..., s. Then there -
are altogether k such vectors (eigenvectors and generalized eigenvectors), which ire -

Vi, iz e o5 Vip s Va1, Va2, -+ Vapos - o o5 Var, Vi - - o5 Vi,
The generalized eigenvectors are determined from
(A — By =0, A-MDvy =86
(A = 4Dvp = vy, = Vg

(A - )\1 E)Vs?, =

(A - /\] K)Vli’l = Yip-1s (A - )\; I)vjl’s = V-1
where the 5 eigenvectors viy, Va1, . . . , vy are linearly independent and
prtprttp=k

Note that PP, - - -, s represent the order of each of the s Jordan blocks. {(For: =
the determination of the generalized eigenvectors, we follow the method dis-:

cussed earlier. For an example showing the details of such a determination, se¢
Problem A-11.)

Let us define an n X &k matrix consisting of vi5, vy, ..., vy, as
S(h) = [vyivpie- -t Vi o VaaiViooo Vep,]
ol bOES ERREES SRR %]
= [slgszg..,:sk]
and define

where
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Note that Xe.1,Xes2, . -.,%, are eigenvectors associated with eigenvalues Ag.q,

Apsa, - - - » An, TESpECtively. Matrix S defined in this way is nonsingular. Now we obtain
jp](Al) 6 0
Jpz()“) E
l
i
AS = 0 L, 0 -
"""""""""""" 0 T A 0
1
{
0 Lo A
!
where J,(A,) is in the form
A1 0
A 1
J ,-()\1) =
1
0 M
which is a p; X p; matrix. Hence,
Jp, (A1) 0 “. 0
Jpz()\-l) ’{
I
STAS=| 0 I, () 0
__________________________________ I
0 1 A 0
|
i
0 0 An

Thus, as we have shown, by using a set of n linearly independent vectors
(eigenvectors and generalized eigenvectors), any n X n matrix can be reduced to a
Jordan canonical form by a similarity transformation.

Similarity Transformation When an n X n Matrix Is Normal.  First, recall
that a matrix is normal if it is a real symmetric, 2 Hermitian, a real skew-symmetric,
a skew-Hermitian, an orthogonal, or a unitary matrix.

Assume that an r X n normal matrix has a k-multiple eigenvalue A, and that
its other n — k eigenvalues are distinct and different from A,. Then the rank of
A — A I becomes n — k. (Refer to Problem A-12 for the proof.) If the rank of
A — MBis n — k, there are k linearly independent eigenvectors X, %,, . . . , X, that
satisfy the equation

(A-ADx, =0, i=12,...k

Therefore, there exist k Jordan blocks for eigenvalue A;. Since the number of J ordan
blocks is the same as the multiplicity number of eigenvalue Ay, all k Jordan blocks
become first order. Since the remaining n — k eigenvalues are distinct, the eigenvec-
tors associated with these eigenvalues are linearly independent. Hence, the n X n
normal matrix possesses altogether n linearly independent eigenvectors, and the
Jordan canonical form of the normal matrix becomes a diagonal matrix.
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Itcanbe proved thatif Aisann X n normal matrix, then, regardless of whether. -
or not the eigenvalues include muitiple eigenvalues, there exists an n X n unitary

matrix U such that
UTTAU = U*AU = D = diag (A, Ag, . . ., A)

where D is a diagonal matrix with » eigenvalues as diagonal elements.

Trace of en n X r Matrix. 'The trace of an n X n matrix A is defined as

follows:
trace of A = trA = Za,-,v
i=1
The trace of an n X n matrix A has the following properties:
1. AT =tra
2. For n X n matrices A and B,
tr{A+B)=trA + uB
3. If the eigenvalues of A are denoted by Aj, A5, ..., A,, then

A=A+ ho+ o+, (A-34)

4. Forann X mmatrix 4 and anm X nmatrix B, regardless of whether AB = BA’ -

or AB # BA, we have
trAB = trBA = 3, 2, a, by,
i=1j=1
ifm =1, then by writing A and B as a and b, respectively, we have
trab = ba
Hence, for an n X m matrix C, we have

a’Ca = traa’C

Note that Equation (A-34) may be proved as follows. By use of a similarity

transformation, we have
P 1AP = D = diagonal matrix
or

S 'AS = J = Jordan canonical form
That is,

A = PDP! or A =8]8
Hence, by using property 4 listed here, we have
trA=tPDP™ = rP'PD =D =N+ 4+ -+ + A,
Similarly,

tra=usSlS ' =u87S8I=tuJ=A+ A+ -+ 4,
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Invariant Properties Under Similarity Transformation. If an n X n matrix A
can be reduced to a similar matrix that has a simple form, then important properties
of A can be readily observed. A property of a matrix is said to be invariant if it is
possessed by all similar matrices. For example, the determinant and the character-
istic polynomial are invariant under a similarity transformation, as shown in the
following. Suppose that P! AP = B. Then

Bl = [P~ AP = [PTY[Al[P| = |A[[P7[P] = |A][P7'P|
= |AllH] = |A]
and
AL — B| = |AL — PT1AP| = [PTY(ADP ~ P AP
= [PT'(AL - A)P| = [P[AL — A[[P]
= AL — A[PT[P] = ]AX - 4

Notice that the trace of a matrix is also invariant under similarity transformation,
as was shown earlier:

trA =trP AP

The property of symmetry of a matrix, however, is not invariant,

Notice that only invariant properties of matrices present intrinsic characteris-
tics of the class of similar matrices. To determine the invariant properties of a matrix
A, we examine the Jordan canonical form of A, since the similarity of two matrices
can be defined in terms of the Jordan canonical form: The necessary and sufficient
condition for n X r matrices A and B to be similar is that the Jordan canonical form
of A and that of B be identical.

- A~7 QUADRATIC FORMS

Quadratic Forms. Forann X nreal symmetric matrix A and a real n-vector
%, the form

Ax = X D ayxx, a4 =a
i=1j=1
is called a real quadratic form in x;. Frequently, a real quadratic form is called simply
a quadratic form. Note that x” Ax is a real scalar quantity.
Any real quadratic form can always be written as x” Ax. For example,

1 -1 2 Xy
-2 A+ 3+ 88 =y x x) -1 1 0 x
2 0 8 X3

It is worthwhile to mention that, for an n X » real matrix A, if we define

B=i(A+AT) and C=i4—-AT)
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then
A=B+C
Notice that
B'=B and CC'=-C

Hence, an n X n real matrix A can be expressed as a sum of a real symmetric and
a real skew-symmetric matrix. Since x” Cx is a real scalar quantity, we have

XCx = (Cx)T=x"CTx = -x"Cx
Consequently, we have

xX'Cx =0

This means that a quadratic form for a real skew-symmetric matrix is zero. Hence, -

x"Ax = x"(B + O)x = x"Bx

and we see that the real quadratic form x” Ax involves only the symmetric component ' =
x'Bx. This is the reason why the real quadratic form is defined only for a real

symmetric matrix.
For a Hermitian matrix A and a complex n-vector %, the form

n n
) O NS _ _
X*AX = Z Za,‘jxix]’, Q= d;j
i=1j=1

is called a complex quadratic form, or Hermitian form. Notice that the scalar

quantity x*Ax is real, because

x*Ax = xTA¥ = (AR = TTA x = x*Ax

Bilinear Forms. For an n X m real matrix A, a real n-vector x, and a real

m-vector y, the form

hoom
XAy =22 & XYy
i=1j=1
is called a real bilinear form in x; and y;. x” Ay is a real scalar quantity.

Forann X mcomplex matrix A, a complex n-vector x, and a complex m-vector
y, the form

x*Ay = 2 2 a;%,y;

i=1j=1

is called a complex bilinear form. x*Ay is a complex scalar quantity.

Definiteness and Semidefiniteness. A quadratic form x” Ax, where Aisareal
symmetric matrix (or a Hermitian form x*Ax, where A is a Hermitian matrix), is said

to be positive definite if
x"TAx >0 (orx*Ax>0), forx#9
Ax=0 (orxthx=0), forx=26
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%’ Ax (or x*Ax) is said to be positive semidefinite if
xTAx=0 (orx*Ax=0), forx#9¢
xTAx=0 (orx*Ax=0), forx=20

x7 Ax (or x*Ax) is said to be negative definite if
xTAx <0 (orx*Ax <0), forx#+0
TAx=0 (orx*4x=0), forx=20

x"Ax (or x*Ax) is said to be negative semidefinite if
x'Ax =0 (orx*Ax=0), forx#¢
xfAx =0 (orx*Ax=0), forx=20

If x” Ax (or x*Ax) can be of either sign, then 7 Ax (or x*Ax) is said to be indefinite.

Note that if x” Ax or x*Ax is positive (or negative) definite we say that A is a
positive (or negative) definite matrix. Similarly, matrix A is called a positive (or
negative) semidefinite matrix if x7 Ax or x*Ax is positive {or negative) semidefinite;
matrix A is called an indefinite matrix if 7 Ax or x*Ax is indefinite.

Note also that the eigenvalues of an n X n real symmetric or Hermitian matrix
are real. (For the proof, see Problem A-13.) It can be shown that an # X n real
symmetric or Hermitian matrix A is a positive definite matrix if all eigenvalues A,
(i =1,2,...,n) are positive. Matrix A is positive semidefinite if all eigenvalues are
nonnegative, or A; = 0 ( = 1,2,...,n), and at least one of them is zero.

Notice that if A is a positive definite matrix then |A| # 0, because all eigen-
values are positive. Hence, the inverse matrix always exists for a positive definite
matrix.

In the process of determining the stability of an equilibrium state, we fre-
quently encounter a scalar function V(x). A scalar function V(x), which is a function

of x;,%5,...,%,, is said to be positive definite if
V(x) >0, forx#0
v({6) =0

V(x) is said to be positive semidefinite if
V(x) = 0, forx+ 0
V(@) =0

If —V(x) is positive definite (or positive semidefinite), then V(x) is said to be
negative definite (or negative semidefinite).

Necessary and sufficient conditions for the quadratic form % Ax (or the Her-
mitian form x*Ax) to be positive definite, negative definite, positive semidefinite,
or negative semidefinite have been given by J. J. Sylvester. Sylvester’s criteria follow.

Sylvester’s Criterion for Positive Definiteness of a Quadratic Form or Hermitian
Form. A necessary and sufficient condition for a quadratic form x”Ax (or a
Hermitian form x*Ax), where A is an n X n real symmetric matrix (or Hermitian
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matrix), to be positive definite is that the determinant of A be positive and the
successive principal minors of the determinant of A (the determinants of the k x k
matrices in the top-left corner of matrix A, where k = 1,2,... ,n — 1) be positive;
that is, we must have

a a (3%
!all ag 11 12 13
i

a,; > 0, i == O, Ay dp  apl > 0, ey IAl >0
1o dn
a3 Ay ds3
where
@ = aj, for real symmetric matrix A

a; = d;, for Hermitian matrix A

Sylvester’s Criterion for Negative Definiteness of a Quadratic Form or Hermitian -
Form. A necessary and sufficient condition for a quadratic form x"Ax (or a

Hermitian form x*Ax), where A is an n X n real symmetric matrix (or Hermitian

matrix), to be negative definite is that the determinant of A be positive if n is even
and negative if n is odd, and that the successive principal minors of even order be:
positive and the successive principal minors of odd order be negative; that is, we must

have

lan  ap Ay qp 4
ay <0, ] > 0, @y a4y an| <0,
dy adn
dy Gy dy
|A] >0 (n even)
Al <0 (n odd)
where
a; = ay, for real symmetric matrix A

ai; = Gji, for Hermitian matrix A

[This condition can be derived by requiring that x"(— A)x be positive defimite. ]

Sylvester’s Criterion for Positive Semidefiniteness of @ Quadratic Form or Her-
mifian Form. A necessary and sufficient condition for a quadratic form x” Ax (0f

a Hermitian form x*Ax), where A is a real symmetric matrix (or a Hermitian matrix),

to be positive semidefinite is that A be singular (J4] = 0) and all the principal minors -

be nonnegative:

ai;  Gij

a4 = {)7
& a4y

=0, a; @ ai| =0,
Q. Ay Qg

where | <j < k and

a;; = @, for real symmetric matrix A

a; = dy, for Hermitian matrix A
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(It is important to point out that in the positive semidefiniteness test or negative
semidefiniteness test we must check the signs of all the principal minors, not just
successive principal minors. See Problem A-~15.)

Sylvester’s Criterion for Negative Semidefiniteness of a Quadratic Form or a
Hermitian Form. A necessary and sufficient condition for a quadratic form x7 Ax
(or a Hermitian form x*Ax), where A is an n X n real symmetric matrix (or Her-
mitian matrix), to be negative semidefinite is that A be singular (JA| = 0) and that
all the principal minors of even order be nonnegative and those of odd order be
nonpositive:

a; @y Gy
=0, a; ay; axl =0, ..., |A4]=0

Qi iy ik

Qi Gij

a; = 0,
G 4jj

where { < j < k and
a; = ay, for real symmetric matrix A

a; = @y, for Hermitian matrix A

. A-8 PSEUDOINVERSES

The concept of pseudoinverses of a matrix is a generalization of the notion of an
inverse. It is useful for finding a “solution” to a set of algebraic equations in which
the number of unknown variables and the number of independent linear equations
are not equal.

In what follows, we shall consider pseudoinverses that enable us to determine
minimum norm solutions.

Minimum Norm Solution That Minimizes |xll. Consider a linear algebraic
equation

X, + SXZ =]

Since we have two variables and only one equation, no unique solution exists.

Instead, there exist an infinite number of solutions. Graphically, any point on line

x; + Sx, = 1, as shown in Figure A-1, is a possible solution. However, if we decide

to pick the point that is closest to the origin, the solution becomes unique.
Consider the vector-matrix equation

Ax =B (A-35)

where A is an n X m matrix, x is an m-vector, and b is an n-vector. We assume that
m > n (that is, the number of unknown variables is greater than the number of
equations) and that the equation has an infinite number of solutions. Let us find
the unique solution x that is located closest to the origin or that has the minimum
norm |jx||.

Let us define the minimum norm solution as x°. That is, x° satisfies the
condition that Ax® = b and [x°] = |}x| for all x that satisfy Ax = b. This means that
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X2

0.6
0.4

xy +Bxy=1
\ /
0.2
] | ! . Figure A~1 Linex, + Sx; = 1 on the
0 02 04 06 08 1.0 = %  xxplane.

the solution point x° is nearest to the origin of the m-dimensional space among all |
possible solutions of Equation (A-35). We shall obtain such a minimum norm

solution in the following.
Right Pseudoinverse Matrix. For a vector-matrix equation

Ax = b

where A is an n X m matrix having rank #n, x is an m-vector, and b is an n-vector, -

the solution that minimizes the norm [|x]| is given by
= A™p
where A™ = AT(AATY ™,

This can be proved as follows. First, note that norm x| can be written as
follows:

et = Ix — x° + 2% = {x°

+ =1+ 2 (x - x)
The last term, 2(x°)"(x — x°), can be shown to be zero, since
x)7(x ~ % = [ATAATY b [x — AT(AAT) Y]
= bT(AAT)  Alx — AT(AAT) ' B]
= bT(AAT) '[Ax — (AAT)(AAT)'b]
= b/(AAT) (b — b)

=0
Hence,

=l = 1= + = — 7
which can be rewritien as

=l — = =[x = 7

Since flx — x% = 0, we obtain
=l = =7

Thus, we have shown that x° is the solution that gives the minimum norm [#]..
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The matrix ARM = AT(AA7)™' that yields the minimum norm solution
(Ix% = minimum) is called the right pseudoinverse or minimal right inverse of A.

Summary On the Right Pseudoinverse Matrix.  The right pseudoinverse A®
gives the solution ¥° = A®b that minimizes the norm, or gives {x°| = minimum.
Note that the right pseudoinverse A™ is anm X nmatrix, since Aisann X m matrix
and

ARM = AT(AAT)—I

it

(m X n matrix)(n X n matrix)™*
= m X n matrix, m>n

Notice that the dimension of AAT is smaller than the dimension of vector x, which
is m. Notice also that the right pseudoinverse A™ possesses the property that it is
indeed an “‘inverse” matrix if premultiplied by A:

AARM = ATAT(AAT)™Y] = AAT(AAT) ! = 1,

Solution That Minimizes |Ax — bl}. Consider a vector-matrix equation
Ax=1b (A-36)

where A is an n X m matrix, x is an m-vector, and b is an n-vector. Here we assume
that n > m. That is, the number of unknown variables is smaller than the number
of equations. In the classical sense, there may or may not exist any solution.

If no solution exists, we may wish to find a unique “solution” that minimizes
the norm |JAx — bf. Let us define a “solution” to Equation (A~-36) that will minimize
A% — b as x°. In other words, x° satisfies the condition

lAx — B|| = [|Ax® ~ B, for all x

Note that x° is not a solution in the classical sense, since it does not satisfy the
original vector-matrix equation Ax = b. Therefore, we may call x° an “approximate
solution,” in that it minimizes norm |Ax — bjj. We shall obtain such an approximate
solution in the following.

