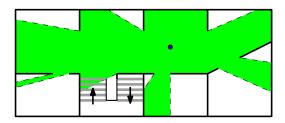
Triangulating a polygon

Computational Geometry

Lecture 4: Triangulating a polygon

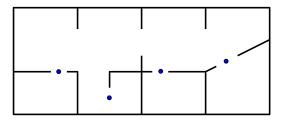
Polygons and visibility

Two points in a simple polygon can see each other if their connecting line segment is in the polygon



Art gallery problem

Art Galley Problem: How many cameras are needed to guard a given art gallery so that every point is seen?

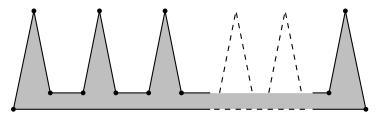


Art gallery problem

In geometry terminology: How many points are needed in a simple polygon with n vertices so that every point in the polygon is seen?

The optimization problem is computationally difficult

Art Galley Theorem: $\lfloor n/3 \rfloor$ cameras are occasionally necessary but always sufficient

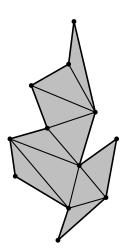


Triangulation, diagonal

Why are $\lfloor n/3 \rfloor$ always enough?

Assume polygon P is triangulated: a decomposition of P into disjoint triangles by a maximal set of non-intersecting diagonals

Diagonal of P: open line segment that connects two vertices of P and fully lies in the interior of P



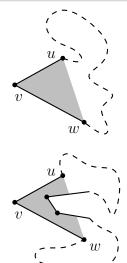
A triangulation always exists

Lemma: A simple polygon with n vertices can always be triangulated, and always have n-2 triangles

Proof: Induction on n. If n = 3, it is trivial

Assume n>3. Consider the leftmost vertex v and its two neighbors u and w. Either \overline{uw} is a diagonal (case 1), or part of the boundary of P is in $\triangle uvw$ (case 2)

Choose the vertex t in $\triangle uvw$ farthest from the line through u and w, then \overline{vt} must be a diagonal



A triangulation always exists

In case 1, \overline{uw} cuts the polygon into a triangle and a simple polygon with n-1 vertices, and we apply induction

In case 2, \overline{vt} cuts the polygon into two simple polygons with m and n-m+2 vertices $3\leq m\leq n-1$, and we also apply induction

By induction, the two polygons can be triangulated using m-2 and n-m+2-2=n-m triangles. So the original polygon is triangulated using m-2+n-m=n-2 triangles $\hfill\Box$

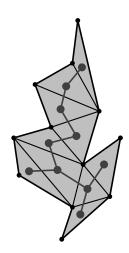
A 3-coloring always exists

Observe: the dual of a triangulated simple polygon is a tree

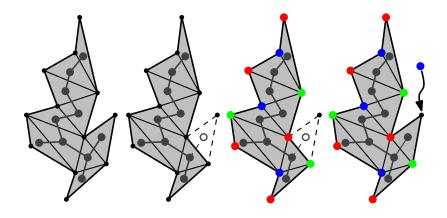
Lemma: The vertices of a triangulated simple polygon can always be 3-colored

Proof: Induction. True for a triangle

Every tree has a leaf. Remove the corresponding triangle from the triangulated polygon, color its vertices, add the triangle back, and let the extra vertex have the color different from its neighbors



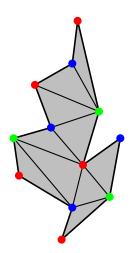
A 3-coloring always exists



$\lfloor n/3 \rfloor$ cameras are enough

For a 3-colored, triangulated simple polygon, one of the color classes is used by at most $\lfloor n/3 \rfloor$ colors. Place the cameras at these vertices

This argument is called the pigeon-hole principle



$\lfloor n/3 \rfloor$ cameras are enough

Question: Why does the proof fail when the polygon has holes?

Two-ears for triangulation

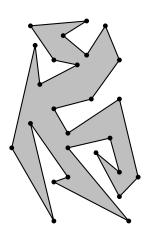
Using the two-ears theorem: (an ear consists of three consecutive vertices u, v, w where \overline{uw} is a diagonal)

Find an ear, cut it off with a diagonal, triangulate the rest iteratively

Question: Why does every simple polygon

have an ear?

Question: How efficient is this algorithm?

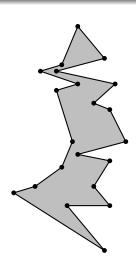


Overview

A simple polygon is y-monotone iff any horizontal line intersects it in a connected set (or not at all)

Use plane sweep to partition the polygon into y monotone polygons

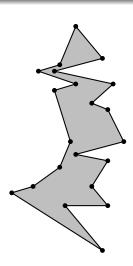
Then triangulate each y-monotone polygon



Monotone polygons

A y-monotone polygon has a top vertex, a bottom vertex, and two y-monotone chains between top and bottom as its boundary

Any simple polygon with one top vertex and one bottom vertex is *y*-monotone

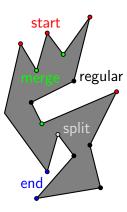


Vertex types

What types of vertices does a general simple polygon have?

