Chapter 8. Classification: Basic Concepts

Classification: Basic Concepts

Decision Tree Induction

Bayes Classification Methods

Model Evaluation and Selection

□ Techniques to Improve Classification Accuracy: Ensemble Methods

Summary

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- **Foundation:** Based on Bayes' Theorem.
- Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

Total probability Theorem:

$$P(B) = \sum_{i=1}^{M} P(B|A_i) P(A_i)$$

Bayes' Theorem:

$$P(H | \mathbf{X}) = \frac{P(\mathbf{X} | H)P(H)}{P(\mathbf{X})} = P(\mathbf{X} | H) \times P(H) / P(\mathbf{X})$$

- Let **X** be a data sample (*"evidence"*): class label is unknown
- Let H be a *hypothesis* that X belongs to class C
- Classification is to determine P(H|X), (i.e., *posteriori probability*): the probability that the hypothesis holds given the observed data sample X
- □ P(H) (*prior probability*): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- □ P(X): probability that sample data is observed
- P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - **E**.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes' theorem

$$P(H | \mathbf{X}) = \frac{P(\mathbf{X} | H)P(H)}{P(\mathbf{X})} = P(\mathbf{X} | H) \times P(H) / P(\mathbf{X})$$

Informally, this can be viewed as

posteriori = likelihood x prior/evidence

- □ Predicts **X** belongs to C_i iff the probability $P(C_i | \mathbf{X})$ is the highest among all the $P(C_k | \mathbf{X})$ for all the *k* classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- □ Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x₁, x₂, ..., x_n)
- **Suppose there are** m classes $C_1, C_2, ..., C_m$.
- **Classification** is to derive the maximum posteriori, i.e., the maximal $P(C_i | \mathbf{X})$
- □ This can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

□ Since P(X) is constant for all classes, only

$$P(C_i | \mathbf{X}) = P(\mathbf{X} | C_i) P(C_i)$$

needs to be maximized

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X}|C_{i}) = \prod_{k=1}^{n} P(x_{k}|C_{i}) = P(x_{1}|C_{i}) \times P(x_{2}|C_{i}) \times \dots \times P(x_{n}|C_{i})$$

- □ This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}| (# of tuples of C_i in D)
- □ If A_k is continous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

and $P(x_k | C_i)$ is

$$P(\mathbf{X}|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

29 ²⁹

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data to be classified:

X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

 $P(C_i)$: P(buys computer = "yes") = 9/14 = 0.643P(buys computer = "no") = 5/14 = 0.357Compute $P(X|C_i)$ for each class $P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$ $P(age = " <= 30" | buys_computer = "no") = 3/5 = 0.6$ P(income = ``medium'' | buys computer = ``yes'') = 4/9 = 0.444 $P(\text{income} = \text{``medium''} \mid \text{buys computer} = \text{``no''}) = 2/5 = 0.4$ P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667 $P(student = "yes" | buys_computer = "no") = 1/5 = 0.2$ P(credit rating = "fair" | buys computer = "yes") = 6/9 = 0.667P(credit rating = "fair" | buys computer = "no") = 2/5 = 0.4 $X = (age \le 30, income = medium, student = yes, credit rating = fair)$ $P(X|C_i): P(X|buys computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$ $P(X | buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$ $P(X|C_i)*P(C_i): P(X|buys computer = "yes") * P(buys computer = "yes") = 0.028$ P(X|buys computer = "no") * P(buys computer = "no") = 0.007Therefore, X belongs to class ("buys computer = yes") 31

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X | C_i) = \prod_{k=1}^{n} P(x_k | C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - □ Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

□ The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

Chapter 8. Classification: Basic Concepts

Classification: Basic Concepts

Decision Tree Induction

Bayes Classification Methods

Model Evaluation and Selection

Techniques to Improve Classification Accuracy: Ensemble Methods

Summary

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- **Comparing classifiers:**
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{*i*,*j*} in a **confusion matrix** indicates # of tuples in class *i* that were labeled by the classifier as class *j*
 - May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A∖P	С	¬C	
С	ΤР	FN	Ρ
¬C	FP	ΤN	Ν
	P'	N'	All

Classifier Accuracy, or recognition
 rate: percentage of test set tuples
 that are correctly classified

Accuracy = (TP + TN)/All

Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

نرخ خطا

- **Class Imbalance Problem:**
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant *majority of the negative class* and minority of the positive class
 - Sensitivity (Recall): True Positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True Negative recognition rate
 - و^{ضوح} Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

Precision: exactness: what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{1}{TP + FP}$$

2PR

- **Recall:** completeness what % of positive tuples did the classifier label as positive?
- Comment:
 - Perfect score is 1.0

$$recall = \frac{TP}{TP + FN}$$

حساسيت

- Inverse relationship between precision & recall
- **F measure (or F-score):** harmonic mean of precision and recall
- In general, it is the weighted measure of precision & recall

$$F = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Assigning β times as much weight to recall as to precision)

□ F1-measure (balanced F-measure)

D That is, when
$$\beta = 1$$
, $F_1 = \frac{1}{P+R}$

38

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (<i>accuracy</i>)

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - □ Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- **Cross-validation** (*k*-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - □ At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: *k* folds where *k* = # of tuples, for small sized data
 - Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data