Left Pseudoinverse Matrix.  For a vector-matrix equation
Ax=b

where A is an n X m matrix having rank m, x is an m-vector, and b is an n-vector,
the vector x° that minimizes the norm |[Ax — bl is given by

x° = AlMp = (ATA) ' ATb

where A = (ATA) AT,
To verify this, first note that

Ax = b = JA(x ~ x°) + Ax® = b
= JAGx — x| + [JAx° — b]| + 2[A(x — x)]"(Ax° — b)

The last term can be shown to be zero as follows:
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[AGx - x)]"(Ax° ~ b) = (x — x)TAT[A(ATA) AT — L]b
= (x - x)ATAHATAY AT - AT
Vo= (x = (AT~ ATYb

=0

Hence,
lAx — bl = JA(x — x°)] + |Ax° — b]
Noting that |A(x ~ x°)| = 0, we obtain
l4x ~ bl - [Ax° — bl = |A(x —x°)| = 0
or
lAx ~ bl = |Ax° — b
Thus,
X = AMB = (ATA)"Ab
minimizes [[Ax — bl
The matrix A™ = (ATA)™ A" is called the left pseudoinverse or minimal left

inverse of matrix A. Note that A" is indeed the inverse matrix of A, in that if
postmultiplied by A it will give an identity matrix I,

AMA = (ATA)ATA = (ATA)Y(ATA) =1,

EXAMPLE PROBLEMS ARND SCOLUTIONS

Problem A-1

Show that if matrices A, B, C,and D areann X n,ann X m,anm X n,andanm X m
matrix, respectively, and if |A| # 0 and [D| # 0, then

A B A G R ,
" =18 O a0, iflal40aa (%0

Solution Since matrix A is nonsingular, we have

IR B Haed

Hence,
AB_&GIOEIA"B‘m |
!0 D “’0 1ig DE‘O p | = lalD]
Similarly, since D is nonsingular, we get

l&4 ¢ _lA OHI 0H I 0‘_ N
ic D!" o 1lle pllp—c 1 = AP

App. A Example Problems and Solutions 667

Problem A-2

Show that if matrices A, B, C,and Dareann X n,ann X m,anm X n,andanm X m
matrix, respectively, then

}A B| _ J|AlID ~ CAT'B|,  if|A] #0
C D bila - BD'C|, if[b|+£0

& 5]

can be written as a product of two matrices:

A B g I, AT'B
C L. an 0 D~-CA'B

Selution if |A| # 0, the matrix

or
A Bl_1A 0, AT'B
C D C I.]|6 D-CA'B
Hence,
}AB_A oL, AT'B I
C bl IC L6 D~-CAT'B
= AL |[,||D ~ CAT'B]
= [A||D ~ CAT'B]

Similarly, if B} # 0, then
A B |1 BjlA- BDT'C 0
cC D 6 D pic L

‘A B _ L B'A—BD'IC ¢
C D D

and therefore

‘g p'c 1,
= |L./ID| |4 - BD"'C||L.|
= |D||A - BB C|

Probiem A-3

For an » X m matrix A and an m X n matrix B, show that
L. + AB| = |L.. + BA|

Solution Consider the following matrix:
I, —A
B I.

‘A B|_[lAID-cCAT'B,  if[Al#0
Ic p bj4 ~BD'C|, [P #£0

Referring to Problem A-2,
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Hence,

L. —-A
B L.

_ [ L. + BA| = |1, + BA]
|11, + AB| = |1, + AB]

and we have

L. + AB| = |L, + BA|

Problem A-4

If A, B, C, and D are, respectively, ann X n,ann X m, anm X n, and an m X m
matrix, then we have the following matrix inversion lemma:

(A+BDC)'=A"'"—AT'B(D + CAT'B) ' CAT
where we assume the indicated inverses to exist. Prove this matrix inversion lemma.
Solution Let us premultiply both sides of the equation by (4 + BDC):
(A+BDCYA +BDC) ' = (A+BDC)A™" — A'B® ™'+ CAT'B)'CATY)
or
[=1+BDCA™ —B{D™' + CA7'B)'CA™" - BDCAT'B(D™! + CAT'B)'CA™?
=1+BDCA™ — (B + BDCA™'B)YD™' + CAT'B)'CA ™!
=1+ BDCA™ - BD(MD™ + CAT'BYD™' + CAT'B)'CA™!
=1+ BDCA™ - BDCA™'
=1

Hence, we have proved the matrix ipversion lemma.

Problem A~5

Prove thatif A, B, C, and D are, respectively, ann X n,ann X m, anm X n, and an .

m X m matrix, then

.
A B A7 —AT'BDT
[0 D} =[ 0 pt ] (A=3T)

provided |A| # 0 and D] # 0.

Prove also that
-1
A 0 AT [} a
[C D} :[~D"‘CA-1 Dﬂ} (&-38)

provided |A| # 0 and |D| + 0.
Solution Note that

A7 -a7Bp'|[a B| _[1, A"B-a"B] (1, ©
] D ¢ D| |0 1. IR

Hence, Equation (A-37) is proved. Similarly,

A o Ta o]_ I, o] _fu o]
-b7'ca™ D)€ B| | -BT'C+DTC 1,| |0 I,

Hence, we have proved Equation (A-38).
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Problem A-6

Prove that if A, B, C, and D are, respectively, ann X n,ann X m,anm X n, and an
m X m matrix, then

A B|' _[A7+ATB(D - CAT'B)'CA™" -AT'B(D — CAT'B)™
cC bl —(D - CAT'BY'CA™? (D — CA'B)!
provided |A] # 0 and |D ~ CA™'B| # 0.
. Prove also that
A B|"_ (4 ~BDIC)™ —(A - BD'C)'BD™
C D -D7'C(A-BD'C)" DT'C(A~BDT'C)'BD™ + D
provided |D| # 0 and |A — BD'C| # 0.

Selution First, note that

A B] [a o], a'B
[c D}_[C L,,]{O D—CA”E] (A-39)

By taking the inverse of both sides of Equation (A-39), we obtain
A Bl [ a'B 17[a o
C Dl |0 D~CATB| |{C L.

By refeiring to Problem A-5, we find

I, 4B | _[n. -A"B®-cCA'B)”
¢ D-CA'B 9 (D — CAT'B)™!

A 0] [ & o
C L.| | -CA™ L.
Hence,

a8l [, a's ] Ta o]
C Dl 16 D-CA'B| |C 1.
L, -AT'B@-CAT'BY'|L AT
e (D - CAT'B)”? ~CA™" 1,
AT+ ATBD -CAT'B)'CATY -AT'B(D - CAT'BY
h —(D - CAT'B)'CA™! (D —CAT'B)™!

provided |A] # 0 and |D — CA™'B| # 0.
Similarly, notice that

A B| |I.L B{A-BD'C ¢
[C‘ D} = [0 D}[ D'C I,,,} (A-40)
By taking the inverse of both sides of Equation (A—40) and referring to Problem A-5,
we obtain

a B]" _[a-Bp7C o[ B]”

¢ B p*C  I.|] |0 D

_ (A -BD'C) 0 |j1. -BD™
T -DT'C(A —-BDTICY! I {6 DT

_ (A —BDT'C)” —(A-BDT'C)'BD’
T -DT'C(A -~ BDTIC)T DTIC(A-BDTIC)T'BDT + B
provided |D| # 0 and |A — BD ' C| # 0.
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Problem A-7
For an n X n real matrix A and real n-vectors x and y, show that
. d .
(a) Y x=y
J_; -
(b) —xTAx = Ax + A'x
[:9

For an n X n Hermitian matrix A and a complex n-vector x, show that

(© &_‘;X*Ax = Ax
Solution
(2) Note that
YR = x4 yaka F oo F Yk,

which is a scalar gquantity. Hence,

d .r
&xlb S 4!
IS R I
&xy . ¥
d T
Yy X Yn

%y
(b) Notice that

Ao
XTAX = 2 X a,x%;

3 . . fw=] el
which is a scalar quantity. Hence,

. (Zza.,x,x,) 2(11,% e S s
X3

i=1 j=1 i=1

Jx T n
5 (E},a,,x xj> Za,.,-x,- + 2 Ak
X =1 i=1

i=1j=1
=Ax + A"x

which is Equation (A-20)
If matrix A is a real symmetric matrix, then

d
—x7 Ax = 2Ax, ifA=AT
X
{c} For a Hermitian matrix A, we have
AR = 3, 2 ;XX

i=1j=1
and

8)(1(2 Ea,,x XJ) EUUXJ

P i=1j=1
LyEAY =
ax - o

n L
<Z E ;X x,) E Anj X;
=1 i=1

491,1,1

which is Equation (A-21).

_—.nf = Ax
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Note that
3 < < SO
_(E Ea,, ) Zailxi
3 X1\ j='l =1 )
b—"x*Ax = : = : =A"%
2 2 ay¥.x Y 2,
X, (. 1j=1 ! ]> i=1
Therefore,
g—x*Ax = A*x = Ax
ax
Problem A-8
Forann X mcomplex matrix A, a complex n-vector x, and a complex m-vector y, show
that
(a) ix*A = A
gz T
(b} ix*Ay = AT%
Iy
Solution

{a) Notice that

n m

XAy = 2 2 a; %y,

i=1j=1

Hence,

L]

P m m
= E Xy 2 @y Yy
5x1(is1;=1 j YJ) = ;Y

d ; .
e g Ay - = - =
aﬁx Ay : : Ay

which is Equation {A-24).
(b) Notice that
6y1(22a"x y,) Zail)ﬂ

.1,1

ix*Ay = = : = ATy
y

P . .
Py (Z 2 % y,> 2 X

i=1j=1

which is Equation (A-25).
Similarly, for an n % m real matrix A, a real n-vector x, and a real m-vector y,
we have

g T d T T

< = ZexThAy =

axx Ay = Ay, ayx y=A'x
which are Equations (A-22) and (A-23), respectively.

Problem A-9

Given two n ¥ n matrices A and B, prove that the eigenvalues of AB and those of BA
are the same, even if AB # BA.
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Solution First, we shall consider the case where A (or B) is nonsingular. In this case,
[AT ~ BA] = (AL — ATH(AB)A| = |AT' (AL — AB)A| = |A7'||AI — AB|/A| = AT - AB)

Next we shall consider the case where both A and B are singular. There exist n x n
nonsingular matrices P and Q such that

ma-i 1]

where L, is the r X r identity matrix and r is the rank of A, r < n. We have

IAI - BA| = |AI — Q7' BAQ| = AL — Q"'BP ' PAQ|

- 16y G| L 0‘
r [Gzl Gzz:l[o o}

where '
- - Gy G
IBP 1 .. 11 12
Q [Gn G
Then
- - | Gu @ i = [AL = 6y ¢ |
A1 - Ba| [M [Gm 0] —Ga AL,
= !/\I, - an l)\lnvr[
Also,

|AI — AB| = [AI — PABP7Y| = AL — PAQQ™'BP|
. _ I 0[| Gy Ge
B [“ {0 0]{«:;21 sz

- - [Gu Glz][

] ¢ |
= l)\lr - Gll _G12£
0 ALl

= l)kIr - Gul i)\[n—r!
Hence, we have proved that
|AI — BA| = |AI — AB|

or that the eigenvalues of AB and B4 are the same regardiess of whether AB = BAor =

AB + BA.
Problem A~10

Show that the following 2 X 2 matrix A has two distinct eigenvalues and that the
eigenvectors are linearly independent of each other:

ol

Solution The cigenvalues are obtained from

Then normalize the eigenvectors.

A=1 =1

‘“'A":; 0 A-2

iz()lwl)()\—Z):U
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as
=1 and Ay =2

Thus, matrix A4 has two distinct eigenvalues.
There are two eigenvectors x; and %, associated with A; and A;, respectively. If

we define
X1 X1z
X = s ¥ =
X21 Xz

then the eigenvector x, can be found from
Axy = 4%
or
(ME—- Ay, =0
Noting that A, = 1, we have

I MRt

xv = arbitrary constant and Xn =0

which gives

Hence, eigenvector x; may be written as

%, = X |
! Xz21 0
where ¢; # 0 is an arbitrary constant,
Similarly, for the eigenvector x,, we have
AXZ = Az X
or
(AzI ks A)X; = {
Noting that A; = 2, we obtain

e BN

X~ X2 =0

from which we get

Hence, the eigenvector associated with A, = 2 may be selected as

I T R A )
X2 - -
X22 Cz

where ¢; # 0 is an arbitrary constant.
The two eigenvectors are therefore given by

¥ = [%1} and ¥, = [f}

The fact that eigenvectors %, and x, are linearly independent can be seen from the fact
that the determinant of the matrix [x; %] is nonzero:

[N
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¢

0 ol
To normalize the eigenvectors, we choose ¢; = 1 and ¢, = 1/\/5, or
L
) [
V2
Clearly, the absolute value of each eigenvector becomes unity and therefore the
eigenvectors are normalized.
Problem A-11
Obtain a transformation matrix T that transforms the matﬂx
0 1 6 3
o

0 0 -1 -2
into a Jordan canonical form.

Solution The characteristic equation is

Ao-1io -3
R e N —IH)\ -1
M= A= T 5 0 A+l as2
0 0 11 r+2
=(A+1Pr=0

Hence, matrix A involves eigenvalues
M=l he=-1,  As=-1, A=0
For the multiple eigenvalue —1, we have

-1 -1 0 -3

o 0 -1 -1
Ml=A=1y o 9
0 0 1 1

which is of rank 2, or rank (4 — 2). From the rank condition we see that there must be

two Jordan blocks for eigenvalue —1, that is, one p; X p, Jordan block and one p2 X P2
Jordan block, where p; + p, = 3. Notice that for p1 + p2 = 3 there is only one combi-
nation (2 and 1) for the orders of p, and p,. Let us choose

pn=2 and p,=1

Then there are one eigenvector and one generalized eigenvector for Jordan block
and one eigenvector for Jordan block J,..

Let us define an eigenvecior and a generalized eigenvector for Jordan block Jp1
as vy; and vip, respectively, and an eigenvector for Jordan block 3,2 as v;. Then there
must be vectors vy, vy, and vy, that satisfy the following equations:

(A= MBvy, =0, (A~ MDvy =0
(& — Ay, = vy
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For & = —~1, A — A1 can be given as follows:
11 0 3
0 1 1
AmhI=lg 9 1
00 -1 -1
Noting that
11 -2 1
_ 2|00 00
(A - XqEF= 00 00
00 00

we determine vector vy, to be such that it will satisfy the equation
(A - MDvi=0

and at the same time will make (4 — A, I)vy; nonzero. An example of such a generalized
eigenvector vi, can be found to be

—a
0 .
Viz = oI a = arbxtrary nonzerc constant
a
The eigenvector vy; is then found to be a nonzero vector (A — A Dvya:
2a
Vu = (A - /\11)"12 =
-a

Since « is an arbitrary nonzero constant, let us choose @ = 1. Then we have

2 -1
0
Vi = 1 and Vi = 0
-1 1
Next, we determine ¥z so that v; and vy, are linearly independent. For v, we
may choose
b + 3¢
Vo1 = b
21 ¢
-c

where b and ¢ are arbitrary constants. Let us choose, for example, b = 1 and ¢ = 0.
Then

1
oo = -1
21 ™ O
0
Clearly, vi1, vi2, and vy, are linearly independent. Let us define

Vip = Xy, Vi2 = Xz, V23 = X3
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and will have m linearly independent vector solutions. Let us choose m such vectors so that
5 1 1 they are orthogonal to each other and normalized. That is, vectors x;, x5, . . . , X,, Will
0 _i satisfy Equation (A-41) and will be orthonormal.
TA) = [vn v iva] = [Kikig] = 1 0 o0 Let us consider n — m vectors Xm+1, Xma2, - - - , X» such that all n vectors
-1 1 0

X1, %25 .- -y Xn

. . . , will be orthonormal to each other. Then matrix U, defined by
For the distinct eigenvalue A, = 0, the eigenvector %, can be determined from

U=xi%i--ix,
(A — ADxs =0 bt |
is a unitary matrix.
Since for 1 =i = m, we have

Noting that

0 1 0 3 Ax; = A X;
R [ T U
A-NI=A= o 0 0. 1 and therefore we can write
0 0 -1 -2
i Y S
AU=U
we find [ 0 C]
d or
w0 A < | MIn B
8 ¢ C

. . . Noting that
where d # 0 is an arbitrary constant. By choosing d = 1, we have

; lax; — Axd? = (A — ADx;, (A — ADx,)
T = e = |0 = ((A* — AD(A = ADx, x;)
) =% = _
: = (A - AD(&% - XD, %)
= ((A* — AD)x;, (A% — AD)x,
Thus, the transformation matrix T can be written as « _) ( x
2 -1 11 = A=, — Axff
. 1 0 -1 0 =0
T = [T(A): T(ha)] =
i (]} 8 g we have
Then _ A¥K, = A%,
0 0 1 040 1 0 3 2 -1 11 . -
S 0 0 1 oille -3 1 1 1 0 -1 0 Therefore, we can write _

0 -1 100 0 0 1 0 00 A*U=UMI"‘ B,

L1 1 -2 1J6 0 -1 -2} -1 1 00 6 G
-1 1+ 00 or

6 -1, 060 . -
= —no—»—~6—i-»-_~i-—: gl = diag [J2(—1), J:(—1), J.(0)] U*A*Y = li)"l”‘ Bl]
L 0o 0 010 e
Hence,
Problem A-12

Assume that an # X n normal matrix A has a k-multiple eigenvalue A,. Prove that the

rank of A — M Iisn — k. Cy B Cf

Comparing the left and right sides of this last equation, we obtain

M. B s e B* [ AL 0
[ 10 C:’ = U*AU = (L*A*U)* = [ 10 l:l - { 1 :‘

Selution  Suppose that the rank of A — A;Iis n ~ m. Then the equation

(A - MDx=0 (A-41) B=0
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Hence, we get

[
Then
oy ol (= AL ¢ *
A “U{ 0 C-ALa]Y
The determinant of this last equation is
A — Al = (4 — A)7C = AL {A-47)

On the other hand, we have

] 0
rank (A — M) =n-—-m= rank{U[o c- Invm]U*}

A
[} [} _ _
= rank[(} C - I,.,,,,} = rank (€ = A Lo—m)
Hence, we conclude that the rank of C — AL, is n — m. Consequently,
IC = Ml # 0

and from Bquation (A~42), A, is shown to be the m-multiple eigenvalue of |&4 — AT} = 0.
Since A, is the k-multiple eigenvalue of 4, we must have m = k. Therefore, the rank
of A— Mlisn — k.