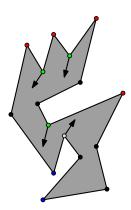
- start
- stop
- split
- merge
- regular

... imagining a sweep line going top to bottom



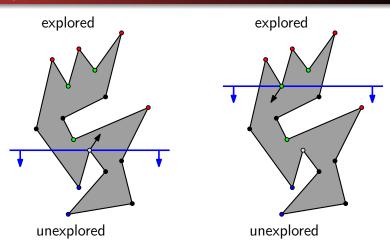
Find diagonals from each merge vertex down, and from each split vertex up

A simple polygon with no split or merge vertices can have at most one start and one stop vertex, so it is y-monotone



Towards an efficient algorithm Partitioning into monotone pieces Triangulating a monotone polygon Triangulating a simple polygon

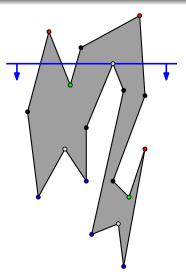
Sweep ideas



Handling split and merge vertices in the sweep?

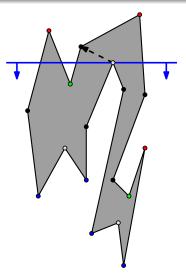
Where can a diagonal from a split vertex go?

Perhaps the upper endpoint of the edge immediately left of the merge vertex?



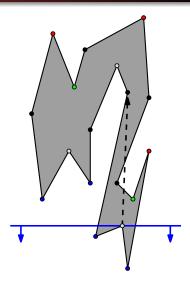
Where can a diagonal from a split vertex go?

Perhaps the upper endpoint of the edge immediately left of the merge vertex?



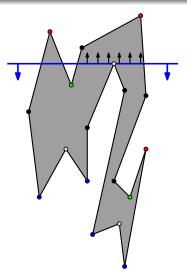
Where can a diagonal from a split vertex go?

Perhaps the upper endpoint of the edge immediately left of the merge vertex?



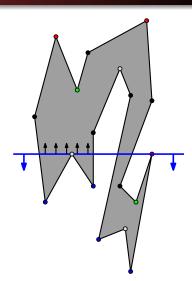
Where can a diagonal from a split vertex go?

Perhaps the last vertex passed in the same "component"?



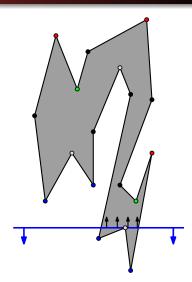
Where can a diagonal from a split vertex go?

Perhaps the last vertex passed in the same "component"?



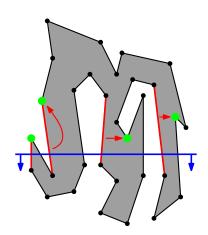
Where can a diagonal from a split vertex go?

Perhaps the last vertex passed in the same "component"?



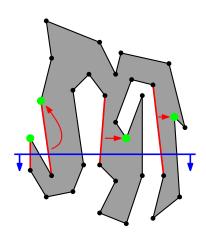
Status of sweep

The status is the set of edges intersecting the sweep line that have the polygon to their right, sorted from left to right, and each with their *helper*: the last vertex passed in that component



Helpers of edges

The helper for an edge e that has the polygon right of it, and a position of the sweep line, is the lowest vertex v above the sweep line such that the horizontal line segment connecting e and v is inside the polygon



Status structure, event list

The status structure stores all edges that have the polygon to the right, with their helper, sorted from left to right in the leaves of a balanced binary search tree ${\cal T}$

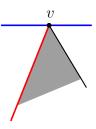
The events happen only at the vertices: sort them by *y*-coordinate and put them in a list (or array, or tree)

Main algorithm

- \bullet Sort all vertices by y-coordinate and put them in a list. Initialize an empty status structure T
- while the event list is not empty
 do remove the first event and handle it

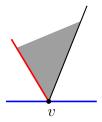
Start vertex v:

 \bullet Insert the counterclockwise incident edge in T with v as the helper



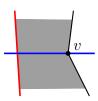
End vertex v:

 $\begin{tabular}{ll} \bullet & \end{tabular} \begin{tabular}{ll} \bullet & \end{$



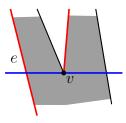
Regular vertex v:

- If the polygon is right of the two incident edges, then replace the upper edge by the lower edge in T, and make v the helper
- If the polygon is left of the two incident edges, then find the edge e directly left of v, and replace its helper by v



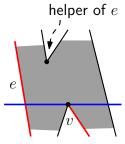
Merge vertex v:

- ullet Remove the edge clockwise from v from T
- Find the edge e directly left of v, and replace its helper by v



Split vertex v:

- ullet Find the edge e directly left of v, and choose as a diagonal the edge between its helper and v
- \bullet Replace the helper of e by v
- Insert the edge counterclockwise from v in T, with v as its helper



Efficiency

Sorting all events by y-coordinate takes $O(n \log n)$ time

Every event takes $O(\log n)$ time, because it only involves querying, inserting and deleting in T

Towards an efficient algorithm Partitioning into monotone pieces Triangulating a monotone polygon Triangulating a simple polygon

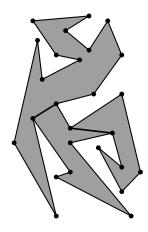
Degenerate cases

Question: Which degenerate cases arise in this algorithm?

