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Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction, i.e., predicts class 
membership probabilities

 Foundation: Based on Bayes’ Theorem. 

 Performance: A simple Bayesian classifier, naïve Bayesian classifier, has 
comparable performance with decision tree and selected neural network classifiers

 Incremental: Each training example can incrementally increase/decrease the 
probability that a hypothesis is correct — prior knowledge can be combined with 
observed data

 Standard: Even when Bayesian methods are computationally intractable, they can 
provide a standard of optimal decision making against which other methods can be 
measured
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Bayes’ Theorem: Basics
 Total probability Theorem:

 Bayes’ Theorem:
 Let X be a data sample (“evidence”): class label is unknown
 Let H be a hypothesis that X belongs to class C 
 Classification is to determine P(H|X), (i.e., posteriori probability): the probability 

that the hypothesis holds given the observed data sample X
 P(H) (prior probability): the initial probability
 E.g., X will buy computer, regardless of age, income, …
 P(X): probability that sample data is observed
 P(X|H) (likelihood): the probability of observing the sample X, given that the 

hypothesis holds
 E.g., Given that X will buy computer, the prob. that X is 31..40, medium income
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Prediction Based on Bayes’ Theorem
 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the 

Bayes’ theorem

 Informally, this can be viewed as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to Ci iff the probability P(Ci|X) is the highest among all the 
P(Ck|X) for all the k classes

 Practical difficulty:  It requires initial knowledge of many probabilities, involving 
significant computational cost
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Classification Is to Derive the Maximum Posteriori
 Let D be a training set of tuples and their associated class labels, and each tuple is 

represented by an n-D attribute vector X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the maximal P(Ci|X)

 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only                                        

needs to be maximized

)(
)()|(

)|( X
X

X P
iCPiCP

iCP 

)()|()|( iCPiCPiCP XX 



29
29

Naïve Bayes Classifier 
 A simplified assumption: attributes are conditionally independent (i.e., no 

dependence relation between attributes):

 This greatly reduces the computation cost: Only counts the class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk for Ak divided by 
|Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed based on Gaussian 
distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified: 
X = (age <=30, Income = medium,
Student = yes, Credit_rating = Fair)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Naïve Bayes Classifier: An Example
 P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357
 Compute P(X|Ci) for each class

P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Avoiding the Zero-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-zero.  Otherwise, 
the predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), 
and income = high (10)

 Use Laplacian correction (or Laplacian estimator)
 Adding 1 to each case

Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003

 The “corrected” prob. estimates are close to their “uncorrected” counterparts
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Naïve Bayes Classifier: Comments
 Advantages 
 Easy to implement 
 Good results obtained in most of the cases
 Disadvantages
 Assumption: class conditional independence, therefore loss of accuracy
 Practically, dependencies exist among variables 
 E.g.,  hospitals: patients: Profile: age, family history, etc. 

Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc. 
 Dependencies among these cannot be modeled by Naïve Bayes Classifier

 How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)
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Model Evaluation and Selection
 Evaluation metrics: How can we measure accuracy?  Other metrics to consider?
 Use validation test set of class-labeled tuples instead of training set when assessing 

accuracy
 Methods for estimating a classifier’s accuracy: 
 Holdout method, random subsampling
 Cross-validation
 Bootstrap
 Comparing classifiers:
 Confidence intervals
 Cost-benefit analysis and ROC Curves

35
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Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer =  yes buy_computer = no Total
buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j in a confusion matrix indicates # of tuples in 
class i that were labeled by the classifier as class j
 May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Classifier Evaluation Metrics: Accuracy, Error 
Rate, Sensitivity and Specificity

 Classifier Accuracy, or recognition 
rate: percentage of test set tuples 
that are correctly classified

Accuracy = (TP + TN)/All
 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

 Class Imbalance Problem: 
 One class may be rare, e.g. fraud, or 

HIV-positive
 Significant majority of the negative class

and minority of the positive class
 Sensitivity (Recall): True Positive 

recognition rate
 Sensitivity = TP/P
 Specificity: True Negative recognition 

rate
 Specificity = TN/N

صحت

نرخ خطا

وضوح

حساسیت
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

 Precision: exactness: what % of tuples that the classifier labeled as positive are 
actually positive

 Recall: completeness – what % of positive tuples did the classifier label as positive?
 Comment:  
 Perfect score is 1.0
 Inverse relationship between precision & recall
 F measure (or F-score): harmonic mean of precision and recall
 In general, it is the weighted measure of precision & recall

 F1-measure (balanced F-measure) 
 That is,  when β = 1,

Assigning β times as much 
weight to recall as to precision)

دقت

حساسیت
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Classifier Evaluation Metrics: Example

 Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)
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Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

 Holdout method
 Given data is randomly partitioned into two independent sets
 Training set (e.g., 2/3) for model construction
 Test set (e.g., 1/3) for accuracy estimation
 Random sampling: a variation of holdout
 Repeat holdout k times, accuracy = avg. of the accuracies obtained

 Cross-validation (k-fold, where k = 10 is most popular)
 Randomly partition the data into k mutually exclusive subsets, each 

approximately equal size
 At i-th iteration, use Di as test set and others as training set
 Leave-one-out: k folds where k = # of tuples, for small sized data
 *Stratified cross-validation*: folds are stratified so that class dist. in each fold is 

approx. the same as that in the initial data