Note that, since the rank of A — AT is n —~ k, the equation

(A= MDx =0
will have k linearly independent eigenvectors i, %, . . . , Xi.
Problem A-13

Prove that the eigenvalues of an n X n Hermitian matrix and of ann X n real symmetric
matrix are real. Prove also that the eigenvalues of a skew-Hermitian matrix and of a
real skew-symmetric matrix are either zero or purely imaginary.

Solution Let us define any eigenvalue of an n X n Hermitian matrix Aby A = a + jB.
There exists a vector x # ¢ such that

Ax = (a + jB)x

The conjugate transpose of this last equation is

XFA* = (o - JBX*
Since A is Hermitian A* = A. Therefore, we obtain

x*Ax = (a — jB)x*x
On the other hand, since Ax = (a + jB)x, we have

x*Ax = (a + jB)x*x
Hence, we obtain

(e = jB) ~ (e + jB)x*x = 0
or
-2jBx*x =0

Since x*x # 0 (for x  6), we conclude that

B=0
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This proves that any eigenvalue of an n X n Hermitian matrix A is real. It follows that
the eigenvalues of a real symmetric matrix are also real, since it is Hermitian.

To prove the second half of the problem, notice that if B is skew-Hermitian, then
jB is Hermitian, Hence, the eigenvalues of jB are real, which implies that the eigenval-
ues of B are either zero or purely imaginary.

The eigenvalues of a real skew-symmetric matrix are also either zero or purely
imaginary, since a real skew-symmetric matrix is skew-Hermitian.

Note that, in the real skew-symmetric matrix, purely imaginary eigenvalues
always occur in conjugate pairs, since the coefficients of the characteristic equation are
real. Note also that-an n X n real skew-symmetric matrix is singular if # is odd, since
such a matrix must include at least one zero eigenvalue.

Problem A-14
Examine whether or not the following 3 X 3 matrix A is positive definite:
2 2 -1
A= 2 6 O
-1 0 1

Selution We shall demonstrate three different ways to test the positive definiteness of
matrix A.

1. We may first apply Sylvester’s criterion for positive definiteness of a quadratic
form x” Ax. For the given matrix A, we have

22 -1
26 0
-1 0 1

Thus, the successive principal minors are all positive. Hence, matrix A is positive
definite.

2. We may examine the positive definiteness of x” Ax. Since

2 2 -1ilx
Az =[tnxnx) 2 6 0 x
-1 0 T xe

= 207 + Ay X — 2y x5 + 6% + %3
= (1 = x9)” + (0 + 2ra)° + 203

we find that x” Ax is positive except at the origin (x = 6). Hence, we conclude
that matrix A is positive definite.

3. We may examine the eigenvalues of matrix A. Note that
AT — Al =A% —9A% + 151 - 2
= (A — 2)(A — 0.1459)(A — 6.8541)

2>0 |2 2>O >0
> 7 6 )

Hence,
A= 2, Az = 0.1459, Az = 6.8541
Since all eigenvalues are positive, we conclude that A is a positive definite matrix.
Problem A~15

Examine whether the following matrix A is positive semidefinite:

A=

i e A
B e b

1
2
0
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Solution In the positive semidefiniteness test, we need to examine the signs of all
principal minors in addition to the sign of the determinant of the given matrix, which
must be zero; that is, |A] must be equal to 0.

For the 3 X 3 matrix

a1y @2 Q3
4y oy 3

A3 s sz
there are six principal minors:

iy s
31 Q3

a1 Mz Qzz Q23

ax  axn

a1, a2, 33, s >

4z Us3

We need to examine the signs of all six principal minors and the sign of |4].
For the given matrix A, s

ay=1>0
an =4>10
a3 = 0
an  an] _ tl 2’ =0
an  dx 2 4
@ G2 4 2{
= = e <
ap  ass |2 0 4<0
@ a3 11
= = e <
a3 Qs 1 01 1<0
au Gz (s 1 21
Gy 4 dxnl = |2 4 2| =0
3y iz sz 120

Clearly, two of the principal minors are negative. Hence, we conclude that matrix &
is not positive semidefinite.

Itisimportant to note that, had we tested the signs of only the successive principal .

minors and the determinant of A,

121
2 4 2
120

1 2] Al = _
1>0, ‘2 4’——0, Al = = ()

we would have reached the wrong conclusion that matrix A is positive semidefinite.
In fact, for the given matrix A,

A—-1 =2 -1
-2 A-4 -2
-1 -2 A

= (A — 5.8541)h (1 + 0.8541)
and so the eigenvalues are

Ay = 58541, Ay =10, A = —0.8541

AL - A= =(A*-51 -5

For mauix A to be positive semidefinite, all eigenvalues must be nonnegative and at
least one of them must be zero. Clearly, matrix A is an indefinite matrix.

z Transform Theory

B-1 INTRODUCTION

This appendix first presents useful theorems of the z transform theory that were not
treated in Chapter 2. Then we discuss details of the inversion integral method for
finding the inverse z transform. Finally, we present the modified z transform
method. At the end of this appendix (in the Example Problems and Solutions
section), we discuss some of the interesting problems dealing with the z transforma-
tion, not treated in Chapter 2.

B-2 USEFUL THEOREMS OF THE z TRANSFORM THEORY

In this section we present some of the useful theorems of the z transform theory that
were not discussed in Chapter 2.

Complex Differentiation.  In the region of convergence a power series in z may
be differentiated with respect to z any number of times to get a convergent series.
The derivatives of X(z) converge in the same region as X(z).

Consider

X(z) = 2 x(k)z™*
k=0
which converges in a certain region in the z plane. Differentiating X(z) with respect
to z, we obtain

LX) = 3 ()

k=0
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Multiplying both sides of this last equation by —z gives

—zEd;X(z) = ki;okx(k)z"‘ (B-1)
Thus, we have
2l (k)] = 2 X(2) (B-2)

Similarly, by differentiating both sides of Equation (B-1) with respect to z, we have

%[—'Z%X(Z)] = %(—kz)x(k)z"‘“’

Multiplying both sides of this last equation by —z, we obtain
d[_,4d =S (et
Zdz[ deX(z)} = zok x(k)z

or

21 (k)] = <¢z£)zX(z)

2 3
The operation <«—z%) implies that we apply the operator —~z~d— twice. Similarly, o

dz
by repeating this process we have

2l x(k)] = (—;:%) X(z) B3

Such complex differentiation enables us to obtain new z transform pairs from the
known z transform pairs.

Example B-1
The z transform of the unit-step sequence 1(k) is given by
210 =
Obtain the z transform of the unit-ramp sequence x(k), where
x(k) =k
by using the complex differentiation theorem.

Z(] = Z1K] = Z [k 1(8) = ‘ng(x fz..l) -

Complex Integration.  Consider the sequence

(k) = X(k)

where x(k)/k is finite for k = 0. The z transform of x(k)/k is given by

Sec. B-2 Useful Theorems of the z Transform Theory 683
k
z[x(k)} j X(Zl) dz, + li Ox(k) (B-4)
k—>

where Z{x (k)] = X(z).
To prove Equation (B—4), note that

Z[)%} = G(z) = },x(k)

k=0

Differentiating this last equation with respect to z yields

:ZTZG(Z) = —ki;ox(k)z""1 = ~z'1§0x(k)z“k = _.)%f_).

Integrating both sides of this last equation with respect to z from z to  gives
f%G(z)dz = G() ~ G(z) = —f%{”dzl
or
G(z) = fm—)f—g—‘)dzl + G(w)
Noting that G(=) is given by )
G(=) = hm G(z) = g(0) = hm (k)

we have

Z["—(Ié‘l] fX(Zl)d + im B2 (:)

k=0

Partial Differentiation Theorem. Consider a function x(¢,a) or x(kT,a) that
is z-transformable. Here a is a constant or an independent variable. Define the z
transform of x(¢,a) or x(kT,a) as X(z,a). Thus,

Zlx(t,e)] = Z[x(kT,a)] = X(z,a)
The z transform of the partial derivative of x(t,a) or x(kT, @) with respect to a can

be given by
{ X, a)] [ﬂx(kT a)} - L%X(z,a) (B-5)

This equation is called the partial differentiation theorem.
To prove this theorem, note that

7{ X, a):i = 7[ X(kT, a)] iix(kr,a)z-k
= ;—z x(kT,a)z % = —X(z a)
Example B-2

Consider

x(t,a) = fFe
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Obtain the z transform of this function x(z,2) by use of the partia] differentiation
theorem.

Notice that
3
oy ary - 42 ,—at
aa( e ) = e
and

Te—aTzfl

Tlte™ ] = e
Z[te™] 1= e—arz-«l)z

Then we have

Zlx(t,a)] = T[Pe ] = Z[b% (—re‘"')]

_ 98 >_ Te Tzt
dai (1—e™ Tz

_ Tze—ar(l + e~u72—1)z—1
1 - e—aTZ-l)S

Real Convolution Theorem. Consider the functions x,(f) and Xo(t), where
x{t) = 0, fort <0
(1) =0, fort <0

Assume that x,(r) and x,(r) are z-transformable and their z transforms are X, (z) and
Xoz), respectively. Then

X(2)Xoz) = Z[%xl(hT)xg(kT - hT)} (B-6) k

This equation is called the real convolution theorem.
To prove this theorem, notice that

-
L

Tk © K

Zoxl(hT)xz(kT - hT)} =2 2 x(hT)x(kT — hT)z*
. b= k=t h=0
=2 i xi(hT)xy(kT — hT)z 7+

k=0 h=0

where we used the condition that x,(kT — hT) = 0 for & > k. Now detine -

m =k — h. Then

Z]: E;nxl(hT)xz(kT - hT)} - éx,(hr)z‘h > x(mT)z™

m=~h

Since x,(mT) = 0 for m < 0, this last equation becomes

k @ »
Z [%x](h Tyxo kT — hT)} = 2 x0(hT)z™ 2 xo(mT)z™" = X\(2)XA2)
= h=0 m=0
Complex Convolution Theorem. The following, known as the complex convo-

lutiqn theorem, is useful in obtaining the z transform of the product of two sequences
xi(k) and xo(k).
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Suppose both x(k) and x(k) are zero for k < 0. Assume that
X](Z) =Z[x1(k)], IZI > R]
Xz(z) = Z[JCg(k)], |Zi > Rv_;

where R, and R, are the radii of absolute convergence for x,(k) and x,(k), respec-
tively. Then the z transform of the product of x4(k) and x,(k) can be given by

(O] = 54 XX D) bl (8-7)

where R, < || < |z[/R.
To prove this theorem, let us take the z transform of x,(k )xs(k):

Zakm(k)] = 2 xuk)xk)z™ (B-8)
k=0
The series on the right-hand side of Equation (B-8) converges for |z| > R, where

R is the radius of absolute convergence for x,{k)x.(k). From Equation (2-23), we
have

1 3§ k-1
b3 = o d
x(k) P CXz(z)z =
— __l___ k-1
= 304 X0 B-9)
Substituting Equation (B-9) into Equation (B—8), we obtain
1 & . .
k)] = 3= 59 KO0 xid)z L

Noting that Equation (B~8) converges uniformly for the region [z| > R, we may
interchange the order of summation and integration. Then

2Rz = 59 XD TatkIE 2 e
Since
S u@ ) = X
we have
(o] = 54 X D) de (B-10)

where C is a contour (a circle with its center at the origin), which lies in the region
given by |{| > Ry and |{™'z| > Ry, or

R, <] <!}§—| (B-11)

1
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Parseval’s Theorem.  Suppose the z transforms of sequences x(k) and x,(k)
are such that

Xiz) = Zla(k)],  |z| > Ry (where Ry < 1)
Xz(z) = Z[)Cg(k)], [Z[ > Rz
and inequality (B--11) is satisfied for |z| = 1, or

1
Ry < (] < R
Then, by substituting |z| = 1 into Equation (8-10), we obtain the following equation:
: S i
Zley(kyxa(k )= = > xik)xa(k) = 2“% §_IX2(§)X1(Q’1) as
k=0 e

If we set xi(k) = xy(k) = x(k) in this last equation, we get

220 = 329 U XQOXE

- 2%; 2 X)X () dz (B-12)

Equation (B-12) is Parseval’s theorem. This theorem is useful for obtaining the
summation of x*(k).

£-3 INVERSE z TRANSFORMATION AND INVERSION
INTEGRAL METHOD

If X(z) is expanded into a power series in z™!

X(z) = 2 x(kT)z™ = x(0) + x(T)z™ + x(2T)z7? + -+ + x(kT)z™* + - -

k=0

i

or

X(z) = ZOX(k)z‘k =x(0) +x(Mz' + x(2)z72 + - + x()z ™  + -

=

then the values of x(kT) or x(k) give the inverse z transform. If X (z) is given in the

form of a rational function, the expansion into an infinite power series in increasing
powers of 2~ ! can be accomplished by simply dividing the numerator by the denom-
inator. If the resulting series is convergent, the coefficients of the z-* term in the

series are the values x(kT) of the time sequence. However, it is usually difficult t0

get the closed-form expressions.

T k‘xe following formulas are sometimes useful in recognizing the closed-form
expressions for finite or infinite series in z 7%

(I—azP=1-3az"" + 32272 - g°2"?

(I~az) =1—-daz7' +66%°272~4a%27% 4 g4
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(l-—az Y '=1+az+az%+a 27 +a' 2z +a°27% + - |z] > 1
(A=—azy?=1+2az"+3a’z%+ 42’z + Sa*z2* + 6a°z7° + -+, |z| > 1

(1—az )P =1+43az"+6a’z? + 102’27 + 15a*z™*

+21a°z7 + 28abz 7 + - lz] > 1
(1—azy*=1+4daz™' + 10a°z72 + 20a°27% + 35a*z™*
+56a°z7% 4 84aSz + 12007277 + - - lz] > 1

For a given z transform X(z), if a closed-form expression for x(k) is desired,
we may use the partial-fraction-expansion method or the inversion integral method
discussed in what follows.

Inversion Integral Method. The inversion integral method, based on the
inversion integral, is the most general method for obtaining the inverse z transform.
It is based on complex variable theory. (For a rigorous and complete derivation of
the inversion integral, refer to a book on complex variable theory.) In presenting
the inversion integral formula for the z transform, we need to review the residue
theorem and its associated background material.

Review of Background Material in Deriving the Inversion Integral Formula.
Suppose z, is an isolated singular point (pole) of F(z). It can be seen that a positive
number r; exists such that the function F{z) is analytic at every point z for which
0 < |z — zd = ri. Let us denote the circle with center at z = z; and radius r, as [},
Define I'; as any circle with center at z = z, and radius lz — zg| = roforwhichr, < ry.
Circles I'y and I are shown in Figure B-1. Then the Laurent series expansion of F(z)
about pole z = z; may be given by

F(z) = %an(z -z + 2@“}_)“";5;

where coefficients a, and b, are given by

1 f# F(z)
= e el = o
y, Sy (7 = zo)"“dz’ n=20,1,2,...