Representation

A simple polygon with some diagonals is a subdivision \Rightarrow use a DCEL

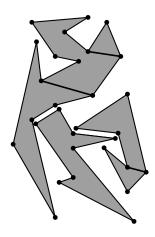
Question: How many diagonals may be chosen to the same vertex?



More sweeping

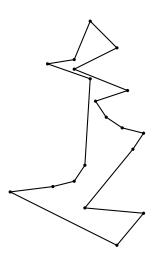
With an upward sweep in each subpolygon, we can find a diagonal down from every merge vertex (which is a split vertex for an upward sweep!)

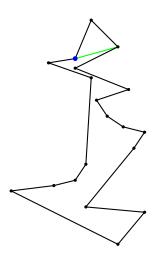
This makes all subpolygons *y*-monotone

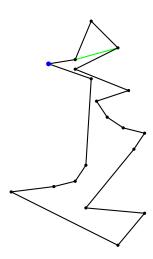


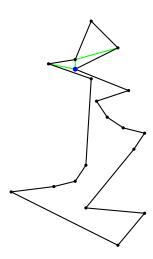
Result

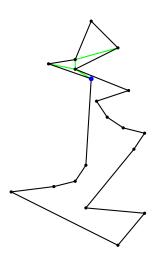
Theorem: A simple polygon with n vertices can be partitioned into y-monotone pieces in $O(n \log n)$ time

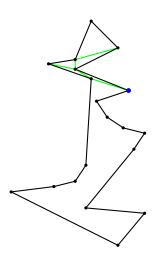


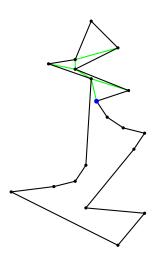


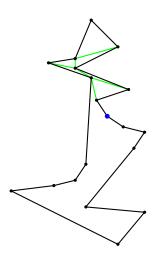


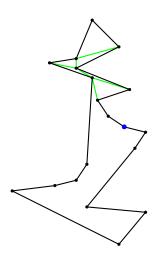


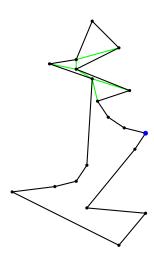




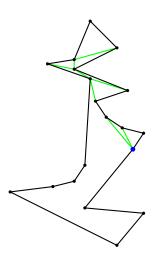


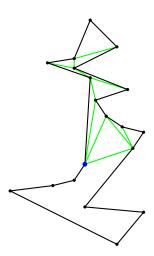


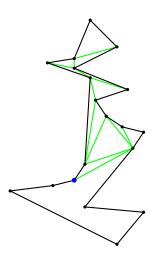


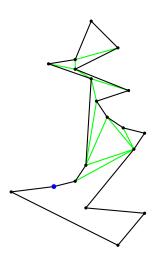


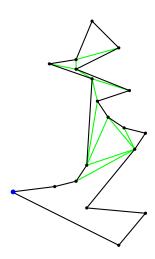
Triangulating a monotone polygon



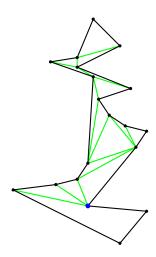




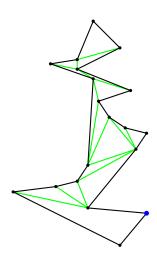




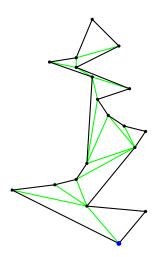
Triangulating a monotone polygon



Triangulating a monotone polygon



Triangulating a monotone polygon



The algorithm

- Sort the vertices top-to-bottom by a merge of the two chains
- Initialize a stack. Push the first two vertices
- Take the next vertex v, and triangulate as much as possible, top-down, while popping the stack
- ullet Push v onto the stack

Result

Theorem: A simple polygon with n vertices can be partitioned into y-monotone pieces in $O(n \log n)$ time

Theorem: A monotone polygon with n vertices can be triangulated O(n) time

Can we immediately conclude:

A simple polygon with n vertices can be triangulated $O(n\log n)$ time $\ref{eq:condition}$?

Result

We need to argue that all monotone polygons together that we will triangulate have O(n) vertices

Initially we had n edges. We add at most n-3 diagonals in the sweeps, which bound polygons on both sides. So all monotone polygons together have at most 3n-6 edges, and therefore at most 3n-6 vertices

Hence we can conclude that triangulating all monotone polygons together takes only ${\cal O}(n)$ time

Theorem: A simple polygon with n vertices can be triangulated $O(n \log n)$ time