S SR i€
20 ), (z = z) !

dz, n=123,...

n

Figure B-I Analytic region for
function F(z).
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Jw
Y ¢  Figure B~2 Analytic region for
function F(z) as bonded by closed
curve I,
Notice that the coefficient b, is given by
by = i_gg Fz)dz (B-13) :
2y,

It can be proved that the value of the integral of Equation (B-13) is unchanged if
I'yis replaced by any closed curve Iaround z, such that Fi (z) is analytic on and inside
I'except at pole z = z, (see Figure B-2). The closed curve I may extend outside the
circle I'y. Then, by referring to the Cauchy-Goursat theorem, we have

jéF(z)dz - 56 F(z)dz =0
r r
Thus, Equation (B~13) can be written as
- L%
by = e rF(z)dz

The coefficient b, is called the residue of F(z) at the pole z,.
Next, let us assume that the closed curve I' enclosed m isolated pales

21522, .-, Zyy, 88 shown in Figure B~3. Notice that the function Fi (z) is analytic in
fw f
r
UP’Q

21 ol's

Z3
Fm
0 Zm a

Ty
1—. ®
e 2 24

5, 72

Figure B-3 Closed curve I enclosing
m isolated poles z,, 75, .. ., Zm-
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the shaded region. According to the Cauchy-Goursat theorem, the integral of F(z)
over the shaded region is zero. The integral over the total shaded region is

%F(z)dz - ﬁ; F(z)dz — jg F(z)dz —--- — fﬁ F(z)dz =0
r I Iy T
where I, I3, .. ., I, are closed curves around the poles z, z3, . . . , 2, respectively.
Hence,
§ Fz)dz = § Fz)dz +$ Feydz + o +§ F)dz
I Iy Iy T
=2mj(by, + by, + -+ + by)
=2mj(Ki + Ky + -+ + K) (B-14)
where Ky = by, Ky = by,,. .., K,, = by are residues of F(z) at poles zy, 25, . . . , Zm,
respectively.

Equation (B~14) is known as the residue theorem. It states that if a function
F(z) is analytic within and on a closed curve I', except at a finite number of poles
21,22, . .., 2 inside T, then the integral of F(z) taken counterclockwise around I
is equal to 27 times the sum of the residues at poles 2,25, ..., 2.

Inversion Integral for the z Transform.  We shall now use the Cauchy—Goursat
theorem and the residue theorem to derive the inversion integral for the z transform.
From the definition of the z transform, we have

E3

X(z) = 2 x(kT)z™ = x(0) + x(T)z™ + 22Tz + + o+ + x(kT)z™* + - -

k=0
By multiplying both sides of this last equation by z*™!, we obtain
X(2)2F" = x(0)z°7 + (1) + x 2Tz + - A x(kT)z7t + - - (B-15)
Notice that Equation (B~15) is the Laurent series expansion of X(z)z*™! around
point z = 0.
Consider a circle C with its center at the origin of the z plane such that all poles

of X(z)z*"* are inside it. Noting that the coefficient x(kT) associated with the term
27" in Equation (B~15) is the residue, we obtain

x(kT) = 2—1_—/ 356 X(z)z dz (B-16)

Equation (B-16) is the inversion integral for the z transform, The evaluation of the
inversion integral can be done as presented next.

Let us define the poles of X(z)z"‘1 as 2y, 22, . - - Zm. Since the closed curve C
encloses all poles z1,z,,. . ., z,,, then referring to Equation (B-14) we have

%X(z)zk”ldz = % X(z)z¥'dz + 9& X)X dz + -+ jg X(2)Frdz
c c, Cs Cm

= 2mj(K, + Ky + -+ + K,,) (B-17)
where K;, Ks, . . . , K, denote the residues of X(z)z*"* at poles z;, z,, . . . , z,,, TESpPEC-
tively, and G, C,, ..., C, are small closed curves around the isolated poles

21,225 -+« » Zm, TESpECtively.
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Now we combine Equations (B-16) and (B~17) to obtain a very useful result.
Since X(z)z*"" has m poles, that is, z,, z,, . . . s Zms

k) =x(kTY =K, + Ky + -+ + K,
= 2 [residue of X(z)z*tatpole z = z;0f X(2)z¢7) (B-18)
i=1
In evaluating residues, note that if the denominator of X (2} contains a simple
pole z = z; then the corresponding residue K is
K =lim[(z - 2)X(z)z*"]
If X(2)z*! contains a multiple pole z; of order g, then the residue K is given by

g—1

1 4 .
K =G =ilimomlz - 2)0 X))

Note that in this book we treat only one-sided z transforms. This implies that -

x(k}) = 0 for k < 0. Hence, we restrict the values of k in Equation (B-17) to the
nonnegative integer values.
I X(z) has a zero of order r at the origin, then X(z)z*'in Equations (B~17)

will involve a zero of oxder  + & — 1 at the origin. r = 1 thenr + k - 1 = 0for

k = 0, and there isno pole at z = 0 in ¥ (z)2*7'. However, if r < 0, then there will
be a pole at z = 0 for one or more nonnegative values of k. In such a case, separate
inversion of Equation (B-1 7) is necessary for each of such values of k.

It should be noted that the inversion integral method, when evaluated by

residues, is a very simple technique for obtaining the inverse z transform, provided

that X(z)z*™" has no poles at the origin, z = 0. If, however, X(z)z*! has a simple
pole or a multiple pole at z = 0, then calculations may become cumbersome and the

partial-fraction-expansion method may prove to be simpler to apply.

Comments on Calculating Residues. Tn obtaining the residues of a function

X(z), note that, regardless of the way we calculate the residues, the final result is°

the same. Therefore, we may use any method that is convenient for a given situation.
As an example, consider the following function X (z):

2
22+52'3i-6+ 4z - 5

(z+ 1) (z+1y  z+1

X(z) =

We shall demonstrate three methods for calculating the residue of this function X(z)-

Method 1. The residue of this function may be obtained as the sum of the -

residues of the respective terms:
[Residue K of X(z) at pole z = ~1]
I 222+ 52+ 6
G-y im df[(z Ty ]
-
1 d 4z 5
F o lim | (z + 1—e |+ | - ) ——
e-prim dz[(z Ve 1)2] - Jim, [(Z D)
=4 lim (4) + tim (4) + lim(5)=2+4+5
=11
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Method 2. 1f the three terms of ' (2) are combined into one as shown next,

222+ 57 + 6 4z 5 112 + 197 + 11
X(z)y="2 122716 4z =2 T Iz
@ == Terr T G+ Iy

then the residue can be calculated as follows:

[Residue K of X(z) at pole z = —1]

_ 1 2112° + 197 + 11
G- im dzz[(z 1 z 1)
=} lim (22)
=11
Method 3. If X(z) is expanded into usual partial fractions as shown next,
1122+ 192 + 11 3 3 11
Xy=—7ptr oo 2 3 —
@ z+ 17 z+1¥  GFip 741

then the residue of X (z) is the coefficient of the term 1/(z + 1). Thus,
[Residue K of X(z) at pole z = ~1] = 11

B-4 MODIFIED z TRANSEGRIM METHOD

The modified z transform method js useful not only in obtaining the response
between two consecutive sampling instants, but also in obtaining the z transform of
the process with pure delay or transportation lag. In addition, the modified z
transform method is applicable to most sampling schemes.

Consider the system shown in Figure B-4(a). In this system a fictitious delay
of (1 — m)T seconds, where 0 = m =< 1and 7Tis the sampling period, is inserted at
the output of the system. By varying m between 0 and 1, the output y(r) at
t=kT — (1 -~ m)T (where k = 1,2,3,...) may be obtained. Noting that G*(s) is
given by

G*(s) = £[g(1)8:(1)]
we define the modified pulse transfer function G (z,m) by
ZM[G(S)] = G(Z, m) = Gv (S; m)‘s—;(l/T) Inz
= Egl = (1 = m)T)8r(leeury s (B-19)

where the notation 7, signifies the modified z transform.,
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Xls) / X*(s) Delay Yis)

G(s)

& Xzl -mr A
. ;

Glz, m) 5 Yiz.m)

(a)

Xz} Y(z, m}
————e G2, )

(b)

Figure B—4 (a) System with a fictitious delay time of (1 — m)T sec; (b) modified
pulse-transfer-function system with input X(2) and output ¥(z,m).

Noting that

gl — (1 = myDy&r(0)] = Llg(t — T + mT)6,(1)]

=e P Rg(t + mT)6.(t)]
we have

G*(s,m) = e " Lg(t + mT)8(1)] (B-20)

Since Elg(t + mT)8(1)] is the Laplace transform of the product of two time func-
tions, by referring 1o Equation (3-19) it can be obtained as follows:

gt + mT)s:(1)] = 2l COIT e (B-21)
The ifltggration on the right-hand side of Equation (B~21) can be carried out in a
way similar to that discussed in Section 3~3; that is, the convolution integral can be
integrated in either the left half-plane or the right half-plane.

Let us consider the contour integration along the infinite semicircle in the left
half-plane. Then

Ll + mTYsHn)] = 2 [residue of —G;—iszs—z at pole of G(s)] (B-22)

e Ts

Hence, from Equations (B-19), (B-20), and (B-22), we obtain the modified z -

transform of G(s) as follows:

mTs
Glz,m) = z7'2, [residue of —GLS—)E——{ ]

P at pole of G(s)

Note that the modified z transform G (z,m) and the z transform G(z) are related
as follows:

G(z) = lin%zG(z,m) (B-24)

(B-23)
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Referring to Figure B—4(b), the output Y{(z,m) is obtained as follows:
Y(z,m) = G(z,m)X(z) (B-25)

As in the case of the z transform, the modified z transform Y(z, m) can be expanded
into an infinite series in z7!, as follows:

Y(z,m) = yo(m)z™ + yi(m)z? + yo(m)z 7> + - - (B-26)
By multiplying both sides of Equation {B~26) by z, we have
z¥(z,m) = yo(m) + yi(m)z™ + y(m)z ™ + - - (B-27)

where yi(m) represents the value of y(f) between ¢t = kT and 1= (k + )T
(k=0,1,2,...),0or

yilm) = y((k + m)T) (B-28)
Note that if y(k) is continuous then

lim y,-(m) = linzyk(m) (B-29)

m-—1 >

The left-hand side of Equation (B-29) gives the values y(0~), y(T—),y(2T-),.. .,
and the right-hand side gives the values y(0-+), y(T+),y(2T+),. ... If the output
y(kT) is continuous, then y(kT—) = y(kT+).

Example B-3
Obtain the modified z transform of G(s), where

Gls) = sta
Referring to Equation (B-23), we obtain the modified z transform of G(s) as
follows:

mls

z
———=atpoles = —g
staz-—er P }

1 estz
BN
-z {31_131 [(s Ty ez eT’jH

4 e—maTz e—-—mETZ—l
=z — = —F—
z—e T 1= Tz7!

Gz, m) = z"l[residue of

Example B—4

Consider the systems shown in Figures B-5(a) and (b). Obtain the output Y(z,m) of
each system.
For the system shown in Figure B-5(a), we have

Y(z,m) = Z,[Y(5)] = Ga(z,m)G:(2)X(2)
Note that
Y(z) = Z[Y(5)] = Go2)Gi(2)X(2)
For the system shown in Figure B-5(b), we have
Y(z,m) = Z.[Y(s)] = Gy Galz, m)X(z)
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X Yis)
X AT Xt G, (s) A Gyls) d

5, X(2) 5 -
/~—-————;a»

8y Yiz, m)

(a)

X* ¥
x A (s} o s 6t 1)

5, Xlz) !

—_—
&y Yiz, m)

(b)

Figure B~5 (a) System with a sampler between Gi(s) and Ga(s); (b) system with
no sampler between Gi{s) and Go(s).

where
G1Goz,m) = Z . [G{s)GAs)]
Note that
Y(z) = G, Go2)X(z)
Example B-5

Consider the system shown in Figure B-6. Obtain the modified z transform of C(s).
The output C(z) is given by

. Gl)
€@ =TGR *E)
The modified z transform of C(z) is given by
G(z,m)
=22 B-30
C(z,m) 1T GH(z)R(z) ( )

TN WL o cls)
Sy

H{s}

Figure B-¢ Closed-loop control system.
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Example B-6

Consider the system shown in Figure B~7. The sampling period T'is 1 sec. or T = 1.
Suppose that the system is subjected to a unit-step input. Obtain c,(m) form = 0.5 and
k=0,1,2,...,9. Also, vezify that Equation (B-24) holds true. The modified z trans-
form of G(s) is obtained from Equation (B——23) as follows:

G(z,m)=z7'2 [re&due of ——— Gl ) 2 at pole of G(s)J

s

=271 - Z—!){[residue of —— - at double pole s = 0]

1 4
fc+l)z—¢
1 e
s*(s +])z

- - d 1 ez
-z ){(z ELudA[ 2(s+1)z~e]

. ez
+slffl1 [(S + 1) sz(s +1)z — EIH

+ [residue of £z - at simple pole s = —IH

2 2 —m
o gy ez —mz — 2" + 22 e "z
Z -z )[ (z - 1)? 7o e“}
m—=1z7+(2~-m)z emz'(1—2z7Y
= ] + — 1.3
1-z 1—elz

(m—1+e™z™ + (23679 - 1.3679m — 2e ™)z 72
+[-0.36792 — m) + e™"]z?
(1 = z71(1 — 0.3679z7Y)
Referring to Equation (B-30) and noting that R(z) = 1/(1 - z7"), we have
G(z,m) 1
1+Giz)1 -z
(m—1+e™z™" + (23679 — 1.3679m — 2e~™)z >
+ (—0.7358 + 0.3679m + ¢z 73
1— 227"+ 1.6321z7% - (.6321z73

Clz,m) =

Hence, for m = 0.5 we have

0. ]065z~1 + 0.4709z 7% + 0.054682 72
27+ 1.632127% — 0.63212 73

C(z,0.5) = (B-31)

Al K yd 1= 1 cts)

A{z) . g $ sts +1) o
\ v 4 e

Gls) 5

Clz, m) = g, le,(ml]

Figure B~7 Closed-loop control system.
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By referring to Equation (B-27), Equation (B-31) can be expanded into an infinite
series in z7" as follows:

C(z2,0.5) = c(0.5)z7" + ¢1(0.5)z7% + c(0.5)z7 + - -+
or

2C(2,0.5) = ¢(0.5) + ¢;(0.5)27 + (0.5)z™% + - -

where cx(0.5) = c((k + 0.5)T) = c¢(k + 0.5)andk = 0,1,2,.... The values of ¢.(0.5)
can easily be obtained with a digital computer. The computer solution for k = 0,1,
2,...,9is as follows:

¢o(0.5) = ¢(0.5) = 0.1065
¢:1(0.5) = ¢(1.5) = 0.6839
¢(0.5) = ¢(2.5) = 1.2487
¢(0.5) = ¢(3.5) = 1.4485
s(0.5) = c(4.5) = 1.2913
¢s(0.5) = ¢(5.5) = 1.0078
cs(0.5) = ¢(6.5) = 0.8236
(0.5) = ¢(7.5) = 0.8187
cs(0.5) = ¢(8.5) = 0.9302
¢o(0.5) = ¢(9.5) = 1.0447

These values give the response at the midpoints between pairs of consecutive sam-

pling points, Note that by varying the value of m between 0 and 1 it is possible to find s

the response at any point between two consecutive sampling points, such as ¢(1.2)
and ¢(2.8).
Finally, note that

G(z) = 2[G(s)] = z[l - R E 1)]

(T=1+e Mz +(1~e 7~ Te ")z?
A-zH1-e"z7h
- 0.3679z7' + 0.2642z7
(=29 - 0.36792 7

and

0.3679z7" + 0.2642272
(1 =2z7%1 - 0.367927")

lim 2G(z,m) =
m—0
Hence,
G(z) = lim zG(z,m)
m—0
Clearly, Equation (B-24) holds true.

Summary.  The main purpose of this section has been to present the mca?if{ed
z transform method for finding the response for any time between two consecutive
sampling instants. It is noted that the modified z transform method can be used not
only for such a purpose, but also for dealing with multirate sampling schemes.
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EXAMPLE PROBLEMS AND SOLUTIONS

Problem B-1
Obtain the z transform of 1/k!
Solution
1 1
| = —k
< [k!J ,§,er
1 i
- -1 -2 —3 — 4 .
=1+z +2'z +3!z +4!z +
= exp(z7")
Problem B-2
Obtain

- (1
=1 \K
(This series looks like the z transform of 17k, but the & sequence begins here with 1

instead of 0.)

Solution Since

d 1
Ez"‘z1+z"+z"2+-~-=1_z_1, lz| > 1
k=0

by multiplying both sides of this last equation by z7%, we have

- -2
S ekez 2

Z z = 1
=0

Integrating this last equation with respect to z, we have

= -2
k=2 4
jguz dz fl“z,ldz

or

k1

.

lga k-1
where the constant in Equation (B-32) is zero. [To verify this, substitute « for z in both
sides of Equation (B-32).] Equation (B~32) can thus be rewritten as follows:

= In(1 ~ z7') + constant (B-32)

o -k .
2 =n(l -z, [z >1

k=1 -k
or
SYEA -1
g(E)z =-In(l-2zY, lz] > 1
Problem B-3

The first backward difference between x(k) and x(k — 1) is defined by

Pa(k) = x(k) = x(k = 1)
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The second backward difference is defined by
Vix(k) = V[Vx(k)] = V[x(k) — x(k — 3]
Ve(k) — Vx(k ~ 1)
and the third backward difference is defined by
Vx(k) = Vx(k) — Vx(k - 1)

Similarly, the mth backward difference is given by

Vix(ky = V"l x(k) ~ VT x(k - 1)
Obtain the z transforms of Vx(k), Vx(k), V*x(k), and V™ x(k).
Solution The z transform of the first backward difference is obtained as follows:

Z[Vx(R)] = Z[x(k)] ~ Zr(k ~ 1)

=X(z) — 277 X{(z)

=(1-2YX() (B-33)

Since
V2x(k) = [x(k) ~ x(k = 1] = [x(k — 1) = x(k ~ 2)]
= x(k) — 2k ~ 1) + x(k — 2)
the z transform of V2x(k) is
ZIVx(k)] = Z[e(k)] - 2 Z[e(k — 1] + 2 [x(k — 2)]
= X(z) - 227 X(z) + 272 X(2)

= (1 - z7YX(z) (B-34).-..

In this way we obtain

ZIVx()] = (1 - 27 X(2)

Notice that the operation of taking the backward difference corresponds to multiplying k

X(z} by (1 ~ z7"). Thus, for the mth backward difference,
Vrx(k) = T x(k) — VP x(k ~ 1)

we have

ZIVx(k)] = (1~ 27" X(2) (B35 fl :

Problem B—4
The first forward difference between x(k + 1) and x(k) is defined by
Ax(k) = x(k + 1) — x(k)
The second forward difference is defined by '
A x(k) = a[Ax(K)] = Alx(k + 1) — x(k)]
= Ax(k + 1) — Ax(k)
The third forward difference is defined by
A x(k) = Ax(k + 1) — 4%x(k)
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and the mth forward difference is given by
A" x(k) = A" x(k + 1) — 4™ x(k)
Obtain the z transforms of 4x(k), A*x(k), 4’x(k), and 4™ x(k).
Solution The z transform of the first forward difference is given by
Z[Ax(k)] = Zx(k + D] ~ T [x(k)]
2X(z) — zx(0) ~ X(2)
(z ~ DX(z) ~ zx(0) (B-36)

I

Since
' Ax(k) = [x(k +2) — x(k + 1] ~ [x(k + 1) — x(k)]
=x(k +2) = 2x(k + 1) + x(k)
the z transform of 4>x(k) is
Z[A%x(K)] = Zx(k +2) — 2x(k + 1) + x(k)]
=22 X(z) = 22x(0) ~ zx(1) — 2[zX(z) — zx(0)] + X(2)
=(z = 1Y X(2) — z(z ~ Dx(0) — z Ax(0) (B-37)
where 4x(0) = x(1) — x(0). The z transform of 4°x(k) becomes
Z[&x(0)] =Z[x(k + 3) = 3x(k + 2) + 3x(k + 1) — x(k)]
= (z =~ D’X(2) ~ 2(z — 1)’ x(0) — z(z — 1) 4x(0) — 2 4°x(0)

where 4x(0) = x(1) — x(0) and A%x(0) = x(2) ~ 2x(1) + x(0). Similarly, for the mth
forward difference

Amx(k) = 4" x(k + 1) - A7 x(k)

we have
m—1

Z[Amx()] = (2 - " X(z) ~ 2 3 (z = )" 4x(0) (B-38)

Problem B-5
Solve the following difference equation:
(k+Dxtk+1)~x(k)=0

where x(k) = 0 for k < 0 and x(0) = 1. Notice that this difference equation is of the
time-varying kind. The solution of this type of ditference equation may be obtained by
use of the z transform. (It should be cautioned that, in general, the z transform approach
to the solution of time-varying difference equations may not be successful.)

Solutier First, note that
Zkx ()] =~z x(2)
ZlRe(0)] = -2 5

Since the original difference equation can be written as

kx(k)y —x(k — 1) =10
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the z transform of this last equation can be obtained as follows: Then the given difference equation can be written as

_Z%X(z) -2 X(z) = 0 vk + 1) - yk) =k +1

Taking the z transform of this last equation, we have

z7 ! 1
R em——t- + R
-z t-z

or
,d 7¥(z) — zy(0) - Y(2) =
z E—X(z) +X(z)=0
i Since y{(0) = 0, we have
22 2!
T-z% a-27

Referring to Problem A-2-8, we have

from which we have
Y(z) =

dX(z) _ dz

X(z) £

or 2—2

|| -de
Hence, the inverse z transform of Y{z} can be given by
yk) =208 = k) + k = 3(K* + k)
Then, x(k) for k = 1,2,3,... is determined from

In X(z) —-—%—F InK

where K is a constant. Then X(z) can be found from

X(z)=Kexpz™

Since exp z~' may be expanded into the series kx(ky = y(k) = L(k* + k)
expzl=1+z"! +%z‘2+§1—'2-3 + e, lz] >0 as follows:
) ’ x(k)y =3k +1), k=12,3,...
we have
Problem B-7
X(z) = K(l +z7h+ irz“2 + %2"3 + .. ) Consider the system shown in Figure B-8. The sampling period is 2 sec, or T = 2. The
21 31 input x(r) is a Kronecker delta function &(¢); that is,
from which we find the inverse 2 transform of X(z) to be 1 k=20
(k) =14
1 6, k=#0
k) =Kg. k=012,
) : Obtain the response every 0.5 sec by using the modified z transform method.
Since x(0) is given as 1, we have Solation Since the input x(¢) is a Kronecker delta function, we have
x0) =K =1 Xz =1

Thus, we have determined the unknown constant X Hence, the solution to the given

. o The modified pulse transfer function G(z,m) is obtained as follows. Referring to
difference equation is

Equation (B-23),

mTs

G(z,m) = z““[rcsidue of 1z at pole s = —0.6931}

MO k0L s 406931z —e"

1
k!’

Problem B-6 Noting that T = 2, we obtain

- . 1 ez
Glz,m) =z {wl.‘?.égal[(s T OB e s
™ (6*1,3362)7772 4~m

— 713802 2 (.25

() / 1 yit)

5, Xia2) 5 +0.6931
Gis) T

8, Yiz,m)  Figare B-8 Impulse-sampled system.

Solve the following difference equation:
k+Dxtk + 1) —kx(k) =k + 1
where x(k) = 0 for k < (.

= Z

Solution First note that by substituting & = 0 into the given difference equation,
we have

x(1) =1

Now define

y(k) = kx(k)
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Hence, the output Y(z,m) can be obtained as follows:

4™

Similarly, the values of y.(m) for m = 0, 0.5, and 0.75 can be calculated. The result
is shown in Figure B~9 as a plot of y:(m) versus k.

Y(z,m) = G(z,m)X(z) = T3 Problem B—8
Referring to Equation (B-27), we have IC:)_btainBC(lzo,m), the modified z transform of the output, of the system shown in
igure B-10.

2Y¥(z,m) = yo(m) + yi(m)z"" + yam)z ™ 4 .-

where ye(m) = y((k + m)T) = y(2k + 2m). In this problem z¥{(z,m) can be ex-
panded into an infinite series in z 7' as follows:

Al K s A - ms A ot cls)
& 5y

Rlz)
4-m s
- Clz, m)
zm) = 7555 8,
-
S 4T 4T T p g g gAY
Hence,
yo{m) = 477 Figure B~10 Closed-loop discrete-time control system.
— gl
nlm) =4 Solution From Figure B-10 we have
= A2
yom) =4 E(s) = R(s) — C(s)

yalm) = 47 M(s) = Gi(s)E*(s)

= *
To obtain the system output every 0.5 sec, we set m = 0, 0.25, 0.50, and 0.75, For C) = GalsIM* (5)

m = .25, we obtain Hence,

»o(0.25) = y(0.5) = 4% = 0.7071 M*(s) = GI($)E*(5)

y(0.25) = y(2.5) = 47" = 0.1768 or

y2(0.25) = y(4.5) = 472 = (04419 M(z) = Gi(z)E(z)

¥3(0.25) = y(6.5) = 4% = 0.01105 Also,

‘ E*(s) = R*(s) — C*(s) = R*(s) — G¥(s)M*(s)
or
vy (m) E(z) = R(z) — Ga(z)}M(2)
velm) = yllk + mIT) = 2k +2m)
Therefore,
108 & m=0 M(z) = Gu(z)[R(z) — Ga2)M(2)]
& m=025 from which we obtain
0.8 & m =050
Gi(2)R(z)
-] o m=0.7% M = et ML
i &) = 1T 6.06:0)
& Since C(z,m) can be given by Ga(z, m)M(z), we have
0.4 Gi(2)Galz,m)
<) = = NESIRES T
. C(z,m) = Ga(z,m)M(z) T Gl(z)G:(z)R(z)
0.2 - &
2 & 4 [ 8 t (sec)
o
e ol L P Be o, B
0 1 2 3 4 k

Figure B~8  Plot of y.(m) versus k for the system considered in Problem B-7.




’ole Placement Design
with Vecftor Control

C-1 INTRODUCTION

In Chapter 6 we presented the pole placement technique and state observer design
when the control signal u(k) was a scalar. If the control signal is a vector quantity
(r-vector), however, we can expect to improve the system’s response characteristics,
because we have more freedom to choose control signals u,(k), uy(k), . . ., u,(k). For

example, in the case of the nth-order system with a scalar control, the deadbeat”

response can be achieved in at most » sampling periods. In the case of the vector
control u(k), the deadbeat response can be achieved in less than sampling periods.

It is noted that with the vector control it is possible to choose freely more than
n parameters; that is, in addition to being able to place n closed-loop poles propetly,
we have the freedom to satisfy other requirements, if any, of the closed-loop system.

In the case of the vector control, however, the determination of the state
feedback gain matrix K becomes more complex, as we shall see in this appendix.

C-2 PRELIMINARY DISCUSSIONS

Consider the system

x(k + 1) = Gx(k) + Hu(k) (C-1)
where
x(k) = state vector (n-vector) at kth sampling instant
u(k) = control vector (r-vector) at kth sampling instant
G = n X n matrix
H = n X r matrix
704
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We assume that the magnitudes of the r components of u(k) are unconstrained. As
in the case of the system with a scalar control signal, it can be proved that a necessary
and sufficient condition for arbitrary pole placement for the system defined by
Equation (C~1) is that the system be completely state controllable.

Let us assume that the system defined by Equation (C-1) is completely
state controllable. In the state feedback control scheme, the control vector u(k) is
chosen as

u(k) = —Kx(k) (C-2)

where K is the state feedback gain matrix. It is an r X 7 matrix. With state feedback
the system becomes a closed-loop system and its state equation becomes

x(k + 1) = (G — HK)x(k)
where we choose matrix K so that the eigenvalues of G — HK are the desired
closed-loop poles py, s, . . ., Mon-
Transforming State Equatior Into Controllable Canonical Form. Consider the
system defined by
x(k + 1) = Gx(k) + Hyu(k) (C-3)

where
x(k) = state vector (n-vector)

u(k) = control signal (scalar)
G = n X n matrix
H; = n X 1 matrix

Assume that the system is completely state controllable, Then the controllability
matrix has its inverse. Define

t‘l

where the ;s are the row vectors. Then construct a transformation matrix T, as
follows:

-1

f,
T,=| B¢ (C-4)
fn Grrl
where the £, G* are row vectors (k =0,1,2,...,n — 1). Then it can be shown that
£, &, 17

in :G G fn :G

e |eem

T;l GT1 =




708 Pole Placement Design with Vector Control App. C
0 1 0 0]
0 0] 1 e 0
=] : : : : (C-5)
0 0 0 -1
~dp Oy ay-z —t
and
0
0
TU'H;, =} (C-6)
0
1
[See Problem C-1 for the derivation of Equations {(C+5) and (C—6).]
Now if we define
x(k) = T, %(k)
then Equation (C-3) becomes
¥k + 1) = TTGT (k) + T7 Hyu(k)
or
Fi(k + 1) 0 1 0 e 0 %(k) 0
: = : : : : + 1 uk) (C-T)
Eoa(k + 1) 0 0 0 e 1| Bpea(k) 0
xAn(k + 1) 4y —ay-y Tldpp . Ta )Erl(k) 1

We have thus shown that the state equation, Equation (C-3), can be transformed

into the controllable canonical form by use of the transformation matrix T, defined
by Equation (C-4).

Design Steps.  1n what follows we shall discuss the procedure for determining
a state feedback gain matrix K such that the eigenvalues of G — HK are the desired
- ovalues py, po, ..., ie
The state equation to be considered in the following was given by Equa-
tion (C-1):
x(k + 1) = Gx(k) + Hu(k)

We assume that the rank of the n X r matrix H is r. This last equation is equiv-
alent to

where

hli
h2i

hni
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The procedure for designing the state feedback gain matrix X involves the following
two steps:

Step 1. Extend the transformation process [the process that transforms the
state equation given by Equation (C-3) into the state equation in the controllable
canonical form given by Equation (C-7)] to the case where matrix H is an n X r
matrix. That is, we transform the given state equation into a controllable canonical
form by use of a transformation matrix T, the exact form of which will be given later.
By defining

x(k) = Ti(k)
the original state equation, Equation (C-1), can be transformed into
#(k + 1) = T GTi(k) + T Hu(k) = Gx(k) + Hu(k) (C-8)

where G = T™'GT is in a controllable canonical form and B = T-' H. (This control-
lable canomical form is slightly different from the usual form, as we shall see later.)

Step 2. By use of a state feedback gain matrix ¥, the control vector can be
given by

u(k) = —Kx(k) = ~KT%(k)
and the system state equation becomes
2k + 1) = (G — HEKT)(k)

We choose matrix K so that matrix G — BKT will have the desired eigenvalues
Mis Moy e oo s Mg

C-3 POLE PLACENMIENT DESIGN

We shall first discuss the determination of a necessary transformation matrix T and
then determine the state feedback gain matrix K.
Consider the completely state controllable system defined by

x(k + 1) = Gx(k) + Hu(k) (C-9)

where
x(k) = state vector (n-vector)

u(k) = control vector (r-vector)
G = n X n matrix
H=[H:H: --H]=n X r matrix

We assume that the rank of matrix H is ». Thus, the component vectors H,
H,,...,H, of matrix H are linearly independent of each other. Since the systexjn’ is
assumed to be completely state controllable, the rank of the n % nr controllability
matrix
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1s n. 'The controllability matrix can be written in an expanded form as follows:

Let us choose n linearly independent vectors from this # X nr matrix. Let us begin
from the left-hand side of this matrix. Since the first r vectors H,H,... H, are
linearly independent of each other, we choose these r vectors first. Then we examine
GH, if it is linearly independent of the r vectors already chosen. If it is, we have
chosen r + 1 linearly independent vectors. Next, we examine GH,, GH;, . . .,
GH,,. .. in the order shown in the expanded controllability matrix until we find
altogether n linearly independent vectors. {Since the rank of the controllability
matrix is n, there always exist n linearly independent vectors. )

Once we have chosen n linearly independent vectors, we rearrange these
vectors in the following way: :

G H - THLIGH, TG H ] (C-10)
The numbers »; are said to be Kronecker invariant and satisfy the equation
ny+npt--+n=n
We shall define the maximum of n, 7., ..., n, as Pin®
Agin = max{n, ny,...,0) (C-11)
We shall refer to this equation later in the discussion of deadbeat response. Next,
we compute F~! and define the 7; th row vector as f;, where
mEHR e o, i=1,2,...,r
Then the required transformation matrix T can be given by
s ™
T= (C-12)

where
f;
S, = £ :G
el

Notice that the transformation matrix T given by Equation (C-12) is an extension
of the transformation matrix given by Equation (C-4).

To simplify the presentation, in what follows we shall consider a simple case
wheren =4 and 5 = 2, (In this case, only n, and n, are involved.) (Extension 10
more general cases is straightforward.) Then the transformation matrix T becomes
a4 X 4 matrix. The transformation matrix T given by Equation (C-12) becomes

-1
- |5
T= [Sj
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where

f1 fZ
Sl = 5 Sz =
£Gut £,Gm!
(Note that in the case of n = 4 there are three possibilities for the combinations of
mandm:n = 1,m = 330 = 2,n, = 2;and ny = 3,5, = 1.) For example, if n, =
and 1, = 2, then matrices G and H become, respectively, as

0 1 10 0
A =TT = | T D02 Ty Teu| e o _
G=T'GT = o 3 5‘0 il ifn,=2,n,=2 (C-13)
—dy —daxp i ~Qyy Ty
and
0 0
- 1 b ifn,=2,nm=2
=Ty = |t b 17 20 _
H=TB =101 (Note: by = ,GH, = 0 in this case)  (C14)
0 1
(see Problem C-2). As another example, if n, = 3 and n, = 1, then
0 1 0 f 0
A 0 0 T 10 .
= -t = = , =1 ..
G=T"GT —ay —an —as E—am , if g =3,n, (C~15)
Ty Tan Tdp | —dy
and
0 0
2 - 0 0 if ny = 3n=1
= 1 = ? = —
H=T"H 1 by} (Note: by, = £, G*H, may or (C-16)

0 1 may not be zero)

(see Problem C-4). In what follows, we shall focus on the case where n; = 2 and
ny = 2. (Other cases can be handled similarly. For example, for the case where
n; = 3and n; = 1, see Problems C-3, C-4, and C-5.) For the case where n, = 2 and
m, = 2, matrix G = T GT can be given by Equation (C-13), and the characteristic
equation is

z -1 0 0
1- 6| = any z +ap ap an
|2 “lo 0oz -1
an axn Ay Z +do
_lz -1 ‘1 z ~1 z -1 JuIE Ay
lay z+ag lan 2+ an an apllz -1

(% + apz + an)(2” + auz + ay) — (anz + axy)(auz + 213)
=0 (C17)
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where we have used Laplace’s expansion by the minors. (See Appendix A for the
details.) From Equation (C-17) the characteristic equation |zI — G| = 0 becomes

|2E ~ @! _ },Z.Z +apz +oay : a2 + dys ‘ =0 (C-18)

Gz + ay L2+ Gz oax

The eigenvalues of & can be determined by solving this characteristic equatif)n.
Next, we shall determine the state feedback gain matrix K so that the eigep-
values of G — FIK are M1, (2, . - ., My, the desired values. Letus define a2 X 2 matrix

B such that
-1
_ ] bu

(Note that by, is a constant appearing in B matrix.) In the particular case where

m = 2and n, = 2, the value of by is equal to 0. Thus, B = I. For more general cases, =

matrix B may not be the identity matrix.
Also, define a 2 X 4 matrix A such that

— 811 612 613 614] C“lg
A‘[azl bx B b (19)

Then it will be seen that matrix K can be given by
K = BAT™!
and the control vector u(k) can be given by
u(k) = —BAT 'x(k) = —BAk(k)
Thus, the system state equation given by Equation (C~8) becomes
&k + 1) = Gi(k) - ABAX(k) = (G — ABA)R(K)

For the present case, matrix HBA becomes as follows:

[0 0 .
vpa (1 Of1 0] 6y 6p &8s 614]
HBA = 0 0{0 1} [521 8n B3 8y
01

o 0 o0 o
5] 1 812 513 514
0 0 0 0
| 521 8y 523 &4

Hence,

0 1 0 0
A AmA — | T8~ O —ap — 8y —a@i = 83 —ayu — B
G-HBA= T, 0 0 1
—0n = & —ap — 8, —03 ~ B~y — B
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Then, referring to Equation (C-18), the characteristic equation |zI ~ G + HBA|
becomes

4=

21— G+ aBa| = [T T T O0)z tay + 8 ( ‘f‘i‘j__‘si‘i)f_ifl},i_gl&_i

=22+ (ap + Bz + ay + 8y)[z* + (@ + &)z + ay + 8]
=[(au + &)z + a; + Susll{an + 8z + ay + 8]
=0 (C-20)

We desire the cigenvalues of G — HBA to be M1, M2, M3, and gy, or the desired
characteristic equation to be

= )z = pa)z ~ w)(z - P)=2tmt w2 oz + g =0 (C-21)
If we equate the coefficients of equal powers of z of the two characteristic equations,
Equations (C-20) and (C-21), we obtain the following equations:
A + Op + @y + By = oy
an + 8+ (ap + Sp)(ay + 8a) + @y + 8y — (ayy + Sulan + 85)
(an + 8u)(az + 83) + (ay, + 8u)(an + )
— (ai + S)(an + 8n) ~ (ay + 8 )@ + 815) = oy
(an; + 8)(ay + 8x) — (a; + Sulay + 8;) = o

Notice that we have eight & variables and four equations. Hence, the values of 311,
012, 813, Bus, By, B, 825, and 8,4 canmot be determined uniquely. There are many
possible sets of values 81, 61, . . ., 854 and thus matrix 4 is not unique. Any matrix
4 whose elements satisfy the foregoing four equations is acceptable,

Once matrix A is chosen, the required state feedback gain matrix K is given

il

a2

by
K = BAT™!
and the state feedback control vector is
u(k) = —BAT 'x(k)
and the state equation given by Equation (C-9) becomes
x(k + 1) = Gx(k) — HBAT 'x(k) = (G - HBAT 1)x(k)
As a matter of course, note that

IG ~ BBAT™| = [17|/6 - HBAT[T| = [T GT — 1 6B4] = |6 ~ HBAJ

For a given set of desired cigenvalues R i f}ave ge Correspond-

ing coefficients oy, a,,. .. a, in the characteristic equation ELA i T HBA| = 0.
. o . atrix i .

For the given ay, a,. .., e, it is possible to choose a M2 atis not unique

: isfy other regui ; .
(This means that we have some freedom to satisty O7¢T 1€q nemerts, if any.)
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If the deadbeat response is desired, we require g, = py = py = yy = 0. The
desired characteristic equation given by Equation (C-21) becomes

zb=10
Notice that if we choose, for example,
A= l:“au iz T3 _al4j1 (C-22)
* * Tln T0u

where the elements indicated by asterisks are arbitrary constants, then G — AB4
becomes

0 1 00
~ s |0 0 00
G — HBA = 0 0 0 1
kA% (0

where the elements indicated by the double asterisks are arbitrary constants.

0 0 00

A mmeve_ |00 00
G-BBAY = 0 o o
L0 = 0 0

0 0 0 0
‘f3_0000
G-HBAY = 0o
10 0 0 0

and

6 000

A Amani_ |0 0 00
G-BBAY =10 0 0 o
0 000

'Thus, the deadbeat response is obtained. Matrix 4 given by Equation (C-22) is not
unique because different choices of elements can yield the deadbeat response.
Hence, more than one state feedback gain matrix K exists that will yield the deadbeat
response. This is expected, since we have two control signals uy(k) and u.(k)
available, instead of just one control signal.

It is important to note that if we choose

A= [—au Tap Tdp _llu} (C~23)
T Tan TOpn Ay
then
01 00
~ S _10 000
G — HBA = 000 1
0 0 0 0
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and
(G - BBAY =0

Thus, (G — HBA)* becomes zero for k = 2,3,4,.... The deadbeat response is
achieved in two sampling periods. In fact, in general, by choosing the elements of
4 in the manner given by Equation (C-23), the deadbeat response can be achieved
in R, steps rather than n steps, where

P = max {(ny, My, ..., 1,)
Since ny + ny + - -+ + n, = n, we note that ny;, is always less than n.

Extension to the More General Case.  Thus far, we have given detailed discus-
sions for the case where n = 4 (n; = n, = 2) and r = 2. Extension of the preceding
discussions to the more general case is straightforward. For example, consider the
case where n = 6 and r = 3. For this case,

mtn+n=56

and we have several possible combinations of ny, n,, and n,.
Now consider the case where n, = 3, 1, = 2, and n; = 1. The modified 6 X 6
controllability matrix ¥ for this case is

F = [H1G7H1GZH1H2GH2H3]

Define
FE TS
FEE eny =3
Fl= _fl__
£33 3
=
£ =1

where a row of asterisks denotes a row vector. Then the transformation matrix T can
be formed as follows:

EAN
T=18
5;
where
4
e f, .
Sy =| £G |, 8 = [‘f“(’;‘}, 5 =1f
.67 :
Then the matrices & and H will have the following forms:
0 1 0 | 0 0 i 0
0 0 110 010
o | T men —animay ~ai | —a
0 0 0 i 0 1 i 0
—y TOp —dp, ~O0u s i_t‘_a_zg
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6 0 O
0 0 O
oy _ |1 bn by
H=19"1"0
01 bn
0 0 1

where by, = £,G* Hy, by = £ GH,, and by = £, GHa. These vah.les may or may not
be zero. (Notice that in matrix & the principal minors are in the controllable
canonical form.) The state feedback gain matrix K is given as follows:

K = BAT™
where
1 by bis|’
B=10 1 bxn
0 0 1
and

S S B3 Bu bis 856
A=18y 6n On Ou 8y O
8 B8n On B O Oy

Notice that

0 0 0 008
0 0 0 -1 |00

by, b

o |1 b bullo R |1 000

BB=|4 4 2 0 00
0 0 1

0]2723“ 010

0 0 1 0 0 1

The effect of postmultiplying matrix B to matrix H is to eliminate the b;; from the
product matrix HE. .

Note that if u(k) is an r-vector the general form of B matrix is
1

1 b12 blr'
0 1 - by

B=l0 0 .- b (©29
0 0 - 1

where the constants b;;’s are those that will appear in the n X r matrix H. (The
elements of HB are either 0 or 1.)

Example C-1
Consider the system

x(k + 1) = Gx(k) + Hu(k)

Sec. C-3 Pole Placement Design 715

where
x(k) = state vector (3-vector)
u(k) = control vector (2-vector)
and
0 10 01
G = 0 01 |, H=(0 0
-025 0 05 10

It is desired to determine the state feedback gain matrix K so that the response to the

initial state x(0) is deadbeat. Note that with state feedback u(k) = —Kx(k) the system
equation becomes

ik + 1) = (G ~ HK)x(k) (C-25)
We shall first examine the controllability matrix:

[H:GH!GH] = [H, H!GH, GHL G*H,  G°H,]

WO 0 1
=[loyioy i1 0 05 -025
111011051 -0.25 025 —0.125

Clearly, the rank of this controllability matrix is 3. Therefore, arbitrary pole placement
is possible. We now choose three linearly independent vectors starting from the left end.
These vectors are shown enclosed by dashed lines. (The three linearly independent
vectors chosen are H,, Hy, and GH,.) Now we rearrange these three vectors according
to Equation (C-10) and define matrix F as follows:

F= [H1 GH1 Hz]
We note that ny = 2 and n, = 1.
Rewriting matrix F, we have

00 1
F={0 1 0
_1 05 0
The inverse of matrix F becomes
0 -05 1
F7 =10 1 0
| 1 0 0

We now define the n;th row vector of F™* as f;, where n, = n, and n, = 1y + n,. Since

ny = 2 and n, = 1, the vectors f; and f; are the second and third row vectors, respec-
tively. That is,

=00 1 0
f,=[1 0 0

Next, define the transformation matrix T by

where
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Hence,
01 0" 00 1
T=10 0 1 =11 0 0
100 610
and
010
T7'=j0 0 1
100
With this transformation matrix T, we define
x(k) = T%(k)
Then
T'GT =6
g1 0 G 10 g 0 1
={0 0 1 0 01 100
1 0 0} -025 0 0540 1 0
014, 0
=10 05} 025
10} 0
Also,
T'H=H
o1 offo 1] [o o
=10 0 1|0 O0}=[1_0
10 01 0 6 1
Next, we determine the state feedback gain matrix K, where
K = BAT™

From Equation (C-24), matrix B for the present case is a 2 X 2 matrix. Noting that

byz = 0, we have
-1
i1 by i1 0
B‘[o 1] “[o 1}

For the present case, 4 is a 2 X 3 matrix:
_ 81 Bz 613
A= {am 52 523]

Now we determine matrix G — HBA:

01 0 0 0
G-BBA=[0 05 -025{-|1 0 [é [1)][2“ g“ ?3}
1 0 0 0 1 Pl 22 23
o 1 0 0 0 0
=0 05 —0.25|—18, &2 &
1 0 0 8z 6 O
) 1 0
= _811 05 - 612 _0‘25 - 513
[ 1= 8 —ba ~
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The characteristic equation [z — G + ﬁBA| = (is given as follows:

) . z -1 0
zZI -G + HBA| = 811 z =05+ 8, 025+ 8
-1+ 8xn 82 z+ Ox

=0
Since the deadbeat response is desired, the desired characteristic equation is
22=0

Note that the choice of the §s is not unique and matrix 4 is not unique. Suppose we
choose the 8’s so that

61 =0, o2 = 0.5, 613 = ~0.25

én =1, 820 =0, 62 =0
Then
) . z =1 0
ZI-G+HBA =0 2z 0l=2=0
0 0 =z
and thus

_[o 05 -02s
“““{1 00 ]

is acceptable. Then matrix K is obtained as follows:

010
K=BAT‘1=[(1) ‘;]B 0 "8'25] 00 1
100

_[-025 0 05
0 10

With this choice of matrix K, (G — HBA)* = 0 for k = ., where

lmin = Max (11, n2) = max (2,1) = 2

In fact, ) ) 010
G-HBA=!0 0 0
¢ 00
000
(G-—HBAY=]0 0 0
00 0
Thus,
(G -—HBAY =0, k=2,34,...
Note that

G - BBA =T'GT - T HBA = T"'GT — T 'HKT = T"(G - HK)T

Referring to Equation (G-25) and its solution x(k) = (G — HK)*x(0), we have x(k) = ¢
fork =2,3,4,..., since
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G - HK = T(G ~ BBA)T™
(6 — BK)? = T(G — ABA)T ' T(G ~ ABA)T ! = T(& — HBAYT ' = ¢
and

x(k) = (G — BK)*x(0) = 0, &k =2,3,4...

We have thus designed the state feedback gain matrix K so that the system’s response
to any initial state x(0) is deadbeat. The state x(k) can be transferred to the origin in
at most two sampling periods. [Note that if the control signal (k) were a scalar then
it would take at most three sampling periods, rather than at most two sampling periods,
for deadbeat response. ]

EXAMPLE PROBLEMS AND SOLUTIONS

Problem C~1

Consider the system given by
sk + 1) = Gx(k) + Hyu(k)
where
x(k) = state vector (n-vector)
u(k) = control signal (scalar)
G = n X n matrix
H; = n X 1 matrix

Assume that the system is completely state controllable.

Define
£
. . | P
[H GH; - IG"TH | = |
f
where the £;’s (i = 1,2, ... ,n) are row vectors. Define also
f -1
T, = f,,:G
fn Gn—l
Show that
0 1 0
0 0 1 e 0
T'GTy =] : : : (C-26)
0 0 0 .- 1
—ly dn-1 TQn-2 —a
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and

<

0

TO'H = | (€-27)
0
1

where the ;s are the coefficients appearing in the characteristic polynomial of G, or
FI-Gl=z"+ a2+ o g, 2t a,

Solutien We shall prove Equations (C-26) and (C-27) for the case where 1 = 3.

(Extension of the derivation to an arbitrary positive integer n is straightforward.) Thus,
we shall derive that

0 1 0
T7GT, = 0 0 1 (C-28)
—43 —a; —a
Since
£
T = 66
£,G?

it is possible to rewrite Equation (C-28) as follows:

0 1 0 fs
6= 0 0 1| ng (C-29)
s —a, —ay || £G?
Now consider the conjugate transpose of the right-hand side of Equation (C-29). Noting

that for physical systems the coefficients 1,82, - . ., a, Of the characteristic polynomial
are real, we have

0 0 —a
[EE:GMIN(GH L1 0 —gf = (G5 (G*) %! —asft — @ GH Y — 4,(G*)* £ 1)
01 —-q

Note that G* satisfies its own characteristic equation:

(G*) = (G*) + m(G*) + &G* + a1 = ¢

Hence,
~lasl + 4, G* + a(G*If % = (G¥)°1%
Consequently,
0 0 -a
[fé‘fG*fﬁf(G*)zf’s“](lj <1J “Zz = [GHE(G* 131 (G*)°15] = GH[F5 Gy (G*)°ry)
—th

Taking the conjugate transpose of both sides of this last equation, we obtain

0 1 0 £5 f3
0 0 1 66 1=| &6 |6 =T7'G
-2y —a; —a;l| G2 £ G?
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which is Equation (C-29). Thus, we have shown that Equation (C-28) is true, or

0 1 0
T/'6T, =] 0 0 1
@3 —d —

Next, we shall show that

0
TUH, =10
1
Since
f;
[HiiGH,!GH] =&
£3
we obtain
£y
[=|6|H::GH GHi]
f;
ar
100 £ H, §HGH, [GH
01 0|=|6H £GH 6&GH
001 LH, £GH, LGYH,
Hence,

f:H, = 0, f3GH, = 0, EGH, =1

By using these equations, we obtain

f3 £:H, 0
T;lﬂl = G |H = fBGHl = |0
£LG* G H, 1

Note that the extension of the derivations presented here to the case of an arbitrary
positive integer n can be made easily.

Problem C-2
Consider the system

x(k + 1) = Gx(k) + Hu(k)

where
N x(k) = state vector (4-vector)
u(k) = control vector (2-vector)
and
-1 1 00 10
6o 12 1 memon|D 0
1 0 01 01
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Referring to Equation (C-10), obtain matrix F. Then, by use of the transforma-
tion matrix T defined by Equation (C-12), determine matrices G = T™'GT and
H = T 'H. Finally, derive Bquation (C-14).

Solution We shall first write the controllability matrix as follows:

[H: H:'GH,!GH, ! G’H, G’ G’ H, | G’ H))

4
t
'
.}
i
d

F Yo i

Lol -1l 2 0 -5 2
_Jtoriort 1tiel -3 2 11 —4
“liotlort 0li2l 30 -6 4

otiti i1t 001 201

Lo Lo e f L1

We now choose four linearly independent vectors from this 4 X 8 matrix, starting from
the left end. (These vectors are shown enclosed by dashed lines.) The four linearly
independent vectors chosen are Hy, Hz, GH, and GH.,, Next, we rearrange these four
vectors according to Equation (C-10) and define matrix F as follows:

F= [H1£GH1 HzGHz]

(Note that in this case n, = 2 and »n, = 2.) Thus,

1 -1 00

10 1.0 0

F=lo 002

0 111

The inverse of this matrix is given by

1 1 0 0
Bl = 0 1 0 0
0 -1 05 1
0 0 050

Since in this case n, = 2 and n, = 2, we define the second row vector of F~* as f; and
the fourth row vector as f,. Then

f=0 10 0
=[0 0 05 0

The transformation matrix T is given by

where
. .
S {flG}’ S [sz}
Hence,
O B N 0 o 201 =20
T=|BE6] |1 -2 1 0 _1 1 0 00
B I 0 R ) B 0.5 0 0 0 20
£G ¢ 05 -05 1 -05 0 11
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With this transformation matrix T we obtain

0 1 0 oif-1 1 o000l 2 1 -2 0
S b ) 1 ool 1t -2 1ol 1 0 00
G=T'6F=1y o o050/ 0 1 -12/ 6 0 20
10 05 -05 1|l 1 0 0 1]|-05 0 11
[ o 1 0 0
-1 -3 22
1o 0 01
| 15 15 -1 0
and
0 1 o ojlt o 0 0
A ) 1 olfo of_|1 0
H=T"H=147 o 0.5 00 0 00
0 05 —05 1/l0 1 01

Notice that, when n, = n, = 2, matrix G has the form given by Equation (C-13) and
matrix H has the form given by Equation (C-14), or

0 1 10 0 0 O
A @i A4 l—(lu —f14 ﬁ 1 by
3 = | 2 [ =} o Zoe
S=lv"9o e TP 00
Ay Ty | Ty 0 0 1

(Note that by is zero in this case.)
Finally, we shall derive Equation {(C-14). Notice that

it

i

F'F = {H, GH, H. GH,]

mH;, mGH, mH, m GH,
tH, f£GH, fH. f{GH.
m:H, mGH, mH, mGH,
fz H1 fz GE’}] fg Hz fz GHQ

DO
O - O

U
0
1
0

-0 OO

00

where m; and m; are the first row vector and the third row vector of F7?, respectivﬁly-
Since 7' F is an identity matrix, we have f; H, = 0, i H. = 0, £, GH, = 1, £ GH, = 0,
LH, =0, LH, =0, ,GH; =0, and £ GH, = 1. Thus, we have

f, fH, fH 0 0

b ey L | DG . _ fiGH, fiGH,| |1 0
H=T"'H= £, [B, Hj £H, LE |Z]0 0
£EG £, GH, £.GH; 0 1

which is Equation (C-14).
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Problem -3
Consider the system defined by Equation (C-8):
#(k + 1) = T GT(k) + T Hu(k) = Gi(k) + Hu(k)

where the transformation matrix T is defined by Equation (C~12). Assume that the
matrix G is given by Equation (C~15) and the matrix H is given by Equation (C-16).

That is,
0 1 0 10 G 0
g=| 0 0 10 g 00
@1  —@a ——“gl_B__; — 4 _l__l)l%
—@xn TOzp —dx E 02 0 1
Show that
N 2+ apzt + apz + oay a
I _ - 14
|Z G[ Gz + amz + an Z+ o
and
0 1 0 0
N N 0 0 1 0
G — HBA =
= S~ — S ays — b —au— Bia
~ayn — 8n —anm — 8 ~@x — 83 G — 8
where

O N T P T
0 1 ’ 821 8p Sm Bu
Show also that if we choose, for example,
| 7@ @ Tz —ay
a= [ % * * —5’24} (C-30)

where the elements shown by asterisks are arbitrary constants, the system will exhibit
the deadbeat response to any initial state x(0); that is,

(G -HBAY =0, k=4,556,...

Show also that if we choose

A:l:"all —az ~ds -014:| (C-31)
—dyn Az T Tl
then

(G — BBAY =

for k = ny,, where

fain = max {ny, 1) = max(3,1) = 3
Solution For the case where G is as given by Equation (C-15), we have

z -1 0 0
) ;-1 0
o1 — G = | °
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Expanding this determinant using the Laplace’s expansion formula, we obtain

A 1z =1 lz + Q13 (¥ | Z =1 -1 0
!zl - G| o P r s Z + Gy @11 Gzl @ z + Gy
N E: -1 -1 0
G2 axnilz + a3 ay

=(z + 024)(23 +aiz +anz + an) — al4(a23zz + ax

z+ axn)
Hence, the determinant |z} ~ G[ may be written as follows:

sy _ P Y antanz ta, e
IZK-G2~[ @ 2® + G2z + ay z + an

(C-32)

Next, compute
o 0 o &z S 6
T 0 0 1 bxz Bll 12 13 14}
HBA= b, [0 1} [521 Bn 6a bu
0

rO 0 6 0 0 0
O O 8u 81 85 814 {0 0 0 o0
B B Bn Bx 8u| |Bu Bz 6 b
0 1 82 B2 8u B
(Notice that the effect of postmultiplying matrix & by matrix B is to eliminate b, from
the product matrix HB.) Thus,

0 1 0 0

0 0 1 0
—an =8 —an— Sz ~ai - 8 —ay — S
—Qy — 52‘ —@x ~ O —Qy3 523 —@4 = By

G - BBA =

If we choose 4 as given by Equation (C-30), then

6100
A 0010
CHBA=1, 00 0
* ok % ()
where the elements shown by asterisks are arbitrary constants. Notice that
0010
A5 :_ |0 0 0 0
(G — HBAY = 00 0 0
0 % % 0]
’O 000
P 0000
3
(G — HBAY = 000 0
L0 0 = 0]
[0 0 0 0
P a_10 000
(C-HBA =15 0 0 0
L0 0 0 0]
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Hence,

x(k) = (6 — HK)*x(0) = (& - HBAY T 'x(0) =0, = 4

We have thus seen that the deadbeat response is ac
Equation (C-30).

However, if we choose A as given by Equation (C-31),

can be achieved in at most three sampling periods, becaus
(G — HBA)® becomes zero and

Xk) = TG ~ ABAY T 'x(0) = 0, 4 = P

hieved by choosing 4 as given by

then the deadbeat response
e the asterisk appearing in

Problem C-4
Consider the following system:

x(k + 1) = Gx(k) + Hu(k)

where
x(k) = state vector (4-vector)
u(k) = control vector (2-vector)
and
-1 1 0 0 01
1 =2 19 —rmomt |10
Tl o 12 H=[mim)- 0 0
1 0 01 10

By use of the state feedback control ub(k) = —-Kx(k),

we wish 1o place the closed-loop
poles at the following locations:

2=05+/05,  z=05-j05

z3= 0.2, ze= —~0.8
Determine the required state feedback gain matrix K. Then, using the given G and 1
matrices, derive Equation (C-16).
Selution We shall first eXamine the controllability matrix:

[H:GH!G’H!¢°H] = [Hi H.!GH, ! GH,! ¢’ H, EG2H25G3H15G3H2]

!0”1” 1) -1 =31 2 11 s
Sprleii-2t 1 gl 3 =22 1
Cfiohioly sioo dsl 3 35 g (c-33)

LIRS V2 S O I (R

The rank of this controllability matrix is 4. Thus, arbitrary pole placement is possible,
Four linearly independent vectors are chosen starting from the left end. (These vectors
early independent vectors chosen are

H,, H;, GH,, and G*H,. Now we rearrange these four vectors according to Equation

(C-10) and define marrix F as follows:
F= [H] .GE‘{] EG2H1 H:]

We note that n; = 3 and 72 = 1 in this case. Rewriting matrix F, we have

0 11-3 1]
J|1=20 8 0| [aiB
F=13 3?«30‘[0@)]
1 11 20
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Next, we compute F~'. Referring to Appendix A, we have

— [A”‘ + ATB(D - CAV'B)'CA™' —AT'B(D - CA‘IB)”}

—(D - CA™'B)"'CA™ (O - CA-'B)™
0 -1 -4 2
|10 5 & -1
0 3 3
1 3 1 -3

(The same result can be obtained easily by use of MATLAB.) Since n, = 3 and nz = 1,
we choose the third row vector as f; and the fourth row vector as £,. (Note that we define
the nith row vector, where 7 = ny + na + <+ + n, as £.) That is,

6=00 33 -4
=131 -4
Next, we define the transformation matrix T by
r -1
=5
SH
where
£ ]
S1= f}G , Szz[fz]
£G?|
Hence,
0+ .= l-1 101
T= 0 —% 0 % _{ 10610
0 2 - i 3300
18 L -2 1 310
With this transformation matrix T, if we define
x(k) = Tx(k)
then
01 0,0
. 00 110
— -1 - C-34)
G=T'"GT 0 3»:2""'“1 (
20 0=
Also,
0 & L1 -0 1 00
N 0 -& 0 1iflt 0o[_jo o0 C.35)
HeTTH=lo 5 o ool (
1 2 ¢ -ijj1 0 01

Now we shall determine the state feedback gain matrix K, where

K = BAT™'

App. C Example Probierns and Solutions
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Referring to Equation (C-24) and noting that by, = 0 in this case, matrix Bisa 2 x 2

matrix given by
roee™ 10
w=lo %] -15 ] 0

For the present case, A is a 2 X 4 matrix:

A= Sy 81z S B
8 8n Bx Oy

Hence,
0 1 0 f 0
~ 0 0 1 ! 0
—_ B o I
© - HBA LTOn 370 m2=dy 1= 8.
2 - bn —bx =823 =1 - B24
Referring to Equation (C-32), we have
" s + &)z + (= : - ‘
o1~ G + fBA| = 2 QF 802 F (<34 Bz + 8y <14 8 |
\ 622" + 8z + (=2 + 85) 1z 4+ 1+ 8y

This characteristic equation must be equal to the desired characteristic equation, which
is

(2 =05-j0.5)(z = 0.5+ j0.5)(z + 0.2)(z + 0.8) = z* — 0.342% + 0.34z + 0.08 = 0

If we equate the coefficients of the equal powers of z of the two characteristic equations,
we will have four equations for the determination of eight &'s. Hence, matrix 4 is not
unique. Suppose we arbitrarily choose

b4 = 0, 8n =0, 8y =0, 84 = ~1
Then
oI~ G + ABA| = 24 + (2 + 6)2° + (=3 + 812)2° + 8z —~ 2 + 8, = 0

By equating this characteristic equation with the desired characteristic equation, we
have

8y = 0.34
Oz = 2.66
O3 = ~2

821 = 2.08

Thus,

208 0 0 -1

Then matrix K is obtained as follows:

Cpar-i_| 0 -21067 07800 0.1067
K = BaT ‘”[—1 0.02667 0.3600 —0.02667

With the matrix K thus determined, state feedback control

ulk) = ~Kx(k)

A=[o.34 266 —2 o]
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will place the closed-loop poles at z; = 0.5 + J0.5, 22 = 0.5 - jO.5, z; = —0.2, and

z, = —0.8. It is noted that matrix K is not unique; there are many other possible
matrices for K.

Finally, we shall derive Equation (C-16). Notice that

11 8]
F'F= ‘;,‘2 [H, GH, G°H, Hj]

1

_f;"
—mlﬂl m GHy, m G H, m 1 0 00
_|mH mGH mG’H, mH.|_|0 100
T &8H 6GH, 6G’H, H, 6 010
‘fZHL szHx szZH] szz O 0 0 1

where my and m, are the first row vector and second row. vector of F71, respectively.
Since F'F is an identity matrix, 6 H, = 0, £, H, = 0,GH, = 0,1, G’ H, = 1, H, =
0, and £2H, = 1. From Equation (C-33) we see that GH, is linearly dependent on Hj,
E,, and GH,. Hence, £, GH, = of, H, + BfiH. + y£,GH, = 0, where a, B, and yare
constants. Note that £, G*H, may or may not be zero, Consequently,

f; £ Hy HE, 0 0
5o -1y - | IG -| BGH, £GH, | _10
H=T7R=\ & B LG°H §,G*H; 1 b
fz sz] fz Hz O 1
where by = f; G*H,. This last equation is Equation (C-16).

Problem C-§

Referring to Problem C-4, consider the same system. Suppose that we desire the
deadbeat response to an arbitrary initial state x(0). Determine the state feedback gain

matrix K.
Solution Referring to Equations (C-34), (C-35), and (C-36), we have
01 0] o0 00
. 1000 1! 9 < 10 0
“Tlos bl Bl g
20 ¢0:!-1 01
1

[T

where by, is zero. For the deadbeat response, we choose A as follows:

A=| %1 TGz —an ~au|_{0 3 -2 1
Tz O —das Oz 20 0 -1

where the a;;’s are as defined in Equation (C-15). Then

4]
s 0
G ~ HBA = 0
]

OO

1
0
0
0

[T B o ¥ e

and we find

(G-ABAY =0, k=345, ..

App. C Example Problems and Solutions

The deadbeat response is reached in at m.
problem n, = 3 and n, = 1. Hence, n,,
back gain matrix K is obtained as follows:

K = BAT™

athE

s
-1 ¢

3 -2 1
0 0 -1

Wi
|
@ wi-
| ey |

With this matrix K, the state feedback control

will place the four closed-loop poles at the origin and

response to any initial state x(0).

u(k) = —Kx(k)
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ost three sampling periods. [Note that in this
= max (n:,1,) = 3.] The desired state feed-

|

il s Dt

|

[RIINFPTR TR Sy
1N W= LI Gl

thus will produce the deadbeat
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A

Absolute stability, 193
Ackermann’s formula:
for minimum-order observer design,
450, 454
for observer design, 435-438, 440, 445,
496
for pole placement, 408-412, 466, 493
Actuating error, 200
AJD converter, 15
counter type, 15
successive-approximation type, 15
Adjoint vector, 572
Alias, 98
Amplitude quantization, 8
Analog controlier, 21
Analog multiplexer, 12
Analog signal, 1-2
Analog-to-digital conversion, 14
Analog-to-digital converter, 7
Analog transducer, 7
Analytical design method, 242--257

Angle:
of arrival, 209
of asymptote, 207-208
of departure, 209
Aperture time, 14
Associativity law, 638
Asymptotic stability, 325
in the large, 325

B

Backward difference:
first, 697
mth, 698
second, 698
third, 698
BIBO stability, 326
Bilinear form:
complex, 660
real, 660
Bilinear transformation, 191, 228, 231

735
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Block diagram: _
of continuous-time control system in
state space, 296
of discrete-time control system in state
space, 296
Bode diagram, 232-233 3
Bounded-input—bounded-output stability,
326
Breakaway point, 208-209
Break-in point, 208-209

C
Cancellation:
of poles with zeros, 210-211
Canonical forms:
controllable, 297298, 300, 396, 398,
489
diagonal, 299300, 399, 489
Jordan, 300, 302, 382, 390, 399-400,
651-652, 657, 659, 674
observable, 298-300, 398-399, 489
Cauchy-Goursat theorem, 688689
Cayley-Hamilton theorem, 350, 380, 404,
408, 481, 485, 492
Characteristic polynomial, 649
Characteristic roots, 650
Clamper, 78
Coding, 6, 8
Coefficient quantization problem, 234
Compensation:
phase lag, 233
phase lag-iead, 233
phase lead, 233
Complementary strips, 175
Complete observability. (See
Observability.)
Complete state controllability. (See
Controllability.)
Complex convolution theorem, 684
Complex differentiation, 681682
Complex integration, 682-683

Index

Complex translation theorem, 34
Conformal mapping, 180
Constant-attenuation loci, 176-177
Constant-damping-ratio Joci, 178-180
Constant-frequency loci, 176-178
Continuous-time analog signal, 1-2
Continuous-time quantized signal, 1-2
Contraction, 334~335, 367-368
Control energy, 622
Controllability, 377, 379

complete output, 385-386

complete state, 380--384, 387, 393, 406

matrix, 380, 401, 707-708

output, 387

in the z plane, 384

Controllable canonical form, 297-298, 300,

396, 398, 489
Convolution integral, 84—85
evaluation in the left half-plane of,
84-86
evaluation in the right half-plane of,
86--88
Convolution summation, 98, 100
Convolution theorem:
complex, 684
real, 684
Coprime polynomials, 518, 541
Covector, 572
c2d, 628
Current observer, 444

D
D/A converter:
using R-2R ladder circuit, 17-18
using weighted resistors, 16, 18
Data-acquisition process, 12
Data-acquisition system, 11-12
Data-distribution process, 12
Data-distribution system, 11
Data-hold, 6, 77
Data-hold circuits, 77

Index

Deadbeat response, 242, 248, 411,
414-418, 435, 439-442, 444,
453454, 470-471, 490, 494, 498,
502-505, 508, 550, 712-713, 715,
717-718, 723, 728-729

Decoder, 7

Decoding, 6

Definiteness:

negative, 661
positive, 660
Delay time, 194-195
Demultiplexer, 13
Derivative gain, 116
Derivative time, 115
Design:
based on analytical method, 242-257
based on frequency-response method,
225-242
based on pole placement, 402-421
based on pole placement with observed
state feedback, 421-460
based on polynomial equations
approach, 517-540
based on root-locus method, 204-225
Determinant, 633-635
properties of, 634-635
Diagonal canonical form, 299-300, 399,
489
Differentiation:
in the z plane, 165
Digital control system, 3, 5
Digital controlier, 20
realization of, 122
Digital filter, 122

block diagram realization of, 122

direct programming of, 123-124, 133

ladder programming of, 128-135

parallel programming of, 127-128

parallel realization of, 163-165

series programming of, 126-127

series realization of, 163-165

737

Drigital filter (cont.)
standard programming of, 124-125,
133134
Digital integrator:
bilinear, 172
with delay, 171-172
without delay, 171
Digital PID control:
positional form, 116
velocity form, 117
Digital PID controller, 114-118
Digital signal, 2-3
Digital-to-analog converter, 7, 16
Digital transducer, 7
Diophantine equation, 518, 520-521,
523-525, 529, 533, 535, 547, 551,
555, 559
solution to, 520-521
Diophantus, 518
Direct division method, 40-42
Direct method of Liapunov, 322
Direct programming, 123
method, 336
Discrete-time control system, 3
Discrete-time signal, 2-3, 23
Discretization, 6, 394
of continuous-time state space equation,
314
Domain of attraction, 325

Double integrator system, 361362, 439,
490, 513

E

Eigenvalue, 649-650, 678

Eigenvector, 650, 674
generalized, 654, 656
normalized, 650

Encoder, 7

Encoding, 6, 8

Equilibrium state, 324
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Errors in A/D converters:
gain error, 16-17
linearity error, 16~17
offset error, 1617

Euclidean norm, 324

F

Fibonacci series, 6769
Filter, 603-604
Final value theorem, 36
Finite-impulse response filter, 135-137
First-order hold, 19, 80-82, 139-140
interpolative, 19-20
magnitude and phase characteristics of,
151~153
transfer function of, 80-82
Folding, 96
error, 97
frequency, 96
Format:
long, 318
short, 318
Forward difference, 322
first, 698-699
mth, 699
second, 698
third, 698
Frequency-response method, 225-242
Frequency spectrum:
of complementary components, 92
of ideal low-pass filter, 9293
of primary component, 92
of sampled signal, 91-92
Full-order state observer, 426444
Fundamental matrix, 303, 309

G

Gain crossover frequency, 274
Gain error of A/D converter, 16-17

Index

Generalized eigenvector, 494, 496, 498,

654, 656, 674

H

Hermitian form, 660
Hermitian matrix, 633

Hidden instability, 334
Hidden oscillation, 98, 361
Higher-order hold circuits, 19, 82
Hold circuits, 17-18
Hold mode, 13

droop, 14

I

Ideal filter:
magnitude characteristics of, 92
unit-impulse response of, 93-94
Ideal low-pass filter, 92-93
Impulse sampler, 75-77, 83
Impulse sampling, 75, 77
Indefinite matrix, 661
Indefiniteness:
of scalar function, 661
Infinite-impulse response filter, 135
Initial value theorem, 35
Inner product, 643-645, 647
Instability, 325, 327-328
Integral gain, 116
Integral time, 115
Interpolative first-order hold, 19-20
Invariance:
of characteristic equation, 312
property, 401
Inverse z transform, 37, 687
computational method for obtaining,
42-46
difference equation approach to obtain,
46
direct division method for obtaining,
40-42, 62

Index

Inverse z transform (cont.)

inversion integral method for obtaining,

50-52, 60-62, 64—66
MATLAB approach to obtain, 42-45
partiaI—fraction-expansion method for
obtaining, 46-50, 64
Inverse z transformation, 37
Inverse of zI — G-
computation of, 304-309
Inversion integral:
for the z transform, 689
Inversion integral method, 50-52, 60-62,
64-66
Inverted pendulum control System, 596
Inverted pendulum system, 597, 625-628
Isolated equilibrium state, 324

J

Jacobian, 641
Jordan block, 383, 651-652

Jordan canonical form, 300, 302, 382, 390,

399-400, 651-652, 657, 659, 674
Jury stability table, 185, 187-188
Jury stability test, 185-190

K

Kalman, R. E., 377

Kronecker delta function, 42, 62
Kronecker delta input, 43, 103
Kronecker invariant, 708

L

Ladder programming, 128-135

Lag compensator, 224, 273274
Lagrange multiplier, 570-572

Laplace’s expansion by minors, 541, 634
Laurent series expansion, 141, 687, 689
Lead compensator, 262, 272-273

Left pseudoinverses matrix, 665-666

Liapunov:
direct method of, 322
first method of, 321
function, 322-323, 334, 591
second method of, 321372
Liapunev stability analysis, 321-336
of continuous-time system, 329-332
of discrete-time system, 332-334
first method of, 321
second method of, 321-322
Liapunov theorems:
on asympiotic stability, 326-327
on instability, 327-328
on stability, 327
Liapunov’s main stability theorem, 326
363-365
Linear dependence of vectors, 643
Linear discrete-time state equation:
solution of time-invariant, 302-309
solution of time-varying, 309~310
Linear independence of vectors, 643
Linear system, 3
Linear time-varying discrete-time system,
309-310
Linearity error of A/D converter, 16-17

E]

M
Mapping:
between s plane and z plane, 174-182
from s plane to z plane, 229
from z plane to w plane, 229
MATLAB programs:
for finding Fibonacci series, 68
for finding inverse 2z transform, 44, 63
for finding response to Kronecker deita
input, 45
for finding unit-ramp response, 120,
260, 459, 531
for finding unit-step response, 119, 196
240, 268, 421, 458, 530, 605-606

]
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MATLAB programs (cont.)

for pole placement in the z plane,

500-501
for quadratic optimal control, 579,
590~591, 600-603, 615

Matrix:

cancellation of, 639

derivative of, 640

diagonalization of, 651, 653

differentiation of, 640

eigenvalue of, 649650

eigenvector of, 650

exponential, 313

Hermitian, 633

indefinite, 661

integral of, 640

inverse, 635-637

inversion lemma, 573, 636, 668

multiplication by a matrix, 637

multiplication by a scalar, 637

negative definite, 661

negative semidefinite, 661

nonsingular, 635

norm of, 647

normal, 633

positive definite, 661

positive semidefinite, 661

rank of, 649

rules of operations of, 637-643

similar, 651

singular, 635

skew Hermitian, 633

skew symmetric, 633

stable, 365

symmetric, 633

trace of, 658

unitary, 645
Maximum overshoot, 195
Minimal left inverse, 666
Minimal polynomial, 350-354
Minimal right inverse, 665

Index

Minimum control energy, 622
Minimum norm solution, 624
that minimizes [|Ax — bj|, 665
that minimizes | x|, 663—665
Minimum-order observer, 446—450,
452454, 469-470, 502~504
Model matching control system, 532—534,
536-537, 561
Modified z transform, 691-696
Monic polynomial, 518
Moving average filter, 136
Multiple-order sampling, 8
Multiple-rate sampling, 8
Multiplexer, 12

N

Negative definite matrix, 661
Negative definiteness:

of scalar function, 661
Negative semidefinite matrix, 661
Negative semidefiniteness:

of scalar function, 661
Nested programming method, 338, 343
Nilpotent matrix, 414-416
Nonminimum phase transfer function, 233
Nonrecursive filter, 136-138
Nonsingular matrix, 635
Norm, 645-647

Euclidean, 324
Normal matrix, 633
nth-order hold, 77
Nyquist frequency, 96

O

Observability, 377, 388
complete, 389-390
matrix, 389, 394, 401
in the z plane, 391-394
Observable canonical form, 298-300,
398-399, 489

Index

Observation, 422
Observed-state feedback control system,
428, 434
with minimum-order observer, 447,
451-452
Observer error equation, 428, 443, 445,
450
Observer feedback gain matrix, 427, 434
438, 442, 449-450, 496, 499
Observer poles, 428
Observer regulator, 502, 503, 543
Optimal control law:
minimum energy, 622-625
quadratic, 568-596
Optimal control system, 566, 568
Optimal control vector, 567
closed-loop form, 574
feedback form, 574
Optimal regulator system, 566
Orthogonal matrix, 633
Orthogonal set, 648
Orthogonal transformation, 645
Gutput controllability, 387

>

P

Parallel programming, 127-128
Parameter optimization problem, 391
Parseval’s theorem, 686
Partial differentiation theorem, 683
Partial-fraction-expansion method, 46--50
Partial-fraction-expansion programming
method, 339-341, 345

PD controller, 234
Peak time, 195
Performance index, 566

including cross term, 582

minimum value of, 575
Periodic sampling, 8
Phase lag compensation, 233
Phase lag compensator, 234

Phase lag-lead compensation, 233
Phase lag-lead compensator, 233
Phase lead compensation, 233
Phase lead compensator, 234, 237
Physical realizability:
condition for, 244245
P1 controller, 234
PID control action:
analog controller, 115
PID controller, 117-118, 121, 233-234
analog, 156-159
digital, 156-159
positional form, 116
velocity form, 117, 157, 159-160
Plant, 7
Pole assignment technique, 402
Pole placement, 408
design, 402-421, 707-718
design with vector control, 704-718
necessary and sufficient condition for,
402-408
Pole-zero cancellation, 211, 479-481
Pole, 3940
Poly, 499
Polygonal hold, 19-20
Polynomial equations approach:
to design control systems, 525-532
to design regulator systems, 523-525
Polyvalm, 500
Positive definite matrix, 661
Positive definiteness:
of scalar function, 660—661
Positive semidefinite matrix, 661
Positive semidefiniteness:
of scalar function, 662-663
test, 680
Prediction observer, 428
design of, 430-444
full-order, 438
Primary strip, 175
Principle of duality, 392-394
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Principle of superposition, 3
Process, 7
Proportional gain, 116
Pseudoinverse matrix:
left, 665-666
right, 664-665
Pulse transfer function, 98, 102, 104118
of cascaded elements, 108-110
of closed-loop system, 110-111
of digital controller, 111-118
matrix, 310-312

Q
Quadratic form, 659-660
complex, 660
real, 659
Quadratic optimal control:
of servo system, 596-609
steady-state, 587-596
Quadratic optimal control problem:
discretized, 580582
Liapunov approach to the solution of,
592-396
steady-state, 592-594
Quadratic optimal regulator problem:
Liapunov approach to the solution of,
591-592
steady-state, 591-592
Quadratic performance index, 568
with cross term, 582
Quantization, 1, 7
error, 9
level, 8-9
noise, 9, 11, 126
process, 4
Quantizer, 9-10

R

Radius of absolute convergence, 25
Random sampling, 8

index

Rank, 649
Rate time, 115
Reachability, 474-475
Real convolution theorem, 684
Real sampler, 78
Real translation theorem, 31
Recursive filter, 135, 137
Reduced-order observer, 446
Relative stability, 193, 195, 220
Reset time, 115
Residue, 50, 84-85, 145, 399, 688,
690691
theorem, 689
Response:
to disturbance, 202
between two consecutive sampling
instants, 320-321
Riccati equation, 573-574
steady-state, 588-589
Riccati transformation, 572~573
Right pseudoinverse, 623-624, 664—665
Rise time, 195
Root loci:
asymptotes of, 207-208
general rules for constructing, 207-210
Root locus, 206
Root-locus method, 205
angle condition in, 206
magnitude condition in, 206
Round-off error, 9
Routh stability criterion:
bilinear transformation coupled with,
191192, 258-259

S

Sample-and-hold, 6
Sample-and-hold circuit, 13-14
hold mode operation of, 13-14
tracking mode operation of, 13-14
Sampled-data control system, 3

index

Sampled-data signal, 2
Sampled-data transducer, 7
Sampling, 6
frequency, 90
process, 4
theorem, 90-92
Scalar function:
indefiniteness of, 322
negative definiteness of, 322
negative semidefiniteness of, 322
positive definiteness of, 322
positive semidefiniteness of, 322
Scalar product, 643
Schur-Cohn stability test, 185
Schwarz inequality, 645-646
Second method of Liapunov, 322
Second-order hold, 19
Series programming, 126127
Servo system, 460
with observed-state feedback, 465
quadratic optimal control of, 596609
with state feedback, 464
with state feedback and integral control,
460-461
Settling time, 195
Shannon’s sampling theorem, 150-151
Shifting theorem, 31
Similar matrices, 651
Similarity transformation, 301, 311-312,
651653, 657
invariant properties under, 659
Singular matrix, 635
Sinusoidal pulse transfer function, 227-228
Skew-Hermitian matrix, 633
Skew-symmetric matrix, 633
real, 679
Square matrix:
eigenvalues of, 649-650
ss2tf, 603604
Stability, 324
Liapunov theorem on, 327

743

Stability analysis:
of linear time-invariant system, 328
by use of bilinear transformation and
Routh stability criterion, 191-192
Stable matrix, 365
Staircase generator, 78
Standard programming, 124-126
Starred Laplace transform, 103-104
State, 204
State equation:
solution of continuous-time, 312
solution of linear time-invariant discrete-
time, 302-309
solution of linear time-varying discrete-
time, 309-310
z transform approach to the solution of
discrete-time, 304--307
zero-order hold equivalent of contin-
uous-time, 315-317
State estimator, 422
State feedback gain matrix, 402-403,
410-414, 427, 492, 494
State observer, 422
full-order, 422, 426—444
minimum-order, 446-456
State observation:
minimum-order, 422
necessary and sufficient condition for,
422-425
reduced-order, 422
State space, 294
State space representation:
nonuniqueness of, 301
State transition matrix, 303, 305, 309-310
State variable, 294
State vector, 294
Static acceleration error constant, 200
Static error constants, 198-201
Static position error constant, 199
Static velocity error constant, 199
Steady-state actuating error, 198-200
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Steady-state error, 196-197, 200-201
Steady-state quadratic optimal control law:
Liapunov approach to, 591-594
Steady-state response, 193
Steady-state Riccati equation, 600, 621
Sylvester, J. J., 661
Sylvester matrix, 518-520, 524, 535,
540-541, 548, 551, 559
Sylvester criterion:
for negative definiteness, 662
for negative semidefiniteness, 663
for positive definiteness, 661662, 679
for positive semidefiniteness, 662
Symmetric matrix, 633
real, 679
System, 324

T

Time-invariant linear systemi, 3

Trace, 307, 658

Tracking mode, 13

Transducer, 7

Transfer function matrix:
pulse, 310-312

Transient response, 193
specifications, 193-195

Transportation lag, 280

"Two-point boundary-value problem, 572

Type 1 servo system, 597

Type 1 system, 197-198

Type 2 system, 197-198

Type 0 system, 197-198

U

Underdetermined equation, 623

Uniform asymptotic stability, 365
in the large, 364-365

Uniform stability, 324

Unit delay operator, 40

Index

Unit impulses:

train of, 75
Unit-ramp function, 26
Unit-step sequence, 26
Unitary matrix, 633, 648
Unitary transformation, 645

v

Vector:
norm of, 645
normalized, 644
unit, 648

Vectors:
linear dependence of, 643
linear independence of, 643
orthonormal, 648

W
w plane:

design procedure in the, 228-242
w transformation, 228-229, 231
Weighting sequence, 100

V4

z transform, 24

complex translation theorem of, 34

convolution integral method for obtain-
ing, 83

of cosine function, 28

definition of, 24

of exponential function, 27

final value theorem of, 36

of first backward difference, 697698

of first forward difference, 698-699

of function involving term (1 — e~ ™s,
88-90

important properties of, 31

injtial value theorem of, 35

index

z transform (cont.)
inverse, 37
inversion integral for, 689
linearity of, 31
one-sided, 24-25
of polynomial function, 27
properties of, 38
real translation theorem for, 31
of second backward difference, 698
of second forward difference, 698-699
shifting theorem for, 31
of sinusoidal function, 27
table of, 29-30
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z transform (cont.)
two-sided, 25
of unit-ramp function, 26
of unit-step function, 25, 33
Zero, 39-40
Zero-order hold, 18-19, 78, 166
Bode diagram of, 95
frequency-response characteristics of,
94-96
magnitude and phase characteristics of,
151-153
transfer function of, 139




